
Clemens Andritsch, BSc

Comparing Trees

Master’s Thesis

to achieve the university degree of

Diplomingenieur

Master’s degree programme: Mathematics

submitted to

Graz University of Technology

Supervisor

Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Dragoti-Cela Eranda

Institute for Discrete Mathematics

Graz, June 2020

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present master‘s thesis.

Date Signature

ii

Contents

1 Introduction 1

2 Basics and notation 3
2.1 Basic Graph Theoretic Concepts 3

2.2 Other necessary Tools . 10

3 Tree Edit Distance 14
3.1 Introduction . 14

3.2 Short History of the Tree Edit Distance 15

3.3 Dynamic Programming Approach 17

3.3.1 Shasha and Zhang’s algorithm 18

3.3.2 Klein’s algorithm . 21

3.3.3 Demaine et al.’s optimal algorithm 22

3.3.4 Lower bound on decomposition algorithms 23

4 Flexible Tree Matching 26
4.1 The Model for the Flexible Tree Edit Distance 29

4.2 Approximation and Conclusion 33

5 Robinson Foulds Metric 34
5.1 Additional Background . 34

5.2 The original metric . 35

5.3 The Generalized Robinson Foulds 37

5.3.1 Jaccard-Robinson-Foulds metric 43

5.3.2 Computational Complexity 45

5.3.3 An Integer Linear Program 45

6 Implementation generalized Robinson Foulds 53
6.1 Preparation and Overview . 53

6.1.1 Creating Test Instances 54

6.1.2 Distance Function . 58

6.2 Implementation Details . 59

iii

Contents

6.3 Results . 60

7 Implementation Tree Edit Distance 63
7.1 Shasha and Zhang’s algorithm by Henderson 63

7.2 Distance measures . 66

7.3 Results . 67

8 Comparing the Tree Edit Distance and the generalized Robinson
Foulds Distance 71
8.1 Time Complexity . 71

8.2 Discussing the Results . 72

9 Conclusion 77

Bibliography 79

iv

1 Introduction

A tree is a special type of graph which contains exactly one path between
any two nodes. This graph theoretic concept can be used to describe data in
different areas of research. In most applications trees have to be compared
at some point. In the area of bioinformatics there is a need to measure
similarities between different RNA-structures. Computer scientists have to
compare structured text databases or natural languages. The preliminaries
and circumstances differ, resulting in a variety of possibilities to compare
trees. Some techniques can only handle a very specific type of tree, others
may work for arbitrary trees, but have disadvantages for special cases.

Therefore there is a need for a quantitative measure of how similar two
trees are. Such a measure is called distance measure. A distance can be seen
as a measure of similarities: The smaller the distance between two trees, the
more similar they are. Conversely, two trees with a big distance should be
quite different. The notion of similarity has to be defined.

This thesis presents multiple tools for comparing trees. It provides in-
sights into applications and compares two seemingly very different distance
measures, to see if they have similarities.
In chapter 2 basic notations and important concepts are introduced. Chapter
3 defines the tree edit distance and presents dynamic programming ap-
proaches to calculate it. In chapter 4 the tree edit distance is generalized
to the flexible tree edit distance. Chapter 5 deals the Robinson Foulds metric
which can only be applied to compare two trees of a special class, namely
evolutionary trees. Chapters 6 and 7 present the implementation of different
algorithms that compute the tree edit distance and a generalized Robinson

1

1 Introduction

Foulds metric. Finally chapter 8 compares the results of these implemen-
tations and shows that the generalized Robinson Foulds metric can’t be
simulated by a tree edit distance.

2

2 Basics and notation

In this chapter basic definitions and notations that are used throughout the
thesis are introduced. They include special property of trees, basic concepts
for nodes in trees and more evolved notations that are needed in later
sections of this thesis

2.1 Basic Graph Theoretic Concepts

Definition 2.1. Let T = (V, E) be a (simple) undirected graph. T is called
a tree if it is connected and acyclic, meaning that for any pair of vertices
v 6= w ∈ V there exists exactly one path that has v and w as its endpoints. T
is called rooted if one node r ∈ V is designated as the root of the tree. T is
a labelled tree, if there exists a labelling function l : V 7→ Σ, where Σ is an
arbitrary set of labels.

Figure 2.1: The illustration suggests, that the node 1 is the root of the tree. Together with
some function l : {1, ..15} 7→ {A, B, C} T is a rooted labelled tree.

3

2 Basics and notation

Definition 2.2. Let T = (V, E) be a rooted labelled tree with root r ∈ V. The
parent P(v) ∈ V of a node v ∈ V \ {r} is defined as the direct predecessor
of v on the unique path from r to v in T. The parent of r is undefined.

Definition 2.3. Let T = (V, E) be a rooted labelled tree with root r ∈ V
and w, v ∈ V. The node w is a child of v if and only if v is the parent of w.
Furthermore the set CT(v) is defined as the set of all children of v:

CT(v) := {w ∈ V|P(w) = v}.

If the setting is clear one can use the shortcut C(v) for CT(v)

Definition 2.4. Let T = (V, E) be a rooted labelled tree with root r ∈ V and
w 6= v ∈ V \ {r}. The node w is a sibling of v if and only if P(v) = P(w).
The set S(v) denotes the sibling group of v:

S(v) := {w ∈ V|P(w) = P(v)}.

The sibling group of the root r is manually defined as S(r) := {r}.

Remark. Note that for a node v the following inclusion holds naturally:

v ∈ S(v)

This implies: |S(v)| >= 1.

Definition 2.5. Let T = (V, E) be a rooted tree. The tree T is called ordered
if all siblings have a specific and fixed order among each other.

4

2.1 Basic Graph Theoretic Concepts

T1 T2

A A

B C C B

Figure 2.2: Assuming T1 and T2 to be unordered trees yields T1 = T2. Otherwise, consider-
ing them to be ordered like in the figure implies T1 6= T2.

Definition 2.6. Let T = (V, E) be a rooted ordered tree with root r ∈ V
and n := |V|. The post order index is a way of enumerating the nodes of T
from 1 to n. In order to perform that, the following routine is performed
recursively starting with v = r and index m = 1:

Algorithm 1 Assign the post order index to a tree T

function Routine(v, m)
if (v is a leave) or (all children of v are indexed) then

Index v with the index m;
Routine(P(v), m + 1)

else
Let w be the left-most child of v that has not yet been indexed.
Routine(w,m);

end if
end function

Definition 2.7. Let T = (V, E) be an ordered tree rooted at r ∈ V. If |V| > 1,
the subgraph T◦ := T \ {r} ⊂ T denotes the forest, which results from T
after deleting the root r. Moreover, for a node v ∈ V the tree Fv is denoted
as the subtree of T rooted at v.

Definition 2.8. Let T = (V, E) be an ordered forest. The left- and rightmost
subtrees of T are denoted as LT and RT respectively. Furthermore the roots
of LT and RT are denoted by lT and rT respectively

5

2 Basics and notation

T

13

12

5 6 11

4 10

1 2 3 7 8 9

Figure 2.3: An example of the post order indexing. Note that for every subtree the root is
indexed at last.

Remark. Consider the tree T in Figure 2.3. Using the notion introduced
above, one can characterize the following trees:

(a) T◦

12

5 6 11

4 10

1 2 3 7 8 9

(b) T◦12

5 6 11

4 10

1 2 3 7 8 9

(c) LT◦12
= T5

5

4

1 2 3

(d) RT◦12
= T11

11

10

7 8 9

(e) R◦T◦12
= T◦11 = T10

10

7 8 9

Figure 2.4: Different subtrees using the introduced notion.

Definition 2.9. Let Ti = (Vi, Ei) be a rooted tree. The value ti := |Vi| denotes
the size of tree Ti. Furthermore the notion of tl,i indicates the number of
leaves in Ti and th,i the length of a longest path from the root to any leaf.

6

2.1 Basic Graph Theoretic Concepts

Remark. These definitions will mainly be used for stating the running times
of algorithms. Furthermore, if a tree is significantly bigger, it is assumed
that tree T1 is the bigger one, i.e. O(t1) ≥ O(t2).

Definition 2.10. Let T be a forest which is ordered according to the post or-
der indexing. Let T′, T′′ be two induced subforests of T with ∃iT′ , jT′ , iT′′ , jT′′
s.t. V(T′) = {iT′ , ..., jT′} and V(T′′) = {iT′′ , ..., jT′′}.
The forest T′ is called a prefix of T′′ if and only if the following holds:

iT′ = iT′′ and jT′ ≤ jT′′

Definition 2.11. Let T be an ordered tree rooted at r. The set of keyroots of
T is defined to be set of all nodes that have a left sibling:

keyroots(T) := {r} ∪ {v ∈ V(T) | v has a left sibling}.

Assume T is an ordered forest with trees T1, ..., Tn rooted at r1, ...rn. The
notion of keyroots is extended to be the union of keyroots of each individual
tree Ti:

keyroots(T) =
n⋃

i=1

keyroots(Ti).

Definition 2.12. Let T be an ordered tree rooted at r. The collapse depth
cdepth(v) of a node v is defined as the number of keyroot ancestors of v:

cdepth(v) = |{w ∈ V(T) |w is an ancestor of v} ∩ keyroots(T)|.

Definition 2.13. Let T be an ordered tree rooted at r. For every non-leaf node
n one chooses a node m ∈ C(n) among those with the most descendants
in C(n) arbitrarily. This node m is then defined to be a heavy node. All
non-heavy nodes are defined as light, especially the root r.

7

2 Basics and notation

Remark. In most cases a tree has multiple possibilities for the definition of
heavy nodes. For example if there are multiple leaves with the same parent.

Definition 2.14. Let T be an ordered tree rooted at r and let there be a fixed
definition of heavy nodes. An edge is called heavy, if it connects a non-leaf
with its heavy child. Furthermore a path connecting a light node with a
leaf and only consisting of heavy edges is called a heavy path. The unique
heavy path originating at the root r is called the main heavy path. The set of
all heavy paths is denoted as a heavy path decomposition.

Remark. Light leaves are a special case of heavy paths of length 0.

Remark. The heavy path decomposition depends on the choice of heavy
nodes. Thus a tree may have multiple heavy path decompositions.

(a) (b)

Figure 2.5: Example of a heavy path decomposition. Figure a) shows the heavy nodes,
Figure b) the correspondig heavy paths.

Definition 2.15. Let T be an ordered tree rooted at r, v ∈ V(T) and suppose
a heavy path decomposition is fixed. The light depth ldepth(v) is defined as
the number of light proper ancestors of v.
Furthermore the light depth of T, ldepth(T), is defined as follows:

ldepth(T) = max{ldepth(v) | v ∈ T}.

Definition 2.16. Let T be an ordered tree rooted at r and let a heavy path
decomposition be given. The set TopLight(T) denotes the set of all light
nodes v ∈ V with ldepth(v) = 1:

TopLight(T) := {v | ldepth(v) = 1 and v not in the main heavy path of T}.

8

2.1 Basic Graph Theoretic Concepts

Remark. A light node v ∈ V(T) is in TopLight(T) if and only if its parent
lies on the main heavy path of T.

Remark. A node v 6= r ∈ V on the main heavy path of T is always a heavy
node, per definition of a heavy path.

Definition 2.17. Let T be a tree, X the set of leaves of T and Σ a set of labels.
Then T is an unrooted phylogenetic tree if all leaves are labelled bijectively
with some label in Σ, all interior leaves are unlabelled and all interior nodes
have degree at least three. A rooted phylogenetic tree is a phylogenetic tree
where one node, the root r ∈ V(T), is distinguished from the others and
has degree two.

Definition 2.18. Let T be a phylogenetic tree, X the set of leaves of T and Σ
the set of labels of X. Then Σ is called the set of taxa.

Definition 2.19. Let T be a phylogenetic tree and X the set of leaves of
T. A set C ⊂ X is called a clade if ∃ v ∈ T s.t. C is the set of leaves
in the induced subtree Tv of T. A clade C is called trivial if |C| = 1 or
C = X. The set C(T) := {C ⊂ V | C is a clade} is the set of clades of T,
C∗(T) := {C ∈ C(T) | C is non trivial} the set of non trivial clades.

Definition 2.20. A rooted tree T is called full binary, if every node has either
0 or 2 children.

Remark. In some literature a binary tree is defined as a tree, where every
node has ≤ 2 children. This contains the possibility of nodes having exactly
1 child. In the context of this thesis, that possibility is not desired. In a full
binary tree, all nodes are either a leaf or have exactly 2 children. This results
in trees with a nice property:

Lemma 2.21. Let a full binary tree T with n leaves be given. Then T has 2n− 1
nodes over all.

9

2 Basics and notation

Proof. Proof by Induction. For n ∈ {0, 1, 2} this is trivial. Assume the
statement holds ∀m ≤ n.
Let l be the left child and r the right child of T’s root. Since T is a full binary
tree, Tl and Tr also have to be full binary trees. The number of leaves in T1

and Tr shall be denoted as ml and mr respectively.

⇒ ml + mr = n

⇒ |V(Tl)| = 2ml − 1, |V(Tr)| = 2mr − 1

⇒ |V(T)| = |V(Tl)|+ |V(Tr)|+ 1

= (2ml − 1) + (2mr − 1) + 1

= 2(ml + mr)− 1 = 2n− 1

Thus comparing two full binary trees with the same number of leaves
implies that they have exactly the same number of nodes overall.

Figure 2.6: An illustration of two binary trees. In both trees all nodes have ≤ 2 children.
However, only T1 is a full binary tree because no node has exactly 1 child.

2.2 Other necessary Tools

Definition 2.22. Let T = (V, E) be a rooted labelled tree. The so called basic
tree edit operations on T are relabelling, inserting and deleting:

1. Relabelling v: Changing the label of a node v.

10

2.2 Other necessary Tools

2. Inserting v underneath v′: Insert a new node v into T as a child of v′

and assign the children of v′ to the new node v. Denote the new tree
by T′, then:

CT′(v′) = {v} and CT′(v) = CT(v′)

.
3. Deleting v underneath v′: The opposite transformation of inserting.

Delete v, assign all children of v to v′ in the same order. Let T′ be the
resulting tree, then:

CT′(v′) = CT(v′) \ {v} ∪ CT(v)

.

Definition 2.23. Let T = (V, E) be a rooted labelled tree and let o be one of
the basic edit operations introduced above. The tree o(T) is defined as the
result of executing the operation o on tree T.
Furthermore let o′ = (o′1, o′2, ..., o′n) be a finite sequence of basic edit opera-
tions. Applying these basic operations o′i, 1 ≤ 1 ≤ n consecutively results in
tree o′(T):

o′(T) := o′n(o
′
n−1(...(o

′
1(T)...)).

Definition 2.24. Let T = (V, E) be a rooted labelled tree, let Σ be the set of
labels and σ, σ′ ∈ Σ. Furthermore let o be one of the basic edit operations

Figure 2.7: Illustration of the basic tree edit operations relabelling, deleting and inserting.

11

2 Basics and notation

defined above. Then the cost of c(o) is defined as:

c(o) :=

crel(σ, σ′) Relabelling existing node v from σ to σ′

cins(σ) Inserting new node v with label σ

cdel(σ) Deleting existing node v with label σ

Moreover let o′ = (o′1, ...o′n) be a finite sequence of basic edit operations. The
costs of o′ is defined as the sum of costs of the individual operations:

c(o′) :=
n

∑
i=1

c(o′i).

Remark. Because of the symmetry, one can assume cdel(σ) = cins(σ). Because
of that, only relabelling and deleting operations will be considered later on.

Definition 2.25. Let T = (V, E) be a rooted labelled tree. A function
d : V ×V 7→ R is a metric if the following conditions are fulfilled
∀u, v, w ∈ V:

1. d(v, w) ≥ 0
2. d(v, w) = 0 ⇐⇒ v = w
3. d(v, w) = d(w, v)
4. d(u, w) ≤ d(u, v) + d(v, w)

Definition 2.26. The Catalan numbers (Cn)n∈Z≥0 forms a sequence of natural
numbers which occurs in many counting problems. They are recursively
defined as follows:

C0 = 1

Cn =
n−1

∑
i=0

CiCn−i−1 for n ≥ 1

Remark. The following two counting problems are examples where the
Catalan numbers play a role:

12

2.2 Other necessary Tools

• Counting the number of pairwise different expressions containing n
pairs of parentheses where any prefix of the expression contains at
least as many opening parentheses ”(” as closing ones ”)”. [18]

• Counting the number of pairwise different full binary trees with n + 1
leaves.

Lemma 2.27. The number of pairwise different full binary trees with n + 1 leaves
is exactly the nth-Catalan number Cn.

Proof. Proof by Induction. For n = 0 the statement is trivial: There is only 1
tree with exactly 1 leaf, which is a single node.
Suppose the inductive statement holds true for all m < n.
For k, l ∈ Z>0 define the following function:

C(k, l) :=
∣∣∣∣{T

∣∣∣ T is a full binary tree where the left subtree
has k leaves and the right one has l

}∣∣∣∣
For an integer i ∈ Z≥0, i < n + 1, the number of pairwise different full
binary trees with n + 1 leaves, where the left subtree has i leaves is
C(i, n + 1− i). Because of the inductive statement this number can be deter-
mined:

C(i, n + 1− i) = Ci−1Cn+1−i−1

Summing up C(i, n + 1 − i) over all possible i leads to the number of
pairwise distinct full binary trees with n + 1 leaves:

|{full binary trees with n + 1 leaves}| =
n

∑
i=1

C(i, n + 1− i)

=
n

∑
i=1

Ci−1Cn−(i−1)−1 =
n−1

∑
i=0

CiCn−i−1 = Cn

13

3 Tree Edit Distance

In this chapter the so called tree edit distance is introduced and discussed.
In addition to the historic background, multiple dynamic programming
approaches to compute the tree edit distance between two trees are pre-
sented. This chapter is based on Demaine et al.’s paper [6] about an optimal
decomposition algorithm.

3.1 Introduction

Definition 3.1. Let T1 = (V1, E1) and T2 = (V2, E2) be two rooted ordered
labelled trees together with a set of labels Σ. Furthermore let the costs for
the basic edit operations relabelling, inserting and deleting be fixed.
Let o∗ := (o∗1 , ..., o∗n) be a finite sequence of edit operations that fulfills the
following:

o∗(T1) = o∗n(...(o
∗
1(T1)) = T2

c(o∗) =
n

∑
i=1

c(o∗i) = min
o sequence of

edit operations

{c(o) | o(T1) = T2}

Then the tree edit distance δ(T1, T2) is defined as:

δ(T1, T2) := c(o∗).

14

3.2 Short History of the Tree Edit Distance

Definition 3.2. Let T1 = (V1, E1) and T2 = (V2, E2) be two rooted ordered
labelled forests and the rest as in the Definition 3.1. The tree edit distance
δ(T1, T2) can be extended trivially to forests.

The origin of finding the tree edit distance is an intuitive way of compar-
ing two trees. Given two labelled ordered trees T1 and T2. For the sake of
illustration, the different labels are represented by different colours. What is
the cheapest sequence of edit operations that transforms T1 into T2? Take a
look at the trees T1 and T2 in Figure 3.1 and the sequence of operations that
performs the transformation from T1 to T2. Assuming that every operation
costs the same then the sequence shown in the figure would be an optimal
one.

The tree edit distance is used in the fields of structured text databases,
computer vision and in bioinformatics. In the last field one needs to compare
the secondary structure of RNA-molecules without the disadvantages of
other approaches. A more detailed description about this topic can be found
in these papers: [10, 15, 22].

3.2 Short History of the Tree Edit Distance

The tree edit distance was introduced by Tai in the year 1979 [19]. In addition
to the definition he also provided an algorithm to compute the tree edit
distance. The running time and space complexity amounts to O(t2

l,1t2
l,2t1t2)

which implies a worst-case running time of O(t6
1).

It took about a decade until Shasha and Zhang [17] came up with a dynamic
programming approach that improved the running time to O(t2

1t2
2). Later on

Klein [13] started with his algorithm, changed the branching strategy and
was able to further improve the running time to O(t1t2

2 log t1). Dulucq and
Touzet [7] proved a lower bound of Ω(t1t2 log t1 log t2) on the running time
for all algorithms for the tree edit distance which are based on dynamic pro-
gramming in 2003. Finally, in 2007 Demaine et al. [6] provided an algorithm
that satisfies the lower bound on dynamic programming approaches.

15

3 Tree Edit Distance

(a) Consider these two trees T1 and T2. Finding the cheapest way of transforming T1 into T2 can be really hard.
Underneath there is an illustration of a sequence of editing operations that could be the cheapest one.

(b) Step 1: Insert a node right above the rightmost child of the root. Step 2: Delete the leftmost child of the root.
Step 3: Relabel the root node.

Figure 3.1: The tree edit distance is a very intuitive way of comparing trees.

Chen [5] presented a different approach relying on fast matrix multiplication
solving the tree edit distance problem in O(t1t2 + t1t2

2,l + t1,lt2.5
2,l) time and

O(t1 + (t2 + t2
2,l)min{t1,l, t2,l}) space. Some other algorithms can be found

in the following papers: [1, 2, 20]

This thesis concentrates on the dynamic programming approaches of
Shasha and Zhang, Klein and last but not least Demaine et al. However,
their discussions will remain rather short.

16

3.3 Dynamic Programming Approach

3.3 Dynamic Programming Approach

The key for any dynamic programming approach is to find a suitable way
for branching a hard problem into smaller and therefore easier subproblems.

Definition 3.3. Let T1, T2 be two rooted labelled ordered forests and let cost
functions for the basic editing operations be given. Consider the problem
of computing δ(T1, T2) with a fixed dynamic programming approach A. A
relevant subproblem of (T1, T2) is any pair of rooted labelled forests (T′1, T′2)
such that the following holds:
During the computation of δ(T1, T2), the problem of solving δ(T′1, T′2) is
encountered. Define RA as the set of all relevant subproblems.
A pairing (T′1, T′2) is called a trivial subproblem if and only if (T′1, T′2) is a
relevant subproblem and ∃i ∈ {1, 2} s.t. T′i = (∅, ∅). Define TA ⊂ RA to be
set of all trivial subproblems.

Remark. Since a relevant subproblem (T′1, T′2) occurs in the computation of
δ(T1, T2), there has to exist a sequence of basic editing operations o only
consisting of relabelling and deleting operations s.t. o(T1) = T′i ∀i ∈ {1, 2}.

Remark. Because of the symmetry between deleting a node in T1 and insert-
ing a proper node in T2 and vice versa, the set of basic edit operations can
be restricted to relabelling and deleting.

Remark. A trivial dynamic programming approach would lead to Ω(2t1+t2)

subproblems. Therefore it is necessary to branch in a smart way to get a
polynomial number of relevant subproblems.

Any branching strategy only considers the two rightmost or the two
leftmost roots of T1 and T2. Either one of them gets deleted or the two roots
are matched. In the first case the resulting relevant subproblem contains
exactly one node less than the original one. Matching two roots leads to two
separated relevant subproblems:

17

3 Tree Edit Distance

Suppose matching rT1 with rT2 . Then any node from RT1 that gets matched
with a node in T2 has to be matched with a node in RT2 because of the
strict ancestry relation. Thus matching rT1 with rT2 splits the problem of
computing δ(T1, T2) into the two subproblems of computing δ(R◦T1

, R◦T2
) and

δ(T1 − RT1 , T2 − RT2).

Definition 3.4. Consider the problem of computing the tree edit distance
δ(T1, T2) with a dynamic programming approach A. Furthermore let the
pair (T′1, T′2) ∈ RA be a relevant subproblem.
The dynamic programming approach A associates the pairing (T′1, T′2) with
the direction left or right. In the first case A branches at (T′1, T′2) by consid-
ering the two leftmost roots lT′1

and lT′2
. Otherwise it operates on the two

rightmost roots rT′1
and rT′2

.
A mapping SA : RA 7→ {left,right} is called the decomposition strategy of
the dynamic programming approach A if for any relevant subproblem
(T′′1 , T′′2) ∈ RA the following holds:
The direction SA((T′′1 , T′′2)) coincides with the direction of branching accord-
ing to the dynamic programming approach A.

3.3.1 Shasha and Zhang’s algorithm

Shasha and Zhangs algorithm is the most basic dynamic programming
approach. They restrict themselves to the decomposition strategy that always
chooses the right direction.

Lemma 3.5. Let T1, T2 be two rooted labelled forests and assume they are ordered
according to the post order indexing. Consider the problem of computing δ(T1, T2)

with dynamic programming approach A with the following decomposition strategy:

SA(T′1, T′2) = right ∀(T′1, T′2) ∈ RA \ TA

18

3.3 Dynamic Programming Approach

Then:

∀(T′1, T′2) ∈ RA \ TA : ∃ i1 ≤ j1, i2 ≤ j2 ∈N s.t.

V(T′1) = {i1, i1 + 1, ..., j2}
V(T′2) = {i2, i2 + 1, ..., j2}.

Remark (Remark 1). Because of the post order indexing, the rightmost root
rT has the highest overall index in any ordered forest T.

Remark (Remark 2). Let two induced subtrees Tv′ and Tv′′ of T be given s.t.
V(Tv′) ∩ V(Tv′′) = ∅ and assume that v′ lies on the left of v′′. Then the
index of every node in Tv′ is strictly smaller than the index of all nodes in
Tv′′ .

Proof. Proof by induction. For T1 and T2 the claim is trivially true. Assume
that the claim holds for a relevant subproblem (T′1, T′2). Therefore there
exists some indexes i1, j1, i2, j2 as in the lemma. There are three possible
induction steps:

1. Delete rT′1
: If i1 ≤ j1 − 1 the new indexes will be i1, j1 − 1, i2, j2 because

of Remark 1. Otherwise, if i1 = j1, rT′1
was the only node left in T′1

⇒ the new relevant subproblem (T′′1 , T′′2) ∈ TA

2. Delete rT′2
: Equivalent to the previous case.

3. Match rT′1
and rT′2

: As written previously matching the roots splits the
problem (T′1, T′2) into two subproblems δ(R◦T1

, R◦T2
) and

δ(T1 − RT1 , T2 − RT2). Assume both subproblems are not trivial. All
nodes in RT1 have a higher index than all the nodes in T1 − RT1 .
according to Remark 2.
⇒ ∃k1 s.t. i1 < k1 < j1 with V(T1−RT1) = {i1, ...k1− 1} and V(RT1) =

{k1, ..., j1} and k2 equivalently, closing our induction step argument.

19

3 Tree Edit Distance

Lemma 3.5 provides a trivial upper bound on the number of relevant
subproblems of O(t2

1t2
2) since there are only (t1

2) = O(t2
1) such sets for T1

and (t2
2) = O(t2

2) such sets for T2 respectively.

Lemma 3.6. Let T1, T2 be two rooted ordered labelled forests with the set of labels Σ.
Assume that the cost functions for the basic tree edit operations are fixed. One can
compute δ(T1, T2) considering O(min{t1,l, t1,h}min{t2,l, t2,h}t1t2) subproblems
with the following recursion steps:

1. δ(∅, ∅) = 0;
2. δ(T1, ∅) = δ(T1 − rT1 , ∅) + cdel(rT1);
3. δ(∅, T2) = δ(∅, T2 − rT2) + cdel(rT2);
4.

δ(T1, T2) = min

δ(T1 − rT1 , T2) + cdel(rT1)

δ(T1, T2 − rT2) + cdel(rT2)

δ(R◦T1
, R◦T2

) + δ(T1 − RT1 , T2 − RT2 + crel(rT1 , rT2)

Proof. Correctness: Constraint 1 is trivial. Constraints 2 and 3 handle the
case of trivial subproblems: Just delete all nodes and add the costs of doing
so. For a non-trivial relevant subproblem one has to find the cheapest way
of procedure: Either delete a rightmost root or match them. The equations
are trivial.

Running time: The running time is dependent on the number of relevant
subproblems. However, there are upper bounds on the numbers of different
subforests of T1 and T2 that appear in any relevant subproblem. Multiply
those bounds together yields an overall upper bound on the number of
relevant subproblems.
For the computation of these bounds keyroots and prefixes, as defined in
the first chapter, play a critical role: Suppose T′1 is a subforest of T1 that
appears in some subproblem⇒ ∃iT′1

, jT′1 s.t. V(T′1) = {iT′1
, ..., jT′1}.

If iT′1
= 1, T′1 is a prefix of T◦1 = (T1)

◦
r1

where r1 is the root of T1, assuming
jT′1 < t1.

20

3.3 Dynamic Programming Approach

If iT′1
> 1, there has to exist an induced subtree that lies completely on the

left of T′1, even if it is only the leftmost leaf. Therefore there exists a biggest
subtree that lies completely on the left of T′1. This subtree will be of the form
(T1)v for some v ∈ V(T1). Thus T′1 has to be a prefix of the right sibling w
of v.
Thus any subforest of T1, which appears in a relevant subproblem, is a prefix
of an induced subtree (T1)v for some v ∈ keyroots(T1). Thus summing
up all such prefixes will be an upper bound on the number of relevant
subproblems:

∑
v∈keyroots(T1)

|(T1)
◦
v| = ∑

v∈T1

cdepth(v) ≤ ∑
v∈T1

cdepth(T1) = |T1|cdepth(T1)

Shasha and Zhang went on to prove the missing inequality:

cdepth(T1) ≤ min{t1,l, t1,h}

Combining all the parts together leads to a running time of

O(min{t1,l, t1,h}min{t2,l, t2,h}t1t2)

.

3.3.2 Klein’s algorithm

Klein [13] improved the algorithm of Shasha and Zhang by using a more
advanced decomposition strategy. The idea is to compare the sizes of the
two outermost trees of T1:

Definition 3.7. Let (T′1, T′2) be any relevant subproblem for computing
δ(T1, T2). Klein’s decomposition strategy SK is defined as follows:

SK(T′1, T′2) =

left |V(LT′1
)| ≤ |V(RT′1

)|
right otherwise

21

3 Tree Edit Distance

Klein’s algorithm improved the running time of decomposition algo-
rithms to O(n3 log n). The proof of this running time makes use of the heavy
path decomposition and an upper bound of log(T) +O(1) on the ldepth(v).
The key idea is that every relevant subproblem can be obtained by some
i < |Tv| consecutive deletions from Tv for some light node v ∈ V(T).

3.3.3 Demaine et al.’s optimal algorithm

Demaine et al. presented the most efficient decomposition strategy. They
proved a running time of O(t2

2t1(1 + log t1
t2
)) and lastly showed that this

is also a lower bound on the running time of dynamic programming ap-
proaches for the tree edit distance.
This subsection contains statements without proofs for the sake of this thesis
length. All proofs and further details can be found in the original paper of
Demaine et al. [6]

Definition 3.8. Let (T′1, T′2) be any relevant subproblem for computing
δ(T1, T2). Demaine et al.’s decomposition strategy SD is defined as fol-
lows:

SD(T′1, T′2) =

left if T′1 is a tree or if lT′1
is not the heavy child of its parent

right otherwise

Remark. Take a look at Figure 3.2. As the caption explains the number at
each node shall demonstrate the order among children. Looking at the
children of the root, for example, the first direction according to SD would
be left, the second one would be right and last but not least the heavy child
of the root would be considered.
It is trivial, that according to SD the heavy child of a node will always be
considered at last.

Lemma 3.9. Let T1, T2 rooted ordered labelled trees be given. During the com-
putation of δ((T1)v, T2) with v ∈ TopLight(T1) all pairs ((T1)

◦
u, (T2)

◦
w), where

22

3.3 Dynamic Programming Approach

Figure 3.2: The number at each node indicates the order among siblings in which they are
considered according to SD.

u ∈ T1, w ∈ T2 and both not on the respective main heavy paths of T1, T2, are
encountered as relevant suproblems and therefore the corresponding distances
δ((T1)

◦
u, (T2)

◦
w) are computed as well.

Combining this lemma and the decomposition strategy SD leads to the
following algorithm:

Theorem 3.10. The distance δ(T1, T2) gets computed recursively as follows:

1. If |V(T1)| < |V(T2)| compute δ(T2, T1) instead.
2. Recursively compute δ((T1)v, T2) ∀v ∈ TopLight(T1) using these recursive

steps.
3. Compute δ(T1, T2) using the decomposition strategy SD. However do not

recurse into subproblems that have previously been computed in step 2.

Using these steps, the distance δ(T1, T2) can be computed in O(t2
2t1(1 + log t1

t2
))

time.

3.3.4 Lower bound on decomposition algorithms

The optimal running time for decomposition algorithms has a lower bound
which has already been achieved by the previous algorithm of Demaine

23

3 Tree Edit Distance

et al. This lower bound was proven by Demaine et al. using specifically
structured trees illustrated in Figure 3.4. The necessary ideas to prove the
tight lower bound are similar to the ones used in the proof of following
lemma:

Lemma 3.11. For any decomposition algorithm solving the tree edit distance
problem, there exists a pair of trees (T1, T2) with sizes t1, t2 respectively, such that
the number of relevant subproblems is Ω(t2

2t1)

Figure 3.3: Sketch of T1 and T2 which fulfilla lower bound on the running time for each
decomposition algorithm of Ω(t2

2t1)

Proof. Let S be the strategy of decomposition algorithm and assume T1 and
T2 to be as in Figure 3.3. As previously stated, every pair ((T1)

◦
v, (T2)

◦
w) for

v ∈ T1, w ∈ T2 is a relevant subproblem for S. The number of such relevant
subproblems, where v and w are inner nodes of T1 and T2, can be counted:
For an inner node x, let xl denote the left child of x and xr the right child
of x. In the forest (T1)

◦
v the rightmost root is vr and in (T2)

◦
w the leftmost

root is wl. In each step S decides the direction from which side a node has
to be deleted. However if the strategy chooses left, the deletion shall be
performed on T1, otherwise on T2. This computational approach always
keeps vr as rightmost and wl as leftmost roots of their respective forests until
they are the only nodes left. So it takes at least min{|(T1)

◦
v|, |(T2)

◦
w|} steps

until every relevant subproblem of ((T1)
◦
v, (T2)

◦
w) is found. Since vr and

wl are the outermost roots, the computational paths of ((T1)
◦
v, (T2)

◦
w) and

((T1)
◦
v′ , (T2)

◦
w′) are completely disjoint. Because of their structure there are

approximately t1
2 and t1

2 internal nodes in T1 and T2 respectively, yielding

24

3.3 Dynamic Programming Approach

Figure 3.4: T1 and T2 used to prove a lower bound of Ω(t2
2t1(1 + log t1

t2
))

the following equation:

∑
(v,w)internal nodes

min{|(T1)
◦
v|, |(T2)

◦
w|} =

t1
2

∑
i=1

t2
2

∑
j=1

min{2i, 2j} = Ω(t2
2t1).

In the case of t2 6= Θ(t1) this bound doesn’t match the running time of
Demaine et al.’s algorithm. But considering trees structured as the ones in
Figure 3.4, one can proof the actual lower bound of Ω(t2

2t1(1 + log t1
t2
))

25

4 Flexible Tree Matching

The strict requirement regarding a trees hierarchy is one problem of the
standard tree edit distance. The hierarchy refers to the fixed parent-to-child
relationship within an ordered tree. Another inconvenience is the fixed
ordering among siblings. If a node v ∈ T1 gets mapped to a node w ∈ T2

during the computation of the tree edit distance, the children of v have to
get mapped to descendants of w or get deleted. In some domains, the most
representative matching may not fulfil these requirements. One of these
domains is the DOM (Document Object Model) of a website. A standard
HTML-based webpage can easily be structured according to the respective
HTML-tags. Take a look at the website in Figure 4.1 and its HTML-code in
Listing 4.1.

Figure 4.1: The example website.

1 <html>

2 <head>

3 <meta http -equiv="Content -Type" content="text/html; charset

=utf -8">

4 <link rel="stylesheet" type="text/css" href="style.css">

26

5 <title>DOM -example by Clemens Andritsch </title>

6 </head>

7 <body>

8 <div id="page">

9 <div id="header">

10 <div id="headerTitle">DOM - Example </div>

11 </div>

12 <div id="bar">

13 home

14 about

15 portfolio

16 master thesis

17 </div>

18 <div id="cont1" class="contentTitle">

19 <h1>DOM - Example </h1>

20 </div>

21 <div id="cont2" class="contentText">

22 <p id="p1">The sole purpose of this site is to

demonstrate the DOM</p>

23 <p id="p2"> </p>

24 <p id="p3">Lorem ipsum dolor sit amet , consectetuer

adipiscing elit.</p>

25 <p id="p4">

26 Back to homepage

27 </p>

28 </div>

29 </div>

30 <div id="footer">

31 <p id="footer -text">If you want to get a deeper look into

DOM I suggest to take a look at the <a href="https ://de.

wikipedia.org/wiki/Document_Object_Model">Wikipedia page

</p>

32 </div>

33 </body>

34 </html>

Listing 4.1: Html code of DOM example

The DOM-tree of the example website is intuitively clear: The outermost
tag, the <html>-tag, is the tree’s root. The root’s children are the <head>-

27

4 Flexible Tree Matching

tag and the <body>-tag and so on. This leads to the complete DOM-tree
illustrated in Figure 4.2.

Figure 4.2: Complete DOM-tree of the example website.

Intuitively, any small change to the website should not lead to a big distance
between the corresponding DOM-trees. Suppose one changes the order of
the buttons in the header menu as well as moving one of these buttons into
the content area of the website as seen in Figure 4.3. The website and its
functionalities remain quite similar, but it would take about three deletions
and four insertions to end up with the new DOM-tree. However, deleting
the whole header menu and therefore reducing the website’s functionality
leads to a smaller tree edit distance.

This kind of issue arises frequently in the context of comparing tree
models. Flexible tree matching models have been introduced in an effort
to appropriately handle the above mentioned issues. Instead of requiring
strict left-to-right ordering and hierarchy conditions, one may relax them
by introducing costs to penalize the violation of this type of requirements.
Kumar et al. [14] developed an algorithm that matches nodes with similar
labels and penalizes edges that break up sibling groups or violate the

28

4.1 The Model for the Flexible Tree Edit Distance

Figure 4.3: Small changes to the website should not affect the distance of the respective
DOM-trees.

hierachy. In the example above, moving the button from header menu into
the content is such a violation of the hierarchy, because a node gets shifted
into another subtree. A violation of this kind needs to have some costs
associated to it, but it should definitely be cheaper than deleting the subtree
and inserting it again in some other place.
Finding the minimum flexible tree edit distance can be reduced to finding a
minimum cost matching in a flexible cost model. Kumar et al. showed that
finding the flexible tree edit distance is strongly NP-complete. This implies
that there are no efficient algorithms to compute the minimum flexible tree
edit distance. However, there are some approximating heuristics.
This chapter is based on the previously cited paper by Kumar et al.

4.1 The Model for the Flexible Tree Edit Distance

Definition 4.1. Let T1 and T2 be two rooted ordered labelled trees with a set
of labels Σ. Define GT1,T2 to be the complete bipartite graph on the following
set of nodes:

G := ({V(T1) ∪⊗1}∪̇{V(T2) ∪⊗2}, E(GT1,T2))

29

4 Flexible Tree Matching

Hence the edge set E(GT1,T2) is defined as the set:

E(GT1,T2) := {{v1, v2} | vi ∈ {V(Ti) ∪⊗i} for i = 1, 2}.

The nodes ⊗i are so called no-match nodes.

Remark. Every edge e = {v1, v2} ∈ E(GT1,T2) represents matching a node
v1 to a node v2. If v2 = ⊗2, the edge e represents the deletion of v1, since
v1 was not matched to any node from the tree T2. An analogous statement
holds for an edge {⊗1, v2}.

Definition 4.2. Let T1 and T2 be two rooted ordered labelled trees with a
set of labels Σ and the graph GT1,T2 be given. A set of edges M ⊆ E(GT1,T2)

is called a flexible matching, if the following statements are true:

1. ∀v1 ∈ V(T1) : ∃!v2 ∈ {V(T2) ∪⊗2} s.t.: (v1, v2) ∈ M
2. ∀v2 ∈ V(T2) : ∃!v1 ∈ {V(T1) ∪⊗1} s.t.: (v1, v2) ∈ M

The set of all flexible matchings is denoted as MT1,T2

Remark. Note that the no-match nodes do not have any restrictions on them.
A no-match node may be a part of 0 edges or it may be arbitrarily often
matched.

Every edge e ∈ E(GT1,T2), e ∈ V(T1) × V(T2) is assigned some cost
function c(e):

c(e) = cr(e) + ca(e) + cs(e). (4.1)

The exact definitions follow later. In short terms, these three summands rep-
resent the costs that were mentioned earlier in this chapter: cr represents the
costs of relabelling a node, ca penalizes violations of ancestry relationships
and cs punishes broken up sibling groups. All the other edges, namely the
ones connecting tree nodes with no-match nodes, have a fixed constant cost
wn, only depending on the number of nodes in the trees.

Suppose that v ∈ V(T1) and w ∈ V(T2) and let e := {v, w} ∈ E. The costs
for relabelling e, i.e. cr(e), only depend on the nodes v and w themselves.

30

4.1 The Model for the Flexible Tree Edit Distance

They are fixed for every edge and are known before starting to match
nodes. ca(e) and cs(e) on the other hand may depend on the choice of the
flexible matching M. To be more precise the costs ca({v, w}) are linearly
dependent on the number of children of v that do not get mapped onto
children of w. Define M(v) ∈ {T2 ∪ ⊗2} to be the node that v is mapped
onto according to the flexible matching M and suppose that M(v) 6= ⊗2.
Recall that C(v) ⊂ T1 is defined as the set of children of v, P(v) ∈ T1 as the
parent of v and S(v) ⊂ T1 as the sibling group of v. The set V(v) contains
all children of v that violate the ancestry condition, i.e.:

V(v) := {v′ ∈ C(v) | M(v′) ∈ T2 \ C(M(v))} (4.2)

As stated previously, the cost function ca(e) is linearly dependent on the
sizes of the sets V(v) and V(w) with some constant factor ωa:

ca({v, w}) := ωa(|V(v)|+ |V(w)|) (4.3)

The costs cs(e) are dependent on the sibling-invariant subset IM(v) of v. This
set IM(v) is defined as the set of all siblings of v which are mapped into the
same sibling group as v:

IM(v) := {v′ ∈ S(v) | M(v′) ∈ S(M(v))} (4.4)

Accordingly the sibling-divergent subset DM(v) of v contains all siblings of v

Figure 4.4: A visual representation of the above described tree concepts.

31

4 Flexible Tree Matching

which are mapped to a node in T2 \ S(M(v)):

DM(v) : = {v′ ∈ S(v) | M(v′) ∈ T2 \ S(M(v))} (4.5)

= {v′ ∈ S(v) \ IM(v) | M(v′) 6= ⊗2} (4.6)

Finally, the set of distinct sibling families is defined as the union of all sibling
groups, that the siblings of v map into:

FM(v) =
⋃

v′∈S(v)

P(M(v′)) (4.7)

Having defined all these concepts, the costs for sibling group violations,
depending on a constant ωs, can be formulated as follows:

cs({v, w}, M) := ωs(
|DM(v)|

|IM(v)||FM(v)| +
|DM(w)|

|IM(w)||FM(w)|) (4.8)

One can show that the costs cs({v, w}, M) increase, if a node in the sibling
group of v or w gets reassigned to some node outside of the corresponding
sibling group.

Definition 4.3. Let T1, T2 two rooted ordered trees, the corresponding graph
GT1,T2 as well as constants ωn, ωa, ωs and the relabelling function cr(e) be
given.
Let M∗ ∈ MT1,T2 be a flexible matching that covers each node v ∈ Ti,
i ∈ {1, 2} exactly once which fulfils the following equation:

c(M∗) := ∑
e∗∈M∗

c(e∗) = min
M∈MT1,T2

∑
e∈M

c(e)

where c(e) is defined as described in Equations (4.1), (4.3), (4.8). Then c(M∗)
is called the flexible tree edit distance.

32

4.2 Approximation and Conclusion

4.2 Approximation and Conclusion

As mentioned in the introduction of this chapter, computing the flexible tree
edit distance is an NP-hard task. This statement can be proven by reducing
the 3-partition problem to finding an optimal flexible tree matching. Once
again all details can be found in Kumar et al.’s paper [14]. Hence, there exists
no efficient algorithm that computes the flexible tree matching to optimality,
unless P = NP . But there are stochastic optimization algorithms to get an
approximation of the flexible tree edit distance. Kumar et al. presented a
Monte Carlo algorithm where they fix edges one after another, prune all
other incident edges to the endpoints of the current edge and update the
bounds for all other nodes. They start with an empty flexible matching M
and calculate bounds for the values of ca(e) and cs(e) for all edges e. After
including an edge e1 = {v, w} into M, they delete all other adjacent edges
to v and w and update the bounds for the cost functions ca and cs for all
remaining edges. Naturally having more fixed edges leads to more accurate
bounds. Furthermore the authors give advices on how to adapt the cost
factors ωr, ωs, ωa and ωn step by step in order to improve the results.
Depending on the application, the flexible tree matching can have huge
advantages with respect to the classic tree edit distance, especially in fields
where hierarchy is suggestive rather than definitive. Diverse applications
may value sibling group or ancestry violations differently and their signifi-
cance can be modelled by appropriately chosen values for coefficients ωr

and ωs. Thus the cost model for the flexible tree matching can be tuned to
reflect the real life problem as accurately as possible. Having a database of
exemplar matchings opens up the possibility to implement a learning cost
model which improves the coefficients to get the better results.
Nevertheless, there can not be an efficient algorithm to calculate the flexible
tree edit distance. Therefore all results are more suggestive than definitive,
just like the problem itself.

33

5 Robinson Foulds Metric

A phylogenetic tree or evolutionary tree is a rooted branching diagram
used in the field of biology, which shows the evolutionary connectedness of
different species. Every species is represented by a node and is connected to
its immediate evolutionary ancestor. A leaf is called a taxon and is labelled
with the species it represents. All in all, there is one huge phylogenetic
tree that represents all life on earth. For the studies of evolutionary biology,
scientists often need to compare different evolutionary theories regarding a
certain subset of species. Therefore they have to take a look at the structure
of the corresponding subtrees and apply some distance measurement on
them.

5.1 Additional Background

The scientific field of phylogenetics is the field of evolutionary relationships
and history among species and groups of organisms. This common ancestry
is described as a phylogenetic tree. The labels of its leaves are called tax-
ons and represent the investigated species. All interior nodes stand for a
common ancestor of the taxons present in its induced subtree. Therefore
the root of a phylogenetic tree is the most recent common ancestor of all
species. Sometimes the structure can’t be fully resolved. This results in so
called multifurcations, interior nodes of degree higher than three.
Multifurcations may occur due to missing data for inferring the phylogeny.

Often they appear in consensus trees, when partially contradictory trees

34

5.2 The original metric

Figure 5.1: A rooted phylogenetic tree. The node v is a multifurcation since its degree is
larger than 3. The ancestry relations aren’t fully resolved for the children of v.

Figure 5.2: A simplified phylogenetic tree that shows the evolutionary connection between
five big cats and the domestic house cat. The complexity of finding this task is
described in the paper by Figueiró et al. [8].

were obtained by some methods. A perfectly resolved phylogenetic tree
doesn’t have any multifurcations implying a binary phylogenetic tree.

5.2 The original metric

The most commonly used distance measurement for phylogenetic trees
was introduced by Robinson and Foulds [16]. They defined the term clade
describing a group of leaves that have a common ancestor they do not share
with any other leaf.

The Robinson-Foulds metric is quite intuitive and easy to compute. It is
the average number of non-trivial clades that are present in exactly one of
the two trees:

35

5 Robinson Foulds Metric

Definition 5.1. Let T1, T2 be two trees with the same set of taxa X. The
Robinson-Foulds metric dRF is defined as follows:

dRF(T1, T2) :=
1
2
|C∗(T1)4C∗(T2)|

Remark. Assuming that both trees T1,T2 have the same set of taxa X with
n := |X| implies that the number of interior nodes in both trees is bounded
by n− 1. Since the trivial clade X is induced by the tree’s root, the inequality
dRF(T1, T2) ≤ n− 2 holds.

Although the Robinson-Foulds metric is commonly used, it has some
well known downsides. For example changing the position of a single leaf
can yield a new tree having maximal distance from the original one. An
example of this behaviour is illustrated in Figure 5.3. Let T1 be the top left
tree and T2 be the top right one. It is easy to see that the set of clades are
the following:

C∗(T1) = {{1, ..., j} | j ∈ {2, ..., 7}}
C∗(T2) = {{2, ..., j} | j ∈ {3, ..., 7}} ∪ {1, 8}

Obviously every clade in T1 contains both nodes 1 and 2, whereas in tree T2

every clade either contains node 1 or 2, but never both. This implies that

C∗(T1) ∩ C∗(T2) = ∅

dRF(T1, T2) =
1
2
|C∗(T1)4C∗(T2)| =

1
2
(|C∗(T1)|+ |C∗(T2)|)

dRF(T1, T2) =
1
2
(6 + 6) = 6

However the third tree T3 also has the same Robinson Foulds distance to
both trees T1 and T2. This points to another big disadvantage of the Robinson
Foulds distance. The distribution of distances is very much concentrated on
the upper end of the scale. Two arbitrary phylogenetic trees with n leaves
on the same set of taxa have a high probability to have a Robinson Foulds
distance of n− 2. Furthermore the example shows that the Robinson Foulds

36

5.3 The Generalized Robinson Foulds

metric does not compare the structure of trees. Otherwise the distance
between T1 and T2 would be much smaller than the one to tree T3.

Figure 5.3: Three trees having the maximal RF-distance on the set of taxa {1, ..., 8}

5.3 The Generalized Robinson Foulds

To take advantage of structural similarities between T1, T2 Böcker et al. [3]
suggested to extend the Robinson Foulds metric. They wanted to relax
the condition of counting any clade which appears in the set of clades for
one but not both trees. Therefore they introduced a bipartite graph GT1,T2

depending on the two trees under consideration.

Definition 5.2. Let T1, T2 be two phylogenetic trees with the same number
of leaves n and on the same set of taxa X. Define GT1,T2

as the complete
bipartite graph on the following set of nodes:

GT1,T2
: C∗(T1)× C∗(T2)

37

5 Robinson Foulds Metric

Definition 5.3. Let T1, T2 be two phylogenetic trees with the same number
of leaves n and on the same set of taxa X. A mapping δ is called a cost
function if it possesses the following properties:

• δ : P(X)×P(X) 7→ R≥0 ∪ {∞}, P(X) being the power set of X.
• The value δ(C, C′) determines the dissimilarities between two clades

C, C′ ⊂ X.
• The value of δ(C, ∅) > 0 denotes the dissimilarity between a clade

C ∈ C∗(T1) with the empty clade in C∗(T2). The value δ(∅, C′) is
defined analogously.

Definition 5.4. Let T1, T2 be two phylogenetic trees with the same number
of leaves n and on the same set of taxa X. Let GT1,T2

and a cost function δ

be given as defined in Definitions 5.2 and 5.3. Furthermore let
M ⊂ C∗(T1)× C∗(T2) be a matching in GT1,T2

. A clade C ∈ C∗(T1) is called
unmatched, if @C′ ∈ C∗(T2) s.t. (C, C′) ∈ M, analogously for clades of T2.
Furthermore the costs of a matching M, dδ(M), is defined as:

dδ(M) := ∑
(C,C′)∈M

δ(C, C′)+ ∑
C∈C∗(T1),

C unmatched in M

δ(C, ∅)+ ∑
C′∈C∗(T2),

C′ unmatched in M

δ(∅, C′)

Minimizing over all matchings in GT1,T2
yields dδ(T1, T2):

dδ(T1, T2) := min
M matching in GT1,T2

dδ(M)

Lemma 5.5. Let T1, T2 be two phylogenetic trees with the same number of leaves n
and on the same set of taxa X. There is a distance function δRF s.t.

dδRF(T1, T2) = dRF(T1, T2)

38

5.3 The Generalized Robinson Foulds

Proof. Let δRF : P(X)×P(X) 7→ R≥0 ∪ {∞} be given as follows:

δRF(C, C′) =

0 if C = C′

1
2 if C = ∅ or C′ = ∅

∞ if C 6= C′ and C 6= ∅ 6= C′

Let M∗ ⊂ C∗(T1)× C∗(T2) be a matching s.t.:

dδRF(T1, T2) = min
M matching in GT1,T2

dδRF(M) = dδRF(M∗)

Since the empty matching has a finite value, M∗ must not contain any
edge (C, C′) s.t. δRF(C, C′) = ∞. Therefore M∗ only contains edges where
the respective clades are congruent. Thus M∗ minimizes the number of
unmatched clades, counts them and divides this number by 2:

dδRF(T1, T2) =
1
2
|C∗(T1)4C∗(T2)| = dRF(T1, T2)

Lemma 5.6. Let T1, T2 be two phylogenetic trees with the same number of leaves
n and on the same set of taxa X. Let GT1,T2

and a cost function δ be given as
defined in Definitions 5.2 and 5.3. The task of computing a matching M∗ satisfying
dδ(T1, T2) = dδ(M∗) can be simplified by the following model:
For any edge (C, C′) ∈ E(GT1,T2

) let its weight be given by

ω(C, C′) := δ(C, ∅) + δ(∅, C′)− δ(C, C′). (5.1)

Finding a minimal cost matching of clades is equivalent to finding a maximal cost
matching in GT1,T2 .
Furthermore, if δ is a metric, all weights are non-negative.

Proof. Let M∗ be a maximal cost matching in GT1,T2 . The following implica-

39

5 Robinson Foulds Metric

tions are trivial:

∑
{C,C′}∈M∗

ω(C, C′) = max
M

∑
{C,C′}∈M

δ(C, ∅) + δ(∅, C′)− δ(C, C′)

= max
M

∑
C∈C∗(T1)

δ(C, ∅)︸ ︷︷ ︸
const. K1

− ∑
C∈C∗(T1),

C unmatched

δ(C, ∅) + ∑
C′∈C∗(T2)

δ(∅, C′)︸ ︷︷ ︸
const. K2

− ∑
C∈C∗(T1),

C unmatched

δ(∅, C′)− ∑
{C,C′}∈M

δ(C, C′)

= K1 + K2 + max
M
−
(

∑
C1∈C∗(T1),

C unmatched

δ(C, ∅) + ∑
C∈C∗(T1),

C unmatched

δ(∅, C′) + ∑
{C,C′}∈M

δ(C, C′)
)

= K1 + K2 −min
M

d(M) = K1 + K2 − d(M∗)

Additionally, if δ is a metric, the triangle inequality holds true. This implies
all weights are non-negative.

Remark (Example). Compute the distance defined in Definition 5.3 between
trees T1, T2 from Figure 5.3 with respect to the size of the symmetric differ-
ence between sets:

δsym(C, C′) = |C4C′| = |C ∪ C′| − |C ∩ C′|

Using Lemma 5.6 provides an easy way to compute the requested distance.
Figure 5.4 illustrates the graph GT1,T2

with the corresponding edge weights.
The optimal matching in GT1,T2

can be seen very easily:
Let M∗ be the matching represented by the bold edges in Figure 5.4. For
every edge (C1, C2) ∈ M∗, the weight ω(C1, C2) is maximal among all edges
starting at C1, implying optimality.

40

5.3 The Generalized Robinson Foulds

Figure 5.4: Illustration of graph GT1,T2
. On the left hand side the nodes correspond to

non-trivial clades of T1, on the right hand side they represent the ones of T2.
The small number on top of an edge is the value of its weight. The maximum
cost matching M∗ is highlighted by the bold edges.

Analogously the other distances can be computed as well:

d̄δsym(T1, T2) = 8

d̄δsym(T1, T3) = 19

d̄δsym(T2, T3) = 16

This distance measure apparently delivers values which are closer to an
intuitive answer. The distances indicate significant similarities between trees
T1 and T2. Furthermore they point out that T3 has a different structure than
the other trees.

41

5 Robinson Foulds Metric

Of course such values can only be compared to distances with respect to
the same cost function δ. Generally, comparing distances dδ(T1, T2) and
d̄δ′(T1, T2) is not feasible without adding further context.
Comparing d̄δRF(T1, T2) = 6 < 8 = d̄δsym(T1, T2) doesn’t yield any informa-
tion. However one could get data from following inequalities:

6 = δRF(T1, T2) = δRF(T1, T3) = δRF(T2, T3) = 6

8 = d̄δsym(T1, T2) < 16 = d̄δsym(T2, T3) < d̄δsym(T1, T3) = 18

The minimum matching for d̄δsym(T1, T2) shown above demonstrates a
problem with this straight forward approach:

{1, 2} ∈ C∗(T1) ⊂ {1, ..., j} ∈ C∗(T1)∀j ≥ 3,

however an analogous statement doesn’t hold for its matched clade {1, 8}.
Such behaviour can be avoided by demanding matchings to be arboreal:

Definition 5.7. Let two rooted phylogenetic trees T1, T2 on the same set of
taxa X be given. A matching M on their sets of non-trivial clades is called
arboreal if for any two edges {C1, C2}, {C′1, C′2} ∈ M one of the following
cases hold:

1. C1 ⊆ C′1 ∧ C2 ⊆ C′2
2. C′1 ⊆ C1 ∧ C′2 ⊆ C2

3. C1 ∩ C′1 = ∅ ∧ C2 ∩ C′2 = ∅

Definition 5.8. Let T1 and T2, two rooted phylogenetic trees on the same
set of taxa X, and a cost function δ be given. Define dδ(T1, T2) as follows:

dδ(T1, T2) = min
M matching in GT1,T2

M arboreal

dδ(M)

The value dδ(T1, T2) is called the generalized Robinson-Foulds distance between
T1 and T2 with respect to δ.

42

5.3 The Generalized Robinson Foulds

Remark. Some notes about the generalized Robinson-Foulds distance:

1. From now on the generalized Robinson-Foulds distance will be abbre-
viated by gRF.

2. The gRF dδ(T1, T2) and the previous distance measure dδ(T1, T2) are
conceptually very similar. The only difference is, that the gRF mini-
mizes only over arboreal matchings.

3. Trivially the inequality dδ(T1, T2) ≤ dδ(T1, T2) holds.
4. The statement in Lemma 5.6 is true for dδ(T1, T2) as well. Its proof

works the same way, but instead of maximizing over all matchings,
only consider arboreal ones.

Lemma 5.9. Let X, a set of taxa, and a cost function δ be given. Furthermore
assume δ to be a metric. Then the gRF with respect to δ is a metric on the set of
rooted phylogenetic trees on X.

The proof is provided in the full version of the Böcker et al.’s paper [3].

5.3.1 Jaccard-Robinson-Foulds metric

One specific metric used as a cost function is motivated by the Jaccard index
of two sets:

J(A, B) =
|A ∩ B|
|A ∪ B|

Generalizing this idea leads to the Jaccard weights of order k:

δk(C1, C2) =

0 if C1 = C2 = ∅

1− (|C1∩C2|
|C1∪C2|

)k else
(5.2)

43

5 Robinson Foulds Metric

Lemma 5.10. Let δk(C1, C2) be given as defined in Equation (5.2). Then δk(C1, C2)

converge to the inverse Kronecker delta as k→ ∞:

δk(C1, C2) −→
k→∞

0 if C1 = C2

1 if C1 6= C2

Proof. Case 1: C1 = C2.

δk(C1, C2) = 1− (

|C1|︷ ︸︸ ︷
|C1 ∩ C2|
|C1 ∪ C2|︸ ︷︷ ︸
|C1|

)k = 1− (1)k = 0 ∀k ∈N

Case 2: C1 6= C2

⇒ (C1 ∪ C2) \ (C1 ∩ C2) 6= ∅

⇒ |C1 ∪ C2| > |C1 ∩ C2|

⇒ |C1 ∩ C2|
|C1 ∪ C2|

< 1

⇒ (
|C1 ∩ C2|
|C1 ∪ C2|

)k −→
k→∞

0

⇒ δk(C1, C2) = 1− (
|C1 ∩ C2|
|C1 ∪ C2|

)k −→
k→∞

1

Definition 5.11. Let T1 and T2, two rooted phylogenetic trees on the same
set of taxa X and a positive k ∈ R≥0 be given. The gRF metric introduced
by δk as defined in Equation (5.2) is called Jaccard-Robinson-Foulds metric
(JRF) of order k and is denoted by d(k)JRF(T1, T2).

44

5.3 The Generalized Robinson Foulds

5.3.2 Computational Complexity

In their paper Böcker et al. demonstrate a polynomial reduction from
the (3, 4)-SAT problem to the problem of finding a minimal cost arboreal
matching, even if the cost function δ is a metric. The (3, 4)-SAT is the
problem of finding a satisfying assignment for a Boolean formula in which
every clause consists of exactly 3 literals and any variable occurs 4 times.
The authors of the above mentioned paper were able to construct a minimum
arboreal matching instance I for any Boolean formula φ ∈ (3, 4)-SAT. If
the problem I, using the symmetric difference as cost function, admits a
solution with a value smaller than a certain threshold, the original problem
of finding a correct assignment for φ has a solution. All details can be found
in the original paper [3].

Theorem 5.12. For an instance of the arboreal matching using the symmetric
difference as cost function δ and an integer k, it is NP-complete to decide whether
there exists an arboreal matching of cost at most k.

5.3.3 An Integer Linear Program

One way to approach the NP-complete problem above is to formulate it
as an integer linear program and solve the latter. Therefore Böcker et al.
set up an integer linear programming formulation to find a minimum cost
arboreal matching.
Let two rooted phylogenetic trees T1 = (V1, E1) and T2 = (V2, E2) and a cost
function δ : C(T1)× C(T2) 7→ R≥0 be given. Suppose the clades in C(Ti) are
numbered from 1 to |Vi| for i ∈ {1, 2}. Introduce xi,j as a binary indicator
variable representing whether the i-th clade Ci in C(T1) is matched with the
j-th clade C′j in C(T2). The edge weights introduced in Equation (5.1) ensure
that finding a maximum cost assignment on the indicator variables leads to
a minimum cost matching. To recapitulate, the value for ω(Ci, C′j) is:

ω(Ci, C′j) = δ(Ci, ∅) + δ(∅, C′j)− δ(Ci, C′j)

45

5 Robinson Foulds Metric

The constraints on an assignment of indicator variables have to ensure, that
the result is an arboreal matching. Therefore the set I is introduced with
the following properties:

I :=
{
{(i, j), (k, l)}

∣∣∣The edges (Ci, C′j) and (Ck, C′l) violate the conditions
for arboreal matchings defined in Definition 5.7

}
(5.3)

Theorem 5.13. Let T1 and T2, two rooted phylogenetic trees on the same set of
taxa X with |X| =: n, and a cost function δ be given. Furthermore a fixed order
of all non-trivial clades in C(T1) and C(T2) and the cost function ω(Ci, C′j) shall
be given. Let xi,j be the indicator variables of the following integer linear problem
(ILP):

max
n−2

∑
i=1

n−2

∑
j=1

ω(Ci, C′j)xi,j (5.4)

s.t.
n−2

∑
j=1

xi,j ≤ 1 ∀i ∈ {1, ..., n− 2} (5.5)

n−2

∑
i=1

xi,j ≤ 1 ∀j ∈ {1, ..., n− 2} (5.6)

xi,j + xk,l ≤ 1 ∀{(i, j), (k, l)} ∈ I (5.7)

xi,j ∈ {0, 1} ∀i ∈ {1, ..., n− 2}, ∀j ∈ {1, ..., n− 2} (5.8)

Suppose an optimal assignment of the ILP is given by (x∗i,j). Let M∗ be the following
set of edges:

(Ci, C′j) ∈ M∗ ⇔ x∗i,j = 1

Then the set of edges M∗ is a matching that realizes the value of the gRF:

dδ(T1, T2) = dδ(M∗)

Proof. First and foremost, the requirement of binary decision variables in
Constraints (5.8) ensure that every edge is either chosen or not. Furthermore

46

5.3 The Generalized Robinson Foulds

Constraints (5.5) and (5.6) restrict the chosen set of edges to be a, not neces-
sarily complete, matching. Last but not least, because of Constraints (5.7)
the resulting matching is arboreal, since I was constructed that way. As
proven in Lemma 5.6, the arboreal matching of maximum cost with respect
to the cost function (5.4) is an arboreal matching that minimizes the gRF
dδ(T1, T2).

Remark. The number of non-trivial clades in a phylogenetic tree with the
set of taxa X, |X| = n is n− 2. Thus the running indices in the sums of
inequalities (5.4), (5.5), (5.6) have an upper bound of n− 2.

The number of the ILP’s constraints influences the running time of any
algorithm that computes or approximates an optimal solution. It is obvious,
that there are 2n− 4 = O(n) restrictions handling the issue of ending up
with a viable matching (5.5), (5.6).
Computing the number of restrictions for ensuring the matching to be
arboreal, Inequalities (5.7), depends on the set I . The following lemma
shows the order of its size.

Lemma 5.14. Let two phylogenetic trees T1, T2 with set of taxa X, |X| =: n, and
the set I be given as described in Equation (5.3). Then the size of I is of order:

|I| = Ω(n2 log(n)2)

Proof. For a non-trivial clade C(i) ∈ C(Ti), i ∈ {1, 2} define the set of non-
trivial predecessor clades as follows:

P(C(i)) := {C|C ∈ C∗(Ti), C(i) (C}

By definition every clade in C∗(Ti) corresponds to a node v(i)
C(i) ∈ V(Ti). Thus

every clade in the set of non-trivial predecessor clades P(C(i)) corresponds
to an inner node on the path from v(i)

C(i) to the root of Ti.

47

5 Robinson Foulds Metric

Claim 1. Let C(i) ∈ C(Ti), i ∈ {1, 2} be given, where both of them have
a non-trivial predecessor: |P(C(i))| ≥ 1. Furthermore let C(i)′ ∈ P(C(i)) be
given for i ∈ {1, 2}. Then the following inclusion holds:

{(C(1), C(2)′), (C(1)′ , C(2))} ∈ I

Proof of Claim 1. The non-trivial predecessors are constructed in such a
way, that C(1) (C(1)′ and C(2) (C(2)′ . Thus the set of edges does not fulfil
the conditions of Definition 5.7.

Counting the number of such pairings leads to a lower bound on the size
of I . For an inner node vi ∈ V(Ti) corresponding to a clade C(i) define the
following value:

p(vi) := |P(C(i))|

This value suggests how many pairings of clades within tree Ti exist, where
C(i) is the smaller clade. Let P(T) be defined as follows:

P(Ti) := {p(v)|v ∈ V(Ti), v inner node of Ti}

Claim 2. Let T1, T2 be two full binary trees with the same number of
leaves. Let T1 be more balanced than T2, meaning:

∑
v∈V(T1)

height(v) < ∑
v∈V(T2)

height(v)

Then the following statement is true:

P(T1) < P(T2)

Proof of Claim 2. If T1 is more balanced, the same holds true for the trees
induced by all inner nodes of T1 and T2 respectively. For an inner node vi

in Ti, the only difference between height(vi) and the value p(vi) is, that the
height counts the root of Ti as well. Since the number of inner nodes are the

48

5.3 The Generalized Robinson Foulds

same in both trees the following inequalities hold:

∑
v∈V(T1)

height(v) < ∑
v∈V(T2)

height(v)

⇒ ∑
v inner node of T1

height(v) < ∑
v inner node of T2

height(v)

⇒ ∑
v inner node of T1

v 6=rT1

height(v) + height(rT1) < ∑
v inner node of T2

v 6=rT2

height(v) + height(rT2)

⇒ ∑
v inner node of T1

v 6=rT1

(p(v) + 1) < ∑
v inner node of T2

v 6=rT2

(p(v) + 1)

⇒ ∑
v inner node of T1

v 6=rT1

p(v) + (n− 2) < ∑
v inner node of T2

v 6=rT2

p(v) + (n− 2)

⇒ P(T1) < P(T2)

Let f : N→N be a function s.t. f (n) is a tight lower bound on P(T) for
any full binary tree T with n leaves.

Claim 3. For k ∈N≥2 the following equality holds:

f (2k) = (k− 3)2k + 4

Proof of Claim 3. Proof by induction. Start with k = 2:
Let T be the perfectly balanced tree with 4 leaves. As shown in Claim 2, this
tree has the smallest value P(T) among all full binary trees with 4 leaves.
This argument is supported by the fact that P(T) = 0.

f (22) = (2− 3)22 + 4 = −1 ∗ 4− 4 = 0

For the induction step assume that the statement is true ∀k < K.
Let T′ be the balanced tree with 2(K−1) leaves and T the one with 2K leaves.
Constructing T can be done by taking two trees with the structure of T′,

49

5 Robinson Foulds Metric

(a) Start with two perfectly balanced trees with 2k leaves each.

(b) Connect them by adding a new root node and appending the roots of both trees as
children.

Figure 5.5: The value of p(v) increases by 1 for all inner nodes of the starting trees.

50

5.3 The Generalized Robinson Foulds

adding a root rT and adding the roots of the smaller trees T′ as children of
rT. This procedure is sketched in Figure 5.5 and simplifies the computation
of P(T):
Let rT′ be a root of the left or right subtree of T. Since they are equivalent,
the following argument works for both subtrees. The node rT′ suddenly
becomes an inner node in T. However p(rT′) = 0 since the parent of rT′ is
the root of T which isn’t a non-trivial predecessor. On the other hand, p(v)
increases by 1 for all inner nodes v ∈ T′ since they get a new non-trivial
predecessor. Thus the overall sum within T′ increases by the number of
inner nodes in T′, which is 2(K−1) − 2. This implies the following equality:

⇒ f (2K) = 2(f (2(K−1)) + 2(K−1) − 2)

= 2(((K− 1)− 3)2(K−1) + 4) + 2K − 4

= (K− 4)2K + 8 + 2K − 4

= (K− 3)2K + 4

Claim 4. Let k, l ∈N≥2, s.t. 2k > l. Then:

f (2k + l) = (k− 3)2k + 4 + (k− 1)l

Proof of Claim 4. The variables k and l are chosen this way to find a value
for f (n) for all n ∈ N. Claim 2 suggests that in order to minimize f (n),
one has to find a tree with n leaves which is as balanced as possible. Since
2k > l, it is clear that 2k + l < 2(k+1). Trivially the most balanced tree can be
constructed the following way:

1. Start with a balanced tree T with 2k leaves.
2. Choose l leaves of T and exchange them with full binary trees with 2

leaves.

Thus the newly constructed tree T′ ends up with 2k + l leaves. Altogether T′

has 2l leaves with height k+ 1, the others stay at the height of k. Moreover T′

has l more inner nodes than T. All of them have a height of k, so p(v) = k− 1

51

5 Robinson Foulds Metric

for all such nodes v. Therefore the following statement is true:

P(T′) = P(T) + (k− 1)l

⇒ f (2k + l) = f (2k) + (k− 1)l = (k− 3)2k + 4 + (k− 1)l

Claim 5. Let n ∈N≥2. Then:

f (n) = n(blog2(n)c − 1)− 4 ∗ 2blog2(n)c + 4

Proof of Claim 5. Let k, l ∈N s.t. 2k > l and n = 2k + l.

k = blog2(n)c, l = n− 2k = n− blog2(n)c
⇒ f (n) = f (2k + l) = (k− 3)2k + 4 + (k− 1)l

= (blog2(n)c − 3)2blog2(n)c + (blog2(n)c − 1)(n− 2blog2(n)c) + 4

= n(blog2(n)c − 1)− 4 ∗ 2blog2(n)c + 4

The order of f (n) can be obtained easily:

f (n) = Θ(n(blog2(n)c − 1) + Θ(4 ∗ 2blog2(n)c) + Θ(4)

= Θ(n log(n)) + Θ(n) + Θ(1)

= Θ(n log(n))

The final step for proofing Lemma 5.14 can be obtained by combining
the results of Claim 1 and Claim 5. The function f (n) was introduced as a
lower bound on P(T) for any full binary tree T with n leaves.

⇒ P(T1) = P(T2) ≥ f (n) = Θ(n log(n)).

Thus Claim 1 provides a way to construct O(n2 log2(n)) pairings of edges
that violate the requirements for arboreal matchings.

52

6 Implementation generalized

Robinson Foulds

This chapter discusses all necessary preparations and additional comments
for the gRF’s implementation. They include creating test instances and
choosing meaningful distance function among others. Last but not least
some implementation details are presented and a short summary of the
results is given.
All scripts and functionalities are written in the programming language
Python. The whole package is stored in the following Github repository:

https://github.com/bananajoe/TreeComparison

It includes a module to compute and store the Catalan numbers, to create
and store randomized full binary trees and finally pairwise comparing
them.

6.1 Preparation and Overview

The comparison of tree distances is, as already explained, a necessary
tool for different research fields. In this case the gRF is only applicable to
phylogenetic trees on the same set of taxa, where the inner nodes aren’t
labelled and don’t get any attention. This behaviour has to be reflected in
the cost functions for the tree edit distance. Furthermore all test instances
shall be full binary trees. On the one hand this excludes multifurcations,

53

https://github.com/bananajoe/TreeComparison

6 Implementation generalized Robinson Foulds

on the other hand it ensures that any inner node represents a split between
subsets of taxons.

6.1.1 Creating Test Instances

The database of test instances had to be created because there was no
suitable one available. As already discussed, it has to consist of randomly
selected full binary trees with n leaves, n ∈N.
The algorithm generating this database creates full binary trees uniformly at
random. To ensure uniform distribution it uses Lemma 2.27, namely that the
number of full binary trees with n leaves is the (n− 1)-th Catalan number.
The algorithm recursively picks the sizes of the left and right subtrees for
every inner node. In each step the sizes have to be chosen such that every
feasible outcome is equally possible. The first few recursion steps shall
demonstrate how the algorithm is designed:

• n = 2: It is obvious that there is only one full binary tree with two
leaves.

• n = 3: The tree is automatically determined as soon as it is known
whether the left subtree has one or two leaves. Therefore there are
exactly two possible full binary trees with three leaves.

• n = 4: The root’s left subtree may contain between one and three
leaves. A further discussion of the implied case distinction gives an
idea about how the algorithm works:

– Case 1: The left subtree contains one leaf.
The left subtree needs to be a full binary tree with one leaf.
The number of such trees corresponds to C0 = 1. Furthermore
the right subtree needs to contain three leaves. There are C2 = 2
possibilities of such trees, ending up with two different full binary
trees where the left subtree of the root has only one leaf.

– Case 2: The left subtree contains two leaves
Thus the same holds for the right one. Both of them are deter-
mined since there is only C1 = 1 such tree.

54

6.1 Preparation and Overview

– Case 3: The left subtree contains three leaves.
This case is symmetric to Case 1⇒ there are two such trees.

This results in a total of C3 = 5 full binary trees with four leaves.

The uniform distribution among all full binary trees needs to be assured.
Therefore the probability of picking the size of the root’s left subtree has to
be chosen accordingly.
This task can be exemplified by considering the case n = 4. Every feasible
tree has to be chosen with probability 1

5 = 1
C3

. Trivially Case 2, where both
subtrees contain two leaves, has to be picked with probability 1

5 since this
property already determines the only possible outcome. The other cases
are symmetric, so both of them need to be chosen with equal likelihood
of 2

5 . In both cases one has to choose a full binary tree with three leaves.
Since there are exactly two of them, both have to be taken with probability
1
2 = 1

C2
. This way every full binary tree with four leaves gets chosen with

equal probability.

Lemma 6.1. Algorithm 2 returns a full binary tree with n leaves, where any such
tree is chosen with the same probability.

Proof. Proof by induction:
The routine CreateFullBinaryTree(1) returns the only possible full binary
tree with one leaf, which gets chosen with probability 1. For the induction,
suppose CreateFullBinaryTree(j) returns a full binary tree with j leaves
chosen uniformly at random among all such trees where 1 ≤ j < n.
The algorithm performs the recursive step since n > 1. Let pi := Ci−1Cn−1−i

Cn−1

be the fraction used inside the for loop.

Claim 1: P = ∑n−1
i=1 pi = 1

55

6 Implementation generalized Robinson Foulds

Algorithm 2 Choosing a full binary tree with n leaves uniformly at random

function CreateFullBinaryTree(n)
if n == 1 then

return A single node
else

var p = 0; . Probability for every case
var P = 0; . Sum of probabilities until now
list I = []; . List of intervals between 0 and 1
for i = 1, (n− 1) do

p = Ci−1Cn−1−i
Cn−1

;
I[i] = [P, P + p];
P = P + p;

end for
r ∈ [0, 1) chosen uniformly at random;
Let j be the index for which r lies in I[j];
Let L = CreateFullBinaryTree(j);
Let R = CreateFullBinaryTree(n− j);
return The binary tree with the root having the roots of L and R

as its left and right children respectively;
end if

end function

56

6.1 Preparation and Overview

Proof of Claim 1:

P =
n−1

∑
i=1

pi =
n−1

∑
i=1

Ci−1Cn−1−i

Cn−1
=

n−1

∑
i=1

Ci−1Cn−1−i

Cn−1
=

Cn−1︷ ︸︸ ︷
(n−1)−1

∑
j=0

CjC(n−1)−1−j

Cn−1
= 1

Therefore the pi’s can be considered as probabilities. The algorithm’s
next step is choosing r ∈ [0, 1) uniformly at random, which lies within the
interval I[i] with probability pi for all 1 ≤ i < (n− 1). Thus it constructs a
tree, where the left subtree has i leaves, with probability pi =

Ci−1Cn−1−i
Cn−1

. The
routine recursively creates the left subtree of the root with i and a right one
with n− i leaves. By induction hypothesis, CreateFullBinaryTree(i) creates
a full binary tree with i leaves uniformly at random. There are Ci−1 such
trees, so any one of them gets chosen with probability 1

Ci−1
, analogously for

n− i. All in all, the algorithm picks an arbitrary full binary tree with the
following probability:

Ci−1Cn−1−i

Cn−1︸ ︷︷ ︸
correct number of

leaves in
both subtrees

· 1
Ci−1︸ ︷︷ ︸

returning correct
left subtree

· 1
Cn−1−j︸ ︷︷ ︸

returning correct
right subtree

=
1

Cn−1

Repeatedly performing this routine built a uniformly randomized set
of full binary trees with different numbers of leaves. The test instances
were stored as Json-encoded lists of trees, where nodes are represented as
a recursive lists with one or two elements. Take a look at the following
examples:

57

6 Implementation generalized Robinson Foulds

Figure of tree Python List

[[[A︷ ︸︸ ︷[
[[1], [2]], [3]

]
, [4]], [5]

]
︸ ︷︷ ︸

8

, [6]], [7]
]

, [8]

]

[[[
[1], [2]

]
,

D︷ ︸︸ ︷[[
[3], [4]

]
, [5]

]]
︸ ︷︷ ︸

C

,
[
[6],
[
[7], [8]

]]]

[[[
[1], [2]

]
,
[
[3], [4]

]]
︸ ︷︷ ︸

E

,
[[

[5], [6]
]
,
[
[7], [8]

]]]

6.1.2 Distance Function

The generalized Robinson-Foulds opens up the possibility to choose differ-
ent distance measures. The goal is to compare these results with the tree edit
distance. Therefore the best distance function is the one that counts wrong
leaves, sticking with the introduced Robinson-Jaccard metric. Computing
the distances between trees with different values for the constant k may
show a pattern.

58

6.2 Implementation Details

6.2 Implementation Details

The implementations of both the gRF and the tree edit distance is based
on the data structure used in an implementation of Shasha and Zhangs
algorithm [12] introduced in Section 3.3.1. Some necessary customization of
this data structure Node include the following class properties:

1 from zss.simple_tree import Node

2

3 class ExtendedNode(Node):

4 def get_list(self):

5 #recursive function that returns a nested list

representing the tree structure

6 #used to create example trees

7

8 def number_of_leaves(self):

9 #returns the overall number of leaves in the tree

10

11 def list_of_leaves(self):

12 #returns a list of the leaf -nodes (objects) in the tree

13

14 def list_of_leaf_labels(self):

15 #returns a list of the labels (string) of the leaves in

the tree

16

17 def get_clusters(self , exclude_leaf_labels = 0):

18 #returns a list of the clusters in this tree

19

20 def label_leaves_randomly(self):

21 #randomly labelling the constructed trees examples

Listing 6.1: Scratch of the class ExtendedNode

To compute the gRF, the ILP introduced in Theorem 5.13 is solved by a
widely known, open-source library for linear programs within python, the
PuLP-package. Details about the construction of this ILP can be found in
the git repository.

59

6 Implementation generalized Robinson Foulds

6.3 Results

As already mentioned, this implementation of gRF uses the Jaccard metric
to calculate the distance between sets of clusters. Varying k ∈ {1, 4, 16, 64}
lead to the conclusion that the gRF is directly proportional to k. Moreover
there is a trend as k is increasing: The higher k gets, the less value a bigger
intersection of clades has. The overall number of matched clades is more
important than the quality of a matching. The difference between these
types of matchings is illustrated in Figure 6.1:

(a) Two phylogenetic trees T1 and T2.

(b) Graph GT1 ,T2
shows all non trivial clusters of T1

and T2. The blue edges belong to the optimal qual-
ity matching, the red ones to the optimal quantity
matching. The respective optimalities are indepen-
dent from the value k.

Figure 6.1: A small example suggesting the importance of quantity rather than quality, as k
increases.

Figure 6.1 illustrates two phylogenetic trees on the set of taxa {1, ..., 8}.
Because of the restriction to arboreal matchings, there are two possible ways
to map the clusters together: Mapping all clusters associated with nodes on
the left subtree of T1 to clusters corresponding either to nodes in the left or
the right subtree of T2. This leads to 2 possible matchings, M1 and M2 where
M1 is the optimal matching where the left subtrees are matched as well as
the right ones, and M2 being the optimal one among those where the left
and right subtrees are crosswise matched. Matching M1 has the advantage,
that the quality of its matched clusters is better. Such matchings shall be
called quality matchings. Whereas matching M2 may have more matched
nodes, but with smaller intersections among matched clusters, therefore
calling it a quantity matching.

60

6.3 Results

Interestingly, the type of an optimal matching changes as k increases. For
k = 1, the overall optimal arboreal matching is a quality matching. Although
it has 2 matched clusters less than an optimal quantity matching, it is still
more efficient because of the big intersections. However as soon as k > 1.5,
the power within the Jaccard distance decreases the value of quality to a
level, that pure quantity is better than quality:

Case k = 1 :

d(1)JRF(T1, T2) =

min
M matching

(
∑

(C,C′)∈M
1− (

|C ∩ C′|
|C ∪ C′|)

k + ∑
C∈C∗(T1),

Cunmatched in M

1 + ∑
C′∈C∗(T2),

C′unmatched in M

1
)
=

min
((

(1− 3
4
) + (1− 2

3
) + (1− 3

4
) + (1− 1

3
) + 2 + 2

)
︸ ︷︷ ︸

optimal quality matching

,

(
(1− 0) + (1− 0) + (1− 1

4
) + (1− 0) + (1− 0) + (1− 0)

)
︸ ︷︷ ︸

optimal quantity matching

)
=

min
(

5.5︸︷︷︸
optimal quality matching

, 5.75︸︷︷︸
optimal quantity matching

)
= 5.5

61

6 Implementation generalized Robinson Foulds

Case k = 2 :

d(2)JRF(T1, T2) =

min
((

(1− (
3
4
)2) + (1− (

2
3
)2) + (1− (

3
4
)2) + (1− (

1
3
)2) + 2 + 2

)
︸ ︷︷ ︸

optimal quality matching

,

(
(1− 0) + (1− 0) + (1− (

1
4
)2) + (1− 0) + (1− 0) + (1− 0)

)
︸ ︷︷ ︸

optimal quantity matching

)
=

min
(

6.3194◦︸ ︷︷ ︸
optimal quality matching

, 5.875︸ ︷︷ ︸
optimal quantity matching

)
= 5.875

The example above demonstrates the behaviour which can observed
within all test instances. For any instance the gRF distance tends to maximize
the number of matched cluster without taking the corresponding taxons
under consideration as k increases.

Furthermore, the running time is a big problem for this approach.
Lemma 5.14 provides a lower bound on the number of restrictions of at least
n2 log2(n). This leads to a huge ILP even for small trees with only 24 leaves.
Handling such instances took the university’s server approximately 500
seconds. Raising the number of leaves to 32 on each tree caused a running
time of over 3100 seconds per instance.
It is possible that more evolved linear programming packages solve these
problems more efficiently. One of these packages is the well known LP solver
Gurobi. Nevertheless, this approach doesn’t seem to bring fast solutions for
big problems as the number of constraints increases at a high pace.

62

7 Implementation Tree Edit

Distance

This chapter presents Henderson’s module for Shasha and Zhang’s al-
gorithm provided in his Github repository [12]. Furthermore meaningful
choices for cost functions are discussed and compared with each other. The
chapter is closed by an overview of the results and some general behavior
found during investigating them.

7.1 Shasha and Zhang’s algorithm by Henderson

Suppose two labelled trees A and B are given. Henderson’s implementation
of finding their TED can be split into two separated steps:

1. Finding out the post-order traversal index and the keyroots for A and
B.

2. Computing the TEDs for all relevant subproblems, i.e. combinations
of subtrees induced by keyroots of A and B respectively.

Ad Step 1:
Listing 7.1 presents the initialization of class AnnotatedTree. It can be split
up further into two parts: Step 1a) and Step 1b), as suggested within the
listing

63

7 Implementation Tree Edit Distance

1 class AnnotatedTree(object):

2 def __init__(self , root , get_children):

3 #init properties: nodes , keyroots , ids , stack , pstack

4 #********** Step 1a) **********

5 stack.append ((root , collections.deque ()))

6 j = 0

7 while len(stack) > 0:

8 n, anc = stack.pop()

9 nid = j

10 for c in self.get_children(n):

11 a = collections.deque(anc)

12 a.appendleft(nid)

13 stack.append ((c, a))

14 pstack.append (((n, nid), anc))

15 j += 1

16 #********** Step 1b) **********

17 lmds = dict()

18 keyroots = dict()

19 i = 0

20 while len(pstack) > 0:

21 (n, nid), anc = pstack.pop()

22 self.nodes.append(n)

23 self.ids.append(nid)

24 if not self.get_children(n):

25 lmd = i

26 for a in anc:

27 if a not in lmds: lmds[a] = i

28 else: break

29 else:

30 try: lmd = lmds[nid]

31 except:

32 import pdb

33 pdb.set_trace ()

34 self.lmds.append(lmd)

35 keyroots[lmd] = i

36 i += 1

37 self.keyroots = sorted(keyroots.values ())

Listing 7.1: Initialization of an AnnotatedTree

64

7.1 Shasha and Zhang’s algorithm by Henderson

Ad Step 1a):
This substep initializes a stack pstack needed for Step 1b). Variable stack is
of type stack, a specific data structure. This data structure is a collection of
objects supporting fast last-in, first-out semantics. Throughout the process
of the loop stack stores pairs of data: A node and a list of all its ancestors.
The variable is initialized as a stack consisting of a pair of the tree’s root
and an empty collection, since the root doesn’t have an ancestor.
While the stack still contains some pair of data its method pop gets executed.
This function returns the last element of the stack and removes it from the
stack. Every node is associated with a unique id nid. If the inspected node
has children, stack gets extended with pairs of each child and the updated
list of ancestors.
The essential detail is that every pair gets appended to the stack, thus putting
it at the end of stack. The reason why this is so important will be explained
later. After appending all its children to the stack, the investigated node
and some additional data get pushed onto another stack called pstack. This
stack will be used in Step 1b) to get the correct post-order index for every
node.

Ad Step 1b):
This step determines the keyroots of the investigated tree. A node is a
keyroot if and only if it is the node with the highest post-order traversal
index among all nodes with the same left most descendant. The right sibling
v′ of a node v has a different left most descendant than the node v itself. But
any node with a higher index can not have the same left most descendant as
v′ because of the way all nodes are indexed. Thus the node with the highest
index among all nodes sharing the same leftmost descendant, is required to
be a keyroot. Two find such nodes, two temporary dictionaries lmds, the list
of every node’s left most descendant, and keyroots, a dictionary saving the
highest index of all nodes that share a leftmost descendant, are introduced.
The stack pstack is constructed such that popping it consecutively yields
nodes in the same order as their post-order index. The counter i puffers the
actual post-order index of a node. During every pass through the while loop
the routine computes a node’s left most descendant by checking different

65

7 Implementation Tree Edit Distance

cases. Afterwards it updates a temporary dictionary keyroots which is used
to evaluate all keyroots at the end of Step 1b).

The initialization of an AnnotatedTree makes use of efficiently appending
and popping a stack to receive the correct indexing and all necessary
information to get the list of keyroots.

Ad Step 2:
After Step 1), the actual computation of the TED is done by first considering
all relevant subproblems. A matrix is computed storing all pairwise dis-
tances between relevant subproblems of the two investigated trees. This ma-
trix gets built incrementally by applying the recursion stated in Lemma 3.6.
The technical details can be seen in the actual implementation [12].

7.2 Distance measures

The simplest distance measure for the TED just counts the number of op-
erations needed to transform one tree into the other. This implies that any
insertion, deletion and renaming costs the same value of 1. This distance
measure is called the standard tree edit distance (STED)
A big difference between the TED and the gRF is that the latter does not take
the interior nodes of the trees into account. Therefore structural differences,
like inserting an interior node to prolong the path at some point, don’t affect
the gRF immediately. However one has to perform at least an additional
deletion-operation when using the TED. Every insertion and deletion of an
interior node increases the TED. This leads to the first investigated adaption
of operation costs: Making the insertion and deletion of interior nodes free
of charge. This distance measure will later be referred to as cheap tree edit
distance (CTED)
Another distinction is that the gRF doesn’t make a difference between left
and right. Therefore there was an attempt to adjust the distance measure by
adapting the direction. The idea is to restructure one of the trees by swap-
ping the order among some sibling pairings. Considering all combinations

66

7.3 Results

of sibling pairings leads to O(2n) possible trees. The approach however
considers only a specific restructured tree:
Let r1 and r2 be the roots of the inspected trees. Denote the left subtree of
root ri as Li and the right one as Ri for i ∈ {1, 2}. If |V(L1)| > |V(R1)|, but
the opposite holds true for the other tree, i.e. |V(L2)| < |V(R2)|, swap the
children of r1. The goal is to make the two trees as equally distributed as
possible without changing the set of clusters for these randomly created
trees. Thus the gRF remains the same, but the TED may change. After
having investigated the root perform the same comparison between L1 and
L2, R1 and R2 respectively. Computing a TED after adapting one tree in
such a way, adds the adjective adapted to the distance’s name, i.e. adapted
standard tree edit distance (aSTED) and adapted cheap tree edit distance (aCTED).
Last but not least, a compromise between the CTED and STED can be
investigated by defining the costs of insertions and deletions of inner nodes
as some 0 < α < 1. Assuming α = 1

2 , this distance measure is called 1
2 -alpha

tree edit distance (1
2 -ATED).

7.3 Results

It was possible to compute the TED for instances with up to 256 leaves per
tree. Afterwards, the problems became too big for the working memory of
the university’s servers. In most real life applications, two trees with up
to 1000 nodes in total should suffice. Otherwise one needs to execute the
calculations on more powerful computers or servers.

While comparing the different TEDs among each other, the trivial conclu-
sion, that the STED leads to bigger distance values than the CTED or any
α-ATED, was found. This is trivial as every operation is as least as expensive
for the STED in comparison to the CTED or an α-ATED. Some additional
notations will simplify the further discussion:

• Test instances, T (n): The generated set of all test instances where both
trees have exactly n leaves. Any instance is a set of two different,

67

7 Implementation Tree Edit Distance

randomly generated phylogenetic trees with n leaves on the set of taxa
X := {1, ..., n}. Furthermore, denote T as the set of all test instances:

T :=
⋃
i∈I

T (i) I := {2,3,...12,16,20,24,32,40,
48,64,128,192,256,512 }

• The average of a distance function δ, Aδ(n): Let δ be a distance function.
The average Aδ(n) is defined as follows:

Aδ(n) := (∑
(T,T′)∈T (n)

dδ(T, T′))
1

|T (n)|
1
n

This value is an indicator of the expected distance between two ran-
domly generated phylogenetic trees with n leaves with respect to
the distance function δ proportionately to n. For problem CTED this
average is denoted as ACTED(n), the other distances are denoted anal-
ogously.

The results show that the averages follow some trends:

• The average ACTED(n) seems to converge to 1 as n→ ∞.
• The average ASTED(n) is strongly increasing as n → ∞ and has an

upper bound of 3.

The first observation can be explained by following lemmas:

Lemma 7.1. Let T1 and T2 be two phylogenetic trees with n leaves on the same set
of taxa. Let δCTED be the distance function used in the CTED. Then the following
inequality holds true:

dδCTED(T1, T2) ≤ n

Proof. The distance function δCTED allows inserting and deleting any inte-
rior node without any costs. Thus one can perform a standard procedure
ensuring that the overall costs are not greater than n. Figure 7.1 illustrates
the aforementioned procedure for a small example.
First every inner node gets deleted until all leaves are directly connected

68

7.3 Results

to the root. As any deletion is free of charge, this step costs 0 overall. Af-
terwards inner nodes get inserted until the structure of the adapted tree is
the same as the one of tree T2. This step is free of charge as well. The only
thing left to do is relabelling all leaves to match tree T2. The costs for this
relabelling step is equal to the number of nodes that have to be relabelled.
Thus the upper bound of n holds trivially.

Figure 7.1: A step guide for limiting the CTED by the number of leaves.

Remark. To calculate the actual average ACTED(n) and whether it converges
to 1, one has to solve the following equation:

ACTED(n) = (
n

∑
i=0

n− i P(π has exactly i fixpoints))
1
n

where π is an arbitrarily chosen permutation on the set {1, ..., n}.

Remark. The upper bound in the second observation can be proven by the
same procedure described in Lemma 7.1. The only difference is, that the
first two steps both cost exactly n− 2, as this is the number of interior nodes
other than the root.

These two observations resemble the data found during the computations.
There are many cases where the procedure from Lemma 7.1 does not yield
the best solution. For trees T1 and T2 in Figure 5.3 for example, the cheapest
way to manipulate T1 is to delete the leave with label 1 and its parent,
insert an interior node on the edge of the root to leave 8 and append
leaf 1 as another child. Thus the overall costs of this manipulation are 2.

69

7 Implementation Tree Edit Distance

However, in most cases the observed costs are very close to the costs of
the above mentioned procedure. All these considerations are based on the
fact, that the actual costs of the CTED only depend on the permutation of
the leaves’ labels, not on the actual structure of the trees. Two completely
differently structured trees may have a CTED distance of 0 as long as the
underlying permutation of the leaves’ labels is the same one with respect to
the left to right order. Thus the CTED can be seen as a distance measure on
permutations, but it does not reflect useful information within the context
of structured trees.
For the STED there are often better solutions than the plain procedure of
deleting and inserting all interior nodes. Thus it computes more advanced
solutions that indeed take the structure of both trees into account. On the
other hand, this distance measure does not give a benefit to interior nodes.
Thus it is not useful for simulating the gRF, since it doesn’t concentrate on
the clades and their leaves’ labels.

Last but not least, varying the value of α for the α-ATED indicates that the
average Aα−ATED(n) is directly proportional to α. There is a trivial upper
bound on this average given by:

Aα−ATED(n) < 1 + 2α.

This bound can be obtained by the same procedure as described in Lemma 7.1.
Furthermore it complies with following properties:

Aα−ATED(n) −→ ACTED(n) as α→ 0

Aα−ATED(n) −→ ASTED(n) as α→ 1

70

8 Comparing the Tree Edit

Distance and the generalized

Robinson Foulds Distance

This chapter compares the results of both computations. The focus of this
thesis is to find a possibility to resemble the gRF, which is quite time consum-
ing, with a special case of the TED. The chapter starts by discussing the time
complexity of both measures. Afterwards the differences between the dis-
tances themselves are explained. Finally the results are presented, showing
that there is no significant correlation between these two measures.

8.1 Time Complexity

The time complexity of both distance measure were mentioned briefly in
the previous two chapters. The expected behaviour is reflected by the ob-
servations. Computing the TED was possible for trees with up to about 256
leaves each in a manageable time of approximately 520 seconds. Although it
was possible to create bigger instances with up to 512 leaves each, the com-
putation of a distance never ended. The time to compute the TED is pretty
similar for any of the investigated distance measures. This was roughly the
same time as it took to find the gRF of trees with 24 leaves each.
The graph shows, that as soon as the instances reach a size of about 20

leaves each, the time to compute the gRF distance explodes. Depending on
the computational possibilities, it might not be possible to compute real life

71

8 Comparing the Tree Edit Distance and the generalized Robinson Foulds Distance

Figure 8.1: This graph shows the time it took to compute the distance measures between
two trees with up to 256 leaves.

instance where the trees have for example 50 leaves. On the other hand the
time to compute larger instances of the TED remains manageable.

8.2 Discussing the Results

In the previous chapter it was discussed that the CTED is mainly concentrat-
ing on the permutation of the leaves’ labels, not on the tree’s structure. On
the other hand, the STED is not representative, as the costs are very much
dependent on changes among the interior nodes, whereas they don’t impact
the gRF directly. Thus the 1

2-ATED, which compromises the advantages of
the others, is the most comparable TED to the gRF.
Since the gRF is very time consuming, the comparison of the respective dis-
tances uses instances having 20 leaves each. Because of the manageable time,
it was possible to generate 300 test instances and compute their 1

2-ATED
and gRF distance

The 1
2 -ATED is much easier to compute than the gRF for a given instance.

Being able to ”simulate” the gRF by computing the 1
2-ATED instead could

save a lot of time and resources. The goal is to find any similarities or

72

8.2 Discussing the Results

dissimilarities to show whether such a simulation would be representative.
The following questions summarize possible connections between the two
measures:

1. Does a low gRF imply a low 1
2 -ATED?

2. Does a low gRF require a low 1
2 -ATED?

3. Does a high gRF imply a high 1
2 -ATED?

4. Does a high gRF require a high 1
2 -ATED?

The following examples suggest potential dissimilarities:

Example low gRF, high 1
2 -ATED:

The first example is illustrated in Figure 8.2. It is obvious, that T1 and T2

have the same clusters, therefore the gRF has to be 0. But since the order of
the leaves’ labels is reversed, the shortest 1

2 -ATED is 8 and can be obtained
by relabelling all leaves.

Figure 8.2: Two trees T1 and T2 which have a low gRF but a high 1
2 -ATED.

Example low 1
2 -ATED, high gRF:

The second example is illustrated in Figure 8.3. The value of the 1
2-ATED

amounts to 4.5 which can be obtained by 5 deletions and 4 insertions. On the
other hand, the gRF adds up to 8. This is the highest gRF between any two
trees with just 8 leaves found. Additionally, there is no randomly generated
pair of trees that has a similar gRF distance in the test database. That leads
to the conclusion that 8 is a among the highest gRFs for trees with 8 leaves.
On the same time, the 1

2 -ATED is a comparatively small distance.

These two examples shall give an insight into the problems with com-
paring the 1

2 -ATED with the gRF. They show that it is possible to construct
examples, that negate any similarity between the gRF and the 1

2 -ATED.

73

8 Comparing the Tree Edit Distance and the generalized Robinson Foulds Distance

Figure 8.3: Two trees T1 and T2 which have a low gRF but a high 1
2 -ATED.

Figure 8.4: Illustration of the distances of our randomly generated test instances, sorted
increasingly with respect to the gRF distance.

The test database consists of 300 pairs of randomly generated phyloge-
netic trees with 20 leaves. In Figure 8.4 every integer value on the X-axis
corresponds to an example pairing. The instances are ordered according
to their gRF increasingly. The instance at x = 1 has the lowest the one at
x = 300 the highest gRF. There are additional grid lines at the 10%-, 25%-,
50%-, 75%- and 90%-marks of the gRF. Dashed lines marks the highest and
lowest values of all 1

2-ATED. They help identifying low and high 1
2-ATED

74

8.2 Discussing the Results

values.
A short look on the lowest and highest 10% of all gRF values provides
answers to the questions asked before. Figure 8.5 shows a magnification
of these outermost parts of the graph. These results suggest, that a short
gRF distance does not correlate to a short or large 1

2-ATED. Actually, the
randomized test instances with short gRF distances realized one of the
lowest as well as one of the highest 1

2-ATED, negating questions one and
two. A low gRF neither implies nor requires a low 1

2 -ATED.
The other end of the gRF spectrum shows more correlation. No pair of
trees, having a higher gRF distance than 50% of all cases, has an 1

2-ATED
close to the lowest distances among all test instances. However, the range of
1
2 -ATEDs still spans a large interval. Thus the remaining questions whether
a high gRF implies or requires a high 1

2 -ATED has to be negated as well.

Figure 8.5: Magnifying on the extremal cases of all test instances, namely the lowest and
highest 10% of gRF distances, suggests that there exists no correspondence
between the gRF and the TED.

In Figure 8.6 the examples are sorted according to their 1
2-ATED. This

graph further shows, that there is no direct correlation between two trees’
1
2-ATED and their gRF distance. The overall tendency is similar meaning
that a higher 1

2-ATED suggests a higher gRF but there exists no significant
correspondence.

All in all, a higher gRF suggests a higher 1
2-ATED and the other way

around. Nevertheless, there is no significant correlation between these two

75

8 Comparing the Tree Edit Distance and the generalized Robinson Foulds Distance

Figure 8.6: Illustration of the distances of our randomly generated test instances, sorted
increasingly with respect to the 1

2 -ATED distance.

distance measures. Therefore it can’t be possible to simulate the highly
complex gRF distance with the easier 1

2-ATED as a representative of all
TEDs.

76

9 Conclusion

This thesis tries to give a short insight into a large and widely ranged topic
of comparing trees.

It starts off by providing basic notations and definitions since the lan-
guage varies greatly between different papers and authors.

The first idea of how to compare trees is the tree edit distance. Editing
one tree into the other, by using simple operations such as deleting, inserting
and relabelling step by step, is one intuitive way of comparing trees. Every
operation is associated with some costs. The task is to find a sequence of
editing operations of minimal total costs, that alters both trees to become the
same. There are simple algorithms using a dynamic programming approach
that can compute the tree edit distance to optimality. The first presented
algorithm is by Shasha and Zhang [17], who use a trivial decomposition
strategy guiding an iterative, recursive routine that always compares the
rightmost subtrees. Afterwards two algorithms of Klein [13] and Demaine
et al. [6] are presented. These algorithms involve more sophisticated de-
composition strategies which take the sizes of the investigated subtrees into
account. The latter even satisfies the lower bound on the running time for
computing the tree edit distance with a dynamic programming approach.

The tree edit distance can be extended to the so called flexible tree
matching. The idea is to relax the restrictions on ancestry and sibling
groups. Penalizing such violations instead of forbidding them opens up
a lot of possibilities. Computing this measure is equivalent to finding a
minimum cost matching in a corresponding graph. Therefore computing the
flexible tree edit distance is a strongly NP-complete problem. The chapter

77

9 Conclusion

includes a model for approximation heuristics. Kumar et al. [14] provide
a Monte Carlo algorithm to compute an approximation of the flexible tree
matching.

The third distance measured discussed is the Robinson Foulds metric,
which is widely used in phylogenetics. This particular distance measure
can only be applied to compare evolutionary trees on the same set of
taxa. It determines the number of clades present in exactly one of the two
investigated trees. It has well known advantages and disadvantages and can
be generalized to use more evolved cost functions. However, computing this
distance is equivalent to the NP-complete problem of finding a minimum
cost arboreal matching between the sets of non-trivial clades.

Since finding the generalized Robinson Foulds distance is NP-complete,
computing it takes a lot of time, even for small instances. Therefore it would
be great to be able to simulate it with a tree edit distance algorithm. This
idea is tested in a series of computational experiments.
Moreover all implementation details are presented. They contain a prove of
randomness of the test instances, the creation of a binary linear program to
compute the generalized Robinson Foulds metric and the implementation
of Shasha and Zhang’s algorithm.

The thesis ends with an analysis of the computational results. It demon-
strates how much faster the tree edit distance can be computed and discusses
the possible similarities of these two distance measures. The computational
experiments lead to the conclusion, that the two compared distance mea-
sures are very much independent from one another. There is a small corre-
lation, that a higher generalized Robinson Foulds distance also suggests a
higher tree edit distance. Nevertheless the results show that there can’t be a
direct proportional correlation between them.

78

Bibliography

[1] Apostolico A., Galil Z., Pattern matching algorithms, Oxford University
Press, 1997

[2] Bille P, A survey on tree edit distance and related problems, Theoretical
computer science, 2005, 217—239

[3] Böcker S., Canzar S., Klau G., The Generalized Robinson-Foulds Metric,
International Workshop on Algorithms in Bioinformatics, 2013, 156—
169,

[4] Bogdanowicz D., Giaro K. and Wróbel B., TreeCmp: Comparison of Trees
in Polynomial Time, Evolutionary Bioinformatics 8, 2012, 475–487

[5] Chen W. New algorithm for ordered tree-to-tree correction problem, J. Algor.
40, 2001, 135–158

[6] Demaine E. D., Mozes S., Rossmann B. and Weimann O., An Optimal
Decomposition Algorithm for Tree Edit Distance, ICALP’07 Proceedings
of the 34th international conference on Automata, Languages and
Programming, 2007, 146–157

[7] Dulucq S. and Touzet H., Analysis of tree edit distance algorithms, Pro-
ceedings of the 14th Annual Symposium on Combinatorial Pattern
Matching (CPM), 2003, 83–95

[8] Figueiró H. V., Gang L., et al., Genome-wide signatures of complex intro-
gression and adaptive evolution in the big cats, Science Advances Vo 3 no.
7, 2017

79

Bibliography

[9] Andritsch C., Master Thesis, Github Repository, https://github.com/
bananajoe/masters_thesis, 2019

[10] Gusfield D., Algorithms on strings, trees and sequences: computer science
and computational biology, Cambridge University Press, 1997

[11] Harel D. and Tarjan R. E., Fast algorithms for finding nearest common
ancestors, SIAM J. Comput. 13, 2, 1984, 338–355

[12] Tim Henderson Zhang-Shasha: Tree edit distance in Python, Github Repos-
itory, https://github.com/timtadh/zhang-shasha, 2019

[13] Klein P. N., Computing the edit-distance between unrooted trees, Proceed-
ings of the 6th Annual European Symosium on Algorithms (ESA), 1998,
91–102

[14] Kumar R., Talton J., Ahmad S., Roughgarden T., Klemmer S., Flexible
Tree Matching, Proceedings of the 22nd International Joint Conference
on Artificial Intelligence, 2011,

[15] Moore P., Strucural motifs in RNA, Ann. Rev. Biochem 68, 1999, 287–300

[16] Robinson D.F., Foulds L.R., Comparison of phylogenetic trees, Mathemati-
cal Biosciences Volume 53 Issues 1–2, 1981, 131–147

[17] Sasha D., Zhang K., Simple fast for editin distance between trees and related
problems, SIAM J. Comput. 18, 6, 1989, 1245–1262

[18] Steger A., Diskrete Strukturen: Band 1: Kombinatorik, Graphentheorie, Alge-
bra, Springer-Verlag, 2007

[19] Tai K., The tree-to-tree correction problem, J. Assoc. Comp. Mach. 26, 1979,
422–433

[20] Valiente G., Algorithms on Trees and Graphs, Springer-Verlag, 2002,

[21] Wagner R., Fischer M. J., The string-to-string correction problem, J. ACM
21, 1, 1974, 168–173

[22] Waterman R. A., Introduction to computational biology: maps, sequences
and genomes, Chapman and Hall, 1995

80

https://github.com/bananajoe/masters_thesis
https://github.com/bananajoe/masters_thesis
https://github.com/timtadh/zhang-shasha

	Introduction
	Basics and notation
	Basic Graph Theoretic Concepts
	Other necessary Tools

	Tree Edit Distance
	Introduction
	Short History of the Tree Edit Distance
	Dynamic Programming Approach
	Shasha and Zhang's algorithm
	Klein's algorithm
	Demaine et al.'s optimal algorithm
	Lower bound on decomposition algorithms

	Flexible Tree Matching
	The Model for the Flexible Tree Edit Distance
	Approximation and Conclusion

	Robinson Foulds Metric
	Additional Background
	The original metric
	The Generalized Robinson Foulds
	Jaccard-Robinson-Foulds metric
	Computational Complexity
	An Integer Linear Program

	Implementation generalized Robinson Foulds
	Preparation and Overview
	Creating Test Instances
	Distance Function

	Implementation Details
	Results

	Implementation Tree Edit Distance
	Shasha and Zhang's algorithm by Henderson
	Distance measures
	Results

	Comparing the Tree Edit Distance and the generalized Robinson Foulds Distance
	Time Complexity
	Discussing the Results

	Conclusion
	Bibliography

