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Abstract

Quantitative Magnetic Resonance Imaging (qMRI) techniques aim at generating images

with absolute values independent of the used measurement protocol. Most T1 quantifica-

tion methods suffer from long acquisition times and methods allowing for faster T1 map-

ping are subject of current research. Model-based Reconstruction (MBR) is a promising

method in terms of scan time reduction and accuracy of fit. The present work analyzes

model-based T1 quantification methods based on the Variable Flip Angle (VFA) model

in terms of their stability to different scanning scenarios, focusing especially on their ac-

celeration potential. Working on either image or k-space data an Iterative Regularized

Gauss-Newton (IRGN)-framework is used for the solution of the problem. T1 estimates

are in overall good agreement with reference values for numerical phantom and in vivo

data. Superiority of TGV 2
frob regularization to other regularization functionals is shown

in numerical simulations and Acceleration Factors (AFs) up to 19.7 are achieved using

the proposed IRGN-TGV 2
frob reconstruction on in vivo data. The inclusion of other signal

models could be subject of further investigation.
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Kurzfassung

Quantitative Magnetresonanztomographie (qMRT) zielt auf die Gewinnung von Bildern

mit absoluten Werten unabhängig vom verwendeten Messprotokoll ab. Die meisten Me-

thoden zur T1-Quantifizierung gehen mit langen Aquisitionszeiten einher und Methoden

die ein schnelleres T1-Mapping ermöglichen sind Gegenstand aktueller Forschung. Mo-

dellbasierte Rekonstruktion (MBR) ist eine vielversprechende Methode in Bezug auf die

Reduzierung der Scan-Zeit sowie die Genauigkeit von T1. Die vorliegende Arbeit ana-

lysiert modellbasierte T1-Quantifizierungsmethoden basierend auf dem VFA-Modell hin-

sichtlich ihrer Stabilität unter verschiedenen Mess-Bedingungen, wobei der Schwerpunkt

insbesondere auf ihrem Beschleunigungpotenzial liegt. Die Rekonstruktion ist sowohl von

Bild- als auch k-Raum-Daten möglich, zur Lösung des Rekonstruktionsproblems wird ein

IRGN-Framework verwendet. Die T1-Werte stimmen insgesamt gut mit den Referenzwer-

ten überein, sowohl für das numerisches Phantom als auch für in vivo Daten. Die Über-

legenheit der TGV 2
frob-Regularisierung gegenüber anderen Regularisierungsmethoden ist

in den numerischen Simulationen ersichtlich und mit der IRGN-TGV 2
frob-Rekonstruktion

werden Beschleunigungsfaktoren bis zu 19.7 bei der Rekonstruktion von in-vivo-Daten er-

zielt. Die Integration weiterer Signalmodelle könnte Gegenstand weiterer Untersuchungen

sein.
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1 Introduction

Magnetic Resonance Imaging (MRI) is an imaging modality know especially for its good

soft tissue contrast, its non-invasivness, and its functionality without radiation. Since its

first days it has overcome many challenges, including long scan times as well as low Signal

to Noise Ratio (SNR) which lead to poor image resolution. Many improvements have

been developed since then, making MRI a vital tool for clinical routine diagnostic. The

possibility to acquire different image contrast, depending on the clinical question at hand,

played a major role in the success story of MRI. However, the ability to change the signal

intensity of a specific tissue and therefore the image contrast also has its drawback. Since

the signal intensity does not solely depend on the physical parameters of the tissue, no

general assumption about physical properties can be derived from the simple images.

To enhance contrast in an Magnetic Resonance (MR) image, scanning parameters are

chosen in a way that the physical parameter promising best contrast in the observed

region contributes most to the signal. The resultant image is then said to be weighted

in this specific parameter. For example the image is termed T1 weighted, if differences

in the longitudinal relaxation time T1 contribute most to its contrast. However, other

tissue parameters still contribute to the overall contrast. An insight to the sensitivity of

the image contrast to the setting of the timing parameters (Repetition Time (TR), Echo

Time (TE) and the Flip Angle (FA) α) will be given later in this work, when analysing

the signal equation of the used Fast Low Angle Shot (FLASH) Sequence.

Quantitative MRI techniques aim at generating images with absolute values independent



1 Introduction

of the used measurement protocol. Longitudinal and transverse relaxation times, T1 and

T2 respectively, as well as the Proton Density (PD) ρ represent possible quantities for

parameter mapping. These tissue parameters can be expected to be reproducible, and

therefore quantitative, for a given scan configuration determined by e.g. field strength

and temperature. Most T1 quantification methods, including the current gold standard

for T1 parameter mapping, an Inversion Recovery (IR) spin echo sequence, suffer from

long Acquisition Times (TAs) compared to qualitative T1-weighted imaging. As time is a

crucial factor in the clinical environment, the development of methods allowing for faster

T1 mapping are subject of current research.

1.1 Background

1.1.1 T1 Relaxation

After the spin System is perturbed by a Radio Frequency (RF) pulse at the Larmor

frequency, the longitudinal magnetization Mz recovers to its equilibrium value M0. This

recovery known as T1 or longitudinal relaxation is caused by energy transfer from the spins

to their environment and is therefore also called spin-lattice relaxation. The eponymous

time constant T1 corresponds to the time needed by Mz to regain 63% of its maximum

value M0 after fully excitation with a 90 degree RF pulse. T1 relaxation additionally de-

pens on the molecular motion and the used field strength and follows a mono-exponential

function, described by Mz = M0

(
1− exp

(
− t
T1

))
.

1.1.2 T2 and T ∗2 Relaxation

Occuring parallel to and independent from T1 relaxation another relaxation process,

caused by spin-spin interactions and accounting for loss of transverse magnetization Mxy,

2



1 Introduction

takes place. The underlying phenomenon for this transverse relaxation are small fluctua-

tions of the local magnetic field caused by neighboring spins, consequently leading to their

dephasing and making them loose their initial coherence. T2 relaxation like T1 relaxation

follows a mono-exponential function, described by Mxy = M0 exp
(
− t
T2

)
, with T2 being

the time after which the transverse magnetization Mxy has been reduced to 37% of its

initial value. Field inhomogeneities account for additional dephasing leading to an even

faster signal decay with a time constant T ∗2 .

1.1.3 The Variable Flip Angle Approach

The VFA approach is a method to determine T1 maps. It is based on the FLASH sequence

and a variation of its flip angle α. FLASH is a Spoiled Gradient Echo (SPGR) sequence,

described by:

SFLASH =
M0 sin (α) (1− E1)

1− E1 cos (α)
E2 (1.1)

where E1 = e
−TR
T1 and E2 = e

−TE
T ∗2 describe the longitudinal and transversal relaxation

rates.

The signal intensity SFLASH is a function of T1, TR, the flip angle α and a factor M0,

which is a quantity proportional to the equilibrium longitudinal magnetization. Figure

1.1 shows the corresponding sequence diagram, figure 1.2 the signal intensity of a FLASH

sequence in dependence of α and T1.

The contrast behaviour of the FLASH Sequence for different scanning parameters can

be easily derived by looking at the corresponding signal equation 1.1. The T ∗2 -weighting

can be controlled by choice of echo time TE, with a short TE accounting for a small

T ∗2 -contribution. The T1-weighting depends on the choice of the repetition time TR as

3



1 Introduction

Figure 1.1: FLASH Sequence diagram. Figure taken from [1].

Figure 1.2: Signal intensity of the FLASH sequence over a range of flip angles, for different
T1 values and a constant TR of 5ms, shows the dependency on this parameters.
A pentagram denotes the Ernst angle, which maximizes the signal for a given
TR to T1 ratio, the pair of asterisk shows the ideal dual angle set, according
to Deoni et al.[2].

4



1 Introduction

well as on the choice of the flip angle α. A short TR in combination with a large flip

angle α maximises the T1-influence on the signal. However, for small flip angles cos (α)

approaches one and the terms (1− E1) cancel, thereby removing the T1-contribution to

the signal. This leads to an image being either PD- or T ∗2 -weighted, depending on the

choice of TE. Spoiling of any coherent transverse magnetization following each excitation

pulse aims at eliminating the T2-influence on the signal. Assuming ideal spoiling the E2-

term in equation 1.1 can be omitted, giving a signal equation that depends solely on the

longitudinal relaxation time T1. This simplification is further justified by choosing a short

echo time TE and keeping it constant. Any remaining T ∗2 influence will lead to a variation

of the proportionality constant M0.

Omitting the E2-term and linearizing equation 1.1 yields:

SFLASH
sin (α)

=
SFLASH
tan (α)

E1 +M0 (1− E1) (1.2)

which is of form Y = Xm + b, with m being the slope and b the intercept of the SFLASH
sin(α)

over SFLASH
tan(α)

signal curve. From m and b, T1 and M0 can be easily obtained, see 1.3a

and 1.3b. This linearization is known as Driven Equilibrium Single Pulse Observation of

T1 (DESPOT) [2] in the literature. The linear relationship is only true in the high SNR

regime and can lead to severe estimation errors of T1 else.

T1 =
−TR

ln (m)
(1.3a)

M0 =
b

1−m
(1.3b)

Potential error sources when using the VFA approach originate from assumptions like

complete spoiling in-between excitations and perfect RF pulses. Especially with short

TR times and higher field strength this assumptions do not necessarily hold and their

5



1 Introduction

correction must be taken into account.

The transmit FA is known to deviate from the prescribed angle, due to the non-uniformity

of the transmitting B+
1 field [3]. To perform spatial correction of the FA, additional

measurement of the B+
1 field must be included in the scanning protocol. Bloch-Siegert-

mapping is a method that performs well in terms of scan time [4]. A description of the

method is given in section 2.2.3.

VFA methods using a linearized fit have been shown to overestimate T1 values [3, 5].

Stikov et al. [3] found that even nonlinear fitting methods lead to a bias towards higher

T1 values when compared to gold standard IR T1 mapping. This thesis aims at overcoming

this error by using a properly regularized MBR approach.

1.1.4 Model-based Reconstruction

Model-based Reconstruction incorporates the signal equation of the used MRI sequence

into a minimization problem [6, 7, 8]. The signal equation S(u), holding the analytical

relationship between the MR signal and the unknown tissue parameters e.g. u = (M0, T1),

is used to create a forward model A(u), which maps the unknown parameters to the space

of the present data d. The process of parameter quantification can then be described as

varying the parameters in the forward model and comparing the model generated data

with the measured data. The ideal parameter estimate as a result is the one that minimizes

the difference between the two.

The basic minimization problem (1.4) consists of a L2-data fidelity term and a regulariza-

tion term R(u). The data fidelity term minimizes the described difference between model

and data by means of a L2-norm, while the regularization term, allows for including ad-

ditional information, based on a priori knowledge of the data. The use of regularization

allows for higher degrees of undersampling, which reduces the generally long acquisition

time [9].

6



1 Introduction

u? = arg min
u
‖A(u)− d‖2

2 + λR(u) (1.4)

In this work parameter quantification is performed using the MBR approach in combi-

nation with a FLASH signal model. Detailed explanations on the building of the cost

function, the choice of regularization and the solution of the optimization problem are

given in chapter 2.

1.1.5 Flip Angle Selection

It is agreed that the right choice of FA is crucial for the performance of the VFA method

and the accuracy of the estimated T1-map [2, 3, 10, 11, 12, 13]. Much research was devoted

to finding the right FA for optimal T1 accuracy and efficiency. A multitude of FA sets was

suggested with ranges from two to ten FAs. Although it could be agreed on ideal angles

for the dual angle case, much controversy exists as to how many FAs should be used.

The flip angle which yields the maximum signal intensity, is called Ernst angle and can

be calculated from cos−1(E1). Deoni et al. [2] found that the ideal FAs for a certain T1

are the ones with a signal intensity corresponding to 71% of the maximum signal. They

further derived an analytic expression to calculate these flip angels:

α = cos−1

(
f 2E1 ± (1− E2

1)
√

1− f 2

1− E2
1 (1− f 2)

)
, (1.5)

where f = 0.71. Figure 1.2 shows the Ernst angle and the ideal angles for some T1 values.

Multiple research groups using different selection approaches arrived at the same dual

angle set [10]. The dual angle set obtained from equation 1.5 is ideal for the TR to T1

ratio it is tuned to. High efficiency can be observed for a certain T1 range, according to

7
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[11] the range is roughly ±20% of the original T1. Therefore dual angle sets should be used

for small expected T1 ranges and additional angles should be included for the evaluation

of wider T1 ranges.

The ideal ten angle set is somewhat harder to obtain and different approaches have been

suggested. A frequently used ten angle set for brain T1 mapping was computed by Deoni

et. al [12] using a genetic algorithm.

In terms of precision it was found that the 10 angle set does not outperform the ideal

angles until T1 becomes larger than 2000 ms, see figure 1.3. Clinically relevant T1 values

range from 20 to 2000 ms. Scan time should be invested in averaging the dual angle data

rather than in the acquisition of additional angles. T1 times found in brain tissue, see

table 2.4, do not exceed 2000ms. Cerebrospinal Fluid (CSF) being the exception, with

values over 4000ms.

Figure 1.3: Comparison of a set of two ideal angles (circle) with 10 angle sets, in terms of
precision over a range of longitudinal relaxation times T1. For T1 <2000 ms
the two angle set performs best. For higher T1 values a ten angle set from a
genetic algorithm (cross) [12] performed best. Figure taken from [12].

Cheng et al. [11] finally claimed that using a three angle set, consisting of a combination

of two ideal angle sets, one tuned to a low T1 and the other tuned to a high T1 of the

expected range of T1 values, outperformed a set of two ideal FAs in terms of accuracy

while avoiding the noise-related bias introduced by even larger angle sets. Therefore being

the ideal choice of FAs. In contrast to this findings, Lewis et al. [10], searching for a FA

8
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selection method that generates the optimal choice for an arbitrary number of FAs, found,

that for FA sets greater than two the optimal choice was a repetition of two angles.

In conclusion it can be said that using the linearized DESPOT [2] method the appropriate

choice of FA strongly depends on the imaging problem at hand. However, it is yet unclear

if the findings obtained hold for model-based T1 quantification methods.

Hilbert et al. [13] recently proposed that in terms of MBR a larger range of flip angles

results in a more robust T1 estimation. Therefore undersampled FLASH-data should be

acquired and the gained scan time should be invested in measuring more flip angles. Parts

of the present work will focus on the selection of flip angles and where to optimally invest

scan time.

1.1.6 Accelerated T1 Mapping

The current gold standard for T1 mapping is an IR spin echo sequence used with multiple

Inversion Times (TIs). Repetition Times (TRs) larger than the longest T1 occurring in the

investigated region are required to achieve sufficient recovery of magnetization between

successive inversion pulses. This leads to long TAs. Although methods significantly lower-

ing the scan time exist, they usually suffer from sequence-related errors and resultant T1

times often deviate from the supposedly true values obtained with IR, especially for in vivo

measurements. While Look-Locker methods consistently underestimate the IR T1 values,

the VFA approach consistently overestimates them [3]. Two promising methods in terms

of scan time reduction and accuracy of fit are Magnetic Resonance Fingerprinting (MRF)

[14] and Model-based Reconstruction (MBR).

The concept of MBR was already outlined in section 1.1.4. A description of an algorithm

for model-based T1 quantification on image data as well as on k-space data is given in

section 2.1.1.2 and section 2.2.1 respectively. Their acceleration potential is subject of

this work and will be investigated in the course of it.

9
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MRF uses an approach that differs fundamentally from most classical T1 mapping meth-

ods. While those methods are mostly based on a series of images obtained under variation

of a single scanning parameter, MRF relies on varying multiple acquisition parameters

(FA, TR and measurement trajectory) in a pseudorandom fashion. While rendering the

resulting images useless for evaluation, the process generates a unique signal evolution,

referred to as fingerprint, for each tissue. A database containing simulations of all physio-

logically possible signal evolutions that may be measured serves as a dictionary. A pattern

recognition algorithm is used to find the entry that agrees best with the measured finger-

print. A matching dictionary entry consequently yields all parameters used to simulate

this entry, allowing for a mapping of multiple parameters, e.g. T1, T2, PD, B+
1 .

1.2 Definition of Task

MBR methods for quantitative T1 mapping, working on either image data or k-space data,

should be tested in terms of their stability to different scanning scenarios. T1 estimation is

performed under different SNR levels and FA choices. Further, the acceleration potential

of the model-based T1 quantification should be determined in vivo for highly subsampled

data. The MBR algorithms used in this work should be based upon the VFA model.

Special thought should be given to minimizing the methods sensitivity to the choice of

FAs and its sensitivity to B+
1 field inhomogeneities. To this end, numerical simulations and

statistical evaluations of the proposed algorithms are performed prior to in vivo studies.

10



2 Methods

In order to find the optimal scanning parameters for the proposed MBR method, numerical

simulations are carried out prior to the in vivo brain measurements.

Three different phantoms are used. Two represent simple N×M grids with a fixed number

of pixels for each modelled tissue region, to allow for statistical evaluation. A small 2× 2

grid is used for simulations with typical T1 values in the brain, with each field modelling

one tissue (brain grid phantom). A larger 2× 7 grid was used to illustrate behaviour over

a larger range of T1 values (NIST [15] grid phantom). For a ROI based evaluation an

anatomical human brain phantom generated with MRiLab [16] was used.

T1 and M0 values based on previously reported brain measurements at 3 Tesla were

assigned to the fields of the small grid phantom and the discrete anatomy of the brain

phantom. The tissues modelled were White Matter (WM), Gray Matter (GM) and CSF,

with their respective T1 times, 900, 1400 and 4500 ms. A T1 of 1150 ms, the mean value

of WM and GM, was included in the brain grid phantom. Starting from the T1 and

M0 maps, representing the ground truth, image data was generated using the FLASH

equation 1.1. Phantoms where further tuned to fit the imaging problem at hand by in-

cooperating expected SNR levels and B+
1 inhomogeneities. The noise at a certain SNR

level was calculated using the mean signal at the Ernst angle. The noisy image imnoise was

obtained from the clean image im by imnoise =
√

(im+ σgauss)
2 + (σgauss)

2 accounting for

the rician distribution of noise in the magnitude image. The resulting SNR ratio provided

the basis for adaption to other resolutions or subsampling scenarios used.
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For the large grid phantom T1 values were taken from the ISMRM/NIST MRI System

Phantom [15] and ranged from 22 ms to 2048 ms. M0 values were varied from 0.8 to 1,

and randomly paired with the T1 values.

TR was 5 ms for all simulations. With the FAs α being the only unknown, the grid

phantoms were used to determine the ideal dual FA sets with a brute force algorithm

based on DESPOT described in section 2.1.2. All FA sets to be used in the in vivo

measurements were then tested by obtaining T1 maps using the linearized DESPOT fit

1.1.3, and a model-based method described in section 2.1.1.

2.1 Image-space Based T1 Quantification

T1 quantification in the image space operates on a series of FLASH images acquired under

different flip angles. Two approaches were used in the present work, both of them making

use of the corresponding FLASH signal equation.

The conventional DESPOT method linearizes the signal equation and performs pixel wise

linear regression over the flip angles.

MBR follows the scheme outlined in section 1.1.4 with the FLASH signal equation 1.1 rep-

resenting the model S(u). The problem of finding the parameters M0 and T1 is solved by

minimizing the difference between the model generated image S(u) and the reconstructed

image I.

u? = arg min
u
‖S(u)− I‖2

2 (2.1)

Due to the non-linearity of the model S(u) an IRGN-framework is used for the solution

of the problem [17].

12



2 Methods

Three different regularization strategies R(u) are implemented and described in section

2.1.1.2

2.1.1 Algorithms

2.1.1.1 DESPOT

As described briefly in 1.1.3 the fitting algorithm subsequently yields slope and intercept

of the regression line, which hold the M0 and T1 estimates and allow for their calculation.

Rewriting the linearized problem 1.2 in vector-matrix notation Ax = d by stacking slope

m and intercept b for each pixel in the vector x (2.2) and defining the system matrix A

(2.3) yields:

x =



m1

...

mN

b1

...

bN


∈ R2NxNy×1

+ (2.2)

13



2 Methods

A =



SFLASH
tanα1,1

0 0 · · · 0 1 0 · · · 0

SFLASH
tanα2,1

0 0 · · · 0 1 0 · · · 0
...

...
...

. . .
...

...
...

. . .
...

SFLASH
tanαNα,1

0 0 · · · 0 1 0 · · · 0

0 SFLASH
tanα1,2

0 · · · 0 0 1 · · · 0

0 SFLASH
tanα2,2

0 · · · 0 0 1 · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · SFLASH
tanαNα,N

0 0 · · · 1



∈ RNxNyNα×2NxNy
+ (2.3)

d =



SFLASH
sinα1,1

...

SFLASH
sinαNα,1

...

SFLASH
sinαNα,N


∈ R2NxNy×1

+ (2.4)

For the conventional DESPOT method the pixelwise solution of the problem is given by

simple matrix inversion x = A−1d.

A TV regularized DESPOT approach is introduced with the MBR algorithm in k-space

(section 2.2.1), where it serves the method as an initial parameter guess and is used for

parameter scaling.

2.1.1.2 Model-based Reconstruction in Image-space

IRGN-Total Generalized Variation (TGV) for (M0, T1) Parameter-Mapping using under-

sampled FLASH-measurements and multiple flip-angles.
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Starting from the FLASH-signal equation, neglecting T ∗2 relaxation:

S (M0, T1, αk) = M0 sinαk
1− e−

TR
T1

1− e−
TR
T1 cosαk

(2.5)

Where:

M0 : Unknown M0-map ∈ RNx×Ny
+ with Nx, Ny ∈ N+

T1 : Unknown T1-map ∈ RNx×Ny
+ with Nx, Ny ∈ N+

αk : Known flip angle ∈ RNx×Ny×Nα
+ with Nx, Ny, Nα ∈ N+

k : Number of flip angles with k = 1, . . . , Nα

the problem of finding M0 and T1 can be written as minimization problem:

u? = arg min
u

1

2
‖S(u)− I‖2

2 (2.6)

Where:

u : vector of M0, T1 ∈ R2×NxNy
+

I : reconstructed image ∈ CNx×Ny×Nα

S : X → Y

The operator S is defined as follows:

S : u→

S (M0, T1, αk)
...

 (2.7)

This problem is non-linear and we employ a Gauss-Newton (GN) approach to find the

optimal solution. The GN algorithm consists of a Tayler-series expansion truncated after

the first-order term of the non-linear model:

15



2 Methods

S(u) ≈ S(uk) +
∂S

∂u
|u=uk︸ ︷︷ ︸
DS

(u− uk)︸ ︷︷ ︸
∆u

(2.8)

The first order Taylorseries term is called DS and can be calculated as follows:

DS : ∆u =

∆M0

∆T1

→ (
∂S

∂M0

∣∣∣∣
M0=M0k,T1=T1k

∆M0+

∂S

∂T1

∣∣∣∣
M0=M0k,T1=T1k

∆T1

)
= y

(2.9)

The derivatives of the signal model S(u) with respect to M0 and T1 are:

∂S

∂M0

= sinα
1− e−

TR
T1

1− e−
TR
T1 cosα

(2.10)

∂S

∂T1

= −M0TRe
TR
T1 (2 sinα− 2 cosα sinα)

2T1
2
(
e
TR
T1 − cosα

)2 (2.11)

Yielding the so called inner problem of the GN approach:

‖S(u)− I‖2
2 →

‖S(uk) +DSu−DSuk − I‖2
2 →

‖DSu+ S(uk)−DSuk − I︸ ︷︷ ︸
Ĩ

‖
(2.12)
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This linearized data term is further extended by a step size penalty and a regularization

term R(u). The step size penalty is defined as the squared L2-norm of the difference

between linearization point uk and current parameter estimate u. This limits the allowed

descent along the linearized function in each Gauss-Newton (GN) step and results in a

strongly convex subproblem with convexity parameter δ.

u?k+1 = arg min
u

λ

2

Nα∑
i=1

‖DSαiu− Ĩαi‖2
2 +

δ

2
‖u− uk‖2

2 +R(u) (2.13)

Three different regularization methods were implemented. Simple L2 regularization uses

only the step size penalty, reducing the the regularization term R(u) in equation 2.13 to

zero.

A functional that has proven to perform well as a regularization term for natural and

medical image reconstruction is the 2nd-order Total Generalized Variation (TGV 2) [18].

TGV 2 regularization constitutes itself a minimization problem and is of the form:

TGV 2
α (u) = min

w
α1‖∇u− w‖1 + α0‖Ew‖1 (2.14)

with the operator ∇ corresponding to finite forward differences, E being the symmetrized

derivative Ew = 1
2
(∇w +∇wT ), and a set of adjustable positive weights α0 and α1 used

to balance between the first and second derivative. The use of higher order derivatives of

the function u in TGV 2, reduces the staircasing effect, often observed over image regions

of smooth or linear varying contrast, when using e.g. Total Variation (TV) regularization

[19].

In this work TGV 2 regularization is implemented in two forms. TGV 2
sep (see 2.15a) in-

cludes a TGV 2 regularization functional for each parameter e.g. M0 and T1, while in

TGV 2
frob [20] (see 2.15b), the functionals are joined by using a Frobenius norm on the pa-
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rameter maps. The multiparametric functional of TGV 2
frob exploits shared features across

parameter maps [17].

TGV 2
sep(u) = TGV 2

α (M0) + TGV 2
α (T1) (2.15a)

TGV 2
frob(u) = min

w
α1‖|∇u− w|frob‖1 + α0‖|Ew|frob‖1 (2.15b)

L2 regularisation results in the following minimization problem that can be solved with

the Conjugate Gradient (CG) algorithm described in algorithm 2.

u? = arg min
u

λ

2
‖DSu− Ĩ‖+

δ

2
‖u− uk‖2

2

→ λDSH
(
DSu? − Ĩ

)
+ δ(u? − uk) = 0

→ λDSHDSu? − λDSH Ĩ + δu? − δuk = 0

→ (λDSHDS + δ)︸ ︷︷ ︸
M

u? = λDSH Ĩ + δuk︸ ︷︷ ︸
rhs

→ u? = M−1rhs

(2.16)

The adjoint of DS, termed DSH is defined as the complex matrix transpose operation:

DSH : y →


∑#α

k=1
∂S(αk)
∂M0

∣∣∣
M0=M0k,T1=T1k

∑#α
k=1

∂S(αk)
∂T1

∣∣∣
M0=M0k,T1=T1k

 (2.17)

TGV regularization is based on the L1-norm and therefore adds non-differentiability to

the problem. To solve the non-differentiable subproblems of the IRGN method a recently
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proposed primal-dual algorithm [21] is applied.

The primal dual algorithm can be applied to problems of the form

min
u

F (Ku) +G(u) (2.18)

which is termed the primal problem.

F and G are convex, lower semi-continuous functions, and K is a linear operator. By

comparing this primal form to the regularized IRGN subproblem from equation 2.13,

F(u) and G(u) can be identified as follows.

F (u) = R(u) (2.19a)

G(u) =
λ

2
‖DSu− Ĩ‖+

δ

2
‖u− uk‖2

2
(2.19b)

The function F(u) and K depend on the chosen regularisation strategy 2.15 a-b and are

defined in 2.20 a-b and 2.21 a-b respectively.

F (u) = α1‖p0‖1 + α0‖q0‖1 + β1‖p1‖1 + β0‖q1‖1 (2.20a)

F (u) = α1‖p‖1 + α0‖q‖1 (2.20b)
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Kx =


∇ 0 −Id 0

0 0 E 0

0 ∇ 0 −Id

0 0 0 E




M0

T1

v0

v1


︸ ︷︷ ︸

x

(2.21a)

Kx =

∇ −Id

0 E

u
v


︸ ︷︷ ︸

x

(2.21b)

KH , see equations 2.22, holds the adjoint operations of K, with the divergence opera-

tor div1 being the negative adjoint of the operator ∇ and div2 the one of symmetrized

derivative E .

KHy =


−div1 0 0 0

0 0 −div1 0

Id −div2 0 0

0 0 Id −div2




p0

q0

p1

q1


︸ ︷︷ ︸

y

(2.22a)

KHy =

−div1 0

−Id −div2

p
q


︸ ︷︷ ︸

y

(2.22b)

In order to use the primal-dual formalism one needs the proximal mapping operator of

F ∗(u), which represents the convex conjugate of F (u). The convex conjugate f ∗(y) is

defined by
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f ∗(y) = sup
x
〈x, y〉 − f(x)

f(Kx) = sup
x
〈Kx, y〉 − f ∗(y)

(2.23)

and transforms a function f(x), independent of its convexity into a convex function.

The general update steps of the primal-dual algorithm are defined as:

y+ = (I + σ∂F ∗)−1(y + σKx)

x+ = (I + τ∂G)−1(x− τKHy+)

x+ = 2x+ − x

(2.24)

with τ, σ > 0 denoting the primal and dual step size. In order to ensure convergence

of the algorithm the step size is chosen such that στL2 < 1 [22]. The operator norm is

defined as L = ‖K‖2 and calculated to be
√

12, thus giving τ = σ = 1√
12

.

Proximal mapping, dual update:

For TGV 2
sep (2.15a) and TGV 2

frob (2.15b), The convex conjugate F ∗(u) consists of a repe-

tition of indicator functions.

F ∗(u) = I‖·‖∞≤α1 (p1) + I‖·‖∞≤α0 (q1) + I‖·‖∞≤β1 (p2) + I‖·‖∞≤β0 (q2) (2.25a)

F ∗(u) = I‖·‖∞≤α1 (p) + I‖·‖∞≤α0 (q) (2.25b)

Since the functions are independent with respect to their variables, the proximal mapping

can be applied independently on the single functions. The proximal mapping of the

21



2 Methods

indicator function of the infinity norm reduces to pointwise Euclidean projection onto the

L∞ norm ball.

y+
i = proxσ?f (ξ) = (Id+ σ∂F ∗)−1(ξ)

= arg min
y

1

2σ
‖y − ξ‖2

2 + F ∗(u)

= arg min
y

1

2σ
‖y − ξ‖2

2 + I‖·‖∞≤η

= arg min
‖y‖∞≤η

1

2σ
‖y − ξ‖2

2

→ 1

σ
(y − ξ) = 0

→ yi =
ξi

max
(

1, |ξi|
η

)

(2.26)

Proximal mapping, primal update:

u+
i = proxτg(ξ) = (Id+ τ∂G)−1(ξ)

= arg min
u

1

2τ
‖u− ξ‖2

2 +
λ

2
‖DSu− Ĩ‖+

δ

2
‖u− uk‖

→ 1

τ
(u? − ξ) + λDSH(DSu? − Ĩ) + δ(u? − uk) = 0

→ 1

τ
Id+ δId+ λDSHDS︸ ︷︷ ︸

M

u? =
ξ

τ
+λĨ + δuk︸ ︷︷ ︸

rpart

→ u? = M−1

(
rpart +

ξ

τ

)
(2.27)

2.1.2 Flip Angle Determination

Flip angles are determined with a simple brute force algorithm based on DESPOT T1

mapping. Using the 2x2 grid tuned to target T1 values and expected SNR, T1 maps

are evaluated for all possible dual FA combinations from, either a user defined set of

FAs, or the expected range of angles, which is determined by the highest TR to T1 ratio
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present in the phantom, see table 2.1. The number of possible combinations of k elements

out of a range of n is described by the binomial coefficient
(
n
k

)
and gives the number

of iterations needed. The decision criterion for maximum accuracy is given by minimal

standard deviation in the resultant T1-maps. The algorithm returns an ideal FA set for

each region, and chooses the set which gives the best overall result for all four regions.

Table 2.1: Depending on the highest TR to T1 ratio present in the phantom the bruteforce
algorithm searches the ideal dual FA set within a certain FA range.

TR
T1 max

(a.u.) FA range

> 0.03 {1, 2, . . . , 90}
> 0.004 {1, 2, . . . , 30}
> 0.002 {1, 2, . . . , 15}
≤ 0.002 {1, 2, . . . , 10}

After determination and testing of the FAs with the DESPOT method, FA sets to be used

for the numeric simulation, as well as for the in vivo brain measurements were chosen as

follows. Optimization for brain tissue by a genetic algorithm [12] formed the ten angle set

{2◦, 3◦, 4◦, 5◦, 7◦, 9◦, 11◦, 14◦, 17◦, 22◦}. For the smaller angle sets, ideal angles are tuned

to the mean T1 of white and grey matter T1,gm+T1,wm
2

= 900+1400
2

= 1150 ms, and chosen

to be subsets of the ten angle set. Forming a dual angle set {2◦, 14◦} and a triple angle

set {2◦, 14◦, 17◦}. In the ten angle case, the set is tuned to a higher mean T1 of 2550 ms,

which is justified by the better expected performance over the complete range of T1 values

in the brain. Ideal flip angles only hold for a certain TR to T1 ratio, see equation 1.5. All

flip angle sets used in this work where generated for a TR of 5ms. In vivo measurements

were recorded accordingly.

2.1.3 Flip Angle Verification

The capability of the brute force algorithm to determine ideal angle sets was shown by

comparison with angle sets found in the literature, as well as by evaluating T1 maps

generated under usage of the chosen FA sets.
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2.1.4 Statistical Evaluation

The chosen flip angle sets and their performance within the different T1 quantification

methods were tested under different scenarios using the 2x2 grid phantom. Their robust-

ness to the SNR of the data was tested for SNR levels of 30, 15 and 5 dB. The influence

of an erroneous B+
1 map on the reconstruction was tested as described in 2.2.3.

2.2 Accelerated Variable Flip Angle T1 Quantification

A major drawback of performing quantitative MRI with methods operating on image data

is their limited acceleration potential. Although techniques like Parallel Imaging (PI) do

allow for some acceleration of the measurement process, only moderate AFs are achieved.

Further acceleration requires either the use of methods operating on k-space data, or the

combination of MBR in image space with a powerful image reconstruction method that

allows for high subsampling factors. This thesis presents a comparison of both approaches

regarding their acceleration potential, their respective implementations are described in

section 2.2.1 and section 2.2.2.

2.2.1 Model-based Reconstruction in k-Space

The IRGN approach for the solution of TGV 2
frob regularized MBR problems was already

described in section 2.1.1.2, for the case of image space data. It basically consist in

iteratively linearizing the model in each GN step, creating convex inner problems which

can be solved with the primal dual algorithm.

Expanding the forward model A(u) allows for determination of T1 maps directly from

multi-channel raw data. In addition to the used imaging sequence, the new forward

model for k-space data encompasses the Fourier transform, the sensitivity profiles of the
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receiver coils, and the used k-space sampling scheme.

To that effect a new operator A that maps from parameter to k-space is defined:

A : u→

PkF [CiS (M0, T1, αk)]
...

 (2.28)

Where:

Pk : Undersampling pattern

Ci : Coil sensitivity profile

k = 1 . . . Nα : Number of flip angles

i = 1 . . . Ncoils : Number of coils

The corresponding inner problem is:

u?k+1 = arg min
u

λ

2

Nα∑
i=1

‖DAαiu− d̃αi‖2
2 +

1

2δ
‖u− uk‖2

2 +R(u) (2.29)

with R(u) = TGV 2
frob, see equation 2.15b. For comparison see equations 2.7 and 2.13

which hold the definition of the operator S and the inner problem in image space.

The update scheme for the primal dual algorithm in k-space is given in algorithm 5. For

detailed information on the optimization framework the interested reader is referred to

[17].

Knowledge of the coil sensitivity profiles is needed prior to reconstruction and their de-

termination has to be implemented as a pre-processing step. In the present work coil

sensitivities were estimated from fully sampled data even in the subsampling case. In

case of highly undersampled data additional scans need to be included for the joint esti-

25



2 Methods

mation of low resolution images and coil sensitivities. Since high estimate accuracy can

be achieved from a single acquisition with only a very small area in the central k-space,

the additional scan does not substantially increase the total scan time, therefore making

it a feasible method for accelerated T1 mapping.

2.2.2 ICTGV reconstruction and Model-based Reconstruction in

Image-space

Infimal Convolution Total Generalized Variation (ICTGV) is a convex spatio-temporal

regularization functional, proposed in the context of reconstruction of dynamic image data

[23]. Combining two TGV functionals, with different spatio-temporal weighting, by infi-

mal convolution, ICTGV optimally balances between spatial and temporal regularization.

Decomposing the image into two components, it enforces either strong spatial or strong

temporal regularization, depending on the local requirements. In the MRI field, ICTGV

regularization has been successfully used for the reconstruction of highly-subsampled dy-

namic MR data [24].

Since VFA data is recorded under variation of the FA α, a parameter dimension is added

to the data space, analogue to the temporal dimension in dynamic image data. ICTGV

regularization exploits the information across the parameter dimension allowing for sub-

sampling of VFA data. Iterative image reconstruction with ICTGV regularization prior

to T1 parameter quantification was proven to achieve high quality parameter maps up to

an AF of 16 [25].

2.2.3 Bloch-Siegert B+
1 Mapping and Coil Calibration

As stated in section 1.1.3, a B+
1 transmit field, with a certain nominal flip angle, actually

produces a range of flip angles over the image volume, due to inevitable inhomogeneities
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in the RF field.

To account for these flip angle variations, B+
1 maps need to be calculated and included in

the reconstruction of images or parameter maps. Several methods exist to measure the

flip angle distribution [26, 27, 28]. Most of them are signal-magnitude based and suffer

from a series of problems [4]. Amongst them T1 dependency, long acquisition times, and

inaccuracy, especially at low flip angles. This factors are especially unfavourable for the

T1 quantification problem at hand. First of all as FLASH makes use of small flip angles,

and more generally as the objective was testing the acceleration potential.

Bloch-Siegert B+
1 mapping [4] is a method that has proven to perform well in terms of

accuracy, acquisition time and robustness and is used in the present work. Based on the

so called Bloch-Siegert effect it makes use of the signals phase, instead of its amplitude. A

Bloch-Siegert shift is the spin precision frequency shift caused by applying an off-resonance

RF-pulse, of frequency ωRF . This frequency shift causes a phase shift in the image, which

encodes the B+
1 information. Finally undesired off-resonance effects are cancelled out

by taking the difference of two phase images acquired at symmetric off-resonance pulses

±ωRF , as they have the same phase factors in both images. The resulting phase shift

ΦBS depends solely on the Bloch-Siegert effect and is proportional to B+
1 , allowing for its

calculation, see equation 2.30.

ΦBS =

∫ T

0

(γB+
1 (t))2

2ωRF (t)
dt (2.30)

B+
1 profiles were also incorporated in the phantom generation. The B+

1 maps in the

anatomical brain phantom were generated to represent the variation of flip angles found

in our in vivo measurement data. Figure 2.1 shows in vivo (a) and phantom (b) B+
1 maps

juxtaposed for comparison.

In the simple 2x2 grid phantom the flip angle variation was extended to cover the whole

grid. The influence of an erroneous B+
1 map on the performance of the proposed algo-
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rithms for T1 mapping was tested by introducing a ±5% error in the B+
1 map used for T1

quantification. Figure 2.2 shows the B+
1 map used in the grid phantom.

(a) In vivo

(b) Phantom

Figure 2.1: T1 and B+
1 maps for measured in vivo data (a) and as used in the simulations

with the anatomical brain phantom (b).

In the case of the image space based T1 quantification, the coil sensitivity has already

been dealt with, in the used image reconstruction method. However, for k-space based

methods the coil sensitivity profiles form part of the forward model and therefore of

the reconstruction problem. In this work a regularized non-linear inversion method was

used for coil sensitivity estimation. This method was proposed [29] and later extended

to non-cartesian k-space encoding [30] by Ücker et. all. Validation of the method has

been shown for undersampled radial FLASH data in the context of real-time MRI of the

human heart [30] as well as for accelerated T1 mapping [31]. No correction to account for

deviations due to imperfections in the gradient systems is performed.
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Figure 2.2: From left to right: B+
1 map used for Reference, B+

1 map in the phantom, B+
1

map with an ±5% error.

2.2.4 Data Acquisition

In vivo brain data of three healthy male volunteers was recorded on a clinical 3T MAG-

NETOM Skyra scanner (Siemens Healthineers, Erlangen, Germany) using a 32-channel

head coil. The in-plane resolution was 1 mm2 in all cases, the slice thickness was varied

from 1 to 5 mm across subjects. A FLASH sequence was employed to generate VFA data,

as described in section 1.1.3. The used scanning protocol can be found in table 2.2.

High frequency RF-Pulses can lead to a temperature increase in the subject. The de-

position of energy in the subjects tissue in relation to its body weight is called Specific

Absorption Rate (SAR). To monitor the heating of patient tissue, the MR scanner esti-

mates the SAR based on the scanning parameters and the weight of the subject, before

running the measurement protocol. If the SAR limits are exceeded, possible options for

lowering the values are increased TRs, longer RF-pulses which allow for lower pulse ampli-

tudes, or the usage of smaller flip angles. In the highest resolution case (1mm3 isotropic

resolution, volunteer 1) SAR levels were too high for the 22◦ angle measurement. In terms

of keeping the TR time constant, the 22◦ FA was omitted and a smaller flip angle at 12◦

was included in the 10 angle set, for volunteer 1.

T1 quantification of in vivo data was realized as follows. Only full ten angle sets where

used for image space based T1 quantification, since the upstream image reconstruction
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Table 2.2: Scanning parameters and flip angle sets used for the in vivo brain measure-
ments. Slice thickness was varied from 1 to 5 mm across subjects. For all scans
TR = 5 ms and TE = 2.46 ms was used.

Scanning Protocol
Volunteer 1 Volunteer 2 Volunteer 3

Resolution (mm3) 1× 1× 1 1× 1× 3 1× 1× 5
Matrix size 256× 256× 36 256× 256× 36 256× 256× 22
10 angle set (◦) {2, 3, 4, 5, 7, 9, {2, 3, 4, 5, 7, 9, {2, 3, 4, 5, 7, 9,

11, 12, 14, 17} 11, 14, 17, 22} 11, 14, 17, 22}
3 angle sets (◦) {2, 14, 17}

{2, 14, 14}
2 angle set (◦) {2, 14}

algorithm AVIONIC (ICTGV) [24] does not allow for the reduction of flip angles. k-

Space based T1 quantification using the 10 angle set was performed alike. Additionally a

comparison of the performance of different flip angle sets was performed for volunteer 2

by taking two and three angle subsets out of the 10 angle set. These sets matched the

ones generated with the brute force algorithm and used in the numerical simulations. Two

subsets were evaluated in the three angle case, {2◦, 14◦, 14◦} and {2◦, 14◦, 17◦}.

2.2.4.1 Radial Volumetric Encoding Sequence

Measurements were performed using the Radial Volumetric Encoding (RAVE) sequence

with a Golden Angle (GA) ordering scheme [32]. This radial sampling scheme shifts

consecutive spokes by the Golden Angle ΦGA=111,25◦, with each spoke filling the largest

gap between the previously sampled ones. This guarantees optimal k-space coverage for

any arbitrary number of spokes, especially for numbers drawn from the Fibonacci series,

see figure 2.3.

For a number of read-out samples per spoke Nreadout, fulfilling the Nyquist criterion

∆kreadout = 1/FOV, the number of spokes required for artefact free reconstruction cor-

responds to Nspokes = π
2
· Nreadout. This ensures that the angular sampling distance does
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Figure 2.3: Golden angle ordering scheme [32]. Numbers indicate the acquisition order of
the radial spokes. The angle between two consecutive spokes ΦGA is 111,25◦.
Figure adapted from [33].

not exceed the read-out sampling distance ∆kangular ≤ ∆kreadout and holds for uniform

spacing. [32]

Fully sampled data was recorded with a matrix size of 256× 256× 36(22), see table 2.2,

and 550 spokes, satisfying Nspokes ≥ π
2
· 256 = 402. The Generation of subsampled data

is implemented as a post-processing step, and consists in selecting a Fibonacci number

of consecutive spokes for each frame. The scheme is continued across frames (flip angle

variation), the first spoke of a new frame being shifted by the GA in respect to the last

one of the old frame. The used Spokes per Frame (SPF) and corresponding AFs are

summarised in table 2.3. Basis for the calculation of AFs was a fully sampled cartesian

acquisition with 256 phase encoding steps Nphase. The Acquisition Time in this case is

12.8 seconds per slice, according to TA = Nphase· TR ·Nα.

In the subsampling case, averaging of dual or triple angle data corresponds to rising the

number of acquired spokes per frame, by multiplying them with the number of averages,

in terms of SNR gain. Since the stability of the reconstruction is determined by the SNR

level as well as by the amount of subsampling (number of SPF), scan time was invested
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Table 2.3: T1 maps were evaluated for six different Acceleration Factors AF. For the
ten angle case the number of Spokes per Frame (SPF) was chosen from the
Fibonacci series. The Acquisition Time (TA) was kept constant over different
angle sets by adapting the number of SPF.

AF 4.7 7.5 12.2 19.7 32 51
TA/slice (s) 2.75 1.70 1.05 0.65 0.4 0.25
SPF (10 FA) 55 34 21 13 8 5
SPF (3 FA) 183 113 70 43 27 17
SPF (2 FA) 225 170 105 65 40 25

in more spokes.

2.2.5 ROI-based Evaluation

For the evaluation of the T1 quantification from in vivo data, masks separating the tissue

present in the evaluated slices, were generated for each subject. In total five Regions

of Interest (ROIs), corresponding to Gray Matter (GM), White Matter (WM), Caudate

Nucleus (CN), Putamen (P) and Cerebrospinal Fluid (CSF), were defined. Mean and

standard deviation of the estimated T1 values were computed for each ROI and compared

to literature values. T1 maps from fully sampled data were generated using the TGV 2
frob-

regularized MBR approach on ICTGV reconstructed image data and served as a reference

for accelerated T1 mapping. The same ROIs were used across mapping methods, acceler-

ation factors and flip angle sets. Comparison for different slice thicknesses, respectively

SNR levels, was performed for WM and GM only, as these were the tissues present in all

selected slices.

Reported T1 values for the same tissue and field strength vary greatly for different T1

mapping techniques. For white matter estimated T1 values range from 690 ms to 1100

ms. Even with the IR method, which is considered to be the gold standard for T1 mapping,

the variation is larger than 50% [3].

Table 2.4 shows reference values obtained with IR spin echo protocols at 3 Tesla [34, 35].
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Variation of the voxel volume has a significant impact on the T1 estimates. Different SNR

levels introduce a noise related bias to the estimates and an increase in slice thickness

introduces partial volume effects to the images. Especially cortical gray matter suffers

from partial volume effects of white matter or cerebrospinal fluid [11]. Therefore the

measured slice thickness was taken into account when searching for reference values.

Table 2.4: T1 reference values found in literature for gold standard T1 mapping. Mean ±
standard deviation T1 of different brain tissues are listed under consideration
of the measured slice thickness.

2 mm [34] 5 mm [35]

WM 913± 23 791± 27
885± 47

GM 1445± 119
P 1275± 50
CN 1424± 50 1271± 91
CSF 4163± 263
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3.1 Numerical Simulation

3.1.1 Flip Angle Selection

Table 3.1 shows the good agreement of the dual FA sets generated with the brute force

algorithm, described in 2.1.2, with those found in literature [36].

Table 3.1: Dual FA sets for a variety of TR to T1 ratios. Comparison between sets gener-
ated with the brute force algorithm and literature values [36].

T1(ms) TR
T1

(a.u.) flip angle (◦) reference (◦)

17 0.3 {18, 87} {18, 86}
25 0.2 {15, 76} {15, 75}
31 0.16 {13, 71} {13, 69}
50 0.1 {10, 55} {11, 57}
63 0.08 {10, 56} {9, 51}
100 0.05 {7, 45} {7, 42}
125 0.04 {7, 37} {7, 38}
250 0.02 {5, 27} {5, 27}
333 0.015 {4, 24} -
500 0.01 {3, 20} -
714 0.007 {3, 17} -
1000 0.005 {2, 12} {2, 13}
1500 0.003 {2, 10} -
2000 0.0025 {2, 9} -
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3.1.2 Robustness to SNR Level

The Performance of the proposed T1 quantification methods in dependence of the SNR of

the data was tested with the brain grid phantom. T1 values were evaluated for the four

ROIs modeled in the phantom, i.e. White Matter (WM), T1,mean, Gray Matter (GM) and

Cerebrospinal Fluid (CSF), under three different SNR levels. Different numbers of FAs

were included in the evaluation. SNR levels were 30, 15 and 5 dB, FA sets used were

{2◦, 14◦}, {2◦, 14◦, 17◦} and {2◦, 3◦, 4◦, 5◦, 7◦, 9◦, 11◦, 14◦, 17◦, 22◦}.

For SNR levels of 30, 15 and 5, figures 3.1 to 3.3 show the median and the 25% and 75%

percentile, i.e. the first and third quartile, of the T1 estimates, visualising the results. The

hypothetical scanning time in each case was held constant by averaging the data of the

smaller angle sets. To that effect, three angle sets were averaged three, and two angle sets

five times. Stated SNR levels apply to the ten angle set, the other sets show an improved

SNR = SNR ×
√
Nav, with Nav being the number of averages. Corresponding to figure

3.1 to 3.3, tables 3.2 to 3.4 show mean and standard deviation of the estimated T1 values

for the DESPOT method and the TGV 2
frob-regularized MBR approach.
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Figure 3.1: Performance of the proposed T1 mapping methods at a SNR of 30 dB. Median,
first and third quartile of T1 estimates for the four ROIs of the brain grid
phantom. TA constant for different FA sets.

Figure 3.2: Performance of the proposed T1 mapping methods at a SNR of 15 dB. Median,
first and third quartile of T1 estimates for the four ROIs of the brain grid
phantom. TA constant for different FA sets.
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Figure 3.3: Performance of the proposed T1 mapping methods at a SNR of 5 dB. Median,
first and third quartile of T1 estimates for the four ROIs of the brain grid
phantom. TA constant for different FA sets.
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Table 3.2: Performance of the DESPOT method and the TGV 2
frob-regularized MBR ap-

proach at a SNR of 30 dB. Mean ± standard deviation of T1 estimates for the
four ROIs of the brain grid phantom. TA constant for different FA sets.

WM T1,mean GM CSF

Reference 900 1150 1400 4500
Despot
2 FA 900 ± 19 1150 ± 25 1400 ± 31 4505 ± 226
3 FA 901 ± 38 1151 ± 50 1402 ± 59 4483 ± 356
10 FA 905 ± 44 1157 ± 61 1407 ± 74 4465 ± 441
TGVfrob

2 FA 900 ± 12 1150 ± 15 1400 ± 17 4510 ± 69
3 FA 901 ± 23 1151 ± 29 1401 ± 33 4482 ± 84
10 FA 900 ± 20 1149 ± 24 1399 ± 27 4603 ± 110

Table 3.3: Performance of the DESPOT method and the TGV 2
frob-regularized MBR ap-

proach at a SNR of 15 dB. Mean ± standard deviation of T1 estimates for the
four ROIs of the brain grid phantom. TA constant for different FA sets.

WM T1,mean GM CSF

Reference 900 1150 1400 4500
Despot
2 FA 903 ± 67 1153 ± 89 1405 ± 105 4411 ± 540
3 FA 903 ± 77 1154 ± 100 1403 ± 118 4375 ± 560
10 FA 923 ± 90 1177 ± 123 1429 ± 151 4325 ± 662
TGVfrob

2 FA 902 ± 52 1151 ± 66 1402 ± 77 4466 ± 165
3 FA 901 ± 57 1151 ± 72 1399 ± 84 4407 ± 195
10 FA 900 ± 52 1147 ± 63 1396 ± 69 4512 ± 166

38



3 Results

Table 3.4: Performance of the DESPOT method and the TGV 2
frob-regularized MBR ap-

proach at a SNR of 5 dB. Mean ± standard deviation of T1 estimates for the
four ROIs of the brain grid phantom. TA constant for different FA sets.

WM T1,mean GM CSF

Reference 900 1150 1400 4500
Despot
2 FA 907 ± 117 1158 ± 156 1411 ± 186 4249 ± 756
3 FA 931 ± 239 1187 ± 315 1446 ± 373 3898 ± 1069
10 FA 1105 ± 332 1409 ± 466 1667 ± 565 3746 ± 1154
TGVfrob

2 FA 905 ± 103 1155 ± 135 1405 ± 157 4339 ± 428
3 FA 920 ± 224 1169 ± 285 1422 ± 330 3947 ± 985
10 FA 910 ± 223 1153 ± 285 1388 ± 328 3489 ± 695

To further allow for comparison of FA sets within a certain SNR level, SNR was kept

constant in the 15 dB case i.e. no averaging of the small FA sets was performed. This

effectively reduces the scan times for the smaller angle sets. Figure 3.4 again shows the

median as well as the first and third quartile of the T1 estimates, table 3.5 summarizes

T1 mean and standard deviation for the DESPOT method and the TGV 2
frob-regularized

MBR approach. For a comparison to the averaged case see figure 3.2 and table 3.3.

Since the TGV 2
frob regularised algorithm showed the best performance, further analysis

focused on this method.
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Figure 3.4: Performance of the proposed T1 mapping methods at a SNR of 15 dB. Median,
first and third quartile of T1 estimates for the four ROIs of the brain grid
phantom. TA varied according to size of the FA sets.

Table 3.5: Performance of the DESPOT method and the TGV 2
frob-regularized MBR ap-

proach at a SNR of 15 dB. Mean ± standard deviation of T1 estimates for the
four ROIs of the brain grid phantom. TA varied according to size of the FA
sets.

WM T1,mean GM CSF

Reference 900 1150 1400 4500
Despot
2 FA 912 ± 154 1166 ± 202 1421 ± 248 4147 ± 866
3 FA 908 ± 133 1160 ± 174 1416 ± 207 4198 ± 785
10 FA 923 ± 90 1177 ± 123 1429 ± 151 4325 ± 662
TGVfrob

2 FA 910 ± 140 1161 ± 180 1413 ± 215 4251 ± 617
3 FA 904 ± 113 1154 ± 144 1407 ± 169 4237 ± 490
10 FA 900 ± 52 1147 ± 63 1396 ± 69 4512 ± 166
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3.1.3 Accelerated T1 Mapping

Prior to testing the acceleration potential of T1 quantification methods with in vivo data,

by actually creating subsampled data, the outcome was simulated with the brain phantom.

Subsampled images were generated by adapting their SNR level based on the hypothetical

AF, so that the new SNR level was calculated by SNR√
AF

. The AFs were chosen to match

the ones used for analysis of the vivo data.

Figure 3.5 shows from left to right, the T1 map used to generate the image data, also

representing the ground truth, a T1 map, reconstructed with the TGV 2
frob-regularized MBR

approach from fully sampled image data, and the mask used for ROI-based evaluation

applied to the fully sampled T1-map.

Figure 3.6 shows the reconstructed T1 maps of the numerical brain phantom for the

six hypothetical AFs. Figure 3.7 visualizes the results within each ROI by showing the

median, as well as the first and third quartile of the T1 estimates, while table 3.6 lists the

mean and standard deviation of the estimated T1 values.

Figure 3.5: Reference T1 map (left), IRGN-TGV 2
frob-regularized image-space based T1 re-

construction from fully sampled data (middle) and mask used for ROI-based
evaluation (right) of the numerical brain phantom, the ROIs being WM, GM,
CSF.
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Figure 3.6: IRGN − TGV 2
frob regularized image-space based T1 reconstructions of the

numerical brain phantom, for six AFs.

Table 3.6: Mean ± standard deviation of T1 estimates for the three ROIs of the numerical
brain phantom, evaluated for fully sampled data and six AFs.

AF WM GM CSF

Ref 900 1400 4500
Full 902 ± 33 1398 ± 50 4209 ± 379
4.7 906 ± 102 1400 ± 156 4086 ± 557
7.5 909 ± 125 1401 ± 191 3944 ± 645
12.2 912 ± 165 1406 ± 253 3830 ± 829
19.7 925 ± 239 1409 ± 364 3497 ± 1065
32 940 ± 300 1415 ± 461 3238 ± 1320
51 974 ± 430 1433 ± 607 2810 ± 1566
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Figure 3.7: Median, first and third quartile of T1 estimates for the three ROIs of the
numerical brain phantom, evaluated for fully sampled data and six AFs.

3.2 In Vivo Brain Measurements

In vivo brain data of three health male volunteers was recorded as described in section

2.2.4, a summary of the scanning parameters is given in table 2.2. T1 maps were generated

with the described MBR reconstruction methods, under usage of TGV 2
frob regularization.

T1 quantification was performed directly on the k-space data, as well as on image data,

obtained by ICTGV reconstruction, see section 2.2.2. T1 maps, reconstructed from fully

sampled image data, served as a reference when analyzing the acceleration potential of

T1 quantification, and can be found in figures 3.8 to 3.10, for volunteer 1-3 respectively.

Images on the right side of figures 3.8 to 3.10 show the masks used for the ROI-based

evaluation of estimated T1 values.
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Figure 3.8: IRGN − TGV 2
frob regularized image-space based T1 reconstructions of fully

sampled in vivo data from volunteer 1. In the left image SOS was used for
image reconstruction, while ICTGV was used in the middle image. The right
image shows the mask used for ROI-based evaluation, the ROIs being WM,
GM, CN and CSF.

Figure 3.9: IRGN − TGV 2
frob regularized image-space based T1 reconstructions of fully

sampled in vivo data from volunteer 2. In the left image SOS was used for
image reconstruction, while ICTGV was used in the middle image. The right
image shows the mask used for ROI-based evaluation, the ROIs being WM
and GM.
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Figure 3.10: IRGN − TGV 2
frob regularized image-space based T1 reconstructions of fully

sampled in vivo data from volunteer 3. In the left image SOS was used for
image reconstruction, while ICTGV was used in the middle image. The right
image shows the mask used for ROI-based evaluation, the ROIs being WM,
GM, P and CSF.
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3.2.1 SNR Stability

Different SNR levels in the vivo data were generated by recording the data using a dif-

ferent slice thickness for each of the three subjects, while the in-plane resolution was kept

constant at 1 mm2. Slice thicknesses used were 1, 3 and 5 mm, for volunteer 1, 2 and 3

respectively. T1 quantification was performed as described and analogue for each volun-

teer. Fully sampled T1 maps were generated from image data only, results can be found

in section 3.2. T1 maps from subsampled data were generated from k-space and ICTGV

reconstructed image data, for all three volunteers, i.e. SNR levels. For the sake of clarity

all results for accelerated T1 mapping are presented in section 3.2.2.

3.2.2 Accelerated T1 Mapping

To test the acceleration potential of the proposed T1 quantification methods, subsampled

data was generated by reducing the number of SPF. The numbers were drawn from the

Fibonacci series, starting with 55 SPF, only five SPF were used in the highest subsampling

case. All together six AF were evaluated, they are summarised with their corresponding

SPF in table 2.3.

To further allow for a direct comparison between T1 quantification from k-space data, and

from ICTGV reconstructed image data, the results are grouped by subjects. All results in

this section were generated using the full ten angle sets, see table 2.2. Results for smaller

FA sets are presented in section 3.2.2.1.

Reconstructed T1 maps for volunteer 1 can be found in figure 3.11 for image-space, and

figure 3.12 for k-space based T1 quantification. T1 estimates are evaluated within four

ROIs (WM, GM, P and CSF). Figure 3.13 shows the median and the 25% and 75%

percentile, i.e. the first and third quartile of the T1 estimates, table 3.7 summarizes mean

and standard deviation of the estimated T1 values, for the T1 maps in figure 3.11. The
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same evaluation was performed on the T1 maps from figure 3.12, the results are found in

figure 3.14 and table 3.8.

Figure 3.11: Acceleration potential of the IRGN−TGV 2
frob regularized image-space based

T1 reconstruction. T1 maps of the in vivo data from volunteer 1 for six AFs.
Scanning parameters according to table 2.2.
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Figure 3.12: Acceleration potential of the IRGN − TGV 2
frob regularized k-space based T1

reconstruction. T1 maps of the in vivo data from volunteer 1 for six AFs.
Scanning parameters according to table 2.2.

Table 3.7: Acceleration potential of the IRGN − TGV 2
frob regularized image-space based

T1 reconstruction. Mean ± standard deviation of T1 estimates for the four
ROIs of the in vivo data of volunteer 1. Six AFs are evaluated, a fully sampled
reconstruction serves as reference.

AF WM GM CN CSF

Full 891 ± 48 1353 ± 100 1195 ± 89 3690 ± 354
4.7 898 ± 86 1357 ± 131 1214 ± 139 3227 ± 384
7.5 904 ± 105 1366 ± 143 1204 ± 192 3306 ± 466
12.2 912 ± 122 1375 ± 160 1206 ± 204 3129 ± 529
19.7 926 ± 130 1388 ± 168 1247 ± 193 3067 ± 503
32 952 ± 129 1405 ± 181 1343 ± 237 2769 ± 505
51 994 ± 145 1417 ± 190 1301 ± 239 2612 ± 641
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Figure 3.13: Acceleration potential of the IRGN−TGV 2
frob regularized image-space based

T1 reconstruction. Median, first and third quartile of T1 estimates for the four
ROIs of the in vivo data of volunteer 1. Six AFs are evaluated. The T1 median
of a fully sampled reconstruction serves as reference.

Table 3.8: Acceleration potential of the IRGN − TGV 2
frob regularized k-space based T1

reconstruction. Mean ± standard deviation of T1 estimates for the four ROIs
of the in vivo data of volunteer 1. Six AFs are evaluated, a fully sampled
reconstruction serves as reference.

AF WM GM CN CSF

Full 891 ± 48 1353 ± 100 1195 ± 89 3690 ± 354
4.7 910 ± 59 1402 ± 153 1229 ± 99 4190 ± 661
7.5 913 ± 82 1420 ± 194 1237 ± 157 4223 ± 821
12.2 915 ± 99 1434 ± 229 1228 ± 167 3895 ± 896
19.7 927 ± 118 1455 ± 262 1284 ± 313 4111 ± 1004
32 937 ± 137 1539 ± 398 1334 ± 271 4172 ± 1126
51 982 ± 145 1553 ± 345 1275 ± 331 4145 ± 1194
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Figure 3.14: Acceleration potential of the IRGN − TGV 2
frob regularized k-space based T1

reconstruction. Median, first and third quartile of T1 estimates for the four
ROIs of the in vivo data of volunteer 1. Six AFs are evaluated. The T1

median of a fully sampled reconstruction serves as reference.

Reconstructed T1 maps for volunteer 2 can be found in figure 3.15 for image-space, and

figure 3.17 for k-space based T1 quantification. T1 estimates are evaluated within two

ROIs (WM, GM). Figure 3.16 shows the median and the 25% and 75% percentile, i.e.

the first and third quartile of the T1 estimates, table 3.9 summarizes mean and standard

deviation of the estimated T1 values, for the T1 maps in figure 3.15. The same evaluation

was performed on the T1 maps from figure 3.17, the results are found in figure 3.18 and

table 3.10.
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Figure 3.15: Acceleration potential of the IRGN−TGV 2
frob regularized image-space based

T1 reconstruction. T1 maps of the in vivo data from volunteer 2 for six AFs.
Scanning parameters according to table 2.2, under usage of the ten angle set.

Figure 3.16: Acceleration potential of the IRGN−TGV 2
frob regularized image-space based

T1 reconstruction. Median, first and third quartile of T1 estimates for the two
ROIs of the in vivo data of volunteer 2, under usage of the ten angle set. Six
AFs are evaluated. The T1 median of a fully sampled reconstruction serves
as reference.
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Figure 3.17: Acceleration potential of the IRGN − TGV 2
frob regularized k-space based T1

reconstruction. T1 maps of the in vivo data from volunteer 2 for six AFs.
Scanning parameters according to table 2.2, under usage of the ten angle set.

Figure 3.18: Acceleration potential of the IRGN − TGV 2
frob regularized k-space based T1

reconstruction. Median, first and third quartile of T1 estimates for the two
ROIs of the in vivo data of volunteer 2, under usage of the ten angle set. Six
AFs are evaluated. The T1 median of a fully sampled reconstruction serves
as reference.
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Table 3.9: Acceleration potential of the IRGN − TGV 2
frob regularized image-space based

T1 reconstruction. Mean ± standard deviation of T1 estimates for the two ROIs
of the in vivo data of volunteer 2, under usage of the ten angle set. Six AFs
are evaluated, a fully sampled reconstruction serves as reference.

AF WM GM

Full 913 ± 44 1418 ± 118
4.7 923 ± 51 1432 ± 127
7.5 928 ± 53 1446 ± 137
12.2 935 ± 58 1464 ± 149
19.7 949 ± 63 1485 ± 164
32 975 ± 74 1513 ± 177
51 1022 ± 88 1533 ± 194

Table 3.10: Acceleration potential of the IRGN − TGV 2
frob regularized k-space based T1

reconstruction. Mean ± standard deviation of T1 estimates for the two ROIs
of the in vivo data of volunteer 2, under usage of the ten angle set. Six AFs
are evaluated, a fully sampled reconstruction serves as reference.

AF WM GM

Full 913 ± 44 1418 ± 118
4.7 930 ± 44 1424 ± 168
7.5 932 ± 48 1444 ± 193
12.2 936 ± 55 1465 ± 206
19.7 943 ± 62 1492 ± 230
32 959 ± 78 1541 ± 267
51 984 ± 102 1602 ± 338

Reconstructed T1 maps for volunteer 3 can be found in figure 3.19 for image-space, and

figure 3.20 for k-space based T1 quantification. T1 estimates are evaluated within four

ROIs (WM, GM, CN and CSF). Figure 3.21 shows the median and the 25% and 75%

percentile, i.e. the first and third quartile of the T1 estimates, table 3.11 summarizes mean

and standard deviation of the estimated T1 values, for the T1 maps in figure 3.19. The

same evaluation was performed on the T1 maps from figure 3.20, the results are found in

figure 3.22 and table 3.12.
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Figure 3.19: Acceleration potential of the IRGN−TGV 2
frob regularized image-space based

T1 reconstruction. T1 maps of the in vivo data from volunteer 3 for six AFs.
Scanning parameters according to table 2.2.
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Figure 3.20: Acceleration potential of the IRGN − TGV 2
frob regularized k-space based T1

reconstruction. T1 maps of the in vivo data from volunteer 3 for six AFs.
Scanning parameters according to table 2.2.
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Figure 3.21: Acceleration potential of the IRGN−TGV 2
frob regularized image-space based

T1 reconstruction. Median, first and third quartile of T1 estimates for the four
ROIs of the in vivo data of volunteer 3. Six AFs are evaluated. The T1 median
of a fully sampled reconstruction serves as reference.

Table 3.11: Acceleration potential of the IRGN −TGV 2
frob regularized image-space based

T1 reconstruction. Mean ± standard deviation of T1 estimates for the four
ROIs of the in vivo data of volunteer 3. Six AFs are evaluated, a fully sampled
reconstruction serves as reference.

AF WM GM P CSF

Full 804 ± 46 1275 ± 108 1015 ± 52 3728 ± 763
4.7 811 ± 49 1288 ± 110 1023 ± 54 3747 ± 767
7.5 815 ± 51 1297 ± 112 1030 ± 56 3741 ± 781
12.2 822 ± 54 1311 ± 111 1038 ± 59 3752 ± 791
19.7 840 ± 59 1336 ± 112 1045 ± 55 3661 ± 774
32 870 ± 67 1369 ± 117 1054 ± 52 3465 ± 751
51 927 ± 77 1399 ± 128 1103 ± 55 3003 ± 609
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Figure 3.22: Acceleration potential of the IRGN − TGV 2
frob regularized k-space based T1

reconstruction. Median, first and third quartile of T1 estimates for the four
ROIs of the in vivo data of volunteer 3. Six AFs are evaluated. The T1

median of a fully sampled reconstruction serves as reference.

Table 3.12: Acceleration potential of the IRGN − TGV 2
frob regularized k-space based T1

reconstruction. Mean ± standard deviation of T1 estimates for the four ROIs
of the in vivo data of volunteer 3. Six AFs are evaluated, a fully sampled
reconstruction serves as reference.

AF WM GM P CSF

Full 804 ± 46 1275 ± 108 1015 ± 52 3728 ± 763
4.7 802 ± 46 1313 ± 124 1019 ± 56 3882 ± 755
7.5 807 ± 46 1307 ± 122 1027 ± 60 3950 ± 764
12.2 821 ± 50 1318 ± 125 1032 ± 56 4034 ± 778
19.7 828 ± 55 1353 ± 143 1040 ± 53 4017 ± 754
32 848 ± 69 1406 ± 191 1053 ± 69 4185 ± 820
51 863 ± 97 1482 ± 254 1105 ± 123 4144 ± 776

3.2.2.1 Model-based Reconstruction in k-Space

While the image-space based T1 quantification is restricted to large FA sets by the used

image reconstruction method, basing the T1 quantification on k-space data allows for
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usage of smaller flip angle sets. For comparison of the performance for different numbers

of FAs, three FA subsets were defined and volunteer 2 was chosen for evaluation. The

acceleration potential of T1 quantification, was tested for all FA sets. Evaluation of the

results was performed as described in section 3.2.2 for the ten angle sets.

Reconstructed T1 maps for the flip angle set {2◦, 14◦, 17◦} can be found in figure 3.23,

figure 3.24 shows the median and the 25% and 75% percentile, i.e. the first and third

quartile of the T1 estimates, evaluated within the two ROIs (WM, GM).

Reconstructed T1 maps for the flip angle set {2◦, 14◦, 14◦} can be found in figure 3.25,

figure 3.26 shows the median and the 25% and 75% percentile, i.e. the first and third

quartile of the T1 estimates.

Reconstructed T1 maps for the flip angle set {2◦, 14◦} can be found in figure 3.27, figure

3.28 shows the median and the 25% and 75% percentile, i.e. the first and third quartile

of the T1 estimates.

Table 3.13 finally summarizes mean and standard deviation of the estimated T1 values,

for all three used FA subsets.
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Figure 3.23: Acceleration potential of the IRGN − TGV 2
frob regularized k-space based T1

reconstruction. T1 maps of the in vivo data from volunteer 2 for six AFs.
Scanning parameters according to table 2.2, under usage of the three angle
set {2◦, 14◦, 17◦}.

Figure 3.24: Acceleration potential of the IRGN − TGV 2
frob regularized k-space based T1

reconstruction. Median, first and third quartile of T1 estimates for the two
ROIs of the in vivo data of volunteer 2, under usage of the three angle set
{2◦, 14◦, 17◦}. Six AFs are evaluated. The T1 median of a fully sampled
reconstruction serves as reference.
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Figure 3.25: Acceleration potential of the IRGN − TGV 2
frob regularized k-space based T1

reconstruction. T1 maps of the in vivo data from volunteer 2 for six AFs.
Scanning parameters according to table 2.2, under usage of the three angle
set {2◦, 14◦, 14◦}.

Figure 3.26: Acceleration potential of the IRGN − TGV 2
frob regularized k-space based T1

reconstruction. Median, first and third quartile of T1 estimates for the two
ROIs of the in vivo data of volunteer 2, under usage of the three angle set
{2◦, 14◦, 14◦}. Six AFs are evaluated. The T1 median of a fully sampled
reconstruction serves as reference.
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Figure 3.27: Acceleration potential of the IRGN − TGV 2
frob regularized k-space based T1

reconstruction. T1 maps of the in vivo data from volunteer 2 for six AFs.
Scanning parameters according to table 2.2, under usage of the two angle set
{2◦, 14◦}.

Figure 3.28: Acceleration potential of the IRGN − TGV 2
frob regularized k-space based

T1 reconstruction. Median, first and third quartile of T1 estimates for the
two ROIs of the in vivo data of volunteer 2, under usage of the two angle
set {2◦, 14◦}. Six AFs are evaluated. The T1 median of a fully sampled
reconstruction serves as reference.
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Table 3.13: Acceleration potential of the IRGN − TGV 2
frob regularized k-space based T1

reconstruction. Mean ± standard deviation of T1 estimates for the two ROIs
of the in vivo data of volunteer 2, under usage of the two three angle sets
and the two angle set. Six AFs are evaluated, a fully sampled reconstruction
serves as reference.

3 FA 3 FA 2 FA
{2◦, 14◦, 17◦} {2◦, 14◦, 14◦} {2◦, 14◦}

AF WM GM WM GM WM GM

Full 913 ± 44 1418 ± 118
4.7 837 ± 44 1287 ± 157 913 ± 46 1447 ± 151 922 ± 52 1447 ± 224
7.5 839 ± 46 1302 ± 164 918 ± 47 1444 ± 161 925 ± 54 1447 ± 192
12.2 842 ± 50 1312 ± 177 925 ± 53 1464 ± 178 930 ± 58 1462 ± 212
19.7 846 ± 55 1331 ± 194 931 ± 58 1483 ± 200 932 ± 62 1472 ± 228
32 857 ± 64 1360 ± 226 943 ± 67 1520 ± 242 936 ± 71 1506 ± 270
51 871 ± 80 1397 ± 259 958 ± 83 1562 ± 282 952 ± 89 1543 ± 315
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4.1 Numerical Simulations

To examine noise dependency on the performance of the proposed T1 quantification meth-

ods three SNR levels were simulated with the numerical grid phantom. The highest in-

cluded SNR level was 30 dB, which roughly equates to levels present in in vivo data with

a 1 mm2 in-plane resolution and a slice thickness of 3mm, i.e. the level measured at

the Ernst angle of volunteer 2 image data. No significant improvement of T1 accuracy or

major differences between proposed methods were observed for SNR levels higher than 30

dB and respective results were excluded from the work.

Figures 3.1 to 3.3 show that the performance of IRGN methods does not depend too

much on the different implemented regularization strategies. All three yielded similiar

results in terms of median T1 and their behaviour over different flip angles sets. TGV 2
frob

regularization however, yielded the best results in terms of T1 accuracy, which can be seen

by the much smaller interquartile range.

Reconstructions with the DESPOT method were generally in good agreement with refer-

ence values but showed an overestimation in regions with low to medium T1 values, i.e.

WM, T1,mean and GM and an underestimation of CSF T1 values, when using the ten angle

set. Described bias can be observed at 15 dB, and is even more pronounced at 5 dB, where

it was also slightly present in the three angle set reconstructions. Its absence in the high
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SNR case and the later (3 FA), respectively missing (2 FA) onset in the small flip angle

sets, exhibiting improved SNR due to averaging, shows the dependence of the linearized

DESPOT approach on high SNR levels in the individual images. Evaluating 15 dB image

data without averaging it for the smaller FA sets shows an underestimation of CSF T1

values for two and three FAs, while no overestimation of low to median T1 values was

observed. In accordance to this, DESPOT reconstructed mean T1 values shown in table

3.5 were still more accurate than in the ten angle case. Standard deviation approximately

doubled in comparison to averaged data.

In comparison to DESPOT, model-based reconstruction methods showed a higher ro-

bustness to different numbers of FAs. In T1 estimates from TGV 2
frob regularized MBR

no pronounced differences between FA sets were observed at 30 and 15 dB. However the

dual angle set yielded better results in both, DESPOT reconstructions across SNR levels,

and MBR reconstructions at the low SNR of 5 dB. While a ten angle set gave the worst

results in the DESPOT case, as described above, in MBR it was the three angle that

lead to slightly less accurate estimates than the other two sets. Lowering the SNR from

30 to 15 dB, approximately doubles the standard deviation for DESPOT reconstruction.

Rise of standard deviation was more pronounced in MBR results, however stayed beneath

DESPOT levels over all SNR levels. It is worth mentioning that a perfect adaption of

regularization parameters to different SNR levels can not be guaranteed and may account

for some of the variations observed. Summarizing it can be said that TGV 2
frob regularized

MBR exhibited higher accuracy in terms of T1 mean, and slightly improved standard

deviation, down to about two thirds, in comparison to DESPOT, see tables 3.2 to 3.4.

Simulations of accelerated data acquisition in the numerical brain phantom, yielded T1

maps with visible noise, which increased over AFs, see figure 3.6. Edges and small details

are preserved well up to an AF of 12.2, corresponding to 21 spokes. Figure 3.7 shows that

median T1 values were constant over all accelerations for WM, and decreased over AFs for

GM and CSF, showing a underestimation of CSF values already present in fully sampled

data. Mean T1 values, listed in table 3.6, in contrast showed a bias towards higher values
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for GM, which was also observable WM.

After phantom simulations, the acceleration potential of TGV 2
frob regularized MBR and its

performance under different SNR scenarios were evaluated for in vivo data. The results are

discussed in sections 4.2.3 and 4.2.1, respectively. A few differences between the numerical

model setup and the actual conditions when using the proposed reconstruction pipeline

on in vivo data are worth mentioning. Firstly image reconstruction with ICTGV not only

allows for subsampling and therefore accelerates the measurement process, it also denoises

the images. This leads to an improved SNR compared to the one calculated for the

respective AFs in the numerical brain phantom. The noise removal on the downside can

lead to errors in the quantification process, since the assumption of gaussian distributed

noise justifiying the use of an L2-norm may not hold. And second a reduction of the

number of FA to values as small as two or three is not feasible for ICTGV reconstruction

from VFA data because the reduced number of scans leads to a reduction of coherence

over the parametric dimension. As ICTGV was developed for dynamic reconstruction,

a certain number of scans is mandatory to achieve good reconstruction results. Since

literature on FA selection recommends the use of ten angle sets for correct T1 estimation

over broader ranges, with established sets tuned to brain tissue available [12], this number

was set to ten.

4.2 In Vivo Reconstruction

4.2.1 SNR Stability

Comparing mean T1 and standard deviation of image-space based T1 reconstructions from

fully sampled in vivo data to gold standard IR values in table 2.4, estimates for WM are

found to be in good accordance with the reference. Slice thicknesses of 1 and 3 mm

yielded values of 891 and 913 respectively, while at a slice thickness of 5mm T1 had the
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significantly lower value of 804. Standard deviations were located between 44 and 48,

similar to reference. Values for GM were 1353 and 1418 for 1 and 3 mm respectively,

being in the range of one standard deviation of the reference value generated at a 5 mm

slice thickness. T1 mean for GM at 5mm finally was 1275. Standard deviations were

located between 100 and 118, similar to reference. T1 mean values of the remaining ROIs

(CN, P and CSF) were lower than the reference values. As they were not evaluated in all

volunteers no statement regarding their SNR stability can be deduced.

Interestingly the trend of increasing mean T1 values for decreasing SNR levels found in

reference values, and observed in the numerical grid phantom could not be observed over

all SNR levels in the in vivo data. While the lowest T1 values for WM and GM were,

as expected, observed for a slice thickness of 5mm, highest values were present at 3 mm,

with estimates at 1 mm lying just inbetween. However, different subjects were used to

record the data with different slice thicknesses, therefore some observed differences could

be accounted for by intersubject variability.

4.2.2 Comparison of Mapping Methods

For testing the acceleration potential, references subject to the same scanning environment

had to be generated. An ICTGV image reconstruction of fully sampled data, followed

by TGV 2
frob regularized MBR, was used to create reference T1 estimates for each subject,

i.e. slice thickness. While these were in agreement to literature values and considered

as ground truth in this work, no further proof was performed by e.g. using another

measurement or reconstruction method. No fully sampled T1 reconstruction was obtained

from k-space data. T1 values reconstructed from k-space data were slightly higher than

those reconstructed from image data, but in overall good accordance. The difference,

however, did lead to a somewhat higher deviation from the specified reference values

when looking at k-space based reconstructions. This is only apparent in the region of low

AFs, as the bias introduced over the accelerations quickly disguises the minor difference.
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Both methods, MBR on k-space data, as well as the combination of ICTGV image recon-

struction and MBR on the resultant image data, yielded T1 estimates that were in good

accordance with literature reference values.

4.2.3 Acceleration Potential

Mean T1 values estimated from subsampled data showed good compliance with the fully

sampled reference values, staying within two standard deviations over all accelerations.

Only image-space based reconstructions of WM slightly exceeded that limit for an AF of

51 for volunteer 1 and 2. All reconstructions showed the same overestimation bias for low

to medium T1 values, i.e. within all ROIs except CSF, increasing over accelerations. This

is consistent with the observations in the numerical brain phantom, see section 4.1. CSF

T1 values showed a bias towards lower values for increasing accelerations in reconstructions

from image data, as observed in the numerical simulations, see figures 3.13 and 3.21 and for

corresponding values tables 3.7 and 3.11. In reconstructions from k-space data however,

CSF values followed the trend of low to medium T1 estimates showing a bias to higher

values over accelerations, see figures 3.14 and 3.22 and for corresponding values tables 3.8

and 3.12.

Visually high AF factors lead to blurred T1 maps for image-space based reconstruction,

producing unsharp edges and loss of details. k-Space based reconstructed T1 maps showed

a tendency to form subregions of different T1 within regions of former constant T1 at high

AFs. This results in a patchy image, see for example in figure 3.20 the frontal region at

AFs of 32 and 51.

AFs up to 12.2, respectively 19.7, depending on the accepted image degradation led

to good visual results. The corresponding mean T1 values stayed within one standard

deviation of the reference. This suggests that T1 quantification is possible with as little as

21, respectively 13 Spokes per Frame, when using ten FAs, enabling scan time reduction
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from 12.8 seconds per slice, to 1.05, respectively 0.65 seconds per slice.

A comparison of different sizes of FA sets was performed for volunteer 2. The three angle

set of {2◦, 14◦, 17◦} was selected by the algorithm as the best subset from a provided

ten angle set, not allowing for repetition of angles within the set. While this angle set

performed well for DESPOT, it showed the least accurate results within the TGV 2
frob

regularized MBR on phantom image data, see section 4.1. In case of reconstruction from

in vivo k-space data the T1 quantification, using this angle set, showed severe estimation

errors, consistently underestimating T1 values over all acceleration. Another three FA

set was created from repetition of one of the angles of the dual angle set {2◦, 14◦}, as

suggested by Lewis et al. [10], giving {2◦, 14◦, 14◦}. Both FA sets gave similarly good

results, outperforming the k-space based reconstruction with the ten angle set, see table

3.10 and 3.13. For the region of WM they even outperformed that of the image-space

based one, see table 3.9. Overall the triple angle set yielded the best results within k-space

based IRGN-TGV 2
frob reconstruction, with mean T1 values in good accordance with the

reference value, exhibiting the smallest observed standard deviations.

4.3 Conclusion

The present work analyzes model-based T1 quantification methods, working on either

image or k-space data, in terms of their stability to different scanning scenarios, focusing

especially on their acceleration potential. The underlying model was the VFA approach,

the proposed algorithms are based on the IRGN method.

Numerical simulation showed a higher robustness to different numbers of FAs and SNR

levels for MBR in comparison to DESPOT. Highest T1 accuracy could be achieved using

TGV 2
frob regularization.

T1 reconstructions from in vivo data, were found to be in overall good agreement with
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literature reference values for both, the combination of ICTGV image reconstruction and

MBR on the resultant image data as well as MBR on k-space data, the latter showing

slightly higher T1 values.

Mean T1 values from subsampled data showed good compliance with the fully sampled

reference, staying mostly within two standard deviations over all accelerations. A bias

of overestimating low to median T1 values was observed in both methods, while high T1

values were underestimated in image-space based reconstructions and overestimated in k-

space based reconstructions, biases increased with increasing AFs. Considering the visual

results and demanding T1 values to stay within one standard deviation of the reference the

scan time could be reduced from 12.8 seconds per slice to 1.05, respectively 0.65 second

per slice depending on the accepted image degradation.

The evaluation of smaller FA sets consisting of two and three angles, performed for k-space

based MBR, outperformed the ten angle set in the evaluated regions of WM and GM.

The next step towards a more thorough evaluation of the proposed T1 quantification

methods could be including other signal models apart from the VFA approach.
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Algorithm 1: Iteratively regularized Gauss-Newton algorithm with different regulariza-

tion strategies for qMRI

Initialize:

k = 0, uk = (q1, · · · , qNq) = 0, λ, δ, γ, qδ, qγ

while k < Nmax do

Initialize DS|u=uk , DS
H |u=uk

Compute Ĩp = Ip +DSpuk − Sp(uk), p = 1, · · · , Np

Choose regularization strategy:

if RL2(u) then
Compute uk+1 with algorithm 2

end

if R(u) = TGV 2
sep(u) then

Compute uk+1 with algorithm 3

end

if R(u) = TGV 2
frob(u) then

Compute uk+1 with algorithm 4

end

δ ← δqδ

γ ← δqδ

end



5 Algorithms

Algorithm 2: Conjugate Gradient method for L2 regularized subproblem of algorithm 1

for qMRI in image space.

Definitions:

U = CNx×Ny

Initialize:

u ∈ U2, M = λDSHDS + ( 1
τ

+ δ)Id, rhs = λDSH Ĩ + δuk

Solve with CG method

r0 = r −Mx0, p0 = r0

while k < Nmax do

αk = <rk,rk>
<pk,Mpk>

u+ ← uk + αkpk

r+ ← rk + αkMpk

βk = <r+,r+>
<r,r>

p+ = r+ + βkpk

end
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Algorithm 3: Primal-Dual Algorithm for IRGN-TGV 2
sep subproblem in image space

Definitions:

U = CNx×Ny ,

∇ : U → U2, E : U2 → U3

Initialize:

σ, τ = 1√
12
, ui, ūi ∈ U, vi, v̄i ∈ U2, pi ∈ U2, qi ∈ U3, i = 1, · · · , P,

M = λDSHDS + ( 1
τ

+ δ)Id, rpart = λDSH Ĩ + δuk

while k < maxit do

Dual Update:

p+
i ← Pγ (pi + σ(∇ūi − v̄i))

q+
i ← P2γ (qi + σE v̄i)

Primal Update:

u+
i ← PL2(ui + τdiv1p+

i )

v+
i ← v − τ(−p+

i − div2q+
i )

Extrapolation and Update:

(ūi, v̄i)← 2(u+
i , v

+
i )− (ui, vi)

(ui, vi)← (u+
i , v

+
i )

end

Pη(ξ)j,l =
ξj,l

max
(

1,
|ξj,l|
η

) and PL2(ξ) = M−1

(
rpart +

ξ

τ

)
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Algorithm 4: Primal-Dual Algorithm for IRGN-TGV 2
frob subproblem in image space

Definitions:

U = CN , N = NxNy, space of vectorized 2D parameter images,

∇ : UP → UP×2, E : UP×2 → UP×3

Initialize:

σ, τ = 1√
12
, u, ū ∈ UP , v, v̄ ∈ UP×2, p ∈ UP×2, q ∈ UP×3,

M = λDSHDS + ( 1
τ

+ δ)Id, rpart = λDSH Ĩ + δuk

while k < maxit do

Dual Update:

p+ ← Pγ (p+ σ(∇ū− v̄))

q+ ← P2γ (q + σE v̄)

Primal Update:

u+ ← PL2(u+ τdiv1p+)

v+ ← v − τ(−p+ − div2q+)

Stepsize Update:

σ+ ← S
(
στ,

‖(u+,v+,w+
1 ,w

+
2 )−(u,v,w1,w2)‖

‖H((u+,v+,w+
1 ,w

+
2 )−(u,v,w1,w2))‖

)
τ+ ← σ+

Extrapolation and Update:

(ū, v̄)← 2(u+, v+)− (u, v)

(u, v)← (u+, v+)

end

Pη(ξ)i,p =
ξi,p

max
(

1, |ξ|frob
η

) and PL2(ξ) = M−1

(
rpart +

ξ

τ

)
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Algorithm 5: Primal-Dual Algorithm for IRGN-TGV 2
frob subproblem in k-space

Definitions:

U = CN , N = NxNy, space of vectorized 2d parameter images,

∇ : UP → UP×2, E : UP×2 → UP×3, || · ||F :

Initialize:

σ, τ = 1√
12
u, ū ∈ UP , v, v̄ ∈ UP×2, p ∈ UP×2, q ∈ UP×3

while k < maxit do

Dual Update:

p+ ← Pγ (p+ σ(∇ū− v̄))

q+ ← P√2γ (q + σE v̄)

r+ → PL2

(
r + σ

(
DG− Ĩ

))
Primal Update:

u+ ← Pl2(u+ τdiv1p
+ −DGH(r+))

v+ ← v − τ(−p+ − div2q
+)

Stepsize Update:

σ+ ← S
(
στ,

‖(u+,v+,w+
1 ,w

+
2 )−(u,v,w1,w2)‖

‖H((u+,v+,w+
1 ,w

+
2 )−(u,v,w1,w2))‖

)
τ+ ← σ+

Extrapolation and Update:

(ū, v̄)← 2(u+, v+)− (u, v)

(u, v)← (u+, v+)

end

Pη(ξ)i,p =
ξi,p

max
(

1, ‖ξ‖F
η

) and P 1
L2

(ξ) =
ξ

1 + τ
λ

and P 2
L2

(ξ) =
τδui,j + ηi

1 + τδ
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