
Magdalena Hackenberger, BSc

Development of a Modular Construction
Kit Enabling End Users to Generate

Android Apps for Real-Time Visualization
and Manipulation of Vehicle Bus Data

Master’s Thesis

to achieve the university degree of

Master of Science

Master’s degree programme: Software Engineering and Management

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl.-Ing. Dr.techn. Wolfgang Slany

Institute for Softwaretechnology
Head: Univ.-Prof. Dipl.-Ing. Dr.techn. Wolfgang Slany

Graz, July 2019

This document is set in Palatino, compiled with pdfLATEX2e and Biber.

The LATEX template from Karl Voit is based on KOMA script and can be
found online: https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present master‘s thesis.

Date Signature

iii

Abstract

Automotive electronic systems have become an essential aspect in the design
and construction of cars. The vast number of electrical control units (ECUs)
in a modern car enable an abundance of features. However, they also cause
an urgent need for good runtime testing and demonstration techniques. The
AKKA group offers a system called Display App. The combination of an
Android application and an ECU connected with the onboard vehicle bus
provides high quality runtime visualization and the possibility of modifying
ECU values.

Up until now, a new application needs to be programmed and released by
AKKA for every car model. Furthermore, even minor adjustments in the user
interface or functionality need to be done by AKKA in a separate release
cycle. The winter test that are performed by vehicle manufacturers yearly,
are limited to a short timespan of about two to three weeks. Performing
unplanned adjustments quickly to the Display Apps during that time was
not achievable until now.

The goal of this thesis is to provide a solution for this problem, enabling
clients to build and modify simple Display Apps quickly and independently.
This thesis describes the conceptionalization, design and implementation of
a modular construction kit for the creation of Display Apps. Firstly, the state of
the art of visual coding tools is analyzed. Secondly, the technical background
of Display Apps is explained, including all necessary hardware and protocols.
Thirdly, the development and implementation of the construction kit is
described. The resulting system consists of two parts. The first part is
a C#/.NET application named AppBuilder in which Display Apps can be
designed from a set of preconfigured graphical user interface (GUI) elements
without writing any code. These GUI elements can be linked to vehicle bus
data. The second part is an Android application named AppLoader which
constructs a Display App from a configuration file.

v

Kurzfassung

Elektronische Systeme wurden in den letzten Jahren beim Design und der
Konstruktion von Fahrzeugen zum unverzichtbaren Werkzeug der Automo-
bilindustrie. Die große Anzahl an ECUs (electronic control units) in einem
modernen Auto ermöglicht eine Vielzahl an neuen Funktionalitäten, macht
aber auch gutes Runtime Testing und gute Vorführfunktionen notwendig.
Display App ist ein Produkt des Unternehmens AKKA Group. Bestehend
aus einer Android Anwendung kombiniert mit einer an den Fahrzeugbus
angebundenen ECU ermöglicht es hochqualitative Echtzeitvisualisierung
sowie Modifikation der ECU Parameter.

In der Vergangenheit musste für jedes Automodell von AKKA eine neue
Anwendung programmiert werden und selbst kleine Änderungen im User
Interface oder der Funktionalität machten ein neues Release seitens AKKA
notwendig. Die von Fahrzeugherstellern im Winter durchgeführten Tests
sind zeitlich auf zwei bis drei Wochen beschränkt, bislang waren zeitgerechte
Änderungen an den Display Apps in dieser Zeit kaum realisierbar.

Ziel dieser Masterarbeit ist es, eine Lösung für dieses Problem zu entwickeln.
Kunden sollen einfache Display Apps schnell und selbstständig entwickeln
können. Im Zuge der Arbeit wird Konzeptionierung, Design und Implemen-
tierung eines modularen Bausatzsystems für die Entwicklung von Display
Apps beschrieben. Als erstes wird der Stand der Technik im Bereich von
visuellen Coding Tools analysiert. Anschließend wird der technische Hinter-
grund der Display Apps inklusive der involvierten Hardware und Protokolle
erklärt. Danach wird das Konzept und die Entwicklung des Bauchsatzsys-
tems beschrieben. Das resultierende System besteht aus zwei Teilen. Der
erste Teil ist ein C#/.NET Programm namens AppBuilder, mit dem Display
Apps aus vorkonfigurierten graphischen Steuerelementen ohne Program-
mieren entworfen werden können. Die erstellten Steuerelemente können

vii

mit Daten des Fahrzeugbusses verbunden werden. Der zweite Teil ist eine
Android App namens AppLoader, die die entworfene Display App anhand
einer Konfigurationsdatei anzeigt.

viii

Contents

Abstract v

Kurzfassung vii

1 Introduction 1
1.1 Motivation . 2

1.2 Aim and Objectives . 3

1.3 Structure of the Thesis . 3

2 Related Work 5
2.1 MIT App Inventor . 5

2.1.1 Design Editor . 7

2.1.2 Blocks Editor . 8

2.2 AppyBuilder . 9

2.2.1 Design Editor . 10

2.2.2 Blocks Editor . 10

3 Technologies, Frameworks and Development Methods 13
3.1 Test-Driven Development . 13

3.2 Model View ViewModel (MVVM) Pattern 15

3.2.1 Comparison with the Model View Controller (MVC)
Pattern . 16

3.2.2 Windows Presentation Foundation (WPF) 18

3.2.3 Prism . 20

3.3 Android Application . 22

3.3.1 Kotlin . 22

3.3.2 Model View Presenter (MVP) Pattern 23

3.4 JSON . 23

ix

Contents

3.5 Communication between Car and Android Device 24

3.5.1 Technological Background 25

3.5.2 Generation of Firmware and A2L 27

3.5.3 Data Flow . 28

4 AppBuilder (.NET Application) 31
4.1 Design . 31

4.1.1 Use Cases . 31

4.1.2 Graphical User Interface (GUI) 33

4.2 Implementation . 35

4.2.1 Creation of a new project 36

4.2.2 Opening a Project . 38

4.2.3 EditorMain . 39

4.2.4 Controls . 46

4.2.5 TextControl, BatteryControl 47

4.2.6 Radiobutton Field . 48

4.2.7 Icon Button . 48

4.2.8 Progress Bar . 49

4.2.9 Adding and Replacing DBC and A2L Files 50

4.2.10 Export of a Project . 51

4.3 Testing . 52

4.4 Usability Inspection . 57

4.4.1 Setup . 57

4.4.2 Test Result . 58

4.4.3 Refactoring . 64

5 AppLoader (Android Application) 75
5.1 Design . 76

5.1.1 Requirements . 76

5.1.2 User Interface . 78

5.2 Implementation . 79

6 Summary and Future Work 85
6.1 Summary . 85

6.2 Future Work . 85

Bibliography 89

x

List of Figures

1.1 Functionality of Display Apps 2

2.1 MIT App Inventor Design Editor 8

2.2 MIT App Inventor Blocks Editor 9

2.3 AppyBuilder Design Editor . 11

2.4 AppyBuilder Blocks Editor . 11

3.1 Red-Green-Refactor approach 14

3.2 Model View ViewModel (MVVM) pattern 17

3.3 Model View Controller (MVC) pattern 17

3.4 The Model View Presenter (MVP) pattern 24

3.5 Process of creating a GIGABOX Beo firmware and an A2L file 27

3.6 Communication between car and tablet 29

4.1 First draft of the graphical user interface 34

4.2 Second and final draft of the graphical user interface 35

4.3 CreateNewProject View : Creation of a new project 36

4.4 OpenProject View : Opening an existing project 38

4.5 EditorMain View . 39

4.6 Item class diagram . 41

4.7 Ribbon . 42

4.8 Visualization . 43

4.9 Item Overview . 46

4.10 Properties . 47

4.11 Signal Selection . 48

4.12 Configuration of a Radiobutton Field 49

4.13 Configuration of an Icon Button 50

4.14 Configuration of a Progress Bar 51

4.15 Project Options . 51

xi

List of Figures

4.16 Export of a Project . 52

4.17 Identifying uncovered code parts with AcoCover 53

4.18 Overview over code coverage with the tool AxoCover 56

4.19 Old starting page . 64

4.20 New starting page . 65

4.21 Old project creation interface 66

4.22 New project creation interface 66

4.23 Old interface to open a project 67

4.24 New interface to open a project 67

4.25 Old placement of buttons on the ribbon 68

4.26 Refactoring of item class hierarchy 69

4.27 Old Property Grid . 70

4.28 Old interface for signal configuration of text controls and
battery controls . 71

4.29 Old interface for configuration of radiobutton fields 72

4.30 New interface for configuration of radiobutton fields 73

4.31 Old way to confirm that the project is saved 73

4.32 New way to confirm that the project is saved 74

4.33 Old A2L File Replacement Warning 74

4.34 New A2L File Replacement Warning 74

5.1 First draft of the graphical user interface 75

5.2 First and final draft of the AppLoader’s graphical user interface 79

5.3 List of available projects . 82

5.4 The loading screen is shown while the GUI is configured . . . 83

5.5 The configured application . 84

xii

1 Introduction

As of today, sophisticated electronic systems are a vital aspect of the design
and construction of modern cars. The vast number of electrical control units
(ECUs) enable an abundance of features but also poses major challenges.

Firstly, engineers must be able to monitor vehicle parameters in real-time
in order to ensure correct behaviour during the testing stage. It must be
possible to check how values change over time and how they react to
changed parameters. This is only possible by accessing the vehicle bus.
Reading raw values from a notebook computer in the car can be very
inconvenient and confusing.

Secondly, certain non-visible functions and features can be difficult to show-
case in a regular driving setting. Presenting results to superiors and cus-
tomers can be challenging.

Lastly, the human machine interface (HMI) of a car limits possibilities during
testing and presentation. Engineers need to test and assess functions and
modes which are not configured in the HMI of the car. For example, it is not
possible for the driver to deactivate driver-assistance systems like electronic
stability control (ESC) and anti-lock braking system (ABS) in most modern
cars due to safety reasons. Another example are different drive modes. In a
typical car with automatic transmission, the driver can choose from three
drive modes: eco, normal and sport. Test drivers need more drive mode
configurations.

High quality visualization of vehicle data is the key to mastering these
challenges. The AKKA group offers Display Apps, a family of applications
for Android tablets that are specifically designed for visualization and
manipulation of vehicle data. Display Apps are used in a setup with a
specialized microcontroller named GIGABOX Beo, that is connected to the

1

1 Introduction

vehicle’s bus system (see section 3.5.1) as well as to a WLAN router. This
setup is shown in Figure 1.1. Over WLAN, Display Apps can read and write
data from and to the vehicle bus wirelessly and in real-time. Therefore,
Display Apps offer detailed visualizations of vehicle data and processes like
speedometers, progress bars, batteries, images and many more. Furthermore,
they enable the user to control and parametrize vehicle functions.

GIGABOX
BEO

Router

Button

Button

DATA

COMMANDS

Figure 1.1: Functionality of Display Apps.

1.1 Motivation

Currently, every Display App has to be developed and adjusted individually
for every vehicle. All changes in the application are carried out by AKKA
Austria in a new release of the respective Display App. This workflow con-
cerns bigger changes in functionality as well as slight changes of the user
interface (UI).

While complex Display Apps with highly sophisticated functionality will
still run through this development and release process in the future, an

2

1.2 Aim and Objectives

alternative development process should be implemented for simpler ap-
plications. Clients should have the option to create simple Display Apps
independently.

1.2 Aim and Objectives

To meet this requirement, a prototype for a modular construction kit con-
sisting of two programs should be designed and implemented:

• UI Editor (C#/.NET) which exports a configuration file
• Android Application which imports the configuration file and builds

the Display App

This prototype construction kit should enable the user to create a Display App
without writing any code. To have good usability, the UI must be intuitive
and easy to use for windows users. The thus created Display Apps should
be capable of connecting to the vehicle and reading/writing data from/to
the vehicle bus system based on the AKKA communication library. The
user should be able to create intelligent controls by linking user interface
elements to bus signals. The prototype should offer a small number of
controls like a textbox and a button. It should be easily expandable for
future further development.

1.3 Structure of the Thesis

This master thesis describes the background, the design and the develop-
ment process of the AppBuilder prototype.

Chapter 2 introduces the reader to existing modular software construction
kits and analyses their functionality, domain and potential similarities to
the AppBuilder.

3

1 Introduction

In chapter 3, all used technologies, programming languages, methods and
frameworks are described. This includes background information, capabili-
ties as well as the technological background of vehicle busses and automo-
tive network protocols.

The development of the AppBuilder is discussed in chapter 4. It starts
by describing the design process and the considerations which led to the
finished design. The way from the first mock-up to the finished program is
documented. The first and most important use cases are listed to show the
planned development process.

In the subsection Implementation, the structure, architecture and implemen-
tation of the AppBuilder is described including screenshots of all features.
Furthermore, it examines the conduction of a usability inspection as well
as the test result and the changes which were subsequently made to the
program. Also, the realization of test-driven development is discussed.

Chapter 5 describes the design process, requirements and implementation
of the AppLoader.

Chapter 6 summarizes the main points of the thesis. Finally, an outline of
future work and further development of the AppBuilder is given.

4

2 Related Work

Essentially, this project is a visual coding tool which enables users to create
an Android application without writing actual code. The general idea is
not a new one and there are already several tools on the market to achieve
this goal. Müller et al. compared the most popular mobile app construction
tools and summarized the key data as can be seen in Table 2.1. Müller et
al. concluded that all of the compared tools enable users to create apps
easily in a different way. There is no “best tool” but the preferred tool
depends on requirements and personal preference (Müller et al., 2018-11).
Both Thunkable and the AppyBuilder are originally based on the MIT App
Inventor, which is an open source project (Cervantes, 2016) (AppyBuilder,
2019).

Although none of these tools meet the code requirements to build an
DisplayApp due to the very specific domain, analysing them is a good
starting point before entering the design stage of the AppBuilder.

In this chapter, two existing visual app construction system will be analysed.
The MIT App Inventor was chosen because it is the first of its kind and many
other tools are based on it. Also, it is a Browser/Desktop application, targets
Android, is free and was developed in an academic context. The AppyBuilder
was chosen because it is free, it is a Browser/Desktop application and it
targets Android.

2.1 MIT App Inventor

The MIT App Inventor is an open source visual coding tool. While the
first pilot version of the MIT App Inventor was released by Google in 2009,

5

2 Related Work

Feature/App MIT App
Inventor

Thunkable AppyBuilder Sketchware Pocket
Code

Website appinventor
.mit.edu

thunkable
.com

Appybuilder
.com

Sketchware
.io

Catrob.at/pc

Environment Browser
(Desktop)

Browser
(Desktop)

Browser
(Desktop)

Mobile Mobile

App
platforum

Android Android,
iOS

Android Android Android

Organization academic commercial unknown commercial academic
Costs free most

features free
free most

features free
free

Free Open
Source

yes no no no yes

APK export yes yes yes yes yes
Active
Internet
connection
required

yes yes yes no no

Integrated
sharing
platforum

yes no (thread
in forum)

no (thread
in forum

yes yes

Table 2.1: Comparison of the most important visual coding tools on the market (Müller
et al., 2018-11)

6

2.1 MIT App Inventor

it has been developed and maintained by the Massachusetts Institute of
Technology (MIT) since 2011. (Wolber, Abelson, and Friedman, 2015).

According to the website, the main motivation behind the development of
the MIT App Inventor is to democratize software development and educate
children in the field of computing. As of 2019, there are over 400,000 people
actively using the MIT App Inventor per month. Users from 195 different
countries have built nearly 22 million Android apps. (MITAppInventor,
2019)

The web application enables user to create an Android application combin-
ing drag and drop of visual elements with code blocks. It consists of two
main parts: the Design Editor and the Blocks Editor.

2.1.1 Design Editor

The Design Editor (see Figure 2.1) allows the user to design the layout of
the app by drag and drop. Available elements are listed in the ”palette”
window in different categories. All added components are listed in the
“Components” window. The selected component can be configured in the
”Properties” Window. The Design Editor is easy to use and its graphical
user interface closely resembles the first draft vision of the AppBuilder user
interface.

The extensive variety of preconfigured elements allows the user to easily
build a highly functional, intelligent Android application. In addition to
basic elements like buttons and text fields, there are many categories filled
with sophisticated elements.

This is a list of categories in the Design Editor with three exemplary elements
of each:

• User Interface, including the elements Button, Checkbox and Spinner.
• Layout, including HorizontalAlignment, TableArrangement and Verti-

calScrollArrangement.
• Media, including the elements Camera, ImagePicker and SpeechRecog-

nizer.

7

2 Related Work

• Drawing and Animation including the elements Ball, Canvas and Image-
Sprite.

• Maps, including the elements Map, Marker and Circle.
• Sensors, including the elements AccelerometerSensor, BarcodeScanner and

LocationSensor.
• Social, including the elements ContactFinder, Sharing and Twitter.
• Storage, including the elements File, TinyDB and TinyWebDB.
• Connectivity, including the elements BluetoothClient, BluetoothServer

and Web.
• LEGO R© MINDSTORMS R©, including the elements NxtDrive, Ev3Motors

and Ev3UI.
• Experimental, including the elements CloudDB and FirebaseDB.
• Extension which enables the user to import extentions into the project.

Figure 2.1: MIT App Inventor Design Editor (Screenshot created using MITAppInventor,
2019).

2.1.2 Blocks Editor

The components which were selected and placed in the Design Editor can
be programmed in the Blocks Editor. Every component has a set of eligible
blocks. Components can be parametrized, linked together and embedded

8

2.2 AppyBuilder

in a program logic by using control structures like loops or mathematical
operations (see Figure 2.2).

Separate elements in DisplayApps are not connected to each other and the
logic of elements does not exceed reading, writing and converting data from
GIGABOX Beo. Therefore, the prototype won’t include a feature analogous
to the MIT App Inventor’s Blocks Editor.

Figure 2.2: MIT App Inventor Blocks Editor (Screenshot created using MITAppInventor,
2019).

2.2 AppyBuilder

The AppyBuilder is a commercial visual coding tool which is based on
the open-source tool MIT App Inventor (AppyBuilder, 2019). It combines
all functionality of the MIT App Inventor projects with a big number of
additional features built on top of it. Projects that were built with the MIT
App Inventor can be imported to be further developed in the AppyBuilder.

Like the MIT App Inventor, the AppyBuilder consists of two main parts: the
Design Editor and the Blocks Editor. Both parts will be described in the
following subsections, especially in comparison to the MIT App Inventor.

9

2 Related Work

2.2.1 Design Editor

As visible in Figure 2.3, the graphical user interfaces of the AppyBuilder’s
Design Editor is almost identical to the graphical user interfaces of the MIT
App Inventor’s Design Editor (see Figure 2.1). The AppyBuilder’s Design
Editor has the same structure with a slightly different design, making them
look nearly identical.

After briefly analysing the palette of possible elements on the left, it is
evident that the AppyBuilder has significantly more features. While the
MIT App Inventor has 12 categories of elements, the AppyBuilder has 16

categories - the same 12 categories and four additional ones: Monetize,
Advanced, Effects and Visualization. The category Monetize features a variety
of advertisement elements and InApp payment which adds the possibility
to monetize the built application. The category Advanced includes features to
add push notifications and SQL Lite .The category Effects includes additional
navigation elements like SideBar and SnackBar. Elements in the category
Visualization enable the user to create charts.

The difference in features is just as obvious within the categories: The MIT
App Inventor has 15 possible elements in the category ”User Interface”. This
category has 26 elements in the AppyBuilder, including chronometer, gallery
viewer, grid view and many more. This pattern repeats itself through most
categories.

2.2.2 Blocks Editor

As visible in Figure 2.4, the AppyBuilder’s Blocks Editor is almost identical
to MIT App Inventor’s Blocks Editor (see Figure 2.2) as well. They have the
same structure and functionality with minor differences in design. The only
obvious distinction is that there is an increase in the number of elements
analogous to the Design Editor.

10

2.2 AppyBuilder

Figure 2.3: AppyBuilder Design Editor (Screenshot created using AppyBuilder, 2019).

Figure 2.4: AppyBuilder Blocks Editor (Screenshot created using AppyBuilder, 2019).

11

3 Technologies, Frameworks and
Development Methods

Several technologies, frameworks and methods are used for the development
of the AppBuilder. This chapter explains the most important technologies
and methods that are the basis of the two applications.

3.1 Test-Driven Development

Test-driven development (TDD) is a method in which programmers create
tests before creating the code to be tested. It is most commonly used in
agile software development, especially in the extreme programming (XP)
method.

Kent Beck is the founder of the popular TDD method Red-Green-Refactor,
where red and green correspond to fail and pass respectively (Beck, 2002).
In this method, programming happens in small, repeated micro-iterations
which should each only take a few minutes. It consists of the following
phases (see Figure 3.1):

• Red: Writing a unit test, testing the functionality which is about to
be implemented. This test must fail as the functionality is not pro-
grammed yet.

• Green: Change your program code by adding the new functionality
with as little effort as possible. All tests should pass after this step.

• Refactor: Clean up the code and refactor it to meet coding conven-
tions. Remove duplicate code, restructure hierarchies if necessary. New
functionality must not be added in this step. After every modification

13

3 Technologies, Frameworks and Development Methods

of code, all tests are re-run. At the end of this phase, the code should
be clean and well-structured.

These three steps are repeated until the code contains all desired functional-
ities and all errors are eliminated. When these goals are reached, the coding
unit is viewed as finished (Beck, 2002).

Figure 3.1: The Red-Green-Refactor approach.

Test-driven development has multiple advantages over traditional program-
ming: Firstly, the programmer has to thoroughly think about all aspects of a
method before they even start programming it. Secondly, every method of
the program is fully covered by tests which can be re-run periodically. This
secures that changes in code like new features or refactorings don’t break
existing features (Crispin, 2006).

A study about TDD in industry found that the quality of code was higher
when it was developed with the TDD method, passing 18 percent more
functional test than the control group which developed with a waterfall-like
approach. Also, 79 percent of programmers thought that the TDD approach
led to simpler design. and 71 percent perceived the method as effective. The
TDD group needed 18 percent more time (George and Williams, 2003).

14

3.2 Model View ViewModel (MVVM) Pattern

An article from 2018 compared and analysed five existing studies about
the results of test-driven development on code quality and productivity.
Four out of five studies found that TDD improved the quality of code,
while the fifth study found improvement or no difference. Three of the
five studies reported inconclusive results about the productivity with TDD,
while one study found a degradation of productivity and one study found
degradation or no difference. In summary, the article indicates that TDD
does improve code quality while it mostly doesn’t affect productivity and
sometimes degrades it. (Karac and Turhan, 2018)

3.2 Model View ViewModel (MVVM) Pattern

The editor application is developed for the .NET platform, written in C#.
Windows Presentation Foundation (WPF) is used for the graphical user inter-
face. The application’s underlying architectural design pattern is MVVM,
implemented by the Prism framework. Firstly, the MVVM pattern will be
explained including its motivation, its advantages and how the three core
parts interact. Secondly, in subsection 3.2.1 the MVVM pattern will be com-
pared with the widely known Model View Controller (MVC) pattern to
highlight their differences. Subsequently, the WPF library and its impor-
tant role in MVVM will be described in subsection 3.2.2. Finally, the Prism
framework and its role implementing the MVVM pattern will be explained
in subsection 3.2.3.

In classical C# .NET applications, the business logic (Model) and the user
interface (View) are usually tightly coupled. This can lead to considerable
additional expenses in maintenance when such applications are modified
or when they grow in scope or size. Also, designers need a programmer
in order to be able to implement changes in the graphical UI. Finally,
unit testing is a big challenge when business logic and UI are this closely
intertwined (Microsoft, 2019b).

By using the MVVM pattern, these problems are avoided. Firstly, it separates
concerns: Model and View are decoupled. Thus, UI modifications can
be easily done without a software engineer. Additionally, separating the

15

3 Technologies, Frameworks and Development Methods

UI from the business logic boosts testability and maintainability of an
application (Microsoft, 2019b).

The three components of the MVVM pattern are the Model, View and
ViewModel. The relationship between the three components is shown in
Figure 3.2. The role of each component will be briefly described in the next
paragraphs.

The Model is responsible for the application’s business logic. It represents
all data that is shown to and manipulated by the user. Furthermore, it
validates data entered by the user and notifies View and ViewModel about
changes in data. The data source can be anything: for example a relational
database or the local file system (Kühnel, 2013a).

The View is responsible for the graphical user interface (GUI), including the
structure, the look and the layout of all displayed elements. It is connected to
the ViewModel via Data Binding (see subsection 3.2.2). This loosely coupled
connection makes it possible to keep code behind1 to a minimum and to
switch Views without altering the ViewModel. Controls can be bound to
properties of the ViewModel to present data and manipulate data per user
input. The classic event based notifications are replaced by a command
mechanism to keep View and ViewModel decoupled (Kühnel, 2013a).

The ViewModel is the central part of the pattern and serves as a link
between Model and View. It is responsible for the UI logic, i.e. it is the
Model of the View. The ViewModel exchanges information with the Model
to acquire and manipulate data. It doesn’t have any information about the
View but it implements an observable interface and provides properties to
which the View can bind (Kühnel, 2013a).

3.2.1 Comparison with the Model View Controller (MVC)
Pattern

The main intent of the MVC pattern is, like MVVM, the separation of the
application’s concerns. The three components of the MVVM pattern are

1”Code-behind is a term used to describe the code that is joined with markup-defined
objects, when a XAML page is markup-compiled.” (Microsoft, 2019a).

16

3.2 Model View ViewModel (MVVM) Pattern

Figure 3.2: The Model View ViewModel (MVVM) pattern.

Model, View and Controller. The relationship between the three components
is shown in Figure 3.3. Like in the MVVM pattern, the Model represents
the application’s business logic and the View represents the UI. The Con-
troller manipulates the data in the Model and updates the View upon data
changes.

The main difference in contrast to the MVVM pattern is that in MVVM,
the View does not get updated data directly from the Model. All dataflow
passes through the ViewModel. Also, the ViewModel has no information
about the View. Exchange of data and user input exclusively happens by
data binding: The ViewModel has public properties to which the View can
bind (Syromiatnikov and Weyns, 2014).

Figure 3.3: The Model View Controller (MVC) pattern.

17

3 Technologies, Frameworks and Development Methods

3.2.2 Windows Presentation Foundation (WPF)

Windows Presentation Foundation (WPF) is a graphic user interface (GUI)
framework and class library of the Microsoft .NET framework. It is a more
modern alternative to WinForms, the previous standard GUI framework of
.NET. WPF was first released in 2006 with .NET version 3.0 and is deployed
with Windows since Windows Vista. With WPF it is possible to create user
interfaces in a purely declarative way. The markup language used for this
purpose is called eXtensible Application Markup language (XAML), which
is based on XML. New features include integration of DirectX for hardware
acceleration, mutimedia component support via Windows Media, animations
and data binding.

Data binding is one of the most important new features of WPF. With this
concept, developers are able to follow the principle of separation of concerns
and to implement the MVVM pattern (section 3.2). Data binding is the auto-
mated transmission of data between objects, typically between a data object
and a user control. In WPF, these objects are called dependency properties:
Their value depends on the other object. The following paragraphs and
code snippets explain and demonstrate WPF data binding with dependency
properties.

There are two types of data binding: one-way data binding and two-way
data binding. In one-way data binding, data is bound from the data source
to the target property.

In an example, code 3.1 is the XAML file (View) the data context of the
Window in our example is set to the ViewModel 3.2. The property ”Text” in
the TextBox is a dependency property which defines the displayed text of
the TextBox. It is bound to the property ”ProjectName” in the ViewModel
(3.2) via one-way binding. The value of the property ProjectName is set
to ”New Project”. When this application is run, the TextBox displays the
text ”New Project” as it is bound to a data source with this value. When
the text is changed to ”My Project” by the user in the UI, the data source
remains unchanged as the binding only goes in one direction. The value of
the property ProjectName is still ”New Project”.

<Window x : Class=” ExampleProject . MainWindow”

18

3.2 Model View ViewModel (MVVM) Pattern

xmlns=” http :// schemas . microsof t . com/winfx /2006/xaml/ p r e s e n t a t i o n ”
xmlns : x=” http :// schemas . microsof t . com/winfx /2006/xaml”
xmlns :VM=” c l r−namespace : ExampleProject . ViewModels”>

<Window . DataContext>
<VM: CreateProjectViewModel />

</Window . DataContext>

<TextBlock Text=” P r o j e c t Name: ”/>
<TextBox Width=” 280 ” Text=”{Binding ProjectName , Mode = OneWay}”/>

</Window>

Listing 3.1: One-way binding: Label and Textbox in the XAML file.

namespace ExampleProject . ViewModels
{

publ ic c l a s s CreateNewProjectViewModel
{

p r i v a t e s t r i n g projectName = ”New P r o j e c t ” ;

publ ic s t r i n g ProjectName
{

get => projectName ;
s e t => SetProperty (r e f projectName , value) ;

}
}

}

Listing 3.2: ProjectName property in the ViewModel.

In two-way data binding, data that is edited by the user in the UI is also
changed in the data source. A slightly different XAML example (3.3) is
set to the same data context, ViewModel (3.2). The dependency property
”Text” of the TextBox is again bound to the property ”ProjectName” in the
ViewModel (3.2), this time via two-way binding. Again, the TextBox would
display the value of the data source: ”New Project”. When it is changed to
”My Project” by the user, the data source is modified to this new value as
well.

<Window x : Class=” ExampleProject . MainWindow”
xmlns=” http :// schemas . microsof t . com/winfx /2006/xaml/ p r e s e n t a t i o n ”
xmlns : x=” http :// schemas . microsof t . com/winfx /2006/xaml”
xmlns :VM=” c l r−namespace : ExampleProject . ViewModels”>

<Window . DataContext>

19

3 Technologies, Frameworks and Development Methods

<VM: CreateProjectViewModel />
</Window . DataContext>

<TextBlock Text=” P r o j e c t Name: ”/>
<TextBox Width=”280 ” Text=”{Binding ProjectName , Mode = TwoWay}”/>

</Window>

Listing 3.3: Two-way binding: Label and Textbox in the XAML file.

(Kühnel, 2013b)

3.2.3 Prism

Prism is the framework and library which is used as the foundation of the
AppBuilder application. It provides an implementation of MVVM, navigation
between Views, dependency injection and command handling. The follow-
ing paragraphs give an overview over the most important features of Prism
used in this project.

ViewModelLocator

The Prism ViewModelLocator sets the data context of a View automatically
to a ViewModel according to their assembly and names. By using the View-
ModelLocator, the data context doesn’t have to be set explicitly like in the
XAML snippets before (3.1, 3.3). The convention for automatic Viewmodel-
resolving/loading is as following: The View and the ViewModel need to
be in the same assembly and in the .View and .ViewModel namespaces
respectively. Also, the ViewModel needs to have the name as the View, with
the suffix ”ViewModel” (Prism, 2019b).

In the XAML snippet 3.4, the data context of the window is set to the
ViewModel from the section above(3.2) via ViewModelLocator. As one
can see, the assembly, folder and naming conventions are met and the
XAML is significantly smaller. This Prism feature makes it more natural and
convenient to implement the MVVM pattern.

20

3.2 Model View ViewModel (MVVM) Pattern

<Window x : Class=” ExampleProject . Views . C r e a t e P r o j e c t ”
xmlns=” http :// schemas . microsof t . com/winfx /2006/xaml/ p r e s e n t a t i o n ”
xmlns : x=” http :// schemas . microsof t . com/winfx /2006/xaml”
xmlns :VM=” c l r−namespace : ExampleProject . ViewModels”
prism : ViewModelLocator . AutoWireViewModel=”True”>

<TextBlock Text=” P r o j e c t Name: ”/>
<TextBox Width=”280 ” Text=”{Binding ProjectName , Mode = TwoWay}”/>
</Window>

Listing 3.4: Setting the DataContext with the Prism ViewModelLocator.

Commanding

Additionally to displaying and editing information by data binding as
described in chapter subsection 3.2.2, binding can also be used to let the user
trigger actions in the ViewModel. Instead of using events like in WinForms,
WPF has introduced commands. The difference to events is that commands
are one-to-one connections between a UI control and a Command Object in
the ViewModel rather than being sent out to various listeners. Command
objects are objects that implement the WPF ICommand interface. Commands
are not handled in code behind like events but implemented directly in the
ViewModel.

While the ICommand interface was introduced by WPF, Prism provides a very
convenient implementation called DelegateCommand (Prism, 2019a). XAML
code 3.5 shows how a UI control is bound to a DelegateCommand. Code 3.6
shows the Command Object property and the code it encapsulates in the
connected ViewModel.

<Window x : Class=” ExampleProject . Views . C r e a t e P r o j e c t ”
xmlns=” http :// schemas . microsof t . com/winfx /2006/xaml/ p r e s e n t a t i o n ”
xmlns : x=” http :// schemas . microsof t . com/winfx /2006/xaml”
xmlns :VM=” c l r−namespace : ExampleProject . ViewModels”
prism : ViewModelLocator . AutoWireViewModel=”True”>

<TextBlock Text=” P r o j e c t Name: ”/>
<TextBox Width=” 280 ” Text=”{Binding ProjectName , Mode = TwoWay}”

Command=”{Binding CreateCommand}”/>
</Window>

21

3 Technologies, Frameworks and Development Methods

Listing 3.5: Binding a button to a Prism DelegateCommand.

namespace ExampleProject . ViewModels
{

publ ic c l a s s CreateNewProjectViewModel
{

p r i v a t e s t r i n g projectName = ”New P r o j e c t ” ;

publ ic CreateNewProjectViewModel ()
{

CreateCommand = new DelegateCommand (Create) ;
}

publ ic s t r i n g ProjectName { get => projectName ;
s e t => SetProperty (r e f projectName , value) ; }

publ ic DelegateCommand CreateCommand { get ; p r i v a t e s e t ; }

p r i v a t e void Create (o b j e c t parameter)
{

/ / do someth ing
}

}
}

Listing 3.6: Prism DelegateCommand and Prism Regions in the ViewModel.

3.3 Android Application

The Android Application is programmed in the language Kotlin and uses
the Model View Presenter (MVP) pattern.

3.3.1 Kotlin

Kotlin is a modern statically typed, object-oriented programming language
which is translated to bytecode and runs on the Java Virtual Machine (JVM).
It is mainly developed by the Czech company JetBrains and was named
after an island near St. Petersburg, one of the locations of the company.

22

3.4 JSON

Kotlin has been developed since 2011 but was not officially released until
February 2016 (Lardinois, 2019).

Because the code is translated to bytecode, Kotlin has full interoperability
with Java code and depends on the Java Class Library. Although it is a
young language, it is already highly popular. Android Studio has fully
supported Kotlin since version 3.0 and since 17.05.2019, Kotlin has been
Google’s preferred language for the development of Android Apps (Lardi-
nois, 2019).

3.3.2 Model View Presenter (MVP) Pattern

Testability is a priority in the development of the AppBuilder. Unit testing is
very difficult when business logic and UI are tightly coupled. To avoid this,
the implementation of the Android application follows the MVP pattern.

The main intent of the MVP pattern is the same as in MVVM (section 3.2)
and MVC (subsection 3.2.1): The separation of an application’s concerns.
MVP consists of the tree components Model, View and Presenter. The
relationship of these components is shown in Figure 3.4. Like in MVC
and MVVM, the Model represents the application’s business logic and the
view represents the UI. The presenter is the link between Model and View.
It manipulates the data in the Model and updates the View upon data
changes.

MVP is very similar to MVVM: Model and View are decoupled as the View
is updated from the presenter, not from the Model. The main difference
between the presenter in MVP and the ViewModel in MVVM is that there
is no data binding in MVP. View and Presenter communicate directly.

3.4 JSON

JavaScript Object Notation (JSON) is used to serialize and deserialize projects
that were created with the AppBuilder. All relevant project data is serialized

23

3 Technologies, Frameworks and Development Methods

Figure 3.4: The Model View Presenter (MVP) pattern.

to a JSON file, copied to the Android device and deserialized by the Android
application.

JSON is a human-readable compact data format for data exchange (seri-
alization) between applications. It is most commonly used to exchange
structured data between client and server in mobile and web applications.
Although every valid JSON document is also a valid JavaScript, JSON is
programming-language-independent as parsers exist in all popular program-
ming languages. This quality makes it the ideal data exchange format for the
AppBuilder, as there are parsing libraries both in both C# and Kotlin/Java.

3.5 Communication between Car and Android
Device

As mentioned in the introduction, AKKA Display Apps are specifically
designed for visualization and manipulation of vehicle data. This chapter
describes all involved hardware, protocols and file formats. Subsequently,
the development, setup and operation of a Display App is explained in
detail.

24

3.5 Communication between Car and Android Device

3.5.1 Technological Background

GIGABOX Beo

GIGABOX Beo is an electronic control unit (ECU) which is specifically
designed to enable bi-directional data exchange. It is equipped to exchange
data via various automotive bus systems including CAN, FlexRay and LIN.
In this thesis, only the CAN bus is used for data exchange (AKKADigital,
2013).

GIGABOX Beo comes with extensive basic software and an API interface.
Complex application modules can be implemented with either C or MAT-
LAB/Simulink. The application modules which are used in this thesis are
typically implemented with MATLAB/Simulink (AKKADigital, 2013).

CAN Bus

CAN (Controller Area network) is a serial bus standard. It was developed
by the company Bosch in 1983 and presented in cooperation with Intel three
years later. It is widely used as a vehicle bus in the automotive industry.
The intent of CAN was to add functionality and to reduce the amount of
cables in cars in order to minimize weight and costs. (CiA, 2019) CAN is
ISO-11898 certified. It defines the physical layer (layer 1) and the data link
layer (layer 2) of the ISO/OSI model. (ISO, 2015)

Its design allows ECUs to communicate in real-time with the multi-master
principle, i.e. all ECUs have master functions and are equal in this regard.
The priority of messages are based on an identifier. (Bosch, 1991)

DBC File Format

DBC is a file format by the company Vector which describes the commu-
nication structure of a CAN network. It has become the de facto standard
descriptive file format for CAN (Vector, 2019). The DBC file contains infor-
mation about all participants as well as all messages and signals of a CAN

25

3 Technologies, Frameworks and Development Methods

bus. This information can be used to analyse the network and simulate
ECUs which are not physically available (Vector, 2007).

Universal Measurement and Calibration Protocol (XCP)

XCP is a master-slave communication protocol which was first standard-
ized by the Association for Standardization of Automation and Measuring
Systems (ASAM) in 2003. As a two-layer protocol, it separates the protocol
and transport layer from each other. The ”X” represents the variable trans-
port layer which can be implemented with a number of different protocols
including CAN, Ethernet and FlexRay among others (ASAM, 2017).

XCP is mainly used in the development of automotive electronics devel-
opment, to test electronic control units (ECUs) and calibrate parameters.
It enables read and write access to internal variables of ECUs at runtime
(ASAM, 2017).

The normal process of XCP communication is that a request is sent by the
master (Display App) and an answer is sent by the slave (GIGABOX Beo).
Since a request must be sent separately for every variable repeatedly, this
leads to performance problems when there is a high number of requested
variables. To solve this problem, there is a measuring method called data
acquisition (DAQ). The master (Display App) sends the slave (GIGABOX Beo)
a list of variables. Subsequently, these variables are automatically sent to the
master in a defined frequency. As they are sent in bulk (big frames), high
numbers of variables can be inquired in real-time (Andreas Patzer, 2016).

A2L File Format

A2L files are descriptive files which contain information about the generated
ECU firmware. The most important information for the Display Apps is
a list of all publicly available variables of the firmware. These variables
are categorised into measurement and characteristics, read-only and muta-
ble values respectively. Every individual definition consists of its variable
category, name, memory address and data type. This enables the Display
App to access GIGABOX Beo’s internal variables by their symbolic names.

26

3.5 Communication between Car and Android Device

The snippet below shows a small part of an A2L file, describing a measure-
ment named u EXAMPLE MEASUREMENT CH A sig and a characteristic named
y EXAMPLE MEASUREMENT 1 sig.

/begin MEASUREMENT u EXAMPLE MEASUREMENT CH A sig ””
UBYTE NO COMPU METHOD 0 0 0 255

ECU ADDRESS 0xFEDE58EF
ECU ADDRESS EXTENSION 0x0

FORMAT ”%.15”
/begin IF DATA CANAPE EXT

100

LINK MAP ”u EXAMPLE MEASUREMENT CH A sig” 0xFEDE58EF 0x0 0 0x0 1 0x87 0x0

DISPLAY 0 0 255

/end IF DATA
SYMBOL LINK ”u EXAMPLE MEASUREMENT CH A sig” 0

/end MEASUREMENT

/begin CHARACTERISTIC y EXAMPLE MEASUREMENT 1 sig ””
VALUE 0xFEDE4EAA UBYTE S 0 NO COMPU METHOD 0 255

ECU ADDRESS EXTENSION 0x0

EXTENDED LIMITS 0 255

FORMAT ”%.15”
/begin IF DATA CANAPE EXT

100

LINK MAP ”y EXAMPLE MEASUREMENT 1 sig” 0xFEDE4EAA 0x0 0 0x0 1 0x87 0x0

DISPLAY 0 0 255

/end IF DATA
SYMBOL LINK ”y EXAMPLE MEASUREMENT 1 sig” 0

/end CHARACTERISTIC

Listing 3.7: A small part of an A2L file describing a measurement and a characteristic.

3.5.2 Generation of Firmware and A2L

Figure 3.5 shows the process of creating a firmware for GIGBAOX Beo and
generating an A2L file.

DBC file(s) A2L file

Matlab Simulink

Hex file
Generate
Firmware

CANape
Generate

A2L

Figure 3.5: The process of creating a GIGABOX Beo firmware and an A2L file.

27

3 Technologies, Frameworks and Development Methods

One or more DBC files containing information about the CAN bus(ses) of
the car are loaded into Matlab/Simulink. A firmware for GIGABOX Beo
is modelled with blocks that were specifically designed by AKKA. The
firmware is generated based on this model. The firmware is loaded into the
Vector program CANape where an A2L file is generated. With information
of this A2L, the Android application knows which variables are on which
memory addresses.

3.5.3 Data Flow

Figure 3.6 shows the data and command flow between the car and the
Android tablet in detail. GIGABOX Beo is connected to the onboard CAN
of the car and to a router. GIGABOX Beo stores firmware-defined CAN
data in its memory. Since the A2L file maps memory addresses to symbolic
names (measurements and characteristics), the Android application knows
the relevant memory addresses

The router and the Android device are connected via wireless LAN and
communicate with the protocol XCP. The Android device requests data
(measurements) from the GIGABOX Beo with XCP, using the DAQ mea-
surement method (see section 3.5.1). The Android device sends commands
(characteristics) with XCP to GIGABOX Beo.

28

3.5 Communication between Car and Android Device

Router

Button

Button

GIGABOX
BEO

Commands - by
XCP

Connected
to onboard

CAN

Data flow - by XCP
with DAQ method

Figure 3.6: Communication between car and tablet.

29

4 AppBuilder (.NET Application)

This chapter describes the development of the AppBuilder which enables
users to design, configure and modify DisplayApps without programming.

4.1 Design

One of the first design decisions to be made was the order in which the two
parts of the project would be designed and implemented. It was decided
that the AppBuilder (.NET) and the AppLoader (Android) would be designed
and implemented in parallel in order to avert the risk of compatibility issues
at a later stage development.

4.1.1 Use Cases

The following use cases were specified as requirements for the AppBuilder
together with AKKA Austria. Each use case consist of a description and a
list of acceptance criteria.

Create and save project

A new project can be created by the user. A name and several dimensions
of the target platform (the tablet) are enterd by the user. Theses parameters
are:

• Height in pixel
• Width in pixel

31

4 AppBuilder (.NET Application)

Acceptance criteria are:

• Blank canvas with the dimensions entered for the project is shown.
• A project file is created containing the parameters entered on project

creation.
• The project file is in a human readable and editable format.

Add image

An image file can be selected from the hard disk and placed on the canvas.
The image can be moved and resized by. When the project is saved, the
information entered by the user as well as the correct filename is saved to
the project file.

Acceptance criteria are:

• An image can be placed onto the canvas of the graphical UI.
• The image can be moved and sized (x, y coordinates, width, height).
• The image is displayed on the canvas with the correct dimensions

entered by the user.
• The image can be an abstract representation.
• The image meta data is saved to the project. file

Add text field

An new text field can be places on the canvas. The user can enters the
memory address of the variable which should be displayed in this text
field.

Acceptance criteria are:

• A text field can be placed onto the canvas.
• The text field is displayed as an abstract representation with the correct

dimensions on the canvas.
• The text field meta data is saved to the project file entered by the user.

32

4.1 Design

Add button

A button can be placed on the canvas by the user. Subsequently, a text must
be entered, which is then displayed as the button label. Furthermore, he
must enter the memory address and a fixed value which is written to this
address when the button is pressed.

Acceptance criteria are:

• A button can be placed onto the canvas
• A label text can be assigned to the button
• The button can be an abstract representation with the correct dimen-

sions
• The correct meta information for the button is written to the project

file

Reconfigure component

The user wants to adapt the parameters of a components which has already
been placed on the canvas. The possibility to select the correct component
must be available. After selecting the component, the user may enter new
parameters according to the selected component. Acceptance criteria are:

• A component on the canvas can be selected by the user.
• The parameters for this component get displayed and can be edited.
• The changes can be saved.

4.1.2 Graphical User Interface (GUI)

Figure 4.1 shows the first mock-up of the GUI. In the original design, controls
would be dragged and dropped into the visualization screen. To link signals
to items, they would be dragged and dropped on the controls. All visual
configurations of items would be done directly in the visualization.

For several reasons, the planned GUI was altered before implementation.
Firstly, the GUI was too simple for more complex tasks and controls. Signals
need to be categorized into measurements and characteristics as not all

33

4 AppBuilder (.NET Application)

Figure 4.1: First draft of the graphical user interface.

controls can be linked to both. Secondly, an easily accessible interface for
the exact configuration of size and position of items is necessary to assure a
precise alignment of items. Finally, the interface provided no information
about the currently selected item and its signal configuration.

Figure 4.2 shows the second and final draft of the UI. In this GUI, a ribbon
serves as the central control element. The ribbon was chosen because of its
wide spread use in current versions of Microsoft Windows which makes
it intuitive for the potential users. Creation of items, management of files
and all other central project options are located on the ribbon. Items can
be selected in the visualization or in the object overview panel which lists
all items per type or, if available, per name. Subsequently, most properties
of selected item can be seen and configured in the Properties panel. For
example in Figure 4.2, the selected item is a text control which displays

34

4.2 Implementation

the torque of the wheel on the front left of the car. Properties like name,
position, size, font size, font colour et cetera can be configured directly in the
property panel. More complex configurations are carried out in a separate
dialog window which is opened by pressing the ”Edit Control” button on
the ribbon.

Figure 4.2: The second and final draft of the graphical user interface.

4.2 Implementation

This chapter shows and explains the use of the AppBuilder with screenshots,
featuring the most important functionality.

35

4 AppBuilder (.NET Application)

In this chapter we provide a walkthrough for the finished AppBuilder proto-
type. It describes and shows in pictures how to use the AppBuilder to easily
construct an Android application for vehicle data visualization.

4.2.1 Creation of a new project

To create a new project, the button ”Neue App erstellen” (”create new App”)
on the start screen is pressed by the user. A modal window holding the
view CreateNewProject is opened (see Figure 4.3). The name and screen
dimensions of the target device need to be entered by the user. It is possible
to change the screen dimensions at a later stage of the project. However, this
is not recommended as the layout elements may be displaced. An A2L file
is needed to be able to assign signals to controls, as all signals are parsed
from the provided A2L file (see section 3.5.1). It can be added at a later stage
of the project though, if the layout design comes first. DBC files are fully
optional for Display Apps (see section 3.5.1).

Figure 4.3: CreateNewProject View : Creation of a new project.

When name, dimensions and (optionally files) are entered and the button
”Starten” (”start”) is pressed, a DisplayAppProject object is created based
on the user input. The DisplayAppProject holds all project data.

Signals are parsed from the A2L file via regular expressions.

36

4.2 Implementation

p r i v a t e void ParseA2 l (s t r i n g a 2 l F i l e , r e f Dict ionary<Str ing , in t> measurements ,
r e f Dict ionary<Str ing , in t> c h a r a c t e r i s t i c s)

{
Regex regex = new Regex (

@” (begin\s (MEASUREMENT|CHARACTERISTIC)\ s) ([A−Za−z\d −]∗) (\ s ””) ”) ;
var matches = regex . Matches (a 2 l F i l e) ;

/ / on ly g e t t h e s i g n a l (group 1) w i t h o u t t h e p a t t e r n around i t
foreach (Match match in matches)
{

GroupCollection groups = match . Groups ;
i f (groups [2] . Value . Contains (”MEASUREMENT”))
{

measurements .Add ((groups [3] . Value) , 0) ;
}
e l s e
{

c h a r a c t e r i s t i c s .Add (((groups [3] . Value)) , 0) ;
}

}
}

After parsing, parsed measurements and characteristics are stored as string
(key) int (value) dictionaries in the DisplayAppProject class. The string is the
signal name, the integer is the number of uses of this signal in the project.

publ ic Dict ionary<s t r i n g , in t> measurements ;
publ ic Dict ionary<s t r i n g , in t> c h a r a c t e r i s t i c s ;

This management of the selected signals makes it possible to add only
signals to the exported list which are actually used in the project, thus
not overtaxing GIGABOX Beo. This is also crucial when the users wants
to exchange the A2L file at a later stage of the program (see autore-
fchap:replacea2limplementation).

All data of the application is stored in the AppData files. A folder is created
for every project. The project folder consists of JSON file which holds all
project data and the files which were added to the project (images, A2L
file, DBC files). The JSON file is a serialization of the DisplayAppProject

object.

37

4 AppBuilder (.NET Application)

4.2.2 Opening a Project

To open an existing project, the button ”Bestehende App bearbeiten” (”edit
existing project”) on the start screen is pressed by the user. The View
OpenProject is opened in a modal window where all existing projects are
listed by name in a combobox (see Figure 4.4).

Figure 4.4: OpenProject View : Opening an existing project.

After the desired project is chosen by the user and the button ”Öffnen”
(”open”) is clicked, the JSON file in the AppData folder is deserialized
to a DisplayAppProject object. The RegionManager is called to navigate
to EditorMain (see subsection 4.2.3) with the DisplayAppProject object as
NavigationParameter.

var f i l e P a t h =
Path . Combine (Environment . GetFolderPath (Environment . S p e c i a l F o l d e r . Applicat ionData) ,

”AppBuilder” , projectname , (projectname + ” . j son ”)) ;

DisplayAppProject p r o j e c t =
JsonConvert . D e s e r i a l i z e O b j e c t<DisplayAppProject >(F i l e . ReadAllText (f i l e P a t h)) ;

38

4.2 Implementation

4.2.3 EditorMain

EditorMain is the main View of the application (see Figure 4.5). Upon
navigating to EditorMain, the EditorMainViewModel receives and stores all
project data from the model DisplayAppProject. EditorMain is subdivided
into four main parts: The Ribbon (section 4.2.3) which holds all options.
The Visualization (section 4.2.3) which shows how the Android application
will look on the tablet. The Item Overview (section 4.2.3) and the Property
Window (section 4.2.3). All of these parts do operations on items. Therefore,
it is crucial to understand what an item and its structure is. The first para-
graphs of this subsection will explain the concept of an item. Subsequently,
all four parts of EditorMain will be described in detail.

Figure 4.5: EditorMain View.

Items

Everything that can be placed on the Visualization is an item, whether
it is a background image, a text field or a button. Items can be created

39

4 AppBuilder (.NET Application)

and interacted with by users in order to be able to build their own intel-
ligent DisplayApp. An item can either be a simple visual item without an
attached signal (for example an image or a label) or a control which displays,
processes and/or manipulates vehicle data.

Figure 4.6 shows a class diagram of the item hierarchy. Blue classes are View-
Model classes, green classes are Model classes. In the DisplayAppProject

class (Model), the project’s items are stored in a list of Item objects. The
EditorMainViewModel stores the project’s items in a ObservableCollection
property (see) of ItemViewModel objects. The currently selected item is
stored as a ItemViewModel property.

40

4.2 Implementation

Fi
gu

re
4
.6

:I
te

m
cl

as
s

di
ag

ra
m

.

41

4 AppBuilder (.NET Application)

Ribbon

The Ribbon is the panel at the top of EditorMain view (see Figure 4.7). It
is realized with the WPF Ribbon control. The ribbon tab ”Editor” on the
ribbon contains all buttons that enable the user to add, edit, and remove
items. All buttons on the Ribbon are bound to DelegateCommand objects in
the EditorMainViewModel by Data Binding (see subsection 3.2.3).

The ribbon group ”Aktionen” (actions) contains buttons for editing and
removal of the selected element/control. The ribbon group ”Visuelle Ele-
mente” (visual items) contains buttons for creating items that cannot be
linked to signals. Available visual items are images and labels which can be
used as descriptive elements (titles etc.) or for stylistic purposes. The ribbon
group Controls contains buttons for creating visual elements which can
be linked to signals. Depending on the control, they may feature complex
configuration options (see subsection 4.2.6). Controls can be added in one
click and configured afterwards. An optional background image (button
”Hintergrundbild bearbeiten”) can be set. It has the lowest z-index, i.e. it is
shown behind all other visual elements. If the background picture is already
set, the user can choose a new image which replaces the old one.

Figure 4.7: Ribbon.

Visualization

The Visualization displays the user interface of the configured app as it
would on the tablet after an export (see Figure 4.8). The user can select an
element with one click. It can be dragged and placed within the borders of
the tablet dimensions. By double clicking on a control, the specific configura-
tion window depending on the type of control is opened (see section 4.2.3).
In the configuration window, a measurement and/or characteristic can be

42

4.2 Implementation

assigned by the user. For some types of control (Radiobutton field, Icon
Button), more complex configurations are possible.

Figure 4.8: Visualization.

The Visualization is realized with the custom WPF control EditorControl
which is a class derived from the canvas control. It converts items to visuals
according to their properties and displays them on the canvas. As described
above, the user can interact with the items by selecting, resizing, dragging
and double clicking them. The next paragraphs are an exemplary description
of the implementation of the EditorControl. It is based on the creation of
and interaction with a Radiobutton field.

The EditorControl has a dependency property for a two-way data binding
connection to the ObservableCollection<Itemviewmodel> property of the

43

4 AppBuilder (.NET Application)

project’s items in the EditorMainViewModel. It also has a dependency prop-
erty for two way data binding connection to the selected ItemViewModel

property in the EditorMainViewModel. Every change the ViewModel or the
View makes to an item triggers a function which handles the situation.
When an item is modified in the View, the ViewModel is notified to update
the modified items.

publ ic s t a t i c readonly DependencyProperty ItemsProperty =
DependencyProperty . R e g i s t e r (” Items ” , typeof (ObservableCol lect ion<ItemViewModel>) ,
typeof (Edi torControl) , new PropertyMetadata (OnItemsChangedCallback)) ;

publ ic s t a t i c readonly DependencyProperty CurrentItemProperty =
DependencyProperty . R e g i s t e r (” CurrentItem ” , typeof (ItemViewModel) ,
typeof (Edi torControl) , new PropertyMetadata (OnSelectionChangedCallback)) ;

Listing 4.1: DependencyProperties with callback functions in EditorControl

When the user presses the a button on the ribbon to create a TextControl

(see section 4.2.3), the function AddTextControl() is called by the Del-
egateCommand to which the button is bound. This function initiates a
TextControlViewModel object in default size and position, adds it to the
Items property and sets it as the currently selected object.

p r i v a t e void AddTextControl ()
{

var t ex t I t e m = new TextControlViewModel () ;
t e x t I t em . X = (p r o j e c t . width + 10) / 2 ;
t e x t I t em . Y = (p r o j e c t . h e i g h t + 10) / 2 ;
t e x t I t em . Height = 1 0 0 ;
t e x t I t em . Width = 2 0 0 ;
t e x t I t em . ZIndex = 1 0 0 ;
t e x t I t em . FontSize = 3 5 ;
t e x t I t em . Text = ”<<Wert>>” ;
t e x t I t em . I sContro l = true ;

Items .Add(tex t I t em) ;
CurrentItem = te x t I t em ;
CanSaveItems = true ;

}

Listing 4.2: AddTextControl() method EditorMainViewModel

The EditorControl is notified when the collection of items changes and calls

44

4.2 Implementation

an EditorElementFactory function to create and place a FrameworkElement

on the canvas. The ItemViewModel object is stored in the ”Tag” property of
its newly created FrameworkElement (see Figure 4.6). This is important to
be able to update the ItemViewModel when the FrameworkElement changes
and vice versa.

p r i v a t e s t a t i c FrameworkElement CreateText (TextItemViewModel item)
{

var t e x t = new TextBlock () ;
t e x t . Text = item . Text ;
t e x t . FontSize = item . FontSize ;
t e x t . FontWeight = item . FontWeight ;
t e x t . Foreground = new SolidColorBrush (item . Colour) ;
t e x t . Tag = item ;
PlaceElement (te x t , item) ;
re turn t e x t ;

}

p r i v a t e s t a t i c void PlaceElement (FrameworkElement element , ItemViewModel item)
{

Canvas . SetZIndex (element , item . ZIndex) ;
Canvas . S e t L e f t (element , item . X) ;
Canvas . SetTop (element , item . Y) ;
element . Width = item . Width ;
element . Height = item . Height ;

}

Listing 4.3: Creation and Placement of the Battery FrameworkElement

Text controls and labels are handled by the same creation and update meth-
ods. They are indistinguishable for the View as TextControlViewModel is
derived from TextItemViewModel and the EditorControl only convers vi-
sual aspects of controls. Movement and resizing of items in the Visualization
is tracked via mouse events and handled by EditorControl.

Item Overview

The Item Overview is a list of all items, displayed by name (if assigned)
or type (see Figure 4.9). Items can be single-selected by click. A name can
be assigned to the selected element in the property window. This is very
helpful in larger projects as the user is able to find elements quickly in the
Item Overview.

45

4 AppBuilder (.NET Application)

Figure 4.9: Item Overview.

Property Grid

The Property Grid is realized with the Xceed PropertyGrid class and gives
an overview over the selected item by displaying all public properties of
the ItemViewModel (see Figure 4.10) (Xceed, 2019). Most properties can be
edited directly in the Property Grid by the user.

If the item is a control, i.e. it can have a measurement and/or characteristic,
these properties are displayed as buttons with the signal names as button
text (see Figure 4.10). If the item is a control and there are no assigned
signals yet, the buttons are blank. Clicking on a signal button opens the
control configuration window (see subsection 4.2.4).

4.2.4 Controls

There are three ways how the configuration window of a control can be
reached:

• Double-clicking on the control in the visualization.
• Selecting the control and clicking the edit control button on the ribbon.
• Selecting the control and clicking on the measurement/characteristic

button in the property window.

46

4.2 Implementation

Figure 4.10: Properties.

4.2.5 TextControl, BatteryControl

A measurement can be selected from the measurements in the uploaded A2L
file in a searchable combobox (see Figure 4.11). As mentioned in section 4.4.3,
measurements are stored as Dictionary<string, int>, where the string

is the measurement and the int is the count of controls the measurement
is linked to. When the control does not have a previous measurement, the
count of this measurement is increased by one in the dictionary. When
the control does have a previous measurement that is changed by the new
selection, the old measurement’s count is additionally decreased by one.

47

4 AppBuilder (.NET Application)

Figure 4.11: Signal Selection.

4.2.6 Radiobutton Field

Signals for the selected radiobutton field can be chosen in the comboboxes at
the top of the configuration dialog (see Figure 4.12). A Radiobutton field can
be linked to a characteristic with an optional measurement. It is typically
linked to both if the button requires feedback from the GIGABOX Beo to be
sure that the command was effective.

In the lower area of the window, buttons can be added to the radiobutton
field by clicking on the green plus icon. Every button can be configured with
a button text and the value which is sent at the button click. An example
from the field that is created in Figure 4.12: When the user of the built app
presses the button with the text ON, the value 1 will be sent to the chosen
signal (characteristic).

The user can remove a button from the radiobutton field by pressing the
red minus icon next to the relevant button.

4.2.7 Icon Button

Signals for the selected icon button can be chosen in the comboboxes at
the top of the configuration dialog (see Figure 4.13). An icon button can be
linked to a characteristic with an optional measurement. The value which is
sent at a button click is entered in the field S̈ignalbelegung.̈ The checkbox

48

4.2 Implementation

Figure 4.12: Configuration of a Radiobutton Field.

”Auf Feedback warten” specifies if the button should require feedback from
the GIGABOX Beo to be sure that the command was effective.

In the lower area of the window, three different version of the icon image
can be uploaded. The disabled icon is shown when there is no connection to
GIGABOX Beo. The normal icon is shown when the application is connected
but the icon was not pressed (the signal’s current value does not equal the
specified value of the icon button). The active icon is shown when the icon
button was pressed effectively.

4.2.8 Progress Bar

The minimum and maximum of a selected progress bar are set via prop-
erty grid, 0 being default minimum and 1000 the default maximum (see
Figure 4.14). A measurement can be selected in a searchable combobox as
already shown in the paragraph about text controls and battery controls.
The visualization always shows the progress bar at its maximum value (see
Figure 4.8).

49

4 AppBuilder (.NET Application)

Figure 4.13: Configuration of an Icon Button.

4.2.9 Adding and Replacing DBC and A2L Files

A2L and DBC files can be replaces at all stages of the project. The option for
this is located at the file (”Dateien“) section on the ribbon (see Figure 4.15).

Usually, A2L files are exchanged in the case that the collection of available
signals is expanded, adding new signals to the existing ones. Nevertheless, it
is important to check if any signals which are linked to controls are missing
in the new A2L file for the sake of error prevention. To achieve this, the
newly uploaded A2L file is parsed and the resulting signals are compared
to the existing ones.

If there are missing signals which are used in controls, a warning dialog
lists all affected signals and asks the user if they still want to exchange the
A2L file. The user can subsequently choose to abort the replacement. If they
confirm, the signals are removed from the affected controls.

50

4.2 Implementation

Figure 4.14: Configuration of a Progress Bar in the Property Grid.

Figure 4.15: Project Options.

4.2.10 Export of a Project

The configured project can be exported by clicking the export project (”Pro-
jekt exportieren“) button (see Figure 4.16). This option is available in the
quick option dropdown or in on the ribbon, in the tab project options
(“Projektoptionen).

All project data is saved to an object of a class containing project data
tailored for the export. This object is serialized to a JSON file. In contrast to
the class DisplayAppProject, the class DisplayAppProjectAndroidExport

contains only data which is needed for constructing the Android application.

51

4 AppBuilder (.NET Application)

Signals are stored in lists. All signals which are not used in the project are
removed.

All used images and the JSON file containing project data are saved in an
export folder in the AppData. The export folder is compressed in a .zip
archive.

To start the built app, the user has to copy the exported archive to the internal
storage of the tablet of smartphone and open the AppBuilder Android
application.

Figure 4.16: Export of a Project.

4.3 Testing

The AppBuilder is developed with the test-driven development method (see
section 3.1). MSTest, the standard unit testing framework for Visual Studio
was used for testing.

Besides writing tests, measuring code coverage is an important part of TDD.
Although the used development environment, Visual Studio Professional,

52

4.3 Testing

has built in support for executing unit-tests it lacks a framework for gen-
erating code-coverage reports. Therefore, an external library was used to
monitor code coverage.

OpenCover is an open-source code coverage tool specifically developed for
.NET. It has a command-line only user interface and produces an XML
output file. OpenCover provides measurement of the metrics statement
coverage, method coverage and branch coverage (OpenCover, 2019). These
features make it a great tool to calculate code coverage of the AppBuilder
code base, although the lack of a GUI and a visual report is inconvenient.

Therefore, the extension was AxoCover was chosen for generating and dis-
playing code coverage reports. AxoCover is an open source extension to
Visual Studio which integrates OpenCover and uses its calculated metrics
to generate reports amongst other features (AxoCover, 2019). In contrast
to OpenCover, it has a GUI which is integrated into Visual Studio (see
Figure 4.18). The ”report” tab in the AxoCover window shows all relevant
information about code coverage of the solution, broken down into projects,
namespaces, files and methods. AxoCover also highlights uncovered lines
directly in the source code with red bars. For example, most of the method
shown in Figure 4.17 is covered by tests, as shown by the green bars next
to the line numbers. The case that the background image is deleted is not
covered though, as shown by the red bars.

Figure 4.17: Identifying uncovered code parts with AcoCover.

53

4 AppBuilder (.NET Application)

The open source library Moq was used to create mocking objects in unit
tests. Moq provides an easy way to mock classes and interfaces using the
.NET LINQ syntax and lambda expressions (Moq, 2019). Mocking objects
are necessary in any cases in the process of writing unit tests. The following
paragraphs give some mocking examples from testing the AppBuilder with
code snippets. As apparent in the code snippet below, services are added
via dependency injection in the constructor of classes.

publ ic EditorMainViewModel (IEventAggregator ea , IRegionManager regionManager ,
IMessageBoxWrapper messageBox , IOpenFileDialogWrapper openFileDialog ,
IFolderBrowseDialogWrapper folderBrowseDialog)

Listing 4.4: Constructor of the class EditorMainViewModel. Many services are provided
per dependency injection.

To create objects of these classes for testing purposes, their dependencies
are mocked. An example is provided in the snippet below where a mocking
object of the Prism RegionManager is created.

var mockRegionManager = new Mock<IRegionManager > () ;
mockRegionManager . Setup (rm => rm . RequestNavigate (I t . IsAny<s t r i n g > () ,
I t . IsAny<s t r i n g > () , I t . IsAny<NavigationParameters > ())) . Cal lback (de legate { }) ;
var regionManager = mockRegionManager . Object ;

Listing 4.5: Creation of a mocking object of the Prism RegionManager

Mocking is also necessary for all kinds of tests which involve file or folder
selection by the user. To enable testability, C# classes for choosing files and
folders were wrapped in interfaces. Interfaces are easy to mock, methods can
be overwritten by Moq to return desired values or do something different
altogether. In the code snippet below, the OpenFileDialogWrapper is mocked
to return a chosen file path to a testfile.

var mockOpenFileDialogWrapper = new Mock<IOpenFileDialogWrapper > () ;
mockOpenFileDialogWrapper . Setup (o => o . ShowDialog ()) . Returns (t rue) ;
mockOpenFileDialogWrapper . Setup (o => o . FileName) . Returns (t e s t f i l e p a t h) ;
var openFileDialogWrapper = mockOpenFileDialogWrapper . Object ;

Listing 4.6: Creation of a mocking object of the interface OpenFileDialogWrapper

54

4.3 Testing

By passing this mocking object to a class like in the code snippet above, it is
possible to test methods using input/output operations on real files.

Another case where mocking objects are useful is to check if a certain task
without a return value are run. For example, the Action FinishInteraction

closes a Prism modal dialog. To check if the dialog was closed by running
FinishInteraction, FinishInteraction is overwritten with a delegate that
changes the value of a test variable to true (see code snippet below).

var f i n i s h I n t e r a c t i o n C a l l e d = f a l s e ;
vm. F i n i s h I n t e r a c t i o n = delegate { f i n i s h I n t e r a c t i o n C a l l e d = true ; } ;
Assert . IsTrue (f i n i s h I n t e r a c t i o n C a l l e d) ;

Listing 4.7: Checking if FinishInteraction was run.

55

4 AppBuilder (.NET Application)

Figure 4.18: Overview over code coverage with the tool AxoCover.

56

4.4 Usability Inspection

4.4 Usability Inspection

Usability in software is a measure which describes how pleasant to use a
user interface is and whether it provides what the user needs. Jakob Nielsen
defines usability by the qualities learnability, efficiency, memorability, errors
and satisfaction (Nielsen, 2012).

Usability Inspection is a technique to assess a user interface of a software
system to find usability problems. Most effectively, usability tests are con-
ducted empirically (with real representative users), although formal and
automated approaches exist (Nielsen, 1994).

4.4.1 Setup

The domain and the potential users of the AppBuilder are very specific since
knowledge about vehicle busses and used file formats is required to use the
program. Thus, a usability test was conducted with three potential users
who know the domain.

All three test users are familiar with the CAN protocols and Display Apps.
They had never seen the application before the usability test. All test users
were instructed to carry out exactly the same use cases and to speak their
thoughts while performing them. They were especially told to mention all
problems as well as positive aspects of using the program while experiencing
them. All tests were filmed.

The following use cases were carried out in the course of the test in this
order:

1. Create a new project.
2. Enter all required data into the form and upload a prepared A2L file.
3. Upload a background image.
4. Resize the background image to fill out the tablet.
5. Create a radiobutton field. Assign any signal, create an ON and an

OFF button. Assign the value “1” to the ON button and the value “0”
to the OFF button.

6. Position the radiobutton on the centre (vertical) left (horizontal).

57

4 AppBuilder (.NET Application)

7. Create a label with the text “Motor” and position it above the radiobut-
ton field.

8. Save the project.
9. Upload a small image from the test files. Position it above the radiobut-

ton field and the label.
10. Create a battery control and position it on the above the center of the

screen. Assign any signal to it.
11. Create a text control and position it below the battery control. Assign

the same measurement as to the battery control.
12. Close the program (a confirmation dialog is opened, asking if the user

wants to close the application without saving). Cancel.
13. Save the program.
14. Close the program.
15. Reopen the program.
16. Choose the previously created project and open it.
17. Replace the A2L file.
18. Export the project.
19. Find the zip archive.
20. Copy the archive on the smartphone.
21. Open the AppBuilder application.
22. Open the created app.

4.4.2 Test Result

The results of the usability test were analysed, put in writing and structured.
This subsection presents the positive aspects and problems which were
found by test users.

Positive Aspects

The most mentioned positive aspect was the Windows style ribbon user
interface which was described as very intuitive and easy to use by 100% of
users. The second most mentioned positive (66.7%) was that the program
was perceived as effective and efficient to use, making it easy to create
a pleasant interface quickly. Other mentioned positive aspects were error

58

4.4 Usability Inspection

prevention (warnings when closing the application without saving first,
warnings when switching to a new A2L file that lacks used signals) and the
easy process to exporting a project.

Problems

All problems were structured and put into a table. Table 4.1 gives informa-
tion about the use case where the problem was mentioned, a short problem
description, the percentage of users who mentioned the problem, the sever-
ity and if the problem was fixed. Fixes which are described in the section
subsection 4.4.3 are linked in the last column. There were many minor prob-
lems which were fixed quickly, like a missing program icon in a dialogue.
Therefore, not all fixes are relevant enough to be documented. Occasionally,
one refactoring subsection covers multiple problem fixes which belong to
the same area of the program.

59

4 AppBuilder (.NET Application)

Use Case Problem % of users Severity Fixed?
Create a new
project

Starting screen is
too busy. Cannot
spot buttons at
first glance.

33.3 Medium yes 4.4.3

Create a new
project

Project creation
dialogue is badly
aligned and looks
unpleasant.

33.3 Low yes 4.4.3

Upload of A2L
and DBC files.

Names of
uploaded files are
not visible for
users. It is very
confusing not to
be able to see
what was
uploaded.

66.7 High yes 4.4.3

Upload of A2L
and DBC files.

Multiselection
should be
possible for DBC
files for faster
selection.

66.7 Medium yes 4.4.3

Upload of A2L
and DBC files.

Dialogue ”A2L
file was added”
after file selection
is unnecessary
and annoying.

66.7 Medium yes 4.4.3

Open and
existing project.

Two screens (one
for ”open
project”, one for
choosing) are too
many. One screen
with selection
and ”open
project” button
would be better.

66.7 Medium yes 4.4.3

Table 4.1: Problems discovered in the course of the usability test.

60

4.4 Usability Inspection

Use Case Problem % of users Severity yes
Upload of a new
A2L file
(overwriting the
old one).

Warning when
overwriting the
old A2L file is
badly designed
and annoying.

33.3 Medium yes 4.4.3

Upload of a new
A2L file which
misses already
used signals.

Warning when
overwriting A2L
file is
unstructured,
hardly legible
and overflows
screen.

100 High yes 4.4.3

Adding a control. Controls which
are often used
should be placed
on the left of the
ribbon.

33.3 Medium yes 4.4.3

Configuration of
radiobutton field.

Controls cannot
be configured by
double click.
Difficult to find
control
configuration.

66.7 High yes

Configuration of
radiobutton field.

Arrangement and
layout are
confusing and
look very
unpleasant.

66.7 High yes 4.4.3

Configuration of
radiobutton field.

Large ”Add
button” button
looks bad and is
at a bad position.
”plus” icon next
to the list would
be better.

66.7 Medium yes 4.4.3

Configuration of
radiobutton field.

Information text
can be easily
overlooked.

33.3 Medium yes 4.4.3

Table 4.2: Problems discovered in the course of the usability test. 61

4 AppBuilder (.NET Application)

Use Case Problem % of users Severity yes
Configuration of
radiobutton field.

Visual preview of
the radiobutton
field missing. The
user doesn’t
know which
button is which
by looking at the
visualization.

66.7 Medium yes 4.4.3

Assign signal to
control.

Signals cannot be
changed in the
property window.
Difficult to find
Signal Selection

100 High yes 4.4.3

Assign signal to
control.

Configuration
window is
arranged badly,
information text
is too long.

66.7 Medium yes 4.4.3

Assign signal to
control.

No text search for
signals. It can
take a long time
to find a signal.

66.7 High yes 4.4.3

Configuration of
text control.

Text is not
editable in
property grid.
Annoying to do
several clicks to
change the text.

66.7 High yes 4.4.3

General Application icon
is missing on the
top left of the
program.

33.3 Low yes

Saving the
project.

The popup
dialogue
”changes were
saved” after
saving is
annoying.

33.3 Low yes 4.4.3

Table 4.3: Problems discovered in the course of the usability test.62

4.4 Usability Inspection

Use Case Problem % of users Severity yes
Export of the
project.

Changes
shouldn’t be
saved
automatically
when exporting
the project. The
program should
ask first.

33.3 Medium yes

Property Grid. When an item
can have no
signals or only a
measurement, no
empty
”Measurement”
and
”Characteristic”
fields should be
displayed in the
Property Window.
this is confusing!

100 Medium yes 4.4.3

Closing the
program.

”Save before
exiting?”
dialogue is not
centred

33.3 Low yes

Table 4.4: Problems discovered in the course of the usability test.

63

4 AppBuilder (.NET Application)

4.4.3 Refactoring

The results of the test uncovered serious shortcomings of the user interface
regarding usability. Extensive changes in the UI were planned and imple-
mented in order to tackle those shortcomings. This section presents the
results of these changes.

Starting Page

The main problem regarding the starting page was the overwhelming
background image. Two of the three test subjects found the starting page
confusing because the buttons hardly stood out against the background (see
Figure 4.19).

Figure 4.19: Old starting page.

As Figure 4.20 shows, the background picture was exchanged to a more
minimalistic, modern design to improve usability. The contrast of the but-
tons against the background was increased and they were placed more

64

4.4 Usability Inspection

prominently. Additionally, a title containing the name of the program was
added.

Figure 4.20: New starting page.

Project Creation

The first problem regarding project creation was the alignment and the
large, unpleasant-looking buttons (see Figure 4.21). To fix this problem, the
GUI was restructured with new alignment and small ”+” icon buttons for
adding files (see Figure 4.22).

The rest of the problems concerned file upload. In the old version, the user
could not see which files they had already uploaded. After every upload,
there was a popup dialogue which confirmed that the file was uploaded.
Also, DBC files had to be uploaded one by one. In the new starting screen,
the names of already uploaded files are displayed in a list and can be deleted
by clicking the ”-” icon button”. The dialogue was eliminated. Multiselect is
enabled for the upload of DBC files.

65

4 AppBuilder (.NET Application)

Figure 4.21: Old project creation interface.

Figure 4.22: New project creation interface.

Opening an Existing Project

The process of opening a project was criticised in the usability test. In the
old version, there were two screens for opening a project. When the ”Edit
Project” button was clicked by the user, a modal dialogue with a ”Choose
Project” button was opened. When the ”Choose Project” was clicked by the
user, a modal dialogue with a combobox was opened (see Figure 4.23). This
combobox was bound to a list of projects by data binding. When a project
was selected by the user, the application navigated to the EditorMain View
without any button click.

Figure 4.23

66

4.4 Usability Inspection

The new process of opening a project is more straightforward. When the
”Edit Project” button is clicked by the user, a modal dialog with a combobox
(bound to a list of existing projects), and an ”Open” button is shown (see
Figure 4.24). After choosing a project and clicking the button, the application
navigates to the EditorMain View.

Figure 4.23: Old interface to open a project.

Figure 4.24: New interface to open a project.

Placement of Buttons on the Ribbon

The old ribbon was criticised for its button placement. The option to upload
or exchange a background image was far on the left, even though it is usually
not frequently needed (seeFigure 4.25). The new ribbon layout places buttons
which the user will frequently need on the left (see Figure 4.7).

67

4 AppBuilder (.NET Application)

Figure 4.25: Old placement of buttons on the ribbon.

Property Grid

The first criticism was that signals, unlike other properties, could not be
edited in the property grid. The reason for this problem is that signals have
to be chosen from a list of measurements and characteristics respectively,
unlike text and name properties which can be set to arbitrary strings.
Given the dense layout of the property grid and the high number of signals,
comboboxes are not feasible for signal selection in the property grid. Instead,
this problem was solved via signal selection buttons (see Figure 4.10). The
signal properties are displayed as buttons with the signal names as button
labels If there are no assigned signals yet, the buttons are blank. Pressing
one of these buttons opens the control configuration dialog.

The second criticism regarding the property grid was that purely visual
items like labels and images had empty signal property fields although
they cannot be linked to signals. Also, properties that can only be linked to
measurements (not to characteristics) had an empty characteristic property
field (see Figure 4.27). The reason for this problem was the class hierarchy of
items. Figure 4.26 shows this with the example of labels and text controls. As
one can see on the left, the class ItemViewModel had properties for signals.
Specific items were directly derived from ItemViewModel. Labels and text
controls were objects of the same class with the value of the IsControl
property as their only distinction. Therefore, labels had signal properties
although they could not be assigned, battery controls had a ”Characteristic”
property which could not be assigned. The property grid displayed these
empty, not assignable properties.

The new class hierarchy is on the right side of Figure 4.26. ItemViewModel
does not have properties for signals. Labels are objects of the class TextItemViewModel
which does not have properties for signals either. Text controls are objects of

68

4.4 Usability Inspection

the class TextControlViewModel which has a ”Measurement” property and
no ”Characteristics” property. Thus, the property grid only displays fields
for signals that items can actually be linked to.

Figure 4.26: Refactoring of item class hierarchy, example based on label and text control.

69

4 AppBuilder (.NET Application)

Figure 4.27: Old Property Grid. Although BatteryControl cannot be linked to a charac-
teristic, an empty field is displayed. Also, signals cannot be edited from the
Property Grid.

Measurement Assignment

The first discovered usability problem regarding the measurement assign-
ment interface was the structure of the modal window and the overly long
description text (see Figure 4.28). The second usability problem was that
users had difficulties finding the desired measurement among dozens or
hundreds of measurements.

The measurement assignment window was restructured, the explanation
text was shortened (see Figure 4.11). Also, a searchable combobox was
implemented in order to make signal assignment fast, efficient and pleasant

70

4.4 Usability Inspection

for the user.

Figure 4.28: Old interface for signal configuration of text controls and battery controls.

Configuration of Radiobutton Fields

Many usability problems regarding the configuration of radiobutton fields
were discovered during the usability test. Firstly, the layout was criticised as
unpleasant and confusing (see Figure 4.29). Secondly, the explanation text
was almost overlooked by users because it was too small and unnoticeable.
Thirdly, the ”Add” button was criticised for not having an icon and having
an unintuitive position. Lastly, the lack of a visual preview for radiobutton
fields was perceived as confusing.

The modal window was restructured and realigned with distinct areas for
different tasks, a more noticable description text and searchable comboboxes
for signal selection (see Figure 4.30). Buttons are added by clicking a green
”+” icon buttons right above the icon list. Finally, previews for buttons are
rendered as bordered WPF grids in the Visualization (see Figure 4.8).

Save

The usability problem in this use case was the save message dialogue, which
was perceived as annoying by users (see Figure 4.31). Therefore, the dialog

71

4 AppBuilder (.NET Application)

Figure 4.29: Old interface for configuration of radiobutton fields.

was removed. In order for users to have some feedback about the success of
their actions, the ”IsEnabled” property of the save button was bound to the
”CanSave” property of the ViewModel. Thus, the button is greyed out after
saving as long as there are no new changes (see Figure 4.32).

A2L File Replacement Warning

The discovered usability problem regarding A2L replacement was the warn-
ing message dialogue which was opened when an A2L file was overwritten
by a new file which missed signals already linked to controls. Users crit-
icised that the message dialogue was unstructured, hardly legigble and
overflowed the screen (see Figure 4.33).

Said message dialogue was centred and restructured, displaying missing
signals in a list (see Figure 4.34).

72

4.4 Usability Inspection

Figure 4.30: New interface for configuration of radiobutton fields.

Figure 4.31: Old way to confirm that the project is saved.

73

4 AppBuilder (.NET Application)

Figure 4.32: New way to confirm that the project is saved.

Figure 4.33: Old A2L File Replacement Warning.

Figure 4.34: New A2L File Replacement Warning.

74

5 AppLoader (Android
Application)

This chapter describes the development of the Android application that
builds a user interface based on the configuration which is exported from
the AppBuilder.

DisplayApps are built for a broad range of different cars. Therefore, the
main components were moved to libraries (see Figure 5.1). The AKKA XCP
libraries provide all functionalities concerning communication with GIGA-
BOX Beo. This includes the establishment of a connection with GIGABOX
Beo, the decoding of messages and the initialization of data acquisition
from certain data locations (see section 3.5.1). The AKKA app utilities
library mainly consists of a set of preconfigured classes for UI elements
that display and manipulate data on the GIGABOX Beo. They only have to
be parametrized with the UI element, the relevant signal and other data
depending on the element.

AKKA XCP Libraries AKKA App Utilities Library

Display App LoaderDisplayApp 1 DisplayApp NDisplayApp 2 …

Figure 5.1: First draft of the graphical user interface.

75

5 AppLoader (Android Application)

On top of these libraries, every Display App was individually programmed
as a new Android App. The AppLoader uses the same libraries as the indi-
vidual Display Apps. However, instead of programming a completely new
application for every new car, the AppLoader builds Display Apps based on
imported configuration files from the AppBuilder.

5.1 Design

5.1.1 Requirements

The following requirements were specified for the AppLoader together with
AKKA Austria. Each requirement consists of a description and a list of
acceptance criteria.

List available projects

When the app is launched, a list of available projects on the internal memory
is displayed. The user may select one of these projects to open it.

Acceptance criteria:

• List of project names is displayed in the app.
• The projects are read from a predefined folder on the internal memory.

Open project

The project selected from the previous project list opened and the project
file is fully parsed. The Android App creates the currently supported com-
ponents as described in the project file. After the all components are loaded,
the connection the GIGABOX Beo (control unit) is established. The addresses
of the memory blocks that should be read are collected and sent to the
GIGABOX Beo.

Acceptance criteria:

76

5.1 Design

• The screen with currently supported controls is displayed correctly.
• The connection to GIGABOX Beo is established.
• DAQ is initialised with the correct memory addresses from the project

file.

Display image

Every image component of the project configuration is displayed on the
screen.

Acceptance criteria:

• The image files specified in the project file are displayed on the screen.
• The image files are displayed with the correct dimensions.

Display text field:

Every text field of the project configuration is displayed on the View. The
component is listening for updates from the control unit. Values received
from the control unit are displayed in their respective text fields.

Acceptance criteria:

• The text fields specified in the project configuration is displayed on
the screen.

• The text fields are displayed with the correct dimensions.
• The text fields display their corresponding values they received from

GIGABOX Beo
• The changes of these values are reflected in their text fields.

Display button

Every button of the project configuration is displayed on the screen. When
the button is pressed, the correct value is sent to the control unit.

Acceptance criteria:

77

5 AppLoader (Android Application)

• The buttons specified in the project file are displayed on the screen.
• The buttons are displayed with the correct dimensions on the specified

position on the screen.
• The buttons display their corresponding labels (from the project file).
• Pressing the buttons sends the correct value to the control unit.

5.1.2 User Interface

The user interface of the AppLoader has two tasks to fullfill: Project selection
by the user and displaying the selected project. Therefore the UI is very
simple. The selection of a project is achieved by a clickable list of available
projects (see Figure 5.2). The UI design was never modified since the first
mock-up.

78

5.2 Implementation

Project 1

Project 2

Project 3

Project 4

Project 5

Project 6

Project 7

Choose configuration

Figure 5.2: The first and final draft of the AppLoader’s graphical user interface.

5.2 Implementation

The Android application is implemented with the Model-View-Presenter
pattern (see subsection 3.3.2). For every Activity1 there is a correspond-
ing Presenter object which communicates with the Model and performs
input/output operations. The AppLoader consists of two Activities and there-
fore two main Views: MainActivity and CarActivity.

When the application is started, the MainActivity object (View) initializes a
MainPresenter (Presenter) object and attaches itself to it. Read and write

1View logic of a single screen (see Android, 2019).

79

5 AppLoader (Android Application)

permissions for the external storage are requested by the MainPresenter in
order to be able to display a list of files and subsequently open and unzip
the configuration archive. If read and write permissions are denied, an error
message is displayed an the application is terminated. Otherwise, internal
storage of the device is scanned for archives files containing configured
projects in MainPresenter. A clickable list of available projects is created
and displayed to the user by MainActivity (see Figure 5.3). The archive of
the clicked project is extracted and the JSON file is loaded into a local string
variable. CarActivity is started with the JSON string as parameter.

When the CarActivity is started, a loading screen overlay is set to is placed
over the rest of the GUI elements for the time of the setup (see Figure 5.4).
The JSON string is deserialized into a DisplayAppProject data object.

The DBC file and the A2L file are parsed and the application tries to
establish a connection with GIGABOX Beo. A DAQ measurement is initiated
with the list of all relevant measurements from the DisplayAppProject as
parameter (see section 3.5.1). All of the mentioned functions concerning
communication with GIGABOX Beo are part of the AKKA XCP library (see
chapter 5).

A GUI element is created for every item from the loaded DisplayAppProject.
The following two functions create labels and text controls. Size, position,
text color and other properties of the TextView are set to the information
in the TextItems. If the TextItem is a label and therefore does not have a
measurement, the method getVariableDescriptionForItem returns null.
Subsequently, a method in the CarActivity is called to display and connect
the configured TextView.

fun addTextViewsToLayout (r l : Relat iveLayout){
for (t e x t I t em in displayApp . TextItems){

var tv = TextView (r l . contex t)
tv . layoutParams = Relat iveLayout . LayoutParams (tex t I t em . Width . roundToInt () ,

t e x t I t em . Height . roundToInt ())
tv . t e x t = t ex t I t e m . Text
tv . x = t ex t I t e m . X
tv . y = t ex t I t e m . Y
tv . se tTextColor (Color . parseColor (tex t I t em . Color))
tv . t e x t S i z e = t ex t I t e m . FontSize
tv . id = generateViewId ()

val varDescr = getVar iab leDescr ip t ionFor I tem (te x t I t em . Measurements)

80

5.2 Implementation

uiScope . launch{
getViewOrThrow () . showTextBoxController (r l , tv , varDescr , f a l s e)

}
}

}

Listing 5.1: In CarPresenter

In the following code snippet, the configured TextView is displayed. For
items which are controls (i.e. the VariableDescription is not null), a con-
troller is created for the GUI element. The controllers are part of the AKKA
app utilities library and provide all functionality for communication GUI
element and GIGABOX Beo (see chapter 5).

override fun showTextBoxController (r l : Relat iveLayout , tv : TextView ,
varDescr : V a r i ab l e D es c r i p t i o n ? , valFromDbc : Boolean)
: IXcpUiControl ler ?{

r l . addView (tv)
i f (varDescr != null){

val c o n t r o l l e r = TextBoxControl ler (getXCPContext () , varDescr , tv . id , f a l s e)
i f (varDescr != null && varDescr . dataType == DataTypeEnum . FLOAT32 IEEE . name){

c o n t r o l l e r . setFormat ("%.0f")
}
C o n t r o l l e r s . add (c o n t r o l l e r)
return c o n t r o l l e r

}
return null

}

Listing 5.2: Configuring a label or text control in the CarPresenter object.

When all items have been created, the loading overlay is removed and the
configured user interface is shown. Figure 5.5 shows a screenshot of the
previously configured application.

81

5 AppLoader (Android Application)

Figure 5.3: Clickable list of available projects.

82

5.2 Implementation

Figure 5.4: The loading screen is shown while the GUI is configured.

83

5 AppLoader (Android Application)

Figure 5.5: The configured application.

84

6 Summary and Future Work

6.1 Summary

The point of this thesis was the development of a visual coding tool for
the creation of AKKA Display Apps. Chapter 1 introduced the reader to
the background and motivation of the thesis. Chapter 2 examined the
state of the art, comparing and analysing two popular visual coding tools.
Chapter 3 explained methods and frameworks which were used during
development as well as the technological background of vehicle busses and
automotive network protocols. Chapter 4 described the design, development
and usability inspection of the AppBuilder in detail. Chapter 5 examined the
design and development process of the AppLoader.

The result of this thesis is a modular construction kit which enables users
to create intelligent Android applications without writing any code. The
constructed Android applications have runtime access to a defined vehicle’s
CAN bus and allow users to visualize and modify data.

6.2 Future Work

After a company-internal presentation, further development of the App-
Builder and AppLoader was decided. The set of preconfigured GUI elements
will be expanded by several new controls including speedometers and di-
agrams. The possibility of multi-view applications will be implemented,
allowing users to construct separate Views for debugging and showcasing
of new features. Also, widgets and a map View will be added to the set of
possible interface elements.

85

6 Summary and Future Work

By the use of the AppBuilder, testing and demonstration of ECUs in cars will
be more efficient and flexible. The resulting reduction of delays during the
test season saves time and money.

86

Appendix

87

Bibliography

AKKADigital (Aug. 2013). GIGABOX beo. url: https://www.akka-digital.
com/fileadmin/Download_Products/gigabox_beo/giga_flyer_beo_

akka.pdf (visited on 04/17/2019) (cit. on p. 25).
Andreas Patzer, Rainer Zaiser (2016). XCP – The Standard Protocolfor ECU

Development (cit. on p. 26).
Android (2019). Activity. url: https://developer.android.com/reference/

android/app/Activity (visited on 06/27/2019) (cit. on p. 79).
AppyBuilder (2019). url: appybuilder.com (visited on 05/28/2019) (cit. on

pp. 5, 9, 11).
ASAM (Nov. 30, 2017). ASAM MCD-1 XCP. url: https://www.asam.net/

standards/detail/mcd-1-xcp/ (visited on 06/24/2019) (cit. on p. 26).
AxoCover (2019). AxoCover. url: https://github.com/axodox/AxoCover

(visited on 06/22/2019) (cit. on p. 53).
Beck, Kent (Nov. 8, 2002). “Test-Driven DevelopmentBy Example.” In:

Addison-Wesley (cit. on pp. 13, 14).
Bosch (Sept. 1991). CAN Specification. url: http://esd.cs.ucr.edu/webres/

can20.pdf (visited on 05/08/2019) (cit. on p. 25).
Cervantes, Edgar (Mar. 18, 2016). Thunkable: coding for the masses and profits

for the makers. url: https://xceed.com/wp-content/documentation/
xceed-toolkit-plus-for-wpf/PropertyGrid%20class.html (visited
on 06/13/2019) (cit. on p. 5).

CiA (2019). History of CAN technology. url: https://www.can-cia.org/can-
knowledge/can/can-history/ (visited on 05/08/2019) (cit. on p. 25).

Crispin, L. (Nov. 2006). “Driving Software Quality: How Test-Driven De-
velopment Impacts Software Quality.” In: IEEE Software 23.6, pp. 70–71.
issn: 0740-7459. doi: 10.1109/MS.2006.157 (cit. on p. 14).

89

https://www.akka-digital.com/fileadmin/Download_Products/gigabox_beo/giga_flyer_beo_akka.pdf
https://www.akka-digital.com/fileadmin/Download_Products/gigabox_beo/giga_flyer_beo_akka.pdf
https://www.akka-digital.com/fileadmin/Download_Products/gigabox_beo/giga_flyer_beo_akka.pdf
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/reference/android/app/Activity
appybuilder.com
https://www.asam.net/standards/detail/mcd-1-xcp/
https://www.asam.net/standards/detail/mcd-1-xcp/
https://github.com/axodox/AxoCover
http://esd.cs.ucr.edu/webres/can20.pdf
http://esd.cs.ucr.edu/webres/can20.pdf
https://xceed.com/wp-content/documentation/xceed-toolkit-plus-for-wpf/PropertyGrid%20class.html
https://xceed.com/wp-content/documentation/xceed-toolkit-plus-for-wpf/PropertyGrid%20class.html
https://www.can-cia.org/can-knowledge/can/can-history/
https://www.can-cia.org/can-knowledge/can/can-history/
https://doi.org/10.1109/MS.2006.157

Bibliography

George, Boby and Laurie Williams (2003). “An Initial Investigation of Test
Driven Development in Industry.” In: Proceedings of the 2003 ACM Sympo-
sium on Applied Computing. SAC ’03. Melbourne, Florida: ACM, pp. 1135–
1139. isbn: 1-58113-624-2. doi: 10.1145/952532.952753. url: http:
//doi.acm.org/10.1145/952532.952753 (cit. on p. 14).

ISO (Dec. 2015). ISO 11898-1:2015. url: https://www.iso.org/standard/
63648.html (visited on 05/08/2019) (cit. on p. 25).

Karac, I. and B. Turhan (July 2018). “What Do We (Really) Know about Test-
Driven Development?” In: IEEE Software 35.4, pp. 81–85. issn: 0740-7459

(cit. on p. 15).
Kühnel, Andreas (2013a). “Visual C# 2012.” In: Fourth. Rheinwerk Verlag.

Chap. Das MVVM-Pattern. isbn: 0335216846 (cit. on p. 16).
Kühnel, Andreas (2013b). “Visual C# 2012.” In: Fourth. Rheinwerk Verlag.

Chap. Konzepte von WPF. isbn: 0335216846 (cit. on p. 20).
Lardinois, Frederic (2019). Kotlin is now Google’s preferred language for An-

droid app development. url: https://techcrunch.com/2019/05/07/
kotlin- is- now- googles- preferred- language- for- android- app-

development/ (visited on 06/15/2019) (cit. on p. 23).
Microsoft (2019a). Code-Behind and XAML in WPF. url: https://docs.

microsoft . com / en - us / dotnet / framework / wpf / advanced / code -

behind-and-xaml-in-wpf (visited on 06/27/2019) (cit. on p. 16).
Microsoft (2019b). The MVVM Pattern. url: https://docs.microsoft.com/

en-us/previous-versions/msp-n-p/hh848246(v=pandp.10) (visited
on 05/13/2019) (cit. on pp. 15, 16).

MITAppInventor (2019). About Us. url: https://appinventor.mit.edu/
explore/about-us.html (visited on 05/19/2019) (cit. on pp. 7–9).

Moq (2019). Moq. url: https://github.com/moq/moq4 (visited on 06/22/2019)
(cit. on p. 54).

Müller, M. et al. (2018-11). “Enabling Teenagers to Create and Share Apps.”
In: 2018 IEEE Conference on Open Systems (ICOS), pp. 25–30. doi: 10.
1109/ICOS.2018.8632815 (cit. on pp. 5, 6).

Nielsen, Jakob (1994). “Usability Inspection Methods.” In: Conference Com-
panion on Human Factors in Computing Systems. CHI ’94. Boston, Mas-
sachusetts, USA: ACM, pp. 413–414. isbn: 0-89791-651-4. doi: 10.1145/
259963.260531. url: http://doi.acm.org/10.1145/259963.260531
(cit. on p. 57).

90

https://doi.org/10.1145/952532.952753
http://doi.acm.org/10.1145/952532.952753
http://doi.acm.org/10.1145/952532.952753
https://www.iso.org/standard/63648.html
https://www.iso.org/standard/63648.html
https://techcrunch.com/2019/05/07/kotlin-is-now-googles-preferred-language-for-android-app-development/
https://techcrunch.com/2019/05/07/kotlin-is-now-googles-preferred-language-for-android-app-development/
https://techcrunch.com/2019/05/07/kotlin-is-now-googles-preferred-language-for-android-app-development/
https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/code-behind-and-xaml-in-wpf
https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/code-behind-and-xaml-in-wpf
https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/code-behind-and-xaml-in-wpf
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/hh848246(v=pandp.10)
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/hh848246(v=pandp.10)
https://appinventor.mit.edu/explore/about-us.html
https://appinventor.mit.edu/explore/about-us.html
https://github.com/moq/moq4
https://doi.org/10.1109/ICOS.2018.8632815
https://doi.org/10.1109/ICOS.2018.8632815
https://doi.org/10.1145/259963.260531
https://doi.org/10.1145/259963.260531
http://doi.acm.org/10.1145/259963.260531

Bibliography

Nielsen, Jakob (Jan. 4, 2012). Usability 101: Introduction to Usability. url:
https://www.nngroup.com/articles/usability-101-introduction-

to-usability/ (visited on 06/16/2019) (cit. on p. 57).
OpenCover (2019). OpenCover. url: https : / / github . com / OpenCover /

opencover (visited on 06/22/2019) (cit. on p. 53).
Prism (2019a). Commanding. url: https://prismlibrary.github.io/docs/

commanding.html (visited on 06/15/2019) (cit. on p. 21).
Prism (2019b). Using the ViewModelLocator. url: https://prismlibrary.

github.io/docs/viewmodel-locator.html (visited on 06/15/2019)
(cit. on p. 20).

Syromiatnikov, A. and D. Weyns (Apr. 2014). “A Journey through the Land of
Model-View-Design Patterns.” In: 2014 IEEE/IFIP Conference on Software
Architecture, pp. 21–30. doi: 10.1109/WICSA.2014.13 (cit. on p. 17).

Vector (Jan. 2007). DBC File Format Documentation. url: http://read.pudn.
com/downloads766/ebook/3041455/DBC_File_Format_Documentation.

pdf (visited on 06/24/2019) (cit. on p. 26).
Vector (2019). Beschreibung der Kommunikationsnetze. url: https://www.

vector.com/de/de/produkte/anwendungsgebiete/steuergeraete-

kalibrierung/datenbeschreibung/#c25783 (visited on 06/24/2019)
(cit. on p. 25).

Wolber, David, Harold Abelson, and Mark Friedman (Jan. 2015). “Democra-
tizing Computing with App Inventor.” In: GetMobile: Mobile Comp. and
Comm. 18.4, pp. 53–58. issn: 2375-0529. doi: 10.1145/2721914.2721935.
url: http://doi.acm.org/10.1145/2721914.2721935 (cit. on p. 7).

Xceed (2019). PropertyGrid class. url: https://www.androidauthority.com/
thunkable-coding-678467/ (visited on 05/28/2019) (cit. on p. 46).

91

https://www.nngroup.com/articles/usability-101-introduction-to-usability/
https://www.nngroup.com/articles/usability-101-introduction-to-usability/
https://github.com/OpenCover/opencover
https://github.com/OpenCover/opencover
https://prismlibrary.github.io/docs/commanding.html
https://prismlibrary.github.io/docs/commanding.html
https://prismlibrary.github.io/docs/viewmodel-locator.html
https://prismlibrary.github.io/docs/viewmodel-locator.html
https://doi.org/10.1109/WICSA.2014.13
http://read.pudn.com/downloads766/ebook/3041455/DBC_File_Format_Documentation.pdf
http://read.pudn.com/downloads766/ebook/3041455/DBC_File_Format_Documentation.pdf
http://read.pudn.com/downloads766/ebook/3041455/DBC_File_Format_Documentation.pdf
https://www.vector.com/de/de/produkte/anwendungsgebiete/steuergeraete-kalibrierung/datenbeschreibung/#c25783
https://www.vector.com/de/de/produkte/anwendungsgebiete/steuergeraete-kalibrierung/datenbeschreibung/#c25783
https://www.vector.com/de/de/produkte/anwendungsgebiete/steuergeraete-kalibrierung/datenbeschreibung/#c25783
https://doi.org/10.1145/2721914.2721935
http://doi.acm.org/10.1145/2721914.2721935
https://www.androidauthority.com/thunkable-coding-678467/
https://www.androidauthority.com/thunkable-coding-678467/

	Abstract
	Kurzfassung
	Introduction
	Motivation
	Aim and Objectives
	Structure of the Thesis

	Related Work
	MIT App Inventor
	Design Editor
	Blocks Editor

	AppyBuilder
	Design Editor
	Blocks Editor

	Technologies, Frameworks and Development Methods
	Test-Driven Development
	Model View ViewModel (MVVM) Pattern
	Comparison with the Model View Controller (MVC) Pattern
	Windows Presentation Foundation (WPF)
	Prism

	Android Application
	Kotlin
	Model View Presenter (MVP) Pattern

	JSON
	Communication between Car and Android Device
	Technological Background
	Generation of Firmware and A2L
	Data Flow

	AppBuilder (.NET Application)
	Design
	Use Cases
	Graphical User Interface (GUI)

	Implementation
	Creation of a new project
	Opening a Project
	EditorMain
	Controls
	TextControl, BatteryControl
	Radiobutton Field
	Icon Button
	Progress Bar
	Adding and Replacing DBC and A2L Files
	Export of a Project

	Testing
	Usability Inspection
	Setup
	Test Result
	Refactoring

	AppLoader (Android Application)
	Design
	Requirements
	User Interface

	Implementation

	Summary and Future Work
	Summary
	Future Work

	Bibliography

