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Abstract

The equation-of-motion technique for Green’s functions has been used widely and suc-
cessfully in quantum-mechanical systems in equilibrium. With the ever decreasing size of
electronic devices, though, the importance of non-equilibrium properties, such as current-
voltage characteristics, of strongly correlated molecular electronic devices increases.

The aim of this thesis is to examine the method in its non-equilibrium formulation in order
to gain a better understanding for future research on this topic.

Therefore, the equation of motion for non-equilibrium Green’s functions is derived in detail
in the framework of path-ordering for both the two-time domain and, for steady-state
solutions, the frequency domain. In addition to the usual form, an alternative expression is
presented.

The steady-state equations are then applied to a benchmark model out of equilibrium,
namely the interacting resonant level model (IRLM), where first self-consistent analytical
solutions are obtained within a mean-field approximation. Numerical results for different
parameter sets are achieved in good agreement with the literature.

Eventually, the examination is extended to include higher correlations of distinct orders and
alternative approximation schemes. Special attention is paid to the intricacies of arising
symmetry violations as well as to their restoration. Numerical results are shown for each
approach.
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Kurzfassung

Der Bewegungsgleichungsformalismus für Green-Funktionen hat bisher bei quantenme-
chanischen Systemen im Gleichgewicht erfolgreich Anwendung gefunden. Durch immer
kleiner werdende elektronische Geräte werden allerdings Nichtgleichgewichtseigenschaften
wie Strom-Spannungskurven stark korrelierter molekularer Systeme immer wichtiger.

Ziel dieser Arbeit ist es daher, die Methode in der entsprechenden Nichtgleichgewichtsfor-
mulierung zu untersuchen, um für zukünftige Forschung zu diesem Thema ein besseres
Verständnis zu erlangen.

Dazu wird erst im Rahmen der Pfadordnung die Bewegungsgleichung für Green-Funktionen
im Nichtgleichgewicht sowohl im Zweizeitbereich als auch für Steady-State-Lösungen im
Frequenzbereich detailliert hergeleitet. Zusätzlich zu der üblichen Form wird ein alternativer
Ausdruck präsentiert.

Die Steady-State-Gleichungen werden dann auf das Interacting-Resonant-Level-Modell
(IRLM) als Benchmark-Modell im Nichtgleichgewicht angewandt, wobei erste selbstkonsis-
tente analytische Lösungen durch eine Mean-Field-Näherung erhalten werden. Für verschie-
dene Parametersätze werden in guter Übereinstimmung mit Literaturwerten numerische
Ergebnisse erzielt.

Schließlich wird die Analyse um höhere Korrelationen verschiedener Ordnungen und alter-
native Näherungsschemata erweitert. Besonderes Augenmerk wird auf die Komplikationen
auftretender Symmetrieverletzungen sowie deren Wiederherstellung gelegt. Ausgewählte
numerische Ergebnisse werden für jeden Ansatz präsentiert.
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Ἀλλὰ τἀληθὲς λέγεις, ἦ δ᾿ ὃς ὁ Διμπλόδωρος ἀναπνεύσας τι.
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Preliminary Remarks

Units

Throughout this thesis, the reduced Planck constant h̄ and the Boltzmann constant kB
equal

h̄ = kB = 1.

As a consequence, the dimensionI of the angular frequency ω used in the Fourier transform
and the dimension of temperature become both equal to energy, i.e.

[T]← [kBT] = E = [h̄ω]→ [ω] ,

the dimension of time becomes equal to an inverse energy

E−1 =
[
th̄−1

]
→ [t] ,

and so especially the dimension of electric current becomes equal to charge times energy

[I] = Q [t]−1 → QE.

Nomenclature

〈〈A; B〉〉 without a superscript refers always to a retarded or advanced Green’s function,
where the argumentation or equation is valid for both. Operator hats for A and B are only
used in the opening sections to familiarize the reader with the symbols.

〈〈A; B〉〉κ with any superscript κ but no direct variable dependence in the operators, which
would be shown in brackets like in A(t), refers to the Fourier-transform with respect to ω.

G is used for Green’s functions in general, superscripts and variable dependence is indicated
if needed.

Some technical terms are shown in italics (mostly) on first appearance.

Abbreviations

NEGF: Non-equilibrium Green’s function
(N)EQ: (Non)-equilibrium
TB: Tight-binding
WBL(*): Wide-band limit (in higher truncation levels)
HF: Hartree-Fock
IRLM: Interacting Resonant Level Model
EoM: Equation of motion

IDimension denotes here the dimension of the physical quantity and is represented by sans-serif letters.
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1. Introduction

In many-body physics, Green’s functions are a very general and powerful tool for the
calculation of observables in a quantum mechanical system. More precisely, different types
of two-pointI Green’s functions G are used throughout this thesis, which are proportional to
quantum mechanical correlation functions of two general operators Â and B̂ at times t1 and
t2, so

GAB(t1, t2) ∝
〈

Â(t1)B̂(t2)
〉

,

and thus grant access to measurable quantities of the system under investigation, such as a
density of states or general expectation values.

The calculation of such Green’s functions is often performed with the help of the self-energy
in the Dyson-equation framework (cf. section 4.3 in [1]), but another approach shall be
considered here, which has brought success in equilibrium situations: The equation-of-
motion method, which can easily provide exact solutions to quadratic Hamiltonians (cf.
section 3.2 in [2]) and which has been successful especially in the treatment of the Kondo
effect (e.g. [3], [4], [5]).

Inspired by the equilibrium results, the aim of this thesis is to investigate the equation-of-
motion method in its non-equilibrium formulation in order to investigate dynamic quantities
of a quantum mechanical system, such as the current, and to gain a better understanding
for future research on this topic. This formulation allows for a direct calculation of the type
of Green’s functions that determines steady-state expectation values, namely the so-called
lesser Green’s function: 〈

B̂Â
〉

∝ G<
AB(t1 − t2) = G<

AB(0)

An essential steady-state observable in non-equilibrium physics is the current flowing in
a system, i.e. the transport of charge carriers from one region of the system to another.
Quantitatively, this can be described by the change in total electron number in a region x,

Ix = −e
〈

dN̂x

dt

〉
, (1.0.1)

where an electron carries the charge of −e, resulting in an outgoing current (negative change
in total electron number) to be positive.

After this brief motivation, the interested reader should bring a basic understanding for
the second-quantization formalismII from here on, but will further be guided through this
thesis step-by-step with the following structure and will hopefully be motivated to try it out
for themself.

In-point generalizations are especially used in relativistic quantum field theory.
II In many-body physics, Green’s functions may also be used to describe spin systems, where themselves

are described by spin operators, (see e.g. [6]), however, this thesis is completely restricted to the formalism of
second quantization. Hence, all occurring operators are products of creation- and annihilation operators.
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1. Introduction

In the beginning, a short overview of the equation-of-motion technique and its limitations
to the equilibrium case are given. Starting from a very general definition for expectation
values, an expression for a time-ordered Green’s function is found which is the basis for
the derivation of the equation of motion. The resulting equation is represented as a set
of integral equations that are further transformed to algebraic equations for steady-state
solutions.

The application of these equations is shown throughout the thesis using the interacting
resonant level model which is introduced including its symmetries, possible current definitions,
coupling to different environments, and the basic equations resulting from the equation of
motion.

The interaction – which is the hard part in first place – is treated in a first mean-field
approximation, leading to closed solutions that are evaluated analytically and numerically
for two different environments in order to obtain quantitative results.

Finally, the equations are extended to include higher Green’s functions, where special
attention is paid to arising symmetry violations that lead to unphysical results. A symmetry
restoration is discussed and applied, which ultimately leads to reasonable numerical results
for different orders.

2



2. Equation of Motion for
Non-Equilibrium Green’s Functions

In this chapter, the framework of non-equilibrium Green’s functions is set up in the detailed
derivation of their equation of motion. Its Fourier transform as well as more convenient
forms are presented.

However, before plunging into the non-equilibrium formalism it seems reasonable to recap
the equation-of-motion technique for equilibrium systems. The central objects are the
fermionicI two-time retarded (R) and advanced (A) Green’s functions

GR
AB(ta, tb) ≡ 〈〈A(ta); B(tb)〉〉R := −iΘ (ta − tb)

〈{
Â(ta), B̂(tb)

}〉
GA

AB(ta, tb) ≡ 〈〈A(ta); B(tb)〉〉A := +iΘ (tb − ta)
〈{

Â(ta), B̂(tb)
}〉

,
(2.0.1)

where Â(ta) and B̂(tb) are some general operators in second quantization, Θ(t) is the
Heaviside step function, 〈. . .〉 denotes the expectation value with respect to some general
ensemble, and the curly braces denote the anticommutator{

Â, B̂
}

:= ÂB̂ + B̂Â.

The functional dependence of a Green’s function G(ta, tb) is in general of two independent
time variables ta and tb, but in equilibrium this simplifies to a single-variable function in
time difference ta − tb, so

G(ta, tb)
EQ→ G(ta − tb).

As shown later (cf. equation (2.0.5)), it is convenient to work in Fourier spaceII with respect
to time difference, which is obtained by

G(ω) :=
∫ ∞

−∞
d(ta − tb) eiω(ta−tb)G(ta − tb).

Note the convention on normalization and frequency sign. In the full notation Fourier space
is indicated by a subscript, as in

〈〈A(ta); B(tb)〉〉
FT→ 〈〈A; B〉〉ω ,

or simply by the loss of explicit variable dependence in the operators. In order to obtain
quantitative results from this theory, the Green’s functions defined above need to be linked to
measurable physical quantities (observables), which can be done via the spectral function

AAB(ω) :=
1

2πi

(
GA

AB(ω)− GR
AB(ω)

)
IFor bosonic systems it is more convenient to choose the commutator.

II Which is here equivalent to energy space as h̄ = 1.

3



2. Equation of Motion for Non-Equilibrium Green’s Functions

that acts like a generalized density of states. As the distribution function for fermionic
systems in equilibrium at temperature T and chemical potential µ is known, namely the
Fermi function f (ω; µ, T), expectation values can be obtained by the integral〈

B†A
〉
=
∫ ∞

−∞
dω f (ω; µ, T)AAB(ω), (2.0.2)

where
f (ω; µ, T) :=

1
eβ(ω−µ) + 1

and β = T−1 is the inverse temperature as kB = 1.

The well-known equation of motion for retarded and advanced Green’s functions is now
easily obtained from the Heisenberg equation for operators (see, e.g., chapter 3.2 in [7]). It is
formally the same for both functions and reads

i
∂

∂ta
〈〈A(ta); B(tb)〉〉R/A = δ(ta − tb)

〈{
Â(ta), B̂(tb)

}〉
+ 〈〈[A, H](ta); B(tb)〉〉R/A, (2.0.3)

where δ(t) is the Dirac delta distribution that comes from the derivative of the step function
and the square-bracket term denotes the equal-time commutator

[A, H](ta) ≡
[
Â(ta), Ĥ(ta)

]
:= Â(ta)Ĥ(ta)− Ĥ(ta)Â(ta)

with the system Hamiltonian H. The retarded and advanced functions are explicitly obtained
for the boundary conditions

〈〈A(ta); B(tb)〉〉R = 0 for ta < tb

〈〈A(ta); B(tb)〉〉A = 0 for ta > tb.
(2.0.4)

In general, the commutator produces a linear combination of new operators, that may be
higher products of creation- and annihilation operators. Thus, the second term in equation
(2.0.3) produces a linear combination of new Green’s functions, for which the same equation
of motion can be applied. Transforming the differential equation into Fourier space reduces
the problem to the algebraic equation

ω〈〈A; B〉〉R/A
ω =

〈{
Â, B̂

}〉
+ 〈〈[A, H]; B〉〉R/A

ω (2.0.5)

with boundary conditions

ω → ω± iη for 〈〈A(ta); B(tb)〉〉R/A
ω ,

where the limit η → 0+ is intended. This algebraic form gives rise to a linear set of equations
that is in principle easy to solve.

As seen later, it turns out that the equation of motion for retarded (or advanced) Green’s
functions are the same in a non-equilibrium situation, however, the relation to expectation
values is lost as there is no general simple distribution function describing non-equilibria.
Expectation values (= equal-time correlations) have to be calculated directly from correlation
functions instead. They are usually defined as lesser (<) and greater (>) Green’s functions:

〈〈A(ta); B(tb)〉〉< := +i
〈

B̂(tb)Â(ta)
〉

〈〈A(ta); B(tb)〉〉> := −i
〈

Â(ta)B̂(tb)
〉

.
(2.0.6)

4



2. Equation of Motion for Non-Equilibrium Green’s Functions

A naive application of the Heisenberg equation in order to obtain a direct equation of motion
for the correlation functions, namely

i
∂

∂ta
〈〈A(ta); B(tb)〉〉≷ = 〈〈[A, H](ta); B(tb)〉〉≷, (2.0.7)

must obviously be incompleteIII, as the equation above should ultimately determine expec-
tation values, but it lacks statistical information. As an example, this is illustrated for a free
fermion model with

Hfree = ∑
k

εkc†kck and [ck, Hfree] = εkck,

where c(†)k annihilates (creates) a particle with energy εk. According to (2.0.7), the equation
of motion for a single-particle lesser Green’s function reads

i
∂

∂t
〈〈ck(t); c†k(t

′)〉〉< = εk〈〈ck(t); c†k(t
′)〉〉<, (2.0.8)

which is solved by functions ∝ i exp{−iεkt}. The dependence on t′ and constant prefactors
remain undetermined compared to the correct solution (cf. section 12.3 in [1])

〈〈ck(t); c†k(t
′)〉〉< = i f (εk; µ, T) exp

{
−iεk(t− t′)

}
.

A fully consistent equation of motion for lesser and greater Green’s functions can be derived
in the framework of path-ordering, which is introduced on general expectation values in the
following section.

2.1. (Non-Equilibrium) Expectation Values

A non-equilibrium situationIV for a general quantum mechanical system can be described
by the Hamiltonian

Ĥ(t) = Ĥ0 + Θ(t− t0)Ĥ1(t), (2.1.1)

where the time-independent operator Ĥ0 alone describes the complete system for times
t < t0, where at t = t0 a possibly time-dependent change is introduced to the system by
Ĥ1(t), e.g. an applied voltage or hopping terms that connect subsystems. The state of the
initial system, i.e. for times t < t0, is given through the density operator

ρ̂0 ≡ ρ̂(Ĥ0), (2.1.2)

which may describe either one system in equilibrium or a set of disconnected subsystems
each in its own equilibrium, and so observables in the initial system can be expressed as〈

Ô
〉

0 := tr
{

ρ̂0Ô
}

.

IIIA mathematical argumentation using Dirac delta calculus can be found in [8].
IVSee, e.g., chapter 4 in [9].
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2. Equation of Motion for Non-Equilibrium Green’s Functions

The time evolution of the whole system can be done in different pictures – Schrödinger (S),
Dirac (D) and Heisenberg (H) – for which the governing equations of motion and subsequently
the transformations are the von Neumann equation for the density operator

+ i
∂ρ̂S

∂t
=
[
Ĥ, ρ̂S

]
⇐⇒ ρ̂S(t) := Û (t, t0)ρ̂0,SÛ †(t, t0) (2.1.3)

and the Heisenberg equation for any other operatorV

− i
dÔH

dt
=
[
Ĥ, ÔH

]
⇐⇒ ÔH(t) := Û †(t, t0)ÔSÛ (t, t0), (2.1.4)

where

Û (t, t0) := T exp
[
−i
∫ t

t0

dt′ Ĥ(t′)
]

Û †(t, t0) := T̃ exp
[
−i
∫ t0

t
dt′ Ĥ(t′)

] (2.1.5)

defines the unitary time evolution operatorVI and (T̃ )T is the (anti-)time-ordering operator.
As the equations above suggest, in the Heisenberg picture the operator ÔH(t) carries the
complete time evolution of Ĥ(t) and the states (density operator) remain constant, where in
the Schrödinger picture the states evolve in time with ρ̂S(t).

The different pictures must not change physical quantities, which can be shown in fact using
the cyclic invariance property of the trace, thus, an observable at time t can be written as〈

Ô(t)
〉
= tr

{
ρ̂S(t)ÔS

}
= tr

{
Û (t, t0)ρ̂0Û †(t, t0)ÔS

}
= tr

{
ρ̂0Û †(t, t0)ÔSÛ (t, t0)

}
= tr

{
ρ̂0ÔH(t)

}
.

(2.1.6)

The Dirac picture takes an intermediate position, where states and operator both carry part
of the time evolution. The Hamiltonian is split like in (2.1.1) and all operators carry the
time evolution governed by Ĥ0, which can be integrated exactly. The operators in the Dirac
picture then read

ÔD(t) := Û †
0 (t, t0)ÔSÛ0(t, t0) = ei(t−t0)Ĥ0ÔSe−i(t−t0)Ĥ0

Ĥ1,D(t) := Û †
0 (t, t0)Ĥ1,S(t)Û0(t, t0) = ei(t−t0)Ĥ0 Ĥ1,S(t)e−i(t−t0)Ĥ0 ,

(2.1.7)

where in principle Ĥ0 is transformed as well, but as it commutes with itself, the exponentials
cancel out and the operator is the same in both pictures, i.e. Ĥ0,D = Ĥ0,S. Another unitary
transformation V̂ can be found, relating operators in the Heisenberg and Dirac picture via

ÔH(t) = V̂†(t, t0)ÔD(t)V̂(t, t0), (2.1.8)

VWith ∂
∂t ÔS = 0.

VISee section A.1.1 in the appendix for the derivation.

6



2. Equation of Motion for Non-Equilibrium Green’s Functions

where

V̂(t, t0) := T exp
[
−i
∫ t

t0

dt′ Ĥ1,D(t′)
]

V̂†(t, t0) := T̃ exp
[
−i
∫ t0

t
dt′ Ĥ1,D(t′)

]
.

(2.1.9)

Equation (2.1.8) implies the special time-ordering t0
T→ t T̃→ t0, i.e. regular time-ordering

from t0 to t and anti-time ordering from t back to t0, that can be combined to a new
time-ordering for a variable τ along a contour Ct

VII. With the help of the corresponding
time-ordering operator TCt the operator in the Heisenberg picture can finally be written as

ÔH(t) = TCt

{
ÔD(t) exp

[
−i
∫

Ct
dτ Ĥ1,D(τ)

]}
:=

∞

∑
n=0

(−i)n

n!

∫
Ct

dt1 . . .
∫

Ct
dtn TCt

[
ÔD(t)Ĥ1,D(t1) . . . Ĥ1,D(tn)

]
:= 1̂ÔD(t) +

∞

∑
n=1

(−i)n

n!

∫
Ct

dt1 . . .
∫

Ct
dtn TCt

[
ÔD(t)Ĥ1,D(t1) . . . Ĥ1,D(tn)

]
,

(2.1.10)

where the last two lines define the explicit form of the ordered operator exponentials occurring
in this section. Note that the integration variables ti in (2.1.10) are derived from the contour
variable τ and already appear in the correct order, i.e. the time-ordering only affects the
position of ÔD(t). This can be seen in the derivation of the time evolution operator in section
A.1.1 in the appendix, with the only difference that the integration variables are related to t′

in the regular time-ordering.

The expressions from the last two lines in (2.1.10) will be the starting point for the derivation
of the desired equation of motion. For that purpose, a similar representationVIII for a
Green’s function is needed, and can be achieved with the additional time-ordered two-times
Green’s function that is later used to construct the retarded, advanced, lesser and greater
functions:

i〈〈A(ta); B(tb)〉〉 := 〈T [A(ta)B(tb)]〉
= tr{ρ̂0T [AH(ta)BH(tb)]}
= tr{ρ̂0 [Θ(ta − tb)AH(ta)BH(tb)−Θ(tb − ta)BH(tb)AH(ta)]}

(2.1.11)

Using the propagator property of the time-evolution operator, V(t, t0) = V(t, t′)V(t′, t0),
and relation (2.1.8) the product for ta > tb can be written as

AH(ta)BH(tb) = V†(ta, t0)AD(ta)V(ta, t0)V†(tb, t0)BD(tb)V(tb, t0)

= V†(ta, t0)AD(ta)V(ta, tb)V(tb, t0)V†(tb, t0)︸ ︷︷ ︸
=1

BD(tb)V(tb, t0)

= V†(ta, t0)AD(ta)V(ta, tb)BD(tb)V(tb, t0)

(2.1.12)

VIIIn literature, this is referred to as either the Schwinger-Keldysh closed time path or real-time closed contour.
It coincides with the contour C if t = ta = tb (cf. (2.1.14)), which is depicted in figure 2.1.

VIIIFrom here on, it is assumed that the reader is familiar with the defined symbols, and hats are dropped on
most operators for the sake of simplicity. They may still occur in some places for traditional reasons or to
prevent misunderstandings
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2. Equation of Motion for Non-Equilibrium Green’s Functions

and analogously for ta < tb

BH(tb)AH(ta) = V†(tb, t0)BD(tb)V(tb, t0)V†(ta, t0)AD(ta)V(ta, t0)

= V†(tb, t0)BD(tb)V(tb, ta)AD(ta)V(ta, t0)
(2.1.13)

is obtained. So the new time-ordering can be identified as t0
T→ ta,b

T→ tb,a
T̃→ t0 and in

analogy to equation (2.1.10) the contour C can be defined as

C =

{
C< for ta < tb

C> for ta > tb
(2.1.14)

and is shown in figure 2.1.

t
tb

ta−∞

(a) C<

t
ta

tb−∞

(b) C>

Figure 2.1.: Schematics for the two cases of contour C for t0 → −∞.

And finally the time-ordered Green’s functions can be written in the Dirac picture as

i〈〈A(ta); B(tb)〉〉 = tr
{

ρ̂0TC

[
AD(ta)BD(tb)e

−i
∫

CdtH1D(t)
]}

= tr{ρ̂0TC [AD(ta)BD(tb)]}

+
∞

∑
n=1

(−i)n

n!

∫
C

dt1 . . .
∫

C
dtn tr{ρ̂0TC [AD(ta)BD(tb)H1,D(t1) . . . H1,D(tn)]}.

(2.1.15)

In the following, a derivation for the equation of motion for the above non-equilibrium
Green’s function is presented according to [8].

2.2. Derivation of the Equation of Motion for
Non-Equilibrium Green’s Functions

The equation of motion is derived for an initial state in the grand-canonical ensemble that
consists of disconnected subsystems, which correspond to sites, orbitals or isolated clusters
in many-body models. The Hamiltonian

H = H0 + H1

is therefore split in a way that H0 contains only free fermions, so

H0 = ∑
ζ

εζ n̂ζ = ∑
ζ

εζ a†ζ aζ , (2.2.1)
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2. Equation of Motion for Non-Equilibrium Green’s Functions

where n̂ζ = a†ζ aζ denotes the number operator for subsystem ζ, respectively creation-
and annihilation operator, εζ is the corresponding (on-site) energy, and ζ runs over each
subsystem. All other terms like hoppings, that eventually connect the subsystems, and
interactions are contained in H1. The subsystems in the initial state are all in their own
equilibrium characterized by chemical potentials µζ and inverse temperatures βζ = T−1

ζ ,
and so, using the formal definition in (2.1.2), the grand-canonical density operator reads

ρ̂0 =
exp

[
−∑ζ βζ

(
εζ − µζ

)
n̂ζ

]
tr
{

exp
[
−∑ζ βζ

(
εζ − µζ

)
n̂ζ

]} . (2.2.2)

With the choice of H0 the Dirac representation for the operators A and B in the Green’s
function can be worked out explicitly. Focussing on arbitrary oddIX products of creation-
and annihilation operators αi in the Schrödinger picture, i.e.

AD(0) = AS =
2m+1

∏
i=1

αi,

and H0 containing only number operators, the commutators reproduce just the operator
with some constant γ. The equation of motion for the operator in the Dirac picture reads

dAD(t)
dt

= −i[AD(t), H0] = −iAD(t)∑
i

λiεi =: −iAD(t)γa, (2.2.3)

whereX

λi =

{
+1 if αi is an annihilation operator
−1 if αi is a creation operator.

(2.2.4)

The differential equation is solved by

AD(t) = AD(0)e−itγa =: AD(0) fa(t),

which has the property

AD(t) fa(t′ − t) = AD(0)e−itγae−i(t′−t)γa = AD(0) fa(t′) = AD(t′). (2.2.5)

The result for B is obviously obtained analogously.

The sum in the equation defining γa (cf. equation (2.2.3)) runs formally over all operator
indices in AS, but practically it is enough to count the signed factors λiεi only for operators
that are not paired with their Hermitian conjugate, as pairs cancel out. Consider, e.g., the
following operator, composed by annihilation (creation) operators x(†)i ,

XS = x1x†2x2x†3x4

IXWith A and B being odd, the total Green’s function describes correlations of an even number of operators,
which is needed in total particle-number conserving fermionic systems. Even products of operators for A
and B are excluded, as with the chosen H0 the Dirac form of, e.g., number operators n̂ coincides with their
Schrödinger form and therefore the later defined γn̂ = 0 and fn̂ = Fn̂ = 1, which does not allow a closed
solution in turn. Products of terms a†i aj work out using commutator instead of anticommutator relations in a

first step, but produce number operator terms in further steps. Pair creation- or annihilation terms like a†i a†j
or aiaj allow a closed solution using commutator relation that lead eventually to Bose distribution functions
instead of Fermi functions, and are not treated for simplicity.

XNote that this definition differs from [8].
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2. Equation of Motion for Non-Equilibrium Green’s Functions

for which γx reads
γx = ε1 − ε2 + ε2 − ε3 + ε4 = ε1 − ε3 + ε4.

For the sake of readability and as operators only appear explicitly in the Dirac representation
in the derivation, the subscript D is dropped from here on, the Hamiltonian denotes always
H1, and the time argument is indicated by a subscript, so that

Hi := H1,D(ti)

Ai := AD(ti)

Bi := BD(ti).
(2.2.6)

With these definitions equation (2.1.15) reads

i〈〈A(ta); B(tb)〉〉 =
∞

∑
n=0

(−i)n

n!

∫
C

dt1 . . .
∫

C
dtn tr{ρ̂0TC [AaBbH1 . . . Hn]}. (2.2.7)

The time variables ta and tb are now positionedXI on the contour C so that ta � tb, allowing
to evaluate the time-ordering of the product in the trace explicitly. No additional sign needs
to be introduced as fermionic Hamiltonians are always paired, and so the ordering for the
nth term and n ≥ 1 yields

Wn := TC [AaBbH1 . . . Hn] = H1 . . . (AaHi) . . . BbHj . . . Hn. (2.2.8)

Note that eventually the same equation of motion can be obtained by following the procedure
for ta ≺ tb, which yields

W̃n = −H1 . . . BbHi . . . AaHj . . . Hn

in the beginning, as interchanging two odd products of fermionic operators gives a minus
sign. The aim is now to move the operator Aa from its position (AaHi) once through the
whole contour to get back to the original expression and algebraically solve for it. Moving
the operator Aa one step to the right gives

Wn = H1 . . . (Hi Aa) . . . BbHj . . . Hn + H1 . . . [Aa, Hi] . . . BbHj . . . Hn, (2.2.9)

as
AaHi = Hi Aa + [Aa, Hi].

With (2.2.5), the time argument can be changed according to Aa = fa(ta − ti)Ai and the
commutator in Wn can then be written as

[Aa, Hi] = fa(ta − ti)[Ai, Hi]

=: fa(ta − ti)Ci,
(2.2.10)

where Ci is the equal-time commutator of Ai and Hi, that itself is again an odd product of
operators, and so

Wn = fa(ta − ti)H1 . . . Hi−1CiHi+1 . . . BbHj . . . Hn

+H1 . . . Hi−1 (Hi Aa) Hi+1 . . . BbHj . . . Hn.
(2.2.11)

XI Inequalities in the path-ordering are denoted by the symbols � and ≺.
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2. Equation of Motion for Non-Equilibrium Green’s Functions

Each additional commutation to the right gives another summand with a factor fa(ta − tk)
and one additional term comes from the commutation with Bb, which is expressed via their
anticommutatorXII

AaBb = {Aa, Bb} − Bb Aa

and introduces a minus sign for the succeeding summands. Similar to (2.2.10), the anticom-
mutator from above can be written as

{Aa, Bb} = fa(ta − tb){Ab, Bb}
=: fa(ta − tb)D+

b ,
(2.2.12)

where D+
b is the equal-time anticommutator of Ab and Bb. Commuting A to the end of the

original operator string and taking the whole trace term gives

tr{ρ̂0Wn} = fa(ta − tb) tr
{

ρ̂0H1 . . . D+
b Hj . . . Hn

}
+ ∑

ti�tk�tj

fa(ta − tk) tr
{

ρ̂0H1 . . . Hi−1 . . . Ck . . . BbHj . . . Hn
}

− ∑
tj�tk�tn

fa(ta − tk) tr
{

ρ̂0H1 . . . Hj−1Bb . . . Ck . . . Hn
}

− tr{ρ̂0H1 . . . Bb . . . (Hn Aa)}.

(2.2.13)

Notice the change in sign before the second sum due to the anticommutator. Due to cyclic
invariance in the trace, the last term can be written as

tr{ρ̂0H1 . . . Bb . . . Hn Aa} = tr{Aaρ̂0H1 . . . Bb . . . Hn}.

Using the series expansion of ρ̂0 and moving Aa to the right, the following result can be
foundXIII

Aaρ̂0 = Faρ̂0Aa,

where

Fa := exp

[
−∑

i
λiβi (εi − µi)

]
=: e−ϕ (2.2.14)

is similar to γ, defined in the commutation with the initial-state Hamiltonian H0 (see (2.2.3)),
but includes now statistical information. The commutations can then be continued up to the
original position of Aa:

tr{ρ̂0Wn} = fa(ta − tb) tr
{

ρ̂0H1 . . . D+
b Hj . . . Hn

}
+ ∑

ti�tk�tj

fa(ta − tk) tr
{

ρ̂0H1 . . . Ck . . . BbHj . . . Hn
}

− ∑
tj�tk�tn

fa(ta − tk) tr{ρ̂0H1 . . . Bb . . . Ck . . . Hn}

− ∑
t1�tk�ti

Fa fa(ta − tk) tr
{

ρ̂0H1 . . . Ck . . . Hi . . . BbHj . . . Hn
}

− Fa tr
{

ρ̂0H1 . . . Hi−1 (AaHi) . . . Hj−1BbHj . . . Hn
}︸ ︷︷ ︸

=tr{ρ̂0Wn}

(2.2.15)

XIIThis thesis treats only fermionic operators. For bosonic operators it is more convenient to choose the
commutator. The result can be found in [8]

XIIISee section A.1.2 in the appendix.
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2. Equation of Motion for Non-Equilibrium Green’s Functions

Solving for the left-hand side gives a global factor (1+ Fa)−1. All operator strings containing
Ck in the traces can be rewritten as formally the same contour-ordered term, where the
commutator takes the position of Aa in the starting definition. In the second sum an
additional minus sign appears as Bb and Ck need to be interchanged, i.e.

− fa(ta − tk) tr{ρ̂0H1 . . . Bb . . . Ck . . . Hn} = + fa(ta − tk) tr{ρ̂0TC [CkBbH1 . . . Hn]},
and so all sum terms with factor fa occur with positive sign and the terms with factor Fa fa
with negative sign. The sum indices turn out to be characterized only by ta, namely

∑
ti�tk�tj

fa(ta − tk) . . . + ∑
tj�tk�tn

fa(ta − tk) . . . = ∑
ti�tk�tn

fa(ta − tk) . . . = ∑
ta�tk

fa(ta − tk) . . .

and
− ∑

t1�tk�ti

Fa fa(ta − tk) . . . = − ∑
tk�ta

Fa fa(ta − tk) . . . ,

where the for ta � tk only factors ∝ fa and for ta ≺ tk only factors ∝ Fa fa appear, which can
further be related to single-particle non-interacting Green’s functionsXIV, i.e. correlations
∝
〈
c†(t1)c(t2)

〉
in a system described by H0:

ig>a (t2 − t1) :=
fa(t2 − t1)

1 + Fa

ig<a (t2 − t1) := −Fa fa(t2 − t1)

1 + Fa

(2.2.16)

Combining the above functions to

iga(t2 − t1) :=

{
ig>a (t2 − t1) if t2 � t1

ig<a (t2 − t1) if t2 ≺ t1
(2.2.17)

equation (2.2.15) can be written with the single sum

tr{ρ0Wn} = iga(ta − tb) tr
{

ρ̂0TC
[
D+

b H1 . . . Hn
]}

+ i ∑
k

ga(ta − tk) tr{ρ̂0TC [CkBbH1 . . . Hn]}. (2.2.18)

As noted before, the above result is valid for n ≥ 1 and with equation (2.1.15) the result for
n = 0 is readily obtained as

tr{ρ0W0} := tr{ρ̂0TC AaBb}
= fa(ta − tb) tr

{
ρ̂0D+

b
}
− Fa tr{ρ0W0}

=iga(ta − tb) tr
{

ρ̂0D+
b
}

.

(2.2.19)

Inserting the results for n = 0 and n ≥ 1 back in the definition for the Green’s function
(2.2.7) yields

i〈〈A(ta); B(tb)〉〉 = iga(ta − tb) tr
{

ρ̂0D+
b
}

+ iga(ta − tb)
∞

∑
n=1

(−i)n

n!

∫
C

dt1 . . .
∫

C
dtn tr

{
ρ̂0TC

[
D+

b H1 . . . Hn
]}

+
∞

∑
n=1

(−i)n

n!

∫
C

dt1 . . .
∫

C
dtn i

n

∑
k=1

ga(ta − tk) tr{ρ̂0TC [CkBbH1 . . . Hn]},

(2.2.20)

XIVNote that in equilibrium, i.e. µi = µ = 0 and βi = β, the fermionic Kubo-Martin-Schwinger boundary
condition holds: g<(t + iβ) = ie−βγ

(
1 + e−βγ

)−1 e−iγ(t+iβ) = −g>(t), cf. [10].
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2. Equation of Motion for Non-Equilibrium Green’s Functions

where the expectation value for the anticommutator D+
b can be identified with the help of

equation (2.1.10) and so

i〈〈A(ta); B(tb)〉〉 = iga(ta − tb)
〈

D+
b
〉

+
∞

∑
n=1

(−i)n

n!

∫
C

dt1 . . .
∫

C
dtn i

n

∑
k=1

ga(ta − tk) tr{ρ̂0TC [CkBbH1 . . . Hn]}.

(2.2.21)

At first glance, the new expression looks even more complicated, but analysing the nth term
in the sum gives

(−i)n

n!

∫
C

dt1 . . .
∫

C
dtn i

n

∑
k=1

ga(ta − tk) tr{ρ̂0TC [CkBbH1 . . . Hn]}

=
(−i)n

n!
n
∫

C
dt1 . . .

∫
C

dtn iga(ta − t1) tr{ρ̂0TC [C1BbH2 . . . Hn]}

=
(−i)n

n!
n
∫

C
dt iga(ta − t)

∫
C

dt1 . . .
∫

C
dtn−1 tr{ρ̂0TC [CtBbH1 . . . Hn−1]}

as the sum over k gives just n times the same integral over different dummy variables and ti
is renamed to ti−1 in the last step, where t0 is just t. The prefactor can then be rewritten in
the following way

(−i)n

n!
n =

(−i)n

(n− 1)!
=

1
i
(−i)n−1

(n− 1)!

and so the whole sum yields∫
C

dt iga(ta − t)
∞

∑
n=1

1
i
(−i)n−1

(n− 1)!

∫
C

dt1 . . .
∫

C
dtn−1 tr{ρ̂0TC [CtBbH1 . . . Hn−1]}

=
∫

C
dt iga(ta − t)

1
i

∞

∑
m=0

(−i)m

m!

∫
C

dt1 . . .
∫

C
dtm tr{ρ̂0TC [CtBbH1 . . . Hm]}︸ ︷︷ ︸

i〈〈Ct;Bb〉〉

= i
∫

C
dt ga(ta − t)〈〈Ct; Bb〉〉,

(2.2.22)

where n− 1 = m is renamed and the sum over m is just the initial definition for a Green’s
function. So in total, the equation of motion for the Green’s function results in

〈〈A(ta); B(tb)〉〉 = ga(ta − tb)
〈

D+
b
〉
+
∫

C
dt ga(ta − t)〈〈Ct; Bb〉〉. (2.2.23)

The single-particle Green’s function g can be written in the following way

g≷a (t2 − t1) = iP≷(ϕa) fa(t2 − t1),

where with equation (2.2.14) a relation to the Fermi function f (x) is found:

P<(ϕa) :=
e−ϕa

1 + e−ϕa
=

1
1 + eϕa

= f (ϕa)

P>(ϕa) := − 1
1 + e−ϕa

= − eϕa

1 + eϕa
= f (ϕa)− 1

(2.2.24)
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2. Equation of Motion for Non-Equilibrium Green’s Functions

And so the factors can be related to each other via

P≷(−ϕa) = ∓
1

1 + e±ϕa
= −P≶(ϕa). (2.2.25)

Notice the different superscripts ≷ and ≶.

2.2.1. Real-Time Integrals: Langreth Path-Splitting

The derived equation of motion still involves the full Green’s function containing all time
information on the contour, whose direct evaluation is not straightforward. Especially for a
numerical evaluation the need for regular real-axis integration is given. This is achieved by
fixing the times ta and tb and evaluating the contour for four different Green’s functions
separately. In first place the two correlation functions, lesser and greater Green’s functions
(cf. (2.0.6)), arise, namely

〈〈A(ta); B(tb)〉〉< for ta ≺ tb

〈〈A(ta); B(tb)〉〉> for ta � tb,

as the definition from equation (2.1.11) yields

〈〈A(ta); B(tb)〉〉< = +i tr{ρ̂0BH(tb)AH(ta)} = +i 〈B(tb)A(ta)〉
〈〈A(ta); B(tb)〉〉> = −i tr{ρ̂0AH(ta)BH(tb)} = −i 〈A(ta)B(tb)〉 .

These functions can further be used to describe the retarded and advanced Green’s functions,
cf. (2.0.1):

〈〈A(ta); B(tb)〉〉R = +Θ (ta − tb)
(
〈〈A(ta); B(tb)〉〉> − 〈〈A(ta); B(tb)〉〉<

)
= −iΘ (ta − tb) 〈{A(ta), B(tb)}〉

〈〈A(ta); B(tb)〉〉A = −Θ (tb − ta)
(
〈〈A(ta); B(tb)〉〉> − 〈〈A(ta); B(tb)〉〉<

)
= +iΘ (tb − ta) 〈{A(ta), B(tb)}〉

The main trick for the contour evaluation as introduced by Langreth in [11] consists of
splitting the contour into two subcontours

C≷ = C≷
1 + C≷

2 ,

depicted in figure 2.2, on which the following relations hold for t on the explicit four
sub-contours and functions G(t1, t2):

t ≺ tb for ∀t ∈ C<
1 ⇔ G(t, tb) = G<(t, tb)

t ≺ ta for ∀t ∈ C>
1 ⇔ G(ta, t) = G>(ta, t)

t � ta for ∀t ∈ C<
2 ⇔ G(ta, t) = G<(ta, t)

t � tb for ∀t ∈ C>
2 ⇔ G(t, tb) = G>(t, tb)

(2.2.26)

As shown in figure 2.2, the initial time t0 is now assumed to be in the far past, i.e. t0 → −∞,
which is a preparation for the steady-solutions presented in the next section. With the above
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2. Equation of Motion for Non-Equilibrium Green’s Functions

t

t

ta

tb

−∞
C<

1 :

−∞
C<

2 :

—

(a) C<

t

t

tb

ta

−∞
C>

1 :

−∞
C>

2 :

—

(b) C>

Figure 2.2.: Contour replacements C≷ for C

relations and the definition of the single-particle functions (2.2.16) and (2.2.17) the splitting
results in∫

C<
dt ga(ta − t)〈〈Ct; Bb〉〉 =

∫
C<

1

dt ga(ta − t)〈〈Ct; Bb〉〉< +
∫

C<
2

dt g<a (ta − t)〈〈Ct; Bb〉〉∫
C>

dt ga(ta − t)〈〈Ct; Bb〉〉 =
∫

C>
1

dt g>a (ta − t)〈〈Ct; Bb〉〉+
∫

C>
2

dt ga(ta − t)〈〈Ct; Bb〉〉>.

(2.2.27)

Using the same argumentation, the sub-contours C≷
i can then be further split into regular

real-time integrals over the sub-regions. For C<
1 this reads explicitly∫

C<
1

dt ga(ta − t)〈〈Ct; Bb〉〉< =
∫ ta

−∞
dt g>a (ta − t)〈〈Ct; Bb〉〉< +

∫ −∞

ta
dt g<a (ta − t)〈〈Ct; Bb〉〉<

=
∫ ta

−∞
dt
[
g>a (ta − t)− g<a (ta − t)

]
〈〈Ct; Bb〉〉<

(2.2.28)

and for C>
1∫

C>
1

dt g>a (ta − t)〈〈Ct; Bb〉〉 =
∫ tb

−∞
dt g>a (ta − t)〈〈Ct; Bb〉〉< +

∫ −∞

tb

dt g>a (ta − t)〈〈Ct; Bb〉〉>

= −
∫ tb

−∞
dt g>a (ta − t)

[
〈〈Ct; Bb〉〉> − 〈〈Ct; Bb〉〉<

]
(2.2.29)

is obtained. The integrals can be rewritten as integrals over the whole real axis with the help
of a shifted step function, namely∫ ta,b

−∞
dt . . . =

∫ ∞

−∞
dt Θ(ta,b − t) . . . ,

where the definition of a retarded (advanced) function can be identified for C<
1 (C>

1 ) and so
the integration reduces to∫

C<
1

dt ga(ta − t)〈〈Ct; Bb〉〉< =
∫ ∞

−∞
dt gR

a (ta − t)〈〈Ct; Bb〉〉<∫
C>

1

dt g>a (ta − t)〈〈Ct; Bb〉〉 =
∫ ∞

−∞
dt g>a (ta − t)〈〈Ct; Bb〉〉A.

(2.2.30)

15



2. Equation of Motion for Non-Equilibrium Green’s Functions

An analogous splitting for C<
2 leads to∫

C<
2

dt g<a (ta − t)〈〈Ct; Bb〉〉 =
∫ tb

−∞
dt g<a (ta − t)〈〈Ct; Bb〉〉< +

∫ −∞

tb

dt g<a (ta − t)〈〈Ct; Bb〉〉>

= −
∫ tb

−∞
dt g<a (ta − t)

(
〈〈Ct; Bb〉〉> − 〈〈Ct; Bb〉〉<

)
=
∫ ∞

−∞
dt g<a (ta − t)〈〈Ct; Bb〉〉A

(2.2.31)

and for C>
2 to∫

C>
2

dt ga(ta − t)〈〈Ct; Bb〉〉> =
∫ ta

−∞
dt g>a (ta − t)〈〈Ct; Bb〉〉> +

∫ −∞

ta
dt g<a (ta − t)〈〈Ct; Bb〉〉>

=
∫ ta

−∞
dt
[
g>a (ta − t)− g<a (ta − t)

]
〈〈Ct; Bb〉〉>

=
∫ ∞

−∞
dt gR

a (ta − t)〈〈Ct; Bb〉〉>.

(2.2.32)

The whole integrals over C< and C> are formally the same and differ only in the superscript
defining the lesser and greater part, so the combined results read∫

C≷
dt ga(ta − t)〈〈Ct; Bb〉〉 =

∫ ∞

−∞
dt
[

gR
a (ta − t)〈〈Ct; Bb〉〉≷ + g≷a (ta − t)〈〈Ct; Bb〉〉A

]
. (2.2.33)

The explicit form of the single-particle retarded Green’s function used above is obtained
analogously to the full Green’s function, cf. (2.0.1), and leads to the explicit form

gR
a (ta − t) = Θ(ta − t)

[
g>a (ta − t)− g<a (ta − t)

]
= iΘ(ta − t)

(
− 1

1 + Fa
− Fa

1 + Fa

)
fa(ta − t)

= −iΘ(ta − t) fa(ta − t)

= −iΘ(ta − t)e−iγa(ta−t)

(2.2.34)

and for the advanced function

gA
a (ta − t) = −Θ(t− ta)

[
g>a (ta − t)− g<a (ta − t)

]
= iΘ(t− ta)e−iγa(ta−t).

(2.2.35)

The equation of motion for greater and lesser Green’s functions is thus given by

〈〈A(ta); B(tb)〉〉≷ = g≷a (ta − tb)
〈

D+
b
〉
+
∫

C≷
dt ga(ta − t)〈〈Ct; Bb〉〉 (2.2.36)

and the corresponding definitions (2.2.33)-(2.2.35).

The equation of motion for retarded and advanced Green’s functions can be obtained by
inserting the above equation of motion in the definition (2.0.1). The single-particle terms are
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2. Equation of Motion for Non-Equilibrium Green’s Functions

straightforward, but the integral term needs a closer look. The retarded terms yield

Θ(ta − tb)

(∫
C>

dt ga(ta − t)〈〈Ct; Bb〉〉 −
∫

C<
dt ga(ta − t)〈〈Ct; Bb〉〉

)
= Θ(ta − tb)

∫ ∞

−∞
dt
{

gR
a (ta − t)

[
〈〈Ct; Bb〉〉> − 〈〈Ct; Bb〉〉<

]
+
[
g>a (ta − t)− g<a (ta − t)

]
〈〈Ct; Bb〉〉A

}
,

where gR
a and 〈〈Ct; Bb〉〉A are now rewritten in terms of lesser and greater functions and the

step function is incorporated in the limits, and so

= Θ(ta − tb)

{∫ ta

−∞
dt
[
g>a (ta − t)− g<a (ta − t)

] [
〈〈Ct; Bb〉〉> − 〈〈Ct; Bb〉〉<

]
−

∫ tb

−∞
dt
[
g>a (ta − t)− g<a (ta − t)

] [
〈〈Ct; Bb〉〉> − 〈〈Ct; Bb〉〉<

]}
= Θ(ta − tb)

∫ ta

tb

dt
[
g>a (ta − t)− g<a (ta − t)

] [
〈〈Ct; Bb〉〉> − 〈〈Ct; Bb〉〉<

]
.

By rewritingXV the expression

Θ(ta − tb)
∫ ta

tb

dt . . . =
∫ ∞

−∞
dt Θ(ta − t)Θ(t− tb) . . . ,

the result for the retarded part of the integral becomes finally

=
∫ ∞

−∞
dt Θ(ta − t)

[
g>a (ta − t)− g<a (ta − t)

]
×Θ(t− tb)

[
〈〈Ct; Bb〉〉> − 〈〈Ct; Bb〉〉<

]
=
∫ ∞

−∞
dt gR

a (ta − t)〈〈Ct; Bb〉〉R.

The procedure for the advanced part leads to an analogous expression. The results of this
derivation are known as analytic continuation or Langreth rules (see sec. 4.3 in [1]).

So finally, the regular time integration of the equation of motion on the contour (2.2.23) can
be summarized as

〈〈A(ta); B(tb)〉〉≷ = g≷a (ta − tb) 〈{A(tb), B(tb)}〉

+
∫ ∞

−∞
dt gR

a (ta − t)〈〈[A(t), H1(t)]; B(tb)〉〉≷

+
∫ ∞

−∞
dt g≷a (ta − t)〈〈[A(t), H1(t)]; B(tb)〉〉A

〈〈A(ta); B(tb)〉〉R/A = gR/A
a (ta − tb) 〈{A(tb), B(tb)}〉

+
∫ ∞

−∞
dt gR/A

a (ta − t)〈〈[A(t), H1(t)]; B(tb)〉〉R/A.

(2.2.37)

XVSee section A.1.3 in the appendix for details.
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2. Equation of Motion for Non-Equilibrium Green’s Functions

2.2.2. Steady State

A system can reach a steady-state if its describing Hamiltonian is or eventually becomes
time-invariantXVI. In this case the Green’s function depends only on the time difference
t′ := ta − tb, i.e. G(ta, tb)→ G(ta − tb) and a Fourier transform from time t′ to energyXVII ω
can be performed. The following sign convention is used and only the inverse transform
carries a factor (2π)−1:

G(ω) =
∫ ∞

−∞
dt′ G(t′)eiωt′ (2.2.38)

With the integral representation of δ(t′), a steady-state expectation value (equal-time corre-
lation) is then obtained via integration:

〈B(t)A(t)〉 = 〈BA(0)〉 = 1
i

∫ ∞

−∞
dt′ G<

AB(t
′)

1
2π

∫ ∞

−∞
dω eiωt′ =

1
2πi

∫ ∞

−∞
dω G<

AB(ω)

(2.2.39)
The steady state for contour-ordered Green’s functions is in fact technically appealing as
the occurring integrals can be transformed into convolution terms (denoted by an asterisk
∗) that reduce to simple multiplication according to the Fourier convolution theorem. The
substitution τ = t− tb and dτ = dt gives∫ ∞

−∞
dt g(ta − t)G(t− tb) =

∫ ∞

−∞
dτ g(ta − tb − τ)G(τ)

=: (g ∗ G)(ta − tb)

= (g ∗ G)(t′)

(2.2.40)

and its Fourier transform is simply the product of the individual transforms:∫ ∞

−∞
dt′ (g ∗ G)(t′)eiωt′ = g(ω)G(ω) (2.2.41)

The first term in the equation of motion gives∫ ∞

−∞
dt′ eiωt′ga(t′) 〈{A(tb), B(tb)}〉 = 〈{A(0), B(0)}〉

∫ ∞

−∞
dt′ eiωt′ga(t′) = 〈{A, B}〉 ga(ω),

(2.2.42)

as the time difference in the anticommutator is zero. And so the equations of motion in ω
become just algebraic equations:

〈〈A; B〉〉≷ω = g≷a (ω) 〈{A, B}〉 + gR
a (ω)〈〈[A, H1]; B〉〉≷ω + g≷a (ω)〈〈[A, H1]; B〉〉Aω

〈〈A; B〉〉R/A
ω = gR/A

a (ω) 〈{A, B}〉+ gR/A
a (ω)〈〈[A, H1]; B〉〉R/A

ω

(2.2.43)

Using the equation for GR/A to express the higher advanced function in the equation for
G≷, the expectation value can be eliminated and the following form is obtained:

〈〈A; B〉〉≷ω =
g≷a (ω)

gA
a (ω)

〈〈A; B〉〉Aω + gR
a (ω)〈〈[A, H1]; B〉〉≷ω (2.2.44)

XVIe
∫

dtH → eHt : 〈A(ta)B(tb)〉 → 〈A(ta − tb)B(0)〉
XVIIAs h̄ = 1.
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2. Equation of Motion for Non-Equilibrium Green’s Functions

The Fourier transform of the retarded single-particle non-interacting Green’s function gR
a (t′)

leads to an integration over positive time differences t′

gR
a (ω) = −i

∫ ∞

0
dt′ eit′(ω−γa) = −eit′(ω−γa)

ω− γa

∣∣∣∣∣
∞

0

, (2.2.45)

which has no well-defined solution due to the ∝ exp(i∞) term. However, this can be
overcome by introducing an infinitesimally small imaginary part to the energy ω, i.e.

ω → lim
η→0+

ω + iη,

which leads to the solution
gR

a (ω) = lim
η→0+

1
ω− γa + iη

. (2.2.46)

The advanced function leads to the similar problem, but with integration over negative time
differences t′

gA
a (ω) = i

∫ 0

−∞
dt′ eit′(ω−γa) =

eit′(ω−γa)

ω− γa

∣∣∣∣∣
0

−∞

, (2.2.47)

where the opposite sign for the imaginary part is needed, i.e.

ω → lim
η→0+

ω− iη,

and the solution is obtained as

gA
a (ω) = lim

η→0+

1
ω− γa − iη

. (2.2.48)

Summarizing, a positive (negative) imaginary part iη needs to be added to the transformation
variable ω for positive (negative) time difference t′, so the replacement

ω → lim
η→0+

ω + iη sgn(t′)

can be introduced for the entire real axis, which is needed for the lesser and greater
functions:

g≷a (ω) = iP≷(ϕa)
∫ ∞

−∞
dt′ eit′(ω−γa)

→ iP≷(ϕa) lim
η→0+

∫ ∞

−∞
dt′ eit′(ω−γa+iη sgn(t′))

= iP≷(ϕa) lim
η→0+

[∫ 0

−∞
dt′ eit′(ω−γa)+ηt′ +

∫ ∞

0
dt′ eit′(ω−γa)−ηt′

]

= iP≷(ϕa) lim
η→0+

 eit′(ω−γa)eηt′

i (ω− γa) + η

∣∣∣∣∣
0

−∞

+
eit′(ω−γa)e−ηt′

i (ω− γa)− η

∣∣∣∣∣
∞

0


= iP≷(ϕa) lim

η→0+

[
1

i (ω− γa) + η
− 1

i (ω− γa)− η

]
= 2iP≷(ϕa) lim

η→0+

η

(ω− γa)
2 + η2

(2.2.49)
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2. Equation of Motion for Non-Equilibrium Green’s Functions

The limit can be interpreted asXVIII

2πiP≷(ϕa)δ (ω− γa) ,

which can also be obtained by transforming g≷(t′) directly with a purely real ω and
exploiting the definition of how the Dirac delta distribution acts on a function f (x), namely

f (y) =
∫ ∞

−∞
dx f (x)δ(x− y).

This formal result can be understood as a placeholder that fulfils the invertibility property
of the Fourier transform, namely that the inverse transform of a Fourier transform returns
to the original function:

1
2π

∫ ∞

−∞
dω g≷(ω)e−iωt′ = iP≷(ϕ)

∫ ∞

−∞
dω δ (ω− γ) e−iωt′

= iP≷(ϕ)e−iγt′

= g≷(t′)

(2.2.50)

Keeping this in mind, another placeholder function can be found for the case βi = β, i.e. no
temperature gradient between the particle types the operator is acting onXIX. In that case, ϕ
can be expressed as a function of γ

ϕ = ∑
i

λiβi(εi − µi)
βi=β
= β ∑

i
λi(εi − µi) = β

(
γ−∑

i
λiµi

)
:= ϕ(γ)

and
g≷(ω) = 2πiP≷(ϕ(ω))δ (ω− γ) , (2.2.51)

where P≷ is now a function of ϕ(ω). This returns the same function in time:

1
2π

∫ ∞

−∞
dω g≷(ω)e−iωt′ = i

∫ ∞

−∞
dω P≷(ϕ(ω))δ (ω− γ) e−iωt′

= iP≷(ϕ(γ))e−iγt′

βi=β
= iP≷(ϕ)e−iγt′ = g≷(t′)

(2.2.52)

As shown later on, this change in argument can be useful where integrals of type∫
dγ ρ(γ)g(ω; γ)

are needed, as P(ω) does not need to be integrated. This choice seems even more justified
as it does not violate a certain form of the fluctuation-dissipation theorem in equilibrium, as
shown as an example in section 4.1.1.

XVIIISee section A.2.1 in the appendix for the normalizing constant of π.
XIX The result from (2.2.49) is valid for different values of βi though.
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2. Equation of Motion for Non-Equilibrium Green’s Functions

2.3. Alternative Expression for the Equation of Motion

The equations of motion discussed above are mostly governed by the dynamics of the
first operator A(ta). However, for some Green’s functions it may be convenient to have
an expression in the second operator B(tb), especially when treating correlations with
non-interacting particles, as their time evolution relates only to other basic correlations and
does not produce an infinite or non-trivial hierarchy of new Green’s functions.

In equilibrium this can be achieved for retarded and advanced Green’s functions by differ-
entiation with respect to the second time and its Fourier transformed version reads

ω〈〈A; B〉〉R/A =
〈{

Â, B̂
}〉

+ 〈〈A; [H, B]〉〉R/A.

This form has been used before (e.g. in [12], [13] and [14]), but, to the author’s knowledge,
not yet in non-equilibrium situations for greater and lesser functions.

In order to find a non-equilibrium analogy to the above equation the following symmetry
relation is found:

i〈〈A(ta); B(tb)〉〉 =
∞

∑
n=0

(−i)n

n!

∫
C

dt1 . . .
∫

C
dtn tr{ρ̂0TC [A(ta)B(tb)H1(t1) . . . H1(tn)]}

= −
∞

∑
n=0

(−i)n

n!

∫
C

dt1 . . .
∫

C
dtn tr{ρ̂0TC [B(tb)A(ta)H1(t1) . . . H1(tn)]}

= −i〈〈B(tb); A(ta)〉〉
(2.3.1)

So the contour-ordered Green’s function is antisymmetric under exchange of operator and
time argument.

As used in Langreth’s path-splitting, fixing the times ta and tb relative to each other makes
it clear which Green’s function describes correctly the physical situation. Choosing ta ≺ tb
gives

〈〈A(ta); B(tb)〉〉< but 〈〈B(tb); A(ta)〉〉>

and vice versa. So the following relations hold using equation (2.3.1)

〈〈A(ta); B(tb)〉〉< = −〈〈B(tb); A(ta)〉〉>

〈〈A(ta); B(tb)〉〉> = −〈〈B(tb); A(ta)〉〉<,
(2.3.2)

and can be used to determine relations for retarded and advanced functions:

〈〈A(ta); B(tb)〉〉R = Θ(ta − tb)
[
〈〈A(ta); B(tb)〉〉> − 〈〈A(ta); B(tb)〉〉<

]
= Θ(ta − tb)

[
〈〈B(tb); A(ta)〉〉> − 〈〈B(tb); A(ta)〉〉<

]
= −〈〈B(tb); A(ta)〉〉A

〈〈A(ta); B(tb)〉〉A = −Θ(tb − ta)
[
〈〈A(ta); B(tb)〉〉> − 〈〈A(ta); B(tb)〉〉<

]
= −〈〈B(tb); A(ta)〉〉R

(2.3.3)

According to equation (2.2.23) the equation of motion for switched operators is just

〈〈B(tb); A(ta)〉〉 = gb(tb − ta)
〈

D+
a
〉
+
∫

C
dt gb(tb − t)〈〈Ct; Aa〉〉,
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2. Equation of Motion for Non-Equilibrium Green’s Functions

where here
Ct = [Bt, Ht] = −[Ht, Bt] =: −C̃t

and so the higher Green’s function can be written as

〈〈Ct; Aa〉〉 = −〈〈Aa; Ct〉〉 = 〈〈Aa; C̃t〉〉.

Using the antisymmetric relation (2.3.1), the contour-ordered equation of motion in the
second operator is just

〈〈A(ta); B(tb)〉〉 = −gb(tb − ta) 〈{A(ta), B(ta)}〉 −
∫

C
dt gb(tb − t)〈〈A(ta); [H1(t), B(t)]〉〉

(2.3.4)
The explicit Langreth splitting of equation (2.3.4) can be obtained analogously to section 2.2.1,
but it seems more convenient to use the equations of motion (2.2.37) for 〈〈B(tb); A(ta)〉〉 and
replace the expressions according to the symmetry relations found in (2.3.2) and (2.3.3).

Lesser and greater Green’s functions yield

〈〈B(tb); A(ta)〉〉≶ = g≶b (tb − ta) 〈{B(ta), A(ta)}〉

+
∫ ∞

−∞
dt gR

b (tb − t)〈〈[B(t), H1(t)]; A(ta)〉〉≶

+
∫ ∞

−∞
dt g≶b (tb − t)〈〈[B(t), H1(t)]; A(ta)〉〉A

= g≶b (tb − ta) 〈{A(ta), B(ta)}〉

+
∫ ∞

−∞
dt gR

b (tb − t)〈〈A(ta); [H1(t), B(t)]〉〉≷

+
∫ ∞

−∞
dt g≶b (tb − t)〈〈A(ta); [H1(t), B(t)]〉〉R

(2.3.5)

and retarded and advanced

〈〈B(tb); A(ta)〉〉A/R = gA/R
b (tb − ta) 〈{B(tb), A(tb)}〉

+
∫ ∞

−∞
dt gA/R

b (tb − t)〈〈[B(t), H1(t)]; A(ta)〉〉A/R

= gA/R
b (tb − ta) 〈{A(tb), B(tb)}〉

+
∫ ∞

−∞
dt gA/R

b (tb − t)〈〈A(ta); [H1(t), B(t)]〉〉R/A,

(2.3.6)

where the symmetry relations (2.3.2) and (2.3.2) were used only on the right-hand side of
the above equations. Applying the relations to the left-hand side finally gives

〈〈A(ta); B(tb)〉〉≷ = −g≶b (tb − ta) 〈{A(ta), B(ta)}〉

−
∫ ∞

−∞
dt gR

b (tb − t)〈〈A(ta); [H1(t), B(t)]〉〉≷

−
∫ ∞

−∞
dt g≶b (tb − t)〈〈A(ta); [H1(t), B(t)]〉〉R

〈〈A(ta); B(tb)〉〉R/A = −gA/R
b (tb − ta) 〈{A(tb), B(tb)}〉

−
∫ ∞

−∞
dt gA/R

b (tb − t)〈〈A(ta); [H1(t), B(t)]〉〉R/A.

(2.3.7)
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2. Equation of Motion for Non-Equilibrium Green’s Functions

Notice the use of the different superscripts ≷ and ≶ as well as R/A and A/R whose
positions, i.e. up/down or left/right, must be maintained when evaluating the equations
for a specific superscript.

Since the equations shall be used together with the equations from the previous section, the
Fourier transform must be done in the same time argument t′ = ta − tb. The substitution
τ = t− tb and dτ = dt leads again to a convolution

∫ ∞

−∞
dt g(tb − t)G(ta − t) =

∫ ∞

−∞
dτ

=:g(τ)︷ ︸︸ ︷
g(−τ) G(ta − tb − τ)

=
∫ ∞

−∞
dτ g(τ)G(t′ − τ)

= (g ∗ G)(t′)

(2.3.8)

whose Fourier transform is just the product∫ ∞

−∞
dt′ (g ∗ G)(t′)eiωt′ =

[∫ ∞

−∞
dt′ g(t′)eiωt′

] [∫ ∞

−∞
dt′ G(t′)eiωt′

]
= g(ω)G(ω). (2.3.9)

Before rewriting the explicit equations of motion in terms of Fourier transforms, the trans-
form of the function g(t′) is examined. At first, it is clear that g(t′) represents simply the
non-interacting Green’s functions as they occur in (2.3.7), as

gb(t
′) = gb(−t′) = gb(tb − ta),

and it is therefore sufficient to calculate the transformations of gb(−t′).

With analogous argumentation as in section 2.2.2 the transformation for the lesser and
greater functions readXX

g≶b (ω) =
∫ ∞

−∞
dt′ g≶b (−t′)eiωt′ = iP≶(ϕb)

∫ ∞

−∞
dt′ eit′(ω+γb) = 2πiP≶(ϕb)δ(ω +γb). (2.3.10)

In order to achieve (formal) equivalence to the expressions for the first operator A(ta),
where the argument in the delta distribution is ω− γ (cf. equation (2.2.49)), the following
replacements are made

γb → −γ̃b and ϕb → −ϕ̃b,

where γ̃b is obtained from [H0, Btb ] instead of [Btb , H0], which accounts for the minus sign
and is, in addition, consistent with C̃ = [H, B]. Using the symmetry shown in (2.2.24) and
(2.2.25) the prefactor becomes

P≶(ϕb)→ P≶(−ϕ̃b) = −P≷(ϕ̃b),

where the superscripts changed, and so

g≶b (ω) = −2πiP≷(ϕ̃b)δ(ω− γ̃b).

XXThe expression using a limit in η applies here as well; for convenience the transformation is shown
without η.
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2. Equation of Motion for Non-Equilibrium Green’s Functions

The retarded and advanced functions read

gR
b (tb − ta) = Θ(tb − ta)

[
g>b (tb − ta)− g<b (tb − ta)

]
= −iΘ(−t′)eit′γb

gR
b (ω) = −i

∫ 0

−∞
dt′ eit′(ω+γb) = lim

η→0+
− 1

ω + γb − iη
(2.3.11)

and

gA
b (tb − ta) = −Θ(ta − tb)

[
g>b (tb − ta)− g<b (tb − ta)

]
= iΘ(t′)eit′γb

gA
b (ω) = i

∫ ∞

0
dt′ eit′(ω+γb) = lim

η→0+
− 1

ω + γb + iη
.

(2.3.12)

Applying the replacements mentioned above, the transform of gb can be related to newly
defined transforms (in accordance with section 2.2.2):

g≶b (ω) = −2πiP≷(ϕ̃b)δ(ω− γ̃b) =: −g̃≷b (ω)

gA/R
b (ω) = lim

η→0+
− 1

ω− γ̃b ± iη
=: −g̃R/A

b (ω)
(2.3.13)

And finally the equations

〈〈A; B〉〉≷ω = g̃≷b (ω) 〈{A, B}〉 + g̃A
b (ω)〈〈A; [H1, B]〉〉≷ω + g̃≷b (ω)〈〈A; [H1, B]〉〉Rω

〈〈A; B〉〉R/A
ω = g̃R/A

b (ω) 〈{A, B}〉+ g̃R/A
b (ω)〈〈A; [H1, B]〉〉R/A

ω

(2.3.14)

are found, or alternatively for the lesser and greater functions

〈〈A; B〉〉≷ω =
g̃≷b (ω)

g̃R
b (ω)

〈〈A; B〉〉Rω + g̃A
a (ω)〈〈A; [H1, B]〉〉≷ω . (2.3.15)

For the case where the second operator is a creation operator, i.e. B = c†, the relations

γ̃c† = γc

ϕ̃c† = ϕc
(2.3.16)

are found and further
g̃c†(ω) = gc(ω). (2.3.17)

Thus, the alternative definitions are not necessarily needed and the quantities can be
obtained from the regular definition by treating B as annihilation operator.
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2. Equation of Motion for Non-Equilibrium Green’s Functions

2.4. Summary and Plug-and-Play Equations

In the current chapter, the framework for the equation-of-motion technique was set up in
non-equilibrium and certain aspects were discussed in more detail. In this last section of
the current chapter, the equations and definitions used in the subsequent chapters shall be
summarized as a quick reference for the application-oriented reader.

The steady-state equations of motion for Green’s functions of arbitrary odd products of
creation- and annihilation operators

A =
2m+1

∏
i=1

αi and B =
2n+1

∏
i=1

βi

in a fermionic system whose Hamiltonian is split in a part H0, containing only number
operator terms, and the rest H1, containing hopping and interaction terms, are given by

〈〈A; B〉〉≷ω =
g≷a (ω)

gA
a (ω)

〈〈A; B〉〉Aω + gR
a (ω)〈〈[A, H1]; B〉〉≷ω

〈〈A; B〉〉R/A
ω = gR/A

a (ω) 〈{A, B}〉+ gR/A
a (ω)〈〈[A, H1]; B〉〉R/A

ω ,

where

gR/A
a (ω) =

1
ω− γa ± iη

g≷a (ω) =
2iη

(ω− γa)
2 + η2

(
f
(

ω− µa

T

)
− δ≷,>

)
,

the (curly) square brackets denote the usual (anti)commutator and f denotes the Fermi
function. The constants are obtained from

[A, H0] = γa A and µa = γa

∣∣∣
εi=µi

.

For correlations with a single creation operator an alternative formulation is found, treating
c† as annihilation operator when determining the constants:

〈〈A; c†〉〉≷ω =
g≷c (ω)

gR
c (ω)

〈〈A; c†〉〉Rω + gA
c (ω)〈〈A;

[
H1, c†

]
〉〉≷ω

〈〈A; c†〉〉R/A
ω = gR/A

c (ω)
〈{

A, c†
}〉

+ gR/A
c (ω)〈〈A;

[
H1, c†

]
〉〉R/A

ω
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3. The Interacting Resonant Level Model

In this chapter, the Interacting Resonant Level Model (IRLM) is shortly introduced and
serves as an explicit example throughout the rest of the thesis on how to apply the equation-
of-motion technique. This involves modelling the leads or baths, i.e. the large surroundings
to which the interacting system is coupled, and aims at the fundamental set of equations
describing the non-equilibrium Green’s function problem in the IRLM.

The IRLM is a linear lattice model for spinless fermions, i.e. it involves fermionic creation-
and annihilation operators with the usual anticommutation relations, but no explicit spin
degree of freedom appears. It is chosen as benchmark model, as an exact expression for the
current-voltage characteristic is available for a special parameter set known as the self-dual
point. The solution is obtained in [15] and formulated in closed form as a hypergeometric
function in [16]. Furthermore, the model exhibits an interesting feature due to interaction,
namely negative differential conductance, i.e. the current through the system decreases with
increasing voltage in a certain range (see [17]).

In its simplest form it consists of three lattice sitesI and two baths of non-interacting electrons.
As depicted in figure 3.1, the left (right) site a(b) couples to states k ∈ L(R) and the inner sites
are linearly connected via nearest-neighbour hopping. The electron interaction is reduced to
inner neighbouring sites. The system is at temperature T, and the non-equilibrium situation
is only evoked by different chemical potentials µi in the leads, accounting for a voltage
applied to the system.

0

+∆µ
2

−∆µ
2

t, U t, U
V V

da b

ρ(ε), T ρ(ε), T

k ∈ L k ∈ R

Figure 3.1.: Schematic representation of the IRLM and its system parameters.

The IRLM is described by a Hamiltonian H = H0 + H1, where

H0 = εdn̂ + ∑
m=a,b

εmn̂m + ∑
k∈L,R

εkn̂k

H1 = ∑
m=a,b

[
−t
(

c†md + d†cm

)
+ Un̂mn̂

]
−V ∑

k∈L,R

(
c†a,bck + c†kca,b

)
.

(3.0.1)

IAn extension to multiple inner sites di can be found in [18].

27



3. The Interacting Resonant Level Model

The operators d† and d create and annihilate a particle on the central lattice site, the
corresponding number operator is denoted simply by n̂ = d†d. The operators c†a(b), ca(b) and

n̂a(b) describe particles on the left (right) lattice site, and c†k, ck and n̂k a particle in state k in
the left (right) lead if k ∈ L(R). The on-site energies εk in the leads are defined via a certain
density of states ρ(ε) characterizing the type of lead, whereas εd, εa and εb are parameters to
choose. The other parameters t and V denote the so-called hopping integrals, describing the
kinetic and potential energies related to a single-particle tunnelling from one site to another,
where t connects the inner sites and V connects the system to the leads. And finally, U
describes the electron-electron Coulomb repulsion between to neighbouring inner sites.

It can be shownII that this Hamiltonian is invariant under the particle-hole transformation

cn → (−1)nc†−n, (3.0.2)

where cn (and c†n respectively) maps to the the operators from above via

c−2 c−1 c0 c1 c2
ck∈L ca d cb ck∈R

,

if the on-site energies fulfil the relations

2εa,b = εd = −U
εk∈L = εk∈R.

(3.0.3)

In fact, the exact solution is obtained for the particle-hole symmetric case, but for now the
on-site energies remain general parameters in the following equations until particle-hole
symmetry is applied explicitly.

3.1. Definition of the Current

The current through a system plays a major role in non-equilibrium physics and is usually
calculated through the change in total particle number of a region x in the system. So,
recalling equation (1.0.1) for electronic systems,

Ix = −e
〈

dN̂x

dt

〉
= −ie

〈[
H, N̂x

]〉
,

where e is the elementary charge and the commutator comes from the Heisenberg equation.
In the IRLM, the current can be measured from the leads to the inner system or over the
inner junctions. The two corresponding regions can be identified as simply left or right lead
and a lead plus the neighbouring site a or b. As the current over the whole system must be
conserved and the system is left-right symmetric, the currents sum up as

Ii,L + Ii,R = 0

IISee section A.1.4 in the appendix for the proof.
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3. The Interacting Resonant Level Model

and only one side needs to be considered. So, the two regions are characterized by the total
number operators

N̂1 = ∑
k∈L

n̂k

N̂2 = n̂a + ∑
k∈L

n̂k.
(3.1.1)

In order to obtain an expression for the current, the following commutatorsIII with the
Hamiltonian (3.0.1) are needed. The commutator from the left lead results in[

H, ∑
k∈L

n̂k

]
= ∑

k∈L
[H, n̂k] = −V ∑

k∈L

[
c†ack + c†kca, n̂k

]
= −V ∑

k∈L

(
c†ack − c†kca

) (3.1.2)

and for site a

[H, n̂a] =

[
−t
(

c†ad + d†ca

)
−V ∑

k∈L

(
c†ack + c†kca

)
, n̂a

]
= +t

(
c†ad− d†ca

)
+ V ∑

k∈L

(
c†ack − c†kca

)
= +t

(
c†ad− d†ca

)
− ∑

k∈L
[H, n̂k],

(3.1.3)

where the commutator (3.1.2) is used in the last step. And so, according to (1.0.1) the two
currents are obtained as

I1 = −ie
〈[

H, N̂1
]〉

= −ie ∑
k∈L
〈[H, n̂k]〉 = +ieV ∑

k∈L

(〈
c†ack

〉
−
〈

c†kca

〉)
=: IL;lead

I2 = −ie
〈[

H, N̂2
]〉

= −ie

〈
[H, n̂a] + ∑

k∈L
[H, n̂k]

〉
= −iet

(〈
c†ad
〉
−
〈

d†ca

〉)
=: IL,

(3.1.4)

where the expectation values can be calculated by integrating over the corresponding lesser
Green’s functionIV.

3.2. Modelling of the Leads - Hybridization Strength

The IRLM includes two non-interacting leads that are coupled symmetrically to the system.
As they appear as sums of operators creating and annihilating a particle with energy εk in
the Hamiltonian, the resulting equations of motion naturally contain sums of some bath
quantities Q(εk; ω).

III The equation-of-motion technique requires calculating a lot of commutators which can become quite
cumbersome, and is further a popular source of (sign) errors. However, this tedious work can be avoided
using some neat packages like the Mathematica package SNEG. See [19] for details and download information.

IVWhile I2 is directly obtained from the expectation values needed for the later described self-consistency
loop, I1 is obtained from Green’s functions as described in 5.5.
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3. The Interacting Resonant Level Model

These energies εk, i.e. the inner structure of the leads, are not given explicitly, but encoded
in a density of states ρ(ε), so that the general procedure to calculate these terms is based on
rewriting the sums as integrals over the given density:

∑
k

Q(εk; ω)→
∫

dε ρ(ε)Q(ε; ω)

An important quantity connected to the single-particle Green’s function is the so-called
hybridization function

∆κ
B (ω) := V2 ∑

k∈B
gκck

(ω) := V2 ∑
k∈B

gκk (ω),

where κ =<,>, R, A and B = L,R stands for the left or right bath. The following commutator
defines γk := γck , namely

[ck, H0] = εkck → γk = εk,

and so according to (2.2.3) the retarded and advanced hybridization function read

∆R/A
B (ω) := ∆±B (ω) := V2 ∑

k∈B
gR/A

k (ω) = ∑
k∈B

V2

ω− εk ± iη
=
(
∆∓B (ω)

)∗ . (3.2.1)

Assuming the system is at temperature T = β−1 and the non-equilibrium is governed by
the different chemical potentials of the leads µB, according to (2.2.24) and (2.2.51) the lesser
and greater functions read

∆≷
B (ω) := V2 ∑

k∈B
g≷k (ω) = V2 ( fB(ω)− δ≷,>) ∑

k∈B

2iη

(ω− εk)
2 + η2

, (3.2.2)

where
fB(ω) =

1
1 + eβ(ω−µB)

is the Fermi function for the B (= L,R) bath. The imaginary partsV of ∆R/A
B (ω) and ∆≷

B (ω)
are related to each other via

2 ( fB(ω)− δ≷,>) Im
{

∆±B (ω)
}
= 2 ( fB(ω)− δ≷,>) Im

{
∑
k∈B

V2

ω− εk ± iη

}
= ∓V2 ( fB(ω)− δ≷,>) ∑

k∈B

2η

(ω− εk)
2 + η2

= ∓ Im
{

∆≷
B (ω)

}
(3.2.3)

and furthermore the relation

∆−B (ω)− ∆+
B (ω) = ∆<

B (ω)− ∆>
B (ω)

holds, as

∆−B (ω)− ∆+
B (ω) = V2 ∑

k∈B

(
1

ω− εk − iη
− 1

ω− εk + iη

)
= V2 ∑

k∈B

2iη

(ω− εk)
2 + η2

VAs ∆≷ is purely imaginary, it is fully determined by Im{∆±}.
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3. The Interacting Resonant Level Model

and

∆<
B (ω)− ∆>

B (ω) = V2 ( fB(ω)− fB(ω) + 1) ∑
k∈B

2iη

(ω− εk)
2 + η2

= V2 ∑
k∈B

2iη

(ω− εk)
2 + η2

.

With the help of the retarded or advanced part of ∆κ
B (ω) it is useful to define a unit of

energyVI in which all parameters occurring in the Hamiltonian can be expressed. For
symmetric leads the index B can be dropped as the sum is evaluated with the same density
of states and so

∆±L (ω) = ∆±R (ω) =: ∆±(ω) = ∑
k

V2

ω− εk ± iη
.

This unit is called hybridization strength Γ and is defined as follows:

Γ := ∓ Im
{

∆±(ω = 0)
}

With the relation between the density of states and the non-interacting (and uncoupled)
Green’s functions,

ρLead(ω) = ∓ 1
π

Im

{
∑
k

gR/A
k (ω)

}
,

the hybridization strength can be written as

Γ = πV2ρ(0)

which in turn defines the coupling to the leads V for a given density of states.

In the following the hybridization functions and strengths for the two types of leads, or
densities of states respectively, used in this thesis are calculated explicitly keeping Γ in the
equations. Yet, from section 3.3 on Γ is the designated energy scale and is therefore omitted
in the equations.

3.2.1. Hybridization Function in the Wide-Band Limit

The simplest kind of lead is completely structureless and characterized by a density of states
that is just a box, i.e. the lead energies are continuous within a certain range and evenly
distributed. Expanding this range to infinity leads to a so-called flat-band bath in wide-band
limit, which is defined through the density of states

ρ(ω) = lim
D→∞

1
2D

Θ(D− |ω|),

where Θ(x) denotes the Heaviside step function. The hybridization strength is then given
by

Γ = lim
D→∞

πV2

2D

VI Recalling the preliminary remarks on units, by choosing a certain unit of energy in the Hamiltonian
parameters, the temperature T and the Fourier frequency ω become scaled as well, as they are both energies
in the present unit system.
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3. The Interacting Resonant Level Model

and so the hybridization V becomes

V = lim
D→∞

√
2DΓ

π
.

The limit in the density of states or in the hybridization must not be evaluated separately,
but just when they occur together in a closed form (usually an evaluable explicit sum over
k) like in the hybridization function:

∆±(ω) = ∑
k

V2

ω− εk ± iη

→ V2
∫

dε
ρ(ε)

ω− ε± iη

= lim
D→∞

V2

2D

∫ D

−D
dε

1
ω− ε± iη

=
Γ
π

lim
D→∞

[ln(ω + D± iη)− ln(ω− D± iη)] = ∓iΓ

(3.2.4)

The advantage of the wide-band limit becomes clear as the hybridization function loses its
ω-dependenceVII in the wide-band limit and results in a simple constant imaginary part.

3.2.2. Hybridization Function for a Semi-Infinite Tight-Binding Chain

A more complex lead can be introduced by a semi-infinite tight-binding chain described by
the Hamiltonian

HTB = εTB

N

∑
i=0

n̂i − t0

N

∑
i=0

(
c†i ci+1 + c†i+1ci

)
and N → ∞

and depicted in figure 3.2. The energy εTB is just an overall energy shift for the whole chain.

01

t0

2

t0t0

. . .

t0

N

t0

Figure 3.2.: Semi-infinite tight-binding chain

In this real-space representation, the system couples to the first site (i = 0) of the chain,
whose density of states for εTB = 0 is given by

ρTB(ε) =

 1
2πt0

√
4−

(
ε
t0

)2
if |ε| ≤ 2t0

0 otherwise.
(3.2.5)

This leads to a hybridization strength of

Γ =
πV2
√

4
2πt0

VIISee section A.1.5 in the appendix.
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and further to
V =

√
Γt0.

With these definitions, the hybridization function reads

∆±(ω) = ∑
k

V2

ω− εk ± iη

→ V2
∫

dε′
ρTB(ε

′)

ω− ε′ ± iη

=
Γt0

2πt0

∫ 2t0

−2t0

dε′

ω− ε′ ± iη

√
4−

(
ε′

t0

)2

=
Γ

2π

∫ 2

−2
dε

√
4− ε2

ω±0 − ε
=:

Γ
2π

I±(ω),

(3.2.6)

where the in the last step the substitution ε′ = t0ε is applied and ω±0 = t−1
0 (ω± iη). Within

a ridiculously short calculationVIII the integral evaluates to

I±(ω) = π

(
ω±0 ∓ i

√
4−

(
ω±0
)2
)

(3.2.7)

and so for a chain with t0 = 1Γ the hybridization function becomes

∆± =
1
2

(
ω± ∓ i

√
4Γ2 − (ω±)2

)
(3.2.8)

which is the well-known result for the semi-infinite tight-binding chain (see, e.g., chapter
19 in [20]). The principal value is intended for the square roots in (3.2.7) and (3.2.8), i.e.
Re
{√. . .

}
≥ 0 must be ensured in the numerical evaluation.

3.3. Equations of Motion and Sets of Equations

As shown in the previous chapter, the equations of motion for the different Green’s functions
can be expressed in two forms, one of which leads to a hierarchy in the first operator and
the other one in the second. In this thesis, as well as in most literature, only the first form is
used for setting up the sets of equations. This choice is arbitrary and should not change the
result. The second form is only used where expectation values of operators containing a bath
creation operator are needed, as this gives an exact and simple relation for the underlying
Green’s function.

Correlation functions, or greater/lesser Green’s functions, are needed in order to calculate
non-equilibrium expectation values directly. Their equations of motion (2.2.44) involve
retarded and advanced Green’s functions, which themselves need to be solved firstIX via

VIIISee section A.2.2 in the appendix. Besides the direct evaluation of the integral, an alternative derivation
of the hybridization function is shown in A.1.7, where no explicit density of states is needed.

IXAs seen in later chapters, the sets of equations differ only in the inhomogeneous term and formally have
the same solution, assuming a general inhomogeneous term.
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their equations of motion. In the following, the single-particle retarded and advanced
Green’s function do not appear explicitly, but are rewritten as

ω̃A :=
(

gR/A
a (ω)

)−1

in order to emphasize the ω-dependence in the sets of equations. With this definition and
according to (2.2.43), the equation of motion for the retarded and advanced Green’s function
is given by

ω̃A〈〈A; B†〉〉 =
〈{

A, B†
}〉

+ 〈〈[A, H1]; B†〉〉, (3.3.1)

where
ω̃A ≡ ω̃±A = ω− γA ± iη

defines the retarded (upper sign) and advanced (lower sign) function, and γA is determined
by

AγA = [A, H0].

As the imaginary part of the Green’s function is introduced only via ±iη, it is assured that
the advanced and retarded functions are connected through complex conjugation, i.e.(

〈〈A; B†〉〉R
)∗

= 〈〈A; B†〉〉A.

In order to set up the equations of motion for the desired Green’s functions, the commutators
with H1 and the anticommutators of all operator pairs need to be evaluated. Even when
starting with a supposedly simple quantity like the occupation number on the central site
〈n̂〉 =

〈
d†d
〉
, it becomes clear that the equations of motion for the relevant Green’s functions,

i.e. 〈〈d; d†〉〉< and 〈〈d; d†〉〉R/A, open up a minimal set of equations that needs to be considered
for two-operator Green’s functions. In the case for 〈n̂〉 this system consists of all two-operator
functions 〈〈x; d†〉〉κ, where x stands for the system’s annihilation operators ca, cb, ck, d and κ
for the lesser, greater, retarded and advanced part of the Green’s function.

A similar set is needed for the occupation numbers on site a and b and for a complete
description of the current through the system. These fundamental sets of equations are
described by the commutators

[d, H1] = ∑
m={a,b}

[
d,−td†cm + Un̂mn̂

]
= −t(ca + cb) + Ud(n̂a + n̂b)

[ca,b, H1] =

[
ca,b ,−tc†a,bd + Un̂a,bn̂−V ∑

k∈L,R
c†a,bck

]
= −td + Uca,bn̂−V ∑

k∈L,R
ck

[ck, H1] = −V
[
ck, c†kca,b

]
= −Vca,b for k ∈ L,R[

H1, c†k
]
= −Vc†a,b for k ∈ L,R

(3.3.2)

and the anticommutators {
d, d†

}
=
{

ca, c†a
}
=
{

cb, c†b
}
= 1{

d, c†a,b

}
=
{

d, c†k
}
=
{

ca,b, c†b,a

}
=
{

ca,b, c†k
}
= 0.

(3.3.3)
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3. The Interacting Resonant Level Model

The fundamental sets for the retarded and advanced Green’s functions are in principle three
independent sets of equations, namely one in d†,

ω̃d〈〈d; d†〉〉 = 1− t
(
〈〈ca; d†〉〉+ 〈〈cb; d†〉〉

)
+ U

(
〈〈dn̂a; d†〉〉+ 〈〈dn̂b; d†〉〉

)
(

ω̃a − ∑
k∈L

V2

ω̃k

)
〈〈ca; d†〉〉 = −t〈〈d; d†〉〉+ U〈〈can̂; d†〉〉(

ω̃b − ∑
k∈R

V2

ω̃k

)
〈〈cb; d†〉〉 = −t〈〈d; d†〉〉+ U〈〈cbn̂; d†〉〉

(3.3.4)

and one each in c†a and c†b,

ω̃d〈〈d; c†a,b〉〉 = −t
(
〈〈ca; c†a,b〉〉+ 〈〈cb; c†a,b〉〉

)
+ U

(
〈〈dn̂a; c†a,b〉〉+ 〈〈dn̂b; c†a,b〉〉

)
(

ω̃a,b − ∑
k∈L,R

V2

ω̃k

)
〈〈ca,b; c†a,b〉〉 = 1− t〈〈d; c†a,b〉〉+ U〈〈ca,bn̂; c†a,b〉〉(

ω̃b,a − ∑
k∈R,L

V2

ω̃k

)
〈〈cb,a; c†a,b〉〉 = −t〈〈d; c†a,b〉〉+ U〈〈cb,an̂; c†a,b〉〉,

(3.3.5)

where γ turns out to be just the corresponding on-site energy and so ω̃i ≡ ω̃±i = ω− εi ± iη
for the retarded (upper sign) and advanced (lower sign) Green’s function. The simple
equation of motion for a Green’s function with one bath annihilation operator,

〈〈ck; x†〉〉 = −V
〈〈ca,b; x†〉〉

ω̃k
for k ∈ L,R,

has already been inserted in the above equation sets. Following the form (3.3.1) of the
equation of motion only the first operator changes, while the secondX remains the same
in the whole hierarchy of equations. However, the equations for higher Green’s functions
in a specific creation operator might contain expectation values whose underlying Green’s
functions are described in the set of another creation operator. This means that the three
sets of equations can formally be solved independently, but not evaluated numerically, as
the solutions still contain expectation values that are calculated in a self-consistency loop.
Therefore, all Green’s functions and occurring expectation values need to be calculated
simultaneously, which increases, of course, the effort, but a converged calculation provides
then access to all two-operator quantities.

With the definition of ω̃, the equations of motion for lesser and greater Green’s functions
can be written as (cf. (2.2.44))

ω̃+
A〈〈A; B†〉〉≷ = g≷A|ω̃A|2〈〈A; B†〉〉A + 〈〈[A, H1]; B†〉〉≷,

where

g≷A|ω̃A|2 = 2iP≷
A (ω)

η

(ω− εA)
2 + η2

[
(ω− εA)

2 + η2
]

= 2iηP≷
A (ω)

= 2iη ( fA(ω)− δ≷,>)

(3.3.6)

XThe second operator is here always a creation operator as correlations between two annihilation (or two
creation) operators are zero in a particle-conserving fermionic system.
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3. The Interacting Resonant Level Model

and
fA(ω) :=

(
1 + eβ(ω−µA)

)−1

is the Fermi function at the inverse temperature β. Although it might seem appealing to
simply set the factors g≷A|ω̃A|2 to zero as they are of O(η), this may lead to inconsistencies
and wrong results. These terms are still understood as limit η → 0+ which has to be taken
in the end of a calculation for the whole Green’s function. In practice, these terms will
vanish in the limit if the product

〈〈A; B†〉〉R〈〈A; B†〉〉A =
∣∣∣〈〈A; B†〉〉

∣∣∣2
has no poles, which is the case for situations where the system has no isolated states. If a
system exhibits such behaviour, terms like

O(η)
∣∣∣〈〈A; B†〉〉

∣∣∣2 ∝ δ(ωAB)

become delta peaks that do not vanish in the limit and give a finite contribution to the
expectation values. This is shown explicitly for tight-binding leads in section 4.2, where
states appear outside the bandwidth of the leads. Therefore, in the following calculations η
is kept in each term it appears.

Applying the equations of motion to the lesser and greater Green’s functions leads to
equation sets similar to (3.3.4) and (3.3.5) that can be represented in a general form for
x = d, ca, cb, namely

ω̃+
d 〈〈d; x†〉〉≷ = g≷d |ω̃d|2〈〈d; x†〉〉A − t

(
〈〈ca; x†〉〉≷ + 〈〈cb; x†〉〉≷

)
+ U

(
〈〈dn̂a; x†〉〉≷ + 〈〈dn̂b; x†〉〉≷

)
(

ω̃+
a − ∑

k∈L

V2

ω̃+
k

)
〈〈ca; x†〉〉≷ =

(
g≷a |ω̃a|2 + V2 ∑

k∈L
g≷k

)
〈〈ca; x†〉〉A − t〈〈d; x†〉〉≷

+ U〈〈can̂; x†〉〉≷(
ω̃+

b − ∑
k∈R

V2

ω̃+
k

)
〈〈cb; x†〉〉≷ =

(
g≷b |ω̃b|2 + V2 ∑

k∈R
g≷k

)
〈〈cb; x†〉〉A − t〈〈d; x†〉〉≷

+ U〈〈cbn̂; x†〉〉≷,

(3.3.7)

where the lead part

〈〈ckL,R ; x†〉〉≷ = −V

(
g≷kL,R
〈〈ca,b; x†〉〉A +

〈〈ca,b; x†〉〉≷

ω̃+
kL,R

)
(3.3.8)

is already inserted.

The framework and the fundamental equations are now set up. Concrete calculations
and results are shown in the following chapters for different types of baths and different
treatments of the electron-electron interaction that shows up as the Green’s functions

U〈〈dn̂a,b; x†〉〉κ and U〈〈ca,bn̂; x†〉〉κ.
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4. Interaction in First-Order Truncation –
Hartree-Fock Approximation

The equation sets in section 3.3 contain higher Green’s functions, i.e. they consist of more
than two operators, that themselves are described by equations of motion that in turn
generate new and even higher Green’s functions. In fact, as the system is infinite and takes
interactions into account, the equations of motion lead to an infinite hierarchy of equations.
In order to find at least an approximate solution, this hierarchy needs to be truncated in
some way.

A common truncation scheme in Green’s function methods is a mean-field like approxima-
tion to higher products of operators in Green’s functions (see [3], [21] or [22] for applications
and [23] for technical details). This is done by replacing a higher product of operators by
the sum of its lower products acting in the mean field of the rest and taking care of the signs
due to fermionic commutation.

In first order, i.e. starting from the fundamental equation sets, two types of operators are
approximated asI

dn̂a,b = dc†a,bca,b →
〈

n̂a,b

〉
d−

〈
c†a,bd

〉
ca,b

ca,bn̂ = ca,bd†d→
〈

n̂
〉

ca,b −
〈

d†ca,b

〉
d,

(4.0.1)

which closes the sets of equations and requires a self-consistent solution for the expectation
values that are calculated by integrating over the lesser Green’s function according to
(2.2.39).

Applying the approximations (4.0.1) to the fundamental equation sets (3.3.4) and (3.3.5)
leads to

[ω̃d −U (〈n̂a〉+ 〈n̂b〉)] 〈〈d; d†〉〉 = 1− τa〈〈ca; d†〉〉 − τb〈〈cb; d†〉〉(
ω̃a −U 〈n̂〉 − ∑

k∈L

V2

ω̃k

)
〈〈ca; d†〉〉 = −τ∗a 〈〈d; d†〉〉(

ω̃b −U 〈n̂〉 − ∑
k∈R

V2

ω̃k

)
〈〈cb; d†〉〉 = −τ∗b 〈〈d; d†〉〉

(4.0.2)

INote that in comparable spin systems like the Anderson model the interaction takes place between
opposite spins on the same site and therefore operators of that type are approximated only by the first term
with 〈n̂i〉, as the second term with a hopping correlation involves a spin flip which is usually neglected, cf. [3].
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4. Interaction in First-Order Truncation – Hartree-Fock Approximation

and

[ω̃d −U (〈n̂a〉+ 〈n̂b〉)] 〈〈d; c†a〉〉 = −τa〈〈ca; c†a〉〉 − τb〈〈cb; c†a〉〉(
ω̃a −U 〈n̂〉 − ∑

k∈L

V2

ω̃k

)
〈〈ca; c†a〉〉 = 1− τ∗a 〈〈d; c†a〉〉(

ω̃b −U 〈n̂〉 − ∑
k∈R

V2

ω̃k

)
〈〈cb; c†a〉〉 = −τ∗b 〈〈d; c†a〉〉,

(4.0.3)

where

τm = t + U
〈

c†md
〉

τ∗m = t + U
〈

d†cm

〉
.

(4.0.4)

For the sake of clarity, the set (4.0.3) and the following solutions are only shown for the
equations in c†a. As the system is symmetric in a and b the solutions are obtained by simply
replacing a → b, L → R and vice versa. In comparison to a system with no interaction
(obtained by setting U = 0 in the fundamental equation sets), the applied truncation
introduces, in a sense, effective system parameters. The on-site energies feel the influence of
the occupation numbers, namely

εd → εd + U (〈n̂a〉+ 〈n̂b〉)
εa,b → εa,b + U 〈n̂〉

(4.0.5)

and the hopping t splits into four effective complex hoppings by the influence of the hopping
correlations, i.e.

t→ τm, τ∗m. (4.0.6)

It is worth mentioning that this truncation is equivalent to a direct Hartree-Fock approxima-
tion in the Hamiltonian term n̂mn̂, namely (cf. [18])

n̂mn̂→ 〈n̂m〉 n̂ + 〈n̂〉 n̂m − 〈n̂m〉 〈n̂〉

−
〈

c†md
〉

d†cm −
〈

d†cm

〉
c†md +

〈
c†md

〉 〈
d†cm

〉
.

(4.0.7)

The Hartree-Fock Hamiltonian reads then

HHF = [εd + U (〈n̂a〉+ 〈n̂b〉)] n̂ + ∑
m=a,b

[(εm + U 〈n̂〉) n̂m −U 〈n̂m〉 〈n̂〉] + ∑
k∈L,R

εkn̂k

− ∑
m=a,b

[
τ∗mc†md + τmd†cm −U

〈
c†md

〉 〈
d†cm

〉]
−V ∑

k∈L,R

(
c†a,bck + c†kca,b

)
,

(4.0.8)

where the same effective parameters appear. So apart from the constant terms this de-
scribes exactly a non-interacting system with effective parameters as in (4.0.2) and (4.0.3).
The constant terms are irrelevant as they get completely lost in commutators with the
Hamiltonian.
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4. Interaction in First-Order Truncation – Hartree-Fock Approximation

The solutions to the sets of linear equations are given by

〈〈d; d†〉〉 =

ω̃d −U (〈n̂a〉+ 〈n̂b〉)− ∑
m=a,b

τmτ∗m
ω̃m −U 〈n̂〉 −∑km

V2

ω̃k

−1

〈〈ca; c†a〉〉 =

ω̃a −U 〈n̂〉 − ∑
k∈L

V2

ω̃k
−

τaτ∗a

ω̃d −U (〈n̂a〉+ 〈n̂b〉)−
τbτ∗b

ω̃b −U 〈n̂〉 −∑k∈R
V2

ω̃k


−1

,

(4.0.9)

where
ka = k ∈ L

kb = k ∈ R.

The solutions to the other fundamental retarded and advanced Green’s functions are not
shown explicitly as they can simply be obtained by inserting the above solutions in (4.0.2)
and (4.0.3).

Analogous to the retarded and advanced sets of equations the approximated equations for
the lesser and greater functions become[

ω̃+
d −U (〈n̂a〉+ 〈n̂b〉)

]
〈〈d; x†〉〉≷ = g≷d |ω̃d|2〈〈d; x†〉〉A − τa〈〈ca; x†〉〉≷ − τb〈〈cb; x†〉〉≷(

ω̃+
a −U 〈n̂〉 − ∑

k∈L

V2

ω̃+
k

)
〈〈ca; x†〉〉≷ =

(
g≷a |ω̃a|2 + V2 ∑

k∈L
g≷k

)
〈〈ca; x†〉〉A − τ∗a 〈〈d; x†〉〉≷(

ω̃+
b −U 〈n̂〉 − ∑

k∈R

V2

ω̃+
k

)
〈〈cb; x†〉〉≷ =

(
g≷b |ω̃b|2 + V2 ∑

k∈R
g≷k

)
〈〈cb; x†〉〉A − τ∗b 〈〈d; x†〉〉≷.

(4.0.10)

The solution to the central-site equations is given byω̃+
d −U (〈n̂a〉+ 〈n̂b〉)− ∑

m=a,b

τmτ∗m
ω̃+

m −U 〈n̂〉 −∑k
V2

ω̃+
k

 〈〈d; d†〉〉≷

= g≷d |ω̃d|2〈〈d; d†〉〉A − ∑
m=a,b

τm

(
g≷m|ω̃m|2 + V2 ∑k∈L g≷k

)
ω̃+

m −U 〈n̂〉 −∑k
V2

ω̃+
k

〈〈cm; d†〉〉A

= 〈〈d; d†〉〉A

g≷d |ω̃d|2 + ∑
m=a,b

τmτ∗m

(
g≷m|ω̃m|2 + V2 ∑k∈L g≷k

)
∣∣∣ω̃m −U 〈n̂〉 −∑k

V2

ω̃k

∣∣∣2
 ,

(4.0.11)

where equations from (4.0.2) have been used in the last step. The prefactor of 〈〈d; d†〉〉≷ can
be identified as the inverse of the corresponding retarded Green’s function 〈〈d; d†〉〉R, so that
the final result can be written as

〈〈d; d†〉〉≷ =
∣∣∣〈〈d; d†〉〉

∣∣∣2
g≷d |ω̃d|2 + ∑

m=a,b

τmτ∗m

(
g≷m|ω̃m|2 + V2 ∑km g≷k

)
∣∣∣ω̃m −U 〈n̂〉 −∑km

V2

ω̃k

∣∣∣2
 . (4.0.12)
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The solution to the left-site equations is given byω̃+
a −U 〈n̂〉 − ∑

k∈L

V2

ω̃+
k
−

τaτ∗a

ω̃+
d −U (〈n̂a〉+ 〈n̂b〉)−

τbτ∗b
ω̃+

b −U 〈n̂〉 −∑k∈R
V2

ω̃+
k

 〈〈ca; c†a〉〉≷

=

(
g≷a |ω̃a|2 + V2 ∑

k∈L
g≷k

)
〈〈ca; c†a〉〉A −

τ∗a g≷d |ω̃d|2

ω̃+
d −U(〈n̂a〉+ 〈n̂b〉)−

τbτ∗b
ω̃+

b −U〈n̂〉−∑k∈R
V2

ω̃+
k

〈〈d; c†a〉〉A

+
τbτ∗a

(
g≷b |ω̃b|2 + V2 ∑k∈R g≷k

)
[
ω̃+

d −U (〈n̂a〉+ 〈n̂b〉)
] (

ω̃+
b −U 〈n̂〉 −∑k∈R

V2

ω̃+
k

)
− τbτ∗b

〈〈cb; c†a〉〉
A

= 〈〈ca; c†a〉〉A


g≷a |ω̃a|2 + V2 ∑

k∈L
g≷k +

τaτ∗a g≷d |ω̃d|2∣∣∣∣∣ω̃d −U(〈n̂a〉+ 〈n̂b〉)−
τbτ∗b

ω̃b−U〈n̂〉−∑k∈R
V2
ω̃k

∣∣∣∣∣
2

+
τaτ∗a τbτ∗b

(
g≷b |ω̃b|2 + V2 ∑k∈R g≷k

)
∣∣∣[ω̃d −U (〈n̂a〉+ 〈n̂b〉)]

(
ω̃b −U 〈n̂〉 −∑k∈R

V2

ω̃k

)
− τbτ∗b

∣∣∣2
 ,

(4.0.13)

where equations from (4.0.3) have been used in the last step. Similar to the central-site
solution, the prefactor of 〈〈ca; c†a〉〉≷ is the inverse of its corresponding retarded Green’s
function and the result can be written as

〈〈ca; c†a〉〉≷ =
∣∣∣〈〈ca; c†a〉〉

∣∣∣2


g≷a |ω̃a|2 + V2 ∑
k∈L

g≷k +
τaτ∗a g≷d |ω̃d|2∣∣∣∣∣ω̃d −U(〈n̂a〉+ 〈n̂b〉)−

τbτ∗b
ω̃b−U〈n̂〉−∑k∈R

V2
ω̃k

∣∣∣∣∣
2

+
τaτ∗a τbτ∗b

(
g≷b |ω̃b|2 + V2 ∑k∈R g≷k

)
∣∣∣[ω̃d −U (〈n̂a〉+ 〈n̂b〉)]

(
ω̃b −U 〈n̂〉 −∑k∈R

V2

ω̃k

)
− τbτ∗b

∣∣∣2
 .

(4.0.14)

As already mentioned, only the solution in the left site a is shown, as the solution in b can
be obtained by simple replacements.
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4. Interaction in First-Order Truncation – Hartree-Fock Approximation

The solution for the hopping Green’s function 〈〈ca; d†〉〉≷ is shown explicitly to emphasize its
structure and relation to 〈〈d; c†a〉〉≷:ω̃+

a −U 〈n̂〉 − ∑
k∈L

V2

ω̃+
k
−

τaτ∗a

ω̃+
d −U (〈n̂a〉+ 〈n̂b〉)−

τbτ∗b
ω̃+

b −U 〈n̂〉 −∑k∈R
V2

ω̃+
k

 〈〈ca; d†〉〉≷

=

(
g≷a |ω̃a|2 + V2 ∑

k∈L
g≷k

)
〈〈ca; d†〉〉A −

τ∗a g≷d |ω̃d|2

ω̃+
d −U(〈n̂a〉+ 〈n̂b〉)−

τbτ∗b
ω̃+

b −U〈n̂〉−∑k∈R
V2

ω̃+
k

〈〈d; d†〉〉A

+
τ∗a τb

(
g≷b |ω̃b|2 + V2 ∑k∈R g≷k

)
[
ω̃+

d −U(〈n̂a〉+ 〈n̂b〉)
] (

ω̃+
b −U 〈n̂〉 −∑k∈R

V2

ω̃+
k

)
− τbτ∗b

〈〈cb; d†〉〉A

= −τ∗a 〈〈d; d†〉〉A


g≷a |ω̃a|2 + V2 ∑k∈L g≷k
ω̃−a −U 〈n̂〉 −∑k∈L

V2

ω̃−k

+
g≷d |ω̃d|2

ω̃+
d −U(〈n̂a〉+ 〈n̂b〉)−

τbτ∗b
ω̃+

b −U〈n̂〉−∑k∈R
V2

ω̃+
k

+

τbτ∗b

(
g≷b |ω̃b|2 + V2 ∑k∈R g≷k

)
(

ω̃−b −U 〈n̂〉 −∑k∈R
V2

ω̃−k

){[
ω̃+

d −U(〈n̂a〉+ 〈n̂b〉)
] (

ω̃+
b −U 〈n̂〉 −∑k∈R

V2

ω̃+
k

)
− τbτ∗b

}


(4.0.15)

Identifying the prefactor of 〈〈ca; d†〉〉≷ as 〈〈ca; c†a〉〉R leads to the expression

〈〈ca; d†〉〉≷ = −τ∗a 〈〈ca; c†a〉〉R〈〈d; d†〉〉A{. . .}, (4.0.16)

where the dots indicate the same content in the curly brackets as in (4.0.15). Solving the
equations for 〈〈d; c†a〉〉≷ gives a similar expression

〈〈d; c†a〉〉≷ = τa〈〈d; d†〉〉R〈〈ca; c†a〉〉A{. . .}∗, (4.0.17)

where the complex conjugation (∗) of all terms in the curly brackets is achieved by the
substitutions ω̃±i → ω̃∓i and g≷i → −g≷i , as these are the only terms containing an imaginary
part. The expression can be rewritten as

〈〈d; c†a〉〉≷ =
{

τ∗a 〈〈d; d†〉〉A〈〈ca; c†a〉〉R{. . .}
}∗

, (4.0.18)

which implies the relation

− 〈〈d; c†a〉〉≷ =
(
〈〈ca; d†〉〉≷

)∗
(4.0.19)

and is consistent with the usual relation between such expectation values, i.e.
〈

c†ad
〉
=〈

d†ca
〉∗, as〈

c†ad
〉
=

1
2πi

∫ ∞

−∞
dω 〈〈d; c†a〉〉≷ =

(
1

2πi

∫ ∞

−∞
dω 〈〈ca; d†〉〉≷

)∗
=
〈

d†ca

〉∗
. (4.0.20)
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4.1. Explicit Particle-Hole Symmetry

Up to this point, all equations and their solutions are formulated for general model parame-
ters and baths. The exact solution in [15] and numerical treatments in [18] and [17], however,
are done on the particle-hole symmetric case, which implies some restrictions on the on-site
energies and expectation values.

The system’s symmetry combined with particle-hole symmetry (see (3.0.3) and section A.1.4
in the appendix) implies

〈n〉 = 1
2

〈n̂a〉 = 1− 〈n̂b〉〈
c†ad
〉
=
〈

d†cb

〉
〈

d†ca

〉
=
〈

c†bd
〉

〈
c†acb

〉
= −

〈
c†acb

〉
= 0〈

c†bca

〉
= −

〈
c†bca

〉
= 0,

(4.1.1)

which further simplifies the expressions

|τ|2 := τaτ∗a =
(

t + U
〈

c†ad
〉) (

t + U
〈

d†ca

〉)
=
(

t + U
〈

d†cb

〉) (
t + U

〈
c†bd
〉)

= τ∗b τb

(4.1.2)
and

ω̃m −U 〈n̂〉 = ω + U
(

1
2
− 〈n̂〉

)
± iη = ω± iη =: ω±

ω̃d −U (〈n̂a〉+ 〈n̂b〉) = ω + U (1− 〈n̂a〉 − 〈n̂b〉)± iη = ω±.
(4.1.3)

Furthermore, the non-equilibrium situation is only caused by a symmetric difference in the
chemical potential, µL,R = ±∆µ

2 , and the leads themselves have the same structure, i.e. the
same density of states, and so the retarded and advanced hybridization functions are exactly
the same for the left and right lead:

∆± := ∆±(ω) = ∆±L (ω) = ∆±R (ω) (4.1.4)

As indicated above, the argument for left or right lead is dropped in the following. Applying
(4.1.1)-(4.1.4), the particle-hole symmetric Green’s functions in first-order truncation have
the form

〈〈d; d†〉〉R/A =

(
ω± − 2|τ|2

ω± − ∆±

)−1

〈〈ca; c†a〉〉R/A =

ω± − ∆± −
|τ|2

ω± −
|τ|2

ω± − ∆±


−1

(4.1.5)
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and

〈〈d; d†〉〉≷ =
∣∣∣〈〈d; d†〉〉

∣∣∣2 [2iηP≷
d (ω) +

|τ|2

|ω± − ∆±|2 ∑
m=a,b

(
2iηP≷

m (ω) + ∆≷
Bm

)]

〈〈ca; c†a〉〉≷ =
∣∣∣〈〈ca; c†a〉〉

∣∣∣2
2iηP≷

a (ω) + ∆≷
L +

2iη|τ|2P≷
d (ω)∣∣∣∣ω± − |τ|2

ω±−∆±

∣∣∣∣2
+
|τ|4

(
2iηP≷

b (ω) + ∆≷
R

)
∣∣∣ω± (ω± − ∆±)− |τ|2

∣∣∣2
 ,

(4.1.6)

where
Ba,b := BL,R

P≷
a,b(ω) := fca,cb(ω)− δ≷,>

and (3.3.6) is used for the terms including non-interacting lesser or greater Green’s functions.
For the hopping Green’s function 〈〈ca; d†〉〉≷ the following is obtained:

〈〈ca; d†〉〉≷ =
−τ∗∣∣∣ω± (ω± − ∆±)− 2|τ|2

∣∣∣2
{

2iηP≷
d (ω)

(
ω− − ∆A

)
+ |τ|2

2iηP≷
b (ω) + ∆<

R
ω+ − ∆R

+

(
2iηP≷

a (ω) + ∆<
L

) [
ω+

(
ω+ − ∆R)− |τ|2]

ω+ − ∆R


(4.1.7)

The Fermi functions connected to the sites a, b and d require their own chemical potentials
µa, µb and µd. Considering the system’s symmetry, the following values are assumed:

µd = 0
µa,b = µL,R

(4.1.8)

As can be seen in the above equations, the particle-hole symmetric Green’s do not depend
on the occupation numbers, but only on the hopping expectation values occurring in τ,
which are obtained self-consistently.

4.1.1. Distribution Function and Symmetries

A few words on symmetry relations between Green’s functions are mentioned in this
subsection, as in later chapters symmetry violations occur. All aforementioned system
symmetries are intended to be fulfilled.
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Distribution Function

In equilibrium, the distribution function in a fermionic system is known and expectation
values can be calculated from the spectral function A(ω) via the fluctuation-dissipation
theorem (cf. (2.0.2)):〈

B†A
〉

EQ
=
∫ ∞

−∞
dω f (ω)AAB(ω)

=
1

2π

∫ ∞

−∞
dω f (ω)

(
〈〈A; B†〉〉A − 〈〈A; B†〉〉R

)
=

1
π

∫ ∞

−∞
dω f (ω) Im

{
〈〈A; B†〉〉A

} (4.1.9)

In a non-equilibrium situation, the distribution function may be more complicated and is
generally not known. However, a formal equivalent can be constructed for local properties.
The lesser components of local Green’s functions, i.e. A = B, are completely imaginary and
can therefore be written as

〈〈A; A†〉〉< = i Im
{
〈〈A; A†〉〉<

}
.

Expectation values in non-equilibrium are directly related to lesser components via〈
B†A

〉
NEQ

=
1

2πi

∫ ∞

−∞
dω 〈〈A; B†〉〉<

→
〈

A†A
〉

NEQ
=

1
2π

∫ ∞

−∞
dω Im

{
〈〈A; A†〉〉<

}
.

(4.1.10)

Replacing the Fermi function by the non-equilibrium distribution function S(ω) the follow-
ing relation needs to be satisfied:

1
2π

∫ ∞

−∞
dω Im

{
〈〈A; A†〉〉<

}
!
=

1
π

∫ ∞

−∞
dω SAA(ω) Im

{
〈〈A; A†〉〉A

}
As the integration limits are the same on both sides, an expression for S(ω) can be obtained
from the integrands, namely

1
2π

Im
{
〈〈A; A†〉〉<

}
!
=

1
π

SAA(ω) Im
{
〈〈A; A†〉〉A

}
→ SAA(ω) =

Im
{
〈〈A; A†〉〉<

}
2 Im

{
〈〈A; A†〉〉A

} .
(4.1.11)

The explicit expressions for the imaginary parts then need to be obtained separately. The
imaginary part of the advanced Green’s functions for the central site evaluates to

Im
{
〈〈d; d†〉〉A

}
=
∣∣∣〈〈d; d†〉〉

∣∣∣2 Im

{
1

〈〈d; d†〉〉R

}

=
∣∣∣〈〈d; d†〉〉

∣∣∣2 Im
{

ω + iη − 2|τ|2 1
ω + iη − ∆+

}
=
∣∣∣〈〈d; d†〉〉

∣∣∣2 [η + 2|τ|2 η + Im{∆−}
|ω± iη − ∆±|2

]

=
∣∣∣〈〈d; d†〉〉

∣∣∣2 [η + 2χη(ω)
(
η + Im

{
∆−
})]

,

(4.1.12)
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where

χη(ω) :=
|τ|2

|ω± iη − ∆±|2
=

|τ|2

|ω± − ∆±|2
.

With (4.1.6) for the lesser function, the distribution function reads

Sdd(ω) =
Im
{
〈〈d; d†〉〉<

}
2 Im

{
〈〈d; d†〉〉A

} =
2η fd(ω) + χη(ω)∑S=L,R

(
2η fS(ω) + Im

{
∆<

S

})
2η + 2χη(ω) (2η + 2 Im{∆−})

=
η fd(ω)

η + 2χη(ω) (η + Im{∆−})

+
χη(ω) (η + Im{∆−})

η + 2χη(ω) (η + Im{∆−}) ( fL(ω) + fR(ω)),

(4.1.13)

where relation (3.2.3) is used in the last step. For regions where Im{∆−} 6= 0 and Im{∆−} 6≈
η the limit η → 0+ can be carried out and the terms evaluate to

lim
η→0+

η fd(ω)

η + 2χη(ω) (η + Im{∆−}) = 0

lim
η→0+

χη(ω) (η + Im{∆−})
η + 2χη(ω) (η + Im{∆−}) =

1
2

.

Note that for regions where Im{∆−} → 0, i.e. outside the bandwidth of the leads, the limit
does not result in a simple constant any more.

With the above-mentioned limitations the non-equilibrium distribution function Sdd(ω)

becomes a double-Fermi function with chemical potentials µL,R = ±∆µ
2 , which merges to

the regular Fermi function in equilibrium, where fL = fR:

Sdd(ω) =
1
2
[ fL(ω) + fR(ω)] (4.1.14)

For the distribution function of the left site it is useful to define

αη(ω) := χη(ω)
|τ|2∣∣∣∣ω± − |τ|2

ω±−∆±

∣∣∣∣2
=

∣∣∣∣∣ |τ|2

ω± (ω± − ∆±)− |τ|2

∣∣∣∣∣
2

(4.1.15)
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and so the imaginary part of the advanced Green’s function evaluates to

Im
{
〈〈ca; c†a〉〉A

}
=
∣∣∣〈〈ca; c†a〉〉

∣∣∣2 Im

{
1

〈〈ca; c†a〉〉R

}

=
∣∣∣〈〈ca; c†a〉〉

∣∣∣2 Im

ω + iη − ∆+ − |τ|2

ω + iη − |τ|2
ω+iη−∆+


=
∣∣∣〈〈ca; c†a〉〉

∣∣∣2(η − Im
{

∆+
}
− |τ|2 Im

{
ω + iη − ∆+

(ω + iη) (ω + iη − ∆+)− |τ|2

})

=
∣∣∣〈〈ca; c†a〉〉

∣∣∣2 [η − Im
{

∆+
}
+ η

αη(ω)

χη(ω)
+ αη(ω)

(
η − Im

{
∆+
})]

=
∣∣∣〈〈ca; c†a〉〉

∣∣∣2 [η + Im
{

∆−
}
+ η

αη(ω)

χη(ω)
+ αη(ω)

(
η + Im

{
∆−
})]

,

(4.1.16)

where relation (3.2.1) is used in the last step.

With (4.1.6) for the lesser function, the distribution function reads

Saa(ω) =
Im
{
〈〈ca; c†a〉〉<

}
2 Im

{
〈〈ca; c†a〉〉A

}
=

2η fL(ω) + Im
{

∆<
L
}
+ 2η fd(ω)

αη(ω)

χη(ω)
+ αη(ω)

(
2η fR(ω) + Im

{
∆<

R
})

2η + 2 Im{∆−}+ 2η
αη(ω)

χη(ω)
+ αη(ω) (2η + 2 Im{∆−})

=
η fd(ω)

αη(ω)

χη(ω)
+
(

fL(ω) + fR(ω)αη(ω)
)
(η + Im{∆−})

η
αη(ω)

χη(ω)
+
(
1 + αη(ω)

)
(η + Im{∆−})

.

(4.1.17)

Again, relation (3.2.3) is used in the last step. For regions where Im{∆−} 6= 0 and Im{∆−} 6≈
η the limit η → 0+ can be done and evaluates to

lim
η→0+

Saa(ω) =
fL(ω) + α(ω) fR(ω)

1 + α(ω)
, (4.1.18)

where
α(ω) := lim

η→0+
αη(ω).

In equilibrium, Saa merges to the regular Fermi function like Sdd, as

Saa(ω)|∆µ=0 =
f (ω) (1 + α(ω))

1 + α(ω)
= f (ω). (4.1.19)

The fact that α(0) = 1 causes Saa(0) to be fixed at a value that is independent from voltage
and temperature:

Saa(0) =
fL(0) + α(0) fR(0)

1 + α(0)
=

1
2
( fL(0) + fR(0)) =

1
2

[(
1 + e−

µ
T

)−1
+
(

1 + e
µ
T

)−1
]
=

1
2

(4.1.20)
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Symmetries

The definition of the non-equilibrium distribution function is taken in analogy to the
fluctuation-dissipation theorem in equilibrium, where the distribution function is known,
namely the Fermi functionII. Thus, comparing (4.1.9) and (4.1.10), in equilibrium the
following relation must hold (cf. (4.1.11)):

Im
{
〈〈A; B†〉〉<

}
EQ
= 2 f (ω) Im

{
〈〈A; B†〉〉A

}
(4.1.21)

With the expressions obtained for the distribution function, this is checked by means of an
example. Recalling the advanced part from (4.1.12),

Im
{
〈〈d; d†〉〉A

}
=
∣∣∣〈〈d; d†〉〉

∣∣∣2 [η + 2χη(ω)
(
η + Im

{
∆−
})]

and the lesser from (4.1.6)

Im
{
〈〈d; d†〉〉<

}
=
∣∣∣〈〈d; d†〉〉

∣∣∣2 [2η fd(ω) + χη(ω) ∑
m=a,b

(
2η fm(ω) + 2 fBm(ω) Im

{
∆−
})]

EQ
= 2 f (ω)

∣∣∣〈〈d; d†〉〉
∣∣∣2 [η + χη(ω) ∑

m=a,b

(
η + Im

{
∆−
})]

= 2 f (ω)
∣∣∣〈〈d; d†〉〉

∣∣∣2 [η + 2χη(ω)
(
η + Im

{
∆−
})]

,

as all Fermi functions are per definition the same in equilibrium. The last line immediately
shows that (4.1.21) is fulfilled. However, the Fermi functions are the crucial point: In section
2.2.2 an argument for a different form of g<(ω) is brought that essentially changes the
Fermi factor (in terms of ω) from ∼ f (εi − µi) to a Fermi function f (ω− µi). If this choice
is not made, the Fermi factors do not coincide in equilibrium and, most importantly, the
ω-dependence is completely lost, which is essential for the relation to be fulfilled.

Regardless of the choice for g<(ω), however, the following relation should hold for general
Green’s functions:

GA − GR = 2i Im
{

GA
}
= G< − G>

This can be seen, as lesser and greater Green’s functions formally have the same structure
and differ only in the Fermi-function terms, namely f (ω) for the lesser and ( f (ω)− 1) for
the greater. Collecting the terms in G< − G> leads to factors ∝ f (ω)− ( f (ω)− 1) = 1, i.e.
they cancel out. In the case of 〈〈d; d†〉〉 this reduces to comparing the imaginary parts as
above but without the Fermi function, which is obviously fulfilled.

For the sake of completeness, two more symmetry relations shown earlier are rementioned,
namely

−G≷
AB =

(
G≷

BA

)∗
shown in (4.0.19) and

GA =
(

GR
)∗

,

which is true by construction and mentioned in the beginning of section 3.3.

IIRespectively the Bose function for bosons.
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4.2. Results for Tight-Binding Leads

In this section an explicit choice is made for the type of leads, and hence for the hybridization
function, and first quantitative results are obtained analytically and numerically. The leads
are now assumed to be semi-infinite tight-binding chains, where, in real space, the system
couples on both sides only to the first site of the chain. In terms of k states as used in the
Hamiltonian (3.0.1), a density of states for the first site is needed. In order to compare the
current to the results obtained in [18], a chain with t0 = 1Γ is used and so the density of
states reads

ρTB(ε) =

{
1

2πΓ

√
4−

(
ε
Γ

)2 if |ε| ≤ 2Γ
0 otherwise,

(4.2.1)

which further results in V = 1Γ, according to section 3.2. As introduced in section 3.2.2, the
corresponding retarded and advanced hybridization function is given by

∆± =
1
2

(
ω± ∓ i

√
4Γ2 − (ω±)2

)
, (4.2.2)

where the advanced part is shown in figure 4.1 to explain the influence of η. The retarded
function is just the complex conjugate and is not shown separately.

(a) ∆− for a finite η (b) ∆− in the exact limit

Figure 4.1.: Advanced hybridization function ∆− for the semi-infinite tight-binding chain
with t0 = 1Γ, shown with a finite η = 0.1Γ and the exact limit η → 0+. The
imaginary part follows the given density of states (4.2.1) and becomes equal to it
in the limit, as described in section A.1.8 in the appendix. As shown in subfigure
(a), a finite η causes the function to smear out and to extend the imaginary part
outside the bandwidth boundary of 2Γ.

The lesser and greater part of the hybridization function is related only to the imaginary
part of ∆− (cf. (3.2.3)):

∆≷
L,R = 2i ( f (ω)L,R − δ≷,>) Im

{
∆−
}

(4.2.3)

As shown in figure 4.1, the imaginary part of ∆± becomes zero in the limit η → 0+, and so,
as mentioned in section 3.3 and 4.1.1, the limit for the Green’s functions can not easily be
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taken for the whole ω range at once. In fact, there are some intricacies in the calculation
that can be overcome for local Green’s functions, but persist for the hopping correlation
functions. However, the limit and the occurring integrals can be carried out numerically
without further problems.

Though, as an example for the analytical behaviour outside the bandwidth, only the spectral
function on the central site and the corresponding expectation value at T = 0 are analysed
by splitting the expectation value in inner (bandwidth) and outer region,

〈n̂〉 = 〈n̂〉inner + 〈n̂〉outer

Starting with the behaviour inside the bandwidth of the leads, i.e. |ω| ≤ 2, where Im{∆±} 6=
0 and Im{∆±} 6≈ η and therefore the limit η → 0+ can be done. So the hybridization
becomes simplyIII

lim
η→0+

∆± =
1
2

(
ω∓ i

√
4−ω2

)
, (4.2.4)

which corresponds directly to Re∓i Im, as the square root is always real. And further, the
limit of the lesser Green’s function 〈〈d; d†〉〉< (cf. (4.1.6)), accounting for 〈n̂〉inner becomes

lim
η→0+

∣∣∣〈〈d; d†〉〉
∣∣∣2 [2iη fd(ω) +

|τ|2

|ω± − ∆±|2 ∑
S=L,R

(
2iη fS(ω) + ∆<

S
)]

= lim
η→0+

2i

∣∣∣∣∣∣ 1

ω± − 2|τ|2
ω±−∆±

∣∣∣∣∣∣
2 [

η fd(ω) +
|τ|2

|ω± − ∆±|2
(
η + Im

{
∆−
})

( fL(ω) + fR(ω))

]

=
i|τ|2
√

4−ω2∣∣∣ω
2

(
ω∓ i

√
4−ω2

)
− 2|τ|2

∣∣∣2 ( fL(ω) + fR(ω))

=
i|τ|2
√

4−ω2

ω2
(

1− 2|τ|2
)
+ 4|τ|4

( fL(ω) + fR(ω)) .

(4.2.5)

Hence, for the inner expectation value at T = 0IV the integral

〈n̂〉inner =
1

2πi

∫ 2

−2
dω 〈〈d; d†〉〉<

=
1

2π

∫ µ

−2
dω

|τ|2
√

4−ω2

ω2
(

1− 2|τ|2
)
+ 4|τ|4

+
∫ −µ

−2
dω

|τ|2
√

4−ω2

ω2
(

1− 2|τ|2
)
+ 4|τ|4

 (4.2.6)

needs to be evaluated, which is similar to the integral solved for the hybridization function.
The details are shown in section A.2.3 in the appendix and the result is given by:

〈n̂〉inner =
|τ|2 −

∣∣∣1− |τ|2∣∣∣
2
(

2|τ|2 − 1
) =


1

2(2|τ|2−1)
if |τ|2 > 1

1
2 if |τ|2 ≤ 1

(4.2.7)

IIIΓ is omitted in the following equations.
IVThe Fermi function turns into a step function for T = 0 and cuts therefore only the integration limits.
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Inside the bandwidth the spectral function (cf. (4.1.12)) can be related to the above lesser
function (cf. (4.2.5)) and its integral as

Add(ω) =
1
π

Im
{
〈〈d; d†〉〉A

}
= lim

η→0+

1
π

∣∣∣〈〈d; d†〉〉
∣∣∣2 [η +

2|τ|2

|ω± − ∆±|2
(
η + Im

{
∆−
})]

=
1
π

|τ|2
√

4−ω2

ω2
(

1− 2|τ|2
)
+ 4|τ|4

(4.2.8)

and therefore ∫ 2

−2
dω Add(ω) = 2 〈n̂〉inner

∣∣∣∣
µ=2

. (4.2.9)

The inner expectation value does not explicitlyV depend on µ and so the integration over
the spectral function gives just

∫ 2

−2
dω Add(ω) = 2 〈n̂〉inner =

{
1

2|τ|2−1
if |τ|2 > 1

1 if |τ|2 ≤ 1.
(4.2.10)

As the spectral function is normalized to one, i.e.

1 !
=
∫ ∞

−∞
dω Add(ω) =

∫ 2

−2
dω Add(ω) +

∫
|ω|>2

dω Add(ω),

a critical behaviour outside the bandwidth arises for |τ|2 > 1, where the inner integral
starts to give less than one. The examination of the outer region can be done due to the
above normalizing condition. However, this requires a somewhat longer mathematical
argumentation that is done in section A.1.9 in the appendix. In the end it turns out that the
full spectral function in the exact limit can be written as

Add(ω) =
1
π

|τ|2 Re
{√

4−ω2
}

ω2
(

1− 2|τ|2
)
+ 4|τ|4

+ Θ
(
|τ|2 − 1

) |τ|2 − 1

2|τ|2 − 1
(δ(ω−ω1) + δ(ω−ω2)) ,

(4.2.11)

where

ω1,2 = ± 2|τ|2√
2|τ|2 − 1

.

The second term accounts for the missing states in the inner region when |τ|2 > 1. They
can be identified as delta distributions whose integrals give a finite contribution to the
occupation number, but relates to isolated states outside of the bandwidth of the leads. See
figure 4.5 for a graphical representation.

As already mentioned above, the results presented in the following are obtained numerically
in the simple self-consistency algorithm 4.1. Using the definitions discussed in previous
chapters and assuming a finite value for η, i.e. omitting the limit, the integration routines
can deal with the delta distributions terms without further problems.

VHowever, eventually it does depend on µ, as |τ|2 needs to be evaluated for each voltage.
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Require: 〈xi〉start , ω, η, t, U, T, ∆µ, εabs

1: 〈xi〉 ← 〈xi〉start
2: chk ← 1
3: while chk > εabs do
4: 〈xi〉old ← 〈xi〉
5: Gκ

j (ω)← f (〈xi〉 , ω, η, t, U, T, ∆µ) according to eq. (4.1.5)-(4.1.8)
6: 〈xi〉 ← (2πi)−1

∫
dω G<

i (ω)
7: chk ← maxi |〈xi〉 − 〈xi〉old|
8: end while

Algorithm 4.1: Self-consistency non-equilibrium loop

The computations are done in MATLAB with the integration routine trapz using an ω-grid
with

∆ω =

{
η
2 for |ω| ≤ 5Γ
0.1Γ for 5Γ < |ω| ≤ 100Γ

and with the following start values and convergence parameters

〈ni〉start = 0.5 and
〈

c†i cj

〉
start

= 0,

εabs = 10−6 and η = 10−3Γ.

A converged loop gives access to all two-operator expectation values as well as to the
underlying Green’s functions. The calculations are done in a ∆µ range that covers the
system’s behaviour and for different values of t and U at T = 0Γ. Algorithm 4.1 sketches
the solution for a given voltage (∆µ) point. It can either be parallelized using the same start
values for the desired voltage points or simply looped with ascending voltage, where it is
recommended to use the converged expectation values from the previous voltage as new
start values.

As mention in section 4.1, only the hopping expectation values
〈
d†ca,b

〉
and

〈
c†a,bd

〉
need

to be solved explicitly in the loop; the Green’s functions are hereby determined for each
voltage and the other quantities can be calculated from them.
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The self-consistent solutions to the absolute square of the effective hopping |τ|2 are shown
in figure 4.2. The qualitative behaviour is similar for different parameters, namely a decrease
in the hopping over voltage, i.e. an effective decoupling of sites a and b, which in turn
technically explains the negative differential conductance appearing in the current (see
figure 4.3). Compared to the non-interacting case (U = 0Γ), where the hopping is just given
by t (cf. the black dashed line in figure 4.2 for t2), the sites a and b are very strongly coupled
to the central site for low voltages, but looser than for U = 0Γ for high voltages, where
|τ|2 < t2.

(a) t = 0.5Γ (b) t = 0.8Γ

(c) t = 0.2Γ

Figure 4.2.: Self-consistent solutions for the effective hopping |τ|2 in the model with tight-
binding leads for different values of U and t. The black dashed lines in each
subfigure show the hopping t2 at U = 0Γ. The legend in (c) refers to all
subfigures. In (c), the line for U = 2Γ is not connected for some values around
∆µ = 0.75Γ, where the self-consistent iteration does not converge within the
demanded accuracy.

The self-consistency loop does not converge for certain parameters shown in figure 4.2c,
but seems to oscillate between, at least, two solutions. A similar behaviour occurs for
the calculations with leads in wide-band limit in the next section, where the problem is
addressed in more detail.
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The current and the Green’s functions are directly determined by the self-consistent solutions
for the hopping expectation values and |τ|2, and so subsequently the occupation numbers
can be calculated. As expected, the currents over both possible junctions (cf. section 3.1), i.e.
lead-system and intra-system, coincide in the range of η, as the current should be conserved.
Further, left and right currents as well as with negative voltages are perfectly symmetric,
and the calculated occupation numbers agree with the symmetry relations (4.1.1). Therefore,
the non-trivial physical quantities obtained from expectation values reduce to one current
and the occupation number on site a, which are shown in figure 4.3.

(a) Current (b) Occupation number

Figure 4.3.: Current and occupation number for t = 0.5Γ and different values of U. The
legend in (a) refers to both subfigures. The current curves feature negative
differential conductance in the region for ∆µ & 2Γ as well as a sharp drop for
U & 2Γ. The occupation number is somewhat constant for low voltages, with
a small decrease for U & 1.75Γ, before it rises to its maximum value reached
at bandwidth of 4Γ. The decrease for U = 2Γ of about 10−3 does not depend
on the chosen η of 10−3Γ. This feature is more pronounced in the results for
wide-band limit leads and occurs also in the non-interacting case, cf. the results
in the next section.

Negative differential conductance appears in the current curves for all values of U > 0Γ and
t (only shown for t = 0.5Γ), which is also a prominent feature in the exact and numerical
solutions in [15] and is discussed in more detail in [17]. Yet for higher voltages a qualitative
description fails, as the current stays constant (in the range of η) for voltages beyond the
lead bandwidth of 4Γ, where the exact solution continues to decrease (see figure 4.4).
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The obtained current curves for the self-dual point, i.e. U = 2Γ, are now compared to the
exact solution as well as to other numerical results obtained from a direct Hartree-Fock
approximation to the Hamiltonian and time-evolution in [18], which are reproduced with a
deviation in the range of η or less. The comparison is shown in figure 4.4:

Figure 4.4.: Current comparison with numerical results from [18] and the exact solution
from [16] for t = 0.5Γ (blue lines) and t = 0.3Γ (red lines). The solid lines
represent the results obtained in this thesis (NEGF), the circles stand for the
results from time-evolution (TE), and the dashed lines for the exact solution.

As mentioned in an earlier section and shown with equations (4.0.7) and (4.0.8), the approx-
imated Hamiltonian used in [18] leads to the same equation set obtained in the beginning of
this chapter, and it is therefore not surprising that both methods lead to the same result.
However, this shows at least that the equation-of-motion method is suitable to produce
proper steady-state solutions for (effectively) non-interacting systems out of equilibrium.

Compared to the exact solution, the Hartree-Fock approximation describes the current well
in the linear regime for low voltages, but overestimates it in the region where a decrease
sets in. The high-voltage limit cannot be described, as the HF current always saturates, but
the deviation is smaller for smaller values of t.
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The spectral function for site i is directly obtained from the Green’s function via

Aii(ω) =
1

2πi

(
GA

ii (ω)− GR
ii (ω)

)
= ± 1

π
Im
{

GA/R
ii (ω)

}
,

and is shown for site d and a in the self-dual point and for different voltages in figure
4.5 and 4.6. A prominent feature of the spectral function at the central site Add seems to

Figure 4.5.: Spectral function for the central site for U = 2Γ, t = 0.5Γ and different voltages,
featuring the two main shapes (see text). The delta peaks on the sides at
ω = |ω1,2|, cf. (4.2.11), represent the isolated states outside the bandwidth of the
leads, and are shown for η = 10−5Γ and are emphasized in the inset. The curve
for ∆µ = 1.40Γ is only chosen for a better representation of the Lorentzians,
but it is not the voltage where the spectral functions changes between the two
qualitative shapes.

be that there are two qualitatively different states, one which is similar to the density of
states of an infinite tight-binding chain, occurring at low voltages (and thus high hoppings),
and another with a single peak concentrated around ω = 0Γ for higher voltages (lower
hoppings). A qualitatively similar result, at least for the low and high-voltage regime, can be
found in figure 3b in [17], but without the strict bandwidth cuts and hence without isolated
states. Further, the central peak is split into two side-peaks that merge for high voltages
and the peaks around |ω| ≈ 2Γ decrease, but still persist in the high-voltage regime. The
central-peak merging, however, can be observed in the results for wide-band-limit leads in
the next section.
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The spectral function on site a shows a similar two-state behaviour as well as the isolated
states:

Figure 4.6.: Spectral function for site a for U = 2Γ, t = 0.5Γ and different voltages. Again,
two main shapes are present. The plotting details can be taken from the caption
in figure 4.5.

Again, the low-voltage shapes are similar to the density of states of an infinite tight-binding
chain, and therefore only slightly different from the central-site results (cf. the inner
bandwidth peak heights in the insets). This can be explained by having a look at the values
for the effective hopping from figure 4.2a, which are around

√
1.2Γ2 ≈ 1.1Γ for ∆µ . 1.5Γ,

and recalling the hopping for the semi-infinite tight-binding chain of t0 = 1Γ, i.e. the whole
system behaves in fact approximately like an infinite tight-binding chain for low voltages.

In comparison to the results in figure 5 in [17], the low-voltage regime is in qualitative
agreement, but there is no major change in the spectral function for high voltages besides an
asymmetric height shift in the peaks around |ω| ≈ 2Γ, which is not present in figure 4.6.
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Up to here, all results were calculated for T = 0Γ. As an example, some thermal calculations
are shown for relatively high temperaturesVI of T = 0.1Γ. However, the results in current
and occupation number are almost the same as for zero temperature, they only differ in
the high voltage regime, as the thermal curves show changes beyond the bandwidth of 4Γ,
where the zero temperature results are constant (in the range of η).

(a) Current (b) Occupation

Figure 4.7.: Parts of current and occupation number beyond the bandwidth of 4Γ (dashed
line) for t = 0.5Γ and T = 0.1Γ. The legend in (b) refers to both subfigures.

4.3. Results for Wide-Band-Limit Leads

In this section, the system is coupled to another kind of lead introduced in section 3.2.1,
namely leads in the wide-band limit. The advantage here is that the retarded and advanced
hybridization functions are just an imaginary constant and the resulting Green’s functions
can be integrated exactly. The determining equations for the expectation values therefore do
not have to be solved by iterative integration, however, the results are still transcendental
equations whose solutions are found graphically/numerically by intersections.

As Im{∆±(ω)} 6= 0 for ∀ω, the limit η → 0+ should be feasible without further problems
(cf. section 4.1.1). In fact, analysing the occurrence of the hybridization functions and η in
the wide-band limit, so

∆± = ∓i → ω± − ∆± = ω± i(1 + η)

∆<
L/R = 2i fL/R(ω)→ g<a,b|ω̃a,b|2 + ∆<

L/R = 2i fL/R(ω)(1 + η),

it turns out that η appears mostly in terms of (1 + η) and in ω±+ some non-zero term,
where the limit can easily be taken by setting η to zero. Terms ∝ 2iη fi(ω) can also be set
to zero as the absolute squares

∣∣GR/A
∣∣2 show no poles. With these findings, the retarded

VIAssuming an energy scale of Γ ∼ 1 eV, the corresponding temperature can be obtained from kBT ∼ 0.1 eV
to be already about T ∼ 1160 K.
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and advanced Green’s functions become just (complex) rational functions. The lesser and
greater functions feature some additional Fermi functions.

In the wide-band limit the particle-hole symmetric functions from section 4.1 explicitly
become

〈〈d; d†〉〉R/A =

(
ω− 2|τ|2

ω± i

)−1

=
ω± i

ω (ω± i)− 2|τ|2
(4.3.1)

〈〈ca; c†a〉〉R/A =

ω± i−
|τ|2

ω−
|τ|2

ω± i


−1

=
ω (ω± i)− |τ|2

(ω± i)
[
ω (ω± i)− 2|τ|2

] (4.3.2)

and the product for the hopping correlations becomes

〈〈ca; c†a〉〉R〈〈d; d†〉〉A =

[
ω (ω + i)− |τ|2

]
(ω− i)

(ω + i)
∣∣∣ω (ω± i)− 2|τ|2

∣∣∣2 . (4.3.3)

The lesser functions for the central and left site can the be written as

〈〈d; d†〉〉< =
2i|τ|2∣∣∣ω (ω± i)− 2|τ|2

∣∣∣2 ( fL(ω) + fR(ω)) (4.3.4)

and

〈〈ca; c†a〉〉< = 2i

∣∣∣∣∣∣ ω (ω± i)− |τ|2

(ω± i)
[
ω (ω± i)− 2|τ|2

]
∣∣∣∣∣∣
2  fL(ω) +

∣∣∣∣∣ |τ|2

ω (ω± i)− |τ|2

∣∣∣∣∣
2

fR(ω)

 , (4.3.5)

and so the lesser hopping function as

〈〈ca; d†〉〉< =
−2iτ∗∣∣∣ω (ω± i)− 2|τ|2

∣∣∣2
 fL(ω)

[
ω (ω + i)− |τ|2

]
ω + i

+ |τ|2 fR(ω)

ω + i


=

−2iτ∗∣∣∣ω (ω± i)− 2|τ|2
∣∣∣2
[

fL(ω)ω +
|τ|2

ω + i
( fR(ω)− fL(ω))

]
.

(4.3.6)

The expectation values for current and occupation numbers are obtained by integrating
over the corresponding lesser Green’s functions, which can now be carried out exactly for
T = 0Γ, as the Fermi-function becomes a simple Heaviside-step function that limits only the
integration intervals.

The exact evaluation of the following integrals is described in section A.2.4 in the appendix
and only their solutions are presented here. Besides the obvious dependences, coming
from the system-describing parameters µ and |τ|2, the solutions contain the |τ|2-dependent
terms

b = 1− 4|τ|2 and c =
√

1− 8|τ|2
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that arise from the factorization∣∣∣ω (ω± i)− 2|τ|2
∣∣∣2 = ω4 +

(
1− 4|τ|2

)
ω2 + 4|τ|4 =

[
ω2 +

1
2
(b + c)

] [
ω2 +

1
2
(b− c)

]
.

The integral for the occupation number on the central site d is given by

〈n̂〉 = 1
2πi

∫ ∞

−∞
dω 〈〈d; d†〉〉<

=
|τ|2

π

∫ µ

−∞

dω∣∣∣ω (ω± i)− 2|τ|2
∣∣∣2 +

∫ −µ

−∞

dω∣∣∣ω (ω± i)− 2|τ|2
∣∣∣2
 .

(4.3.7)

With the indefinite integralVII

I1(ω) :=
∫

dω
1∣∣∣ω (ω± i)− 2|τ|2

∣∣∣2
=

1
c

[ √
2√

b− c
arctan

(
ω
√

2√
b− c

)
−
√

2√
b + c

arctan

(
ω
√

2√
b + c

)] (4.3.8)

the occupation number becomes

〈n̂〉 = |τ|
2

π
(I1(µ) + I1(−µ)− 2I1(−∞))

= −2|τ|2

π
I1(−∞)

=
2|τ|2

π

π

4|τ|2
=

1
2

(4.3.9)

as the inverse tangent is antisymmetric. This result is independent from the applied voltage
∆µ and (renormalized) hopping τ and gives indeed the value stated in (4.1.1). However, the
spectral function on the central site, Add(ω), changes with voltage, as it is still a function of
|τ|2, which itself depends on ∆µ.

The integral for the occupation number on the left and right site is given by

〈n̂a〉 =
1

2πi

∫ ∞

−∞
dω 〈〈ca; c†a〉〉<

=
1
π

∫ µ

−∞
dω

∣∣∣ω(ω± i)− |τ|2
∣∣∣2

(ω2 + 1)
∣∣∣ω (ω± i)− 2|τ|2

∣∣∣2 +
∫ −µ

−∞
dω

|τ|4

(ω2 + 1)
∣∣∣ω (ω± i)− 2|τ|2

∣∣∣2
 .

(4.3.10)

VIISee appendix.
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With the indefinite integrals

I2(ω) :=
∫

dω
|τ|2

(ω2 + 1)
∣∣∣ω (ω± i)− 2|τ|2

∣∣∣2
=

1

4
(

1 + |τ|2
) {arctan(ω)

+
1

c
√

2

[
b− c− 2√

b + c
arctan

(
ω
√

2√
b + c

)
− b + c− 2√

b− c
arctan

(
ω
√

2√
b− c

)]}
(4.3.11)

and

I3(ω) :=
∫

dω

∣∣∣ω(ω± i)− |τ|2
∣∣∣2

(ω2 + 1)
∣∣∣ω (ω± i)− 2|τ|2

∣∣∣2
=

1

4
(

1 + |τ|2
)
(2 + |τ|2

)
arctan(ω)

+
1

c
√

2

 (b + c)
(

2 + 3|τ|2
)
+ 8|τ|4

√
b + c

arctan

(
ω
√

2√
b + c

)

−
(b− c)

(
2 + 3|τ|2

)
+ 8|τ|4

√
b− c

arctan

(
ω
√

2√
b− c

)

(4.3.12)

the occupation number becomes

〈n̂a〉 =
1
π

(
I3(µ) + |τ|2 I2(−µ)− I3(−∞)− |τ|2 I2(−∞)

)
=

1
π

I3(µ) + |τ|2 I2(−µ) + π
2 + |τ|2

4
(

1 + |τ|2
) + π

|τ|2

4
(

1 + |τ|2
)


=
1
2
+

1
π

(
I3(µ)− |τ|2 I2(µ)

)
,

(4.3.13)

where again the antisymmetry of the inverse tangent is used in the last step. This result
depends on voltage and hopping, but the equilibrium case, i.e. ∆µ = µ = 0, is easily
obtained as I2,3(0) = 0 and so

〈n̂a〉µ=0 =
1
2

, (4.3.14)

which does not depend on the hopping parameter. On the other hand, in the limit µ→ ∞
the occupation number does not rise up to one, as one might expect, but still depends on
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the hopping parameter:

〈n̂a〉µ→∞ =
1
2
+

1
π

(
I3(∞)− |τ|2 I2(∞)

)
=

1
2
+

2 + |τ|2

4
(

1 + |τ|2
) − |τ|2

4
(

1 + |τ|2
)

=
1
2
+

1

2 + 2|τ|2

(4.3.15)

Further, as 〈n̂b〉µ = 〈n̂a〉−µ, summing the occupation numbers on the right and left site
gives

〈n̂a〉+ 〈n̂b〉 =
1
2
+

1
π

(
I3(µ)− |τ|2 I2(µ)

)
+

1
2
+

1
π

(
I3(−µ)− |τ|2 I2(−µ)

)
= 1 +

1
π

(
I3(µ)− |τ|2 I2(µ)

)
− 1

π

(
I3(µ)− |τ|2 I2(µ)

)
= 1.

(4.3.16)

This is indeed the relation obtained for particle-hole symmetry and is valid for any voltage
and hopping.

The current is related to the expectation value〈
d†ca

〉
=

1
2πi

∫ ∞

−∞
dω 〈〈ca; d†〉〉<

= −τ∗

π

∫ µ

−∞
dω

ω∣∣∣ω (ω± i)− 2|τ|2
∣∣∣2 −

∫ µ

−µ
dω

|τ|2

(ω + i)
∣∣∣ω (ω± i)− 2|τ|2

∣∣∣2
 ,

(4.3.17)

which is part of the renormalized hopping τ. The solutions to the integrals contain inverse-
tangent terms and so, as

〈
d†ca

〉
is a complex number depending explicitly on τ∗ and |τ|2,

the above equation gives a complex transcendental equation, which is not straightforward
to solve directly for unique values. However, the terms can be rearranged so that

〈
d†ca

〉
only depends on |τ|2 and the problem can thus be reduced to a real transcendental equation
in |τ|2, that can easily be solved numerically by finding its real zeros.

For convenience, the two definite integrals (and their solutions) are defined as functions of
|τ|2 with a parameter µ. The first one reads

f1(|τ|2; µ) :=
∫ µ

−∞
dω

ω∣∣∣ω (ω± i)− 2|τ|2
∣∣∣2

=
1√

8|τ|2 − 1

arctan

2µ2 − 4|τ|2 + 1√
8|τ|2 − 1

− π

2

 ,

(4.3.18)
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where the solution is obtained by substitutionVIII. The second integral can be split into real
and imaginary part, namely

i f2(|τ|2; µ) :=
∫ µ

−µ
dω

|τ|2

(ω + i)
∣∣∣ω (ω± i)− 2|τ|2

∣∣∣2
=
∫ µ

−µ
dω

ω|τ|2

(ω2 + 1)
∣∣∣ω (ω± i)− 2|τ|2

∣∣∣2 −
∫ µ

−µ
dω

i|τ|2

(ω2 + 1)
∣∣∣ω (ω± i)− 2|τ|2

∣∣∣2 ,

(4.3.19)

where the integrand for the real part is antisymmetric in ω and so the integral vanishes due
to the symmetric integration interval [−µ, µ]. Thus, the function f2 is proportional to the
indefinite integral I2 definedIX above, as

i f2(|τ|2; µ) = −
∫ µ

−µ
dω

i|τ|2

(ω2 + 1)
∣∣∣ω (ω± i)− 2|τ|2

∣∣∣2
= −i (I2(µ)− I2(−µ))

= −2iI2(µ).

(4.3.20)

The two functions f1 and f2 are plotted as function of |τ|2 for different voltages in figure 4.8.

(a) f1(|τ|2; µ) (b) f2(|τ|2; µ)

Figure 4.8.: f1 and f2 for ∆µ = 0 . . . 6Γ (blue to red lines) with a ∆(∆µ) = 0.2Γ. In (b), f2 is
not shown for ∆µ = 0Γ, as it is zero.

VIIISee section A.2.5 in the appendix.
IXThe |τ|2-dependence of I2 is not shown explicitly in order to be consistent with its definition in (4.3.11).
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Equation (4.3.17) is formally solved for
〈
d†ca

〉
and gives the expression in µ and |τ|2:〈

d†ca

〉
= −τ∗

π

[
f1(|τ|2; µ)− i f2(|τ|2; µ)

]
= −

t + U
〈
d†ca

〉
π

[
f1(|τ|2; µ)− i f2(|τ|2; µ)

]
= −t

f1(|τ|2; µ)− i f2(|τ|2; µ)

π + U
[

f1(|τ|2; µ)− i f2(|τ|2; µ)
]

(4.3.21)

Using the definition of τ(∗) and the fact that
〈
d†ca

〉
=
〈

c†ad
〉∗

(cf. (4.1.2) and (4.0.20)), the
real transcendental equation

|τ|2 =
(

t + U
〈

d†ca

〉) (
t + U

〈
d†ca

〉∗)
= t2 + 2tU Re

{〈
d†ca

〉}
+ U2

∣∣∣〈d†ca

〉∣∣∣2 (4.3.22)

is found for |τ|2. The solution can be explained graphically, as each µ gives a curve for the

Figure 4.9.: Graphical representation of equation (4.3.22) for t = 0.5Γ, U = 2Γ and voltages
∆µ = 0 . . . 6Γ (from blue to red) with a ∆(∆µ) = 0.2Γ. The curves represent the
right-hand side, where the diagonal (black line) is for the left-hand side. Each
intersection is marked with a circle and gives the solution for a specific voltage.

right-hand side, F(|τ|2; µ), and the solution lies in the intersection where |τ|2 = F(|τ|2; µ),
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or alternatively in the zeros of F̃ = F(|τ|2; µ)− |τ|2 = 0, which is easier from a numerical
point of view. In fact, for a fixed µ and |τ|2-grid the solution is simply obtained by finding
the location of the minimum value of F̃ and using the |τ|2 value at that location. A graphical
representation of the problem and its solutions is shown as an example in figure 4.9.

The explicit calculations are done for the same values of t and U as for the tight-binding
leads and with

∆
(
|τ|2

)
= 5 · 10−4Γ2

for the |τ|2-grid in the minimum search, and finally the solutions of equation (4.3.22) are
shown in figure 4.10.

(a) t = 0.5Γ (b) t = 0.8Γ

(c) t = 0.2Γ

Figure 4.10.: Solutions for the effective hopping from equation (4.3.22) in the model with
wide-band-limit leads for different values of U and t. The black dashed lines
in each subfigure show the hopping t2 at U = 0Γ. The legend in (c) refers to all
subfigures. For the chosen ∆µ-grid multiple solutions occur for t = 0.2Γ and
U ≥ 1.75Γ where the lines are not connected (cf. figure 4.19).
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The solutions are similar to the tight-binding case, but overall the hoppings are a bit lower,
the low-coupling regime is reached at lower voltages and the changes extend to very high
voltages, as there is no limiting bandwidth of the leads. Though, the results in figure 4.10

are only shown up to ∆µ = 3.5Γ, as the changes in |τ|2 become small.

With the obtained solutions for |τ|2 and the previously presented integrals, the current and
the occupation numbers are determined, as the current can be expressed via

I = iet
(〈

d†ca

〉
−
〈

c†ad
〉)

= −2et Im
{〈

d†ca

〉}
and the results for t = 0.5Γ are plotted in figure 4.11.

(a) Current (b) Occupation

Figure 4.11.: Current and occupation number for t = 0.5Γ and different values of U. The
legend in (a) refers to both subfigures. The current curves feature negative
differential conductance in the region for ∆µ & 1.5Γ. The occupation numbers
for U ≥ 1Γ show an initial decrease with increasing voltage, which is more pro-
nounced than in the tight-binding results, and slowly saturate to the maximum
value for high voltages, cf. equation (4.3.15).

In contrast to the solutions in figure 4.10, the curves in figure 4.11 are shown for voltages up
to ∆µ = 6Γ to depict, in particular, the course of the occupation numbers that saturate very
slowly.

For U = 2Γ, the maximum decreaseX in the occupation number with increasing voltage is
about an order of magnitude higher than for the tight-binding leads. As shown later, the
effect also occurs in the non-interacting case if t2 > 1

2 Γ2, which explains why the curve for
U = 0.5Γ shows no decrease at all in the above results: the solutions for |τ|2 stay . 0.4Γ2, cf.
figure 4.10a.

X Compared to the equilibrium value, i.e. 〈n̂a〉µ=0 −min 〈n̂a〉µ.
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The obtained current curve for the self-dual point, i.e. U = 2Γ, and t = 0.5Γ is compared to
the tight-binding result in reference to the exact solution in figure 4.12:

Figure 4.12.: Current comparison between wide-band (WBL, blue) and tight-binding (TB,
red) leads for t = 0.5Γ and U = 2Γ. The black solid line shows the exact
solution from [16] as reference. The inset extends to and emphasizes on the
high-voltage regime, where the TB solution is constant and the WBL solution
eventually reaches the same plateau value.

As already stated for the previous results in this section, the main difference between the two
leads, namely the behaviour beyond the tight-binding bandwidth of 4Γ, is here emphasized
up to ∆µ = 9Γ in the inset for the current. Another attribute becomes clear in figure 4.12: the
WBL current describes the maximum location in the exact solution more accurately, as the
exact maximum lies at ∆µ ≈ 1.5Γ and WBL and TB are at ∼ 1.6Γ and ∼ 1.9Γ respectively.
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The spectral functions for central and left site are again obtained from the retarded or
advanced Green’s function and are shown in figure 4.13 and 4.14.

Figure 4.13.: Spectral function on the central site for U = 2Γ and t = 0.5Γ and different
voltages.

The two distinct shapes described in the tight-binding results can be vaguely recognized as
one with two symmetric peaks and one with a single central peak, but they rather smoothly
merge into each other than show a quick transition.

The merging of the central peak can qualitatively be compared to the results in figure 3b
in [17], with the difference that the persisting peaks at |ω| ≈ 2Γ are not present in the WBL
solution, as they stem from the tight-binding bandwidth limits.
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The following figure shows the spectral function on the left site.

Figure 4.14.: Spectral function on the site a for U = 2Γ and t = 0.5Γ and different voltages.

Comparable to the central site, the side peaks move closer together and overcome the initial
central peak, but do not merge eventually. As in the tight-binding case, the spectral function
at ω = 0Γ is pinned to the same value for all voltages, cf. 4.6.

And again, the somewhat constant shape of the spectral function with a slight asymmetric
peak weighting from [17] cannot be obtained.
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As pointed out in the previous section, some information about the occurring effects can
be gained by examining the non-interacting model, which is fully solved by the integrals
defined in the course between (4.3.7) and (4.3.21). Current and occupation numbers are
shown in figure 4.15 for values of t > 1√

2
and higher voltages, where interesting effects

occur. While the negative differential conductance is technically purely a feature of the

(a) Current (b) Occupation number

Figure 4.15.: Current and occupation number on site a for U = 0Γ and different values of t.
All current curves have two inflection points that give rise to the double-plateau
behaviour for high values of t (although they are very close for t = 1Γ), as well
as all an initial decrease in the occupation number. The legend in (a) refers to
both subfigures.

µ-dependent effective hopping and an effective decoupling of the leads (cf. figure 4.15a
where the current curves are strictly increasing functions of voltage), the initial decrease
in the occupation number can already be obtained in the non-interacting case for values
t > 1√

2
as shown in the following.

The decrease occurs if equation (4.3.10), as function of voltage, features a minimum that
differs from the equilibrium value 1

2 (cf. (4.3.14)). So a solution to

0 !
=

∂ 〈n̂a〉
∂µ

=
∂

∂µ

[
1
2
+

1
π

(
I3(µ)− |τ|2 I2(µ)

)]
=

∂

∂µ

(
I3(µ)− |τ|2 I2(µ)

)
(4.3.23)

is needed for |τ|2 = t2. As I2 and I3 are indefinite integrals the derivative gives just back the
integrands, namely

∂

∂µ

(
I3(µ)− |τ|2 I2(µ)

) ∣∣∣
|τ|2=t2

=

∣∣µ(µ± i)− t2
∣∣2

(µ2 + 1)|µ (µ± i)− 2t2|2
− t4

(µ2 + 1)|µ (µ± i)− 2t2|2
.

(4.3.24)

The denominators are the same and so the problem reduces to

0 !
=
∣∣∣µ(µ± i)− t2

∣∣∣2 − t4

=µ4 +
(

1− 2t2
)

µ2
(4.3.25)
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whose only non-zero (which corresponds to the equilibrium case where ∆µ = 0Γ) and
positive solution is

µmin =
√

2t2 − 1,

which is real for
t2 >

1
2

.

In the results from figure (4.10), the topic of multiple solutions is already raised, and shall
be discussed in more detail in the following. The non-unique values for |τ|2 stem from
multiple possible intersections occurring for certain pairs of U and t. An example plot is
shown in figure 4.16:

Figure 4.16.: Graphical representation of equation (4.3.22) for t = 0.5Γ, U = 3Γ and selected
voltages to explain the situation of non-unique solutions.

As the solutions are obtained for zero temperature, the minimal total energy determines
the correct solution in equilibrium. In non-equilibrium, the total energy is not enough to
determine the solution for the system, however, it can give more insight to the obtained
solutions for |τ|2. The total energy 〈H〉 for each |τ|2 solution can be calculated from the

70



4. Interaction in First-Order Truncation – Hartree-Fock Approximation

particle-hole symmetric HF Hamiltonian, which reads (cf. equation (4.0.7) and (4.1.1))

HHF = −U
2
+ ∑

k∈L
εkn̂k + ∑

k∈R
εkn̂k

− ∑
m=a,b

[
τ∗mc†md + τmd†cm −U

〈
c†md

〉 〈
d†cm

〉]
−V ∑

k∈L,R

(
c†a,bck + c†kca,b

)
,

(4.3.26)

where the constant of −U
2 stems from the occupation numbers. In the expectation value, the

sum of the two on-site lead terms vanishes (cf. section A.1.4 in the appendix) and so the
total energy results in

〈HHF〉 = −
U
2
− ∑

m=a,b

(
2t Re

{〈
d†cm

〉}
+ U

∣∣∣〈d†cm

〉∣∣∣2)− 2V ∑
k∈L,R

Re
{〈

c†a,bck

〉}
= −U

2
− 2

(
2t Re

{〈
d†ca

〉}
+ U

∣∣∣〈d†ca

〉∣∣∣2)− 2V ∑
k∈L,R

Re
{〈

c†a,bck

〉}
= −U

2
− 2
|τ|2 − t2

U
− 2V ∑

k∈L,R
Re
{〈

c†a,bck

〉}
(4.3.27)

as
〈
d†ca

〉
=
〈

c†bd
〉

and
〈
d†ca

〉∗
=
〈

c†ad
〉

and with the use of equation (4.3.22) in the last step.
The last term needs a little more work, but can be solved with the corresponding equation
of motion and some exact integral solutions. From the equation of motion in (3.3.8), the
following is obtained

V ∑
ka,b

〈
c†a,bck

〉
=

V
2πi ∑

ka,b

∫ ∞

−∞
dω 〈〈cka,b

; c†a,b〉〉
<

= − 1
2πi

∫ ∞

−∞
dω

〈〈ca,b; c†a,b〉〉
AV2 ∑

ka,b

g<ka,b
+ 〈〈ca,b; c†a,b〉〉

<V2 ∑
ka,b

gR
ka,b


= − 1

2πi

∫ ∞

−∞
dω
(
〈〈ca,b; c†a,b〉〉

A∆< + 〈〈ca,b; c†a,b〉〉
<∆+

)
= − 1

2π

∫ ∞

−∞
dω
(

2 fL,R(ω)〈〈ca,b; c†a,b〉〉
A − 〈〈ca,b; c†a,b〉〉

<
)

,

(4.3.28)

where the hybridization functions for the wide-band limit are used in the last step. As G<
ii

is purely imaginary, the solution for the real part at T = 0Γ is given by

V ∑
ka,b

Re
{〈

c†{a,b}ck

〉}
= − 1

π

∫ ∞

−∞
dω fL,R(ω)Re

{
〈〈ca,b; c†a,b〉〉

A
}

= − 1
π

∫ µ,−µ

−∞
dω Re

{
〈〈ca,b; c†a,b〉〉

A
}

.

(4.3.29)

The real part of the occurring Green’s function is evaluated similarly to equation (4.1.16)
and results in

Re
{
〈〈ca; c†a〉〉A

}
=
∣∣∣〈〈ca; c†a〉〉

∣∣∣2 [ω + Re
{

∆−
}
−ω

α(ω)

χ(ω)
+ α(ω)

(
ω + Re

{
∆−
})]

=
∣∣∣〈〈ca; c†a〉〉

∣∣∣2(ω−ω
α(ω)

χ(ω)
+ ωα(ω)

)
= ω

∣∣∣〈〈ca; c†a〉〉
∣∣∣2 [1 + α(ω)

(
1− χ−1(ω)

)]
,

(4.3.30)
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as ∆± is purely imaginary in the wide-band limit. With equation (4.3.2) the prefactor
becomes

∣∣∣〈〈ca; c†a〉〉
∣∣∣2 =

∣∣∣∣∣∣ ω (ω± i)− |τ|2

(ω± i)
[
ω (ω± i)− 2|τ|2

]
∣∣∣∣∣∣
2

(4.3.31)

and so the explicit form of the real part is given by

Re
{
〈〈ca; c†a〉〉

}
= ω

∣∣∣ω (ω± i)− |τ|2
∣∣∣2 + |τ|4 − |τ|2|ω± i|2∣∣∣(ω± i)

[
ω (ω± i)− 2|τ|2

]∣∣∣2
=

ω
[
ω4 +

(
1− 3|τ|2

)
ω2 − |τ|2

(
1− 2|τ|2

)]
(ω2 + 1)

∣∣∣ω (ω± i)− 2|τ|2
∣∣∣2 .

(4.3.32)

The integral is solved in section A.2.5 in the appendix and leads to the indefinite integral

I4(ω) :=
∫

dω Re
{
〈〈ca; c†a〉〉A

}
=

1
4

ln
(

ω2 + 1
)
+

1
8

ln
(

ω4 +
(

1− 4|τ|2
)

ω2 + 4|τ|4
)

− 1

4
√

8|τ|2 − 1
arctan

2ω2 − 4|τ|2 + 1√
8|τ|2 − 1

 .

(4.3.33)

The complete lead contribution to the total energy is then obtained as

−2V ∑
k∈{L,R}

Re
{〈

c†{a,b}ck

〉}
= −2V ∑

k∈L
Re
{〈

c†ack

〉}
− 2V ∑

k∈R
Re
{〈

c†bck

〉}
=

2
π

∫ µ

−∞
dω Re

{
〈〈ca; c†a〉〉A

}
+

2
π

∫ −µ

−∞
dω Re

{
〈〈cb; c†b〉〉

A
}

=
2
π
[I4(µ) + I4(−µ)− 2I4(−∞)]

=
4
π
[I4(µ)− I4(∞)]

=
4
π

I4(µ) +
π

8
√

8|τ|2 − 1

− γ∞,

(4.3.34)

where
γ∞ := lim

ω→∞

1
2π

(
2 ln

(
ω2 + 1

)
+ ln

(
ω4 +

(
1− 4|τ|2

)
ω2 + 4|τ|4

) )
.

Although the total energy 〈HHF〉 corresponding to a certain solution |τ|2 is infinite, their
difference is finite and 〈HHF〉+ γ∞ can be considered, as

γ∞ − γ′∞ = lim
ω→−∞

1
2π

ln

 ω4 +
(

1− 4|τ|2
)

ω2 + 4|τ|4

ω4 +
(

1− 4|τ|′2
)

ω2 + 4|τ|′4

 = 0.

72



4. Interaction in First-Order Truncation – Hartree-Fock Approximation

For a given pair of U and t, multiple solutions may not occur over the whole voltage range.
The extent of these multiple solutions can be seen in figure 4.17, where the solutions for |τ|2
and the corresponding total energies are shown as an example for t = 0.5Γ and two higher
values of U:

(a) Hopping at U = 3Γ (b) Hopping at U = 4Γ

(c) Total energy at U = 3Γ (d) Total energy at U = 4Γ

Figure 4.17.: Solutions for the effective hopping (upper row) and corresponding total ener-
gies (lower row) for parameter pairs (t = 0.5Γ, U). Voltage points with unique
solutions are connected and marked with small blue circles, multiple solutions
are unconnected and marked with bigger circles. The black dashed line in the
upper row represents t2. The legend in (a) refers to all subfigures.

In figure 4.17 it can be seen that the multiple solutions for U = 3Γ occur in the transition
region from high to low coupling, but for U = 4Γ they extend up to zero voltage and unique
solutions are obtained only for high voltages. Furthermore, the solutions with the highest
value for |τ|2 result in the lowest energy (solution 3 in the plots).
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The current curves to the three solutions from figure 4.17 (and two more U-values in
between) are shown in figure 4.18 with markers for the multiple-solution region (dashed
lines). Figure 4.18b shows the curves with the lowest energies (solution 3).

(a) Current following solution 1 (b) Current following solution 3

(c) Current following solution 2

Figure 4.18.: Current for (t = 0.5Γ, U) pairs where multiple solutions occur. The vertical
dashed lines indicate the region with multiple solutions for each U in the
respective colour. The left dashed line for U = 4Γ is at ∆µ = 0Γ and is not
shown. For solution 2 only one curve is shown, as in this case all curves in one
plot seem too confusing. The legend in (a) refers also to (b).
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Finally, the question arises for which parameter pairs the solutions are not unique. As this
supposedly analytical task again leads to a transcendental equation, the question can only
be answered numerically. For that purpose, something like a phase diagram in t and U is
calculated in figure 4.19, showing parameter pairs with unique and multiple solutions.

Figure 4.19.: Regions with unique (green area) and multiple (white area) solutions. The
results are obtained as for fixed parameters, but for all combinations of t and U
shown above with ∆t, ∆U = 0.01Γ and ∆(∆µ) = 10−3Γ, where the calculation
for a given pair is stopped if multiple solutions are found. The blue dots
indicate the solutions presented in figure 4.10 and the red dots indicate three
of the four solutions presented in 4.18 and partially in 4.17.

In figure 4.19 it can be seen that, apart from the solutions that are intended as an example
for multiple solutions (red dots), three of the solutions presented earlier (blue dots) lie in the
white region and thus show multiple solutions for some voltage range. In the solutions for
t = 0.2Γ (closest column to the U axis) this behaviour is already pointed out in figure 4.10,
where the multiple solutions for t = 0.5Γ and U = 2Γ are not yet detected, as the ∆µ-grid
used in previous calculations has not sampling points in this small voltage region.
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To go beyond a Hartree-Fock like approximation in the interaction terms, the equations
of motion for higher Green’s functions occurring on three different levels in the equation
hierarchy are taken into account and new truncation schemes are introduced, each of them
closing the set of equations at that very level. However, the sets of equations become quite
large, their coefficient matrices can be dense, and so their symbolical solution by hand
becomes quite cumbersome – therefore, it is done in Mathematica and the formulae are not
shown explicitly.

Without further treatment, the approximations and truncations used in this chapter lead
to results that break certain symmetries, some of which have already been addressed in
the use of the equation-of-motion technique (cf. [24]). Additionally, a certain symmetry of
the system is broken, namely particle-hole symmetry, which subsequently violates current
conservation.

A note a this point: It seems natural – as the Hartree-Fock like approximation to the
particle-hole symmetric model formally leads to the same Green’s functions as the exact non-
interacting model, but with a renormalized hopping amplitude – yet it is worth mentioning:
the results in the previous chapter automatically conserve all symmetries mentioned above,
including mathematical-structural symmetries in the Green’s functions themselves as well
as the intuitive physical symmetry of current conservation, i.e. IL = −IR as well as
IL = IL;lead.

As the so-called scaling regime is assumed for the exact solution in [15], where the actual
shape of the leads should not matter (see [25]), the following calculations focus on leads in
the wide-band limit for the sake of simplicity.

All numerical results in this chapter are obtained for t = 0.5Γ, T = 0Γ, and for different
values of U. The integrations are done numerically using the same initial values and
convergence parameters as in previous numerical calculations, but on an ω-grid with

∆ω =

{
η
2 for |ω| ≤ 10Γ
0.5Γ for 10Γ < |ω| ≤ 1000Γ,

as the wide-band Green’s functions formally extend to |ω| → ∞, in contrast to the tight-
binding case in previous chapters, where the functions are either ∼ η or ∝ δ(ω − ω1,2)
outside the bandwidth.
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5.1. Symmetry Breaking and Restoration

5.1.1. Green’s Function Symmetry

General definitions of the different types of Green’s functions imply the following relations
in Fourier space:

GR
AB(ω) =

(
GA

BA(ω)
)∗

−G≷
AB(ω) =

(
G≷

BA(ω)
)∗

GA
AB(ω)− GR

AB(ω) = G<
AB(ω)− G>

AB(ω)

(5.1.1)

In [24] it is shown for two different models that common approximation schemes violate the
relations above to some extent when used in an equation-of-motion technique. First higher-
order calculations for the IRLM show similar symmetry breakings that lead to unphysical
results and therefore need to be corrected.

To this end, a three-step restoration procedure that essentially restores the three relations
above is suggested in [24]. This procedure is implemented for all occurring two-operator
Green’s functions with a slight variation: The authors of [24] suggest calculating the retarded
and advanced Green’s functions as a first step, then defining new functions that fulfil the
first relation from above and calculating the greater and lesser functions with these new
functions. However, this seems to rather introduce even higher asymmetries in the lesser
and greater functions than no symmetrization at all, and therefore this step is dropped and
all Green’s functions are calculated simultaneously and symmetrized only afterwards and
in each iteration step.

It is worth mentioning that the first and the last step of the suggested procedure, which
redefine the retarded/advanced functions, are not needed if the self-consistency loop only
requires expectation values that are obtained by integrating lesser functions.

5.1.2. Particle-Hole Symmetry (PHS) restoration

The symmetry restoration proposed in [24] fixes problems like a zero-voltage current and
imaginary parts in the occupation number, but current conservation (IL + IR = 0) is not
fulfilled in the first symmetrized calculations and tends to increase with increasing voltage.
This is technically due to the results where〈

d†ca

〉
6=
〈

c†bd
〉

which should be assured through particle-hole symmetry and symmetric leads. So, obviously,
the applied approximations do not only break general symmetry relations between Green’s
functions but also explicitly PHS. Thus, inspired by [24], in the following a PHS-restoration
procedure is suggested. Applying the PHS transformations (3.0.2) to the single operators in
the Green’s functions leads, e.g., to

〈〈ca; d†〉〉κω
PHS−→ −〈〈c†b; d〉〉κω

〈〈ca; c†a〉〉κω
PHS−→ +〈〈c†b; cb〉〉

κ
ω.

(5.1.2)
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As the sets of equations are only calculated for Green’s functions with a creation operator
to the right, the functions on right-hand side of (5.1.2) need to be related to the calculated
functions via the superscript-sensitive relations obtained in (2.3.2) and (2.3.3), which imply

G≷
AB(t) = −G≶

BA(−t)

GR/A
AB (t) = −GA/R

BA (−t)
(5.1.3)

for Green’s functions in time t = ta − tb or respectively in in ω as F[ f (−t)] = F(−ω):

G≷
AB(ω) = −G≶

BA(−ω)

GR/A
AB (ω) = −GA/R

BA (−ω)
(5.1.4)

And so for the above examples the relations

〈〈ca; d†〉〉R/A
ω

PHS−→ −〈〈c†b; d〉〉R/A
ω = +〈〈d; c†b〉〉

A/R
−ω

〈〈ca; d†〉〉≷ω
PHS−→ −〈〈c†b; d〉〉≷ω = +〈〈d; c†b〉〉

≶
−ω

〈〈ca; c†a〉〉R/A
ω

PHS−→ +〈〈c†b; cb〉〉
R/A
ω = −〈〈cb; c†b〉〉

A/R
−ω

〈〈ca; c†a〉〉≷ω
PHS−→ +〈〈c†b; cb〉〉

≷
ω = −〈〈cb; c†b〉〉

≶
−ω

(5.1.5)

are obtained. And finally, the proposed PHS restoration for general operators reads

G̃R/A
AB (ω) =

1
2

(
GR/A

AB (ω)− GA/R
B•A• (−ω)

)
G̃≷

AB (ω) =
1
2

(
G≷

AB (ω)− G≶
B•A• (−ω)

)
,

(5.1.6)

where the bullet (•) denotes the PHS transformed operator and the negative argument can
be obtained by simply flipping the numerical array, if the Green’s functions are evaluated
explicitly.

The explicit calculation procedure is described in algorithm 5.1 and occasionally a damping
factor 0 ≤ α < 1 is used for better convergence in the expectation values via

〈xi〉 ← (1− α) 〈xi〉+ α 〈xi〉old . (5.1.7)

5.2. Truncation Level 1: Strict Second Order

In the equation-of-motion literature, the truncation order is often labelled according to
the number of commutations with the Hamiltonian H1 considered at a certain level. In
the previous chapters, only one commutator is considered for each two-operator Green’s
function and hence corresponds to a first-order truncation. In that sense, a strict second-order
truncation requires the commutators

[dn̂a, H1] = −t (cbn̂a + can̂)−V ∑
k∈L

(
c†ackd− c†kcad

)
+ U (dn̂a + dn̂an̂b)

[dn̂b, H1] = −t (can̂b + cbn̂)−V ∑
k∈R

(
c†bckd− c†kcbd

)
+ U (dn̂b + dn̂an̂b) ,

(5.2.1)
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5. Interaction in Higher-Order Truncation

Require: 〈xi〉start , ω, η, t, U, T, ∆µ, εabs

1: 〈xi〉 ← 〈xi〉start
2: chk ← 1
3: while chk > εabs do
4: 〈xi〉old ← 〈xi〉
5: Gκ

j (ω)← f ({〈xi〉}, ω, η, t, U, T, ∆µ) according to the respective results

6: G̃κ
j (ω)← PHS({Gκ

i (ω)}) according to (5.1.6)

7: Gκ
j (ω)← symmetrize {G̃κ

i (ω)} according to [24] and subsection 5.1.1
8: 〈xi〉 ← (2πi)−1

∫
dω G<

i (ω)
9: chk ← maxi |〈xi〉 − 〈xi〉old|

10: optional damping according to (5.1.7)
11: end while

Algorithm 5.1: Self-consistency non-equilibrium loop including symmetry restorations

and

[can̂, H1] = −t
(

dn̂a + c†bcad + d†cbca

)
−V ∑

k∈L
ckn̂ + Ucan̂

[cbn̂, H1] = −t
(

dn̂b + c†acbd + d†cacb

)
−V ∑

k∈R
ckn̂ + Ucbn̂.

(5.2.2)

For the sake of clarity, all four required commutators are shown explicitly, but as the system
is symmetric in a and b, i.e. left (L) and right (R), from here on these sites are denoted by ι, ῑ
and k, k̄ respectivelyI. In this way, the non-zero anticommutators are{

dn̂ι, d†
}
= n̂ι{

dn̂ι, c†ι
}
= −c†ι d{

cιn̂, d†
}
= −d†cι{

cιn̂, c†ι
}
= n̂.

(5.2.3)

The equation sets for retarded/advanced and greater/lesser Green’s functions have formally
the same structure and differ only in the inhomogeneous term χκ

A,B, and so for κ = R,A,<,>
the additional equations of motion read

(ω̃κ
d −U) 〈〈dn̂ι; x†〉〉κ = χκ

dn̂ι,x − t
(
〈〈cῑn̂ι; x†〉〉κ + 〈〈cιn̂; x†〉〉κ

)
+ U〈〈dn̂ιn̂ῑ; x†〉〉κ −V ∑

k

[
〈〈c†ι ckd; x†〉〉κ − 〈〈c†kcιd; x†〉〉κ

]
(ω̃κ

ι −U) 〈〈cιn̂; x†〉〉κ = χκ
cιn̂,x −V ∑

k
〈〈ckn̂; x†〉〉κ

− t
[
〈〈dn̂ι; x†〉〉κ + 〈〈c†ῑ cιd; x†〉〉κ + 〈〈d†cῑcι; x†〉〉κ

]
,

(5.2.4)

I So, e.g., if ι = a, then ῑ = b, k ∈ L and k̄ ∈ R and vice versa.
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5. Interaction in Higher-Order Truncation

where

χR/A
dn̂ι,x

= 〈n̂ι〉 δd,x −
〈

c†ι d
〉

δcι,x

χR/A
cιn̂,x = 〈n̂〉 δcι,x −

〈
d†cι

〉
δd,x

χ≷
dn̂ι,x

= g≷d
∣∣ω̃±d ∣∣2〈〈dn̂ι; x†〉〉A

χ≷
cιn̂,x = g≷ι

∣∣ω̃±ι ∣∣2〈〈cιn̂; x†〉〉A

(5.2.5)

and
ω̃R/A

i = ω̃±i = ω− εi ± iη

ω̃≷
i = ω̃R

i (i = ι, d).

The complete equation set for this order of truncation consists of the fundamental equations
of motion for the two-operator Green’s functions, (3.3.5), (3.3.4), (3.3.7) and the higher
equations in (5.2.4).

Analogous to the truncation scheme (“Scheme 1” in the following) used in first order, the
new four-operator Green’s functions are approximated as

〈〈a†bc; x†〉〉κ ≈
〈

a†b
〉
〈〈c; x†〉〉κ −

〈
a†c
〉
〈〈b; x†〉〉κ,

where a, b, c can be cι, ck, d. This decomposition of Green’s functions including a lead
operator c(†)k gives rise to terms like

V ∑
k

〈
x†ck

〉
and V ∑

k

〈
c†kx
〉

,

whose calculation is described in section 5.5. The procedure described in [23] can in principle
be extended to the six-operator Green’s functions which decompose to

〈〈a†ab†bc; x†〉〉 ≈
〈

a†a
〉
〈〈b†bc; x†〉〉+

〈
b†b
〉
〈〈a†ac; x†〉〉

−
〈

a†c
〉
〈〈b†ba; x†〉〉 −

〈
b†c
〉
〈〈a†ab; x†〉〉

−
〈

a†b
〉
〈〈b†ac; x†〉〉 −

〈
b†a
〉
〈〈a†bc; x†〉〉

+ terms ∝ four-operator expectation values,

(5.2.6)

but as seen later in the evaluation, the only approximation for the six-operator functions
that does not violate PHS in the spectral functions already in equilibrium turns out to be

〈〈dn̂ιn̂ῑ; x†〉〉κ ≈ 〈n̂ι〉 〈〈dn̂ῑ; x†〉〉κ + 〈n̂ῑ〉 〈〈dn̂ι; x†〉〉κ.

A first application of Scheme 1, where all symmetry restorations are applied, produces
results that are governed by numerical artefacts, symmetry breakings and large discrepancies
between the currents over different junctions. A closer look at the underlying equation set
reveals that the sums of lead-operator expectation values, which are related to the current
over the lead junction, appears only in the current-describing form

V ∑
k

(〈
c†ι ck

〉
−
〈

c†kcι

〉)
.
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5. Interaction in Higher-Order Truncation

In an attempt to restore current conservation, the replacement

V ∑
k

(〈
c†ι ck

〉
−
〈

c†kcι

〉)
→ t

(〈
d†cι

〉
−
〈

c†ι d
〉)

is proposed, as

I = iet
(〈

d†cι

〉
−
〈

c†ι d
〉)

!
= ieV ∑

k

(〈
c†ι ck

〉
−
〈

c†kcι

〉)
= Ilead.

The results obtained with the replacement are still not conserving the current over different
junctions, but at least for some parameter sets all other symmetries are fulfilled. The results
are shown in figure 5.1.

(a) Current in Scheme 1 (b) Occupation number in Scheme 1

(c) Lead-Current addition to (a)

Figure 5.1.: Current and occupation number on site a for Scheme 1, t = 0.5Γ and different
values of U. The lines with markers are for the intra-system current I and the
dashed lines for Ilead. Especially for higher values of U in (c) the discrepancy
between the two currents is very high. For values of U between 0.6Γ and 1.0Γ
the other symmetries are already broken at low voltages and the results are
not shown. The results for U = 1.0Γ are shown only up to about ∆µ ≈ 4Γ, as
symmetries are broken for higher values. Refer to (b) for the legends.
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As the results from figure 5.1 do not seem very promising compared to previously obtained
results, features like negative current for values of U & 1Γ and the large discrepancy between
the different currents, further results within that very approach are not shown.

However, staying at that truncation level, a different approximation scheme (“Scheme 2”)
can be found in the literature for Green’s functions containing one non-interacting lead
operator Ak, i.e. either ck or c†k. This scheme is applied to the full contour-ordered Green’s
function in time and can be obtained by treating the non-lead part B as a constant for the
commutation, which resultsII in

[AkB, H0] ≈ [Ak, H0]B
[AkB, H1] ≈ [Ak, H1]B{
AkB, x†

}
≈
{

Ak, x†
}

B = 0
(5.2.7)

for non-lead operators x = d, ca, cb. The approximation to the Green’s function is then
obtained via its equation of motion (cf. (2.2.23)):

〈〈(AkB)t ; x†t′〉〉 ≈ 0 +
∫

C
dτ gAk(t− τ)〈〈[AkB, H1]τ; x†t′〉〉

≈
∫

C
dτ gAk(t− τ)〈〈([Ak, H1]B)τ ; x†t′〉〉

(5.2.8)

With the commutators from (3.3.2) this yields

〈〈(AkB)t ; x†t′〉〉 ≈ ∓V
∫

C
dτ gAk(t− τ)〈〈

(
c(†)ι B

)
τ

; x†t′〉〉, (5.2.9)

where the upper (lower) sign is for Ak being an annihilation (creation) operator. In order
to get the expressions for the equation sets in ω, Langreth path-splitting and the Fourier
transform are used as in the derivation in section 2.2.1 and 2.2.2. For the new functions
generated in this order this gives explicitly

V ∑
k
〈〈c†ι ckd; x†〉〉R/A ≈ −V2 ∑

k
gR/A

ck
〈〈c†ι cιd; x†〉〉R/A = −∆R/A〈〈dn̂ι; x†〉〉R/A

V ∑
k
〈〈c†kcιd; x†〉〉R/A ≈ +V2 ∑

k
gR/A

c†k
〈〈c†ι cιd; x†〉〉R/A = +∆R/A〈〈dn̂ι; x†〉〉R/A

V ∑
k
〈〈ckn̂; x†〉〉R/A ≈ −V2 ∑

k
gR/A

ck
〈〈cιn̂; x†〉〉R/A = −∆R/A〈〈cιn̂; x†〉〉R/A

(5.2.10)

and

V ∑
k
〈〈c†ι ckd; x†〉〉≷ ≈ −

(
∆≷

k 〈〈dn̂ι; x†〉〉A + ∆R〈〈dn̂ι; x†〉〉≷
)

V ∑
k
〈〈c†kcιd; x†〉〉≷ ≈ +

(
∆≷

k̄ 〈〈dn̂ι; x†〉〉A + ∆R〈〈dn̂ι; x†〉〉≷
)

V ∑
k
〈〈ckn̂; x†〉〉≷ ≈ −

(
∆≷

k 〈〈cιn̂; x†〉〉A + ∆R〈〈cιn̂; x†〉〉≷
)

.

(5.2.11)

IIFor the commutator the same can be obtained by ignoring the missing term Ak[B, H].
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The lesser part for the creation operator c†k results in ∆≷
k̄ (where k̄ denotes the opposite bath)

as

V2 ∑
k

g≷ck → 2i ( f (ω− µk)− δ≷,>)

V2 ∑
k

g≷
c†k
→ 2i ( f (ω + µk)− δ≷,>)

(5.2.12)

and the voltage is applied symmetrically, so

µk = −µk̄.

The obtained approximations relate the lead Green’s functions to system-operator functions
whose equations of motion are already taken into account. Therefore, there is especially no
need for approximations that lead to sums over lead expectation values and subsequently
no replacement for current related terms is needed.

A first application of Scheme 2 in the equilibrium case, i.e. ∆µ = 0Γ, and without any
symmetrization shows a strong asymmetry in the local spectral functions. Therefore an
additional third scheme (“Scheme 3”) is proposed, which seems to fix these asymmetries
in the local spectral functions. It consists of setting differences between lead-operator
Green’s functions to zero, that can somewhat be interpreted as hermitian counterparts in a
transport-related operator

(
c†ι ck − h.c.

)
Ô. In this order this means explicitly

〈〈c†ι ckd; x†〉〉κ − 〈〈c†kcιd; x†〉〉κ ≈ 0.

However, other asymmetries in the Green’s functions still persist, and so the symmetrization
schemes have to be applied in order to obtain meaningful physical quantities, which seems
to work even for Scheme 2 to some extent.

The results for current and occupation number in Scheme 2 and 3 are shown in figure 5.2
and the spectral functions on the central and left site are shown in figure 5.3.

A striking feature in all current curves is that the initial slope gets suppressed with higher
values of U, which is not the case for the HF results. On the other hand, the sharp drop
and problems with multiple solutions for higher values of U are missing in this order of
truncation. A certain tendency to negative differential conductance is present in all curves,
but is not so strongly pronounced; the curves rather tend to saturate straight beyond the
maximum. The discrepancy between the two currents I and Ilead is higher for Scheme 2, but
the current in Scheme 3 shows negative initial values.

Comparing the occupation numbers to the HF results, they start out linearly in contrast to
the somewhat constant or even decreasing results from section 4.2 and 4.3.
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5. Interaction in Higher-Order Truncation

(a) Current in Scheme 2 (b) Occupation number in Scheme 2

(c) Current in Scheme 3 (d) Occupation number in Scheme 3

Figure 5.2.: Current and occupation number on site a for Scheme 2 and 3, t = 0.5Γ and
different values of U. The solid lines represent I and the dashed lines Ilead. The
inset in (c) shows some negative current values. The legend in (b) refers to all
subfigures.

The spectral functions on the left and central site for U = 2Γ and Scheme 2 and 3 are shown
in figure 5.3. On the central site, both results feature peaks slightly beyond |ω| = 2Γ, that
persist with higher voltage. Where it stays somewhat constant in Scheme 2, a prominent
central peak arises in Scheme 3, which is comparable to the HF results, but especially to [17],
as now side and central peaks are both present. Although it is previously mentioned that
the spectral function on the central site is asymmetric in Scheme 2, the results are both
symmetric, as the PHS restoration is applied. However, it is still unphysical in Scheme 2 as
it shows negative values around |ω| ≈ 2.5Γ for higher voltages.

For the left site, the overall shapes in both schemes are quite different than in [17], however
the persisting side peaks with an asymmetric weighting are obtained, which is more
pronounced for Scheme 3.
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5. Interaction in Higher-Order Truncation

(a) Spectral function on site a (b) Spectral function on site d

(c) Spectral function on site a (d) Spectral function on site d

Figure 5.3.: Spectral functions for Scheme 2 (upper row) and 3 (lower row) on site a and d
for t = 0.5Γ, U = 2Γ and different voltages. The spectral function for the central
site in Scheme 2 shows some negative values for ∆µ & 4Γ. In Scheme 3 it is
positive in the whole ω range. The legend in (b) refers to all subfigures.

5.3. Truncation Level 2: Four-Operator Terms in t

Following the strict systematic approach requires taking into account the equations of
motion for the new Green’s functions generated in (5.2.4). However, the Green’s functions
including a lead operator pose some problems that cannot be overcome in this order of
truncation. They are explained using only one affected Green’s function as an example,
but are valid for the others as well. The equation of motion for a retarded or advanced
lead-operator Green’s function from (5.2.4) is given byIII

V ∑
k
〈〈ckn̂; x†〉〉 = −V ∑

k

〈
d†ck

〉
ω̃k

δd,x − ∆±〈〈cιn̂; x†〉〉

− t ∑
k

V
ω̃k

(
〈〈d†cιck; x†〉〉 − 〈〈c†ι dck; x†〉〉+ 〈〈d†cῑck; x†〉〉 − 〈〈c†ῑ dck; x†〉〉

)
,

(5.3.1)

IIIThe corresponding commutators and other lead-operator Green’s function are described in section A.1.10.
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and is already written in the summation form as it appears in the hierarchy of equations.
First of all, a potential symmetry issue catches the eye, arising in the terms

〈〈d†cιck; x†〉〉 − 〈〈c†ι dck; x†〉〉

as the equation of motion for the second Green’s functions is taken into account, because
it already appears in the prior order of truncation, but the first, which can roughly be
considered as its hermitian counterpart in a transport-related operator

(
d†cι − c†ι d

)
ck, has

to be approximatedIV. This is just mentioned as a presumption, though, the actual technical
obstacle is the inhomogeneous term

V ∑
k

〈
d†ck

〉
ω̃k

and similar terms appearing in the other equations of motion as well as by application of
approximation Scheme 1 to the new functions in this order, as

∑
k

V
ω̃k
〈〈d†cῑck; x†〉〉 ≈ −

〈
d†cῑ

〉
〈〈cι; x†〉〉∑

k

V2

ω̃2
k︸ ︷︷ ︸

=0

−V ∑
k

〈
d†ck

〉
ω̃k
〈〈cῑ; x†〉〉

= −〈〈cῑ; x†〉〉V ∑
k

〈
d†ck

〉
ω̃k

.

(5.3.2)

These terms result in ω-dependent functions that have to be evaluated numerically for each
ω-point. As described later in section 5.5, in the wide-band limit they can be evaluated via

V ∑
k

〈
d†ck

〉
ω− εk ± iη

= − 1
π

∫ ∞

−∞
dω′

(
fL,R(ω

′)〈〈cι; d†〉〉A − 〈〈cι; d†〉〉<δ±,−
ω−ω′ ± 2iη

)
, (5.3.3)

which is done by numerical integration. Yet, for T = 0Γ the integrand has a discontinuity
at ω′ = µ and the integral seems to develop a logarithmic divergence at ω = µ in the limit
η → 0+.

Therefore, in this order of truncation the lead-operator Green’s functions are just approxi-
mated as in the previous section. As another simplification the six-operator Green’s function
is also approximated as before, instead of taking its equation of motion. The equations of
motion for the remaining new functions are obtained via the commutators

[cῑn̂ι, H1] = −t
(

dn̂ι + d†cῑcι − c†ι cῑd
)
+ Ucῑn̂ιn̂−V

[
∑̄
k

ck̄n̂ι + ∑
k

(
c†ι ckcῑ − c†kcιcῑ

)]
(5.3.4)

[
c†ῑ cιd, H1

]
= −t (cιn̂− cιn̂ῑ) + Uc†ῑ cιd−V

(
∑
k

c†
ῑ
ckd− ∑̄

k

c†k̄c
ι
d

)
(5.3.5)

[
d†cῑcι, H1

]
= −t (cῑn̂ι − cιn̂ῑ + cιn̂− cῑn̂)−V

(
∑
k

d†cῑck + ∑̄
k

d†ck̄cι

)
(5.3.6)

IVConsidering also the equation of motion for the first Green’s function opens up similar symmetry issues
that are addressed in section 6.
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and the only non-zero anticommutators{
cῑn̂ι, c†ῑ

}
= n̂ι{

cῑn̂ι, c†ι
}
= −c†ι cῑ{

c†ῑ cιd, d†
}
= c†ῑ cι{

c†ῑ cιd, c†ι
}
= −c†ῑ d{

d†cῑcι, c†ι
}
= d†cῑ.

(5.3.7)

With these operators all four-operator Green’s functions generated by the hopping terms in
the parameter t are taken into account.

The corresponding equations of motion read

ω̃κ
ῑ 〈〈cῑn̂ι; x†〉〉κ = χκ

cῑn̂ι,x − t
(
〈〈dn̂ι; x†〉〉κ + 〈〈d†cῑcι; x†〉〉κ − 〈〈c†ι cῑd; x†〉〉κ

)
+ U〈〈cῑn̂ιn̂; x†〉〉κ

−V

[
∑̄
k

〈〈ck̄n̂ι; x†〉〉κ + ∑
k

(
〈〈c†ι ckcῑ; x†〉〉κ − 〈〈c†kcιcῑ; x†〉〉κ

)]
(5.3.8)

(ω̃κ + ε ῑ − ε ι − εd −U) 〈〈c†ῑ cιd; x†〉〉κ = χκ
c†ῑ cιd,x

−V

(
∑
k
〈〈c†

ῑ
ckd; x†〉〉κ − ∑̄

k

〈〈c†k̄c
ι
d; x†〉〉κ

)
− t
(
〈〈cιn̂; x†〉〉κ − 〈〈cιn̂ῑ; x†〉〉κ

)
(5.3.9)

(ω̃κ + εd − ε ι − ε ῑ) 〈〈d†cῑcι; x†〉〉κ = χκ
d†cῑcι,x

−V

(
∑
k
〈〈d†cῑck; x†〉〉κ + ∑̄

k

〈〈d†ck̄cι; x†〉〉κ
)

− t
(
〈〈cῑn̂ι; x†〉〉κ − 〈〈cιn̂ῑ; x†〉〉κ + 〈〈cιn̂; x†〉〉κ − 〈〈cῑn̂; x†〉〉κ

)
(5.3.10)

where

χR/A
cῑn̂ι,x = 〈n̂ι〉 δcῑ,x −

〈
c†ι cῑ

〉
δcι,x

χR/A
c†ῑ cιd,x

=
〈

c†ῑ cι

〉
δd,x −

〈
c†ῑ d
〉

δcι,x

χR/A
d†cῑcι,x

=
〈

d†cῑ

〉
δcι,x −

〈
d†cι

〉
δcῑ,x

χ≷
cῑn̂ι,x = g≷ῑ

∣∣ω̃±ῑ ∣∣2〈〈cῑn̂ι; x†〉〉A

χ≷

c†ῑ cιd,x
= g≷

c†ῑ cιd

∣∣ω̃± + ε ῑ − ε ι − εd
∣∣2〈〈c†ῑ cιd; x†〉〉A

χ≷
d†cῑcι,x

= g≷d†cῑcι

∣∣ω̃± + εd − ε ι − ε ῑ

∣∣2〈〈d†cῑcι; x†〉〉A.

(5.3.11)

The set of equations for this order of truncation consists of (3.3.5), (3.3.4), (3.3.7), (5.2.4) and
(5.3.8)-(5.3.10).
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The occurring six-operator Green’s functions are approximated as

〈〈dn̂ιn̂ῑ; x†〉〉κ ≈ 〈n̂ι〉 〈〈dn̂ῑ; x†〉〉κ + 〈n̂ῑ〉 〈〈dn̂ι; x†〉〉κ

〈〈cῑn̂ιn̂; x†〉〉κ ≈ 〈n̂ι〉 〈〈cῑn̂; x†〉〉κ + 〈n̂〉 〈〈cῑn̂ι; x†〉〉κ
(5.3.12)

as a full decompositionV leads to similar asymmetries in the spectral functions as within the
previous truncation order. The remaining four-operator Green’s functions are approximated
according to the three schemes presented in the previous order. For the new functions in
Scheme 2 this gives explicitly

V ∑̄
k

〈〈ck̄n̂ι; x†〉〉R/A ≈ −∆R/A〈〈cῑn̂ι; x†〉〉R/A

V ∑
k
〈〈c†ι ckcῑ; x†〉〉R/A ≈ −∆R/A〈〈cῑn̂ι; x†〉〉R/A

V ∑
k
〈〈c†kcιcῑ; x†〉〉R/A ≈ +∆R/A〈〈cῑn̂ι; x†〉〉R/A

V ∑
k
〈〈d†cῑck; x†〉〉R/A ≈ −∆R/A〈〈d†cῑcι; x†〉〉R/A

(5.3.13)

and

V ∑̄
k

〈〈ck̄n̂ι; x†〉〉≷ ≈ −
(

∆≷
k̄ 〈〈cῑn̂ι; x†〉〉A + ∆R〈〈cῑn̂ι; x†〉〉≷

)
V ∑

k
〈〈c†ι ckcῑ; x†〉〉≷ ≈ −

(
∆≷

k 〈〈cῑn̂ι; x†〉〉A + ∆R〈〈cῑn̂ι; x†〉〉≷
)

V ∑
k
〈〈c†kcιcῑ; x†〉〉≷ ≈ +

(
∆≷

k̄ 〈〈cῑn̂ι; x†〉〉A + ∆R〈〈cῑn̂ι; x†〉〉≷
)

V ∑
k
〈〈d†cῑck; x†〉〉≷ ≈ −

(
∆≷

k 〈〈d
†cῑcι; x†〉〉A + ∆R〈〈d†cῑcι; x†〉〉≷

)
.

(5.3.14)

Similar symmetry issues as within the previous truncation level occur in the local spectral
functions, and so calculations are also done for Scheme 3, where

〈〈c†ι ckcῑ; x†〉〉κ − 〈〈c†kcιcῑ; x†〉〉κ ≈ 0.

The self-consistency loop in the first approximation scheme produces reasonable resultsVI in
the equilibrium case, i.e. ∆µ = 0Γ, or for very small voltages, but produces highly symmetry
breaking results for higher voltages, if it converges at all. Therefore, no plots are shown for
Scheme 1 and it is further discarded.

The results for Scheme 2 and 3 are shown in figure 5.4. The current curves are very similar to
the previous truncation order. The main difference seems to be in the discrepancy between
the currents, which is now higher in Scheme 3 (compared to Scheme 2 in the previous order).

VKeep in mind that all EoMs of the lower Green’s functions generated in the decomposition are taken into
account at this level of truncation, and none has to be further approximated as in the previous order.

VII.e. I = 0 eΓ and 〈n̂i〉 = 0.5.
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(a) Current in Scheme 2 (b) Occupation number in Scheme 2

(c) Current in Scheme 3 (d) Occupation number in Scheme 3

Figure 5.4.: Current and occupation number on site a for Scheme 2 and 3, t = 0.5Γ and
different values of U. The solid lines represent I and the dashed lines Ilead. The
inset in (c) shows some negative current values. The legend in (b) refers to all
subfigures.

The spectral functions for site a and d are shown in figure 5.5. Again, the spectral functions
are quite similar to the results obtained in the previous section, the main difference can be
spotted in the asymmetric weighting for site a, which is less prominent.
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(a) Spectral function on site a (b) Spectral function on site d

(c) Spectral function on site a (d) Spectral function on site d

Figure 5.5.: Spectral functions for Scheme 2 (upper) and 3 (lower) on site a and d for t = 0.5Γ,
U = 2Γ and different voltages. Negative values can be seen for ∆µ ≥ 6Γ in the
spectral function in (b). The legend in (b) refers to all subfigures.

5.4. Truncation Level 3: Six-Operator Terms in t and U

The last addition to the hierarchy of equations, whose results are treated in this thesis, are
the equations of motion for the six-operator Green’s functions, that are obtained with the
commutators

[dn̂ιn̂ῑ, H1] = −t (cῑn̂ιn̂ + cιn̂ῑn̂) + 2Udn̂ιn̂ῑ

−V

[
∑
k

(
c†ι ckdn̂ῑ − c†kcιdn̂ῑ

)
+ ∑̄

k

(
c†

ῑ
ck̄dn̂ι − c†k̄c

ῑ
dn̂ι

)] (5.4.1)

[cῑn̂ιn̂, H1] = −tdn̂ιn̂ῑ + Ucῑn̂ιn̂

−V

[
∑̄
k

ck̄n̂ιn̂ + ∑
k

(
c†ι ckcῑn̂− c†kcιcῑn̂

)] (5.4.2)
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and the anticommutators {
dn̂ιn̂ῑ, d†

}
= n̂ιn̂ῑ{

dn̂ιn̂ῑ, c†ι
}
= −n̂ῑc

†
ι d{

cῑn̂ιn̂, d†
}
= −n̂ιd†cῑ{

cῑn̂ιn̂, c†ι
}
= −n̂c†ι cῑ{

cῑn̂ιn̂, c†ῑ
}
= n̂ιn̂.

(5.4.3)

And so the equations of motion read

(ω̃κ
d − 2U) 〈〈dn̂ιn̂ῑ; x†〉〉κ

= χκ
dn̂ιn̂ῑ,x − t

(
〈〈cῑn̂ιn̂; x†〉〉κ + 〈〈cιn̂ῑn̂; x†〉〉κ

)
−V

[
∑
k

(
〈〈c†ι ckdn̂ῑ; x†〉〉κ − 〈〈c†kcιdn̂ῑ; x†〉〉κ

)
+ ∑̄

k

(
〈〈c†

ῑ
ck̄dn̂ι; x†〉〉κ − 〈〈c†k̄c

ῑ
dn̂ι; x†〉〉κ

)]
(5.4.4)

(ω̃κ
ῑ −U) 〈〈cῑn̂ιn̂; x†〉〉κ = χκ

cῑn̂ιn̂,x − t〈〈dn̂ιn̂ῑ; x†〉〉κ

−V

[
∑̄
k

〈〈ck̄n̂ιn̂; x†〉〉κ + ∑
k

(
〈〈c†ι ckcῑn̂; x†〉〉κ − 〈〈c†kcιcῑn̂; x†〉〉κ

)]
(5.4.5)

where

χR/A
dn̂ιn̂ῑ,x

= 〈n̂ιn̂ῑ〉 δd,x −
〈

n̂ῑc
†
ι d
〉

δcι,x −
〈

n̂ιc
†
ῑ d
〉

δcῑ,x

χR/A
cῑn̂ιn̂,x = 〈n̂ιn̂〉 δcῑ,x −

〈
n̂c†ι cῑ

〉
δcι,x −

〈
n̂ιd†cῑ

〉
δd,x

χ≷
dn̂ιn̂ῑ,x

= g≷d
∣∣ω̃±d ∣∣2〈〈dn̂ιn̂ῑ; x†〉〉A

χ≷
cῑn̂ιn̂,x = g≷cῑ

∣∣ω̃±ῑ ∣∣2〈〈cῑn̂ιn̂ῑ; x†〉〉A.

(5.4.6)

As the calculations are done for zero temperature, the four-operator expectation values can
be decomposed exactly according to Wick’s theorem:〈

a†bc†d
〉

T=0
=
〈

a†b
〉 〈

c†d
〉
−
〈

a†d
〉 〈

c†b
〉

For T 6= 0Γ the procedure is analogous to the two-operator expectation values, i.e. integration
over the corresponding lesser four-operator Green’s function, where there are now two
possibilities. For example, the following expectation value can be calculated as

− 1
2πi

∫ ∞

−∞
dω 〈〈c†ι cῑd; c†ῑ 〉〉

< =
〈

n̂ῑc
†
ι d
〉
=
〈

c†ι dn̂ῑ

〉
=

1
2πi

∫ ∞

−∞
dω 〈〈dn̂ῑ; c†ι 〉〉

<. (5.4.7)

Yet, in order to obtain results that do not violate the mentioned symmetry relations, the
four-operator Green’s functions need to be symmetrized as well. According to section 5.1
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this requires Green’s function counterparts where the second operator is evolved, which is
not done in this thesis, as for this case the calculations are restricted to zero temperature.

At this point all functions generated by the hopping terms in the parameter t and by the
interaction terms in U are taken into account, i.e. the hierarchy containing only system
operators is closed and the approximations only affect the Green’s functions containing one
lead operator.

Approximation Scheme 1 is discarded for this order of truncation due to the bad results in
the previous order. The additional approximations for Scheme 2 read

V ∑̄
k

〈〈ck̄n̂ιn̂; x†〉〉R/A ≈ −∆R/A〈〈cῑn̂ιn̂; x†〉〉R/A

V ∑
k
〈〈c†ι ckdn̂ῑ; x†〉〉R/A ≈ −∆R/A〈〈dn̂ιn̂ῑ; x†〉〉R/A

V ∑
k
〈〈c†kcιdn̂ῑ; x†〉〉R/A ≈ +∆R/A〈〈dn̂ιn̂ῑ; x†〉〉R/A

V ∑
k
〈〈c†ι ckcῑn̂; x†〉〉R/A ≈ −∆R/A〈〈cῑn̂ιn̂; x†〉〉R/A

V ∑
k
〈〈c†kcιcῑn̂; x†〉〉R/A ≈ +∆R/A〈〈cῑn̂ιn̂; x†〉〉R/A

(5.4.8)

and

V ∑̄
k

〈〈ck̄n̂ιn̂; x†〉〉≷ ≈ −
(

∆≷
k̄ 〈〈cῑn̂ιn̂; x†〉〉A + ∆R〈〈cῑn̂ιn̂; x†〉〉≷

)
V ∑

k
〈〈c†ι ckdn̂ῑ; x†〉〉≷ ≈ −

(
∆≷

k 〈〈dn̂ιn̂ῑ; x†〉〉A + ∆R〈〈dn̂ιn̂ῑ; x†〉〉≷
)

V ∑
k
〈〈c†kcιdn̂ῑ; x†〉〉≷ ≈ +

(
∆≷

k̄ 〈〈dn̂ιn̂ῑ; x†〉〉A + ∆R〈〈dn̂ιn̂ῑ; x†〉〉≷
)

V ∑
k
〈〈c†ι ckcῑn̂; x†〉〉≷ ≈ −

(
∆≷

k 〈〈cῑn̂ιn̂; x†〉〉A + ∆R〈〈cῑn̂ιn̂; x†〉〉≷
)

V ∑
k
〈〈c†kcιcῑn̂; x†〉〉≷ ≈ +

(
∆≷

k̄ 〈〈cῑn̂ιn̂; x†〉〉A + ∆R〈〈cῑn̂ιn̂; x†〉〉≷
)

,

(5.4.9)

where for Scheme 3 again differences in hermitian counterparts are set to zero:

〈〈c†ι ckdn̂ῑ; x†〉〉κ − 〈〈c†kcιdn̂ῑ; x†〉〉κ ≈ 〈〈c†ι ckcῑn̂; x†〉〉κ − 〈〈c†kcιcῑn̂; x†〉〉κ ≈ 0

The results for the current and occupation number are shown in figure 5.6. The current and
occupation curves from Scheme 2 are again quite similar to the previous order of truncation,
but Scheme 3 gives notable changes: The occupation numbers do not rise linearly any more,
but get suppressed for higher values of U. The discrepancy in the currents is predominant
in the low-voltage regime and is more serious for higher values of U as the lead current
seems to get suppressed. The intra-system current, on the contrary, starts out linearly for all
values of U and with the same slope as obtained in the HF and exact results in the self-dual
point. However, the negative differential conductance is still barely present and the current
saturates. As can be seen from the inset in figure 5.6c, the curve for U = 3Γ features two
maxima and the other curves an inflection point before their maximum value.
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(a) Current in Scheme 2 (b) Occupation in Scheme 2

(c) Current in Scheme 3 (d) Occupation in Scheme 3

Figure 5.6.: Current and occupation number on site a for Scheme 2 and 3, t = 0.5Γ and
different values of U. The solid lines represent I and the dashed lines Ilead. The
curve for U = 3Γ in (c) is the only one to show two distinct maxima, which is
highlighted in the inset. The curves for lower values of U show an inflection
point before the maximum. The current curves in Scheme 3 show no negative
values. The legend in (b) refers to all subfigures.

The spectral functions are shown in figure 5.7. The results for Scheme 2 are again quite
similar to previous results, but the spectral function on the central site shows negative values
already for the equilibrium. For Scheme 3, the arising central peak is more pronounced and
reaches over the side peaks for higher voltages.
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(a) Spectral function on site a (b) Spectral function on site d

(c) Spectral function on site a (d) Spectral function on site d

Figure 5.7.: Spectral functions for Scheme 2 (upper) and 3 (lower) on site a and d for t = 0.5Γ,
U = 2Γ and different voltages. Negative values are present for all voltages in
the spectral function in (b). The legend in (b) refers to all subfigures.

Finally, the HF results from the previous chapter as well as the exact solution are compared
to the current from the last order of truncation with Scheme 3, as this is the only solution
that matches at least the low-voltage regime. The comparison plot is shown in figure 5.8.

The intra-system current I initially follows the linear behaviour of the exact solution, but
already bends away for voltages around ∆µ = 0.5Γ. As can be seen in the inset in figure 5.8,
it reaches its maximum just around the intersection with the HF solutions around ∆µ = 5Γ,
where a small negative differential conductance sets in, but tends to saturate as previous
solutions.

The lead current Ilead shows a similar behaviour, but it seems suppressed for lower voltages
as the other lead-current solutions in this order.
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Figure 5.8.: Current comparison between HF results in wide-band limit (black dashed line),
the intra-system (I, blue circles) and lead current Ilead (red asterisks) from the
last order truncation with Scheme 3 for t = 0.5Γ and U = 2Γ. The black solid
line shows the exact solution from [16] as reference. The inset focuses on the
high-voltage behaviour of I and Ilead.

5.5. Summing Over Bath Quantities

The lead current, some approximations presented in the previous section as well as orders
of truncation that go beyond the presented solutions require the evaluation of bath related
quantities. For the sake of completeness and for possible future investigations on the present
topic some of these occurring terms shall be evaluated in this section for a flat-band bath in
wide-band limit, which is defined through the density of states

ρ(ε) = lim
D→∞

1
2D

Θ(D− |ε|)

and the hybridization

V = lim
D→∞

√
2D
π

.
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A simple result is obtained from summing over squared retarded or advanced single-particle
Green’s functions

∑
k

V2

ω̃2
k
= ∑

k

V2

(ω− εk ± iη)2 ,

namely that they vanishVII,

→ lim
D→∞

V2

2D

∫ D

−D
dε

1

(ω− ε± iη)2 =
1
π

lim
D→∞

(
1

ω− D± iη
− 1

ω + D± iη

)
= 0.

The same is true for shifted terms

∑
k

V2

(ω− εk ± iη) (ω + c− εk ± iη)

as they can be split into

1
(ω− εk ± iη) (ω + c− εk ± iη)

=
1
c

(
1

ω− εk ± iη
− 1

ω + c− εk ± iη

)
.

All other occurring bath sums contain expectation values of k-dependent operators, that can
be calculated using the relation between expectation value and lesser Green’s function,〈

B†A
〉
=

1
2πi

∫ ∞

−∞
dω 〈〈A; B†〉〉<,

and the corresponding exact equations of motion for x 6= ckL,R

〈〈ckL,R ; x†〉〉R/A = −V
〈〈ca,b; x†〉〉R/A

ω̃±k

〈〈x; c†kL,R
〉〉R/A = −V

〈〈x; c†a,b〉〉
R/A

ω̃±k

〈〈ckL,R ; x†〉〉< = −V

(
g<kL,R
〈〈ca,b; x†〉〉A +

〈〈ca,b; x†〉〉<

ω̃+
kL,R

)

〈〈x; c†kL,R
〉〉< = −V

(
g<kL,R
〈〈x; c†a,b〉〉

R +
〈〈x; c†a,b〉〉

<

ω̃−kL,R

)
(5.5.1)

and for occurring double sums in k, k′

〈〈ck′ ; c†k〉〉
R/A =

1
ω̃±k′

(
δk′k −V〈〈ca′,b′ ; c†k〉〉

R/A
)

=
δk′k

ω̃±k′
+ V2

〈〈ca′,b′ ; c†a,b〉〉
R/A

ω̃±k′ ω̃
±
k

〈〈ck′ ; c†k〉〉
< = g<k′ ω̃

−
k′ 〈〈ck′ ; c†k〉〉

A −V
〈〈ca′,b′ ; c†k〉〉

<

ω̃+
k′

= g<k′

(
δk′k + V2

〈〈ca′,b′ ; c†a,b〉〉
A

ω̃−k

)
+

V2

ω̃+
k′

(
g<k 〈〈ca′,b′ ; c†a,b〉〉

R +
〈〈ca′,b′ ; c†a,b〉〉

<

ω̃−k

)
,

(5.5.2)

VIISee section A.1.6 in the appendix.
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which relate the bath Green’s functions to the calculated system functions.

An important sum term, which is needed for the lead current, is the direct sum over
expectation values containing only one bath operator,

V ∑
k

〈
x†ck

〉
= V ∑

k

(
1

2πi

∫ ∞

−∞
dω 〈〈ck; x†〉〉<

)

= − 1
2πi

∫ ∞

−∞
dω

(
〈〈ca,b; x†〉〉AV2 ∑

k
g<k + 〈〈ca,b; x†〉〉< ∑

k

V2

ω̃+
k

)

= − 1
2πi

∫ ∞

−∞
dω
(

∆<
L,R〈〈ca,b; x†〉〉A + ∆+〈〈ca,b; x†〉〉<

)
,

(5.5.3)

where the sums over k include only the non-interacting Green’s functions and thus give the
hybridization function ∆, as defined in (3.2.1) and (3.2.2). In the wide-band limit ∆ has a
simple form, in particular its retarded and advanced part ∆± = ∓i does not depend on ω
and so the second part of the integral is proportional to the definition for expectation values
used above, thus

V ∑
k

〈
x†ck

〉
= i
〈

x†ca,b

〉
− 1

π

∫ ∞

−∞
dω fL,R(ω)〈〈ca,b; x†〉〉A. (5.5.4)

The remaining integral needs to be evaluated numerically once in each iterationVIII during
the self-consistency loop. The calculation for

〈
c†kx
〉

is analogous and leads to

V ∑
k

〈
c†kx
〉
= −i

〈
c†a,bx

〉
− 1

π

∫ ∞

−∞
dω fL,R(ω)〈〈x; c†a,b〉〉

R. (5.5.5)

With these two results the current over the lead junction is obtained as

Ileads = ieV ∑
k∈L

(〈
c†ack

〉
−
〈

c†kca

〉)
= ie

[
2i 〈n̂a〉 −

1
π

∫ ∞

−∞
dω fL,R(ω)

(
〈〈ca; c†a〉〉A − 〈〈ca; c†a〉〉R

)]
= −2e

[
〈n̂a〉 −

1
π

∫ ∞

−∞
dω fL,R(ω) Im

{
〈〈ca; c†a〉〉A

}]
.

(5.5.6)

A little more effort, analytically as well as numerically, has to be done for sums over products
of non-interacting lead Green’s functions gκak

and lead expectation values,

V ∑
k

gκak
(ω)

〈
x†ck

〉
,

where κ = R,A,<,> and ak is a product of operators containing a lead operator. For
retarded and advanced components, where ωc = ω + c depends on ak (c ∈ R), and
assuming that the lead operator in ak is an annihilation operator ck, the function can be
written as

gR/A
ak

(ω) = gR/A
k (ωc)

VIIIIf needed in the approximations.
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and so

V ∑
k

gR/A
k (ωc)

〈
x†ck

〉
= V ∑

k

〈
x†ck

〉
ωc − εk ± iη

= − V2

2πi ∑
k

1
ωc − εk ± iη

∫ ∞

−∞
dω′

(
g<kL,R
〈〈ca,b; x†〉〉A +

〈〈ca,b; x†〉〉<

ω̃+
kL,R

)

= − V2

2πi

∫ ∞

−∞
dω′

2i fL,R〈〈ca,b; x†〉〉A ∑
k

η

(ωc − εk ± iη)
[
(ω′ − εk)

2 + η2
]

+ 〈〈ca,b; x†〉〉< ∑
k

1
(ωc − εk ± iη) (ω′ − εk + iη)


= −V2

2D
1

2πi

∫ ∞

−∞
dω′

2i fL,R〈〈ca,b; x†〉〉A
∫ D

−D
dε

η

(ωc − ε± iη)
[
(ω′ − ε)2 + η2

]
+ 〈〈ca,b; x†〉〉<

∫ D

−D
dε

1
(ωc − ε± iη) (ω′ − ε + iη)

 .

(5.5.7)

The two ε-integrals have an exact solutionIX for D → ∞, namely∫ ∞

−∞
dε

η

(ωc − ε± iη)
[
(ω′ − ε)2 + η2

] =
π

ωc −ω′ ± 2iη∫ ∞

−∞
dε

1
(ωc − ε± iη) (ω′ − ε + iη)

= − 2πi
ωc −ω′ − 2iη

δ±,−

(5.5.8)

and so the evaluation reduces to

V ∑
k

〈
x†ck

〉
ωc − εk ± iη

= − 1
π

∫ ∞

−∞
dω′

(
fL,R(ω

′)〈〈ca,b; x†〉〉A − 〈〈ca,b; x†〉〉<δ±,−
ωc −ω′ ± 2iη

)
. (5.5.9)

In the same way, the sums for the hermitian conjugate expectation value lead to:

V ∑
k

〈
c†kx
〉

ωc − εk ± iη
= − 1

π

∫ ∞

−∞
dω′

(
fL,R(ω

′)〈〈ca,b; x†〉〉R + 〈〈ca,b; x†〉〉<δ±,+

ωc −ω′ ± 2iη

)
(5.5.10)

Defining the result from (5.5.9) as function of ωc, namely

F± (ωc) := V ∑
k

〈
x†ck

〉
ωc − εk ± iη

,

sums in +εk, appearing in the equations of motion for Green’s function containing a bath
creation operator c†k in the first-operator position, give just

V ∑
k

〈
x†ck

〉
ωc + εk ± iη

= −V ∑
k

〈
x†ck

〉
−ωc − εk ∓ iη

= −F∓ (−ωc) , (5.5.11)

IXSee section A.2.6 in the appendix
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where the superscript has changed from ± to ∓. So in general, as the numerical evaluation
is expensive, the kind of integral is only evaluated once per iteration and involved Green’s
function for ωc = ω and is then flipped (ω → −ω) and/or translated (ω → ωc) if
possible.

The sums including lesser and greater functions g<(ω) are obtained in the same way (here
the ± sign stands for a creation (upper) or an annihilation (lower) operator in ak):

V ∑
k

g≷ak(ω)
〈

x†ck

〉
= 2iP≷

ak (ω)V ∑
k

η
〈

x†ck
〉

(ωc ± εk)
2 + η2

= −
P≷

ak (ω)

π

∫ ∞

−∞
dω′

V2

2D

∫ D

−D
dε

η

(ωc ± ε)2 + η2

(
2iη fL,R (ω′)

(ω′ − ε) + η2 〈〈ca,b; x†〉〉Aω′ +
〈〈ca,b; x†〉〉<ω′
ω′ − ε + iη

)

= −
P≷

ak (ω)

π

∫ ∞

−∞
dω′

1
π

(
2i fL,R

(
ω′
)
〈〈ca,b; x†〉〉Aω′

∫ D

−D
dε

η

(ωc ± ε)2 + η2

η

(ω′ − ε)2 + η2

+〈〈ca,b; x†〉〉<ω′
∫ D

−D
dε

η

(ω′ − ε + iη)
[
(ωc ± ε)2 + η2

]


(5.5.12)

For clarity, the argument of the occurring Green’s functions is indicated explicitly as
subscript. Again, the two integrals have an exact solution for D → ∞, namelyX∫ ∞

−∞
dε

η

(ωc ± ε)2 + η2

η

(ω′ − ε)2 + η2
=

2ηπ

(∓ωc −ω′)2 + (2η)2∫ ∞

−∞
dε

η

(ω′ − ε + iη)
[
(ωc ± ε)2 + η2

] = − π

∓ωc −ω′ − 2iη
,

(5.5.13)

eventually leading to

V ∑
k

g≷ak(ω)
〈

x†ck

〉
= −

P≷
ak (ω)

π

∫ ∞

−∞
dω′

(
2πi fL,R

(
ω′
)
〈〈ca,b; x†〉〉Aω′

1
π

2η

(∓ωc −ω′)2 + (2η)2 −
〈〈ca,b; x†〉〉<ω′
∓ωc −ω′ − 2iη

)

= −2iP≷
ak (ω) fL,R (∓ωc) 〈〈ca,b; x†〉〉A∓ωc

+
P≷

ak (ω)

π

∫ ∞

−∞
dω′

〈〈ca,b; x†〉〉<ω′
∓ωc −ω′ − 2iη

,

(5.5.14)

where the property of the nascent delta distribution

lim
η→0+

1
π

2η

(∓ωc −ω′)2 + (2η)2
η̃=2η
= lim

η̃→0+

1
π

η̃

(∓ωc −ω′)2 + η̃2
→ δ

(
∓ωc −ω′

)
is used in the last stepXI.

XSee section A.2.6 in the appendix.
XINote that the limit η → 0+ should actually be taken at the end of the calculation for all terms together.

As shown in section 4.2 the limit can result in non-trivial solutions in regions where the retarded/advanced
hybridization function tends to or is equal zero. In this case, as the calculation is done explicitly for the
wide-band limit, i.e. ∀ω, ∆±(ω) 6= 0, it is assumed that it is legitimate to do this very limit separately and use
the property of the delta distribution.
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The sum with the hermitian conjugate gives

V ∑
k

g≷ak(ω)
〈

c†kx
〉
= −2iP≷

ak (ω) fL,R (∓ωc) 〈〈ca,b; x†〉〉R∓ωc
+

P≷
ak (ω)

π

∫ ∞

−∞
dω′

〈〈ca,b; x†〉〉<ω′
∓ωc −ω′ + 2iη

.

(5.5.15)

Through approximations the following double sums may appear, where

G = 〈〈ca′,b′ ; c†a,b〉〉

depending on the combination of k ∈ B and k′ ∈ B’, where B(′) = L,R. Inserting the equation
of motion (5.5.2)

V2 ∑
k,k′

〈
c†kck′

〉
ωc − εk′ ± iη

=
1

2πi

∫ ∞

−∞
dω′∑

k′

V2

ωc − εk′ ± iη

[
g<k′
(

δBB’ + GA∆−
)
+

1
ω̃+

k′

(
GR∆<

B + G<∆−
)] (5.5.16)

the sum over k can be done, resulting in the hybridization functions, and δkk′ becomes δBB’,
which accounts for the anticommutator if k and k′ are both in the same lead. The remaining
sum over k′ gives the same expressions as in (5.5.7), and so for the wide-band limit

V2 ∑
k,k′

〈
c†kck′

〉
ωc − εk′ ± iη

=
1

2πi

∫ ∞

−∞
dω′

1
π

[
2πi

fB’ (ω
′)
(
δBB’ + iGA(ω′)

)
ωc −ω′ ± 2iη

− 2πi
2i fB (ω

′) GR (ω′) + iG< (ω′)

ωc −ω′ − 2iη
δ±,−

]

=
1
π

∫ ∞

−∞
dω′

[(
δBB’ + iGA(ω′)

)
fB’ (ω

′)−
(
2i fB (ω

′) GR (ω′) + iG< (ω′)
)

δ±,−
ωc −ω′ ± 2iη

]
(5.5.17)

With the same argumentation as for (5.5.11) and defining

F̃± (ωc) := V2 ∑
k,k′

〈
c†kck′

〉
ωc − εk′ ± iη

the following is found for the sum with +εk:

V2 ∑
k,k′

〈
c†kck′

〉
ωc + εk′ ± iη

= −V2 ∑
k,k′

〈
c†kck′

〉
−ωc − εk′ ∓ iη

= −F̃∓ (−ωc)

In the sum above, the common index k′ links the non-interacting Green’s function to the
annihilation operator; the calculation of a sum linking to the creation operator is similar, but
there is a little caveat in the δk′k term. Where the first sum has

V2g<k′ ∑
k

(
δk′k + GA V2

ω̃−k

)
= V2g<k′

(
δk′k′δBB’ + GA∆−

)
= V2g<k′

(
δBB’ + GA∆−

)
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the term in the second has

V2 ∑
k

g<k

(
δk′k + GA V2

ω−k′

)
= V2g<k′ δBB’ + GA V2

ω−k′
∆<

B

the rest is analogous and leads to

V2 ∑
k,k′

〈
c†k′ck

〉
ωc − εk′ ± iη

=
1
π

∫ ∞

−∞
dω′

[(
δBB’ − iGR(ω′)

)
fB’ (ω

′)−
(
2i fB (ω

′) GA (ω′)− iG< (ω′)
)

δ±,−
ωc −ω′ ± 2iη

]
.

(5.5.18)

The integral expression in this section are explicitly derived for leads in the wide-band limit.
The procedure is analogous for different types of leads, yet, the k-sums (ε-integrals) may no
longer be solvable exactly. In this case, the numerical effort increases, as the expressions
result in double (ω and ε) or triple (ω, ε and ε′) integrals that need to be evaluated in each
iteration.
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Beyond Presented Orders

The four-operator Green’s functions 4kGj involving one lead operator c(†)k are completely left
out, which is mainly due to the two problems addressed in the beginning of section 5.3. As
outlook, they shall be examined in more detail to suggest a possible solution.

The first is a potential symmetry problem, stemming from terms like

〈〈d†cιck; x†〉〉 − 〈〈c†ι dck; x†〉〉,

where one Green’s function is approximated and the other is considered through its equation
of motion. Such terms can roughly be interpreted as hermitian counterparts of each other
considering a transport-related operator

(
d†cι − c†ι d

)
ck, cf. equation (3.1.4), where the

current operator Î ∝
(

d†cι − c†ι d
)

. By trying to include the equations of motion for both,
it turns out that they branch out very strongly, i.e. each new equation creates a similar
situation, and the formal symmetry issues terminate only if the complete hierarchy of the
4kGj is taken into account. This leads to twenty-four equations of motionI that close in terms
of those Green’s functions. An approximation with scheme 2 or 3 to the remaining higher
and two-lead-operator Green’s functions leads then to

4kGj ≈ χ(εk, ω; 〈. . .〉k) + ∑
i

Ri(εk, ω)4Gi,

where 4Gi denotes four-operator Green’s functions containing only operators on site a, b
and d, Ri is an analytical rational function in εk and ω, and χ is the inhomogeneous term
containing k-dependent expectation values. With the above expression, the equation sets for
the two-operator Green’s functions close as well and a solution can be obtained. As the 4kGj
appear always in k-sums, terms like

∑
k

Ri(εk, ω) and ∑
k

χ(εk, ω; 〈. . .〉k)

need to be evaluated. The sums over the rational functions lead to exactly solvable integrals
if the lead density of states is constant (like in the wide-band), yet the inhomogeneities are
more complicated and need to be evaluated numerically in the self-consistency loop.

I Due to the system’s left-right symmetry, the structure of the resulting equation set can be described by
twelve commutators, which are shown in section A.1.10 in the appendix. For the explicit Green’s functions,
though, the inhomogeneities still need to be determined.
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The second problem addressed earlier relates to the inhomogeneous terms like

V ∑
k

〈
d†ck

〉
ω− εk ± iη

that seem to develop a logarithmic divergence for η → 0+ if evaluated at T = 0Γ. They
converge for finite temperatures, but in this thesis no implementation for these direct sums
is found that does not lead to severe symmetry violations that persist despite the restoration
procedure.

However, these sums do not only converge for finite temperatures, but also if a non-vanishing
imaginary part is added in the denominator. So, solving the first problem, i.e. taking into
account all 4kGj, may solve this divergence automatically, as this provides imaginary parts
from the hybridization function.

Conclusion

The derivation of the equation of motion for non-equilibrium Green’s functions was dis-
cussed in detail and extended by an alternative form. It was further shown that the original
formulation leads to inconsistencies.

The resulting equations for steady-state solutions were then applied to the IRLM as a
benchmark model, starting by discussing the modelling of the leads and setting up the
fundamental equation sets for two-operator Green’s functions in the IRLM. A first formal
solution is found in a Hartree-Fock like approximation to higher Green’s functions, which
was used to discuss some symmetry properties.

Quantitative results for occupation number and spectral functions are obtained for tight-
binding leads, where the possibility of isolated states and how to deal with them is shown.
Further numerical results for the current are presented, which are in fairly good agreement
with literature values obtained from other methods.

In the same approximation, some analytical expressions for leads in the wide-band limit
were obtained and self-consistencies could be solved graphically. The non-interacting case
contains no self-consistencies and could be solved exactly, which allowed for comparison
with certain emerging effects in current and occupation numbers in the interacting self-
consistent solutions.

It turned out that higher truncation levels lead to symmetry violations in the resulting
Green’s function and in turn to unphysical observables. A symmetry restoration was
discussed and applied, and numerical results were presented for different levels of truncation
and approximation.

In the course of adding more Green’s functions to the equation sets, the spectral functions
gained more features present in – although not exact – literature results and the current could
be calculated for higher interactions strengths without convergence problems or ambiguities
in the solutions. However, a clear convergence tendency towards the exact solution for
the current could not be observed. In fact, the simple Hartree-Fock like approximation
produced the best results for the current curve compared to the exact solution.

104



6. Outlook and Conclusion

Nevertheless, the presented method is a proper and consistent non-equilibrium theory
in first place, which is not based on assumptions like weak interaction or coupling in its
derivation, and therefore does not restrict possible systems. The sets of equations for simple
approximations offer analytical expressions that give insights into the system’s behaviour
and, finally, quantitative results from self-consistencies do not require high numerical or
computational effort.
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Appendix A.

Mathematical Appendix

This appendix is mostly intended as a mathematical support for the main text and here and
there as collection of additional aspects. Therefore, it is partially provided with less text and
some notations may vary.

A.1. Derivations, Proofs and Auxiliary Calculations

A.1.1. Dyson Series of the Time Evolution Operator

Additional information about the time evolution operator can be found on pages 108ff. in [7]
or pages 56ff. in [26].

The time evolution operator U (t, t0) must satisfy the initial value problem consisting of
Schrödinger equation and continuity relation, so

i
∂

∂t
U (t, t0) = H(t)U (t, t0) with U (t0, t0) = 1.

Integration from t0 to t gives the formal solution∫ t

t0

dt1
∂

∂t1
U (t1, t0) = −i

∫ t

t0

dt1 H(t1)U (t1, t0)

U (t, t0)−U (t0, t0) = −i
∫ t

t0

dt1 H(t1)U (t1, t0)

→ U (t, t0) = 1− i
∫ t

t0

dt1 H(t1)U (t1, t0).

(A.1.1)

Iterated reinsertion of the formal solution gives the following sum of iterated integrals

U (t, t0) = 1− i
∫ t

t0

dt1 H(t1)

[
1− i

∫ t1

t0

dt2 H(t2)U (t2, t0)

]
= 1− i

∫ t

t0

dt1 H(t1) + (−i)2
∫ t

t0

dt1

∫ t1

t0

dt2 H(t1)H(t2) + . . .

+ (−i)n
∫ t

t0

dt1 . . .
∫ tn−1

t0

dtn H(t1) . . . H(tn)

=:
∞

∑
n=0

(−i)n
∫ t

t0

dt1 . . .
∫ tn−1

t0

dtn H(t1) . . . H(tn),

(A.1.2)
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where the n = 0 term is defined to be 1.

The terms are now rewritten by reversing the order of integration in order to set each upper
integration limit equal to t.

For the n = 2 term the integration is changed as follows∫ t

t0

dt1

∫ t1

t0

dt2 . . . =
∫ t

t0

dt2

∫ t

t2

dt1 . . . ,

which can be explained graphically as the equivalence of summing (integrating) slices of
either dy or dx in a triangular plane, in order to calculate the area (see chapter 3 in [26]). So
the double integral can be written as∫ t

t0

dt1

∫ t1

t0

dt2 H(t1)H(t2) =
∫ t

t0

dt2

∫ t

t2

dt1 H(t1)H(t2)

=
∫ t

t0

dt1

∫ t

t1

dt2 H(t2)H(t1),
(A.1.3)

where the dummy variables t1 and t2 are interchanged in the last step. Further, the
integration limits can be replaced by a step function∫ t

t2

dt1 . . . =
∫ t

t0

dt1 Θ(t1 − t2) . . . .

And so another form for the double integral is∫ t

t0

dt1

∫ t1

t0

dt2 H(t1)H(t2) =
1
2

[∫ t

t0

dt2

∫ t

t0

dt1 Θ(t1 − t2)H(t1)H(t2)

+
∫ t

t0

dt1

∫ t

t0

dt2 Θ(t2 − t1)H(t2)H(t1)

]
=

1
2

∫ t

t0

dt1

∫ t

t0

dt2 [Θ(t1 − t2)H(t1)H(t2) + Θ(t2 − t1)H(t2)H(t1)]

=
1
2

∫ t

t0

dt1

∫ t

t0

dt2 T [H(t1)H(t2)] ,

(A.1.4)

where T is the time-ordering operator and no additional sign for fermions is necessary, as
the number of creation- and annihilation operators in the Hamiltonian is always even.

In principle, the same strategy can be pursued for the nth term, i.e. starting from the
innermost time tn and iteratively changing the order of integration with its left neighbours.
This is rather cumbersome since it has to be done for each time ti≤n in order to reach t as
an overall upper integration limit. A shorter approach is to consider the absolute order of
times that is implied by the integration limits in one iterated integral, namely

∫ t

t0

dt1 . . .
∫ tn−1

t0

dtn ⇒



t0 ≤ tn ≤ tn−1
...

∧ t0 ≤ tn−i ≤ tn−i−1 ⇔ t0 ≤ tn ≤ . . . ≤ tn−i ≤ . . . ≤ t1 ≤ t.
...

∧ t0 ≤ t1 ≤ t
(A.1.5)
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The desired inversion can be obtained directly as

t0 ≤ tn ≤ . . . ≤ tn−i ≤ . . . ≤ t1 ≤ t⇔



t2 ≤ t1 ≤ t
∧ t3 ≤ t2 ≤ t

...
∧ ti+1 ≤ ti ≤ t

...
∧ tn ≤ tn−1 ≤ t
∧ t0 ≤ tn ≤ t,

(A.1.6)

and the corresponding integral reads∫ t

t0

dtn

∫ t

tn
dtn−1 . . .

∫ t

ti+1

dti . . .
∫ t

t3

dt2

∫ t

t2

dt1 .

The lower integration limits are adjusted in each integral with appropriate step functions, so
that ∫ t

t0

dtn . . .
∫ t

ti+1

dti . . .
∫ t

t2

dt1 →
∫ t

t0

dtn . . .
∫ t

t0

dti Θ(ti − ti+1) . . .
∫ t

t0

dt1 Θ(t1 − t2).

After reversing the order of integration in the nth term, so that each upper integration limit
is equal to t, the equivalent of equation (A.1.3) can be considered for this term and there are
n! possibilities (permutations) to rename the dummy time labels, so

→(−i)n
∫ t

t0

dtn . . .
∫ t

t0

dt1 Θ(tn ≤ . . . ≤ t1)H(t1) . . . H(tn)

=
(−i)n

n!

∫ t

t0

dtn . . .
∫ t

t0

dt1 ∑
perms.

Θ(tn ≤ . . . ≤ t1)H(t1) . . . H(tn)

=
(−i)n

n!

∫ t

t0

dtn . . .
∫ t

t0

dt1 T [H(t1) . . . H(tn)] .

(A.1.7)

And finally the complete sum is written as

U (t, t0) =
∞

∑
n=0

(−i)n
∫ t

t0

dt1 . . .
∫ tn−1

t0

dtn H(t1) . . . H(tn)

=
∞

∑
n=0

(−i)n

n!

∫ t

t0

dtn . . .
∫ t

t0

dt1 T [H(t1) . . . H(tn)]

=: T exp
[
−i
∫ t

t0

dt′ H(t′)
]

.

(A.1.8)

A.1.2. Commutation of A with the Density Operator

Recalling the definition of the operator Aa in the Dirac picture,

Aa = fa(ta)A0,
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and defining

N̂ := ∑
j

β j(ε j − µj)n̂j

ϕ̃ := ∑
i

λ̃iβi(εi − µi),

where j runs over all particles and i only over the A related particles, the following is
obtained,[

Aa, N̂
]
= fa(ta)

[
A0, N̂

]
= fa(ta)∑

i
βi(εi − µi) [A0, n̂i]︸ ︷︷ ︸

λ̃i A0

= fa(ta)ϕ̃A0 = ϕ̃Aa,

as the commutators with n̂j that are not part of i are zero. The density operator ρ0 can be
written as

Z0ρ0 = e−N̂ =
∞

∑
m=0

(
−N̂

)m

m!
(A.1.9)

and so

AaZ0ρ0 =
∞

∑
m=0

(−1)m

m!
AaN̂m. (A.1.10)

Rewriting
AaN̂ =

[
Aa, N̂

]
+ N̂ Aa =

(
ϕ̃ + N̂

)
Aa

AaN̂m = AaN̂ N̂m−1 =
(

ϕ̃ + N̂
)

AaN̂m−1

=
(

ϕ̃ + N̂
)2 AaN̂m−2

...

=
(

ϕ̃ + N̂
)k AaN̂m−k,

(A.1.11)

where for m = k
AaN̂m =

(
ϕ̃ + N̂

)m Aa.

And so the commutation results in

AaZ0ρ0 =
∞

∑
m=0

(−1)m

m!
AaN̂m

=
∞

∑
m=0

(−1)m

m!
(

ϕ̃ + N̂
)m Aa

= e−(ϕ̃+N̂ )Aa

= e−ϕ̃Z0ρ0Aa

(A.1.12)

and thus
→ Aaρ0 = e−ϕ̃ρ0Aa.
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A.1.3. Heaviside Relation

The relation

Θ(ta − tb)
∫ ta

tb

dt . . . =
∫ ∞

−∞
dt Θ(ta − t)Θ(t− tb) . . .

can be explained by having a closer look at the left-hand side expression case-by-case:

Θ(ta − tb)
∫ ta

tb

dt . . . =

{∫ ta
tb

dt . . . if ta > tb

0 otherwise
(A.1.13)

The two step functions on the right-hand side restrict the integration to the region where
they overlap to one, which is only given for ta > tb. This reproduces exactly the left-hand
side for the cases ta > tb and ta < tb, as can be seen in figure A.1.

t
tb ta

(a) ta > tb

t
tbta

(b) ta < tb

Figure A.1.: Schematics of the two step functions Θ(ta − t) (dotted line) and Θ(t − tb)
(dashed line).

In the case of ta = tb both sides give zero as∫ ta

ta
. . . = 0.

A.1.4. Particle-Hole Symmetry

The IRLM Hamiltonian is invariant under the particle-hole transformation

xn → (−1)nx†−n ,

that means explicitly

ca,b → −c†b,a

d→ d†

ck∈L → c†k∈R

(A.1.14)

and so

c†ad→ −cbd† = d†cb

c†ack∈L → −cbc†k∈R = c†k∈Rcb

n̂a = c†aca → (−cb)(−c†b) = cbc†b = 1− n̂b.

(A.1.15)
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The hopping terms in t and V are directly reproduced, but the PHS transformed H0 and
interaction terms impose some restrictions on the on-site energies εi as

H0 → εd + εa + εb + ∑
k∈L

εk + ∑
k∈R

εk

−
(

εdn̂ + εan̂b + εbn̂a + ∑
k∈L

εk∈Rn̂k∈R + ∑
k∈R

εk∈Ln̂k∈L

) (A.1.16)

and

H1 → Ht + HV + U (2− n̂a − n̂b − 2n̂ + n̂an̂ + n̂bn̂) . (A.1.17)

If the density of states in the leads is symmetric around zero, the lead energy sum becomes
a symmetric integral over an antisymmetric function, which is zero, and so:

∑
k∈L

εk = ∑
k∈R

εk = 0

Equating coefficients with the original Hamiltonian for the rest leads to

εL
!
= εR

εd + εa + εb + 2U !
= 0

−εd − 2U !
= εd

−εa −U !
= εb

−εb −U !
= εa

(A.1.18)

which leads to (apart from the obvious)

εa + εb = −U

where the εa = εb is chosen to keep the complete system symmetric.

The k-sums appearing in the HF Hamiltonian equal

∑
k∈L

εk 〈n̂k〉 = ∑
k∈R

εk (1− 〈n̂k〉)

= ∑
k∈R

εk︸ ︷︷ ︸
=0

− ∑
k∈R

εk 〈n̂k〉

→ ∑
k∈L

εk 〈n̂k〉+ ∑
k∈R

εk 〈n̂k〉 = 0.

(A.1.19)

A.1.5. Bare Bath Sum

For the limit D → ∞, the complex logarithm is rewritten as

ln (z) = ln (|z|) + i (arg (z) + 2kπ) for k = 0,
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where the argument function is defined as

arg(z) =

+ arccos
(

Re{z}
|z|

)
if Im{z} ≥ 0

− arccos
(

Re{z}
|z|

)
otherwise.

And so

ln (ω + D± iη) = ln(|. . .|)± i arccos

 ω + D√
(w + D)2 + η2

, (A.1.20)

where
lim

D→∞

ω + D√
(w + D)2 + η2

= 1 and arccos(1) = 0

and therefore

→ ln (ω + D± iη) = lim
D→∞

ln
(√

(w + D)2 + η2
)

. (A.1.21)

For the other term

→ ln (ω− D± iη) = lim
D→∞

ln
(√

(w− D)2 + η2
)
± iπ (A.1.22)

is obtained as

lim
D→∞

ω− D√
(w− D)2 + η2

= −1 and arccos(−1) = π.

The divergent terms cancel out in the limit and so

ln (ω + D± iη)− ln (ω− D± iη) = ∓iπ + lim
D→∞

(
ln
(√

. . .
)
− ln

(√
. . .
))

= ∓iπ. (A.1.23)

A.1.6. Squared Bath Sum

The integral result from the squared bath sum is split into real and imaginary part, so

1
ω− D± iη

− 1
ω + D± iη

=
ω− D

(ω− D)2 + η2
− ω + D

(ω + D)2 + η2

∓ iη

(
1

(ω− D)2 + η2
− 1

(ω + D)2 + η2

)
,

(A.1.24)

where it is clearer to see that the single summands give all zero in the limit D → ∞.

113



Appendix A. Mathematical Appendix

A.1.7. TB Chain

Alternatively the hybridization function can be determined from the equation of motion for
the uncoupled, semi-infinite tight-binding chain in position space. With the Hamiltonian

HTB = εTB

N

∑
i=0

n̂i − t0

N

∑
i=0

(
c†i ci+1 + c†i+1ci

)
and N → ∞

the equations of motion form the equation set

〈〈c0; c†0〉〉 = g0

(
1− t0〈〈c1; c†0〉〉

)
〈〈ci; c†0〉〉 = −t0gi

(
〈〈ci−1; c†0〉〉+ 〈〈ci+1; c†0〉〉

)
〈〈cN; c†0〉〉 = −t0gN〈〈cN−1; c†0〉〉

(A.1.25)

resulting in a continued fraction for the Green’s function on site i = 0, so

→ 〈〈c0; c†0〉〉 =
1

z0 −
1

z1 −
1

z2 −
1

. . . −
1

zN

(A.1.26)

where

zi :=
1

t0gi
=

1
t0
(ω− εTB ± iη) =

ω̃±

t0
.

This continued fraction can be expressed in a closed form for N → ∞ and any complex
number zi = zi+1 =: z ∈ C \ {0}, as it becomes self-similar and can be solved algebraically:

〈〈c0; c†0〉〉
N→∞
=

1

z−
1

z−
1

z−
1

z−
1
. . .

(A.1.27)

Assuming convergenceI of the infinite continued fraction, it can be assigned a finite (complex)
value G, which leads to a quadratic equation that can be solved in a closed form.

G =
1

z− G
→ G2 − zG + 1 = 0

G1,2 =
1
2

(
z±

√
z2 − 4

) (A.1.28)

I An infinite continued fraction converges if its convergents, i.e. the resulting finite fraction, when the
recursion stops at n, tends to a finite limit. This is obviously the case for any z ∈ C \ {0}.
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Reinserting all definitions and choosing the convergent (ω → ∞) solution G1 leads eventually
to:

〈〈c0; c†0〉〉 =
1
2

(
z +

√
z2 − 4

)
=

1
2t0

(
ω̃± +

√
(ω̃±)2 − 4t2

0

)
=

1
2t0

(
ω̃± ∓ i

√
4t2

0 − (ω̃±)2
) (A.1.29)

A.1.8. Imaginary Part of the Hybridization Function

The exact limit η → 0+ for a single hybridization function, i.e. not appearing in a Green’s
function, can be related to the density of states. This derivation is valid for general baths, as
the density of states ρ(ε) is always a real-valued function.

Im

{
∑
k

V2

ω− εk ± iη

}
= Im

{
V2
∫ ∞

−∞
dε

ρ(ε)

ω− ε± iη

}
= V2

∫ ∞

−∞
dε ρ(ε) Im

{
1

ω− ε± iη

}
= V2

∫ ∞

−∞
dε ρ(ε)

∓η

(ω− ε)2 + η2
η→0+
= ∓V2πρ(ω)

(A.1.30)

The result is obtained as the fraction acts like a delta distribution.

A.1.9. Outer Solution to the Occupation Number n

In order to analyse the spectral function in the outer region, the relation

∆±TB =
1

ω± − ∆±TB

for the tight-bindingII hybridization function is used and the advanced and retarded Green’s
function becomes

〈〈d; d†〉〉 =
(

ω± − 2|τ|2

ω± − ∆±

)−1

=
(

ω± − 2|τ|2∆±
)−1

.

So for the spectral function Add(ω)

πAdd(ω) = Im
{
〈〈d; d†〉〉A

}
=
∣∣∣〈〈d; d†〉〉

∣∣∣2 Im

{
1

〈〈d; d†〉〉R

}

=
η − 2|τ|2 Im{∆+}∣∣∣ω± − 2|τ|2∆±

∣∣∣2
=

η + 2|τ|2 Im{∆−}∣∣∣ω± − 2|τ|2∆±
∣∣∣2

(A.1.31)

IIThis relation results from the continued fraction arising in the alternative derivation in section A.1.7 in
the appendix.
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is obtained, where the numerator becomes

η + 2|τ|2 Im
{

∆−
}
→
(

1 + 2|τ|2
)
O(η) for |ω| > 2.

The denominator becomes∣∣∣ω± − 2|τ|2∆±
∣∣∣2 =

∣∣∣∣(1− |τ|2
)

ω± ± i|τ|2
√

4− (ω±)2
∣∣∣∣2

=
(

1− |τ|2
)2 (

ω2 + η2
)
+ |τ|4

∣∣∣4− (ω±)2
∣∣∣

− i|τ|2
(

1− |τ|2
)(

ω+
√

4− (ω−)2 −ω−
√

4− (ω+)2
)

=
(

1− |τ|2
)2 (

ω2 + η2
)
+ |τ|4

∣∣∣(ω±)2 − 4
∣∣∣

+ sgn(ω)2|τ|2
(

1− |τ|2
)

Re
{

ω+
√
(ω−)2 − 4

}
(A.1.32)

and can further be written as

=
(

1− |τ|2
)2 (

η2 + fη(ω)
)

, (A.1.33)

where

fη(ω) = ω2 +
|τ|4(

1− |τ|2
)2

∣∣∣(ω±)2 − 4
∣∣∣+ sgn(ω)

2|τ|2

1− |τ|2
Re
{

ω+
√
(ω−)2 − 4

}
.

This function can be expressed as the following square in the limit

lim
η→0+

fη(ω) =

(
|ω|+ |τ|2

1− |τ|2
√

ω2 − 4

)2

=: f̃ 2(ω) if |ω| > 2

and develops the roots

ω1,2 = ± 2|τ|2√
2|τ|2 − 1

that are outside the bandwidth, i.e. |ω1,2| > 2, for |τ|2 > 1. So in total the spectral function
Add(ω) outside the bandwidth is proportional to

πAdd(ω) ∝
1(

1− |τ|2
)2 lim

η→0+

(
1 + 2|τ|2

)
O(η)

fη(ω) + η2 .

As mentioned above, in the limit η → 0+ the function fη(ω) becomes the real-valued square
of a function f̃ (ω) with roots at ω1,2 and the function values of the ratio become

O(η)
fη(ω) + η2 =

{
O
(

1
η

)
→ ∞ if ω = ω1,2 ∧ |ω| > 2

O (η)→ 0 otherwise.
(A.1.34)
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The rational function acts hence like a sum of delta distributions,

lim
η→0+

(
1 + 2|τ|2

)
O(η)

fη(ω) + η2 ∝ Z
(
|τ|2

) δ (ω−ω1) + δ (ω−ω2)

2
,

where the normalizing constant is given by the definite integral

Z
(
|τ|2

)
= lim

η→0+

∫
|ω|>2

dω
η + 2|τ|2 Im{∆−}

fη(ω) + η2

which has no exact solutionIII. However, it can be determined via

1 =
∫ ∞

−∞
dω Add(ω) =

∫ 2

−2
dω Add(ω) +

∫
|ω|>2

dω Add(ω)

as the inner solution is known. For |τ|2 ≤ 1 the outer integral must vanish, as∫
|ω|>2

dω Add(ω)
∣∣∣
|τ|2≤1

= 1−
∫ 2

−2
dω Add(ω)

∣∣∣
|τ|2≤1

= 1− 1 = 0.

As shown above, |ω1,2| > 2 for |τ|2 > 1 and therefore the integration over each delta
distribution gives just one and the normalizing constant can be determined via

1 =
∫ 2

−2
dω Add(ω)

∣∣∣
|τ|2>1

+
∫
|ω|>2

dω Add(ω)
∣∣∣
|τ|2>1

=
1

2|τ|2 − 1
+

Z
(
|τ|2

)
π
(

1− |τ|2
)2

∫
|ω|>2

dω
δ(ω−ω1) + δ(ω−ω2)

2

=
1

2|τ|2 − 1
+

Z
(
|τ|2

)
π
(

1− |τ|2
)2

(A.1.35)

and so in total

→ Z
(
|τ|2

)
=


2π(|τ|2−1)(1−|τ|2)

2

2|τ|2−1
if |τ|2 > 1

0 otherwise.
(A.1.36)

With (4.2.8) the exact limit for the spectral function Add(ω) can be written as

Add(ω) =
1
π

|τ|2 Re
{√

4−ω2
}

ω2
(

1− 2|τ|2
)
+ 4|τ|4

+
Z
(
|τ|2

)
2π
(

1− |τ|2
)2 (δ(ω−ω1) + δ(ω−ω2))

|τ|2>1
=

1
π

|τ|2 Re
{√

4−ω2
}

ω2
(

1− 2|τ|2
)
+ 4|τ|4

+
|τ|2 − 1

2|τ|2 − 1
(δ(ω−ω1) + δ(ω−ω2)) .

(A.1.37)
IIIAt least to the knowledge of the author with his humble skills in the art of integration.
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A.1.10. Commutators for Four-Operator Terms Containing a Lead
Operator

For the sake of completeness, the corresponding commutators are listed here. The appearing
combinations containing a number operator are

[ckn̂, H1] = −t
(

d†cιck − c†ι dck + d†cῑck − c†ῑ dck

)
−Vcιn̂

[ck̄n̂ι, H1] = −t
(

c†ι dck̄ − d†cιck̄

)
−V

[
cῑn̂ι + ∑

k

(
c†

ι
ckck̄ − c†kc

ι
ck̄

)]
[ckn̂ι, H1] = −t

(
c†ι dck − d†cιck

)
−V ∑

k′

(
c†ι ck′ck − c†k′cιck

)
.

(A.1.38)

The combinations with central-site hoppings are

[
d†cῑck, H1

]
= −t

(
ckn̂− ckn̂ῑ − c†ι cῑck

)
+ Ud†ckcῑn̂ι −V

(
d†cῑcι + ∑̄

k

d†ck̄ck

)
[
d†cιck, H1

]
= −t

(
ckn̂− ckn̂ι − c†ῑ cιck

)
+ Ud†ckcιn̂ῑ −V ∑

k′
d†ck′ck

[
c†ι ckd, H1

]
= −t

(
ckn̂− ckn̂ι − c†ι cῑck

)
+ Uc†ι ckdn̂ῑ −V

(
dn̂ι + ∑

k′
c†k‘dck

)
[
c†

ι
ck̄d, H1

]
= −t

(
ck̄n̂− ck̄n̂ι − c†

ι
c

ῑ
ck̄

)
+ Uc†

ι
ck̄dn̂

ῑ
−V

(
c†ι cῑd + ∑

k
c†kdck̄

)
.

(A.1.39)

Combinations in left and right site are

[
c†ι ckcῑ, H1

]
= −t

(
d†cῑck − c†ι dck

)
−V

(
cῑn̂ι + ∑

k′
c†k′cῑck + ∑̄

k

c†
ι
ckck̄

)
[
c†

ι
ck̄c

ῑ
, H1

]
= −t

(
d†cῑck̄ − c†ι dck̄

)
−V

(
∑̄
k′

c†
ι
ck̄ck̄′ + ∑

k
c†kc

ῑ
ck̄

)
[
c†kcιcῑ, H1

]
= −t

(
c†kdcῑ − c†kdcι

)
−V

(
−cῑn̂ι + ∑

k′
c†kck′cῑ + ∑̄

k

c†kc
ι
ck̄

)
+ 2Uc†kcιcῑn̂.

(A.1.40)

And two more connecting central, left/right site and lead:

[
c†kdcι, H1

]
= −tc†kcῑcι + U

(
c†kdcι + c†kdcιn̂ῑ

)
−V

(
dn̂ι + ∑

k′
c†kdck′

)
[
c†kdcῑ, H1

]
= −tc†kcιcῑ + U

(
c†kdcῑ + c†kdcῑn̂ι

)
−V

(
c†ι cῑd + ∑̄

k

c†kdck̄

) (A.1.41)
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A.2. Exact Integral Solutions

A.2.1. Lorentz Curve

The integral over a Lorentz curve (= Lorentzian) is needed for the correct normalizing
constant for g< functions in terms of delta distributions. So rewriting∫ ∞

−∞
dε

η

(ω− ε)2 + η2 =
1
η

∫ ∞

−∞
dε

1(
ω−ε

η

)2
+ 1

and using the substitution

u =
ω− ε

η
and η du = −dε

the integral reduces to the inverse-tangent solution

→ −
∫

du
1

u2 + 1
= − arctan(u)

and so the area of Lorentzian is always

→
∫ ∞

−∞
dε

η

(ω− ε)2 + η2 = − arctan
(

ω− ε

η

)∣∣∣∣∣
∞

−∞

= π.

A.2.2. Evaluation of the Tight-Binding Integral

For the tight-binding hybridization the following integral is needed

I±(ω±, µ) =
∫ µ

−2
dε

√
4− ε2

ω± − ε
=
∫ µ

−2
dε

√
4− ε2

ω− ε± iη
, (A.2.1)

where −2 < µ ≤ 2. The substitution ε = 2 sin(u) and dε = 2 cos(u)du gives

= 2
∫ u′

−π
2

du cos(u)

√
4− 4 sin2(u)

ω± − 2 sin(u)

= 4
∫ u′

−π
2

du
cos2(u)

ω± − 2 sin(u)
,

(A.2.2)

where u′ = arcsin
(µ

2

)
≤ π

2 . A further substitution v = tan
(u

2

)
, 2 dv = sec2 (u

2

)
and the

relations

sin(u) =
2v

v2 + 1
, cos(u) =

1− v2

v2 + 1
, du =

2 dv
v2 + 1

(A.2.3)
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lead to

= 4
∫ v′

−1

2 dv
v2 + 1

(
1−v2

v2+1

)2

ω± − 4v
1+v2

= 8
∫ v′

−1
dv

(
1− v2)2

(1 + v2)
3
(

ω± − 4v
1+v2

) ,

(A.2.4)

where v′ = tan
(

u′
2

)
≤ 1. The integrand in v is split into its partial fractions

(
1− v2)2

(1 + v2)
3
(

ω± − 4v
1+v2

)
=

iω±

8

(
1

v + i
− 1

v− i

)
+

i
4

[
1

(v + i)2 −
1

(v− i)2

]
+

4− (ω±)
2

4 (v2ω± − 4v + ω±)
.

(A.2.5)

The integration of the first two terms is straightforward and the main integral is reduced
to

8
∫

dv
(
1− v2)2

(1 + v2)
3
(

ω± − 4v
1+v2

) = iω± [ln (v + i)− ln (v− i)] + 2i
(

1
v− i

− 1
v + i

)

+ 2
[
4−

(
ω±
)2
] ∫

dv
1

v2ω± − 4v + ω±
.

(A.2.6)

By completing the square in the last denominator the remaining integral can be written as∫
dv

1
v2ω± − 4v + ω±

=
∫

dv
1(

v
√

ω± − 2√
ω±

)2
+ (ω±)2−4

ω±
(A.2.7)

and further solved by the substitution z = v
√

ω± − 2√
ω±

and dz =
√

ω± dv:

→ 1

a
√

ω±

∫
dz

1

1 + z2

a

=

√
a

a
√

ω±
arctan

(
z√
a

)
, (A.2.8)

where

a =
(ω±)

2 − 4
ω±

.

Simplifying the complex square roots gives for the prefactor
√

a
a
√

ω±
=

∓i√
4− (ω±)2

and for the argument

z√
a
=

v
√

ω± − 2√
ω±√

a
= ∓i

vω± − 2√
4− (ω±)2

.
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The complete solution in v reads then

8
∫

dv
(
1− v2)2

(1 + v2)
3
(

ω± − 4v
1+v2

) = iω± [ln (v + i)− ln (v− i)] + 2i
(

1
v− i

+
1

v + i

)

∓ 2i
4− (ω±)

2√
4− (ω±)2

arctan

∓i
vω± − 2√
4− (ω±)2


= 2ω±

(
arctan(v)− π

2

)
− 4

v2 + 1

+ 2i
√

4− (ω±)2 arctan

i
vω± − 2√
4− (ω±)2

 ,

(A.2.9)

where the logarithmic relation for the inverse tangent is used in the last step.

Transforming back from v = tan
(u

2

)
to u, with

− 4
v2 + 1

→ − 4
tan2

(u
2

)
+ 1

= −4 cos2
(u

2

)
= −2− 2 cos(u),

gives

ω± (u− π)− 2− 2 cos(u) + 2i
√

4− (ω±)2 arctan

i
ω± tan

(u
2

)
− 2√

4− (ω±)2

 , (A.2.10)

and back from u = arcsin
(

ε
2

)
to ε, using the relations

cos
(

arcsin
( ε

2

))
=

√
1− ε2

4
, tan

(u
2

)
=

1− cos(u)
sin(u)

,

gives

c + ω± arcsin
( ε

2

)
−
√

4− ε2 + 2i
√

4− (ω±)2 arctan

i
2 (ω± − ε)−ω±

√
4− ε2

ε

√
4− (ω±)2

,

(A.2.11)

where
c = −πω± − 2.
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Finally the definite integral can be evaluated and gives

∫ µ

−2
dε

√
4− ε2

ω− ε± iη
=

ω± arcsin
(µ

2

)
−
√

4− µ2 + 2i
√

4− (ω±)2 arctan

i
2 (ω± − µ)−ω±

√
4− µ2

µ

√
4− (ω±)2


−

−πω±

2
+ 2i

√
4− (ω±)2 arctan

−i
ω± + 2√
4− (ω±)2


=

πω±

2
+ ω± arcsin

(µ

2

)
−
√

4− µ2

+ 2i
√

4− (ω±)2

arctan

i
2 (ω± − µ)−ω±

√
4− µ2

µ

√
4− (ω±)2

+ arctan

i
ω± + 2√
4− (ω±)2

 .

(A.2.12)

By rewriting the inverse tangent via arctan(z) = i
2 ln

(
1−iz
1+iz

)
the last term in the square

brackets can be expressed as

i
2

ln


√

4− (ω±)2 + (ω± + 2)√
4− (ω±)2 − (ω± + 2)

µ

√
4− (ω±)2 +

[
2 (ω± − µ)−ω±

√
4− µ2

]
µ

√
4− (ω±)2 −

[
2 (ω± − µ)−ω±

√
4− µ2

]
 ,

and with
a +

b
−a +

√
a2 − b

= −
√

a2 − b

→ i
2

ln

4− µω± −
√

4− µ2
√

4− (ω±)2

2 (ω± − µ)

 .

And finally

I±(ω±, µ) =
πω±

2
+ ω± arcsin

(µ

2

)
−
√

4− µ2

−
√

4− (ω±)2 ln

4− µω± −
√

4− µ2
√

4− (ω±)2

2 (ω± − µ)

 ,
(A.2.13)
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where for µ = 2

1
2π

I±(ω, 2) =
πω±

2
+

πω±

2
−
√

4− (ω±)2 ln
(

4− 2ω±

2ω± − 4

)
=

1
2π

(
πω± −

√
4− (ω±)2(±iπ)

)
=

1
2

(
ω± ∓ i

√
4− (ω±)2

)

=
1
2

ω± ∓ i

√√√√− (ω±)2

(
1− 4

(ω±)2

)
=

1
2

(
ω± + (∓i)2ω±

√
1− 4

(ω±)2

)

=
ω±

2

(
1−

√
1− 4

(ω±)2

)
.

(A.2.14)

A.2.3. Inner Solution to the Occupation Number n

The integrand for the inner expectation value is split into partial fractions that can be related
to I± by

|τ|2
√

4−ω2

ω2
(

1− 2|τ|2
)
+ 4|τ|4

=
i
√

1− 2|τ|2

4
(

1− 2|τ|2
) (√4−ω2

ã−ω
−
√

4−ω2

−ã−ω

)
, (A.2.15)

where

ã = i
2|τ|2√

1− 2|τ|2

and the integral reads then

∫ µ

−2
dω

|τ|2
√

4−ω2

ω2
(

1− 2|τ|2
)
+ 4|τ|4

=
i
√

1− 2|τ|2

4
(

1− 2|τ|2
) (I± (ã, µ)− I± (−ã, µ)

)
. (A.2.16)

The complete inner expectation value becomes hereby

〈n̂〉inner =
1

2π

i
√

1− 2|τ|2

4
(

1− 2|τ|2
) (I± (ã, µ)− I± (−ã, µ) + I± (ã,−µ)− I± (−ã,−µ)

)

=
1

2π

i
√

1− 2|τ|2

4
(

1− 2|τ|2
) (2πã + 2ã arcsin

(µ

2

)
+ 2ã arcsin

(
−µ

2

)
+ f (z)

)

=
1

2π

i
√

1− 2|τ|2

4
(

1− 2|τ|2
) (2πã + f (z)) ,

(A.2.17)
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where f (z) is the sum of the four combinations in z(±ã,±µ) from the above integrals and
evaluates to

f (z) = −2iπ
√

4− ã2 sgn
(

1− 2|τ|2
)

.

So the expectation value becomes

〈n̂〉inner = −

√
1− 2|τ|2

4
(

1− 2|τ|2
)
 2|τ|2√

1− 2|τ|2
− sgn

(
1− 2|τ|2

)√√√√4 +
4|τ|4

1− 2|τ|2


= − |τ|2

2
(

1− 2|τ|2
) +

∣∣∣1− |τ|2∣∣∣
2
(

1− 2|τ|2
) sgn

(
1− 2|τ|2

)√
1− 2|τ|2

√
1

1− 2|τ|2

= − |τ|2

2
(

1− 2|τ|2
) +

∣∣∣1− |τ|2∣∣∣
2
(

1− 2|τ|2
) sgn

(
1− 2|τ|2

)
sgn

(
1− 2|τ|2

)

= − |τ|2

2
(

1− 2|τ|2
) +

∣∣∣1− |τ|2∣∣∣
2
(

1− 2|τ|2
)

=
|τ|2 −

∣∣∣1− |τ|2∣∣∣
2
(

2|τ|2 − 1
) .

(A.2.18)

A.2.4. WBL Integrals in HF with partial fractions

The integrals occurring in section 4.3 have similar integrands for which a decomposition in
partial fractions is needed and based on the factorization∣∣∣ω (ω± i)− 2|τ|2

∣∣∣2 =

[
ω2 +

1
2
(b + c)

] [
ω2 +

1
2
(b− c)

]
.

Following relations are useful and hold for b and c:

(b + c)(b− c) = b2 − c2 = 1− 8|τ|2 + 16|τ|4 − (1− 8|τ|2) = 16|τ|4 (A.2.19)

and
(b + c− 2)(b− c− 2) = b2 − c2 + 4(1− b) = 16|τ|2

(
1 + |τ|2

)
(A.2.20)

So the decompositions

1∣∣∣ω (ω± i)− 2|τ|2
∣∣∣2 =

1
c

[
1

ω2 + 1
2 (b− c)

− 1
ω2 + 1

2 (b + c)

]
(A.2.21)

and

ω2∣∣∣ω (ω± i)− 2|τ|2
∣∣∣2 =

ω2

c

[
1

ω2 + 1
2 (b− c)

− 1
ω2 + 1

2 (b + c)

]

=
1
2c

[
− b− c

ω2 + 1
2 (b− c)

+
b + c

ω2 + 1
2 (b + c)

] (A.2.22)
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are easily found. The somewhat larger terms need a little more work, but eventually

|τ|2

(ω2 + 1)
[
ω2 + 1

2 (b + c)
] [

ω2 + 1
2 (b− c)

]
=

1

4
(

1 + |τ|2
)
(ω2 + 1)

− 2|τ|2

c(b− c− 2)
[
ω2 + 1

2 (b− c)
] + 2|τ|2

c(b + c− 2)
[
ω2 + 1

2 (b + c)
]

=
1

4
(

1 + |τ|2
) { 1

ω2 + 1
+

1
2c

[
b− c− 2

ω2 + 1
2 (b + c)

− b + c− 2
ω2 + 1

2 (b− c)

]}
(A.2.23)

and ∣∣∣ω(ω± i)− |τ|2
∣∣∣2

(ω2 + 1)
∣∣∣ω (ω± i)− 2|τ|2

∣∣∣2 =
ω4 + ω2

(
1− 2|τ|2

)
+ |τ|4

(ω2 + 1)
[
ω + 1

2 (b + c)
] [

ω + 1
2 (b− c)

]
=

1

4
(

1 + |τ|2
)
2 + |τ|2

ω2 + 1

+
1
2c

 (b + c)
(

2 + 3|τ|2
)
+ 8|τ|4

ω2 + 1
2 (b + c)

−
(b− c)

(
2 + 3|τ|2

)
+ 8|τ|4

ω2 + 1
2 (b− c)



(A.2.24)

is found. All these integrands are now split into sums of terms ∝ (ω2 + const.)−1 whose
indefinite integrals are proportional to the inverse tangent as∫

dω
1

ω2 + a
=

1√
a

arctan
(

ω√
a

)
. (A.2.25)

And so the following integrals can be easily evaluated:

Integral no. 1

I1(ω) :=
∫

dω
1∣∣∣ω (ω± i)− 2|τ|2

∣∣∣2
=

1
c

[ √
2√

b− c
arctan

(
ω
√

2√
b− c

)
−
√

2√
b + c

arctan

(
ω
√

2√
b + c

)] (A.2.26)

with the value

I1(−∞) = − π

c
√

2

(
1√

b− c
− 1√

b + c

)
= − π

4c|τ|2
√

2

(√
b + c−

√
b− c

)
= − π

4|τ|2
(A.2.27)

as (√
b + c−

√
b− c

)2
= b + c + b− c− 8|τ|2 = 2− 16|τ|2 = 2c2.
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Integral no. 2

I2(ω) :=
∫

dω
|τ|2

(ω2 + 1)
∣∣∣ω (ω± i)− 2|τ|2

∣∣∣2
=

1

4
(

1 + |τ|2
) {arctan(ω)

+
1

c
√

2

[
b− c− 2√

b + c
arctan

(
ω
√

2√
b + c

)
− b + c− 2√

b− c
arctan

(
ω
√

2√
b− c

)]}
(A.2.28)

with the value

I2(−∞) = − 1

4
(

1 + |τ|2
) {π

2
+

π

2c
√

2

[
b− c− 2√

b + c
− b + c− 2√

b− c

]}
(A.2.29)

Defining the last two terms as

x :=
b− c− 2√

b + c
− b + c− 2√

b− c

=
1

4|τ|2
[
(b− c− 2)

√
b− c− (b + c− 2)

√
b + c

] (A.2.30)

and solving the square, it evaluates to

x2 =
1

16|τ|4
32|τ|4c2 = 2c2

→ x = c
√

2.
(A.2.31)

And so

I2(−∞) = − 1

4
(

1 + |τ|2
) (π

2
+

π

2c
√

2
c
√

2

)

= − π

4
(

1 + |τ|2
) .

(A.2.32)
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Integral no. 3

I3(ω) :=
∫

dω

∣∣∣ω(ω± i)− |τ|2
∣∣∣2

(ω2 + 1)
∣∣∣ω (ω± i)− 2|τ|2

∣∣∣2
=

1

4
(

1 + |τ|2
)
(2 + |τ|2

)
arctan(ω)

+
1

c
√

2

 (b + c)
(

2 + 3|τ|2
)
+ 8|τ|4

√
b + c

arctan

(
ω
√

2√
b + c

)

−
(b− c)

(
2 + 3|τ|2

)
+ 8|τ|4

√
b− c

arctan

(
ω
√

2√
b− c

)

(A.2.33)

with the value

I3(−∞) =
1

4
(

1 + |τ|2
)
− (2 + |τ|2

) π

2

− π

4c

 (b + c)
(

2 + 3|τ|2
)
+ 8|τ|4√

1
2 (b + c)

−
(b− c)

(
2 + 3|τ|2

)
+ 8|τ|4√

1
2 (b− c)


(A.2.34)

Again, defining the last two terms as

x :=
(b + c)

(
2 + 3|τ|2

)
+ 8|τ|4√

1
2 (b + c)

−
(b− c)

(
2 + 3|τ|2

)
+ 8|τ|4√

1
2 (b− c)

=

√
2

4|τ|2
{[

(b + c)
(

2 + 3|τ|2
)
+ 8|τ|4

]√
b− c−

[
(b− c)

(
2 + 3|τ|2

)
+ 8|τ|4

]√
b + c

}
(A.2.35)

and arranging the terms in the square, results in

x2 =
2

16|τ|4
32|τ|4

(
2 + |τ|2

)2
c2

= 4c2
(

2 + |τ|2
)2

→ x = 2c
(

2 + |τ|2
)

.

(A.2.36)

And so

I3(−∞) = − 1

4
(

1 + |τ|2
) [(2 + |τ|2

) π

2
+

π

4c
2c
(

2 + |τ|2
)]

= −
π
(

2 + |τ|2
)

4
(

1 + |τ|2
) .

(A.2.37)
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A.2.5. WBL Integrals in HF with substitutions

Some of the integrals require suitable substitutions, which are found in the following.

Integral with substitution for f1∫
dω

ω∣∣∣ω (ω± i)− 2|τ|2
∣∣∣2 =

∫
dω

ω

ω4 +
(

1− 4|τ|2
)

ω2 + 4|τ|4

The substitution u = ω2 and du = 2ω dω in the integrand leads to

→ 1
2

∫
du
[
u2 +

(
1− 4|τ|2

)
u + 4|τ|4

]−1

and completing the square in the denominator yields

u2 +
(

1− 4|τ|2
)

u + 4|τ|4 =

(
u− 2|τ|2 + 1

2

)2

+
1
4

(
8|τ|2 − 1

)
.

A further substitution v = u− 2|τ|2 + 1
2 , dv = du and definition a = 1

4

(
8|τ|2 − 1

)
reduces

the integral again to an inverse tangent term.

→ 1
2

∫
dv

1
v2 + a

=
1

2
√

a
arctan

(
v√
a

)
=

1√
8|τ|2 − 1

arctan

2u− 4|τ|2 + 1√
8|τ|2 − 1


And so, the definite integral is obtained as

→ 1√
8|τ|2 − 1

arctan

2ω2 − 4|τ|2 + 1√
8|τ|2 − 1

∣∣∣∣∣∣
µ

−∞

=
1√

8|τ|2 − 1

arctan

2µ2 − 4|τ|2 + 1√
8|τ|2 − 1

− π

2

 .

(A.2.38)

Integral for Real Part in Total Energy

For the integral in the HF energy calculation

I4(ω) :=
∫

dω Re
{
〈〈ca; c†a〉〉

}
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again, the partial fractions for the integrand are needed:

Re
{
〈〈ca; c†a〉〉

}
=

ω
[
ω4 +

(
1− 3|τ|2

)
ω2 − |τ|2

(
1− 2|τ|2

)]
(ω2 + 1)

∣∣∣ω (ω± i)− 2|τ|2
∣∣∣2

=
ω
[
ω4 +

(
1− 3|τ|2

)
ω2 − |τ|2

(
1− 2|τ|2

)]
(ω2 + 1)

[
ω2 + 1

2(b + c)
] [

ω2 + 1
2(b− c)

]
=

ω

2 (ω2 + 1)
+

1
4c


(

b + c + 4|τ|2
)

ω

ω2 + 1
2(b + c)

−

(
b− c + 4|τ|2

)
ω

ω2 + 1
2(b− c)


=

ω

2 (ω2 + 1)
+

1
4c

[
(1 + c)ω

ω2 + 1
2(b + c)

− (1− c)ω
ω2 + 1

2(b− c)

]
(A.2.39)

Now the integrand consists only of terms ∝ ω/(ω2 + a), which can be solved via the
substitution u = a + ω2 and du = 2ω dω yielding∫

dω
ω

ω2 + a
=

1
2

∫
du

1
u
=

1
2

ln
(

ω2 + a
)

.

So in total the integral reads

I4(ω) =
1
4

ln
(

ω2 + 1
)
+

1
8c

[
(1 + c) ln

(
ω2 +

1
2
(b + c)

)
− (1− c) ln

(
ω2 +

1
2
(b− c)

)]
=

1
4

ln
(

ω2 + 1
)
+

1
8c

[
c ln

(
ω4 +

(
1− 4|τ|2

)
ω2 + 4|τ|2

)
+ ln

(
ω2 + 1

2 (b + c)
ω2 + 1

2 (b− c)

)]

=
1
4

ln
(

ω2 + 1
)
+

1
8

ln
(

ω4 +
(

1− 4|τ|2
)

ω2 + 4|τ|4
)
+

1
8c

ln

(
ω2 + 1

2(b + c)
ω2 + 1

2(b− c)

)
.

(A.2.40)

The last term can be rewritten via the relation arctan(z) = i
2 ln

(
i+z
i−z

)
, namely

1
8c

ln

(
ω2 + 1

2(b + c)
ω2 + 1

2(b− c)

)
=

1
8c

ln

2ω2 + b +
√

1− 8|τ|2)

2ω2 + b−
√

1− 8|τ|2


=

1
8c

ln

2ω2 + b + i
√

8|τ|2 − 1)

2ω2 + b− i
√

8|τ|2 − 1


=

1
8c

ln
(

z + i
z− i

)
,

(A.2.41)

where

z =
2ω2 + b√
8|τ|2 − 1

.
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Using ln(−x) = ln(x) + ln(−1) = ln(x) + iπ

1
8c

ln
(

z + i
z− i

)
=

1
8c

ln
(
− i + z

i− z

)
=

1
8c

(
ln
(

i + z
i− z

)
+ iπ

)
=

i
8c

(−2 arctan(z) + π)

=
1

8
√

8|τ|2 − 1

−2 arctan

 2ω2 + b√
8|τ|2 − 1

+ π


(A.2.42)

And finally, ignoring the constant term,

I4(ω) =
1
4

ln
(

ω2 + 1
)
+

1
8

ln
(

ω4 +
(

1− 4|τ|2
)

ω2 + 4|τ|4
)

− 1

4
√

8|τ|2 − 1
arctan

 2ω2 + b√
8|τ|2 − 1

 .
(A.2.43)

A.2.6. Epsilon Integrals in Bath Sums

Occurring in R/A Sums

Partial fraction decomposition of the first integrand gives

η

(ωc − ε± iη)
[
(ω′ − ε)2 + η2

] =± i
2(ωc −ω′)

1
ω′ − ε± iη

∓ i
2 (ωc −ω′ ± 2iη)

1
ω′ − ε∓ iη

+
η

(ωc −ω′) (ωc −ω′ ± 2iη)
1

ωc − ε± iη

(A.2.44)

and for the second integrand

1
(ωc − ε± iη) (ω′ − ε + iη)

=


1

ωc−ω′

(
1

ω′−ε+iη −
1

ωc−ε+iη

)
if + iη

1
ωc−ω′−2iη

(
1

ω′−ε+iη −
1

ωc−ε−iη

)
if − iη.

(A.2.45)

The separate terms in ε are all of the same kind as the bare bath sum and the integral for
D → ∞ gives only ±iπ, independent of ωc or ω′. So the second integral becomes zero for
+iη. And summarizing, the results are∫ ∞

−∞
dε

η

(ωc − ε± iη)
[
(ω′ − ε)2 + η2

] =
π

ωc −ω′ ± 2iη∫ ∞

−∞
dε

1
(ωc − ε± iη) (ω′ − ε + iη)

= − 2iπ
ωc −ω′ − 2iη

δ±,−.

(A.2.46)
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Occurring in Lesser Sums

Again, partial fraction decomposition leads to

η

(ω′ − ε + iη)
[
(ωc ± ε)2 + η2

] =
η

(ω′ − ε + iη)
[
(∓ωc − ε)2 + η2

]
=− i

2 (∓ωc −ω′)

1
∓ωc − ε + iη

+
i

2 (∓ωc −ω′ − 2iη)
1

∓ωc − ε− iη

+
η

(∓ωc −ω′) (∓ωc −ω′ − 2iη)
1

ω′ − ε + iη

(A.2.47)

and

η

(ωc ± ε)2 + η2

η

(ω′ − ε)2 + η2
=

η

(∓ωc − ε)2 + η2

η

(ω′ − ε)2 + η2

=
iη

2 (∓ωc −ω′)

×
[

1
∓ωc −ω′ + 2iη

(
1

∓ωc − ε + iη
− 1

ω′ − ε− iη

)
− 1
∓ωc −ω′ − 2iη

(
1

∓ωc − ε− iη
− 1

ω′ − ε + iη

)]
.

(A.2.48)

With the same argumentation as before, the results read∫ ∞

−∞
dε

η

(ωc ± ε)2 + η2

η

(ω′ − ε)2 + η2
=

2ηπ

(∓ωc −ω′)2 + (2η)2∫ ∞

−∞
dε

η

(ω′ − ε + iη)
[
(ωc ± ε)2 + η2

] = − π

∓ωc −ω′ − 2iη
.

(A.2.49)
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