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Abstract

Metal-Organic Frameworks (MOFs) represent a family of highly porous ma-
terials, that have shown promising properties for numerous applications in-
cluding gas-storage and catalysis. As most of the applications for MOFs
rely on the effectiveness of heat dissipation, it is crucial to investigate their
thermal transport properties in detail. Since these materials allow for easy
modifications in their structural composition and architecture, an in-depth
understanding of the structure-to-property relationship will invite precise
tailoring of the material to the individual requirements. To derive these
relationships, molecular dynamics (MD) simulations are applied, employ-
ing specially designed empirical force fields to investigate heat transport for
different configurations of MOFs varying the properties of the organic and
inorganic components. Special care is taken to analyze the periodic interfaces
between the individual segments occurring in MOFs, as they are identified
as a major limiting factor for heat transport. It has been found that longer
organic components lead to a reduction in thermal conductivity due to an
increase of pore size. Additionally, reducing the large mass mismatch be-
tween organic and inorganic component, by utilizing lighter metals, leads to
significant increases in thermal transport.

On more technical grounds, for the determination of thermal transport
properties equilibrium and non-equilibrium MD methodologies have been
employed in a complementary fashion. In order to carry out the simulations
for all materials of interest, it was necessary to parameterize additional force-
fields based on ab initio obtained reference data. Additionally, vibrational
properties have been supplementarily investigated by using force-fields, in
order to provide further analysis leading to a more generally applicable pre-
diction of the thermal conductivity for different MOF morphologies. Using
the Boltzmann transport equation within the relaxation time approximation,
the thermal conductivity was also obtained by calculating the phonon life-
times in the framework of lattice dynamics providing additional insight about
the origin of thermal transport in MOFs.
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Kurzfassung

Metallorganische Gerüste (engl. Metal-Organic Frameworks, MOFs) stellen
eine Familie von hoch porösen Materialien dar, die vielversprechende Eigen-
schaften für zahlreiche Anwendungen wie Gasspeicherung und Katalyse auf-
weisen. Nachdem sich die meisten dieser Anwendungen auf die Effektivität
des Wärmeabtransportes verlassen, ist es entscheidend die Wärmetransport-
eigenschaften von MOFs im Detail zu untersuchen. Da diese Materialien
einfache Abänderungen in deren strukturellen Komposition und Aufbau er-
lauben, wird ein tiefes Verständnis der Struktur-zu-Eigenschaft Relation da-
zu führen, MOFs für entsprechende Anforderungen zu entwerfen. Um die-
se Beziehungen zu erlangen, werden Molekulardynamik (MD) simulationen
angewandt. Dazu werden speziell entworfene empirische Kraftfeldpotentiale
verwendet, um den Wärmetransport für MOFs mit unterschiedlichen organi-
schen und inorganischen Komponenten zu ermitteln. Besonders wert gelegt
wurde auf die Auswertung der periodischen Verbindungspunkte der unter-
schiedlichen Komponenten der MOFs, da diese als ein wesentlich limitieren-
der Faktor für den Wärmetransport identifiziert wurden. Es wurde ermit-
telt, dass längere organische Verbindungsstränge zu einer Verringerung der
Wärmeleitfähigkeit aufgrund eines vergrößerten Leerraumes führt. Zusätzlich
führt eine Reduktion des Massenverhältnisses zwischen den organischen und
inorganischen Komponenten, indem leichtere Metallatome verwendet werden,
zu einem signifikanten Anstieg der Wärmeleitfähigkeit.

Technisch wurde die Wärmeleitfähigkeit mithilfe von Gleichgewichts und
nicht-Gleichgewichts MD Methodologien bestimmt. Um die Simulationen für
alle Materialien von Interesse durchzuführen, war es notwendig zusätzliche
Kraftfelder mithilfe von Ab-Initio basierenden Referenzdaten zu parametri-
sieren. Zusätzlich wurden Schwingungseigenschaften von MOFs untersucht,
um zusätzliche Aspekte und mögliche Ursachen des Wärmetransportes zu
analysieren. Zuletzt wurde die Wärmeleitfähigkeit durch Ermittlung der Pho-
nonen Lebensdauern bestimmt, was zusätzliche Auswertungsmöglichkeiten
lieferte.
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1 Introduction

Metal Organic Frameworks (MOFs) represent a group of crystalline materials
that have gained a significant amount of attention in the recent years. They
show promising properties for many applications like gas storage [1–3], gas
separation [4,5], drug delivery [6] and catalysis [7]. They also occur in many
different forms leading to potential future applications utilizing their unique
individual properties leading to favorable thermoelectricity [8, 9], semicon-
ductivity [10, 11], piezoelectricity [12], ferroelectricity [13], magnetism [14]
and to superconductivity [15], which can frequently be tuned by adjusting
the MOF material. The reason for this broad field of different properties lies
in their modular nature. They are materials consisting out of two different
types of building blocks. One of them is an inorganic node – typically a
metal-oxide – and the other is an organic linker, connecting the nodes with
each other to form a highly porous crystalline material. The organic and
inorganic building blocks are often connected to each other by a carboxylic
acid group of the organic linker. This type of connection allows the link-
ers to be changed easily without modifying the connecting chemistry of the
MOF. This makes them easily functionalizeable with various side groups,
while maintaining their high internal surface area, making MOFs attractive
for many of their applications. But there are also completely different types
of MOFs, that do not rely on oxygen and use nitrogen, sulfur or other ele-
ments to form the inorganic node and its connection with the organic linkers.
This work will focus on investigating the more ”classical” MOFs based on
metal oxides and aromatic organic linkers.
Many of the current and potential applications of MOFs involve chemical
reactions or electric current, which inevitably lead to the generation of heat.
For these processes to reach a high efficiency and to prevent large tempera-
ture fluctuations it is of importance that the utilized materials are capable of
dissipating heat in a reasonable timeframe. Thermal transport can also be a
major limiting factor for hydrogen storage [16]. This is especially important
for MOFs since many of them suffer from a low thermal stability. Many cur-
rent studies focus on creating new MOFs that are more thermally stable [17],
but the framework of interest of any given application might not be as fa-
vorable. Contrary to this, a low thermal conductivity is desired in addition
to a high electrical conductivity and a high Seebeck coefficient leading to
favorable thermoelectricity. This leads to significant interest in studying and
modeling transport properties in these materials. MOFs typically show poor
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1 INTRODUCTION

heat conduction [8, 18] and so far very few publications tried to understand
the thermal conductivity in detail. In this work the focus will be to inves-
tigate some of these materials for their thermal transport properties and to
attempt to explain those by applying computational methods.
Primarily, calculations will be carried out utilizing Molecular Dynamics (MD)
simulations. There, equilibrium and non-equilibrium approaches will be ap-
plied. Complementary to the molecular dynamics results, internal vibrations,
the phonons, which constitute the main carriers of heat in MOFs, will be
analyzed by using lattice dynamics techniques. These will provide greater
understanding about the origin of differences in heat transport. Since MOFs
are relatively large and complex structures, classical force fields will be uti-
lized to carry out the majority of simulations. These are required to save
computational resources, especially for the MD simulations, which are prone
to converge slowly or to suffer from significant finite size effects. Since the
transferability of many force fields in the literature is questionable at best,
only those, specifically developed for MOFs, will be used in this work. For a
few materials of interest, additional force field parameters will be fitted based
on density functional theory (DFT) obtained reference data. The objective
is to use the acquired results to make statements on the thermal conductiv-
ity in metal-organic frameworks, while also remaining critical of the various
methods that lead to these values. This is important, because the thermal
conductivity is known to be an observable that is difficult to measure and
simulate leading to large errors in many cases [19].
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2 Metal-Organic Frameworks

This section should give an overview of the structures investigated in this
work and the reasons why they were chosen. The primary goal is to provide
structure-to-property relationships that help predicting the thermal conduc-
tivity of future MOFs. For this it is necessary to investigate several materials
of similar geometry which differ in a systematic way.
MOFs exist in many different shapes and forms. Some of the simplest and
most frequently investigated MOFs belong to the group of isoreticular metal-
organic frameworks (IRMOFs), of which some examples are given in figure
2.1. The figures containing atomic structures used in this work were all cre-
ated using the VESTA software [20]. IRMOFs are built from M4O nodes,
where M is the metal, with the same type of organic linkers in each di-
rection forming a cubic structure. Most commonly, these MOFs are made
with Zn4O nodes but possible replacements for Zn include Mg and Ca [21].
The organic linkers belong to the group of the dicarboxylic acids with the
most common one being terephthalic acid (TPH) which form the so-called
IRMOF-1 (also referred to in literature as MOF-5). This MOF has been
chosen as a starting point, as it was studied in many other publications and
is one of the most well known MOFs. Other examples for linkers with this ar-
chitecture that will be investigated in this work are oxalic acid (IRMOF-130),
biphenyl-dicarboxylic acid (BPDC, IRMOF-10) and terphenyl-dicarboxylic
acid (TPDC, IRMOF-16). This set of materials will be investigated in order
to study the impact of linker length on heat transport. While this has been
performed before to some extent [22], it will be studied in more detail and
also serves as a starting point for further statements. In addition to chang-
ing the organic linkers connecting the inorganic nodes, it is also of interest
how different metal atoms impact heat transport. While it is also possible to
attach additional groups to the organic component, and there are also MOFs
that form the inorganic nodes with other elements like sulfur or nitrogen in-
stead of oxygen, but considering them would exceed the scope of this work.
Inspired by the investigations for the different metal atoms, computational
experiments have been carried out changing the masses of the linkers, which
should be functionally similar to using a linker with additional functional-
ized groups, as the connecting chemistry would hardly be disturbed by such
a modification.

One class of MOFs pictured in figure 2.2 will also be investigated in this
work. These MOFs posses an entirely different inorganic building block with
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2 METAL-ORGANIC FRAMEWORKS

(a) IRMOF-1 (b) IRMOF-10 (c) IRMOF-16

Figure 2.1: Molecular structure of typical IRMOFS with different organic
linkers. a) terephthalic acid, b) biphenyl-dicarboxylic acid and c) terphenyl-
dicarboxylic acid

(a) JAST-1 (b) MOF-508

Figure 2.2: Molecular structures of JAST-1 and MOF-508 with a paddle-
wheel node forming a pillar structure with nitrogen based linkers.

only two metal atoms that form a so-called paddlewheel structure with the
oxygen atoms from the organic components. In two directions, the linkers of
these systems are of the same type as for the IRMOFs – a terephthalic acid
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– while in one direction a nitrogen atom connects the organic linker directly
to the metal atoms on either side of the linker. These are commonly referred
to as pillared MOFs. Examples for the organic building blocks in this archi-
tecture are bipyridine (forming MOF-508) and 1,4-Diazabicyclo[2.2.2]octane
(DABCO, forming JAST-1). Common metals for these structures are Cu
and Zn, but only the zinc variant will be considered in this work. These
MOFs have been chosen alongside the IRMOFs as they are tetragonal, mak-
ing them relatively easy to compare. Another reason is, that they have a
different type of organic-inorganic connecting chemistry, making it interest-
ing to observe different interactions at the interfaces between the building
blocks. Moreover, MOF-508 has shown promising adsorption properties in
the past [23] and has been successfully synthesized in many instances. JAST-
1 also possesses high adsorption capacity and is of interest for the process of
polymerization [24].
It is important to note that many MOFs do not occur in such straightfor-
ward and simple geometries. Linkers do not always strictly connect to two
inorganic nodes and the geometry is often far from cubic. This is why the
last MOF that will be considered is MOF-74, which is depicted in figure
2.3. This structure deviates strongly from the previously considered MOFs,
both in shape and in its properties. It consists of hexagonal linker-node clus-
ters stacked on top of each other. The organic linkers mainly consist of an
aromatic ring. But they are now connected at four different points to the in-
organic nodes. Two of these connections are accomplished with a carboxylic
acid like previously, while the other two involve an oxygen atom directly con-
nected to the aromatic ring. These linkers form the faces of the hexagonal
cell. The inorganic nodes at the corners of the hexagon contain three zinc
atoms, each connected to four oxygens, which all connect to the organic link-
ers. These inorganic components are stacked on top of each other in three
alternating configurations without a linker in between. This leads to some
sort of helical node-chain that elongates itself through the entire length of the
MOF. Its many connections and the fact that the linker-node structure only
expands in two dimension, makes this a much more rigid MOF than those
mentioned before. This is also a material that has been thoroughly investi-
gated before and has gained attention for its gas adsorption properties [24].
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Figure 2.3: Molecular structures of MOF-74 from a top and side perspective.



3 Computational Methods and Theory

This section serves as an introduction to the fundamental theory of thermal
conductivity and how it can be calculated. In addition, the computational
methods used in this work will be introduced. Additionally, their ability to
aid the prediction of properties in materials will be described.

3.1 Lattice thermal conductivity

Early in the history of physics most correlations between observables have
been obtained by phenomenological observations of nature. The thermal
conductivity κ represents one of these cases and correlates a temperature
gradient ∇T to the heat flux J through a material. This expression is com-
monly known as Fourier’s law.

J = −κij∇T (3.1)

Since then this initially phenomenological proportionality constant has been
investigated with modern methods. Expressions have been derived describ-
ing how thermal transport depends on other properties of solids. The two
major contributions to the thermal conductivity arise due to phononic or
electronic heat transport. Typically κ is low for electrically insulating mate-
rials, but there are exceptions, like AlN that show a relatively large thermal
conductivity under certain conditions [25]. Since the materials to be inves-
tigated – the metal-organic-frameworks – typically possess a low electrical
conductivity [26], heat transport will arise from phonons. The basic consid-
erations portrayed in below, follow a book by Ibach and Lüth [27]. Just as
for electronic transport and many other transport properties, the Boltzmann
transport equation (BTE) can be applied for phononic heat transport. It
covers a change in a distribution function f over time due to external forces,
diffusion of particles and their collisions with each other.

df

dt
=
∂f

∂t

∣∣∣∣∣
ext

+
∂f

∂t

∣∣∣∣∣
diff

+
∂f

∂t

∣∣∣∣∣
coll

(3.2)

We begin the considerations by assuming no external forces and neglecting
the first term. The collision term can be approximated by the relaxation
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3 COMPUTATIONAL METHODS AND THEORY

time approximation (RTA) which introduces the relaxation time τ .

∂f

∂t

∣∣∣∣∣
coll

= −f − f0
τ

(3.3)

This describes the function f eventually returning to its equilibrium condition
f0. The relaxation time serves to define the speed of this process. The
diffusive term can be expressed as

∂f

∂t

∣∣∣∣∣
diff

= −v · ∇f (3.4)

where v is the group velocity. The transport function’s gradient ∇f can then
be related to the temperature gradient leading, under stationary conditions,
to the following expression of the Boltzmann transport equation:

df

dt
= −v · ∂f0

∂T
∇T − f − f0

τ
(3.5)

In order to lead this to the actual transport property given by a proportion-
ality law like equation 3.1, it is necessary to consider the corresponding flux
quantity J. For a wavelike particle, the flux can be described with the group
velocity v, the frequency ωλ of each mode and the corresponding distribution
function.

J =
1

V

∑
λ

vλh̄ωλf (3.6)

Here λ is used as an index for each phonon mode in a reciprocal grid of wave
vectors iq, h̄ is the reduced Planck’s constant and V is the volume of the
material in which the heat flux is observed. When using the expression for
the distribution function from equation 3.5 one obtains for the heat flux:

Ji =
1

V

∑
λ

h̄ωλτλv
2
λ,i

∂f0,λ
∂T

∂T

∂xi
. (3.7)

For phononic heat transport, the equilibrium distribution function f0 is given
by the Bose-Einstein distribution.

f0 =
1

exp(h̄ωλ/(kBT ))− 1
(3.8)
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3.2 Lattice Dynamics

Here kB is the Boltzmann constant. If one now uses equation 3.7 with the
Bose-Einstein distribution in Fourier’s law, one can obtain the following ex-
pression for the thermal conductivity tensor.

κij =
1

V

∑
λ

vλ,i · vλ,jCλτλ (3.9)

with the mode heat capacity Cλ given as

Cλ = kB

(
h̄ωλ
kBT

)2
exp(h̄ωλ/(kBT ))

[exp(h̄ωλ/(kBT ))− 1]2
. (3.10)

In literature, equation 3.9 is frequently expressed using the mean free path
of a phonon lλ = vλτλ instead of the phonon lifetime. This is the distance
a phonon has to traverse on average until a collision event occurs. It is a
property that is also very important for converging cell sizes in atomistic
simulations, as they should be large enough to encompass the phonon mean
free for many observables of interest. It is also important to note, that this
mode heat capacity in equation 3.10 is not the same as the classical heat
capacity that can be obtained from its integral over the entire density of
states in any given system. This is the heat capacity depending on the energy
of each phonon mode. The shape of this function is depicted in figure 3.1 for
different temperatures. The heat capacity is the easiest component of the
thermal conductivity to calculate, as it is only correlated to the system, by the
phonon frequencies in reciprocal space. Another straightforward component,
the group velocity, which is the derivative of the phonon dispersion curves in
reciprocal space.

vλ,j =
∂ωλ
∂qj

(3.11)

In the next section, a computational method will be presented which can be
used to obtain the phonon frequencies in the first Brillouin zone for each nor-
mal mode. Subsequently, the most difficult component to obtain in equation
3.9 will be discussed, the phonon lifetime.

3.2 Lattice Dynamics

In the previous section the thermal conductivity based on phonon transport
has been introduced. For calculating it, it is necessary to obtain the phonon
frequencies and lifetimes for the system of interest. The considerations for
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3 COMPUTATIONAL METHODS AND THEORY

Figure 3.1: Mode heat capacity for various temperatures depending on fre-
quency.

harmonic phonon calculations are taken from [27] while the background for
anharmonic effects is taken from [28,29]. First we will focus on how to obtain
the phonon band structure with atomistic simulations. For this, Newton’s
equations of motion have to be solved for all atoms in the system. It is
necessary to describe all forces between the atoms. The most straightforward
way of achieving this, is by imagining the interatomic interactions in the
form of springs. These should not only be considered pairwise but for all
many-body interactions. For obtaining the individual spring constants, the
impact of displacing one or multiple atoms relative to the other atoms has
to be investigated. Therefore, it is necessary to describe the potential energy
φ of the system as a function of the displacements and coordinates of all
the individual atoms. This is generally achieved in form of a Taylor series
expansion.

Φ(r + u) = Φ(r) +
1

2

∑
nαi

∑
mβj

∂2Φ

∂rnαi∂rmβj
unαiumβj

+
1

6

∑
nαi

∑
mβj

∑
oγk

∂3Φ

∂rnαi∂rmβj∂roγk
unαiumβjuoγk + ...

(3.12)

Here n, m and o indicate the unit cell the atom is located in, α, β and
γ represent the index of the atom in its respective primitive unit cell, i, j
and k are the Cartesian indices, r are the coordinates of an atom and u the
displacement. It is necessary to include interactions with atoms from adjacent
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3.2 Lattice Dynamics

unit cells, hence the specific indices. This form includes terms up to the third
order. For the initial considerations we will only consider terms up to the
second order. Then this potential merely describes a harmonic oscillator for
a many particle system and this is known as the harmonic approximation.
The derivatives of the potential are known as the force constants

Φnαi,mβj =
∂2Φ

∂rnαi∂rmβj
. (3.13)

We will now consider the equations of motions. For a displacement unαi, the
sum of all forces resulting from interactions with other atoms and the inertia
force has to be zero.

mαünαi +
∑
mβj

Φnαi,mβjumβj = 0 (3.14)

Here mα is the mass of the atom. This now results into 3N coupled differen-
tial equations, where N is the total number of atoms. For periodic systems
it is possible to describe the displacements in the form of a plane wave at the
lattice points rn with amplitude yαi.

unαi =
1
√
mα

yαi(q)ei(qrn−ωt) (3.15)

When inserting this expression into equation 3.14 one obtains the following:

−ω2yαi(q) +
∑
βj

∑
m

1
√
mαmβ

Φnαi,mβje
iq(rm−rn)

︸ ︷︷ ︸
Dαi,βj(q)

yβj(q) = 0 (3.16)

This simplifies solving the equations of motion to a diagonalization problem
of the so-called dynamical matrix Dαi,βj(q). This matrix is the summation
over the cells m in the equation above and is responsible for the coupling
of the amplitudes of the waves with each other independent of n. This
independence follows from the translational invariance of the lattice by its
cell length, implying that the force constants are only allowed to depend on
the difference between m and n: Φnαi,mβj = Φ0αi,(m−n)βj. This now leads to
a linear homogeneous system of equations.

−ω2yαi(q) +
∑
βj

Dαi,βj(q)yαi(q) = 0 (3.17)
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3 COMPUTATIONAL METHODS AND THEORY

This eigenvalue problem can be solved to directly obtain the phonon fre-
quencies ωλ and the corresponding eigenvectors yλ at every wave vector q.
This is now sufficient to describe two of the components required for the
thermal conductivity in equation 3.9. With this, the mode heat capacity can
be obtained from the density of states and the group velocities vλi can now
be obtained from the derivative of the eigenvalue equation.

vλi =
∂ωλ
∂qi

=
1

2ωλ

∑
αβjk

yλαj
∂Dαj,βk(q)

∂qi
yλβk (3.18)

But the phonon lifetimes cannot be obtained from harmonic force con-
stant as they are an inherently anharmonic effect. They arise from the colli-
sion term in the BTE and for collisions to occur, at least three particles need
to be involved at the same time. This is due to the requirement of conser-
vation of energy and momentum. When one phonon scatters it has to split
into at least two different phonons with the same amount of total energy and
momentum. Thus at least terms of the third order have to be considered in
the Taylor expansion in equation 3.12 to obtain the phonon scattering rates
for three phonon processes ξλλ′λ′′ . They can be obtained from equation 3.15
and the third order term in equation 3.14.

ξλλ′λ′′ =
1√
N

1

6

∑
αβγ

∑
ijk

yαiλyβjλ′yγkλ′′

√
h̄3

8mαmβmγωλωλ′ωλ′′

·
∑
mn

Φ0αi,mβj,nγke
iq′(rmβ−r0α)eiq

′′(rnγ−r0α)ei(q+q′+q′′)r0α∆(q + q′ + q′′)

(3.19)

Here ∆(q + q′ + q′′) is 1 when q + q′ + q′′ is a reciprocal lattice vector,
otherwise it is zero. 0α refers to an atom in the primitive unit cell and
Φ0αi,mβj,nγk are the third order force constants. With help of many-body
perturbation theory the imaginary self-energy Γλ(ω) can now be calculated
up to second order [29]. This energy is equal to half the phonon linewidth
and the phonon lifetimes can be obtained with τλ = 1/(2Γλ(ωλ)).

Γλ(ω) =
18π

h̄2

∑
λ′λ′′

|ξ−λλ′λ′′ |2{(f0,λ′ + f0,λ′′ + 1)δ(ω − ωλ′ − ωλ′′)

+ (f0,λ′ − f0,λ′′)[δ(ω + ωλ′ − ωλ′′)− δ(ω − ωλ′ + ωλ′′)]}
(3.20)
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3.2 Lattice Dynamics

Here the f0 is the Bose-Einstein distribution (equation 3.8) describing phonon
occupation. It also is the factor responsible for the temperature dependence.
Calculating this equation is not entirely straightforward, as it contains Dirac
functions of three phonon processes. The collision processes are described by
[δ(ω + ωλ′ − ωλ′′)− δ(ω − ωλ′ + ωλ′′)] and decay processes are included with
δ(ω − ωλ′ − ωλ′′). The energies of the phonons involved in these processes
show a continuous shape in reciprocal space, but these expressions have to
be evaluated on a discrete grid of wave vectors. There are several methods
to interpolate the energies in between the grid points. Commonly used are
the smearing method and linear tetrahedron integration [30]. The latter is
utilized in this work, as it does not rely on an arbitrary smearing width, that
would have to be converged for each calculation.
With this, all components required for the thermal conductivity from lattice
dynamics simulations are accounted for. But this formulation only includes
three phonon processes. While these are the most dominant anharmonic
contributions in many materials, there are also examples where higher order
terms cannot be neglected [31, 32]. Molecular dynamics (MD) provides the
tools to consider all anharmonic terms at once. There are several possible
techniques available to extract the phonon lifetimes with the help of MD
trajectories [33, 34]. But accurate MD simulations are expensive and these
methods require long simulation times to converge and are often difficult
to post process. Still, there are less convoluted ways to obtain the thermal
conductivity using MD, which will be discussed in the next section.
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3 COMPUTATIONAL METHODS AND THEORY

3.3 Molecular Dynamics

Molecular Dynamics (MD) represents a method commonly applied to carry
out dynamic atomistic simulations in computational chemistry and physics.
It is based on solving the Newtonian equations of motion for a large amount
of sequential time steps. Especially for deriving thermal transport in materi-
als dominated by phonon transport, molecular dynamics has the significant
advantage of completely describing all many body interactions that can be
captured by the interatomic model. This results in a proper description of
scattering mechanisms without further approximations, for as long as the
simulation cell is sufficiently large.

The core of these simulations is a time integrator solving the equations of
motion and propagating the system as a function of time. This has to be per-
formed for discrete timesteps and, therefore, requires numerical integrators.
Most commonly applied in MD is the velocity Verlet integrator [35,36].

ri(∆t) = ri(0) + ∆t
pi(0)

mi

+
∆t2

2mi

Fi(r(0)) (3.21)

pi(∆t) = pi(0) +
∆t

2
[Fi(r(0)) + Fi(r(∆t))] (3.22)

Where pi are the momenta, ri are the atom coordinates and Fi are the
forces acting on an atom. Velocity Verlet is typically chosen because of its
good numerical stability, ease of implementation and application, as well
as a relatively low computational cost at an acceptable error. There are
other possibilities like the reversible reference system propagator algorithm
(r-RESPA) [35] that are more computationally efficient, but require signifi-
cant additional effort to set up. Regardless of the algorithm used, a suitable
timestep has to be defined, depending on the system. It should be small
enough to allow all motions of the atoms that would occur in a real sys-
tem. On the other hand, a larger timestep results in lower computational
cost. A guideline for the choice can be provided by the highest frequency
modes in the phonon density of states. These lie in the THz range which
leads to vibrations that require time steps in the femtosecond range to de-
scribe properly. A commonly applied rule of thumb is to choose a timestep
depending on the highest vibrational frequency occuring int the system as
∆t = 1/(10 · fmax). Following this, for the case of organic molecules, that
typically show carbon-hydrogen stretches at around 90-100 THz, a timestep
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3.3 Molecular Dynamics

of 1 fs should be appropriate. But this is not always applicable, as MOFs de-
manded an even smaller timestep, even though they do not show any higher
frequencies.
In order to ensure that the molecular dynamics simulations represent mo-
tions that are representative of realistic temperatures, one has to define ther-
mostats. They serve to equilibrate the system of interest before the simula-
tions at a desired temperature. This is achieved in an NVT (constant num-
ber of atoms, volume and temperature) ensemble. Additionally, thermostats
serve to control the evolution of temperature during non-equilibrium simu-
lations. Many thermostats can be given in a general form starting with the
Hamiltonian equations of motion.

ṙi =
pi
mi

(3.23)

Where the momentum pi can be described as the sum of the force on each
particle given by interatomic interactions Fi and the force FT

i given by the
thermostat.

pi = Fi + FT
i (3.24)

Many different statistical approaches to define these forces have been used
with molecular dynamics in mind. One of the most commonly applied ther-
mostats is the Nose-Hoover thermostat [37, 38]. It deviates from the Hamil-
tonian equations of motion in that it introduces a scale variable s, in order
to include an additional degree of freedom for the heat bath. This leads to
the modified Nose-Hoover equations of motion.

dri
dt′

=
p′i
m

dp′i
dt′

= Fi −
ξ

Q
p′i

dξ

dt′
=

(∑
i

p′2i
m
− 3NkBT

) (3.25)

with

p′i =
pi
s

t′ =

∫ t

0

dt/s

Q = 3NkBTτ
2

(3.26)
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3 COMPUTATIONAL METHODS AND THEORY

Here p′i and t′ are the scaled momentum and time, N is the number of
atoms in the system and Q is a fictitious mass parameter that represents
the coupling strength that can be adjusted by choosing the time constant τ
appropriately. A further expansion of this relatively simple approach is given
by the Nose-Hoover chain equations [39] that introduced a chain of heat bath
variables instead of just one in order to even out fluctuation of thermostat
variables. The resulting Nose-Hoover chain thermostat is generally consid-
ered as one of the most reliable choices for equilibrium molecular dynamics
simulations.
While efforts have been made in the development of thermostats that func-
tion outside of the classical limit [40, 41], this is barely explored and tested
for complex, strongly anharmonic systems. This is the reason for the con-
tinued use of their classical counterparts. This means that it is important
to analyze at which temperature quantum effects cease to matter. This is
reached once the heat capacity converges to a constant only depending on
the number density of atoms n.

Cv =
3

2
nkB (3.27)

Under these circumstances it can be ensured that low temperature quantum
effects can be neglected. But for many crystalline materials the low fre-
quency phonon modes show dominating contributions towards many phys-
ical observables. These are occupied at much lower temperatures than the
often irrelevant high frequency modes. For this reason it is possible to per-
form correct molecular dynamics simulations long before the classical limit
is reached. The temperature dependent heat capacity can not be obtained
by means of classical molecular dynamics and, therefore, will be derived by
lattice dynamics simulations as introduced in section 3.2.

Just like thermostats serve to force a certain temperature on a system,
barostats are used to enforce a certain pressure. Conceptually, they function
analogous to their thermal counterparts. The equations of motion are mod-
ified by an additional term including the pressure dependence. Just as with
the thermostats there are several statistical approaches to achieve this. The
Nose-Hoover chain barostat [36] is the only such approach employed in this
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work.

dri
dt′

=
p′i
m

+
pε
W

ri

dpi
dt′

= Fi −
(

1 +
1

N

)
pε
W

pi

(3.28)

Here pε is the sum of the Nose-Hoover chain. This concludes the introduction
of some very basic tools employed in molecular dynamics simulations. In the
following an introduction of methods to obtain the thermal conductivity will
be given.

3.3.1 Non-equilibrium Molecular Dynamics

Non-equilibrium Molecular Dynamics (NEMD) provides the most straight-
forward method to obtain the thermal conductivity in atomistic simulations.
It is inspired by experimental approaches to obtain thermal transport proper-
ties for macroscopic samples. Figure 3.2 represents a simulation box used in
this approach. First the entire system has to be thermalized at the tempera-
ture of interest using a thermostat. Then two areas of the cell are respectively
heated and cooled by adding and subtracting an equal amount of energy. Af-
ter the system reaches steady state, it is possible to determine the heat flux
flowing from the hot to the cold region as well as the temperature gradient
occurring in the bulk of the system. This allows one to obtain the thermal
conductivity as a scalar value in the direction of interest by directly using
Fourier’s law.
System sizes in NEMD simulations are small compared to realistic measure-
ment setups. This leads to very large temperature gradients. Therefore, it
is important to make sure that Fourier’s law is valid for the chosen energy
difference. This can be achieved by performing a simulation for several tem-
perature differences ∆T .
Several different approaches have been explored to properly achieve the tem-
perature difference in the simulation box. Typically, the cell is divided into
equally large slabs that correspond to the periodicity of the material of in-
terest [42]. Then two of these slabs are defined as the cold and hot area
with an equal spacing in between them when considering periodic bound-
ary condition. It is now possible to either directly increase and reduce the
kinetic energies of these areas [19] or to use thermostats at a certain tem-
perature. There is also a technique involving the direct exchange of kinetic

17/130



3 COMPUTATIONAL METHODS AND THEORY

Figure 3.2: Temperature profile in a simulation cell during a NEMD simu-
lation. A hot thermostat (+∆T ) and a cold thermostat (−∆T )

have been applied with periodic boundary conditions.

energy between the slabs which guarantees the conservation of energy [43].
A typical issue occurring for the methods based on scaling the kinetic ener-
gies and, therefore, the atomic velocities, is that the center-of-mass motion
of the entire system has to remain zero throughout the simulation. Another
flaw is that especially for rigid systems with high differences in masses of the
individual atoms, as is the case in MOFs, the energy exchange between indi-
vidual atoms can lead to thermal instabilities during the simulation. When
utilizing thermostats, the conservation of energy is not inherently guaran-
teed, but once the system reaches steady state, the added and subtracted
energy should converge to the same value. It is also of vital importance to
choose the proper thermostat for NEMD simulations, as the boundary be-
tween thermostatted and non-thermostatted region has to be well defined.
A thermostat that has been proven to work well for non-equilibrium molecu-
lar dynamics simulations is the Langevin thermostat [44]. The added forces
are given by a dissipative component −γvi, where γ is the friction coefficient,
and a random force FR

i (t).

pi = Fi − γvi + FR
i (t) (3.29)〈

FR
i (t)

〉
has to be zero and〈

FR
ia(t)FR

jb(t)
〉

= 2γTkBδijδabδ(t− t′) (3.30)

defines the condition for selection of the random force component. Here γ is
the friction coefficient, vi is the particle velocity, i and j are indices for the
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particles and a as well as b are the Cartesian vector components.
A different phenomenon that can be observed in 3.2 is the steep temperature
step occurring at the thermostat boundary. This arises due to phonon scat-
tering at the interface between thermostatted and non-thermostatted region.
It leads to severe finite size effects if the cell is not significantly larger than
the mean-free-path [19]. The thermal conductivity is then reduced based on
an effective mean free path leff that can be reached given a certain cell length
Lx. There is a solution to this problem other than using massive simulation
boxes. It is possible to correlate the inverse effective mean-free-path with the
inverse cell length and infinite mean-free-path l∞.

1

leff
=

1

l∞
+

4

Lx
(3.31)

In periodic NEMD simulation the system’s bulk is cut in half on either side
of the source and sink. A phonon should be able to travel half the distance
between the heated and cooled region until it meets a scattering center.
And therefore the average phonon travel amounts to Lx/4 assuming small
thermostat regions. With equation 3.31 it is possible to specify an expression
that estimates the thermal conductivity based on the simulation box length.
For this the expression for the heat capacity in the classical limit (equation
3.27) and for the thermal conductivity (equation 3.9) for all phonons in the
system given as κ = 1/3Cvvgl are used to obtain

1

κeff
=

a3

4kBvG

(
1

l∞
+

4

Lx

)
. (3.32)

When the length of the cell Lx approaches infinite, we should be able to obtain
the thermal conductivity. This can be achieved by extrapolating a linear fit
over several effective thermal conductivity values for several different cell
lengths Lx in the infinite size limit [19]. This necessity in addition with the
fact that one obtains only the thermal conductivity in one direction of the
simulation cell makes this method much more expensive than equilibrium
molecular dynamics simulations.

3.3.2 Equilibrium Molecular Dynamics

It is also possible to obtain the thermal conductivity from an Equilibrium
Molecular Dynamics (EMD) simulation by observing fluctuations in the heat
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current. This is generally the preferred method for obtaining the thermal
conductivity, as the entire thermal conductivity tensor can be calculated in
a single simulation.
The method is based on the fluctuation dissipation theorem [45] that pro-
vides a relation between physical observables and their response function
based on fluctuations in a balanced field. This method has widely been ap-
plied for many different transport properties [46]. It is again based on the
basic empirically found expression relating a flux of an observable with its
corresponding field, like Fourier’s law (equation 3.1). For the thermal con-
ductivity, such a relation is given by

κij =
V

kBT 2

∫ ∞
0

〈Ji(0) · Jj(t)〉 dt. (3.33)

Here V is the cell volume and 〈J(0) · J(t)〉 is the heat current autocorrelation
function (HCACF). This expression describes the time response of heat fluc-
tuations in equilibrium. The correlation function decays more slowly for high
values of the thermal conductivity. This means that the heat fluctuations
inside the material are long lived, which can be due to a long phonon mean
free path. In materials with low thermal conductivity, the phonon mean free
path will be small and, therefore, the HCACF will decay quickly. The heat
flux J can be obtained from the total energy of the atoms Ei, the atomic
velocities vi and the many-body stress tensor Si from a molecular dynamics
simulation.

J =
1

V

[∑
i

Eivi −
∑
i

Sivi

]
(3.34)

Similar to NEMD, the Green-Kubo method suffers from finite size effects,
when the simulation box is too small. But since no scattering centers due
to thermostats arise utilizing this method, these are much less significant
in equilibrium molecular dynamics simulations. In most cases it is not even
necessary to calculate systems larger than the phonon mean free path [47] and
box lengths of about 2 nm have been found to be sufficient. Nonetheless, very
long simulation times are needed in order to properly converge the correlation
functions.
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3.4 Classical Force Fields

Molecular Dynamics simulations can become very expensive when applied
to larger systems utilizing quantum mechanical methods like density func-
tional theory (DFT) for calculating the forces. This is especially problematic
for simulations to obtain the thermal conductivity that often require simula-
tion times of several nanoseconds with time steps in the femtosecond range.
Therefore, a lower level of theory is required to investigate many systems.
Classical Force Fields are a commonly applied model to give an affordable
and reasonably accurate description of the interatomic forces in large and
complex systems like organics. They are typically defined as a potential en-
ergy expression. In this section the functional form of the force field utilized
in this thesis will be presented and its parameterization procedure will be
outlined.

3.4.1 The MOF-FF Force Field

The force field potential used in this work was chosen to be MOF-FF [48].
This is a flexible, first-principles derived force field specifically designed for
metal-organic frameworks. MOF-FF is based on the MM3 [49] force field that
has been developed for aliphatic hydrocarbons. Many modifications were
made to the original in order to properly describe the inorganic components
of MOFs and their interactions with the organic linkers. This section covers
the individual contributions to the energy included in MOF-FF, while section
3.4.2 shows how the required parameters were obtained.
The potential energy Epot of the MOF-FF force field is defined in the following
form:

Epot =
∑
s

Estr
s +

∑
b

(
Ebnd
b + Estr−str

b + Estr−bnd
b

)
+
∑
t

Etor
t +

∑
o

Eoop
o +

∑
n

(
Ecoul
n + EvdW

n

) (3.35)

with Estr being the bond stretch potential between two atoms, Ebnd the
bending angle potential between three atoms, Etor the energy caused by the
torsions between four atoms, Eoop the out-of-plane bending potential be-
tween four atoms, Ecoul Coulomb’s contribution due to the atomic charges
and EvdW the van-der-Waals potential. The indices s, b, t and o represent all
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(a)

(b)

(c)
(d)

Figure 3.3: Overview of the geometrical interactions that have to be de-
scribed by the force field. The bond stretches (a), the bending angles (b),
the proper torsions (c) and the improper torsions, or out-of-plane bending
angles (d).

occurrences of the respective interaction types and n is an index representing
all atomic pairs. These interactions are visualized in figure 3.3. Estr−str and
Estr−bnd are stretch-stretch and stretch-bend contributions, which represent
interactions between different bond stretches with each other or with a bend-
ing angle. These are typically referred to as cross-terms.
The bond stretches in the organic part of the MOFs are described by the
quartic term originally used in the MM3 potential:

Estr
s =

1

2
ks(rs − rrefs )2

[
1− 2.55(rs − rrefs ) +

7

12
(2.55(rs − rrefs ))2

]
(3.36)

where rs is the bond length and ks and rrefs are parameters. This term
includes fixed anharmonicities that are derived to mimic a Morse potential
as well as possible [49]. In case of the coordination covalent bonds that
commonly occur in MOFs for bonds with the metal atoms, athe true Morse
potential is used, which is beneficial for describing anharmonic effects.

Estr
s =

1

2α
ks
[
1− exp(−α(rs − rrefs ))

]2
(3.37)

This requires an additional parameter α that is calculated from the bond
dissociation energy Ediss = ks/2α

2, that needs to be provided by external
input like experiments and cannot be fitted from the harmonic reference data
used in the parameterization procedure for MOF-FF, which will be outlined
later.
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The contributions from angle bending are considered with a polynomial of
the sixth order:

Ebnd
b =

1

2
kb(θb − θrefb )2

[
1− 0.014(θb − θrefb )+ 5.6 · 10−5(θb − θrefb )2

−7 · 10−7(θb − θrefb )3 + 2.2 · 10−8(θb − θrefb )4
] (3.38)

with θb being the bond angle, kb a constant and θrefb the reference angle. Tor-
sions in the MOF-FF potentials are considered using the commonly applied
Fourier series term up to fourth order.

Etor
t =

∑
n

V n
t

2
[1 + cos(nφt + φnt )] (3.39)

Here V n
t is the force constant, φt the torsional angle and φnt the phase shift.

The out-of-plane bending angle θo obeys the Wilson-Decius (the atomic in-
dices are labeled in figure 3.3d) definition

sin θo =
r42 · r43
sinϕ1

r41, (3.40)

where r41, r42 and r43 are the bond lengths in the four-body interaction and
ϕ1 is the angle between r42 and r43. The contributions from out-of-plane
bending are included in the force field in the form of an harmonic term with
a reference angle θ0:

Eoop
o =

1

2
ko(θo − θ0)2 (3.41)

Additional cross-terms are considered as three-body interactions in neigh-
boring bonds. A stretch-stretch contribution as well as an asymmetric stretch-
bend term are included in the force field.

Estr−str
b = kss(rb1 − rrefb1 )(rb2 − rrefb2 ) (3.42)

Estr−bnd
b = (θb − θrefb )[ksb1(rb1 − rrefb1 ) + ksb2(rb2 − rrefb2 )] (3.43)

Here kss, ksb1 and ksb2 are the additional force constants. The reference bond
lengths and angles are the same as in the respective stretch or bending terms.
Van der Waals interactions are modeled using a pairwise dispersion damped
Buckingham potential. One of the major flaws in using the frequently used
Lennard-Jones potential term is that the repulsive energy of the interaction is
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overestimated for many systems. Buckingham potential terms solve this issue
by including an exponential term providing a more accurate description in the
repulsive regime. A traditional Buckingham term suffers from an artifact at
very small distances where the potential shows a steep drop towards negative
infinity. This can lead to instabilities during molecular dynamics simulations
especially at high temperatures. This has been solved by dampening the
dispersive interactions at close range. The final potential term is defined as

EvdW
ij = εij

1.85 · 105 exp

(
−12

dij
d0ij

)

−2.25

(
d0ij
dij

)6
[

1 + 6

(
0.25d0ij
dij

)14
]−1

(3.44)

where dij is the interatomic distance, d0ij is the van der Waals minimum
distance and εij is the potential well depth. This term is only applied to
pairwise interactions excluding nearest and next-nearest neighbors in the
bonded structure.
Electrostatic interactions are included for atom pairs beyond the next-nearest
neighbors in the form of spherical Gaussian charge distributions. They pro-
vide a significantly improved description compared to point charges in the
inorganic part of the MOFs, where large differences in the atomic charges
occur. The energy is given by

Ecoul
ij =

1

4πε
qiqj

erf
(
dij
σij

)
dij

(3.45)

with dij the interatomic distance, qi and qj the atomic point charges and
σij the Gaussian charge distribution width calculated from its values of the

individual atom types σij =
√
σ2
i + σ2

j . This interaction models a Gaussian

radial distribution of the charges surrounding the atomic coordinates.

3.4.2 Parameterization of Force Fields

MOF-FF in its original form is a force field that sacrifices most of its trans-
ferability for accuracy. This implies that every single building block (the
nodes and linkers) and every single connection between them in MOFs of
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Figure 3.4: Flowchart for the general fitting procedure leading to the force
field.

interest require their own specific set of parameters. As a consequence, only
a limited amount of MOFs were parameterized in the original force field.
Among the systems of interest in this thesis, this includes the Zn4O nodes,
the Zn-paddlewheel nodes, phenyl, biphenyl and terphenyl based linkers for
both types of MOFs, as well as the DABCO-linker for paddlewheel MOFs.
When investigating the thermal properties of MOFs, we are also interested
in systems that were not initially considered in MOF-FF. These require ad-
ditional parameterization. In this section, a procedure for fitting force-field
parameters will be presented that has also been used in a similar form to
obtain the MOF-FF potential.
In the original MOF-FF parameterizations, non-periodic density-functional-
theory (DFT) calculations were carried out for the individual building blocks
and their connections to obtain the required reference data. This was done
to provide at least transferability when exchanging individual building blocks
with other ones that show the same connecting chemistry. But since the aim
of this work is not to provide transferable force fields to be used in combina-
tion with the original MOF-FF, periodic DFT calculations were carried out
using VASP [50]. The actual fit for the force field is carried out by a code
called FFGen [51] that has been used to parameterize MOF-FF for Zeolitic
Imidazolate Frameworks. This has been performed in cooperation with the
Schmid group, that developed FFGen and MOF-FF. The general work-flow
for a parameterization of this type of force-field is outlined in figure 3.4.

The DFT calculation directly provides the geometry and the electrostatic
potential. In addition the force constant matrix is calculated from a set of
converged single point DFT calculations. Due to the significant computa-
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tional cost, the phonon calculations are only performed at Γ point. The har-
monic nature of this reference data implies that the anharmonicities included
in a non-fixed form, as in the Morse-potential terms have to be provided ex-
ternally. The required dissociation energies are based on tabulated values
originating from experimental data. Parameters for the van der Waals inter-
actions are the same in the MM3 [49] force field.
Atomic charges are obtained from the electrostatic potential using the RE-
PEAT (Repeating Electrostatic Potential Extracted ATomic) [52] method.
Here the potential φq of a system is given by a set of Nq point charges qj.

φq(r) =
∑
j

qj
|rq − rj|

(3.46)

With rq being the point of the electrostatic potential and rj the position of the
point charge. The objective is now to minimize the differences between the
DFT obtained potential φQM that is provided as a set of values distributed
on a grid and the point charges at atom positions. The function F to be
minimized in REPEAT is given by: [52]

F (qj, δφ) =
∑
grid

(φQM(rgrid)− (φq(rgrid) + δφ))2+

λ(
∑
j

qi − qtot) +
∑
j

wj

(
e0j + χjqj +

1

2
J00
j q

2
j

) (3.47)

Here the first term contains an additional parameter δφ. This is necessary
due to the periodicity of the atomic charges where equation (3.46) has to
be expanded based on an Ewald summation procedure. The second term
conserves the total charge of the system in the form of a Lagrange multiplier.
The third term serves to avoid unphysical charges for atoms with few valid
fitting grid points in their proximity. It is included with an additional set
of Lagrange multipliers wj and with parameters χj and J00

j , which represent
the electronegativity and the self-Coulomb interaction.
All the parameters from the formulations outlined in section 3.4.1 now have to
be fitted to the aforementioned reference data. For the MOFs of interest this
amounts to a total of about 50-200 parameters that have to be determined
based on all the geometrical configurations as well as the entire force constant
matrix. For this, a proper objective function has to be defined. This function
essentially consists out of a sum of mean-square deviations formed from all
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the reference data.

ZMOF−FF = Zstr + Zbnd + Zoop + Ztor + ZFC (3.48)

Here Zstr, Zbnd, Zoop, Ztor and ZFC represent the sum of the mean-square
deviations of the bond-stretches, in-plane bending, out-of-plane bending, tor-
sions and the force constants.

Zx =
wx
Mx

∑
n

ωn(xn − xrefn )2 (3.49)

This is summed over all occurrences n for each interaction type x. Individual
weights wx are given for all of these contributions. These weights are neces-
sary, because the objective function sums over distances, angles and forces
without regard to using a uniform unit. Therefore, the weights have to be
arbitrarily chosen in order to not disregard important contributions from the
reference. Additionally each redundant internal coordinate allows a weight
ωn depending on the atomtypes. Mx is a weight normalization defined as
Mx =

∑
n ωx.

Minimizing the objective function (3.48) is not straightforward, as it is inher-
ently a function with a large number of local minima and/or discontinuities.
Many conventional fitting procedures will fail to find the global minimum. An
algorithm had to be chosen that makes no prejudicial assumptions about the
landscape of the function. The applied fitting procedure is a Covariance Ma-
trix Adaptation Evolution Strategy (CMA-ES) [53]. This algorithm has been
used successfully for the parameterization of force fields for MOFs [51,54]. It
accomplishes the minimization of an objective function by adapting the co-
variance of the variables based on evolution paths of previous attempts. The
evaluation of the objective function is executed in batches of a predefined
size that form the generation necessary to procure the evolution paths. Ini-
tially, the algorithm roughly estimates the variables by a distribution around
a guess value. The width of this distribution, the step-size σ, has to be
specified in advance and will be procedurally reduced the closer the fitted
parameters approach convergence. This distribution width is the same for
all variables and care has to be taken that it is applicable to all parame-
ters occurring in the objective function in order to ensure that variations
of all of them carry significant enough impact. It has to be large enough,
in combination with a sufficient population size, to provide a good cover-
age of the function’s landscape in a single generation, and small enough to
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not exceed the physically realistic boundaries with a majority of evaluations.
These choices determine if and how fast the global optimum can be found. In
general convergence of this approach is significantly slower than conventional
minimization algorithms like conjugate gradient, but faster than commonly
used genetic algorithms commonly applied to fit classical force fields [51].
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This section serves to introduce the individual procedures applied to obtain
the thermal conductivity by providing the workflow used in MD simulations.
In addition to this, the parameterized force-fields, including their process
of parameterization, are discussed in detail. For both MOF-FF, and the
force fields obtained by FF-gen validation will be provided, by comparing the
vibrational properties to DFT data. The computational details for obtaining
the ab-initio reference data that were provided by Tomas Kamencek are
outlined in appendix A. References for the software utilized will be provided
and the chosen settings, as well as convergence of the simulations, will be
discussed.

4.1 Parameterized Force Fields

This section will cover the details of the parameterization process and the val-
idation of the obtained force fields based on reference data. Please note that
the numerical values for the obtained parameters are attached in appendix
B.

4.1.1 IRMOF-1 (Mg)

The parameterization of IRMOF-1 with magnesium was carried out inspired
by the base MOF-FF for IRMOF-1 with zinc. DFT calculations provided
the reference data, and were carried out using the Vienna Ab-initio Soft-
ware Package (VASP) by Tomas Kamencek with the simulation parameters
given in appendix A. The bond-stretches were mostly given by the quartic
MM3 potential terms with fixed anharmonicity (see equation 3.36). Notable
exceptions were the Mg-O bonds that were described by a Morse poten-
tial (given in equation 3.37). The necessary dissociation energy is based on
experimental data [55], measured with spectroscopic methods for MgO at
room temperature. It amounts to 85 kcal/mol. All the angles were consid-
ered with the mm3 definition based on a polynomial of sixth order (equation
3.38). Additional stretch-stretch and stretch-bending terms were included
for certain bond-bond and bond-angle interactions. The reason why not all
cross-terms were included, is that the energy minima in those contributions
are frequently ill defined and require more manual intervention during the
parameterization process. If one is not careful with the cross-term limits, it
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is possible that the structure will be unstable during the actual MD simu-
lations. Therefore, only those terms have been included that lead to a sig-
nificant improvement in vibrational properties. These are the ones including
carbon-carbon, carbon-hydrogen and magnesium-oxygen interactions. The
equilibrium configurations of most torsions in IRMOF-1 occur are planar. In
the organic part and the linker-node connections the dihedrals can be de-
scribed by a second order Fourier term that has minima at 0°and 180°. This
angle has been provided as initial data for the fit to reduce the total amount
of fitted parameters. Proper torsions inside the metal oxide were not found
to have any significant impact on geometrical and vibrational properties and
have been neglected. The other included interactions satisfactorily describe
the motions in the inorganic components. Improper torsions (out-of-plane
bending) have been considered as given in equation 3.41 by a harmonic po-
tential with a reference angle of 0°. The necessary charges were calculated
using the REPEAT [52] method based on the electrostatic potential obtained
by periodic DFT calculations (carried out by Tomas Kamencek using VASP)
and are given in table 4.1 for the parameterized IRMOFs. The meaning of
the indices used in the table is displayed in figure 4.1. The atomic charges
in the inorganic node for both IRMOF-1 and IRMOF-130 are similar despite
the very different linkers. With the previously given definition of the force-

Table 4.1: Atomic charges of IRMOF-1 (Mg) and IRMOF-130(Mg). Values
are given in elementary charges.

System Mg Ocen Oout CC1O2 CC3 CC2H1 H
IRMOF-1 (Mg) 1.543 -1.822 -0.704 0.601 0.148 -0.188 0.155
IRMOF-130 (Mg) 1.480 -1.828 -0.644 0.606

field for this system the parameterization procedure has been run in multiple
stages. During this process several different configurations of weights have
been investigated in order to obtain the best possible fit. The FFgen fit
was converged after 3000 generations with a population size of 32. Figure
4.2 visualizes the comparison between fitted and DFT-obtained geometries
and vibrational frequencies. It can be seen that the agreement for geomet-
rical parameters is excellent and only shows negligible differences. The root
mean square error for all of these parameters is below 0.01 Å or 0.01°. The
vibrational frequencies show a larger error – a 7% average deviation from
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Figure 4.1: IRMOF-1 node and linkers with naming conventions of the atoms
used for the unique atoms.

the reference values, but even there agreement is significantly better than
in commonly used force fields for organic molecules [56]. It has to be noted
that the relative error increases to 20% if one only looks at the first 200
cm−1. Even though here the absolute error is significantly smaller than for
the higher frequency modes with deviations of up to 10 cm−1.

The frequencies of the normal modes are not the only quantities that are of
importance to properly describe the interatomic forces for a system in motion.
It is also important, that the vibrations for the different models match. In
order to check this, the eigenvectors obtained from the diagonalization of the
dynamical matrix in equation 3.17 have to be similar. The overlap between
those vector can simply be obtained by comparing the sum over the dot
products for each mode. But many modes are degenerate, with the same
vibration occurring at the same frequency but in different directions. Aside of
this, sometimes modes of similar energy occur in a slightly different ordering.
Both of these facts make it helpful to assign the modes, that agree best for
the optimized and reference structure based on their atomic displacements.
For this, all dot products of all combinations of optical modes at Γ point
have been evaluated and subsequently sorted by minimizing a cost function
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(a) (b)

(c) (d)

(e)

Figure 4.2: Comparison of fitted and reference bond lengths (a), angles
(b), proper torsion angles (c), improper torsion angles (d) and vibrational
frequencies (e) for IRMOF-1(Mg). The red line serves as a reference for
optimal agreement.
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Z utilizing the Hungarian method for the assignment problem [57].

Z =
∑
i

∑
j

CijXij (4.1)

Here Cij are the eigenvector overlaps for the modes i and j while Xij is
a logical assignment matrix, that has to be evaluated in the minimization
process. Only one element of X per row and column is allowed to be true, all
others are false. This makes it possible to compare the overlap of eigenvectors
between the same modes in the fitted force-field and the DFT reference. For
IRMOF-1 (Mg) this is visualized as a histogram in figure 4.3. The root mean
square error of the frequencies of matching modes amounts to 11 cm−1 for
the entire frequency range and 2.7 cm−1 for frequencies up to 330 cm−1. In
the figure one can see, that the overlap is at least 0.4 for all modes while
most range around 0.7. When considering only low frequency modes, the
situation does not change significantly.

(a) (b)

Figure 4.3: Eigenvector overlap of the normal modes at Γ point for the fitted
force field and the DFT reference in IRMOF-1 (Mg) for low frequency modes
of up to 330 cm−1 (a) and for the entire frequency range (b).

4.1.2 IRMOF-130 (Mg)

IRMOF-130, a typical ZnO4 IRMOF with oxalic acid as its linker, is a hy-
pothetical MOF that is of interest mostly due to its simplicity. The param-
eterization followed the same procedure as for the IRMOF-1 with one note-
worthy difference. There were some additional torsional cross-terms included
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to give a better description of the oxygen-carbon-carbon-oxygen interaction
connecting the nodes. Poor vibrational properties were obtained with the
conventional MOF-FF definition. The additional term serves to include an
interaction between the outer bond stretches with the torsion itself and is
called an end-bond-torsion term. It has been utilized in other force-fields for
describing organic molecules, like the COMPASS force-field [56].

Eebt = (rij − r1) [A1 cos(φ) + A2 cos(2φ) + A3 cos(3φ)] +

(rkl − r3) [B1 cos(φ) +B2 cos(2φ) +B3 cos(3φ)]
(4.2)

Here rij and rkl are the bond lengths between the non-bonded atoms of the
torsion, r1 and r3 are their reference values, Ax and Bx are force constants
and φ is the torsional angle. The atomic charges can be seen in table 4.1. The
fit is then performed based on data obtained with VASP and was converged
after 10000 generations with a population size of 32. The comparisons of the
geometrical and vibrational parameters can be seen in figure 4.4. Just as
for IRMOF-1 the geometry fits exceptionally well compared to the reference.
The vibrational frequencies show an average deviation of 12% which is still
in an acceptable range but worse than the IRMOF-1 (Mg). Like previously,
agreement is poorer in the lower frequency regime going up to a relative error
of 30%, which is significantly worse than that of other MOFs investigated
in this work. This is something that should be kept in mind for all further
analysis, as the low lying modes are essential for many physical observables.

Like in the previous section, the eigenvector overlap of the normal modes
at Γ has been analyzed and visualized in figure 4.5. Here, the overlap is
at least 0.5 for all modes both for low and high frequencies. There appears
to be a larger amount of high energy modes with excellent agreement, but
most of them range around 0.7. This still seems to be significantly better
than in IRMOF-1 (Mg) which is also reflected by the root mean square error
of matching modes with 6 cm−1 for the full frequency range and 2 cm−1

for up to 330 cm−1 modes. Even though the side-by-side comparison of the
frequencies themselves appeared to be relatively poor, the actual vibrations,
after assigning the best fitting eigenvectors, show a reasonable agreement.
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(a) (b)

(c) (d)

(e)

Figure 4.4: Comparison of fitted and reference bond lengths (a), angles
(b), proper torsion angles (c), improper torsion angles (d) and vibrational
frequencies (e) for IRMOF-130(Mg). The red line serves as a reference for
optimal agreement.
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(a) (b)

Figure 4.5: Eigenvector overlap of the normal modes at the Γ point for
the fitted force field and the DFT reference in IRMOF-130 (Mg) for low
frequency modes of up to 330 cm−1 (a) and for the entire frequency range
(b).

4.1.3 MOF-74

As a completely different MOF, MOF-74 with zinc as a metal has also been
parameterized as a force field based on periodic DFT calculations. The pro-
cedure employed, was the same as for the previously considered MOFs. The
atomic charges were evaluated from the electrostatic potential with the RE-
PEAT method and can be seen in table 4.2. Figure 4.6 shows a unit cell of
MOF-74 and clarifies the given atom names. The difference between Oco2,1

and Oco2,2 is, that the first directly connects to only one zinc atom while
the latter connects to two. Note that there are more atoms displayed than
contained in the primitive cell in order to clarify the periodic boundaries.

Table 4.2: Atomic charges of MOF-74 (Zn). Values are given in elementary
charges

Zn Oco2,1 Oco2,2 Oeth CC2O1 CC1O2 CC2H1 CC3 H
1.231 -0.732 -0.767 -0.675 0.382 0.853 -0.188 -0.287 0.183

During parameterization, no torsional cross-terms were included and only
a selected batch of str-str and str-bnd terms were considered. Details of which
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Figure 4.6: Atom labeling of MOF-74 (Zn) used in this work

terms were neglected can be found in the full overview of the force field in
section B.3. Many proper torsions occurring in the inorganic building blocks
have been set to zero due to the high complexity of the system and the much
more rigid nature of MOF-74. This nature leads to torsional terms, especially
in the inorganic helical ”node-chain”, being significantly less important. At
this point, it should be noted that there are more than three times as many
dihedrals and angles in MOF-74 than in IRMOF-1, even though the number
of atoms is smaller by almost a factor of two. This led to a very large
number of degrees of freedom, which resulted in some significant difficulties
when performing the fits. It is possible that some of the parameters become
unphysical after the fit leading to a destabilization of the structure during an
MD simulation. This required a significant amount of manual intervention
and defining of hard limits for many fitting parameters. This imposes a
restriction on the degrees of freedom and might be responsible for the slightly
worse agreement of vibrational frequencies.

The Zn-O bond have also been described by an anharmonic Morse po-
tential with a bond dissociation energy of 50 kcal/mol. This was also the
value used for the zinc based systems in MOF-FF. The FFgen fit was con-
verged after 60000 generations of the CMA-ES algorithm with a population
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size of 32. The comparisons of the geometrical and vibrational properties
are depicted in figure 4.7. Like in previous fits, the geometrical parameters
fit almost perfectly to the reference structure with a very small error of less
than 0.01 Å or 0.01°. The frequencies up to 100 cm−1 show an excellent
agreement with an average deviation of less than 5 %. In the range from
100 to 500 cm−1 the frequencies are overestimated significantly leading to a
deviation of up to 17 %. In the entire frequency range the error amounts to 8
%. But since the most important contributions to the thermal conductivity
are in the very low frequency regime, the larger error should be tolerable.

The eigenvector overlap has been calculated like in section 4.1.1 and is
shown in figure 4.8. The agreement of the vibrations appears to be signifi-
cantly poorer than what has been obtained for the other MOFs, with some
modes only showing an overlap of 0.35. Especially the modes from 100 to
500 cm−1 seem to be responsible for this disagreement. This also is shown
by the deviation in this frequency region in figure 4.7. This is also reflected
by the root mean square error of the matching frequencies, which amounts
to 3.0 THz for the entire frequency range and 3.7 THz for up to 330 THz
modes.
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(a) (b)

(c) (d)

(e)

Figure 4.7: Comparison of fitted and reference bond lengths (a), angles
(b), proper torsion angles (c), improper torsion angles (d) and vibrational
frequencies (e) for MOF-74 (Zn). The red line serves as a reference for
optimal agreement.
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(a) (b)

Figure 4.8: Eigenvector overlap of the normal modes at Γ point for the fitted
force field and the DFT reference in MOF-74 (Zn) for low frequency modes
of up to 330 cm−1 (a) and for the entire frequency range (b).

4.2 Lattice Dynamics

Lattice dynamics (LD) allows more sophisticated analysis of thermal proper-
ties in materials dominated by phonon transport. In literature, these calcu-
lations are typically carried out using first-principle methods, like DFT. This
often requires relatively large supercells even for simple systems to converge
properly. For highly complex chemical compounds carrying out LD simula-
tions is next to impossible with current technology using density functional
theory. But LD is not restricted to density-functional based methods, as the
only physical quantity needed are interaction forces (see section 3.2) between
the atoms, which can also be approximated by simpler methods. Therefore,
phonon properties and the thermal conductivity can be obtained based on
zero Kelvin simulations utilizing classical force-fields (FFs). The theoretical
details used to obtain these data have been discussed in depth in section
3.2. This section will cover the simulation details to calculate phonons, with
some comparisons of what has been obtained with methods of higher level of
theory. With that, a justification for analyzing force-field obtained phonon
properties should be given. IRMOF-1 (Zn) will be used as an example but
calculations for all systems are analogous. The software used to carry out
the calculations was phonopy [58] up to Force-Constants of the second order
and phono3py [28] for calculations including three-body interactions and the
evaluation of the Boltzmann transport equation.
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First it was necessary to relax the geometry of the investigated systems. The
primitive unit-cell was minimized with help of a conjugate gradient algo-
rithm in three steps. First, only the internal positions were relaxed to the
maximum achievable precision for the force-field. In the second step, the cell
parameters anisotropically in addition to the atomic positions. After this the
internal coordinates were relaxed again with fixed cell parameters. The min-
imum forces that are possible to obtain appeared to depend on the system.
Those with specifically parameterized force fields based on periodic reference
data achieved a higher precision compared to those obtained by non-periodic
clusters. In case of IRMOF-1 the maximum remaining force amounted to
10−4kJ/(mol · Å). It was possible to attain a lower value for the maximum
force for all other systems. The primitive unit cell of IRMOF-1 consists of
106 atoms. It contains two complete inorganic nodes, and is depicted in
figure 4.9. The crystal shows face-centered cubic (fcc) symmetry and the
corresponding first Brillouin zone is depicted in figure 5.1.

Figure 4.9: Primitive unit cell of IRMOF-1 forming an FCC lattice. The or-
ganic linkers have been expanded beyond the box boundary for clarification.

The phonon calculations were then carried out using the supercell ap-
proach. A 3x3x3 primitive supercell of IRMOF-1 was required to obtain
convergence. This was reached once an increase in supercell size did not lead
to any visible changes in the phonon band structure. In order to validate
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(a) low energy modes (b) all modes

Figure 4.10: Comparison of density of states and vibrational frequencies at
Γ point in IRMOF-1(Zn) between VASP and MOF-FF phonon calculations

the vibrational properties, figure 4.10 visualizes a comparison of the density
of states at Γ point between DFT (VASP) and FF data. One can observe
reasonable agreement between the curves, especially in the low frequency
regime. Some of the high energy modes are significantly higher for the force
field. These are mostly localized vibrations in the organic linker that show
next to no contribution towards most physical properties, including thermal
transport. In order to analyze the impact of individual phonon modes we
also have to take phonons outside of the Γ point into account. For this ob-
taining DFT reference data with the supercell approach is not possible any
more due to the size of these systems. Therefore, we compared the phonon
dispersion bands with density-functional tight binding (DFTB) based data.
These calculations have also been performed by Tomas Kamencek and some
simulation details are outlined in appendix A. This is shown for the lowest
6 THz in figure 4.11. Here, it can be seen that the acoustic modes are in
excellent agreement to each other. A lot of the optical modes can be found
at different frequencies, but similar modes can typically found in close prox-
imity. Also note that the Γ frequencies for DFTB also deviate from those
obtained by DFT. This explains the different lowest lying optical mode in
the band structure that does not appear in the DFT data in figure 4.10.
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Figure 4.11: Comparison of phonon bands of IRMOF-1 (Zn) between MOF-
FF (orange) and DFTB (blue) phonon calculations
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4.3 Molecular Dynamics

For carrying out all the molecular dynamics simulations, the Large-scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS) [59] has been
used. This section provides an overview of the general settings used for all
further simulations and discusses some methodological issues when applying
this method for MOFs.
All simulations have been carried out for time steps of 0.2 fs. Such small time
scales are necessary to properly describe the interactions of hydrogen atoms
in the organic building blocks. Commonly used guidelines for the choice of
timestep in MD suggest that a higher timestep of about 1 fs should be suffi-
cient to describe carbon-hydrogen stretches. This timestep has been tested,
but was found to provide vastly incorrect results. For all runs, the Coulomb
interactions have been calculated in real space for short-range and in k-space
for long-range interactions. The cutoff separating real and reciprocal values
was set to 12 Å. By applying a smoothening parameter beginning at 90% of
the cutoff, it is ensured that the energy does not abruptly decay to zero. The
same parameters have been used to define the van-der-Waals cutoff. Beyond
the 12 Å, a particle-particle particle-mesh (pppm) solver [60] has been used
to interpolate the charges from a mesh in reciprocal space. The precision
of this approach is specified as the minimal allowed charge value of a point,
which was set to 10−5 or lower. For all MD simulations, a standard velocity-
Verlet integrator has been used.
In order to be certain that the MD simulations yield accurate results, it has
to be verified that the simulation temperature is high enough to comply with
the classical limit. The easiest criterion to verify this, is the heat capacity
that should approach a converged value in the classical limit. Since the heat
capacity is constant under these conditions, one has to use the temperature
dependent values obtained from lattice dynamics. This is shown in figure
4.12a for IRMOF-1 (Zn). It can be seen that the heat capacity is not com-
pletely constant until several thousand Kelvin. The temperature range of
interest is around 300 K where the heat capacity only reaches about 50%
of its maximum value. This might seem very concerning, but typically the
high temperature contributions arise from lighter atoms, like hydrogen in the
case of IRMOF-1, that are of little relevance for heat transport. It has been
observed previously [42] that proper thermal properties can be calculated
for temperatures below the classical limit. It will also be shown later, when
analyzing lattice dynamics results that mostly low frequency vibrations con-
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tribute to the thermal conductivity, which are occupied already at very low
temperatures. In order to visualize this, the heat capacity for IRMOF-1 has
been calculated for many different cutoff frequencies. Then, for each of these
calculations, the saturation temperature, where the heat capacity reaches 95
% of its maximum value for a certain cutoff, has been determined. These
saturation temperatures are visualized in figure 4.12b. Again, the temper-
ature range of interested is indicated with a shaded area. We see that the
modes in the first 10 THz are already occupied when temperatures of 200 K
are reached.

(a) (b)

Figure 4.12: (a) Temperature dependent heat capacity of IRMOF-1 on a
10x10x10 mesh. (b) cutoff frequencies and saturated temperatures where
the heat capacity reaches 95% of its final value of IRMOF-1. The yellow
area indicates the temperature range of interest.

In addition to making sure that the molecular dynamics simulations are
valid, it is important to converge the individual simulations. Here the conver-
gence criteria for each of them will be discussed. For simple thermalization
in an NVE ensemble and the calculation of volumes in an NPT ensemble,
the only criteria given are that the average temperature and pressure must
approach a converged value, which should coincide with the previously spec-
ified target. This can happen quite fast – in a few ps – depending on the
system. Using larger cells will lead to more stability and less noise in the
observables, requiring less time to converge.
For the Green-Kubo simulations it is necessary to first get the system in a
steady state at the equilibrium temperature and volume. Afterwards one
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has to choose a sufficiently high correlation length for the autocorrelation
function. The suitable value of this correlation length highly depends on
the numerical value for the thermal conductivity. A high κ will lead to a
slower decay of the heat current requiring longer correlation lengths. The
easiest way to check for convergence, especially for noisy heat-current auto-
correlation functions (HCACF), is to observe if its integral (so, the thermal
conductivity) reached saturation as can be seen in figure 4.13b for IRMOF-1.
The HCACF itself can be very noisy for low thermal conductivity materials
like MOFs. As an example, such a function is visualized in figure 4.13a. A
common practice to improve results is to apply a noise filter by removing high
frequency contributions from the Fourier transform of the HCACF [61]. But
since Huang et al. [62] suggested that high frequency oscillations arise due to
contributions of optical phonons, which cannot be neglected for MOFs, this
approach has not been applied in this work. Another reason to refrain from
this method is that only taking the low frequency limit of the Fourier trans-
form assumes an exponential decay of the HCACF, which has been shown
not to be the case in certain situations [19]. Instead, a simple average has
been formed over a specified convergence region in the integral of the HCACF.
This region is difficult to define, as noise can lead to artificial deviations from
the converged value for longer correlation lengths [62]. Aside of the HCACF
itself, the simulation time has to be sufficiently long in order to obtain an
accurately statistical averaged HCACF. To check for this parameter the time
evolution of the resulting thermal conductivity has been observed. This is
shown in figure 4.14. When the thermal conductivity showed no significant
changes for longer times anymore, the simulation was considered converged.
This typically requires simulation times of 1 ns or more.

While finite size effects occurring with the Green-Kubo method are fairly
insignificant, it is still important to observe them for MOFs. Previous in-
vestigations have shown that cells a few nm long are frequently sufficient
to obtain proper thermal conductivity values without showing finite size ef-
fects [19, 47]. This is typically much shorter than the phonon mean free
path in these materials. Also for MOFs previous publications have shown
that only a small 2x2x2 conventional supercell for IRMOF-1, with lattice
constants of 5.2 nm, is required to obtain converged results [22, 62]. In this
work cells for IRMOF-1 up to 4x4x4 supercells have been calculated and no
significant differences have been observed compared to 2x2x2 supercells.
In the case of the non-equilibrium molecular dynamics (NEMD) simulations
reaching a steady state across the cell has to be ensured. A good indicator
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(a)

(b)

Figure 4.13: Heat-current autocorrelation function (a) and the thermal con-
ductivity as a cumulative integral of the HCACF (b, blue) and a running
average (b, orange) of a 2x2x2 IRMOF-1 supercell after 4 ns simulation time
at 300 K.

Figure 4.14: Time evolution of the thermal conductivity over the duration
of a Green-Kubo simulation for a 2x2x2 supercell of IRMOF-1 at 300 K.
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for this represents the heat flux injected and removed by the thermostats.
The energy added and subtracted have to be equal as a condition for the
steady state. At this point it should be noted, that if the used cell is too
thin in cross-sectional directions, e.g. if one were to use a 8x1x1 cell instead
of an 8x2x2, it is possible that the heat flux of both thermostats shows very
large differences, even for long simulation times. This can be seen to a lesser
extent in figure 4.15a where the heat fluxes of the thermostats are similar
but not precisely the same after the molecular dynamics simulation ran for a
long time. The difference of these heat fluxes is then considered as an error
∆J for the heat flux. When carrying out periodic NEMD simulations one
will always obtain two temperature gradients in a single cell to either side of
the thermostat. The difference in the temperature profile is also an indicator
for reaching steady state and can also serve as an error ∆∇T . A total error
for the thermal conductivity using NEMD, as specified for results following
in this thesis, arises then from Fourier’s law:

∆κ =
∆J

∇T
+
J∆∇T
∇T 2

(4.3)

The temperature profile and the heat fluxes of the thermostats are repre-
sented in figure 4.15 for the example of IRMOF-1. Steady state is reached
faster the for larger cross-sections of the cell, but for most systems used, sim-
ulation times of 1 ns or more were required to achieve convergence. A larger
crpss-section also reduces the error of the heat flux. In figure 4.15b one can
see that there are large temperature drops close to the thermostat regions.
They arise due to phonon scattering at the thermostat boundary [19]. The
temperature gradient which will be used to calculate the thermal conductiv-
ity was obtained from a linear fit in the area sufficiently far away from these
boundaries. The left limit was chosen from 2Lx/16 to 6Lx/16 and the right
limit from 10Lx/16 to 14Lx/16. This allows a fitting across the linear regime
even for the smallest cells used in this thesis. Longer simulation times aid to
reduce the error of the temperature gradient.
Particularly serious for NEMD simulations are the finite size effects. To ac-
count for them, the infinite size extrapolation scheme as discussed in section
3.3.1 was used. The thermal conductivity was calculated for several different
cell lengths and then fitted to the infinite size limit. Such a fit is visualized
in figure 4.16 for 4x2x2, 6x2x2, 8x2x2 and 10x2x2 supercells. Care should
be taken that the value is taken in the linear regime of the 1/κ to 1/l curve,
as there can be deviations for very small cells. This did not appear to be a
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(a) (b)

Figure 4.15: Heat flux added and subtracted by the thermostats (a) and
temperature profile averaged over time after the simulation reached steady
state (b) for a NEMD simulation using a 8x2x2 supercell of IRMOF-1 over
a time period of 7 ns at 300 K.

problem for the tested systems in this thesis, but it has been shown before
that too small cell sizes can lead to non-linear behavior [63].

Figure 4.16: Extrapolation of the infinite size limit of NEMD simulations for
the thermal conductivity of IRMOF-1 at 300 K. The cells used were 4x4x4,
6x2x2 and 8x2x2 with at least 1 ns of simulation times each.
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5 Results and Discussion

This section serves to visualize and discuss the results for all systems ob-
tained with lattice and molecular dynamics. Additional parameters used
beyond what was described in section 4 will be included for each material.
First, vibrational properties will be shown in order to provide a basis for fur-
ther discussion. Then volumes and lattice parameters for the materials will
be given and their thermal expansion will be discussed. Subsequently, the
thermal conductivity values obtained from molecular dynamics will be shown
and discussed. Finally, thermal conductivity results from lattice dynamics
will be shown and a comparison between the various methods will be given.

5.1 Phonon band structures

Lattice dynamics calculations have been carried out using MOF-FF as a force
calculator to analyze the thermal properties obtained with MD. In section
4.2 we covered the basics and gave a justification based on IRMOF-1 using
available DFT and DFTB data. Here we will cover all the investigated sys-
tems to provide a basis for discussion in the following sections. The analysis
of individual phonon modes is based on visually observing the vibrational
motions that can be visualized by using the eigenvectors of the dynamical
matrix.

At first the primitive cells of all systems had to be optimized and the
resulting lattice parameters can be seen in table 5.1.

Table 5.1: Optimized lattice parameters for primitive cells of all systems
investigated with lattice dynamics. All values are given in Å.

System xx yy zz xy xz yz
IRMOF-1 (Zn) 18.406 15.940 15.028 9.203 9.203 5.313
IRMOF-1 (Mg) 18.526 16.044 15.127 9.263 9.263 5.348
IRMOF-10 (Zn) 24.403 21.133 19.925 12.201 12.201 7.044
IRMOF-130 (Mg) 12.476 10.805 10.187 6.238 6.238 3.602
MOF-508 11.002 11.002 14.115 0.000 0.000 0.000
JAST-1 15.446 9.652 15.667 0.000 0.000 0.000
MOF-74 15.250 13.478 6.414 -7.136 -7.136 -11.853
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5.1.1 IRMOFs

Here we will discuss differences among IRMOFs with different linkers or
nodes that still maintain a FCC lattice. As a reference and to explain the
labeling in the following band structures, figure 5.1 visualizes the first Bril-
louin zone for the face-centered cubic symmetry and the primitive unit cell of
IRMOF-1. The other IRMOFs show the same type of cell, but with different
linkers.
Figure 5.2 visualizes a comparison of the phonon dispersion bands up to 3
THz from IRMOF-1 and IRMOF-10 in order to analyze differences in linker
length. The bands are based on force constants obtained with a 3x3x3 primi-
tive supercell for both systems. It is immediately noticeable that for IRMOF-
10 the acoustic modes occur at lower frequencies and that there are more
lower lying optical modes. At such low energies, there are many vibrations
similar for both systems, as the individual components move in relatively
rigid units leading to their low frequencies. But those similar modes can be
found at a lower frequency for IRMOF-10. Also more modes can be found in
this region, because the bending and rotational motions of the phenyl rings in
the biphenyl linker adds an additional degree of freedom. A clear difference
are also the smaller slopes in the band structure for both the acoustic and
optical modes. This, in turn, leads to a lower group velocities which lowers
the thermal conductivity. But a direct comparison between different systems
is difficult, as the cell is longer for IRMOF-10, leading to shorter reciprocal
band paths, while the figures only visualize the reduced wave vectors along
the high-symmetry lines.

Another possible variation is given by using different metals in the in-
organic nodes. Figure 5.3 visualizes a comparison of the band structure for
IRMOF-1 with magnesium and zinc. Phonons for the Mg-MOF were ob-
tained using the parameterized force field discussed in section 4.1.1 for a
3x3x3 supercell. Here we can see that the acoustic modes for the magne-
sium MOF are of higher energies. Optical phonons can be found at lower
or higher frequencies. When the mass of the metals is reduced, one would
expect a higher frequency, as can be seen nicely for the acoustic modes. At
the high symmetry points an increase of up to 0.3 THz can be seen, but in
many regions of the Brillouin zone the differences are much smaller. In the
low frequency region there is an error ranging from 0.1 to 0.3 THz due to the
fitting process making it more difficult to make statements for the optical
bands due to the small energy differences.
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Figure 5.1: Primitive unit cell of IRMOF-1 and labeling of high symmetry
points in the first Brillouin zone of an fcc lattice. Source: Setyawan et al. [64]

The third comparison should be with the use of our hypothetical IRMOF-
130 with an oxalic acid linker. The calculation has been done with the
parameterized force field discussed in section 4.1.2 for a 4x4x4 primitive
supercell. The comparison of the dispersion bands with IRMOF-1(Mg) is
shown in figure 5.4. At first glance one of the acoustic branches appears
to have a much higher frequency for IRMOF-130. But on closer inspection
one can see an avoided crossing for the acoustic band in IRMOF-1 in Γ −
X direction, which reaches up to 2.5 THz at the X high-symmetry-point.
For IRMOF-130 this crossing is missing and one can see a somewhat larger
frequency of 2.9 THz. When looking at the other high symmetry directions,
we also observe the general trend of acoustic phonons showing higher energies.
The simple linker in IRMOF-130 means, that there are much fewer optical
modes in the low frequency regime, as the rotational motions and many
bending modes of the aromatic rings are missing.

5.1.2 Paddlewheel MOFs

Phonon properties have also been analyzed for MOF-508 (bipyridine linker,
figure 2.2b) and JAST-1 (DABCO linker, figure 2.2a) with zinc.
For MOF-508 the primitive cell is given as only one Zn-paddlewheel with
its surrounding organic linkers. For the phonon calculation a 4x4x4 prim-
itive supercell (3456 atoms) was used. The band structure for this system
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Figure 5.2: Comparison of low-energy phonon bands of IRMOF-1 (Zn) (blue)
and IRMOF-10 (Zn) (orange)
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Figure 5.3: Comparison of low-energy phonon bands of IRMOF-1 (Zn) (blue)
and IRMOF-1 (Mg) (orange)
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5.1 Phonon band structures

Figure 5.4: Comparison of low-energy phonon dispersion bands of IRMOF-1
(Mg) (blue) and IRMOF-130 (Mg) (orange)

55/130



5 RESULTS AND DISCUSSION

is visualized in figure 5.5 and its corresponding primitive cell with the cor-
responding Brillouin zone in figure 5.6. The bands are given for a path for
an orthorhombic lattice as the orientation of the bipyridine linkers prevent
tetragonal symmetry. This appears to have very little impact on the low
energy modes, as one can see in the symmetry of the band structure in Γ-
X-S-Y-Γ and Z-U-R-T-Z. The Γ-X-S and Γ-Y-S bands would be equivalent
in tetragonal symmetry, but show minor differences in MOF-508, especially
at higher frequencies. The same is true for Z-U-R and Z-T-R. Noticeable is
also the very flat and low lying band at about 0.4 THz. This is a rotation of
the entire bipyridine linker while all nodes and other linkers remain idle. A
similar mode can be seen at 1.5 THz where the rings in the bipyridine linker
perform a mirror-inverted motion resulting in an even flatter band. There are
also some isolated rotations of the therephthalic acid (TPH) linkers which
can be found at 1.2 THz and are very flat. Additionally motions of the TPH
linkers can be found isolated and in combination with vibrations including
the bipyridines - those behave more like the motions that can be found in
IRMOFs. Those generally show a much larger dispersion in the band struc-
ture.
For JAST-1 the geometry relaxation resulted in an off-center configuration
of the phenylene based linkers leading to a larger primitive cell with two Zn-
paddlewheels. The linkers were not angled completely planar in respect to
the oxygen atoms connected to the inorganic node. The phonon calculation
was carried out for a 4x4x4 primitive supercell (6912 atoms). The resulting
bands can be seen in figure 5.7 with the primitive cell in figure 5.8. Again,
one can see a number of symmetries in the phonon bands along some high-
symmetry directions like for MOF-508 due to only small deviations from a
tetragonal lattice. Similar to MOF-508 there are some very flat bands at 1
THz that represent rotations of the DABCO linkers. One can see an energy
dip of the bands at the U-point. This is also related to the different orienta-
tion of the cell. The linkers in the x-y plane are oriented facing the corners of
the orthorhombic cell instead of its faces. This means, that a phonon in Γ-U-
direction in this geometrical configuration is more comparable to a phonon
in Γ-X-direction in the geometry used for MOF-508. Due to the completely
different nature of the nitrogen based linker there are no low lying bending
modes that are otherwise prominent for the aromatic linkers.
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Figure 5.5: Low-energy phonon bands of MOF-508

Figure 5.6: Primitive cell of MOF-508 with its corresponding Brillouin zone.
Source: Setyawan et al. [64]
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Figure 5.7: Low-energy phonon dispersion bands of JAST-1

Figure 5.8: Primitive cell of JAST-1 with its corresponding Brillouin zone.
Source: Setyawan et al. [64]
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5.1.3 MOF-74

The last MOF to be considered was MOF-74 (see figure 2.3). The phonons
have been calculated for a 3x3x3 primitive supercell (1458 atoms). The
symmetries in MOF-74 conform to a dihedral lattice and the high symmetry
points are labeled according to figure 5.10. The low frequency phonon bands
are shown in figure 5.9. Note, that this band structure includes three times
as high frequencies as the ones shown before. It almost seems like that the
acoustic modes are separated from the optical modes like in many simpler
materials. But this is somewhat misleading as several avoided crossings of
the lowest optical with the acoustic bands can be seen. These acoustic modes
seem to reach their highest value at about 4 THz for the high symmetry point
Q. But the actual value is difficult to tell for certain, without evaluating the
symmetries further, as the bands in this frequency region are very dense.
In general, the bands show significantly more dispersion than in the other
MOFs discussed before. Also there are no low frequency bands that are
completely flat, as in the orthorhombic MOFs. This leads to significantly
higher group velocities for low energy modes. Wit that, we would expect
a significantly higher thermal conductivity for MOF-74 just based on the
phonon dispersion bands. Of course, the thermal conductivity also depends
on the phonon lifetimes for which the system’s anharmonicities have to be
investigated first.
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Figure 5.9: Low-energy phonon dispersion bands of MOF-74.

Figure 5.10: Primitive cell of MOF-74 with its corresponding Brillouin zone.
Source: Setyawan et al. [64]
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5.2 Volumes and thermal expansion

MD simulations are generally run at elevated temperatures. In order to ther-
malize a system (the process of assigning each atom proper velocities based
on the total kinetic energy defined by a target temperature) it is normally
sufficient to apply a thermostat in an NVT ensemble before the actual simu-
lation run begins. But most materials undergo a thermal expansion process
when heated, which would lead to cell vectors for a pressurized system when
one merely uses the geometry obtained by a zero Kelvin relaxation. There-
fore, in order to carry out accurate MD simulations, it is required to know the
equilibrium volume at the temperature of interest. For this the cell param-
eters, as well as the volume, need to be allowed to change freely throughout
the simulation in an NPT ensemble. As opposed to the thermalization, it is
not sufficient to perform a brief MD run with a barostat at zero pressure and
thermostat prior to the simulation. Since the observed cells are frequently
relatively small (a few nm in each direction) applying a barostat will lead
to massive pressure fluctuations which result in large variations of the cell
parameters. Therefore, it is necessary to calculate the volume beforehand
by statistically averaging over a sufficiently long MD simulation in the NPT
ensemble. This then provides the cell parameters that will be used in further
simulations.
For all investigated systems the equilibrium cell parameters at the tempera-
tures of interest have been calculated. This section should give an overview
of the thermal expansion that can be observed in investigated MOFs as a
result. For most materials only the equilibrium volumes that are necessary
for the subsequent thermal conductivity simulations were obtained. But for
some systems the thermal expansion will be analyzed in more detail. This is
relevant when investigating the thermal conductivity, as thermal expansion
arises due to anharmonic effects.
The temperature dependent lattice parameters were obtained by first ther-
malizing a sufficiently large supercell in an NVT ensemble. The temperature
is held constant by applying a Nose-Hoover chain thermostat. The investi-
gated Metal-Organic frameworks reach equilibrium after a few ps of simula-
tion time. For all systems an equilibration time of at least 10 ps was used to
ensure a stable temperature.
After thermalization the simulation was run in an NPT ensemble where a
Nose-Hoover chain barostat forces the pressure to be zero. The cell param-
eters were then permitted to change anisotropically during this time period.

61/130



5 RESULTS AND DISCUSSION

The simulations were run in this stage for at least 100 ps and the resulting
lattice parameters and volumes were recorded every 2 fs and subsequently
averaged.
In figure 5.11 the thermal expansion of IRMOF-1 is visualized. The data has
been obtained for a 2x2x2 supercell. The volume decreases linearly in the
investigated temperature range from 100 K to 500 K. A linear fit leads to a
negative linear thermal expansion coefficient of α = −8.3 · 10−6 K−1. This is
in the range of predictions made by previous force fields that ranged from −3
to −26.2 · 10−6 K−1 [65] but still significantly lower than the experimental
data where results range from −12 to −15.3 · 10−6 K−1 [66]. The reason
for negative thermal expansion (NTE) has been investigated before and sev-
eral responsible phonon modes have been identified. Mainly low frequency
phonon modes are responsible for thermal expansion and some of those are
visualized in figure 5.12. One mode contributing to NTE that is commonly
mentioned in literature is a transverse motion of the rigid aromatic ring in
IRMOF-1 [67, 68]. This motion is representative for the lowest lying optical
mode in the phonon spectrum and is visualized in figure 5.12b. But it is
not the only mode contributing significantly. Several other low lying rigid
unit modes (RUMs) contribute towards the NTE based on their Gruneisen
constants [68]. These RUMs are modes that do not distort their basic struc-
tural units (like tetrahedra, octahedra, etc.). This means that the modes can
attain a low enough energy to be of significance as they correspond to a mo-
tion for a more simple geometry [69]. Additionally these modes can be NTE
modes, which means that they lead to bond bending instead of longitudinal
stretching, which would contribute to a positive thermal expansion. Most of
the low lying modes in IRMOF-1 are either rigid rotations (see figure 5.12c)
and rigid translations of node and linker without internal stretches of the
individual atoms. Vibrations of the node typically do not impact thermal
expansion much, as they cannot perform bending motions. Also, rotational
vibrations of the organic linker are of little significance. In addition to this
also the acoustic modes have been shown to be important for thermal expan-
sion [68]. Here the bending of the linker-node structure in alternating layers
is responsible for reducing the size of the unit cell. One acoustic mode at
X-point is visualized in figure 5.12e. From here on we want to use these ar-
guments as a basis for looking at the thermal expansion of MOFs, especially
with different configurations of linkers.

Table 5.2 shows linear thermal expansion coefficients for different MOFs
that were investigated in more detail. The values were obtained by perform-
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Figure 5.11: Thermal expansion of IRMOF-1 in x direction based on an
NPT simulation

ing a linear fit over the lattice constants in a temperature range from 100
K to 500 K. The values for isoreticular MOFs have been averaged over all
directions to minimize the error.

Table 5.2: Linear lattice thermal expansion coefficients for various MOFs
in all Cartesian directions. For the anisotropic MOFs, the equal linkers are
facing in y and z direction. All values given in 10−6 K−1

System αx αy αz

IRMOF-1 (Zn) -8.3 -8.3 -8.3
IRMOF-10 (Zn) -11.2 -11.2 -11.2
IRMOF-16 (Zn) -18.6 -18.6 -18.6
IRMOF-1 (Mg) -9.6 -9.6 -9.6
IRMOF-130 (Mg) -15.1 -15.1 -15.1
MOF-10-1-1 (Zn) -11.2 -8.8 -8.8
MOF-508 (Zn) +2.0 -7.0 -7.0
JAST-1 (Zn) +10.1 -10.6 -10.6
MOF-74 (Zn) +4.0 3.7 7.6

It can be seen that the isoreticular MOFs with the longer biphenyl- and
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(a) Idle structure for ref-
erence

(b) Translations of the
linkers at 0.64 THz

(c) Rotations of the link-
ers at 1.14 THz

(d) Idle structure for reference (e) Acoustic mode at X-high symmetry
point showing the shearing motion of al-
ternate layers.

Figure 5.12: Various vibrations occuring in IRMOF-1. (a) and (d) serve as
a reference as a not displaced structure while (b) and(c) show the displaced
cell along the normal modes at Γ. (d) visualizes one acoustic mode at X.
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terphenyl-based linkers, IRMOF-10 and IRMOF-16, show a larger thermal
contraction than IRMOF-1. By investigating the low frequency modes of
IRMOF-10 one can observe very similar rigid translational motions of the
organic and inorganic components as compared to IRMOF-1. The different
organic linkers impact these vibrations in that there is an additional angle
bending at the connecting bond between the phenyl rings. This implies that
both aromatic rings represent a separate rigid unit. A reason for the higher
NTE in IRMOF-10 is the fact that the contributing phonon modes, both the
optical and the acoustic ones, are lying significantly below those of IRMOF-
1 in the low frequency regime and, therefore, contract the cell more upon
heating.
The NTE for Magnesium-IRMOF-1 is slightly higher than for IRMOF-1.
This is very easy to explain by the fact that the lower mass of the Mg atoms
decreases the energy of the phonon modes, which should be very similar due
to an almost equal geometry. But this MOF provides a possible comparison
to the IRMOF-130 with Mg where a significantly higher thermal contraction
than for IRMOF-1 can be observed. At this point, it has to be noted that the
agreement of the force-field and the reference DFT frequencies is somewhat
poor for the most important optical phonon mode and it is very possible that
the thermal expansion is overestimated. Still, when we compare the disper-
sion bands solely provided by the FF (see figure 5.3), we can see that the
conditions for the higher thermal contraction, as was the case for IRMOF-10,
do not apply for IRMOF-130. The acoustic modes are even somewhat higher
and the lowest optical modes occur at a similar energy. In general there are
a lot fewer low frequency modes for IRMOF-130 due to the simple linker.
But a more thorough investigation would need to be carried out in order to
tell for certain.
Another curious aspect of the thermal expansion in MOFs is given by the

anisotropic paddlewheel MOFs like JAST-1 or MOF-508. Here, the lattice
parameter in the direction of the nitrogen based linkers shows an increase
while the other directions show a negative thermal expansion, reminiscent
of IRMOF-1. In direction of the bipyridine linker in MOF-508 only a very
low positive thermal expansion can be observed. For JAST-1 the thermal
expansion in the direction of the DABCO linkers is significantly higher than
for the bipyridine. In both cases the NTE coefficient in the direction of the
terephthalic acid is similar to IRMOF-1. All of this leads to the conclusion
that the organic linkers appear to be the most significant factor for negative
thermal expansion, which is consistent with previous findings.
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Figure 5.13: Thermal expansion coefficients of JAST-1 in the directions of
the phenyl based linkers (x,z) and of the DABCO based linkers (z).

66/130



5.2 Volumes and thermal expansion

Table 5.3 gives an overview of all lattice parameters of the MOFs at 300
K relative to their 0 K values that are needed for the thermal conductivity
simulations. In the following, the simulation details for each of the inves-
tigated materials will be elaborated. The values for the Zn-IRMOFs have
been obtained using a 2x2x2 conventional supercell. All calculations have
been made after a sufficiently long time to achieve neglectable statistical
errors of less than 10−4Å. The lattice parameter for IRMOF-1 at 160 K
of 25.991 Å compares reasonably well to experimental x-ray diffraction ob-
tained data of 25.885 at 169 K [70]. The cells for IRMOF-1 with scaled
masses have not been relaxed at 0 K, as a difference in the atomic masses
should not change the minimum energy configuration. There also appears to
be only a minimal difference for the lattice parameters with changed masses
at elevated temperatures. IRMOF-1 with magnesium was calculated from a
3x3x3 cell and shows a somewhat higher lattice parameter than the version
with zinc. This likely results from the different reference data for the param-
eterization process, as the lattice constant obtained from DFT amounted to
26.20 Å. This is different from the parameterization of IRMOF-130 (Zn) that
has been parameterized without periodic boundary conditions. All values of
the tetragonal ZnO4 MOFs were also based on 2x2x2 conventional supercells
and the resulting cell lengths are very similar to the values of their respec-
tive isoreticular frameworks. Lattice parameters for the paddlewheel MOFs
MOF-508 and JAST-1 are given based on calculations carried out for a 4x4x4
primitive unit cell.
The temperature dependent lattice parameters of MOF-74 are considered
separately, as it lacks the orthorhombic symmetry. For this material thermal
expansion is positive in all directions. Table 5.4 shows the cell parameters for
a few temperatures that were obtained from an NPT run of a 3x3x3 primitive
supercell. The thermal expansion values obtained from a linear fit over this
temperature range in Cartesian directions are shown in table 5.2. The tilt
angle of the cell remained unchanged for the different temperatures. It can
be seen that the thermal expansion is significantly higher in the direction of
the node-chain. In x and y directions similar values are obtained. Consid-
ering the symmetry of MOF-74 those two directions should be equal, and
the difference arises only due to inaccuracies of the simulation. Following
the previous considerations for the origin of negative thermal expansion, the
positive coefficient can easily be explained with the increased rigidity of the
atoms. The aromatic linkers in x and y direction are attached to twice as
many external atoms holding them in place. This hinders the organic linkers
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Table 5.3: Equilibrium lattice parameters in Cartesian coordinates of the
respective conventional cells for MOFs considered in this work.

System 0 K 300 K

x[Å] y[Å] z[Å] x[Å] y[Å] z[Å]
IRMOF-1 (Zn) 26.079 26.079 26.079 25.960 25.960 25.960
Mg mass 25.959 25.959 25.959
Ca mass 25.957 25.957 25.957
Znx2 mass 25.956 25.956 25.956
linker x 0.75 mass 25.958 25.958 25.958
linker x 0.5 mass 25.956 25.956 25.956
linker x 1.5 mass 26.961 26.961 26.961
linker x 2.0 mass 26.961 26.961 26.961
IRMOF-10 (Zn) 34.511 34.511 34.511 34.388 34.388 34.388
IRMOF-16 (Zn) 42.997 42.997 42.997 42.762 42.762 42.762
IRMOF-1 (Mg) 26.193 26.193 26.193 26.111 26.111 26.111
IRMOF-130 (Mg) 17.644 17.644 17.644 17.560 17.560 17.560
MOF-10-1-1 (Zn) 34.637 26.028 26.028 34.421 25.951 25.950
MOF-16-1-1 (Zn) 42.982 26.079 26.079 42.829 25.925 25.925
MOF-10-16-16 (Zn) 34.517 42.982 42.982 34.316 42.732 42.732
MOF-508 (Zn) 14.0725 11.002 11.002 14.89 10.98 10.98
JAST-1 (Zn) 9.613 11.003 11.003 9.639 10.965 10.967

to perform the motions typical for NTE. In z direction, the absence of linkers
and the rigidity of the structure means that not even the shearing motion
caused by the acoustic modes leads to negative thermal expansion.
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Table 5.4: Temperature dependent lattice parameters for a 3x3x3 MOF-74
supercell from NPT simulations. All length values are given in Å.

T [K] x y z xy xz yz
100 45.78 40.47 19.26 -21.43 -21.43 -35.60
200 45.80 40.48 19.27 -21.44 -21.44 -35.60
300 45.81 40.49 19.29 -21.44 -21.45 -35.64
400 45.84 40.51 19.30 -21.45 -21.47 -35.66

5.3 Thermal conductivity

In this section the results for the thermal conductivity in metal-organic frame-
works will be discussed in detail. First IRMOF-1 (Zn) will be presented and
compared to experimental data. Then, the impact of different internal mass
ratios, metals and linkers in IRMOF-1 will be considered. The impact of
linker length in Zn4O MOFs will be investigated by calculating the thermal
conductivity for isotropic and anisotropic MOFs. Finally, MOF-508, JAST-
1 and MOF-74 will be considered to provide some insights about different
architectures.

5.3.1 IRMOF-1

The thermal conductivity for IRMOF-1 was calculated using equilibrium and
non-equilibrium molecular dynamics methods. At 300 K the thermal con-
ductivity was also calculated using up to 4x4x4 cells. The resulting value
changed only within the error margins. Due to this, for other systems, a
supercell of similar size was considered sufficient. For the NEMD calcula-
tions several cell lengths were used to account for finite size effects. For this
4x2x2, 6x2x2, 8x2x2 and 10x2x2 cells were used to extrapolate to the infinite
size limit. The 2x2 supercell in the cross-sectional direction was found to
be necessary in order to avoid thermal instabilities and to achieve steady
state in a reasonable time-frame. The temperature difference compared to
equilibrium for the hot and cold thermostat was set to ±50 K. Here also
different temperature differences were tested ranging from ±25 K to ±100 K
and the values for the thermal conductivity, disregarding finite size effects,
were found to be within an error of ±10 %. In addition to this, no systematic
behavior could be observed. This confirms the validity of Fourier’s law and
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implies that nonlinear response effects are negligible [19] in this temperature
range. The resulting temperature dependent values are shown in figure 5.14.
They are compared to the only available experimental data for an empty
IRMOF-1 lattice [18]. Other investigations have been carried out for low
density IRMOF-1 [71] or with additives [72], but not for the empty crys-
talline lattice. It can be seen that the results obtained from the Green-Kubo
method appear to be consistently lower than those calculated with NEMD.
At a temperature of 300 K the molecular dynamics results agree well with ex-
periment. In the low temperature regime below 100 K the experiment shows
the typical trend for the thermal conductivity that cannot be captured with
classical molecular dynamics simulations, as these are due to low tempera-
ture effects that rely on a proper quantum-mechanical description. It can
also be observed that the temperature dependence of the simulated and ex-
perimental data does not appear to match, but the error bars are large for
both approaches and the differences in thermal conductivities are very low.
In addition it is impossible to completely exclude the presence of defects or
residue solvents in the experimental setup that might have affected the re-
sults. Without additional measurements it is difficult to conclude a major
flaw with either method. Huang et al. [62] analyzed molecular dynamics
results from the Green-Kubo method in more detail and identified contribu-
tions from optical modes as the cause of an increase in thermal conductivity.
This assessment was based on filtering the high frequency contributions from
the heat-current autocorrelation function [73]. In those simulations the tem-
perature dependence also matched the experimental data. In any case, the
temperature dependent thermal conductivity will not be a major topic in this
work and most simulations from now on are carried out at a temperature of
300 K. With a value of 0.35 W/(m K) at 300 K the thermal conductivity for
this material is extremely low. It has been previously reported that higher
values can be achieved by the addition of expanded natural graphite [72] or
interpenetration [74] and a reduction can result from gas inclusion [75]. But
there are also studies that indicate an increase in thermal conductivity by
loading with gas [22].
Something curious that has been observed when carrying out the NEMD
simulations is visualized in figure 5.15. Here we can see the temperature pro-
file between two thermostats showing multiple terraces. The steepest steps
occur between the bond of the zinc and the oxygen atoms conntected to the
organic component, while the temperature remains roughly constant across
node and linker. This implies that the greatest bottleneck for thermal trans-
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Figure 5.14: Temperature dependent thermal conductivity of IRMOF-1
based on equilibrium (Green-Kubo, GK) and non-equilibrium molecular dy-
namics (NEMD) simulations with MOF-FF

port in IRMOF-1 is the interface between organic and inorganic components.
One of the possible reasons for this phenomenon could be the large mass mis-
match between node and linker. This can lead to a lower vibrational overlap
at the interface, which results in increased scattering in this area and in turn
to a reduced thermal conductivity.

In order to analyze the impact of the mass mismatch between node and
linker, thermal conductivity simulations were carried out for IRMOF-1 with
the masses of the individual atoms changed to provide a different mass ratio.
In these simulations, the force-field interactions remain unchanged. A similar
investigation has been carried out in the past [22], where only the entire node
and the entire linker were mass-scaled. This will be investigated in more
detail, by not only scaling the nodes and linkers, but by also scaling the metal-
atoms, which are much easier to replace in a realistic material. The results
of this investigation can be seen in figure 5.16. All simulations have been
carried out with NEMD using the same settings as for the base IRMOF-1 for
4x2x2, 6x2x2 and 8x2x2 supercells. In addition to the scaled Zn-IRMOF-1,
also the thermal conductivity for the Mg-IRMOF-1 with different parameters
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Figure 5.15: Temperature profile of IRMOF-1 (Zn) during a NEMD simu-
lation in steady state for 300 K

are shown at the corresponding mass compared to Zn. This value has been
obtained using the Green-Kubo method for a 2x2x2 supercell. It can be
seen that the difference in thermal transport between both of these materials
is mostly given by the metal mass. This is why further parameterization
for IRMOF-1 with different metals that could chemically replace Zn like Ca
have not been carried out. The other data point with a metal mass lower
than Zn has the same mass as calcium. In addition to the simulated values
an expected trend for the thermal conductivity depending on the masses is
displayed. In the case of an ideal gas one would expect a proportionality of
κ ∝ 1/

√
m when scaling the masses of all atoms in the system. This arises

due to the heat capacity and mean free path being independent of the mass,
making the atom velocities the only mass dependent factor. These are then
given by

v ∝
√
RT

m
(5.1)

with R the ideal gas constant. This assumption is, of course, a bit naive
for a crystalline solid where one needs to consider all phonon modes in the
system to obtain a true mass dependence. But since the phonon frequency
is also related to the mass by ω ∝ 1/

√
m, all distribution functions included

in the phonon lifetimes would have to be evaluated to obtain the true mass
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dependence. This has not been performed, as the reference mass dependence
given should only indicate a rough guide to the expectation.

Figure 5.16 also visualizes some clear trends based on the scaled masses.
When the masses of the linkers (which is defined as the carbon and hydrogen
atoms in this case) are adjusted, there does not appear to be a large difference
in thermal conductivity within the error for both heavier and lighter masses.
This is inconsistent with the assumed proportionality where one would expect
a higher thermal conductivity for lower masses. The likely explanation for
this phenomenon is, that with a reduction in linker mass one also increases
the mass mismatch between the organic and inorganic component. This, in
turn, reduces the thermal conductivity providing the opposite effect as the
mass scaling. The inverse is true for increased linker masses. This can be seen
even better for the metal scaling. Here, a twice as high thermal conductivity
can be observed for masses equivalent to magnesium. This implies that also
here the reduction of the mass mismatch by reducing the node mass should be
an important contribution in increasing the thermal conductivity in addition
to the natural increase due to lighter masses. Again, the inverse is true for
higher metal masses.
Additionally, the mass of the entire node as defined by Han et al. [22], so all
metal and oxygen atoms, have been scaled as a comparison. The masses were
scaled to 65% of the original node mass and the thermal conductivity was
calculated for 4x2x2, 6x2x2 and 8x2x2 cells to extrapolate the infinite size
limit. A thermal conductivity of 0.57 W/(mK) was obtained as a result. The
scaling of the metal atom under this condition is with 42.497 ma very close
to the mass of calcium with 40.078 ma. The resulting thermal conductivity is
very similar to the value of 0.58 that was obtained for only scaling the metal
mass to calcium. But in total, the mass for the full node scaled system should
be significantly lower. This might indicate that internal mass differences
between oxygen and metal also plays a more significant role. But the error
for these values is still significant and in order to truly understand what
difference the masses inside the node cause, further investigations would have
to be carried out.
In order to see more clearly how the different mass differences affect the
interface, it is of interest to investigate the step-terrace profiles for the mass-
scaled systems. These step-like structures have been observed previously in
superlattices of inorganic materials by Lin et al. [76]. In this study, efforts
have been made to understand the thermal conductivity in GeSi superlattices
with different periodic lengths. In order to do this, the contributions to the
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Figure 5.16: Thermal conductivity values for IRMOF-1 (Zn) with scaled
masses for the metal atoms (red) and for entire carbon/hydrogen linkers
(blue). Note that those have been obtained by applying the interatomic
model for IRMOF-1 (Zn). The black data corresponds to IRMOF-1 parame-
terized for magnesium. The green curve indicates the expected temperature
trend if one were to scale the mass of the entire system.
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thermal conductivity for the individual components in the superlattice have
been separated. Similarly, this work employs following simple expression to
separate the contributions:

1

κ
=
∑
i

1

κnode,i

lnode
Ltot

+
∑
i

1

κlinker,i

llinker
Ltot

+
∑
j

1

κint,j

aint
Ltot

(5.2)

Here κnode, κlinker and κint are the thermal conductivities occurring across
the building block or the interface, Ltot is the total length of the cell, lnode
and llinker are the lengths of the nodes and linkers and aint is defined as
the distance between node and linker where no atoms are positioned. The
partial thermal conductivities in the nodes and linkers have been obtained
by linearly fitting the averaged kinetic energies of each individual building
blocks leading to a temperature gradient. The values for the interfaces filled
the gaps between the fits for linkers and nodes in the temperature profile.
Care has been taken to exclude any components near the thermostats. This
analysis was carried out for mass scaled IRMOF-1 (Zn) and the results are
shown in figure 5.17. For all these simulations an 8x2x2 supercell was used in
order to obtain the temperature profile. For the partial thermal conductivity
values of nodes and linkers it is difficult to see clear trends with mass scaling.
This is due to the relatively large error resulting from fitting very flat slopes.
When looking at the thermal conductivity across the linker in figure 5.17e
for different linker masses, one can make out a lower thermal transport for
higher masses. This is consistent with the expectation that an increased
mass of a system will lead to a lower thermal conductivity. Similarly, we
should expect such a trend in figure 5.17a when varying the metal masses.
But the difference in thermal conductivity is relatively low. Aside of the
large error, this could also be attributed to the fact that the partial thermal
conductivity across the nodes was recorded, not only across the nodes, but
also including all the cross-linkers perpendicular to the direction of heat flow.
Also the situation is different, in that only a small part of the building unit
was scaled.

A much more clear statement can be made when looking at the interface
conductivities in figure 5.17c and 5.17f. Here, reducing the metal masses and,
therefore, reducing the mass mismatch leads to a higher thermal conductiv-
ity. Similarly, when increasing the linker mass, a clear increase in interface
conductivity can be observed. This is consistent with previous assumptions
and confirms, that the mass difference between node and linker plays a major
role for thermal transport.
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(a) node (b) linker (c) interface

(d) node (e) linker (f) interface

Figure 5.17: Partial thermal conductivities – split in nodes, linkers and
interfaces – for IRMOF-1 (Zn) with scaled metal (a,b,c) and linker (d,e,f)
masses.
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Figure 5.18: Thermal conductivity values for IRMOF-1 (Zn), IRMOF-10
(Zn, BPDC linker) and IRMOF-16 (Zn, TPDC linker) from Green-Kubo
simulations of a 2x2x2 supercell.

5.3.2 Zn4O MOFs with different linkers

In order to analyze the impact of linker length, Zn4O IRMOFs with Biphenyl-
4,4’-dicarboxylic acid (BPDC) and p-Terphenyl-4,4”-dicarboxylic acid (TPDC)
linkers have been analyzed and compared to the regular terephthalic acid
(TPH) linker based MOFs. These frameworks are commonly referred to
as IRMOF-10 and IRMOF-16. The simulations were carried out using the
Green-Kubo method with a 2x2x2 supercell of the conventional unit cell for
each system. The resulting values for the thermal conductivity can be seen
in figure 5.18. The values are lower by a factor of 2-3 than for the refer-
ence system. The interfaces between node and linker, which can be seen
as a major barrier to thermal transport, as discussed in 5.3.1, are less fre-
quent in these MOFs. So one might expect a higher thermal conductivity,
but since the linker length has been expanded in all Cartesian directions,
the linker-density in the cross-sectional area that can conduct heat is much
lower. This is why a significantly lower thermal conductivity is unsurprising.
To analyze the actual impact of the length of the linkers, additional anisotropic
MOFs have been studied. One of these structures is displayed in figure 5.19.
This system has a BPDC linker in one direction and a TPH linker in the
other two directions. The main focus should be on the MOF-BPDC-TPH-
TPH and MOF-TPDC-TPH-TPH, where the molecule abbreviations indicate
the linkers in different Cartesian directions. These systems have the same
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Figure 5.19: Example structure of an anisotropic MOF. This MOF-BPDC-
TPH-TPH has a different linker in one direction of heat transport leading to
an equal cross-sectional linker density as in IRMOF-1.

cross sectional linker density as IRMOF-1 in one direction. The thermal con-
ductivity of these materials has then been calculated using the Green-Kubo
method from 2x2x2 supercells. The results compared to their isoreticular
counterparts can be seen in figure 5.20. The thermal conductivity of these
MOFs in direction of the longer linkers is rather similar to IRMOF-1. This is
somewhat surprising, as with the increased length of the organic component
one would expect a higher thermal conductivity due to a lower density of
node-linker interfaces.

NEMD simulations have been utilized to analyze the barriers of thermal
transport in the MOF-BPDC-TPH-TPH and MOF-TPDC-TPH-TPH. Vi-
sually the temperature profile is very similar to what has been shown for
IRMOF-1 in figure 4.15b. The temperature profile for the heat flow in a
8x2x2 supercell of MOF-BPDC-TPH-TPH in the direction of the BPDC
linkers is shown in figure 5.21. In this profile the high thermal conductivity
across the organic component becomes more evident while there appears to
be a slightly larger thermal resistance across the inorganic node.

In a previous study [77], a simple model has been used to relate the pore
size in MOFs with thermal conductivity. What was seen in this work, was a
linear relationship between the thermal conductivity κ and the inverse cross-
sectional area of the pores. Using the data obtained for Zn4O MOFs, we
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Figure 5.20: Anisotropic thermal conductivity values for MOF-BPDC-TPH-
TPH and MOF-TPDC-TPH-TPH compared to the thermal conductivities of
their isoreticular counterparts. Values have been obtained using the Green-
Kubo method for a 2x2x2 supercell.
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Figure 5.21: Temperature profile of a 8x2x2 supercell of MOF-BPDC-TPH-
TPH during a NEMD simulation at 300 K in the direction of the long linkers.
The errorbars show the spread of the atomic temperatures.

can now try to investigate this relationship with MOFs modeled on an atom-
istic level. Figure 5.22 relates the thermal conductivity to the cross-sectional
area perpendicular to heat flow. Note that the anisotropic MOFs will show
multiple values in the figure. It can be seen, that there does seem to be a
certain degree of linear increase of the thermal conductivity with reduction
of pore size. There are some outliers, but especially low values are difficult
to judge due to their inherently large error arising from noisy autocorrelation
functions in the Green-Kubo method.
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5.3 Thermal conductivity

Figure 5.22: Thermal conductivity of various Zn4O MOFs related to the
inverse cross-sectional area between the nodes perpendicular to heat flow.
Values have been obtained using the Green-Kubo method. A linear fit that
passes through zero has been included.
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5.3.3 IRMOF-130 (Mg)

The thermal conductivity has also been calculated for IRMOF-130 (Mg),
with oxalic acid as the linker. Both the Green-Kubo method and NEMD
have been utilized to obtain the thermal conductivity. Due to the smaller
primitive unit cell, a 4x4x4 supercell was used for Green-Kubo. This resulted
in a thermal conductivity of 1.15 W/(mK) at 300 K. In case of NEMD 4x2x2
up to 16x2x2 supercells have been used to extrapolate the infinite size limit
which leads to 1.34 W/(mK) at 300 K. Again, we can see a slightly larger
value for NEMD, but both results are in the same order of magnitude. This is
also approximately two times as high, as the value for IRMOF-1 (Mg). This
MOF obviously shows a much higher cross-sectional linker density, which
would lead to a higher expected thermal conductivity. Also, when looking at
the temperature profile from the NEMD simulations in figure 5.23, the step-
like structure is much less pronounced. The thermal conductivities across
the steps between the linker oxygens and the node metal atoms result in an
averaged value of 0.21 W/(mK), which is significantly higher than anything
obtained during the mass-scalings in section 5.3.1, where the highest value
reached 0.12 W/(mK). When loosely analyzing the low frequency phonon
bands in figure 5.4, one can see, that the acoustic bands show a higher dis-
persion in some directions, which leads to a higher group velocity. In general,
there appear to be a lot fewer low lying flat bands, which were mostly modes
corresponding to torsional/translational motions of the organic linkers. For
a more precise analysis of the phonons in IRMOF-130, as observed with the
force field, see section 5.4.
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Figure 5.23: Temperature profile of a 8x2x2 supercell of IRMOF-130 (Mg)
during a NEMD simulation at 300 K. The errorbars show the spread of the
atomic temperatures.

5.3.4 MOFs with different architecture

In addition to the findings in section 5.3.2 it would be interesting to ana-
lyze how different kind of MOF structures and connecting chemistry lead
to different trends than compared to the IRMOFs. The systems of interest
are zinc based paddlewheel MOFs. They are chosen due to their tetragonal
structure and their inherent anisotropy which allows a comparison to the
previously observed hypothetical non-isoreticular MOFs. Another reason is
the completely different connecting chemistry in one of the three main direc-
tions, allowing further analysis on the impact of the linker-node interfaces.
In addition to this, the thermal conductivity of MOF-74 was studied in order
to observe the impact of completely different architectures.

Thermal conductivity values at 300 K for MOF-508, JAST-1 and MOF-74
can be found in table 5.5. Figure 5.24 visualizes these values with the struc-
ture as a reference. The values were obtained using the Green-Kubo method
for supercells as specified in the table. Especially interesting is that MOF-
508 shows inconsistent anisotropic behavior compared to the MOFs studied
in section 5.3.2. Here the higher thermal transport value can be found in
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(a) (b)

(c)

Figure 5.24: Anisotropic thermal conductivities for MOF-508 (a), JAST-1
(b) and MOF-74 (c) obtained with equilibrium molecular dynamics simula-
tions. Here, red is oxygen, grey is carbon, white is hydrogen, blue is nitrogen
and golden is zinc.
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Table 5.5: Anisotropic thermal conductivity of MOF-508, JAST-1 and MOF-
74 obtained with the Green-Kubo method. The pyridine and DABCO linkers
as well as the node-chain in MOF-74 face the z direction. Thermal conduc-
tivity values are given in W/(mK)

System κx κy κz supercell
MOF-508 0.42 0.40 0.30 4x4x4
JAST-1 0.59 0.53 0.56 4x4x4
MOF-74 0.74 0.88 2.16 4x4x8 (conv)

the direction of the shorter linkers with lower cross-sectional linker density.
This indicates that the metal-nitrogen connection between node and linker
provides a larger thermal resistivity than the one originating from the car-
boxylic acid connector. In the directions of the therepthalic acid linkers, the
thermal conductivity is slightly higher than in IRMOF-1, even though the
cross-sectional linker density is only slightly higher. This can be attributed
to the lighter inorganic paddlewheel node reducing the mass difference with
the organic linker.
JAST-1 shows almost isotropic thermal conductivity. The linker density is
now higher in x and y directions leading to a larger value. In z direction,
the DABCO linker seems to provide a better linker-node interface than the
bipyridine, leading to a significantly higher thermal conductivity while pre-
serving linker density. This arises due to the different hybridization of the
nitrogen atom for both of these linkers. When comparing the phonon bands
in figures 5.7 and 5.5 a higher dispersion of the acoustic modes can be seen
for JAST-1 in all high-symmetry directions. Since these modes are typically
the main carriers of heat, the higher thermal conductivity is expected.
MOF-74 shows the largest thermal conductivity values of any MOF investi-
gated in this work. Especially along the node-chain the thermal conductivity
gets very high with 2.16 W/(mK). This is not very surprising, considering
that there are no organic-inorganic interfaces in this direction and thermal
transport essentially happens along zinc oxide nanowires. In the other direc-
tions the rigid nature of this MOF makes isolated motions of organic linkers
difficult. This leads to more vibrations of all components in the material,
which are more relevant for thermal transport. But it is difficult to compare
the numerical value with other MOFs due to the completely different hexag-
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onal structure. Further analysis for thermal transport in this system will be
carried out with anharmonic lattice dynamics results in section 5.4.2.
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5.4 Thermal properties based on Lattice Dynamics

In addition to the molecular dynamics approaches, the thermal conductivity
has also been calculated using the Boltzmann transport equation, which is
solved using the relaxation time approximation. The required lifetimes were
obtained by calculating third order force constants with the finite difference
approach. All calculations of displacements have been carried out with the
parameterized force fields.

5.4.1 IRMOF-130

The phonons in IRMOF-130 have been converged with the supercell approach
using a 3x3x3 supercell of the primitive unit cell. For the third order force
constants, the same cell was used. It has been shown before that the third
order force constants converge faster than the second order with respect to
cell size. This is why no larger cells have been considered. The phonon
lifetimes have been calculated for temperatures ranging from 50 to 1000 K
on an 7x7x7 grid of wave vectors. The temperature dependent thermal con-
ductivity resulting from this calculation can be seen in figure 5.25. At a
temperature of 300 K the thermal conductivity amounts to 0.241 W/(mK).
This is lower than the values obtained from MD methods by more than a fac-
tor of 4. The values obtained with DFTB using the BTE-RTA approach, that
were carried out by Tomas Kamencek (see appendix A), are slightly higher
than the force-field produced values, but still significantly smaller than the
MD results. There are several possible reasons for this discrepancy, which
will be discussed in detail in this section.

A possibility for the large mismatch are the anharmonicities. The lattice
dynamics calculations only considered up to three-phonon processes. It is
possible that higher order force constants are required to converge the ther-
mal conductivity and has been observed in other materials before [87]. The
molecular dynamics simulations would include all anharmonic effects in a
single simulation. But including higher order anharmonicity terms should
increase the number of scattering processes and in turn reduce the thermal
conductivity. Therefore, this is unlikely to be the cause for the discrepancy
between the methods. There also might be an issue with the anharmonicities
included in the force field. But it is difficult to assess the accuracy of the
anharmonicities due to a lack of reference data.
From the perspective of molecular dynamics simulations one problem could
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Figure 5.25: Thermal conductivity of IRMOF-130 calculated with the Boltz-
mann Transport equation using the relaxation time approximation (BTE-
RTA) on an 7x7x7 q-mesh, the Green-Kubo method and Non-equilibrium
molecular dynamics (NEMD).

be that the simulation was performed in the classical limit. But since mostly
low frequency modes contribute significantly to the thermal conductivity
this probably will not cause a discrepancy this large. Figure 5.26a shows the
frequency dependent evolution of the thermal conductivity for IRMOF-130
at 300 K. And in figure 5.26b one can see the frequency dependent satu-
ration temperature of the heat capacity. It can be seen that the thermal
conductivity is already at its converged value when only considering the first
15-20 THz. And the contribution of these low frequencies up to 15 THz to
the heat capacity is already saturated at the temperature range of interest.
While there is still a small contribution that is not properly described in the
classical limit yet, this contribution is relatively small. An interesting obser-
vation that can be made nonetheless is that higher lying optical modes have
to carry a significant amount of heat in IRMOF-130. In the band structure
in figure 5.4 one can see that the acoustic modes only reach up to about 3
THz. At this frequency the cumulative thermal conductivity has not even
reached a fourth of its converged value. While it is not possible to find a
proper reason for the poor agreement between the methods, the individual
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(a) (b)

Figure 5.26: (a) Cumulative thermal conductivity of IRMOF-130 depending
on frequency based on the third order force constants and (b) temperatures
at which the heat capacity reaches its saturated value when only considering
modes up to a certain frequency. The yellow area indicates the temperature
range for which molecular dynamics simulations have been performed.

components of the thermal conductivity of IRMOF-130 will still be investi-
gated. In figure 5.27a the temperature dependent heat capacity is visualized,
while figure 5.27b contains the group velocities of IRMOF-130 calculated on
a 20x20x20 q-mesh. In the group velocities one can see an arch-like struc-
ture on many places. This arises due to the trend of the slope of individual
phonon bands. It also becomes clear that the lowest frequencies show the
highest group velocities but all frequencies up to 20 THz show significant
contributions. Beyond this, the bands are relatively flat and show low group
velocities, as expected for higher frequency localized vibrations.

The third component of the thermal conductivity, the phonon lifetimes,
are visualized in figure 5.28. As opposed to the group velocities, some very
high relaxation times can be seen in the high frequency region. But since
the square of the group velocity enters the BTE, these flat bands still do not
carry any significant contributions to the thermal conductivity. In the low
frequency region up to 20 THz that actually does matter, no clear trends
can be observed. The two discernible modes with large phonon lifetimes at
about 3 THz are rotations of the oxalic acid linkers while the inorganic nodes
remain stationary. But since these bands are relatively flat, they will also
not contribute excessively to the thermal conductivity. As was discussed in
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(a) (b)

Figure 5.27: (a) Heat capacity of IRMOF-130 (Mg); the temperature range
of interest is indicated by the yellow area; and (b) Group velocities of
IRMOF-130 sampled over a 20x20x20 q-mesh in the first Brillouin zone. The
red curve represents a sum over normal distributions around all frequencies
with a standard deviation of σ = 0.1 THz weighted with the respective group
velocity. This group velocity density distribution is normalized to the maxi-
mum group velocity for visibility.

Figure 5.28: Phonon relaxation times of IRMOF-130 sampled on an 7x7x7
mesh in the first Brillouin Zone. The red curve represents a sum over normal
distributions around all frequencies with a standard deviation of σ = 0.1
THz weighted with the respective lifetime. This group velocity density dis-
tribution is normalized to the maximum lifetime for visibility.
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the previous sections, this method allows further analysis of the per-mode
contribution to the thermal conductivity. This has been investigated for
q-vectors on the 7x7x7 mesh that coincide with face-centered-cubic high-
symmetry directions. The thermal conductivity for each mode κqi,j is defined
as

κtot,j =
1

n

∑
q

∑
i

κqi,j, (5.3)

where n is the number of grid points, i are the band indices and j is the
element index of the thermal conductivity tensor. These values have been
visualized in figure 5.29 using the phonon band structure as a reference. It
is easy to see that there are large differences in the contributions of each
mode. Unsurprisingly, the high dispersion acoustic modes show the largest
contributions. Most of the flat bands, that are typically isolated motions of
the linkers or nodes, show very low thermal conductivity values. There is
also a strongly contributing band ranging from 6 THz at X to 7.8 THz at Γ.
Its influence can be seen in figure 5.26a, where a steeper slope follows in this
frequency range. The highest frequency mode significantly contributing to
the thermal conductivity occurs in a range from 13 to 14 THz. Both of these
motions have been visualized at Γ point in figure 5.30. Both of them show
a stretching motion of the organic linker relative to the inorganic nodes. It
should be stated, that this latter group of modes is also fully included in
molecular dynamics at the temperatures of interest, even though they might
not be fully occupied in reality, as can be seen in figure 5.26b.
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Figure 5.29: Per-mode thermal conductivities calculated for q-vectors in a
7x7x7 grid that coincide with the high symmetry lines in IRMOF-130 (Mg).
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(a) Idle structure for ref-
erence

(b) Γ point phonon at
7.84 THz

(c) Γ point phonon at
12.44 THz

Figure 5.30: Γ point motions of the same symmetry of selected optical
modes that carry significant contributions to the thermal conductivity in
IRMOF-130 (Mg). The Γ point modes have been visualized instead of the
corresponding off-Γ modes for easier interpretation.

5.4.2 MOF-74

The third order force constants have also been calculated for MOF-74 in or-
der to investigate its thermal conductivity. Note, that this was carried out
previously using density functional tight-binding by Wang et al. [88]. But
only a relatively small supercell was used to converge the force constants.
The thermal conductivity obtained in [88] was significantly lower than the
results provided by MD outlined in section 5.3.4. The values amounted to
0.44 W/(mK) in plane of the hexagonal structure and to 0.68 W/(mK) in
stacking direction at 300 K.
The same calculation, without a force cutoff and by using a 2x2x2 supercell
was carried out with the DFT obtained force-field. Like for IRMOF-130 the
thermal conductivity was evaluated on a 7x7x7 q-grid in the first Brillouin
zone. Since none of the alternative ways to obtain the thermal conductivity
mentioned in section 5.4.1 yielded any meaningful improvements, the BTE is
only solved under the relaxation time approximation. Figure 5.31 shows the
thermal conductivity of this system compared to the values obtained with
molecular dynamics. In addition to this an alternative evaluation of the BTE
with DFTB carried out by Tomas Kamencek, without cutoffs, has been in-
cluded for reference. From this, at 300 K, the value for κxx amounts to 1.39
W/(mK) and κzz to 3.18 W/(mK). It is obvious that the values obtained
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Figure 5.31: Thermal conductivity of MOF-74 (Zn) calculated with the
Boltzmann Transport equation using the relaxation time approximation
(BTE-RTA) on an 7x7x7 q-mesh and the Green-Kubo method.

with MD and the BTE are both significantly higher than those obtained by
Wang et al. The force-field using the lattice dynamics approach appears to
overestimate the thermal conductivity compared to the alternative DFTB
results. But even those are much higher than what was predicted previously.
At room temperature the Green-Kubo results are in pretty good agreement
with the data in DFTB. At 200 K the thermal conductivity is significantly
underestimated by MD. This discrepancy between MD and LD might arise
due to many-phonon scattering effects reducing the thermal conductivity.
Now it is important to investigate the components of the thermal conduc-
tivity in more detail. One important objective is to understand why agree-
ment between the methods is much better for MOF-74 than for IRMOF-130.
Figure 5.32a shows the cumulative thermal conductivity over the entire fre-
quency range. It can be clearly seen, that only the very low frequency region
up to about 5 THz contains modes important for the thermal conductiv-
ity. This makes it fairly unlikely that the discrepancy between BTE-RTA
and MD arises due to low temperature effects. Because as can be seen in
the heat capacity saturation temperatures in figure 5.32b, these low energy
modes should be included even at 200 K.

The phonon lifetimes are depicted in figure 5.33a and here a stark con-
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(a) (b)

Figure 5.32: (a) Cumulative thermal conductivity of MOF-74 (Zn) depend-
ing on frequency based on the third order force constants and (b) tempera-
tures at which the heat capacity reaches its saturated value when only con-
sidering modes up to a certain frequency. The yellow area indicates the
temperature range for which molecular dynamics simulations have been per-
formed.

trast compared to IRMOF-130 can be seen. Here, only the lowest frequency
modes show significant lifetimes. Numerically those are much higher, than
any that could be observed in IRMOF-130. Some of them even reach 1000
ps and more. But these are low in number and do not show dominating
contributions towards thermal transport. But since these were not shown in
the DFTB results, it is very likely that this is responsible for the differences
in thermal conductivity between the two levels of theory. This lifetime dis-
tribution implies that acoustic modes carry the vast majority of heat and
that optical modes at higher frequencies are relatively unimportant. This
situation can be observed for many inorganic materials. When looking at
the group velocities in figure 5.33b we can also see that the lowest frequency
modes carry the highest significance, but most modes up to about 20 THz
could still contribute significantly given a high enough lifetime.

For MOF-74 the mode-thermal conductivity has also been evaluated along
certain band paths and is shown in figure 5.34. Note, that Γ − X is not a
high symmetry line for this lattice explaining the lack of values in this direc-
tions. In general, this plot confirms that only the low frequency modes are
important. But it also is clear that optical as well as acoustic modes con-
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5 RESULTS AND DISCUSSION

(a) (b)

Figure 5.33: (a) Phonon life times of MOF-74 (Zn) at 300 K sampled over
a 7x7x7 mesh; and (b) Group velocities of MOF-74 (Zn) sampled over a
20x20x20 q-mesh in the first Brillouin zone. The red curve represents a sum
over normal distributions around all frequencies with a standard deviation
of σ = 0.1 THz weighted with the respective group velocity or lifetime. This
density distribution is normalized to the maximum shown value for visibility.

tribute significantly in the low frequency range. These vibrations all include
joint motions of both, linker and nodes. There are no isolated motions of
the organic component in the low frequency region, which were those that
did not contribute significantly in IRMOF-130. This leads to the continuous
decay of the lifetimes with no remarkable outliers.
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5.4 Thermal properties based on Lattice Dynamics

Figure 5.34: Per-mode thermal conductivities calculated for q-vectors in a
7x7x7 grid that coincide with band paths in MOF-74 (Zn).
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6 Summary

Thermal transport properties in metal-organic frameworks (MOFs) have
been investigated by means of molecular dynamics simulations utilizing clas-
sical force-fields. For this equilibrium- and non-equilibrium approaches were
applied. Applications of MOFs are frequently reliant on heat dissipation,
and these materials are known for their low thermal conductivity. This leads
to heat transport playing a crucial role for the effectiveness of heat transport.
The materials allow for easy modification and tailoring of properties to the
desired applications. This is due to the modular nature of the organic and
inorganic building units. This made it interesting to investigate the ther-
mal conductivity in MOFs with a structure-to-property approach. Over the
course of this investigation, additional classical force-fields had to be fit in
order to carry out the simulations. Additionally, thermal expansion occur-
ring in the analyzed materials has been discussed.
For the investigation over the course of this work, the impact of exchang-
ing the node and linker was a major focus. Beginning with a well known
material, IRMOF-1, also known as MOF-5, the thermal conductivity was
explored. On one hand, the focus was to change the metals in the inorganic
metal-oxide nodes. This was achieved by scaling the masses of the metals
appropriately to emulate a different metal. For one of these, with magnesium
as metal atom, specialized force-fields, based on DFT reference data, have
been obtained to include other effects than the mass. In terms of thermal
conductivity, no noteworthy differences have been observed. The different
masses lead to a increase in thermal conductivity, by up to a factor of two,
when the metals are lighter. For higher masses a lower value was obtained.
Inversely, when the masses of the carbon and hydrogen atoms were scaled, the
thermal conductivity barely changed. This would be similar to what would
happen, when the aromatic linkers included functional groups. The reason
for this behavior was investigated by observing temperature profiles obtained
during non-equilibrium molecular dynamics simulations. Here a clear barrier
of thermal transport between each node and linker could be observed. This
leads to the assumption, that the large difference in masses between dissimi-
lar components of the system might be the cause for low thermal transport.
A large difference would imply, that the phonons on both sides show little
overlap, leading to poor propagation and an increase in scattering processes.
When this mass ratio was reduced, the barrier would grow weaker and vice
versa. For the case of increased linker masses this should lead to a reduced
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thermal resistivity across the interface. But since increasing masses of atoms
inherently reduces thermal conductivity, this leads to a cancellation of both
effects. For the heavier inorganic nodes, both of these considerations lead
to an increase in thermal conductivity for lower masses, leading to an effect,
much larger than initially anticipated. This hypothesis has mostly been con-
firmed by evaluating the thermal conductivity across the interface in NEMD
simulations. It showed an increase for reduced metal masses and increased
organic masses, while a reduction was obtained for higher metal masses and
lower organic masses.

It was also of interest to investigate the impact of different lengths of
organic linkers compared to IRMOF-1. For this biphenyl-dicarboxylic acid
and terphenyl-dicarboxylic acid linkers replaced the terphthalic acid linkers
of IRMOF-1, forming IRMOF-10 and IRMOF-16. This avoids the introduc-
tion of additional chemical connectors as much as possible, while still being
realistic materials. A steep decrease in thermal conductivity for longer link-
ers could be observed. However, this is not due to linker length, but arises
from the reduced density of linkers capable of carrying heat. This was shown
by simulating anisotropic MOFs with the same linker density but a different
linker length in one direction. The thermal conductivity in direction of the
same cross-sectional linker density only varied within the error. In tandem
with this, a previously proposed linear dependence of thermal transport on
pore-size was observed. Based on the available data, the thermal conduc-
tivity decreased with increasing pore size in a linear manner, but the errors
were relatively large.

An additional objective was to investigate phonon calculations via lat-
tice dynamics utilizing force-fields. The primary purpose was to validate the
lower level of theory by comparing the results to density-functional based
data. But the phonons also provided insights on heat transport and thermal
expansion of MOFs. Therefore, phonon bands have been obtained for almost
all materials investigated in this work. Agreement of phonon frequency was
analyzed based on IRMOF-1 (Zn) between a DFT reference and the MOF-
FF force field. Also the DFT vibrational data for some materials, that were
not originally included in MOF-FF, served as a reference for fitting addi-
tional force-fields. The comparisons indicated acceptable deviations in terms
of vibrational frequencies. An additional IRMOF, the IRMOF-130 (Mg)
with only oxalic acid as a linker, was included to provide a smaller system,
where reference data for higher level of theory can be obtained. For this the
thermal conductivity was not only evaluated using molecular dynamics, but
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also lattice dynamics. This was achieved by calculating the third order fore-
constants to include scattering processes. Agreement of the resulting thermal
conductivity obtained from lattice dynamics using density-functional tight
binding (DFTB) was reasonable. But the thermal conductivity calculated
from molecular dynamics simulations was higher by a factor of five. Possible
reasons were discussed for this large discrepancy, but none of them could be
identified to be the main cause.

In order to investigate different types of node-linker interfaces, MOFs
with different architecture were chosen to complement the IRMOFs. The
thermal conductivity of JAST-1 and MOF-508 was calculated using molecu-
lar dynamics. These are tetragonal MOFs and consist of a paddlewheel node
and terephthalic acid linkers in two Cartesian directions, as well as an or-
ganic linker connecting to the metal atoms via a nitrogen atom, in the third
direction. In case of JAST-1, this is a DABCO linker, and for MOF-508
a bipyridine linker. In direction of terephthalic acid linkers, the chemistry
is relatively similar to the IRMOFs, and the resulting thermal conductivi-
ties, were only slightly higher than what would be expected for a MOF with
this cross-sectional linker density. This was explained by the lighter mass
of the paddlewheel nodes, reducing phonon mismatch. In direction of the
metal-nitrogen bonds, the thermal conductivity differed strongly depending
on chemistry. For JAST-1 it was similar to the terephthalic acid linkers,
while MOF-508 showed a significantly reduced thermal conductivity for the
same cross-sectional linker density.

Another material investigated was the MOF-74, a hexagonal MOF based
on infinitely elongated strands of metal-oxide connected by aromatic linkers.
This was done in order to investigate a completely different architecture.
The thermal conductivity based on molecular dynamics was much higher in
direction of the linker-strands than in any other MOF investigated. The very
large differences between this materials and the other MOFs investigated in
this work, made a direct comparison difficult. Therefore, the phonons were
analyzed in more detail. The third order force-constants were calculated with
lattice dynamics using the force field. Resulting thermal conductivity values
agree reasonably well with the molecular dynamics results. Evaluation of
the phonon relaxation times showed a very quick and steady decay in the
low frequency region. No frequency modes beyond 10 THz appear to be
important for thermal conductivity. This is due to the much more rigid
nature of the material. The remaining discrepancy between molecular and
lattice dynamics in this case could be explained by many-phonon scattering
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processes arising due to anharmonicities.
Thermal expansion coefficients were calculated for most investigated MOFs.

The Zn4O MOFs, which include all IRMOFs as well as their anisotropic
counterparts, were determined to be negative. The paddlewheel MOFs in-
vestigated in this thesis, JAST-1 and MOF-508, showed a negative thermal
expansion coefficient in hte directions of the therephthalic acid linkers and a
positive thermal expansion coefficient in direction of the nitrogen based link-
ers. MOF-74 showed positive thermal expansion in all directions. Possible
reasons for the unusual thermal contraction in these MOFs were discussed
and there were strong indications of specific bending motions of the organic
linkers being the main cause.
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A REFERENCE DATA

A Reference data

This section should give an overview of the methods used to obtain the DFT
and DFTB reference data used for parameterization of force fields and as
validation for existing force fields.

The DFT and DFTB calculations were carried out by Tomas Kamencek,
similarly to what is described in [89]. The programs used were the Vienna
ab-initio software package (VASP) [50] and DFTB+ [90]. DFT was employed
for primitive unit cells of IRMOF-1 (Zn), IRMOF-1(Mg), IRMOF-130 (Mg)
and MOF-74 (Zn) using the PBE functional and utilizing the projector-
augmented wave method. The k-mesh was converged until a total energy
difference of less than 1 meV was achieved. A tight SCF convergence criterion
of 10-8 eV was chosen. Relaxations were performed until the maximum forces
in the system reached 0.5 meV/Å. No van der Waals correction was deemed
necessary for the IRMOFs. For MOF-74 the D3 correction method [91] was
applied.

For DFTB the 3ob:freq-1-2 Slater-Koster files were used to properly de-
scribe vibrational properties. The k-mesh for each system was chosen with
the same criteria, as in DFT. The SCC convergence criterion was set to 10-10

elementary charges and the maximum forces during relaxation were set to
10 -5 meV/Å. DFTB was used to evaluate phonon band structures and the
third order force constants for IRMOF-130 and MOF-74.
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B Force-field parameters

Here the parameterized force-fields used in this work are shown in the form of
tables. For atomic charges see section 4.1 and for van-der-Waals parameters
the MM3 force-field.

B.1 IRMOF-1 (Mg)

Table B.1: Bond parameters for connected atoms in IRMOF-1 (Mg). rs ...
Reference bond length, ks ... force constant, Ediss ... Bond dissociation energy
for Morse potentials.

Bond rs[Å] ks[mdyn/Å] Ediss[kcal/mol]
Mg-Ocen 2.01036169 1.15286343 85.0
Mg-Oout 1.99417052 1.79296394 85.0
CC1O2-Oout 1.28675619 7.74846928
CC1O2-CC3 1.48511909 4.56714248
CC2H1-CC3 1.41518966 5.82475434
CC2H1-CC2H1 1.41064962 5.96623482
CC2H1-H 1.09829203 5.02135354
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B FORCE-FIELD PARAMETERS

Table B.2: Angle bending parameters for connected atoms in IRMOF-1 (Mg).
θb ... Reference angle, kb ... force constant.

Angle θb[◦] kb[mdyn/(radÅ)]
Mg-Ocen-Mg 110.50567581 1.12998636
Oout-Mg-Ocen 99.64152095 1.79296394
Oout-Mg-Oout 119.29104787 0.31220519
CC1O2-Oout-Mg 147.29199688 0.07237911
CC2H1-CC2H1-CC3 112.06192132 1.40627103
CC2H1-CC3-CC2H1 108.28474697 1.51252861
CC1O2-CC3-CC2H1 111.18049223 1.17134274
CC3-CC2H1-H 111.54321086 0.59966987
CC2H1-CC2H1-H 114.91286252 0.57914588
CC3-CC1O2-Oout 117.29187353 0.78310379
Oout-CC1O2-Oout 127.83452571 1.12360472

Table B.3: Stretch-stretch and stretch-bend parameters for the angles in
IRMOF-1 (Mg). ksb1 and ksb2 ... Force constants for the stretch-bend terms,
kss ... force constants for the stretch-stretch terms. The terms from missing
angles are 0.

Angle ksb1[mdyn/(radÅ)] ksb2[mdyn/(radÅ)] kss[mdyn/(Å)]
Mg-Ocen-Mg 0.57627914 0.57609350 0.00000000
Oout-Mg-Ocen -0.06340321 0.20220109 0.01238360
CC2H1-CC2H1-CC3 0.42845698 0.38533807 0.61884682
CC2H1-CC3-CC2H1 0.33214504 0.33215837 0.58646530
CC3-CC2H1-H 0.14640386 0.20182070 0.04431180
CC2H1-CC2H1-H 0.19867862 0.16166101 0.05463335
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B.1 IRMOF-1 (Mg)

Table B.4: Dihedral parameters for IRMOF-1 (Mg). V1, V2 and V3 ... pa-
rameters. The terms from missing dihedrals are 0.

Dihedral V1[kcal/mol] V2[kcal/mol] V3[kcal/mol]
CC3-CC2H1-CC2H1-CC3 0.00000000 13.49268313 0.00000000
Oout-CC1O2-Oout-Mg 0.00000000 1.36629066 0.00000000
CC3-CC1O2-Oout-Mg 0.00000000 7.61023423 0.00000000
CC3-CC2H1-CC2H1-H 0.00000000 6.79045908 0.00000000
Oout-CC1O2-CC3-CC2H1 0.00000000 2.13421217 0.00000000
CC2H1-CC2H1-CC3-CC2H1 0.00000000 8.77269646 0.00000000
H-CC2H1-CC2H1-H 0.00000000 4.33887262 0.00000000
H-CC2H1-CC3-CC2H1 0.00000000 7.67004885 0.00000000

Table B.5: Out-of-plane angle bending parameters (improper torsions) for
IRMOF-1 (Mg). ko ... force constant.

Improper torsion ko[mdyn/(radÅ)]
CC1O2-CC3-Oout-Oout 0.14835983
CC2H1-CC2H1-CC3-H 0.05196597
CC3-CC1O2-CC2H1-CC2H1 0.10189007
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B.2 IRMOF-130 (Mg)

Table B.6: Bond parameters for connected atoms in IRMOF-130 (Mg). rs
... Reference bond length, ks ... force constant, Ediss ... Bond dissociation
energy for Morse potentials.

Bond rs[Å] ks[mdyn/Å] Ediss[kcal/mol]
Mg-Ocen 1.99445588 1.24207899 85.0
Mg-Oout 1.88582422 1.93133858 85.0
CC1O2-Oout 1.29764291 7.42726309
CC1O2-CC1O2 1.57936705 2.86336307

Table B.7: Angle bending parameters for connected atoms in IRMOF-130
(Mg). θb ... Reference angle, kb ... Force constant.

Angle θb[◦] kb[mdyn/(radÅ)]
Mg-Ocen-Mg 132.79175545 0.14776141
Oout-Mg-Ocen 106.75401570 0.00000009
Oout-Mg-Oout 97.90228444 0.37011506
CC1O2-Oout-Mg 191.26400031 0.00774540
CC1O2-CC1O2-Oout 105.76300318 1.59667765
Oout-CC1O2-Oout 118.75348997 1.78129974
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B.2 IRMOF-130 (Mg)

Table B.8: Stretch-stretch and stretch-bend parameters for the angles in
IRMOF-130 (Mg). ksb1 and ksb2 ... Force constants for the stretch-bend
terms, kss ... force constants for the stretch-stretch terms. The terms from
missing angles are 0.

Angle ksb1[mdyn/(radÅ)] ksb2[mdyn/(radÅ)] kss[mdyn/(Å)]
Mg-Ocen-Mg 0.13691557 0.13691926 0.13486124
Oout-Mg-Ocen 0.04451345 0.04824827 -0.00289273
Oout-Mg-Oout 0.09002539 0.09006589 0.06748314
CC1O2-Oout-Mg 0.00419795 0.18071148 0.16113295
CC1O2-CC1O2-Oout 0.28119052 0.53551591 0.41058151
Oout-CC1O2-Oout 0.55967775 0.55964721 1.27970281

Table B.9: Dihedral parameters for IRMOF-130 (Mg). V1, V2 and V3 ... force
constants. The terms from missing dihedrals are 0.

Dihedral V1[kcal/mol] V2[kcal/mol] V3[kcal/mol]
Oout-CC1O2-CC1O2-Oout 0.00000000 -0.64117613 0.00000000
CC1O2-CC1O2-Oout-Mg 0.00000000 0.21142793 0.00000000

Table B.10: End-bond-torsion parameters for dihedrals in IRMOF-130 (Mg).
A2 and B2 ... parameters. The terms from missing dihedrals and all missing
terms are 0.

Dihedral A2[kcal/(molÅ)] B2[kcal/(molÅ)]
Oout-CC1O2-CC1O2-Oout 8.22007371 8.22007371
CC1O2-CC1O2-Oout-Mg -4.41418973 -2.21661577

Table B.11: Out-of-plane angle bending parameters (improper torsions) for
IRMOF-130 (Mg). ko ... force constant.

Improper torsion ko[mdyn/(radÅ)]
CC1O2-CC1O2-Oout-Oout 0.22431476
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B.3 MOF-74 (Zn)

Table B.12: Bond parameters for connected atoms in MOF-74 (Zn). rs ...
Reference bond length, ks ... force constant, Ediss ... Bond dissociation energy
for Morse potentials.

Bond rs[Å] ks[mdyn/Å] Ediss[kcal/mol]
Cc2h1-Cc2o1 1.3775 7.1595
Oco2,1-Zn 2.8610 0.2763 50.0000
Cc2h1-Cc3 1.3954 6.4078
Oco2,2-Zn 2.1599 0.7221 50.0000
Cc2o1-Cc3 1.3894 6.5921
Cc2o1-Oeth 1.3377 6.3550
Cc1o2-Oco2,1 1.2716 8.3498
Oeth-Zn 1.9236 2.0695 50.0000
Cc1o2-Oco2,2 1.3154 6.3771
Cc2h1-H 1.0880 5.3917
Cc1o2-Cc3 1.4972 3.7384
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B.3 MOF-74 (Zn)

Table B.13: Angle bending parameters for connected atoms in MOF-74 (Zn).
θb ... Reference angle, kb ... Force constant.

Angle θb[◦] kb[mdyn/(radÅ)]
Cc2o1-Oeth-Zn 174.3465 0.0082
Cc1o2-Oco2,1-Zn 123.4995 0.4385
Zn-Oco2,2-Zn 87.0004 0.0028
Oco2,1-Zn-Oeth 87.6515 0.0087
Oco2,2-Zn-Oeth 100.1621 0.2633
Oco2,2-Zn-Oco2,2 74.9249 1.1250
Cc3-Cc2o1-Oeth 123.8706 0.7325
Zn-Oeth-Zn 92.2765 0.0000
Cc2o1-Cc2h1-H 109.1652 0.6036
Cc2h1-Cc2o1-Oeth 118.8209 1.0640
Cc2h1-Cc3-Cc2o1 123.1528 0.3927
Cc2h1-Cc2o1-Cc3 134.8132 0.2811
Cc2o1-Cc2h1-Cc3 123.4399 0.9547
Oeth-Zn-Oeth 159.6772 0.0002
Cc3-Cc2h1-H 108.2754 0.6605
Oco2,1-Zn-Oco2,2 69.6984 0.0191
Oco2,1-Cc1o2-Oco2,2 124.1020 0.9313
Cc3-Cc1o2-Oco2,2 119.4340 0.9587
Cc1o2-Cc3-Cc2h1 110.6332 1.0055
Cc3-Cc1o2-Oco2,1 107.6835 1.1007
Cc1o2-Oco2,2-Zn 138.4175 0.1827
Cc1o2-Cc3-Cc2o1 122.7555 1.0184
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Table B.14: Stretch-stretch and stretch-bend parameters for the angles in
MOF-74 (Zn). ksb1 and ksb2 ... Force constants for the stretch-bend terms,
kss ... force constants for the stretch-stretch terms. The terms from missing
angles are 0.

Angle ksb1[mdyn/(radÅ)] ksb2[mdyn/(radÅ)] kss[mdyn/(Å)]
Cc2o1-Oeth-Zn 0.0409 -0.0617 0.1485
Cc1o2-Oco2,1-Zn -0.5563 0.1807 0.5136
Zn-Oco2,2-Zn -0.1420 -0.1515 0.3057
Oco2,1-Zn-Oeth 0.0981 0.2357 0.1906
Oco2,2-Zn-Oco2,2 0.2703 0.2701 -0.0594
Zn-Oeth-Zn -0.1189 -0.1571 0.3111
Cc2h1-Cc2o1-Cc3 0.4099 0.3737 0.5420
Oeth-Zn-Oeth -0.1250 -0.1267 0.0062
Oco2,1-Zn-Oco2,2 0.1984 -0.0623 -0.0814
Cc3-Cc1o2-Oco2,2 0.3278 0.4030 0.4186
Cc3-Cc1o2-Oco2,1 0.5810 1.1900 0.5931
Cc1o2-Oco2,2-Zn -0.1046 0.1400 0.3061
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B.3 MOF-74 (Zn)

Table B.15: Dihedral parameters for MOF-74 (Zn). V1, V2 and V3 ... force
constants. The terms from missing dihedrals are 0.

Dihedral V1[kcal/mol] V2[kcal/mol] V3[kcal/mol]
Cc2o1-Oeth-Zn-Oeth 0.0000 0.0053 0.0000
Oco2,2-Cc1o2-Cc3-Cc2h1 0.0000 0.7933 0.0000
Zn-Oco2,2-Zn-Oco2,2 0.0000 14.5406 0.0000
Oco2,1-Cc1o2-Oco2,2-Zn 0.0000 0.1391 0.0000
H-Cc2h1-Cc3-Cc1o2 0.0000 8.7746 0.0000
Oeth-Cc2o1-Cc3-Cc2h1 0.0000 14.9927 0.0000
Zn-Oco2,2-Zn-Oeth 0.0000 0.0231 0.0000
Zn-Oeth-Zn-Oeth 0.0000 0.0776 0.0000
Oco2,2-Cc1o2-Cc3-Cc2o1 0.0000 0.0114 0.0000
Oco2,1-Cc1o2-Cc3-Cc2h1 0.0000 0.8910 0.0000
Cc2o1-Cc2h1-Cc3-Cc1o2 0.0000 1.7449 0.0000
Cc1o2-Oco2,1-Zn-Oeth 0.0000 0.0450 0.0000
Cc1o2-Oco2,1-Zn-Oco2,2 0.0000 0.0029 0.0000
Cc1o2-Oco2,2-Zn-Oco2,2 0.0000 0.4415 0.0000
H-Cc2h1-Cc2o1-Cc3 0.0000 1.0082 0.0000
Cc1o2-Oco2,2-Zn-Oeth 0.0000 0.0168 0.0000
Oco2,2-Cc1o2-Oco2,1-Zn 0.0000 0.0058 0.0000
Zn-Oeth-Zn-Oco2,2 0.0000 0.1441 0.0000
Oeth-Cc2o1-Cc3-Cc1o2 0.0000 2.2724 0.0000
Cc3-Cc2h1-Cc2o1-Cc3 0.0000 8.0191 0.0000
Zn-Oco2,2-Zn-Oco2,1 0.0000 1.8444 0.0000
H-Cc2h1-Cc2o1-Oeth 0.0000 10.3863 0.0000
Cc2o1-Cc2h1-Cc3-Cc2o1 0.0000 5.7923 0.0000
Cc2o1-Oeth-Zn-Oco2,2 0.0000 0.0006 0.0000
Cc3-Cc2h1-Cc2o1-Oeth 0.0000 1.8192 0.0000
H-Cc2h1-Cc3-Cc2o1 0.0000 4.0828 0.0000
Cc2h1-Cc2o1-Cc3-Cc2h1 0.0000 2.3366 0.0000
Cc2h1-Cc2o1-Oeth-Zn 0.0000 1.1300 0.0000
Oco2,1-Cc1o2-Cc3-Cc2o1 0.0000 0.0004 0.0000
Cc3-Cc1o2-Oco2,2-Zn 0.0000 6.7641 0.0000
Cc2h1-Cc2o1-Cc3-Cc1o2 0.0000 7.4030 0.0000
Cc2o1-Oeth-Zn-Oco2,1 0.0000 0.0114 0.0000
Cc3-Cc2o1-Oeth-Zn 0.0000 1.0804 0.0000
Cc1o2-Oco2,2-Zn-Oco2,1 0.0000 0.0018 0.0000
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Table B.16: Out-of-plane angle bending parameters (improper torsions) for
MOF-74 (Mg). ko ... force constant, θ0 ... reference angle.

Improper torsion ko[mdyn/(radÅ)] θ0[◦]
Oeth-Cc2o1-Zn-Zn 0.0002 51.6343
Oco2,2-Cc1o2-Zn-Zn 0.0000 45.0048
Cc2o1-Cc2h1-Cc3-Oeth 0.0359 0.0000
Cc3-Cc1o2-Cc2h1-Cc2o1 0.0397 0.0000
Cc1o2-Cc3-Oco2,1-Oco2,2 0.1798 0.0000
Cc2h1-Cc2o1-Cc3-H 0.0100 0.0000
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