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Abstract 

Autonomous driving is one of the most challenging research topics for the automobile 

industry. Autonomous vehicles are equipped with several sensor techniques. Cameras, 

RADAR as well as LIDAR support vehicles in autonomous driving. Although these sensors 

are able to detect lanes, road objects and objects near the road, they are not capable of 

interpreting specific actions. Therefore, a knowledge representation of the data is 

necessary in order to describe the driving environment. Ontologies are frameworks for 

knowledge representations of the real world, which consists mainly of properties and 

relations between classes and data. Consequently, an ontology has been constructed, 

which describes the road in the driving environment. The ontology represents 

knowledge derived from open source data, like OpenStreetMap, which is the most 

ambitious collection of spatial data. Further simulation tasks for autonomous driving 

presume an adequate road network. Hence, OpenDRIVE is a common specification for 

describing road network data and a standard for different driving simulators. 
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1 Introduction 

1.1 Motivation and Problem Definition 

The availability of knowledge-based road data for autonomous driving is a promising 

and an essential task. When using road data as a map base the identification of each 

attribute from the roads can be retrieved. However, the meaning of the attributes is not 

interpretable for machine-readable systems and the representation of knowledge is 

necessary. Some data formats like OpenDRIVE are limited in their knowledge 

representation on a few attributes and not all the attributes can be represented 

sufficiently. This implies that road data hold a lot of basic attributes, like speed, lane 

number, road names etc. However, there is no identification of the curvature and 

therefore the detection of a curvy segment. Nevertheless, there are limited road models 

available for such a task. 

Therefore, the usage of an ontology is preferred to solve this problem. A road in the first 

instance is described by its geometry, mostly in form of a polyline, and such a road often 

contains additional describing attributes. Among those attributes, which exactly define 

the characteristics of a road segment, the meaning of the horizontal curvature of road 

segments plays a major role in contrast to the vertical curvature. The information about 

the horizontal curvature is necessary to determine the frequency of curves within a 

road. This task can be easily solved by generating an ontology for spatial road data.  

In order to create an adequate ontology for road data from specific test areas all over 

the world suitable data with a high geographical coverage must be used. The availability 

of high- quality spatial data is often limited and cost-intensive. The usage of free and 

open source data may be an effective alternative. The best known data are 

OpenStreetMap (OSM), which cover a huge part of the world on a high level of detail. 

Therefore, they are ideal candidates to implement a road data model. 

However, the knowledge representation of the road data is not the only interesting task, 

also the further usage in a simulation network might be significant. There are a few data 

formats that can be used within simulation tools. One of the most common data formats 

for simulation purposes is represented by OpenDRIVE. This data format encompasses 
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some parameters that can be retrieved from OSM as data source. The transformation 

into OpenDRIVE is a challenging endeavor, as there are hardly any tools available to 

automate this complex transformation. Due to the widespread usage of OpenDRIVE for 

simulation applications the transformation of road data into OpenDRIVE is of grand 

importance anyway. 

 

1.2 Goal and Research Question 

This thesis is divided into three main parts that relate to the calculation of the curvature, 

to the generation of a road data model and to the transformation into the OpenDRIVE 

format. For the implementation of a road data model the usage of open source data is 

favored. Therefore, a huge range of open source platforms offers suitable spatial data. 

OSM is maybe the fastest and most efficient way to gain open source road data all over 

the world. In addition, this model is enriched with many attributes to derive descriptive 

road data. 

 Are OSM data applicable to knowledge representation and for transformation 

into the OpenDRIVE format, and - if so - which attributes from the OSM data 

might be useful to enrich road data models? 

The horizontal curvature of a road is an additional feature for describing a road segment. 

Unfortunately, it is not described within the OSM data. This task can be accomplished 

by creating an adequate ontology. 

 Which approach might be the most effective to calculate the horizontal 

curvature of a road? 

 How can we describe that a road segment is part of a curve by using an ontology? 

The creation of an ontology is an essential element to enable autonomous driving. 

Consequently, the usage of road data assumes an output which is usable for simulation 

purposes. 

 How can we transform digital road data into the OpenDRIVE format for 

simulation purposes? 



3 
 

1.3 Related Work 

Geographic Knowledge Extraction and Semantic Similarity in OpenStreetMap 

This paper is about the creation of crowd-sourced geographic datasets. OSM is the 

leading project in creating an open-content world map through user contributions. The 

semantics of OSM consists of geographic classes and descriptive properties. Due to the 

simple and open semantic structure, the OSM approach often results in ambiguous data. 

Semantic similarity of the OSM classes can reduce this semantic gap (Ballatore et al. 

2013). 

 

Curviness as a Parameter for Route Determination 

In this paper the parameter for the curviness of a road is discussed. Therefore, special 

groups of traffic participants have specific requirements as to the curviness of roads. 

Truck drivers may want to avoid sharp curves whereas motorbike drivers try to avoid 

long and straight roads. The paper represents three different approaches for modelling 

the results. These are the determination of an optimal route, the specific requirements 

for different traffic participants and finally the modelling of the costs. The costs are 

represented as the curvature of a road segment, which is the inverse of the radius. Due 

to the calculation of the curvature optimal routes may be calculated for different 

purposes of the traffic participants (Navratil 2012). 

 

Identifying Curviness of Overpass Mountain Roads from Remote Sensing Data 

This thesis introduces the modelling of curvy roads. The identification can be 

accomplished by the use of continuous objects in a digital form or by discrete objects, 

like extracted roads from remote sensing data. To estimate the shape of the road the 

concept of road boundary detection is used which will output a polygon for the 

identification of curvy road segments. Therefore, two approaches can be applied to 

identify the curvature. They are both based on the angle and the deviation of a point at 
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a straight line by using a fix-sized moving window. The first approach measures all the 

curvature values of a road, and the second approach calculates only one curvature value 

based on the mid, the start and the end point. This method for identifying curves can be 

used for data with different quality and spatial resolution, and therefore, this method 

can be used for different applications (Alian 2007). 

 

Ontology-based Retrieval of Geographic Information 

This paper presents an approach to ontology-based Geographic Information (GI) 

retrieval where semantic heterogeneity occurs. The problems of semantic 

heterogeneity are caused by synonyms and homonyms during free-text searches in 

catalogues. Those catalogues provide information descriptions, but the GI retrieval is 

still inadequate. Therefore, attributes within geographic datasets are often difficult to 

interpret. The concept of an ontology can overcome this problem by allowing the 

requester the make use of a well-known vocabulary of a specific domain (Lutz and Klien 

2006). 

 

A Semantic Similarity Measure for Formal Ontologies 

This thesis introduces a model for comparing the semantics of at least two data sources. 

The aim of the Semantic Web is to provide a more intelligent web by combining 

information from heterogeneous and different systems. The usage of the same 

integration service can help overcome this heterogeneity. This service provides 

integration on a syntactic and semantic level. Through a semantic similarity measure the 

semantics of at least two data sources can be compared and embedded into the 

integration services (Hall 2006). 
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Road Data as Prior Knowledge for Highly Automated Driving  

In this paper the priority of road data for highly automated driving is described. 

Therefore, vehicles have to recognize and to record road data and all associated road 

data attributes in real time. To facilitate highly automated processes the software in the 

vehicle should be able to identify any road infrastructure on the planned route. 

Consequently, highly developed maps are necessary for the navigation system, where 

the localization of the vehicle can be accomplished faster and more accurately.  The 

knowledge can be directly retrieved from separate layers within the highly developed 

maps, which encompass the kinematic parameters and the digital geometric data.  The 

road data can be processed in the OpenDRIVE format for setting speeds, which can be 

determined from the road geometry (Kühn et al. 2017). 

 

Core Ontologies for Safe Autonomous Driving 

This paper is about the usage of ontologies for representing the knowledge of maps, 

driving paths and driving environments. This structured machine-readable 

representation should improve the safety of autonomous vehicles. Therefore, some 

ontologies have been developed for Advance Driver Assistance Systems. Those 

ontologies are divided in three different types and can be used for the construction of 

knowledge base for autonomous vehicles. A map ontology is used for receiving the 

driving environments by describing the road network, like e.g. roads, intersections, lanes 

and traffic light information. A control ontology manages the driving actions and the 

paths of autonomous vehicles. A car ontology consists of different types of vehicles and 

their attributes, like e.g. sensors and engines (Zhao et al. 2015). 
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1.4 Scope of the Work 

This thesis is organized as follows. The first chapter gives an introduction and an 

overview concerning the problem definitions, the goal of the work and the research 

question. It also includes a summary of related work. Those parts have already been 

mentioned before. 

From the second chapter onwards to the fourth chapter we will represent the data, the 

methodology, the implementation and the results of the thesis (Figure 1). In the second 

chapter the study area and the data are described. Driven by the requirements for data 

enrichment and manipulations many different applications and software packages had 

to combined to achieve the intended results. Those applications and software packages 

include: 

 applications for downloading and implementing the data,  

 software packages to create road data ontologies, and  

 applications for generating and validating OpenDRIVE files. 

The next chapter describes the methodologies used to create this thesis. In section 3.1 

we will discuss options for data retrieval from OSM – which forms the base of this 

research. Chapter 3.2 is mainly about the calculation of the horizontal and vertical 

curvature and its implementation within road data. Chapter 3.3 exemplifies the creation 

of an ontology. In chapter 3.4 will focus on the generation of simulation networks and 

its subsequent transformation into the OpenDRIVE files. 
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Figure 1: Workflow of the methodology 

 

Thus, the part of the methodology consists of the three main parts on which we will 

focus within the thesis in chapter 3.2, 3.3 and 3.4. The end of each chapter contains the 

implementation details. The fourth chapter contains research results as well as a critical 

reflection about selected steps within the workflow. The final chapter presents 

conclusions derived from this research and provides suggestions for further investigative 

work. 
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2 Study Area, Data and Used Software 

2.1 Study Area 

The main focus is on road areas with freeways where autonomous driving can be applied 

quite easily. Therefore, the area around the freeway junction Peggau-Deutschfeistritz, a 

local area in Styria, Austria, in the north of Graz, is used as the first test area. This area 

of the road has a lot of straight sections due to the freeway as well as a lot of curved 

sections to enter and exit the freeway. This study covers the area starting at the freeway 

junction Peggau-Deutschfeistritz in the south,  continuing onto the freeway service area 

Deutschfeistritz in the west and closing at the driveway Peggau Mitte in the east and in 

the north (Figure 2). 

 

Figure 2:Junction Peggau-Deutschfeistritz, Austria 
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Besides the usage of freeways main roads are also of high relevance as they can serve 

as possible links to freeways. However, both of them show special attributes. Therefore, 

two sites in Bavaria, Germany between Munich in the south and Ingolstadt in the north 

are chosen. The first site is the area around the freeway junction Langenbruck near 

Ingolstadt, which is a part of the southern section of the freeway A9. It consists of some 

main roads in addition to the freeway. 

The second site also composes of an area including a freeway and some main roads as 

mentioned above. This test area is located at the junction Allershausen on the A9 near 

Munich, some miles down south of the previous site around Langenbruck (Figure 3). 

 

Figure 3: Junction Langenbruck (left) and Junction Allershausen (right) 

 

2.2 Data 

Free and open source data are the most cost-effective way when it comes to generating 

larger road models. Their worldwide availability is another essential benefit.  In order to 

guarantee their world-wide application it is absolutely necessary to ensure a high 

geographical coverage. Hence, the most ambitious and also most successful 

collaborative data project for this purpose is OSM road data. Those vector data are 

available in most countries worldwide. Moreover, they account for a high amount of 

accessible data. Therefore for all the three study areas the data are used from OSM 

(Ballatore et al. 2013, pp. 1–2). 
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The OSM concept follows the principle of Volunteered Geographic Information, to which 

a large group of only registered users make a contribution. By restricting the editing of 

the data to registered users the OSM project enables a detailed inspection of the source 

of information regarding copyright conflicts. The project’s aim is free usage and editing 

of a set of map data. In Europe, accurate digital geographic information is very 

expensive, hence the availability of free geographical information is the key motivation 

of OSM. The data are edited by a considerable number of volunteers, which are using 

the technical infrastructure. The technical infrastructure of OSM is created and 

continuously improved by a small amount of approximately 40 volunteers. That work 

consists of server maintenance, software implementation and the creation of the 

cartographical outputs. The availability of OSM data for further usage across different 

applications, software platforms and hardware devices is being developed by another 

growing group of contributors (Haklay and Weber 2008, pp. 12–14). The data format of 

OSM can often be translated into a table format that can easily be embedded into 

relational databases. However, this can turn out to be difficult for the extraction of large 

data amounts. The amount of the road infrastructure in OSM data increases very fast, 

and there is a lot of additional data available (Richter et al. 2016, p. 24). 

One important aspect of the coherence and the quality of the OSM vector data is its 

semantic structure, which is stored in a text file based on the Extensible Markup 

Language (XML) format. An OSM dataset consists of objects and associated properties, 

which are constructed in a key-value pair structure. Those properties are called “tags” 

in the OSM world and represent the semantic content of an object. The OSM tags are 

described on the OSM Wiki website1. The OSM keys specify groups of geographic entities 

(e.g. highway) or encode properties with unrestricted values (e.g. name) (Ballatore et al. 

2013, pp. 6–7). The geographical entities of the vector datasets are constructed as 

different types. The simplest data form are nodes (points) which include the 

geographical longitude and latitude coordinates and the associated information. 

Another type of features are ways (lines and polygons) which are defined by referencing 

                                                      
1 https://wiki.openstreetmap.org/wiki/Taginfo (checked on 06/15/2019) 

https://wiki.openstreetmap.org/wiki/Taginfo
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to a list of ordered nodes. Although polygons are not defined as explicit area features, 

they are rather associated with a closed way, i.e. the first node of the way is also the last 

node. More over those vector datasets can be represented as relations (groups and 

objects) (Haklay and Weber 2008, p. 15). 

The extent of a key with its set of defined values ranges from small (e.g. junction) to very 

large (e.g. amenity), the latter containing more than 150 values. By the way, semantic 

difficulties can also occur by defining similar tags with different keys (e.g. 

landuse=garages and amenity=parking). That semantic gap can cause some 

discrepancies among the mapping users. An association between similar entities can be 

found with the help of a semantic similarity measure, which is currently not possible 

through the structure of OSM tags, due to its parent-sibling concept (Ballatore et al. 

2013, pp. 6–7). 

 

2.3 Used Software 

2.3.1 QGIS 

QGIS2 is a free and open source Geographic Information System (GIS) application for 

viewing, editing and analyzing geospatial data. QGIS supports raster and vector data, 

whereby vector data are stored as point, polyline or polygon features. The software 

allows the use of many geospatial formats and data from external sources (QGIS 

Development Team 2019). In this work the main use with this software is to handle 

geographic open source data. It is highly compatible with OSM data for importing, 

visualizing and converting into other data formats like Shapefiles and also many others. 

 

2.3.2 GIS/Python 

The interpreted programming language Python is a good choice for performing 

geographic data analysis and map automation due to its connection with ArcGIS and the 

ArcPy site package. This package includes a huge range of modules for general purposes 

                                                      
2 https://www.qgis.org/de/site/ (checked on 07/15/2019) 

https://www.qgis.org/de/site/
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and it is appropriate for interactive work and for scripting. Therefore, Python scripting 

with additional support of ArcPy packages is used for the calculation of the curvature. 

 

2.3.3 Protégé 

Protégé3 is a free and open source editor for modelling ontologies. The software was 

originally developed by the Stanford Center for Biomedical Informatics Research at the 

Stanford University School of Medicine. The software environment of Protégé is 

implemented in Java, which guarantees its platform independency. Protégé is used to 

create, manage and edit knowledge databases of specific fields of knowledge and to 

query the knowledge with SPARQL queries. An ontology can be validated through 

deductive reasoners. Those classifiers reason if models are consistent and infer new 

information based on the analysis of an ontology. The Protégé framework includes 

various plugins for different application requirements. Moreover, it allows for individual 

adjustments. The Protégé editor is based on Web Ontology Language (OWL) constructs, 

which will be used for generating an ontology for the road data and its related 

parameters. The editor offers two basic types for knowledge representation: 

 Protégé-frames 

 Protégé-OWL plugin 

Protégé-frames is the originally used frame-based approach for knowledge 

representation. The information about a specific knowledge in a domain will be 

represented in a hierarchical structure with the components of classes, slots and 

instances. Protégé-OWL is based on the Semantic Web standard OWL. In addition, 

logical mechanisms can be used, which are able to infer implicit knowledge from one or 

more ontologies with different sources (Stanford University/Protégé community 2019). 

The components in an OWL ontology are quite similar to a frame based ontology, but 

they differ in their terminology. Therefore, they are described as classes, properties and 

individuals (Horridge 2011, p. 10). 

                                                      
3 https://protege.stanford.edu/ (checked on 07/15/2019) 

https://protege.stanford.edu/
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For the generation of the ontology the Protégé version 5.5.04 will be used in this thesis. 

This version is the latest stable release that involves various improvements at the user 

interface and in bug fixing. Furthermore, some useful embedded tools are implemented, 

like e.g. the Cellfie plugin for importing data from Excel spreadsheets and the Pellet 

reasoner among others (Stanford University/Protégé community 2019). Since the 

Protégé version 4 a guiding document for creating OWL ontologies has been available. 

That document focuses on the generation of an OWL-DL-based ontology and on the 

integrating of a Description Logics (DL) reasoner for checking the ontology’s consistency 

(Horridge 2011, p. 7). 

 

2.3.4 SUMO Netconvert 

Simulation of Urban Mobility (SUMO)5 is an open source road traffic simulation package 

introduced by the German Aerospace Center (DLR) for handling large road networks. It 

includes a network import from different source formats, a framework for automatic 

driving simulations for imported networks and the ability to export various data formats 

(Behrisch et al. 2011, p. 1). The software supports the import of several data formats, 

like OSM and Shapefiles and also provides the export of the open format specification 

OpenDRIVE 1.4 for further traffic simulations. Despite its limited functions in exporting 

to the OpenDRIVE format it is the only sufficient tool that supports this data format for 

that purpose. 

 

2.3.5 OpenDRIVE Viewer 

For visualizing data in the OpenDRIVE format the OpenDRIVE Viewer can be made use 

of. This software is suited for Linux systems and allows a quick and efficient visualization 

of the data. Additionally, some options are available for switching on and off features 

for the presentation on the display. The latest version we use is the OpenDRIVE ODR 

Viewer 1.9.1. 

                                                      
4 https://github.com/protegeproject/protege-distribution/releases/tag/v5.5.0 (checked on 07/11/2019) 
5 https://sumo.dlr.de/wiki/Simulation_of_Urban_MObility_-_Wiki (checked on 07/15/2019) 

https://github.com/protegeproject/protege-distribution/releases/tag/v5.5.0
https://sumo.dlr.de/wiki/Simulation_of_Urban_MObility_-_Wiki
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2.3.6 OpenDRIVE Validator 

The OpenDRIVE Validator6 is a free tool for the validation of OpenDRIVE files. The tool is 

available as a Java application for Linux systems within the usability of VDT. It contains 

several possibilities for rule adaptation through a configuration file according to the 

desired quality criteria of validation. The validator was invented for the OpenDRIVE 

version 1.4 by VIRES Simulationstechnik GmbH within a corporation with Audi 

Electronics Venture7. 

  

                                                      
6 https://redmine.vires.com/projects/vtd/wiki/Wiki (checked on 07/11/2019) 
7 https://www.vires.com/OpenDRIVE/ODRMeeting20151015_VIRES.pdf (checked on 07/11/2019) 

https://redmine.vires.com/projects/vtd/wiki/Wiki
https://www.vires.com/OpenDRIVE/ODRMeeting20151015_VIRES.pdf
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3 Methodology 

3.1 Data Retrieval 

The retrieval of geographic information can be accomplished by using OSM data. An 

integrated export function enables downloading OSM information in various vector and 

raster formats for further usage. This function allows a quick export of generated maps, 

images, document files and also raw data for a selected bounding area. There are also 

developed ordinary sets of map tiles for specific usage and user tasks available (Haklay 

and Weber 2008, p. 14). However, this is a pre-built solution and contains a lot of 

information which is irrelevant for the task in this thesis. 

With the help of web application Overpass Application Programming Interface (API) 

specific data can be selected effectively from a certain geographical area. Those 

extracted data are usually filtered by a region and maybe also by a subject (Jokar 

Arsanjani et al. 2015, p. 101). The querying of the data is built for a specific bounding 

box, where the desired data mostly in form of nodes and ways, but also as relations can 

be retrieved. This is a very sufficient solution for small areas, but it turns out to be 

extremely time-consuming, if not to say almost impossible for very large areas (Jokar 

Arsanjani et al. 2015, p. 110). A further usage of the retrieved data has already been 

described in chapter 2.2. 
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3.2 Curvature 

The term curvature includes two types in form of the horizontal and the vertical 

curvature. For an easier understanding of the horizontal curvature, the parameter will 

just be called curvature, whereas the parameter for the vertical curvature is then 

referred to as incline. 

 

3.2.1 Curvature Definition 

A road in a virtual space consists of at least two vertices and polylines between each of 

the two vertices. Therefore, a curve is made as a segment of a circle and its osculating 

radius, and there is also a connection to the straight parts of a road (Andrášik et al. 2013, 

p. 75). Therefore, the circumference of a circle is given as: 

2 × 𝜋 × 𝑟𝑎𝑑𝑖𝑢𝑠 

The curvature parameter is derived from the slope of the circle at a specific point on the 

circumference. Hence, the curvature on the edge of the circle is defined as: 

1

𝑟𝑎𝑑𝑖𝑢𝑠
 

This imparts the knowledge that the smaller the circle, the higher the curvature and vice 

versa (Öberg 2012, p. 22). 

A curve might also be described by the angles between two vector polylines and the 

resulting change of direction. The information we get for the curve or the curvature of 

a road segment relates to polylines, which consist of at least one line. The entire road 

segment is assumed to be a polygon of which the curvature parameter will be derived. 

For identifying the curvature in a 2-dimensional (2D) space the arc length or the length 

of the polyline and the curvature are the two essential factors (Alian 2007, p. 16). 
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3.2.2 Curvature Calculation 

An easy way to determine the curvature is the computation of the quotient q between 

the Euclidean distance lEuclidean of the start and the end point of a road and the regular 

length of the road ltrue between the same points: 

𝑞 =
𝑙𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛
𝑙𝑡𝑟𝑢𝑒

 

The result would show that a straight road without any sense of curvature would have 

a length quotient with a value of one. Whereas a road with loops or a road with infinite 

length would have a value of zero, which might only occur with specific form of e.g. 

roundabouts represented by a closed polyline. In general, roundabouts have a relative 

small size and a small geometrical distance. Therefore, the determined quotient of zero 

should have less or even no impact on the curvature parameter. All other types of roads 

will have a quotient between one and zero. The disadvantage of this approach is that it 

does not describe the shape of the road. This means that roads with different shapes 

may have the same length quotient (Navratil 2012, pp. 357–358). 

In order to determine the parameter of the curvature of a road we apply two simple 

approaches of an average curvature. The first approach uses a moving window size 

always containing three points for the curvature estimation: a start, a middle and an end 

point as vertices. Those vertices are connected with one polyline between the start and 

the middle point and between the middle and the end point. For the second approach 

we use all the points of a polyline. This signifies that a polyline with only two points 

occurs with one point at the start and one at the end with a polyline between the two. 

Without the existence of a middle point, this results in a straight line with a zero 

curvature value (Alian 2007, p. 16). 

The following process will be applied for the determination of the curvature of a road 

segment by assuming of the consistence of three points within a polygon in a not intense 

generalized road network (Figure 4): 
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 For each three points pn-1, pn, pn+1 in a polyline, where n is the middle point, we 

determine the radius of an osculating circle through these three points. 

 Assuming that each line segment is a part of a polygon of three points, the length 

of a polyline segment will be determined. 

 The radius of a circle is being inverted to get the curvature of a polyline segment. 

 The window shifts by dropping the first point in the polyline and adds the next 

point in the polyline. This process repeats until no point in the polyline is left. 

 

Figure 4: Radius of a circle (red) of three vertices (black point) within a polyline (black line) 

 

The result of the process is a list of curvatures to their corresponding length (Navratil 

2012, p. 358). The ideal form of the available data of polylines, would consist of points 

as vertices of a polyline with equal intervals to each other and with only small 

measurement errors (up to 0.1 m) (Andrášik et al. 2013, p. 75). In reality, the line 

segments are of different length, but also similar curvature values. Therefore, a 

weighted average has to be applied to the network: 

𝑐 =
∑ 𝑐𝑖𝑙𝑖𝑖

∑ 𝑙𝑖𝑖
 

The curvature is represented as a function where ci is the curvature and li is the length 

of an arc or a part of the polyline. To get a balance between road segments with different 

curvature values but with similar length, the average curvature has to be multiplied with 

the length of the corresponding road segment (Navratil 2012, p. 358). 
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3.2.3 Process of Curvature Calculation 

The process for calculating the average curvature is further described in the following 

Unified Modeling Language (UML) diagram. Therefore, we refer to the enhanced 

approach of the osculating radius and the average curvature by Navratil (Figure 5). 

For the calculation of the curvature we need two data files as input. The first file is the 

raw data in form of a Shapefile and the second file contains the same Shapefile but with 

its polylines split at its vertices. In the first loop we enter a polyline in the Shapefile 

containing the raw data. Within this loop we step through each vertex in the polyline 

feature to get the longitude x and the latitude y of each vertex. By checking the amount 

of vertices in the current polyline we decide on the calculation type. 

If the polyline contains exactly two vertices, i.e. as start and an end point and no other 

points occur we assign an average curvature with the value 0 to the output of a straight 

line (Alian 2007, p. 16). The output will then be assigned to each polyline segment in the 

split Shapefile and represent its curvature. After that process we go back to the 

beginning, where we enter the polyline and start the loop with the next chosen polyline 

from anew. 

If the polyline consists of at least three vertices we can apply the intended approach of 

the osculating radius. Therefore, the center point of the circle through the first three 

points will be computed. Then we calculate the radius of this circle and invert the radius 

like mentioned above at the beginning of this chapter (Öberg 2012, p. 22). Furthermore, 

it is necessary to determine the length of each polyline segment. Therefore, the length 

between the first vertex to the second one and from the second vertex to the third and 

last one will be computed. 

This process needs to undergo several checks in order to calculate the correct number 

of vertices as each polyline contains a different one. If there are exactly three vertices 

within the polyline, the average curvature has to be calculated at the first and the last 

segment of the polyline. Therefore, the average curvature will be weighted by means of 

the length at the particular polyline segment. Again, after the processing and the 
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assigning of values of the average curvature to the split output file we go back to choose 

the next polyline for calculation. 

The last case appears when a polyline contains of more than three vertices. There we 

have the same process of radius calculation and length determination. We also compute 

the average curvature for the first and the last line of the polyline by considering the 

length of the specific polyline segment. In addition, we calculate all the polyline 

segments within the middle of the entire polyline based on the weighted aspect. Finally, 

it is necessary to assign the average curvature to the output data and to go back again 

in order to repeat the processing until no polylines are left in the input data. 
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Figure 5: UML diagram of the curvature calculation process 
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3.2.4 Incline Calculation 

The incline of a slope is well-known as the tangent of the angle between the surface and 

the horizontal level of the reference surface. For the calculation a DEM is needed which 

can be retrieved for different levels in different ways. For a better representation of the 

incline we will need a DEM with a high geographic resolution. For this purpose DEM’s8 

with a geographic resolution of 10x10 meters made from airborne laser scanning are 

available in Austria. 

The incline of the road data will be done for every single road segment (Figure 6). 

Therefore, we need the length of the road segments and we have to identify the 

absolute height of the start and the end point of each road segment out of the DEM. 

After that the calculation of the incline can be accomplished. 

 

Figure 6:UML diagram of the incline calculation process  

                                                      
8 https://www.data.gv.at/katalog/dataset/d88a1246-9684-480b-a480-ff63286b35b7 (checked on 
07/15/2019) 

https://www.data.gv.at/katalog/dataset/d88a1246-9684-480b-a480-ff63286b35b7
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3.3 Ontology 

3.3.1 Ontology Definition 

An ontology is a structural framework for knowledge representation about a domain of 

the real world or a part of it. Ontologies consist of concepts and relationships between 

them. Concepts are also known as classes and relationships that can be called properties 

(Zhao et al. 2015, p. 1). This is a rather simple interpretation of many interpretations of 

the term ontology. Originally, the term comes from philosophy, where things in the real 

world should be classified, while Artificial Intelligence (AI) operates with models of the 

world for knowledge sharing and reuse of ontologies (Linková et al. 2005, p. 3). 

Therefore, the term ontology is taken for describing the computational representation 

of the world in a program for AI. 

As mentioned above, a lot of definitions have been used to describe an ontology. The 

most accurate one indicates that “an ontology is a formal, explicit specification of a 

shared conceptualization”. Formal means that an ontology is machine readable. Explicit 

specifications refers to the used concepts, attributes, functions and explicit defined 

axioms. Shared means that an ontology contains consensual knowledge. The term 

conceptualization describes an abstract model concluding various phenomena of the 

real world (Studer et al. 1998, p. 25). 

The aim of an ontology as a shared concept model is to provide structural information 

to merge already existing knowledge for a much easier information search. The 

information in form of spatial data may be defined and semantically specified. 

Moreover, it can also be machine-readable (Wang et al. 2007, p. 205). For representing 

information of the real word it is necessary to consider the difficulty of different key 

aspects of mapping from different knowledge bases. For this purpose an ontology is the 

most common way to describe real objects und their relationships. In information 

processing it has the task to formalize real objects and their relationships for 

communicating between the human experience and the technical information 

representation. The challenges are on the right classification within a context. 

Therefore, real objects of the world may be distinguished into concrete and abstract 
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objects, where concrete objects are e.g. persons and abstract objects are e.g. 

organizations (Pfeiffer 2010, 12-13). 

 

3.3.2 Ontologies in Knowledge Engineering 

Ontologies can be categorized into their intended purpose of knowledge representation. 

In a knowledge engineering environment ontologies enable the construction of a 

domain model in a specific range of knowledge (Pfeiffer 2010, p. 13). Therefore, the 

domain is modeled by terms and relations between them. Various types of ontologies 

exist for different demands in the process of creating a domain model. However, they 

all have the same basis of determining explicit static knowledge about a domain. As 

different domains can also be considerably diverse it may be useful to distinguish 

between different types of ontologies: 

 Application ontologies describe the modelling of a certain domain with all the 

necessary knowledge. This type of ontology is mostly used for a specific task. 

 Domain ontologies are applied to a particular type of domain with all the valid 

and specific knowledge. 

 Generic ontologies (task ontologies) are used across various domains and consist 

of definitions for describing general activities. 

 Representation ontologies (top ontologies) are not applied to any certain 

domain. They operate independently and represent knowledge of general 

nature. Therefore, representational entities are provided in a Frame Ontology, 

which represents knowledge in a frame-based or in an object-oriented way 

(Studer et al. 1998, p. 27). 

Among the differentiation of the diverse ontologies the main function for knowledge 

representation remains the same. Hence, the concrete description of the real world data 

should support the retrieving information on the user’s side (Pfeiffer 2010, p. 13). 
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3.3.3 Ontology Languages 

3.3.3.1 XML 

XML had been introduced as an extensible language for defining data structures, which 

is not provided by the former Hypertext Markup Language (HTML) format due to its 

fixed annotation scheme. The advantage of the XML format is the exchange of data in a 

structured and syntactical way over the World Wide Web. For that purpose XML 

schemata have been established as a definition language for the restriction of structures 

of documents and datatypes. 

An XML schema is presented as a single XML document which defines the valid structure 

of the given data which follows the guidelines for the documents provided from the 

World Wide Web Consortium (W3C) committee. That specification offers a formal 

grammar and further grammatical restrictions on the structure of a document. This 

restriction in such a well-formed document is called Document Type Definition (DTD). 

The components used in an XML schema definition have the type “element” and 

associated attributes which define the restrictions. The element itself contains the 

information as a list of further element definitions, which are implemented in a nested 

way inside the defined element: 

 

 

A further advantage of the XML data format is that it provides additional features to 

define data structures. The following additional features are helpful for encoding 

complex data structures: 

 Possibility of a combination of different XML schemata 

 Restrictions on attributes 

 Sophisticated structures 

 Support of basic data types 
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Therefore, specific data models of applications can be mapped for sharing its 

information on an XML schema. For data exchange on an XML document its information 

can be encoded in the form of an XML document and can be made available on the 

World Wide Web by using it within a combination of an XML schema document. Such 

an XML document only provides a definition of the structured data and does not provide 

information about the content and the possible usage of the information. Hence, we 

cannot retrieve any meta-information from this data definition (Stuckenschmidt 2003, 

pp. 10-12). 

 

3.3.3.2 Resource Description Format 

Resource Description Format (RDF) was introduced as a framework for describing meta-

information and to define its meaning. The RDF standard is an additional approach 

based on the XML syntax for describing the previously mentioned meta-information and 

their content in form of simple semantics. 

The RDF model is built in form of triples in a schema, which contains the information 

about an XML element. In this context the XML element can be expressed as a resource 

with properties and values. A property is defined as a relation which connects a resource 

to a specific value of this property. A value is expressed as a simple data type or as a 

resource: 

 

 

In addition, a value can also be represented as a variable which is described as a resource 

that is further described by one or more new triples which are linked to a variable with 

asserted properties of the resource: 
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It is also possible to use a triple as a value for the property in a resource. This feature is 

called reification mechanism which allows us to make statements about specific facts. 

The representation will occur in a nested way: 

 

 

Furthermore, multiple values can be associated to a single property. Therefore, the RDF 

model contains collections, which are defined as three built-in data types for providing 

aggregation mechanisms in a certain way: 

  Lists 

 Ordered lists 

 Sets of alternatives. 

Name conflicts of different RDF models may occur when sharing those models over the 

World Wide Web as a reference to different web sites. To avoid this problem 

name-spaces are used from the RDF which are provided by XML. The definition of those 

name-spaces refers to an Uniform Resource Identifier (URI) that provides the names and 

a connection to the source Identifier (ID). By defining the origin of a certain name this 

source ID is then used to annotate a name in a RDF specification: 

Source ID:name 
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The RDF statements, which express the meaning of information, are implemented in a 

standard syntax for representing those as meta-information (Stuckenschmidt 2003, 

pp. 12–14). 

 

3.3.3.3 OWL 

OWL is a very expressive language for exact description of semantic knowledge in the 

Semantic Web that is supported by many tools, like e.g. Protégé (Linková et al. 2005, 

p. 5). It was originally developed by the W3C as a standard ontology language and is 

based on a logical model for defining and describing simple as well as complex concepts 

(Horridge 2011, p. 10). The origin of this OWL language comes from three areas: 

 Description Logics (DL) 

 Frame systems 

 Resource Description Format (RDF) 

DL is a concept language for logical systems that derives their formal semantics of 

constructors and their language features from their semantics. Frame Systems describe 

the view of a frame-based system into a knowledge base for simplifying the 

understanding and handling of OWL ontologies. This frame-based view helps unskilled 

user working with DL (Hall 2006, pp. 10–11). RDF has already been mentioned above. 

However, it is not very expressive in the description of knowledge (Linková et al. 2005, 

p. 5). Since OWL is based on RDF, those two formats are compatible with each other 

and, therefore, a RDF graph is also a valid OWL ontology (Hall 2006, p. 11). 

With the help of OWL it is possible to define and describe concepts in the same way like 

other ontology languages. However, the recent OWL development provides more 

functionalities over others (Horridge 2011, p. 10). Therefore, OWL is available in three 

expressive variants of languages: 
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OWL Lite is the simplest form comprising simple constraints and a basic classification 

hierarchy for the user. Therefore, it is built on a low formal complexity. OWL DL 

represents an extension of OWL Lite and concludes all OWL language constructions. By 

using this sublanguage a maximum range of expressions is assured. However, the usage 

of the entire language package goes along with some specific restrictions. OWL Full is an 

extension of OWL DL, which offers the maximum expressiveness and the entire syntactic 

possibilities of the RDF format. With that language the meaning in an ontology can be 

extended in addition to the predefined RDF and OWL vocabularies. Unfortunately, there 

is no computational guarantee anymore. Therefore, a complete reasoning for every 

feature is not assured from any reasoning software packages (McGuinness and van 

Harmelen 2004, p. 5). 

 

3.3.4 Ontology Schema 

The coverage of the OWL language features depends on the type of sublanguage. 

Nevertheless, we will discuss some basic components that occur in the schemata of all 

OWL sublanguages. OWL Lite and OWL DL have more limitations by using these 

components with respect to OWL Full: 

 Classes 

 Properties 

 Individuals 
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 Domain 

 Range 

A class is defined by a group of individuals with the same properties. Classes can be 

organized in a hierarchical way, which is called taxonomy. By setting a class as a subclass 

of another class the class hierarchies may be created. The basis in an ontology is always 

represented by the built-in class named “Thing”. There can also be a built-in class named 

“Nothing” after inferring the ontology, which does not contain any individuals and forms 

a subclass of all classes in an ontology. 

Properties are used to describe relationships from individuals to data values or 

relationships between two or more individuals. The first case is made in form of 

datatype properties and the second case might be solved by applying object properties. 

Hierarchies with properties can be created by setting a property as a subproperty of one 

or more properties (McGuinness and van Harmelen 2004, pp. 8–9). Furthermore, an 

object property can hold some characteristics like functional, inverse functional, 

transitive, symmetric, asymmetric, reflexive and irreflexive. In contrast to object 

properties, datatype properties only hold the characteristic type functional (Horridge 

2011, p. 11). 

An individual is used as an instance of one or more classes, where the properties are 

relating those individuals to each other (McGuinness and van Harmelen 2004, p. 9). 

Those individuals may model abstract or concrete objects in a domain of an ontology 

(Zhao et al. 2015, p. 3). As OWL is not applying the Unique Name Assumption (UNA), we 

have to explicitly describe the similarity and the difference of individuals in relation to 

each other (Horridge 2011, p. 10). 

The domain of a property might be used for the assignment of this property to a class. 

It limits the individuals to which the property relates. From that the reasoner can infer 

the relations between the individuals. If an individual is related to another individual 

through a property and a class is described in the property’s domain, the related 

individual will be related to the class. 
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The range of a property assigns a value as a limitation for the associated individuals. If 

an individual is related to another individual through a property and a class is described 

in the property’s range, the related individual will be related to the class. From that the 

reasoner can infer the relations between the occurring individuals once again 

(McGuinness and van Harmelen 2004, 9). 

 

3.3.5 Spatial Ontology 

The class hierarchy for the geometry in a spatial ontology is assumed for objects in a 2D 

coordinate system with longitude and latitude. Therefore, those objects can be 

categorized into eight types of geometry, whereby the first two geometry categories are 

relevant to the ontology in this thesis. A detailed description can be found below: 

 Point 

 Single line (Polyline) 

 Connected line (Not a ring) 

 Connected line (Ring) 

 Polygon 

 Multipoint 

 Multicurve 

 Multipolygon 

A point p is defined by its longitude x and its latitude y. The spatial relationship between 

one or more points is represented by the given coordinates. Two or more points can be 

equal if the longitude and the latitude are exactly the same. Otherwise, they are just not 

equal. 

A single line is also called a polyline, which is described by two points each at the start 

p1 and the end p2 of the polyline. For the spatial relationship of a polyline two relevant 

operations for road data are possible. If two polylines have exactly the same start and 

end point coordinates, they are equal to each other. Two polylines can meet at one 

point, either a start or an end point. 
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Another type of spatial relationship is the connection between points and the start or 

the end point or any other vertex of a polyline. This occurs when the coordinates of a 

point are equal to the coordinates of one vertex of a polyline (Jitkajornwanich et al. 

2011, pp. 2–3). 

 

3.3.6 Reasoning 

The complexity of reasoning depends on the restriction of first order logic, which defines 

the structure of knowledge by using a very detailed definition for the concepts and their 

relations in the real world (Hall 2006, p. 6). The reasoner itself checks the consistency of 

the definitions and statements in a logical model and also recognizes the compatibility 

of concepts and definitions (Horridge 2011, p. 10). The implicit knowledge of the axioms 

in the concepts can be inferred to make them explicit. In the case of DL four mainly used 

inferences exist: 

 Satisfiability 

 Subsumption 

 Equivalence 

 Disjointness 

The first two categories Satisfiability and Subsumption are the most used inferences in 

practice. Satisfiability operates if a knowledge base will be updated by adding, changing 

and removing some concepts, as we have to know if the updated concepts are valid and 

if other concepts will become invalid through the update. Subsumption creates the 

hierarchy of the concepts by considering their universality. The other two inferences 

Equivalence and Disjointness may also be applied to Subsumption. If the concepts in a 

DL language have full negation we can reduce all the inferences to Unsatisfiability. In the 

case of full negation in DL languages the process of reasoning can be executed by a 

tableau-based algorithm (Hall 2006, pp. 8–9). 

Some popular reasoners that support Subsumption are e.g. Pellet, Racer and FaCT. A 

major advantage of these DL’s is their decidability within the inference processing (Lutz 

and Klien 2006, p. 112). In the Semantic Web reasoning should be a fast and complete 
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process. Some reasoners like FaCT (FaCT++) and Racer (RacerPro) are very popular, but 

they are not applicable to some necessary performances in the Semantic Web, e.g. for 

XML schema datatypes. 

The Pellet reasoner complies with this task in the process of OWL Lite and OWL DL. In 

that process Pellet might perform a full testing of the consistency and of the syntax by 

reasoning the entire concepts in an ontology (Bauer et al. 2008, pp. 81–82). Whereas 

OWL DL can be interpreted and evaluated completely, OWL Full is not testable at all 

(Pfeiffer 2010, p. 34). The required time for a simple reasoning process of the Pellet 

reasoner compared to the FaCT++ and RacerPro reasoners is negligibly higher in 

practice, but for the reasoning of complex ontologies it is much faster. Furthermore, the 

performance of the Pellet reasoner compared to the two other reasoners is much better 

(Bauer et al. 2008, p. 84). 

 

3.3.7 Semantic Translation 

Interoperability between different data sources can be achieved through integration of 

data from a system into another system. To achieve the interoperability between 

different data sources some applicable tools are required, as the integration process 

may not be supported by all the user systems. Possible problems may occur through the 

heterogeneity of data, which can be divided into three categories: 

 Syntax refers to the heterogeneity of data formats. 

 Structure means that a database table contains homonyms, synonyms of 

different attributes. 

 Semantics refers to the meaning of terms in a certain application of context 

(Visser et al. 2002a, pp. 104–105). 

Throughout this master thesis the focus will be on the semantic integration of the 

retrieved data, especially on the already discussed definition of curves within the road 

data through the calculated curvature value. 
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3.3.7.1 Syntax 

Due to information sharing and a grown usage of computer networks an increase of the 

importance of standard language takes place which has been advanced by the W3C 

committee. The focus is on the three languages XML, RDF and OWL (Stuckenschmidt 

2003, p. 10). These languages have already been mentioned in this thesis in 

chapter 3.3.3. The syntactic integration of data deals with the source of the information 

at a syntactic level. This means that the information source will be restructured by using 

wrappers, which will be discussed shortly in chapter 3.3.7.3. Thereby, the contents of 

the internal data structure can be transformed to a uniform and structural data model 

(Visser et al. 2002b, p. 2). 

 

3.3.7.2 Structure 

The integration of heterogeneous database schemata can be solved by transformation 

queries which have to be manually coded. Because of this intricate solution the use of 

flexible mapping relations between the different data models may be much more 

sophisticated. This can be achieved by using middle-ware components which define 

certain mapping rules between the different information structures. Therefore, some 

approaches for the integration of structural information with basic technologies are 

available. 

A schema consists of a set of specific relations where every single relation as a part of 

the schema is also called a column. To access information of a schema we use queries 

by applying the mentioned relations and those associated element tuples in a clause. 

The result of such a query can be shown in a view as a set of tuples. 

For integrating heterogeneous schemata normally the use of a global schema linked to 

the single heterogeneous schemata is sufficient. An XML document provides a solution 

for information sharing in a global schema due to its semi-structured information. 

Unfortunately, the semantics of the information is not included in the XML schema 

specification. The information structures of a global schema can be mapped with 
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additional information about the returned tuples in the results. Therefore, that 

additional information can be encoded to return contextual parameters. 

When encoding individual information from different information sources it will be 

necessary to handle different measures and scales. Therefore, we have to transform the 

individual information which are returned by a query. This problem can be solved by 

applying context transformation rules for the purpose of database integration. 

However, the context of a certain information is often not directly included in such a 

database system. Therefore, data dictionaries define the data type, the valid ranges and 

possible restrictions, the latter defining the basis for a transformation and explaining the 

relation to other data types. By applying transformation rules it is impossible to 

determine the form of transformation, because there is no definition of the source and 

the goal context of a well-defined data model. We can only use the relation of the 

different context conceptions without an associated schema (Stuckenschmidt 2003, 

pp. 14–16). 

 

3.3.7.3 Semantics 

To achieve semantic interoperability we have to apply semantic translation techniques 

between heterogeneous information systems. When using different information 

systems the problem lies in their different interpretation of information. Therefore, 

sematic conflicts occur in the case of the heterogeneity. The different systems have to 

understand the meaning of the interchanged information between them. The following 

two well-known types of disagreement exist: 

 Homonyms occur by using the same word but with different meaning in the 

applied information systems. 

 Synonyms result by using different words but with the same meaning in the 

applied information systems. 

To solve the semantic conflicts for the types mentioned above specific converter and 

mediator systems have been established which use one-to-one structural mapping 

solutions. For conflicts which cannot be solved with the one-to-one mapping technique 
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we have to take the difference of the information elements and their relation among 

each other into account. Therefore, some approaches can be applied to access the 

semantics of information (Stuckenschmidt 2003, pp. 16–17). 

 

Semantics from Structure 

In order to gain semantics of information we can use its structure. A common approach 

is the Entity-Relationship Approach by using conceptual models for stored information. 

This approach mainly focuses on handling the structural information in complex 

domains. This connection to the stored information is very useful for information 

sharing by accessing and validating the information. By using so called wrappers which 

are derived from a conceptual model structural information can be accessed. The 

implementation of wrappers to access and extract less structured information can be 

solved by applying machine-learning techniques. Those are represented as a set of 

extraction rules which extract the information and put it into a new generated structure 

for further processing. 

As extraction rules are only defined for structural information, we have to build a logical 

model to integrate semantic information from different data sources. There are two 

approaches for integrating the semantics of the information: 

 Structure Resemblance 

 Structure Enrichment 

In the Structure Resemblance Approach we use a logical model which represents a 

one-to-one copy of the database and its conceptual structure. That model might be 

encoded into a language with the possibility for automatic reasoning. The integration of 

the data will be realized on the copy of the model which is associated with the source 

data. Both the so called SIMS mediator (Arens et al. 1993) and the TSIMMIS system 

(Garcia-Molina et al. 1995) include this approach. 

The Structure Enrichment Approach describes a logical model that contains the 

structure of the original information and additional information about the concept 
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definitions. Some systems that use this approach are called DWQ (Calvanese et al. 1998), 

KRAFT (Preece et al. 1999), OBSERVER (Kashyap and Sheth 1998) and PICSEL (Calvanese 

et al. 1998). 

Those two approaches assume the existence of semantics in the structure of the 

information. In reality, there is mostly a lack of conceptual data models. Therefore, 

those approaches are often not applicable (Stuckenschmidt 2003, pp. 17–18). 

 

Semantics from Text 

Another method to gain semantic information is to derive the semantics from the 

structure of information within the text. This approach is often used on the World Wide 

Web, where a lot of free-text resources are available. By using indexed terms with a 

relation to their contents the relevant information can be retrieved from those free-text 

documents as a result of natural language processing. An increasing precision could be 

achieved by using compound expressions and meaningful statements, which are very 

similar to the already mentioned RDF format. 

The aim of using a natural language is to index descriptions from a text in a document 

and to analyze those documents. The problem of this approach is that repeatedly 

occurring terms may be implied differently. That different meaning of the same term 

can result in different degrees of relevance. In order to improve data retrieval, the 

function of a term can be made explicit in the text of a document. Thereby, the same 

term in a natural language can have a different meaning in the same text. 

A common approach is the analyzation of the entire context of a specific term. The 

results are different interpretations that are based on the existence of other words in 

the context which effect the meaning of the term. The decision for an interpretation 

often depends on the general natural language vocabulary. An explicit description of the 

relations between the terms must be created for documents with a specific vocabulary. 

That can be accomplished by using a domain specific vocabulary or a semantic network. 
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To retrieve textual information with terms from everyday language it may be useful to 

apply text-understanding techniques. The main problem is the lack of specific semantic 

information causing a lot of limitations. The use of contextual language can solve the 

issue of ambiguity in the processing of natural languages. However, it is very difficult to 

deviate the meaning from artificial terms, especially when they are used as a specific 

term in the information source. Therefore, we may use potentially available background 

information of the data (Stuckenschmidt 2003, pp. 18–19). 

 

Explicit Semantics 

In order to extract more complex indexing terms specific models for the semantics of 

information from a text in a document as well as specific vocabulary from the scientific 

community and the technical field can be used. The semantics of information can be 

used in one of the models outlined below: 

 Information Extraction 

 Processible Semantics 

 Ontologies 

Information Extraction relies on the accessibility to resources of information. Therefore, 

we have to induce wrapping technology with information extraction techniques to get 

the access to the required information. 

Processible Semantics deals with the development of formal annotation languages, like 

the already mentioned formats XML and RDF. Therefrom we can get the structure of 

information and the meta-information from the information source by applying the 

syntactic and structural approaches (Stuckenschmidt 2003, 16–20). 

Ontologies represent the semantic information that is based on a formal and explicit 

specification of the shared conceptualization (Studer et al. 1998, p. 25) in a domain. This 

process is equate with an enrichment of the information sources with additional 

semantic information (Stuckenschmidt 2003, pp. 19–20) 
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3.3.8 Ontologies for Road Data 

Within the task of ontology-based processes for autonomous driving some 

developments are already available. Those ontologies aim at creating scenarios for 

vehicles in different driving situations (Bagschik et al. 2018, p. 1). Furthermore, the 

interaction and the relationship between the road objects, which may be identified by 

sensor techniques, and the subject vehicle can be described by contextual information 

(Armand et al. 2014, p. 1). 

The challenges for simulations with road data and transportation networks can also be 

performed by applying the usage of ontologies. Due to the amount and the diversity of 

digital spatial vector data from road networks ontologies play an important role in that 

area. Through their own formal semantics, the integration of data can be supported by 

the creation of standards. The use for better expressive definitions for concepts and 

their properties goes beyond UML diagrams and thus improves the effort for 

standardization. Ontologies provide a common and explicit language which is useful for 

the translation of the data between different applications. The common language also 

supports accessing databases as sources of information. However, it requires either a 

special technique for retrieving the results directly from the database or the possibility 

to translate the data directly into instances in the ontology which may be achieved by 

querying. Furthermore, such an ontology can also be useful as a tool for analysis 

purposes like simple queries for certain problems and for exploring and understanding 

the domain. 

Ontologies are suited for some different languages as already mentioned before. 

Nowadays, OWL is the best choice for comparing ontologies and it is also the most used 

language over the Semantic Web. For practical applications the use of other ontology 

languages is not really relevant. For instance, transportation ontologies mostly use the 

OWL format. Some popular projects in the transportation domain are the General 

Transit Speed Specification (GTFS) and the City Geographic Markup Language (CityGML) 

formats, which are based on the XML format with a specific vocabulary for the 

transportation domain in a particular schema classification (Katsumi and Fox 2018, 
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pp. 56–57). Therefore, the modeling of an adequate descriptive ontology for specific 

road data in the field of autonomous driving is an essential task. 

 

3.3.9 Modelling of the Ontology 

3.3.9.1 Basics 

In order to generate a new Protégé ontology project we have to define an 

Internationalized Resource Identifier (IRI) for the ontology. This can be done for the 

header of the ontology in the “Active ontology” tab (Figure 7). An IRI is an 

internationalized form of an URI with an extended sequence of characters that describes 

the definite identification of resources (Duerst and Suignard 2005, p. 6). Therefore, 

every single ontology holds a unique IRI which can be changed continuously. All classes, 

properties and individuals within that ontology will belong to the defined IRI. In the case 

of merging ontologies we can distinguish the ontologies by their respective IRI 

identifications. Furthermore, an ontology may be described by some annotations like 

comments or labels etc. There is also the possibility to extend some terms to the 

annotation. We can therefore add some meta-information to describe the resource 

from the Dublin Core Metadata Initiative9 by using the term dcterms. 

                                                      
9 http://www.dublincore.org/specifications/dublin-core/dcmi-terms/ (checked on 07/12/2019) 

http://www.dublincore.org/specifications/dublin-core/dcmi-terms/
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Figure 7: Ontology header tab 

 

3.3.9.2 Classes 

When the setting of the general definition of the ontology is done, we can create and 

define the entities in the ontology, like classes, object properties, data properties and 

individuals. In the course of the work we are always able to adjust the structure of the 

dataset.  

First we start with the creation of classes by creating a first subclass. Depending on how 

the structural configuration should be we will create the appropriate subclasses and also 

sibling classes. In contrast to subclasses, sibling classes share the same hierarchical level 

in the ontology. The basis class in an ontology is the class owl:Thing, which means that 

all underneath created classes are subclasses of owl:Thing: The main class is called 

RoadInfrastructure, which gather all the underlying classes. Those are the classes 

Location, Road and TrafficSign, where every class contains a different amount of 

subclasses. These three classes are defined as a collective term for specific classes. 

Altogether, there are 30 subclasses at the last level of the ontology hierarchy. Whilst the 

classes Road and TrafficSign are interpreted to be disjoint to each other, they are 

presented both within the class Location, even though in different subclasses. A road is 

presented in form of a polyline and a traffic sign must be in form of a point. This means 
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that the two classes Polyline and Point are also disjoint to each other. The disjointedness 

of classes means that they are not allowed to own the same individuals. Consequently, 

a road cannot be a traffic sign and vice versa (Figure 8): 

 

Figure 8: OWL classes tab 

 

3.3.9.3 Properties 

Object Properties 

Object properties connect two or more individuals or classes. For that purpose we can 

further make use of specific property characteristics which allow us to enrich the 

meaning of the properties (Figure 9). The object properties may be described in different 

ways. However, they must refer to a specific domain with a particular range. Thereby, 

individuals will be connected from the domain to individuals from the range. In the 

following process of reasoning these connections will be used as axioms. It is also 

possible to assign multiple classes to the range of the object properties (Horridge 2011, 

p. 35). 
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Figure 9: Object properties tab 

 

Data Properties 

Data properties are connecting classes and individuals with a specific datatype value of 

an XML schema or an RDF literal. The property characteristics of the object properties 

are mostly not available. The only characteristic we can apply is Functional for assigning 

exactly one value. As we use the description for object properties, we can also apply the 

description for domain and ranges for data properties. Therefore, the domain of the 

data property is linked to the corresponding class. The range is defined by a specific 

datatype for the output of the attributes of the data. For this thesis we only make use 

of three different datatypes. These are string, integer and decimal which are assigned 

to at least 34 data properties. Those data properties characterize the attributes of the 

road data and also of the traffic sign data (Figure 10). 
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Figure 10: Datatype properties tab 

 

3.3.9.4 Individuals 

Within the individuals tab all the individuals, which represent real objects of the world, 

may be created. The input can be accomplished by entering the individuals one by one 

or by importing them as a group all at the same time. For this thesis we will import the 

individuals as axioms from an Excel workbook by using the embedded Protégé plugin 

Cellfie (Figure 11). Thus, every single individual is represented as a road segment in the 

data. We also have to assign the attributes which occur in the road dataset to the data 

properties. 
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Figure 11: Individuals tab 

 

3.3.9.5 Restrictions 

Within Protégé we can restrict the data in various ways. The most common type of 

restrictions is called “Existential Restriction”. Thereby, individuals in a class are 

described, at least sharing one relationship with individuals from another class. The 

restriction may be defined by a specific property, whereas the relationship is 

represented through the term some between the two classes (Horridge 2011, p. 40). 

Another type of restriction is the “hasValue Restrictions”. That restriction defines a 

group of individuals with at least one relationship to a specific individual. This specific 

individual is again described through a certain property (Horridge 2011, p. 91). 

For the thesis we define “Essential Restrictions” for the determination of a curve. The 

“hasValue Restrictions” are used for the different road types. This is necessary as 

different road types result in different curve determinations. For example, a freeway has 

less sharp curves than a main road and, therefore, the threshold for curve determination 

is smaller. Consequently, we set the value for the data property motorway to 0.00032. 

The road types for a link to the freeway and other main roads are set to a curvature 

value of 0.0018. Furthermore, the types of the main roads primary, secondary and 

tertiary are set to 0.001 (Figure 12). 
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Figure 12: Restrictions 
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3.4 OpenDRIVE Simulation Data 

3.4.1 OpenDRIVE Format 

The OpenDRIVE10 format is an open source specification and a de-facto standard within 

driving simulation tools for the description of road networks logics. It was established 

by a cooperation between the Daimler AG Driving Simulator and the VIRES 

Simulationstechnologie GmbH in 2005. The simulation format is based on the XML 

format and enables an exact description of roads with specific attributes from the real 

world. The advantage of the usage of the OpenDRIVE format is its exchangeability 

between different road network simulation tools for solutions like scenario simulations, 

traffic simulations and vehicle dynamics etc. Therefore, it is used by an increasing 

community in the driving simulation industry. 

The format contains many attributes which supply the purpose of road network 

simulations. First the geometry of a road is given as a reference line with lane properties 

in terms of width and number and if available the elevation of the data. Additional 

attributes may be represented by traffic signals at or beside the road, the road type and 

its speed properties. Moreover, the road surface can be described by its material 

properties, and the infrastructure can be given as bridges and tunnels. Occasionally, 

road and roadside objects may be included for an extended road environment within 

the simulation process. Furthermore, an important feature of the format is the logical 

interconnection of junctions and of groups of junctions. However, the relationship 

between sequential lanes and road segments in a road simulation network is an 

essential feature (Menzel et al. 2018, p. 9). 

Nowadays, data in the OpenDRIVE format is mostly generated manually, but in a very 

accurate way. As the available data are created on the basis of aerial images, this process 

turns out to be very time-consuming and cost-intensive. Furthermore, there is an 

insufficient amount of data available. This states the need of more data for a higher 

coverage, especially for autonomous driving simulations. The use of open source data 

                                                      
10 http://www.opendrive.org/project.html (checked on 07/10/2019) 

http://www.opendrive.org/project.html
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can fill this gap but may also lack information about some important descriptions of the 

road, because of its concept (Richter et al. 2016, p. 27). 

 

3.4.2 Road Specifications 

The road specifications have already been mentioned in chapter 3.4.1 as part of the 

OpenDRIVE format. Those categories are important for the data that are used within the 

generated road network and for the further generation of the OpenDRIVE files (Öberg 

2012, p. 11). 

 

3.4.2.1 Geometry 

The basic geometries of a road are present in form of reference lines along a distance s 

at the center of a road. A reference line is composed of some elements of the basic 

types. Overall, five basic types are available (Figure 13): 

 Straight line 

 Spiral 

 Curve or arc 

 Cubic polynomial 

 Parametric cubic curves (Dupuis, Marius e.a. VIRES GmbH 2015, p. 19) 

 

Figure 13: Reference line with the elements straight line, spiral and curve (from left to right) 
(Dupuis, Marius e.a. VIRES GmbH 2015, p. 19) 
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3.4.2.2 Lanes 

Lanes are distinguished into right, center and left lanes, whereas there is always exactly 

one center lane in the middle of a road. However, there can be any number of the right 

and the left lanes which are located right or left of the center lane. Every lane has a 

successor and a predecessor from and to the next road segment. In addition, the lanes 

may be described by their lane type, by certain restrictions and by the width of a lane. 

In OpenDRIVE a polynomial will be used for describing the lane width. The lane width 

changes along a road segment. It depends on the width of the previous and the following 

lane especially at the beginning and the end of a road segment (Öberg 2012, p. 12). The 

center lane is always defined with the value 0 and may not explicitly contain a lane 

width. This lane is located along the reference line at a road segment (Figure 14) (Dupuis, 

Marius e.a. VIRES GmbH 2015, p. 20). 

 

Figure 14: Lanes with number and width along a reference line 
(Dupuis, Marius e.a. VIRES GmbH 2015, p. 20) 

 

3.4.2.3 Road Connection 

For the navigation on a road network the connection between the sequential road 

segments must be known. That linkage can be accomplished by applying successors and 

predecessors at the IDs of the single road segments. For the standard case the 
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connection with successors and predecessors is sufficient. If there is an ambiguous 

connection we have to use junctions instead. 

The following example shows the connections, which are possible at a junction area. The 

road segments are each located along the reference line sn at the road. The road 

segment number 2 is the “incoming road”, the numbers 3, 4 and 5 are defined as 

“connecting roads” and the numbers 6, 7 and 8 are called “outgoing roads” (Figure 15) 

(Dupuis, Marius e.a. VIRES GmbH 2015, p. 25). 

 

Figure 15: Road connection 
(Dupuis, Marius e.a. VIRES GmbH 2015, p. 25) 

 

A junction is a feature in the OpenDRIVE format where a road segment continues into 

one or more road segments. Therefore, we have a list of linkages with the name and the 

ID of the junction to other roads like mentioned above (Öberg 2012, p. 17). If a road 

belongs to a junction it will be treated as a path which connects the incoming road via 

the patch to the outgoing roads (Figure 16) (Dupuis, Marius e.a. VIRES GmbH 2015, 

p. 26). 
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Figure 16: Junction with the path as a connection and the incoming and outgoing roads 
(Dupuis, Marius e.a. VIRES GmbH 2015, p. 26) 

 

3.4.3 Tools for Road Network Generation 

For the generation of road networks for simulation purpose just a few tools are 

available. Either the generation may be accomplished by using a conversion tool like e.g. 

Feature Manipulation Engine (FME)11 or hale studio12. Those tools support the import of 

various data formats for spatial and non-spatial data. Among the plenty available 

formats for an export process the well-known XML format may also be generated. 

Unfortunately, a direct export of the OpenDRIVE format is not supported by those tools. 

In theory, it may be possible because of its XML based specifications (Coduro 2018, 

p. 76). 

SUMO is a traffic simulation package, which supports the OpenDRIVE format as well as 

the import of a manageable amount of data formats from other traffic simulation tools 

like MATsim, Vissim and VISUM. Another option is the import of common spatial data 

                                                      
11 https://www.safe.com/ (checked on 07/10/2019) 
12 https://www.wetransform.to/products/halestudio/ (checked on 07/10/2019) 

https://www.safe.com/
https://www.wetransform.to/products/halestudio/
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formats like  OSM, RoboCup and Shapefiles (Behrisch et al. 2011, p. 1). The SUMO 

package also allows to export data into various supported formats like the required 

OpenDRIVE format (Krajzewicz et al. 2012, p. 128). 

 

3.4.4 Road Network Generation 

A road network is described as a graph of a real world network with roads represented 

as edges and the intersections between them represented as nodes. The edges in the 

network are unidirectional connections between two nodes. The edges additionally 

contain the geometry, the allowed speed and a specific number of lanes with its changes 

in the number of lanes on the road segment. As mentioned above, the connection 

between lanes occurs across intersection, where the correct lane will be chosen to reach 

the subsequent lane. 

The road network can be generated by using the SUMO application “netgenerate” for 

building a new network. Therefore some abstract types of road networks are available. 

Those can be a grid, a circular and a random network, where each of the algorithms have 

a specific set of allowed options to adjust the properties of a network. 

By using already existing digital simulation road data we have to make use of the 

application “netconvert”. With this application the reading of the SUMO native XML 

based format is possible. This XML format is subdivided into five different parts. Two 

mandatory files include the description of edges and nodes. The other three optional 

files describe the edge types, the connections between the edges and the traffic lights. 

Furthermore, we can import road networks from other traffic simulation tools and also 

read other well-known and less common spatial data formats (Krajzewicz et al. 2012, 

pp. 128–129). 
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3.4.4.1 SUMO Import 

For the import of spatial data into a road simulation network with the application 

“netconvert” we have two adequate options. Either we import the data in the original 

OSM format or we import the data as Shapefiles. For importing data as a SUMO network 

we can use a command line application which is an integrative part of the SUMO 

package. 

To import the OSM data natively we must use the command netconvert. Access to the 

data can be accomplished by the basis option --osm-files and we save it to the SUMO 

internal road network with the option -o. This allows us a basic import of general data. 

However, in order to make sufficient use of the data we have to add some necessary 

options that define the import of the OSM data. Therefore, there are two OSM-specific 

options applicable for the import. The first option --osm.oneway-spread-right is 

necessary for the alignment of oneways. The second option --osm.all-attributes is used 

for importing all the attributes of an OSM dataset which may be relevant for the SUMO 

specific road network. 

Moreover, we have to take into consideration that the specification of the velocity on a 

road in the SUMO road network is defined in meter per second. So it may be necessary 

to use the option --speed-in-kmh, as the original speed unit of an OSM dataset is also 

given in kilometers per hour. The OSM data are usually defined as sequential polylines 

with different changes of angles between them. This results in small gaps between 

polylines with sharp turns or a high curvature angle. With the option --geometry.remove 

the gap at those positions can be partly closed. Obviously, some gaps can still be left, 

because of a very high curvature angle which cannot be closed automatically. Therefore, 

we have to solve this problem manually with the application “NetEdit” after the entire 

import process. As to the process of importing OSM data there are still some options 

left. In the case of freeways a lot of acceleration lanes are often located with a higher 

angle connecting the main part of the freeway with the corresponding ramp. This 

problem may be solved by automatically identifying the acceleration lanes by using the 

option --ramps.guess-acceleration-lanes and allows a smooth transition from freeway 

links to the freeways. The last relevant option for the road representation is 
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called --junctions.join for joining junctions that are close to each other, especially in an 

OSM- specific import process. Due to the polylineal structure it may be necessary to 

identify numerous polylines that converge at junction areas. For the driving process 

itself we have to define some options relating to turnarounds and lane connections. 

Therefore, we disallow turnarounds within the road network except for the endings of 

a road, where no connections are available. This can be accomplished with the 

option --no-turnarounds.except-deadend. With the option --no-left-connections the 

possibility for a lane change at junctions may be disallowed which can prohibit a 

forbidden U-turn at junction areas. 

In addition, we will add two parameters that include the original OSM ID and the street 

names as a reference with the options --output.original-names and --output.street-

names. With that we might accomplish the import of OSM data: 

 

 

The import of Shapefiles into the SUMO road network can be done similarly to the OSM 

import. Especially the general options concerning the import remain the same. 

However, there are some different Shapefile specific options for the import. First, the 

option--shapefile-prefix allows for the loading process of a Shapefile, whereas the option 

-o is used for saving the new road network. By importing a Shapefile we have to define 

the wanted attributes individually, unlike the OSM import process. Therefore, fixed 

options are given and can be applied for the street ID, the type of the street, the number 

of lanes and the allowed speed. For all other parameters it takes --shapefile.add-params. 

Supplementary parameters that do not exist in the original OSM data may be added. 

These parameters refer to the horizontal and the vertical curvature. During the import 

there can appear some problems on the edges which can be avoided with the option --

shapefile.use-defaults-on-failure. Finally, we will add the option --shapefile.guess-

projection for using the defined projection system of the data. Thereby the import of 
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Shapefile data is quite similar to the import of OSM data except of some specific import 

definitions: 

 

 

After the data is successfully imported as a SUMO road network, we can view and 

optionally edit the gaps between the road segments within the SUMO tool “NetEdit”. 

The network consists of nodes and edges that result from the various street types. When 

editing the road network sufficiently all the gaps between the road segments should be 

eliminated by moving the affected nodes. We also have to check the connectivity 

between the lanes in a junction. If there are some connections between lanes which do 

not exist in reality, a manual change of these faulty connections is required (Figure 17). 
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Figure 17: Road network of the area Peggau-Deutschfeistritz, Austria (up) Langenbruck (down left) and Allershausen, 
both Germany (down right) 
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3.4.4.2 OpenDRIVE Generation 

Just like the import the export of the road network can be accomplished with the same 

option called netconvert. Therefore, we have to open the created road network with the 

option –s for the conversion process. For exporting the OpenDRIVE format the 

option --opendrive-output must be set. Additionally, some options for the export of the 

OpenDRIVE format are recommended. The option --junctions.scurve-stretch is needed 

for a smooth transition along of junction areas. By adjusting the value around 1.0 the 

stretching of the junction shape might be increased and reduced. Therefore, we set the 

value for the stretching of the junction to 1.5. For the import process of the road data in 

this thesis the option --output.original-names is set. With that the original OSM ID has 

been assigned to the road network for every single road. The same option can be set for 

the export into OpenDRIVE for assigning the OSM ID to the exported format again: 

 

 

By opening the OpenDRIVE data in the OpenDRIVE Viewer the road networks can be 

visualized (Figure 18). 
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Figure 18: OpenDRIVE road data of the area Peggau-Deutschfeistritz, Austria (up), Langenbruck (down left) and 
Allershausen (down right)  
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4 Results and Discussion 

4.1 Result of Curvature Calculation 

The calculation of the curvature results in an appended column with the corresponding 

values to every single road segment (Figure 19). There we can see that the values are 

generally very low down to the value 0. Road segments where the value 0 occurs 

represent straight elements without any curvature. Generally, those are polylines with 

only a start and an end point without any vertices within the polyline. For straight road 

segments with more than two vertices the curvature value is usually very low and, 

therefore, represented with a value around 10-4 (green). For road segments within a 

curve the value is very low too, but with around 10-3 significantly higher (red). 

 

Figure 19: Curvature values of the road segments 

 

For every road segment an incline value has been calculated. That value represents the 

slope in degrees of a road segment from the start to the end point (Figure 20). This value 

is usually low because of the fact that the road segments represent short parts of the 
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entire road. Therefore, the value for the incline between the start and the end point is 

small. 

 

Figure 20: Incline values of the road segments 

 

4.2 Road Ontology 

The ontology for the road data represents some major attributes of the OSM dataset 

and also holds the description of the curvature of the road segments. By making use of 

the Pellet reasoner we are able to represent the knowledge within the ontology. 

Therefore, appropriate thresholds for identifying the curve have been set according to 

the curvature values and the type of the road segments. 

After the reasoning process we can see that the class Curve is now also a subclass of the 

already existing class Motorway, as this class encompasses some common individuals 

(Figure 21). 
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Figure 21: Superclass of the class Curve 

 

Furthermore, processing of the reasoner results in a new class which depends on the 

definition of the class expression. Therefore, the expression for the values motorway 

and motorway_link is represented as a new but anonymous superclass class within the 

ontology (Figure 22). 

 

Figure 22: Anonymous superclasses of the class Curve 

 

All individuals that match the class expression are assigned to the class as instances. This 

means that all the added individuals within the class are represented as a part of a curve 

(Figure 23). 

 

Figure 23: Individuals as instances of the class 

 



62 
 

The individuals are represented under the “Individuals tab” with its descriptions and 

property assertions (Figure 24).  The “Types” of the road segments as individuals are 

added to the description, i.e. some classes have been added to the main class Road or 

TrafficSign holding the assigned properties. Those properties of the individuals are 

shown as data property assertions.  

 

Figure 24: Individuals tab 

 

4.3 OpenDRIVE Road Data 

The OpenDRIVE data are available for the three test areas Peggau-Deutschfeistritz in 

Austria, Langenbruck and Allershausen in Germany. Data gained within these three 

areas have been exported with different road types. The area Peggau-Deutschfeistritz 

solely consists of freeways and connections to the freeways, whereas the other two 

areas Langenbruck and Allershausen also contain different main roads. This results in a 

different conversion procedure of the data. 

By handling the road network from Shapefile data sources it is only possible to either 

use roads with unidirectional or bidirectional characteristics. However, due to the 

different handling and the available settings within the simulation toll SUMO this is not 

a sufficient solution. By contrast, when applying OSM data we can use all the road types 

for the OpenDRIVE conversion, which is allowed because of the key-value pair structure 

of the OSM data that can be recognized by the simulation tool SUMO. Therefore, the 
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direct conversion from OSM data is a better solution because of its applicability than the 

conversion from Shapefiles (Figure 25). 

 

Figure 25: OpenDRIVE data the junction at Peggau-Deutschfeistritz, Austria 

 

The challenges in the conversion to OpenDRIVE lie within the correct representation of 

the data for real world applications. Therefore, the road network may not contain any 

gaps and the transitions of junctions and lanes must be smooth. In principle, a transition 

of lanes is possible. However, correct visualizations of transitions of lanes are scarce 

(Figure 26). If the number of lanes increases, the transition at the new lane is visualized 

in a smooth way. The bug occurs when the number of lanes decreases which is visualized 

with an abrupt cut at the lane. Fortunately, this bug does not affect the simulation itself, 

as the road ends anyway. Therefore, the application lacks a correct visualization. 
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Figure 26: Increase (left) and decrease (right) of the lane number 

 

As can be seen in Figure 27, the access and exit lanes are visualized as smoothly as 

possible. The representation depends on the angle of the linking lanes to the following 

lane, i.e. the less acute the angle the smoother the transition area. For example, if a lane 

has a less acute angle (as shown by the increase in the left graphic below), the transition 

of that lane into the main road is not completely smooth, which can be seen at the slight 

bending at the transition. If a lane has a more acute angle (as shown by the decrease in 

the right graphic below), the transition of the lane into the main road is represented in 

a very smooth way. 
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Figure 27: Access (left) and exit (right) lane 

 

4.4 OpenDRIVE Validation 

In order to correctly use OpenDRIVE data a validation of them must be performed. As a 

road is represented through a polyline, it is vital to check the connectivity and the 

curvature between sequential polylines. Therefore, different criteria will be assumed for 

the usability within the Virtual Test Drive (VTD). These criteria may be fixed within a 

configuration file. During the so called parsing process of the data more details can be 

outputted optionally. For determining the maximum deviation between two connected 

roads we can set a value for the tolerance of the connected reference lines in one 

direction. A tolerance value will be set for the maximum deviation between the natural 

length of the elements and their start position along its reference line and also between 

the total length of all original elements and the deviated total length of the road. 

Furthermore, the minimum length of a road element as well as the maximum curvature 

value of a road element must be described. At last, it is necessary to set a tolerance 

value for the maximum distance between the positions of two points to be considered 
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as either identical or non-identical nodes. For each criterion default values are set and 

can be optimized for the validation process within the configuration file. 

The validation of the OpenDRIVE data has been performed with the OpenDRIVE 

Validator by using the default criteria options within the configuration file. The results 

describe the type of observations on the data. The observations are classified into three 

outputs types called “INFO”, “WARNING” and “ERROR”. Whenever a conservation is 

finished, any database elements would be reported that fall within the observation 

categories. Every single reported element includes the line of the original OpenDRIVE 

data which can be retrieved. Due to the fact that the implementation has been 

conducted by SUMO, it is assumed that no errors should occur. The validation checks 

the consistency by observing road data. An error may occur if the geometry of at least 

one road within a road network is incomplete. 

The validation of the road network for all three test areas has been completed 

successfully. After the validation process the output stated several warnings in the data 

concerning the inconsistence of angles at the end of a road. This result does not 

necessarily have to be a reason for concern as those affected nodes represent the end 

of a road anyway. Therefore, it is not possible to continue a potential simulation at those 

nodes. The remaining data do not show any warnings or errors. 
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5 Conclusion and Recommendation 

5.1 Conclusion 

This thesis focused on the calculation of the curvature as a parameter for the 

identification of a curve at a road segment within a road data model on the one hand. 

On the other hand, the generation of OpenDRIVE files for simulation purposes for 

autonomous driving was accomplished. Therefore, some steps had to be followed in 

order to reach the objectives of the research. 

First we used open source data from OSM, because of their free availability and their 

high coverage. Furthermore, we converted OSM raw data into the well-known Shapefile 

format. On the basis of these Shapefile data the calculation of the curvature parameter 

was done with the help of Python scripting by using two specific approaches: 

 By using a moving window the radius of an osculating circle through three points 

of a polyline was calculated. Additionally, the length of the polyline segment 

between those three points was determined. The curvature of a polyline 

segment is the inversion of the radius. By using the length of the corresponding 

arc the determination of an average curvature parameter was calculated. We 

started with the first three points of the polyline and shifted the moving window 

by dropping the first point in the polyline and adding the next one. 

 In order to determine the curvature parameter in a polyline with only a start and 

an end point we calculated the curvature without the usage of a moving window. 

Therefore, a value of zero was assigned to the curvature parameter, as no 

curvature occurred. 

The results are represented by curvature values corresponding to their polyline 

segments of a road. However, they do not specify if the road segment is a part of a curve. 

Therefore, the knowledge we need for the determination of curves was represented 

within an ontology by using the Protégé editor. 

The ontology was built for road data with its original attributes and the calculated 

curvature parameter for the identification of curves. For determining the curve within 



68 
 

the road an ontology was created containing all original attributes of OSM data as well 

as the calculated curvature parameter. Every single road segment represents an 

individual with specific road data attributes. Those data attributes are constructed in 

form of datatype properties which are included in the corresponding classes of the same 

name. In order to identify the curves a restriction for different types of roads was 

implemented by setting the parameter value according to their affiliation to freeways, 

main roads or accesses and exits. Road segments which fulfill those requirements were 

identified as a part of a curve. Therefore, those road segments are assigned to a class 

that holds all existing curves within the ontology. Consequently, the road segments are 

represented as a part of a curve. By using a reasoner we checked the classes, properties 

and individuals within the ontology and proved its consistency. 

In order to generate OpenDRIVE files with open source data we searched for 

applications supporting the OpenDRIVE data format for simulation tasks. The SUMO 

application proved to be an adequate tool for the direct conversion of OSM and 

Shapefile data into the OpenDRIVE format. The special structure of OpenDRIVE data 

allows for a direct conversion of OSM and Shapefile data into the OpenDRIVE data 

format. 

The conversion process was done by first importing the data as a road network 

containing all the relevant data attributes. Eventually, some adjustments to the road 

network must be done manually resulting from possible geometrical inconsistencies 

within data from open sources. The export of the road network was directly performed 

by converting it into the OpenDRIVE data format as it is a supported data format within 

the application. Specific attributes of the input data can be used within the OpenDRIVE 

data due to its structure. Therefore, we cannot represent all attributes from the open 

source data in the OpenDRIVE data format. 

By validating the OpenDRIVE data we checked the consistency of the geometry for the 

connections of sequential road segments and for a continuous course of the road 

without the occurrence of any gaps between them. 
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5.2 Recommendation 

In order to calculate the curvature of road segments we used the common approach 

following the determination of the radius of an osculating circle. However, we are 

convinced that there might be other approaches. In particular, when it comes to the 

usage of the angle of the curvature an equivalent approach could be applied. 

The creation of an ontology for road data was done by using the well-known and well-

developed ontology editor Protégé. Nevertheless, it should be noted that numerous 

other ontology editors exist that can be used for similar purposes. There are even editors 

that have been specifically designed for spatial data. However, none of them is as 

comprehensive as the Protégé editor. In fact, the availability of ontologies for road data 

remains limited. Therefore, it is a challenging task to advance the development of 

specific road data models and the refinement of existing models. 

The demand for reliable OpenDRIVE data will especially increase in the field of 

autonomous driving. Since the creation of OpenDRIVE data is mostly done manually for 

small areas and is associated with high construction costs, we believe that the approach 

using open source data is certainly an adequate one. However, the creation of larger 

areas from digital road data generally lacks consistencies due to the conversion process. 

Therefore, manual editing is indispensable.  

Currently, only a limited number of conversion tools that directly support the 

OpenDRIVE format can be found on the market. Another promising challenge regarding 

the conversion process is the application of specific conversion tools, which do not 

directly support OpenDRIVE. 
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Appendices 

A Overpass Queries for retrieving OSM data 

/* 
This query looks for ways with the given main key highway. 
The region includes the test area around Peggau-Deutschfeistritz! 
*/ 
[out:xml][timeout:300]; 
// gather results 
( 
  // query part for ways: “highway=*” 
  way["highway"="motorway"](47.17314, 15.31567, 47.20999, 15.3467); 
  way["highway"="motorway_link"](47.17314, 15.31567, 47.20999, 15.3467); 
  way["construction"="motorway"](47.17314, 15.31567, 47.20999, 15.3467); 
); 
// print results 
out body; 
>; 
out skel qt; 
 

/* 
This query looks for ways with the given main key highway. 
The region includes the test area around Langenbruck! 
*/ 
[out:xml][timeout:300]; 
// gather results 
( 
  // query part for ways: “highway=*” 
  way["highway"="motorway"](48.64132, 11.51397, 48.64893, 11.52007); 
  way["highway"="primary"](48.64132, 11.51397, 48.64893, 11.52007); 
  way["highway"="motorway_link"](48.64132, 11.51397, 48.64893, 11.52007); 
  way["highway"="primary_link"](48.64132, 11.51397, 48.64893, 11.52007); 
  way["construction"="motorway"](48.64132, 11.51397, 48.64893, 11.52007); 
  way["construction"="primary"](48.64132, 11.51397, 48.64893, 11.52007); 
); 
// print results 
out body; 
>; 
out skel qt; 
/* 
This query looks for ways with the given main key highway. 
The region includes the test area around Allershausen! 
*/ 
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[out:xml][timeout:300]; 
// gather results 
( 
  // query part for ways: “highway=*” 
  way["highway"="motorway"](48.42615, 11.58563, 48.4303, 11.5965); 
  way["highway"="primary"](48.42615, 11.58563, 48.4303, 11.5965); 
  way["highway"="secondary"](48.42615, 11.58563, 48.4303, 11.5965); 
  way["highway"="motorway_link"](48.42615, 11.58563, 48.4303, 11.5965); 
  way["highway"="primary_link"](48.42615, 11.58563, 48.4303, 11.5965); 
  way["highway"="secondary_link"](48.42615, 11.58563, 48.4303, 11.5965); 
  way["construction"="motorway"](48.42615, 11.58563, 48.4303, 11.5965); 
  way["construction"="primary"](48.42615, 11.58563, 48.4303, 11.5965); 
  way["construction"="secondary"](48.42615, 11.58563, 48.4303, 11.5965); 
); 
// print results 
out body; 
>; 
out skel qt; 
 

B Python code for calculating the horizontal curvature of a road segment 

# Curvature of OSM-road data 
# Author: David Oberlerchner 
 
# The programm takes calculations on a road feature, which consists polylines 
# The road feature will be split at its vertices to apply a curvature value to each line 
# The first loop searches in each row (polyine) of the feature for vertices 
# Polylines with two vertices and more are separately treated 
# Polyines with at least three vertices a calculated value based on the curvature is 
assigned 
# Polylines with two vertices a value of 0 is assigned, because they are straight 
# The curvature value is based on the radius of curvature from three sequential points 
# The curvature will be calculated for the vertices in each row 
# The curvature from each polyine is written in a list 
# The curvature from each polyline is then written in a common list for the roads 
# The second loop updates the split feature with the values from the curvature list for 
the roads 
 
def curviness(inFeature, roadFeature): 
    # Import system modules 
    import arcpy 
    from math import radians, acos, sin, cos, sqrt 
 
    # Execute AddField for feature and create curvature list for the road data 
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    arcpy.AddField_management(roadFeature, "curviness", "DOUBLE") 
    curvatureListRoads = [] 
 
    # WGS-84 ellipsoid semi-major axis 
    R = 6371000.785 
 
    # Enter for loop for each polyline feature 
    print("Calculate the average curvature!") 
    with arcpy.da.SearchCursor(inFeature,["OID@", "SHAPE@"]) as cursor: 
        for row in cursor: 
            print(row[0]) 
            vertexList = [] 
            curvatureList = [] 
            # Step through each vertex in the polyline feature 
            for pnt in row[1].getPart(0): 
                vertexList.append((pnt.X, pnt.Y)) 
            vertexCount = len(vertexList) 
            i = 0 
            averageCurvature = 0.0 
            # Polyline has only two vertices 
            if vertexCount == 2: 
                averageCurvature = 0.0 
                curvatureList.append(averageCurvature) 
            # Check count of polyline vertices 
            elif vertexCount >= 3: 
                lengthList = [] 
                # Coordinate pairs to count until you run out of vertex triplicate 
                while i + 3 <= vertexCount: 
                    # Coordinates of the three vertices 
                    x1 = radians(vertexList[i][0]) 
                    y1 = radians(vertexList[i][1]) 
                    x2 = radians(vertexList[i + 1][0]) 
                    y2 = radians(vertexList[i + 1][1]) 
                    x3 = radians(vertexList[i + 2][0]) 
                    y3 = radians(vertexList[i + 2][1]) 
                    # Center point (x, y) of a circle through three points 
                    A = x1 * (y2 - y3) - y1 * (x2 - x3) + x2 * y3 - x3 * y2 
                    B = (x1**2 + y1**2) * (y3 - y2) + (x2**2 + y2**2) * (y1 - y3) + (x3**2 + 
y3**2) * (y2 - y1) 
                    C = (x1**2 + y1**2) * (x2 - x3) + (x2**2 + y2**2) * (x3 - x1) + (x3**2 + 
y3**2) * (x1 - x2) 
                    # In case of zero matrix values a low value is assigned 
                    if A == 0: 
                        A = 0.0000001 
                    elif B == 0: 
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                        B = 0.0000001 
                    elif C == 0: 
                        C = 0.0000001 
                    # Center point of a circle 
                    xCenter = -(B / (2 * A)) 
                    yCenter = -(C / (2 * A)) 
                    # Radius of a circle 
                    radius = R * acos(sin(xCenter) * sin(x2) + cos(xCenter) * cos(x2) * 
cos(yCenter - y2)) 
                    # Length of the parts of the polyline 
                    length1 = R * acos(sin(x1) * sin(x2) + cos(x1) * cos(x2) * cos(y1 - y2)) 
                    length2 = R * acos(sin(x2) * sin(x3) + cos(x2) * cos(x3) * cos(y2 - y3)) 
                    length = length1 + length2 
                    # Invert the radius and calculate average curvature 
                    curvature = 1 / radius 
                    curvatureCount = len(curvatureList) 
                    # Check curvature list and append the average curvature 
                    # Polyline has more than three vertices 
                    if vertexCount >= 4: 
                        # First line gets first curvature value 
                        if curvatureCount == 0:                       
                            averageCurvature = curvature * length1 / length 
                        # Last line gets last curvature value 
                        elif curvatureCount == vertexCount - 3: 
                            averageCurvature = (curvature + curvatureList[-1]) * length1 / (length + 
lengthList[-1]) 
                            curvatureList.append(averageCurvature) 
                            averageCurvature = curvature * length2 / length 
                        # Curvature average of lines with two curvature within a polyline 
                        else: 
                            averageCurvature = (curvature + curvatureList[-1]) * length1 / (length + 
lengthList[-1]) 
                    # Polyline has exact three vertices 
                    elif vertexCount == 3: 
                        averageCurvature = curvature * length1 / length 
                        curvatureList.append(averageCurvature) 
                        averageCurvature = curvature * length2 / length 
                    lengthList.append(length) 
                    curvatureList.append(averageCurvature) 
                    i = i + 1 
            # Extend the curvature list for the road data with the average curvature 
            curvatureListRoads.extend(curvatureList) 
    del row, cursor 
 
    # Execute AddField for the coordinates and for the road segment ID 



79 
 

    arcpy.AddField_management(roadFeature, "startX", "DOUBLE") 
    arcpy.AddField_management(roadFeature, "startY", "DOUBLE") 
    arcpy.AddField_management(roadFeature, "endX", "DOUBLE") 
    arcpy.AddField_management(roadFeature, "endY", "DOUBLE") 
    arcpy.AddField_management(roadFeature, "segmentID", "TEXT") 
     
    # Update the cursor with the average curvature 
    print("Update the average curvature!") 
    pointer = 0 
    with arcpy.da.UpdateCursor(roadFeature,["OID@", "curviness", "SHAPE@", "startX", 
"startY", "endX", "endY", "full_id", "segmentID"]) as cursor: 
        for row in cursor: 
            print(row[0]) 
            row[1] = curvatureListRoads[pointer] 
            pointer += 1 
            # Set start coordinates 
            row[3] = row[2].firstPoint.X 
            row[4] = row[2].firstPoint.Y 
            # Set end coordinates 
            row[5] = row[2].lastPoint.X 
            row[6] = row[2].lastPoint.Y 
            # Calculate the segment ID of the road 
            row[8] = row[7] + "_" + str(pointer) 
            cursor.updateRow(row) 
    del row, cursor 
 

C Python code for calculating the vertical curvature of a road segment 

# Curvature of OSM-road data 
# Author: David Oberlerchner 
 
# The programm takes calculations on a road feature, which consists polylines 
# A digital elevation model provides information about the surface 
# The average slope for each polyline will be calculated 
 
def incline(featureVertices, curvatureFeature): 
    # Import system modules 
    import arcpy 
    from math import atan 
    from arcpy.sa import * 
     
    # List for DEM values at the points 
    heightList = [] 
    print("Assign point values to a list!") 
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    with arcpy.da.UpdateCursor(featureVertices,["OID@", "Elev"]) as cursor: 
        for row in cursor: 
            heightList.append(row[1]) 
    del row, cursor 
 
    # Execute AddField for feature 
    arcpy.AddField_management(curvatureFeature, "incDeg", "DOUBLE") 
     
    # Update the cursor with the average curvature 
    print("Update the incline!") 
    pointer = 0 
    startPointer = 0 
    endPointer = 1 
    with arcpy.da.UpdateCursor(curvatureFeature,["OID@", "SHAPE@", "incDeg"]) as 
cursor: 
        for row in cursor: 
            print(row[0]) 
            # Length of a polyline in meters 
            length = row[1].getLength("GEODESIC", "METERS") 
            # Incline in percent 
            startHeight = heightList[startPointer] 
            endHeight = heightList[endPointer] 
            row[2] = atan((max(startHeight, endHeight) - min(startHeight, endHeight)) / 
length) 
            pointer += 1 
            startPointer += 2 
            endPointer += 2 
            cursor.updateRow(row) 
    del row, cursor 
 

D Python code for updating the curvature 

# Curvature of OSM-road data 
# Author: David Oberlerchner 
 
# The programm takes calculations on a road feature, which consists polylines 
# The road feature will be split at its vertices to apply a curvature value to each line 
# The first loop searches in each row (polyine) of the feature for vertices 
# Polylines with two vertices and more are separately treated 
# Polyines with at least three vertices a calculated value based on the curvature is 
assigned 
# Polylines with two vertices a value of 0 is assigned, because they are straight 
# The curvature value is based on the radius of curvature from three sequential points 
# The curvature will be calculated for the vertices in each row 
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# The curvature from each polyine is written in a list 
# The curvature from each polyline is then written in a common list for the roads 
# The second loop updates the split feature with the values from the curvature list for 
the roads 
 
# Import system modules 
import arcpy, datetime 
from arcpy import env 
from arcpy.sa import * 
 
# Calculating the time of process 
print("Start of the calculations!") 
start = datetime.datetime.now() 
 
# Set environment settings 
env.overwriteOutput = True 
env.workspace = r"C:\Users\David\Documents\Masterarbeit\Daten" 
 
# Set local variables 
inFeature = r"osm_road-data\shape\peggaudeutschfeistritz_motorway.shp" 
#inFeature = r"osm_road-data\shape\langenbruck_oneway.shp" 
#inFeature = r"osm_road-data\shape\langenbruck_bidirectional.shp" 
roadFeature = r"osm_road-
data\road_FINAL\road_peggaudeutschfeistritz_motorway.shp" 
#roadFeature = r"osm_road-data\road_FINAL\road_langenbruck_oneway.shp" 
#roadFeature = r"osm_road-data\road_FINAL\road_langenbruck_bidirectional.shp" 
featureVertices = r"osm_road-
data\featureVertices\featureVertices_peggaudeutschfeistritz_motorway.shp" 
#featureVertices = r"osm_road-
data\featureVertices\featureVertices_langenbruck_oneway.shp" 
#featureVertices = r"osm_road-
data\featureVertices\featureVertices_langenbruck_bidirectional.shp" 
inDEM = r"DEM\ALS_DGM_10M_UTM33N\ALS_DGM_10M_UTM33N.asc" 
 
# Check out the ArcGIS Spatial Analyst extension license 
arcpy.CheckOutExtension("Spatial") 
 
# Run Splitline to get new lines, each of which is between two vertices 
print("Split polyline at vertices") 
arcpy.SplitLine_management(inFeature, roadFeature) 
 
# Execute FeatureVerticesToPoints 
print("Polyline feature vertices to points!") 
arcpy.FeatureVerticesToPoints_management(roadFeature, featureVertices, 
"BOTH_ENDS") 
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# Execute ExtractValuesToPoints 
print("Extract DEM values to the points!") 
ExtractMultiValuesToPoints(featureVertices, [[inDEM, "Elev"]], "BILINEAR") 
 
# Function for curviness 
import curviness_averageLength 
curviness_averageLength.curviness(inFeature, roadFeature) 
 
# Function for incline 
import incline_degree 
incline_degree.incline(featureVertices, roadFeature) 
 
# End the time of calculation 
print("End of the calculations in {0} seconds!".format(datetime.datetime.now() - start)) 
 


