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Abstract

With a rather off-mainstream view on the modeling and parameter-identification, this thesis of-
fers a completely new set of tools which, ultimately, aim to identify losses in water distribution
networks.

Allowing flow dynamics to be part of the mathematical network description, the traditional
steady-state modeling approach is put into question as it has actually not been improved upon
in the last 40 years. Apart from the additional dynamic information, this methodology allows
a more physically suitable consideration of the water consumption in simulation which enables
it to be decreased inherently if not enough pressure is available. Benchmarked on a real experi-
mental network at Graz University of Technology, strengths and weaknesses of these developed
models are discussed when compared to measurements.

Influenced by a control-theoretical background, this additional dynamic model information is
then utilized to deduce more general statements about the observability of the model’s states of
the hydraulic network. Unsurprisingly and completely analogous to the steady state, unknown
friction parameters yield to be the major unknowns. The derived dynamic models thereby fea-
ture the same mathematical description of friction as the conventional steady-state one, enabling
an easily portable framework.

Motivated by the observability analysis, the identification of individual friction parameters per
pipe in the network received most dedication. In particular the proper formulation but also
the developed solving-algorithms for this friction parameter identification problem can be con-
sidered core findings of this work. This problem formulation basically relies on the steady-state
model inversion and requires a whole set of assumptions to be uniquely solvable. The solving,
in general, proves to be specifically challenging. The developed methods, however, enable the
solving to be robust to an extent which not only allows to find individual friction parameters,
but also to identify faults in the network itself. A claim which is supported by the results when
applying the developed friction parameter identification scheme on a real-world drinking water
network.
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Kurzfassung

Mit einer unkonventionellen Sicht auf die Modellierung und Parameteridentifikation bietet diese
Arbeit eine Reihe von neuen Ansätzen, die letztendlich darauf abzielen, Verluste in Wasserver-
teilungsnetzen zu identifizieren.

Durch Hinzunahme einer Strömungsdynamik als Teil der mathematischen Netzwerkbeschreibung
wird der traditionell stationäre Modellierungsansatz, der praktisch 40 Jahre unverändert blieb,
in Frage gestellt. Abgesehen von der zusätzlichen Information durch die nun berücksichtigte Dy-
namik, ermöglichen diese Modelle eine physikalisch sinnvolle Einbettung des Wasserverbrauchs
in die Simulation. So wird dieser automatisch und auf Basis physikalischer Zusammenhänge
verringert wenn nicht genügend Druck vorhanden ist. Anhand von Messungen an einem expe-
rimentellen Netzwerkaufbau der Technischen Universität Graz werden Stärken und Schwächen
dieser entwickelten Modelle diskutiert.

Ausgehend von regelungs- und systemtheoretischen Überlegungen werden die dynamischen Mo-
delle verwendet, um allgemein gültige Aussagen über die Beobachtbarkeit der Modellzustände
des hydraulischen Netzwerks abzuleiten. Wenig überraschend und völlig analog zum stationären
Fall bereiten unbekannte Reibungsparameter die größten Probleme.

Motiviert durch diese Beobachtbarkeitsanalyse steht die Identifizierung von Rauigkeitsparame-
tern je Rohr im speziellen Fokus. Insbesondere die dazu passende Problemformulierung, aber
auch die dafür entwickelten Lösungsalgorithmen sind Kernergebnisse dieser Arbeit. Diese Pro-
blemformulierung beruht im Wesentlichen auf der Inversion des stationären Modells und erfor-
dert eine Reihe von Annahmen und Voraussetzungen zur eindeutigen Lösbarkeit. Obwohl sich
das Lösen als generell schwierig entpuppt, weisen die entwickelten Lösungsmethoden eine Ro-
bustheit auf, die es nicht nur ermöglicht einzelne Reibungsparameter zu finden, sondern auch
Fehler in der Netzwerkkonfiguration selbst zu identifizieren. Ein Resultat das sich auf Ergeb-
nisse der Anwendung der entwickelten Rauigkeitsidentifikation an einem realen Trinkwassernetz
stützt.
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1
Introduction

Whether steady or unsteady state modeling, state observation, roughness identification, leakage
detection or localization, this thesis combines a whole range of disciplines in the context of
water distribution networks. Although the focus is set on water, the developed methods are
applicable to Newtonian fluids generally, meaning those whose density and viscosity are functions
on temperature only.

Among the first things to agree on is the utmost importance to maintain water supply
security. Intermediate water supply as it happens in South Africa or even in California, for
instance, puts a lot of strain on the local industry and households, raising water prices while
decreasing the standard of living. However, the severity of this problem has yet to be recognized.
When following the current climate trajectory, increasing temperatures will exacerbate water
scarcity to an extent which has yet to be discovered. Knowing that a significant amount of
the anyway scarce water is lost during the distribution enforces the problem and raises the
need for efficiency improvements. According to the International Water Association, the non-
revenue water accounts for 25 to 50 percent of the total amount of water supplied when put
into a global measure, while it makes up to a staggering 75 percent in the so-called emerging
markets [IWA]. These numbers are right in line what the author experienced first-hand when
taking measurements in a pilot area of a Chinese town. The terminology “non-revenue water”
with its afflicted market-jargon simply characterizes all the water for which no money can be
charged, because it never reached any registered consumer. In other words, non-revenue water
also accounts for water which is stolen from unregistered consumers, so-called water thieves, and
thus is formally not lost in the distribution. Actually, the author expects that authorities tend
to draw attention to this stolen amount misleadingly, just to obscure and downplay the need for
investment in water infrastructure. On the mathematical front, no distinction is made between
water which is lost or stolen as both cases are actually treated in the same manner. Effectively,
all non-revenue water is referred to as leakage, an expression which is treated as synonym for
leaking water in this thesis.

In short, this thesis is written on the premise to develop a framework for leakage detection
and localization strategies, although it does not deal with either one of these topics explicitly.

1.1 Outline

In this outline a proper connection among all included topics is established and thereby serves
as introductory motivation to objectify the chosen methodologies.

Starting with modeling, the derived network description turns out to be predominantly
characterized by hydraulic friction which is covered in a compact discourse to be found in
the preliminaries (chapter 2). In the course of a pure steady-state consideration in chapter
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3, the conventional hydraulic network equations are derived and build the basis for all other
chapters to come. Not only contained in the steady-state network hydraulics, friction is the
central component upon which this thesis is built. Due to its generally nonlinear character,
the network formulation yields strong differences to, for instance, the description of an electric
circuit although Kirchhoff -type equations are the common building block. The characteristic
which sets the analysis of steady-state network hydraulics, in the opinion of the author, apart
from others is the deeper mathematical focus. As an example, the solution’s uniqueness of the
steady-state description, which is not guaranteed inherently due to nonlinear model parts, is
proven, putting available literature into a digestible format. Interestingly, the tools used in this
proof will turn out substantially useful when allowing some dynamics to be part of the network
hydraulics.

Regarding dynamics, after discussions on the weaknesses involved in the steady-state des-
cription, flow dynamics per pipe in the network are introduced in chapter 4. The computational
effort is contained to an extent which makes the dynamic simulations readily computable on
today’s standard PCs. This is achieved by assuming the water to remain incompressible, an
assumption which prohibits to represent elastic effects, water density fluctuations for instance,
on the flip side. Also, a central discussion revolves around the handling of water consumption
in the network which is generally distinguished between a pressure-driven and demand-driven
methodology in literature (in-depth explanations to be found in chapters 3 and 4). What ma-
kes the introduction of flow dynamics valuable is, essentially, not only the additional dynamic
information, but how it enables consumption values to be handled in a manner such that they
are decreased inherently if there is not enough pressure available. This is only possible with
a physically suitable description of the consumption which allows it to be pressure-dependent.
Embedded in an exact linearization of the dynamic hydraulic model, the introduction of linear
consumption dynamics will be key in this context. In this course, the equivalence of the equili-
brium of the dynamic model(s) to the now unique solution of the steady-state hydraulic network
equations is proven. Also, certain stability properties of the dynamic model(s) can be proven
by means of the tools applied for the uniqueness proof of the steady-state network-equation’s
solution which will turn out valuable for the observability analysis later.

Comparing measurements on a real experimental network with simulation results during
fast transient events in chapter 5, friction parameters remain the major uncertainties while the
qualitative behavior shows satisfactory agreement, despite the fact that the introduced dynamics
intend to model slow transient behavior primarily. These unknown friction parameters express
themselves in an offset-like deviation from the measurements as all dynamic friction components
are neglected consistently. In principle, the elementary connection between the steady-state and
dynamic network models used in this thesis is provided by the same friction description.

The observability analysis in chapter 6 yields that the derived dynamic models turn out to
be observers in a strict control-theoretic sense under some circumstances. These circumstances
require (among other things) the knowledge of friction parameters, a requirement which is
strongly supported by the comparison of simulations to measurements. In the course of this
analysis, very general questions are raised and essentially concern the finding of sensors best
suitable to satisfy the circumstances under which these models turn out to be observers.

Given this sensor configuration, the author then utilizes the steady-state hydraulic network
equations in chapter 7 and inverts them, so to speak, along the friction parameters (roughness
values per pipe). Thereby, Colebrook & White’s formula as implicit description of pressure losses
is utilized to express the pipe flow as two dimensional function on the pressure loss along the pipe
and the pipe’s roughness. The resulting set of equations is initially only valid if all pipe flows are
in the turbulent flow regime, a harsh assumption which requires considerable effort to be relieved
later on. The developed scheme to identify individual pipe roughnesses by only using sensors
at a subset of nodes distributed throughout the network is actually completely based on nodal
Kirchhoff equations. This equation set-up then requires special treatment to retrieve as many
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equations as unknowns, a key point in the entire procedure. The solving, nonetheless, turns
out to be particularly challenging. Starting with a modified Newton-Raphson type approach in
chapter 7.4, customized measures in addition to a set of assumptions are required to enable the
roughness identification problem to become uniquely solvable. However, a more advanced solving
strategy known as the Tensor-Method, basically an extension of Newton-Raphson’s method, is
also applied in chapter 7.6. Although this method requires a nonlinear system of equations to
solve in order to obtain a search direction, it allows some deeper mathematical assessments about
the roughness identification problem. Supported by several examples, the working principle
of the roughness identification by means of the developed solving strategies is demonstrated
successfully.

The relieve of the assumption that all pipe flows have to be in turbulent regime receives the
dedicated chapters 8 and 9. As it is impossible to distinguish all pipe flows a-priori between the
laminar, transitional and turbulent flow regime, this procedure is motivated by the idea that the
roughness identification algorithm shall be capable to automatically converge to the correct flow
regime inherently. However, in order to do so, an explicit description of the steady-state water
flow in the transitional Reynolds regime had to be derived, essentially, what is accomplished in
this chapter 8. The necessity to preserve smoothness at the boundary to the turbulent Colebrook
& White flow as well as to the one of laminar flow in addition to the normal boundary conditions,
result in a set of requirements which are remarkably tricky yet feasible to satisfy with sufficient
degree of accuracy.

The roughness identification problem formulation is then extended to all flow regimes in
chapter 9 by making use of the derived explicit description of the transitional steady-state water
flow. The solving techniques applied to solve the full turbulent problem in chapter 7 thereby turn
out to be applicable to this complete problem formulation. All theoretical assessments obtained
when applying the Tensor-Method on the full turbulent roughness identification problem can be
easily extended to the complete case. Given the developed solving techniques, the influence of
disturbances such as measurement noise and the partial violation of the taken assumptions is
studied on examples which include pipe flows with varying flow regimes.

This thesis concludes by applying the developed roughness identification scheme on the real
drinking water distribution network of Graz-Ragnitz in chapter 10 making use of an already
existing data set provided by the Institute of Urban Water Management (Graz University of
Technology). This application can be considered valuable insofar as the taken assumptions
in order for the roughness identification problem to be solvable are put up to real-world test.
The problems encountered with the measurement data and the configuration are discussed in
detail to clarify the circumstances on which the results can be improved upon. Nonetheless, the
obtained results not only demonstrate the applicability of the developed algorithms for roughness
identification, but the identification and localization of inconsistencies in the data as caused by
leakage for instance.

1.2 Comments on the State of the Art

Generally, a discussion of the literature and existing methodologies with analogies to the ones
developed is provided directly in each of the separate chapters. The author thereby believes to
best highlight the differences between the included subjects such as modeling, leakage detection
and localization or parameter identification.

Apart from literature, the introductory statement that this thesis promises to enhance and
develop strategies for detection and localization of leakages needs some clarification. In this field
of research modeling, parameter identification, which is often referred to as calibration, leakage
detection as well as leakage localization are usually kept separate. Is this the right approach?
The quality of the model severely influences the parameter identification, whereas the obtained
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model parameters strongly influence if a leakage may be detected. Once detected, a localization
algorithm is launched operating on the basis of discrepancies between measurements and the
simulation output of the calibrated model. In the opinion of the author, all these topics can be
brought together under the umbrella of a traditional observer design as it is known from control
theory. In this context, the observability analysis chapter 6 serves the purpose to logically
connect all the individual topics and underlines the validity of the conventional steady-state
hydraulic network description to be used for calibration among other things.

To sum it up, in the opinion of the author there is a solid chance that leakages are found
inherently with a sophisticated parameter identification algorithm built on the basis of the
developed models. This is the premise upon which this thesis is founded on.

1.3 Publications

The following papers have been published (or accepted for publication) in chronological order
and prior to the final completion of this thesis.

� [Cattani et al., 2017]:

Cattani, M., Boano, C. A., Steffelbauer, D., Kaltenbacher, S., Günther, M., Römer, K.,
Fuchs-Hanusch, D., and Horn, M. �Adige: An Efficient Smart Water Network Based on
Long-range Wireless Technology�. In Proceedings of the 3rd International Workshop on
Cyber- Physical Systems for Smart Water Networks, pages 3–6, New York, NY, USA,
2017.

� [Kaltenbacher et al., 2017]:

Kaltenbacher, S., Steffelbauer, D., Cattani, M., Fuchs-Hanusch, D., Horn, M., and Roemer,
K. �A Dynamic Model for Smart Water Distribution Networks�. Computing and Control
for the Water Industry, Sheffield, 2017.

� [Kaltenbacher et al., 2018]:

Kaltenbacher, S., Steinberger, M., and Horn, M. �Modeling Hydraulic Networks for Con-
trol: How to Deal With Consumption?�. IEEE Control Systems Letters, 2(4):671–676,
Oct 2018.

� [Kaltenbacher et al., 2020]:

Kaltenbacher, S., Steinberger, M., and Horn, M. �Transitional Water Flow in Steady-
State�. Journal of Applied Mathematical Modelling, 77:478 – 490, 2020.

Reference [Cattani et al., 2017] was published at a workshop, [Kaltenbacher et al., 2017]
at a conference and [Kaltenbacher et al., 2018] as journal and conference paper (Decision and
Control 2018) simultaneously. Also, reference [Kaltenbacher et al., 2020] was accepted for journal
publication at the time of writing. The content of [Kaltenbacher et al., 2017] was largely used
among other things in chapter 4.2 and 4.3, the content of [Kaltenbacher et al., 2018] in part in
chapter 4.4 and 4.5, and the content of [Kaltenbacher et al., 2020] in chapter 8. The author of
this thesis is simultaneously first author of the last three publications.
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2
Preliminaries

2.1 Hydraulics

The modeling of water supply networks is still a fairly active field of research and may be dis-
tinguished between steady-state and unsteady-state, i.e. transient, approaches. However, the
complexity needed for a whole network description already sets the framework of the modeling
procedure as computational effort, application purposes as well as practicability generally re-
strict the selection of different model types featuring different levels of accuracy. Though, before
launching a more genuine discussion about where difficulties with transient models meet inaccu-
racies in steady-state ones, a common baseline is established. This section introduces the very
basic quantities in the context of the water flow in tubes.

2.1.1 Water Density ρ and Dynamic Water Viscosity η

Although the change in density due to temperature and pressure fluctuations is neglected in the
majority of cases, small variations in parameters like the density possibly lead to non negligible
changes in pressure.
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Figure 2.1: Water density [Kell, 1969] and dynamic viscosity [Korson et al.,
1975] over temperature.



6 2. Preliminaries

The viscosity η is of particular concern in this regard as it varies drastically in the range of
10° to 30°C in which drinking water is usually distributed. Using look-up tables according to
figure 2.1 to accommodate for these parameter variations, temperature is treated as an input
variable. Actually, one would need to take local differences in temperature into account as the
water temperature, e.g., at sources of the distribution network may be critically different to the
one at consumers. A solid argument against this potentially unnecessary complication is that
as long as a distributed network consumption ensures a continuous and comprehensive water
exchange, local differences in temperature are balanced quickly. In addition, water features a
high thermal conductivity and so transports heat even if there is no notable flow. To restrict the
model complexity, local temperature variations are neglected, however, it shall be noted that
the developed models can be extended to also account for different temperatures per pipe.

In principle, the dependency of water density and viscosity on pressure is sufficiently weak,
so, e.g, there is a change of only (regarding density) ∆ρ < 0.5� if the pressure increases from
1 to 10 bar (see [Cho et al., 2002]). Nevertheless, this is only half of the truth as in the event of
high excitation, a rapid valve opening for instance, elastic effects come into play. These elastic
effects, commonly known under the term waterhammer, become visible in the form of very high
pressure peaks which ultimately cause oscillating flows. Such conditions are very harmful to the
water distribution infrastructure and measurement equipment and thus must be avoided under
all circumstances. Effectively, variations especially in water density also contribute to these
oscillations in flow during those events.

2.1.2 Pressure

Generally, pressure p is considered to be the perpendicular force applied to a body which is in
contact with a fluid in the present case. Therefore, the static pressure varies with the water
depth for fluids at rest

p = gρh (2.1)

depending on the gravitational acceleration g ≈ 9.81 m/s2, the density ρ (which also depends on
temperature according to figure 2.1) and the water height h with regard to a specified datum (in
a tank for instance). In the field of water management the expression head instead of pressure
(measured in Pascal Pa =̂ N/m2 =̂ kg m−1s−2 =̂ 10−5 bar) is established which is equivalent
to the water height measured in meters according to (2.1). Pressure head values are related
to the gage pressure (unless otherwise stated) which is relative to the atmospheric pressure of
101325 Pa, whereas the absolute pressure is defined as the sum of the gage and the atmospheric
component.

2.1.3 Fluid Flow and Velocity

The velocity of the flow through a pipe is not constant, but will vary over the cross section area
A. As a consequence, the integral mean velocity v (m/s) over A as well as the integral mean
volumetric flow rate Q (m3/s) over A (which will be simply called flow for the rest of this thesis)

v =
Q

A
=

ṁ

Aρ
(2.2)

are commonly utilized. Q, in turn, can be expressed by the mass flow rate ṁ and constant
density ρ.

Reynolds Number. Osborne Reynolds is an important figure when it comes to understanding
the flow behavior in tubes. In experiments he managed to color areas with high flow velocities
in tubes by injecting specific substances. Today, the dimensionless Reynolds number for circular
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pipes with diameter d

Re =
|v| ρd
η

=
|Q| ρd
Aη

=
|ṁ| d
Aη

(2.3)

helps to distinguish between three different flow regimes, which in general heavily affect the
hydraulic behavior in particular the friction, i.e. pressure head losses. For non-circular pipes
diameter d is replaced by hydraulic diameter dh = 4A/P , whereas P characterizes the perimeter
of this pipe.
A smooth distribution of the velocity profile over the cross section area can be seen in the lami-
nar flow condition, where the innermost part moves with the highest and the outermost part
with the lowest velocity. The appearance of vortices and eddies makes the flow behavior somew-
hat unpredictable in the turbulent flow condition. A combination of laminar and turbulent
areas is simply called transitional flow, where the smooth, laminar velocity profile starts to
scatter and loose its shape. Thanks to Osborne Reynolds, three regimes according to table 2.1

flow condition Reynolds number

laminar Re ≤ 2000

transitional 2000 <Re < 4000

turbulent Re ≥ 4000

Table 2.1: Flow conditions according to Reynolds.

can be specified. The boundary Re = 2000 for the transition to the transitional or critical
flow regime appears to be about the lowest value obtainable on a rough pipe entrance, whereas
transition values between 2000 and 13000 depending on the smoothness of the entry conditions
are possible (cf. [Schneider, 2007] and [Fung, 1990, p. 172]). As the boundaries for flow regimes
vary in literature, this thesis sticks to the ones used, e.g., in [White, 2016; Bhave, 1991; Walski
et al., 2003] (referring to the Moody-Diagram, displayed in figure 2.2).

2.1.4 Friction

Two general types of friction losses in pipes are well known, losses occurring at the surface of
the pipe’s inner wall (also accounting for viscosity effects), which are proportional to the pipe’s
length, and so-called minor losses which can be attributed to a specific point in the network
rather than an entire pipe.

The former one can actually be separated between a steady-state and an unsteady-state
component (see [Chaudhry, 2014; Covas et al., 2005]), whereas the unsteady component is
usually neglected, also in the classical waterhammer analysis. However, this is only valid for
slow transients and low pulsating frequencies [Covas et al., 2005]. Since this thesis puts focus
on slow transient and steady-state modeling, the unsteady part is neglected.

Referring to the steady-state component, one would think that the scientific community
already agreed on a common formulation defining the pressure drop due to friction at the
pipe’s inner surface as far as water networks are concerned, but quite the opposite is the case.
Effectively, one disagrees whether to use the Hazen-Williams equation (see [Walski et al., 2003])
or the Darcy-Weisbach equation [Brown, 2002], although both sides agree that the description
of Darcy-Weisbach together with the friction factor according to Colebrook & White [Colebrook
and White, 1937] is more accurate and physically related. A paper by Walski and Ormsbee with
the title “No Calm in West Palm” [Ormsbee and Walski, 2016] specifically addresses this debate.
The error made by Hazen-Williams in comparison to Darcy-Weisbach is allegedly so minor that
its simplicity outweighs its inaccuracy. In this context, Hazen-Williams is only valid on a narrow
range of Re values [Brown, 2002]. Since the application of Darcy-Weisbach requires the solving
of an implicit equation according to Colebrook & White, iterative methods are usually applied.
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However, to avoid any kind of iteration, a variety of different explicit equations (see [Bhave, 1991;
Genić et al., 2011; Mohsenabadi et al., 2014]) approximating Colebrook & White’s friction factor
are in use. In this thesis it is shown that no iterative methods are required when applying a few
terms in series solving the so-called Lambert function which can be used to express Colebrook
& White’s friction factor. Due to its strong physical relation but also to improve accuracy, the
description by Darcy-Weisbach is utilized in this thesis to express friction at the pipe’s inner
surface.

Characterized by a constant coefficient, the treatment of minor losses appears to be much
simpler. This type of friction occurs at fittings, valves (fully opened), 90 degree bends, at
appurtenances in general which provoke turbulences and thus additional head loss.

Darcy-Weisbach

The force acting in the opposite direction to the flow propagation due to friction at the inner
pipe’s surface and viscosity effects is actually called shear stress, usually specified with Greek
letter τ and measured in Newton per square meter. The magnitude of this force depends on
the speed of the fluid, the internal roughness of the pipe and the pipe’s dimensions. Presented
within the Darcy-Weisbach equation, it relates the head loss ∆hDW along a pipe with specific
length l to the averaged (over A) flow Q

∆hDW = λDW

l |Q|Q
2dgA2

= λDWkDW|Q|Q (2.4)

using the friction factor λDW. This factor actually depends on material properties and the
dimensionless Reynolds number (2.3) and therefore has to be distinguished for the three flow
regimes according to table 2.1. The Re number in turn can be interpreted as a function on the
flow Q, the density ρ and the viscosity η, whereas ρ and η can also be considered to be functions
of the local temperature. As a remark, instead of using a quadratic dependency on the flow
in (2.4), expression |Q|Q helps to maintain the right sign of head losses in case of negative Q
values, which simply indicate a change of the flow direction. It is understood that the cross
section area A as well as the diameter d are held constant for the pipe segment for which the
head loss ∆hDW is calculated.

Laminar Area. For the laminar regime, the friction factor

λDW =
64

Re
for Re ≤ 2000 (2.5)

is known as Hagen-Poiseuille law and is an exact mathematical result derivable from the fluid
equations of motion [White, 2016].

Turbulent Area. In the turbulent area the Colebrook-White equation [Brown, 2002]

Fcw(λDW) =
1√
λDW

+
2

ln 10
ln

(
εDW

3.7d
+

2.51

Re
√
λDW

)
= 0 for Re ≥ 4000 (2.6)

is based on some 10000 experiments from various sources and describes the friction factor as
the positive real solution of the implicit equation Fcw(λDW) = 0 in the turbulent region. Moody
developed a simple diagram (see figure 2.2) where he displayed solutions of Fcw(λDW) = 0 over
the Reynolds number up to an relative roughness of εDW/d = 5%. As a remark, factor 1/3.71
instead of 1/3.7 at the relative roughness εDW/d in (2.6) is often used, meaning that roughness
values can simply be translated by multiplying with 3.7/3.71.

The implicit Colebrook & White function Fcw is semi-empirical and can actually be related
to the partial differential Continuity and Momentum equations [White, 2016] (based on the
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Figure 2.2: The reproduced Moody Chart for a temperature of about 18°C according to figure 2.1.
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principle of conservation of mass and momentum). It is extensively considered in literature
and widely established in the field of fluid mechanics. However, more recent experiments by
[Shockling et al., 2006] (in addition to experiments, e.g., by [Nikuradse, 1933]) indicate that the
real turbulent friction factor deviates from Fcw in the transition area from fully smooth (εDW = 0)
to fully rough, at least as far as the so called sand grain roughness is concerned. This type of
roughness is produced artificially in laboratories by gluing grains of sand at the inner pipe’s wall.
Nevertheless, Colebrook and White argue that they used data from commercial pipes instead
of artificially roughened ones, although the difference remains unclear at this point (see also
[Botros, 2016]). Indisputably, (2.4) is not only considered to deliver an accurate description of
the head loss in steady-state but it is widely popular as it combines physical and experimental
considerations in one compact equation.

The roughness height (or roughness in short) εDW, usually specified in millimeters, accounts
for differences in materials, the pipe’s age and the amount of dirt and corrosion that accumulates
at the inner wall. However, characterizing pressure losses along the inner pipe’s surface with a
single roughness parameter certainly is a vast simplification. Actually, one would need to model
the inner surface of a pipe in three-dimensional space and then apply the full transient, partial
differential flow equations, including those of Navier-Stokes. Though, the amount of details,
let alone the computational effort needed to do so is overwhelming, whereas the information
gained is very minor, particularly in the context of a distribution network. Interestingly, the
roughness parameter εDW as it is utilized in (2.6) seems to be more related to the root-mean-
square roughness of a pipe as one would rather commonly think of the mean roughness over the
length and the cross section area (see [Afzal, 2007]).

The Swamee-Jain equation (cf. [Walski et al., 2003])

λ̃DW =

(
ln(10)

2

)2

ln2
(
εDW
3.7d + 5.74

Re0.9

) for
4000 < Re ≤ 108

10−6 ≤ εDW/d ≤ 10−2 (2.7)

approximating (2.6) with a relative accuracy of ±1.5% (some claim ±1%) gained high popularity,
particularly due its application in the software EPANET2 [Lewis, 2000]. Although it has the
identical physical meaning as (2.6), it is denoted by λ̃DW to clearly distinguish it from λDW

proposed by Colebrook and White.

Transitional or Critical Area. The development of the Darcy-Weisbach equation already
started in the 18th century and, yet, the pipe flow in the region between Re = 2000 and
Re = 4000 remains mystical. Analogous to the turbulent region there is no common convention
of the friction coefficient, whereas the scientific community seems to have agreed that this area
can not be (or at least hardly be) scientifically grasped. Hence, the grayed area in the Moody
chart in figure 2.2. As an example, Tobias Schneider dedicated his PhD thesis [Schneider, 2007]
to the investigation of properties of the transitional pipe flow showing beautiful images coloring
the cross section area with different flow velocities. While citing Reynolds

“Although in most ways the exact manner in which water moves is difficult to
perceive and still more difficult to define, as are also the forces attending such motion,
certain general features both of the forces and motions stand prominently forth, as if
to invite or to defy theoretical treatment.1”

at the beginning of his thesis he also concludes by remarking the difficulty of the subject, hoping
that his investigations “finally even be of some practical relevance”.

1 O. Reynolds, An experimental investigation of the circumstances which determine whether the motion of
water shall be direct or sinuous and the law of resistance in parallel channels, 1883.
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In this thesis, analogous to EPANET2 [Lewis, 2000], the cubic interpolation [Dunlop, 1991],
which actually applies Swamee-Jain (see (2.7)) at Re = 4000, with the following steps2

y2 =
εDW

3.7d
+

5.74

Re0.9
, y3 = −0.86859 ln

(
εDW

3.7d
+

5.74

40000.9

)
fa = y−2

3 , fb = fa

(
2− 0.00514215

y2 y3

)
(2.8a)

x1 = 7fa − fb, x2 = 0.128− 17fa + 2.5fb

x3 = −0.128 + 13fa − 2fb +
Re

2000
(0.032− 3fa + 0.5fb)

λDW = x1 +
Re

2000

(
x2 +

Re

2000
x3

)
for 2000 < Re < 4000 (2.8b)

is considered at some parts.

Minor Losses

One decisive aspect when dealing with minor losses is that each appurtenance creating some
sort of head loss is unique and highly depends on the shape penetrating the pipe. In general,
one would have to determine minor head losses

∆hm = km

∣∣∣Qnm−1
∣∣∣Q (2.9)

by finding suitable coefficients km for each pipe in the entire network. Equation (2.9) is a very
generous formulation due to the unspecified exponent nm, which gives an additional parameter
to adjust with the aim to match minor head losses over a wide range of Q values.
Corresponding with the Darcy-Weisbach equation (2.4) a quadratic nm = 2 expression will help
to avoid additional unknowns in a network to be found. Indeed, the value nm = 2 has a physical
origin. For instance, when calculating the velocity v of the outflow from an open pipe by equating
potential- to kinetic energy

mgh =
mv2

2
(2.10)

the quadratic relation between the head h and the discharge (resp. flow) velocity v = Q/A can
be seen, whereas the influence of mass m cancels out. After simple manipulations

h =
Q2

2gA2
(2.11)

the origin of the Darcy-Weisbach equation becomes apparent.

2Please mind that x1, x2, x3, y1, y2, y3, fa, fb are just auxiliary variables used for (2.8) only.
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2.1.5 The Lambert Function

The Lambert function W (x) solves the equation

W exp(W ) = x (2.12)

and is the basis for an explicit solution of (2.6). Provided that x is real, the Lambert function
has two possible real solutions (called branches) if −1/e < x < 0 denoting e = exp(1). The one
satisfying W (x) ≥ −1, denoted by W0(x), is called the principle branch, whereas the branch
satisfying W (x) ≤ −1 is denoted by W−1(x). As in figure 2.3, W (x ≥ 0) = W0(x ≥ 0) has a
unique real solution if x ≥ 0.

Figure 2.3: The Lambert function for real-valued arguments x.

However, if argument x is complex there are multiple solutions [Corless et al., 1996] usually
denoted by Wk(x).

Property 2.1. For a positive and real argument x > 0, the principle branch of Lambert function
W (x > 0) = W0(x > 0)

W exp(W )︸ ︷︷ ︸
>0

= x > 0 ⇒ W > 0 (2.13)

has a positive real solution W0(x > 0) > 0.

In fact, the Lambert function has a variety of potential applications [Corless et al., 1996],
although its appearance often remains unnoticed. An interesting one, especially from a control
perspective, may be that it provides a solution for a linear delay equation such as

ẏ(t) = ay(t− τ) for τ > 0. (2.14)

Considering the ansatz y = exp(st) one obtains

s exp(st) = a exp(st) exp(−sτ) ⇒ sτ exp(sτ) = τa (2.15)

where the scaled Lambert function s = W (τa)/τ turns out to be a solution for s. Due to linearity

y =
∞∑

k=−∞
ck exp

(
Wk(τa)

τ
t

)
(2.16)
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a linear combination of all Lambert solutions also solves (2.15). Also, stability is inherently
connected to Wk(τa)/τ as y grows exponentially with every positive real part of Wk(τa)/τ . For
instance, this can also be extended to solve

ẏ(t) = ay(t− τ) + by(t). (2.17)

With the same ansatz as before one obtains

s = a exp(−sτ) + b ⇒ ln

(
s− b
a

)
= −sτ, (2.18)

when adding τb and again taking exp(.) on each side of the equation while multiplying with τ

exp(τb)

a
τ(s− b) = τ exp(−τ(s− b)) ⇒ τ(s− b) exp(τ(s− b)) = τ exp(−τb)a (2.19)

one already recognizes the connection to the Lambert function where W = τ(s − b) and x =
τ exp(−τb)a. This simple concept can be extended to matrices

ẏ(t) = Ay(t− τ) +By(t) (2.20)

with squareA,B when considering the matrix Lambert functionW exp(W ) = X. Nevertheless,
the general matrix Lambert equation is a hard problem to solve, though, there are some cases
(concerning properties of A,B) which could be of special interest (Corless et al. [1996] cites
[Bellman and Cooke, 1963; Corless, 1994; Wright, 1949]).

Definition 2.2. For ongoing investigations only the positive part of the Lambert function in the
principle branch is of interest, therefore W : x ∈ ]0,∞] −→ ]0,∞] is considered only.

Proposition 2.3. Given Property 2.1, the Lambert function according to (2.12) and Definition
2.2 is strictly monotonically increasing.

Proof. Denoting Fl(W,x) = W exp(W )− x = 0, it is clear that

∂Fl
∂x

+
∂Fl
∂W

∂W

∂x
= 0 ⇒ ∂W

∂x
= −∂Fl

∂x

(
∂Fl
∂W

)−1

=
1

exp(W )(1 +W )
> 0 ∀x(> 0) (2.21)

since W > 0 (for x > 0) according to Property 2.1. �

2.1.6 An Explicit Solution of Colebrook-White

Denoting3

a =
εDW

3.7d
b =

2.51

Re
c =

2

ln(10)
y =

1√
λDW

(2.22)

Colebrook-White’s equation for the friction factor (2.6) turns into y + c ln(a + by) = 0. When
multiplied with b and adding a on the left and right hand side

(a+ by) + bc ln(a+ by) = a, (2.23)
then dividing (2.23) by bc

a+ by

bc
+ ln(a+ by) =

a

bc
(2.24)

taking exp(.) on the left and right hand side of (2.24) and again dividing by bc results in

exp

(
a+ by

bc

)
a+ by

bc
=

1

bc
exp

(
a

bc

)
(2.25)

3Note the definition change of parameters a, b, c, s, y,A,B, also in other sections.
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where one can see the equivalence to problem (2.12) relating W = a+by
bc and x = 1

bc exp
(
a
bc

)
.

Considering these few steps to reveal the connection, one major reason why the Lambert function
is hardly applied in hydraulics is that

x =
1

bc
exp

(
a

bc

)
=

ln(10)

2

Re

2.51
exp

(
ln(10)

2

Re

2.51

εDW

3.7d

)
(2.26)

increases with growing Re such that is not displayable with current double floating point preci-
sion, for instance when Re = 10 × 105 and εDW/d = 0.02, then x = 4.7577 × 10107. Note that
Reynolds numbers are high in the turbulent regime Re ≥ 4000. This problem, however, can be
circumvented elegantly when applying the absolute convergent series [Corless et al., 1996]

W (x) = L1 − L2 +

∞∑
k=0

∞∑
m=1

ckmL
m
2 L
−k−m
1 (2.27)

where L1 = ln(x) = a
bc − ln(bc) and L2 = ln

(
ln(x)

)
and thus only the logarithm of argument x

of the Lambert function is needed. Parameter ckm denotes the Stirling number

ckm =
1

m!
(−1)k

(
k +m

k + 1

)
=

1

m!
(−1)k

(k +m)!

(k + 1)!(m− 1)!
(2.28)

which leads to the following terms

W (x) = L1 − L2 +
L2

L1
+
L2(L2 − 2)

2L2
1

+
L2(6− 9L2 + 2L2

2)

6L3
1

(2.29)

+
L2(−12 + 36L2 − 22L2

2 + 3L3
2)

14L4
1

+O

({
L2

L1

}5
)

= Wcw(x) +O

({
L2

L1

}5
)
,

where the last term indicates the remaining error which, effectively, depends on L2/L1 to the
power of 5. When taking the first terms Wcw(x) to approximate the Colebrook-White equation,
the accuracy is unmatched by any other empirical equation.

Accuracy. Not only from the physical context, but due to x = ln(10)
2

Re
2.51 exp

(
ln(10)

2
Re
2.51

εDW
3.7d

)
>

0, it is evident that the Colebrook-White equation (2.6) has a unique and positive solution
within the principle branch of the Lambert function (see figure 2.3). The smallest W and x
value obtainable in the transitional regime is located at Re = 4000, εDW/d = 0

xmin =
ln(10)

2

Re

2.51
exp

(
ln(10)

2

Re

2.51

εDW

3.7d

)
=

ln(10)

2

4000

2.51
(2.30)

as a direct consequence of W (x), in reference to Definition 2.2, being strictly monotonically
increasing according to Property 2.1. The maximal error in the approximation Wcw(x) of W (x)
occurs at W (xmin) as higher orders of series (2.29) depend on ln

(
ln(x)

)
/ ln(x) which becomes

largest at x = xmin. Subsequently, the largest possible relative error is close to∣∣W (xmin)−Wcw(xmin)
∣∣

W (xmin)
≈ 2.5224× 10−6 = 0.00025224%, (2.31)

where Wmin = W (xmin) was calculated numerically to a precision of Wmin exp(Wmin)− xmin ≈
1.82×10−12. This provides that error O in (2.29) is directly proportional to L2/L1. When consi-
dering figure 2.4 where the course of friction factor λDW is compared between the approximated
Lambert solution Wcw (2.29), the Swamme-Jain (2.7) equation and the real Colebrook-White
solution (2.6) (calculated numerically), one can see that (2.7) produces a particularly high error
at low turbulent Re numbers, whereas no visible distinction between Wcw and the real λDW can
be seen.
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Figure 2.4: A Moody-type comparison of the friction factor λDW according to Colebrook-White (2.6) (calculated numerically), Swamee-
Jain (2.7) and first terms Wcw of series (2.29) displaying (2.6) within the principle branch of the Lambert function.
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2.2 Notation and Mathematical Tools

A brief introduction to the applied mathematical tools and notations is given in the following.

2.2.1 Notation

Symbols. The utilization of the symbols discussed below is actually unnecessary from a strict
mathematical perspective but intends to improve readability by providing additional context
information.

1. Symbol “:=” in ex1 := ex2 assigns the expression on the side of the equality-sign, i.e. ex2,
to the variable on the side of the double-dots, i.e. ex1. For instance, ax2 + bx+ c =: f(x)
introduces quadratic function f(x) on variable x with parameters a, b, c.

2. Symbol “
!

=” in ex1
!

= ex2 formulates a requirement whereas the validity of this statement
has yet to be verified, i.e. expression ex1 and ex2 should be equivalent. For instance, the

requirement f(0)
!

= 1 leads to c = 1.

3. Analogously, symbol “≡” in ex1 ≡ ex2 embraces the equality of expression ex1 and ex2

concerning all their arguments. For instance, suppose that g(x) := df/dx. Then, the

statement g ≡ 2 (one could also write g
!≡ 2) is synonymous for g(x) = 2 ∀x. This then

leads to two equations for parameters a, b, resulting in a = 0 and b = 2.

Please mind that these symbols are only utilized if the author really believes to thereby
improve readability.

Vectors and Matrices. Generally, vectors and matrices are highlighted bold and italic and
are consistently assigned to variables featuring lower- and upper-case letters respectively.

1. Bold 1x and 0x with size x characterize a matrix or vector filled with ones or zeros, whereas
size x is only provided if it is unclear from the context. For instance, 13 = [1 1 1]T or

02×3 =

[
0 0 0
0 0 0

]
.

2. The bracket-operator [A]ij = Aij applied on matrix A ∈ Kn×m of a number field K, e.g.
K = R or K = C, selects element Aij of matrix A in the i ∈ {1, 2, . . . , n} row and the
j ∈ {1, 2, . . . ,m} column.

3. Concerning block-matrices, the blank block-entries characterize those which can be filled
up with zero-matrix 0 of corresponding size. For instance, suppose that A1,A2 ∈ Kn×m,
then one can write

A =

[
A1

A2

]
=

[
A1 0
0 A2

]
=

[
A1 0n×m

0n×m A2

]
∈ K2n×2m.

4. Bold letter ei utilizing index i ∈ N characterizes a unity vector ei = [0 . . . 0 1 0 . . . 0]T

with variable size where [ei]j = 0 ∀i 6= j but [ei]i = 1.

5. Upper-case and bold Ix = diag (1x) characterizes the unity matrix where its size x is only
provided if it is unclear from the context.
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2.2.2 Hadamard Product

Definition: Hadamard Product. Let A,B ∈ Cn×m. The Hadamard product of A and B is
defined by [A�B]ij = AijBij for all 1 ≤ i ≤ n, 1 ≤ j ≤ m.

This Hadamard operator [Million, 2007] is also utilized to display element-wise exponentia-
tions as well as inversions in a more compact manner, for instance

[A�
2
]ij = A2

ij

[A�
1/2

]ij = A
1/2
ij

[A�
−1

]ij = A−1
ij

∀1 ≤ i ≤ n, 1 ≤ j ≤ m

which certainly provides that [A]ij = Aij 6= 0 ∀i, j in the context of the inversion A�
−1

and that

A ∈ Rn×m in the context of the square root A�
1/2

. Also, suppose β ∈ C and A,B,C ∈ Cn×m
the operator is commutative A �B = B �A as well as linear, thus additive C � (A +B) =
C �A + C �B and homogeneous β(A �B) = (βA) �B = A � (βB). Further interesting
properties in terms of Singular Value Decompositions and the Schur Product can be obtained
when applying the Hadamard Product on diagonal matrices, see [Million, 2007].

2.2.3 Index Transformation with Unity Vectors

Unity vectors in the form of ei ∈ Zn{0,1}, which are comprised of zeros [ei]j = 0 ∀i 6= j and a

single one [ei]i = 1 only, are applied several times in this thesis to separate a vector x ∈ Kn

with entries xi corresponding to indices i ∈ {1, 2, . . . , n} = J into parts

[x]k = xk for k ∈ {k1, k2, . . . , kp} = K ⊆ J (2.32a)

[x]k̄ = xk̄ for k̄ ∈ {k̄1, k̄2, . . . , k̄q} = K̄ ⊆ J (2.32b)

such that K ∪ K̄ = J and K ∩ K̄ = {}. Hence, p + q = n. This separation is then accomplished
by matrices

R =
[
ek1 ek2 . . . ekp

]T
and R̄ =

[
ek̄1

ek̄2
. . . ek̄q

]T
(2.33)

resulting in [Rx]k = xk with k ∈ K and [R̄x]k̄ = xk̄ with k̄ ∈ K̄ analogously. The following
properties hold.

Property 2.4. Matrices R and R̄ satisfy:

RRT = Ip R̄R̄T = Iq RR̄T = 0p×q

RTR+ R̄T R̄ = In

Proof. One can write [RRT ]ij = eTkiekj for all i, j ∈ {1, 2, . . . , p} and [R̄R̄T ]ij = eT
k̄i
ek̄j for

all i, j ∈ {1, 2, . . . , q}. Since eTi ej = 0 for all i 6= j and eTi ej = 1 for i = j, it is evident that
RRT = Ip and R̄R̄T = Iq. In analogy, [RR̄T ]ij = eTkiek̄j = 0 for 1 ≤ i ≤ p and 1 ≤ j ≤ q as

K ∩ K̄ = {}. However, RTR+ R̄T R̄ = ek1e
T
k1

+ ek2e
T
k2

+ . . .+ ekpe
T
kp

+ ek̄1
eT
k̄1

+ . . .+ ek̄qe
T
k̄q

=

e1e
T
1 + . . .+ ene

T
n = In. �

Actually, separation (2.32) is not only applicable to vector x, but also to a matrix A =
[a1 a2 . . . an]T ∈ Kn×m in order to select eTi A = aTi , i.e. one of the i ∈ {1, 2, . . . , n} = J
rows of A. Applying matrices such as (2.33) on A, then yields subset K or K̄ of the rows i ∈ J
of A, i.e. RA = [ak1 . . . akp ]

T or R̄A = [ak̄1
. . . ak̄q ]

T .

In case the index-set J is separated into three sets or more, instead of only K and K̄, similar
properties (referring to Property 2.4) can be derived.
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2.2.4 Derivatives Along Vectors

First-Order Derivatives. The derivative of the scalar function h(x) : Kn → K operating on
a field K with respect to vector x = [x1 . . . xn]T is defined to result in the row-vector

∂h(x)

∂x
:=
[
∂h
∂x1

∂h
∂x2

. . . ∂h
∂xn

]
=: (∇xh)T

whereas its gradient ∇xh, which is exclusively denoted by the Nabla operator ∇, is defined to
yield a column-vector. As a remark, the function argument of h, that is x, is only provided in
the operator ∇x =̂ ∇ if clarification about the partial derivatives is needed. When considering
the vector-field f(x) = [f1(x) . . . fm(x)]T : Kn → Km the derivative along the vector x is
defined to result in

∂f(x)

∂x
:=


∂f1(x)
∂x1

∂f1(x)
∂x2

. . . ∂f1(x)
∂xn

∂f2(x)
∂x1

∂f2(x)
∂x2

. . . ∂f2(x)
∂xn

...
...

. . .
...

∂fm(x)
∂x1

∂fm(x)
∂x2

. . . ∂fm(x)
∂xn

 ,
the Jacobian.

Second-Order Derivatives. The second-order derivative of the scalar function h(x) with
respect to x yields

∂2h(x)

∂x2
= H(h)(x) :=


∂2h
∂x2

1

∂2h
∂x2∂x1

. . . ∂2h
∂xn∂x1

∂2h
∂x1∂x2

∂2h
∂x2

2
. . . ∂2h

∂xn∂x2

...
...

. . .
...

∂2h
∂x1∂xn

∂2h
∂x2∂xn

. . . ∂2h
∂x2
n

 =: ∇2
xh,

the Hessian which is also denoted by the square of the Nabla operator, i.e. H(h)(x) = ∇2
xh.

A sufficient condition for the Hessian to be symmetric, i.e. H(h)(x) = H(h)(x)T or ∇2
xh =

(∇2
xh)T , is that h(x) must be two-times continuously differentiable (Schwarz-Clairaut Theorem),

i.e. h ∈ C2.
Now suppose that the scalar function h depends on a second set of variables combined in

vector y = [y1 y2 . . . yc]
T ∈ Kc, i.e. h = h(x,y). Then, the mixed derivative yields

∂2h

∂x∂y
=

∂

∂x

(
∂h

∂y

)T
=

∂

∂x

(
∇yh

)
=


∂2h

∂x1∂y1

∂2h
∂x2y1

. . . ∂2h
∂xny1

∂2h
∂x1∂y2

∂2h
∂x2y2

. . . ∂2h
∂xny2

...
...

. . .
...

∂2h
∂x1∂yc

∂2h
∂x2yc

. . . ∂2h
∂xnyc

 ,
and in case h(x,y) is two-times continuously differentiable, one can write

∂2h

∂y∂x
=

(
∂2h

∂x∂y

)T
=

∂

∂y

(
∂h

∂x

)T
=

∂

∂x

(
∂h

∂y

)T
.

The second-order derivatives of a vector-field such as f(x) can no longer be represented com-
pactly by a single matrix and will be discussed in detail when needed.
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2.2.5 Remarks and References

Apart from the above mathematical tools, stability notions on ordinary differential equations
are used such as they are established in the field of control-theory. Reference [Khalil, 2002] or
[Adamy, 2014] are recommended in the context of asymptotic stability of equilibria, Ljapunov
functions etc. Adamy [2014], for instance, thereby also gives a nice introduction to the method
of exact linearization which is utilized once in its simplest form.

Coming back to the applied notation concerning indices, in specific the notation as it is used
on natural numbers, e.g. n ∈ N. Variable n is commonly utilized to denote the number of
things like nodes in a graph, referring to nj. Please mind that these subscripts of n, that is
“j” (associated with junctions) in the case of nj, are never used to denote another index but
different variable-names. This is contradictory to other variables like k, as it is used in (2.32)
for instance, where the subscripts indeed represent other indices not variable-names. Another
example is n` which consistently denotes the number of edges in a graph, whereas subscript “`”
was originally associated with the graph’s links.
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3
Network Hydraulics: A Primarily Steady-State Perspective

Generally, there are two essentially different approaches for modeling water networks which are
broadly established in the scientific community. One dealing with a full transient description
[Chaudhry, 2014], effectively, a particular form of Navier-Stokes (as part of the fluid dynamic
equations), and the other one a pure steady-state consideration only applying the fundamen-
tals, the conservation of mass and energy [Todini and Pilati, 1987; Walski et al., 2003]. Ac-
tually, the former one predominantly serves the purpose of analysis, providing the ability to
model the water distribution as accurate and detailed as possible, while the steady-state one
turns out to be especially handy for manipulation, meaning water management methods for
leak detection/localization, pressure control, calibration, consumer demand prediction and furt-
her. The arguably most popular ones mainly rely on optimizations, whereas the application of
computationally-intensive solvers, particularly genetic algorithms, also gain popularity. On the
transient front, the utilization of inverse transients for the detection and localization of leaks
(see e.g. [Covas and Ramos, 2001]) is often prone to fail as a result of the number of additional
parameters needed for the transient description. For solving the transient model equations, the
application of the method of characteristics [Chaudhry, 2014] apart from finite differences is
commonly applied to transform the partial differential equations (PDEs) into ordinary ones.
Although the author considers the fully transient description to be substantial in every regard,
it can hardly be applied as basis for model-based manipulation methods as far as networks are
concerned. As a consequence, the PDEs for the full transient description do not receive due
attention in this thesis as the emphasis is put on model-based techniques for manipulation.

However, this thesis intends to address subjects with higher relevance in the historical deve-
lopment rather than providing a complete overview, while it sets focus on topics which, in the
opinion of the author, have not received adequate attention. Considering the majority of re-
cent articles revolving around the model-based manipulation of water networks, the steady-state
formulation as it was proposed by Todini and Pilati [1987] seems to have become the common
standard. In their paper they illustrate the equivalence of the solution of conservation of mass
and energy with the solution of a constrained yet convex optimization problem, where Lagrange
multipliers turn out to be nodal heads. Newton-Raphson’s algorithm is applied to solve this
nonlinear problem which happens to converge fast due to convexity.

3.1 Steady-State Network Formulation

Averaged flow values Qi (m3/s) over the pipe’s cross section area of pipe i ∈ P = {1, . . . , n`} are
located between k ∈ N = {1, 2, . . . , nj + ns} nodes (cf. figure 3.1). One distinguishes between
nj inner nodes I = {1, 2, . . . , nj} and ns source nodes (also known as fixed head or boundary
nodes) S = {nj + 1, . . . , nj + ns}, so I ∪S = N. Unknown nodal pressure heads hk∈I (m) are
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k−1

k−2

k+1k

Qi

Qi−1

Qi+1

qk

Figure 3.1: Hydraulic consumer node comprising three connections.

located at a geographical elevation of zk∈I (m) respectively. Nodes S are usually related to
tanks, reservoirs, pumps, and further. It is assumed that the nodal (source) pressure head hk∈S
at these ns source nodes S, combined in vector hs ∈ Rns

≥0, is measured and thus can be directly
treated as input. This assumption, however, only serves as simplification, it would certainly be
possible to couple, e.g., equations for pumps with the proposed model equations.

The objective is to determine unique flows xQ = [Q1 Q2 . . . Qn`]
T ∈ Rn` and no-

dal pressure heads h = [h1 h2 . . . hnj ]
T ∈ Rnj

≥0 while considering nodal elevations z =

[z1 z2 . . . znj ]
T ∈ Rnj

≥0 and friction functions hloss(xQ) = ∆hDW(xQ) + ∆hm(xQ) ∈ Rn`,
comprising a Darcy-Weisbach ∆hDW (2.4) and a minor loss ∆hm (2.9) component. Due to
reasons which will become apparent later on, h denotes, as distinguished from literature, nodal
pressure heads and not nodal heads h+ z. Individual friction functions [hloss(xQ)]i = hloss,i(Qi)
∀i ∈ P thereby only depend on the flow passing through the respective pipe Qi and actually
feature two friction parameters per pipe, roughness εDW ∈ Rn`≥0 and minor loss values km ∈ Rn`≥0,

which, in general, can be considered unknown. The nodal consumption q̄ ∈ Rnj

≥0 is usually
considered to be known as far as the solving of network equations is concerned.

The billing information of customers allows conclusions about their consumption and is
utilized to produce consumption patters which feature a specific course over time. For instance,
households usually have a consumption peak in the morning and evening, whereas industries
often have quite constant water demand. However, the considered q̄ is indisputably prone
to uncertainty and can often be the source of failure. As a consequence, the application of
additional sensors, which continuously transmit the water consumption and even pressure to a
central processing unit, gains popularity. Big consumers with irregular consumption patters,
such as hospitals or food markets, are of particular interest. In this context, wireless data
communication becomes an important part of the drinking water infrastructure as cost-savings,
e.g., by avoiding digging for cable installations, are essential for the concept of hydraulic models
to be economically viable.

3.1.1 Conservation of Mass

The network’s topology is represented by Kirchhoff ’s formulation of nodes

AxQ = q̄ (3.1)

also known as the principle of the conservation of mass. A ∈ Znj×n`
{−1,0,1}, consisting of minus ones,

zeros and ones only, represents one part of the graph’s incidence matrix Ā = [−AT C̃s]
T ∈

Z(nj+ns)×n`
{−1,0,1} . Inner nodes I are represented in A and the source nodes S in C̃s ∈ Zn`×ns

{−1,0,1}.

Property 3.1. The sum of the incidence matrix’s columns is always zero, i.e.

nj+ns∑
k=1

[Ā]ki = 0 ∀i ∈ P (3.2)

which means that rows of Ā are linearly dependent.
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To put it into perspective, according to Property 3.1 each flow Qi is assigned with a unique
yet arbitrary number i ∈ P and a direction between exactly two nodes, namely k1 ∈ N and
k2 ∈ N, where k1 6= k2 (no self-loops). As flow Qi is either influent to k1 and effluent of k2 or
vice versa, Property 3.1 holds.

Two-Cycle Network Example. For illustrative purposes consider figure 3.2,

hs

k=1

k=3

k=2

Reservoir (R)

Q1

Q2 Q4

Q3

Q5

q2

q3

Figure 3.2: Two-Cycle/Loop Network.

a network with n` = 5 pipes, nj = 3 nodes and one source, i.e. ns = 1, providing constant
pressure head hs from reservoir R. Suppose customers are sitting at nodes 2 and 3 and thereby
consume q2 and q3 (m3/s). Then,−1 −1 0 0 1

1 0 −1 1 0
0 1 1 −1 0


︸ ︷︷ ︸

A


Q1
...
Q5


︸ ︷︷ ︸
xQ

=

 0
q2

q3


︸ ︷︷ ︸
q̄

, C̃s =
[
0 0 0 0 1

]T
. (3.3)

Considering (3.3), the nodal equations determine the k ∈ I rows in A, where entries in this
row select the corresponding (with the correct sign) entries in flow vector xQ. To obtain a
unique incidence matrix once flows and nodes are numbered, flows influent to nodes are counted
positively, whereas flows effluent of nodes are counted negatively as far as A is concerned.
However, the opposite is the case for matrix C̃T

s , where source flows are counted positively if
they are (as they should be) influent to the I inner nodes which is per definition effluent of the
ns source nodes. This notation may be considered unfortunate as it results in changing signs in
the complete incidence matrix Ā = [−AT C̃s]

T , but was kept in favor of consistency among
publications.

Assumption 3.2 (Graph). The graph representing the hydraulic network is connected and does
not contain self-loops. Also, the network has at least one source node ns ≥ 1.

Lemma 3.3. Let Assumption 3.2 hold. Then, the incidence matrix has rank
(
Ā
)

= nj + ns − 1
as a result of Property 3.1.

Proof. Suppose x ∈ ker(ĀT ), meaning that x ∈ Rnj+ns is in the left null space of Ā, that is
xT Ā = 0T . Given Property 3.1, xi − xj = 0 ∀i, j ∈ N where xi denotes the the i-th entry
in vector x. Subsequently, the kernel of ĀT is at most one-dimensional. However, knowing
that rows in Ā are linearly dependent according to Property 3.1, it is evident that rank

(
Ā
)

=
nj + ns − 1. �

Corollary 3.4. Given Property 3.1 and Lemma 3.3, matrix A representing inner nodes I has
full (row) rank (A) = nj as S ∩ I = {}. This requires that ns > 0, a necessary condition for the
solution of hydraulic network equations to exist.

Also, Corollary 3.4 implies that nj ≤ n` the number of inner nodes nj is smaller or equal
to the number of pipes n` which is a direct consequence of ns > 0. For further reading about
graphs, reference [Bapat, 2014] is recommended.
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3.1.2 Conservation of Energy

The head loss over a pipe must equal the difference in the nodal pressure heads when also
considering the nodal elevation. For instance, when considering the left branch in figure 3.1,

this means hloss,i(Qi)
!

= (hk−1 + zk−1)− (hk + zk). Applied to a whole network this results in

hloss(xQ) =
[
−AT C̃s

]
︸ ︷︷ ︸

ĀT

[
h+ z
fhs

]
. (3.4)

Remark 3.5. Without losing generality, it is assumed that source nodes are located at zero
elevation zk∈S = 0 in reference to the common datum. However, in case zs 6= 0, where [zs]i =
z(nj+i)∈S, one simply replaces hs with hs + zs in the model equations.

For the network in figure 3.2, (3.4) becomes

hloss(xQ) =


1 1 0 0 −1
−1 0 1 −1 0
0 −1 −1 1 0
0 0 0 0 1


T 

h1 + z1

h2 + z2

h3 + z3

hs

 (3.5)

where each entry in rows of (3.5) characterizes the difference in nodal heads.

Proposition 3.6. Let S ∈ Znc×n`
{−1,0,1} be the cycle (or loop) matrix, where nc characterizes the

number of linearly independent cycles in the directed network’s graph. Then, S is orthogonal to

SAT = 0 (3.6)

the transposed incidence matrix A as long as the graph does not have self-loops. (A Proof is
provided in Appendix A and examples of S, in reference to figure 3.2, are (3.20) and (3.22)).

Proposition 3.6 is equivalent to Bernoulli ’s principle, also called the principle of the conser-
vation of energy, which says that there must be no difference in energy between two points in
the network regardless of the path taken to connect these points.

Shloss(xQ) ≡ SC̃shs (3.7)

Regarding term SC̃shs in (3.7), cycle matrix S also accounts for linearly independent paths
from one source to another such that the sum of head losses along those paths must equal the
differences in source pressure heads hs, a consequence of source nodes S being excluded from A
in reference to (3.4) and (3.6). In literature (e.g. [Bhave, 1991]) the loops connecting different
source nodes are denoted as so-called pseudo-loops yet there is no need to explicitly account for
them in the determination of S.

Also, important to note is that Bernoulli ’s principle, as it is defined here, only applies for the
steady-state dxQ/dt = 0. When considering (3.7) as a direct consequence of (3.4) and (3.6), the
transients dxQ/dt also produce an equivalent pressure head loss, resulting in function hloss(xQ)
to be insufficient in describing the head loss in unsteady-state, referring to (3.4).

Remark 3.7. Generally, cycle matrices are not unique and can be linearly dependent when
cycles are combined with each other.

However, uniqueness is obtained for the fundamental cycle matrix S̄ ∈ Znc×n`
{−1,0,1} which is

expected to satisfy

S̄ =
[
Inc S̄n`−nc

]
(3.8)

where S̄n`−nc ∈ Znc×(n`−nc)
{−1,0,1} . It will be shown that the relation between S and S̄ is provided by

a linear transformation
S̄ = ST (3.9)
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where T ∈ Zn`×n`{−1,0,1} has full rank n` and simply rearranges the numbering of flows Qi. Actually,
cycle matrix S is not unique as a reason of T being not unique.

3.1.3 Extraction of Cycle Matrix S out of Incidence Matrix A

It is arguably easier to first construct A and C̃T
s out of, for instance, GIS (geographical in-

formation system) data or data from EPANET [Lewis, 2000] by using the EPANET-MATLAB
Toolkit [Eliades et al., 2016], and in a second step the cycle matrix if required.

The rearrangement or renumbering of flows is achieved by

T =
[
em̄1 em̄2 . . . em̄nc

em1 em2 . . . emn`−nc

]
∈ Zn`×n`{0,1} (3.10)

a matrix which comprises unity vectors in its columns. Indices of those unity vectors M =
{m1,m2, . . . ,mn`−nc} and M̄ = {m̄1, m̄2, . . . , m̄nc} satisfy M ∩ M̄ = {} and M ∪ M̄ = P,
where

Tt̄ =
[
em̄1 em̄2 . . . em̄nc

]
, Tt =

[
em1 em2 . . . emn`−nc

]
(3.11)

and thus T = [Tt̄ Tt]. According to properties of M and M̄ it is clear that TT T = In`
(Property 2.4 in section 2.2.3 for R = T Tt , R̄ = T Tt̄ , K =M and K̄ = M̄) while the renumbering
of flows via T applied on A

AT =
[
At̄ At

]
(3.12)

separates the incidence matrix into two parts At̄ ∈ Znj×nc

{−1,0,1} and At ∈ Znj×(n`−nc)

{−1,0,1} according to

(3.11). Knowing that the cycle matrix S is orthogonal to AT (Proposition 3.6),

SAT = STT TAT =
[
I S̄n`−nc

] [AT
t̄

AT
t

]
= 0 ⇒ AT

t̄ + S̄n`−ncA
T
t = 0 (3.13)

it is evident thatAt must be non-singular for the transformation to be feasible. As a consequence,
the set M associated with indices of unity vectors in Tt (3.11) are chosen such that column
vectors in At = [am1 . . . amn`−nc

] are linear independent, i.e.

α1am1 + α2am2 + . . .+ αn`−ncamn`−nc
= 0 (3.14)

if and only if α1 = α2 = . . . = αn`−nc = 0. Hence, this transformation actually separates an
invertible part At from a non-invertible one At̄ regarding the column vectors of A.

Corollary 3.8. As direct consequence of rank (A) = nj according to Corollary 3.4, it is clear
that cycle matrix S has precisely nc = n` − nj independent (fundamental) cycles (rows) and is
obtained by

S =

[
In`−nj −

(
A−1
t At̄

)T]
T T (3.15)

reformulating (3.13) such that S̄n`−nc = −(A−1
t At̄)

T . As a result of (3.9) and (3.10) S̄ = ST
⇒ S = S̄T T , i.e. the multiplication with T T provides the same numbering of flows as in A.

Emphasizing on the utilization on not unique indices M and thus M̄, one just needs to
find one order in which the columns ai for i ∈ M are linearly independent as in (3.14). The
order in which these nj independent column vectors are arranged in At is completely irrelevant
as a consequence of the possibility to number flows arbitrarily. This is the reason why the
transformation matrix T is not unique when assuming that the incidence matrix A is not
required to have a standardized form (see [Bapat, 2014]). A hint for implementation when using
MATLAB, a QR decomposition by means of the qr command can be helpful in this regard.

In this context of the transformation (3.12), At is usually associated with the tree and At̄

with the co-tree of the network’s graph.
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Definition 3.9 (Tree and Co-Tree Flow). The subset of xQ

xt = T Tt xQ ⇒ [xt]i = [xQ]mi ∀i = 1, . . . , nj (3.16a)

denoted by xt is defined as tree flow in the hydraulic network and, effectively, corresponds with
subset M of nj linearly independent columns in A. The complementary entries in xQ

xt̄ = T Tt̄ xQ ⇒ [xt̄]i = [xQ]m̄i ∀i = 1, . . . , nc = n`− nj (3.16b)

denoted by xt̄ are associated with the co-tree flow and correspond with n`−nj linearly dependent
columns in A.

Two-Cycle Network Example. To put it into perspective, the network with n` − nj = 2
cycles in figure 3.2 is considered. For instance, one selects the following columns in A

A =


m1=1 m2=2 m̄1=3 m̄2=4 m3=5

-1 -1 0 0 1
1 0 -1 1 0
0 1 1 -1 0

 =
[
a1 . . . a5

]
(3.17)

knowing that
α1am1 + α2am2 + α3am3 = 0 (3.18)

if and only if α1 = α2 = α3 = 0. Then, the transformation matrix comprises

Tt̄ =
[
em̄1 em̄2

]
=


0 0
0 0
1 0
0 1
0 0

 and Tt =
[
em1 em2 em3

]
=


1 0 0
0 1 0
0 0 0
0 0 0
0 0 1

 (3.19)

such that T = [Tt̄ Tt]. According to (3.15) (Corollary 3.8), the cycle matrix S is obtained by

S =
[
In`−nj −

(
(ATt)

−1ATt̄
)T ]T T =

[
1 −1 1 0 0
−1 1 0 1 0

]
(3.20)

which can be verified by analyzing the network in figure 3.2. However, when selecting different
columns in A, for instance

A =


m1=1 m̄1=2 m2=3 m̄2=4 m3=5

-1 -1 0 0 1
1 0 -1 1 0
0 1 1 -1 0

, (3.21)

where At = ATt = [a1 a3 a5] is also invertible, one receives (At̄ = ATt̄)

S =

[
In`−nj −

(
A−1
t At̄

)T]
T T =

[
−1 1 −1 0 0
0 0 1 1 0

]
(3.22)

which is a feasible choice too. Verify the two choices of S in (3.20) and (3.22) by means of
analyzing the network in figure 3.2. In reference to Remark 3.7, the cycle matrix is not unique
since there is no need for the transformation to be unique. Nevertheless, once feasible indices
M = {m1, . . . ,mnj} and M̄ = {m̄1, . . . , m̄n`−nj} are selected, T and thus S are uniquely
specified.
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3.1.4 Network Model

The number of equations in order to obtain a unique solution is the same as, for instance, for
an electric network of linear resistors. In contrast, however, the number of (inner) nodal and
independent cycle equations nj +nc = n` must be solved iteratively for hydraulic networks as the
laws of flow resistance are, in general, nonlinear (see section 2.1.4). Interestingly, the number
of equations to solve is equivalent to the number of pipes n`. For instance, the formulation

(3.23a)

(3.23b)
Γ :

{
Shloss(xQ) = SC̃shs

AxQ = q̄

solves the hydraulic network for flows xQ. Considering (3.23b) with S ∈ Z(n`−nj)×n`
{−1,0,1} , where

n` > nj as ns > 0, C̃shs − hloss(xQ) must be expressible within the kernel of S which is
spanned by AT , as SAT = 0 according to Proposition 3.6. Subsequently, it is apparent that
there exists an α ∈ Rn` for which ATα = C̃shs − hloss(xQ). This parameter α thereby re-
presents the nodal heads α = (h + z) according to (3.4). As a consequence, the formulation

(3.24a)

(3.24b)
Γh :

{
AT (h+ z) = C̃shs − hloss(xQ)

AxQ = q̄

as it was proposed, e.g. by Todini and Pilati [1987], is equivalent to (3.23), however it requires
to solve an equation system with n`+ nj unknowns (namely h and xQ) instead of n` unknowns
in (3.23). Todini and Rossman [2013] give a broad overview of different implementations of Γ
and Γh and then apply the Newton-Raphson algorithm.

Physical Considerations. Apart from differences in source pressures, referring to Γ (3.23),
there are two essential parameters which determine the flow distribution in the network’s topo-
logy, the nodal consumption q̄ and the friction coefficients (roughness and minor loss values). In
case the network completely lacks loops/cycles, however, the friction losses and hs are irrelevant
(provided the consumption is known), A would be square and (3.23a) could be inverted. This is
fortunately not the case for a real drinking water network, as all consecutive consumers would
be cut off at a pipe burst when the network would be set up like a tree. Cycles are an integral
part of water networks, providing some redundancy to the distribution.

Network equations Γ (3.23) and Γh (3.24) utilize a so-called demand-driven consumption
and require that the consumption is known to a sufficient level of accuracy. Although this
assumption is sometimes feasible, it is not always realistic. It implies that the nodal consumption
q̄ is always subtracted from the respective nodes, even if there is not enough pressure to satisfy
this consumption. As a result, nodal pressure heads frequently become negative when the
considered demand is too high, a rather common experience in, e.g., EPANET Lewis [2000].
However, this is nonsense from a physical perspective. To overcome this problem, there exist
various different approaches implementing a pressure-driven consumption for the steady-state,
e.g. see Giustolisi et al. [2008]; Fujiwara and Li [1998]; Muranho et al. [2014]; Jung et al.
[2009]. The implementation, as proposed e.g. by Giustolisi et al. [2008], which reduces the
consumption proportionally to the pressure if it can not satisfy the specified q̄, requires an
iterative formulation and thereby encounters difficulties. Nevertheless, Piller et al. [2003] prove
the solution’s uniqueness in this context.

Laminar Network. Suppose all minor loss coefficients are zero km = 0 (as they are often
neglected), meaning that hloss = ∆hDW, and the flow is so low that every pipe would be in the
laminar regime Re ≤ 2000 (which is actually never the case). Then, the minimal set of equations
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(3.23) becomes linear [
A

S diag (w̄)

]
xQ =

[
q̄

SC̃shs

]
(3.25)

considering [w̄]i = 32ηρ
li

d2
i gAi

for all i ∈ P which is obtained when applying (2.3), (2.4) and

(2.5). This is an interesting yet primarily academic observation as the flow in pressurized water
networks is mostly turbulent [Walski et al., 2003, p. 28], except in the periphery of the network.
In a looped network it may also occur that due to a specific consumption-configuration, pressure
levels at two adjacent nodes are almost identical which may also lead to laminar flow.

3.1.5 Uniqueness and Solvability

This section is solely dedicated to shed some light on the uniqueness and solvability of the
steady-state hydraulic network description. One of the first notes about a proof in context of
water networks goes back to Pilati and Todini [1984] mentioned in the paper of Todini and Pilati
[1987]. This publication (1984) is written in Italian and hardly accessible today.

Assumption 3.10. Friction function hloss(xQ) is strictly monotonically increasing, continuous
and at least once continuously differentiable. It further satisfies hloss(0) = 0 at the zero point.

Considering the definition of losses due to friction at the pipe’s inner surface (2.4) (Darcy
Weisbach) and minor losses (2.9), it is clear that zero flow does cause zero head loss hloss(0) = 0.
Since the Darcy Weisbach relation becomes linear (with a slope greater zero w̄ > 0 (3.25)) in
the laminar regime, it is also evident that the function is strictly monotonically increasing as
well as continuously differentiable (in the laminar regime).

Proposition 3.11. Friction function ∆hDW(Q) (2.4) applying friction factor λDW according to
Colebrook-White (2.6) is strictly monotonically increasing for Q 6= 0 and thus for the turbulent
regime, where Re ≥ 4000. (A Proof is provided in Appendix B)

Given Proposition 3.11 it is apparent that hloss(xQ) is also monotonically increasing in the
turbulent regime as minor coefficients are always non-negative km ≥ 0. While also knowing
that hloss(xQ) is continuous in the laminar and turbulent (see Appendix B) regime, a smooth
and continuous description in the transitional area is required.

Proposition 3.12. Let Assumption 3.2 and 3.10 hold. Then, the network formulation as in
(3.23) with inner nodal and independent cycle equations nj + nc = n` is sufficient to obtain a
unique solution for the steady-state hydraulic network.

Proof. Utilizing the same separation (3.12) of A as before AT = [At̄ At] where T = [Tt̄ Tt]
in reference to (3.10), flows are simply renumbered according to indicesM = {m1, . . . ,mnj} ⊆ P
and M̄ = {m̄1, . . . , m̄n`−nj} ⊆ P. Knowing that TT T = In`, (3.23a) becomes

AxQ =
[
At̄ At

] [T Tt̄
T Tt

]
xQ = At̄xt̄ +Atxt = q̄. (3.26)

Knowing that xQ = Tt̄xt̄ + Ttxt while applying (3.11) to (3.16b), the flow vector xQ

xt = A−1
t (q̄ −At̄xt̄) ⇒ xQ =

(
Tt̄ − TtA−1

t At̄

)
︸ ︷︷ ︸

ST

xt̄ + TtA
−1
t q̄ (3.27)

can be expressed by the co-tree flow xt̄ and the nodal consumption q̄, where Tt̄−TtA−1
t At̄ = ST

according to Corollary 3.8. Considering the network formulation (3.23), the equation system is
reduced to

Shloss

(
STxt̄ + TtA

−1
t q̄

)
− SC̃shs = 0 (3.28)
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with n`−nj cycle equations and n`−nj unknown co-tree flows xt̄ which appear in the argument
of function hloss(xQ(xt̄)). According to the variational principle (cf. Piller and Propato [2006]),
formulation (3.28) is equivalent to the optimal solution of the optimization problem

min
xt̄

n∑̀
i=1

∫ Qi

0
hlossi

(ξi)dξi − xTQC̃shs = min
xt̄
f(xt̄)

s.t. xQ = STxt̄ + TtA
−1
t q̄

(3.29)

which is proportional to the total energy required to satisfy specified nodal demands q̄. The
optimization problem, similar to (3.29), was first proposed by Collins et al. [1978] and then used
by, e.g., Piller and Propato [2006] and Piller et al. [2003]. Then, the gradient of the objective
function equals (3.28), i.e.

∇f(xt̄) =

(
∂f

∂xQ

∂xQ
∂xt̄

)T
= Shloss(xQ)− SC̃shs

!
= 0. (3.30)

As xQ is expected to solve (3.30), it is stationary point of the objective function f(xt̄). Denoting

D = ∂hloss
∂xQ

which is a diagonal matrix where [D]ii =
dhloss,i

dQi
> 0 for all Qi and i ∈ P as function

hloss(.) is expected to be strictly monotonically increasing, the Hessian matrix

∇2f(xt̄) = SD(xQ)ST � 0 ∀xQ ∈ Rn` (3.31)

is globally positive definite as S ∈ Z(n`−nj)×n`
{−1,0,1} has full rank (see Proposition 3.6). The optima-

lity conditions are complete, objective function f(xt̄) of optimization problem (3.29) is strictly
convex. This is the result of the Hessian matrix SD(xQ)ST (3.31) of f(xt̄) being positive
definite for all xQ ∈ Rn` (see e.g. [Beck, 2014, Theorem 7.13]). Subsequently, xQ is the global
minimum of (3.29) and thus unique solution of (3.28) and subsequently (3.23) and (3.24). �

Remark 3.13. Since the optimality condition for strict convexity concerning the Hessian (3.31)
is sufficient only, Proposition 3.12 does actually hold for monotonically increasing hloss(.) also,
referring to Assumption 3.10. This is the result of Piller [1995] which utilizes a modification of
f(xt̄) in the vicinity of zero.

Note that Piller et al. [2003] (see also Piller and Propato [2006]) proves uniqueness of the
pressure-driven equations, where the nodal consumption q̄ is expressed as a function on the
nodal pressure h such that q̄(h). Analogous to the hloss(.), the k-th component of function
qk = qk(hk) for k ∈ I also solely depends on k-th nodal pressure head hk.
Actually, convexity allows the set of nonlinear equations Γ (3.23) and Γh (3.24) to be solved
for large problems. A water distribution network with several thousand nodes and pipes might
otherwise never converge.
Strictly speaking, the solution’s uniqueness can only be guaranteed if a smooth and continuous
description of the transitional pressure head loss in the transitional regime 2000 < Re < 4000 is
found. In this strict context, the expression (2.8) is only, if at all, suitable if the Swamee-Jain
equation (2.7) is utilized for the turbulent regime. In practice, however, it turned out that (2.8)
in combination with Colebrook-White (2.6) leads to very reasonable results, which are slightly
different to the one when applying Swamee-Jain (2.7) in the turbulent regime. Nevertheless,
these differences are in the majority of cases so small that they presumably are within the
uncertainty band of pressure and flow sensors with standard-accuracy.
Besides, the flow through the network follows the path of least action, where the least energy
is spent. In a looped network, where there is, e.g., only one percent error at the first junction,
the error possibly accumulates at the consecutive junctions. Also, knowing that laws of pressure
head loss are nonlinear, one percent error in the head loss, may lead to more distinct deviation
in the flow.
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3.2 Full Transient Equations

In this section a brief introduction of the full transient or elastic modeling approach is given which
then also serves as basis for the derivation of the rigid water column theory. For more background
information, references [Chaudhry, 2014; Wylie and Streeter, 1978; Fox, 1977; Larock et al., 1999]
are recommended.

Regarding figure 3.3, the forces acting on a fluid moving with velocity v in an inclined yet
infinitesimal small volume with length ∆s, cross section area ∆A and diameter D is considered.

∅D

∆s

v

p∆
A

streamline

(p
+
∂p
/∂
s∆
s)∆

A

τ∆
sπ
D

Θ mg

Figure 3.3: Forces acting on a fluid in an inclined, infinitesimal small pipe
segment (c.f. [Larock et al., 1999, Figure 7.4]).

Pressure p+ ∂p
∂s∆s, acting against the streamline in figure 3.3, is obtained by a Taylor series

which is truncated after the linear term, a feasible procedure as only an infinitesimal small
volume is considered. The balance of forces according to Newton’s second law of motion is the
starting point:

m
dv

dt
= p∆A−

(
p+

∂p

∂s
∆s

)
∆A−mg sin(Θ)− τ∆sπD (3.32)

The force p∆A accelerates the fluid upstream, whereas the opponent
(
p+ ∂p

∂s∆s
)

∆A, gravity

mg sin(Θ) and friction along the pipe surface τ∆sπD are acting against the fluid’s acceleration,
hence against the total derivative of the velocity dv

dt . Gravity equals mass m = ρ∆A∆s times
the constant gravitational acceleration g. Initially, ∆s

mg = 1
gρ∆A is multiplied to equation (3.32).

∆s

g

dv

dt
= −∂p

∂s

∆s

gρ
− τ Dπ∆s

gρ∆A︸ ︷︷ ︸
→∆hDW

−∆s sin(Θ) (3.33)

Elastic Approach. As the fluid’s velocity v = v(t, s) can be interpreted as a function on time
t and space s, whereas space in turn is considered to be a function on time v(t, s) = v(t, s(t)),
the total derivative reads as

dv

dt
=
∂v

∂t
+
∂v

∂s

∂s

∂t
where v =

∂s

∂t
. (3.34)

Expanding the infinitesimal small volume to that of the entire pipe by simply replacing ∆s with
the pipe’s length l, ∆A with the real cross section A and D by d, the expression including shear
stress τ is replaced by the Darcy-Weisbach equation. Actually, one would also need to account
for the unsteady-state component of friction which is not mentioned here (see Chaudhry [2014]).
Knowing that ∆hDW = λDW

l
2dgv|v| (2.4), (3.33) yields the Momentum equation [Chaudhry,
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2014]
∂v

∂t
+ v

∂v

∂s
+
∂p

∂s

1

ρ
+ g sin Θ + λDW(v)

v|v|
2d

= 0. (3.35)

The density is often considered in the derivative ∂p
∂s

1
ρ ≈

∂h
∂s

1
g assuming that the fluid is only

slightly compressible and the conduit walls only slightly deformable. However, one accounts for
variations in ρ and A by considering the wave velocity av to be finite which itself appears in the
so-called Continuity equation (an elastic version of the conservation of mass)

∂p

∂t
+ v

∂p

∂x
+ ρa2

v

∂v

∂x
= 0. (3.36)

A derivation of (3.36) is provided, e.g., in Chaudhry [2014]. In the majority of engineering
applications, the convective acceleration terms v∂p/∂s and v∂v/∂s are neglected [Chaudhry,
2014] leading to (by taking (3.35) and (3.36))

∂h

∂t
+
a2
v

gA

∂Q

∂x
= 0 (3.37a)

∂Q

∂t
+ gA

∂h

∂s
+ λDW(Q)

Q|Q|
2dA

+ gA sin Θ = 0 (3.37b)

considering that Q = vA and p = gρh.
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4
Network Hydraulics: A Dynamic Yet Rigid Approach

‘Now that computers are available, a very great improvement has been made to the
quality of analytic techniques that can be used and it is no longer necessary to confine
the mathematical modeling of a network to that of steady state.”

– J. A. Fox, Hydraulic Analysis of Unsteady Flow in Pipe Networks, 1977

More than 40 years later the situation has not changed much though, a sign of poor progress
in this area, especially considering the progress made in computation and semiconductors. The
sheer size of supply networks makes the solving of large sets of nonlinear equations, aside from
the physical perspective, a matter of convergence. The industry, however, caught up in part as
several software packages (look for e.g. WANDA, KYPIPE, HIDRA) provide transient simula-
tion capabilities, though, they are radically limited in network size and complexity. Also, the
mentioned simulation tools are not open-source and usually come with considerable license costs
and thus often aggravate or even prohibit further development. If resources are spent on the mo-
dification and development of open-source software like EPANET, which is arguably considered
as industry standard, development might by accelerated substantially. EPANET, first publis-
hed in 1993, was developed with the help of public funding by the United States Environmental
Protection Agency which is faced with severe cost cutting under the recent administration.

In the opinion of the author, the right spot for a new generation of simulation software is
based on a model which accounts for some sort of pressure-driven consumption but also for slow
transients. Avoiding the complexity needed within partial differential equations as in (3.37),
a model which assumes the water to be incompressible reduces the computational effort for
larger networks to an extent, which may make it manageable for today’s standard computers.
Interestingly, this spot arguably is also the right one for the basis of a model-based control
design, possibly applying observer-based methods for monitoring, holistic control methods for
control valves and, perhaps, fault detection and isolation methods for leaks.

The content of the publication [Kaltenbacher et al., 2017] was largely used among other
things in section 4.2 and 4.3, whereas the content of [Kaltenbacher et al., 2018] was used in part
in section 4.4 and 4.5 of this chapter.

4.1 Rigid Water Column Theory

The mentioned modeling approach in question is known under the so-called rigid water column
theory which will be the major subject for further analysis in this chapter. The confinement
to ordinary differential equations (ODEs) within this theory was also an important selection
criterion as it may also be the right choice for a model-based control design.
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The starting point of this consideration is figure 3.3 depicting the forces acting on a fluid in
an infinitesimal small volume as part of a pipe. Newton’s second law of motion is applied and
summarized in (3.32) and modified in (3.33). Concerning (3.33), the constant slope of the pipe’s
inclination sin(Θ) = ∂z

∂s is replaced by the appropriate derivative, including elevation z(s). Then,
pressure p is replaced by the pressure head h considering the fluid’s specific weight ρg = p/h
while dividing (3.33) by ∆s.

1

g

dv

dt
= −∂h

∂s
− ∂z

∂s
− τ Dπ∆s

gρ∆A︸ ︷︷ ︸
→∆hDW

1

∆s
(4.1)

However, by considering the density inside the derivative of ∂p/∂s, ρ is treated as constant along
∆s, also assuming that wave velocity is infinite (in contrast to (3.37a)). This simplification
depicts the major difference between the rigid and the elastic approach. Now, the infinitesimal
small control volume in figure 3.3 is expanded to that of a pipe by replacing ∆s with the pipe’s
length l, ∆A with A and D by d.

1

g

dv

dt
= −∂h

∂s
− ∂z

∂s
− ∆hDW(v)

l
(4.2)

Also, if it is assumed that the cross section area over the considered pipe section does not vary,
it is feasible to substitute velocity v with the flow Q by pulling A out of the time derivative on
the left hand side of equation (4.2). The final form of the elementary equation describing the
incompressible flow behavior through the conduit can be obtained when integrating equation
(4.2) over the length l of the pipe

l

gA

dQ

dt
= (h+ z)

∣∣
s=0
− (h+ z)

∣∣
s=l
− λDW

l |Q|Q
2dgA2

(4.3)

and thereby forcing the flow Q to remain constant over l.

Physical Considerations. By using the rigid column theory, the water inside a pipe is very
much treated as a solid body, which itself consists of particles. When a force is acting on one
side of the body and thereby on the first layer of particles, it will be transferred to adjacent
layers of particles successively, until it reaches the other end of the body. In reality, the velocity
of this force propagating through the body will be finite, especially in fluids but even in solid
bodies. As in the description of Fox [1977], “most bodies are not sufficiently long for the wave
of compressive stress to be in any way significant but the effect is always present”.

Concluding, if the stress or pressure wave propagating through a pipe is considerably fast,
whereas the length of the segment relatively small, the rigid column theory is capable of des-
cribing such motions sufficiently accurate. For instance, considering the high speed of sound in
water ∼1500 m/s [Cutnell and Johnson, 2012] (which varies with pipe parameters) in a single
pipe, a total length of about 150 m is needed to possibly see any deviations due to the pressure
propagation with a sampling time of 0.1s. However, as the wave is reflected in other parts of
the network it travels back and forth while its amplitude gradually attenuates.

4.2 Network Formulation

Using the rigid column approach as a basis for network formulations is nothing revolutionary,
yet its application can hardly be considered popular. To this point in time, there is no common
convention on how to efficiently combine network and differential equations. However, Japanese
colleagues early pushed the development towards a common network formulation [Onizuka, 1986;
Shimada, 1989, 1993] which also attracted control applications as in Kumar et al. [2009] and
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even led to the attempt to explore the application of H∞ control [Terra et al., 2002]. Also,
Ivanov and Bournaski [1996] early proposed using the ODEs for more complex networks as well
as Axworthy [1997] made efforts towards a systematic network approach in his PhD thesis.

Nevertheless, these efforts were not broadly pursued, the results of Onizuka and Shimada
were not addressed in any popular books (at least with English translation) dealing with hy-
draulics as far as the author is aware. For instance, as in Hydraulics of Pipeline Systems (1999)
[Larock et al., 1999], appropriate sections seem to be extensions of [Watters, 1979] in Modern
Analysis and Control of Unsteady Flow in Pipelines. There, the formulation within algebraic
differential equations makes the solving of large networks somewhat complicated. Even more
recently [Boulos et al., 2006], the attempt to use cycle equations to combine the flows’ ODEs
(4.3), presumably analogous to the Loop Method mentioned in Onizuka [1986], seems to be
impractical.

Network Equations. The same notation as for the steady-state is applied (see section 3.1).
Introducing

cl = g

[
A1
l1

. . .
An`
ln`

]T
∈ Rn`>0 (4.4)

the networks’ ODEs can already be specified (in reference to (4.3) and section 3.1.2)

dxQ
dt

= diag (cl)
(
C̃shs −AT (h+ z)− hloss(xQ)

)
(4.5)

where friction function hloss(xQ) = ∆hDW(xQ) + ∆hm(xQ) also accounts for minor losses in
addition to friction at the inner pipe’s surface and viscosity-effects. The conservation of mass
(same as in steady state, see section 3.1.1) is utilized to calculate nodal pressure heads h which
are still unknown in (4.5). When differentiating the nodal Kirchhoff equations AxQ = q̄ with
respect to time, ODEs (4.5) can be inserted. The result is then inverted in terms of nodal heads
h+ z yielding

h+ z =
(
A diag (cl)A

T
)−1

[
A diag (cl)

(
C̃shs − hloss(xQ)

)
− dq̄

dt

]
. (4.6)

However, (4.6) requires the time derivative of the nodal consumption q̄ to be known which is
rather problematic as the values used for q̄ are, generally, less confident.

Proposition 4.1. Given Corollary 3.4, L = A diag (cl)A
T � 0 is positive definite and thus

invertible.

Proof. Knowing that A ∈ Znj×n`
{−1,0,1} has full rank (A) = nj according to Corollary 3.4, where

nj < n` as a reason of ns > 0, the left null space or the kernel of the transpose of the incidence
matrix is zero, i.e. kerAT = {0nj}. Subsequently, y = ATx 6= 0 for all x 6= 0 resulting in
yT diag (cl)y > 0 for all y 6= 0 as cl ∈ Rn`>0 in reference to (4.4). �

One possibility to avoid approximating the time derivatives of nodal consumption q̄ in (4.6),
as its behavior is only known rudimentarily, is to move q̄ into the derivative of xQ. Inserting

expression (4.6) into the ODEs (4.5) and then moving dq̄
dt to the left hand side yields

d

dt

(
xQ − diag (cl)A

TL−1q̄
)

=
(
I − diag (cl)A

TL−1A
)

diag (cl)
(
C̃shs − hloss(xQ)

)
(4.7)

which is feasible as diag (cl)A
TL−1 is constant. After solving (4.7), the result is increased by

diag (cl)A
TL−1q̄ to obtain xQ.
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Assumption 4.2. Initial states xQ(t0) for (4.7) and (4.5) are consistent AxQ(t0)
!

= q̄(t0),
which is a non-trivial requirement as this set of equations usually has multiple solutions. Howe-
ver, xQ(t0) = 0 and q̄(t0) = 0 obviously are always feasible initial states.

Formulation Characteristics. For the purpose of analysis, suppose there are no cycles/loops
concerning A, meaning that nj = n`. Then, the matrix of the right hand side of (4.7) yields

I − diag (cl)A
T
(
Adiag (cl)A

T
)−1

A
nj=n`

= 0 (4.8)

zero and thus results in the complete loss of dynamics. Analogous to the steady-state, nodal
Kirchhoff equations are sufficient for solving the network in case n` = nj.

Formulation (4.7) is also considered to be demand-driven in terms of nodal consumption q̄
(see section 3.1.4) as the specified q̄ is always subtracted from the respective nodes even there is
not enough pressure to satisfy this demand. Also, the influence of the nodal elevation z cancels
out completely which can be seen in the set-up of pressure heads (4.6). However, this is no
unique property, also in the steady-state formulation, the nodal elevation has no direct effect
on the network equations as in Γ (3.23). This problem is usually being bypassed by subtracting
z after the nodal head vector has been calculated. It is shown in the following sections that
the reason why the nodal elevation z has no influence on the model equations is inherently
connected with the demand-driven character.

4.3 Pressure-Driven Demand

The problems involved within specifying explicit demands are well known and communities
already focused on modifications such that the specified consumption q̄ is expressed in terms
of target or reference values. Regarding the steady-state model, various references (see section
3.1.4) propose extensions by introducing quantities like the desired pressure (for satisfying the
specified target consumption) or available pressure at the respective node. In this thesis a
different approach is pursued which ultimately leads, in the opinion of the author, to a more
natural incorporation of a pressure-driven demand.

In reality, the consumer outflow q depends on the local pressure head h and on the cross
section area of the consumer’s pipe opening Aq. When equating potential- to kinetic energy, in
analogy to section 2.1.4, the discharge relation

q = r(α)Aq
√

2gh (4.9)

extended by an additional multiplier r(α) (also known as discharge or orifice coefficient) is
obtained. This multiplier is capable of adjusting the consumption much like one regulates the
water flow by opening or closing a water tap. In this context α represents the degree of tap
opening. In case the water tap is completely open, r becomes r ≈ π/(π + 2) = 0.611 at least
for a sharp edged orifice in the turbulent flow regime [Jelali and Kroll, 2003]. Although several
empirical relations for calculating r depending on the flow condition and on the Reynolds number
(see [Jelali and Kroll, 2003]) have been identified, another approach is pursued. After adding
the orifice equation (4.9) to the network formulation, the focus is set on the control of q1 to
follow a specified target (desired) consumption qd(t) by manipulating r. As it makes less sense
to use complex empiric relations for finding suitable orifice coefficients if the tap opening α is
not known anyway, a suitable control will adjust coefficient r ∈ ]0, 1] in its physical bounds.

Assumption 4.3. Denoting 1 = [1 . . . 1]T , discharge coefficients r ∈ Rnq

[εr,1] of nq consumers
are bounded 1εr ≤ r ≤ 1 in order to ensure solvability of the pressure-driven network equations.

1note the change in notation q 6= q̄
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Pressure-Driven Network Formulation. In order to incorporate a pressure-dependent con-
sumption, nq consumers nodes, consuming q ∈ Rnq

>0 (m3/s), are separated from nj − nq nodes
with no consumers withdrawing water (non-consumer nodes). The separation is achieved by

applying matrices Rq ∈ Znq×nj

{0,1} and R̄q ∈ Z(nj−nq)×nj

{0,1} such that

Rqq̄ = q R̄qq̄ = 0 (4.10)

which select the appropriate nodes from nodal equations AxQ = q̄. To properly define Rq and

R̄q, unity vector eTk ∈ Z1×nj

{0,1} with a single one entry in the k-th column is utilized. As a remark,

these column vectors have length nj in contrast to the ones used for transformation (3.10) which
have length n`.

Definition 4.4. The subset K of inner nodes I defines consumer nodes

K =
{
k ∈ I | eTk q̄ > 0

}
=
{
k1, . . . , knq

}
⊆ I (4.11a)

where the consumption is strictly greater zero. The complementary set

K̄ =
{
k ∈ I | eTk q̄ = 0

}
= {k̄1, . . . , k̄nj−nq} ⊆ I (4.11b)

defines non-consumer nodes where no water is withdrawn. These two sets thereby satisfy
K ∩ K̄ = {} and K ∪ K̄ = I.

According to Definition 4.4, one obtains

Rq =
[
ek1 . . . eknq

]T
R̄q =

[
ek̄1

. . . ek̄nj−nq

]T
(4.12)

which then have the following properties.

Property 4.5. Matrices Rq and R̄q satisfy: (A proof is provided in section 2.2.3 applying
Property 2.4 for R = Rq, R̄ = R̄, K = K and K̄ = K̄)

RqR
T
q = Inq R̄qR̄

T
q = Inj−nq RqR̄

T
q = 0

RT
qRq + R̄T

q R̄q = Inj (4.13)

In the context of (4.9), aq = [Aq,k1 . . . Aq,knq
]T ∈ Rnq

>0 characterizes the nq cross section
areas of maximal consumer openings (e.g. connected pipe with the largest diameter). Rqh =
hq ∈ Rnq

≥0 represents nq elements of pressure head h at consumer nodes, whereas R̄qh = h̄
specifies nj−nq elements of h at non-consumer nodes. In reference to (4.9), the orifice equation
yields

q =
√

2g r � aq � h�
1/2

q (4.14)

when applying the Hadamard operator (see section 2.2.2). By inverting (4.14) with respect to
hq, the coefficients r appear in the denominator, meaning that the pressure at consumers could
potentially become infinite if this coefficient tends to zero, i.e. if consumer openings are intended
to close completely. To circumvent this case, the range of r is bounded appropriately.

Remark 4.6. With the intention to simulate qk = 0 while hk 6= 0 at consumer node k ∈ K, the
error in the consumption εq,k = εrAq,k

√
2ghk is negligible as long as a sufficiently small εr > 0

is selected.

The aim is to express pressure head values h in ODEs (4.5) by applying the vector orifice
equation (4.14). Considering (4.10), one separates the Kirchhoff equations

RqAxQ =
√

2g
(
r � aq � h�

1/2

q

)
(4.15a)

R̄qAxQ = 0 (4.15b)
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into a consumer and a non-consumer part. Given Assumption 4.3, the inversion of (4.15a) in
terms of hq, i.e.

hq =
1

2g
r�
−2 � a�−2

q � (RqAxQ)�
2 !

=
1

2g
r�
−2 � a�−2

q � (RqAxQ)�
∣∣RqAxQ

∣∣ (4.16)

is feasible and already leads to nq elements of h. Emphasizing on q
!

= q �|q| in (4.16), the
restriction q = RqAxQ > 0 allows the pressure heads to remain h > 0 (whereas h = 0 also
implies q = 0) as long as a proper value for the boundary, e.g. εr = 10−5, is selected. However,
the infeasible case were q < 0 would result in a physical nonsense, hq would be positive for a

negative consumption (4.16) if considering q�
2

instead of q �|q| in (4.16).

Remark 4.7. In principle, the pressure-driven consumption q = RqAxQ and therefore hq
could still become negative if source pressure hs is so low that it fails to satisfy (close to) zero
consumption, in which case the appropriate discharge coefficients become rk = εr at k ∈ K.

The simulation shall be aborted if q = RqAxQ becomes negative (consumers would become
sources). In this case one can, for instance, increase hs, decrease the consumption in total∑nq

i=1 qd,ki or decrease qk at the right (neighboring) consumer-nodes k ∈ K by manipulating rk.
Emphasizing once again on this scenario, this only occurs if sources, concerning hs, are unable
to satisfy (close to) zero consumption via qk at any consumer node k ∈ K, in which case the
discharge coefficient becomes εr (orifices can not be completely shut). It will not occur if hs
only fails to satisfy target values qd > εq > 0, where [εq]i = εq,ki = εrAq,ki

√
2ghki .

The remaining non-consumer pressure heads h̄ in addition to (4.16) are obtained by diffe-

rentiating (4.15b) with respect to time R̄qA
dxQ

dt = 0 while inserting (4.5).

R̄qLh = R̄qA diag (cl)
(
C̃shs −ATz − hloss(xQ)

)
(4.17)

According to Properties 4.5 and (4.12) h = R̄T
q hq + R̄T

q h̄, which leads to

h̄ =
(
R̄qLR̄

T
q

)−1
R̄q

[
A diag (cl)

(
C̃shs − hloss(xQ)

)
−L

(
RT
q hq + z

)]
. (4.18)

Corollary 4.8. Given Proposition 4.1 and (4.12), R̄qLR̄
T
q � 0 is positive definite as

xT R̄qLR̄
T
q x > 0 for all x ∈ Rnj−nq 6= 0, where R̄T

q x results in a vector with all components of
x and additional zeros.

Combining (4.5), (4.16) and (4.18) one obtains the ODEs

dxQ
dt

= diag (cl)
(
C̃shs −AT (RT

q hq + R̄T
q h̄+ z)− hloss(xQ)

)
hq =

1

2g
a�
−2

q � (RqAxQ)�
2 � r�−2

h̄ =
(
R̄qLR̄

T
q

)−1
R̄q

[
A diag (cl)

(
C̃shs − hloss(xQ)

)
−L

(
RT
q hq + z

)]
(4.19a)

(4.19b)

(4.19c)

which actually resemble differential algebraic equations. However, when inserting (4.19b) into
(4.19a) and the result of (4.19b)→(4.19c) into (4.19a), the compact form

dxQ
dt

= (I −B) diag (cl)

[
C̃shs − hloss(xQ)−AT

(
1

2g
RT
q

(
a�
−2

q � (RqAxQ)�
2 � r�−2

)
+ z

)]
(4.20)

with B = diag (cl)A
T R̄T

q

(
R̄qLR̄

T
q

)−1
R̄qA confirms its ODE nature.
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Formulation Characteristics. In contrast to (4.8) (demand-driven), the dynamics

I − diag (cl)A
T R̄T

q

(
R̄qA diag (cl)A

T R̄T
q

)−1
R̄qA

nj=n`

6= 0 (4.21)

of this formulation generally remain intact in case the number of pipes equals the number of
nodes. This holds true with exception of the case nq = 0 ⇒ R̄q = Inj , when there are no

consumers, resulting in I − B
nj=n`∧nq=0

= 0. Although nodal equations AxQ = q̄ would be
sufficient in case n` = nj, the situation changes when considering pressure-driven demands.
Provided that the network completely lacks cycles/loops, steady-state models retain legitimacy
although the dynamic character further revealed by the pressure-dependent demands and the
consumer separation. Also, the nodal elevations z first appear in the network equations (4.20)
in contrast to (4.7), where z canceled out completely. As distinguished from literature, this is
the reason why nodal pressure heads were denoted by h and not nodal pressure heads h+ z.

4.3.1 Rapid Valve Opening in the Two-Cycle Network

For illustrative purposes, consider the two-cycle network in figure 3.2 with n` = 5 pipe flows,
nj = 3 nodes and one (ns = 1) reservoir R. Suppose hs = 30 m, nodal elevations are z =
[z1 z2 z3]T = [0 10 5]T m and the two consumers at node k = 2 and k = 3 are consuming
q2 = 1 l/s and q3 = 0.7 l/s. Nodal equations, consumer and non-consumer equations are defined
as follows.−1 −1 0 0 1

1 0 −1 1 0
0 1 1 −1 0


︸ ︷︷ ︸

A


Q1
...
Q5


︸ ︷︷ ︸
xQ

=

 0
q2

q3


︸ ︷︷ ︸
q̄

,

[
0 1 0
0 0 1

]
︸ ︷︷ ︸

Rq

q̄ =

[
q2

q3

]
︸︷︷︸
q

,
[
1 0 0

]
︸ ︷︷ ︸

R̄q

q̄ = 0

Considering parameter vector cl = 9.81×0.042π/4×([10 20 30 10 10]T )�
−1

, the pipes’ cross
section area A1 = . . . = A5 = 0.042π/4 as well as length l2 = 20m, l3 = 30m, l1 = l4 = l5 = 10m
are defined. Maximal consumer openings aq are selected by simply equating them to cross
section areas of adjacent pipes aq = [A2 A3]T . Minor loss coefficients are set to zero km = 0,
whereas roughness coefficients are εDW = [3 0.0015 0.0015 3 0.0015]T mm.

Figure 4.1: Simulated q for the steady-state model (3.24) via EPANET2 (dashed
line) and for the dynamic one (4.19) via MATLAB (solid line).
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Figure 4.2: Simulated xQ and h for the steady-state model (3.24) via EPANET2
(dashed) and for the dynamic one (4.19) via MATLAB (solid).

For friction factors λDW the Swamee-Jain equation (2.7) is utilized while expression (2.8)
serves for the description of the transitional head loss. These choices were made in order to
directly compare results of (4.19) with results of EPANET2. Also, a coherent temperature of
18◦C is assumed. A step response is simulated where orifice coefficients are increased instanta-
neously at t = 1s from r = [1 1]T εr = [1 1]T × 10−7 to r = [0.041 0.026]T which are chosen
such that respective demands q2 = 1, q3 = 0.7 l/s are achieved.

Regarding Figure 4.1, the sudden increase in orifice coefficients r causes the water mass inside
the network to react inertially such that the consumption gradually reaches desired values. The
mutual influence of q2 and q3 during their transition to steady-state can be seen at t ≈ [1, 1.03]s,
where q3 increases rapidly until q2 reaches maximal slope and forces q3 to slow down. Hereby
consumption q3 presumably starts off first as pipe i = 1 and i = 4 have significantly higher

roughness coefficients. Furthermore, as distance R
i=5→ k = 1

i=2→ k = 3
i=3→ k = 2 is twice

the distance R
i=5→ k = 1

i=2→ k = 3, h2 recovers slower than h3 (t ≈ [1, 1.03]s) from the
sudden pressure decrease when opening consumers (see Figure 4.2). One can also recognize the
rigid character of the ODEs (4.19) as in a real hydraulic network a sudden excitation by valve
openings, physically equivalent to the sudden increase in r, would certainly cause oscillations
which are not present here. Such oscillations would be the result of elastic effects meaning, for
instance, the pipe’s elasticity and variations in water density.

Starting from initial states xQ(t0) = 0 and q(t0) = 0, in reference to Assumption 4.2, one
can see that the consumption immediately becomes q(t < 1s) > 0 as orifice coefficients are r > 0
according to Assumption 4.3. Though, one can see on the right hand side of Figure 4.1 that the
lower boundaries εq,2 = εrA2

√
2gh2(t < 1s) ≈ 2.5 · 10−6 l/s and εq,3 = εrA3

√
2gh3(t < 1s) ≈

2.8 ·10−6 l/s in q are sufficiently small and thus insignificant for the simulation results, referring
to Remark 4.6. As shown in Figure 4.2, the results of the dynamic model (4.19) converge to the
steady-state ones (3.24) computed by EPANET2. The jump in pressure heads can be directly
attributed to the jump in coefficients r which directly influences hq in (4.19b). For solving (4.19)
the stiff solver ODE15s was applied which is capable of adjusting the step size efficiently in case
of rapid changes in a large number of state variables xQ.

In the following sections the focus is set on the choice of orifice coefficients r, which were
not determined by chance in this example, such that specified target or desired values qd ∈ Rnq

≥0

are reached in a manipulated time frame. As a remark, these reference values qd are allowed to
become zero as long as orifice coefficients r are bounded appropriately.
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4.4 How to Deal With Consumption?

In this section the degree of freedom in unknown orifice coefficients r ∈ Rnq

[εr,1] is exploited to

make sure that target consumption values qd are gradually satisfied in model (4.19) by replacing
the pressure-driven (in terms of q) character with linear consumption dynamics. The results are
then incorporated into model equations which will actually simplify their appearance. This is
achieved by applying an exact linearization, a method commonly applied in control, which will
support the handling of dynamic hydraulic network simulations.

4.4.1 Linear Consumption Dynamics

The selected target is to vary the control variable u = r�
−2

in the bounds u ∈ [1, ε−2
r ] in order

to force the consumption to follow qd. When taking the first derivative of output q = RqAxQ
and inserting the right hand side of (4.20), it becomes apparent that each derivative of selected
outputs depends on u. Manipulability of the output is assured. This is a rather obvious result
as it is clear that each consumption can be controlled by its orifice coefficient qk = rkAq,k

√
2ghk

for k ∈ K. In order to decouple system (4.20), dq/dt is forced to follow a linear differential
equation with eigenvalues λq ∈ Rnq

<0:

dq

dt
= RqA

dxQ
dt

!
= λq � q +αq � qd (4.22)

Parameters αq ∈ Rnq are chosen such that

lim
t→∞

q(t)
!

= qd. (4.23)

Applying the Laplace transform to (4.22) for constant qd

L
{
q(t)

}
= q̂(s) =

(s1− λq)�
−1

s
�αq � qd (4.24)

and the Laplace final value theorem to (4.23) results in

lim
s→0

(s1− λq)�
−1 �αq � qd

!
= qd ⇒ αq = −λq. (4.25)

After inserting (4.20) into (4.22) while using (4.25) and u = r�
−2

, one receives

u = 2g diag
(
q�
−2 � a�2

q

)
D̂−1

[
λq � (q − qd)

+RqA(I −B) diag (cl)
(
hloss(xQ)− C̃shs +ATz

) ] (4.26)

where D̂ = −RqA(I − B) diag (cl)A
TRT

q = RqLR̄
T
q

(
R̄qLR̄

T
q

)−1
R̄qLR

T
q − RqLR

T
q . When

taking a closer look at the special form of D̂ by making use of the Schur complement, pleasant
properties are revealed.

Proposition 4.9. Given Proposition 4.1, matrix −D̂ is positive definite (D̂ is negative definite)
and thus invertible.

Proof. −D̂ can be interpreted as Schur complement [Zhang, 2005]

Ms/As = RqLR
T
q −RqLR̄

T
q

(
R̄qLR̄

T
q

)−1
R̄qLR

T
q (4.27)
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of block matrix Ms =

[
As Bs

BT
s Cs

]
, where

Ms =

[
RqLR

T
q RqLR̄

T
q

R̄qLR
T
q R̄qLR̄

T
q

]
=

[
Rq

R̄q

]
L
[
RT
q R̄T

q

]
. (4.28)

Since L = A diag (cl)A
T is positive definite (Proposition 4.1), Ms is positive definite conside-

ring that [RT
q R̄T

q ]x simply rearranges entries in x according to Property 4.5. Subsequently,

Ms/As = As −BsC
−1
s BT

s = −D̂

Ms � 0⇔ As � 0 and As −BsC
−1
s BT

s � 0 (4.29)

is positive definite thus invertible. �

It was shown that the control law (4.26) is applicable for all considered network configurations.
As a result of the linearization when applying(4.26), the pressure-driven character of network’s
consumption will be suppressed. By applying (4.26), q is governed by the differential equation
(4.22), its convergence-speed towards qd can be adjusted via the eigenvalues λq < 0.

4.4.2 Incorporation in Model Equations

Control law (4.26) is inserted into the model equations (4.19b) and (4.20). One has to be aware
that this is only valid if u or r remains in its boundaries.

Assumption 4.10. The network is properly designed such that source pressures hs are high
enough to satisfy specified demands qd. Then, (4.26) remains in the boundary u(xQ, qd,hs) ∈
[1, ε−2

r ] for chosen eigenvalues λq < 0 and εr according to Assumption 4.3.

Theorem 4.11. Let Assumption 4.10 hold. Then, system (4.19b) and (4.20) with u = r�
−2

according to (4.26) is equivalent to flow transients (4.30a) and nodal heads (4.30b)

dxQ
dt

= G
(
C̃shs − hloss(xQ)

)
+M

(
RqAxQ − qd

)
h+ z = L−1

[
A diag (cl)

(
C̃shs − hloss(xQ)

)
−RT

q diag
(
λq
) (
RqAxQ − qd

)] (4.30a)

(4.30b)

applying matrices G = (I−diag (cl)A
TL−1A) diag (cl) and M = diag (cl)A

TL−1RT
q diag

(
λq
)
.

Proof. First, (4.30a) is proven. Inserting (4.26) into (4.20) yields:

dxQ
dt

= (I −B) diag (cl)
(
C̃shs − hloss(xQ)−ATz

)
− (I −B) diag (cl)A

TRT
q D̂
−1
[
λq � (q − qd) (4.31)

+RqA(I −B)diag(cl)
(
hloss(xQ)− C̃shs +ATz

) ]
One may recognize that term −ATz is missing in (4.30a) when compared to (4.31) which can
be attributed to special properties of G, resulting in GAT = 0. By collecting terms in front of
(C̃shs − hloss(xQ)−ATz) (ii) and (q − qd) (i) in (4.31), one has to prove the two conditions

−(I −B) diag (cl)A
TRT

q D̂
−1 !

= diag (cl)A
TL−1RT

q ,(i) (
I + (I −B) diag (cl)A

TRT
q D̂
−1RqA

)
(I −B)

!
=
(
I − diag (cl)A

TL−1A
)

(ii)
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where diag (cl) was already canceled from the left and right hand side of (ii). Matrix

Z = diag (cl)A
TL−1

(
RT
q Rq + R̄T

q R̄q

)
A (4.32)

which is invariant in terms of Z diag (cl)A
T = diag (cl)A

T and AZ = A will be helpful. After

using the definition of B = diag (cl)A
T R̄T

q

(
R̄qLR̄

T
q

)−1
R̄qA (below (4.20)) for the left of

condition (i)

−diag (cl)A
T

(
RT
q − R̄T

q

(
R̄qLR̄

T
q

)−1
R̄qLR

T
q

)
D̂−1 (4.33)

and then replacing diag (cl)A
T with Z diag (cl)A

T in (4.33)

−diag (cl)A
TL−1RT

q

(
RqLR

T
q −RqLR̄

T
q

(
R̄qLR̄

T
q

)−1
R̄qLR

T
q

)
D̂−1 (4.34)

it is clear that condition (i) holds, considering the definition of D̂ (below (4.26)).
For the verification of condition (ii) one has to show that(

I − diag (cl)A
TL−1RT

qRqA
)

(I −B)
!

=
(
I − diag (cl)A

TL−1A
)

(4.35)

where condition (i) was already inserted. Subsequently, for proving (4.35) one has to verify if

−B − diag (cl)A
TL−1RT

qRqA (I −B)
!

= −diag (cl)A
TL−1A. (4.36)

The definition of B (below (4.20)) is applied on the left hand side of (4.36)

diag (cl)A
T

[
R̄T
q

(
R̄qLR̄

T
q

)−1
R̄q +L−1RT

qRq −L−1RT
qRqLR̄

T
q

(
R̄qLR̄

T
q

)−1
R̄q

]
A. (4.37)

When replacing diag (cl)A
T with Z diag (cl)A

T on the left of (4.37), it becomes evident (with
the help of Property 4.5) that condition (ii) holds. �

Proof. The second part (4.30b), dealing with pressure heads h, is proven. One inserts (4.26)
into (4.19b)

hq = D̂−1
[
λq � (q − qd) +RqA(I −B) diag (cl)

(
hloss(xQ)− C̃shs +ATz

) ]
(4.38)

and (4.38) into (4.19c) and then collects terms in front of (C̃shs−hloss(xQ)−ATz) (iv) as well
as (q − qd) (iii) in expression

h = RT
qhq + R̄T

q h̄ (4.39)

which leads to the two conditions(
RT
q − R̄T

q

(
R̄qLR̄

T
q

)−1
R̄qLR

T
q

)
D̂−1 !

= −L−1RT
q ,(iii) [

−
(
RT
q − R̄T

q

(
R̄qLR̄

T
q

)−1
R̄qLR

T
q

)
D̂−1RqA(I −B) + R̄T

q

(
R̄qLR̄

T
q

)−1
R̄qA

]
(iv)

!
= L−1A

where diag (cl) was already canceled from the left and right hand side of (iv). Starting with

condition (iii), after multiplying matrix L−1
(
RT
qRq + R̄T

q R̄q

)
L = I (see Property 4.5) from

the left to the left hand side of (iii)

L−1
[
R̄T
q R̄qLR

T
q − R̄T

q (R̄qLR̄
T
q )(R̄qLR̄

T
q )−1R̄qLR

T
q −RT

q D̂
]
D̂−1 = −L−1RT

q (4.40)

it can be seen condition (iii) is satisfied.
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Condition (iii) is now applied on the left hand side of (iv)[
L−1RT

qRqA(I −B) + R̄T
q (R̄qLR̄

T
q )−1R̄qA

]
diag (cl) . (4.41)

The definition of B (below (4.20)) and RT
qRq = I − R̄T

q R̄q (Property 4.5) is applied to (4.41).[
L−1

(
I − R̄T

q R̄q

)(
A−LR̄T

q

(
R̄qLR̄

T
q

)−1
R̄qA

)
+ R̄T

q

(
R̄qLR̄

T
q

)−1
R̄qA

]
= L−1A (4.42)

According to (4.42), condition (iv) holds. �

4.4.3 Discussion

Definition 4.12. To introduce a common terminology of different models distinguished by the
implementation of the consumption, table 4.1

notation equations consumption type

DD (4.6) ∧ (4.7) demand driven

PD
(4.19)

(4.19b) ∧ (4.19c) ∧ (4.20)
pressure driven

LCD (4.30) linear consumption dynamics

Table 4.1: Model notation with different consumption implementations.

should clarify the connection to the underlying equations. However, as the consumption of LCD
is expected to follow the linear differential equation (4.22) exactly, it can also be considered to
be demand-driven.

Results before section 4.3 including DD are well known in literature (e.g. see [Piller et al.,
2003]), however, the incorporation of a pressure-driven consumption as in PD was not yet
considered to the best of the author’s knowledge. One may recognize the resemblance of LCD’s
flow transients (4.30a) with the ones of DD which have been identified early. By writing flow
transients of DD (4.7) as follows

dxQ
dt

=
(
I − diag (cl)A

TL−1A
)

diag (cl)︸ ︷︷ ︸
G

(
C̃shs − hloss(xQ)

)
+ diag (cl)A

TL−1dq̄

dt
(4.43)

some interesting implications can be derived.

Corollary 4.13. By forcing nq non-zero components q of nodal consumption q̄ = RT
q q to follow

a linear differential equation dq̄
dt = RT

q
dq
dt as in (4.22), flow transients in DD are equivalent to

flow transients in LCD (according to Theorem 4.11), which have been obtained by an exact
linearization of PD around q.

In other words, PD was obtained by the incorporation of (4.14) into DD while coupling
consumers with each other via q = RqAxQ. The reverse operation is thereby provided by an

exact linearization when the consumption dynamics dq
dt in DD are also forced to satisfy (4.22).

Starting from the pure demand-driven DD, where the nodal consumption q̄ is subtracted
irrespectively, to the more accurate, pressure-driven PD, where one has to deal with unknown
orifice coefficients, back to the demand-driven LCD with few yet distinct advantages. Even if the
consumption is not known in great detail, regarding their typically poor time resolution, LCD
attenuates discontinuities which would be caused by jumps in the explicit q̄ concerning DD.
However, instantaneous changes in r concerning PD also cause discontinuities in the pressure,
resulting in unrealistic jumps. This occurred in the two-cycle network in section 4.3.1 concerning
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pressure heads, seen on the right side of figure 4.2. Nevertheless, this may be considered a feature
rather than a drawback knowing that the pressure propagates with infinite velocity according
to the rigid column theory (see physical considerations on page 34).

What shall be the right implementation for the consumption? Neither of the ones in the
list provided in table 4.1, but PD in combination with control law u (4.26) while saturating the
control variable u ∈ [1, ε−2

r ], or orifice coefficients r ∈ [εr, 1]. As a remark, the only difference to
LCD is provided by the saturation of the control variable, which was assumed to never exceed
its limits according to Assumption 4.10 regarding LCD (Theorem 4.11).

Static
Control

u (4.26)

PD
(4.19)

1/ε2r

1

RqA

hs

qd
λq

xQ

h

hloss

sat(u)u

.

.

.

Figure 4.3: Block diagram of the model displaying its internal control loop to
simulate specified consumptions.

This limitation then physically accounts for a pressure limiting factor of the consumption,
meaning that if qd requires more pressure than available, orifice coefficients can only open
completely r = 1 but never exceed “1”. In this context, eigenvalues λq ∈ Rnq

<0 play an important
role. In principle, one can manipulate the time needed for the consumption q = RqAxQ by
changing λq arbitrarily. However, by decreasing eigenvalues too much (for decreasing the time
needed for RqAxQ to approach qd), the control variable and thus orifice coefficients r exceed
their physical limits (example below). As a consequence, eigenvalues λq ∈ Rnq

<0 have to be
chosen somewhat realistically. Validating experiments on a small-scale replica of a drinking
water network, values λq ∈ [−25,−5] (s−1) performed reasonably well, this, however, may
depend on pipe characteristics such as length and diameter.

Definition 4.14. Model PD according to table 4.1 is distinguished

notation equations orifice coefficients

PD (4.19) r explicit

PDu (4.19) ∧ (4.26) control sat(u) = r�
−2

(4.26)

Table 4.2: Model notation with different consumption implementations.

by either using explicit orifice coefficients r in PD or control sat(u) = r�
−2

in PDu where u is
saturated u ∈ [1, ε−2

r ].

4.4.4 Illustrative Example

Configuration. In this subsection the two-cycle example as in figure 3.2 with the same con-
figuration (unless of the parameters stated) as section 4.3.1 is considered. While also using PD,
orifice coefficients are determined through the saturated control law (4.26), i.e. sat(u) according
to block diagram in figure 4.3. Regarding the saturation of u, limits are selected as follows
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(A) r according to figure 4.5A. (B) r according to figure 4.5B.

(C) u according to figure 4.4A. (D) u according to figure 4.4B.

Figure 4.4: Comparison of PD simulating a jump in r (solid lines in figure 4.4A)
and PDu simulating a jump in qd with different eigenvalues λq = −[5 5]T (left),

λq = −[25 25]T (right), related to figure 4.5.

u ∈ [1, 109], meaning that εr =
√

10−9. Taking a closer look on the pressure heads of the
previous example on the right side of figure 4.2, one can see clearly that the pressure already
approaches zero at the time of switching (increasing r instantaneously at t = 1s). Knowing that
the decoupling (in terms of the ODE (4.22)) of consumers through u (4.26) requires additional
effort, the control variable and thus r will most likely reach its saturation if eigenvalues are
chosen too aggressively. In contrast to PD, where r is increased instantaneously, in PDu the
reference values qd are increased instantaneously from qd(t < 1s) = 0 to qd(t ≥ 1) = [1 0.7]T

l/s.

Too Slow and Too Fast. Concerning figure 4.5, the consumption RqAxQ, pressure heads h
and flows xQ are compared when selecting orifice coefficients r explicitly (best seen in figure 4.4A,
solid line) in PD and when r is determined through the saturated control law u (4.26) in PDu.
In comparison to the step response of PD, eigenvalues of PDu are chosen too high λq = −[5 5]T

in figure 4.5A as it takes too long for q PDu to reach the desired values qd = [1 0.7]T l/s. The
opposite is the case for λq = −[25 25]T in figure 4.5B where the control variable has to be
saturated substantially (see figure 4.4D, dotted and dash dotted). The reason why the orifice



4.4. How to Deal With Consumption? 47

(A) Consumption with (too) slow dynamics. (B) Consumption with (too) fast dynamics.

(C) Pressure heads. (D) Pressure heads.

(E) Flows of PD (solid) and PDu (dash dotted). (F) Flows of PD (solid) and PDu (dash dotted).

Figure 4.5: Consumption, pressure heads and flows of PD simulating a jump in
r (solid lines in figure 4.4A) and PDu with different eigenvalues λq = −[5 5]T

(left), λq = −[25 25]T (right).
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coefficients i.e. the control variable is in saturation can be best seen in the pressure heads (figure
4.5D), which are prohibited (indirectly) to become negative. Analogous to flows, dynamics are
too slow in figure 4.5E and too fast in figure 4.5F, at least as long as one intends to mimic the
rapid valve opening (considered for r PD) by means of a rapid increase in qd.
Concerning figure 4.4, both control variable and orifice coefficients had to be plotted in order
to visualize the saturation in u = r�

−2
as r would become complex if u is negative. Negative

u values correspond, loosely speaking, with orifice coefficients greater “1” and therefore lack a
physical meaning. This is the reason why only the saturated part r = sat(u)�

−1/2
was plotted.

However, this effect is only seen in figure 4.4D in comparison to figure 4.4B where fast transients
λq = −[25 25]T force u to become far negative, up to u → −109. In order to visualize the
course over this large range figure 4.4B, 4.4C and 4.4D were plotted with logarithmic scale on
the y-axes, also accounting for the negative y-axes in figure 4.4D. In conclusion, the built-in
saturation which only allows orifice coefficients to be non-negative and smaller or equal to “1”
represents a natural pressure-limiting factor in the model equations.

Suitable Eigenvalues. With the intention to implement a pressure-limiting behavior for PDu
which is close or at least similar to PD, eigenvalues can be adjusted accordingly. Emphasizing
once again on the major difference, instead of increasing r instantaneously at t = 1s in PD, the
desired consumption qd is increased instantaneously at t = 1s in PDu which then allows to let
orifice coefficients r be unknown (in comparison to PD).
In figure 4.6 the eigenvalues λq = −[9.754 12.8631]T where chosen such that the qualitative
behavior of q PDu approximately matches q PD.

Figure 4.6: Consumption q PDu with ideal dynamics in respect to q PD.

Although the consumption will and also should not look identical, the qualitative reaction to the
pressure limit is somehow physically related. While the slope of q2 PD is decreased substantially
at t ≈ [1, 1.03]s after q3 PD starts to increase due to limited pressure (see figure 4.7A) concerning
PD (detailed explanation in section 4.3.1), the effort to compensate this coupling effect by the

control variable u concerning PDu is so large that r = sat(u)�
−1/2

reaches its physical limit
(fully opened consumer orifices). In other words, in this situation the control fails to achieve
the decoupling of consumers which is exactly what provides the intended physical limitation.
Particularly in the consumption but also in the flows (figure 4.7B), one can see that the quadratic
term (RqAxq)

�2
in the model equations (4.20) causes xQ and q to approach their steady-state

values faster in PD compared to PDu. This is no surprise when knowing that q PDu follows the
linear differential equation (4.22), at least when u is not saturated. However, pressure heads in
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(A) Pressure heads. (B) Flows.

(C) Orifice coefficients. (D) Control variable.

Figure 4.7: Pressure heads, flows and orifice coefficients in reference figure to
4.6, comparing PD with PDu using eigenvalues λq = −[9.754 12.8631]T .

figure 4.7A indeed look very similar with some distinct differences in the recovery period from
the rapid valve opening. Nevertheless, the unsaturated control variable in figure 4.7D reaches,
analogous to the previous results (figure 4.4D) far negative values. This is likely to occur when
the consumption is close to zero (it is prohibited to reach zero exactly) and far from the desired
values qd as a reason of control variable u being directly proportional to q�

−2
= (RqAxQ)�

−2
.

Also, the point where u enters the saturation certainly depends on selected maximal pipe ope-
nings aq, however, it makes sense physically to equate aq to the largest cross section area of the
pipe connected to the respective consumer node.
Nevertheless, eigenvalues λq = −[9.754 12.8631]T where chosen for the appropriate consump-
tion qd = [1 0.7]T l/s and, as a consequence, by changing (drastically increasing) qd also these
somewhat ideal eigenvalues might be inappropriate. As shown in figure 4.8, a target consump-
tion with qd = [0.5 1.5]T l/s on the left and qd = [1 2]T l/s on the right with a consistently
higher load on node 3 in comparison to node 2 was simulated. Although the consumption well
matches in figure 4.8A, the results are indeed very distinct in figure 4.8B with the total con-
sumption of 3 l/s which forces the control variable into high saturation. In this last example one
reaches the very limits of the small hydraulic network with a source pressure of only hs = 30m.
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(A) Consumption for qd = [0.5 1.5]T l/s. (B) Consumption for qd = [1 2]T l/s.

Figure 4.8: Comparing PD with PDu with different target consumption values
while applying eigenvalues λq = −[9.754 12.8631]T .

4.5 Steady-State Properties

In this section the steady-state properties of LCD are investigated. Since LCD is identical
to PDu as long as u remains in the boundaries 1 ≤ u ≤ 1ε−2

r according Theorem 4.11, the
equilibria of LCD and PDu are identical if Assumption 4.10 holds. The missing piece in this
context is the direct relation to the steady-state hydraulic network equations as in (3.24)

Axe = RT
q qd (4.44a)

ATh = C̃shs − hloss(xe)−ATz (4.44b)

with equilibrium solution xe. Provided Assumption 4.10 holds, the nodal consumption of PDu
becomes q̄ = RT

q qd in steady-state (see Properties 4.5).

Theorem 4.15. Let Assumption 4.2 hold. Then the solution xe of the dynamic equations
(4.30a) of LCD in the equilibrium

dxQ
dt = 0

fQ(xe) = G
(
C̃shs − hloss(xe)

)
+M

(
RqAxe − qd

)
= 0 (4.45a)

and the resulting pressure heads h(xe) (4.30b)

h(xe) = L−1

[
A diag (cl)

(
C̃shs − hloss(xe)−ATz

)
−RT

q diag
(
λq
) (
RqAxe − qd

)]
(4.45b)

solve the steady-state equations Γh(xe) (4.44) and vice versa.

Remark 4.16. System (4.45a) is generally underdetermined. It can be uniquely solved if initial
conditions according to Assumption 4.2 are considered. Conditions R̄Axe = 0 and fQ(xe) = 0
can be combined in

f̃Q(xe) = G
(
C̃shs − hloss(xe)

)
+ diag (cl)A

TL−1 diag
(
RT
q λq + R̄T

q 1nj−nq

)(
Axe −RT

q qd

)
(4.46)

when solving f̃Q(xe) = 0. As R̄qAfQ ≡ 0 independently from xe, (4.46) also forces non-
consumer equations to zero (Property 4.5) R̄qAf̃Q = R̄qAxe when f̃Q = 0. However, since
(4.44a) already implies R̄qAxe = 0, it can be omitted from the following proof.
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Proof. It is shown that the following statements end up in contradiction.

Axe = RT
q qd ∧ fQ(xe) = 0 ∧ATh 6= C̃shs − hloss(xe)−ATz(i)

Axe = RT
q qd ∧ fQ(xe) 6= 0 ∧ATh = C̃shs − hloss(xe)−ATz(ii)

Axe 6= RT
q qd ∧ fQ(xe) = 0 ∧ATh = C̃shs − hloss(xe)−ATz(iii)

Axe 6= RT
q qd ∧ fQ(xe) = 0 ∧ATh 6= C̃shs − hloss(xe)−ATz(iv)

Concerning (i), system (4.45) is written for Axe = RT
q qd ⇒ RqAxe = qd, A

T is multiplied to
(4.45b) from the left

0 = G
(
C̃shs − hloss(xe)

)
= G

(
C̃shs − hloss(xe)−ATz

)
⇔ C̃shs − hloss(xe)−ATz = ATL−1A diag (cl)

(
C̃shs − hloss(xe)−ATz)

)
(4.47a)

ATh = ATL−1A diag (cl)
(
C̃shs − hloss(xe)−ATz

)
(4.47b)

and when inserting (4.47a) into (4.47b)

ATh = C̃shs − hloss(xe)−ATz (4.48)

it is apparent that (4.48) contradicts statement (i).
Considering statement (ii) and the definition of G below (4.30)

0 6= diag (cl)
(
I −ATL−1A diag (cl)

)(
C̃shs − hloss(xe)

)
⇔ 0 6=

(
C̃shs − hloss(xe)−ATz

)
−ATL−1A diag (cl)

(
C̃shs − hloss(xe)−ATz

)
(4.49)

the right term on the right hand side of (4.49) is replaced with ATh according to (4.47b) and
(4.45b) multiplied with AT from the left

0 6= C̃shs − hloss(xe)−ATz −ATh. (4.50)

The contradiction is evident, statement (ii) is false.
Concerning statement (iii), (4.44b) is inserted into (4.45a)

0 = diag (cl)
(
I −ATL−1A diag (cl)

)
ATh+M

(
RqAxe − qd

)
(4.51)

⇔ 0 = diag (cl)A
TL−1RT

q diag
(
λq
) (
RqAxe − qd

)
.

Then, A is multiplied from the left to (4.51).

0 = RT
q diag

(
λq
) (
RqAxe − qd

)
(4.52)

⇔ 0 = RqAxe − qd (4.53)

When separating (4.52) by multiplying with R̄q, one gets R̄qR
T
q = 0 according to Property 4.5.

This is the part where Assumption 4.2 comes into play. As R̄qR
T
q = 0 for every xe in fQ(xe),

R̄qAxe = 0 would not be guaranteed within fQ(xe) = 0 without demanding consistent initial
states. However, when multiplying with Rq one gets (4.53), seeing the contradiction with (iii).
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Regarding statement (iv), system (4.45) is used once again whereas diag(c�
−1

l ) is multiplied
from the left to (4.45a) and AT from the left to (4.45b).

0 = ATL−1RT
q diag

(
λq
) (
RqAxe − qd

)
+
(
I −ATL−1A diag (cl)

)(
C̃shs − hloss(xe)−ATz

)
(4.54)

ATh = ATL−1A diag (cl)
(
C̃shs − hloss(xe)−ATz

)
−ATL−1RT

q diag
(
λq
) (
RqAxe − qd

)
(4.55)

After looking carefully at the above equations, one may see that (4.55) can in fact be inserted
into (4.54), resulting in

0 =
(
C̃shs − hloss(xe)−ATz

)
−ATh (4.56)

which is a contradiction to statement (iv). Subsequently, there exits no xe which solves Γh(xe)
(4.44) but not fQ(xe) = 0 (or vice versa).
The uniqueness of xe follows from the fact that Γh(xe) (4.45) has a unique solution according
to Proposition 3.12 if function hloss(xe) is (strictly) monotonically increasing, continuous and
once continuously differentiable (see Assumption 3.10 and Remark 3.13). �

Regarding Remark 4.16, is also important to note that once initial states are chosen such
that R̄qAxQ(t0) = 0 the trajectory R̄qAxQ ≡ 0 is identical to zero for all t ≥ t0 as R̄qAfQ ≡ 0.
This is the reason why Theorem 4.15 requires Assumption 4.2.

4.6 Notes on Stability

Since hydraulic networks are in general nonlinear, a closer look at the stability of the system’s
unique equilibrium provides some interesting insights.

Cycle or Co-Tree Flow Dynamics. Considering flow transients of DD (4.43), flows are
expressed by co-tree flows and the consumption xQ = STxt̄ + TtA

−1
t q̄ (see (3.27)).

diag
(
c�
−1

l

)(
ST

dxt̄
dt

+ TtA
−1
t

dq̄

dt

)
=
(
I −ATL−1A diag (cl)

)(
C̃shs − hloss(xQ)

)
+ATL−1dq̄

dt
(4.57)

When multiplying (4.57) with cycle matrix S from the left one receives

dxt̄
dt

=

(
S diag

(
c�
−1

l

)
ST
)−1

S

(
C̃shs − hloss(xQ)− diag

(
c�
−1

l

)
TtA

−1
t

dq̄

dt

)
(4.58)

knowing that SAT = 0 according to Proposition 3.6. ODEs similar to (4.58) are usually known
as loop or cycle dynamics as the number of variables xt̄ equals the number of cycles nc = n`−nj

in the network, however, in this thesis the author refers (4.58) to the co-tree flow dynamics (see
Definition 3.9).

Remark 4.17. As cl ∈ Rn`>0 (4.4) and S ∈ Z(n`−nj)×n`
{−1,0,1} with full rank (S) = n`−nj (Proposition

3.6 and Corollary 3.8), it is evident that Sdiag(c�
−1

l )ST � 0 is positive definite.



4.6. Notes on Stability 53

Interestingly, the same applies for PD. Taking (4.20) while expressing xQ by co-tree flows
and the consumption

diag
(
c�
−1

l

)(
ST

dxt̄
dt

+ TtA
−1
t

dq̄

dt

)
=

(
I −AT R̄T

q

(
R̄qLR̄

T
q

)−1
R̄qA diag (cl)

)
(4.59)

×

[
C̃shs − hloss(xQ)−AT

(
1

2g
RT
q

(
a�
−2

q � (RqAxQ)�
2 � r�−2

)
+ z

)]
all terms different to (4.57) become zero when multiplying cycle matrix S from the left to (4.59).
As a result, the co-tree flow dynamics of DD and PD and thus of LCD are only distinguished
by dq̄

dt the derivative of the nodal consumption. Suppose the nodal consumption q̄(t) = AxQ(t)

remains constant over time dq̄
dt = 0 for t ≥ t0. Then,

dxt̄
dt

=

(
S diag

(
c�
−1

l

)
ST
)−1

S
(
C̃shs − hloss(xQ)

)
. (4.60)

Now a relation to the optimization problem (3.29), which is proportional to the total energy
used in the network, can be drawn (see section 3.1.5). As a direct consequence of Theorem 4.15,
the unique solution of this strictly convex optimization problem is the equilibrium of DD and
LCD, the same equilibrium which also solves the steady-state network equations (3.23).

Theorem 4.18. Let Assumption 3.10 hold and suppose the consumption is constant over time
dq̄
dt = 0. Then, the equilibrium xe = STx∗t̄ +TtA

−1
t q̄ with co-tree equilibrium flow x∗t̄ of DD and

PD and thus LCD is globally asymptotically stable. V (xt̄) = f(xt̄) − f(x∗t̄ ), applying function
f(.) of problem (3.29), is a strict Lyapunov function.

Proof. The Lyapunov function was first proposed by Piller and Propato [2006] as far as the
author is aware. The strictly convex function satisfies f(xt̄) > f(x∗t̄ ) ∀xt̄. Subsequently, V =
f(xt̄) − f(x∗t̄ ) > 0 ∀xt̄ the Lyapunov function is strictly positive. Given Remark 4.17, the
derivative of the Lyapunov function

dV

dt
=

∂f

∂xQ

∂xQ
∂xt̄

dxt̄
dt

= (4.61)

−
(
C̃shs − hloss(xQ)

)T
ST
(
Sdiag(c�

−1

l )ST
)−1

S
(
C̃shs − hloss(xQ)

)
< 0 ∀xQ 6= xe

is smaller zero for all S(C̃shs − hloss(xQ)) 6= 0. Knowing that this is only the case in the
equilibrium itself according to Theorem 4.15 (cf. with steady-state equations Γ (3.23)), it is
evident that Theorem 4.18 holds. �

Deducing generally valid statements concerning the hydraulic network’s stability becomes
more delicate when accounting for varying consumption. This is somehow analogous to control
theory where one usually also only considers the “autonomous” system, setting the control
variable to zero (or to a constant equilibrium control value). Nevertheless, from a physical
perspective it is somehow obvious that the system is stable, knowing that consumers are capable
to withdraw water only if enough pressure is available. Thereby the system’s states, flows in
this case, are certainly bounded and, importantly, are zero if the consumption is zero. The fact
that there is no flow in the network if the consumption is zero can be directly derived from the
principle of least action which is related, mathematically, to the optimization energy-function
f(xt̄) regarding problem (3.29).
Considering (4.58), the co-tree flow dynamics would be sufficient to determine all flows in the
network, at least when either user DD or LCD. By solving (4.58) one receives xt̄ and in a second
step tree flows xt = A−1

t (q̄ −At̄xt̄). This, however, requires the explicit knowledge of the
consumption, a requirement which can not be fulfilled when accounting for a pressure-driven
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consumption. However, concerning LCD one would apply the solution of the linear differential
equation (4.22) which provides that neither too high target consumption values nor too low
source pressures (or too aggressive eigenvalues) force the network into saturation (Assumption
4.10).

4.7 Coupling With Dynamic Elements

It was assumed that the pressure at all critical elements concerning nodes S is measured and
treated as input variable by means of hs. In this section, models for water tanks and air
vessels will turn out to be representable by ODEs which can be coupled with the derived model
equations.

Remark 4.19. In order for control law (4.26) to be compatible with these elements, u must be
extended appropriately, completely analogous to section 4.4.1.

4.7.1 Air Vessel

If compared to a mechanical system, an air vessel damps pressure peaks in a hydraulic network
to prevent the infrastructure from getting harmed. These air chambers are usually installed
near pump stations and hydroelectric power plants to safeguard the most expensive components
of a water distribution system. Since the lifespan of pipes and fittings also heavily suffer from
too rapid pressure changes, the employment of such elements might be crucial from a cost
perspective.
Allowing more physical considerations, the chamber typically encloses a compressed gas mix at
its top (usually air as in figure 4.9), whereas a non-permeable but flexible membrane separates
this mix from the water. At the bottom of the air chamber a connection to the hydraulic network
makes it possible to exchange water, whereas the resulting water height is a direct indicator of
the vessel pressure hav. The following derivation of the air vessel model is based on the thesis
of [Axworthy, 1997] as well as [Wylie and Streeter, 1978] and [Chaudhry, 2014]. The vessel is

Figure 4.9: Air vessel (source [Chaudhry, 2014], Figure 10-2).

connected via an inertia or pipe element to a common network node nav ∈ N with pressure head
hnav at elevation znav . Thereby, hav denotes the pressure head at the bottom of the vessel itself
and varies with the pressure (head) of the gas mix hg and with the pressure coming from the
network. In this context zav denotes the geographical elevation of the bottom (with respect to
the water) of the vessel. Then, the exchange flow Qav

dQav
dt

=
gAav
lav︸ ︷︷ ︸
cav

(
hnav + znav − (hav + zav)− hloss,av(Qav)

)
(4.62)
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from the network into the vessel and vice versa is given by ODE (4.62). The pressure drop at
the differential orifice in figure 4.9 can be included in the head loss hav,loss by increasing its minor
loss coefficient appropriately. The pressure head at the bottom of the vessel

hav = hg + zH2O − hatm (4.63)

consists of relative gas pressure hg−hatm and the head increase coming from the network thereby
provoking the water to rise zH2O meters. After differentiating this equation

dhav
dt

= ḣg + żH2O (4.64)

the barometric thus constant component hatm disappears. The change in gas pressure hg results
in a contraction or expansion of the gas volume. This relation is specified by the polytropic gas
law

hgV
ng
g = cg (4.65)

of an ideal gas, which implies that the product of gas pressure hg times the gas volume Vg
(occupied in the vessel) to the power of the polytropic exponent ng remains at a constant value
cg. The exponent is usually fixed at ng = 1.2 according practical applications [Axworthy, 1997].
On the basis of the assumption that the water density will approximately remain constant, the
change in gas volume and thereby the change of the water height times the cross section area of
the vessel Aav

dVg
dt

= Aav
dzH2O

dt
= −Qav (4.66)

equals the discharge into the network. The derivative of (4.65) yields

ḣg = − ngcg

V
ng+1
g

V̇g (4.67)

and makes it possible to summarize the three model equations of the air vessel.

dQav
dt

= cav
(
hnav + znav − (hav + zav)− hav,loss(Qav)

)
dhav
dt

=

(
ngcg

V
ng+1
g

+
1

Aav

)
Qav

dVg
dt

= −Qav

(4.68)

In the case of a rapid pressure peak somewhere in the network, for instance as a reason of a
pipe burst, the pressure wave reaching the vessel will cause the gas volume to contract, which
in turn provokes the water to flow from the network into the vessel and thereby damping the
wave’s amplitude. After the pressure decreases again the water will flow back into the network
as the gas volume starts expanding.
The incorporation into the network is simply achieved by adding flow Qav to nodal equations
AxQ = q̄ while modifying incidence matrix A in terms of node nav.

4.7.2 Surge Tanks

In contrast to reservoirs, where the outflow is negligible in comparison to the total amount of
water, the source pressure in tanks decreases with increasing outflow. As the total volume of
the tank Vt = Atankhs,t is the product of its cross section area Atank and the water height hs,t or
source pressure head, its derivative

dhs,t
dt

= − 1

Atank

Qt (4.69a)
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equals the discharge Qt into the network. This pipe flow follows

lt
gAt

dQt
dt

= ht − hnt − hloss,t(Qt) (4.69b)

and thereby connects the tank with the network at node nt ∈ N considering the pipe’s length lt
and cross section area At. The incorporation into the network equations is achieved by extending
flow vector xQ by Qt and incidence matrix A in terms of node nt.
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5
Experimental Model Evaluation: Rapid Dynamics

Measurements have been taken on a small-scale replica of a water distribution network [Günther
et al., 2016] (see figure 5.1) with a total pipe length of about 50m. This pipe network is assembled
at the Institute of Urban Water Management at Graz University of Technology with the purpose
to evaluate and test techniques for leakage detection and localization. The author expresses
special thanks to Markus Günther, David B. Steffelbauer, David Camhy and Daniela Fuchs-
Hanusch for their support. These experiments would not have been possible without their help
and dedication for software as well as hardware improvements.

Measurements are compared with simulations on PD, associated with a pressure-driven con-
sumption, and PDu (Definition 4.14) as well as LCD (Definition 4.12), associated with linear
consumption dynamics. In this context, the measured q is used for reference qd concerning all
models thereby utilizing λq = −20 × 1nq . The pipe segments highlighted, as exemplification,
with blue boxes are treated as consumers and are equipped with a flow meter and a solenoid
valve respectively. These solenoid valves can be opened and shut electronically in a few millise-
conds. A EPANET-MATLAB toolkit [Eliades et al., 2016] is used to extract topology data and
pipe parameters from an existing EPANET [Lewis, 2000] model representing figure 5.1.

Figure 5.1: CAD model of the testbed highlighting two consumer-pipe-segments
(blue), two pressure-sensors (red), three manual valves (gray) and the source pipe
(gold). A complete sensor-overview can be found in figure 5.3. Credit to Günther

et al. [2016].
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A pump feeds the network via a 94mm diameter source pipe from the right hand side, as
indicated in figure 5.1, producing source pressure hs which is measured, filtered and fed into
model equations.

Considering figure 5.1, the topology was simplified by closing manual values V1, V4 and
V5 to only operate the left part of the network. This was done to limit the complexity for
the comparison of derived models with measurements. When considering figure 5.3, where the
network with all sensors is represented, this is also the reason why, for instance, no consumption
measurements of sensors R17, R18, R23, R25 or pressure-measurements of sensors R03, R26 are
shown in the following sections.

Some results of this chapter were also used for publication [Kaltenbacher et al., 2018].

5.1 Friction Parameters via Optimization

The identification of friction parameters, roughness values in specific, will be a major subject
of this thesis, however, for the present application a simplified approach was taken. Pipes’
roughness coefficients and minor-loss coefficients were adjusted by an optimization attempting
to solve the least-square problem

min
ε,km

(yh −Chĥ(ε,km))T (yh −Chĥ(ε,km)). (5.1)

Thereby yh denotes the vector of pressure measurements at nodes {p1, p2, . . . , pnp} ⊆ I in the

network, whereas matrix Ch = [ep1 ep2 . . . epnp
]T comprised of epi ∈ Znj

{0,1} (see section

2.2.3) selects those elements of simulated nodal pressure-head vector ĥ (considered as function
of the pipe’s roughnesses ε and minor loss coefficients km) where pressure sensors are present.

Figure 5.2: Measured consumption of respective consumers by inductive flow
sensors. This consumption pattern was produced by opening and closing solenoid-
consumer-valves. Flow-sensors can be attributed to corresponding consumers

when looking at the sensor identifiers, e.g. R09, in figure 5.3 (red boxes).
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Figure 5.3: Complete CAD model of the testbed showing all sensor channels. Sensors identifiers are presented in red boxes, e.g. R01
denotes the pressure sensor reading the pump pressure. The type of sensor can be read off the second line in the red boxes. For instance,
inductive flow sensors at consumers have the initial “EFM” whereas pressure sensors have the initial “P” in the second line. Credit to

Günther et al. [2016].
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However, yh and thus ĥ represent a specific point in time of the network only. Ultimately,
multiple points in time have been considered according to figure 5.2 for this optimization (5.1).
This means yh as well as ĥ are replaced by matrices Yh and Ĥ respectively, where the corre-
sponding columns account for a time-series of measurements in the optimization problem (5.1)
such that

min
ε,km

∑
ij

[(Yh −ChĤ(ε,km))�
2
]ij∀i, j. (5.2)

For producing the simulated nodal pressure heads ĥ, the DD (purely demand-driven) model was
applied (Definition 4.12) for the optimization (5.1). This means the nodal head vector is given
by (4.6) utilizing the flows xQ as a solution of the ODEs (4.7). This choice was made in order to
avoid specifying explicit orifice coefficients r for PD or eigenvalues λq for LCD or PDu, at least
for calibration of friction parameters ε and km. Nonetheless, the derivative of the consumption
in (4.6) had to be approximated qualitatively. Also inequality constraints for the optimization
problem have been considered to limit the pipes’ roughness- and minor-loss parameters within
their physically relevant bounds.

Figure 5.4: Measured head at nodes with pressure sensors according to figure
5.3. The measured pressure head values yh were increased by the elevation (with

respect to the laboratory’s floor) at the appropriate nodes Chz.

Remark 5.1. When looking at figure 5.4, it is clear why the identification of individual friction
parameters per pipe can not be successful on this experimental network as the head-losses along
the pipes are far too small in order to be distinguishable among each other.

Attempts to increase the flow in the network for producing higher head-losses failed as
the deployed inductive flow sensors (at consumers) are only capable to measure flow between
[0.0133, 0.2667] l/s with the only exception of the flow sensor at R09 which can measure up to
0.833 l/s (see figure 5.2). Besides, neither the pump nor the rest of the equipment is designed to
produce enough flow which would be necessary for the roughness-identification as presented later,
in chapter 7 or 9. Also, the pipes are made of PVC material and therefore have low roughness
inherently. Knowing that the produced measurement-sets with consumption pattern in figure
5.2 results in insufficient head-loss, the friction parameters to be found where grouped such that
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Figure 5.5: Filtering of measurements of sensor R05 applied as source pressure
hs and comparison to R01 which is closer to the pump. The elevation of R05 with

respect to the laboratory’s floor is zR05 = zs = 0.422m whereas zR01 = 0.17m.

pipes with the same diameter are fixed to have the same roughness concerning ε. Analogously,
certain groups of pipe’s where fixed to have the same minor-loss parameters concerning km.

The pressure-sensor R05 (see figure 5.3) was taken as reference for the source pressure hs
instead of R01 which would actually be closer to the pump. Seen in figure 5.5, most of the
head-loss occurs along the source pipe which is equipped with a filter and has a connection to
an air-vessel. The fine-meshed membrane of this filter prevents contamination from the tank,
which supplies the pump, to get into the hydraulic network whereas the air-vessel attenuates
pressure peaks, a measure to protect the pump. Concerning the high losses over the source pipe,
the area between R01 and R05 in figure 5.5 is proportional to the energy primarily needed to
overcome the head-loss over this filter.

By filtering hs (meaning R05), it is ensured that no transients are induced due to the source
pressure itself as the transient reactions, seen in figure 5.5, also occur in the unfiltered hs. At
the same time, the pump is pressure controlled and tries to keep about hs ≈ 36 m (cf. R01 in
figure 5.5).

Optimization Results. To allow verification of the obtained friction parameters of this op-
timization, model PDu is applied with eigenvalues λq = −20 × 1nq to be compared with the
calibration-measurements (seen in figure 5.2 and 5.4).

(A) Comparing h at R27 (cf. figure 5.3).
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(B) Comparing h at R04 (cf. figure 5.3). (C) Comparing h at R12 (cf. figure 5.3).

(D) Comparing h at R13 (cf. figure 5.3). (E) Comparing h at R14 (cf. figure 5.3).

Figure 5.6: Comparison of measurements (blue) with simulation results (red) at
respective pressure-nodes (Definition 7.8) when applying model PDu (Definition

4.14) and λq = −20× 1nq
.

(A) Simulated and measured q. (B) Zoom of figure 5.7A showing dynamics.

Figure 5.7: Calibration-measurements of q (solid lines) are compared with si-
mulation results (dashed lines) of PDu where the measured q was selected for

reference qd utilizing λq = −20× 1nq
.
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In addition to the friction parameters, also the nodal elevations (with respect to the laboratory-
floor) needed slight modifications in the centimeter-range. Considering figure 5.6, one has to
expect that the obtained friction parameters do not reliably represent the real values due to the
minor yet distinct deviations in pressure (particularly in the steady-state time-frames) during
peak-consumption (t ≈ 900s), where all consumers (solenoid-valves) are open. However, this
will not be overly important for this chapter as the qualitative behavior, especially during dyn-
amic events, will be sufficient to identify the strength and weaknesses of the derived models in
comparison to measurements.

In this context, the comparison of the consumption during dynamic responses to excitation
(valve openings) as in figure 5.7 would indeed be most interesting, given the model techniques
applied in chapter 4. The problem is that the flow sensors at consumers need more than one
second to adjust to the real physical values according to the product datasheet. This is also the
reason why the exact times of valve-switching (either opening or closing) are basically unknown
and therefore it is challenging to align the measurements to simulations in the sub-second time-
resolution. The comparably long response time is a common problem with flow sensors of all
types, including ultrasonic ones, as far as the author is aware. This means that although one
can clearly see the dynamic transitions of the consumption in simulated q in figure 5.7B, the
jumps seen in the measured q are not representative of the real dynamic transition to the steady-
state consumption when opening or closing consumer-valves. The only possibility to compare
transients is to have a closer look at the pressure peaks as on the right hand side of figure 5.5.

The sampling frequency used to record these measurements (in this section), which were
applied for the optimization of friction parameters, was comparably low. This can be seen on
the right hand side of figure 5.5 where the time resolution to represent the pressure-peak when
closing a consumer-valve is visibly coarse. With some software and hardware improvements
achieved by the author’s esteemed colleagues from the institute of Urban Water Management,
the sampling frequency could be increased slightly. For the sake of investigation of dynamics
with the higher sampling frequency, the complexity of the following experiments is kept fairly
limited in terms of the number of active consumers. Nevertheless, the working principle of model
PDu when dealing with more complex scenarios was demonstrated successfully in this section
while sufficiently accurate friction parameters have been obtained.

5.2 One Consumer Configuration

The solenoid valve at consumer R09 in figure 5.1 is opened and shut periodically while all other
consumers remain closed. The pressure-sensor closest to R09, i.e. h at R12, and the outflow
q at R09 are monitored. Referring to figure 5.8, a polynomial between εr = 10−7 and max(r)
in the course of orifice coefficient r PD (at the time of switching) is utilized to imitate the
opening/closing of the solenoid-consumer-valve of R09 for model PD, whereas the course of
orifice coefficient r = 1/

√
u for model PDu is given by control law (4.26). Effectively, figure 5.8

shows the transition from fully closed to fully open (or vice-versa) of this consumer.
At this point, recall Theorem 4.11 which says that LCD and PDu are equivalent as long as

Assumption 4.10 holds which is the case for all the conducted measurements on the lab-network
(figure 5.3). Nevertheless, the differences between LCD and PDu are presented in detail in
section 4.4.4. Also, there is not much to be seen in the simulation results of model DD (see
Definition 4.12) which also does not have any visible fast dynamics in the pressure since the
approximation of the consumption-derivative (as it is needed in (4.6)) from the measured q just
causes some unrealistic peaks due to the sensors’ long response time. Effectively, only simulations
with model PD and PDu respectively are compared with the recorded measurements.



64 5. Experimental Model Evaluation: Rapid Dynamics

(A) Valve opening procedure. (B) Valve closing procedure.

Figure 5.8: Assumed polynomial transition of orifice coefficient r for consumer
R09 (blue) for model PD, i.e. r PD, and r PDu given by (4.26) (also see Definition

4.12 and 4.14).

(A) Periodic pattern from opening/closing. (B) Transients in hR05 = hs during opening.

Figure 5.9: Measured pressure at R05 which is filtered and then used as hs.

(A) Periodic pattern from opening/closing. (B) Consumption during valve-opening.
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(C) Consumption during valve-closing. (D) Zoom in figure 5.10A.

Figure 5.10: Measured and simulated consumption at R09.

Considering figure 5.9, the filtered pressure head at R05 which is utilized as hs, one can see
that the increased time resolution improves the reading of the pressure fluctuation as a reaction
to the rapid valve closing at t ≈ 131s (referring to figure 5.9B). One can also recognize the
pump-dynamics in the course of R05 as it tries to keep about 40.75m in source head.

The periodic opening and closing of the consumer-valve R09 can be seen in figure 5.10A.
Figure 5.10B and 5.10C demonstrate that q PDu nicely follows a linear ODE with λq = −20 s−1,
whereas q PD simply mimics the polynomial transition of the consumer’s orifice coefficient (as in
figure 5.8). As expected, no fast dynamics are seen in the measured q of R09 in figure 5.10B which
is utilized for qd (the desired consumption) concerning PDu. What can be seen (figure 5.10D) is
that the pressure-dependent character (heavily influenced by the pump) of the simulated q quite
matches real-world scenarios in both models. The controlled q PDu quickly follows specified
values and filters the high frequency noise of the inductive flow sensor. Things become more
interesting when looking at the higher-resolution pressure data in figure 5.11. Primarily, the
pressure heads visibly follow hs (as in figure 5.9) in steady-state, seeing a small misalignment
between simulated and measured h at R12. Selected friction coefficients/roughnesses are not
perfect. At the time of switching valves, transients are induced, seen in figure 5.11 with a zoom
in figure 5.12. These pressure spikes (also seen in the source pressure figure 5.9) depict the
commonly known waterhammer effect.

Figure 5.11: Comparison of pressure heads at R12.
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Figure 5.12: Zoom of Fig. 5.11 showing transients in an opening operation.

The fact that these induced transients are higher when closing valves (at t ≈ 70s, 130s)
compared to the opening operation (t ≈ 100s) is remarkable (Fig. 5.11). The water mass is
at rest before opening and, despite the rapid opening, has some time to gradually transition to
the next steady state, whereas flowing water is abruptly (in a few 10’s of milliseconds) cut off
during the closing operation, leading to higher pressure peaks.

Effectively, when looking at figure 5.12, the zoom of figure 5.11 at an opening operation,
one can recognize that it is possible to mimic pressure peaks qualitatively with the help of
polynomial transitions in r, concerning PD, and the utilization of linear consumption dynamics
regarding PDu.

5.3 Two Consumer Configuration

For the two-consumer-configuration an ultrasonic sensor is used to also record the flow at R15
(see figure 5.1) in order to exceed the 0.233 l/s limit of the inductive flow-sensor. However,
the same notation, namely R15, is used to denote these ultrasonic consumption-recordings to
not confuse the reader. Unfortunately, the following measurements have been recorded with the
lower sampling-frequency, nonetheless, some interesting conclusions can still be made.

Figure 5.13: Consumption and actuation in the Two Consumer Configuration.



5.4. Conclusions 67

Figure 5.14: Closing operation of R15 in the Two Consumer Configuration.

Figure 5.13 shows the consumption of active consumers R09 and R15 while actuating their
solenoid valves. Mutual coupling effects are visible in qR09 when opening/closing the solenoid
valve of R15 leading to a waterhammer which also effects the consumption at R09 and can be
seen in the pressure at R12. As the ultrasonic sensor used for qR15 has higher measurement
noise, these effects are only seen in qR09.

Concerning the pressure readings, the pump tries to keep hs ≈ 30m in pressure head at
R05 which is filtered and again utilized for source pressure head hs in the model (completely
analogously to figure 5.9). Figure 5.14 displays pressure heads hR12 and hR14 during a closing
operation of R15. As a closing operation in figure 5.14 is monitored, the pressure peak is generally
higher (relative to hs) as in figure 5.12 (see previous section) which leads to higher deviations
from the simulation concerning the peak height. Beside of this height difference, an attenuation
of the pressure peak due to the physical distance between R12 and R14 can be recognized as
pressure-sensor R12 is significantly closer to the consumer-valve of R15. This attenuation is far
more aggressive in simulation as it is in reality. Nonetheless, this attenuation can also be seen
in the measurements as the peak of hR14 measured (which has to be higher as the one of hR12

measured) is apparently cut off due to the lower sampling frequency.
The fluctuations seen in the pressure (figure 5.12 and 5.14) after the opening/closing and the

weak attenuation (figure 5.14) are consequences of water density fluctuations and perhaps the
pipes’ elasticity. To incorporate these effects in the model, partial differential equations within
an elastic modeling approach are necessary (see (3.37)).

5.4 Conclusions

Bottom line of these measurements is that one can use the derived models applying the Rigid
Water Column Theory for the description of transients to mimic these fast transients operations.
However, as e.g. in [Shimada, 1989; Axworthy and Karney, 2000; Nault and Karney, 2016] one
can actually conclude that this approach is particularly suitable to model slow transient effects.
When coupled with the simple ODEs (4.69) to also allow (simulated) dynamics in the tank
pressure, the simulation can indeed be improved substantially (see [Axworthy and Karney,
2000] and [Nault and Karney, 2016]).
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6
Observability Analysis

In this chapter the additional slow transient model information is utilized to derive more general
statements about observability and detectability. In this context, one can apparently see from
the resulting model equations that the focus is inherently placed on the flow and its derivative.
It is important to emphasize that this is indeed not intentional, but a result from the underlying
physics. Loosely speaking, the pressure propagation is in the range of one order of magnitude
faster than the propagation of the flow (for more physical considerations the reader is guided
to page 34). On the contrary, flow sensors are in the range of one order of magnitude more
expensive than pressure sensors to this point in time. Also, installation costs are often higher
as, for instance, inductive flow sensors require to cut the pipe whereas ultrasonic ones, which
just need to be in contact with the pipe, are generally most costly. Besides, the response time
(minimal sample time) of typical flow sensors is in the range of one second (and beyond) making
it impossible (as far as the author is aware) to directly measure fast transient flow behavior.

The application of pressure sensors inside the network is, for reasons mentioned, vastly more
popular. After a more genuine discussion about what to measure in this chapter, it is assumed
that pressure sensors are the only source of information inside the considered network’s area (so
called District Metering Areas or DMAs) as far as state reconstruction is concerned. Thereby
the source pressure as well as the consumption is assumed to be known. Up till now the latter
assumption is, admittedly, unrealistic. However, there is some hope that customers will be
equipped with direct measurement devices [Gascón et al., 2004] in the future. In this context,
there is little doubt that wireless data transmission is inevitable, driving down maintenance- and
installation costs by economies of scale. New network protocols such as LORA [Cattani et al.,
2017] which only demand low energy while being able to transmit data over larger distances
might be able to accelerate the transition to an integrated monitoring system.

6.1 Concept of State Reconstruction

Definition 6.1 (Observability). Consider system

(6.1a)

(6.1b)
Σ :

{
y

ẋ

= g(x,u)

= f(x,u)
with x(t0) = x0

for x ∈ Dx ⊆ Rn, input u and output y in the time interval [t0, t1 < ∞], denoted by u[t0,t1]

and y[t0,t1]. Then, system Σ is said to be observable if all initial states x0 ∈ Dx can be uniquely
determined from the knowledge of u[t0,t1] and y[t0,t1].
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Diffeomorphism. For the purpose of analysis, the same nonlinear-system Σ with a single
output y = g(x,u) is considered. Further suppose that functions u(.) and g(.) are n− 1 times
continuously differentiable in the interval t ∈ [t0, t1]. Taking the derivatives

ẏ =
∂g

∂x
f(x,u) +

∂g

∂u
u̇ = h1(x,u, u̇)

ÿ =
∂h1

∂x
f(x,u) +

∂h1

∂u
u̇+

∂h1

∂u̇
ü = h2(x,u, u̇, ü) (6.2)

...

(n−1)
y =

∂hn−2

∂x
f(x,u) +

∂hn−2

∂u
u̇+

∂hn−2

∂u̇
ü+ . . .+

∂hn−2

∂
(n−2)
u

(n−1)
u = hn−1(x,u, u̇, . . . ,

(n−1)
u )

system Σ with single output y is observable if the mapping

ζ = h(x) =



g(x,u)
h1(x,u, u̇)
h2(x,u, u̇, ü)

...

hn−1(x,u, u̇, . . . ,
(n−1)
u )


(6.3)

with operator h is injective, meaning that x = h−1(ζ) can be uniquely determined by inverting
(6.3). As the mapping does not account for the entire interval t ∈ [t0, t1], observability, in
general, does depend on the input. As a consequence, the requirement for the mapping h to be
injective is necessary only.

Remark 6.2. The conditions become sufficient when ζ = h[t0,t1](x) remains injective for
every instant in t ∈ [t0, t1] which actually depends on the input u[t0,t1] and its derivatives

u̇[t0,t1], . . . ,
(n−1)
u [t0,t1]. And, an autonomous system ẋ = f(x) and y = g(x) is observable if

and only if the mapping ζ = h(x) (independent of u) is injective [Adamy, 2014].

Remark 6.3. Functions u(.) and g(.) were assumed to be contained in the domain of n −
1 continuously differentiable functions Cn−1. However, in case continuity holds for further
derivatives, e.g. C∞, there is, in principle, no limit to the number of differentiations of y
concerning (6.2) to achieve an injective mapping x = h−1

[t0,t1](ζ).

In general, observability is very difficult to verify since it requires the inversion of a set
(particularly large for hydraulic networks) of nonlinear equations which also depend on the
input and its derivatives. Provided that the goal is to reconstruct states in steady-state at
least, observability appears to be too restrictive. A less restrictive alternative is contained in the
notion of “detectability”. Although very well defined for linear systems, there is no generally
agreed definition for this concept in the nonlinear case. Actually, it has not yet been achieved (as
far as the author is aware) to state necessary and sufficient conditions for a generally nonlinear
input-dependent system such as (6.1), referring to system properties, which guarantee existence
of an asymptotic observer or strong observer.

Definition 6.4 (Asymptotic Observer). A system

Ω : ˙̂x = f̂(x̂,u,y) with x̂0 = x̂(t0) (6.4)

with inputs y,u and output x̂ is called asymptotic observer for system Σ if the observer estima-
tion error x− x̂, specified by the dynamics f(x,u)− f̂(x̂,u, g(x)), vanishes asymptotically for
any x0, x̂0.
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Definition 6.5 (Strong Observer). A system

Ω∗ : ˙̂x = f̂∗(x̂,y) with x̂0 = x̂(t0) (6.5)

with input y and output x̂ is called strong observer for system Σ if the observer estimation error
x − x̂, specified by the dynamics f(x,u) − f̂∗(x̂, g(x)), vanishes asymptotically for any x0, x̂0

and u.

Two particular aspects shall be noticed. First, the crucial difference between Definition 6.4
and 6.5 is the independency of the input u of the latter. Second, observability (Defintion 6.1)
is sufficient for the existence of an asymptotic observer in the defined time interval t ∈ [t0, t1]
only. For the attentive reader, references [Levine, 2010] [Sontag, 2004] well address the subject
of “detectability” for Σ and also draw connections to “input/output to state stability”. In this
context, the definitions by [Hautus, 1983] posed for linear systems do also have a distinctive
meaning in the nonlinear case. Known as zero-detectability this property does find application
in, e.g. [Levine, 2010] or [Sontag, 2004] and references therein.

Definition 6.6 (zero-detectability). Σ is said to be zero-detectable if

y ≡ 0 implies that lim
t→∞

x(t) = 0 (6.6)

for all inputs u and initial states x0.

Definition 6.7 (strong zero-detectability). System Σ is said to be strongly zero-detectable if

lim
t→∞

y(t) = 0 implies that lim
t→∞

x(t) = 0 (6.7)

for all inputs u and initial states x0.

Definitions similar to 6.6 and 6.7 can be found in [Hautus, 1983] and were adapted to the
nonlinear case. In reference to this nonlinear case and knowing that observability is only sufficient
for the existence of an asymptotic observer, zero-detectability appears to be very appealing in
comparison to observability as it is completely independent from the input.

In the linear case, strong zero-detectability (equivalent to “strong∗ detectable” in Hautus
[1983]) guarantees existence of a strong observer (details below). In this context, strong zero-
detectability implies zero-detectability, the converse in not necessarily true. Analyzing a “detec-
table” linear system, the “unobservable” system part, spanned by the kernel of the observability
matrix ((6.1) for u ≡ 0 in the linear case where (6.1) yields a linear mapping), forms an asymp-
totically stable subsystem. For illustrative purposes, the linear case is considered in more detail.

Linear Detectable System. Consider the linear system1

(6.8a)

(6.8b)
ΣL :

{
y = Cx+Du

ẋ = Ax+Bu
with x(t0) = x0,

then the Luenberger -type observer

˙̂x = Ax̂+Bu−E(y −Cx̂−Du) (6.9)

represents an asymptotic observer if and only if matrixA+EC is Hurwitz, meaning thatA+EC
has eigenvalues with strictly negative real parts only. This can be seen when considering the
observer error dynamics

ė = ẋ− ˙̂x = (A+EC)e. (6.10)

1Please note that matrices A,B, . . . ,E are only valid for this paragraph and must not be confused with
hydraulic quantities such as the incidence matrix.
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Remark 6.8. System ΣL, or the pair (C,A) of ΣL is said to be detectable if and only if
there exists a matrix E such that A + EC is Hurwitz. Although necessary and sufficient for
the existence of an asymptotic observer, this is insufficient yet necessary for the existence of a
strong observer.

Here, the fundamental difference between a strong and an asymptotic observer comes into
play. The desire to preserve the independence of a strong observer Ω∗ from the input u, as in
Definition 6.5, requires a completely different treatment.

Theorem 6.9. System ΣL has a strong observer if and only if it is strongly zero-detectable.
[Hautus, 1983, Theorem 1.12]

Theorem 6.10. System ΣL is strongly zero-detectable if and only if it is zero-detectable and in
addition

rank

[
CB D
D 0

]
= rank(D) + rank

[
B
D

]
(6.11)

holds [Hautus, 1983, Theorem 1.6].

In comparison to the nonlinear case, i.e. under consideration of system Σ, the notion of
zero-detectability is “not well-posed” enough according to Sontag [2004, Chapter 8]. And so,
strong zero-detectability of Σ does neither guarantee the existence of a strong nor asymptotic
observer in the general nonlinear case. In the linear case, considering ΣL, zero-detectability
guarantees existence of an asymptotic observer nonetheless.

Remark 6.11. However, it is known that zero-detectability is a necessary condition for both,
the existence of an asymptotic as well as a strong observer.

In regards to hydraulic networks, by relating flow and pressure measurements to the dynamic
hydraulic network equations, a more general discussion about the benefits and drawbacks of
using either one of each is launched. Concerning notation, detected or reconstructed (one may
say observed) quantities are denoted with a hat, for instance x̂e denotes the observed value of
equilibrium flow xe.

6.2 Pressure Measurements

Assumption 6.12. Pipe characteristics, such as length and diameter as well as the network’s
topology and the nodal elevation are known. Also, the source pressure hs is assumed to be known.

For the purpose of analysis, consider Assumption 6.12 and suppose all pressure heads h and
thus all pressure head losses

ATh = C̃shs − ĥloss(x̂e)−ATz (6.12)

are measured in steady-state while friction parameters are unknown. Although one aims to

achieve hloss(xe)
!

= ĥloss(x̂e) (at least at the time of the steady-state measurement), one can not
accurately calculate the flow x̂e = ĥ−1

loss(C̃shs −AT (h + z)) which would require the inversion
of the friction function with unknown parameters. Also, as a result of neglecting the unsteady-
state component of friction (see section 2.1.4), it is essential to emphasize that it makes sense
to measure the pressures in steady-state only as far as state reconstruction is concerned. In
conclusion, measuring the pressure gives no direct information about the flow unless friction
coefficients are known.

In reality, however, only some np < nj of the I inner nodes are equipped with pressure
sensors. Denoting these pressure measurements with yh ∈ Rnp

≥0 one obtains

Chh = yh (6.13)
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where Ch = [el1 el2 . . . elnp
]T ∈ Znp×nj

{0,1} comprises unity vectors eTi ∈ Z1×nj

{0,1} concerning

indices i ∈ {l1, . . . , lnp} ⊂ I. The complementary set, analogous to matrices Rq and R̄q (see

Property 4.5), is denoted by C̄h = [el̄1 el̄2 . . . el̄nj−np
]T and results in

C̄hh = hN ∈ Rnj−np

≥0 , (6.14)

i.e. unknown pressure heads hN at nodes {l̄1, . . . , l̄nj−np} ⊂ I such that h = CT
h yh + C̄T

h hN . In
terms of head losses ∆h := Cshs −AT (h+ z), one can eliminate nj − np nodes of the original
network.

Network Transformation Example. To illustrate this procedure, the 2-cycle network as
before is considered. Suppose the pressure is measured at node k = 2 and k = 3. As one can see
from figure 6.1, the transformation is not unique and only feasible in terms of pressure heads
as the laws of flow resistance are nonlinear. Provided by a fat matrix Th (more columns than
rows), the head losses of the reduced network are given by ∆h̃ = Th∆h. As a reason of the
transformation being not unique, Th is apparently not unique.

hs

k=1

k=3

k=2∆h1

∆h2 ∆h4

∆h3

∆h5

(A) Original network with sensors at k = 2, 3.

hs

k=3

k=2

∆h4

∆h3

∆h5 + ∆h2

∆h5
+ ∆h1

(B) Merge k = 1 and source node.

hs

k=3

k=2

∆
h

2
−

∆
h

1

∆h4

∆h3

∆h5 + ∆h2

(C) Merge k = 1 with k = 3.

hs

k=3

k=2

∆
h

2
−

∆
h

1

∆h4

∆h3

∆h5
+ ∆h1

(D) Merge k = 1 with k = 2.

Figure 6.1: Network transformation by node elimination.

For instance, the transformation concerning figure 6.1B is given by

∆h̃ = Th∆h =


1 0 0 0 1
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0




(h1 + z1)− (h2 + z2)
(h1 + z1)− (h3 + z3)

...
hs − (h1 + z1)

 (6.15)

The demonstration concerning figure 6.1 should illustrate that by measuring the subset of pres-
sure heads yh in steady-state, one basically measures the linear combination of pressure head
losses

Thhloss(xe) = −Th
(
ATCT

h yh − C̃shs +ATz
)

(6.16)

in the network which certainly aggravates any conclusion about the flow. The only direct
conclusion which can be made in this case is that

Thĥloss(x̂e) = Thhloss(xe) ⇔ hloss(xe)− ĥloss(x̂e) ∈ ker(Th). (6.17)
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Remark 6.13. Although the transformation concerning Th is not unique, one can show that
the kernels of all feasible transformation matrices Th span the equivalent null space.

Notes About Sensor Placement. The case of either poorly distributed pressure sensors
or too few ones where complete cycles are left without sensors has to be highlighted in this
context. The transformed network would feature self-loops which have been excluded according
to Assumption 3.2. Concerning the transformed network, the orthogonality of cycle matrices to
the transposed incidence matrix can not be guaranteed in this case (in reference to Proposition
3.6). In principle, it is reasonable to distribute pressure sensors, or any kind of sensor for that
matter, along the cycles, more specifically along the co-tree edges, of the hydraulic network.
Also, a solid argument in favor of this statement is that the (real) minimal form of the demand-
driven steady-state network equations (3.28) as well as the demand-driven (known consumption
and derivative) slow transient network equations (4.58) (co-tree flow dynamics), do only have
nc = n`− nj states.

However, with popular methods such as sensitivity analysis where one estimates the pressure
sensitivity in reference to the Jacobian matrix, with respect to different locations, it may occur
that cycles are left without sensors due to low pressure sensitivity. If the pressure drop along
these cycles is at least greater than the sensor accuracy with some healthy margins, it arguably
does make sense to equip these cycles with sensors.

Résumé. By measuring the pressure, one directly measures a linear combination of pressure
head losses of the hydraulic network. Since the unsteady-state component of friction, which
would require additional unknowns to be found, is neglected, there is little usability of transient
pressure peaks for the reconstruction of the original states. Also in steady-state, no immediate
relation to the flow can be drawn as long as the friction parameters are unknown and, yet,
pressure measurements will turn out necessary to calibrate friction parameters.

6.3 Flow Measurements

The derived slow transient model equations PD (4.20) in an (Luenberger) observer-type form,

dx̂Q
dt

= (I −B) diag (cl)

[
C̃shs − ĥloss(x̂Q)−AT

(
1

2g
RT
q

(
a�
−2

q � (RqAx̂Q)�
2 � r̂�−2

)
+ z

)]
−LQ

(
yQ −CQx̂Q

)
+ L̄qR̄qAx̂Q = f̂Q(x̂Q, û,yQ) (6.18)

with some flow-measurement candidates yQ ∈ RnQ , CQ comprised of unity vectors (analogous
to 6.13 and 6.14) and mapping LQ : RnQ → Rn` as well as L̄q : Rnj−nq → Rn` (linearity not
required) are considered.

Assumption 6.14. Concerning the measurement locations, it is assumed that

rank

[
CQ
R̄qA

]
= nQ + nj − nq (6.19)

otherwise some measurement locations are redundant.

For now, (6.18) does not require the consumption to be known which will turn out rather
problematic as nq unknown (orifice coefficients) inputs û = r̂�

−2
have to be considered. The

following observations concerning (6.18) can be made.
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(1) nq affine inputs û = r̂�
−2

are unknown.

(a) Even if assumed to be known (e.g. out of knowledge of the consumption q), the
derivatives of û = u introduce vast uncertainties in the diffeomorphism.

(2) System equations completely lack a linear part in the dynamics.

(3) Friction function ĥloss(.) (satisfying Assumption 3.10) has unknown parameters.

(a) It is (strictly) monotonically increasing.

(b) Its Jacobian is diagonal and globally positive definite.

(4) Non-consumer nodal equations R̄qAxQ ≡ 0 can be harnessed as pseudo-measurements.

(a) Derivatives of these pseudo-measurements satisfy R̄qA(I −B) = 0⇒ R̄qAfQ ≡ 0.

Arising Questions. Given Assumption 6.12 and 6.14, the author tackles the following ques-
tions with respect to flow measurements.

(i) Assuming the consumption and friction parameters to be unknown, can the dynamic model
information be used to reconstruct states?

(ii) What can be achieved when assuming the consumption to be known and friction parame-
ters to be unknown?

Diffeomorphism. When considering the output of (6.18) with pseudo-measurements (in re-
ference to point (4) of this page)

y =

[
CQ
R̄qA

]
xQ =

[
yQ

R̄qAxQ

]
(6.20a)

CQẋQ =CQ (I −B) diag (cl)
[
C̃shs − hloss(xQ)−AT

(
1

2g
RT
q

(
a�
−2

q � (RqAxQ)�
2 � u

)
+ z

)]
− 1

2g
CQ (I −B) diag (cl)A

TRT
q

(
a�
−2

q � (RqAxQ)�
2
)
� u̇

(6.20b)

and its derivative knowing that R̄QAẋQ ≡ 0, one can draw conclusions from the first output
derivative (6.20b) (non-zero part). The inverse of the strictly monotone (thus injective) friction
function hloss(.) is required for the diffeomorphism (compare with (6.1)). Also, the derivative
of orifice coefficients u would be needed. However, since friction parameters are unknown, no
output derivatives can be harnessed in this context for such a diffeomorphism, although there
is more than one output available (compare to (6.1)). Effectively, steady-state nodal equations[

A −RT
q

] [xQ
q

]
= 0 (6.21)

are the only source of information as measuring pressure does not allow any direct conclusion
about the flow.

Furthermore, in case the consumption q = RqAxQ is unknown, one can not conclude that
y ≡ 0 (6.20a) does result in limt→∞ xQ(t) = 0 as xQ = 0 ⇔ q = 0 and thus q 6= 0 ⇒ xQ 6= 0
in steady-state. However, as zero-detectability is a necessary condition for the existence of an
asymptotic or strong observer, one can already answer the first question (i).
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Conclusion (i). The dynamic model information can not be harnessed to reconstruct states
if friction coefficients and the consumption are unknown.

Actually, the missing zero-detectability is already sufficient to exclude the existence of any
observer (strong as well as asymptotic) and thus proves considerations about the diffeomorphism
obsolete. The situation barely improves when assuming the consumption to be known. Even
if q is measured, one has to expect the data to feature low time resolution, meaning that no
transients may be seen in this data. Also, considering the consumption as output y = q, the
verification of zero-detectability according to Definition 6.6 has to be investigated closely. As
zero consumption y = q = 0 violates Definition 4.4 in reference to Assumption 4.3 and Remark
4.6, where orifice coefficients where restricted to become zero, all nodes are considered as output
y = AxQ which become non-consumer ones in case y ≡ 0.

Corollary 6.15. Let Assumption 3.10 and 4.2 hold. Consider the output y = AxQ for PD
(4.20) and y = AxQ = RT

q qd for LCD (4.30) where the non-consumer nodes R̄qAxQ ≡ 0 are
trivial and thus can be added to the measured consumption q = RqAxQ. Then, system LCD
(4.30) as well as PD (4.20), hence (4.19), are zero-detectable.

Proof. This is a direct consequence of Theorem 4.18 which states global asymptotic stability
(LCD and PD) for every constant consumption dq

dt ≡ 0. Due to Definition 4.4, R̄q = I leaving
Rq = 0. As a consequence, LCD (4.30) is equivalent to PD (4.20) for the current configuration
qd ≡ 0, respectively, AxQ ≡ 0 knowing that GAT = 0. As a result of Theorem 4.15, the
equilibrium of LCD and thus PD is a solution of Γ (3.23). Knowing that xe = 0 solves Γ(xe)
(4.15) for zero consumption, as hloss(0) = 0 according to Assumption 3.10, and that a solution
of Γ has to be unique according to Proposition 3.12, y ≡ 0 implies limt→∞ xQ(t) = xe = 0
independently of consistent initial states (Assumption 4.2), the source pressure hs, the orifice
coefficients r (thus u) and the elevation z. �

Technically, the only feasible solution for the consumption to become q → 0 turns out to be
at zero pressure hq = 0 while the orifice coefficients r > 0 ⇔ u > 1 loose all influence on the
system’s states. So the analysis in terms of strong zero-detectability appears to be much more
puzzling.

Remark 6.16. Definition 4.4 does not comply with [q̄]k = 0 for any k ∈ K with a-priori
determined, or static, Rq and R̄q and would require to make them dependent on the system’s
states. Indices in sets K and K̄ would have to swap among the two sets such that if qki → 0
approaches zero, index ki (and therefore eTki in (4.12)) would have to make a transition from set
K to K̄ which is associated with switching dimensions of Rq and R̄q.

However, the real problem involved with making Rq and R̄q (or the indices of the unity
vectors from which they are built from) dependent on system states, is of technical nature and
concerns the implementation of the switching process. One would have to ensure thoroughly
that nodal Kirchhoff equations are not violated during or after the switching process. As
with shrinking consumer orifices, smaller and smaller r (cf. (4.14)), u would approach infinity
reciprocally to the consumption which shall approach zero. While violating Assumption 4.3, this
will certainly cause numerical issues. It is reasonable to assume that this will remain a thought
experiment only after all.

Although zero-detectable, there hardly is any chance to design an asymptotic observer when
friction function hloss(.) is unknown. To illustrate this, consider the purely hypothetical case
where the derivative of the nodal consumption ˙̄q is perfectly known (given Assumption 6.12).
Then, it can be considered as input in the co-tree flow dynamics (4.58). In a similar observer-type
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form

dx̂t̄
dt

=

(
S diag

(
c�
−1

l

)
ST
)−1

S

(
C̃shs − ĥloss(S

T x̂t̄ + TtA
−1
t R

T
q q̄)− diag

(
c�
−1

l

)
TtA

−1
t R

T
q q̇

)
−Lt̄ (yt̄ −Ct̄x̂t̄) = f̂t̄(x̂t̄, q̇, q,yt̄) (6.22)

flow measurements yt̄ = Ct̄xt̄ ∈ Rnt̄ at the co-tree branches, selected by Ct̄, of the network are
considered. The observed error (yt̄ −Ct̄x̂t̄) thereby serves as input to the operator Lt̄ : Rnt̄ →
Rn`−nj . In this case, however, nodal Kirchhoff equations can not be harnessed as pseudo-
measurements since AxQ = A(STxt̄ + TtA

−1
t q̄) = q̄ as AST = 0. Nevertheless, in this purely

hypothetical case one might be able to stabilize the error dynamics:

ėt̄ = ẋt̄ − ˙̂xt̄ = −
(
S diag

(
c�
−1

l

)
ST
)−1

S
(
hloss(xQ)− ĥloss(x̂Q)

)
+Lt̄Ct̄et̄ (6.23)

After closer inspection this turns out to be also rather hypothetical. For the purpose of ana-
lysis, consider the conceptually simplest form of hloss(.), the laminar case where hloss(xQ) =
diag (w̄)xQ = diag (w̄) (STxt̄ + TtA

−1
t q̄). Yielding in

ėt̄ = ẋt̄ − ˙̂xt̄ =−
(
S diag

(
c�
−1

l

)
ST
)−1

S
(

diag (w̄)STxt̄ − diag
(

ˆ̄w
)
ST x̂t̄

)
(6.24a)

−
(
S diag

(
c�
−1

l

)
ST
)−1

S
(

diag (w̄)− diag
(

ˆ̄w
))
STTtA

−1
t q̄ (6.24b)

+Lt̄Ct̄et̄ (6.24c)

while assuming w̄ to be unknown, one would have to compensate (6.24a) and (6.24b) via Lt̄Ct̄et̄
which would presumably result in the requirement to measure the flow in most (yet not all) co-
tree branches of the network.

Conclusion (ii). Assuming the consumption to be known, the co-tree branches of the network
are the places to look when searching for possible flow measurement locations. However, in terms
of detectability, there hardly is any possibility to stabilize the error dynamics when considering
that one can not expect the derivative of the consumption q̇ to be known while nonlinear friction
affects each of the observer (-error) states.

6.4 The Need to Identify Friction

The best method to identify the frictional behavior of a pipe is to measure the pressure drop
over the entire pipe with two pressure sensors at its ends while an attached flow sensors records
different flow conditions. The situation aggravates intensively if one of the three sensors is
absent. Before going into detail, suppose (for the purpose of analysis) that friction function
hloss(.) is known.

Theorem 6.17. Let Assumption 3.10 as well as 6.12 hold and suppose friction function hloss(.)
is known. Further suppose that the observed consumption q̂(t) reaches the real equilibrium con-
sumption qe after a finite time. Then, DD, LCD and PDu respectively (see Definition 4.12 and
4.14) are strong observers for PD (4.19).

Remark 6.18. In the opinion of the author, it is not entirely clear whether observer LCD
and PDu shall be called strong or asymptotic in reference to Theorem 6.17. Since it will be
shown below that the observer error vanishes asymptotically for all feasible unknown inputs,
orifice coefficient u = r�

−2
, they were called strong. However, the reader shall be reminded that
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u (different to the real unknown input) was exploited internally to make the state estimation
RqAx̂Q follow the output, that is consumption q.

Proof. First, nodal Kirchhoff equations do hold for every instant in time concerning DD, PDu
and LCD due to their rigid character (see physical considerations on page 34). Subsequently
(compare with (3.27))

eQ(t) = xQ(t)− x̂Q(t) = ST (xt̄(t)− xt̄(t)︸ ︷︷ ︸
et̄(t)

) + TtA
−1
t R

T
q (q(t)− q̂(t)). (6.25)

Provided that the observed equilibrium consumption q̂e equals the real equilibrium consumption
qe after a finite time t1 such that

eQ(t > t1) = STet̄ ⇒ lim
t→∞

eQ(t) = lim
t→∞

STet̄(t) (6.26)

the error in all flows becomes zero if and only if the error in co-tree flows approaches zero due to
kerST = {0}. Second, it was shown in section 4.6 that DD, PDu and so LCD feature common
co-tree flow dynamics (4.58), resulting in the co-tree flow observer error dynamic

det̄
dt

= −
(
S diag

(
c�
−1

l

)
ST
)−1

S

(
hloss(xQ)− hloss(x̂Q)− diag

(
c�
−1

l

)
TtA

−1
t R

T
q

d(q − q̂)

dt

)
.

(6.27)
Knowing that q − q̂ = 0 after t > t1, it is sufficient to show that

ėt̄(t > t1) = −
(
S diag

(
c�
−1

l

)
ST
)−1

S
(
hloss(xQ)− hloss(x̂Q)

)
(6.28)

is asymptotically stable. Applying the Mean Value Theorem on the continuous function hloss(.)

∃ξ ∈ [x̂Q,xQ] :

∫ xQ

x̂Q

hloss(ζ)dζ = hloss(ξ)� eQ ⇔ hloss(xQ)− hloss(x̂Q) =
∂hloss(ζ)

∂ζ

∣∣∣∣
ξ

eQ

(6.29)

with the diagonal and positive definite JacobianD(ξ) = ∂hloss(ζ)
∂ζ

∣∣∣
ξ
� 0 for all ξ, one reformulates

co-tree flow dynamics (6.28) in terms of

ėt̄(t > t1) = −
(
Sdiag(c�

−1

l )ST︸ ︷︷ ︸
M1

)−1
SD(ξ)STet̄. (6.30)

Considering the Lyapunov function candidate for the equilibrium et̄ = 0

V =
1

2
eTt̄ M1et̄ > 0 ∀et̄ 6= 0 (6.31)

with positive definite matrix M1 � 0 (see Remark 4.17 and compare with Proposition 4.1), its
derivative

V̇ = −eTt̄ M1M
−1
1 SD(ξ)STet̄ = −eTt̄ SD(ξ)STet̄ < 0 ∀et̄ 6= 0 (6.32)

is always smaller than zero because of D(ξ) � 0⇒ SD(ξ)ST � 0 being positive definite. As a
direct consequence of (6.30) being globally asymptotically stable, matrix

M2 = M−1
1 SD(ξ)ST � 0 ∀ξ (6.33)

has to be positive definite. Subsequently, the only feasible equilibrium which solves M2et̄,e = 0
is et̄,e = 0 since M2 has full rank (as a direct consequence of (6.33)). �
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Physical Considerations. Put into a physical perspective, the presented results, in particular
Theorem 6.17, follow an indeed natural intuition. As the flow distributes according to the
consecutive flow resistance (described by function hloss(.)), referring to the principle of least
action, at the junction and into the cycles of the network, it appears to be rather natural that
once the observed flows follow the real consumption Ax̂Q = RT

q q, the observed flow distribution
at the network’s cycles will approach the real one when flow resistances are the same.

Résumé. Effectively, two basic characteristics have been identified for a strong observer, in
the form of designated models, to function. The first being an obstacle which makes these
designated models follow a specified consumption, essentially, the methodology on the basis of
an exact linearization developed in chapter 4. The second characteristic being a method to
identify friction coefficients. However, this will occupy the rest of this thesis and beyond as it
will turn out that the defined circumstances, which make these considerations as realistic as
possible, lead to an indeed difficult, in many situations probably insolvable, problem. In the
author’s opinion, this is the point where this thesis leaves a rather theoretically-intensive part
and enters a more engineering-oriented one which is, arguably, even more intense.
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7
Roughness Identification: The Full Turbulent Case

In the observability analysis, conducted in the previous chapter 6, the knowledge of the frictional
behavior of individual pipes in the hydraulic network turned out vital for the reconstruction of
network’s states. Although the literature is vast on the topic of roughness calibration, as far
as the determination of steady-state friction parameters is concerned, the subject can not be
considered closed. Actually, many fundamentally different methodologies were developed, even
an official competition on a real water network was organized [Ostfeld et al., 2012]. The arguably
most popular ones competed with each other in this organized calibration challenge. In essence,
however, it turned out that practical experience is most important to obtain useful results. The
capability to identify errors contained in the measurement data, in the considered topology, in
the consumption as well as to find closed valves which were thought to be open etc. is more
vital than the pure data processing. Although well aware of the necessity to correct all these
errors, which inevitably occur in practice, some basic assumptions have to be made in order to
allow theoretical treatment.

Historically, the main research focus shifted from trial and error methods in the rather early
appearance of calibration algorithms, as in Bhave [1988]; Walski [1983], over explicit methods,
e.g. Boulos and Wood [1990]; Ormsbee and Wood [1986], to implicit methods based on op-
timization problems, minimizing the error between measured and simulated quantities (early
references are, for instance, Ormsbee [1989]; Lansey and Basnet [1991]). Explicit methods cha-
racterize those which require to directly solve steady-state hydraulic network equations (referring
to the conservation of mass, section 3.1.1, and energy, section 3.1.2) for determination of friction
parameters. Admittedly, this thesis does neither provide a complete nor thorough literature
review of this subject as this would fill several books readily, but seeks to carefully outline the
differences to existing approaches. However, a more thorough literature overview ought to be
found in, e.g., [Savic et al., 2009], [Walski et al., 2003] or [Kapelan, 2002].

As distinguished from the usual structure, this thesis emphasizes on the basic idea of the
developed approach first, which appears to be intuitively simple, and then refers to differences
to existing methods. Followed by some deeper theoretical observations, a better understanding
of the original problem is obtained while new research questions arise.

7.1 Configuration

This section briefly summarizes the sensor configuration as well as all necessary assumptions in
order for the presented roughness calculation scheme to be applicable. In order to handle a large
number of unknowns by means of np < nj pressure sensors only, several sets of measurements,
which have to be taken during different loading conditions (concerning hs and q), are needed.
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Assumption 7.1 (Linear Independency). There are nm sets of linear independent measure-
ments, denoted by M = {1, 2, . . . , nm}, available. Linear independence can be achieved by a
variation of source pressure hs and/or the consumption q.

Since consumers are currently not equipped with the necessary sensor technology, so-called
fireflow tests are usually conducted. At the minimum-night-flow, somewhere from 2am to 5am
where the regular water consumption is lowest, hydrants are opened systematically. The hy-
drants’ outflow is measured as well as pressure sensors throughout the network record, at least
part of, the pressure distribution. Also the source pressure is assumed to be known according
to Assumption 6.12. Depending on the amount of the minimum-night-flow, this procedure is,
potentially, very problematic for calibration as nodal Kirchhoff equations (conservation of mass)
are violated when the sum of all considered hydrant flows (fireflows) is lower than the total inflow
in the network or District Metering Area.

Assumption 7.2 (Steady-State). These nm sets of measurements are taken in steady-state of
the network.

In order to avoid distortions due to transient effects, which have not been considered in the
modeling procedure, the network has to be in steady-state during the time-frame considered
for each of the measurement-sets. Recording a larger time-frame with a number of different
measurement values for each sensor in each measurement-set may also be valuable for filtering
noise. Applying simple averaging often proves effective in this regard.

Assumption 7.3 (Noise). The variance of the measurement noise of applied pressure sensors

is significantly smaller than the pressure drop, i.e. [var(y
(i)
h )]k � [C̃sh

(i)
s −AT (h(i) +z)]j for all

k = 1, 2, . . . , np and j ∈ I in at least one of the i ∈M measurement-sets (compare with Remark
5.1). This means that the inequality holds for all j, k in at least one of the i-th measurement-sets.
Also, the measurement errors in fireflows and pressures have zero mean.

Without mentioning, flow sensors must also be sufficiently accurate in order to obtain use-
ful results. When considering minor losses (section 2.1.4) also, one would, in principle, have
to determine 2nl unknowns. To keep the number of unknowns reasonably small, these minor
losses are usually neglected. Besides, according to Walski et al. [2003][Chapter 2, p. 40] “minor
losses are generally much smaller than the head losses due to friction (hence the term ”mi-
nor”)”. However, this statement is certainly not always true, partially closed valves, local pipe
constrictions, fittings and others may contribute to the pressure loss substantially, especially to
pipes with relatively short lengths.

Assumption 7.4 (Minor Losses). Minor losses of the n` pipes in the network can be neglected.

Together with the assumption already taken in the previous chapters, one can sum up.

Assumption Context

3.2 properties of the graph

3.10 characteristics of hloss(.)

6.12 pipe dimensions & source pressure

7.1 independency of measurements

7.2 measurements in steady-state

7.3 measurement noise

7.4 negligible minor losses

Table 7.1: Summary of assumptions relevant for roughness calibration.
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One does not have to be misguided by the comparably large number of assumptions in
table 7.1, at second glance they do appear rather general for people familiar with the subject.
Nevertheless, several of them are hard or even impossible to verify. Regarding Assumption 7.3
for instance, it is well known that one has to produce high fireflows in order for the measurement
noise to be negligible, however, the inequality can not be verified without the full knowledge of
all nodal pressure heads h. Also, the independence of the measurement-sets can also hardly be
verified in reference to Assumption 7.1, a concern which will be raised later on.

Sensors. Following the previous chapter, np pressure sensors are placed at a subset of the
nj inner nodes I of the network while the consumption q of the nq consumers is expected to
be measured, at least during the calibration. Keep in mind that these nq consumer-nodes are
also a subset of I and can represent, for instance, hydrants. The source pressure was already
considered to be known according to Assumption 6.12.

7.2 Introductory Example: 3-Cycle Network

For illustrative purposes, consider a network with nj = 5 nodes, n` = 8 pipes and hence nc =
n`− nj = 3 cycles in figure 7.1.

hs

k=1

k=3

k=2

k=4k=5
Reservoir (R)

Q2

Q3

Q8

Q5

Q4

Q7

Q6

Q1

q2

q3

q4

Figure 7.1: 3-cycle network with pressure sensors at red colored nodes k = 2, 3, 4.

This network, featuring nq = 3 consumers and ns = 1 constant pressure source, is a step-up in
complexity compared to the illustrative 2-cycle network in figure 3.2. The fact that the (red
colored) nodes equipped with pressure sensors also have consumers is mere chance and does not
affect the identification scheme.

The principle of the presented approach starts with the premise to obtain at least as many
equations as unknowns. In the first set of measurements, that is i = 1, the pressure head at node
k = 1, 5 as well as roughnesses of n` pipes are unknown, which makes up to a total number of 10
unknowns. On the contrary, there are nj = 5 nodal equations providing additional information
to be used, resulting in a relation of 2:1 regarding unknowns versus equations. Important to
note here is that the three independent cycle equations (conservation of energy) have to be used
implicitly for the set-up of nodal equations and thus provide no additional information, but
more on that later.

The key observation is that the nodal Kirchhoff equations in the second set of measurements,
i.e. i = 2, are independent from the nodal equations from the first measurement-set given
Assumption 7.1. However, as in the second measurement-set only two additional unknown
pressure heads, in addition to the 10 unknowns (first set) have to be considered, the relation of
unknowns versus equations improves to 12:10 (combining the first & second set). After taking
the third measurement-set, a break-even point is reached, where in total more (nodal) equations
than unknowns are available. Table 7.2 summarizes the comparison of unknowns and equations
in reference to the 3-cycle network.



84 7. Roughness Identification: The Full Turbulent Case

measurement-
set

# unknown
heads

# unknown
roughnesses

# total
unknowns

# equations ∆

1 nj − np = 2 n` = 8 10 nj = 5 5

2 2(nj − np) = 4 n` = 8 12 2nj = 10 2

3 3(nj − np) = 6 n` = 8 14 3nj = 15 -1

Table 7.2: Unknowns vs. equations of the 3-cycle network in figure 7.1.

The key here is that the number of nodal equations grows faster than the number of unknown
pressure heads nj > nj−np with each independent measurement-set. In this context, it is trivial
to recognize that at least one np > 0 pressure sensor must be available. Taking a closer look at
table 7.2, it is clear that the ∆, the difference between the total number of unknowns and the
number of equations, of each measurement-set reduces by 3 with each measurement-set. Given
a fixed number of sensors np, the minimum number of measurement-sets in order to reach a
break-even point is denoted with nm,min. One obtains

[nm,min(nj − np) + n`]− nm,minnj < 0

nm,min =

⌈
n`
np

⌉
(7.1)

which has to be rounded to the next higher integer. For instance, if only one pressure sensor
is available (np = 1), n`/np = 8 independent measurement-sets are needed. Interestingly, this
requirement is completely independent from the number of nodes, junctions (more than two
connections) to be precise, in the network. Though, one should not be deceived by this result
since the number of equations grows linearly with nj, making the solving more difficult due to
numerical issues as well as the computational demand.

Remark 7.5. Moreover, the ability to produce at least dn`/npe independent measurement-sets
presumably depends on several graph characteristics, in particular on the number of cycles but
also on the number of consumers. Experimenting with several network configurations, the number
of cycles nc = n`− nj turned out to be a good candidate for the smallest feasible np.

From a practical perspective, however, one also has to consider which consumption-
configurations can be realized. In reality, it is certainly not possible to vary the consumption
arbitrarily, especially on a high consumer-outflow level which is necessary to produce sufficient
head loss (in reference to Assumption 7.3). Summarizing the proposed rule of thumb, at least
np ≥ n` − nc pressure sensors on nodes adjacent to co-tree edges of the hydraulic network (see
also page 74) should be deployed.

Up to this point, the consideration of the roughness-calibration was conducted “en gros” only,
it is not yet clear how the set-up the problem formulation nor how to solve it. The proposed
equations in the following section can also be formulated as a multi-objective optimization
problem and, in principle, be solved by any sophisticated solver.

7.3 Explicit Problem Formulation

The primary distinguishing aspect of the developed explicit calibration-method (algebraic equa-
tion system based on the conservation of mass and energy) to existing methods is the direct
application of the implicit Colebrook & White formula (2.6) for the friction factor λDW (2.4).
Due to two main reasons, this approach is controversial to this point in time.

First, explicit methods seem to be completely off radar from this research area for the time
being. In this context, e.g., Savic et al. [2009] only attribute “historical significance” to explicit
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methods and mention the following major drawbacks: (1) the number of calibration parameters
need to be smaller or equal to the number of measurements, (2) measurement errors are not
taken into account and (3) it is, allegedly, impossible to quantify the uncertainty of calibrated
parameters. This thesis puts (2) and (3) in question while arguing against this ultimate asses-
sment. A counterargument for (1), which certainly contains a correct critique, is that the risk
to obtain roughnesses, which are only suitable for the calibration-measurements (measurement
taken for calibration), particularly the pressure distribution, is high if requirements as described
in the previous section are not met (compare table 7.2 concerning figure 7.1). This holds true
independently from the applied calibration-method.

Second, the application of Darcy-Weisbach (2.4) instead of Hazen-Williams (see section 2.1.4)
in combination with the friction factor (2.6) is also hardly applied directly for calibration due
to its implicit character.

7.3.1 Turbulent Flow in Steady-State

This implicit character, however, is only present in the form

∆h = λDWkDW|Q|Q ⇒ Q = sign(∆h)
1√
λDW

√
|∆h|
kDW

(7.2)

when expressing the head loss ∆h (see (2.6)). Given Assumption 7.4, the total pressure head
loss becomes ∆h = ∆hDW in reference to (2.4). The expression in terms of Q in (7.2) is equated
with |Q| = ReAηdρ according to (2.3) to yield the product of the Reynolds number and the (square
root of) friction factor

Re
√
λDW =

dρ

Aη

√
|∆h|
kDW

. (7.3)

When inserting (7.3) into the Colebrook & White formula (2.6), i.e.

1√
λDW

= − 2

ln 10
ln

 εDW

3.7d
+ 2.51

Aη

dρ

√
kDW

|∆h|

 (7.4)

and (7.4) into (7.2), the turbulent flow as an explicit function on the pressure head loss and the
roughness is obtained

Q = ft(εDW,∆h) = −sign(∆h)
2

ln (10)

√
|∆h|
kDW

ln

 εDW

3.7d
+ 2.51

Aη

dρ

√
kDW

|∆h|

. (7.5)

Keep in mind that these simple manipulations, which are well known in literature (e.g. in
[Bhave, 1991]), are exact, no approximation was applied so far.

Remark 7.6. For the sake of readability the subscript “DW” of roughnesses εDW as well as of
the parameter variable kDW is suppressed from now on.

Assumption 7.7. Suppose temporarily, for the sake of simplicity, that each pipe flow j in each
measurement-set i is in the turbulent regime, i.e.

Re
(i)
j =

|Q(i)
j |djρ
Ajη

≥ 4000 ∀j ∈ P ∧ ∀i ∈M (7.6)

in order for (7.5) to be generally applicable.
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The restriction will be relieved under considerable effort after closer inspection of this “full
turbulent” case.

7.3.2 Full Turbulent Set-Up

The nodal equations along the i-th measurement-set have the following structure

AxQ(ε,h
(i)
N ) = RT

q q
(i)

∆h(i) = C̃sh
(i)
s −ATCT

h y
(i)
h −A

T C̄T
h h

(i)
N −A

Tz

[xQ(ε,∆h(i))]j = Q
(i)
j

(7.5)
= ft,j([ε]j , [∆h

(i)]j) ∀j ∈ P

(7.7a)

(7.7b)

(7.7c)

for i ∈ {1, 2, . . . , nm} = M

where the j-th flow component (7.7c) used for Kirchhoff equations (7.7a) is calculated via (7.5),
i.e. the flow in the turbulent regime, thereby applying the conservation of energy (cf. with
(3.24b)) for the head losses (7.7b). Effectively, the unknowns of this set of equations are the

roughnesses ε ∈ Rn`≥0 and the pressure heads at nodes with no sensors h
(i)
N ∈ Rnj−np

≥0 in the

i-th measurement-set. In reference to (7.7b), matrix Ch ∈ Znp×n`
{0,1} and its complementary part

C̄h ∈ Z(nj−np)×n`
{0,1} are comprised of unity vectors as in (6.13) and (6.14) selecting those entries

in nodal heads h where pressure sensors are present Chh = yh, or absent C̄hh = hN . This is
completely analogous to matrices Rq and R̄q which select consumer and non-consumer nodes
respectively.

Definition 7.8 (Pressure Nodes). The subset P of inner nodes I defines pressure-nodes,
meaning nodes which are equipped with pressure sensors. The complementary set P̄ defines
non-pressure nodes, meaning nodes where no pressure sensors are deployed.

P = {p1, p2, . . . , pnp} ⊆ I P̄ = {p̄1, p̄2, . . . , p̄nj−np} ⊆ I (7.8)

These two sets thereby satisfy P ∩ P̄ = {} and P ∪ P̄ = I.

Following Definition 7.8, one obtains Ch = [ep1 ep2 . . . epnp
]T and C̄h =

[ep̄1 ep̄2 . . . ep̄nj−np ]T where el ∈ Znj

{0,1} for l ∈ I.

At this point (7.7) contains, in principle, all information needed to determine all the pipes’
roughness, provided that the assumptions in table 7.1 hold. Emphasizing once again on the
application of the Colebrook & White formula in respect to the explicit turbulent flow expression,
(7.5) has not been considered for any explicit or implicit calibration scheme in literature as far as
the author is aware. A more recent proposal for an explicit approach applying Hazen-William’s
description of pipe friction can be found in, for instance, [Kun et al., 2018]. However, (7.7) turns
out to be particularly difficult to solve even in the unperturbed case when no measurement noise
is considered. The reason for that can not only be attributed to the problem’s size, which is
considerably larger than the steady-state problem Γh (3.24), but to the nonlinear dependency

of (7.5) on h
(i)
N .

7.3.3 Optimization vs. Root Finding

A considerable effort was undertaken to develop and enhance solver strategies in order to cope
with (7.7)-type problems. Before going into detail, it should be emphasized that root finding
of a multidimensional function, by means of e.g. a Newton-Raphson type solver, is generally to
favor over a minimization problem where this multidimensional function is collapsed into a single
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dimension and then treated as an optimization function [Press et al., 1992]. Once it is collapsed
into a single dimension (by taking e.g. the sum of squares) the components of its gradient are
not independent whereas the components of the multidimensional function are (Assumption 7.1)
and so information gets lost unnecessarily. Nevertheless, the equivalence of an unconstrained
optimization problem to finding a solution of f(x) = 0 with f : Rn → Rn (root-finding) can, in
principle, be shown as in the proof of Proposition 3.12, if and only if the antiderivative of f(x)
is found. However, it is quite unlikely that one manages to find the antiderivative of (7.7) which
involves the solving of a considerably large set of partial differential equations.

Effectively, the primary weakness of these optimization problems is that the solution space
features lots of local minima which are barely distinguishable from the desired global optimum.
In reference to Assumption 7.1, it is important to mention that at least nm,min independent sets
of measurements are required to potentially see this global minimum.

Genetic algorithms ought to overcome this weakness for the cost of computational effort
and celebrate high popularity in this field of research [Savic and Walters, 1995; Kapelan, 2002;
Steffelbauer, 2018]. Up to this point and given the current sensor configuration, these algorithms
are, to the best of the author’s knowledge, only fed with an (usually scalar) optimization function
fopt which depends on the measurement error yh −Chĥ(ε) such that

min
ε

fopt(yh −Chĥ(ε))
e.g.−→ min

ε
(yh −Chĥ(ε))TWh(yh −Chĥ(ε)) (7.9)

where ĥ(ε) denotes the simulated pressure head vector depending on the roughnesses as a
solution of Γh (3.24) and Wh ∈ Rnp×np a weighting matrix. Optimization problem (7.9) is
usually enhanced with a set of inequality constraints. Although the simplicity of this approach
is utterly appealing, this formulation lacks direct consideration of the conservation of mass (in
the objective function) in comparison to (7.7). In the perspective of (7.9) there is little incentive
to match the real flows xQ, particularly due the fact that the solver only sees a subset of
linear combinations of head losses (see section 6.2 and note that hloss(xQ) = ∆h in steady-state
xQ = xe) which allows no conclusion about the flow. Remember the network transformation
example on page 73 concerning figure 6.1 in this context. To put it into other words, by
only measuring a linear subset of pressure head losses as in (6.16) there are multiple different
combinations of ∆ĥ to result in yh. These combinations lie in the kernel of the transformation
matrix Th. Only by considering at least more than nm,min sets of measurements, one may be
able to reconstruct the flows. Formulation (7.7) seems to be much more suitable to do so as it
simply inverts the steady-state hydraulic network equations Γh (3.24) along the roughnesses ε

and the unknown pressure heads h
(i)
N .

Albeit mathematically sophisticated, it is much more effective to search along a dedicated
search direction, obtained via (7.7) featuring more equations than unknowns, as to instruct a
genetic algorithm to search in the entire space spanned by a scalar optimization function.

7.4 Newton - Raphson

With the aim to solve a nonlinear set of equations of the form

f(x)
!

= 0 (7.10)

with a smooth and continuous vector function f : Rn → Rn, the iterative scheme

xk = xk−1 + µ∆xk for k = 1, 2, . . . (7.11)

provides quadratic convergence to the real root x∗ ⇒ f(x∗) = 0 if the initial value x0 is chosen
in vicinity of x∗. In the original proposal the scalar step length equals µ = 1, whereas the search



88 7. Roughness Identification: The Full Turbulent Case

direction ∆xk = xk − xk−1 is obtained with the help of a Taylor series around xk

f(xk) = f(xk−1) +
∂f

∂x

∣∣∣∣
xk−1

∆xk +O(∆x2
k) (7.12)

where higher order terms O(∆x2
k) are neglected. By setting the Taylor series to zero, the search

direction

∆xk = −

(
∂f

∂x

∣∣∣∣
xk−1

)−1

f(xk−1) = −J−1
k−1f(xk−1) (7.13)

is obtained, also applying the inverse of Jacobian Jk−1. This provides that Jk−1 is square and
has full rank. However, in the present application (7.7)

f(x) =


A

. . .

A



xQ(ε,h

(1)
N )

xQ(ε,h
(2)
N )

...

xQ(ε,h
(nm)
N )

−

RT
q q

(1)

RT
q q

(2)

...

RT
q q

(nm)

 with xT =
[
εT h

(1)T

N . . . h
(nm)T

N

]
(7.14)

function f : Rnmnj → Rn`+nm(nj−np) has, in general, not the same number of components as the
number of variables, i.e. nmnj 6= n` + nm(nj − np). Taking a closer look at its thin (more rows
than columns) Jacobian

J(x) =


A

. . .

A





∂xQ(ε,h
(1)
N )

∂ε
∂xQ(ε,h

(1)
N )

∂h
(1)
N

0 . . . 0

∂xQ(ε,h
(2)
N )

∂ε 0
∂xQ(ε,h

(2)
N )

∂h
(2)
N

. . . 0

...
...

. . .

∂xQ(ε,h
(nm)
N )

∂ε 0 0 . . .
∂xQ(ε,h

(nm)
N )

∂h
(nm)
N


, (7.15)

where J ∈ Rnmnj×n`+nm(nj−np) is supposed to have full rank
(
J(x)

)
= n` + nm(nj − np) in

reference to Assumption 7.1. Note that Jk−1 := J(xk−1). A quite practical possibility to deal
with the non-square form of J(x) is to take the left inverse

J+ := (JTJ)−1JT (7.16)

which, effectively, inverts J∆x = −f (7.13) for any f ∈ Rnmnj by

min
∆x

1

2
(J∆x+ f)T (J∆x+ f) ⇒ 1

2

∂

∂∆x
(J∆x+ f)T (J∆x+ f) = 0T (7.17a)

∂

∂∆x

1

2

(
∆xTJTJ∆x+ 2fTJ∆x+ fTf

)
= ∆xTJTJ + fTJ = 0T (7.17b)

⇒ ∆x = −(JTJ)−1JTf = −J+f (7.17c)

minimizing the quadratic error of the residual of (7.13) with respect to the search direction ∆x.
This is applicable since one can show that JTJ � 0 for any thin J with full rank.

7.4.1 First Turbulent Flow Derivatives

In order to build up the Jacobian according to (7.15), the derivatives of (7.5) with respect to ε
and hN are needed. To display these derivatives more compactly, the argument of the natural
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logarithm in (7.5)

` = `(ε,∆h) =
ε

3.7d
+ 2.51

ηA

ρd

√
k

|∆h|
(7.18)

is denoted with `. Keep in mind that d denotes the diameter, A the cross section area and that
k = l

2dgA
1, including the length l of the pipe and the gravitational acceleration g ≈ 9.81 m/s2.

Also, in reference to Assumption 7.7, remember that Q = ft(ε,∆h) if Re ≥ 4000 only. Starting
with the roughness, one obtains (neglecting indices on the right hand side of (7.19a))

∂ft,i
∂εi

=: pε,i(εi,∆hi) =̂
∂ft
∂ε

= − 2

ln (10)
sign (∆h)

√
|∆h|
k

1

3.7d `(ε,∆h)
∀i ∈ P (7.19a)

followed by
∂ft,i
∂hN,j

=
∂ft,i
∂∆hi

∂∆hi
∂hN,j

=: p∆h,i(εi,∆hi)
∂∆hi
∂hN,j

∀i ∈ P ∧ j ∈ P̄ =̂

∂ft
∂hN

= − 1

ln (10)

√ 1

k|∆h|
ln (`(ε,∆h))− 2.51

ηA

ρd

|∆h|−1

`(ε,∆h)

 ∂∆h

∂hN
(7.19b)

(neglecting indices) where the partial derivative of ∆h in respect to hN is constant due to

∂∆h

∂hN

(7.7b)
= −AT C̄h with

[∆h]i = [hloss(xe)]i = ∆hi ∀i ∈ P

[hN ]j = [C̄hh]j = hN,p̄j ∀p̄j ∈ P̄ ∧ j ∈ {1, 2, . . . , nj − np}
(7.20)

when considering vector dependencies. As a remark, note that the author assumed that
∂

∂∆h sign(∆h) = 0 neglecting the Dirac-Delta δ(∆h) function. The scalar partial derivatives
(7.19) can now be summarized in vector notation as follows

∂xQ(ε,∆h(i))

∂ε
= diag

(
pε(ε,∆h

(i))
)

∂xQ(ε,∆h(i))

∂h
(i)
N

= −diag
(
p∆h(ε,∆h(i))

)
AT C̄T

h

∀i ∈M = {1, 2, . . . nm} (7.21)

where [pε]j
(7.19a)

= pε,j(εj ,∆hj) and [p∆h]j
(7.19b)

= p∆h,j(εj ,∆hj) for all j ∈ P. Strictly speaking,
pipe parameters in (7.19) would also require a pipe index, e.g. dj , as they do certainly vary
with each pipe. However, index j was not displayed to improve readability. Actually, one can
recognize that the information concerning J which varies along the i-th measurement-sets can
entirely be stored in vectors by means of pε and p∆h.

7.4.2 Step Length

At this point, one may think that all necessary tools for solving (7.7) have already been obtained,
however, this is far from reality. As mentioned earlier, the initial value x0 must be sufficiently
close to x∗ which can not be evaluated beforehand and so finding suitable x0 is a rather hard
problem to solve. To somewhat relax the requirement to already start in the vicinity of x∗ a
suitable selection of the step length µk in each iteration is needed. The author implemented a
methodology similar to the one proposed by Press et al. [1992, section 9.7]. The principle shall
be described briefly in the following.

The idea is to choose µk such that a norm, i.e. ‖f(xk)‖, decreases with each iteration step,
i.e. ‖f(xk+1)‖ < ‖f(xk)‖. Although [Press et al., 1992, section 9.7] proposes to use the L2

norm

‖f‖2L2
= f2

1 + f2
2 + . . .+ f2

nmnj
(7.22a)

1Please do not confuse k comprised of pipe parameters with the iteration index k.
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also L1 and L∞ norms in the form

‖f‖L1
=

nmnj∑
p=1

∣∣fp∣∣ (7.22b)

‖f‖L∞ = max
p

∣∣fp∣∣ (7.22c)

are tested. The 3-cycle network in figure 7.1 was chosen for analysis. nm = 4
measurement-sets were generated with varying consumption. Relative roughnesses were cho-
sen [ε1/d1 . . . ε8/d8] = [5 4.37 3.75 3.13 2.50 1.87 1.25 0.63]T% for the n` = 8 pipes.
In order to allow graphical representation in 3 dimensions with n`+nm(nj−np) = 8+4×2 = 16
unknowns, 14 of these unknowns were fixed in the real root x∗ of (7.7) whereas the solution
space concerning (7.22) along the two remaining variables was considered. Figure 7.2 allows
comparison of the different norms of f(x) concerning problem (7.7), where one observation

may be particularly important. The limits for the h
(3)
N,5 axes in figure 7.2 were determined with

the help of measurements y
(3)
h at node 2, 3, 4 such that h

(3)
N,5 ∈ [min

p
(y

(3)
h,p),max

p
(y

(3)
h,p)] which is

feasible as no sources are directly connected to node 5, see figure 7.1.

� The norms were designed to be symmetrical along the roughness axes by taking the abso-
lute value of ε in function (7.5) concerning ‖f(x)‖, and (7.7), to preserve the convex-type
shapes in figure 7.2 towards positive thus physical relevant roughnesses.

� There is a particularly weak slope towards x∗ along the ε7/d7 axes in the L2 norm of figure
7.2A, whereas the L1 norm in figure 7.2B shows the overall highest slope towards the real
root x∗. This result is consistent, even when varying different roughnesses (one of the n`
pipe roughnesses) and different h

(i)
N,j in the variable space.

Due to this observation, the L1 norm (in contrast to Press et al. [1992]) was selected as quality-
measure for the step length. Knowing that every root of f(x), i.e. x∗, is a minimum of
v(x) = ‖f(x)‖L1

, it is clear that the Newton direction (7.13) (and so (7.17)) represents a
descent direction of v(x), i.e.

∂v

∂x
∆x =

∂v

∂f

∂f

∂x
∆x = − sign(f)TJJ−1f = − sign(f)Tf < 0 ∀f 6= 0. (7.23)

The strategy is comprised of three basic steps.

(I) try the full µ = 1 Newton step which will provide quadratic convergence eventually

(II) check at each iteration if the proposed step reduces the norm (or similar criteria)

(III) if not, backtrack along the Newton direction until an acceptable step is obtained

As the Newton step is indeed a descent direction, it is guaranteed that there must exist a µk for
which v(xk) < v(xk−1). According to [Press et al., 1992], “this method can still occasionally fail
by landing on a local minimum of v(x), but this is quite rare in practice”.

Linesearch and Backtracking. The goal is to find a µ ∈]0, 1] for which

g(µ) := ‖f(xk−1 + µ∆xk)‖L1
= v(xk−1 + µ∆xk) (7.24)

decreases sufficiently. There are several problems involved when directly taking the condition
v(xk) ≤ v(xk−1) (see [Press et al., 1992]). If the full Newton step with µ = 1 does not comply
with the criterion

v(xk) ≤ v(xk−1) + α
∂v

∂x

∣∣∣∣
xk−1

∆xk (7.25)
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(A) L2 Norm.

(B) L1 Norm.

(C) L∞ Norm.

Figure 7.2: Norm of f(x) plotted along the parameter space of ε7/d7 and h
(3)
N,5

regarding the network in figure 7.1.
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which requires the new v(xk) to decrease when only going an α-fraction along a linear extra-
polation (right hand side of (7.25)), the backtracking routine kicks in. As suggested in Press
et al. [1992], the decrease parameter was chosen conservatively as α = 10−4. First, g(0) from
the previous step at iteration k − 1 as wells as g(1) from the k-th iteration are already known.
Second, the derivative

g′(0) =
∂g(xk)

∂µ

∣∣∣∣
µ=0

=
∂v

∂x

∣∣∣∣
xk−1

∆xk = − sign(f(xk−1))Tf(xk−1) (7.26)

is also available. Keep in mind that no additional function calls of f(x) have been required so
far. With these three known function evaluations of g(µ) one uses the quadratic interpolation

g(µ) ≈ g̃(µ) = aµ2 + bµ+ c ⇒
g(0) = c

g(1) = a+ b+ c

g′(0) = b

(7.27)

in the form
g̃(µ) = (g(1)− g(0)− g′(0))µ2 + g′(0)µ+ g(0) (7.28)

to determine a µ∗ which minimizes (7.28). Looking for a stationary point by taking the derivative
of (7.28) and setting it to zero one obtains

µ∗ = − g′(0)

2(g(1)− g(0)− g′(0))
(7.29)

which is chosen for the next iteration. However, to avoid slow convergence the smallest value
of µ∗ is fixed to µ∗ ≥ µmin = 0.1. In case, the new step xk (7.11) applying (7.29) still does not
comply with (7.25), the additional evaluation of g(µ), i.e. g(µ∗), is utilized to interpolate g(µ)
as a cubic polynomial

g(µ) ≈ g̃(µ) = aµ3 + bµ2 + g(0)µ+ g′(0) ⇒
g(1) = a+ b+ g′(0) + g(0)

g(µ∗) = aµ∗
3

+ bµ∗
2

+ g′(0)µ∗ + g(0)
(7.30)

where [
a
b

]
=

1

µ∗2 − µ∗3

[
µ∗

2 −1

−µ∗3 1

][
g(1)− g′(0)− g(0)

g(µ∗)− g′(0)µ∗ − g(0)

]
(7.31)

which is then again minimized in terms of µ. The optimal positive step length in terms of (7.30)
yields

µ+ =
−b+

√
b2 − 3ag′(0)

3a
(7.32)

which is applied in the next iteration. The result is saturated in the range [Press et al., 1992]

µ+ ∈ [0.1µ∗, 0.5µ∗]. (7.33)

A summary of the complete algorithm is presented on page 93. The tolerance εf as well as εx
for the while loop of this algorithm have to be adjusted for the network to work with, as the
order of the residual of set (7.7) heavily depends on the number of nodes nj and the quality
of the measurement. For the 3-cycle network in figure 7.1 the maximal number of iterations
was limited to 1000, whereas εf = 10−7 and εx = 5 × 10−7 were chosen when considering no
measurement noise.

Potentially, also important to note is that due to the enforced symmetry along the ε-axes
(1st bullet point on page 90), the absolute value of n` components of xk (meaning roughnesses
εk) is taken after the Newton step. Taking the absolute value not only in the Algorithm 1 but
in (7.5) as part of (7.7) is necessary to preserve the convex-type shape, seen in figure 7.2.
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Algorithm 1 Modified Newton-Raphson algorithm with step length variation

1: procedure Newton(FUN,x0) . FUN characterizes a pointer on a function returning the
. residuum of (7.14) under (7.7) (in the full turbulent case) and J (7.15)
Initial Phase

2: [fk,Jk]← FUN(x0) . first function call of FUN
3: vk ←

∑njnm

p=1

∣∣fk,p∣∣ . norm calculation (7.22b)
4: vk−1 ← vk . for initialization purposes only
5: ∆xk ← −(JTk Jk)

−1JTk fk . first Newton direction applying (7.17)
6: µ← 1
7: iter ← 0 . iter . . . number of “Newton” iterations

Main Loop
8: while (|vk − vk−1| > εf or ‖µ∆xk‖L2 > εx) and (iter < max number of iter) do

Newton Direction
9: if µ = 1 then

10: ∆xk ← −(JTk Jk)
−1JTk fk . Newton direction applying (7.17)

11: sk ← − sign(fk)
Tfk . rate of descent (7.23)

12: vk ←
∑njnm

p=1

∣∣fk,p∣∣ . L1 norm calculation
13: fk−1 ← fk, xk−1 ← xk, vk−1 ← vk . buffer old values
14: iter ← iter + 1
15: end if

Newton Step
16: xk ← xk−1 + µ∆xk . next Newton Step (7.11)
17: [xk]j = xk,j ←

∣∣xk,j∣∣ for j = 1, 2, . . . , n` . symmetry (1st bullet point on page 90)
18: [fk,Jk]← FUN(xk)
19: vk ←

∑njnm

p=1

∣∣fk,p∣∣ . norm calculation (7.22b)
20: µold ← µ . buffer old step length

Step Length Control
21: if vk > vk−1 + 10−4µsk then . criterion (7.25) with α = 10−4

22: if µ = 1 then
23: µ← −sk

2(vk−vk−1−sk) . see (7.29)

24: else
25: calculate coefficients a, b via (7.31) where
26: µ∗ = µold, g(0) = vk−1, g(1) = vk, g′(0) = sk
27: if a = 0 then
28: µ← − sk

2b . minimum of (7.31) if coefficient a = 0
29: else

30: µ← −b+
√
b2−3ask
3a . see (7.32)

31: end if
32: µ← min (µ, 0.5µold) . maximal step length
33: end if
34: µ← max (µ, 0.1µold) . minimal step length
35: else
36: µ← 1
37: end if

38: end while

39: return [xk−1,fk−1]
40: end procedure
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Remark 7.9. Since the argument of equation set (7.7) to be solved has two sets of components,

namely ε and h
(i)
N , which are (at least) in the range of 3 orders of magnitude different from each

other, it is advisable to scale x ∈ Rn`+nm(nj−np) (7.10) for the Newton direction calculation via
(7.17c). Numerical issues become dominant with growing number of nodes nj and pipes n`. The
scaling may be accomplished with a scaling vector such as s = max (|x0| , 10−5) (function max()
is applied componentwise)

S = [1 1 . . . 1]T
(
s�
−1
)T

= 1n`+nm(nj−np)

(
s�
−1
)T

(7.34)

such that

J∗ = J � S (7.35a)

∆x∗
(7.17c)

= −(J∗
T
J∗)−1J∗

T
f (7.35b)

∆x = ∆x∗ � s (7.35c)

resulting in far better numerical behavior.

Remark 7.10. The scaling, in reference to Remark 7.9, was not included in Algorithm 1 in
order to keep the complexity reasonable for illustrative purposes, but also because it can only be
applied for the Newton direction (7.13). In the later part of this chapter, the author enhances
the determination of the search direction which will require a nonlinear equation to solve.

7.4.3 Initial Values and Range

In the sensor-noise-free case Algorithm 1 occasionally finds the real root x∗ of (7.7) if x0 is
already close to x∗. The convergence highly depends on the initial values x0 with which Algo-
rithm 1 is launched. Thereby, (7.7) turns out to be particularly sensitive with respect to the

not-measured pressures h
(i)
N . In this context it is utterly important to define a physically useful

range

h
(i)
N,p̄ ∈ [hN

(i)
,p̄
, hN

(i)
,p̄ ] ∀p̄ ∈ P̄ ∧ ∀i ∈M (7.36a)

⇒ h
(i)
N ∈ [hN

(i),hN
(i)

] ∀i ∈M (7.36b)

⇒ xhN = [h
(1)T

N h
(2)T

N . . . h
(nm)T

N
]T ∈ [hN ,hN ] (7.36c)

and let h
(i)
N concerning x0 (the initial value) be in this range. Otherwise the solution space of

v(x) = ‖f(x)‖L1 will most unlikely feature a desired convex-type form (only for [x]i = εi >
0 ∀i ∈ P) as in figure 7.2B. In analogy, the physically useful range for the roughnesses ought to
be between 0% and 5% of the pipe’s diameter in reference to the Moody-chart in figure 2.2.

In order to increase the chance of converging to the real root, the strategy to launch Algorithm
1 several times with different initial values x0 turns out successful. However, going from one
initial value to another, it is useful to remember the temporarily “best” solution, i.e. x+,
meaning the one which has the smallest residual of (7.7) measured by v(x+). Thereby, the

h
+,(i)
N -components of the temporarily best solution, in terms of the smallest v(x+), are used for

the nm(nj − np) components of the next initial value, i.e.

x0 =
[
εT0 h

+,(1)T

N . . . h
+,(nm)T

N

]T
. (7.37)

Note that yet another index for (7.37) to denote the iteration along different initial values was
omitted. The selection of the (next) initial roughness ε0 is done by a random number generator,
assuming a uniformly distributed roughness between 0% and 5% of the corresponding pipe’s
diameter. In this context, it turned out effective to vary only (or more aggressively for another
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modification later) those elements of ε0 which are not in the physically relevant range, i.e.
ε0,i = random(0, 0.05di) for [x+]i = ε+i > 0.05di ∀i ∈ P.

In case Algorithm 1 does return h
(i)
N outside its considered range (7.36), the returned x will

not be buffered in x+, even if v(x) would be the smallest so far.

Algorithm 2 Launching Algorithm 1 effectively

1: procedure NetCalibration(FUN,x0)
Initial Phase

2: [x+,f+]← Newton(FUN,x0) . run Algorithm 1

3: v+ ←
∑njnm

p=1

∣∣∣f+
p

∣∣∣ . norm calculation (7.22b)

4: x← x0 . for initialization only
5: iter ← 0 . iter . . . number of iterations

Main Loop
6: while (v+ > εf or ‖x− x+‖L2 > εx) and (iter < max number of iter) do
7: x0 ← x+

8: determine indices [i1 i2 . . . inε ] where [x+]i∈P = εi > 0.05di ∀i ∈ {i1, i2, . . . , inε}
9: [x0]i ← random(0, 0.05di) for i = i1, i2, . . . , inε . random number: [0%, 5%] of di

10: [x,f ]← Newton(FUN,x0)
11: v ←

∑njnm

p=1

∣∣fp∣∣ . norm calculation (7.22b)
12: [xhN ]l ← [x]l+n` for l = 1, 2, . . . , nm(nj − np) . cf. (7.36c)

Buffer “Good” Solutions
13: if v ≤ v+ and hN ≤ xhN ≤ hN then
14: x+ ← x, v+ ← v,f+ ← f
15: end if

16: iter ← iter + 1
17: end while

18: return [x+,f+]
19: end procedure

Actually, Algorithm 2 steers x, provided by Algorithm 1, back to its physical range by
varying roughnesses. Although Algorithm 2 requires the not-measured pressure heads to remain
inside their physical relevant range, that is hN ≤ xhN ≤ hN (see line 13 of Algorithm 2),
roughnesses [x+]i = εi ∀i ∈ P can, in fact, exceed the 5% mark of the pipe’s diameter di.
Variants of Algorithm 2 where roughnesses, concerning x+, are forced to never exceed this
0.05di = 0.05[d]i ∀i ∈ P boundary turned out far too conservative in the solution finding.

However, even when considering no disturbances at all, the real root x∗ will not lead to a
perfect zero, i.e. v(x∗) > 0 due to numerics. A basic assumption for Algorithm 2 to work is
that this real root x∗ has a clearly distinguishable (cf. with (7.36c))

v(x∗) < v(x) ∀x ∈

[0n`
hN

]
,

[
0.05d

hN

] (7.38)

value in the defined range at least. This can only be the case if Assumption 7.1 holds, providing
measurement-sets which are sufficiently independent from each other.

The limits for Algorithm 2 to abort, referring to εf and εx, should actually be chosen conser-
vatively, compared to the ones used for Algorithm 1, to avoid too many iterations in this outer
loop. Thereby, condition v+ > εf (m3/s) allows direct adjustment of the accuracy with respect
to the sum of all nodal consumption-errors (heavily dependent on nj). Also, keep in mind that
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at this point one still has to select initial conditions for Algorithm 2 as well as the physically

relevant range for the not-measured pressures h
(i)
N ∀i, namely hN and hN . With the purpose to

clarify the general methodology, an example is provided in the following.

7.5 Illustrative Example

The 3-cycle network in figure 7.1 serves as illustration. First, incidence matrix

A =


1 −1 −1 0 0 0 0 0
0 1 0 −1 −1 0 0 0
0 0 1 0 0 0 1 1
0 0 0 1 0 1 −1 0
0 0 0 0 1 −1 0 −1

 ∈ Znj×n`
{−1,0,1}, (7.39)

nodal elevation z = [0 10 5 0 0]T (m), the pipes’ diameter d = 0.04 × 1n` (m) (i.e.
di = [d]i ∀i ∈ P), their length l = [10 10 20 15 5 10 15 5]T (m), roughnesses ε =
[2 1.75 1.5 1.25 1 0.75 0.5 0.25]T × 10−3 (m) are chosen, whereas minor losses are set
to zero. In contrast to the illustrative 2-cycle network in figure 3.2, the Colebrook & White
formula (2.6) is applied for the calculation of the friction factor λDW (2.4). The solving of the
implicit equation is achieved by (2.29) applying the Lambert function, saving computational
effort by avoiding an iterative solving scheme. In order to produce an independent set of steady-
state configurations (“measurements”), model PDu (see Definition 4.14) is utilized while varying
the desired consumption qd. Orifice coefficients, serving as control variables for the consumption
q, are not in saturation u = r�

−2 ∈]1, ε−2
r [. Eigenvalues are selected as λq = −15× 13.

The following matrices are utilized

Ch =

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 = Rq, C̄h =

[
1 0 0 0 0
0 0 0 0 1

]
= R̄q, Cs =

[
1 0T7

]T
. (7.40)
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(A) Comparison of qd(t) and q(t).
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(B) Zoom of figure 7.3A showing dynamics.
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(C) Very little difference in yh(t) +Chz.
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(D) Reynolds numbers.

Figure 7.3: Figures showing nm = nm,min = 3 “measurement” -sets for the
roughness calibration of the 3-cycle network in figure 7.1.

Figure 7.3A shows that the real consumption follows qd appropriately along the linear dif-
ferential equation (4.22), also the consumption values used for (7.7) were displayed explicitly.
As a remark, all the selected references concerning qd(t) were generated with a filtered step
using a Butterworth filter which degree 2 and a cut-off angular frequency of ωc = 10 rad/s each
concerning figure 7.3A.

Beforehand, the selected configuration by means of consumption q(t), which leads to sensed
head values yh +Chz, which can barely be distinguished among each other, was chosen on pur-
pose for this example. Due to very little difference among the yh +Chz, numerical inaccuracies
are sufficient to cause serious difficulty to restore the roughness ε with yh and q when applying
(7.7), presumably violating Assumption 7.1. In this context it is important to emphasize that
this illustrative example was configured such that all flows in all the 3 “measurement”-sets are
in the turbulent regime according to Assumption 7.7, seen in figure 7.3D. The quantities to set
up (7.7) as well as its Jacobian (7.15) are summarized in the following table.

set 1 2 3 unit

90.9743 85.0087 77.5380
yh 90.8720 84.8200 77.2370 m

90.8339 84.7638 77.1594

0.9002 1.1001 1.3000
q 1.5002 2.0001 2.5000 l/s

1.0502 1.3501 1.6500

hs 100 100 100 m

Table 7.3: Measurement-sets.

Initial Values. The initial value for the not-measured pressure head at node 5, i.e. h
(i)
N0,5

,
is chosen as the mean over all surrounding pressure heads (which happen to be located at
pressure-nodes).

h
(i)
N0,5

=
1

nj − np

nj−np∑
j=1

[yh]
(i)
j =

1

3

4∑
j=2

h
(i)
j ∀i (7.41a)
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The initial value for the not-measured pressure head at node 1, i.e. h
(i)
N0,1

, is chosen analogously.

h
(i)
N0,1

=
1

3

(
h(i)
s + h

(i)
2 + h

(i)
3

)
∀i (7.41b)

The initial roughness value is chosen as 1% of the pipes’ diameter, leading to the initial vector

x0 =
[
εT0 h

(1)
N0,1

h
(1)
N0,5

h
(2)
N0,1

h
(2)
N0,5

h
(3)
N0,1

h
(3)
N0,5

]T
=
[
0.0004× 1Tn` 93.9488 90.8934 89.9429 84.8642 84.9250 77.3115

]T
(7.42)

for launching Algorithm 2. The minimal and maximal value of all surrounding pressure heads in
the corresponding measurement-set is chosen for lower and upper boundary concerning hN and

hN , leading, for instance, to a maximal value of the pressure at node 1 of h
(i)
N,1 ≤ hN

(i)
1 = h

(i)
s =

100 ∀i. As it will turn out that the presented xhN results never leave their defined physically
relevant range, these boundaries are not important for the present example. The initial values
along some iterations of Algorithm 2 are presented in table 7.4.

Table 7.5 presents the solutions of Algorithm 1, which was launched with initial values in
table 7.4, along some iterations of Algorithm 2. Concerning Algorithm 1, the maximal number
of iterations was limited to 1000, whereas εf = 10−7 and εx = 5× 10−7.

iteration 1 2 3 4 5 6 7 x∗

ε1 0.400 0.225 1.272 1.272 0.319 1.177 1.239 2.000

ε2 0.400 1.632 1.562 1.567 1.730 1.730 1.730 1.750

ε3 0.400 1.410 1.227 1.083 1.496 1.496 1.496 1.500

ε4 0.400 1.111 1.361 1.361 1.176 1.176 1.176 1.250

ε5 0.400 1.054 0.824 0.824 1.028 1.028 1.028 1.000

ε6 0.400 0.788 0.696 0.696 0.786 0.786 0.786 0.750

ε7 0.400 0.499 0.471 0.471 0.505 0.505 0.505 0.500

ε8 0.400 0.250 0.228 0.228 0.250 0.250 0.250 0.250

h
(1)
N,1 93.949 93.047 94.344 94.344 93.097 93.097 93.097 93.104

h
(1)
N,5 90.893 90.885 90.886 90.886 90.885 90.885 90.885 90.885

h
(2)
N,1 89.943 88.443 90.602 90.602 88.525 88.525 88.525 88.538

h
(2)
N,5 84.864 84.846 84.848 84.848 84.846 84.846 84.846 84.846

h
(3)
N,1 84.925 82.674 85.916 85.916 82.799 82.799 82.799 82.818

h
(3)
N,5 77.311 77.280 77.283 77.283 77.280 77.280 77.280 77.280

Table 7.4: Initial values for calibrating the 3-cycle network (figure 7.1) via Al-
gorithm 1 along iterations of Algorithm 2. Roughnesses εi are presented in mm,

whereas pressure heads are presented in m.

In reference to table 7.4 and 7.5, Algorithm 2 ran for a fixed number of iterations, namely
7 iterations in order allow visible investigation of its working principle. In this context, the
accuracy limits εf and εx for the while loop in line 6 of Algorithm 2 were chosen such that
Algorithm 2 does not abort until the fixed iteration-number 7 was reached.
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iteration 1 2 3 4 5 6 7 x∗

ε1 2.036 1.272 1.986 2.005 1.340 2.031 2.036 2.000

ε2 1.632 4.280 1.802 1.730 4.188 1.648 1.631 1.750

ε3 1.410 3.880 1.562 1.496 3.398 1.425 1.408 1.500

ε4 1.111 1.361 1.216 1.176 3.568 1.183 1.185 1.250

ε5 1.054 0.824 0.990 1.028 0.393 1.019 1.019 1.000

ε6 0.788 0.696 0.752 0.786 0.199 0.755 0.756 0.750

ε7 0.499 0.471 0.495 0.505 0.389 0.493 0.494 0.500

ε8 0.250 0.228 0.261 0.250 0.710 0.265 0.264 0.250

h
(1)
N,1 93.047 94.344 93.128 93.097 94.219 93.056 93.047 93.104

h
(1)
N,5 90.885 90.886 90.885 90.885 90.890 90.885 90.885 90.885

h
(2)
N,1 88.443 90.602 88.578 88.525 90.395 88.458 88.442 88.538

h
(2)
N,5 84.846 84.848 84.846 84.846 84.856 84.846 84.846 84.846

h
(3)
N,1 82.674 85.916 82.877 82.799 85.604 82.697 82.674 82.818

h
(3)
N,5 77.280 77.283 77.281 77.280 77.297 77.280 77.280 77.280

v(x)× 105 5.897 1.969 7.630 1.932 5014.8 5.151 5.089 0.011

Table 7.5: Solutions of (7.7) concerning the 3-cycle network (figure 7.1) by
Algorithm 1 along iterations of Algorithm 2. The corresponding initial values can
be found in table 7.4. Roughnesses εi are presented in mm, whereas pressure heads

are presented in m.

Discussion. The pleasing news is that the roughness and the not-measured pressure heads in
all measurement-sets could be restored with reasonable accuracy (i.e. a maximal deviation of
6% in ε+4 ). The intermediate best result x+, in reference to Algorithm 2, in table 7.5 is colored
in (color) olive with a residual of v(x+) = 1.932×10−5 m3/s = 1.932×10−2 l/s, whereas the real
root can still clearly be distinguished from all other solutions of Algorithm 1 with a residual of
v(x∗) = 0.011×10−2 l/s. The blue colored values in table 7.5 are those roughnesses which exceed
the 5% mark of the corresponding pipe’s diameter. Those roughnesses are then selected by a
random number generator applied in Algorithm 2 for the next iteration. Randomly generated
roughnesses can be found in corresponding entries of table 7.4.

On the contrary, one has to pay attention to the fact that a solution was found which features
an ever so slightly higher residual v(x) = 1.969 × 10−2 l/s in the second iteration of table 7.5
compared to v(x+) = 1.932×10−2 l/s. When also considering measurement noise, one certainly
loses the capability to identify the real root by only looking at v(x). Also, the indicator that the
solution in the second iteration has two roughnesses ε2, ε3 which exceed their physical bounds
in comparison to x+ (olive), only featuring ε1 which exceeds 0.05d1 by a mere 0.25%, will not
be sufficient. In the opinion of the author, the only possibility to deal with measurement noise
and potentially non-zero minor losses (referring to Assumption 7.3 and 7.4) is by considering
measurement-sets which are sufficiently independent from each other in a sense that “measured”

heads y
(i)
h +Chz are sufficiently different from each other. This comes on top of the requirement

formulated within Assumption 7.3. In this context, it turned out particularly useful to not
only consider the minimal number of required measurement-sets nm,min but additional, thereby
improving the number of (nodal) equations to the number of unknowns. Nevertheless, the
solving becomes more delicate due to a fast growing equation-set (7.7).
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7.6 Tensor Method

Recapitulating the above example, one will recognize that, in fact, the real root x∗ does have a
considerable smaller residual v(x∗) = 0.011× 10−2 l/s when compared to the other solutions of
Algorithm 1 in table 7.5. Subsequently, there is potential to improve the result by two orders
of magnitude in terms of the residual v(x).

One part of Algorithm 1 to be potentially improved, involves the determination of the search
direction. Generally, the search direction is determined by setting the truncated Taylor series,
as in (7.12) to zero, whereas Newton proposes to truncate after the linear term. The primary
idea is simple, also consider the second order term of this Taylor series for the calculation of the
search direction with the intention to account for additional non-linearities of f(x).

f(xk) = f(xk−1) +
∂f

∂x

∣∣∣∣
xk−1

∆xk +
1

2


∆xTk H(f1)

∣∣
xk−1

∆xk

∆xTk H(f2)
∣∣
xk−1

∆xk
...

∆xTk H(fnmnj)
∣∣∣
xk−1

∆xk

+O(∆x3
k) (7.43)

Concerning notation, H(fi) denotes the Hessian matrix (with n = n` + nm(nj − np) = njnm

when square)

H(f)(x) = ∇2
xf =


∂2f
∂x2

1

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
. . . ∂2f

∂x2∂xn
...

...
. . .

...
∂2f

∂xn∂x1

∂2f
∂xn∂x2

. . . ∂2f
∂x2
n

 (7.44)

of the i-th component of f(x). The method of taking the solution ∆xk of the equation

f(xk−1) +
∂f

∂x

∣∣∣∣
xk−1

∆xk +
1

2


∆xTk H(f1)

∣∣
xk−1

∆xk

∆xTk H(f2)
∣∣
xk−1

∆xk
...

∆xTk H(fnmnj)
∣∣∣
xk−1

∆xk

 = 0, (7.45)

referred to as Tensor Equation, for the search direction is called the Tensor Method [Bouari-
cha and B. Schnabel, 1998; Nocedal and Wright, 2006]. In practice, however, there are two
particularly good reasons why the Tensor Equation is hardly applied for the determination of
the search direction, although it is known that once (7.45) is solved, significantly less iterations
are necessary for the iterative scheme to converge to x∗ for solving f(x) = 0 [Bouaricha and
B. Schnabel, 1998]:

� assuming the problem has as many unknowns as equations one would need to store n3

entries, where n = nmnj, evaluating Hessian H(f1),H(f2), . . . in each iteration

� the Tensor Equation as in (7.45) is an actual hard problem to solve, especially for large
problems

In this thesis it is shown that the former issue (first bullet point) can actually be completely
resolved for the current application. Concerning the second bullet point, however, the author
presents findings which lead to the strong presumption that the second problem may be mitigated
substantially.
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7.6.1 Second Turbulent Flow Derivatives

This section is supplement to section 7.4.1 and provides the appropriate second derivatives of
the turbulent flow (7.5) with respect to the roughness ε and the not-measured pressure head
hN . One receives

∂2Qi
∂εj∂εk

(7.6)
=

∂2ft,i
∂εj∂εk

= 0 for ∀i 6= j 6= k ∈ P,
∂2ft,i

∂εj∂hN,k
= 0 for ∀i 6= j ∈ P ∧ k ∈ P̄

(7.46a)

which holds always for all pipes, whereas one has to expect that

∂2ft,i
∂ε2i

6= 0 for i ∈ P,
∂2ft,i

∂εi∂hN,j
6= 0 for i ∈ P ∧ j ∈ P̄. (7.46b)

Remark 7.11. As the turbulent flow (7.5) is at least two times continuously differentiable (in
the turbulent regime at least) with respect to ε and ∆h, the second derivatives

∂2ft,i
∂εi∂hN,j

=
∂2ft,i

∂hN,j∂εi
∀i ∈ P ∧ j ∈ P̄ (7.47a)

∂2ft,i
∂hN,k∂hN,j

=
∂2ft,i

∂hN,j∂hN,k
∀i ∈ P ∧ j, k ∈ P̄ (7.47b)

of (7.5) are symmetrical.

Suppressing indices for the sake of readability, one obtains the following derivatives while
applying the chain rule ∂ft

∂hN
= ∂ft

∂∆h
∂∆h
∂hN

and (7.20):

∂2ft,i
∂ε2i

=̂
∂2ft
∂ε2

=
sign(∆h) 2

ln (10)

√
|∆h|
k

(
1

3.7d

)2

`2(ε,∆h)

=: [pε2(ε,∆h)]i = pε2,i(εi,∆hi) ∀i ∈ P

(7.48a)

∂2ft,i
∂εi∂∆hi

=̂
∂2ft
∂ε∂∆h

=
∂2ft
∂∆h∂ε

= − 1

ln (10)

√ 1

k|∆h|
1

3.7d `(ε,∆h)
+

2.51ηA

3.7ρd2

|∆h|−1

`2(ε,∆h)


=: [pε∆h(ε,∆h)]i = pε∆h,i(εi,∆hi) ∀i ∈ P (7.48b)

The vector function ft(ε,∆h) = [ft,1(ε1,∆h1) . . . ft,n`(εn`,∆hn`)]
T thereby denotes function

(7.5) evaluated for each pipe flow while applying abbreviation (7.18). In this context it is
trivial to see that, e.g., ∂ft

∂∆h = diag (p∆h) is diagonal. As in section 7.4.1, note that the author

assumed that ∂
∂∆h sign(∆h) = 0, neglecting the Dirac-Delta δ(∆h) function. Applying unity

vector ei ∈ Zn`{0,1} when writing (7.48b) in vector notation one obtains

∂2ft,i
∂ε∂hN

=
∂

∂∆hN

(
∂ft,i
∂εi

∂εi
∂ε

)T
=

(
∂εi
∂ε

)T ∂2ft,i
∂εi∂∆hi

∂∆hi
∂hN

= −eipε∆h,ieTi AT C̄T
h ∀i ∈ P.

(7.49)
Regarding the second derivative with respect to hN in the scalar form

∂2ft,i
∂hN,j∂hN,k

=
∂2ft,i
∂∆h2

i

∂∆hi
∂hN,j

∂∆hi
∂hN,k

i ∈ P ∧ j, k ∈ P̄ (7.50)
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one obtains

∂2ft,i
∂∆h2

i

=: [p∆h2(ε,∆h)]i = p∆h2,i(εi,∆hi) ∀i ∈ P =̂ (7.51a)

∂2ft
∂∆h2

=
sign(∆h)

2 ln (10)

[
|∆h|−3/2

√
k

ln (`(ε,∆h))− 2.51
ηA

ρd

|∆h|−2

`(ε,∆h)
+

(
2.51

ηA

ρd

)2
√
k|∆h|−5/2

`2(ε,∆h)

]
(7.51b)

yet again suppressing indices (one would simply add, analogously to (7.48), the identical index
for all pipe parameters, ∆h and ε). Applying vector notation, (7.50) yields

∂2ft,i
∂h2

N

=
∂

∂hN

(
∂ft,i
∂∆hi

∂∆hi
∂hN

)T
=

(
∂∆hi
∂hN

)T ∂2ft,i
∂∆h2

i

∂∆hi
∂hN

=
(
C̄hAei

)
p∆h2,i

(
eTi A

T C̄T
h

)
∀i ∈ P. (7.52)

Finally, things become structurally more appealing by rewriting the derivatives. Denoting

A =
[
a1 a2 . . . an`

]
=
[
b1 b2 . . . bnj

]T
(7.53)

with ai ∈ Znj

{−1,0,1} ∀i ∈ P and bi ∈ Zn`{−1,0,1} ∀i ∈ I while rewriting (7.50) and (7.48), the second
turbulent flow derivatives

∂2ft,i
∂h2

N

(7.51)∧(7.52)
= p∆h2,iC̄haia

T
i C̄

T
h

∂2ft,i
∂ε2

(7.48a)
= pε2,ieie

T
i

∂2ft,i
∂ε∂hN

=

(
∂2ft,i
∂hN∂ε

)T
(7.48b)∧(7.49)

= −pε∆h,ieieTi AT C̄T
h

(7.54a)

(7.54b)

(7.54c)

∀i ∈ P

along i = 1, 2, . . . , n` can be presented compactly where nonlinearties are stored in vectors
pε2 ,pε∆h and p∆h2 which are functions on ε and ∆h. However, the i-th component of these
vector functions only depends on the i-th component of ε and ∆h.

In analogy to the first turbulent flow derivatives in section 7.4.1, it can be recognized that
the information along the different measurement-sets can be entirely stored in vector functions
pε,p∆h concerning (7.21) as well as pε2 ,pε∆h,pε2 concerning (7.54). This will be important for
the next steps.
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7.6.2 Tensor Equation

Lemma 7.12. Suppose Hk−1(f) = H(f)(xk−1) for any scalar function f . Then, the Hessian
term in the Tensor Equation (7.45) concerning the equation set (7.7) yields


∆xTkHk−1(f1)∆xk
∆xTkHk−1(f2)∆xk

...
∆xTkHk−1(fnmnj)∆xk

 =


A

A
. . .

A





∆xTkHk−1(Q
(1)
1 )∆xk

∆xTkHk−1(Q
(1)
2 )∆xk

...

∆xTkHk−1(Q
(1)
n` )∆xk

∆xTkHk−1(Q
(2)
1 )∆xk

...

∆xTkHk−1(Q
(nm)
n` )∆xk


(7.55)

when considering pipe flow Q
(i)
j = Q(εj ,∆h

(i)
j ) ∀j ∈ P ∧ i ∈ M which is considered to be a

function on the roughness and the head loss generally.

Proof. It is sufficient to show that
∆xTkHk−1(f1+(i−1)nj

)∆xk
∆xTkHk−1(f2+(i−1)nj

)∆xk
...

∆xTkHk−1(fnj+(i−1)nj
)∆xk

 !
= A


∆xTkHk−1(Q

(i)
1 )∆xk

∆xTkHk−1(Q
(i)
2 )∆xk

...

∆xTkHk−1(Q
(i)
n` )∆xk

 (7.56)

for measurement-set i = 1. The validity of (7.56) for remaining i = 2, 3, . . . , nm measurement-
sets follows subsequently. Let aij = [A]ij and remember that A = [b1 b2 . . . bnj ]

T according

to (7.53). Hence bj = [aj,1 aj,2 . . . aj,n`]
T ∀j ∈ I. Omitting the 1-index in Ax

(1)
Q −RT

q q
(1) =

[f1 . . . fnj ]
T !

= 0 concerning the first measurement-sets in favor of readability, one receives

Hk−1(fj) = Hk−1(bTj xQ) = aj,1Hk−1(Q1) + aj,2Hk−1(Q2) + . . .+ aj,n`Hk−1(Qn`) ∀j ∈ I

(7.57)

exploiting linearity of the Hessian operator. Extended by the search direction from the left and
right, (7.57) yields

∆xTkHk−1(fj)∆xk = bTj


∆xTkHk−1(Q1)∆xk
∆xTkHk−1(Q2)∆xk

...
∆xTkHk−1(Qn`)∆xk

 ∀j ∈ I. (7.58)

By extending (7.58) for each of node j ∈ I, one obtains (7.56). Additionally, extended with
the remaining measurements-sets 2, 3, . . . , nm, it is apparent that (7.55) is equivalent to the
nonlinear term in (7.45). This completes the proof. �

It is important to note that Lemma 7.12 does hold not only for the turbulent flow, but also
for laminar and transitional flow. Nevertheless, Lemma 7.12 on its own does not directly resolve
any of the mentioned problems involved with the Tensor Method.
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Notation. Knowing that [∆xk]i = ∆xk,i for i = 1, 2, . . . , n`+ nm(nj − np) a separation of the
search direction2

d =
[
dTε d

(1)T

hN
d

(2)T

hN
. . . d

(nm)T

hN

]T
(7.59a)

dε =
[
∆xk,1 ∆xk,2 . . . ∆xk,n`

]T
(7.59b)

d
(i)
hN

=
[
∆xk,n`+(i−1)(nj−np)+1 ∆xk,n`+(i−1)(nj−np)+2 . . . ∆xk,n`+i(nj−np)

]T
∀i ∈M (7.59c)

between roughness and not-measured pressure heads is conducted. Analogously, function f(x) =
[f1(x) f2(x) . . . fnmnj(x)]T (7.14) which describes the residual of set (7.7) is separated into

f
(i)
k−1 :=

[
f1+(i−1)nj

(xk−1) f2+(i−1)nj
(xk−1) . . . fnj+(i−1)nj

(xk−1)
]T

∀i ∈M (7.59d)

concerning the Tensor Method iteration k and measurement-set i.

Theorem 7.13. Let all assumptions in table 7.1 in addition to Assumption 7.7 hold. Further

apply notation (7.59) as well as p
(i)
X := pX (ε,∆h(i)) for all the partial derivatives with respect

to X ∈ {ε, ε2,∆h,∆h2, ε∆h}. Then, Tensor Equation (7.45) for set (7.7) is equivalent to

A

( III︷ ︸︸ ︷
1

2
p

(i)
ε2
� d�2

ε − dε � p
(i)
ε∆h � (AT C̄T

h d
(i)
hN

) +
1

2
p

(i)
∆h2 � (AT C̄T

h d
(i)
hN

)�
2

+ p(i)
ε � dε − p

(i)
∆h � (AT C̄T

h d
(i)
hN

)︸ ︷︷ ︸
II

+ diag(cl)A
TL−1f

(i)
k−1︸ ︷︷ ︸

I

)
=: Am̄

(i)
k (7.60)

for all of the i ∈M measurement-sets.

Proof. Under consideration of first turbulent flow derivatives (7.21), Jacobian (7.15) yields
diag(p

(1)
ε ) −diag(p

(1)
∆h)AT C̄T

h 0 . . . 0

diag(p
(2)
ε ) 0 −diag(p

(2)
∆h)AT C̄T

h . . . 0
...

...
. . .

diag(p
(nm)
ε ) 0 0 . . . −diag(p

(nm)
∆h )AT C̄T

h

 (7.61)

leading to the following Jacobian term in Tensor Equation (7.45) when applying (7.59)

A
(
p(i)
ε � dε − p

(i)
∆h � (AT C̄T

h d
(i)
hN

)
)

=̂ A II . (7.62)

Compare this result with incidence matrix A times the term II in the second line of (7.60).
Considering Lemma 7.12 concerning the Hessian term with respect to the j ∈ P turbulent pipe
flow (7.5) (and the k-th iteration) in Tensor Equation (7.45), one obtains in the first i = 1

2Please do not confuse the search direction d with the pipes‘ diameter [d]i = di ∀i ∈ P.
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measurement-set

∆xTkHk−1(f
(1)
t,j )∆xk =

[
dTε d

(1)T

hN
. . . d

(nm)T

hN

]


∂2f
(1)
t,j

∂2ε2
∂2f

(1)
t,j

∂ε∂h
(1)
N

0 . . .

∂2f
(1)
t,j

∂h
(1)
N ∂ε

∂2f
(1)
t,j

∂h
(1)2

N

0 . . .

0 0 0 . . .
...

...
...

. . .




dε

d
(1)
hN
...

d
(nm)
hN

 (7.63a)

(7.54)
= p

(1)
ε2,j
dTε eje

T
j dε − 2p

(1)
ε∆h,jd

T
ε eje

T
j A

T C̄T
h d

(1)
hN

+ p
(1)
∆h2,j

d
(1)T

hN
C̄haja

T
j C̄

T
h d

(1)
hN

(7.63b)

and in the second measurement-set

∆xTkHk−1(f
(2)
t,j )∆xk =

[
dTε d

(1)T

hN
. . . d

(nm)T

hN

]


∂2f
(2)
t,j

∂2ε2
0

∂2f
(2)
t,j

∂ε∂h
(2)
N

0 . . .

0 0 0 0 . . .
∂2f

(2)
t,j

∂h
(2)
N ∂ε

0
∂2f

(2)
t,j

∂h
(2)2

N

0 . . .

0 0 0 0 . . .
...

...
...

...
. . .




dε

d
(1)
hN
...

d
(nm)
hN


(7.64a)

(7.54)
= p

(2)
ε2,j
dTε eje

T
j dε − 2p

(2)
ε∆h,jd

T
ε eje

T
j A

T C̄T
h d

(2)
hN

+ p
(2)
∆h2,j

d
(2)T

hN
C̄haja

T
j C̄

T
h d

(2)
hN

(7.64b)

which, ultimately, results in

∆xTkHk−1(f
(i)
t,j )∆xk = p

(i)
ε2,j
dTε eje

T
j dε − 2p

(i)
ε∆h,jd

T
ε eje

T
j A

T C̄T
h d

(i)
hN

+ p
(i)
∆h2,j

d
(i)T

hN
C̄haja

T
j C̄

T
h d

(i)
hN

∀i ∈M ∧ j ∈ P. (7.65)

This is feasible as a result of Assumption 7.1 leading to

∂2f
(i)
t,j

∂ε∂h
(l)
N

= 0,
∂2f

(i)
t,j

∂h
(l)2

N

= 0 ∀i ∈M 6= l ∈M ∧ j ∈ P. (7.66)

The application of the Hadamard operator allows a compact representation of (7.65)

p
(i)
ε2
� d�2

ε − 2dε � p(i)
ε∆h � (AT C̄T

h d
(i)
hN

) + p
(i)
∆h2 � (AT C̄T

h d
(i)
hN

)�
2

=̂ III (7.67)

for all i ∈ {1, . . . , nm} = M. In order for (7.65) to be equivalent to (7.67) along all j ∈ P one
has to prove that 

p
(i)
∆h2,1

d
(i)T

hN
C̄ha1a

T
1 C̄

T
h d

(i)
hN

p
(i)
∆h2,2

d
(i)T

hN
C̄ha2a

T
2 C̄

T
h d

(i)
hN

...

p
(i)
∆h2,n`

d
(i)T

hN
C̄han`a

T
n`
C̄T
h d

(i)
hN

 = p
(i)
∆h2 � (AT C̄T

h d
(i)
hN

)�
2
. (7.68)
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Denoting C̄T
h d

(i)
hN

= [c
(i)
1 c

(i)
2 . . . c

(i)
nj

]T and aij = [A]ij , this becomes apparent when writing

d
(i)T

hN
C̄haj = c

(i)
1 aj1 + c

(i)
2 aj1 + . . .+ c

(i)
2 ajnj ∀j ∈ P ∧ i ∈M (7.69a)

⇒ d
(i)T

hN
C̄haja

T
j C̄

T
h d

(i)
hN

=
(
c

(i)
1 aj1 + c

(i)
2 aj1 + . . .+ c

(i)
2 ajnj

)2
=
[
(AT C̄T

h d
(i)
hN

)�
2
]
j
. (7.69b)

The equivalence of the Jacobian (7.62) (see A II ) and the Hessian term (7.67) (see III), under
consideration of Lemma 7.12, to the appropriate terms of the Tensor Equation (7.45) has been

proven. The equivalence of missing zero-order term f
(i)
k−1 with A I , i.e.

f
(i)
k−1 = A

(
diag(cl)A

TL−1f
(i)
k−1

)
(7.70)

becomes apparent when looking at Proposition 4.1. The combination of (7.62), (7.67), (7.70)

under consideration of Lemma 7.12, that is Am̄
(i)
k =̂ A( I + II + III), yields the Tensor Equation

(7.45) in measurement-set i. This completes the proof. �

In sum, Theorem 7.13 delivers the Tensor Equation in a compact form which comple-
tely resolves the problem to store and evaluate nmnj Hessians Hk−1(f1),Hk−1(f2), . . . with
(n`+ nm(nj− np))2 entries each. Effectively, only 5nlnm second-turbulent-flow-derivatives need
to be evaluated in comparison to njnm(n`+nm(nj−np))2. Actually, the linear Newton equation
for the search direction (7.13) considering the Jacobian, already requires nmnj×(n`+nm(nj−np))
first-turbulent-flow-derivative evaluations when not directly applying (7.21). Overall, the appli-
cation of the Hardamard operator substantially improves computational effort in this context.
Nonetheless, the question how to solve it, remains.

As the Tensor Equation in all its derived forms, is nothing else but a set of nmnj polynomials
of degree 2 in n`+nm(nj−np) unknowns, the examples below will help to establish a connection
between its solutions and the Hadamard product.

7.6.3 Motivating Examples

Consider the set of two polynomial equations with degree 2 in two unknowns x, y

2x2 + 2y2 + 5xy − x+ y − 1 = 0

−3x2 − 2y2 + 5xy + 10x− 8y − 8 = 0
⇔

1a

(x+ 2y − 1)
1b

(2x+ y + 1) = 0

(−x+ y + 2)
2a

(3x− 2y − 4)
2b

= 0
(7.71)

which can be separated into linear terms each. The solutions of (7.71) can then be obtained by
solving the linear equations

1a ∧ 2a =̂

[
1 2
−1 1

][
x
y

]
=

[
1
−2

]
, 1b ∧ 2b =̂

[
2 1
3 −2

][
x
y

]
=

[
−1
4

]
, (7.72a)

1a ∧ 2b =̂

[
1 2
3 −2

][
x
y

]
=

[
1
4

]
, 1b ∧ 2a =̂

[
2 1
−1 1

][
x
y

]
=

[
−1
−2

]
(7.72b)

as combination of the linear terms in (7.71), effectively, leading to 4 independent solutions. This
means (7.71) can be rewritten in terms of (taking “( 1a ∧ 2a )� ( 1b ∧ 2b )”)[ 1 2

−1 1

][
x
y

]
−

[
1
−2

]�
[2 1

3 −2

][
x
y

]
−

[
−1
4

] = 0 (7.73a)
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or (taking “( 1a ∧ 2b )� ( 1b ∧ 2a )”)[1 2
3 −2

][
x
y

]
−

[
1
4

]�
[ 2 1
−1 1

][
x
y

]
−

[
−1
−2

] = 0 (7.73b)

when applying the Hadamard product. According to Bézout ’s theorem [Coolidge, 2004, p. 10],
it is known that a set of n polynomials {f1, f2, . . . , fn} in n unknowns has at most

Πn
i=1deg(fi) (7.74)

(i.e. the product of the degrees of each polynomial) solutions as it is the case in the present
example. This statement is, however, incomplete as there possibly exist infinitely many solutions
[Coolidge, 2004, p. 10], for instance when the equations are linear dependent. However, by
selecting representation (7.73a) or (7.73b) one loses 2 solutions when applying the Hadamard
product.

The factorization into linear terms as in (7.71) is not always possible for a polynomial with
more than one variable, for instance

f(x, y) = xy + 1 (7.75)

is not factorizable into linear terms. For the general case, consider a general polynomial of
degree 2 in two unknowns, also known as conic section

f(x, y) = ax2 + 2hxy + by2 + 2fx+ 2gy + c = 0 (7.76)

with coefficients a, h, b, f, g, c. The following properties of (7.76) are known. Property 7.14 and
7.15 were found in [Lawrence, 1972, p.63] as well as [Spain, 2007, p.40], though in both references
respective authors do not concern themselves with a proof. Other mentions of Property 7.14
can be found in, for instance, Faucette [1996].

Property 7.14. Let coefficients a, b, h, g, f, c ∈ R. Then, the conic section f (7.76) is factorizable
into the linear-pair

f(x, y) = (Ax+By + C)(Dx+ Ey + F ) = 0 (7.77)

with coefficients A,B,C,D,E, F ∈ C if and only if

∆ :=

∣∣∣∣∣∣∣
a h f
h b g
f g c

∣∣∣∣∣∣∣ = 0 ∧ ∆̂ :=

∣∣∣∣∣a h
h b

∣∣∣∣∣ = ab− h2 ≤ 0 (7.78)

the determinant ∆ = 0 and its sub determinant ∆̂ ≤ 0. In addition to that, these two linear
factors as in (7.77) represent

� two intersecting lines if and only if ∆̂ < 0

� two parallel lines (or a single line if a = b = h = 0) if and only if ∆̂ = 0

However, in case ∆ = 0 and ∆̂ > 0, only a single point concerning x, y satisfies the conic section
(7.76) (interpreted graphically, it is an ellipse with zero radius).

In the general case where ∆ = 0, conic (7.76) is called degenerate as the coefficient matrix
to build determinant ∆ is singular.

Property 7.15. As a specification of Property 7.14, the factorization of conic (7.76) in (7.77)
yields real-valued A,B,C,D,E, F if and only if

∆ = 0 ∧ ∆̂ < 0 (7.79a)

or ∆ = 0 ∧ ∆̂ = 0 ∧ f2 + g2 ≥ c(a+ b). (7.79b)
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Lemma 7.16. Let ∆ = 0 and ∆̂ = 0, concerning the degenerate conic f(x, y) (7.76). Then,

f2 + g2 ≥ c(a+ b) ⇔ f2 ≥ ac ∧ g2 ≥ bc (7.80)

in reference to (7.79b).

Proof. Knowing that ∆̂ = 0⇔ h2 = ab, the determinant ∆ yields

∆ = abc+ 2fgh− ag2 − bf2 − ch2 = 0 (7.81a)

= 2fgh− ag2 − bf2 = 0. (7.81b)

Subsequently,

g =
1

−2a

(
2fh±

√
4(fh)2 − 4abf2

)
∆̂=0
= −fh

a
(7.81c)

g2 =

(
fh

a

)2

= f2 b

a
(7.81d)

f2 = g2a

b
. (7.81e)

This means that

f2 + g2 (7.81d)
= f2

(
a+ b

a

)
≥ c(a+ b) ⇒ f2 ≥ ac (7.81f)

f2 + g2 (7.81e)
= g2

(
a+ b

b

)
≥ c(a+ b) ⇒ g2 ≥ bc. (7.81g)

From the other side of the argumentation, it is known that f2 ≥ ac∧g2 ≥ bc and thus f2 +g2 ≥
ac+ bc. This completes the proof. �

Plausibility Check of Property 7.14. Conducting a comparison of coefficients of (7.76)
and (7.77), the six conditions

AD = a, BE = b, CF = c (7.82a)

AE +DB = 2h, BF + EC = 2g, AF +DC = 2f (7.82b)

must be met if f(x, y) ought to be factorizable into linear terms. This is the case (necessary
condition) if the set (7.82) of six equations in six unknowns is consistent. Consistency can be
verified when multiplying conditions (7.82b) among each other such that

8hgf = (AE +DB)(BF + EC)(AF +DC)

= 2ADBECF +AD(B2F 2 + E2C2) +BE(A2F 2 +D2C2) (7.83)

+ CF (A2E2 +B2D2).

By reformulating the square of conditions (7.82b) respectively, one obtains

(AE)2 + (DB)2 = 4h2 − 2AEDB
(7.82a)

= 4h2 − 2ab (7.84a)

(BF )2 + (EC)2 = 4g2 − 2BFEC
(7.82a)

= 4g2 − 2bc (7.84b)

(AF )2 + (DC)2 = 4f2 − 2AFDC
(7.82a)

= 4f2 − 2ac (7.84c)

which is inserted into the right hand side of (7.83). To conclude, consistency of set (7.82) is
preserved if

8hgf
(7.82a)∧(7.84)

= 2abc+ a(4g2 − 2bc) + b(4f2 − 2ac) + c(4h2 − 2ab) (7.85)
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holds. Bringing 8ghf of (7.85) on the right hand side while dividing by −4, condition (7.85)
yields

0
!

= 2ghf + abc− ag2 − bf2 − ch2 = ∆ (7.86)

the determinant ∆ (7.78).
As a remark on polynomials of degree n, it is possible to show that if a homogeneous

polynomial, that is f(µx) = µf(x) for any x ∈ Cn, µ ∈ C has a factorization, then its factors
must be homogeneous too. Consider, for instance, the polynomial in variables x, y, z

x3 + y3 + z3 = (x+ y + z)(x+ wy + w2z)(x+ w2y + wz) for w = e2iπ/3 (7.87)

(credit to [Elencwajg]) where i denotes the imaginary unit satisfying i2 = −1.

7.6.4 Degenerate Tensor Equation

Remark 7.17. Looking for a search direction dε and d
(i)
hN

for measurement-set i ∈ M which

solves Tensor Equation (7.60), i.e. Am̄
(i)
k (dε,d

(i)
hN

) = 0 ∀i ∈ M, the confinement to look for a

search direction which solves m̄
(i)
k (dε,d

(i)
hN

) = 0 ∀i ∈M only is eligible yet far too conservative.

This is the consequence of incidence matrix A ∈ Znj×n`
{−1,0,1} being fat, i.e. n` ≥ nj (Corollary 3.4).

To circumvent the problem that the incidence matrix A can not be directly considered when

solving m̄
(i)
k = 0 (which is considered to be a function on dε and d

(i)
hN

) component-wise, the

problem is projected into the kernel. Knowing that AST ≡ 0 in reference to Proposition 3.6,
one can write

Am̄
(i)
k (dε,d

(i)
hN

) = 0 ⇔ mk := m̄
(i)
k (dε,d

(i)
hN

)− STα(i) = 0 ∀i ∈M (7.88)

for some α(i) ∈ Cn`×nj along all measurement-set i ∈ M, where m
(i)
k (dε,d

(i)
hN
,α(i)) ∀i ∈ M is

considered to be a function on α(i) too.

Theorem 7.18. Denoting p
(i)
Xj =

[
p

(i)
X (εk,∆h

(i)
k )
]
j

for all pipes j ∈ P and measurement-

sets i ∈ M concerning all partial derivatives of turbulent flow (7.5) with respect to
X ∈ {ε, ε2,∆h,∆h2, ε∆h} in the solving-iteration k. Then, Tensor Equation (7.60) in the
measurement-set i ∈M can be factorized into linear terms

m
(i)
k = (B(i)dε +C(i)d

(i)
hN

+ v(i))� (E(i)dε + F (i)d
(i)
hN

+w(i)) i ∈M (7.89)

connected via the Hadamard product if and only if ∆
(i)
j (α(i)) = 0 and ∆̂

(i)
j ≤ 0 ∀j ∈ P for a

specific α(i) ∈ Cn`−nc, same as in (7.88), concerning the determinant

∆
(i)
j (α(i)) :=

1

2

∣∣∣∣∣∣∣∣∣∣
p

(i)

ε2j
−p(i)

ε∆hj
p

(i)
εj

−p(i)
ε∆hj

p
(i)

∆h2
j

−p(i)
∆hj

p
(i)
εj −p

∆h
(i)
j

2f̄
(i)
0,j(α

(i))

∣∣∣∣∣∣∣∣∣∣
and ∆̂

(i)
j :=

∣∣∣∣∣∣∣
p

(i)

ε2j
−p(i)

ε∆hj

−p(i)
ε∆hj

p
(i)

∆h2
j

∣∣∣∣∣∣∣ . (7.90)

Also applying

f̄
(i)
0,j(α

(i)) =
[
f̄

(i)
0 (α(i))

]
j

:=
[

diag (cl)AL
−1f

(i)
k−1 − S

Tα(i)
]
j

∀j ∈ P ∧ i ∈M, (7.91)

matrices in (7.89) yield the diagonal forms B(i) = diag(b(i)),E(i) = diag(e(i)), whereas C(i) =
diag(c(i))AT C̄T

h and F (i) = diag(f̃ (i))AT C̄T
h with b(i), e(i), c(i), f̃ (i),v(i),w(i) ∈ Cn` respectively
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which will be referred to as Tensor Separators. Thereby, v(i),w(i) ∈ Cn` are functions on
α(i) ∈ Cn`−nj which lie inside the kernel of the incidence matrix A.

Proof. For the sake of readability, the index (i) along the measurement-sets i = 1, 2, . . . , nm is
not displayed. Comparing terms of (7.60) with the ones of (7.89) one obtains:

Bdε �Edε
!

=
1

2
pε2 � d�

2

ε(i)

CdhN � FdhN
!

=
1

2
p∆h2 � (AT C̄T

h dhN )�
2

(ii)

Bdε � FdhN +CdhN �Edε
!

= −dε � pε∆h � (AT C̄T
h dhN )(iii)

Bdε �w + v �Edε
!

= pε � dε(iv)

CdhN �w + v � FdhN
!

= −p∆h � (AT C̄T
h dhN )(v)

v �w !
= diag(cl)A

TL−1fk−1 − STα =: f̄0(α)(vi)

The simplification starts with the premise that the above conditions should hold for every
dε and dhN , not only for ones to find. As a result, B = diag(b) and E = diag(e) in (i) are
diagonal and lead to b� e = 1

2pε2 . Subsequently, condition (iv) yields

(diag(w)B + diag(v)E)dε = pε � dε ⇔ w � b+ v � e = pε. (7.92)

In analogy, (iii) yields

dε � (diag(b)FdhN + diag(e)CdhN ) = −dε � (diag(pε∆h)AT C̄T
h dhN ) (7.93a)

⇒ diag(b)F + diag(e)C = −diag(pε∆h)AT C̄T
h . (7.93b)

Considering (7.93b) and condition (v), which can be rewritten in terms of diag(w)C +
diag(v)F = −diag(p∆h)AT C̄T

h , one can conclude that (also concerning (ii))

F = diag(f̃)AT C̄T
h , C = diag(c)AT C̄T

h (7.94)

is the only feasible choice for matrices F ,C. Conditions (i),(iii), (iv),(v) and (vi) are already
independent from the search direction. Under (7.94), (ii) yields f̃ � c = 1

2p∆h2 , also leading to

b� f̃ + e� c = −pε∆h concerning (iii) or (7.93b). In sum, one receives

b� e !
=

1

2
pε2(i)

c� f̃ !
=

1

2
p∆h2(ii)

b� f̃ + c� e !
= −pε∆h(iii)

b�w + v � e !
= pε(iv)

c�w + v � f̃ !
= −p∆h(v)

v �w !
= f̄0(α)(vi)

this utterly appealing, decoupled form. Considering set (i)-(vi) componentwise, meaning for
all its n` components, it is the equivalent condition-set obtained when factorizing conic (7.76)
into (7.77). This can be seen when comparing set (i)-(vi) with condition-set (7.82). Therefore
the same requirements for its linear factorization apply. Applying Property 7.14 completes the
proof. �

In Theorem 7.18 all α(i) along i ∈M are still unknown. However, in case α(i) = 0 ∀i ∈M the

determinant ∆
(i)
j can be calculated. The case α(i) = 0 presumably corresponds with m̄

(i)
k = 0.
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Following Theorem 7.18, by assuming ∆
(i)
j = 0 and ∆̂

(i)
j ≤ 0 ∀i ∈ M ∧ j ∈ P, one takes a

closer look on the special case where nm = 2 ≥ nm,min, then (7.89) yields[
B(1) C(1)

B(2) C(2)

]
d = −

[
v(1)

v(2)

]
,

[
E(1) F (1)

E(2) F (2)

]
d = −

[
w(1)

w(2)

]
(7.95a)[

B(1) C(1)

E(2) F (2)

]
d = −

[
v(1)

w(2)

]
,

[
E(1) F (1)

B(2) C(2)

]
d = −

[
w(1)

v(2)

]
(7.95b)

meaning four search directions d (7.59) may be obtained. This provides that B(i),C(i),v(i),
E(i),F (i),w(i), which will be referred to as Tensor Separators, have been found as a solution of
set (i)-(vi).

Corollary 7.19. Let all assumptions in table 7.1 in addition to Assumption 7.7 hold. Following
the necessary and sufficient conditions of Property 7.14, one can deduce the following statements
about the number of search directions solving Tensor-Equation (7.45) thus (7.60) for all i ∈M
exactly or at least in approximation:

1. if ∆
(i)
j (α(i)) 6= 0 for any i ∈M or j ∈ P there exist at most 2njnm exact solutions (Bezout’s

Theorem).

2. if ∆
(i)
j (α(i)) = 0 ∀i ∈M∧j ∈ P there exist at most 2nm exact solutions and if (additionally)

(a) ∆̂
(i)
j < 0 ∀i ∈M∧ j ∈ P, (7.60) yields precisely 2nm different linear matrix-equations

such as (7.95). As they are over-determined by nature nm ≥ nm,min, precisely 2nm

different d result when applying, e.g., the pseudo-inverse.

(b) ∆̂
(i)
j = 0 ∀i ∈ M ∧ j ∈ P and v(i) = w(i) ∀i ∈ M, Tensor-Equation (7.60) yields a

single linear matrix-equation (e.g. one of (7.95)) over all i ∈M. Given nm ≥ nm,min,
there either exits a unique or no exact solution for d due to linear independency
(Assumption 7.1).

(c) ∆̂
(i)
j > 0 ∀j ∈ P, one obtains dε and d

(i)
hN

as parts of the search direction d already
when only considering a single measurement-set by solving one of the i ∈M in (7.60).
However, the roughness part dε may be incompatible with other measurement-sets in
M concerning the satisfaction of (7.60).

Corollary 7.19 underlines the difficulty to find a supposedly unique roughness ε with growing
number of measurements as the number of feasible search directions in each iteration step for
solving set (7.7) grows exponentially with the number of measurements nm.
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Theorem 7.20. Let all assumptions in table 7.1 in addition to Assumption 7.7 hold. Further

suppose that ∆
(i)
j (α(i)) = 0 and ∆̂

(i)
j ≤ 0 ∀j ∈ P in measurement-set i ∈ M. Then, Tensor

Separators as a solution of set (i) to (vi) appear in pairs and can be found among

ec =
1

2

(
−pε∆h ±1

√
p2
ε∆h − pε2p∆h2

)
(7.96a)

bw =
1

2

(
pε ±2

√
p2
ε − 2f̄0pε2

)
(7.96b)

f̃v =
1

2

(
−p∆h ±3

√
p2

∆h − 2f̄0p∆h2

)
(7.96c)

bf̃ =
1

2

(
−pε∆h ∓1

√
p2
ε∆h − pε2p∆h2

)
=

pε2p∆h2

2

(
−pε∆h ±1

√
p2
ε∆h − pε2p∆h2

) (7.96d)

ev =
1

2

(
pε ∓2

√
p2
ε − 2f̄0pε2

)
=

pε2 f̄0

pε ±2

√
p2
ε − 2f̄0pε2

(7.96e)

cw =
1

2

(
−p∆h ∓3

√
p2

∆h − 2f̄0p∆h2

)
=

p∆h2 f̄0

−p∆h ±3

√
p2

∆h − 2f̄0p∆h2

(7.96f)

presented in scalar form. The current measurement-set index i ∈M as well as the index along
the pipes j ∈ P is not displayed for the sake of readability, e.g. ec =̂ [e(i) � c(i)]j (7.96a).
Solution pair (7.96) has 3 different locations of the ± sign presented with indices which indicate
that their are 23 = 8 possibilities per j ∈ P and i ∈M.

Remark 7.21. In reference to the solution pairs (7.96) in Theorem 7.20, only those ±l combi-
nations concerning l = 1, 2, 3 are feasible which satisfy(

−pε∆h ±1

√
p2
ε∆h − pε2p∆h2

)(
pε ±2

√
p2
ε − 2f̄0pε2

)(
−p∆h ±3

√
p2

∆h − 2f̄0p∆h2

)
= 2pε2p∆h2 f̄0. (7.97)

Thereby (7.97) can be considered as multiplication of (i), (ii) and (vi) which subsequently has
to equal the multiplication of (7.96a), (7.96b) and (7.96c). According to Theorem 7.18, there
exists at least one feasible ±l combination per j ∈ P and i ∈M with respect to l = 1, 2, 3 such

that (7.97) holds, provided that ∆
(i)
j (α(i)) = 0 and ∆̂

(i)
j ≤ 0 regarding determinants (7.90).

Proof. Analogously to (7.96), partial turbulent-flow derivatives pX (see (7.21) and (7.54)) with
respect to X ∈ {ε, ε2,∆h,∆h2, ε∆h} and b, c, e, f̃ , v, w as well as f̄0 (for the zero order term) are
considered to be scalar temporarily. Using (i),(ii),(vi) to express e, c, v by means of b, f̃ , w (or
vice versa) such that

e =
1

2

pε2

b
, b =

1

2

pε2

e
(i* )

c =
1

2

p∆h2

f̃
, f̃ =

1

2

p∆h2

c
(ii* )

v =
f̄0

w
, w =

f̄0

v
(vi* )
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one receives three independent quadratic equations in the context of (iii), (iv) and (v)

(ec)2 + pε∆hec+
1

4
pε2p∆h2 = 0(iii* )

(bw)2 − pεbw +
1

2
f̄0pε2 = 0(iv* )

(f̃v)2 + p∆hf̃v +
1

2
f̄0p∆h2 = 0.(v* )

The set (i) to (vi) has no solution for individual b, e, f̃ , e, v, w, but one can obtain the pairs

ec =
−pε∆h ±1

√
p2
ε∆h − pε2p∆h2

2
(iii* )

bw =
pε ±2

√
p2
ε − 2f̄0pε2

2
(iv* )

f̃v =
−p∆h ±3

√
p2

∆h − 2f̄0p∆h2

2
.(v* )

Although the diagonal elements of the Tensor Separators appear in pairs, it will be sufficient for
the separation of the Tensor equation (7.60). The index l = 1, 2, 3 of the “±l” symbols thereby
indicates the location of different signs, resulting in 23 = 8 potential possibilities for the Tensor
Separators per pipe.

The investigation of the final solution of (7.95) for the case nm = 2 will be helpful to clarify
what is actually needed for the separation (7.89) of the Tensor equation. Applying the diagonal
forms of Tensor Separators and (7.94) on the left hand side (7.95a) while multiplying with
diag([e(1)T e(2)T ])[

diag(e(1) � b(1)) diag(e(1) � c(1))AT C̄T
h

diag(e(2) � b(2)) diag(e(2) � c(2))AT C̄T
h

]
d = −

[
e(1) � v(1)

e(2) � v(2)

]
(7.98a)

the right hand side of (7.95a) while multiplying with diag([b(1)T b(2)T ])[
diag(b(1) � e(1)) diag(b(1) � f̃ (1))AT C̄T

h

diag(b(2) � e(2)) diag(b(2) � f̃ (2))AT C̄T
h

]
d = −

[
b(1) �w(1)

b(2) �w(2)

]
(7.98b)

the left hand side of (7.95b) while multiplying with diag([e(1)T b(2)T ])[
diag(e(1) � b(1)) diag(e(1) � c(1))AT C̄T

h

diag(b(2) � e(2)) diag(b(2) � f̃ (2))AT C̄T
h

]
d = −

[
e(1) � v(1)

b(2) �w(2)

]
(7.98c)

and the right hand side of (7.95b) while multiplying with diag([b(1)T e(2)T ])[
diag(b(1) � e(1)) diag(b(1) � f̃ (1))AT C̄T

h

diag(e(2) � b(2)) diag(e(2) � c(2))AT C̄T
h

]
d = −

[
e(1) � v(1)

b(2) �w(2)

]
(7.98d)

one has to determine the “scalar” terms eb, ec, ev, bf̃ , bw concerning (i) to (vi). However, as eb
(see (i)), ec, bw are already known, only ev, bf̃ and cw need to be found to show (7.96).

Looking for bf̃ , one makes use of the first solution of the quadratic equation from before
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e = 1
2c

(
− pε∆h ±1

√
p2
ε∆h − pε2p∆h2

)
where c is expressed by means of (ii* ) c = 1

2

p∆h2

f̃
leading

to

e =
f̃

p∆h2

(
−pε∆h ±1

√
p2
ε∆h − pε2p∆h2

)
(7.99)

which is then inserted into (i* ) b = 1
2epε2 yielding in

bf̃ =
pε2p∆h2

2

(
−pε∆h ±1

√
p2
ε∆h − pε2p∆h2

) . (7.100)

The same result for bf̃ is obtained when using bf̃ = −pε∆h − ec according to (iii) and applying
ec as a result of (iii* ), see (7.96d).

Looking for ev, one uses (vi* ) in terms of v = f̄0

w to be inserted in bw such that b =
v

2f̄0

(
pε ±2

√
p2
ε − 2f̄0pε2

)
which is then inserted into (i* ) yielding

ev =
pε2 f̄0

pε ±2

√
p2
ε − 2f̄0pε2

. (7.101)

The same result for ev is obtained when using ev = −pε − bw according to (iv) and applying
bw as a result of (iv* ), see (7.96e).

The solution-pairs of equation set (i) to (vi) are now summarized in the scalar form (7.96)
knowing that b, e, f̃ , e,v,w, meaning their element-wise combinations, have length n` actually
and have to be considered along the different measurement-sets 1, 2, . . . , nm. The determination
of pair cw was thereby accomplished analogously to bf̃ and ev.

When inserting pairs (7.96) back into set (i) to (vi), one will have proof that solution (7.96)
is only consistent if (7.97) is satisfied. In reference to Remark 7.21, one needs to find a feasible
±l combination per j ∈ P and i ∈M with respect to l = 1, 2, 3 where (7.97) holds. �

7.6.5 The Factorization of a Conic Section as Exemplification

In this section the scalar coefficients A,B, . . . , F denote those which separate conic section (7.76)
into linear terms (7.77). Following Theorem 7.20, the factorization (7.77) of the conic section
section (7.76) can be accomplished by the pairs

DB = h±1

√
h2 − ab (7.102a)

AF = f ±2

√
f2 − ac (7.102b)

EC = g ±3

√
g2 − bc (7.102c)

AE = h∓1

√
h2 − ab (7.102d)

DC = f ∓2

√
f2 − ac (7.102e)

BF = g ∓3

√
g2 − bc. (7.102f)

The multiplication of (7.77) with D and B yields

f(x, y) = ν(DAx+DBy +DC)(BDx+BEy +BF ) = 0 (7.103)

where factor ν = 1
DB . Pairs DA = a and BE = b are given by (7.82a). Subsequently,

f(x, y) = ν

(
ax+

(
h±1

√
h2 − ab

)
y + f ∓2

√
f2 − ac

)
×
((

h±1

√
h2 − ab

)
x+ by + g ∓3

√
g2 − bc

)
. (7.104)
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Note that this is only possible if and only if ∆ = 0 and ∆̂ ≤ 0 (7.78). From representation
(7.104) it is also clear that in case ∆̂ = 0 the coefficients of the linear factorization are real if
f2 ≥ ac∧ g2 ≥ bc which is equivalent to the requirement that f2 + g2 ≥ c(a+ b) (Lemma 7.16).

Example. Consider the conic section

f(x, y) = 2x2 + 2y2 + 5xy − x+ y − 1 = 0, (7.105)

then one has to determine for which ± combinations(
h±1

√
h2 − ab

)(
f ±2

√
f2 − ac

)(
g ±3

√
g2 − bc

)
= abc (7.106)

holds. Verifying consistency of set (7.82), (7.106) is the multiplication of (7.102a), (7.102b) and
(7.102c), i.e. (DB)(AF )(EC), which can also be written in terms of (AD)(BE)(CF ) = abc
according to (7.82a) (in hindsight on (7.97) for consistency of set (i) to (vi)). In analogy, the
multiplication of (7.102d), (7.102e) and (7.102f), i.e. (AE)(DC)(BF ), equals (AD)(BE)(CF ) =
abc reversing all l = 1, 2, 3 of ±l in (7.106) .

Referring to table 7.6, one can see that only “+ +−” and “−−+” are feasible combinations
for the conic section (7.105). Note that there is a seeming conflict between Corollary 7.19
and Remark 7.21. In Corollary 7.19 it is said that there is exactly one linear factorization if
∆ = 0 and ∆̂ ≤ 0 whereas in Remark 7.21 it is said that there exist possibly more than one ±l
combinations concerning l = 1, 2, 3 to be feasible in terms of (7.106) or (7.97). It will be shown
by means of the present example that these combinations result in the identical factorization
with different ν (7.103) (which is not always 1

DB ) to be determined only.

2
(
h±1

√
h2 − ab

)
2
(
f ±2

√
f2 − ac

)
2
(
g ±3

√
g2 − bc

)
8abc ±1 ±2 ±3

5±1 3 −1±2 3 1±3 3 −32

8 2 4 64 + + +

8 2 -2 −32 + + −
8 -4 4 -128 + − +

8 -4 -2 64 + − −
2 2 4 16 − + +

2 2 -2 -8 − + −
2 -4 4 −32 − − +

2 -4 -2 16 − − −

Table 7.6: Combinations of ± which factorize conic section (7.105) to preserve
consistency of set (7.82) .

This becomes apparent when applying the feasible combination “+ +−”

f(x, y) = ν

(
2x+

1

2

(
5 + 3

)
y +

1

2

(
− 1− 3

))(1

2

(
5 + 3

)
x+ 2y +

1

2

(
1 + 3

))
=

1

2
(2x+ 4y − 2)(4x+ 2y + 2) (7.107a)

as well as the combination “−−+” obtained in table 7.6 on (7.104)

f(x, y) = ν

(
2x+

1

2

(
5− 3

)
y +

1

2

(
− 1 + 3

))(1

2

(
5− 3

)
x+ 2y +

1

2

(
1− 3

))
= (2x+ y + 1)(x+ 2y − 1). (7.107b)
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7.6.6 Final Observations

The reader shall be reminded at this point that pairs b � w, f̃ � v, e � v, c � w, given by
(7.96), comprise f̄0 which itself is a function on α in the corresponding measurement-set. Those
α(i) for i ∈ M = {1, 2, . . . , nm} lie in the nullspace, or kernel, of incidence matrix A, i.e.

Am̄
(i)
k = 0 ⇔ m̄

(i)
k − S

Tα(i) = 0. Applying the proposed solution (7.96) (also using b � e
(i)) for all the n` components of the Tensor Separators on the deceivingly linear forms (7.98),
one will actually recognize that in all 4 representations (7.98) only the right hand sides (those
independent from the search direction d) depend on α(i).

To continue the line of thought, which started with Theorem 7.18, the proposed forms (7.98),
solving the degenerate Tensor Equation (7.60), can actually be transformed. Taking a closer

look at (7.98a) comprising pairs b(i)�e(i) = 1
2p

(i)
ε2

(i), e(i)�c(i) (7.96a) and e(i)�v(i) (7.96e) in

measurement-set i, the α(i) only appear in the numerator of the right hand side (see (7.96e)).

[
diag(e(1) � b(1)) diag(e(1) � c(1))

diag(e(2) � b(2)) diag(e(2) � c(2))

]
I
AT C̄T

h

I
AT C̄T

h



×d (7.96e)
= −1

2

p(1)
ε ∓(1)

2

(
p

(1)2

ε − 2f̄
(1)
0 � p(1)

ε2

)�1/2

p
(2)
ε ∓(2)

2

(
p

(2)2

ε − 2f̄
(2)
0 � p(2)

ε2

)�1/2

 . (7.108a)

In reference to Remark 7.21 and table 7.6, signs “±” may also vary along the measurement-sets
and potentially along all P, i.e. along all components.

Remark 7.22. Please mind that “±(i)
2 ” signs utilized in (7.108) can also vary along j ∈ P,

i.e. along all of the partial derivative’s [pX ]j components ∀j ∈ P with respect to X ∈
{ε, ε2,∆h,∆h2, ε∆h}. However, only those combinations are feasible which satisfy (7.97) in
the corresponding measurement-set i ∈M and in j ∈ P.

Ultimately, this will turn out irrelevant for the next considerations when taking the element-
wise square. One can write for the right hand side of (7.98b) (applying (7.96b))

− 1

2

p(1)
ε ±(1)

2

(
p

(1)2

ε − 2f̄
(1)
0 � p(1)

ε2

)�1/2

p
(2)
ε ±(2)

2

(
p

(2)2

ε − 2f̄
(2)
0 � p(2)

ε2

)�1/2

 . (7.108b)

This is can be done completely analogously for the mixed terms (7.98c) and (7.98d) by simply
changing the ±2 signs. Thereby, the α(i) solely appear in the numerator of the right hand side.

The following notation is applied:

M1
(i)∧(7.96a)

:= 2


diag

(
p

(1)�
−1/2

ε2

)
diag

(
p

(2)�
−1/2

ε2

)
× (7.109a)

[
diag(e(1) � b(1)) diag(e(1) � c(1))

diag(e(2) � b(2)) diag(e(2) � c(2))

]
I
AT C̄T

h

I
AT C̄T

h


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M2
(i)∧(7.96d)

:= 2


diag

(
p

(1)�
−1/2

ε2

)
diag

(
p

(2)�
−1/2

ε2

)
× (7.109b)

[
diag(b(1) � e(1)) diag(b(1) � f̃ (1))

diag(b(2) � e(2)) diag(b(2) � f̃ (2))

]
I
AT C̄T

h

I
AT C̄T

h



M3
(i)∧(7.96a)∧(7.96d)

:= 2


diag

(
p

(1)�
−1/2

ε2

)
diag

(
p

(2)�
−1/2

ε2

)
× (7.109c)

[
diag(e(1) � b(1)) diag(e(1) � c(1))

diag(e(2) � b(2)) diag(b(2) � f̃ (2))

]
I
AT C̄T

h

I
AT C̄T

h



M4
(i)∧(7.96a)∧(7.96d)

:= 2


diag

(
p

(1)�
−1/2

ε2

)
diag

(
p

(2)�
−1/2

ε2

)
× (7.109d)

[
diag(b(1) � e(1)) diag(b(1) � f̃ (1))

diag(e(2) � b(2)) diag(e(2) � c(2))

]
I
AT C̄T

h

I
AT C̄T

h



s :=

p(1)
ε � p(1)�

−1/2

ε2

p
(2)
ε � p(2)�

−1/2

ε2

 (7.110)

Remark 7.23. The notation applied on (7.109) and (7.110) is only valid for nm = 2
measurement-sets resulting in 2nm = 4 different variants of matrix MY for Y ∈ {1, 2, . . . , 2nm}.
The difference is only given by varying ±1 along all j ∈ P in pairs [e�c]j and [b�f̃ ]j. However,
notation MY and s is also applied for all other nm considering additional measurement-sets,
leading to 2nm variants concerning Y per j ∈ P.

Proposition 7.24. Let ∆
(i)
j (α(i)) = 0 and ∆̂

(i)
j ≤ 0 ∀j ∈ P ∧ i ∈ M concerning (7.90).

Knowing that fk−1 =
[
f

(1)T

k−1 f
(2)T

k−1 . . . f
(nm)T

k−1

]T
while applying notation (7.109) and (7.110)

in reference to Remark 7.23, Tensor Equation (7.60) is equivalent to

1

2


A

. . .

A

((MYd
)�2

+ 2MYd� s
)

+ fk−1 = 0 (7.111)

for all Y ∈ {1, 2, . . . , 2nm} in Tensor-Method iteration k.
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Proof. (7.98) extended to arbitrary nm can be written as

MYd = −


p

(1)�
−1/2

ε2
� p(1)

ε ±(1)
2

(
p

(1)�
−1

ε2
� p(1)2

ε − 2f̄
(1)
0

)�1/2

...

p
(nm)�

−1/2

ε2
� p(nm)

ε ±(nm)
2

(
p

(nm)�
−1

ε2
� p(nm)2

ε − 2f̄
(nm)
0

)�1/2


. (7.112)

whereas the ±(i)
2 sign is actually only valid for the pair b(i) � w(i). Effectively, this will turn

out irrelevant and thus also eligible for pair e(i) � v(i) after bringing the p
(i)�

−1/2

ε2
� p(i)

ε term of
(7.112) on the left hand side and then taking the element-wise square (consider Remark 7.22)MYd+


p

(1)
ε � p(1)�

−1/2

ε2
...

p
(nm)
ε � p(nm)�

−1/2

ε2


︸ ︷︷ ︸

s


�2

−s�2
= −2


f̄

(1)
0
...

f̄
(nm)
0

 = −2


diag (cl)A

TL−1f
(1)
k−1 − S

Tα(1)

...

diag (cl)A
TL−1f

(nm)
k−1 − S

Tα(nm)


(7.113)

yielding

(
MYd+ s

)�2

− s�2
+ 2


diag (cl)A

TL−1f
(1)
k−1

...

diag (cl)A
TL−1f

(nm)
k−1


︸ ︷︷ ︸

rf

= 2


ST

. . .

ST



α(1)

...

α(nm)

 (7.114)

which ultimately results in

1

2

(
MYd

)�2

+MYd� s+ rf =


ST

. . .

ST



α(1)

...

α(nm)

 (7.115)

where all α(i) and the search direction d are unknown. The projection in the kernel of inci-
dence matrix A conducted in Theorem 7.18 is now reversed knowing that AST ≡ 0 and that

A(diag (cl)A
TLf

(i)
k−1) = f

(i)
k−1 according to Proposition 4.1. Thus (7.115) yields (7.111). �

Note that MY depends on all the partial derivatives p
(i)
X with respect to X ∈

{ε, ε2,∆h,∆h2, ε∆h} (b� e in (i) and pair bf̃ in (7.96d) in the scalar case) whereas s depends

on p
(i)
ε and p

(i)
ε2

for i = 1, 2, . . . , nm.

Proposition 7.25. Let all Assumptions in table 7.1 hold. Further suppose that xk−1 = x∗ one
already converged to the real root x∗ in the previous iteration step k − 1. Then, the zero-search
direction d = 0 is the only solution for (7.111) for all Y ∈ {1, 2, . . . , 2nm}.

Proof. As xk−1 = x∗, fk−1 = f(xk−1) = f(x∗) = 0 (7.14) per definition. Subsequently,
A

. . .

A

(MYd�
(
MYd+ 2s

))
= 0 (7.116)

meaning that the search direction d = 0 is a feasible solution of (7.116). As a result,
α(i) = 0 ∀i in this special case in order for d = 0 to be feasible in MYd �

(
MYd+ 2s

)
=
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[α(1)TS . . . α(nm)TS]T which is formally equivalent to (7.116) (Proposition 3.6). This me-
ans that the remaining solutions ought to satisfy MYd = −2s if existent. Knowing that
MY ∈ Cnmn`×(n`+nmnp̄) has more rows than columns which are expected to be linear indepen-
dent according to Assumption 7.1 as part of table 7.1, there is no d which solves MYd = −2s
exactly. As a result, d = 0 is the unique solution of (7.116). �

Note that the partial derivatives p
(i)
X = pX (ε,∆h(i)) with respect to X ∈

{ε, ε2,∆h,∆h2, ε∆h} are functions on ∆h(i) and ε, whereas ∆h(i) = Csh
(i)
s − AT (CT

h y
(i)
h +

C̄T
h h

(i)
N + z) (7.7b) is considered as a function on h

(i)
N in measurement-set i ∈M.

Corollary 7.26. Suppose that
[
p
∗(i)
X
]
j

=
[
pX (ε∗,h

∗(i)
N )

]
j

= p
∗(i)
X ,j ∀j ∈ P ∧ i ∈ M with respect

to X ∈ {ε, ε2,∆h,∆h2, ε∆h} in the real root x∗ =
[
ε∗
T
h
∗(1)T

N . . . h
∗(nm)T

N

]T
. Following

Proposition 7.25 and Corollary 7.19 (case 2(b)), one can construct the following argumentum e
contrario. As d = 0 is the unique solution if xk−1 = x∗, the only feasible factorization (7.89) of

Tensor Equation (7.60) ought to satisfy ∆
(i)
j (0) = 0∧ ∆̂

(i)
j = 0 (7.90) and v(i)(α(i)) = w(i)(α(i))

(compare with (7.95)) with α(i) = 0 ∀j ∈ P∧ i ∈M in the real root x∗. Hence f̄0 = 0 (7.91) in
x∗. Subsequently, the sufficient conditions

∆
(i)
j

(7.90)
= 2p

∗(i)
∆h,jp

∗(i)
ε∆h,jp

∗(i)
ε,j − p

∗(i)
ε2,j

(
p
∗(i)
∆h,j

)2
− p∗(i)

∆h2,j

(
p
∗(i)
ε,j

)2
= 0

∆̂
(i)
j

(7.90)
=

(
p
∗(i)
ε∆h,j

)2
− p∗(i)

ε2,j
p
∗(i)
∆h2,j

= 0

(7.117)

∀j ∈ P ∧ i ∈M for x∗ solving (7.7) must hold.

Transformation inside of the Kernel. The block diagonal of cycle matrices is denoted by
Sb = diag([ST . . . ST ]) and α = [α(1)T . . . α(nm)T ]T , then (7.115) can be rewritten in
terms of

1

2

[MY 0
] [d
α

]�2

+
[
diag(s)MY −Sb

] [d
α

]
+ rf = 0 (7.118)

∀Y ∈ {1, 2, . . . , 2nm} for a arbitrary number of measurement-sets when also accounting for the
appropriate extensions in MY (7.109b) and s (7.113). In this representation it is visually clear
that not only the search direction d but also α is unknown.

Proposition 7.27. With the assumption that there exists a perfect inversion of M̃ =[
diag(s)MY −Sb

]
such that M̃#M̃ = I with a generalized inverse M̃#, one can transform

the problem (7.118) to unknowns β = MYd solving

Wβ�
2

+ 2β + 2Wrf = 0 (7.119)

where W =
[
MY 0

]
M̃#. However, if one is able to obtain a β satisfying (7.119), one

simultaneously solves (7.118) and thus (7.111) with[
d
α

]
= −M̃#

(
1

2
β�

2
+ rf

)
. (7.120)
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Proof. Denoting M̃ [dT αT ]T = y, (7.118) yields([
MY 0

]
M̃#︸ ︷︷ ︸

W

y

)�2

+ 2y + 2rf = 0. (7.121)

With the aim to transform the problem to unknowns β = Wy =
[
MY 0

]
[dT αT ]T = MYd,

(7.121) is multiplied with W from the left resulting in Wβ�
2

+ 2β + 2Wrf = 0. Matrix
W does certainly not have full rank in this context. Provided that a β satisfying (7.119) has
been found, one reformulates (7.121), which is equivalent to β�

2
+ 2y+ 2rf = 0. Knowing that

y = M̃ [dT αT ]T one receives (7.120). Keep in mind that this is only feasible if a transformation

y = M̃ [dT αT ]T ⇔ [dT αT ]T = M̃#y satisfying M̃#M̃ = I is found. �

Conclusion and Personal Note. In conclusion to the attempt to find explicit solutions
for the Tensor Equation, the author believes that the applied methods using the Hadamard
product for the separation of terms, in reference to Theorem 7.18, are well suited to develop
an algorithm for solving (7.7)-type problems which converges faster and more reliably than the
standard Newton-Raphson type approach, and potentially provides multiple solutions for the
search direction. For the attentive reader, algorithms solving quadratic equations, also similar
to (7.111) or (7.119), filled the PhD thesis of Poloni [2010] underling the difficulty of the subject.
Nevertheless, such an algorithm was not developed in the time allocated for this thesis, but the
author believes the presented methodologies in sections 7.6.4 to 7.6.6 to be interesting for further
analysis.

Alternatively to the Tensor-Method, it would be interesting to apply Halley ’s method [Cuyt
and Rall, 1985] on (7.7)-type problems as it also applies second order derivatives to obtain a
search direction for solving nonlinear systems of equations iteratively.
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7.7 Illustrative Comparison

In this section a short performance comparison between the Newton-Raphson-type Algorithm 1
and, effectively, the same Algorithm 1 when taking the quadratic Tensor Equation (7.60) instead
of the Newton step to obtain a search direction, is conducted.

Since there are no explicit solutions of the Tensor Equation available, although such possibly
exist, one has to solve it iteratively. Applying iterative methods, one will not, in the majority of

cases, receive search directions dε,d
(i)
hN

perfectly satisfying m
(i)
k (dε,d

(i)
hN

) = 0 ∀i (7.60), but an
approximation. However, in order to keep the comparison as fair as possible, the author applies
the MATLAB built-in fsolve(.) function, which itself makes use of the Levenberg–Marquardt
algorithm, with standard settings to solve (7.60). The author thereby also supplies the Jacobian
of (7.60) to fsolve(.) which can be classified in terms of blocks

∂m
(i)
k

∂d
= A

[ i=j

∂m̄
(i)
k

∂dε
0 . . . 0

∂m̄
(i)
k

∂d
(j)
hN

0 . . .

]
∀i, j ∈M = {1, 2, . . . , nm} (7.122)

along its rows. Denoting J̄
(i)
T,ε(dε,d

(i)
hN

) :=
∂m̄

(i)
k

∂dε
and J̄

(i)
T,hN

(dε,d
(i)
hN

) :=
∂m̄

(i)
k

∂d
(i)
hN

(although neg-

lected, arguments dε and d
(i)
hN

would need another iteration index as in the outer iteration
concerning k) one receives

J̄
(i)
T,ε = diag

(
p

(i)
ε2
� dε + p(i)

ε − p
(i)
ε∆h �A

T C̄T
h d

(i)
hN

)
(7.123a)

J̄
(i)
T,hN

=
1

2
diag(p

(i)

h2
N

)
∂

∂d
(i)
hN

(
(AT C̄T

h d
(i)
hN

)�
2
)
− diag

(
p

(i)
∆h + p

(i)
ε∆h � dε

)
AT C̄T

h (7.123b)

∀i ∈ M comprising partial derivatives p
(i)
X = pX (εk,∆h

(i)
k ) with respect to X ∈

{ε, ε2,∆h,∆h2, ε∆h} in the outer iteration step k. Denoting AT C̄T
h =

[
c1 c2 . . . cn`

]T
,

the remaining derivative looks like

1

2

∂

∂d
(i)
hN

(
(AT C̄T

h d
(i)
hN

)�
2
)

=


(
cT1 d

(i)
hN

)
cT1

...(
cTn`d

(i)
hN

)
cTn`

 . (7.124)

Details can be found in section 2.2.2. Extending (7.122) to arbitrary nm, one receives

JT =


∂m

(1)
k

∂d
...

∂m
(nm)
k
∂d

 (7.123)
=


A

. . .

A



J̄

(1)
T,ε J̄

(1)
T,hN

J̄
(2)
T,ε J̄

(2)
T,hN

...
. . .

J̄
(nm)
T,ε J̄

(nm)
T,hN

 (7.125)

which is utilized for the present comparison. The initial value for the search direction d0 supplied
to fsolve(.) is selected as 10% of the Newton direction d0 = d = −0.1 × (JTk Jk)

−1JTk fk in
following algorithm. The following definitions shall help to properly distinguish between those
algorithms.
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Algorithm 3 Modification of Algorithm 1 applying Tensor Equation (7.60)

procedure Tensor(FUN,x0)
It is identical to Newton(FUN, x0) except two changes (a,b). . Algorithm 1

. (a,b) Replace algorithm-lines 5, 10 on page 93 with:
∆xk ← d . (7.59) as a (approximated) solution of (7.60)
. solving (7.60) iteratively by means of, e.g., “d =fsolve((7.60), (7.125), d0)”, take
d0 ← −0.1× (JTk Jk)

−1JTk fk . as initial value

end procedure

Modification of Algorithm 2. A considerably small modification of Algorithm 2 turned
out to be particularly well received in combination with Algorithm 3 when solving (7.7)-type
problems. This modification only concerns the variation of roughness values in each iteration of
Algorithm 2, where only those roughnesses which exceeding the 5% mark of the corresponding
pipes’ diameter were varied.

Algorithm 4 Modification of Algorithm 2 launching Algorithm 1 or 3 effectively

procedure TensorCalibration(FUN,x0, TensorMethod)
. Input variable “TensorMethod” is true if the Tensor Method (section 7.6) is applied.
It is identical to NetCalibration(FUN,x0) with one addition (a) . Algorithm 2
and one change (b).

. (a) Add between algorithm-line 9 and 10 on page 95:
find [̄i1 ī2 . . . īn̄ε ] such that [x+]i∈P = εi ≤ 0.05di ⇒ nε + n̄ε = n`
[x0]i ← [x0]i + normal(0, 0.0005di) for i = ī1, ī2, . . . , īn̄ε

. (b) Replace function call in algorithm-line 2 on page 95 with:
if TensorMethod is true then

[x+,f+]← Tensor(FUN,x0) . call Algorithm 3
else

[x+,f+]← Newton(FUN,x0) . call Algorithm 1
end if

end procedure

When also varying (although less aggressively) those roughness values in x+, used for the
initial value x0 in the next iteration, which do not exceed the 5% mark of the corresponding
pipe’s diameter di

3 improvements with regard to convergence have been noticed. In this context,
a normal distribution with zero mean and a standard deviation of 0.05% = 0.0005 of the pipe’s
diameter is applied.

Also, one has to specify whether to use the Tensor Method (section 7.6) or the original
Newton-Raphson (section 7.4) method to determine the search direction by adding an additional
input variable denoted with “TensorMethod” which is either true or false.

Configuration concerning Table 7.8. The same configuration which was applied for the
illustrative example in section 7.5 is used. This means that the initial values (7.42) with the
physical range of the not-measured pressure heads (7.41) are used whereas loading conditions
(concerning q,yh and hs) can be found in table 7.3. Calibrating the 3-cycle network in figure
7.1, the author uses

� a fixed number of 13 launches of Algorithm 4 in the outer loop which-

3Please do not confuse the pipe’s diameter di of pipe i ∈ P with the search direction d.
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� launches Algorithm 3 (i.e. “TensorMethod = true”) 50 times each (fixed number).

In each of these 50 calls of Algorithm 3, (7.7) is attempted to solve with the Tensor Method,
resulting in a total of 13 × 50 = 650 solving attempts of (7.7) with different initial conditions
each. The best (concerning the smallest v(x+) (7.24)) among those 50 launches, denoted by x+

can be found in table 7.8.

Configuration concerning Table 7.9. The same initial conditions, loading parameters etc.
are applied as before. The only difference concerns Algorithm 4 which now calls Algorithm 1
(i.e. input variable “TensorMethod = false”) 50 times. For clarification, the 3-cycle network in
figure 7.1 is calibrated with

� a fixed number of 13 launches of Algorithm 4 in the outer loop which

� launches Algorithm 1 (i.e. “TensorMethod = false”) 50 times each (fixed number).

Important to note is that for Algorithm 1 a scaling of xk in reference to Remark 7.9 and 7.10
is conducted although not specifically indicated in Algorithm 1. This is contrary to Algorithm
3 which does not scale xk due to the necessity to solve the nonlinear Tensor Equation.

Row Notation. The following applies to both tables 7.8 and 7.9. The row denoted with
“iter of x+” indicates the iteration among the 50 (calling either Algorithm 3 for table 7.8, or
Algorithm 1 for table 7.9) where the intermediate best result x+ concerning Algorithm 4 was
obtained.

Concerning the last row, denoted with “average # iter to x+”, the author took the mean al-
ong iterations of Algorithm 4 of the number of iterations needed in Algorithm 3 and 1 (algorithm-
line 14 on page 93) to converge or abort until x+ is obtained. For instance, for the 3rd entry
in table 7.8 in row “average # iter to x+” it took 5 iterations of Algorithm 4 to obtain x+, in
these 5 runs Algorithm 3 took

run 1 2 3 4 5

# Algorithm 3
iterations

4 23 14 3 1

Table 7.7: Number of iterations of Algorithm 3 to converge or abort concerning
the 3rd column of table 7.8. Iteration variable can be found in algorithm-line 14

on page 93.

iterations respectively to converge or abort. The 3rd entry (meaning the 3rd column) in table
7.8 in row “average # iter to x+”, for instance, is then the mean over the values

9.00 =
1

5
(4 + 23 + 14 + 3 + 1) . (7.126)

The same methodology was applied for the row “average # iter to x+” in table 7.9.

Colored Table Entries and Range. Blue colored entries in table 7.8 and 7.9 indicate that
the corresponding result left the physical relevant range. Thereby, only roughness values occasi-
onally left the 5% mark of the corresponding pipe’s diameter. In this context all xhN , meaning
the subset of non-measured pressure heads in the solution, remained in their physically relevant
range. The olive-colored results highlight the x+ of those launches which have the smallest
v(x+) in the entire table.
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launch 1 2 3 4 5 6 7 8 9 10 11 12 13 x∗

ε1 1.969 1.977 1.946 2.091 1.955 1.943 1.925 1.954 1.963 1.988 1.974 1.375 1.923 2.000

ε2 1.839 1.816 1.906 1.498 1.879 1.914 1.968 1.881 1.856 1.784 1.824 3.878 1.976 1.750

ε3 1.583 1.561 1.645 1.270 1.619 1.651 1.700 1.622 1.597 1.532 1.569 3.478 1.708 1.500

ε4 1.180 1.177 1.187 1.128 1.186 1.190 1.196 1.184 1.182 1.171 1.178 1.333 1.196 1.250

ε5 1.037 1.041 1.028 1.111 1.029 1.023 1.016 1.032 1.034 1.049 1.040 0.864 1.016 1.000

ε6 0.817 0.818 0.806 0.806 0.826 0.829 0.822 0.804 0.822 0.808 0.818 0.722 0.811 0.750

ε7 0.497 0.498 0.502 0.544 0.486 0.480 0.482 0.506 0.491 0.511 0.498 0.483 0.491 0.500

ε8 0.235 0.235 0.234 0.241 0.235 0.234 0.233 0.234 0.235 0.236 0.235 0.217 0.233 0.250

h
(1)
N,1 93.154 93.141 93.191 92.961 93.176 93.195 93.224 93.177 93.163 93.123 93.146 94.157 93.228 93.104

h
(1)
N,5 90.885 90.885 90.885 90.884 90.885 90.885 90.885 90.885 90.885 90.885 90.885 90.886 90.885 90.885

h
(2)
N,1 88.621 88.599 88.682 88.298 88.657 88.689 88.737 88.660 88.636 88.570 88.607 90.291 88.744 88.538

h
(2)
N,5 84.846 84.846 84.846 84.845 84.846 84.846 84.846 84.846 84.846 84.846 84.846 84.847 84.846 84.846

h
(3)
N,1 82.942 82.909 83.033 82.458 82.996 83.044 83.116 83.000 82.964 82.865 82.921 85.448 83.128 82.818

h
(3)
N,5 77.280 77.280 77.280 77.279 77.280 77.280 77.280 77.280 77.280 77.280 77.280 77.282 77.280 77.280

v(x+)× 107 0.484 0.637 0.655 1.067 0.547 0.569 0.690 0.669 0.553 0.553 0.532 0.770 0.710 1.082

iter of x+ 29 10 5 45 23 6 49 27 50 42 20 42 34

average #
iter to x+ 3.79 8.30 9.00 7.16 7.91 10.67 8.55 6.37 3.90 4.31 8.25 9.55 9.97

Table 7.8: Tensor-Results.
Results of Algorithm 4 along 13 launches calibrating the 3-cycle network (figure 7.1). Thereby Algorithm 4 calls Algorithm 3
(“TensorMethod=true”) for a fixed number of 50 times by tightening εf and εx in line 6 on page 95 (belonging to Algorithm 4) appro-

priately. Roughnesses εi ∀i ∈ P are presented in mm, whereas pressure heads h
(i)
N,j ∀i ∈M ∧ j ∈ P̄ are presented in m. Computational

duration: 1310.185976s.
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launch 1 2 3 4 5 6 7 8 9 10 11 12 13 x∗

ε1 1.273 1.266 1.254 2.007 2.004 2.004 1.270 2.004 2.004 1.273 2.004 1.268 2.019 2.000

ε2 4.277 4.302 4.329 1.723 1.734 1.732 4.294 1.732 1.733 4.277 1.732 4.300 1.677 1.750

ε3 3.873 3.906 3.973 1.487 1.495 1.496 3.876 1.495 1.496 3.872 1.496 3.883 1.472 1.500

ε4 1.360 1.344 1.262 1.220 1.231 1.220 1.420 1.221 1.224 1.363 1.218 1.420 1.121 1.250

ε5 0.827 0.827 0.838 1.001 0.997 1.002 0.803 1.000 0.999 0.826 1.002 0.800 1.043 1.000

ε6 0.698 0.724 0.792 0.761 0.759 0.761 0.670 0.760 0.761 0.697 0.761 0.670 0.865 0.750

ε7 0.473 0.484 0.507 0.497 0.496 0.497 0.457 0.497 0.496 0.473 0.497 0.458 0.523 0.500

ε8 0.226 0.232 0.251 0.263 0.262 0.263 0.238 0.263 0.262 0.227 0.264 0.239 0.249 0.250

h
(1)
N,1 94.342 94.355 94.376 93.093 93.098 93.098 94.347 93.097 93.098 94.342 93.098 94.350 93.075 93.104

h
(1)
N,5 90.886 90.886 90.886 90.885 90.885 90.885 90.886 90.885 90.885 90.886 90.885 90.886 90.885 90.885

h
(2)
N,1 90.598 90.621 90.655 88.519 88.528 88.527 90.607 88.526 88.527 90.598 88.527 90.612 88.488 88.538

h
(2)
N,5 84.848 84.848 84.848 84.846 84.846 84.846 84.848 84.846 84.846 84.848 84.846 84.848 84.846 84.846

h
(3)
N,1 85.910 85.943 85.995 82.789 82.802 82.801 85.923 82.800 82.802 85.909 82.801 85.931 82.743 82.818

h
(3)
N,5 77.283 77.283 77.284 77.281 77.281 77.281 77.283 77.281 77.281 77.283 77.281 77.283 77.281 77.280

v(x+)× 106 16.361 9.826 10.342 17.003 12.034 15.932 15.785 16.376 14.440 15.690 17.275 16.439 10.889 0.108

iter of x+ 15 11 36 8 15 13 5 6 22 40 44 12 8

average #
iter to x+ 11.00 27.09 123.56 264.25 13.33 253.38 216.80 243.50 63.91 140.40 241.89 12.25 16.25

Table 7.9: Newton-Results.
Results of Algorithm 4 along 13 launches calibrating the 3-cycle network (figure 7.1). Thereby Algorithm 4 calls Algorithm 1
(“TensorMethod=false”) for a fixed number of 50 times by tightening εf and εx in line 6 on page 95 (belonging to Algorithm 4)

appropriately. Roughnesses εi ∀i ∈ P are presented in mm, whereas pressure heads h
(i)
N,j ∀i ∈M ∧ j ∈ P̄ are presented in m. Computa-

tional duration: 157.195594s.
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Discussion. When comparing the residuals v(x+) of table 7.8 and 7.9 it is abundantly clear
that the Tensor-Results are significantly better than the Newton-Results in terms of v(x+).
This is particularly true when considering that every single result x+ in table 7.8 has a smaller
residual than the actual root x∗, whereas all of the results in table 7.9 have a residual v(x+)
which is approximately two orders of magnitude larger than v(x∗).

Also, the number of iterations needed for Algorithm 3 to converge or abort is on average
only a fraction of the number of “Newton steps”, meaning the numbers of iterations needed for
Algorithm 1 to converge or abort. This can be seen when comparing the row “average # iter
to x+” of the both above tables. With that being said it should be emphasized that since the
Tensor Equation (7.60) is solved iteratively with the MATLAB built-in fsolve(.) function, it
takes several times longer to finish the computation of Tensor-Results (table 7.8) compared to
the Newton-Results (table 7.9).

While the Tensor-Results are certainly superior to the Newton-Results in terms of the residual
v(x+), one will recognize that when comparing the results of, for instance, launch {4, 5, 6, 8, 9}
in table 7.9 to Tensor-Results, the deviation of Newton-Results x+ to x∗ is visibly smaller. In
opinion of the author, there are two possible explanations for this. First, the scaling interferes
with the results leading to numerical inaccuracies (Remark 7.9 and 7.10). Second, the nm = 3
measurement-sets are not sufficiently independent from each other in order for the real root x∗

to be properly distinguished in the solution space (in reference to Assumption 7.1). The truth
presumably lies somewhere in between these two explanations.

One observation is particularly eye-catching, the Tensor-Results tend to remain in their
physical range (in terms of roughnesses) whereas Newton-Results tend to leave it. Interestingly,
roughnesses in Newton-Results or even in Tensor-Results which exceed their physical limit are
always those which are connected to pipe 1 (Q1 in figure 7.1) which really has a chosen relative
roughness of ε1/d1 = 5% (meaning it was placed at the 5% boundary intentionally). Therefore,
the results consistently locate node k = 1 (see figure 7.1) which is adjacent to the pipe with the
highest roughness. Due to this observation, the author expects the presented roughness scheme
to be eligible for leak localization and detection, although simulations and real-world test are
yet to be made.
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8
Transitional Water Flow in Steady-State

The relieve of Assumption 7.7 for the set-up of a (7.7)-like problem requires to extend the
explicit flow description, as in (7.5) for the turbulent regime, to laminar and transitional flow.
At this point, set (7.7) can already be extended to also consider laminar flow. However, as the
transitional flow, i.e. 2000 < Re < 4000, is unknown, one would need to identify which pipe
flow in P in which measurement-set i ∈M is laminar or turbulent a priori. This is a supposedly
impossible endeavor.

In order to let the calibration algorithm itself decide if an appropriate pipe flow has been
laminar or turbulent, a continuous and smooth description in between is needed. More specific,
to let this description be compatible with the numerical solving of a (7.7)-type problem by means
of Newton-Raphson’s algorithm or the Tensor-Method, the smoothness on both boundaries is
essential. Although there exist a variety of different formulae interpolating this transitional area,
none of them satisfies the turbulent boundary or gradient in terms of the Colebrook-White flow
(7.5) to a sufficient degree of detail. Besides, the transitional pipe friction is (as far as the author
is aware) exclusively expressed in terms of the head loss and not the flow. For instance, the
inversion of expression (2.8) embedded in the calculation of λDW (2.4) for the transitional flow
is indeed non-trivial and, perhaps, has even no unique solution.

Ultimately, the derivation of a sufficiently smooth interpolation between laminar- and the
turbulent Colebrook-White flow will not only enable the roughness-calibration problem descrip-
tion to be completed, but will give useful physical insight in this mystical area which tends to
“defy theoretical treatment”. As a remark, the content of chapter 8 was accepted for journal
publication [Kaltenbacher et al., 2020] at the time of writing.

8.1 Notation

Concerning notation, the author does neglect the network numbering with regards to pipe flows
P and measurement-sets M to support readability in this chapter. This means that ∆h denotes
the pipe head loss, d its diameter, A its cross section area, l its length, ε the pipe’s roughness, λ
the friction factor, ρ the water density, η the water viscosity and g ≈ 9.81 m/s2 the gravitational
acceleration.

Let Assumption 7.4 hold. Then, one receives proportionality factor w = 1
32
ρ
η
d2gA
l by using

(2.5) and (2.4) for the laminar flow Q = w∆h. Also applying the Colebrook-White flow ft(ε,∆h)
(7.5), the steady-state flow through the pipe can be specified

Q(ε,∆h) = sign(∆h)


w|∆h| Re ≤ 2000
γ(ε,|∆h|) 2000 < Re < 4000
ft(ε,|∆h|) Re ≥ 4000

(8.1)
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along the flow regime separation. The major contribution of this chapter is the development of
γ (8.1) within laminar and turbulent boundary.

Remark 8.1. For the sake of readability the absolute sign of the head loss ∆h is omitted in
the sections below meaning that only non-negative ∆h values are considered. This is feasible as
(2.4) and thus (8.1) is an odd function with respect to ∆h, i.e. Q(ε,−∆h) = −Q(ε,∆h).

8.2 Transitional - Turbulent Boundary

Before aiming to develop a smooth interpolation γ for (8.1), a proper description of the curve
at the turbulent boundary ∆h = q(ε) or ε = q−1(∆h) with function q(.)1 involving boundary
flow a = 4000Aηρd such that

a ≈ ft(ε, q(ε)) = ft(q
−1(∆h),∆h) (8.2)

is needed. The exact form of the boundary curve, denoted by ε = fa(∆h)⇒ ft(fa(∆h),∆h) = a

ε = 3.7d exp

(
−a ln 10

2

√
k

∆h

)
− 9.287

ηA

ρ

√
k

∆h
=: fa(∆h) (8.3)

has no explicit representation ∆h = f−1
a (ε). With the purpose to approximate (8.3), the follo-

wing ansatz

∆h = q(ε) = (q0(ε+ q1))4/7 (8.4)

with parameters q0, q1 turned out to be effective over the entire tested range of l, d values
considering that the relative roughness ε/d is only specified between 0% and 5% in the Moody-
Diagram (figure 2.2). Considering the integral mean error

E(1/q0, q1) :=
1

d2

∫ ∆h

∆h

(
fa(∆h)−

(
∆h7/4

q0
− q1

))2

d∆h (8.5)

with lower limit fa(∆h) = 0 and upper limit fa(∆h) = 0.05d to be calculated numerically,
parameters q0, q1 are determined by finding a solution for

∂E

∂(1/q0)
= 0

∂E

∂q1
= 0. (8.6)

Proposition 8.2. Error function E(1/q0, q1) is convex (proven in Appendix C).

By calculating n values of v = [fa(∆h) fa(∆h + u) fa(∆h + 2u) . . . fa(∆h)]T with

u = (∆h−∆h)/n and u = [∆h7/4 (∆h+ u)7/4 (∆h+ 2u)7/4 . . . ∆h
7/4

]T the discretized
optimization problem

min
1/q0,q1

1

d2

(
v −

(
1

q0
u− q11

))T (
v −

(
1

q0
u− q11

))
= min

1/q0,q1
F (1/q0, q1) (8.7)

utilizing 1 = [1 1 . . . 1]T can be solved explicitly. Equation system ∂F
∂(1/q0) = 0, ∂F

∂q1
= 0 leads

to the following solution

[
1/q0

q1

]
=

1

nuTu− (uT1)2

[
n uT1
uT1 uTu

][
vTu
−vT1

]
if nuTu 6= (uT1)2. (8.8)

1Please do not confuse function q(.) or parameters q0 and q1 with the consumption in other chapters.
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Figure 8.1: Curve on the transitional-turbulent boundary for a pipe length of
l = 2m and different pipe diameters, left for some d ∈ [0.4, 0.95]m and right for

d ∈ [0.03, 0.07]m.

Corollary 8.3. Given Proposition 8.2 and a sufficiently large n, result (8.8) is the glo-
bal minimum of optimization problem (8.7) and, effectively, the solution of (8.6) as
limn→∞

1
nF (1/q0, q1) = 1

(∆h−∆h)
E(1/q0, q1).

Figure 8.1 shows that the chosen q(ε) manages to describe the transitional-turbulent boun-
dary exceptionally well with no visible distinction to the exact fa(∆h). Thorough testing for
different l, d values with particular attention to l ∈ [0.1, 100]m and d ∈ [0.001, 1]m suggests that
this holds for all physical relevant values since the author did not find any parameter combination
(length, diameter, temperature) where ansatz (8.4) did not sufficiently match fa(∆h).

Figure 8.2 shows the three-dimensional distribution of parameters q0, q1 over the pipe’s dia-
meter and length. One can see that q1 actually solely depends on the pipe’s diameter, whereas q0

features a very steep slope over the diameter. The accuracy of the approximation ε = q−1(∆h)
(of ε = fa(∆h)) for all q0, q1 plotted in figure 8.2 thereby remains unchanged (referring to figure
8.1) regardless of l, d and, remarkably, regardless of η, ρ (not displayed).
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Figure 8.2: Parameters q0, q1 for ρ = 998.5986 kg/m3 and η = 1.0526× 10−3 Pa
s plotted over the pipe’s diameter and length.
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8.3 Derivation of the Transitional Flow

Denoting b = 2000ηAρd for the laminar boundary flow, a solution for the transitional flow γ(ε,∆h)
is developed by tackling the conditions

γ
(
ε, b/w

) !
= b ∀ε (i)

∇γ
∣∣∣
(ε,b/w)

!
= [w 0]T ∀ε (ii)

for the laminar boundary (i) and its gradient (ii) as well as

γ(q−1(∆h),∆h)
!

= a ∀∆h ∈ [∆h,∆h] (iii)

∇γ
∣∣∣
(q−1(∆h),∆h)

!
= ∇ft

∣∣∣
(fa(∆h),∆h)

∀∆h ∈ [∆h,∆h] (iv)

for the turbulent boundary (iii) and its gradient (iv). The gradient is denoted by ∇ :=
[∂/∂ε ∂/∂∆h]T in this context. Finding a suitable function γ(ε,∆h) satisfying all the above
conditions is remarkably tricky.

Theorem 8.4. Let Assumption 7.4 hold. Then, the transitional flow γ(ε,∆h) can be expressed
in terms of ∆h (2.4) and ε (7.5) as follows:

γ(ε,∆h) = γ1(ε,∆h) + γ2(ε,∆h) + γ3(ε,∆h) with (8.9a)

γ1 = c0 + c1∆h−1/2 + c2
∆h5/4

ε+ q1
+ c3

(
1

ε+ q1
− q0∆h−7/4

)
+ c4

∆h7/4

ε+ q1

γ2 =
(n1 − 1)c2

ε+ q1

(
b

w

)5/4(b/w
∆h

) 5
4(n1−1)

+
(n2 − 1)c4

ε+ q1

(
b

w

)7/4(b/w
∆h

) 7
4(n2−1)

γ3 =

(
1

ε+ q1
− q0∆h−7/4

)c5

(
∆hn3 −

(
b

w

)n3
)

+ c6

(
∆hn4 −

(
b

w

)n4
)

(8.9b)

(8.9c)

(8.9d)

considering parameters c0, c1, . . . , c6 as well as n1, . . . , n4. (8.9) thereby satisfies conditions
(i),(ii) exactly and conditions (iii), (iv) in good approximation (clarification ought to be found
in Remark 8.7).

The proof of Theorem 8.4 is conducted along the three separate parts of γ as shown in the
sections below.

8.3.1 Choice of γ1(ε,∆h)

Starting with (i), γ1 (8.9b) is expected to satisfy

γ1(ε, b/w) = c0 + c1(b/w)−1/2 +
c2(b/w)5/4

ε+ q1
+ c3

(
1

ε+ q1
− q0(b/w)−7/4

)
+ c4

(b/w)7/4

ε+ q1

!
= b ∀ε (8.10)

which leads to the conditions

c0 + c1(b/w)−1/2 − c3q0(b/w)−7/4 !
= b (8.11a)

c2(b/w)5/4 + c3 + c4(b/w)7/4 !
= 0. (8.11b)
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From a physical standpoint the dependency of γ1 on roughness ε was chosen such that increasing
ε values lead to a decrease in the flow. As the exact boundary fa(∆h) (8.3) can be interpreted
as a function on ∆h−1/2, γ1 is developed around terms involving the head loss to the power of
−1

2 . When applying q−1(∆h) = ∆h7/4/q0−q1 on γ1, request (iii) results in an affine polynomial

in ∆h−1/2

γ1(q−1(∆h),∆h) = c0 + c1∆h−1/2 + c2q0∆h−1/2 + c4q0
!

= a ∀∆h ∈ [∆h,∆h]. (8.12)

In this context, request (iii) can be fulfilled by selecting parameters ci such that

c0 + c4q0
!

= a (8.13a)

c1 + c2q0
!

= 0. (8.13b)

Remark 8.5. Concerning request (ii), the partial derivative ∂γ1

∂ε
!

= 0 at ∆h = b/w and ∀ε is
already satisfied implicitly through (8.11b) as a reason of request (i).

The partial derivative

∂γ1

∂∆h
= −1/2c1∆h−3/2 + 5/4

c2∆h1/4

ε+ q1
+ 7/4c3q0∆h−11/4 + 7/4

c4∆h3/4

ε+ q1
(8.14)

evaluated at ∆h = b/w and ∀ε leads to conditions

−1/2c1(b/w)−3/2 + 7/4c3q0(b/w)−11/4 !
= w (8.15a)

5/4c2(b/w)1/4 + 7/4c4(b/w)3/4 !
= 0. (8.15b)

Requests (8.11), (8.13) and (8.15a) yield ((8.15b) is considered later)
1 (b/w)−1/2 0 −q0(b/w)−7/4 0

0 0 (b/w)5/4 1 (b/w)7/4

1 0 0 0 q0

0 1 q0 0 0

0 −1/2(b/w)−3/2 0 7/4q0(b/w)−11/4 0


︸ ︷︷ ︸

A


c0
...
c4

 =


b
0
a
0
w

 (8.16)

a system of linear equations with a rank deficiency of matrix A, meaning that (i) and (iii) could
not be (exactly) satisfied simultaneously. However, full rank can be restored by altering either
(8.11b) or (8.13b). Altering (8.11b), the second row in A, in terms of

n1c2(b/w)5/4 + c3 + n2c4(b/w)7/4 = 0 (8.17)

introducing new parameters n1, n2 to be determined later, (8.16) modified through (8.17) is
solved. The choice to use (8.17) instead of (8.11b) in A is strongly related with γ2. Denoting

C(n1, n2) =
n2

(
11
7 b− a

)
− 4

7b

5
7n2 − n1 + 2

7

, (8.18)
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coefficients c0, . . . , c4 can be summarized:

c0 =
11

7
b− 5

7
C(n1, n2) c1 = C(n1, n2)

(
b

w

)1/2

c2 = − 1

q0
C(n1, n2)

(
b

w

)1/2

c3 =
2

7

1

q0

(
b

w

)7/4 (
2b+ C(n1, n2)

)
c4 =

1

q0

(
a− 11

7
b+

5

7
C(n1, n2)

)
(8.19)

8.3.2 Choice of γ2(ε,∆h)

Thanks to special properties of γ2 (8.9c), there is no need to explicitly fulfill request (8.15b).
When considering the partial derivative

∂γ2

∂∆h
=− 5

4

c2

ε+ q1

(
b

w

) 5
4

+ 5
4(n1−1)

∆h
− 5

4(n1−1)
−1

(8.20a)

− 7

4

c4

ε+ q1

(
b

w

) 7
4

+ 7
4(n2−1)

∆h
− 7

4(n2−1)
−1

at ∆h = b/w and ∀ε and the one of γ1 + γ2 at ∆h = b/w

∂γ2

∂∆h

∣∣∣∣
(ε,b/w)

= −5

4

c2

ε+ q1

(
b

w

) 1
4

− 7

4

c4

ε+ q1

(
b

w

) 3
4

(8.20b)

⇒ ∂γ1

∂∆h

∣∣∣∣
(ε,b/w)

+
∂γ2

∂∆h

∣∣∣∣
(ε,b/w)

= −1/2c1(b/w)−3/2 + 7/4c3q0(b/w)−11/4 =̂ (8.15a),

(8.15b) is satisfied implicitly. As a result, (8.15) and thus (ii) hold exactly. γ2’s structure also
helps to satisfy (8.11b) which was violated by (8.17)

γ2(ε, b/w) =
(n1 − 1)c2

ε+ q1

(
b

w

)5/4

+
(n2 − 1)c4

ε+ q1

(
b

w

)7/4

(8.21)

γ1(ε, b/w) + γ2(ε, b/w)
(8.17)

= c0 + c1(b/w)−1/2 − c3q0(b/w)−7/4 =̂ (8.11a). (8.22)

Consequentially, (i) also holds exactly. Although the choice of γ2 well complements γ1 at the
laminar boundary, it introduces problems at the turbulent one

γ2(q−1(∆h),∆h) = γ2(∆h7/4/q0 − q1,∆h) = (8.23)

(n1 − 1)c2q0

(
b

w

)−1/2(b/w
∆h

)
︸ ︷︷ ︸

<1

7n1−2
4(n1−1)

+ (n2 − 1)c4q0

(
b/w

∆h

)
︸ ︷︷ ︸

<1

7
4

n2
n2−1

where the error γ2(q−1(∆h),∆h) is expected to be sufficiently small as γ1 already satisfies
γ1(q−1(∆h),∆h) = a. From the physical context it is clear that

b/w < ∆h ∀∆h ∈ [∆h,∆h] (8.24)

laminar and turbulent boundary do not meet. There is a clear distance between ∆h = b/w and
∆h = ∆h (where ε = 0). Given (8.23) and (8.24) the aim will be to select n1 and n2 such that
exponents 7n1−2

4(n1−1) = 5
4(n1−1) + 7

4 and 7
4

n2
n2−1 are large and that (see (8.18))

5n2/7− n1 + 2/7 6= 0 (8.25)
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to maintain solvability of (8.16) which was modified by (8.17). Additionally, the choice of n1, n2

also influences (iv), the gradient at the turbulent boundary.

8.3.3 Choice of γ3(ε,∆h)

Since γ1 and γ2 enable requests (i)-(iii) to be satisfied, γ3 (8.9d) has to be chosen such that
laminar and turbulent boundary remain unaffected, i.e.

γ3(ε, b/w) = 0 ∀ε (8.26a)

γ3(q−1(∆h),∆h) = 0 ∀∆h ∈ [∆h,∆h]. (8.26b)

This explains the use of terms (∆hnx − (b/w)nx) as well as
(

1
ε+q1
− q0∆h−7/4

)
while exponents

nx ∈ {n3, n4} help to manipulate the gradient at the turbulent boundary.

Gradient at Laminar Boundary. One also has to make sure that the contribution of ∇γ3

to ∇γ at ∆h = b/w the laminar boundary is zero. Considering

∂γ3

∂∆h
= c5n3∆hn3−1

(
1

ε+ q1
− q0∆h−7/4

)
+ q0

7

4
c5∆h−11/4

(
∆hn3 −

(
b

w

)n3
)

+ c6n4∆hn4−1

(
1

ε+ q1
− q0∆h−7/4

)
+ q0

7

4
c6∆h−11/4

(
∆hn4 −

(
b

w

)n4
)

(8.27)

the choice

c5n3

(
b

w

)n3

+ c6n4

(
b

w

)n4

= 0 =⇒ c6 = −c5
n3

n4

(
b

w

)n3−n4

(8.28)

achieves the desired behavior ∂γ3

∂∆h

∣∣∣
(ε,b/w)

= 0. Parameter c6 is now expressed through c5 and

n3, n4. γ3’s unique form makes sure that ∂γ3

∂ε

∣∣∣
(ε,b/w)

= 0, hence ∇γ3|(ε,b/w)

(8.28)
= 0.

Gradient at Turbulent Boundary. The main purpose of γ3 as part of (8.9) is to fulfill the
arguably most challenging request (iv). In sum, the parameters yet to be determined are n1

and n2, which shall lead to large exponents 5
4(n1−1) + 7

4 resp. 7
4

n2
n2−1 while not violating (8.25),

as well as n3, n4 and c5 which are free of constraints (except n3, n4 6= 0).

Proposition 8.6. Provided that the error between ε = q−1(∆h) and ε = fa(∆h) vanishes, i.e.
q−1(∆h) = fa(∆h) ∀∆h (see Corollary 8.3), it is sufficient to fulfill either

∂γ

∂ε

∣∣∣∣
(q−1(∆h),∆h)

!
=
∂ft
∂ε

∣∣∣∣
(fa(∆h),∆h)

or
∂γ

∂∆h

∣∣∣∣
(q−1(∆h),∆h)

!
=

∂ft
∂∆h

∣∣∣∣
(fa(∆h),∆h)

(8.29)

to satisfy request (iv) (proven in Appendix D).

By setting the focus on the partial derivative concerning ∆h while combining (8.9) with
(8.4), (8.19) and (8.28) (writing C instead of C(n1, n2) for better readability)

∂γ

∂∆h

∣∣∣∣
(q−1(∆h),∆h)

= g1(∆h) + c5g2(∆h) with (8.30a)

g1 = −7

4
C

(
b

w

)1/2

∆h−3/2 +
1

2

(
b

w

)7/4

(2b+ C)∆h−11/4 +

(
7

4
a− 11

4
b+

5

4
C

)
∆h−1

+
5

4

(
b

w

)−3/2

C

(
b/w

∆h

) 5
4(n1−1)

+ 11
4

−
(

7

4
a− 11

4
b+

5

4
C

)(
b

w

)−1(b/w
∆h

) 7
4(n2−1)

+ 11
4

(8.30b)
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g2 =
7

4
q0∆h−11/4

∆hn3 −
(
b

w

)n3

− n3

n4

(
b

w

)n3−n4
(

∆hn4 −
(
b

w

)n4
) (8.30c)

n1, . . . , n4 and c5 are adapted to match

∂ft
∂∆h

∣∣∣∣
(fa(∆h),∆h)

=
a

2
∆h−1 +

2.51

ln(10)

ηA

ρd
∆h−1 exp

(
a

ln(10)

2

√
k

∆h

)
=: p(∆h) (8.31)

with the help of optimizations, minimizing the quadratic error between (8.30) and (8.31).

n1 = 5/4 n2 = 11/8 n3 = 57/31 n4 = 21/20 (8.32)

With the help of chosen n1, n2 (8.32) the rational C (8.18) becomes C(n1, n2) = 89b− 77a, i.e.
it has integer coefficients at boundary flows a and b.

Remark 8.7. Exponents 5
4(n1−1) + 7

4 = 27
4 = 6.75 and 7

4
n2
n2−1 = 77

12 = 6.4166 of

1/∆h in (8.9c) are sufficiently large at the turbulent boundary such that the relative error∣∣(a− γ(q−1(∆h),∆h))/a
∣∣ < 0.0005 ∀∆h ∈ [∆h,∆h] remained below 0.05% for all tested l, d, ρ

and η values.

Interestingly, the quality of the approximation of (8.31) by (8.30) basically remains unchan-
ged (as seen in figure 8.3) when varying l, d (even ρ, η) with the same n1, . . . , n4 according to
(8.32) which, effectively, represent different exponents of ∆h. It is sufficient to solely adapt
parameter c5 in order for (8.30) to match (8.31) concerning different l, d, ρ and η values.
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Figure 8.3: Partial derivative in terms of ∆h on the transitional-turbulent boun-
dary scaled by ∆h/d for a pipe length of l = 2m and different pipe diameters (same

as in figure 8.1).

In this context, γ3(ε,∆h) is an essential part of γ(ε,∆h) (8.9), it was not possible with
g1(∆h) (8.30b), i.e. ∂γ1

∂∆h + ∂γ2

∂∆h at the turbulent boundary, to reproduce (8.31) by adjusting
n1, n2 only.

For the determination of c5 the same equidistant step u as in (8.8) is taken and
p = [p(∆h) p(∆h + u) p(∆h + 2u) . . . p(∆h)]T according to (8.31) as well as gi =
[gi(∆h) gi(∆h + u) . . . gi(∆h)]T for i = 1, 2 according to (8.30a). The corresponding
discretized optimization problem

min
c5

(p− g1 − c5g2)T (p− g1 − c5g2) (8.33)
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has the optimal solution

c5 =
pTg2 − gT1 g2

gT2 g2
. (8.34)

Remark 8.8. Analogous to Proposition 8.2, one can show that the integral error function

Ẽ(c5) =

∫ ∆h

∆h

(
p(∆h)− g1(∆h)− c5g2(∆h)

)2
d∆h (8.35)

is convex. Subsequently, given a sufficiently large n for the discretization of p(∆h), g1(∆h) and
g2(∆h), (8.34) is solution of the problem dẼ/dc5 = 0 (see Corollary 8.3).

One can see that γ (8.9) in figure 8.4 does not compromise the smoothness of Q (8.1) in
any way noticeable. This holds true for all tested l, d values and, interestingly, also for different
η, ρ when, for instance, adapted to other temperatures. To avoid using the flow in Re (2.3)
concerning the distinction between flow regimes in Q (8.1), one specifies the laminar region in
∆h ≤ b/w (instead of Re ≤ 2000) and the turbulent region in ∆h ≥ q(ε) (instead of Re ≥ 4000).

(A) First view showing the turbulent boundary curve ε = fa(∆h) ≈ q−1(∆h) as well as the laminar
boundary where ∆h = b/w for all ε.
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(B) Second view with attention to the gradient at the turbulent boundary.

Figure 8.4: Comparison of laminar, transitional and turbulent flow showing γ
as a smooth interpolation of w∆h and ft for a pipe with l = 10m and d = 0.04m.

8.4 Comparison to Dunlop’s Cubic Interpolation

In this section a brief comparison ought to clarify the differences to existing formulae describing
the transitional water head loss. Thereby, the head loss as a solution of the implicit equation

Fγ(∆h) = Q− γ(ε,∆h) = 0 (8.36)

is solved numerically in order to be compared to Dunlop’s cubic interpolation [Dunlop, 1991] of
the transitional friction factor (2.8) used within the Darcy-Weisbach head loss (2.4). This may
be of particular interest since this equation is also applied in the current version of EPANET
[Lewis, 2000]. This comparison can be seen in figure 8.5 showing substantial deviations between
“Dunlop’s formulae” and the derived γ in terms of the head loss. In figure 8.5B, the front view
of 8.5A, one can see that both match the laminar boundary and gradient exactly. However, in
figure 8.5C one can see that “Dunlop’s head loss” shows vast deviations to Colebrook-White’s
head loss in terms of the turbulent gradient and somewhat minor deviations to the turbulent
boundary.

Knowing that the Dunlop-interpolation utilizes the Swamee-Jain formula (2.7) [Swamee and
Jain, 1976] at the turbulent boundary, these deviations make sense and appear consistently when
varying the pipe’s length and diameter.
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(A) Comparing ∆h as a solution of (8.36) with the “Dunlop” [Lewis, 2000; Dunlop, 1991] formulae (see
(2.8)) the Colebrook-White head loss (solved numerically) and the laminar head loss.

(B) Front view of figure 8.5A.

(C) Zoom in figure 8.5A showing the turbulent boundary.

Figure 8.5: Comparison of laminar, transitional and turbulent head loss showing
differences to existing formulae for a pipe with l = 10m and d = 0.04m.
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8.5 Summary of Steps to Obtain γ

This section intends to clarify the process on how to obtain the final γ. Beforehand, mind that

a = 4000Aηρd , b = 2000ηAρd as well as w = 1
32
ρ
η
d2gA
l . This determination of γ according to (8.9) is

comprised of the following steps:

(I) compute lower and upper limit ∆h and ∆h by solving fa(∆h) = 0 (8.3) and fa(∆h) = 0.05d
(8.3) numerically. Since one can show that function ε = fa(∆h) is strictly monotone for
|∆h| 6= 0 this can be done easily, also consider Remark 8.1 in this context.

(II) take the equidistant step u = (∆h − ∆h)/n for a sufficiently large n, e.g. n = 104 and
calculate

u = [∆h7/4 (∆h+ u)7/4 (∆h+ 2u)7/4 . . . ∆h
7/4

]T

v
(8.3)
= [fa(∆h) fa(∆h+ u) fa(∆h+ 2u) . . . fa(∆h)]T

(III) determine q0 and q1 via (8.8) (pay attention to the reciprocal representation of q0)

(IV) take C = 89a−77b as well as (8.32) and the same equidistant step u as before and calculate

gi
(8.30)

= [gi(∆h) gi(∆h+ u) gi(∆h+ 2u) . . . gi(∆h)]T for i = 1, 2

p
(8.31)

= [p(∆h) p(∆h+ u) p(∆h+ 2u) . . . p(∆h)]T

(V) finally coefficients c0, . . . , c4 (8.19) are obtained for C = 89a−77b, whereas c5 is the result

of (8.34) while c6
(8.28)

= −c5
n3
n4

(
b
w

)n3−n4

with n3, n4 as in (8.32)

All parameters for γ in reference to (8.9) have now been obtained, applying C
(8.18)

= 89a − 77b
in (8.19), n1, n2, n3, n4 according to (8.32) and and c6 (8.28) yields

γ(ε,∆h) =

55 a− 62 b+
89 b− 77 a√

∆h

√
b

w
− (89 b− 77 a) ∆h5/4

q0 (ε+ q1)

√
b

w
+

26 b− 22 a

q0

(
b

w

) 7
4
(

1

ε+ q1
− q0

∆h7/4

)
+

(−54 a+ 62 b) ∆h7/4

q0 (ε+ q1)
− 1

4

89 b− 77 a

q0 ∆h5 (ε+ q1)

(
b

w

) 27
4

+
3

8

−54 a+ 62 b

q0 ∆h14/3 (ε+ q1)

(
b

w

) 77
12

+c5

(
1

ε+ q1
− q0

∆h7/4

) ∆h
57
31 −

(
b

w

) 57
31

− 380

217

(
b

w

) 489
620

∆h
21
20 −

(
b

w

) 21
20




(8.37)
with q0, q1 as well as c5 as results of convex optimizations. As a side note, this process has to
be done once only for a specific pipe length l, diameter d and temperature, hence ρ and η.
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9
Roughness Identification: Consideration of All Flow Regimes

In this chapter the relieve of Assumption 7.7 is finally accomplished by merging the roughness
calculation of the full turbulent case (chapter 7) with the transitional water flow (chapter 8)
while also accounting for the laminar regime.

In this process it turns out that the developed methods for solving (7.7)-like problems only
need slight modifications to handle the extension to all flow regimes. In this context, it is worth
mentioning that the efforts put into the development of γ satisfying (i)-(iv) (on page 130) pays
off when applying root-finding methods which require to find a search direction via a Taylor
series as in (7.12) or (7.43). The satisfaction of gradients concerning (iii) and in particular
(iv) (on page 130) to a sufficient degree of detail enables the (roughness) root-finding algorithm
to autonomously decide if a pipe flow in the corresponding measurement-set has been laminar,
turbulent or even transitional for that matter.

9.1 Complete Problem Set-Up

The following notation is applied

[ft(ε,∆h
(i))]j

(7.5)
= ft,j([ε]j , [∆h

(i)]j) (9.1a)

[γ(ε,∆h(i))]j
(8.37)

= γj([ε]j , [∆h
(i)]j) ∀j ∈ P (9.1b)

[w]j =
1

32

ρ

η

d2
jgAj

lj
(9.1c)

to specify the turbulent flow (9.1a), the transitional flow (9.1b) and the proportionality factor
(9.1c) for the laminar flow for all pipes in j ∈ P. w thereby involves the corresponding j-th
pipe’s diameter dj , its cross section area Aj , its length lj , the gravitational acceleration g and
the water viscosity η as well as the density ρ (which, in principle, can also vary along the j-th
pipe). Also γj and ft,j did receive a dedicated index in (9.1) to highlight that (7.5) and (8.37),
respectively, involve parameters which also vary along P. Also note that γ(ε,∆h(i)) has to be
replaced with sign(∆h(i))� γ(ε, |∆h(i)|) for negative ∆h(i) in reference to Remark 8.1.

Further, in order to avoid a direct case separation as in (8.1) the author introduces the
following definitions:
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Definition 9.1 (Flow Separation Matrices). Let ej ∈ Zn`{0,1} ∀j ∈ P. Then,

R
(i)
t :=



eT
t
(i)
1

eT
t
(i)
2
...

eT
t
(i)

n
(i)
t


, R(i)

γ :=



eT
g

(i)
1

eT
g

(i)
2
...

eT
g

(i)

n
(i)
γ


, R

(i)
l :=



eT
l
(i)
1

eT
l
(i)
2
...

eT
l
(i)

n
(i)
L


(9.2a)

r
(i)
t :=

t
(i)

n
(i)
t∑

j=t
(i)
1

ej , r(i)
γ :=

g
(i)

n
(i)
γ∑

j=g
(i)
1

ej , r
(i)
l :=

l
(i)

n
(i)
L∑

j=l
(i)
1

ej , (9.2b)

built from unity vectors ej with indices which belong to sets1

T (i) (8.4)
=
{
j ∈ P |

[
|∆h(i)|

]
j
≥ (q0,j(εj + q1,j))

4/7
}

= {t(i)1 , t
(i)
2 , . . . , t

(i)

n
(i)
t

} (9.3a)

G(i) (8.4)
=
{
j ∈ P | bj/wj <

[
|∆h(i)|

]
j
< (q0,j(εj + q1,j))

4/7
}

= {g(i)
1 , g

(i)
1 , . . . , g

(i)

n
(i)
γ

} (9.3b)

L(i) =
{
j ∈ P |

[
|∆h(i)|

]
j
≤ bj/wj

}
= {l(i)1 , l

(i)
2 , . . . , l

(i)

n
(i)
L

} (9.3c)

and vary in each measurement-set i ∈M such that

T (i) ∩ G(i) = {} ∧ T (i) ∩ L(i) = {} ∧ G(i) ∩ L(i) = {} ∀i ∈M (9.4)

but T (i) ∪ G(i) ∪ L(i) = P ∀i ∈M, effectively, separate flow vector x
(i)
Q along the flow regimes.

Finally, applying notation (9.1) and Definition 9.1 on (7.7) one receives the equation-set

Ψ :


A

xQ(ε,∆h(i))︷ ︸︸ ︷(
R

(i)T

t R
(i)
t ft(ε,∆h

(i)) +R(i)T

γ R(i)
γ γ(ε,∆h(i)) +R

(i)T

l R
(i)
l diag (w) ∆h(i)

)
= RT

q q
(i)

∆h(i) = C̃sh
(i)
s −ATCT

h y
(i)
h −A

T C̄T
h h

(i)
N −A

Tz

for i ∈ {1, 2, . . . , nm} = M (9.5)

to be solved under the assumptions in table 7.1. To recapitulate, set (9.5) is nothing else
but nodal Kirchhoff equations, where flows in each component of the network are expressed

as functions on the roughness ε and the not-measured pressured heads h
(i)
N at nodes with no

sensors in measurement-sets i ∈M which are the unknowns to be found.
Also, following Definition 9.1 it is clear that

R
(i)T

t R
(i)
t +R(i)T

γ R(i)
γ +R

(i)T

l R
(i)
l ≡ In` (9.6)

is equivalent to the identity matrix meaning that n
(i)
t + n

(i)
γ + n

(i)
L ≡ n` where the lengths

nt, nγ , nL may also vary in each measurement-set. Please do not confuse the number of pipes n`

1Due to the conflicting notation of the consumption [q]k = qk for k ∈ K (Definition 4.4) with the function
∆h = q(ε) (8.4), describing the transitional-turbulent boundary, q(ε) is represented by q(ε) ← q(ε) and thus
q(ε) = (q0(ε+ q1))4/7.
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with the number of laminar flows nL in the i-th measurement-set. Similar properties as in (4.5)
used to separate nodes into consumer and non-consumer nodes can certainly be derived.

Although the flow separation matrices actually depend on the variables ε and h
(i)
N actually,

according to Definition 9.1, one can act as if they do not for the determination of first and
second flow derivatives as in section 7.4.1 and section 7.6.1 for the turbulent flow. This can be
attributed to the property that R

(i)
l ,R

(i)
γ ,R

(i)
t are only comprised of zeros and ones, i.e. their

derivative always yields the zero matrix. This makes the notation applied on set (9.5) powerful
in a sense that one does not have to worry about the flow-regime case-separation explicitly, the

consideration of matrices R
(i)
l ,R

(i)
γ ,R

(i)
t or vectors r

(i)
l , r

(i)
γ , r

(i)
t is sufficient.

Another feature of equation-set Ψ has to be discussed in the context of the number of
roughness variables ε ∈ Rn`≥0.

Remark 9.2. The relieve of Assumption 7.7 with consideration of the transitional flow γ(i)

(8.37) to allow flows x
(i)
Q to transition to the laminar regime in the solving of problem Ψ, allows

individual pipe flows in P, in principle, to never become turbulent (or even transitional) in any
of the i ∈ M measurement-sets. As a result, the corresponding roughnesses in ε of these pipe
flows among P can not be identified inherently, although one might be able to enhance Algorithms
1 and 3 to also consider a varying number of variables x = [ε h

(1)
N . . . h

(nm)
N

]T .

As this is not considered in this thesis, the following assumption in addition to all the ones
in table 7.1 must hold for the applicability of Algorithm 1 and 3 on Ψ.

Assumption 9.3. All individual pipe flows x
(i)
Q must at least once be in the turbulent regime in

any of the i ∈M measurement-sets, i.e. ∃ i ∈M | t(i) (9.3a)
= j ∈ T (i) ∀j ∈ P.

Actually, it would suffice to require all pipe flows to be at least once in the turbulent or
transitional regime for the solvability of Ψ via Algorithm 1 or 3. However, as the derivation of the
transitional flow γ according to (8.37) was accomplished by purely mathematical considerations,
the restriction to turbulent flows as in Assumption 9.3 makes sense in the opinion of the author.

9.2 Derivatives of the Combined Flow

First Derivatives. The partial derivatives of the transitional water flow γ (8.37) with respect
to the roughness ε

∂γj
∂εj

(8.37)
=: [γε]j = γε,j ∀j ∈ P =̂

(89 b− 77 a) ∆h5/4

q0 (ε+ q1)2

√
b

w
− 26 b− 22 a

q0 (ε+ q1)2

(
b

w

) 7
4

− (62 b− 54 a) ∆h7/4

q0 (ε+ q1)2

+
1

4

89 b− 77 a

q0 ∆h5 (ε+ q1)2

(
b

w

) 27
4

− 1

8

−162 a+ 186 b

∆h14/3q0 (ε+ q1)2

(
b

w

) 77
12

− c5

(ε+ q1)2

∆h
57
31 −

(
b

w

) 57
31

− 380

217

(
b

w

) 489
620

∆h
21
20 −

(
b

w

) 21
20




(9.7)
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(neglecting indices in q0, q1, a, b, w along T (i) ⊆ P) as well as its derivative with respect to the
pressure head loss

∂γj
∂∆hj

(8.37)
=: [γ∆h]j = γ∆h,j ∀j ∈ P =̂ −1

2

89 b− 77 a

∆h3/2

√
b

w
− 1

4

(445 b− 385 a) ∆h1/4

q0 (ε+ q1)

√
b

w

+
7

4

26 b− 22 a

∆h11/4

(
b

w

)7/4

+
1

4

(−378 a+ 434 b) ∆h3/4

q0 (ε+ q1)
+

1

4

445 b− 385 a

q0 ∆h6 (ε+ q1)

(
b

w

) 27
4

−1

2

217 b− 189 a

q0 (ε+ q1)

(
b

w

) 77
12

∆h−
17
3 + c5

57

31

(
1

ε+ q1
− q0

∆h7/4

)∆h
26
31 −∆h

1
20

(
b

w

) 489
620


+

7

4
c5

q0

∆h11/4

∆h
57
31 −

(
b

w

) 57
31

− 380

217

(
b

w

) 489
620

∆h
21
20 −

(
b

w

) 21
20




(9.8)
(neglecting the same indices as before) is now applied.

Remark 9.4. In reference to Remark 8.1, the partial derivatives γε(ε,∆h
(i)), γ∆h(ε,∆h(i))

have to be replaced by

γε(ε,∆h
(i))

(9.7)← sign(∆h(i))� γε(ε, |∆h(i)|) (9.9a)

γ∆h(ε,∆h(i))
(9.8)← γ∆h(ε, |∆h(i)|) (9.9b)

∀i ∈M respectively to also consider negative head losses, i.e. ∆h(i) < 0.

One can write

∂γ(i)

∂ε
= diag

(
γε(ε,∆h

(i))
)

= diag
(
γ(i)
ε

)
∂γ(i)

∂h
(i)
N

= −diag
(
γ∆h(ε,∆h(i)

)
AT C̄T

h = −diag
(
γ

(i)
∆h

)
AT C̄T

h

∀i ∈M (9.10)

for the first transitional flow derivatives where, again, the main information can be stored in
vectors γε(ε,∆h) and γ∆h(ε,∆h) which are functions on ε and ∆h. Concerning the Jacobian
(7.15), one then receives

∂xQ(ε,∆h(i))

∂ε
= diag

(
R

(i)T

t R
(i)
t p

(i)
ε +R(i)T

γ R(i)
γ γ

(i)
ε

)
= diag

(
r

(i)T

t � p(i)
ε + r(i)T

γ � γ(i)
ε

) ∀i ∈M (9.11a)

∂xQ(ε,∆h(i))

∂h
(i)
N

= −diag

(
R

(i)T

t R
(i)
t p

(i)
∆h +R(i)T

γ R(i)
γ γ

(i)
∆h +R

(i)T

l R
(i)
l w

)
AT C̄T

h

= −diag

(
r

(i)T

t � p(i)
∆h + r(i)T

γ � γ(i)
∆h + r

(i)T

l �w
)
AT C̄T

h

∀i ∈M

(9.11b)

under the relieve of Assumption 7.7 in comparison to (7.21).
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Second Derivatives. For the application of the Tensor Method (section 7.6) the second-
transitional-flow derivatives would need to be determined. As the contribution of the laminar,

thus linear, flow vanishes, only the second derivatives γ
(i)
ε2,j

, γ
(i)
∆h2,j

and γ
(i)
ε∆h,j concerning

∂2γ
(i)
j

∂ε2
= γ

(i)
ε2,j
eje

T
j (9.12a)

∂2γ
(i)
j

∂h
(i)2

N

= γ
(i)
∆h2,j

C̄T
h aja

T
j C̄

T
h (9.12b)

∂2γ
(i)
j

∂ε∂h
(i)
N

=
∂2γ

(i)
j

∂h
(i)
N ∂ε

= −γ(i)
ε∆h,jA

T C̄T
h (9.12c)

∀j ∈ G(i) ⊆ P ∧ i ∈ M, in analogy to (7.54), would need to be determined. Mind that
A = [a1 a2 . . . an`] in this context. As first-order γ-derivatives (9.7) and (9.8) are already

complex, the second-order γ-derivatives, i.e. γ
(i)
X ,j for X ∈ {ε2, ε∆h,∆h2}, have been neglected

in this thesis.

Remark 9.5. All results derived in section 7.6.2 to 7.6.6 concerning the Tensor Equa-

tion/Method are applicable to Ψ (9.5) by replacing partial turbulent-flow-derivatives p
(i)
X with

respect to X ∈ {ε,∆h, ε2, ε∆h,∆h2} with

p
(i)
∆h ← r

(i)T

t � p(i)
∆h + r(i)T

γ � γ(i)
∆h + r

(i)T

l �w (9.13a)

p
(i)
X ← r

(i)T

t � p(i)
X + r(i)T

γ � γ(i)
X with respect to X ∈ {ε, ε∆h,∆h2, ε2} (9.13b)

respectively. This particularly applies to Lemma 7.12, Theorem 7.13, Remark 7.17, Theorem
7.18, Corollary 7.19, Theorem 7.20, Remark 7.21, Remark 7.23, Proposition 7.24 and 7.25,
Corollary 7.26 as well as Proposition 7.27.

Remark 9.6. The neglection of γ
(i)
X ,j regarding the partial derivatives X ∈ {ε2, ε∆h,∆h2}, pipes

j ∈ G(i) ⊆ P in measurement-set i ∈M for the Tensor-Method may actually have adverse effects

in a sense that this may mistakenly lead to the violation of ∆
(i)
j (α(i)) = 0 ∧ ∆̂

(i)
j ≤ 0 ∀j ∈ P

(7.90) concerning the applicability of Theorem 7.18. In other words, one may lose separability
of the Tensor Equation (7.45) (in the combined-flow case) into linear terms (as in (7.89)) when
neglecting the second-transitional-flow derivatives (9.12).
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9.3 3-Cycle Network Example

Solving Ψ (9.5) for identification of the pipes’ roughness, flows are allowed to become laminar in
the measurement-sets while also adding measurement noise (mean-free white noise) to pressure
sensors and the consumption-data (e.g. records of fireflows). In continuation of the 3-cycle
network (figure 7.1) example, which originally started on page 83, one is finally able to draw
conclusions about the real-world applicability of the developed methods.

9.3.1 Configuration

First, in order to produce sufficient head-loss to also be able to account for measurement-
noise (see Assumption 7.3) and still maintain linear independency among measurement-
sets M, roughnesses were reversed (in comparison to section 7.5) such that ε =
[0.25 0.5 0.75 1 1.25 1.5 1.75 2]T mm.

Figure 9.1: Consumption pattern to produce 5 independent measurement-sets.

As flow Q1, connected to the reservoir, will naturally have the highest flow (sum of the
consumption in this case) it would also have the highest head-loss. If selecting ε1 = 2mm instead
of ε1 = 0.25mm (the value used in this section) all the pressure head provided by the source
hs = 100m is already lost before reaching consumers. This means one would need unrealistically
high source pressure hs to serve consumption values shown in figure 9.1. For analysis purposes,
two measurement-sets additional to nm,min = 3 sets were produced to investigate performance
improvements by accounting for more than nm,min measurement-sets.
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Figure 9.2: “Measured” nodal heads yh +Chz and source hs.

Figure 9.3: Head losses built from the noisy yh and the not-measured hN .

Considering figure 9.2, one can already recognize that the white noise in the measured
pressure heads causes some overlaps, best seen in figure 9.3 showing C̃shs−AT (CT

h yh+C̄T
h C̄hh+

z) which portrays head losses built from the noisy yh and the not (a-priori) known pressure
heads hN = C̄hh. From figure 9.3 it is also clear that although the source pipe has the smallest
roughness ε1 = 0.25mm, it has by far the highest head loss (≥ 30m) due the nonlinear friction
relations. It should be emphasized that the displayed head losses in figure 9.3 are certainly
not available a-priori and were provided for analysis purposes only. In this context, one can



146 9. Roughness Identification: Consideration of All Flow Regimes

recognize that there is particularly strong overlapping among the five inner pipes (inner cycles
which are most distant from the source in figure 7.1) in terms of head losses, clearly violating
Assumption 7.3. The intended violation of Assumption 7.3 is conducted to investigate negative
effects on the solution finding of Ψ. This also highlights that with growing number of pipes
and nodes, multiple distributed sources are necessary in a real network to maintain the supply
pressure during peak-consumption events.

The quantities needed for the calibration-launch (q and yh) concerning figure 9.1 and 9.2
were produced with the dynamic model PDu (Definition 4.14) analogously to section 7.5. Ho-
wever, the set of “measured” values in the steady-state time-frames indicated in figure 9.1 and
9.2 were utilized for simple averaging with the aim to mitigate noise-effects (noise which was
added intentionally). In this context, it is advisable to also measure real-world values with high
sampling frequency, a simple measure to improve the averaging.

set 1 2 3 4 5 unit

hs 100 100 100 100 100 m

47.0448 20.7637 12.9736 6.2638 2.9981
yh 49.5626 20.4885 19.1015 10.2186 5.5117 m

53.6419 23.8439 20.9840 12.9755 9.0646

0.9998 0.3348 6.8327 4.5018 3.5016
q 4.6661 6.2667 1.6016 4.2852 5.9522 l/s

4.9997 6.9986 5.6647 6.0012 5.6690

0.0825 0.0779 0.0840 0.0829 0.0815
var(yh) 0.0799 0.0834 0.0791 0.0814 0.0813 m

0.0763 0.0817 0.0802 0.0791 0.0814

0.5159 0.4871 0.5247 0.5179 0.5096
var(q)×103 0.4997 0.5212 0.4941 0.5089 0.5084 l/s

0.4932 0.5228 0.5246 0.4908 0.5034

# values for
averaging

1696 1740 1740 1740 2240

Table 9.1: yh and q values along measurement-sets after averaging whereas no
noise was added to the source pressure hs. The variances of yh and q have been

estimated in the corresponding time-frames shown in figure 9.1 and 9.2.

set 1 2 3 4 5 unit

47.0495 20.7618 12.9802 6.2606 2.9955
yh 49.5689 20.4924 19.0992 10.2152 5.5067 m

53.6446 23.8368 20.9924 12.9720 9.0648

1.0010 0.3343 6.8343 4.5010 3.5010
q 4.6677 6.2677 1.6010 4.2843 5.9510 l/s

5.0010 7.0010 5.6677 6.0010 5.6677

Table 9.2: Original noise-free yh and q values along measurement-sets.

In view of table 9.1 and 9.2 respectively figure 9.1 and 9.2 one can recognize that the aver-
aging turns out effective in a sense that the error in the “measurement-data” could be reduced
significantly. Comparing measured pressure values yh in the current configuration (figure 9.2)
with the one in the previous configuration (figure 7.3C on page 97), there are also clear in-
dications that the current consumption configuration in this section is superior in producing
independent measurement-sets as the differences in yh are vastly higher (see Assumption 7.1).
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Figure 9.4: Reynolds numbers over time showing laminar steady-state flows Q
(3)
5

and Q
(4)
8 in set i = 3, 4 and no transitional (steady-state) flows.

Steady-state pipe flow 5 in measurement-set 3, i.e. Q
(3)
5 , as well as steady-state pipe flow 8 in

measurement-set 4, i.e. Q
(4)
8 , is laminar seen in figure 9.4. Since the simulation used to produce

this configuration still applies the Dunlop formulae (2.8) for the transitional friction factor via
the Darcy-Weisbach head-loss (2.4), the consumption were varied such that no (steady-state)
transitional flow results. However, as the Colebrook-White friction factor (2.6) instead of the
Swamee-Jain one (2.7) is utilized for the turbulent regime, it actually does make sense to also
adopt the derived transitional head loss which is given by (8.36) requiring an implicit equation
to solve. This remains open for future improvements.

Two particular reasons shall be highlighted which makes this current configuration inte-
resting. First, it will decide if the derived transitional flow γ (8.37) is eligible to provide the
transition from turbulent to laminar flow in the solving of Ψ (9.5). Second, it will give insight to
which extent mean-free measurement-noise in yh and q interferes with the roughness-calibration.

9.3.2 Results

The following tables represent the results of the roughness-calibration (trying to solve Ψ) in
the same manner as in section 7.7 whereas the same tolerances as in section 7.5 are used. This
means Algorithm 4 is called for a fixed number 13 times in the outer loop which itself launches
Algorithm 3 (i.e. “TensorMethod = true”) or Algorithm 1 (i.e. “TensorMethod = false”) 50
times each (fixed number). The intermediate best result in terms of v(x+) is then shown in the
below tables. The following initial value and range is used:

x0 =
[
εT0 h

(1)
N0,1

h
(1)
N0,5

h
(2)
N0,1

h
(2)
N0,5

h
(3)
N0,1

h
(3)
N0,5

h
(4)
N0,1

h
(4)
N0,5

h
(5)
N0,1

h
(5)
N0,5

]T
(9.14)

=
[
0.0004× 1Tn` 70.53 55.08 52.08 26.69 49.02 22.68 43.82 14.81 41.16 10.85

]T

xhN
(7.36)

=

[
54.56 53.64 25.49 23.84 22.97 20.984 15.22 12.98 10.51 9.06
100 57.04 100 30.76 100 24.1 100 16.26 100 12.99

]T
(9.15)
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launch 1 2 3 4 5 6 7 8 9 10 11 12 13 x∗

ε1 0.206 0.206 0.206 0.206 0.205 0.206 0.207 0.205 0.206 0.214 0.205 0.205 0.205 0.250

ε2 0.682 0.684 0.684 0.684 0.687 0.682 0.676 0.689 0.684 0.649 0.688 0.686 0.686 0.500

ε3 1.047 1.050 1.050 1.049 1.056 1.047 1.037 1.058 1.050 0.991 1.057 1.054 1.052 0.750

ε4 1.049 1.049 1.049 1.049 1.050 1.049 1.049 1.050 1.049 1.046 1.050 1.050 1.050 1.000

ε5 1.111 1.110 1.111 1.111 1.110 1.111 1.112 1.110 1.111 1.116 1.110 1.110 1.110 1.250

ε6 1.293 1.290 1.289 1.290 1.283 1.293 1.304 1.280 1.290 1.359 1.281 1.285 1.287 1.500

ε7 1.983 1.987 1.987 1.987 1.996 1.983 1.968 2.001 1.987 1.894 1.999 1.994 1.991 1.750

ε8 1.919 1.915 1.915 1.916 1.909 1.918 1.930 1.906 1.916 1.986 1.907 1.910 1.912 2.000

h
(1)
N,1 71.592 71.608 71.608 71.606 71.640 71.594 71.540 71.654 71.607 71.290 71.647 71.630 71.622 69.883

h
(1)
N,5 55.035 55.035 55.035 55.035 55.034 55.035 55.037 55.034 55.035 55.044 55.034 55.034 55.034 55.038

h
(2)
N,1 53.920 53.946 53.947 53.944 53.999 53.924 53.836 54.022 53.945 53.429 54.011 53.983 53.970 51.130

h
(2)
N,5 26.564 26.563 26.563 26.563 26.561 26.564 26.567 26.561 26.563 26.584 26.561 26.562 26.562 26.558

h
(3)
N,1 50.476 50.504 50.506 50.502 50.561 50.480 50.387 50.586 50.503 49.949 50.574 50.544 50.530 47.482

h
(3)
N,5 22.973 22.973 22.973 22.973 22.973 22.973 22.973 22.973 22.973 22.973 22.973 22.973 22.973 22.980

v(x+)× 107 2.843 2.842 2.874 2.873 2.848 2.857 2.839 2.842 2.844 2.830 2.791 2.819 2.836 410.753

iter of x+ 17 5 18 39 7 4 22 31 9 22 36 17 37

average # iter
to converge

4.41 20.60 18.61 18.90 24.71 8.25 3.32 48.13 19.56 9.41 33.58 22.65 15.73

Table 9.3: Tensor-Results for nm = 3 of Algorithm 4 along 13 launches calibrating the 3-cycle network (figure 7.1). Thereby Algorithm
4 calls Algorithm 3 (“TensorMethod=true”) for a fixed number of 50 times by tightening εf and εx in line 6 on page 95 (belonging to

Algorithm 4) appropriately. Roughnesses εi ∀i ∈ P are presented in mm, whereas pressure heads h
(i)
N,j ∀i ∈M ∧ j ∈ P̄ are presented in

m. Computational duration: 280.004028s
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launch 1 2 3 4 5 6 7 8 9 10 11 12 13 x∗

ε1 0.206 0.207 0.206 0.208 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.207 0.250

ε2 0.681 0.680 0.682 0.672 0.682 0.682 0.682 0.682 0.682 0.682 0.681 0.682 0.680 0.500

ε3 1.045 1.044 1.047 1.029 1.047 1.046 1.047 1.047 1.047 1.047 1.046 1.046 1.043 0.750

ε4 1.049 1.049 1.049 1.048 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.000

ε5 1.111 1.111 1.111 1.113 1.111 1.111 1.111 1.111 1.111 1.111 1.111 1.111 1.111 1.250

ε6 1.295 1.296 1.292 1.312 1.292 1.293 1.292 1.292 1.292 1.293 1.294 1.294 1.297 1.500

ε7 1.980 1.978 1.983 1.955 1.983 1.982 1.983 1.983 1.983 1.982 1.981 1.981 1.976 1.750

ε8 1.921 1.922 1.918 1.939 1.918 1.919 1.918 1.918 1.918 1.919 1.920 1.920 1.923 2.000

h
(1)
N,1 71.583 71.577 71.594 71.499 71.594 71.589 71.594 71.594 71.594 71.591 71.586 71.587 71.572 69.883

h
(1)
N,5 55.036 55.036 55.035 55.038 55.035 55.035 55.035 55.035 55.035 55.035 55.035 55.035 55.036 55.038

h
(2)
N,1 53.906 53.896 53.925 53.769 53.924 53.916 53.924 53.924 53.924 53.919 53.910 53.913 53.888 51.130

h
(2)
N,5 26.565 26.565 26.564 26.570 26.564 26.564 26.564 26.564 26.564 26.564 26.565 26.565 26.565 26.558

h
(3)
N,1 50.462 50.451 50.481 50.315 50.481 50.472 50.480 50.481 50.481 50.475 50.466 50.469 50.441 47.482

h
(3)
N,5 22.973 22.973 22.973 22.973 22.973 22.973 22.973 22.973 22.973 22.973 22.973 22.973 22.973 22.980

v(x+)× 107 2.898 2.899 2.902 2.882 2.902 2.901 2.902 2.902 2.902 2.901 2.900 2.902 2.896 410.753

iter of x+ 44 22 21 46 42 39 46 20 31 44 43 33 27

average # iter
to converge

9.27 10.45 10.95 9.07 8.48 9.31 9.33 10.90 10.03 9.34 9.93 9.79 9.56

Table 9.4: Newton-Results for nm = 3 of Algorithm 4 along 13 launches calibrating the 3-cycle network (figure 7.1). Thereby Algorithm
4 calls Algorithm 1 (“TensorMethod=false”) for a fixed number of 50 times by tightening εf and εx in line 6 on page 95 (belonging to

Algorithm 4) appropriately. Roughnesses εi ∀i ∈ P are presented in mm, whereas pressure heads h
(i)
N,j ∀i ∈M ∧ j ∈ P̄ are presented in

m. Computational duration 7.254637s
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launch 1 2 3 4 5 6 7 8 9 10 11 12 13 x∗

ε1 0.220 0.220 0.219 0.220 0.219 0.220 0.219 0.219 0.219 0.220 0.220 0.220 0.219 0.250

ε2 0.624 0.624 0.624 0.624 0.624 0.624 0.624 0.625 0.625 0.624 0.624 0.624 0.624 0.500

ε3 0.943 0.943 0.944 0.943 0.944 0.943 0.944 0.945 0.944 0.943 0.943 0.944 0.944 0.750

ε4 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.000

ε5 1.188 1.188 1.187 1.188 1.187 1.188 1.187 1.187 1.187 1.188 1.188 1.187 1.187 1.250

ε6 1.406 1.406 1.405 1.406 1.406 1.406 1.405 1.405 1.405 1.406 1.406 1.406 1.405 1.500

ε7 1.894 1.894 1.894 1.894 1.894 1.894 1.894 1.894 1.894 1.894 1.894 1.894 1.894 1.750

ε8 1.952 1.952 1.951 1.952 1.951 1.951 1.951 1.951 1.951 1.952 1.951 1.951 1.951 2.000

h
(1)
N,1 71.047 71.048 71.053 71.048 71.052 71.049 71.053 71.057 71.054 71.048 71.049 71.050 71.054 69.883

h
(1)
N,5 55.033 55.033 55.033 55.033 55.033 55.033 55.033 55.033 55.033 55.033 55.033 55.033 55.033 55.038

h
(2)
N,1 53.032 53.033 53.042 53.034 53.041 53.035 53.042 53.049 53.044 53.034 53.035 53.037 53.044 51.130

h
(2)
N,5 26.559 26.559 26.559 26.559 26.559 26.559 26.559 26.559 26.559 26.559 26.559 26.559 26.559 26.558

h
(3)
N,1 49.524 49.526 49.535 49.527 49.534 49.528 49.535 49.542 49.537 49.526 49.527 49.530 49.537 47.482

h
(3)
N,5 22.973 22.973 22.973 22.973 22.973 22.973 22.973 22.973 22.973 22.973 22.973 22.973 22.973 22.980

h
(4)
N,1 44.540 44.542 44.552 44.543 44.550 44.544 44.551 44.560 44.554 44.542 44.543 44.546 44.554 42.286

h
(4)
N,5 15.219 15.219 15.219 15.219 15.219 15.219 15.219 15.219 15.219 15.219 15.219 15.219 15.219 15.215

v(x+)× 107 10.385 10.179 10.102 10.252 10.264 10.224 10.285 10.213 9.916 10.200 10.227 10.277 10.264 652.087

iter of x+ 29 35 25 37 30 15 19 29 19 26 42 28 42

average # iter
to converge

9.21 9.14 5.16 7.08 12.33 9.00 5.95 3.79 7.68 7.38 8.67 9.07 9.60

Table 9.5: Tensor-Results for nm = 4 of Algorithm 4 along 13 launches calibrating the 3-cycle network (figure 7.1). Thereby Algorithm
4 calls Algorithm 3 (“TensorMethod=true”) for a fixed number of 50 times by tightening εf and εx in line 6 on page 95 (belonging to

Algorithm 4) appropriately. Roughnesses εi ∀i ∈ P are presented in mm, whereas pressure heads h
(i)
N,j ∀i ∈M ∧ j ∈ P̄ are presented in

m. Computational duration: 143.616633s.
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launch 1 2 3 4 5 6 7 8 9 10 11 12 13 x∗

ε1 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.250

ε2 0.623 0.623 0.623 0.623 0.623 0.623 0.623 0.623 0.623 0.623 0.623 0.623 0.623 0.500

ε3 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.750

ε4 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.000

ε5 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.188 1.250

ε6 1.406 1.406 1.406 1.406 1.406 1.406 1.406 1.406 1.406 1.406 1.406 1.406 1.406 1.500

ε7 1.894 1.894 1.894 1.894 1.894 1.894 1.894 1.894 1.894 1.894 1.894 1.894 1.894 1.750

ε8 1.952 1.952 1.952 1.952 1.952 1.952 1.952 1.952 1.952 1.952 1.952 1.952 1.952 2.000

h
(1)
N,1 71.044 71.044 71.044 71.043 71.043 71.044 71.044 71.044 71.044 71.044 71.044 71.044 71.044 69.883

h
(1)
N,5 55.033 55.033 55.033 55.033 55.033 55.033 55.033 55.033 55.033 55.033 55.033 55.033 55.033 55.038

h
(2)
N,1 53.027 53.027 53.027 53.026 53.026 53.027 53.027 53.027 53.027 53.027 53.027 53.027 53.027 51.130

h
(2)
N,5 26.559 26.559 26.559 26.559 26.559 26.559 26.559 26.559 26.559 26.559 26.559 26.559 26.559 26.558

h
(3)
N,1 49.519 49.519 49.519 49.518 49.518 49.519 49.519 49.519 49.519 49.519 49.519 49.519 49.519 47.482

h
(3)
N,5 22.973 22.973 22.973 22.973 22.973 22.973 22.973 22.973 22.973 22.973 22.973 22.973 22.973 22.980

h
(4)
N,1 44.534 44.534 44.534 44.533 44.533 44.534 44.534 44.534 44.534 44.534 44.534 44.534 44.535 42.286

h
(4)
N,5 15.219 15.219 15.219 15.219 15.219 15.219 15.219 15.219 15.219 15.219 15.219 15.219 15.219 15.215

v(x+)× 107 10.510 10.510 10.509 10.510 10.510 10.510 10.509 10.509 10.510 10.510 10.510 10.509 10.510 652.087

iter of x+ 27 15 27 42 44 50 10 17 18 4 38 26 23

average # iter
to converge

4.56 5.07 4.26 4.31 4.66 4.64 5.00 4.94 4.56 8.50 4.61 4.77 4.83

Table 9.6: Newton-Results for nm = 4 of Algorithm 4 along 13 launches calibrating the 3-cycle network (figure 7.1). Thereby Algorithm
4 calls Algorithm 1 (“TensorMethod=false”) for a fixed number of 50 times by tightening εf and εx in line 6 on page 95 (belonging to

Algorithm 4) appropriately. Roughnesses εi ∀i ∈ P are presented in mm, whereas pressure heads h
(i)
N,j ∀i ∈M ∧ j ∈ P̄ are presented in

m. Computational duration: 4.429753s.
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launch 1 2 3 4 5 6 7 8 9 10 11 12 13 x∗

ε1 0.194 0.195 0.195 0.194 0.195 0.195 0.195 0.195 0.195 0.195 0.194 0.195 0.195 0.250

ε2 0.742 0.741 0.741 0.742 0.741 0.741 0.741 0.741 0.741 0.741 0.742 0.741 0.741 0.500

ε3 1.121 1.119 1.119 1.121 1.119 1.119 1.119 1.119 1.119 1.119 1.121 1.120 1.119 0.750

ε4 1.059 1.059 1.059 1.059 1.059 1.059 1.059 1.059 1.059 1.059 1.060 1.059 1.059 1.000

ε5 1.092 1.092 1.092 1.092 1.092 1.092 1.092 1.092 1.092 1.092 1.091 1.092 1.092 1.250

ε6 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.307 1.308 1.309 1.500

ε7 1.943 1.942 1.942 1.943 1.943 1.943 1.943 1.943 1.942 1.942 1.943 1.943 1.942 1.750

ε8 1.919 1.919 1.919 1.919 1.919 1.919 1.919 1.919 1.919 1.919 1.919 1.919 1.919 2.000

h
(1)
N,1 72.064 72.056 72.056 72.063 72.057 72.057 72.057 72.057 72.056 72.055 72.067 72.058 72.054 69.883

h
(1)
N,5 55.040 55.040 55.040 55.040 55.040 55.040 55.040 55.040 55.040 55.040 55.040 55.040 55.040 55.038

h
(2)
N,1 54.688 54.675 54.675 54.687 54.677 54.677 54.677 54.677 54.674 54.674 54.692 54.678 54.673 51.130

h
(2)
N,5 26.575 26.575 26.575 26.575 26.575 26.575 26.575 26.575 26.575 26.575 26.575 26.575 26.575 26.558

h
(3)
N,1 51.307 51.292 51.293 51.305 51.295 51.295 51.294 51.294 51.292 51.291 51.311 51.296 51.290 47.482

h
(3)
N,5 22.973 22.973 22.973 22.973 22.973 22.973 22.973 22.973 22.973 22.973 22.973 22.973 22.973 22.980

h
(4)
N,1 46.500 46.483 46.484 46.498 46.486 46.486 46.486 46.486 46.483 46.482 46.505 46.488 46.481 42.286

h
(4)
N,5 15.219 15.219 15.219 15.219 15.219 15.219 15.219 15.219 15.219 15.219 15.219 15.219 15.219 15.215

h
(5)
N,1 44.075 44.058 44.059 44.073 44.061 44.061 44.061 44.060 44.058 44.057 44.080 44.063 44.055 39.662

h
(5)
N,5 10.882 10.882 10.882 10.882 10.882 10.882 10.882 10.882 10.882 10.882 10.882 10.882 10.882 10.872

v(x+)× 107 30.309 30.419 30.352 30.348 30.359 30.356 30.377 30.168 30.360 30.324 30.349 30.324 30.416 679.963

iter of x+ 30 36 44 38 49 24 40 22 11 45 35 19 20

average # iter
to converge

5.60 9.72 10.36 3.47 4.78 6.58 5.60 6.05 8.64 6.24 4.34 6.89 12.20

Table 9.7: Tensor-Results for nm = 5 of Algorithm 4 along 13 launches calibrating the 3-cycle network (figure 7.1). Thereby Algorithm
4 calls Algorithm 3 (“TensorMethod=true”) for a fixed number of 50 times by tightening εf and εx in line 6 on page 95 (belonging to

Algorithm 4) appropriately. Roughnesses εi ∀i ∈ P are presented in mm, whereas pressure heads h
(i)
N,j ∀i ∈M ∧ j ∈ P̄ are presented in

m. Computational duration: 164.804157s.
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launch 1 2 3 4 5 6 7 8 9 10 11 12 13 x∗

ε1 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.250

ε2 0.740 0.740 0.741 0.740 0.740 0.741 0.740 0.740 0.741 0.741 0.741 0.741 0.741 0.500

ε3 1.118 1.118 1.119 1.118 1.118 1.118 1.118 1.118 1.119 1.119 1.119 1.118 1.119 0.750

ε4 1.058 1.057 1.058 1.058 1.058 1.059 1.058 1.058 1.059 1.059 1.058 1.059 1.058 1.000

ε5 1.093 1.093 1.092 1.093 1.093 1.092 1.092 1.093 1.092 1.092 1.093 1.093 1.092 1.250

ε6 1.309 1.309 1.309 1.309 1.309 1.308 1.309 1.309 1.308 1.308 1.309 1.309 1.308 1.500

ε7 1.942 1.942 1.942 1.942 1.942 1.942 1.942 1.942 1.942 1.942 1.942 1.942 1.942 1.750

ε8 1.919 1.919 1.919 1.919 1.919 1.919 1.919 1.919 1.919 1.919 1.919 1.919 1.919 2.000

h
(1)
N,1 72.049 72.050 72.053 72.051 72.051 72.054 72.051 72.050 72.055 72.055 72.054 72.052 72.054 69.883

h
(1)
N,5 55.040 55.040 55.040 55.040 55.040 55.040 55.040 55.040 55.040 55.040 55.040 55.040 55.040 55.038

h
(2)
N,1 54.664 54.665 54.671 54.667 54.667 54.672 54.667 54.666 54.673 54.673 54.671 54.668 54.672 51.130

h
(2)
N,5 26.575 26.575 26.575 26.575 26.575 26.575 26.575 26.575 26.575 26.575 26.575 26.575 26.575 26.558

h
(3)
N,1 51.281 51.282 51.288 51.284 51.284 51.289 51.284 51.283 51.291 51.291 51.289 51.286 51.290 47.482

h
(3)
N,5 22.973 22.973 22.973 22.973 22.973 22.973 22.973 22.973 22.973 22.973 22.973 22.973 22.973 22.980

h
(4)
N,1 46.472 46.473 46.479 46.475 46.475 46.480 46.475 46.473 46.482 46.482 46.480 46.476 46.481 42.286

h
(4)
N,5 15.219 15.219 15.219 15.219 15.219 15.219 15.219 15.219 15.219 15.219 15.219 15.219 15.219 15.215

h
(5)
N,1 44.046 44.047 44.053 44.049 44.049 44.054 44.049 44.047 44.057 44.056 44.054 44.050 44.055 39.662

h
(5)
N,5 10.882 10.882 10.882 10.882 10.882 10.882 10.882 10.882 10.882 10.882 10.882 10.882 10.882 10.872

v(x+)× 107 29.876 29.345 29.571 29.802 30.400 29.596 30.055 29.790 30.685 30.108 29.773 30.372 30.524 679.963

iter of x+ 30 41 33 12 4 9 9 37 18 10 22 12 19

average # iter
to converge

4.40 4.15 4.42 5.00 6.25 5.00 5.11 4.03 4.94 6.50 4.77 5.00 4.47

Table 9.8: Newton-Results for nm = 5 of Algorithm 4 along 13 launches calibrating the 3-cycle network (figure 7.1). Thereby Algorithm
4 calls Algorithm 1 (“TensorMethod=false”) for a fixed number of 50 times by tightening εf and εx in line 6 on page 95 (belonging to

Algorithm 4) appropriately. Roughnesses εi ∀i ∈ P are presented in mm, whereas pressure heads h
(i)
N,j ∀i ∈M ∧ j ∈ P̄ are presented in

m. Computational duration: 7.027230s.
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9.3.3 Discussion

In comparison to the previous simulation results in section 7.7 one can see that the results
in tables 9.3 to 9.8 of Algorithm 4 either calling Algorithm 1 or Algorithm 3 are noticeably
consistent. Conducting more intensive computations with different initial values and more ite-
rations/launches (beyond the ones indicated), the author is confident to claim that the presented
results can be considered global in a sense that no (significantly different) solution was found
with a noticeably smaller residual v(x). The consistency among the presented results can presu-
mably be explained by the fact that the presented results better suffice Assumption 7.1, meaning
that independency among measurement-sets of this configuration is superior to the one in section
7.7 concerning the variation of q. In this context, one can see that the residual of the results is
approximately two orders of magnitude smaller than the one of the real root v(x∗) (especially
in table 9.3 and 9.4).

Concerning the regime-case-separation, the Tensor as well as Newton method managed to

successfully identify Q
(3)
5 (in case nm = 3) as well as Q

(3)
5 ∧ Q

(4)
8 (in case nm = 4, 5) as laminar

and all other steady-state flows as turbulent. Although remarkable, this is presumably only

accomplished due to Reynolds numbers of laminar flows Q
(3)
5 ∧ Q

(4)
8 being sufficiently distant

to the boundary Re = 2000 (seen in figure 9.4). This proves the applicability of γ (8.37) for the
complete roughness calibration problem Ψ (9.5). Not only that, the consideration of laminar
flows improves reconstructability of original roughnesses as the known linear (laminar) terms
indeed facilitate the solving of Ψ. This can be seen when comparing tables considering nm = 4
with ones considering nm = 5 measurement-sets as the results in former ones are much closer
to the original root. The fact that it took approximately ten times longer to compute results
in table 7.8 and 7.9 (the full-turbulent case) compared to the computational duration of the
results in the above tables applying the same tolerances of Algorithm 1 & 3, also underlines
the facilitation of the Ψ-solving. In other words, the inclusion of measurement-set i = 5 in the
problem set-up aggravates the solution finding as uncertainties additionally disguise the desired
residual v(x∗) in the solution space.

Comparing Tensor with Newton results for all nm no significant improvements could be
achieved when considering the second order derivatives concerning the Tensor-Method. Actually,
a slightly smaller residual was found by the Newton-Method for nm = 5 comparing table 9.7
with table 9.8. Why is that? First, it has to be expected that the neglection of the second
derivatives of γ (see Remark 9.6) is problematic in the solution finding of the search direction
via the Tensor-Equation (7.60). Second, trying to solve (7.60) iteratively with the MATLAB
built-in fsolve(.) function, it occasionally happens that a search direction is taken which has a

comparably high residual of m
(i)
k 6= 0 (7.60) in solving iteration k of Ψ. In this context, one

can also see that the Tensor-Method indeed takes more iterations on average (rows: “average
# iter to converge”) to converge or abort. Third, as long as measurement-sets are sufficiently
independent, the application of the Newton-Method might presumably suffice in combination
with Algorithm 4 to obtain a solution which features an even smaller residual v(x+) than the
original root v(x∗).

In view of the results in the above tables, the comparably high deviation in the solution of

the not-measured pressure head at node 1, i.e. h
(i)
N,1 ∀i ∈M, is also noteworthy. The deviation

in h
(i)
N,1 is inherently connected with the deviation in the roughness of the first pipe. Although

the estimated roughness of the first pipe, i.e. ε1, is arguably close to the original one ε∗1 in all the

above tables (particularly when nm = 4) the error in h
(i)
N,1 ∀i ∈ M is eye-catching. The major

reason for this can again be found in the non-linear friction relation, where comparably small
differences in roughness lead to a substantial deviation in the head-loss and thus in the nodal
head due to the high flow in pipe 1.

In sum, the collection of suitable measurement-sets is key for the reconstruction of the pipes’
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roughness. The arguably best indicator for the quality of the measurement-sets is given by the
differences among yh+Chz and the differences in the consumption q. However, when considering
minor-losses (violating Assumption 7.4), i.e. non-zero parameters km 6= 0, and measurement-
noise which features a non-zero mean, the solving of Ψ becomes substantially more delicate in
a sense that one commonly receives estimated roughnesses outside their physical range (above
5% of the pipe’s diameter). These solutions, which lie outside the considered physical range,
sometimes indeed have a comparably low residual, due to the aggressive search by Algorithm 4
which has some global convergence properties. Nevertheless, in the opinion of the author, the
solving of problem Ψ (9.5) offers the best chance to reconstruct individual roughnesses per pipe.
However, it is very common to group pipes’ roughnesses for the solution finding, meaning to
assign a single roughness value to multiple pipes in order to compensate for additional unknowns.
This procedure may potentially hinder the parameter-identifiability and therefore the ability to
locate/detect leakages.

In short, the above example gives valuable insights about the applicability of the presented
roughness-calibration scheme as:

� adverse effects due to measurement-noise have been studied

� the consideration of laminar flows turns out to facilitate the solving of Ψ

� the functionality of γ (8.37) to allow a transition from turbulent to laminar flow (or vice
versa) in the solution-finding of Ψ has been demonstrated

� the analysis of considering more than nm,min measurement-sets reveals, that it does not
always facilitate the solving of Ψ, but a careful selection of measurement-sets may be
necessary
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10
Roughness Identification on a Real Network

The application of the roughness-identification, as it was presented in chapter 7 and 9, on the
drinking-water-distribution-network of Graz-Ragnitz will clarify the legitimacy of the assump-
tions of table 7.1 and Assumption 9.3 in real-world scenarios. The measurements used for
this analysis were conducted prior to the involvement of the author with the help of the local
water-utility in the course of a project with the Institute of Urban Water Management (Graz
University of Technology). The author expresses special thanks to Daniela Fuchs-Hanusch who
provided these data.

Figure 10.1: Original graph representing the water-distribution network of Graz-
Ragnitz with about 10.17km of total pipe length. Nodes with pressure sensors,

hydrants and the source (a reservoir-like water-basin) are highlighted.
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10.1 Topology Simplification

During the time-frame where measurements have been recorded, the network according to figure
10.1 was isolated by valves from other parts connecting itself to a larger distribution network.
The topology of this isolated network (part) as presented in figure 10.1 features:

# pipes n` = 654

# inner nodes nj = 650

# cycles nc = n`− nj = 4

# sources ns = 1

# hydrants nq = 4

# pressure-nodes np = 13

Table 10.1: Characterization of the original topology according to figure 10.1.

The fact that only nc = 4 cycles are present to provide redundancy to the water-supply is
relativized when those valves, which were closed for the isolation of the presented network part in
figure 10.1, are reopened. Nevertheless, given the number of pipes n` = 654 and pressure-sensors
np = 13, one would need to produce at least dn`/npe = 51 independent measurement-sets with
only nq = 4 fireflows. It is reasonable to assume that there is no way to produce so many
independent measurement-sets, especially on a high fireflow-level necessary to produce enough
head-loss (in reference to Assumption 7.3). The only chance is to simplify the topology to the
highest extent possible and thereby reduce the number of pipes and nodes in order to result in
a sufficiently small nm,min = dn`/npe.

Dead-Ends. The first step of the topology-simplification involves the removal of dead-ends
which have been colored in green in figure 10.2. These dead-ends also include nodes which
represent real consumer (not hydrants) in the original topology. However, as it has to be
assumed that they do not retrieve water during the calibration-measurements (at night), they
have to be removed as no corresponding roughness values can be identified.

Figure 10.2: Dead-Ends.
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Figure 10.3: Combining adjoining pipes with same diameter iteratively.

Figure 10.4: Result of combining adjoining pipes with same diameter also high-
lighting some nodes with more than two connections (yellow) and a valve (gray).
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Combine Adjoining Pipes with Same Diameter. The next step involves the detection
and then combination of adjoining pipes with the same diameter by removing the node in
between, i.e. the new combined pipe’s length has to be adjusted. Pressure- and hydrant-nodes
do certainly have to be excluded from this removal.

In figure 10.4 one can see the result of the iterative rejoining of pipes with the same diameter,
seen in figure 10.3. In this process the x, y-coordinates of the original nodes have been preserved
which causes, for instance, the small cycle at ‘HG3933’ seen in figure 10.3 to seemingly disappear
in figure 10.4. The reader shall be assured that this cycle is still present in the graph of figure
10.4 at this point of simplification, however, one would have to zoom in substantially.

Remapping Pressure-Nodes and Hydrant-Nodes. This paragraph lists 4 measures, de-
noted by (a)-(d), to simplify the graph’s topology. First (a), as pressure-nodes with no hydrants
on the same link do not have any head-loss along this link, it is feasible to remap the pressure-
nodes to the next respective junction (more than two connections). In the course of this process,
one has to carefully consider the difference in elevation between the pressure-node and the final
junction node (where it is intended to be moved) as the height-difference has to be considered
in the corresponding pressure-readings. When looking at figure 10.4, for instance, the pressure-
nodes (nodes with pressure-sensor, Definition 7.8) are moved to the yellow-colored junctions.

Second (b), it turned out that two deployed pressure sensors, namely ’HG3445’ and ’HG4215’
are redundant for all measurements-sets, i.e. ’HG3420’ and ’HG3445’ or ’HG4162’ and ’HG4215’
have to have the same pressure-readings as there should be no flow in the links of these two
sensor-pairs. As the head-readings shown in figure 10.5 of these respective sensors confirm
their redundancy, corresponding nodes are removed from the graph. This then enables to move
pressure-nodes ‘’HG3420’ and ‘HG4215’ to the next higher junction (more than two connections),
thereby also taking care of the nodes’ elevation-difference.

Figure 10.5: Time-frame of head readings during high fireflows showing redun-
dant sensors ‘HG3445’ and ‘HG4215’.
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Figure 10.6: Zoom into figure 10.4.

Third (c), in analogy to (b), the cycle (seen in figure 10.3) enclosing pressure-node ‘HG3933’
(according to figure 10.4) does not have any hydrant to cause water to flow into this network
part. As a result, there should be no head-loss in this entire cycle, leading to a uniform head-
distribution up to the next junction. As side note, this is of course only feasible if no background
consumption/leakage occurs there. Effectively, the pressure-readings of ‘HG3933’ are moved to
the next higher junction also accounting for differences in nodal elevation.

Fourth (d), similar to (a), as hydrants are also located on dead-end-like links as shown in
figure 10.6, they are moved to the next higher junction which is colored in yellow. This is only
feasible due to Assumption 7.2, assuming to measure in steady-state only. As, for instance, in
figure 10.6, it is irrelevant to the rest of the network if the fireflow is subtracted from the yellow
instead of the black node.

Closed Valves. Finally (e), in retrospect to the conducted measurements, it turned out that
a valve located between the source (seen in figure 10.1) and the hydrant ‘HG3302’, highlighted
in gray in figure 10.4) was closed. As a consequence, the corresponding pipes and nodes also
have been removed thereby breaking the cycle enclosing the source.

Figure 10.7: Final graph obtained by applying measures (a)-(e) on the graph of
figure 10.4.
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Final Graph. The final graph’s topology used for the attempt of the roughness-identification
is presented in figure 10.7. Mind that the identifiers (IDs), e.g. ‘HG3537’, are actually used
to denote individual nodes of the original graph in figure 10.1, meaning that the highlighted
pressure- and hydrant-nodes of the final graph in figure 10.7 do have different names, i.e. IDs,
internally. However, in order to not confuse the reader, the original IDs have been preserved to
support identifiability with the corresponding sensors. Effectively, one can see that the graph
has been simplified substantially in comparison to the original one in figure 10.1.

# pipes n` = 74

# inner nodes nj = 72

# cycles nc = n`− nj = 2

# sources ns = 1

# hydrants nq = 4

# pressure-nodes np = 11

Table 10.2: Characterization of the final topology according to figure 10.7.

Given the simplified graph, at least dn`/npe = 7 independent measurement-sets are needed
to possibly reconstruct suitable roughness values for n` = 74 (combined) pipes in the drinking-
water-distribution-network of Graz Ragnitz. This is a significant improvement to the previous
nm,min = 51 when considering the original topology in figure 10.1. Nonetheless, it will turn out
questionable if nq = 4 hydrants, which are treated as consumers, are sufficient to really achieve
independency among measurement-sets.

10.2 Sensor Readings and First Assessments

Generally, hydrants are equipped with flow-sensors to record the fireflow, treated as “consump-
tion” q, while the pressure-sensors record the nodal pressure heads yh during the minimum-
night-flow where the real, unknown consumption (also including losses) is lowest.

In figure 10.8 one can see the individual fireflow measurements at the nq = 4 hydrants whereas
figure 10.9 compares the sum of all fireflows (of the 4 hydrants) with the total network’s inflow
which was measured separately at the link where the source connects to the rest of the network
(cf. topology in figure 10.7). Counting the peaks in figure 10.8, one can see that there are
potentially 15 measurement-sets available. However, it will turn out that approximately half of
these sets is certainly not suitable for calibration.

In figure 10.10 one can see all relevant head-readings of pressure-sensors with respect to the
IDs found in the graph of figure 10.7. Considering figures 10.8 to 10.10, observations and the
applied approaches are summarized in reference to the taken assumptions (as in table 7.1 and
others):

1. Assumptions 3.2, 3.10 and 6.12 do not pose any problem to the current application.

2. It is, in principle, possible to cause sufficiently large head-loss by fireflows to satisfy As-
sumption 7.3 and thereby provide sufficiently independent-sets concerning Assumption 7.1.
Mind that this was not possible on the experimental-network in figure 5.1. Compare heads
in figure 5.4 with the ones of figure 10.10 in this context.

3. Specifically referring to head-readings, the assumption (concerning Assumption 7.2) to
only measure in steady-state does seem legitimate yet in very small time frames only. The
numerous occurrences of oscillating heads and peaks indicate frequent transient events.

4. No assessment can be made about the validity of Assumption 7.4 or 9.3 at this point.
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Figure 10.8: Fireflow-readings over all measurement-sets.

Figure 10.9: Comparison of the measured inflow via the source pipe and the
sum of all fireflows.
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Figure 10.10: Head-readings of all (relevant) pressure-sensors according to the graph in figure 10.7. The steady-state time-frames used
for averaging are highlighted with black dashed lines at the starting- and end-points respectively. For instance, the fourth time-frame

can be found between t ∈ [5080, 5140]s.
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5. Figure 10.9 demonstrates the presumably major problem of these measurements as the
unknown background-consumption (difference between blue and green curve) makes up to
approximately 40% (between t ≈ [2900, 2960]s) of the total consumption in the correspon-
ding measurement-set. The only possibility to circumvent this is to avoid high-erroneous
measurement-sets, with respect to the background-consumption, from Ψ (9.5) and to take
only those were the error is smallest, e.g. in the first time-frame (compare figure 10.9 with
10.10) where t ≈ [2380, 2450]s.

6. Three time-frames of comparably small fireflows around t ≈ 6000, 7000, 12000s at a level
of 1 l/s in figure 10.8 actually do not cause any notable head-loss, seen in figure 10.10, and
are therefore completely unsuitable for the consideration in Ψ.

7. The chosen nm = 8 time-frames (see figure 10.10),

set i 1 2 3 4 5 6 7 8 unit

start t ≈ 2380 3560 4685 5080 9440 9950 10445 11209 s

end t ≈ 2450 3590 4710 5140 9490 10010 10489 11285 s

Table 10.3: Time-frames for averaging, visible in figure 10.10.

i.e. measurement-sets, for the averaging of measurements had to chosen considerably small
to avoid any possibly transient events. With a sampling time of about 1s (it actually varied
according to the data received), the number of single measurements eligible for averaging
is comparably small (below 100 for most sets). As a result, the compensation of mean-free
noise through averaging as it was achieved in section 9.3 is far less aggressive.

8. The minimum-night-flow, which gives a good estimate about the total water loss, can
be identified in the range of 1.2 l/s according to figure 10.9. This background-losses
are potentially very problematic for the developed calibration scheme as it based on the
satisfaction of nodal Kirchhoff equations, see Ψ (9.5). However, this is a general problem
with all sorts of roughness-calibration algorithms as these background-losses at the time of
the calibration-measurements ultimately lead to mistakenly increased friction parameters.
To put it bluntly, one can hardly detect and localize leakages in an uncalibrated hydraulic
network, meaning all leakages prior to the calibration (identification of friction parameters)
are likely to remain invisible to the observer. This certainly depends on the size of the
leakage nonetheless. If it exceeds a critical size, the detection and localization becomes
feasible at some point.

10.3 Initial Values

A crucial point in the course of the measurement preparations is the choice of useful initial values
for the launch of the roughness calibration concerning Ψ (9.5). In particular, the selection of

suitable nodal pressure-head values at nodes with no sensors concerning h
(i)
N ∈ Rnj−np

≥0 for all
i ∈ M = {1, 2, . . . , 8} is challenging and leaves a lot of potential variables to be adjusted.
However, the stochastic variation of initial values as in Algorithm 2 and 4 helps to relax the
requirement of already starting with values close to the ones to find.

Effectively, the very same approach as in section 9.3 is taken where initial values for hN
are chosen by means of simple averaging of heads between pressure-nodes. For instance, when
looking at the lower left corner of figure 10.11, which shows the steady-state network in the
1st measurement-set, the two heads between the orange pressure-nodes ‘HG4576’ and ‘HG4540’

with y
(1)
h,HG4576 + zHG4576 = 480.7406m and y

(1)
h,HG4540 + zHG4540 = 478.4789m,
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Figure 10.11: Network in 1st measurement-set.

Figure 10.12: Network in 4th measurement-set.
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are assigned with h
(1)
N,0 + z = 479.2328m and h

(1)
N,0 + z = 479.9867m respectively. Pressured

head limits hN ,hN (7.36) are chosen analogously as the minimum respectively maximum of
closest-surrounding head-readings, with respect to the corresponding non-pressure node, minus
the elevation. For details have a look at section 7.5, in particular on (7.41).

This procedure is repeated analogously to all other network parts which leaves the question
on how to deal with junctions. The problem becomes clear when looking at figure 10.13 where
different paths between pressure-nodes (orange) via the junctions of the simplified graph are
highlighted. One consistent possibility to determine the initial hN is to first take the average of
heads along all those junction-paths respectively which then yields, for instance, several possible
head values for some nodes according to figure (10.13). Then, in a second step, the simple
average along the remaining possibilities could be taken as initial value for the respective non-
pressure node. This procedure has to be done for each measurement-set respectively and remains
open for future improvements.

Figure 10.13: Different paths between pressure-nodes via junctions.

As in the previous examples, the initial roughness values for launching the calibration are
selected as 1% of the corresponding pipe’s diameter. Mind that according to Algorithm 4 these
initial roughnesses are already varied slightly within a normal distribution before launching
Algorithm 1 or 3.
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10.4 Results and Discussion

The obtained roughness results are presented when applying a few iterations of Algorithm 4
which itself launches Algorithm 3. This process is then stopped after a few iterations because a
clear trend can be observed which will be subject to discussion.

To begin with, the equation-set Ψ (9.5) to be solved features 576 (nodal) equations and 562
variables from which only 74 elements are the roughness values to be of particular interest. The
residual could be reduced from a total error of v(x0) = 33.2020 m3/s to v(x+) = 8.4101 m3/s
at the 576 nodes considered in the solving. Looking at the average error on each node over all 8
measurement-sets, a presumably more distinctive value for analysis, the error could be reduced
from a staggering 57.6 l/s to 14.6 l/s. Considering that the fireflows never exceed the 16 l/s
mark (see figure 10.9), the error is in a range which raises questions about the quality of the
data, but more on that later. To put the residual in a different perspective, 20.75 nodes exceed
the 5 l/s and 29.125 nodes exceed the 1 l/s error from the total of nj = 74 on average over all 8
measurement-sets. Figure 10.14 displays the obtained relative roughness values directly on the
corresponding pipes and highlights 32 pipes which have a relative roughness greater or equal to
ε/d = 6%.

Figure 10.14: Obtained relative roughness values in percent along the pipes of
the simplified network’s graph highlighting in red those which are greater or equal

to ε/d = 6%.
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Figure 10.15: Corresponding to the results in figure 10.14, nodes with an error
greater or equal than 10 l/s in one of the 8 measurement-sets are highlighted in red.
The same red-colored pipes as in figure 10.14 with unrealistically high roughnesses

are also displayed.

Figure 10.15 highlights nodes with an error greater or equal than 10 l/s in one of the 8
measurement-set and also displays the same pipes with unrealistically high roughness values.
One can clearly see that there is a correlation between high-erroneous nodes and unrealistically
high roughness values. Effectively, the author expects that 2 major issues hinder the solving
of Ψ to result in a smaller, more realistic residual. First, the occurrence of the comparably
high background consumption/leakage seen in figure 10.9 causes higher than actual roughnesses
inherently. Again, due to the nonlinear friction relations an unrealistically high roughness might
be necessary to compensate for the unaccounted flow at respective nodes. Second, it turned out
that the data is erroneous as the author was informed that apart from the background leakage,
a valve in the lower left corner, as in figure 10.15, was closed partially during the measurement
night. From the information received it was not clear if this valve is located inside the presented
network only or if it intends to isolate the presented network from the larger distribution network.
Interestingly however, one can actually see that the exact area of the partially closed valve was
identified with the presented roughness-identification scheme.

This is actually one of the major reasons why this real world example was included in this
thesis, to demonstrate that the developed approach to identify roughness may also be suitable
to identify network parts inconsistent with the measurement-data, i.e. leakages for instance. In
this context, the author believes that the reason why the area close to pressure sensor ‘HG3933’
happens to be red-colored is not mere chance, but hints that there is significant background
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Figure 10.16: Highlighting non-pressure nodes whose head values are not inside
their considered range in the respective measurement-set (cf. figure 10.10).

leakage/consumption in the removed cycle (last seen in the graph of figure 10.3). Nevertheless,
this cycle had to be removed as no hydrant was opened in this cycle during the measurements.

Concerning the hN results, they remain in their physical range, except at nodes which are
highlighted in figure 10.16 in the respective measurement-set. This range violation is very minor
for the yellow and orange colored nodes, for instance, the orange colored non-pressure node
results in hN + z = 497.9588m which exceeds the identified upper limit hN + z = 497.9061m by
a mere 5.27cm. Also regarding the orange and yellow non-pressure nodes of figure 10.16, heads
hN tend to leave their intended range at exactly those nodes adjacent to pipes with ridiculously
high roughness values. There also seems to be a correlation on this front. Things become
interesting when considering the red-colored node of figure 10.16 which has hN +z = 476.3744m
but should actually be above hN + z = 480.7406m. Knowing that there was a partially closed-
valve as indicated in figure 10.15, the developed calibration algorithm seems to confidently find
discrepancies in the measurement-data.

When taking the results as initial value for the next iteration of, e.g., Algorithm 4 and relax
the requirement for the not-measured pressure heads hN to remain inside their selected limits
xhN ∈ [hN ,hN ] (see code-line 13 on page 95 of Algorithm 4), one indeed manages to obtain
smaller residuals. However, the roughnesses exceedingly leave their physical range and therefore
do not represent results which can be seriously applied. The effect of non-zero minor losses
thereby violating Assumption 7.4 may be of particular interest in this context.

Flow Regimes. Beforehand, there are n`nm = 592 pipe flows to be categorized among the
three flow regimes. Thereby only 238 pipe flows have been identified to be in turbulent regime,
219 in the transitional regime and hence 135 in the laminar regime. This result underlines the
importance to distinguish among the three flow regimes in the solving of Ψ.

Violating Assumption 9.3, 8 pipes have flows which never reach the turbulent regime in
any of the 8 measurement-sets. Theoretically, it is sufficient to have flows in the transitional
or turbulent area to identify the roughness, although the derivation of γ as in chapter 8 was
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motivated by purely mathematical considerations. According to the results of the roughness-
identification, there only is a single pipe whose flows never become turbulent nor transitional
in any of the measurement-sets. Seen in figure 10.15, the obtained roughness of this pipe then
also exceeds the physical limitation, as the variation of this roughness value has no effect on the
residual of Ψ in the solving process. Looking at figure 10.7 for instance, it is clear why this pipe
can neither have turbulent nor transitional flow as there can not be any flow between ‘HG4118’
(a hydrant) and ‘HG4150’ (a pressure-sensor) according to the hydrant-configuration. This is
a remarkable result nonetheless and proves the applicability of γ (8.37) on the solving of Ψ to
properly distinguish among flow regimes.

In analogy, the pipe whose flow never reaches the turbulent regime in figure 10.15 has a
ridiculously high relative roughness of 43.3% according to figure 10.14. At this point a problem
reveals which was not yet mentioned. Knowing that the smoothness and validity of γ is only
preserved in the range of ε/d ∈ [0, 5]% of the pipe’s diameter (see requirements (iii), (iv) on
page 130), the root-finding algorithm for Ψ particularly struggles to handle roughness values
greater 5% when being in the transitional regime. Once in the transitional regime and outside
the physical limitation, the algorithm can not again converge to the turbulent regime due the
violation of (iii) and (iv) on page 130.

Linear Independency. Recall at this point that nm ≥ nm,min = dn`/npe is only a necessary
condition to satisfy Assumption 7.1. Apart from that, the best indication about the linear inde-
pendency is given by the rank of Jacobian (7.15) which is function of the solution in iteration step
k, i.e. J(xk). This Jacobian has size J ∈ R576×562 for the 8 measurement-sets. Without conside-
ring any scaling in reference to Remark 7.9 and 7.10, one obtains rank

(
J(x0)

)
= 545 in x0 and in

the solution corresponding to the roughness values in figure 10.14 it reaches rank
(
J(x+)

)
= 549,

i.e. its deficiency concerns at least 13 variables among n` + nm(nj − np) = 562.
Why is it deficient? First, as discussed in the previous paragraph, there are pipes whose

flows are never in the turbulent regime (violating Assumption 9.3) making it impossible to find
corresponding roughnesses. Second, although there is, in principle, enough head loss along some
pipes according to the final graph in figure 10.7, this presumably does not apply to all n` = 74
when inspecting figure 10.10. Mind Assumption 7.3 in this context. The only possibility to
improve on this is to consider further and/or different measurement-sets with other fireflow
configurations, whereas additional fireflows provided by other than the nq hydrants may be
particular valuable in this regard.

10.5 Conclusions

In this chapter the basic applicability of the developed roughness-calibration on a real drinking
water distribution network was demonstrated. The difficulties and uncertainties when conside-
ring real-world data were discussed, whereas the problems in the solution-finding and results
could, at least in part, be traced back to inconsistencies in the data and, for instance, back-
ground consumption. The legitimacy of the assumptions in table 7.1 and Assumption 9.3 have
been studied and turn out to be attainable to a large extent. Nevertheless, the validity of the
neglection of minor losses concerning Assumption 7.4 has yet to be verified in greater detail. In
short, the author believes the developed calibration scheme not only to be eligible for roughness-
identification but for the detection and localization of leakages. Although the complexity of the
presented scheme outweighs the one of comparable approaches on the basis of optimization
problems, there potentially are performance gains which make this effort worthwhile.





173

11
Outlook

The following list provides a range of topics which may demand further research and evaluation
with measurement data.

� more detailed investigation on how to select eigenvalues λq ∈ Rnq

<0 of linear consumption
dynamics as in (4.22) (see section 4.4.1) of model PDu and LCD (see table 4.1 concerning
Definition 4.12 and table 4.2 concerning Definition 4.14)

– the detailed example in section 4.3.1 may serve as starting point

� further model evaluation with measurements beyond the scope of chapter 5 considering

– slow transient effects excited through other than rapid valve operations

– the coupling of air vessels and tanks as described in chapter 4.7

� further evaluation of the developed roughness identification algorithms (e.g. Algorithm 1
and 3 in cooperation with Algorithm 4) solving problem Ψ (9.5) on real-world networks

– compliance with all the assumptions in table 7.1 and Assumption 9.3

– investigation of the extent to which these assumptions may be violated while still
being able identify roughnesses

� usage of the findings in section 7.6.3 to 7.6.6 to develop an algorithm on the basis of the
Tensor-Method aiming to provide a search direction for the solving of Ψ (9.5) (by solving
the Tensor-Equation (7.60)) which does not require an iterative thus computationally
intensive scheme (as e.g. applied in section (7.7))

� enhancement of the solving of problem Ψ by considering the second transitional flow
derivatives (9.12) in the determination of the search direction in reference to Remark 9.5

� application of the derived explicit flow γ in chapter 8 as implicit description of the transi-
tional head loss (as in (8.36)) in the steady-state hydraulic network equations Γ (3.23) or
Γh (3.24) and comparison of simulation result when applying the conventional “Dunlop”
formulae (2.8) for the friction factor λ in (2.4) when 2000 < Re < 4000

– same comparison for the dynamic models

– verification of the results of the example in chapter (9.3) when considering γ for
the transitional head loss via (8.36) in the creation of measurement-sets (concerning
section 9.3.1)
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A
Proof of Proposition 3.6

Concerning notation, set Nk (associated with the k-th row of A)

Nk =
{
i : [A]ki 6= 0, i ∈ P

}
∀k ∈ I (A.1)

=̂ {set of all flow indices in P which are connected to node k}

and set Sj (associated with the j-th row of S)

Sj =
{
i : [S]ji 6= 0, i ∈ P

}
∀j ∈ {1, . . . , nc} (A.2)

=̂
{

set of all flow indices in P which are part of cycle/loop j
}

are defined while Qi for i ∈ {1, . . . , n`} = P denotes (directed) flows. Further, aki denotes the
ki-th element of A while sji denotes the ji-th element of S. Then,

[
SAT

]
jk

=

n∑̀
i=1

[
S
]
ji

[
AT
]
ik

=

n∑̀
i=1

[
S
]
ji

[
A
]
ki

=

n∑̀
i=1

sjiaki. (A.3)

The following cases have to be considered

i ∈ Nk ∧ i /∈ Sj ⇒ sji = 0 ⇒ sjiaki = 0(i)

i ∈ Nk ∧ i ∈ Sj ⇒ sjiaki 6= 0(ii)

i /∈ Nk ∧ i ∈ Sj ⇒ aki = 0 ⇒ sjiaki = 0(iii)

i /∈ Nk ∧ i /∈ Sj ⇒ sjiaki = 0(iv)

meaning that only case (ii), where flow Qi is part of node k and loop j needs to be further inves-
tigated as all the other cases do not contribute to SAT (A.3). Since the network is represented
by means of a directed graph, the cases (a) to (d) displayed in figure A.1 actually cover all the
possible contributions of SAT where sjiaki 6= 0. This also utilizes the property that exactly
two flow connections Qi1 and Qi2 of node k have to be considered as it is also part of loop j,
referring to case (ii).
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(a)

k

Qi1

Qi2

j

(b)

k

Qi1

Qi2

j

(c)

k

Qi1

Qi2

j

(d)

k

Qi1

Qi2

j

Figure A.1: Cases of different directions of flows Qi1 and Qi2 of node k which
is also part of loop j.

Considering figure A.1, flows influent to node k are counted positively and effluent of node
k are counted negatively as mentioned in section 3.1.1. However, entries of loop j are counted
positively if the direction of the flow is in line with the loop direction and negatively otherwise.

case aki1 aki2 sji1 sji2
(a) 1 -1 1 1

(b) -1 -1 -1 1

(c) 1 1 1 -1

(d) -1 1 -1 -1

Table A.1: Entry values of AT and S according to cases in figure A.1.

Then, the contribution of node k to loop j equals

aki1sji1 + aki2sji2 = 1− 1 = 0 (A.4)

for all possibilities according to table A.1. The same applies when reversing the direction of loop
j or even the count direction of flows (cf. figure A.1) which simply reverts the sign in (A.4).
Since this procedure applies for all i ∈ {1, . . . , n`} = P, k ∈ {1, . . . , nj} = I and j ∈ {1, . . . , nc},
Proposition 3.6 holds. �
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B
Proof of Proposition 3.11

First, considering λDW (2.6) as a solution of the Lambert function W (x) (2.12)

λDW =

(
W

2

ln(10)
− εDW

3.7d

Re

2.51

)−2

> 0, (B.1)

it is clear that the friction factor is always positive (given Property 2.1). Differentiating ∆hDW

(2.4)

d∆hDW

dQ
= kDW

(
λDW|Q|+ λDW sign(Q)Q+

dλDW

dQ
|Q|Q

)
= kDW|Q|

(
2λDW +

dλDW

dQ
Q

)
, (B.2)

one takes a closer look at the derivative of λDW, where Fcw(λDW) = 0.

∂Fcw
∂Q

+
∂Fcw
∂λDW

∂λDW

∂Q
= 0 ⇒ ∂λDW

∂Q
= −∂Fcw

∂Q

(
∂Fcw
∂λDW

)−1

(B.3)

Taking the appropriate derivatives

∂Fcw
∂Q

= − 2

ln 10

2.51
Re
√
λDW

εDW
3.7d + 2.51

Re
√
λDW

1

Q
and

∂Fcw
∂λDW

= − 1

2λDW

 1√
λDW

+
2

ln 10

2.51
Re
√
λDW

εDW
3.7d + 2.51

Re
√
λDW


(B.4)

one receives
∂λDW

∂Q
=
dλDW

dQ
= −2λDW

√
λDW

√
λDW + ln 10

2

2.51

Re
√
λDW

+
εDW
3.7d

2.51

Re
√
λDW

1

Q
(B.5)

which leads to

d∆hDW

dQ
= 2λDWkDW|Q|︸ ︷︷ ︸

>0 for Re>0

(
1−

√
λDW

√
λDW + ln 10

2

2.51

Re
√
λDW

+
εDW
3.7d

2.51

Re
√
λDW

)
> 0 ∀Q 6= 0, λDW,

εDW

d
(B.6)
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an expression which is always greater zero, as result of the remaining term

1−
√
λDW

√
λDW + ln 10

2

2.51
Re
√
λDW

+ εDW
3.7d

2.51
Re
√
λDW︸ ︷︷ ︸
≥1

≥ 1−
√
λDW√

λDW + ln 10
2︸ ︷︷ ︸

<1

> 0 (B.7)

being always greater zero too. This provides that Re > 0 (2.3) which implies 2λDWkDW|Q| > 0,
whereas εDW/d > 0 due to the physical relation. Actually, ∆hDW(Q) is strictly monotonically
increasing except in the zero point Q = 0 where its slope equals zero. �
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C
Proof of Proposition 8.2

Denoting q = [1/q0 q1]T , where q0 6= 0 (8.8) and E(1/q0, q1) = E(q), one has to show that
E(µq1 + (1− µ)q2) ≤ µE(q1) + (1− µ)E(q2) ∀µ ∈ [0, 1] and different q1, q2 as a result of (8.8).∫ ∆h

∆h

(
fa(∆h) + [−∆h7/4 1](µq1 + (1− µ)q2)

)2
d∆h ≤ (C.1)

µ

∫ ∆h

∆h

(
fa(∆h) + [−∆h7/4 1]q1

)2
d∆h

+(1− µ)

∫ ∆h

∆h

(
fa(∆h) + [−∆h7/4 1]q2

)2
d∆h

Positive factor 1/d2 was already canceled from the left and right hand side of (C.1). Considering
the left hand side of (C.1)∫ ∆h

∆h

(
f2
a (∆h) + 2fa(∆h)[−∆h7/4 1](µq1 + (1− µ)q2) + µ2([−∆h7/4 1]q1)2

+2µ(1− µ)([−∆h7/4 1]q1)([−∆h7/4 1]q2) + (1− µ)2([−∆h7/4 1]q2)2
)
d∆h (C.2)

as well as the right hand side of (C.1)

µ

∫ ∆h

∆h

(
f2
a (∆h) + 2fa(∆h)[−∆h7/4 1]q1 + ([−∆h7/4 1]q1)2

)
d∆h (C.3)

+(1− µ)

∫ ∆h

∆h

(
f2
a (∆h) + 2fa(∆h)[−∆h7/4 1]q2 + ([−∆h7/4 1]q2)2

)
d∆h,

terms are canceled successively. This results in∫ ∆h

∆h

(
µ2([−∆h7/4 1]q1)2 + 2µ(1− µ)([−∆h7/4 1]q1)([−∆h7/4 1]q2)

+(1− µ)2([−∆h7/4 1]q2)2
)
d∆h ≤ (C.4)∫ ∆h

∆h
µ([−∆h7/4 1]q1)2 + (1− µ)([−∆h7/4 1]q2)2d∆h.



180 Appendix C. Proof of Proposition 8.2

As 1− µ− (1− µ)2 = µ(1− µ) and µ− µ2 = µ(1− µ), one brings terms of the left hand side of
(C.4) to its right hand side while canceling µ(1− µ). This yields

0 ≤
∫ ∆h

∆h

(
[−∆h7/4 1]q1 − [−∆h7/4 1]q2

)2
d∆h, (C.5)

which holds for all q1 and q2. �
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D
Proof of Proposition 8.6

When considering the total derivative of ft(ε,∆h) = a in terms of ∆h at ε = fa(∆h)

dft(∆h, ε)

d∆h

∣∣∣∣
(fa(∆h),∆h)

=
∂ft
∂∆h

∣∣∣∣
(fa(∆h),∆h)

+
∂ft
∂ε

dε

d∆h

∣∣∣∣
(fa(∆h),∆h)

≡ 0 (D.1)

while applying the chain rule to the left hand side, the right hand side becomes identical to zero.
In analogy, the same applies for γ(ε,∆h) ≈ a at least in the considered range ∆h ∈ [∆h,∆h],
when taking the total derivative in terms of ∆h at ε = q−1(∆h).

dγ(∆h)

d∆h

∣∣∣∣
(q−1(∆h),∆h)

= (D.2)

∂γ

∂∆h

∣∣∣∣
(q−1(∆h),∆h)

+
∂γ

∂ε

dε

d∆h

∣∣∣∣
(q−1(∆h),∆h)

≈ 0 ∀∆h ∈ [∆h,∆h]

This is an indirect consequence of Corollary 8.3, providing parameters q0, q1 for which turbulent
boundary curves are basically indistinguishable q−1(∆h) ≈ fa(∆h) ∀∆h ∈ [∆h,∆h] (see figure
8.1). As a result,

dq−1

d∆h
≈ dfa
d∆h

∀∆h ∈ [∆h,∆h] (D.3)

⇒ dε

d∆h

∣∣∣∣
(q−1(∆h),∆h)

≈ dε

d∆h

∣∣∣∣
(fa(∆h),∆h)

∀∆h ∈ [∆h,∆h].

also the slopes of the turbulent boundary curves equal to a sufficient degree of accuracy.
By reformulating (D.1) and (D.2), request (iv) can be modified with regard to (in the range

∆h ∈ [∆h,∆h])  ∂γ
∂ε

∣∣∣
(q−1(∆h),∆h)

∂γ
∂ε

dε
d∆h

∣∣∣
(q−1(∆h),∆h)

 !
=

 ∂ft
∂ε

∣∣∣
(fa(∆h),∆h)

∂ft
∂ε

dε
d∆h

∣∣∣
(fa(∆h),∆h)

 (D.4a)

or
∂γ
∂∆h

∣∣∣
(q−1(∆h),∆h)

∂γ
∂∆h

∣∣∣
(q−1(∆h),∆h)

(
dε
d∆h

∣∣∣
(q−1(∆h),∆h)

)−1

 !
=


∂ft
∂∆h

∣∣∣
(fa(∆h),∆h)

∂ft
∂∆h

∣∣∣
(fa(∆h),∆h)

(
dε
d∆h

∣∣∣
(fa(∆h),∆h)

)−1

 . (D.4b)
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Applying (D.3), the derivative dε
d∆h at the turbulent boundary is cancelled in (D.4). This is

feasible as dfa
d∆h 6= 0 and dq−1

d∆h 6= 0 for all ∆h ∈ [∆h,∆h] which applies for all manufacturable
pipes. This completes the proof. �
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