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Abstract

Sleep is of utmost importance in order to maintain a healthy brain and body
and a continuous monitoring of sleep could help not only people suffering
from sleep disorders, but could also contribute the overall well-being of the
general population. In order to understand and classify sleep architecture,
computer algorithms are implemented to try and capture dynamical infor-
mation present in biological time series data. Naturally occurring systems,
such as the human brain, are nonlinear in nature and exhibit chaotic, deter-
ministic behavior. For this reason, nonlinear approaches are advantageous
when dealing with such data. Here, a novel nonlinear analysis technique,
delay differential analysis (DDA), will be introduced and applied to single
electrode sleep electroencephalography (EEG) data with the goal of creating
an automatic sleep stage detection algorithm as well as finding a biomarker
for obstructive sleep apnea (OSA) through mere EEG signal. Ultimately, the
hope is to be able to implement this algorithm into a wearable home EEG
sleep monitoring device, as traditional polysomnography (PSG) is extremely
expensive and time consuming.
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Outline

Delay differential analysis (DDA) is a tool based on nonlinear dynamics de-
signed to capture large-scale dynamics present in time series data. In the
first chapter of this thesis, an introduction to basic nonlinear dynamics and
chaos is given, by taking a look at the state portraits of a few simple de-
terministic dynamical systems. These ideas are then further extended to
embedding theory in chapter 2, which lies at the heart of DDA. This con-
cept will be exemplified with delay and differential embeddings of the duffing
equation. Since the governing equations of a complex system, such as the
human brain, are unknown, the goal of DDA is to detect and classify the
dynamical information contained in the system rather than try to model the
system itself. The basic computational procedure of DDA and the statistics
used to interpret the outputs will also be discussed chapter 2. Chapter 3
will introduce the physiology of the human sleep cycle and will present the
results of using DDA on sleep EEG data. Two data sets were used, one of
which contained patients suffering from obstructive sleep apnea, which is a
condition that causes a partial or complete obstruction of breathing during
sleep. Chapter 4 will demonstrate the classification performance of DDA
on patients with varying sleep apnea severities. Chapter 5 will give a brief
summary of all the obtained results presented in this thesis.
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Chapter 1

Nonlinear Dynamics and
Chaotic Systems

1.1 Nonlinear Dynamical Systems

In physics, the dynamics of a system is governed by a set of nonlinear dif-
ferential equations. The time evolution of the variables included in this set,
which span the n-dimensional state space of the system, depend on their
initial conditions as well as on a set of constant parameters. The collection
of trajectories produced by this system is called the state portrait and they
exhibit, depending on parameter choice and initial conditions, steady-state
(singular point), periodic, quasi periodic or chaotic behavior. Nonlinear sys-
tems are sensitive to initial conditions and neighboring trajectories who stay
close to each other over a long finite period of time suddenly exponentially
diverge.18,70

When dealing with highly complex nonlinear systems, such as the human
brain, we do not have access to all the system variables and rely on global
modeling techniques to get insight into the underlying dynamics of the sys-
tem. Since such systems (e.g. the brain) are highly unlinear, embeddings
can be used33,66,83,77. The Whitney embedding theorem (1936) states that
a generic map from an n-dimensional manifold to a 2n + 1 dimensional eu-
clidean space is an embedding33. This implies that each state space can be
uniquely identified by 2n+ 1 measurements and therefore reconstructed.

The Takens embedding theorem (1981) further states that the same can
be done with a single measurement83. Rather than 2n + 1 generic signals,
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2n + 1 delay embeddings (time delayed versions) of one generic signal are
used to construct the embedding therefore reconstructing the state space.

Around the same time, similar theorems were published by Aeyels (1981)2

and Packard (1980)66. These theorems were generalized in 1991 by Sauer et
al.77. Similar to delay embeddings, differential embeddings can be defined
by using 2n+ 1 successive derivatives of the signal.

DDA then combines the differential embedding with nonuniform func-
tional embeddings, which are a generalization of traditional embeddings, to
get insight into the overall nonlinear dynamical structure of the system. DDA
does not strive to reconstruct the original dynamical system, but to detect
and/or classify dynamical structure. To obtain this information, the term on
the left hand side of a DDE is the differential embedding. The right hand
side is the delay embedding, which is a small term polynomial approximation
model (in this thesis 3-term model) containing low dimensional embeddings
(typically two delayed versions of the signal). These ideal will be further
discussed in chapter 2, let us first focus on more simple low dimensional
oscillating systems.

The singular points of a dynamical system S are the points where there is
no change in the system, i.e. the points at which the derivatives of the system
variables are zero. The state portrait of a system for a certain choice of pa-
rameters can be obtained by determining the solution of the system at various
initial conditions. This can however, more quickly be achieved, by investi-
gating the stability of these singular points. The characteristic polynomial of
the Jacobian matrix Ĵ of the system results in characteristic eigenvalues that,
depending on which number set they belong to, correspond to the type of
stability of a particular singular point from which the surrounding trajectory
field can be inferred.

The term attractor was introduced in the second half of the 20th cen-
tury by mathmeticians like Coddington and Levinson (1955) and Mendel-
son (1960)64 although the limit cycle was already discovered by Poincaré in
the 19th century70. An attractor is a point or a set of points in the state
space, asymptotically reached by trajectories, which results in a geometrical
structure depicting the long term behavior of systems that remain near the
singular points. There exist also chaotic attractors who are produced by 3-
dimensional dynamical systems in the absence of any singular points, they
are described in further detail in the case of the Wei system86 by Letellier
and Malasoma (2016)56. The transient region in a state portrait is any part
of the trajectories between the inital conditions and the attractor. Attractors
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consiting of more than one point seem to have first been published in 1964 by
Auslander, Bhatia and Seibert64. There are four types of attractors: a) point
or fixed point attractor, b) limit cycle, c) torus attractor, d) strange attractor
and the e) chaotic attractor which arises from physical systems (realistic and
idealistic) who’s trajectories a) evolve towards a fixed point like the center
bottom position of a damped pendulum b) evolve towards a closed trajectory
like those of oscillating systems c) evolve around a fixed point as a limit cy-
cle with more than one frequency like planets orbiting a star while rotating
about themselves as well and d & e) are structured near their fixed points
in a bizarre fashion respectively. Most of the time, a chaotic attractors are
also strange attractors, but there exist both non-chaotic strange attractors,
and chaotic non-strange attractors. The term strange refers to the geometry
or shape of the attracting set and such an attractor has a fractal dimension.
The term chaotic refers to the dynamics of the trajectories, or orbits, on the
attractor and such an attractor is sensitive to initial conditions31.

These concepts are to be exemplified by means of damped and driven
oscillators18,37.
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1.1.1 Spring Mass System

Fig. 1.1 represents a simple dynamical system without friction and only one
degree of freedom. The motion of the mass can be described by a linear
differential equation for a harmonic oscillator

θ̈ + ω2
0θ = 0 (1.1)

where x is the deflection of the mass from its starting point 0 and ω0 =√
k/m is the resonance frequency of the oscillation. This can be rewritten

as a set of first order differential equations with x = θ

Figure 1.1: Mass on
spring

ẋ = y
ẏ = −ω2

0x
(1.2)

Setting Eq. 1.2 equal to zero we get the singular
points S

S0 =

∣∣∣∣∣ x0 = 0
y0 = 0

(1.3)

The Jacobian matrix Ĵ is

Ĵ =

[
0 1
−ω2

0 0

]
(1.4)

The characteristic polynomial of Ĵ is

λ2 + ω2
0 = 0 (1.5)

solving for Eq. 1.5 results in the eigenvalues

λ± = ±iω0 (1.6)

Poincaré investigated the stability of 2-dimensional dynamical systems in
relationship to the global aspect of trajectories70. For 2-dimensional systems,
four types of singular points are classified namely: node, center, focus and
saddle-point74. Fig. 1.2 depicts the state portraits of such systems according
to the eigenvalues of the Jacobian of the system at hand.
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unstable node saddlestable node stable focus unstable focus center

Singular Points 

Figure 1.2: Overview concerning the 4 types of singular points for 2-
dimensional dynamical systems

In the case of the singular points Eq. 1.6, there exist only imaginary parts
and the singular points are marginally stable and center.

The resulting state portrait of this two dimensional system is thus a
closed loop who’s radius depends on the oscillation frequency as well as initial
conditions x0 and y0. Fig. 1.3 is the solution of the system Eq. 1.2 for initial
conditions x0 = 0, y0 = 0.5 and ω0 = 0.5 solved with ode45 in MATLAB.

Figure 1.3: Time series of mass on spring system described by Eq. 1.2 (top)
and corresponding state portrait (bottom) for initial conditions x0 = 0, y0 =
0.5 and ω0 = 0.5.
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In the case of a damped oscillator with constant damping coefficient ζ
Eq. 1.1 becomes

θ̈ + 2ζω0θ̇ + ω2
0θ = 0 (1.7)

and can be rewritten as a set of first order ordinary differential equations

ẋ = y
ẏ = −2ζω0y − ω2

0x
(1.8)

The singular points are the same as in the undamped case

S =

∣∣∣∣∣ x = 0
y = 0

(1.9)

The Jacobian matrix Ĵ is:

Ĵ =

[
0 1
−ω2

0 −2ζω0

]
(1.10)

The characteristic polynomial is

λ2 + 2ζω0λ+ ω2
0 = 0 (1.11)

with the resulting eigenvalues

λ± = −ζω0 ± ω0

√
ζ2 − 1 (1.12)

For 0 < ζ < 1 (Fig. 1.4 A & B), the eigenvalues become complex conju-
gated and the singular points are a stable foci. For ζ < 0 these foci would
become unstable. For ζ ≥ 1 (Fig. 1.4 C & D), the eigenvalues are real and
negative and the singular points are stable nodes.
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A

C D

B

Figure 1.4: A) Time series of mass on spring system described by Eq.
1.8 for initial conditions x0 = 0, y0 = 0.5 and parameters ω0 = 0.5 and
ζ = 0.1. B) Resulting state portrait is a stable foci. C) Time series of
mass on spring system described by Eq. 1.8 for initial conditions (x0,y0) =
[(0, 0); (0.1, 0.1); (0.2, 0.2); (0.3, 0.3); (0.5, 0.5); (−0.1,−0.1); (−0.2,−0.2); . . .
(−0.3,−0.3); (−0.5,−0.5); (0.1,−0.1); (0.2,−0.2); (0.3,−0.3); (0.5,−0.5); . . .
(−0.1, 0.1); (−0.2, 0.2); (−0.3, 0.3); (−0.5, 0.5)] and parameters ω0 = 0.5 and
ζ = 1.01. D) Resulting state portrait are stable nodes.

If we now introduce a periodic external force into our system, we can
compensate for the damping and the trajectories of the phase space evolve
towards a stable closed trajectory or a limit cycle. We end up with an
equation of the form

θ̈ + 2ζω0θ̇ + ω2
0θ = u (1.13)

We can consider u = ω2
0θ

2
0 sinωEt as a special solution to Eq. 1.1, where

ωE is the frequency of the external force. This is a non-autonomous system
meaning the time t explicitly occurs in Eq. 1.13. The state space now is made
up of two 2-dimensional systems, resulting in a 4-dimensional state space.
The oscillator without driving force is spanned by variables x and y and
the driving oscillator adds another two dimensions as was the case with the
system described in Eq. 1.2. The driving signal u may be rewritten as a set of
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two first order ordinary differential equations61, with u = a sinωEt+b cosωEt
and the initial condition u(t = 0) = 0 we have

b = 0
a = ω2

0θ
2
0

u̇ = ω2
0θ

2
0ωE cosωEt = v

v̇ = −ω2
0θ

2
0ω

2
E sinωEt = −ω2

Eu

(1.14)

The resulting total autonomous system is then governed by the 4-dimensional
set of first order ordinary differential equations61

ẋ = y
ẏ = −2ζω0y − ω2

0x+ u
u̇ = v
v̇ = −ω2

Eu

(1.15)

with singular points

S =

∣∣∣∣∣
x = 0
y = 0
u = 0
v = 0

(1.16)

and Jacobian matrix Ĵ{x,y,u,v}

Ĵ{x,y,u,v} =


0 1 0 0
−ω2

0 −2ζω0 1 0
0 0 0 1
0 0 −ω2

E 0

 (1.17)

Since the driving oscillator is independent of the driven one, the stabil-
ity analysis can be performed in two steps. In the subspace R2(u, v) the
characteristic polynomial of the Jacobian matrix Ĵ{uv} is

λ2 + ω2
E = 0 (1.18)

with eigenvalues

λ±{u,v} = ±iω (1.19)

so the singular point in the uv-plane is again a center point (see Fig.
1.5). For the subspace R2(x, y) the characteristic polynomial of the Jacobian
matrix Ĵ{xy} is
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λ2 + 2ζω0λ+ ω2
0 = 0 (1.20)

with the same eigenvalues as before in Eq. 1.12

λ±{x,y} = −ζω0 ± ω0

√
ζ2 − 1 (1.21)

A

B

0

1

0.8

2500

Figure 1.5: A) Time series of mass on spring system described by Eq. 1.15 for
initial conditions x0 = 0.5, y0 = 0, u0 = 1 and v0 = 0 and for parameters ω0 =
1.2, ζ = 0.1, ωE = 0.5. B) Corresponding state portrait of 4-dimensional
state space is a limit cycle

Linear systems of equations of the sort Eq. 1.13 can be inegrated and their
solution trajectories are dependent on the initial conditions. The system
is semi-conservative, i.e. the driving system is conservative and feeds the
dissipative driven system with energy. The amplitude of the driven system
strongly depends on the driving one and the state portrait of the system is
represented as a limit cycle. If we now regard the nonlinear case, we find
ourselves dealing with far more complex systems with bizarre state space
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representations. An example of a simple nonlinear system showing chaotic
behavior is given by the Duffing-Equation32,37

θ̈ + 2ζω0θ̇ − ω2
0θ + δω2

0θ
3 = ω2

0θ
2
0 sinωEt (1.22)

with the nonlinear damping constant δ. It is important to note here, that
the nonlinear cubic term θ3 is a necessary but not sufficient condition for
a chaotic system37. In 1901, Bendixson, based on Poincarés work, proved
that in 2-dimensions, the asymptotic behavior in a state portrait can only
be one of four types of singular points (Fig. 1.2) or a limit cycle (Fig. 1.5).
The Bendixson-Poincaré theorem states that as a corollary of this, at least
3-dimensions are required for a system to give rise to a chaotic attractor9,70.
The following modified Duffing equation will be used for further investiga-
tion37

θ̈ + cθ̇ − βθ + αθ3 = γ sinωEt (1.23)

Writing this in a set of 4 first order ordinary differential equations

ẋ = y
ẏ = −cy + βx− αx3 + u
u̇ = v
v̇ = −ω2

Eu

(1.24)

with two singular points S0 and S±

S0 =

∣∣∣∣∣
x0 = 0
y0 = 0
u0 = 0
v0 = 0

S± =

∣∣∣∣∣
x± = ±

√
β/α

y± = 0
u± = 0
v± = 0

(1.25)

and Jacobian matrix Ĵ{x,y,u,v}

Ĵ{x,y,u,v} =


0 1 0 0

β − 2αx2 −c 1 0
0 0 0 1
0 0 −ω2

E 0

 (1.26)

The characteristic polynomial of Ĵ{u,v} is

λ2 + ω2
E = 0 (1.27)

with eigenvalues

11



λ±{u,v} = ±iω (1.28)

The characteristic polynomial of Ĵ{x,y} is dependent on the x-component
of the singular points.

λ2 + cλ− β + 2αx2 = 0 (1.29)

In S0 the eigenvalues are

λ±{x,y}0 =
−c±

√
c2 + 4β

2
(1.30)

since c2 + 4β > 0, λ±{x,y}0 ∈ R, the singular point S0 is a saddle. The
other two singular points S± are symmetric under an inversion symmetry
S+ = Ψ̂S− where Ψ̂ is the negative of the identity matrix Ψ̂ = −1̂. Thus
the type of these singular points is the same and we will consider only S+.

λ±{x,y}+ =
−c±

√
c2 − 4β

2
(1.31)

So depending on the parameter c, we will get a different state portrait.
There exist an infinite number of attractors in the four dimensional state
space which exhibit period doubling bifurcations as well as chaotic behavior.
Some examples of chaotic as well as non chaotic solutions are depicted in
Fig. 1.6 by varying the initial condition u0 = γ in Eq. 1.23.
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period-1 oscillation

period-2 oscillation

period-4 oscillation

period-5 oscillation

chaos
period-2 oscillation

Figure 1.6: State portraits of the system given by Eq. 1.23 for parameters
c = 0.3, β = 1, α = 1, ωE = 1.2 and initial conditions x0 = 1, y0 = 0, v0 = 0
and varying u0 = γ = [0.20, 0.28, 0.29, 0.37, 0.50, 0.65]

The conservative component of the driving signal is obvious in the u− v
plane while the chaotic behavior is obvious in the x − y plane. One can
observe a large change in behavior occurring when the initial condition of
the driving oscillator is slightly varied. This is typical for a chaotic system
and it is impossible to determine what its trajectories for various initial
conditions will look like. The state portrait of x and y can reveal some
spectacular geometrical shapes. Two more examples for a quasi-periodic
regime are shown in Fig. 1.7.
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Figure 1.7: Quasi periodic state portraits of the system given by Eq. 1.23 for
parameters c = 0.05, β = −3, α = .1, ωE = 5 and initial conditions x0 = 1,
y0 = 0, v0 = 0 and varying u0 = γ = 0.9 (left) and c = 0.02, β = −10,
α = 9, ωE = 0.04 and initial conditions x0 = 1, y0 = 0, v0 = 0 and varying
u0 = γ = 50

A chaotic attractor, unlike its non chaotic counterparts, does not form
a manifold embedded in euclidean space. Both mathematical concepts such
as autocorrelation and fourier power sepctrums as well as geometric and nu-
merical methods such as Lypanouv-exponents and fractal dimension can be
used to classify chaotic attractors, although it should be noted here, that
these common tools are typically unsuitable for studying natural physiolog-
ical phenomena. Another example of such a nonlinear system exhibiting
regimes of chaotic behaviour is the famous Lorenz system which is a sim-
plified 3-dimensional model for Regleigh-Bérnard convection and is further
introduced in54.

The Poincaré map is a tool used to characterize the nature of the solu-
tion in the state space of a continuous n-dimensional system and was first
described in 1881 by Hérni Poincaré70. It is the discretization of the state
space in which an (n − 1)-dimensional hyperplane, the Poincaré section, Σ
is assumed, through which a returning trajectory s transversely crosses. For
a system of differential equations of the form Eq. ẋ = F(x), the right hand
side of the equations determine the direction of the tangent of the trajectory
s in the point x37. In this way stability of a periodic orbit can be investi-
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gated in the (n−1)-dimensional subspace and since the stability of one point
of a periodic orbit holds for all other points of the orbit, it is sufficient to
investigate only one arbitrary point.

1.1.2 Power Spectrum

Limit cycle and torus attractors can be detected by taking the Fourier trans-
form of the respective periodic or quasiperiodic regimes of the time series
x(t). Assuming a periodic time series x(t) with frequency ω0, the resulting
power spectrum is a series of equidistant pulses, with highest amplitudes at
ω0 = 2π

T
. Assuming a quasiperiodic time series x(t) with two incommensu-

rable frequencies ω1 and ω2, the power spectrum will have the highest peaks
at ω1 and ω2 as well as lesser peaks at all other linear combinations of the
two.

The power spectrum of a chaotic system on the other hand, will not show
distinct peaks at certain frequencies, but a continuous band of frequencies,
with possible characteristic peaks23. Fig. 1.8 depicts this phenomenon for
the chaotic Duffing system described by Eq. 1.23 for c = 0.3, β = 1, α = 1,
ωE = 1.2 and initial conditions x0 = 1, y0 = 0, v0 = 0 and u0 = γ = 0.5
which corresponds to the chaotic attractor in the state portraits of Fig. 1.6.
The autocorrelation function shows correlation between a signal x(t) and
x(t − τ) which fades after long enough time. Stochastic white noise on the
other hand, will show no autocorrelation and a constant Fourier spectrum
dependent on the variance Pi = σ2.
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Figure 1.8: Power spectrum of Duffing system for c = 0.3, β = 1, α = 1,
ωE = 1.2 and initial conditions x0 = 1, y0 = 0, v0 = 0 and u0 = γ = 0.5.

Testing for periodic, quasi-periodic and chaotic behavior in an unknown
time series can be difficult and there are better criteria for classifying chaotic
behavior such as the Lypunov exponents.

A. Lyaounov published a detailed paper in 1892 in which he studied sta-
bility of systems having no closed form solutions by introducing the concept
of certain characteristic exponents. Lypanouv exponents are used as conver-
gence (or divergence) criteria of neighboring trajectories in the state space.
The trajectories of point, limit cycle and torus attractors are stable and
neighboring trajectories stay close to each other. Although the trajectories
of strange attractors also experience an attractive force in the state space,
initially close trajectories diverge exponentially37.

1.2 Bifurcation theory

As previously discussed, small changes in the parameters of a systems can
drastically influence the long term behavior of a system. The term bifurcation
was first used in 1885 in Poincares paper71 and is defined as

Definition 1 a small change in one or more parameter of a system, inducing
a sudden change in the overall topological behavior37.

If the change of a system x(t), on account of a change in a parameter a of
the system, occurs continuously, then we call the pair {a, x(t)} a bifurcation
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pair82. A bifurcation diagram depicts this change in the stability of the
solutions with regards to the parameter being varied. With every bifurcation
point come new equilibrium solutions which have drastic consequences on
systems. The Poincaré map described in the previous section is a tool with
which a bifurcation diagram can be derived and is described for the Lorenz
system57 in more detail in54.

The main bifurcations of two dimension systems include saddle-node bi-
furcation, pitchfork bifurcation and hopf bifurcation which will be described
in the following sections.

1.2.1 Saddle-Node Bifurcation

The saddle-node bifurcation is the simplest example and will be illustrated
by the simple two-dimensional dissipative system

ẋ = α− x2
ẏ = −y (1.32)

with the parameter α. The two singular points are

S± =
∣∣∣ x± = ±

√
α

y± = 0
(1.33)

and symmetric so that only one needs to be considered. The correspond-
ing eigenvalues are

λ1± = −2x±
λ2± = −1

}
λ1± = −2(±

√
α)

λ2± = −1
(1.34)

Since 0 > λ1+ > λ2+, S+ is a stable node singular point, and since
λ2− < 0 < λ1−, S− is a saddle singular point.
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stable node

saddle

Figure 1.9: Saddle node bifurcation diagram of system described by Eq. 1.32.

Fig. 1.9 depicts the saddle node bifurcation of Eq. 1.32. By convention,
dashed lines represent unstable singular points and bold lines stable singular
points. There are no real solutions for α < 0 so the system diverges to −∞.
At α = 0 a bifurcation point occurs and the solutions collide to zero, two
singular points S± appear. When the number of solutions at a bifurcation
point increases, it is said to be supercritical (in the opposite case it is sub-
critical) For α > 0 the behavior depends on the initial condition of x. If
x < −

√
α, the system diverges to −∞, if x > −

√
α, the system converges to√

α.

1.2.2 Pitchfork Bifurcation

The next main bifurcation pattern is called a pitchfork bifurcation. For this
we will now consider the cubic 2-dimensional nonlinear system of ordinary
differential equations

ẋ = xα− x3
ẏ = −y (1.35)

The three singular points are
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S0 =
∣∣∣ x0 = 0
y0 = 0

S± =
∣∣∣ x± = ±

√
α

y± = 0

The corresponding eigenvalues explicitly depend on the x-value of the
singular points

λ1{0,±} = −3x2i + α

λ2{0,±} = −1

}
λ1{0} = α

λ2{0} = −1

λ1{±} = −2α

λ2{±} = −1
(1.36)

stable node

saddle

stable node

Figure 1.10: Pitchfork bifurcation diagram of system described by Eq. 1.35.

The singular point S0 exists for any value α. For α < 0 we have two
negative eigenvalues, S0 is a stable node. For α > 0, λ2{0} < 0 < λ1{0} and
we get a saddle node. The singular points S± have identical eigenvalues and
exist for α ≥ 0. The two resulting eigenvalues are both negative and thus
the singular points S± are stable nodes.

1.2.3 Transcritical Bifurcation

In a transcritical bifurcation, the number of solutions does not change. The
stability of the solution swaps, the stable node switch to a saddle node and
vice versa. We consider the following set of 2-dimensional ordinary differen-
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tial equations
ẋ = xα− x2
ẏ = −y (1.37)

The two singular points are

S0 =
∣∣∣ x0 = 0
y0 = 0

S∗ =
∣∣∣ x∗ = α
y∗ = 0

The corresponding eigenvalues are again explicitly dependent on the x-
value of the singular points

λ1,2{0,∗} =
−(2xi + 1− α)±

√
4(x2i − xiα− xi) + α2 + 2α + 1

2︸ ︷︷ ︸ (1.38)

λ1{0} = α

λ2{0} = −1
λ1{∗} = −1

λ2{∗} = −α (1.39)

Fig. 1.11 depicts this swapping of stability. For α < 0 S0 is asymptoti-
cally stable and S∗ is unstable and for α > 0 S0 is unstable and S∗ is stable.

saddle

sta
ble n

ode

sa
ddle

stable node

Figure 1.11: Transcritical bifurcation diagram of system described by Eq.
1.37.
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1.2.4 Hopf Bifurcation

Up to now, the eigenvalues of the Jacobian matrix of the systems considered
were real valued. The more interessting case are those systems exhibiting non
real eigenvalues of the Jacobian. Eberhard Hopf studied the bifurcations of
such n-dimensional systems34. Consider following 2-dimensional system of
equations

ẋ = −y + x (α− (x2 + y2))
ẏ = x+ y (α− (x2 + y2))

(1.40)

which can be rewritten into polar coordinates with x = r cosφ and y = r sinφ

ṙ = αr − r3
φ̇ = 1

(1.41)

The singular points are

r0 = 0 r∗ =
√
α α > 0 (1.42)

the latter only holds for positive α values and leads to a limit cycle in
the state portrait of the xy-space or in other words a periodic orbit who’s
amplitude grows with

√
α (see Fig. 1.12).
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stable focus unstable focus

limit cycle

Figure 1.12: Hopf bifurcation diagram described by Eq. 1.40

The solution at r∗ depends only on the radius; for r >
√
α, ṙ < 0 and for

r <
√
α, ṙ > 0 and thus we have a stable limit cycle to which trajectories

are pulled. For α < 0, r∗ ∈ I, i.e. the trajectories surrounding the limit cycle
spiral into a single fixed point r0 and for α < 0, r∗ ∈ R, i.e. the trajectories
spiral away from the fixed point (see Fig. 1.13.)
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stable limit cycle

stable foci

unstable focus

Figure 1.13: Hopf bifurcation and corresponding state portraits.
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Chapter 2

Delay Differential Analysis

Many new techniques have emerged for analyzing experimental medical time
series data, most of these rely on linear based algorithms. However, nat-
urally occurring systems exhibit chaotic, deterministic behavior and thus,
important aspects may be missed by linear analysis. Nonlinear methods are
receiving more recognition, as they are able to detect structures in com-
plex biological systems. One of the most common nonlinear approaches for
revealing time series dynamics are delay and differential embeddings. An em-
bedding converts a single time series into a multidimensional object in an
embedding space revealing valuable information about the system, without
having direct access to all the system’s variables33,66,83,77. This concept is
demonstrated in the next section by the embedding of the x variable of the
set of first order differential equations (Eq. 1.24) of the Duffing oscillator
(see Fig. 2.1). Delay diferential analysis (DDA) combines a derivative em-
bedding with functional nonuniform delay embeddings to detect dynamical
differences and nonstationarities in a given data set (Fig. 2.2). Functional,
meaning that for the delay embeddings, polynomial models are used as an
approximate of the system and nonuniform, meaning that the delays used
in each of these approximations are independent of one another. A crucial
difference to most time series analysis techniques, is that it is performed in
the time domain, not in the spectral domain. DDA has been applied to the
well known systems, the Lorenz system and the Rössler system, as a proof
of concept54,50.

DDA has shown successful applications in distinguishing, between heart
conditions in electrocardiographic (ECG) recordings, between Parkinson elec-
troencephalographic (EEG) and control EEG recordings, between cortical
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states and epileptic events from high density electrocorticogram (ECoG)
data, as well as in sifting out non linear features in information processing
dysfunction in schizophrenics by revealing dynamical state changes43,48,52,53.
In this thesis, DDA will be applied to single electrode EEG data to see if it
is able to capture dynamical differences during various sleep stages as well
as between patients with and without the sleep disorder obstructive sleep
apnea.

2.1 Delay Differential Embedding

Differential Embedding

Delay Embedding

Delay Differential Embedding

Figure 2.1: Embedding x(t − τ) with
τ = 10 of the variable x(t) of the sys-
tem given by Eq. 1.23 for parameters
c = 0.3, β = 1, α = 1, ωE = 1.2
and initial conditions x0 = 1, y0 =
0, v0 = 0 and varying u0 = γ =
[0.20, 0.28, 0.29, 0.37, 0.50, 0.65]

Embedding theory was already in-
troduced in the first chapter. A
general existence theorem for em-
beddings in an Euclidean space was
given by Whitney (1936)33: A
generic map from an n-dimensional
manifold to a 2n + 1 dimensional
Euclidean space is an embedding.
Whitney’s theorem implies that each
state can be identified uniquely by
a vector of 2n + 1 measurements,
thereby reconstructing the state por-
trait. Takens embedding theorem
(1981)83 further states that this can
also be achieved with 2n + 1 delay
embeddings (time delayed versions)
of one generic signal.

The concept of embeddings is
made clear in Fig. 2.1 which depicts
the differential, delay and delay-
differential embeddings of the x vari-
able of Eq. 1.24 of the Duffing os-
zillator. Some embeddings are only
topologically equivalent to the orig-
inal state portrait and caution must
be taken concerning the reliability of
the embedding. Due to the nature
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of the variables in a nonlinear dynamical system being dependent of one
another, each one will contain information about the rest of the system
variables. An embedding represents a global diffeomorphism to the origi-
nal system and thus we can obtain information about the dynamics of highly
complex systems from mere single variable measurements. Fig. 2.2 depicts
the relationship between DDA and embedding theory.

DDA

Figure 2.2: DDA and global modeling. By taking the time series of one
variable y(t) of a highly complex many dimensional system, and embedding
this variable in various approximating models, we are able to capture valuable
information about the dynamics of original system.

The Ansatz Library is a tool to reconstruct a general system from a noise
free single measurement containing the original dynamical system as a sub-
set41,42,46,45. The additional subsets include the original system in various
coordinate representations as well as systems which are topologically equiv-
alent to the original system. It shows that measurements from the same
dynamical system on different timescales can be identified as belonging to
the same dynamical system and can be seen as the theoretical limit for in-
formation contained in a single time measurement variable of a nonlinear
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deterministic system. For real world noisy data, such global modeling is
not possible and focus is put towards detecting and quantifying dynamical
differences between data classes44.

The general DDA model, a delay differential equation (DDE), is a non-
uniform functional embedding of an unknown signal x(t), which gives the
derivative of the signal x(t) in terms of the values of the function at previous
times such that

ẋ(t) =
I∑
i=1

ai

N∏
n=1

x(t)mn,i
τn (2.1)

where I is the number of monomials in the model, N is the number of delays
and τn, mn,i ∈ N0 with x = x(t) and xτn = x(t− τn)44. When applied to real
data, we limit the number of terms on the right side of Eq. 2.1 and search for
a low-dimensional DDE capable of detecting dynamical features in the data.
For EEG time series data, the following DDA model has been proven to be
successful in capturing underlying dynamical information and is used in the
rest of this thesis51,47,52,76

ẋ = a1xτ1 + a2xτ2 + a3x
2
τ1

(2.2)

with xτn = x(t − τn) and τ1 6= τ2. The numerical derivative on the left
hand side is done numerically using the center derivative63

dx

dt
=

1

2M

M∑
n=1

x(t+m)− x(t−m)

m
, (2.3)

where M is the number of forward and backwards steps in computing the
derivative. Data are noise contaminated, therefore, the dependence between
error an M is not straightforward. In this thesis M = 4 was chosen.

For the analysis in this thesis, τ1 and τ2 were each set to n = {1, . . . , 50}δt
where 1δt = 1

fs
and fs is the sampling rate, resulting in 2450 delay pairs (with-

out the main diagonal) which is stored in a feature matrix Â of dimension
50× 50, and elements Ak,l = (a1, a2, a3, ρ)τ1,τ2 .

The coefficients ~α = ai (i = 1 : 3) as well as the least squares error ρ are
used as features to distinguish dynamical differences in the time series data.
This feature set reflects both linear and nonlinear properties of time signals
and a connection between linear DDEs and tradiontal frequency analysis and
non linear DDEs and higher order statistics has been made by Lainscsek and
Sejnowski (2015)44. DDA is a nonlinear data anlysis framework that (1) uses
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raw data, (2) uses sparse models that match the macroscopic architecture
of the underlying dynamical system (3) disregards amplitude information
to concentrate on the dynamical aspects of the data. Previously, it has
been demonstrated that DDA captures essential features of data to produce
exceptional classification performance.49.

The coefficients ~α = ai are estimated numerically from the over deter-
mined system of equations using a singular value decomposition algorithm72

as follows
ẋ = M̂ ~α

ẋ(t)
ẋ(t+ 1)
ẋ(t+ 2)

...
ẋ(t+ L)

 =


x(t− τ1) x(t− τ2) (x(t− τ1))2

x(t+ 1− τ1) x(t+ 1− τ2) (x(t+ 1− τ1))2
x(t+ 2− τ1) x(t+ 2− τ2) (x(t+ 2− τ1))2

...
x(t+ L− τ1) x(t+ L− τ2) (x(t+ L− τ1))2


︸ ︷︷ ︸

M̂

 a1
a2
a3


︸ ︷︷ ︸

~α

(2.4)

where L is the number of time points used. Eq. 2.4 was solved using
supervised singular value decomposition.

The errors ρ of Eq. 2.2 were calculated for each delay pair with mean-
squared error estimation:

ρ =
1

L

√√√√(ẋ− I∑
i=1

ai

N∏
n=1

x(t)
mn,i
τn

)2

(2.5)

Fig. 2.3 depicts this process. One needs merely the signal, its square and
its numerical derivative. The signal is then delayed by τ1 and τ2 respectively
and and a window length (WL) is chosen to compute the first set of features
Ak,l = (a1, a2, a3, ρ)τ1,τ2 for this window. The process is then repeated by
sliding over the data with a certain window shift (WS). The choice of WL
depends mainly on the number of pseudoperiods in one data window in ST
DDA.
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data used

Figure 2.3: Single trial DDA: the features ai (Eq. (2.2)) are estimated for
each data window and time series.

DDA can be applied in a single trial (ST) or cross trial (CT) manner
to time series which can be assumed to have similar overall dynamical con-
tent such as multiple trials of the same recording or EEG recordings of two
channels. In ST-DDA, the features Ak,l = (a1, a2, a3, ρ)τ1,τ2 from Eq. (2.2)
are estimated for each data window and time series separately as opposed to
CT-DDA where they are estimated for multiple time series simultaneously
(see Fig. 2.4). In CT DDA the WL can be reduced to increase the temporal
resolution in the analysis. This implies that the number of rows in Eq. 2.4
will have n times more rows in the CT case

ẋ1

ẋ2
...

ẋn

 =


M1

M2
...

Mn


 a1

a2
a3

 (2.6)

where n is the number of dynamically similar time series.
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Figure 2.4: Comparison of single trial and cross trial DDA.

Boltzmann’s ergodic hypothesis states, that in a sufficiently long measure-
ment, the time average of a mesurand must equal to the ensemble average
of the system15. CT-DDA uses this hypothesis as an Ansatz and combines
multiple time series before computing the coefficient matrix arising from Eq.
(2.2). Comparing ST and CT DDA outputs can thus be used as dynamical
coherency test

ST
!

= CT (2.7)

2.2 Repeated Random Subsampling k-fold Cross

Validation

Cross-validation (CV) is a supervised learning algorithm which allows us to
asses how generalizable results of a statistical analysis will be to an indepen-
dent data set. The basic idea is to split the data into a (known) training set
and a first seen testing set, either exhaustively, where all possible ways to
divide the original sample are taken into account, or non-exhaustively.

The non-exhaustive methods include k-fold CV in which the data is ran-
domly divided into k sets of roughly equal size. Here the data is split ran-
domly into 3 subsets and training is carried out on two thirds of the data
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and then then tested on the remaining third. The predictions of the model
is then summarized into some type of performance measure, here the area
under the receiver operating characteristic (ROC) curve. This process was
repeated one hundred times in order to provide a better Markov estimate for
the accuracy of the model38.

Using this supervised structure selection method, we can determine which
delay pairs give the features that best fit, or rather classify, the data. For
each delay pair, the classes which are to be distinguished are split into two
feature vectors containing the signals from subjects from each class. For the
first delay pair

τ 1 = (τ1, τ2) = (1, 2)

which corresponds to the matrix element A1,2 = (a1, a2, a3, ρ)τ1,τ2 , we get two

feature matrices Â1 and Â2

Â1 =


A1

1,2

A2
1,2
...

As1,2

 ; Â2 =


A1

1,2

A2
1,2
...

As1,2

 (2.8)

with s = 1 :(number of subjects). The feature vectors Â1 and Â2 are then
randomly split into a training and testing group (2 : 1 ratio) Âtrain1 , Âtest1 and
Âtrain2 , Âtest2 . Two label vectors L1 and L2 are created in the same length as
the training vectors where one class is labeled with zeros and the other with
ones. In this way, the distance from the hyperplane will be measured at 0.5
(see Fig. 2.5).

The weight vector W is computed using the training feature vectors as
well as an a fore placed 1 vector which prevents the separating hyperplane
from passing through the origin

W =

[
1 Âtrain1

1 Âtrain2

]
\ L (2.9)

The last step is to test the weights on the testing vectors in order to
produce the 1-dim parameter D from a 4-dim hyperplane spanned by the
feature space

D = W ·
[

1 Âtrain1

1 Âtrain2

]
(2.10)
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D

class 1

class 2

0

1

target valuesseparating
hyperplane

Figure 2.5: Construction of the weight matrix: The classes 1 and 2 corre-
spond to the training matrices R1 and R2. The weights W then find the
best separating hyperplane (best separation of the 2 classes) that maps the
feature points of the 4-D feature space (constant, ai, aj, and error F ) to a
distance from the hyperplane D. All D < 0.5 correspond then to class 1 (R1)
and all D ≥ 0.5 correspond then to class 2 (R2)

54.

In a perfect system, the distances from the hyperplane D of the first class
would be > 0.5 and those of the second class would be < 0.5.

Fig. 2.6 shows the effect of the additional 1 vector in Eq. 2.9 where the
first row is the calculation without the 1 vector and the second row with it.

32



D
IM

D
IM

+
1

Dfeature space

feature 1 [a.u.]

fe
a

tu
re

 2
 [
a
.u

.]
fe

a
tu

re
 2

 [
a
.u

.]

subject number

feature 1 [a.u.] subject number

d
is

ta
n
c
e
 f

ro
m

 h
yp

e
rp

la
n
e

 [
a

.u
.]

d
is

ta
n
ce

 f
ro

m
 h

yp
e

rp
la

n
e
 [
a
.u

.]

class 1

class 2

Figure 2.6: Impact of the additional 1 vector in the calculation of D in Eq.
2.9. The top row corresponds to the calculation without and the the bottom
row with the additional 1 vector.
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2.2.1 Receiver Operating Characteristic Curve
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Figure 2.7: ROC curve for two arbi-
trary classes red and blue54.

The area under receiver operating
characteristic (ROC) curve, is used
to test diagnostic performance, or to
test the ability to correctly classify
subjects into clinically relevant sub-
groups62. Fig. 2.7 shows the con-
struction of the ROC curve for two
arbitrary, not 100% distinguishable,
classes (red and blue). The true
positive rate (TPR) is the measure
of the proportion of actual positives
that are correctly identified as such
(eg. the proportion of sleep ap-
nea patients which have been cor-
rectly classified as having apnea)
and the false positive rate (FPR) is
the proportion of actual negatives
that are correctly identified as such
(eg. the proportion of non sleep ap-
nea patients which have been cor-
rectly classified as healthy). The
ROC curve is then derived by plot-
ting the TPR against the FPR for
each threshold (cyan dashed lines). The area under this curve A′ is then
used as a separation measure to compare the DDA model’s with varying de-
lay pairs. A′ ranges from 0 to 1, where 1 is perfect separation and 0.5 means
no separation of the 2 classes. An A′ of zero means perfect separation of the
two classes with inverted labels.54
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Chapter 3

Automatic Sleep Scoring

3.1 The Sleep Cycle

When we talk about leading a healthy lifestyle, focus is laid on two things,
namely diet and exercise. Sleep is equally important in maintaining a healthy
brain and body. Sleep deprivation can have severe effects on cognitive perfor-
mance such as impairing attention and working memory as well as long-term
memory, decision making and vigilance4,58. Further physiologic consequences
include adverse affects on endocrine functions and immune responses6. The
length of sleep needed varies immensely between individuals but is on average
7 to 8.5 hours per day19 and we cycle through states of wakefulness, rapid-eye-
movement and non-rapid-eye-movement sleep. The so called Rechtsschaffen
and Kales (R & K) sleep scoring manual of 196873 divides sleep into five
stages: S1 S2 S3 S4 and REM sleep. Since 2007, the American Academy
of Sleep Medicine updated this scoring manual combining S3 and S4 into a
single slow wave sleep stage leaving the stages: N1 N2 N3 and REM. This
heuristic discretization of sleep was devised as a standardized scoring system
to allow uniformity between sleep laboratories and should rather be viewed
as a gradual transition of a waveform84.

EEG activity is divided into four bands based on the frequency and am-
plitude of the waveform whos frequencies depend on the reference used. Con-
ventionally there are four bands

1. beta band: > 13Hz

2. alpha band: > 8Hz & < 13Hz
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3. theta band: > 4Hz & < 8Hz

4. delta band: < 4Hz

Preceding a nights sleep is typically several minutes of wakefulness (W).
The EEG will show mixed beta and slpha activities and W is recorded when>
50% of a 30 second epoch shows scorable alpha activity. As drowsiness kicks
in and the eyes are closed, the EEG will show predominant alpha activity
and the EMG activity will reduce. Typically, sleep stage N1 follows W, and
often a person will reawaken after having spent only a few epochs in N1.
These transition states are often difficult to score84.

3.1.1 N1 NREM Sleep (R & K S1)

Sleep stage N1 or light sleep is a transition sleep stage characterized by low-
voltage and fast EEG activity. It is defined as an epoch consisting of > 50%
theta activity whilst the alpha activity drops to < 50%. The patterns can
be quite fluctuating and thus difficult to interpret. During drowsiness and
N1 sleep, the eyes begin to slowly roll (SREM), breathing becomes shallow,
the heart rate becomes regular, blood pressure falls and there is little or no
body movement. Thoughts will begin to drift, the person may experience
sensations of floating and one is easily awakened from N1 sleep stage. In
general the time spent in N1 increases with age.84

3.1.2 N2 NREM Sleep (R & K S2)

Sleep stage N2 are characterized by the so called K-complexes and sleep
spindles12. Sleep spindles are burts of brain activity, around 11 − 16 Hz
generated in thalamic circuits as a consequence of cortical firing and typically
last between 0.3 − 3 seconds and reoccurring every 5 − 15 seconds16. They
get their name from the fact that their EEG pattern resemble yarn spindles.
In the recent years, attention has been put on researching sleep spindles and
their potential roles in memory consolidation and other cognitive functions as
well as in psychiatric and neurological disorders79,78,29,26,69,39. Excessive sleep
spindles may also be due to medications such as benzodiazepines84. DDA has
shown to be very successful in automatic sleep spindle detection as the second
fastest, yet providing the highest agreement with human expert scoring76.
K-complexes are characterized by a sharp negative EEG wave deflection,
followed by a slower positive component. They arise in the central vertex
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and must persist for at least 0.5 seconds. They may occur with or without
external stimuli which indicates that the brain is still minimally responsive
that these k-complexes could represent a form of cortical evoked potential.
Sleep spindles often immediately follow k-complexes. Sleep stage N2 accounts
for the largest amount of time spent in any sleep stage especially in adults.
Next to the bursts of activity, is characterized by predominant theta activity
and delta activity is only allowed to occur for less than 20% of each epoch;
this is the threshold for slow wave sleep. There is a significant decrease
in physiological bodily functions such as blood pressure, brain metabolism,
gastrointestinal secretions and cardiac activity. A person will feel farther and
farther away from a consiouss state and will be more difficult to arouse.84

3.1.3 N3 NREM Sleep (R & K S3 and S4)

The N3 sleep stage, or slow wave sleep (SWS), includes the old R & K stages
S3 and S4 partly to overcome interrater variability between scorers7,21 and
partly because experts believe such a distinction to have no clear clinical sig-
nificance84. N3 is characterized by high amplitude low frequency waves and
both sleep spindles as well as k-complaxes may occur. There exist no clear
criteria for EOG and EMG, but generally muscle tone is further decreased.
SWS is thought to be play an key factor in cerebral restoration and recov-
ery, however its exact nature and role is still not clearly understood35,84,75.
Dreaming has been found to be associated with local decreases in slow wave
activity (SWA) in posterior brain regions and many parasomnias such as
sleep terrors and sleep walking may manifest themselves during SWS80,84.
The N3 sleep stage has also been linked to a peak in growth hormone secre-
tion. Arousal from N3 is far more difficult and waking up from this stage
may be accompanied by confusion and disorientation. The amount of time
spent in SWS typically decreases during the night to avoid sleep inertia in
the morning.84

3.1.4 REM Sleep

Rapid eye movement sleep first occurs about 90 to 120 minutes after sleep
onset in adults. About 20 − 25% of sleep is spent in REM and subsequent
REM periods typically become progressively longer and more robust. It is
characterized by low-amplitude irregular pattern EEGs of mixed frequencies
of the theta and alpha bands. As its name already implies, pronounced
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bursts of eye activity are visible in the EOGs. Physiological activity tends to
be higher than in the NREM sleep stages and some very interesting effects
occur. Blood pressure and pulse rate may dramatically increase or fluctuate.
Respiratory functions are affected so that breathing becomes irregular and
the brains consumption of O2 increases. Both men and women experience
episodes of vascular engorgement of the genitalia. More than 90% of REM
periods in the male are associated with full or partial penile erection. Women
experience the same frequency of episodes, however differ in distribution, in
greater frequency during NREM sleep, in duration, and in their less tight
correspondence to REM sleep phases.84,28

Infants spend a majority of their early lives in a REM like sleep state
similar to the REM state of adults (the differences lie in the cortical EEGs of
adult and infant REM sleep) implying that this sleep stage is important for
brain development. This reduction of time spent in REM with age, arises the
question as to if REM sleep serves the same functions across a life span14,60.
There is research that suggests that the muscle twitches occurring during
REM may function to aid sensori motor system development. Multiple brain
regions which are not active during the wake state are activated by muscle
twitches during REM sleep.67

REM sleep is regulated by an intricate network of brain circuits and a
countless number of neuromodulators. Hippocampal neural activity during
REM sleep is involved in memory consolidation, however its exact functional
role remains disputed. The big question as to what exact biological an neu-
ropsychiatric function dreams have for us is still a mystery.67,17

3.2 ZOMA Health Inc.

This thesis was done in cooperation with the start up company ZOMA Health
Inc., situated in California, whos goal is to implement DDA to quickly and
accurately assess EEG sleep data. There are commercially available devices
that claim to classify sleep stages according to heart rate and accelerometer
data, however there accuracy is at the most decent and sleep stages are
reduced to 4 stages namely: deep, light, REM and awake. Studies comparing
such wearable wristband sleep trackers amongst each other as well as with
research grade devices typically show high sensitivity (ability to detect sleep)
and low specificity (ability to detect wake)55,59,22.

A home monitoring device which utilizes single channel EEG would greatly
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improve reliability of sleep tracking. ZOMA’s vision is to create such a device
in cooperation with the group of Dr. Dott. Greco at the TU Graz working
on long lasting wearable tattoo electrodes27. With the help of DDA, ZOMA
hopes to offer hospital grade sleep scoring from the comfort of a patients
home. This would enable people suffering from sleep conditions to continu-
ously monitor their sleep each night to track treatment effects at a fraction
of the cost and time of a traditional PSG. Monitoring sleep using only single
electrode EEG would get rid of the elaborate amount of recording equipment
required for traditional PSG. Furthermore, a sleep lab environment often af-
fects the normal sleep patterns of patients and testing sleep from home would
give more reliable incite into an individuals typical sleep architecture and how
lifestyle choices affect it. The data will be sent to a smartphone app which
is able to create a hypnogram within a matter of seconds greatly surpassing
the computational time that other traditional machine learning techniques
require. In contrast to such algorithms, DDA is an approach based on phys-
ical fundamentals, namely nonlinear dynamics. This reduces the variability
between sleep scoring among people with various factors such as age, sex,
race, ethnicity, fitness and possible existing conditions.

A long term goal would be to create a wearable device to be able to also
continuously track other conditions such as epilepsy.

3.3 Polysomnography

A polysomnography various physiological changes that occur during sleep in-
cluding brain activity (EEG), eye movements (EOG), muscle activity (EMG),
heart rhythm (ECG), breathing functions, respiratory airflow, respiratory
effort indicators and peripheral pulse oximetry, in order to determine the
amount of time spent in each of the six sleep stages and to make diagnostic
evaluations about various sleep illnesses. Polysomnography is best performed
by certified sleep technicians in sleep laboratories, however often inexperi-
enced and persons who lack knowledge in this area are allowed to perform
the polysomnography.

Trained sleep specialists then visually assess 30sec epochs of data at a
time into wake or rapid eye movement (REM) and non rapid eye movement
(NREM: S1, S2, S3, S4) sleep stages according to the Rechtsschaffen and
Kales (R & K) rules73. These scores are then depicted into whats known as
a hypnogram. An example is given in Fig. 3.1.
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Figure 3.1: Human scored hypnogram.

3.4 DDA for automatic sleep scoring

Until 2007, the Rechtsschaffen and Kales sleep scoring manual from 1968
was used which comprises the 6 sleep stages described above73. Since then,
the American Academy of Sleep Medicine updated these scoring rules to
overcome high inter-rater variability12. Sleep stages S3 and S4 are notoriously
difficult to distinguish and so they were combined to a single slow wave sleep
stage N3. Sleep scoring according to the R & K as well as the ASSM rules
have been tested for inter-rater agreement between scorers from various sleep
labs and despite the merging of S3 and S4 to N3, the inter-rater agreement
was only slightly over 72%7,21. A discrete scaling of sleep stages ignores
the actual gradual transitioning of wave forms and therefore, an automatic
sleep stage classification algorithm would benefit in overall reliability as well
as substantially reduce the time and cost of traditional polysomnography.
Furthermore, achieving a hypnogram via merely one EEG electrode could
enable commercially available home continuous sleep monitoring devices like
the one described in Sec. 3.2.

3.4.1 DDA outputs as marker for sleep stage classifi-
cation

During sleep, brain activity changes during various sleep stages which can be
seen as the parameter fluctuations of a dynamical system. In 2014 Lainscsek
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et al. 51 showed that DDA features are sensitive to these state changes with a
correlation with manual scoring of r = (0.86± 0.1)51. An genetic algorithm
was implemented to search for the DDE model best able to classify the data
in 30sec epochs. This was performed on 35 single electrode EEG recordings
(C3/A2) that were recorded at the sleep laboratory at the medical university
hospital Intensive Care Unit in Rouen. The resulting model was

ẋ = a1xτ1 + a2xτ2 + a3x
2
τ1
xτ2 (3.1)

with τ1 = 1 and τ2 = 3 (see Fig. 1 in51). The coefficient a2 was found to
have the best correlation with the manually scored hypnogram. Since a2 has
arbitrary units and classical hypnograms scale with 6 : 1, the coefficient had
to be scaled accordingly.

Here, the DDA will be compared and retested to the data sets coming
from healthy individuals of the Physionet database and sleep apnea patients
from the SHHS dataset. It is to be noted that the algorithm used to score the
EEG patterns is a slightly modified proprietary version of the above, however
it uses the same basic idea of using the DDA features to classify the various
sleep stages. There were minimal differences between the performances of
the models Eq. 3.1 and Eq. 2.2. Any model with two nonlinear and one
linear term has been proven useful for detecting dynamics in EEG data.

3.5 Datasets

The EEG data used in this thesis were taken from the public databases
Physionet as well as The Sleep Heart Health Study (SHHS) for which ZOMA
Inc. received permission to use. The Physionet database contains 197 whole
night polysomnographies as well as manually scored hypnograms according to
the R & K manual73 based on Fpz-Cz/Pz-Oz (see Fig. 3.2) EEGs. This data
set was comprised of 153 recordings from 1987-1991 of healthy Caucasians
from the ages of 25-101. The recordings were performed in the subjects
homes and they were taking no sleep related medication. Sampling rates of
the EEG signals were 100Hz. Of these 147 subjects were analyzed.
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Figure 3.2: Electrode placement of SHHS (left) and Physionet (right) data
sets.

The SHHS data set was clinically collected from 6441 individuals between
1995 and 1998 and 2001 by the National Lung and Blood Institute to deter-
mine the role sleep-disordered breathing plays in the risk of coronary heart
disease, stroke, all cause mortality, and hypertension. The inclusion criteria
was met by subjects who were aged 40 or older, no previous history of treat-
ment of sleep apnea, no tracheostomy and no current home oxygen therapy.
The EEG recordings were taken at C3/A2 and C4/A1 (see Fig. 3.2 and sam-
pled at 125Hz. In this thesis, 5792 of the 1449 subjects were considered for
automatic sleep scoring. Patients who met only had five sleep stages instead
of six were excluded to ensure that all had been scored by the R & K rules.

Subject #

A
H

I

AHI

Figure 3.3: SHHS dataset of OSA subjects according to their AHI.
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3.5.1 MUSE EEG Headband

In addition to these professional grade data sets, the commercially available
EEG headband from MUSETM was tried to be used as a preliminary source
of home EEG recordings as a proof of concept. This device has a sampling
rate of 256Hz and the conducting material is located on the forehead region
as well as on two rubber strips behind the ear. The electrodes used are
AF7/FpZ, AF8/FpZ, T9/FpZ and T10/FpZ (see Fig. 3.4).

Figure 3.4: Electrode placement of MUSE data.

It is meant as a mediation assistant and unsuitable for measuring EEG
while sleeping as it is very sensitive to movement. Keeping the device in
place was nearly impossible even during an upright nap and a proper looking
hypnogram could not be obtained using DDA on the recorded data. Besides
the fact that the data was of extremely poor quality (see Fig. 3.5), the DDE
model used for analysis was trained on the C3/A2 electrode. The model
search may have to be repeated for data coming from electrodes of different
placements.
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Figure 3.5: Sample EEG data from MUSE headband.

3.6 Results

As a classification performance parameter, the correlation coefficients be-
tween the DDA outputs (D) and the manually scored hypnogram (H) were
calculated using the MATLAB function CC = corrcoef(H,D). Further
statistics will be required in order to reliably compare with literature. Nev-
ertheless, most alternative techniques require more of the available data from
the PSG than merely the EEG signals.

3.6.1 SHHS

Fig. 3.6 (left) depicts a sample nights hypnogram who correlated very well
(CC = 0.90) with the DDA features. DDA seems to be able to capture the
gradual transitioning from one sleep stage to another very well. In all, 1449
recording of the data set were taken into account and the results are given
in a histogram in Fig. 3.6 (right). The mean correlation was 0.72 which is
significant for preliminary results and when considering the fact that inter-
rater agreement between sleep scorers in Basner et al. 7.
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Figure 3.6: Sample DDA features over human scored hypnogram (left) and
histogram of correlations of DDA outputs to manually scored polysomnog-
raphy (right).

Concerning the patients who had very low correlations (about N(CC ≤
.5) ≈ 15% of the entire data), further investigation is required as to why
the analysis performed poorly. This could be the result of various factors
such as faulty connection between scalp and electrode, scoring patients with
conditions can be challenging for some sleep technicians and furthermore,
the way the information of the DDA features was extracted, is just one of
many possible approaches and will be subject of further investigation. Fig.
3.7 depicts three sample subjects who had CC < 0.20.
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Figure 3.7: Three sample human scored hypnograms (left) and corresponding
DDA features (right) for subjects who scored a correlation of CC < 0.20.

Karimzadeh et al. selected 140 patients form the SHHS data bank and
performed a distributed classification procedure to automatically detect sleep
stages according to the AASM annotations (W, N1, N2, N3, REM) . To en-
hance EEG signal quality a 8th order Butterworth filter was used for prepro-
cessing. They used frequency band entropies of the EEG phase and envelope
for each 30 second epoch as features. Then the 140 subjects were divided
into training and validation sets and a decision tree was estimated. Accuracy,
specificity and sensitivity were used as performance measures and achieved
ACC = 83.17%, SP = 86.99% and SE = 69.35 respectively. An overall
accuracy according to Fig. 7 in was only 0.73.

Biswal et al.13 achieved an overall accuracy of 78% using deep neural net-
works when training on 9000 PSGs from the Massachusetts General Hospital
Sleep Laboratory and testing on the SHHS data set. They combined deep
recurrent and convolutional neural networks (RCNN) for supervised learning
of the AASM sleep stage labels. This approach involved no preprocessing
of data and they claim that their method is robust to physiologic variability
between patients because the algorithm was trained on 8 yeas of clinical sleep
data (MGH).
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3.6.2 Physionet

The physionet data base includes two sets of recordings: CH1 Fpz/Cz and
CH2 Pz/Oz (see Fig. 3.2). The resulting correlations score on average
CCCH1 = 0.60 for CH1 and CCCH2 = 0.73 for CH2. Due to the fact that the
DDE model used was trained on the 35 patient recordings from the C3/A2
electrode51, it is not surprising that there is a large performance difference
between CH1 and CH2 in the physionet data. The CH2 electrode Pz/Oz is
topographically much nearer to the training electrode C3/A2.
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Figure 3.8: Histograms of correlations of DDA outputs to manually scored
polysomnography for CH1 (Fpz/Cz) and CH2 (Pz/Oz).

Imtiaz and Villegas’36 approch involved a combination of state machines
and decision trees to create an automatic sleep scoring algorithm using only
EEG data. They acheived an overall accuracy of 82% and 79% accuracy for
training and testing respectively. Prakash and Roy65 extracted features with
the help of Ensemble Empirical Mode Decmposition, Hjorth parameter and
zero-crossing rate and achieved an accuracy of ≈ 92% when classifying into
6 sleep stages.

Other attempts often rely on more than just the EEG signal (such as EMG
and ECG data) to extract features for automatic sleep detection25,24,87. DDA
and the method presented in13 are unique to other algorithms in that they do
not require preprocessing of the time signals. In addition, the computational
effort of DDA remains extremely low compared with other techniques and
the results presented in this thesis are promising.

Comparing with other literature, there is much room for improvement
with the proposed method of using DDA features. Since the training set used,
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arose from data coming from topographically different electrodes, retraining
the DDA features would be a suitable first step.
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Chapter 4

Sleep Apnea Classification

Sleep apnea is a condition in which a persons breathing ceases during sleep
which can have devastating consequences for those affected. We distinguish
between central sleep apnea (CSA) and obstructive sleep apnea (OSA). CSA
is a condition in which the brain fails to send signals to breath during sleep.
Escessive daytime sleepiness frequently results from the fragmentation of
sleep due to OSA. Sleep apnea can also be cause for cognitive impairment
and psychological problems like anxiety and depression20. The focus in this
thesis is put on the OSA, although it is important to note that investigation
of CSA in the same way could have promising results.

4.1 Apnea Hypopnea Index

Hypopnea is defined as periods of abnormal or shallow breathing while apnea
means a full blockage of breathing of at least 10 seconds or more. The
apnea-hypopnea-index (AHI) is the combined average number of apneas and
hypopneas that occur per hours of sleep. The American Academy of Sleep
Medicine (AASM) categorizes the severity of sleep apnea into the following12:
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Normal Sleep: AHI < 5 events/hr

Mild Sleep Apnea: 5 ≤ AHI < 15 events/hr

Moderate Sleep Apnea: 15 ≤ AHI < 30 events/hr

Severe Sleep Apnea: AHI ≥ 30 events/hr

AHI

Figure 4.1: Apnea Hypopnea Index

This classification of apnea has its drawbacks, as it does not consider the
time spent in each apnea-hypopnea event, which can be the cause for more
severe symptoms and conditions. The gold standard for OSA diagnoses and
severity classification to this day remains to be attended polysomnography.
This method is expensive and time consuming and an automatic standard-
ized way of detecting and classifying OSA using only one EEG electrode,
could enable patients a continuous monitoring of this disease from home.
In this way, tracking progression as well as treatment responses could be
closely monitered. Furthermore, some patients show considerable night-to-
night variability in the AHI, so treatments need to be personalized81.

4.2 Obstructive Sleep Apnea

OSA has been found to be highly prevalent in the population, however there
are discrepensies between the results of epidemiological studies about the
prevalence of OSA most likely due to various diagnostic techniques, defi-
nitions for hypopnea scoring, study design and characteristics of included
subjects30. Additionally, the abnormality in a patients sleep cycle patterns
varies with severity10. Scoring abnormal respiration remains to be a contro-
versial challenge in the field of sleep medicine and automated EEG based
computer methods could be key in understanding this class of conditions as
well as probing new treatment options for patients.

The gold standard for OSA treatment is a continous airway positive pres-
sure (CPAP) ventillation machine which administers mild air pressure to keep
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airways open. Apart from the negative psychological affect CPAP machines
have on many patients, long term use can cause upper air symptoms such as
nasal congestion, dry nose, sore throat, rhinorrhea, sneezing and a bleeding
nose68.

Patients with mild to moderate AHI are more likely to have REM related
OSA. There are controversial findings between the relationship of AHI-REM
and excessive daytime sleepiness. Most severe hypopnea and apnea events
typically occur during REM sleep in the second part of the night. Respiratory
events during REM sleep tend to be of longer duration and associated with
more significant arterial oxygen desaturation40,11.

REM sleep is composed of a phasic and tonic component. The phasic
component is a state driven by the sympathetic nervous system and charac-
terized by rapid eye movements, muscle twitches, and respiratory variability.
The tonic REM component is a driven by the parasympathetic nervous sys-
tem with no eye movements in which the body is essentially in a paralytic
state. The eye movements bursts of phasic REM are markers of brainstem
activity affecting respiration. Periods of REM sleep are longest and more
frequent in the morning hours, so it is of no surprise that patients with OSA
and other abnormal respiratory illnesses experience the greatest changes in
ventilation12,1,5. Patients suffering from OSA are more susceptible to phasic
changes in REM sleep and the muscles of respiration other than the di-
aphragm are less active due to the generalized state of hypotonia. However,
periodic decrements in diaphragmic activity also do occur during bursts of
eye movement.8

Robert J. Thomas et. al85 bring up some important considerations about
the scoring of sleep apnea events some of which are listed below:

• The smallest degree of oxygen desaturation which can be visually de-
tected is 2%−3%. In clinical practice, nondesaturating hypopneas have
clinical consequences and should thus be taken into account.

• Sleep cycle patterns modulate respiration and there are periods of sta-
bility intrinsic to NREM sleep which can determine the presence of
apnea.

• The AASM scoring of respiratory events includes the 3-second arousal
rule12 which has no biological basis. Alpha and beta intrusions, the
K-complex and delta-bursts of less than 3 seconds may be considered
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arousal events. Thus computerized arousal detection via EEG could
differentiate between significant vs. non significant respiratory events.

• Obstructive apneas should always be scored, however nonobstructive
apneas (not leading to an arousal or oxygen desaturation, especially
during REM), isolated postarousal apneas and apneas during sleep
wake transition periods should not be scored.

• There is also no biological basis for scoring only apneas which last for
10 seconds ≥ 10sec.

These items as well as a few other points made in their book, give evidence
to support the fact that the AHI is still an insufficient parameter of the
severity of sleep apnea.

In this thesis, only the REM EEG segments were considered of the SHHS
data set. This 1) greatly reduced the amount of data when performing DDE
model search, 2) could give a small insight into the clinical dispute among
sleep experts and research between OSA events during REM sleep and 3)
reduced variability in the data as the interrater agreement for sleep stage
REM is the hightest and thus the most reliable among the sleep stages7.

4.3 Results

For this analysis, the SHHS data base described in Sec. 3.6.1 was used. Only
REM EEG segments of patients scored after the 1968 published Rechtschaf-
fen and Kales manual73 were considered to reduce variability between sleep
scoring. The REM peaks of each subject were pinpointed using the manu-
ally scored hypnogram, any subsequent periods of REM which were within
3 minutes of each other were combined. This is depicted in Fig. 4.2 for one
subject.
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Figure 4.2: Visualization of pinpointing REM EEG segments for a sample
subject.

The analysis applying DDA to these EEG time series signals described
in Ch. 2 was carried out both single trial and cross trial (Fig. 2.4) for a
window length of WL = 1 min and a window shift of WS = 30 sec to match
typical human scoring of 30 sec epochs. The mean, standard deviation and
median was taken of the resulting DDA features over the windows for each
of the 2450 delay pairs. This leaves following feature matrices:

dim(ÂCT ) = 12× 2450

dim(ÂST ) = 12× 6× 2450

The goal was now to see if the DDA features could classify the subjects
categorized according to their apnea-hypopnea-index (AHI) (see Fig. 4.1).
Additionally one marker was taken at AHI = 10.
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Figure 4.3: Subject groups to be distinguished.

Fig. 4.3 shows that the sample size of patients with high AHI indices
(green) was much smaller than the ones with lower AHI indices. In order
to keep the sample sizes of C1 and C2 similar, C1 was chosen to be NC1 =
NC2 + 10.

Cross validation as described in chapter 2 Sec. 2.2 was performed one
hundred times for each of the two classes depicted in Fig. 4.3 and the area
under the ROC curve A′ was calculated for each delay pair as the performance
measure. The mean was taken over the 100 A′s (Ā′).
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Figure 4.4: Separation performance Ā′ for each of the 6 groups of Fig. 4.3
containing C1 and C2.

Fig. 4.4 shows the average separating values of Ā′ as a color scale using
randomly selected subjects of the class C1 and all the subjects of class C2

in Fig. 4.3 (10 repetitions each with a newly selected pool of subjects in
C1). Darker colors represent better classification and vice versa. The left
hand side values indicate which of the 6 groups according to Fig. 4.3 were
chosen. N indicates the sample sizes and the bottom scale represents the
corresponding AHI indices. We can see that almost all class combinations
achieve satisfactory separations of Ā′ > 0.7 and that cross trial and single
trial performance is nearly identical.

DDA was able to detect dynamical differences in single electrode EEG
data of different OSA severities. As previously described in chapter 2 (see
Fig. 2.4 and Eq. 2.7), comparing ST and CT outputs serves as a test for
dynamical coherency. Since the degree of a subjects apnea should not change
in one night, i.e. the dynamics should stay the same, the delay pairs chosen
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to be best for separation of each of the groups in Fig. 4.3 should be similar
for the ST and CT case. This hypothesis was tested by visualizing which
delay pairs were chosen according to the value of Ā′, for each of the 6 groups
containing C1 and C2 in a 2-dim histogram (100 runs). Since the subjects in
C1 were different each run, the best chosen delay pairs slightly differed each
run and we can see the largest dispersion of delay pairs in Fig. 4.5 in groups
2 and 3. This is logical, because the pool of C1 is the largest in these groups.
It is obvious that ST and CT delay pairs coincide very nicely which endorses
the previous analysis.
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Figure 4.5: Histogram of best chosen delay pairs.

There have been other studies on the SHHS data set deriving an auto-
matic apnea detection technique. Most of these utilize the respiratory data
of the PSG recordings although some show promising results when regarding
the EEG data.

Al-Angari and Sahakin3 used 50 control and 50 OSA subjects and a
support vector machine classifier with linear and second order polynomial
kernels. They evaluated features from the magnitude and phase of the tho-
racic and abdominal respiratory effort signals for OSA detection. For subject
classification an accuracy of 95% was achieved.

Biswal et al.13 used a deep neural network approach and attained 80.2%
(Table 113) accuracy using a dataset of PSGs performed at the Massachusettes
General Hospital Sleep Laboratory as a training set and the SHHS as a test-
ing set. 9000 subjects were used for training and 1000 for testing. They
re-validated the generalization of the neural network by further testing on
1000 randomly selected patients from the SHHS data set. They achieved a
correlation of 0.77 to expert labeling and an accuracy of 80.2%.
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The results presented in this thesis regarding automatic OSA classifica-
tion barely scratch the tip of the iceberg and more time is required to delve
deeper into this issue. The preliminary results presented here, only sepa-
rate two distinct groups based on the apnea severity (eg. normal vs. mild
OSA). In order to compare with13, a model able to separate one AHI severity
group from all the other groups, defined by the AASM (see Fig 4.1), must
be determined.
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Chapter 5

Conclusion

The results presented in the previous chapter show promise, that delay dif-
ferential analysis (DDA) is a suitable classifier for sleep staging and sleep
apnea. Using a nonlinear method for studying biological times series data
can be highly beneficial, as nature is nonlinear. DDA is a noise insensitive
technique inspired by nonlinear dynamics, in particular embedding theory.
This thesis represents the preliminary results on its application to single elec-
trode sleep EEG data and is the first step in achieving a reliable commercial
continuous sleep monitoring device.

Sleep is often an overlooked factor in the well-being of humans, partially
because of the effort and cost required in scoring sleep. We cycle through
various stages of sleep during the night, each one characterized by different
dynamics. This research applied DDA to two different sets of polysomnogra-
phy data (SHHS N = 1449 and Physionet N = 147 ) and was able to capture
dynamical differences of the 6 sleep stages with a mean correlation to human
scorers of ≈ 72% and ≈ 73% for the two datasets.

DDA was also applied single-trial (ST) and cross-trial (CT) to the SHHS
data set to try and distinguish between patients suffering from the sleep
breathing disorder obstructive sleep apnea. Data was split into 6 different
groups of two classes according to the apnea-hypopnea-index of the patients.
The performing measure used was the area under the receiving operating
characteristic (ROC) curve. ST had a mean separation of the two classes of
0.82 and CT of 0.79.

The results of this thesis must be reevaluated with other performance
measures in order to reliably compare with literature. The statistical perfor-
mance measures typically used for sleep scoring and sleep apnea classification
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is the Cohen’s-kappa index and accuracy determined by the confusion matrix.

5.1 Outlook

The results presented in this thesis show promising results, however this
is just the tip of the iceberg and there is an abundant amount still to be
researched in the application of DDA on sleep EEG data.

Concerning the automated sleep scoring algorithm, it would be beneficial
to (1) review the data of the subjects who’s hypnograms badly correlated with
the DDA outputs with a sleep expert (2) because the algorithm was trained
on only 35 patients, retrain the model to make sure the best delay pairs are
being used for the electrode C3/A2 and then train as well for topographically
different electrodes (3) include patients scored by the AASM scoring system
and (4) utilize and score the output DDA features in other ways to compare
this method with literature and make it fit for clinical use.

The results show interesting results as it seams that there are distinguish-
ing features present in the EEG signals of OSA patients during REM sleep.
Further investigation is needed such as (1) repetition for other sleep stages
(2) testing on other data sets (3) include patients scored by the AASM scor-
ing system (4) reapplication to CSA patients could give superior results as
CSA events occur predominantly during REM sleep (5) see if there is a direct
correlation between the AHI index (or event duration) and the DDA outputs
and (6) ultimately test for apnea event detection.

Regarding the implementation a portable EEG device with the tattoo
electrodes, a device needs to be built, that is compatable with the tattoo
electrodes presented in Ferrari et. al.27 an suited for sleep. Then the al-
gorithm needs to be first tested on a short nap for the C3/A2 electrode.
Afterwards, it can be tested and retrained for data arising from the fore-
head as well as behind the ears. The final step would be to include the
tattoo electrode data in a clinical PSG as a proof of concept for obtaining
hypnograms.
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