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Abstract

The Eyring equation provides a convenient approximation to the rate of a
chemical reaction based on a given potential energy surface. However, a
quadratic approximation of the latter, which is intrinsic to this approach,
is particularly problematic in cases of extremely weak molecular interac-
tions. In this thesis, an alternative description based on a statistical analysis
of molecular trajectories is proposed and tested on selected systems with
special relevance for gas separation and gas storage.
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Kurzfassung

Mithilfe der Eyring-Gleichung lassen sich Reaktionsraten für gegebene Po-
tentialenergieflächen berechnen. Dieser Methode liegt eine quadratische Ap-
proximation der Potentialenergiefläche am Sattelpunkt zugrunde. Im Falle
von sehr schwachen molekularen Interaktionen kann dies jedoch zu Proble-
men führen. In dieser Arbeit werden alternative Methoden basierend auf der
statistischen Analyse molekularer Trajektorien entwickelt und vorgestellt.
Das Ziel ist eine bessere Genauigkeit bei der Bestimmung von Reaktion-
sraten zu erreichen als es die Eyring Gleichung vermag. Spezielle An-
wendungsgebiete der entwickelten Methoden finden sich im Bereich der
Gastrennung oder der Gasspeicherung.
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1 Introduction

1.1 Transition state theory in a nutshell

Transition state theory was first proposed in 1935 by Henry Eyring. Its main
purpose is the theoretical prediction of chemical reaction rates. The funda-
mental postulate of the theory is the existence of the so called ”transition
state”. Before we can go on to further discuss the idea of the transition state,
we have to introduce the concept of the potential energy surface, which
is intrinsic to the idea of the transition state. The concept of the potential
energy surface (PES) is based on the Born-Oppenheimer approximation
which shall be devoted an own chapter.

1.1.1 The Born-Oppenheimer approximation

The general Hamiltonian for a collection of electrons and nuclei is given by
the Equations 1.1 and 1.2:

H = He + Tn, (1.1)

He = −∑
i

1
2
∇2

i −∑
i,A

ZA

riA
+ ∑

i>j

1
rij

+ ∑
B>A

ZAZB

RAB
and Tn = −∑

A

1
2MA

∇2
A.

(1.2)
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1 Introduction

As an ansatz for the wave function of the set of electrons and nuclei the
most general form is used:

Ψ(R, r) =
K

∑
k=1

χk(r; R)φk(R), (1.3)

where χk(r; R) describes the electrons and φk(R) the nuclei.

The Born-Oppenheimer approximation states that, in most cases, the elec-
tronic and the nuclear eigenfunctions can be decoupled. Put differently, the
nuclear and electronic wave functions can be solved separately. After solving
for the electronic part of the wave function for a fixed nuclear geometry R,
the solution for the nuclear wave function can be obtained by solving

[Tn + Ek(R)]φk(R) = Eφk(R) for k = 1, . . . , K. (1.4)

Here, Tn is the kinetic energy operator of the nuclei and Ek(R) is the total
energy of the electronic wave function, solved for a specific core geometry
R. Since Equation 1.4 is essentially a Schrödinger Equation, Ek(R) can be
thought of as an effective potential that holds all information about the
electronic interaction with the nuclei intrinsically. In other words, the nuclei
are treated as if they were moving in an effective potential caused by the
electron cloud around them. Equation 1.4 holds as long as its eigenvalues
fulfill the following property:

E0(R)� E1(R)� E2(R)� · · · . (1.5)

Equation 1.5 leads to the understanding of a chemical reaction as nuclei
moving in an effective potential, called a potential energy surface, or PES.
The details of the derivation can be found in Ref. [9].

The validity of the Born-Oppenheimer approximation is the most important
and also the least controversial assumption underpinning transition state
theory.
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1 Introduction

1.1.2 The concept of the transition state

By reducing the role of the electrons to a potential-generating background
for the nuclei, the classical state of a molecule is fully determined by its
nuclear positions. Since the PES is a function of the nuclei positions, its
dimensionality is given by 3N, where N is the number of atoms of the
studied molecule. Removing the redundant rotational and translational
degrees of freedom leaves us with 3N − 6 dimensions (3N − 5 for linear
molecules). Stable configurations of a molecule correspond to the minima
on its PES.

Figure 1.1: Schematic illustration of a reaction path.

As illustrated in Figure 1.1 a reaction is assumed to occur along, or near,
the path that requires the least amount of energy and yet leads to a reaction.
This path is called minimum energy path, or MEP. The point along the MEP
with maximum energy is called the transition state. Since the transition state
is the maximum of the MEP, the curvature of the PES along the latter is
negative. Thus, the Hessian at the transition state must have at least one
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1 Introduction

negative eigenvalue. The direction pointing along the MEP at the transition
state is called the reaction coordinate. Due to the fact that all other paths
have higher maximum energy values, we can conclude that the transition
state is a saddle point, or in other words: The curvature along all directions
orthogonal to the reaction coordinate must be positive.

Furthermore, two minima of the PES can always be separated by a N − 7
dimensional hyperplane. The latter can be defined to be situated at the
transition state and being perpendicular to the reaction coordinate.
With the notion of the PES in mind, any structural change of the molecular
system can be thought of as a trajectory on this N-6 dimensional PES. In
Eyring theory it is usually assumed that once the separating plane is crossed,
the molecule evolves from educt to product.

1.1.3 Obtaining reaction rates with transition state theory

Before one can go on to calculate definite reaction rates, it is necessary to
make two further assumptions [10].

1.) It is sufficient to treat the motion along the reaction coordinate classi-
cally.

2.) The examined system is in its statistical equilibrium. This means that
states are populated according to the Maxwell-Boltzmann distribution.

Formally, the transition state can be treated as a stable configuration, similar
to the minima. It is then possible to calculate the Gibbs free energy for the
minima as well as the transition state. Given all relevant Gibbs free energies,
the reaction rate can be expressed as

k =
κkBT

h
e−

∆‡G	
RT , (1.6)

where ∆‡G is the Gibbs free energy difference of the reactant and the
transition state. This is the famous Eyring equation.
Rewriting Equation 1.6 one can also infer a slightly different representation
of Eyring’s equation. This shall be shown for the particular reaction of
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1 Introduction

a molecule that changes its shape. In this case, only vibrational degrees
of freedom are relevant. In general, the Gibbs free energy is given by the
expression

G(p, T) = U + pV − TS = H − TS. (1.7)

The vibrational entropy Svib and enthaply Hvib are given by

Hvib = R
3N−6

∑
i=1

(
hvi

2k
+

hvi

k
1

ehvi/kT − 1

)
(1.8)

and

Svib = R
3N−6

∑
i=1

(
hvi

kT
1

ehvi/kT − 1
− ln(1− e−hvi/kT)

)
. (1.9)

Combining Equations 1.7, 1.8 and 1.9 the vibrational Gibbs free energy can
be expressed through partition sums of quantum harmonic oscillators:

Gvib =
3N−6(7)

∑
i=1

hvi

2k
+ ln(1− e−hvi/kT) = ∏

i
ln(qvib,i). (1.10)

The exponential term in Equation 1.6 e∆‡G	 can be rewritten as e
Greactant

GTS .
Using Equation 1.10 we obtain a different representation of the Eyring
equation

k =
kBT

h
qTS/V

∏reactants
i (qi/V)vi

exp
(
−∆E‡

kBT

)
. (1.11)

We note that it was implicitly assumed that the PES in the vicinities of the
minima and the transition state is well described by a quadratic expansion.
Knowing the Hessian at these points is then sufficient to calculate the
partition sums in Equation 1.11.
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1 Introduction

This proof can be carried out analogously for translational and rotational
Gibbs free energies. With Equation 1.11 it becomes clear, that only a few
quantities are needed in order to determine the reaction rate of any process.
These quantities are: The temperature, the partition sum of the transition
state, the partition sum of the reactants and the energy difference between
the minimum of the PES and the transition state. If these quantities are
known to a sufficient accuracy, chemical reaction rates can be calculated via
the Eyring equation.

In 1977, 42 years after its development, Henry Eyring himself said the
following about his theory:

“I showed that rates could be calculated using quantum mechanics for the potential
surface, the theory of small vibrations to calculate the normal modes, and statistical
mechanics to calculate the concentration and rate of crossing the potential energy
barrier. This procedure provides the detail picture of the way for reactions that still
dominates the field.” [2]

1.1.4 Limitations of transition state theory

The aforementioned statement of Eyring holds up to this day and most
reactions are well described by this approach. However, the theory is far
from exact for a number of reasons. Problems can, for instance, arise in the
following cases.

1. The intermediates are very short-living, so that the Boltzmann distri-
bution of energies is not reached before the process continues to the next
step.

2. transition state theory also fails for some reactions at high temper-
atures due to the more complex motions of molecules or at very low
temperatures due to the quantum tunneling [13] .

The second mentioned limitation can be relevant even at low temperatures.
E.g. in a system where a quadratic approximation does not provide a
sufficiently accurate description in the vicinity of the transition state.

6



1 Introduction

If this is the case, it is no longer sensible to calculate the partition sum
assuming small harmonic vibrations as Eyring suggested. If the PES is
particularly complicated it is no longer sufficient to think of the reaction
path as a trajectory crossing a saddle. These potential issues provide the
main motivation for this thesis.

1.2 The purpose of this thesis

The purpose of this thesis is to extend the Eyring approach of conventional
transition state theory, in order to tackle the problem of complicated sepa-
rating planes. Another objective is to find suitable practical applications for
the developed ideas and methods. More precisely, the goal is to improve the
prediction of reaction rates in terms of accuracy for selected systems and to
compare them to the predictions of established methods.
As a long-term objective, these methods should be prepared for a broader
audience by a further generalization, better performance and improved user
friendliness.

7



2 Trajectory based determination
of reaction rates

2.1 A trajectory based derivation of the Eyring
equation

A quick recap of Chapter 1 tells us: Every point on the PES corresponds to a
specific molecular geometry at hand. Consequently, every chemical reaction
can be seen as a single particle moving from one minimum to another in an
3N-dimensional potential, where N is the number of participating atoms.
The Lagrangian of N nuclei moving in some potential V(qij) is given by:

L(q, q̇, t) =
3

∑
i

N

∑
j

mj

2
q̇2

ij −V(qij). (2.1)

The subscript i refers to the ordinary spacial dimension, the subscript j
labels the respective atom. This representation, however, does not yet allow
us to think of the molecular motion as a trajectory of a single point mass in
a 3N dimensional space. The reason for this is, that the equations of motion
derived from this Lagrangian clearly exhibit different masses in different
dimensions.

8



2 Trajectory based determination of reaction rates

However, with the simple substitution

xij =
√

mjqij (2.2)

Equation 2.1 becomes

L(x, ẋ, t) =
3

∑
i

n

∑
j

ẋ2
ij

2
− Ṽ(xij). (2.3)

In this new set of coordinates x, the equations of motion are indeed that of
a point mass with m = 1, moving in a modified potential Ṽ. Hence, every
system of interacting particles can formally be interpreted as a single point
mass moving in some 3N-dimensional potential.

Next we want to calculate a reaction rate for a particle in an arbitrary n-
dimensional potential analytically. To develop some insight, we start with
the 2D case.

For this kind of problem, the tools of classical statistical physics are our
method of choice. Within the framework of statistical mechanics it can be
motivated that a state with energy E has a probability proportional to e−βE

of being occupied. This holds for classical as well as for quantum mechanics,
with the classical equivalent of a quantum mechanical state being a point in
phase space. In our case of only one particle with m = 1 the phase space is
the space of all possible combinations of different velocities and momenta
of this particle.
This means that, for a point mass moving on a PES in n dimensions, the
probability of finding it at a certain point in phase space (p, x) is given by

P(p, x, β) =
1
Z

e−β( p2
2m+Ṽ(x)). (2.4)

Equation 2.4 and the potential Ṽ(xij) are in fact the only ingredients we
need. In order to compute a reaction rate via classical mechanics we define a
separating hypersurface as discussed in Chapter 1. Via Equation 2.4 we can
calculate the probability Pcross that the particle will penetrate the separating

9



2 Trajectory based determination of reaction rates

hypersurface in a time interval δt. It is a fundamental postulate of the Eyring
theory that once the separating hypersurface is crossed, the reactants will
continue to form a product. Hence, the crossing probability is per definition
proportional to the reaction rate k:

k =
Pcross(δt)

δt
. (2.5)

The probability Pcross can be obtained by dividing the number of desired
outcomes by the number of total outcomes. For our particular problem,
desired points in phase space are those from which the particle is ensured
to cross the barrier within the time δt. Total outcomes are, of course, all
possible points in phase space.
However, to understand which points in phase space correspond to desired
outcomes, it is beneficial to look at a graphical illustration of the problem in
2D:

Figure 2.1: left: schematic 3D depiction of a PES around a saddle point, right: contour line
plot of a PES with two minima and one saddle point; the green arrow defines
the normal coordinate x, the red arrow the reaction coordinate y.

The separating hypersurface, which is just a line in 2D, must be chosen such
that it is normal to the reaction coordinate (red arrow and red line at the
transition state). The normal coordinate is then represented by the green
line in the left picture and the green arrow in the right picture. The green
and red curves can be assumed to be of parabolic shape near the saddle

10



2 Trajectory based determination of reaction rates

point. With the coordinate origin set to the saddle point and the x and y
axes pointing along the eigenvectors of the Hessian, we can approximate
the potential by

Ṽ(x, y) ≈ kx

2
x2 +

ky

2
y2. (2.6)

This quadratic approximation of the PES at the saddle point is completely
analogous to Eyring’s approach to only assume small vibrations taking
place in the harmonic regime.

In accordance to Eyring we assume that trajectories that cross the barrier
far away from the saddle rarely occur because of their small Boltzmann
weight.

With all of this in mind we can attempt to determine which states in phase
space correspond to desired outcomes. In other words, we will determine
the boundaries of the hyper volume these states are located in. First, we note
that there is no constraint on the x-velocity. Second, the separating plane can
be penetrated at any value along the x-axis, so there is also no limit on the
x coordinate. The y quantities of the favorable phase space points must thus
be constrained in some way. If we only want to calculate the penetration
probability from the −y side to the +y side, we know that vy has to be
positive. Since the trajectory needs sufficient velocity to cross within the
time interval δt, the upper limit of y is zero and the lower limit is −vyδt.
With the limits and Equation 2.4 we are able to write down the formula for
the crossing probability within a time δt. We just have to divide the sum of
the Boltzmann weighted desired points in phase space by the weighted sum
of the total points, where the weighted sum of the total points is identical
to the partition sum. Since our phase space variables are continuous, sums
transform into integrals and we obtain

Ptrans(δt) =
1
Z

∫ ∞

−∞

∫ 0

−vyδt
e−βṼ(x,y) dx dy

∫ ∞

−∞

∫ ∞

0
e−β

p2
x+p2

y
2m dpx dpy. (2.7)
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2 Trajectory based determination of reaction rates

In the limit of δt going to zero the dy integral can be instantly evaluated. It
is just the integrant at the point y = 0 times vyδt. With v = p

m we get

Ptrans(δt) =
1
Z

∫ ∞

−∞
e−βV(x,0) dx

∫ ∞

−∞

∫ ∞

0
e−β

p2
x+p2

y
2m

py

m
δtdpx dpy. (2.8)

We then plug in the approximated potential given by Equation 2.6 and
obtain

Ptrans(δt) = e−β∆E δt
Z

∫ ∞

−∞
e−β kx

2 x2
dx
∫ ∞

−∞

∫ ∞

0
e−β

p2
x+p2

y
2m

py

m
dpx dpy. (2.9)

The zero point of the potential shall be set to the energy of the minimum
and ∆E can be pulled out, with ∆E being the energy difference between the
minimum and the transition state. The RHS of Equation 2.9 is a product of
two Gaussians and a standard integral. These can all be easily evaluated,
yielding

Ptrans(δt) = e−β∆E δt
Z

m
1
2 (2π)

3
2

1
β2
√

kx
. (2.10)

Now the only missing ingredient is the partition sum Z. It can be approxi-
mated by a similar quadratic expansion around the minimum and is then
just another product of four Gaussians:

Z =
∫ ∞

−∞

∫ ∞

−∞
e−βV(x,y) dxdy

∫ ∞

−∞

∫ ∞

−∞
e−β

p2
x+p2

y
2m dpx dpy =

4π2m
β2
√

kxky
. (2.11)

With Equations 2.9, 2.10 and the initial definition of the reaction constant
k = P(δt)

δt we get

k =

√
kx,minky,min

2π
√

kxm
. (2.12)
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2 Trajectory based determination of reaction rates

This procedure can be directly generalized to n dimensions, where it is
completely analogous. The ansatz for the crossing probability is then

Ptrans(δt) =
1
Z

∞∫
−∞

∞∫
−∞

...
0∫

−vnδt

e−βV(xi) dx1 dx2...dxn

×
∞∫
−∞

∞∫
−∞

...
∞∫

0

n

∏
i=1

e−β
p2

i
2m dp1 dp2...dpn,

(2.13)

where the nth coordinate shall correspond to the reaction coordinate. The
integral over the latter as well as over the nth momentum coordinate are
completely equivalent to the y integrals of the 2D showcase.
There are now n-1 coordinates normal to the reaction coordinate. The
integrals over all of these variables are again of Gaussian type and each can
be treated equivalently to the x integrals in the 2D showcase. Hence, the
reaction rate is given by

k = e−β∆E 1
2π

∏n
i

√
kmin

i

∏n−1
i

√
ksaddle

i
√

m
. (2.14)
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2 Trajectory based determination of reaction rates

2.2 The ridge - An improvement of the quadratic
approximation

In Section 2.1 we derived an expression for the reaction rate for a n dimen-
sional PES classically. This derivation was based upon several assumptions,
which were already mentioned in Section 1.1. For one, we intrinsically
included the approximation that the separating hypersurface is a straight
plane. For the other, we assumed the quadratic expansion at the transition
state to be sufficient for all calculations.

There has been previous work trying to evaluate the partition sum at the
transition state where anharmonic corrections are taken into account [8].
There is, however, still the problem that the separating hypersurface is
not necessarily well described by a straight plane which is orthogonal to
the reaction coordinate. There exist techniques which also deal with this
problem [1].

At this point, a new approximation for the separating hypersurface shall be
presented. The idea will again be illustrated by a picture. It is based upon
the fact that on a PES with two minima and no maxima, every point can be
ascribed to one of two regions. Region one will be defined as the space in
which following the negative gradient incrementally, will lead to the first
minimum. In region two the same procedure leads to the second minimum.
(since there are no maxima on the PES, one is forced to end up in one of the
two minima)
From now on, we will call the lines that emerge from following the gradient
with infinitesimally small steps ”gradient field lines”.

14



2 Trajectory based determination of reaction rates

Figure 2.2: The same PES as shown in Figure 2.1 - the arrows mark the direction of the
negative gradient. The black line marks the ridge.

If the whole space can be divided into two regions, there exists an interface
between them. We will call this interface ”the ridge”. The ridge is an inter-
esting object with a highly practical feature. Whether a particle is pulled
towards minimum one or minimum two depends only on which side of the
ridge it is located. This makes the ridge a natural choice for the separating
hypersurface. Mathematically speaking the ridge is a manifold of dimension
n− 1 which is embedded in n dimensions. The set of points defining the

15



2 Trajectory based determination of reaction rates

ridge is given by all x
′
i ∈ R for which x

′
i = xi for i ∈ 1, 2, ..., n− 1 and

xn = Ω(x1, x2, ..., xn−1). (2.15)

Now we want to identify the desired and total outcomes for this new curved
separating hypersurface. The total outcomes are again all possible points
in phase space. Analogous to before, the desired outcomes will be defined
as states that, if occupied, will lead to a crossing event of the ridge within
δt. Furthermore, we define the reaction coordinate to be variable. The best
choice for the latter is to be orthogonal to the ridge.
Consequently, we have to define a local variable coordinate system in
momentum space {p1, p2, ..., pn}, where pn shall be parallel to the reaction
coordinate.
Roughly speaking, this means that the spacial hypervolume that encloses
the desired states has a curved base (the ridge itself) and a thickness of
pnδt. To count the desired phase space states, we have to integrate over the
mentioned hypervolume. Hence, the probability of crossing the ridge within
a time δt is

Ptrans(δt) =
1
Z

∞∫
−∞

∞∫
−∞

...
0∫

−vnδt

n−1

∏
i=0

dxie−βV(x1,...,Ω)

×det(J(x1, ..., xn−1))

∞∫
−∞

∞∫
−∞

...
∞∫

0

n

∏
i=0

pn

m
e−β

p2
i

2m dpi.

(2.16)

Here J(x1, x2, ..., xn−1) denotes the Jacobian of the ridge. It is introduced to
account for the volume of an infinitesimal ridge element and is given by

J(x1, x2, ..., xn−1) =


∂x1

∂x1
· · ·

∂x1

∂xn−1
... . . . ...

∂Ω
∂x1

· · ·
∂Ω

∂xn−1

 . (2.17)

16



2 Trajectory based determination of reaction rates

Since we want to use mass weight coordinates we can set m = 1. This
also explains why we use vnδt and pnδt interchangeably, since the two
expressions are equal in this case.
The reaction rate we obtained using Equation 2.16 is still not exact. The
validity of the calculation depends upon the curvature of the ridge. It is
possible for a particle that has just crossed a curved ridge (the faster a
particle is, the straighter its trajectory gets) to recross it shortly after the first
crossing event. This fact is not accounted for in Equation 2.16. However, at
this point it shall be mentioned that also in the Eyring theory the problem
of recrossing is not taken into account.

2.3 Numerical evaluation of the predictions

Equation 2.12 (classical Eyring) and 2.16 (Ridge based) each yield a reaction
rate. By multiplying these reaction rates with time T, we get the number of
expected transition events Tevents

exp within T:

Tevents
exp = T × Ptrans(δt)

δt
= T × k. (2.18)

Since the reaction rate obtained using Equation 2.16 is still not exact, the
claim that it enhances the prediction of the reaction rate has to be tested nu-
merically. Therefore, the actual number of transition events was determined
via a molecular dynamics simulation. In this context, molecular dynamics
refers to the sampling of trajectories in some potential according to Newtons
equations of motion. After the sampling of a trajectory it is checked whether
or not the latter penetrated the separating hypersurface.
A single trajectory has a fixed energy and would thus only reach a small
fraction of phase space. Therefore, multiple trajectories with energies drawn
according to a Maxwell-Boltzmann distribution are sampled.
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2 Trajectory based determination of reaction rates

Figure 2.3: Some trajectories (red lines) on the Müller Brown surface. Their energies and
thus also their starting points are drawn according to a Maxwell-Boltzmann
distribution - the black line marks the ridge. If a trajectory penetrates the latter
and stays on the opposite side for a sufficient amount of time a crossing event
is detected.

The experiments are conducted on the Müller Brown surface, which is a
standard surface for testing algorithms in quantum chemistry [15], [14].
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2 Trajectory based determination of reaction rates

2.3.1 Used simulation techniques

The algorithm consists of three steps:

1.) Draw a starting point in phase space from a Maxwell-Boltzmann dis-
tribution - Any point in phase space should be drawn with a probability
proportional to e−βE(x,p).
2.) Sample a trajectory starting at this point - the trajectory is stopped
after a time interval t: Starting at the point drawn in step 1, a trajectory is
sampled according to Equations 2.19 and 2.20.
3.) If the trajectory crossed the separating plane and stays on the oppos-
ing side for a certain amount of time, count this as a crossing event.
4.) Continue with step 1

After an interval of computational time T, where T = t× n with n as the
number of trajectories, the simulation is completed and the crossing events
are summed up.
Compared to the more common temperature-controlled simulations, this
method has a tremendous advantage. Trajectories with a lower energy than
the potential at the saddle point do not have to be sampled, since these
cannot cross the separating plane. This way a large amount of computational
resources can be avoided.
For the implementation of the equations of motion the leap frog algorithm
was used. It basically features two equations, which are solved iteratively:

xi+1 = xi + vi+1/2, (2.19)

vi+3/2 = vi+1/2 + xi+1 ∆t, (2.20)

where x denotes the position of a particle and v its velocity.
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2 Trajectory based determination of reaction rates

2.3.2 Results of the numerical experiments

The Müller Brown surface exhibits three minima and two saddle points.
Consequently, it was devided into two subsurfaces, which we call subsur-
face one and two (each with two minima and one saddle point). For these
two subsurfaces the simulation was conducted according to the procedure
described in Section 2.3.1. The inverse temperatures β and the trajectory
lengths t were varied and the result of the Eyring Equation 2.12 was com-
pared to the ridge-based prediction (Equation 2.16).
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2 Trajectory based determination of reaction rates

Subsurface 1, beta = 0.03

Figure 2.4: Upper image: results of the numerical experiment: Observed transition events
(y-axis) for 40000 trajectories running for different times (x-axis), drawn at an
inverse temperature of 0.03 K−1. Lower image: Contour plot region one of the
Müller Brown surface. A few observed trajectories are plotted for 1

β = 0.03.

21
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Subsurface 1, beta = 0.05

Figure 2.5: Upper image: results of the numerical experiment: Observed transition events
(y-axis) for 80000 trajectories running for different times (x-axis), drawn at a
inverse temperature of 0.05 K−1. Lower image: Contour plot region one of the
Müller Brown surface. A few observed trajectories are plotted for 1

β = 0.05.
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Subsurface 2, beta = 0.06

Figure 2.6: Upper image: results of the numerical experiment: Observed transition events
(y-axis) for 40000 trajectories running for different times (x-axis), drawn at a
inverse temperature of 0.06 K−1. Lower image: Contour plot region one of the
Müller Brown surface. A few observed trajectories are plotted for 1

β = 0.06.
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Subsurface 2, beta = 0.09

Figure 2.7: Upper image: results of the numerical experiment: Observed transition events
(y-axis) for 80000 trajectories running for different times (x-axis), drawn at a
inverse temperature of 0.09 K−1. Lower image: Contour plot region one of the
Müller Brown surface. A few observed trajectories are plotted for 1

β = 0.09.
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2 Trajectory based determination of reaction rates

For both parts of the Müller-Brown surface and for both temperatures we
can observe, that Equation 2.16 predicted the number of transition events
more accurate than Equation 2.12. For region one the predictions made by
Equation 2.16 are in almost perfect agreement with the observation. Such an
excellent agreement could not be reached on subsurface two. Nevertheless,
the prediction of Equation 2.16 was closer to the observed values than the
one of Equation 2.12.

Another interesting observation is the linear relationship between the transi-
tion events and the trajectory length. The assumption that a longer trajectory
length has some sort of guiding effect on the trajectories is thus a false one.
This interesting fact will be addressed in the next subsection.

2.3.3 The Liouville equation

In this subsection we to look at the problem from a slightly different per-
spective. Instead of thinking of sampling a single trajectory at a time, we
envision all trajectories running simultaneously. In the limit of an infinite
number of trajectories, the occupation of phase space states can be described
by some distribution ρ(x, p, t). We can also think of the distribution ρ as the
probability of drawing a certain phase space point. Hence, in the moment
when the trajectories are drawn (t = 0), ρ(x, p, t = 0|E) is proportional to
e−βE. For a given energy E, ρ(x, p, t|E) is thus constant.
We want to learn how to calculate the dynamics of this distribution. Since
there are no sources and sinks for trajectories, the continuity equation always
holds. In its most general form, the latter is given by

dρ

dt
=

∂ρ

∂t
+

n

∑
i=1

(
∂(ρq̇i)

∂qi
+

∂(ρ ṗi)

∂pi

)
= 0. (2.21)

By evaluation of the derivatives via the product rule we get

dρ

dt
=

∂ρ

∂t
+

n

∑
i=1

(
∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi + ρ

∂q̇i

∂qi
+ ρ

∂ ṗi

∂pi

)
= 0. (2.22)
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The last two terms cancel each other, which can be seen with the help of
Hamilton’s equations

ρ
n

∑
i=1

(
∂q̇i

∂qi
+

∂ ṗi

∂pi

)
= ρ

n

∑
i=1

(
∂2H

∂qi ∂pi
− ∂2H

∂pi∂qi

)
= 0. (2.23)

What remains is

∂ρ

∂t
=

n

∑
i=1

∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi. (2.24)

Let us now try to study the time evolution of the density ρ(x, p, t|E). We
begin by noting that due to energy conservation trajectories can never escape
a certain hypervolume defined by the energy E.
Furthermore, ρ(x, p, 0|E) is constant for all possible values of x and p, since
points in phase space with the same energy are drawn with equal probability.
If ρ(x, p, 0|E) is constant in a subspace, then its gradients calculated within
the subvolume ∂ρ

∂qi
and ∂ρ

∂pi
are zero. This in turn forces the RHS of Equation

2.22 to be zero. We are left with

∂ρ(x, p, t|E)
∂t

= 0, (2.25)

which causes the fact that ρ does not change over time. A more detailed
version of these arguments can be found in Ref. [11].

This remarkable result is the fundamental reason why the reaction constant
k does not depend on the trajectory length.
The chain of reasoning goes like this: ρ(x, p, t|E) represents the probability
of observing a particle at a certain phase space point. Due to this quan-
tity staying constant over time the probability of observing a particle in
state (x, p) always remains Maxwell-Boltzmann distributed if we start out
Maxwell-Boltzmann distributed. This in turn, makes statistical properties
independent of how long the trajectories are.

A striking consequence of these facts is the following: In nature, a drive
toward thermal equilibrium is obtained by an interaction of some system
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2 Trajectory based determination of reaction rates

with its environment (i.e. via collisions). If the occupation of phase space
remained constant, then it is always possible to obtain a reasonable estima-
tion of the reaction rate only by precise knowledge of the ridge. This holds
independent of the strength of the interaction, which was modeled by the
variation of the trajectory length.

2.4 Quantum corrections - How accurate are
these classically determined rates?

Let us revisit the Eyring equation written in terms of partition sums:

k =
kBT

h
qTS/V

∏reactants
i (qi/V)vi

exp
(
−∆E‡

kBT

)
. (2.26)

What we have done so far is to evaluate these partition sums via classical
statistical mechanics. We know nevertheless, that nature on the molecular
and atomic scale does not necessarily behave classically. This gives rise
to the obvious question: How far off is the classically computed reaction
rate?

2.4.1 Direct comparison of classical and quantum partition
sums

Vibrational partition sums

This question shall be discussed by two model examples of quantum-
mechanically easily computable partition sums, namely the vibrational
and rotational contributions in one dimension. The vibrational partition
sum of the harmonic oscillator can be exactly evaluated via

Qqm
vib =

∞

∑
n=0

e−βh̄ω(n+ 1
2 ) =

e−
βh̄ω

2

1− e−
βh̄ω

2

=
1

2 sinh( βh̄ω
2 )

. (2.27)
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If we expand the denominator of Equation 2.27 and pull out 1
βh̄ω we arrive

at

Qqm
vib =

1
βh̄ω

1

1 + 1
24(βh̄ω)2 +O(( βh̄ω

2 )4)
. (2.28)

Expanding the second fraction in 2.26 to first order in (βh̄ω)2 yields

Qqm
vib =

1
βh̄ω

(1− 1
24

(βh̄ω)2 +O((βh̄ω

2
)4)). (2.29)

Next, the classical partition sum is easily evaluated to give

Qcl
vib =

∫ ∞

−∞

∫ ∞

−∞
e−βx2+

p2
2m dxdp =

1
βmω

. (2.30)

We note that if βh̄ω << 1 Equation 2.27 is almost given by Equation 2.28.
This means that if h̄ω << kT, or in other words if the separation between
consecutive vibrational energy levels is much smaller than kT Qqm

vib it is well
approximated by Qcl

vib (except for two irrelevant constants m and h̄ which
would cancel in the computation of any physical observable).

Rotational partition sums

We consider the special case of a linear molecule consisting of two atoms.
Even in this simple case the sum is not exactly calculable, but some analytical
insight can still be gained. We can replace the partition sum by a well-known
integral.
We introduce I, the moment of inertia, and g, the degeneracy of a quantum
state with quantum number J.
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Qqm
rot =

∞

∑
J=0

gje−EJ/kBT =
∞

∑
J=0

(2J + 1)e
−J(J+1)h̄2

2I /kBT ≈

∞∫
0

(2J + 1)e
−J(J+1)h̄2

2I /kBTdJ =
2IkBT

h̄2 .
(2.31)

For this replacement to be a sensible step, we demand that the value of the
addend in Equation 2.31 don’t change much for two consecutive values of J.
For this to be true, the exponential term in the addend must vary slowly
with J. This is the case if

h̄2

2I
1

kBT
<< 1. (2.32)

Now we want to calculate the classical expression,

Qqm
rot =

2π∫
0

π∫
0

∞∫
−∞

∞∫
−∞

e−β(
p2

φ
2m+

p2
θ

2m )r2dφdθdpφdpθ = 4πmr2kBT = 2π IkBT,

(2.33)

which is once more the exact same result as the quantum mechanical one,
except for the irrelevant factors π and h̄2. These factors would, again, cancel
in the computation of a physical observable.

We conclude: In both cases the gap between consecutive energy levels had
to be small in order to obtain the classical partition sum as a limit of the
quantum mechanical one. Hence, in a case where the density of energy
levels is high, the quantum effects lose significance.
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2.4.2 Euclidean path integrals - an elegant way to
determine quantum corrections

In Section 2.4.1 we have seen, that for the two example problems, the classi-
cal partition sum emerges as a limit of the quantum mechanical treatment.
Thus, it is legitimate to ask whether this is always the case. Unfortunately,
most partition sums are far more complicated to determine than the ones
analyzed in Section 2.4.1. This makes it difficult and in high dimensional
situations even impossible to solve for the eigenvalues of the Schrödinger
equation.
Luckily, there is a formalism, which connects quantum and classical parti-
tion sums and on top of that, makes it possible to obtain a correction factor
without ever solving the Schrödinger equation. Using this formalism called
”Euclidean path integrals”, Richard Feynman and Albert Hibbs derive the
following in their book ”Quantum Mechanics and Path Integrals” [3].

They start by expressing the partition sum using the density operator in
position space:

Qqm = tr[ρ(x, x′)] =
∫

ρ(x, x)dx =
1
Z

∫
V

∑
i

e−βEi |ψi(x)|2dx. (2.34)

Within the framework of Eucledian path integrals, Feynman and Hibbs
make a first order approximation. After some effort, Qqm can be rewritten
as

Qqm =
∫

e−β(V(x)+V′′(x)βh̄2
24m )+Higher Order Terms)dx. (2.35)

What is immediately striking is the fact that for small curvatures V”(x), Qqm
approaches Qcl just as expected.
We want to examine whether this formula predicts the quantum corrections
of our simple example of the vibrational partition sum correctly. For this
sake we plug in the curvature, V′′(x), of the 1D harmonic oscillator, which
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is just a constant k. After that, we expand e
kβ2 h̄2
24m in its exponent to first order

and pull it out. We get

Qqm =
∫

e−βV(x)(1 +
ω2h̄2β2

24
)dx. (2.36)

The first term of this product is the classical result. Identical to Equation
2.29, the quantum correction is taken account for by the multiplication of

the factor (ωh̄β)2

24 .

We conclude that the formalism successfully yielded the right quantum
correction to the classical partition sum for the case of the harmonic oscilla-
tor.

2.5 Practical applicability of the concept of ”the
ridge”

As we have seen in the previous sections, the concept of the ridge can
enhance the prediction of reaction rates. However, due to conceptual reasons,
difficulties arise when the ridge exhibits a high curvature. Furthermore, it
is problematic to apply the concept to a high dimensional problem, since
it is almost impossible to numerically determine a curved surface with a
number of dimensions > 10. Another limiting criteria for the applicability
of the concept is the fact that the quadratic expansion around the transition
state is yielding satisfactory reaction rates for most systems.
Applications within these constraints will be found and discussed later in
this thesis.
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3 Bisection gradient descent
saddle point search

In Chapter 2 we discussed transition state theory from a classical perspective
and made an attempt to extend the latter. The extension was achieved by
the introduction of a new separating plane between two minima - the ridge.
An idea that emerged from this concept will be discussed in this chapter.

3.1 A general procedure to determine ”the ridge”

We will begin with a suggestion for a general procedure to determine points
on the ridge. The ridge is a N-1 dimensional hypersurface on the PES. It
can be inferred from the very definition of the ridge that the saddle point is
the point of lowest energy on the latter. Following the gradient field lines
on either side of the ridge in descending direction gets you to the respective
minimum. If one started exactly on the ridge one should not end up in any
minimum. If a gradient field line does not end up in one of the minima
it must stay on the ridge and run towards the minimum within the latter,
which is the saddle point. To answer the question how to find points on the
ridge a reverse argument can be formed: Following the gradient field lines
in descending direction gets you to the saddle point. Therefore, following
the latter in ascending direction starting from the saddle point always keeps
us on the ridge. Thus, a gradient ascent simulation starting at the saddle
point naturally yields points on the ridge. The determined points can be
interpolated if desired.
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3 Bisection gradient descent saddle point search

3.2 An new saddle point searching algorithm - an
unexpected discovery

We just learned that the saddle point could be obtained by knowing a
point on the ridge. Unfortunately, as previously mentioned, the ridge lacks
a mathematical definition. However, our heuristic definition of the ridge
suffices to construct a generally applicable saddle point finding algorithm:
For the following demonstration of the algorithm, subsurface one and two
shall be defined as regions on the PES where the gradient field lines end up
in the respective minima.

Figure 3.1: Illustration of subsurface one and two. They are, per definition, separated by
the ridge.
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3 Bisection gradient descent saddle point search

The bisection gradient descent algorithm consists of three steps:

Step1 - Find two points on different subsurfaces: Find two points with
the following properties. Point one is located in subsurface one and point
two in subsurface two. We know whether a point is on subsurface one or
two when we know where gradient field lines starting from the respective
point end. We can check this via gradient descent.

Figure 3.2: First two gradient descent searches of the algorithm.

The fact that the two points are on different subsurfaces leads to the conclu-
sion that a line connecting these points must penetrate the ridge.

Step2 - Bisection steps: Next we can define point 3 which is at half distance
between point 1 and point 2 and check which subsurface it is on.
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3 Bisection gradient descent saddle point search

Figure 3.3: First two gradient descent searches followed by a third step.

If, for example, starting point 3 is located in subsurface 2, we know that a
line connecting point one and three must penetrate the ridge. This bisection-
based step can be performed over and over again. The gradient descent
check for every point will yield gradient field lines that end in minimum
one or two. Ultimately (in the limit of an infinite amount of trials) one of
these lines would end exactly in the saddle point. In the finite case, the
gradient field lines miss the saddle point by less and less distance and the
algorithm can be aborted when the deviation is small enough.
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3 Bisection gradient descent saddle point search

Figure 3.4: All gradient descent searches the algorithm performed. It aborted after the fifth
bisection step (purple line) as this step yielded a point sufficiently close to the
saddle point.

Step3 - Calculate Hessian: If we finally found a point in the vicinity of the
saddle point, one can determine the Hessian at that point and calculate
a closer estimate for the actual saddle point. Unfortunately, this step is
computationally very costly, since one extra Hessian requires a number of
single point calculation at least equal to the system dimension.
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Factors that determine the performance

The algorithm presented above can be used to find a saddle point in the
general case of an n dimensional PES. The interesting questions here are
the following: How many single point calculations do we need in step 1
and step 2? And: how does the performance scale with the number of
dimensions? In principle, a rough estimation for the number of single point
calculations can be written down as

#single point calculations = #bisection steps× #gradient descent steps
(3.1)

We can identify three major factors, that determine the number of the bi-
section steps as well as the number of gradient descent steps per bisection
routine:

1.) The step size of the gradient descent search: If the ridge exhibits a
high curvature, large steps may kick the gradient descent search off the
ridge. There is no obvious reason to conclude that the curvature of the
ridge along the direction of the gradient at a given point increases with the
dimension. However, especially for real systems, the curvatures of the PES
along different directions (the eigenvalues of the Hessian) can vary strongly.
This fact should be reflected in a smaller step size for bigger real systems.

2.) The scaling of all distances: All distances increase with dimension
n. An analogy which is easy to understand is that the diagonal of a hyper-
cube scales via

√
n. Due to this fact, it can be expected that the number of

gradient descent steps will increase with dimension.

3.) The amount of bisection steps until we found a point sufficiently
close to the ridge: As outlined in point 2, the increase of all lengths should
also lead to a higher number of bisection steps, since the starting points in
Step 1 (if chosen randomly) will normally exhibit a higher distance to the
ridge.
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3.2.1 Analytical properties of the algorithm in 2D

Analysis of gradient field lines for an ideal saddle (2D)

We are now trying to estimate how the magnitude of these three potential
factors mentioned above scales with dimension. We start by studying a
simple gradient descent search in 2D. As a model system we choose a PES
that yields a diagonal Hessian at any point. The potential that has this
property can be thought of as ”the ideal saddle”,

V(x, y) = αx2 − βy2, (3.2)

where α > 0 and β > 0. The gradient of this potential can be evaluated
easily. It is given as

~∇V(x, y) =
(

2αx
−2βy

)
. (3.3)

If we carry out one gradient descent step, we move away from our initial
position by ∆x and ∆y. After some rearrangement and in the continuum
limit we get

∆y
∆x

= −βy
αx

⇒ − dy
βy

=
dx
αx

. (3.4)

This is an ordinary differential equation. Its solution y(x) describes the
curve generated by a gradient descent search with infinitesimal step size,
which is per definition a gradient field line.
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Figure 3.5: Illustration of a gradient field line on an ideal saddle, starting very close to the
ridge (y-axis in this case). The blue distance between the saddle point and the
gradient field line is marked by the letter d.

By integrating both sides we obtain

dy
−βy

=
dx
αx
⇒ − ln(y)

β
+ c1 =

ln(x)
α

+ c2 ⇒
− ln(y)

β
=

ln(x)
x

+ c. (3.5)

Solving for y yields a very neat result. On an ideal saddle in 2D a gradient
field line always has the same form

y = exp
(
−β

α
ln(x)

)
= cx−β/α. (3.6)
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First, we note that, since the saddle point is located at the origin, we can
calculate the distance dsaddle = x2 + y2 of the gradient field line to the saddle
point as a function of x. According to Equation 3.6 dsaddle amounts to

dsaddle =

√
(x2 + c2x−2 β

α ). (3.7)

Taking the derivative and setting the result equal to zero gives us xmin:

∂

∂x

(
x2 + c2x−2 β

α

)
= 0⇒ 2x− 2β

α
x−

2β
α −1 = 0, (3.8)

xmin = c2 2β

α
x−2β/α−2

min ⇒ xmin =

(
α

c22β

)1/
(
− β

α−2
)

. (3.9)

To obtain the minimal distance of the gradient field line to the saddle point
we can plug xmin back into 3.7 to get

dmin =

[(
α

c22β

)1/(−β/α−1)

+ c2
(

α

c22β

) 1
1+α/β

]1/2

, (3.10)

which immediately tells us the minimum distance of an arbitrary gradient
field line to the saddle point, defined by α, β and c.

3.2.2 A particular example: Scaling properties for the
algorithm in nD

Unfortunately, this appealing result is not generalizable to an arbitrary num-
ber of dimensions. Nevertheless, we attempt to perform a crude estimation
how the algorithm might work in nD for a special case:

V(~x) = −αx2
1 + β(x2

2 + x2
3 + ... + x2

n). (3.11)
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For this kind of potential we can use our derived formulas for the 2D case.
A glance at this potential in x2 and x3 will explain why.

Figure 3.6: V(x2, x3) = β(x2
2 + x2

3). The arrows mark the direction of the gradient at the
respective point.

We can observe that the gradient field lines in V(x2, x3) are straight. This
means, that the gradient field lines in V(x1, x2, x3) are essentially trapped
on a 2D surface with the effective potential V(x, y) = αx2 − βy2. This is
exactly the PES of Equation 3.2.

Now say we are given a starting point of a gradient field line with coordi-
nates xs and ys. We recall, that xs is approximately the initial distance to the
saddle point, whereas ys is the initial distance to the ridge. If ys was zero,
we would start on the ridge and thus end exactly on the saddle point. If this
is not the case, however, we miss the saddle point at least by a distance of
dmin. Let us quickly revisit the formula for dmin:
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dmin =

[(
α

c22β

)1/(−β/α−1)

+ c2
(

α

c22β

) 1
1+α/β

]1/2

. (3.12)

Obviously dmin remains constant if c stays the same. With this information
we can calculate by how much we will have to decrease ys for dmin to stay
the same:

y = cx−β/α
S ⇒ const =

ys

x−β/α
s

. (3.13)

We make use of our ansatz for all length scales. Thus, we specify xs ∝
√

n.
Since a bisection step cuts ys in half we conclude that

#bisection steps = − log2 (ys) =
β

2α
(log2(n)) . (3.14)

To complete the RHS of Equation 3.1 we still have to compute the average
number of gradient descent steps.
Due to the discrete nature of a gradient descent search, we cannot follow
a gradient field line perfectly. Hence, on a curved ridge too large gradient
descent step might kick us off the latter. To be able to make a qualitative
statement about the influence of this effect, we pretend for the moment that
our ridge is curved (even though our potential doesn’t exhibit a curved
ridge).
Suppose that after one step we miss the gradient field line we would like
to follow by a helping vector ~s, which can be split into a part within and
normal to the ridge:

~s =~sI I +~snorm. (3.15)

Suppose we attempt to track a gradient field line which is exactly on the
ridge. Then its normal part ~snorm makes us miss the ridge about ∆ys =
|~snorm|. We observe that there is only one direction normal to the ridge,
whereas there are n− 1 directions parallel to it. The notion that the increase
of dimensions reduces the component of a random vector pointing outside
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of the ridge might run contrary to ones expectation. This fact is, however,
beneficiary to the stability of the algorithm.
With this observation in mind, we can make the ansatz that the component
normal to the ridge scales inversely with dimension |~snorm| ∝ n−1/2. By
plugging Equation 3.9 into Equation 3.10 we get

dmin =

(αx−β/α
s

y2
s 2β

) 1
−β/α−1

+

(
y2

s

x−2(β/α)
s

)(
αx−β/α

s

y2
s 2β

) 1
1− α

β

1/2

. (3.16)

What we are interested in is how much dmin changes due to a change in
y (∆y) which is given by |~snorm|. We can evaluate this with the help of
Equation 3.16:

∆dmin = ∆y
∂dmin

∂ys
. (3.17)

Taking the derivative and considering the scaling with dimension n of each
term we get

∆y
∂dmin

∂ys
=

n−3/2

2

(
An+

3β
α + Bn+

3β
α + Cn+β/α

)
, (3.18)

with, for our purposes, irrelevant constants A, B and C. This tells us that in
leading order

∆y
∂dmin

∂ys
∝ nγ. (3.19)

If ∆dmin scales as proposed in Equation 3.19, this suggests we can also
expect the number of gradient descent steps to scale in a polynomial fashion
with a potentially negative γ. Multiplying Equations 3.19 and 3.14 yields
the following result:
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3 Bisection gradient descent saddle point search

#single point calculations ∝ nδ × log2(n). (3.20)

Since δ could be a negative number (depending on α and β), this rough
analysis suggests a potentially very favorable scaling behavior of the com-
putational cost.

Numerical experiments for different numbers of dimensions

The bisection gradient descent algorithm was tested on a model potential
that is guaranteed to have two minima and one saddle point in any number
of dimensions:

V(~x) = e−(~x−~µ1)Ω−1
1 (~x−~µ1) + e−(~x−~µ2)Ω−1

2 (~x−~µ2) + ∑
i

a2xi. (3.21)

This potential consists of two Gaussians with centers µ1 and µ2 and diagonal
covariance matrices Ω. The diagonal elements of the covariance matrices
were chosen to be random numbers drawn from the interval between 0.2
and 1.8. The last term in Equation 3.21 distorts the Gaussians. The ai are
also random numbers.
Some of the reasoning presented above was incorporated into the algorithm
to establish an automatic step size Estimator. The algorithm searched for
the saddle point on the PES generated according to Equation 3.21 for 10, 25,
40, 60, 70 and 80 dimensions. Five runs were performed for each dimension
and the required numbers of single point calculations were averaged.
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3 Bisection gradient descent saddle point search

Figure 3.7: average number of single point calculations the bisection gradient descent
algorithm required to find a saddle point. This trial was conducted on an
artificial test surface generated by Equation 3.21.

This result confirms what had already been suggested by our analysis in
this chapter. The number of required single point calculations stays almost
constant as a function of dimension. Thus, this algorithm might be a suitable
choice for saddle point finding in large systems.
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3 Bisection gradient descent saddle point search

3.2.3 Further remarks

First remark

What has not been taken into account in the above discussion is the fact that
a big increase in the gradient descent step size might lead to a well-known
problem:

Figure 3.8: Illustration of a typical problem if the step size is chosen too large.

As illustrated here, big steps can lead to the gradient descent recrossing the
valley constantly. Unfortunately, the only test of this algorithm on a real
system (HCN⇒ CNH) suggests, that this problem can potentially increase
the required number of single point calculations substantially.
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3 Bisection gradient descent saddle point search

Second remark

An analytical expression for gradient field lines on an ideal saddle was de-
rived in Section 3.2.1. Unfortunately, this result for 2D cannot be generalized
to nD. To be more precise: In the general case the gradient field lines are
not confined to a 2D planar, but to a curved object. Looking at a general
saddle,

V(~x) = −αx2
1 + βx2

2 + γx2
3 + ... + ζx2

n, (3.22)

suggests, that the method might be applicable even in the general case.

Figure 3.9: Scematic illustration of a general quadratically aproximated surface in 2D. The
arrows mark the direction of the gradient at the respective point. The red line is
a gradient field line, starting at a point with coordinates (1,1).
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3 Bisection gradient descent saddle point search

We can clearly perceive that the gradient field line in Figure 3.9 gravitates
towards the completely straight gradient field line along the x-axis. This
behavior is to be expected for all gradient field lines, also in a higher
dimensional setting. Furthermore, we note that a gradient field line which
is very close to the saddle point performs a particularly sharp ”turn” within
a very small space. Since we discovered that all gradient field lines tend
to straighten out in the normal coordinates of a saddle as they reach the
saddle point, we can still approximate a gradient field line to have the form
derived in Equation 3.6 during its turn.
With this knowledge, the last step of the algorithm could be omitted. Instead
of calculating the Hessian, a point closer to the saddle could be determined
by using this analytical knowledge about gradient field lines.
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4 Pore propagation - a real world
application for the ridge method

Pore propagation refers to the phenomenon of molecules propagating
through pores within a membrane.

Figure 4.1: Examples for pores: a) finite sheet of graphene with 4 benzene rings removed,
b) finite sheet of graphene with 3 rings removed, and c) a model pore of
graphdiyne. This figure was taken from Frühwirth, Hauser and Meyer [4].

These semi-permeable membranes provided with pores can be used in a
wide variety of ways. Examples are gas purification [6] and gas separation
[7]. Hereby, the main idea is to use the pores as a gate, which lets certain
molecules pass with a higher probability than others.
There are essentially two ways to make a theoretical prediction about the
suitability of a certain pore for the mentioned applications: Conducting a
molecular dynamics simulation or calculating the reaction rate analytically.
Here, the reaction rate is the rate at which a molecule passes from one side
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4 Pore propagation - a real world application for the ridge method

of the pore to the other. The analytical calculation for the reaction rate could,
in principle, be performed via the Eyring equation.
In this chapter we focus on example c of Figure 4.1, the graphdiyne pore,
for our studies.

Figure 4.2: 3D illustration of a graphdiyne pore situated in a Cartesian coordinate system.
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4 Pore propagation - a real world application for the ridge method

4.0.1 A few remarks on used coordinate systems

There are three different sets of coordinates that we will use throughout this
chapter. Any molecular configuration can be represented by a vector in each
of these coordinates.

1.) Cartesian coordinates: Suppose we have got a molecular system with
N atoms. In 3D Cartesian coordinates the ith atom has the coordinates
(xi, yi, zi). When we speak of Cartesian coordinates in this chapter we mean
a more abstract 3N-D space, where x = (x1, y1, z1, x2, y2, z2, ..., xn, yn, zn).
Any molecular configuration can obviously be represented by a vector in
this 3N-D space.

2.) mass-weighted coordinates: The Cartesian coordinates defined in 1. can
be re-scaled according to Equation 2.2 to yield mass-weighted coordinates
q, where q = (x1

√
m1, y1

√
m1, z1

√
m1, x2

√
m2, ..., xn

√
mn, yn

√
mn, zn

√
mn).

As discussed in Section 2.1, the motion of a molecule displayed in these
coordinates is equivalent to that of a point mass with m = 1 in a modified
potential.

3.) TRV-coordinates: We want to call the third set TRV coordinates, where
TRV stands for translational, rotational, vibrational. We denote a vector in
these coordinates by the symbol ξ and its coordinates by ξ. If we want to
refer to a specific ξi we define ξi ∈ (t1, t2, t3, r1, r2, r3, v1, v2, ..., vn−6), in the
order given. Like spherical or cylindrical coordinates, the TRV coordinates
are of curvilinear nature:

ξ1 = f 1(q1, q2, ..., qn), ξ2 = f 2(q1, q2, ..., qn), ..., ξn = f 3(q1, q2, ..., qn). (4.1)

Unlike the mentioned examples for curvilinear coordinates, finding an an-
alytical expression for the TRV-coordinates is certainly possible but very
difficult. Hence, we leave the question of how r and t can be related to
Cartesian coordinates analytically open for the moment. What can be ob-
tained easily though is any set of local basis vectors of the TRV-coordinates.
We call coordinates in these local systems l1, l2, ..., ln and the basis vectors
themselves li ∈ (t1, t2, t3, r1, r2, r3, v1, ..., vn−6). We define these basis vectors
to be the eigenvectors of the Hessian at a given point in mass-weighted
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coordinates.

Figure 4.3: Schematic depiction of a local coordinate-system with coordinates l sitting on
top of a curvilinear coordinate system with coordinates ξ.

Let us now try to comprehend whether this definition is a sensible one. First,
we try to clarify what we expect to happen when a system moves purely in
the direction of a vibrational unit vector: We expect it to vibrate! That is to
move back and forth perpetually along this vector.
What is our expectation for the same situation with a translational eigenvec-
tor? In this case we should expect the movement to go one forever along
the latter.
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4 Pore propagation - a real world application for the ridge method

Figure 4.4: Examples for a 2D slice of a PES. Here, v̂ is a vibrational eigenvector, whereas t̂
is a translational one.

Let us now analyze what would happen to a particle if it moved purely along
on of the eigenvectors of the Hessian. Since the basis vectors are defined to
be the eigenvectors of the Hessian, the potential is completely decoupled in
the local TRV coordinates. That is to say that, in first non-vanishing order, it
looks like

V(l1, l2, ..., ln) = a1l2
1 + a2l2

2 + ...anl2
n. (4.2)

Figure 4.4 is a graphical illustration of a 2D slice of the in Equation 4.2
presented approximate PES. One coefficient and thus one eigenvalue of the
Hessian is equal to zero.
Now we can immediately see what the motion of a particle will look like in
the described circumstances. With a velocity of vvvj it will oscillate from left
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to right forever. With a velocity of vtti it will move along the t axis forever.
Hence, the two discussed eigenvectors can be identified as a ”translational
basis vector” ti and a ”vibrational basis vector” vj. We didn’t discuss rota-
tional eigenvectors rk but a similar arguments can be formed for these.
The vibrational basis vectors have to be chosen to point along the eigenvec-
tors with positive eigenvalues. The translational and rotational basis vectors
to point along the eigenvectors with eigenvalues equal to zero.
For the Hessian of any molecular structure 6 eigenvalues will always be
practically equal to zero. When multiple eigenvectors share the same eigen-
value, these eigenvectors are ambiguous. Sensible choices for these vectors
(r,t) can be found in the excellent discussion provided in Ref. [12].
From Ref. [12] we basically take over the choices for ti, which will be the
center of mass coordinates (ti ∈ xs, ys, zs). We will make our own choices for
the r-coordinates later in this thesis.

We have seen that the potential energy of a system does not change due to
translations and rotations. We can denote that fact like this:

V(ξ1, ξ2, ..., ξn) = V1(v1, v2, ..., vn−6) + V2(t1, t2, t3, r1, r2, r3), (4.3)

where
V2(t1, t2, t3, r1, r2, r3) = 0. (4.4)

Why we devoted two equations to this seemingly trivial fact will become
apparent later in this chapter.

4.1 Why is the ridge useful for this problem?

The possible problems that the Eyring equation faces were already discussed.
To repeat one of them briefly: TST could fail due to the complexity of
the separating plane which might differ significantly from its quadratic
expansion.
We can make a strong argument that this is very likely to be the case in a
pore propagation problem.
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4.1.1 Problems of the Eyring approach in pore propagation

Problem 1: Performing a quadratic approximation is equivalent to assuming
that there is only one dominant path for the molecule to cross the pore.
Only small deviations from this minimum energy path are treated. This
could certainly be a viable model for the path of the center of mass of a
molecule, as we can imagine that the latter must pass more or less in the
middle of the pore. (assuming that the pore is not extremely big)
For the rotational coordinates, however, it is by no means clear that devia-
tions of the MEP remain small. Especially in a setting with a high molecular
and/or pore symmetry. In such a case it is certainly conceivable that there ex-
ist multiple, almost energetically equivalent transition paths corresponding
to different rotational configurations of the molecule.

We want to analyze such a situation for the case of N2 propagating through
a graphdiyene pore. For the generation of the PES we use the Grimme tight
binding force field (CFN-xTB). Details on this method can be found in
Ref. [5]. First, we put the N2 molecule on its saddle point in the pore plane.

Figure 4.5: N2 molecule located on the Transition State. The typical Φ and θ of spherical
coordinates are plotted additionally.
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We note that the molecule is slightly tilted by the angles θsaddle and Φsaddle.
To get an idea of the angle resolved PES we rotate the molecule first for
fixed θ = θsaddle around Φ and second for fixed Φsaddle around θ.

Figure 4.6: Energies obtained by rotations of the N2 molecule. Blue line: fixed Φ - variable
θ; orange line: fixed θ - variable Φ. The total energy of the molecule pore system
is independent of Φ.

The energies obtained by the θ rotation vary significantly compared to the
Φ energies. We could even go as far as to say that a rotation in Φ leaves the
energy invariant.
This is strong evidence to assume that there is a similar probability for a
crossing event for any Φ, which changes the concept of a pore propaga-
tion fundamentally. Instead of conceiving of the saddle point as a zero-
dimensional object we might as well think of it, in this case, as a ring
according to Figure 4.6.
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4 Pore propagation - a real world application for the ridge method

Figure 4.7: Three molecular configurations with almost the same energy. The molecule
penetrates the pore at these three angles with the same probability.

These findings clearly suggest that the separating plane is too complicated
to employ regular Eyring theory.

4.1.2 How do we tackle the problem by the ridge method?

In Section 2.5 we could pin down two ingredients that are vital to the success
of this approach. These were: The ridge has to exhibit little curvature, and:
It is also beneficial if the ridge was a low dimensional object.

Let us check whether these necessities are fulfilled for a usual pore propa-
gation problem.
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Condition I: A sensible guess for the ridge would be the x− y plane at z = 0
(see Figure 4.2) in center of mass coordinates of the respective molecule. This
is equivalent of stating that if the center of mass of a molecule penetrates
the plane z = 0, it stays on the other side of the pore.
Expressed mathematically, this means a point on this guess for the ridge
has to fulfill

∑
i

mizi = 0, (4.5)

which is a linear relation in Cartesian coordinates. Since the transition from
Cartesian to mass-weighted coordinates (see Equation 2.2) is linear, our
guess for the ridge certainly is also a plane in mass-weighted coordinates.
Hence, this choice for the ridge exhibits no curvature.

Condition II: The dimensionality of the ridge depends on the number of
atoms n in the system we investigate. It is (3n − 1). When we take into
consideration not only the molecule itself but also the pore, this results in a
staggering number of dimensions. Even with a frozen pore, 3n− 1 would
be 23 for a small molecule like ethane. Not only is such a high-dimensional
surface difficult to interpolate, but also a numerical integration over such a
surface might not be feasible. But before we give up on the method let us
see if we can find a smart way of effectively reducing the dimensionality.
First we note that the Boltzmann weight of points on the ridge decrease
exponentially with energy. Thus, points with high energy can be neglected.
We might ask ourselves now, if we could identify directions on the ridge
along which the energy rises extremely fast (such directions exhibit high
curvature). If such a direction was found it would then be sufficient to
perform a quadratic expansion along the latter. This fact is easy to explain:
When deviations from the quadratic expansion along a direction with high
curvature start to be relevant, the energy will be in a sufficiently costly
region to neglect these deviations altogether.
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How can we now identify such directions for a typical molecule-pore
system? To answer this question we take a glance at the typical strengths of
molecular interactions.

Figure 4.8: Typical range of molecular interactions.

We can see in Figure 4.8 that the intramolecular forces within the pore and
molecule and the interaction forces between the pore and molecule differ by
two orders of magnitude.
For an isolated gas phase molecule, we can promptly define its TRV-
coordinates. Imagine we put this molecule near of a pore. Instead of looking
at molecule and pore as a combined new object we keep the old coordinate
system of the molecule and view the influence of the pore as an external
potential (i.e. keep the pore frozen).
This changes the analysis of Equations 4.3 and 4.4 radically. To understand
why, let us suppose that the intramolecular and the external potential gener-
ated by the pore can be treated in superposition. In Equation 4.3 the overall
potential energy of the molecule is dependent only on the location in its
vibrational coordinates. Due to the introduction of some external interac-
tion this is no longer the case. Now, also the second term in Equation 4.3,
V2(t1, t2, t3, r1, r2, r3), is nonzero, since translation and rotation change the
relative position of the molecule with respect to the pore.
This is the point where the vast difference between intramolecular and
external interaction strengths can be exploited. While V2 is heavily affected,
only very small deviations from the freely propagating molecule are to be
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expected for V1. From this follows that the structure of the ridge is known to
a good approximation in the subspace of vibrations, which was exactly what
we were looking for. The price we pay is an enormous increase in complexity
of the ridge in the ro-translational subspace. Luckily, this subspace consists
of only 6 dimensions and can be handled numerically.
Let us not see how the reduction of dimensionality actually manifests itself
mathematically. We begin by looking at the transition probability of a ridge
once again. In mass-weighted coordinates it is given as

Ptrans(δt) =
δt
Z

∫ ∫
...
∫ n−1

∏
i=0

dqie−βV(q1,q2,...,Ω)

×det(J(q1, ..., qn−1))
∫ ∞

−∞

∫ ∞

−∞
...
∫ ∞

0

n

∏
i=0

pne−βp2
i dpi.

(4.6)

We might want to carry out the integrals in Equation 4.6 in our most favorite
coordinate system for this kind of problem, the TRV-coordinates. To be able
to do so, we need to use a different Jacobian Jridge, which links TRV and
Cartesian coordinates. It is proportional to the volume of an infinitesimal
ridge element in TRV coordinates.
We also incorporate the fact that all points that satisfy t3 = ξ3 = 0 are
on the ridge. Furthermore, we can clearly identify t3 = zs as the reaction
coordinate. With this information and index i ∈ {1, 2, 4, ..., n}, Equation 4.6
reads

Ptrans(δt) =
δt
Z

∫ ∞

−∞

∫ ∞

−∞
...
∫ ∞

∞
∏

i
dξie−βV(ξ1,ξ2,ξ3=0,...,ξn)

×det(Jridge(ξ1, ξ2, ξ4, ..., ξn))
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0
...
∫ ∞

−∞
p3

n

∏
i=0

e−βp2
i dpi.

(4.7)

The integrals in Equation 4.7 can be separated by splitting partition sum
Z into momentum (Zv) and spacial (Zx) components. The spacial integral
along the ridge is denoted as Zx

ridge and the momentum integral as Zv
ridge.
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With these definitions Equation 4.7 becomes

Ptrans(δt) =
∫ ∞

0
dp3p3e−βp2

3
δt

ZxZv Zx
ridgeZv

ridge. (4.8)

Let us evaluate all of these partition sums individually. For ridge partition
sums we use the index i ∈ {1, 2, 4, ..., n} and for the generic partition sums
we use j ∈ {1, 2, 3, ..., n}. First we determine Zv and Zv

ridge, since we can find
purely analytical, exact solutions for these terms:

Zp
ridge =

∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
∏

i
dpie−βpi 2 = (

√
2π

β
)n−1, (4.9)

Zp =
∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
∏

j
dpje−βpj 2 = (

√
2π

β
)n. (4.10)

In the second step we write out Zx
ridge:

Zx
ridge =

∫
Vridge

e−β V1(v1,v2,··· ,vn−6)e−B(V2(t1,t2,t3=0,...,rn))

×det(J(ξ1, ξ2, ξ4, ..., ξn))
n

∏
i=1

dξi,
(4.11)

and Zx which is similar except for one additional variable and a slightly
different Jacobian (we call it Jfull) :

Zx =
∫

V
e−β V1(v1,v2,··· ,vn−6)e−β(V2(t1,··· ,rn))det(Jfull(ξ1, ξ2, ξ3, ..., ξn))

n

∏
i=1

dξi.

(4.12)

Finally, one last approximation is needed to put everything in place. We
demand that neither Jridge nor Jfull depend on the vibrational coordinates.
This is justified since we only expect very small vibrational movement.
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With this further approximation we can evaluate the integrals in Equations
4.11 and 4.12 over all vibrational coordinates v. The result of these integrals
is completely equivalent for both Zx and Zridge. Hence, we can cancel these
integrals and write the final result as

Ptrans(δt) =
1

ZRV

∫
V

dt1dt2dr1dr2dr3e−βV(t1,t2,t3=0,··· ,r3) Jridge(t1, t2, r1, r2, r3).

(4.13)

Here we have defined a reduced partition sum ZRT that is computed only
in translational and rotational coordinates. It is given as

ZRV =
∫

V
dt1dt2dt3dr1dr2dr3e−βV(t1,t2,t3,··· ,r3) Jfull(t1, t2, t3, r1, r2, r3)

1√
2πβ

.

(4.14)

Two problems still remain, namely how to evaluate the partition sum ZRT
and the Jacobian which links mass-weighted and TRV coordinates efficiently.
The first of these issues is dealt with in the next subsection.

4.1.3 Partition sum Monte Carlo

The first crucial but also rather obvious observation is that the partition
sum Z is nothing more than a number. We can obtain this number by a
simple integration. Unfortunately, even in our 6D case a direct integra-
tion would result in a high number of single point calculations (106 on
a 10× 10× 10× 10× 10× 10 grid). Therefore, it makes sense to perform
the integration on an auxiliary PES that was generated by interpolation
beforehand. However, even if a (6× 6× 6× 6× 6× 6) grid suffices for this
interpolation this would still result in approximately 50000 single point
calculations.
Even though this number can be significantly reduced by exploiting the
symmetries of molecule and pore we should certainly aim to do better.
According to Ref. [16], the error of the trapezoidal integration method
depends on dimension d like O(N−4/d), with N denoting the number of
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random samples. Even a more sophisticated method like Simpsons rule
scales like O(N−2/d).
Therefore, it might be tempting to choose a different route. Since the Monte
Carlo integration method does not scale with dimension at all it is a promis-
ing candidate to reduce the number of required samples. In general, the
idea of Monte Carlo integration is very simple. First, random points within
the integration limits are drawn. Next the function of interest is evaluated
at these points. The integral is then approximated by

Sm( f ) =
1
N

m

∑
i=1

f (xi), (4.15)

where f (xi) is the function to be integrated.

The application of this method, however, becomes problematic if the function

of interest exhibits a high variance, since the average error is given by σ2( f )
N .

[16].

Since the number of dimensions of a function is no longer a problem we
could straight start with Equation 4.6. The integrand would then be the LHS
of Equation 4.6. However, drawing points in mass-weighted coordinates
randomly leads to a problem. Most of the drawn points would correspond to
a completely unphysical molecular structure. Since the energy of a molecule
with multiple broken bonds can be assumed to be very high, most of the
contributions to the integrand in Equation 4.6 are zero. This leads to an
enormous variance of f (xi) which makes the method inapplicable.

The integrand of Equation 4.14, however, exhibits a far lower variance and
is thus a suitable starting point. To be able to carry out the numerical
integration we have to introduce rotational coordinates rj, which we will
define later. Unfortunately, there arises a different problem. In this curvilin-
ear coordinate system it can no longer be assumed that the probability of
drawing a point in the interval dθdΦdχdsdsds is given by a uniform distri-
bution. Instead the probability of drawing a point x must be proportional
to the volume of the infinitesimal hyper-parallelepiped dθdΦdχdsdsds in
mass-weighted coordinates. This volume is per definition proportional to
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the Jacobian linking mass-weighted and TRV coordinates for any given
point J(t1, t2, t3, r1, r2, r3).

To sample this distribution a discrete version of an inverse transformation
sampling algorithm is established. The drawn points correspond to x in
Equation 4.15 and can be plugged into 4.6 to obtain the partition sum Z.

We still want to know how many calculations are required until a reasonable
estimate of ZRV is obtained. Therefore, a trial run for a molecule confined
to a box around a pore was conducted. after each drawn point the result
was evaluated after each drawn point.

Figure 4.9: Convergence properties of the partition sum Z evaluated via Monte Carlo
integration.
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Figure 4.10: Convergence properties of the partition sum Z evaluated via Monte Carlo
integration.

We can clearly see that the Monte Carlo method yields excellent results for
this particular problem. After only 1000 single point calculations we can
observe a satisfactory accuracy. If one aims for an even lower number of
calculations (i.g. in the case of costly DFT calculations) the calculation could
even be aborted at about 500 with a relative error of about 0.2.

The last unresolved issue, the determination of a Jacobian, is a subject of
the next sections.

4.2 Verification and calculation for two concrete
examples

In this section we want to calculate definite reaction rates for two different
molecules. The quality of the results will be evaluated by a comparison to a

65



4 Pore propagation - a real world application for the ridge method

molecular dynamics simulation. The inter molecular interaction between
the molecule and the pore is simulated by a Lennard-Jones potential:

V(r) = 4ε

[(σ

r

)12
−
(σ

r

)6
]

. (4.16)

The intramolecular forces are approximated by spring forces between neigh-
boring molecules. These spring constants are chosen arbitrary in this simu-
lation but in the range of two orders of magnitude above the Lennard-Jones
force, trying to mimic reality as accurately as possible.
In order to be able to calculate the partition sum Z we have to carry out
the simulation in a finite space. Therefore, a cubic volume around the pore
is defined to which the molecule is constrained to. The constraining is
achieved by implementing an additional potential which has very high
values outside of the defined box and is zero inside of the latter. Except for
this extension the molecular dynamics simulation is completely analogous
to the one described in Section 2.3.1.

We will also compare the results obtained by the Ridge method to the
reaction rate obtained by Eyring theory. The Eyring results are calculated in
a classical fashion according to Equation 2.12.

4.2.1 Case I: Homogeneous diatomic gas phase molecule

Our first exemplary trial is conducted with a diatomic molecule with two
equal masses. For the sake of simplicity both masses are assumed to be
m1 = m2 = 1. As rotational coordinates we introduce the angles θ and Φ as
shown below.
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Figure 4.11: Diatomic molecule in graphdiyne. Every molecular configuration can be ob-
tained by specifying the illustrated angles (θ, Φ) and the center of mass coordi-
nates.

The distance of the two atoms in Figure 4.11 shall be called a.

Theoretical prediction

The last unsolved step left is the evaluation of the Jacobian. Before we
can determine the latter for the given system we write down suitable
propositions for the translational and rotational basis vectors. We start with
the translational basis vectors,

l1 =


1
0
0
1
0
0

 , l2 =


0
1
0
0
1
0

 , l3 =


0
0
1
0
0
1

 , (4.17)
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and proceed to the rotational basis vectors l4 and l5. They are associated
with θ and Φ and can be calculated via their defining Equation 4.11

li =
∂ξMO

∂`i
li ∈ {θ, Φ} , (4.18)

to be

l4 =


− sin θ sin Φ
sin θ cos Φ

0
sin θ sin Φ
− sin θ cos Φ

0


a
2

, l5 =


cos θ cos Φ
cos θ sin Φ
− sin θ

− cos θ cos Φ
− cos θ sin Φ

sin θ


a
2

. (4.19)

Finally, the only vibrational vector of this system is given by

l6 =


sin θ cos Φ
sin θ sin Φ

cos θ
− sin θ cos Φ
− sin θ sin Φ
− cos θ


1√
2

. (4.20)

We notice immediately that all of these vectors are orthogonal and write
down the Jacobian with these vectors fed into its columns

det(J) = det(l1; l2; l3; l4; l5; l6). (4.21)

We use an important result of linear algebra, namely that

det(J) = det(UT JU). (4.22)

Since a rotation leaves the value of det(J) unchanged we can choose U such
that J becomes a diagonal matrix. In this case, the determinant is just the
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product of the diagonal elements, which are the lengths of the local basis
vectors presented above:

det(J) =
a2

2
sin θ. (4.23)

Result of simulations and comparison to theory

Since we have all relevant ingredients ready, we can calculate the reaction
rate k numerically with Equation 4.13. The Eyring-based transition probabil-
ity is calculated with Equation 2.13. The partition sum Z in Equation 2.13 is
obtained by Monte Carlo integration.

Figure 4.12: Result of simulation versus prediction made by Eyring and the ridge method.
The simulation was conducted at a inverse temperature 1

K = 2.
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Figure 4.13: Result of simulation versus prediction made by Eyring and the ridge method.
The simulation was conducted at a inverse temperature 1

K = 1.

We see that for β = 2 the ridge-based calculation missed the observation
by a factor of two. Nevertheless, it is a huge improvement compared to
the Eyring prediction which misses the observation by more than a fac-
tor of 10. In the second case (β = 1) the Eyring approach is off by two
orders of magnitude, whereas the ridge-method still yields a decent result.
It shall be mentioned, however, that a temperature of β = 1 corresponds to
a temperature in the range of 104 Kelvin, which leads to such extreme values.

Without the usage of the partition sum Monte Carlo for Z in Equation
2.13 the performance of the Eyring approach could potentially be even
worse.

4.2.2 Case II: General molecules

We begin by establishing the rotational and translational coordinates. We
define t1 =xs, t2 = ys, t3 = zs, r1 = θ, r2 = Φ , r3 = χ as visible below.
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Figure 4.14: Rotational coordinate system for a general molecule. There is one body axis χ
and two space-bound axies θ and Φ.

The local basis vetors of this ro-translational coordinate system (see. Figure
4.3), li, can be found via their defining equation:

li =
∂ξMO

∂`i
li ∈ {xs, ys, zs, θ, Φ, χ} . (4.24)

But before we go on to do so, let us attribute specific names to the rotational
basis vectors for the sake of clarity. We make the obvious choice l4 = θ,
l5 = Φ and l6 = χ

We continue by analyzing an extreme case by looking at Figure 4.14, namely
that of θ = 0. In this case the basis vectors Φ and χ are equivalent. Hence,
we can no longer a priori assume that the rotational basis vectors are
orthogonal to each other. This is not a problem per se, since we know that
the translational and rotational eigenvectors share the same eigenvalue
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and are thus ambiguous. Let us find out whether we can still evaluate the
Jacobian without much effort. As an example we take Jridge, where

det(Jridge) = det(l1; l2; l4; l5; l6; ...; ln). (4.25)

We know that the space spanned by the vibrational basis vectors is still
orthogonal to the space spanned by the rotational and translational ones.
Furthermore, one can prove that the rotational and translational vectors also
span orthogonal subspaces.
All of the vectors are now orthogonal to each other with one exception: The
rotational basis vectors l4 = θ, l5 = Φ, l6 = χ.
If all n− 1 vectors were orthogonal we could argue that, via some clever ro-
tation we could bring the Jacobian to a diagonal form. Then its determinant
could be calculated rather easily, since it would be the product of the diago-
nal elements. As we discussed in the previous section, the diagonal elements
in this case would be the lengths of the involved vectors l.

Since there is no guarantee that the rotational basis vectors are orthogonal to
each other we are in desperate need of another trick. We begin by performing
a Gram-Schmidt orthogonalization of the rotational basis vectors. First we
orthogonalize Φ with respect to θ. This reads

Φ⊥ = Φ− θ(Φ̂ · θ̂). (4.26)
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Next, we orthogonalize χ with respect to θ and Φ:

χ⊥ = χ− θ(χ̂ · θ̂)−Φ(χ̂ · Φ̂). (4.27)

To understand why this Gram-Schmidt orthogonalization was a helpful
move we display the vectors Φ and χ via their constituents and plug them
into the Jacobian of Equation 4.25. It then looks like

det(Jridge) = det(l1; l2; θ; Φ⊥+ θ(Φ̂ · θ̂); χ⊥+ θ(χ̂ · θ̂)+ Φ(χ̂ · Φ̂); ...; ln).
(4.28)

Due to linearity, this determinant can be displayed as the sum of six sub
determinants. In five of these sub determinants, at least two of the involved
column vectors are parallel, which forces these determinants to be zero.
Only one non zero determinant remaines. It is given as:

det(Jridge) = det(l1; l2; θ; Φ⊥; χ⊥; ...; ln). (4.29)

We notice something remarkable: By using Φ⊥ and χ⊥ we achieved our
initial goal. That is to say that we have an set of mutually orthogonal basis
vectors inside our determinant.
We can now use the fact that we can write a determinant of mutually
orthogonal vectors as the product of the vector lengths once again. The
remaining work is to calculate the length of the constituents of 4.25, |li|, in
mass-weighted coordinates.
Since we never specified the vibrational local basis vectors (because they
canceled in the calculation of the reaction rate) we chose their length to be
one. Following Equation 4.24, the length of the translational basis vectors t
can be shown to be

|t| =
√

∑
i

mi. (4.30)
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Finally, we note that the length of the Gram-Schmidt orthogonalized ro-
tational local basis vectors has to be evaluated numerically for any given
point. With all of this information we get that the determinant reads as

det(Jridge) = |Φ⊥| × |ξ⊥| × |θ| ×
√

∑
i

mi. (4.31)

The algorithm for the partition sum Monte Carlo can now be carried out on a
grid. The two determinants det(Jridge) and det(Jfull) can easily be calculated
numerically for each grid point.
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Theoretical prediction

Result of simulations and comparison to theory

Our test molecule is a fictional triangular molecule with m1 = 2, m2 = 7,
m3 = 8. As mentioned before the intramolecular forces are modeled by
springs. The spring interaction is 2 orders of magnitude stronger than the
Lennard-Jones interaction between molecule and pore.

Figure 4.15: Fictional triangular molecule on its saddle point

The simulation and all calculations were carried out analogously to 4.2.1.
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Figure 4.16: Result of simulation versus prediction made by Eyring and the ridge method.
The simulation was conducted at a inverse temperature 1

K = 14.

76



4 Pore propagation - a real world application for the ridge method

Figure 4.17: Result of simulation versus prediction made by Eyring and the ridge method.
The simulation was conducted at a inverse temperature 1

K = 6.

Here the performance of the ridge method is even more staggering. For
both, Figure 4.17 and 4.16 the observation is in almost perfect agreement
with the ridge-based prediction.
Again, we used Monte Carlo integration for determining Z for the Eyring
transition probability. Without this an even worse performance of the Eyring
method is possible.
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Figure 4.18: Comparison of reaction rates at different temperatures.

Finally we study a comparison of reaction rates for a variety of different
temperatures obtained by the two used methods (Figure 4.18). We can
clearly see that as temperature increases the Eyring and the ridge-based
estimates for the reaction rate diverge. This is exactly what is expected, since
the quadratic expansion should yields better results when trajectories far
off the saddle point exhibit a smaller Boltzmann weight.
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4.2.3 Is this approach competitive enough?

As discussed earlier, the ridge method has two basic competitors. The Eyring
approach and molecular dynamics simulations. We have seen that it can
deliver significantly better results than the Eyring approach. A potential
upside of the Eyring approach is that it necessitates a smaller number of
single point calculations. We can nevertheless reduce the number of cal-
culations by using Monte Carlo integratoin for the determination of the
partition sum. This computational expense (approximately 1000 single point
calculations) is in a region or slightly higher than the computational effort of
an Eyring calculation. Hence, there is no real advantage we could attribute
to an Eyring-based calculation.

However, for a molecular dynamics simulation however, the situation is
more difficult to assess. A potential upside of MD is that not only does it
account for pore motion, but it is also capable of describing multiple interact-
ing molecules. These factors enhance the determination of the reaction rate
substantially. A big downside, however, is the accuracy of the energy pro-
vided by the force fields necessary for a MD simulation. Frühwirth, Hauser
and Meyer could show by comparing methods that for geometries far off
the equilibrium structure, force fields perform rather poorly (see Frühwirth,
Hauser and Meyer [4]). The deviation of a DFT based energy calculation
and a force field calculation can be in the order of multiple kcal/mol. Such
high errors could easily falsify a reaction rate by orders of magnitude. This
uncertainty makes a MD simulation a rather risky venture.
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We have seen in previous chapters that the ridge method can be regarded as
a powerful tool for obtaining estimates of reaction rates for pore propagation
problems.
In this final chapter, a few words on the remaining insufficiencies of the
employed techniques are said. Furthermore, we will discuss potential exten-
sions and improvements to the present algorithm.

5.1 Remaining insufficiencies of the approach

This work can be considered a first step towards methods that yield very
precise reaction rates with a low computational effort. Approximations that
were made in Chapter 4 include the following:

1.) We treated only a single molecule in a box instead of many molecules
interacting with each other.

2.) Classical behavior was assumed in all calculations (quantum mechan-
ics was left out so far).

3.) Pore dynamics has been neglected so far, as we treated the pore as a
rigid object that generates a constant potential for the molecule of inter-
est.

5.2 Quantum Corrections

It is possible to use the effective potential Veff, as can be seen in the exponent
of Equation 2.35, for all previous calculations. In the reaction rate obtained
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via Veff quantum corrections of first order are taken account for.
However, there comes a cost of implementing quantum correction according
to Equation 2.35. To calculate the enhanced partition sum ZQM the full
knowledge of the potential on the ridge is needed. Therefore, a scan over all
non-vibrational coordinates has to be carried out and partition sum Monte
Carlo can no longer be used.

5.3 Incorporating the pore motion into the theory

In Chapter 4 we performed our calculation of the reaction rate with a
”frozen” pore, which obviously is a vast simplification of reality.
The main trick in Chapter 4 was to make a distinction between ”soft”
and ”hard” degrees of freedom. The neglecting of the pore motion can be
motivated similar to the neglecting of the vibrational degrees of freedom.
We could call this handling of certain degrees of freedom a zeroth order
treatment. What can be done to enhance our estimate is to perform a first
order treatment of the pore. What we mean by that is to relax the pore
for any molecular configuration and to assume that the Hessian matrix
elements of the pore stay constant in spite of the molecular presence.

A second, harder to realize possibility is to incorporate the pore into the
partition sum Monte Carlo. We have seen earlier (Section 4.1.3) that the
main issue of a Monte Carlo integration is the variance of the function that
is to be integrated.
Similar to partition sum Monte Carlo for the molecule only, we have to find
a way to draw possible pore positions also from a space where no bond
breaking occurs. This could be the space of small length stretches and angle
deviations of neighboring pore atoms.

5.3.1 Forming a macroscopic theory

So far the theory is only describing a single molecule. Together with quan-
tum corrections and a useful description of the pore motion this last exten-
sion would almost be equivalent to a full solution of the problem.
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A first ansatz of incorporating neighboring molecules could be realized via
an effective, averaged potential, leaving numerous possibilities for future
extensions.
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