TU

Grazm

Joshua Cherian Varughese, MSc

Wave Oriented Swarm Paradigm

Unification of common swarm behaviors using
minimalistic communication

DOCTORAL THESIS
to achieve the university degree of
Doktor der technischen Wissenschaften
submitted to

Graz University of Technology

Supervisor
Univ.Prof. Dipl.-Ing. Dr. Franz Wotawa
Institute for Software Technology
Co-supervisor

Univ.Prof. Mag. Dr.rer.nat. Thomas Schmickl
Institute for Biology,
University of Graz

Graz, October 2019

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to TUGRAZonline is
identical to the present doctoral thesis.

Date Signature

Abstract

Swarm intelligence and swarm robotics research have been underway for
a few decades and has produced many algorithms based on self organiz-
ing systems found in nature. Contrary to classical control systems, self
organizing behaviors found in nature rely on simple decentralized rules.
Synchronization of a swarm of agents based on pulse coupled oscillators
which are inspired by fireflies blinking in unison is one example of artificial
self organizing behaviors inspired by nature. Another example of such a
system is the emergent aggregation of a group of robots at a global thermal
optima inspired by the aggregation of newly hatched bees. While a large
body of research exists for variations and modifications in many such al-
gorithms, there have been only few attempts to unify the underlying agent
level design of these widely varying behaviors.

In this thesis, a design paradigm for a swarm of agents is presented
which can exhibit a wide range of collective behaviors at swarm level.
The paradigm draws inspiration from the traveling wave based chemical
communication found in slime mold and the periodicity of blinking in fire-
flies. I demonstrate in simulation and on real robotic platforms that using
this simple underlying communication paradigm at agent level, a swarm
can inherit various swarm level abilities such as synchronization, leader
election, aggregation, gradient ascent etc. Additionally, I also attempt to
combine above mentioned behaviors to enable a programmer to perform
complex behaviors at a swarm level. Adding to the novelty and versatility of
the presented paradigm, a 1-bit situated communication is used throughout
the thesis, which demonstrates the minimalistic nature of the presented
paradigm. In addition, the resilience of the paradigm to the loss of incoming
communication and how such disturbances affect the overall behavior is
studied.

At the end of the thesis, a practical application of the presented paradigm
is suggested for detecting an oxygen depletion phenomenon called anoxia

in the lagoon of Venice using robotic platforms developed during project
subCULTron. By using the presented design paradigm, simple robots with
limited capabilities can monitor the local conditions and eventually con-
tribute to detecting a spreading phenomenon like anoxia using purely local
information and communication.

i

Kurzfassung

Die bereits seit einigen Jahrzehnten stattfindende Forschung im Bereich
Schwarmrobotik und Schwarmintelligenz fiithrte zur Entwicklung diverser
Algorithmen, die auf selbstorganisierten Systemen in der Natur basieren. Im
Gegensatz zu klassischen Kontrollsystemen stiitzt sich selbstorganisiertes
Verhalten in der Natur auf einfache, dezentralisierte Regeln. Ein Beispiel
tiir bio-inspiriertes, selbstorganisiertes Verhalten in einem kiinstlichen Sys-
tem ist Synchronisation, basierend auf gekoppelten Oszillatoren in einem
Schwarm von Agenten, welche von Glithwiirmchen inspiriert sind, die
im Einklang blinken. Ein weiteres Beispiel fiir ein solches System ist die
emergente Aggregation in Gruppen von Robotern bei einem globalen ther-
mischen Optimum, das durch das Verhalten frisch geschliipfter Bienen
inspiriert wurde. Wahrend fiir Variationen und Modifikationen in vielen de-
rartigen Algorithmen eine grofse Anzahl an Untersuchungen existiert, gibt es
nur wenige Ansitze, die das zugrunde-liegende Design auf Agenten-Ebene
dieser stark variierenden Verhaltensweisen vereinheitlichen.

In dieser Arbeit wird ein Design-Paradigma fiir einen Schwarm von Agen-
ten prasentiert, welches eine breite Palette an kollektivem Verhalten auf
Schwarm-Ebene erzeugen kann. Das Paradigma ist von der auf propagieren-
den Wellen basierenden chemischen Kommunikation inspiriert, welche
einerseits in bestimmten Schleimpilzen, und andererseits in der Periodizitat
des Blinkens von Glithwiirmchen zu finden ist. In Simulationen und mithilfe
realer Roboter, die dieses einfache, grundlegende Kommunikationsparadigma
auf Agenten-Ebene nutzen, wird gezeigt, dass ein Schwarm verschiedene
Fahigkeiten auf Schwarm-Ebene erhalten kann, wie zum Beispiel Synchro-
nisation, Wahl eines Anfiihrers, Aggregation oder Bewegung entlang von
Gradienten, um nur ein paar zu nennen. Dariiber hinaus wird die Kombina-
tion der oben genannten Verhaltensweisen auf Schwarm-Ebene untersucht,
um es ProgrammiererInnen zu ermoglichen, komplexe Verhaltensweisen auf
Schwarm-Ebene unter Verwendung des vorgestellten Paradigmas zu erzeu-
gen. Zusétzlich zur Neuheit und Vielseitigkeit des vorgestellten Paradigmas

vii

wird in der gesamten Arbeit 1-Bit-Kommunikation verwendet, die den
minimalistischen Charakter des vorgestellten Paradigmas deutlich macht.
Auflerdem wird die Resilienz des Paradigmas gegeniiber dem Verlust einge-
hender Kommunikation untersucht und auch, wie sich solche Stérungen
auf das Gesamtverhalten auswirken.

Am Ende der Arbeit prasentiere ich eine mogliche praktische Anwendung
des vorgestellten Paradigmas, ndmlich die Erfassung eines anoxischen
Phédnomens in der Lagune von Venedig, die mit Hilfe von Schwarmrobotern
erfasst wird, welche im Projekt subCULTron entwickelt wurden. Unter Ver-
wendung des vorgestellten Design-Paradigmas konnen einfache Roboter
mit begrenzten Fihigkeiten die lokalen Umweltparameter und Bedingungen
tiberwachen und schliefslich dazu beitragen, sich ausbreitende Phédnome,
wie anoxische Bereiche in der Lagune von Venedig, unter Verwendung von
rein lokaler Information und Kommunikation zu erkennen.

viii

Acknowledgment

I would like to thank my supervisor Prof. Dr. Franz Wotawa who never
failed to motivate me to keep working on my PhD. Without his relentless
support and guidance, I would not have made it to this point. I would also
like to thank my second supervisor Prof. Dr. Thomas Schmickl for guiding
me with regards to scientific work as well as project management. I am
confident that the guidance I got from both my supervisors will remain
crucial in my future endeavors.

A special word of thanks to Dr. Ronald Thenius whose ideas have enabled
me to publish various papers. His guidance and enthusiasm is and has been
an invaluable ingredient for not only my doctoral research but also for life
in general. I am forever grateful for his guidance, advice, love and care that
goes much beyond any call of duty. I also thank Dr. Payam Zahadat for her
unwavering support throughout my time at the Artificial Life Lab.

I could not have made it to this point without the invaluable inputs in
various niches from colleagues the Artificial Life Lab. Many have grown to
be great friends with the slight handicap of ever having been colleagues.
Hannes Hornischer, your annoying perfectionism has played a great role
in making me a better researcher. Daniel Hofstadler, your quick wit and
you being a pundit will remain a refreshing memory. Daniel E. Moser, your
friendship has carried me through many a difficult days, tiresome work-
shops and late night soldering sessions. The widely varying contributions
from Bianca Pichler, Martin Stefanec, Asya Ilgun, Lilo, Valerin Stokanic,
Martina Szopek, Stefan Schonwetter and Sarah Schonwetter and are fondly
remembered and appreciated.

I am thankful for the many friends I have been able to make outside the
university over the past four years. My roommates, Paddy and July, have
been a constant source of support, good food and much needed motivation
in times of dire need. I am greatly thankful for friends at the “OSM” and
“International Fellowship” who made many a difficult weeks bearable and

sometimes even enjoyable. For the sake of brevity, I will refrain from naming
all of these friends who I feel have been key players to my sanity and
happiness in Graz.

My parents and siblings have proved time and time again that if all else fails
in this world, I will not be alone facing whatever I face. I am exceedingly
grateful and often amazed by their sacrificial support which is one of the
few things I cannot imagine living without.

I would also like to thank the Knerich family who took me in and treated
me like a son during my initial time in Europe. I remember with gratitude
their thoughtful and well placed gifts such as my bicycle and workstation
which served me on a daily basis.

At the core, I am a Christian. Contrary to the recent popular notion that
true science requires an agnostic or an atheistic stance, I have found no
good reason to deny my belief. I increasingly realize that I stand beside very
many scientists of varying statures when I make such a statement. Without
any further explanation, I would like to thank God for the peace, the joy
and the assurance that I constantly experience through the message of the
bible.

A special word of acknowledgment to the three blue cups at the Artificial
Life Lab which have been the vessels delivering the necessary caffeine to
my body to help me snap out of sleepy mornings.

Contents

Abstract

Kurzfassung

Acknowledgement

1 Introduction
1.1 Problem statement
1.2 Research questions
1.3 Outline L

Background and Related Work

2.1
2.2

2.3

2.4

Collective behavior in biological systems
“Self-organization” to “Swarm robotics”
2.2.1 Self-organization
2.2.2 Swarm intelligence and swarm robotics
Common swarm behaviors
2.3.1 Synchronization.
23.2 Flocking
233 Aggregation
2.3.4 Collective decision making
2.3.5 Collective transport

“WQOSP”: a novel unification of collective behaviors?

WOSP: Wave Oriented Swarm Paradigm

3.1

3.2

Inspirationo 0000
3.1.1 Travelingwaves
3.1.2 Pulse coupled oscillators
WOSP - Wave Oriented Swarm Paradigm
3.2.1 Parameters.

vii

ix

Xi

Contents

xii

3.3 Primitives oo oo
3.3.1 Internal organization: leader election
3.3.2 Internal organization: synchronization
3.3.3 Internal organization: localize object
3.3.4 Swarm awareness: localize swarm center

3.3.5 Swarm awareness: estimating number of swarm mem-
bers
3.3.6 Swarm awareness: estimate extremities of the swarm .
3.3.7 Locomotion: aggregation
3.3.8 Locomotion: moving collectively
3.3.9 Locomotion: gas expansion
3.4 Combining primitives
3.4.1 Combining primitives: exploration
3.4.2 Combining primitives: collective transport
3.5 Analysis and discussion of parameters
3.5.1 Parameter dependencies
3.5.2 Empirical analysis and choice of parameters
3.6 Robotic experiments
3.6.1 Setup
3.6.2 Experiments
3.7 Discussion 0 oo
3.7.1 General featureso 000000
3.7.2 Design considerations

Collective Emergent taxis

4.1 FSTaxis: a WOSP based taxis algorithm

4.2 Gradient ascent with FSTaxis
4.2.1 Simulations withoutnoise
4.2.2 Gradients with local optima

4.3 Summing up the FSTaxis algorithm

A Resilience Case Study

5.1 Resilienceof swarms

5.2 Relevant algorithms L.
5.2.1 The swarmtaxis algorithm

5.3 FSTaxis vs swarmtaxis: Comparing resilience
5.3.1 Simulating failures 000

5.4 Performance measures
5.4.1 Time performance

Contents

5.4.2 Optimal path and deviation. 89

55 Results 91
5.5.1 Time performance 91

5.5.2 Root meansquareerror 91

5.6 Discussion: swarmtaxis vs. FSTaxis 93
5.7 “swarmFSTaxis”: making swarmtaxis more resilient 95
5.7.1 The swarmFSTaxis Algorithm 96

5.7.2 Testing swarmFSTaxis 98

5.7.3 Discussion: swarmFSTaxis 101

6 WOSP for Event Detection 103
6.1 Eventdetection 103
6.2 Relatedwork. 105
6.3 Thealgorithm, 106
6.3.1 Simulation o0 00000 107

6.3.2 Swarm level parameters 109

6.4 Results 110
6.4.1 Robotic experiments 112

6.5 Discussion o e 115

7 Conclusion & Future Work 119
71 Conclusion 119
7.2 Limitations oo 120
7.2.1 Absolute requriement of connectivity and directionality 120

7.2.2 Scalability limited by communication speed 121

7.2.3 Resilience at the cost of communication 121

7.2.4 Unification through WOSP 121

73 Futurework 122
7.3.1 1-bit to multi-bit communication 122

7.3.2 Developing syntax and grammar 122

7.3.3 WOSP in three dimensions 123
Appendix A List of Publications 127
A1 Published. 127
A2 Submitted L 128
Bibliography 131

Xiii

List of Figures

2.1

39

3.10
3.11

3.12
313

3-14
3-15
3.16
3.17

3.18

Three spectacular examples of collective behavior found in

biological systems.0 L. 6
Traveling waves of cAMP in dictyostelium discoideum. 23
A photograph of fireflies lighting up in unison. 25
Three states of agentsin WOSP 26
[lustration of wave based communication. 28
Leader electioninaswarm. 32
Analysis of the synchronization primitive. 34
Demonstration of the the agents’ estimation of the location of

theobject.o 36
Demonstration of agents” estimation of the direction towards

the center of theswarm. 37

Demonstration of agents’ estimation of the direction towards
the center of the swarm when it does not coincide with the

geometrical center of the swarm. 38
Estimated number of swarm members averaged over all
agents in the swarm versus time. 40
Figures showing the agents’ perception of their location
within the swarm. 42
Demonstration of aggregation of a swarm. 43
Average root mean square distance of all agents from the
center of the swarm, R, plotted against time. 44
A swarm aggregating at an object. 45
A swarm being led by a single agent. 47
A swarm performing the primitive “gas expansion”. 49
Schematic illustration of sequential execution of three primi-
tives A,Band C. oo ool 50

Consecutive execution of the primitives aggregation, leader
election, moving collectively and gas expansion as example
for an exploring routine of an autonomous swarm. 51

XV

List of Figures

3.19 Collective transport by sequential execution of gas expansion
and aggregation at the object. 53
3.20 Percentage deviation of the estimated number of agents in the
swarm versus cycle length and the actual number of agents
intheswarm. 55
3.21 Visualization of the time to convergence (selection of a single
leader) showing the effect of the refractory time t,,y and the
cyclelength £/ o oo 56
3.22 The percentage success of the aggregation primitive is evalu-
ated with varying lengths of steps d taken by agents and also

the angular resolution Aw of incoming ping direction. 57
3.23 Photographs of electronic module integrated with thymio-II

platform for directional communication. 61
3.25 Estimate of population of each of the 10 robots in the swarm

across 10 repeated experiments. 63
3.24 Photographs of various stages of WOSP validation using

robotic experiments. oL 64
4.1 The overall scheme of the FSTaxis algorithm. 70
4.2 The state transition diagram of the FSTaxis algorithm. 72
4.3 Behavior of the FSTaxis algorithm to two gradients. 75
4.4 Bubble plot showing the region of convergence relative to the

starting point of the swarm. 75
4.5 Behavior of the FSTaxis algorithm to two noisy gradients. . . 77
4.6 A color map showing the percentage convergence in presence

ofnoise. L 78
4.7 The change of the spread of the swarm represented by R, ;s

during four differentruns. oo 8o
5.1 State transition diagram of the swarmtaxis algorithm. 85
5.2 Typical runs of the swarmtaxis and the FSTaxis algorithms. . 86
5.3 A scenario showing a ping failure in the FSTaxis algorithm. . 87
5.4 Two scenarios showing a successful and a failed communica-

tion in the swarmtaxis algorithm. 88
5.5 Illustration of the deviation of a swarm centroid trajectory

from the straight line passing through (xs,ys) and (xg¢,y¢). . 90
5.6 The performance parameter, e formance and how it changes

as the probability of failure increases. 92

XVi

List of Figures

5.7 Percentage of runs of each algorithm that converged to the
goal with increasing probability of failure.
5.8 Distribution of root mean square error of centroid trajectory
of a swarm executing FSTaxis..
5.9 Distribution of root mean square error of centroid trajectory
of a swarm executing swarmtaxis.
5.10 A state transition diagram of the ping behavior of the swarmF-
STaxis algorithm.
5.11 The ping mechanism of the swarmFSTaxis algorithm is illus-
trated in this figure. 000 oL
5.12 A state transition diagram of the motion behavior of the
swarmFSTaxis algorithm.
5.13 A typical simulation run of the swarmFSTaxis.
5.14 The simulation time each algorithm took to converge to the

5.15 A plot showing the percentage of runs that converged to the
goal for all failure probabilities.

6.1 A schematic representation of the modes of operation.

6.2 A schematic representation of the relaying of signals in the
eventmode. L L

6.3 Screen shots of a simulation run of the presented algorithm.
The agents are placed randomly in the arena with uniform
probability. oo

6.4 Time T until reporting an event versus measuring periodicity

6.5 Time T until reporting of an event versus agent density D. . .

6.6 Time until reporting T (black circles) versus the factor by
which the agents in the observation mode reduce their £;**
as compared to the agents in alert mode or event mode.

6.7 An exemplary run of the robotic experiments conducted with
aMussels under laboratory conditions.

7.1 Illustration of a three dimensional adaptation of the aggrega-
tion primitive. oo o000

109

XVil

List of Tables

3.1 The parameters which were used for the empirical analysis

of the presented primitives are shown here. 58
3.2 The parameters used in the robotic experiments and also the

empirical results of the experiments. 62
4.1 Parameters used in the FSTaxis algorithm. 72

5.1 Table showing all parameters used in the modified swarm-
taxis algorithm. 0. 98

XIX

List of Algorithms

3.1 Basic pseudo code for every individual agent within WOSP. 29
3.2 Code block for primitive “leader election” 31
3.3 Code block for primitive “synchronization”. 33
3.4 Code block for primitive “localize object” 35
3.5 Code block for primitive “localize swarm center” 37
3.6 Code block for primitive “estimating number of swarm mem-
bers” 39
3.7 Code block for primitive “localize object” 41
3.8 Code block for primitive “aggregation” 44
3.9 Code block for primitive “moving collectively”. 46
3.10 Code block for primitive “gas expansion”. 48
4.1 Pseudo code for the FSTaxis algorithm 73

XXi

1 Introduction

“Swarm intelligence” (Beni and Wang, 1989) is a field of research that was
born out of the interdisciplinary efforts towards understanding concepts
such as self-organization, intelligence, collective behavior etc. It is broadly
defined as the “emergent collective intelligence of a group of simple agents”
(Beni and Wang, 1989). Over the years, swarm intelligence researchers
have modeled, tested and validated several swarm intelligence behaviors,
drawing inspiration from natural systems.

Although research in swarm intelligence has been well underway for
decades, there has been a recent spike in research interest in favor of
self-organized systems due to the proliferation of connected computational
devices. Due to the cheap availability of computational, memory and sen-
sory devices, the number of available computers and robotic systems has
increased dramatically over the past few years (Koh and Magee, 2006). Such
a proliferation of connected devices has posed challenges to the traditional
centralized approach to controlling systems. Therefore, engineering and
research communities have increasingly been pursuing decentralized ap-
proaches for controlling collectives (Kim and Follmer, 2017; Zahadat and
Schmickl, 2016; Gubbi et al., 2013). Swarm intelligence and self-organization
offer many such decentralized solutions (Dorigo et al., 2004) which take
inspiration from self-organized collective behaviors found in natural sys-
tems.

Due to the unprecedented confluence of research interest and the availability
of suitable platforms to test swarm intelligence algorithms (ePuck, 2009;
Mondada et al., 2004; Riedo et al., 2013; Thenius et al., 2016), many inde-
pendent algorithms have been developed for various applications. However,
there are few efforts dedicated to finding an underlying design structure
in order to unify the principle behind the functioning of various swarm
behaviors. In this thesis, a design paradigm is presented which unifies a
diverse range of collective behaviors.

1 Introduction
1.1 Problem statement

As mentioned above, a number of problem specific swarm intelligent solu-
tions have been presented by various researchers over the past few decades.
However, seldom has a unification of multiple collective behaviors been
attempted. Some fundamental collective behaviors for instance include task
allocation, collective transport, collective decision making, synchronization,
aggregation and flocking. Different methods have been suggested with vary-
ing degrees of success for each of these collective behaviors. Often, each of
these solutions requires fundamentally different underlying designs at agent
level. In this research, I' present a paradigm for swarm communication
based on traveling waves found in nature. I call this paradigm the Wave Ori-
ented Swarm Paradigm or “WOSP”. Using this communication paradigm,
a swarm of agents can exhibit a number of common collective behaviors
using only local information. In addition to its versatility, the approach uses
single-bit and therefore minimalistic agent-to-agent communication. Apart
from presenting the unifying paradigm for common collective behaviors,
I also combine these collective behaviors to form more complex swarm
behaviors and thus, enable a swarm to autonomously perform complex
collective behaviors. Furthermore, I will demonstrate the usability of the
paradigm by validating it on robotic platforms which have minimalistic
communication capabilities.

1.2 Research questions

The main contribution of this thesis is the novel swarm communication
paradigm which enables the unification of common collective behaviors in
swarm robotics. In the following, the specific questions addressed in this
thesis are listed.

1. Has unification of individual swarm behaviors been attempted before?
2. Can a simple minimalistic communication paradigm be designed
which is able to produce a diverse range of collective behaviors?

"Hereafter, all references to the author are made in first person. Although there are
co-authors on all papers written in relation to this thesis, I am the first author and the
major contributor to most of the papers this thesis draws from. A detailed delineation of
contributions can be found in Appendix A.

1.3 OQutline

3. Is a single-bit directional communication between agents and basic
motoring enough to produce a rich variety of collective behaviors?

4. Can emergent taxis be accomplished using this minimalistic commu-
nication paradigm?

5. How resilient is the taxis behavior to signal loss in the agent-to-agent
communication in comparison to an alternate taxis method?

6. Can the less resilient taxis method be improved using the suggested
paradigm?

7. Can the paradigm be demonstrated on a robotic platform to demon-
strate its basic functionality?

1.3 Outline

In order to make the reading easier, a brief outline of the overall structure
of the thesis is provided below.

e Chapter 1. Introduction: In this chapter, a brief overview of the thesis,
its motivation and its outline is provided. Without going into the
details of the thesis, the general topic - swarm intelligence is introduced
and the structure of the thesis is briefly outlined to enable readability.

o Chapter 2. Background and Related Research: In this chapter, I pro-
vide the backdrop to the research conducted in this thesis. I examine
existing work in various individual behavioral niches in swarm in-
telligence and try to identify unifying design patterns previously
employed by researchers.

o Chapter 3.WOSP: This chapter contains the main research output of
this thesis. In this chapter, a swarm design paradigm, which enables
swarms to exhibit collective behaviors using minimalistic communi-
cation, is provided. The publications this chapter is based on and my
specific contributions to them are provided in Appendix A.

o Chapter 4. Collective Emergent Taxis: An algorithm using an emergent
mechanism for a swarm to ascend an environmental gradient using
WOSP is introduced in this chapter. The gradient taxis capability of
the swarm using this algorithm is also examined. The publications
this chapter is based on and my specific contributions to them are
provided in Appendix A.

1 Introduction

o Chapter 5. A Resilience Case Study: Using taxis as a case, a study
of resilience of the communication paradigm of WOSP is conducted.
This study compares the ability of two taxis algorithms to reach a
predefined goal in presence of agent-to-agent communication failures.
Subsequently, the less resilient algorithm is improved by plugging in
the WOSP communication paradigm. The publications this chapter
is based on and my specific contributions to them are provided in
Appendix A.

o Chapter 6. WOSP for Event Detection: In this chapter, WOSP has been
used as a design paradigm to develop an algorithm to detect anoxia
events in the lagoon of Venice using simple robots. This chapter also
conducts a laboratory experiment to test the proposed solution to
event detection using WOSP. The publications this chapter is based on
and my specific contributions to them are provided in Appendix A.

e Chapter 7. Conclusion & Future Work: In this chapter, I conclude the
thesis by summarizing the presented paradigm and the associated
results. I also discuss some avenues which are worth being explored
in the future.

2 Background and Related Work

As introduced in Chapter 1, this thesis is about a design paradigm, which
unifies a diverse number of collective behaviors under a single underlying
mechanism. In order to provide a background for the research conducted,
we examine concepts like self-organization, collective behavior, swarm intel-
ligence and swarm robotics etc. in this chapter.

2.1 Collective behavior in biological systems

Nature teems with various kinds of life forms with varying individual capa-
bilities. Most of these individuals, ranging from relatively simple organisms
like slime mold to complex animals like human beings, vary in their abilities
to survive in their environment as an individual. Most of these life forms
have been found to depend not only on individual capabilities but also
on group level dynamics of some form to survive and reproduce. Moving
around as a swarm of individuals permits hunting together, foraging more
efficiently, sharing food or collaboratively defending against predators to
increase their collective probability of survival and reproduction (Eber-
hart et al., 2001). Figure 2.1 shows three spectacular examples of collective
behavior: flocking behavior of birds, shoaling of fish and aggregation in
bees.

The individual probability of survival in fish is increased by moving in
schools and collectively performing escape maneuvers when a predator is
detected by one of the fish (Brock and Riffenburgh, 1960; Hall et al., 1986).
In addition to collectively performing escape maneuvers, the increased
probability of survival of an individual fish is explained by the “many
eyes” (Roberts, 1996) hypothesis. The “many eyes” hypothesis states that
moving together in a group increases the average foraging time of individual
tish, as the burden of scanning the surroundings is distributed among all

2 Background and Related Work

individuals in the group. Since this distribution of responsibility leaves
individual fish with more time to forage, the probability of survival of an
individual fish increases.

(a) Free image by Monica Volpin from (b) Free image by Manfred Antranias Zim-
Pixabay mer from Pixabay

(c) Image from Artificial Life Lab, Graz

Figure 2.1: The images show three spectacular examples of collective behavior
found in biological systems. (a) A shoal of fish swimming in formation (b) A flock
of birds flying in formation (c) A group of bees forming an aggregate.

Bees exhibit similar collective dynamics at various stages and aspects of their
life span. Schmickl et al. (2008) found that newly hatched bees randomly
walk around, stopping only when they meet other bees. The stopping times
of bees are found to be proportional to the “comfort” of the local temper-

2.2 "Self-organization” to “Swarm robotics”

ature. This behavior emerges into an aggregation of bees at the locality
of optimal temperature. The waggle dance of bees is another example of
their dependence on collective behavior. The foraging efficiency of a hive
increases dramatically when bees perform waggle dances (Seeley, 1992) to
inform other bees about food sources in the vicinity.

The synchronized blinking of fireflies (Buck and Buck, 1966, 1968) and the
aggregation of slime mold cells to form a slug (Devreotes, 1989; Siegert and
Weijer, 1992) are other examples of life forms relying on collective abilities
for foraging and reproduction. Various kinds of life forms with varying
physical and cognitive complexity have evolved to perform decentralized
behaviors in order to ensure greater probability of survival. The part each
individual has to play in such behaviors is often simple, yet the resulting
collective behavior that either adds up or emerges on a group level is often
resilient to failures of individuals or other disruptive events (Middleton
and Latty, 2016). Numerous natural swarms following simple behaviors of
its individuals are scalable and can therefore consist of hundreds, thousands
or even millions of individual entities (Kennedy and Wigglesworth, 1951;
Simpson et al., 1999).

2.2 “Self-organization” to “Swarm robotics”

In the above section, I briefly described some examples in behavioral biology
where scientists unraveled the simple rules behind the seemingly complex
collective behaviors found in nature. Most of the collective activities of
these biological systems are self-organized and are based on local interactions
between individuals with limited information and influence.

2.2.1 Self-organization

According to Camazine et al. (2001) self-organization is defined as fol-
lows:

“Self-organization is a process in which pattern at the global level
of a system emerges solely from numerous interactions among the
lower-level components of the system. Moreover, the rules specifying

2 Background and Related Work

interactions among the system’s components are executed using only
local information, without reference to the global pattern.”

The following are some typically observable properties of self-organization.
Ever since Ross Ashby (1947) first mentioned self-organization, various re-
searchers have come up with a much more comprehensive list of properties
of self-organization observable at various scales. However, the following
remain the central properties of self-organization. For the research con-
ducted in this thesis, it is sufficient to consider these central properties of
self-organization.

1. Self-organization is observed in systems consisting of several individ-
ual interacting parts. The number of interacting parts often consist
of tens, hundreds, thousands or in some cases millions of individual
entities.

2. The individual parts of a self-organizing system interact locally and
have limited and local information and influence.

3. As aresult of the local interactions between individuals, spatio-temporal
patterns are formed at various scales of observation of the system.
Such patterns are either a sum of parts of the individual interactions
or an emergent phenomenon, where the pattern is more that the sum
of its parts.

Self-organized systems typically rely on the following mechanisms to pro-
duce the emergent global patterns (Bonabeau et al., 1999):

1. Self-organized systems rely on positive feedback. Positive feedback
or amplification is a process, in which a certain aspect, quantity or
behavior is amplified actively by the individual parts of the system.
The waggle dance of bees (Seeley, 1992) to recruit foragers follows
an amplification pattern and so does the trail laying of ants, where
existing trails are strengthened by the existence of pheromone trails,
which have not yet evaporated (Holldobler and Wilson, 1978).

2. Self-organized systems rely on negative feedback. Negative feedback
mechanisms serve to counteract the positive feedback mechanisms.
The evaporation of pheromone trails can be seen as a counterbalancing
mechanism or a negative feedback loop which enables the optimization
between the number of ants following a trail and the distance of the
food source from the nest.

2.2 "Self-organization” to “Swarm robotics”

3. Self-organized systems tend to amplify fluctuations. The inter-individual
variability and the resulting randomness is crucial to self-organizing
structures. Using the same example of foraging, lost foragers finding
new food sources and recruiting more foragers to these food sources
is an example of this mechanism.

4. Self-organization relies on multiple interactions between the individual
parts of the system.

Sumpter (2005) added some more mechanisms that are responsible for
self-organization in biological systems. His additions are “leadership”, “self-
ishness”, responding to a stimuli beyond a threshold (“response thresholds”)
and “synchronization”.

2.2.2 Swarm intelligence and swarm robotics

After the first mention of self-organization by Ross Ashby (1947), theo-
ries of self-organization were used to explain emergent patterns in physics
and chemistry (Nicolis, 1977). Subsequently, the macroscopic properties
of biological systems were also discovered. Drawing inspiration from self-
organization in natural systems, Beni and Wang (1989) used the term
“swarm” in the context of cellular robotic systems. Although Beni initially
considered the usage of the word “swarm” a buzz word (Sahin, 2005), the
term and its variants such as “swarm intelligence”, “swarm optimization” or
“swarm robotics” have evolved to represent a certain class of self-organizing
systems in both technical and biological systems (Beni, 2005). Bonabeau
et al. (1999) defined swarm intelligence as “the emergent collective intelli-
gence of a group of simple agents”. Overall, one could say that biological
and technical systems that employ the mechanisms and exhibit the proper-
ties of self-organization can be considered swarm intelligent.

The simplicity and decentralized nature of the individual’s behaviors pro-
ducing collective phenomena has attracted interest from fields such as
computer science, robotics and engineering disciplines seeking to inherit
properties of simplicity, resilience and scalability in engineered systems.
Because of the economic and practical in-feasibility of testing swarm intelli-
gence algorithms directly on a large number of robotic platforms, much of
the work that is done in the area of swarm intelligence research remains in
simulation (Eberhart et al., 2001). Apart from algorithms that are designed

2 Background and Related Work

to self-organize a group of physical entities, several optimization algorithms
and simulations of biological behavior have also been done which enables
scientists to understand natural systems better.

Numerous algorithms (Rubenstein et al., 2013; Labella et al., 2006; Hayes
et al., 2003; Zahadat et al., 2015) enabling simple agents to accomplish
complex tasks such as source localization (Hayes et al., 2003), task allocation
(Labella et al., 2006; Zahadat et al., 2015), collective mapping etc. have been
developed. In Rubenstein et al. (2013) and Decugniere et al. (2008), swarm
intelligent algorithms are proposed that enable robots with very limited
individual abilities to transport large objects in a collective manner. In
Hayes et al. (2003), a distributed algorithm for localizing the source of an
odor in an environment was proposed and tested on a swarm of robots.
Apart from enabling a group of simple robots to perform complex tasks,
various algorithms and methods have been suggested to control a swarm of
robots of varying sizes to perform specific actions and tasks in a coordinated
manner such as arranging themselves in a particular shape or responding
collectively to external cues or stimuli (Christensen et al., 2007; Le Goc
et al., 2016; Rubenstein et al., 2014b). Several optimization algorithms relying
on emergent behaviors have been proposed and successfully implemented
(Schmickl et al., 2008; Kennedy and Eberhart, 1995; Yang, 2009). “Particle
swarm optimization” (Kennedy and Eberhart, 1995) is an optimization
algorithm, inspired by flocks of birds, which is being used for multi-objective
optimization. BEECLUST (Schmickl et al., 2008) is an optima finding
algorithm, inspired by a swarm of newly hatched bees, that can be used to
find global optima.

2.3 Common swarm behaviors

In the above sections, I traced how research in self-organization has enabled
scientists to understand patterns found in living and non-living natural
systems. The possibility of building resilient and scalable system level be-
haviors from simple individual level behavior has led to the development
of decentralized algorithms inspired by nature, where many parts of a
system cooperate to accomplish a goal. Several such “swarm intelligence”
algorithms have been proposed for various such collective goals to be ac-
complished. For example, Winfree (1967) discovered that synchronization is

10

2.3 Common swarm behaviors

a cooperative phenomenon and that led researchers into developing various
models (Kuramoto, 1975; Mirollo and Strogatz, 1990; Izhikevich, 1999)
for synchronization of a swarm. Flocking, aggregation, collective decision
making are other such collective goals for which behavioral algorithms have
been developed. In this section, I will explore such behavioral algorithms
or “swarm behaviors” that have been developed to accomplish various col-
lective goals. Since this thesis deals with presenting a unifying underlying
design paradigm (as mentioned in Chapter 1), I will briefly examine a wide
range of commonly observed swarm behaviors in the following sections.

2.3.1 Synchronization

Synchronization is a phenomenon commonly found in nature (Camazine
et al., 2001). Fireflies lighting up rows of trees in South-East Asia are a spec-
tacular example of synchronization. Crickets chirping in unison forms their
acoustic counterpart. Swarm intelligence and swarm robotics benefits from
temporal entrainment in general due to the need for coordination between
the inherently distributed entities in the system. Therefore, synchronization
has been widely explored by researchers working with distributed systems
such as swarm robotic systems, sensor networks etc.

Although synchronization is a phenomenon commonly found in nature,
it had not been until the 1960s that synchronization was understood as a
collective phenomenon. Winfree (1967) discovered that synchronization
is a cooperative phenomenon and Kuramoto (1975) improved Winfree’s
phase based model and introduced a universal form for weakly coupled,
nearly identical limit-cycle oscillators. Ever since then researchers have
been interested in cooperative synchronization and the original model has
been improved. The models for synchronization of coupled oscillators can
be broadly classified into two categories: The “integrate and fire” model
(Mirollo and Strogatz, 1990) and the “pulse coupled oscillator” model
(Izhikevich, 1999). In the integrate and fire approach, the individual oscilla-
tors are continuously affecting each other while in the latter approach, the
individual oscillators are only affected by neighbors” pulses during short
periods of pulses.

Werner-Allen et al. (2005) and Rubenstein et al. (2014a) presented an
implementation of synchronization on robots based on a modified version

11

2 Background and Related Work

of the general synchronization model presented by Mirollo and Strogatz
(1990). The implementations differ from the original model presented by
Mirollo and Strogatz (1990) in such a manner that each node or agent
responds to signals received from their neighbors. While the model from
Mirollo and Strogatz (1990) requires each node to immediately react to
incoming signals by modifying its own internal timer, Werner-Allen et al.
(2005) requires the nodes to record firing events by neighbors and change
their time period in the next cycle.

Wischmann et al. (2006) demonstrated a firefly like synchronization using
a simple recurrent neural network. Wischmann et al. (2006) used the syn-
chronization to switch between foraging and homing behaviors to achieve
improved performance for the swarm as a whole. The authors also demon-
strated that stable and robust synchronization can be achieved even with
limited local robot-to-robot communication. Perez-Diaz et al. (2018) exam-
ined the correlation between the time taken for synchronization and the
individual velocities of mobile agents moving randomly in an arena. The
authors examined the questions both in simulation using virtual robots and
in practice with real robots. The authors concluded that for low velocities
and high velocities, the synchronization speed is sensitive to the velocity
while for mid-range velocities, the synchronization speed remains relatively
independent of the individual agent velocity.

2.3.2 Flocking

Flocking is a mechanism by which individuals in a swarm stay in the vicinity
of each other without being dispersed into the environment. Being around
members of the same species is crucial for reproduction and subsequently
the survival of the species. The advantages of being able to stay and move
together as a coherent swarm does not only include reproduction. Foraging
together, hunting together, protection against predators are key benefits of
the ability of a swarm. Therefore, flocking is evidently a fundamental swarm
behavior found in nature. Staying together without being disconnected from
the rest of the swarm is also interesting for robotic swarms. Researchers have
modeled, tested, validated and implemented various flocking behaviors on
robots.

The pioneering model of flocking was published by Craig Reynolds in 1987

12

2.3 Common swarm behaviors

while working in the field of computer graphics (Reynolds, 1987). Reynolds
formulated that virtual birds or “boids” can flock, following simple rules
given that they know the distance to their neighbors and the neighbor’s
velocity. The individual boid followed three simple rules: velocity matching,
following the center of mass of the flock and collision avoidance. While
attempting to decode the simple rules behind the schooling of fish, Huth
and Wissel (1992) offered an influential model. The researchers demon-
strated that individual fish follow simple rules of attraction, repulsion and
alignment with their nearest neighbors which produces collective motion
of a fish school. A mathematical model for flocking like behavior was sug-
gested by Vicsek et al. (1995). The Vicsek model essentially formulated
flocking behavior by relating the orientations of individual particles to the
orientation of their neighbors.

Variations of the models presented by Reynolds (1987), Huth and Wissel
(1992) and Vicsek et al. (1995) have been implemented in swarm robotic
systems. The challenging aspect about implementing flocking based on the
above models is that most of them require velocity matching of some sort
which is not easily accomplished in robotics. Turgut et al. (2008) presented
a swarm robotic implementation of Reynolds’ boids by developing a vir-
tual heading sensor. Ferrante et al. (2012) introduced flocking models that
do not rely on velocity matching and therefore enabling an easier imple-
mentation on swarm robotic systems. In Ferrante et al. (2012), the model
relies on computing attraction and repulsion forces based on the distance
to neighbors and uses this information to manipulate forward velocity and
angular velocity in order to achieve flocking. Wang et al. (2013) designed a
distributed controller for flocking without explicitly measuring the velocity.
However, the authors used position information of the neighboring agents to
estimate the velocity in combination with attraction and repulsion potentials
to achieve flocking.

Baldassarre et al. (2003) employed neural network evolution to develop
controllers to exhibit flocking. In their simulation experiments, the robots
employing the evolved controller were able to flock together and move
towards a light target. Depending on how the robots moved with respect to
each other the evolved controllers demonstrated different kinds of flocking.
The researchers demonstrated that in addition to traditional methods for
modeling flocking, artificial neural networks are an alternative.

13

2 Background and Related Work
2.3.3 Aggregation

Aggregation is a behavior by which a group of entities gather at a common
place. A spectacular example of aggregation is that of the aggregation of
dictyostelium discoedium, a species of slime mold. In the absence of food,
slime mold aggregates in order to form a slug (Chisholm and Firtel, 2004) to
perform collective foraging in the environment. Bonner (1949) and Durston
(1973) examined the communication behavior of slime mold cells which
despite its simplicity enables various kinds of self-organized flocking and ag-
gregation behaviors throughout different phases of their life cycle (Chisholm
and Firtel, 2004). Other examples of life forms forming aggregates are that
of bacteria, cockroaches, bees, penguins (Camazine et al., 2001) etc.

Apart from being a useful feature in nature, aggregation is also useful in
swarm robotics. For example, a swarm of robots with limited communication
devices searching the environment for some items of interest will need to
meet to share the knowledge collected (Varughese et al., 2018b).

The most common approach to modeling aggregation behavior is that of a
finite state machine. In Garnier et al. (2008), the authors presented a faithful
reproduction of aggregation behavior as that observed in cockroaches. The
embodied robotic agents in Garnier et al. (2008) were “alice-bots” following
a simple set of rules. The agents could either move randomly in the arena
or stop for a particular period of time. The stopping time was proportional
to the size of the aggregate of other stopped robots. This behavior quickly
resulted in an emergent aggregate of robots.

In Schmickl et al. (2008), the authors presented BEECLUST, an algorithm
modeling the behavior of newly hatched bees searching for optimal temper-
ature. This algorithm has been proposed not only for simple aggregation
but also with an additional component of a swarm aggregating at a global
optima (temperature in case of newly hatched bees). This behavior can be
modeled as agents which randomly move around and stop only when they
are in the near vicinity of another agent. The stopping time is proportional
to the optimality of the local temperature where the agent stopped. Using
the BEECLUST algorithm, a group of agents can aggregate at the global
optima in an arena.

Apart from using finite state machines based on probability and neighbor-
hood size, researchers have also resorted to the evolutionary approach to

14

2.3 Common swarm behaviors

solve the problem of aggregation. Trianni et al. (2003) and Soysal and Sahin
(2006) are two examples of aggregation behaviors produced by evolving
weights of neural networks on an agent based level to reward an emergent
macro level behavior.

2.3.4 Collective decision making

Centralized systems make decisions by collecting information from different
parts of their system and subsequently have the central processor make
a decision. However, for a system consisting of many individual actors
collective decision making is a more complex task and also a crucial aspect
for coherent behavior. Biological systems solve this problem in various ways
(Camazine et al., 2001) such as following a leader or relying on mechanisms
that produce emergent collective decisions. According to Trianni and Campo
(2015), algorithms for collective decision making can be broadly classified
into three main mechanisms. In the first mechanism, the swarm waits for one
entity to have enough information to make a decision and then propagates
that decision within the swarm. Organizational structures following this
mechanism can be found in form of hierarchies within societies of various
life forms (Rabb et al., 1967, Ahl and Allen, 1996). The second mechanism
is called opinion averaging in which all individuals constantly adjust their
own opinion based on their neighbors” opinions until the entire swarm
eventually converges to one opinion. This mechanism for collective decision
making in robot swarms can also be found in groups of animals which
use it for effectively navigating as a collective (Simons, 2004; Codling et al.,
2007). The third mechanism is based on the amplification of a particular
opinion to produce a collective decision. In this mechanism, each individual
randomly starts with an opinion and then changes its opinion to other
opinions depending on how often they encounter the latter opinion. The am-
plification mechanism is also found within animals such as the pheromone
trails selection in ants (Beckers et al., 1990) or the temperature based site
selection of young bees (Szopek et al., 2013). The underlying mechanism of
collective decision making of the algorithm presented in this paper relies
on the amplification of the mostly held opinions within the swarm which
is associated with the second category of mechanisms presented in Trianni
and Campo (2015).

Depending on the application, the design of collective decision making

15

2 Background and Related Work

in swarms takes inspiration from one of the aforementioned mechanisms.
Some swarms utilize leadership hierarchies or a few informed individuals
to make swarm wide decisions. Couzin et al. (2005) modeled local rules
governing flocking and how a few informed individuals influence the
movement of the group. Walker et al. (2014) examined how dynamically
chosen leaders can be used to coordinate robotic swarm dynamics either by
using a leader-follower scheme or by enabling an external entity to interact
with the swarm.

One example for the amplification mechanism used in swarm robotics is
the implementation of the approach presented by Amé et al. (2006) on
robots (Garnier et al., 2009). Here, robots imitate cockroaches by randomly
moving in the arena and stopping intermittently with a stopping probability.
The stopping probability is proportional to the number of other cockroaches
which have stopped in the vicinity. With this simple mechanism, the aggre-
gate can be viewed as the physical realization of the collective decision of
the swarm.

Gutiérrez et al. (2010) used opinion averaging where the measured distance
between nest and food sources are collected from robots in the swarm.
The noisy opinions (distance measurements) are averaged to agree upon a
foraging location which is closest to the nest.

2.3.5 Collective transport

The most commonly found and widely studied case of prey retrieval or
collective transport is that of ants. Kube and Bonabeau (2000) investigated
how cooperative object transport is achieved by ants. Upon finding an object
to be carried to the nest, an individual ant attaches itself to the object and
pushes. If there are enough ants pushing in the direction of the nest, the
object moves towards the nest. If the object does not move in the direction of
the nest the ant changes its orientation and tries to push again. In case the
ant is still unsuccessful it detaches from the object, reattaches at a different
point and tries again. The above-mentioned behavior inspired by ants is
the most common bioinspired decentralized collective transport strategy
implemented in swarm robotics. Broadly speaking, the problem of collective
transport can be decomposed into collective decision making regarding the
motion direction and the coordinated application of force to the object in

16

2.3 Common swarm behaviors

the desired direction. There are several variants of how these individual
problems are solved by different swarm robotic systems. The direction or
trajectory of motion results from a collective decision which is solved either
decentrally or by letting a single robot lead the rest of the swarm. Force
application on the object is solved by lifting/grasping (Grof et al., 2006) the
object or pushing/caging (Fink et al., 2008; Kube and Bonabeau, 2000) the
object.

In Campo et al. (2006), the authors presented a scenario where a group of
four robots collectively transported an object to a goal. Although the robots
had a noisy estimate of the goal direction, the collective could negotiate a
common direction to move the object and eventually transport the object to
the goal. The robots in the above paper used grippers to grip the object and
therefore, an attachment is ensured between the object and the robots. Thus,
the problem of coordinated application of force is substantially simplified
compared to the solution presented by Kube and Bonabeau (2000). Due
to the absence of grippers in Kube and Bonabeau (2000), however, the
trajectory of movement is more defined while the robots spent more time
re-positioning themselves due to loss of contact with the object.

Alkilabi et al. (2017) developed a methodology where a group of robots
controlled by dynamic neural network synthesized using evolutionary com-
putation techniques were used to perform a collective transportation task.
The best evolved controllers in simulations were tested on epuck robots to
transport objects of various shapes and sizes. Even though the robots could
not sense the force feedback from the objects being transported, the evolved
controllers were able to effectively transport the object to its destination by
synchronizing pushing actions. Grof$ and Dorigo (2009) developed con-
trollers using artificial evolution and obtained various strategies for moving
objects of different shapes and sizes. The evolved strategies to move the
object were: connect directly to the object, connect to each other and move
in a coordinated manner, encircle the object and move in a coordinated
manner.

17

2 Background and Related Work

2.4 “WOSP”: a novel unification of collective
behaviors?

The above section outlines the example of self-organization in biological
systems and adaptations of those behaviors in swarm robotics. As hinted
to previously, self-organization is not only found in biological systems but
almost universally in nature. Among the various self-organizing systems,
there exist many underlying similarities which can be observed at different
spatio-temporal scales. Researchers have been asking various questions in
order to better understand self-organization and consequently apply the
understanding gained from one niche to other areas. While the rewards of
a search for a single unifying theory of self-organization has been so far
underwhelming, many incremental gains have been achieved which have
enabled us to understand self-organizing systems better. While writing an
outlook for the future with respect to self-organizing systems, Sumpter
(2005) conducted a study of the state-of-the-art concerning self-organizing
systems. Some existent unifying structures related to self-organization can
be found in this study. Sumpter (2005) discussed the attempts of various
researchers to unify self-organizing behaviors by introducing some “ultracal-
culus” that would allow us to predict what happens as a result of numerous
complex interactions between individuals. Self-organized criticality (Bak
et al., 1988), boolean networks (Kauffman, 1993), cellular automata (Wol-
fram, 1984) were individual attempts to introduce such an ultracalculus.
Although each of these introductions helped to further the understanding
of many biological and physical systems, none of them proved to be truly
universal. In Sumpter (2005), the author added that there might not be
one universal theory or an ultracalculus for self-organization. Due to the
behavioral complexity of each system, Sumpter is of the opinion that each
system has to be considered separately to develop behavioral algorithms.

Sumpter (2005) and Camazine et al. (2001) examined self-organizing be-
haviors in biological systems and point out from existing research that most
of these behaviors have simple underlying mathematical bases. However,
our understanding of self-organizing systems has not always been triggered
by finding the mathematical bases first. While commenting on the method-
ology for understanding collective behavior, Sumpter (2005) suggested the
following steps: 1) observe and classify how individuals in a system interact
with each other, 2) build behavioral algorithms based on the observations,

18

2.4 “WOSP": a novel unification of collective behaviors?

3) build a mathematical model based on the behavioral algorithm. This
observation helps to separate different stages of self-organization research
and to appropriately place the research that is presented in this thesis. In
this thesis, I am not looking for an underlying unifying mathematical basis
or an ultracalculus behind self-organization or swarm intelligence. Our
work is more concerned with finding whether an algorithmic or behavioral
bases for common collective behaviors can be found.

It is also worth noting that there have not been many explicit attempts of
defining a unifying structure which is probably due to the limiting nature
of such an underlying design structure. Sumpter (2005) and Reid and Latty
(2016) are two of the few papers that explicitly mention unification of swarm
behaviors on a behavioral level. However, both of these papers are limited to
the observation of similarities on a high level without actually suggesting a
framework. Sumpter (2005) observed that although researchers collectively
see vague similarities between different self-organizing behaviors, there is
no universal theory or method so far that enables the exhibition of all or
most of the collective behavior seen in biological systems. In Reid and
Latty (2016), the authors raised the question whether the collectives of slime
mold fundamentally differ from other animal collectives. Reid and Latty
(2016) demonstrated from existing research that collectives of very simple
organisms like slime mold exhibit all eight “principles’ of collective behavior
outlined by Sumpter (2005).

In swarm robotics, there have been some attempts to unify the implementa-
tion of swarm behaviors at the algorithm design level by various researchers.
Research areas like “Human Swarm Interfaces” (Le Goc et al., 2016) and
“swarm control” have some elements of unification involved due to the fact
that a swarm of agents has to be able to execute multiple behaviors.

In Le Goc et al. (2016), a classical approach to controlling a swarm was
employed where users could interact with and control a swarm of cer-
tain robots, referred to as “zooids”, using gestures. The authors achieved
a responsive swarm using an external projector for tracking the robots’
positions, assigning a goal position for each individual robot and then utiliz-
ing classical motion control strategies like Proportional-Integral-Derivative
(PID) control to move the agents precisely from the start position to the
goal position. While the programmer has control of the precise movements
of the swarms” members, the presence of a higher organizational entity

19

2 Background and Related Work

is inherently necessary and thus depicts a classical example of top down
control.

There is a substantial amount of work related to controlling groups of
entities. In the pioneering work of Craig Reynolds, he introduced self-
propelled particles known as boids (Reynolds, 1999) which exhibited self-
organized flocking and collision avoidance. Reynolds” boids were able to
mimic a flock of birds whose individuals followed simple behavioral rules.
Due to its simplicity and decentralized structure it is applicable to large
swarms. Its focus is on the generation of realistic behaviors as found in
natural flocks and hence limited in its versatility.

In O’Keeffe et al. (2017) a concept of self-propelled particles with internal
oscillators, or “swarmallators”, was introduced. Attractive and repulsive
forces were then used in relation to the relative phase shift of the oscillators
for generating a range of collective behaviors. The internal processes and
states of the swarms’ entities substantially influenced and determined the
interplay between individuals producing a small set of collective phenomena.
Although swarmallators were able to display a range of rich spatio-temporal
patterns, they do not unify commonly found collective behaviors.

In Nagpal (2002), the authors introduced an algorithm for the self assembly
of identical agents on a surface into a predetermined global shape. Multiple
gradients were developed by propagating messages starting from the agents
at the edges in order to develop a relative positioning system among the
agents. Subsequently, various shapes were generated by manipulating the
behavior of agents with particular gradient values. More complex shapes
were achieved by repeating the process of generating gradients and fold-
ing along the specific areas of interest. A variation of the aforementioned
idea was used to assemble various shapes in a self-organized manner in a
thousand robot swarm (Rubenstein et al., 2014b). In Abelson et al. (2000),
programmable self assembly and other similar research done by various
researchers were unified as amorphous computing.

Among existing work, the paradigm presented in this paper exhibits most
parallel characteristics with the approaches presented in amorphous com-
puting, however, significantly differs in several points. Instead of multi-bit
signals encoding information, as used for communication in amorphous
computing, the presented paradigm already produces rich behavioral di-
versity with single-bit communication. Another key difference is that the

20

2.4 “WOSP": a novel unification of collective behaviors?

presented paradigm refrains from using “seed” agents (Nagpal, 2006; Nag-
pal et al., 2003) or global knowledge regarding edges and vertices in case of
programmable self assembly for origami generation. Instead, agents initiate
communication with the rest of the swarm decentralized and randomly. In
amorphous computing, languages such as Origami Shape Language (OSL)
(Nagpal, 2002), Growing Point Language (GPL) (Coore, 2004) were utilized
in order to enable a user to program a swarm. In this thesis, the proposed
paradigm will be used to program a swarm to perform collective behaviors
and additionally, a meta control scheme can be designed for the swarm to
perform these behaviors autonomously.

Generally, it can be said that not many attempts can be found in literature
that unify basic swarm behaviors with regards to its underlying structure.
In contrast to existing approaches, the paradigm presented in this work
allows a swarm to inherit rich self-organized collective behaviors which are
commonly found in nature. Additionally, instead of complex messages or
encoded signals solely one-bit communication suffices for the presented be-
haviors and ultimately allows the design of both top-down control interfaces
and autonomous swarms. In Chapter 3, the paradigm and its inspiration is
introduced, which forms the crux of the research presented in this thesis.

21

3 WOSP: Wave Oriented Swarm
Paradigm

In this chapter, a Wave Oriented Swarm Paradigm (WOSP) enabling the
control of swarms with minimalistic communication and yet allowing the
emergence of diverse complex behaviors is presented. It is demonstrated
that even a 1-bit communication channel between agents suffices for the
design of a substantial set of behaviors in the domain of essential behaviors
of a collective. As detailed in Appendix A, this chapter is based on the
following publications:

e Thenius, R., Varughese,]J. C., Moser, D., and Schmickl, T. (2018).
WOSPP - a wave oriented swarm programming paradigm. IFAC-
PapersOnLine, 51(2):379 — 384

e Varughese, J. C., Hornischer, H., Thenius, R., Zahadat, P., Wotawa,
F., and Schmickl, T. (2018a). Controlling swarms: A programming
paradigm with minimalistic communication. CoRR, abs/1804.04202

3.1 Inspiration

WOSP draws its inspiration from traveling waves and pulse coupled oscilla-
tors found in biological systems. In order to gain a better appreciation of the
paradigm, I will briefly look into each of these concepts before introducing
the wave based single-bit communication paradigm for swarms. This wave
oriented communication paradigm, WOSP, forms the basis for the rest of
the research presented in this thesis.

23

3 WOSP: Wave Oriented Swarm Paradigm

3.1.1 Traveling waves

The phenomenon of traveling waves in physical and chemical systems
was easily observable and hence was studied early in scientific history.
Traveling wave like oscillatory behavior in chemical reactions has been
studied as early as in the 1600s by Robert Boyle. A spectacular example
of traveling waves is that of concentration waves found in the autocatylic
reaction of a bromate and malonic acid reagent, popularly known as the
Belousov-Zhabotinsky reaction (Zaikin and Zhabotinsky, 1970). Similar
wave patterns are found in various biological tissues like nerve fiber (Squire
et al., 2012) and myocardium (Sherwood, 2015) where ionic potentials travel
through nerve tissues or myocardium from one end of the tissue to the
other. Calcium waves within frog eggs are another example of a biological
system showcasing traveling wave phenomena (Bugrim et al., 2003). In the
following section, I will take a closer look at the traveling waves produced
during the aggregation phase of dictyostelium discoideum.

Scroll waves of slime mold

Slime mold (dictyostelium discoideum), is a free living diploid life form. It has
been a subject of much study in the past due to its ability to survive harsh
environments by taking advantage of group behavior. Each organism starts
its life as a unicellular amoeba, but during starvation they aggregate to
form a multicellular super organism. Chisholm and Firtel (2004) divide the
slime mold life cycle as follows: aggregation, streaming, slug, culmination,
fruiting body. In order to understand the traveling wave phenomenon, I will
mainly look into the aggregation behavior of slime mold.

When there are ample food sources, cells grow and divide in a matter of
three to four hours (Siegert and Weijer, 1992). On the other hand, if there is
a scarcity of food, significant cooperation between the cells begins, hence,
kicking off the aggregation phase. During this time, some cells (centers)
release Cyclic Adenosine Monophosphate (CAMP) into the environment
to induce a chemical concentration spike around them (Siegert and Weijer,
1992). cAMP concentration diffuses very quickly into the environment and
therefore the chemical spike is short-lived. This chemical spike enables
these centers to recruit other cells present around them. When surrounding
cells perceive this chemical signal, they move towards areas of high cAMP

24

3.1 Inspiration

N o

(a) Image from Durston (2013) (b) Image from Cejkové (2015)

Figure 3.1: (a) Traveling waves of cAMP in dictyostelium discoideum. (b) A screenshot
from a youtube video of dictyostelium discoideum aggregating into a slug.

concentration and release cAMP themselves, thereby relaying the signal.
This, in turn, attracts other cells towards the centers. One cell is able to
release CAMP at an interval of 12-15 seconds (Alcantara and Monk, 1974);
during this interval, individual cells are insensitive to cCAMP pulses. This
interval can be understood as the refractory phase of the amoeba. The
signal relaying mechanism described above forms the basis for spatio-
temporal patterns known as scroll waves (Siegert and Weijer, 1992). The
refractory phase is responsible for these scroll waves as it prevents the
signaling organism from perceiving its own signal that was relayed earlier.
The emergence of scroll waves enable the amoeba to move towards the
recruiting centers for successful aggregation. The pictures in Figure 3.1
show the traveling wave phenomenon in dictyostelium discoideum.

3.1.2 Pulse coupled oscillators

Mutual synchronization occurs in many populations of biological oscilla-
tors. Some such synchronization of biological rhythms include networks
of neurons in the circadian pacemaker (Winfree, 1967; Enright, 1980), pace-
maker cells of the heart (Michaels et al., 1987), olfactory synchronization
of menstrual periods of groups of women (Russell et al., 1980), acoustic
synchronization of crickets chirping in unison (Walker, 1969), etc. Winfree
(1967) discovered that synchronization is a cooperative phenomenon, which

25

3 WOSP: Wave Oriented Swarm Paradigm

triggered a great deal of research among physicists interested in nonlinear
dynamics of many-body systems (Daido, 1988; Ermentrout, 1985). In this
section, the spectacular synchronization of fireflies (lampyridae) is examined
in detail.

Synchronization in fireflies

Fireflies (lampyridae) are a family of insects that are capable of producing
bio-luminescence to attract a mate or a prey (Buck and Buck, 1966). The
brightness of the bio-luminescent light depends on the amount of luciferin,
a light emitting compound, available with the firefly (de Oliveira et al.,
2011). Bio-luminescence of various families of fireflies has been a subject of
elaborate study in the past (Buck and Buck, 1966). Apart from being able to
blink, fireflies are known to behave in cooperation with other fireflies. It is
spectacular to see thousands of fireflies light up in unison on a tree, lighting
it up entirely. This uniform blinking happens so that the swarm has a higher
chance of attracting mates or prey (Buck and Buck, 1966). The luminescence
of the blinking swarm is much more than that of an individual firefly.

Such synchronicity is a result of a simple mechanism by which initially
the individual firefly blinks randomly; when it perceives a blink in its
surrounding, it blinks again and then resets its own frequency to match
the other (Camazine et al., 2001). It takes time for the fireflies to achieve
complete synchronization. This is analogous to a phase coupled oscillator
which adjusts its phase to match it to that of the faster oscillator in the
vicinity. This trait emerges into a pseudo synchronized blinking pattern
while the frequency of blinking will be influenced by the fastest blinking
insect. Figure 3.2 shows a photograph of fireflies lighting up in unison.

These existing models of slime mold and fireflies focus on the fidelity of the
model with respect to the actual biological phenomenon. In contrast to the
existing approaches discussed in the above section, I am more interested
in the emergence of periodic scroll waves and its applicability to perform
various collective behaviors in a swarm of robots. Therefore, I model periodic
scroll waves as an agent based model where each agent represents a simple
state machine combining the scroll waves of slime mold and the periodicity
of fireflies to produce periodic scroll waves. The model is presented in detail
in the following section.

26

3.2 WOSP - Wave Oriented Swarm Paradigm

Figure 3.2: A photograph of fireflies lighting up in unison. Image by Hristo Svinarov.

3.2 WOSP - Wave Oriented Swarm Paradigm

The wave oriented swarm paradigm WOSP is inspired by the two aforemen-
tioned organisms: slime mold and fireflies. In particular, communication
within the paradigm is based on cAMP waves propagating through a swarm
of slime mold. Every agent within the considered swarm has the ability to
send and receive single-bit (1-bit) information signals, which are henceforth
referred to as “pings”. All agents can enter three different states: an “inac-
tive” state, in which agents are receptive to incoming signals (responsive
to cAMP or pings), an “active” state, where they send or relay a signal
(release cCAMP or send ping) and optionally perform an action, which is
followed by a “refractory” state, where agents are temporarily insensitive to
incoming signals. This is schematically shown in Figure 3.3(a). Additionally,
every agent has an internal timer, which counts down constantly. When it
runs out, the agent enters the active state where it broadcasts a ping, thus
initiating a ping wave through the swarm. The ability of fireflies to adjust
and reset their individual frequency of “blinking” is the inspiration for the
concept of internal timers in this paradigm. For most primitives, this timer
is reset right after running out, causing an agent to ping.

27

3 WOSP: Wave Oriented Swarm Paradigm

*
received
ping?

@ send ping send ping

|

! =
I
I

execute code

refractory

v

refractory

execute code |

[initiate]
@ ®)

Figure 3.3: (a): Three states of agents in WOSP: Through external trigger (for
example incoming ping) or internal trigger (timer), the agent transitions from the
inactive state into the active state, where it sends a ping and optionally performs
an action. Afterwards, it enters the refractory state, being insensitive to incoming
signals until transitioning into the inactive state again. (b): The conceptual operating
structure of an individual agent. If an agent in the inactive state receives a ping, it
relays the signal by entering the active state and sending a ping itself. Depending
on the primitive, a certain piece of code will be executed and then the agent enters
the refractory state. If an agent’s internal time is up it will initiate a ping following
the same structure, however, executing a different code (specific to the primitive) in
the active state.

28

3.2 WOSP - Wave Oriented Swarm Paradigm

This operational structure results in a wave like propagation of signals
throughout the swarm. Agents in the inactive state get triggered to relay
a signal, while the refractory state prevents the system from continuously
signaling and thus, flooding the system. In Figure 3.4, the propagation of
waves is shown for a swarm of agents, each agent represented by a dot with
the color denoting their state. The inactive state is denoted in black, the
active state in red and the refractory state in green.

The aforementioned state transition constitutes the basic and fixed structure
of an agent in WOSP and is shown as pseudo code in Algorithm 3.1. This
suffices for the behavior shown in Figure 3.4 and is fixed for all agents.
However, as will be presented later in this work, complex behavior can
emerge when agents perform simple actions when relaying or initiating
pings. This structure is conceptually shown in a flowchart in Figure 3.3(b).

For the behaviors or primitives presented in this work, agents are not only
able to send and receive pings, but also have a heading and a sense of
directionality for incoming pings. Furthermore, for some tasks, agents have
the ability to move in direction of their heading. For demonstration of the
idea of WOSP, the agents are considered as point particles and thus, collision
detection is ignored in this work.

3.2.1 Parameters

The parameters and quantities used in this work are introduced and defined
in this section. An analysis and discussion of the parameters is presented in
Section 3.5.

e In the numerical simulations presented here, time is measured in
timesteps s. An agent receiving a ping will relay the ping after one
timestep t,ctipare = 1.

e Every agent has an internal timer ¢, which usually periodically resets
to a maximum t’;”x. For some primitives, however, the timer can be
reset to a random number between t, € (0, t;”“x].

e The number of agents constituting a swarm is defined as N. The
minimum N necessary for the presented primitives to function is
N = 2. As further elaborated in the discussion, the maximum can
theoretically be arbitrarily large, limited by the speed of agent-to-agent
communication and operational timescales.

29

3 WOSP: Wave Oriented Swarm Paradigm

o..'.. o..:. o..'..

L] L] L]

...' ﬁ:o o..o ° ...' 0‘:. 0..0 ° ...' O‘:o 0..0 °
od oL tmteret, o0 e tmteret, o0 el tmtelet,
00 o 02% ee0 00 A 02° 0o 00® L e e 00°

% o0 ° % o0 o o'e °

:.‘o;o..'.o %% :.‘o'o..'.o °e°L°%e :" ot °e°°%e
o o & 0% e, o o & 0% e, » & 0% e,

S TN e T SR TATEI T, e o
.$.00'0 o0 .o".°. .$.00'. o0 .o".'. .‘ e oo .o".’.
...' 0“0..: .0. ...’ o'.o..o .Q. o o oF ® 0e%e,°)

oo.oo.....o oo’o'.....o oo’oo.....o
.o:: .~. . .o.: ‘e, .o.: ‘e
e®e ° ® 00 o ® 00 o
(a) Time: os (b) Time: 2s (c) Time: 4s
o®
oo ..’o...
0.0 o °0.'...".
. o ® Se0 00 ® %e0 00
g e °.' 9% . S oo
%“Ce :“o:n‘:; :"o:os.';o
° [L] o o
: SIDES X R
% o .“O..: 5.0'.:00
.o'.. ..o.’.o“. ’..0....0”0..:
.® ee®oe o.o.:::.
o ...
[]
(d) Time: 115 (e) Time: 16s (f) Time: 19s

Figure 3.4: Illustration of wave based communication. In (a), almost all agents are
in the inactive state, shown in black, except one agent which enters the active state
and broadcasts a ping is shown in red. Afterwards it transitions into the refractory
state, shown in green. Neighboring agents receive the signal and transition into
the active state as shown in (b) and (c). The ping signal spreads in a wave like
manner. In (d), the initiating agent transitions from the refractory state into the
inactive state again. Due to a fixed duration of the refractory state, the transition
into the inactive state as well spreads in a wave like manner, shown in (e) and (f).
Parameters (as defined in more detail at the end of Section 3.2): number of agents
N = 80, physical size of the swarm in units perception range Rs = 57, refractory
time in units timesteps ¢,y = 5s.

30

3.2 WOSP - Wave Oriented Swarm Paradigm

Data: Paradigm parameters

Result: -

state < inactive;

timer(f,) < random integer € (0, t;];
while primitive do

decrement timer(t);

if agent in refractory state then

wait for refractory_time;

if refractory_time is over then
L state < inactive

f agent in active state then
broadcast ping;
state <— refractory

ot o

f agent in inactive state then
listen for incoming pings;
if ping received then

state < active;

execute Relay-CodeBlock;

o

f timer(t,) < o then
state < active;
execute Initiate-CodeBlock;

ot

Function Initiate-CodeBlock

Function Relay-CodeBlock
Algorithm 3.1: Basic pseudo code for every individual agent within
WOSP. Behavioral changes are only introduced by adding commands to

the initiate- and relay-codeBlocks which are highlighted here. The timer
tp is initially set to a random value with upper limit £;*.

31

3 WOSP: Wave Oriented Swarm Paradigm

The refractory time f,s denotes the time an agent remains in the
refractory state, that is, insensitive to incoming pings. t,.f is set to a
value as small as possible in order to maximize the time the agent
is receptive to incoming pings, however needs to be set to a value
sufficiently large so that a ping wave will not be relayed more than
once.

For distances the basic unit is the perception range of agents r, the
distance up to which an agent perceives the pinging of a nearby agent.
For primitives including locomotion, agents take discrete spatial steps
within a timestep, where the length of their step d is set to one-sixth of
a perception range d = r/6 if not stated otherwise. For decreasing d,
the time until the tasks are completed increases, however, for too large
values of d, the agents might move outside of the perception range
with a single step and might thereby lose connectivity.

The physical size of the swarm is defined as Rs and is given in units
perception range r. If not stated otherwise, every agent in the swarm
is initially randomly distributed within a circular area of radius R,
such that every agent is connected to at least one neighbor.

3.3 Primitives

In this section, a set of primitives is presented, where small changes in the
reactions of agents to incoming pings produce large scale complex behavior.
For every primitive, both the plots of results as well as the code-block
are presented. Furthermore, for each primitive presented, 20 independent
simulation were successfully run if not stated or discussed otherwise. The
presented primitives are divided into three categories:

32

1. Internal organization is about self-organization of the swarm on an

internal level of each agent, including the primitives “leader election”,
“synchronization” and “localize object”.

. Swarm awareness includes the individuals” awareness about prop-

erties of the swarm or properties of itself within the swarm. The

primitives “localize swarm center”, “estimating number of swarm
members” and “estimate extremities of the swarm” are presented.

. The category locomotion is about physically self-organizing or restruc-

i

turing the swarm, including the primitives “aggregation”, “moving

3.3 Primitives

collectively” and “gas expansion”.

3.3.1 Internal organization: leader election

For various tasks it can be beneficial or even necessary for a swarm to have
a certain agent “leading” a swarm. Having a certain agent assigned to a
special entity introduces the risk of a single point of failure, thus, disabling
the entire swarm. Instead, the swarm can collectively elect a leader, thus
reducing such a risk. In order to choose a leader, all agents initially consider
themselves potential leaders, shown in Figure 3.5(a) in black. An agent
pinging is illustrated in red and an agent not considering itself a leader
anymore is depicted in green. Every agent sets its timer to a random number
within ¢, € (0, #}"*]. As soon as an agent receives a ping before its own
internal timer runs out it will not consider itself a candidate anymore and
will also deactivate its internal timer. After an agent initiates a ping it will
randomly choose a time £, to initiate a ping again. This is shown as pseudo
code in Algorithm 3.2.

Data: Paradigm parameters
Result: Leader election

Function Initiate-CodeBlock
candidate < true;
timer(t,) < random integer € (0, t’;f“x] ;

Function Relay-CodeBlock
deactivate internal timer;
| candidate < false;

Algorithm 3.2: Code block for primitive “leader election”

Figures 3.5(b) and (c) show agents initiating ping waves and immediately
outrivaling their surrounding agents. The refractory mode prevents two
initiating agents from outrivaling each other, however, more than one can
be left as potential leader, as shown in Figure 3.5(d). Since every remaining
candidate again chooses a random time to ping, after few “negotiation
cycles” a single candidate which then can be considered the leader, will

33

3 WOSP: Wave Oriented Swarm Paradigm

remain as shown in figures 3.5 (e) and (f). In order to empirically test the
primitive, the primitive is said to have converged when there exists only a
single candidate who considers itself the leader.

..' o . 0.... 0..

o %o "L ° ° ° o %o L
et 1t el oo 38 '3, el 3%,
..\.::oo.. ..\.::.o.. .5.::00..
... s.. .. ?'é 000 s ..; ‘ ‘ " .ooo.' .o.; s.o ‘. .‘.'# .“.}..

A ,.“: f '.* o ~ [4 t 's". o .
S R e B B s

® ® ° * ¢ coetd, o, °

) .: o. %“."'o 0. .:‘. S, 0% o L .ol.\.'.‘ .

b ..‘.’ .. o ...'.% °0
(a) Time: 0, t** (b) Time: 0.005, t* (c) Time: 0.007, tax
P P 14
..‘ o ° l.' o
° ° .. 4 ,..::.' ° : ‘s ..,..::.‘ ° ‘ ‘ .., ::.°
. "0 :‘o‘ O“o N s : ‘\ :‘o‘ .“o . ¢ S . ‘\ :‘u‘ ° o .
oy Aot N L P oy pS .t
P ’:I-.:‘ o r S "J-.:. o Ty N
.t ekl . tande . .t Rl
PR P PR R A TR
° ..:. 'o. ° ...:. 'o. ° ...o. 'o.
(d) Time: 0.019, £5* (e) Time: 0.088, £5"** (f) Time: 0.092, £;**

Figure 3.5: Leader election in a swarm. Candidate leaders are shown in black,
pinging agents in red and agents that do not consider themselves a candidate for
leadership are shown in green. Initially, all agents consider themselves potential
leaders as shown in (a). After receiving and relaying a ping, an agent will not
consider itself a candidate leader anymore. Agents initiating pinging thus outrival
agents around them. In (b)-(d) it is illustrated how several agents initiate pinging
and not outrival each other (due to refractory time). Since only candidate leaders
will initiate pinging, the remaining candidates then repeat the process as indicated
in (e), until only a single candidate remains, as shown in (f). Parameters: N = 200,
Rs = 3347, tyey = 105, £/** =1000s.

34

3.3 Primitives

3.3.2 Internal organization: synchronization

It can be of great advantage for a swarm being able to perform coordi-
nated actions. This primitive allows the swarm members to synchronize the
sending of pings, allowing quasi-simultaneous coordination.

Every agent sets its internal counter to a random value between ¢, € (0, t5**].
If an agent receives a ping, it resets its internal counter to t)/**. This is
shown as pseudo code in Algorithm 3.3. As a result, the first agent sending
a ping (which is then being relayed and propagates wave-like through
the system) resets the timers of all relaying agents to the maximum #;"**.
Hence, the entire swarm will ping quasi-simultaneously within a time
period smaller or equal to the duration of a ping propagating from one
end of the swarm to the other. In Figure 3.6(a), the synchronization process
for a swarm of N = 50 agents is shown via an order parameter Ay,
which decreases with increasing synchronicity within the swarm. Ay
is calculated by determining the smallest phase interval containing the
timers of all agents and then taking the maximum phase difference of all
timer pairs. At t = 30s, the onset of synchronization is indicated with a
gray vertical line. In Figure 3.6(b), the corresponding internal timers of all
agents are shown, incrementally decreasing with time. Every line of points
represents the internal timer of one agent. At t = 125, an agent initiates
pinging and thus resets the timers of all other agents such that at t = 18s,
all agents reset and are thus synchronized. Synchronization primitive is said
to have converged if A¢gy,qy is less than the phase difference corresponding
to the time taken for a signal to propagate from one end of the swarm to
the other.

Data: Paradigm parameters
Result: Synchronized Swarm

Function Initiate-CodeBlock
L timer(t,)« t)'*%;

Function Relay-CodeBlock
L timer(t,)<— tzmx;

Algorithm 3.3: Code block for primitive “synchronization”.

35

3 WOSP: Wave Oriented Swarm Paradigm

27

I
= 1000
r— HQ. !
o 800 [
o 2 :
= 600
5 " =
£ = 400
< ©
4 E
(]
]
ol E o
0 10 20 30 40 50 o 20 40
Time t I's] Time t [s]

(a) (b)

Figure 3.6: Analysis of the synchronization primitive. (a): Onset of synchronized
internal timers at t ~ 20 of a swarm of N = 100 agents, indicated with a gray
vertical line. The order parameter A¢,.y is plotted against simulation time f. Ayu,x
is calculated by determining the smallest phase interval containing the timers of
all agents and then taking the maximum phase difference between two timers.
After fully synchronizing at t ~ 20s, the maximum phase difference decreased
from A¢pax ~ 5.5rad to A¢ux ~ 0.04rad, which corresponds to a time interval
of At =~ 5s. This interval can be identified in (b), where the internal timers of the
agents versus simulation time is shown. Every line of data points corresponds
to the internal timer of a single agent, which incrementally counts down. All
timers gradually decrease until at t = 20s an agent’s timer reaches t, = 0 and
thus initiates pinging. This marks the onset of the synchronization process and is
marked with a gray vertical line. All agents relaying the ping then reset their timers.
The reset signal propagates through the swarm and all agents reset and collectively
count down in a quasi-synchronous manner. Parameters: N = 100, R; = 2.337,
trer = 10s, /" =1000s.

3.3.3 Internal organization: localize object

For distributing information about spatial structure of the surrounding, a
swarm needs to be able to communicate the location of nearby objects or
events among its members. This primitive enables a swarm to collectively
localize the direction of a direct path towards an object which one or few
members of the swarm detect. Each agent refrains from initiating a ping
unless it detects an object. Every agent receiving a ping, records the direction
of the incoming ping. An estimate of the direction towards the object is then
obtained by taking a running average of the directions of incoming pings.

36

3.3 Primitives

The pseudo code is shown in Algorithm 3.4.

Figure 3.7 shows the agents’ estimate of the rough location of the object
as an arrow placed at the position of the agent within the swarm. The
red square represents an object which can only be detected by agents in
its vicinity. Figure 3.7 (a) shows the initial (random) orientation of the
agents. With an increasing number of perceived pings, the estimate of
direction towards the object increases in accuracy until agents accurately
point towards the position of the object as shown in Figure 3.7 (b). For the
purpose of empirically testing the primitive, the convergence is said to be
reached when the average error between the individual agents’ perception
of the direction of the object and the actual direction of the object is below a
particular threshold.

Data: Paradigm parameters
Result: Agent knows rough direction of an object

Function Initiate-CodeBlock
timer(ty) < random integer € (0, t}'**];
if no object detected then

L state < inactive;

Function Relay-CodeBlock
record ping direction;
| current estimate < average ping directions

Algorithm 3.4: Code block for primitive “localize object”

37

3 WOSP: Wave Oriented Swarm Paradigm

/
XN T\/\ h \\\\\ H
e 20N TN
* ?gk\\ NedEE A .
~STA SN
FAET ey
h AN - /'/7/

(a) Time: 0 £, (b) Time: 0.49 %

Figure 3.7: The arrows representing the agents’ estimation of the location of the
object, the beginning of the arrow denotes the position of an agent. (a): The estimate
is initialized with random direction at the start of the simulation. (b): The converged
estimation of the location of the object after 0.49 £/™*. All agents now point towards
the object. Parameters: N = 100, R; = 2.337, trer = 10s, t;””x = 1000s.

3.3.4 Swarm awareness: localize swarm center

For a swarm to be able to execute spatially coordinated actions, the knowl-
edge of the individual about the location of the center of the swarm can be
of great advantage. This primitive enables each swarm member to identify
the direction from where most signals originate from, which will be referred
to as Average Origin of Pings, or AOP. For a swarm of the presented type
(circular, approximately homogeneously distributed, agents have several
communication neighbors) this direction coincides with the direction to-
wards the physical center of mass of the swarm. Each agent sets its internal
counter t, to a random value between t, € (0, t;/**] and as soon as a counter
reaches t, = 0 an agent sends a ping. When an agent receives a ping it stores
the direction of the incoming ping and averages over all stored directions.
This is shown as pseudo code in Algorithm 3.5.

Figure 3.8 shows a swarm in its initial state and after it equilibrated where
every agent’s orientation is denoted by an arrow at the position of the agent
in the swarm. Initially, the heading is random. After equilibrating, the agents
on the outside accurately point towards the center of the swarm.

38

3.3 Primitives

Data: Paradigm parameters
Result: Agent knows rough direction of swarm center

Function Initiate-CodeBlock
center estimate <— mean of previous estimates;
timer(t,) <— random integer € (0, t}"*];
Function Relay-CodeBlock
record ping direction;
| current estimate < average ping directions

Algorithm 3.5: Code block for primitive “localize swarm center”

|
/} O \\},t)
W r ~ W s
\\\
\\/ // /{/ \\
2 ‘x\ /fé
(a) Time: 0 £, (b) Time: 0.38 £/

Figure 3.8: Agents’ estimation of the direction towards the center of the swarm.
The beginning of an arrow denotes the position of an agent. (a) shows the initial
estimates of each agent as arrow at its position in the swarm. (b) shows the
converged estimates after ¢+ = 0.38 tg”x. Parameters: N = 100, R; = 2.33r, tref =
10s, t5** = 1000s.

However, this primitive does not result in the detection of the geometrical
center of the swarm for all spatial configurations of agents since agents
locate the direction from which they receive most pings. This is illustrated in
Figure 3.9 where the swarm is shaped as a ring segment. Instead of agents
pointing towards the center of the ring segment, they orient themselves
towards neighboring agents, ultimately leading to the agents which would
be in the center of the swarm if the swarm was stretched to a straight line.

39

3 WOSP: Wave Oriented Swarm Paradigm

When adequately selected, the 5" will be large enough for every agent to
ping in a slot in which its ping wave does not collide with another wave,
therefore providing a more accurate estimate of the average origin of pings.
For empirical testing of the primitive, the primitive is considered to have
converged when the average difference between the agents estimate of the
direction of the center and the actual direction to the center is below a
predefined threshold.

il S
oA R
i \

VN 7
NA /
AN
\
(a) Time: Ot’;f”" (b) Time: 0.025 t’;}”"

Figure 3.9: Agents’ estimation of the direction towards the center of the swarm
when it does not coincide with the geometrical center of the swarm. The beginning
of an arrow denotes the position of an agent. (a) shows the initial estimates of each
agent, (b) shows the converged estimates after t = 0.025 t’;}”" . Parameters: N = 100,
radius of ring R; = 2.337, tref = 10s, t;””x = 1000s.

3.3.5 Swarm awareness: estimating number of swarm
members

For some tasks a swarm may need to be constituted of a certain number of
agents in order to effectively operate. For instance, a swarm may need to
check if the number of its members has substantially changed due to loss of
members or merging with another swarm. The paradigm presented here
enables the swarm members to decentrally estimate the number of swarm
members without needing an external observer. Each agent sets its internal
counter t, to a random value between t, € (0, t”*]. Whenever an internal
timer is up, an agent will initiate pinging and randomly reset its timer to
tp € (0,#5"*]. Each time an agent receives a ping it relays the signal and
increments a counter Nyyu:.

40

3.3 Primitives

Furthermore, every time an agent initiates pinging (when one internal cycle
has passed), it will store its counter Ny, ,+ as its estimate of the number of
swarm members for the past cycle. The average of those estimates will be
the agent’s opinion of the number of members in the swarm N,. This is
shown as pseudo code in Algorithm 3.6.

Data: Paradigm parameters
Result: Agent knows approximate number of members in the
swarm

Function Initiate-CodeBlock
estimate(N,s;) < mean of previous swarm size counters;
counter(Ngoynt) < 0;
timer(t,) < random integer € (0, £;™*];

Function Relay-CodeBlock
L increment counter Nyo,nt;

Algorithm 3.6: Code block for primitive “estimating number of swarm
members”

In Figure 3.10 the estimate N, averaged over all members of a swarm ver-
sus simulation time is shown. The estimate quickly increases before slowly
converging to N,s; ~ 34. The error bars represent the standard deviation,
thus indicating that the estimates of all agents are closely distributed around
the mean. The estimate converges to a value significantly lower than the ac-
tual number of swarm members, however, for the same swarm the estimate
consistently converges to the same (lower) estimate. The estimate converges
to a lower value than the actual number of agents in the swarm because
ping waves are initiated by more than one agent at roughly the same time,
causing several ping waves to coincide. As a result, agents in the swarm
detect only a single wave and accordingly increment the estimate only once.
For larger cycle lengths, ping waves collide less and the estimate is closer
to the actual number of agents. An empirical study on the dependence of
Nest can be found in Section 3.5. To empirically test the primitive, all runs
in which the estimate of the number of agents reached 75 % of N, that is
N,st > 0.75 N, were considered to be successful.

41

3 WOSP: Wave Oriented Swarm Paradigm

40

20

Estimated number N

0 2 s s 8 10
Time t [t:a"]

Figure 3.10: Estimated number of swarm members averaged over all agents in the
swarm versus time. The error bars represent the standard deviation. The estimate
steeply increases from Nt = 0 to Nyt = 30 at t = 3t;”“x before it gradually
converges to its final estimate of Ne;; ~ 35. Parameters: N = 50, Ry = 2.337,
tref = 105, £, = 2500s. In order to put the timescales into perspective of cycle
lengths, the time axis is measured as multiples of £;*.

3.3.6 Swarm awareness: estimate extremities of the swarm

This primitive enables the agents in a swarm to determine the extremities of
the swarm by identifying gaps in the direction of incoming pings. In order
to do so, each agent sets its internal timer ¢, to a random value between
tp € (0,£;"]. As previously explained, this will result in agents pinging at
random time slots and each agent relaying the received pings. The agents
then bin each of the pings received into four directions of &« = 90° each.
If there is at least one empty bin with no pings received, then the agent
perceives itself as being on the periphery of the swarm. Pseudo code is
shown in Algorithm 3.7.

Figure 3.11 shows the perception of agents regarding their position in
the swarm. Initially, no agents perceive themselves to be at the periphery
of the swarm, denoted by the black color of agents in Figure 3.11(a). As
agents receive more pings from the surrounding agents, they are able to
estimate their own position more accurately within the swarm as shown
in Figure 3.11(b) where green colored agents perceive that they are at the

42

3.3 Primitives

Data: Paradigm parameters
Result: Agent knows if it is at the periphery

Function Initiate-CodeBlock

if Is at least one bin empty? then
| periphery « true;

else
| periphery « false;

timer(t,) < random integer € (0, £}"*];

Function Relay-CodeBlock
record ping direction;
| bin incoming ping directions into bins of 9o°;

Algorithm 3.7: Code block for primitive “localize object”

periphery of the swarm.

To empirically test the primitive, a simulation run was considered successful
if more than 80% of the agents in the periphery successfully identified
themselves as being at the periphery based on the incoming pings.

3.3.7 Locomotion: aggregation

Considering a swarm of agents with the ability to move and spatially arrange
itself, it needs to be able to gather or aggregate in order to regroup itself. In
order to achieve that, every agent randomly sets its internal counter ¢, to a
random value between t, € (0, £}}**]. An agent receiving a ping will relay it
and then move a small distance towards the incoming ping. Gradually, all
agents move towards each other. The pseudo code for aggregation is shown
in Algorithm 3.8.

Figure 3.12 shows a swarm aggregating according to Algorithm 3.8. From
its initial state the swarm steadily moves towards its average origin of pings,
causing it to aggregate at the center of the swarm. Figure 3.12(d) shows the
aggregated state of the agents as well as each agent’s trajectory as blue line.
This illustrates how agents tend to follow the paths of their fellow members
of the swarm, producing a root-like trajectory structure. For illustrating

43

3 WOSP: Wave Oriented Swarm Paradigm

° .o.o.o o 0
° e o © 4, o o ©
°o...o:0 o o 0...0:0 °
.'. .. (Y™ .. '. .. (Y ..
Bpe st R Woee st e
° PP ° PPy T
o '.‘s’:’..go s '.'s'o"..g
..... o ®
e o o °
® o
(a) Time: Ot?”x (b) Time: 1.4 tzl‘”‘

Figure 3.11: Figures show the agents’ perception of their location within the swarm.
Green colored agents perceive that they are at the periphery and the black colored
agents perceive themselves as not being at the periphery. (a) shows the initialization
at the start of the simulation with all agents perceiving themselves as “not being
at the periphery”. (b) shows the converged perception of the agents after 1.4 £;/**.
Parameters: N = 100, R, = 2.337, trer = 10s, tg”x = 1000s.

the aggregation process, Figure 3.13 shows in blue the average root mean
square distance (R;;s) of all agents from the center of the mass of the swarm
which represents the spread of the swarm members. To empirically test the
primitive, a simulation run was considered successful with the termination
condition R,;;s < 0.3r.

44

3.3 Primitives

°
o ® ('Y

e oo °,

® o ®
o.o oo, :.

ooy N .

° 8'0'0;)
e e,
:'.o .0
%

) e ..: [
o'.‘

(a) Time: 0 t?‘”‘

[J . ..
-3

(c) Time: 0.1¢

max
p

(d) Time: 0.35 t;"”x

Figure 3.12: Figures show aggregation of a swarm. Initial state of the swarm is
shown in (a), in (b) and (c) it steadily aggregates. The final state and trajectories
of each agent for the entire simulation are shown in (d) in blue lines. Parameters:
N =100, Rs = 2.337, t,,y = 105, t5™* = 1000s.

45

3 WOSP: Wave Oriented Swarm Paradigm

1.4

T
rms
1.2 E
fl 1
["]
E
-4
- 0.8
©
[}
1S
o
w 0.6
£
-
2
a 0.4}
0.2}
0 L L 1 L
0 0.2 0.4 0.6 0.8 1

Time [t:ax]

Figure 3.13: Average root mean square distance of all agents from the center of
the swarm, R,s, plotted against time. The blue line plot shows the R, of the
swarm in the simulation shown in Figure 3.12. The R, linearly decreases until
t5"* ~ 1 when the swarm has almost fully aggregated. The decrease of Rys occurs
in discrete steps, corresponding to ping waves causing all agents to move towards
each other quasi-simultaneously by a step of a predefined length d. Parameters:
N =100, Rs = 2.337, t,y = 105, t5"* = 1000s.

Data: Paradigm parameters
Result: Aggregated swarm

Function Initiate-CodeBlock
L timer(t,) < random integer € (0, £}'**];
Function Relay-CodeBlock
timer(t,) < t’;f“x;
record ping direction;
Calculate average of incoming pings;
move towards incoming ping;

Algorithm 3.8: Code block for primitive “aggregation”

46

3.3 Primitives

‘oo,
° .0 °
t T e
° o e © °
° ”‘ 0‘ .ol ¢ ..’o .
..‘..o e S, o _oo :.; ‘..&
I 1 o.'.O.° %% e %y 3:#;;“%
[
. o % ": $. " o ° .o.‘.. oo H
.o:. ° &° P°
0o ° .
s,

(c) Time: 0.1 tg“”‘ (d) Time: 1 tg”x

Figure 3.14: A swarm aggregating at an object, marked as red square on right hand
side of the shown system. Initial state of the swarm is shown in (a). The swarm
gradually aggregates at the object in (b) and (c) until every agent directly perceives
the object in (d). The trajectories of agents for the entire simulation is shown in
blue lines. Parameters: N = 100, R; = 2.337, t,.y = 105, t;”’”‘ = 1000s.

Considering that a swarm needs to aggregate at a specific location, the
primitive can be changed in such a way that only certain agents, which
for example perceive stimuli such as the presence of an object, are able to
initiate pings. This is shown in Figure 3.14.

The stimulus can also be an event or can be connected with a gradient.
Considering agents with the ability to perceive light intensity, the agents
will be able to aggregate at the brightest spot if every agent sets its internal
counter to a value proportional to its perceived brightness. The agents at

47

3 WOSP: Wave Oriented Swarm Paradigm

the brightest spots will statistically ping first. Furthermore, every agent
receiving a ping will reset its counter, thus allowing the agents at the
brightest spot to hijack the swarm. This process when repeatedly executed
will result in a gradient taxis behavior as presented in Varughese et al.
(2016) and in Chapter 4.

3.3.8 Locomotion: moving collectively

For the mobility of a swarm, the ability to collectively move to a specific
location can be crucial. For letting the entire swarm move towards a certain
direction, a single agent serves as leader. This leader exclusively initiates
pings and gradually moves along a trajectory leading to the target location.
All agents receiving pings will move towards the direction of it and thus,
follow the leader. The pseudo code is shown in Algorithm 3.9.

Data: Paradigm parameters
Result: Swarm follows a leader

Function Initiate-CodeBlock
leader < true;

timer(t,) < random integer € (0, #}/**];

Function Relay-CodeBlock

deactivate timer;

leader < false;

record ping direction;

calculate average of incoming pings;
move towards incoming ping;

Algorithm 3.9: Code block for primitive “moving collectively”

Figure 3.15 shows a swarm aggregating towards a leader located at the
far right end of the swarm, which steadily moves towards the right. While
following the leader, the remaining swarm forms a line behind it, being lead
away. This primitive can be viewed as “aggregation at a specific, moving
agent”. For choosing a leading agent, the primitive “leader election”, which
was earlier introduced, can be executed prior to this primitive. This primitive

48

3.3 Primitives

is said to have converged, when the R;;s of the swarm is below a set
threshold, depending upon the size of the swarm.

(a) Time: 1 tz”x (b) Time: 4 tg”x

(c) Time: 10 tgl”x (d) Time: 40 t’;}”"

Figure 3.15: This figure shows a swarm being led by a single agent towards the
right. From the initial state in (a), the swarm aggregates towards the leading agent
in (b) and (c). In (d), the swarm forms a line following the leader. The trajectories
of each agent for the entire simulation is shown in blue lines. Parameters: N = 100,
Rs = 2337, tyey = 10s, £/ =1000s.

49

3 WOSP: Wave Oriented Swarm Paradigm

3.3.9 Locomotion: gas expansion

The primitive “gas expansion” enables a swarm to uniformly expand. Each
agent sets its internal counter ¢, to a random value between t, € (0, £;"*].
As soon as the internal counter reaches t, = 0 an agent sends a ping. Each
agent moves a small step away from the incoming pings. As soon as an
agent does not receive pings anymore, it does not move any further. The
agents can then reconnect with their swarm members by moving back, in
the opposite direction of the previous step, or by integrating their entire
trajectory and thus, finding their way back until they perceive signals again.
Depending on the communication abilities of the swarm, the perception
range or sensitivity can be temporarily decreased during the expansion
such that afterwards the agents will again be connected. See Algorithm 3.10
for the pseudo code. In Figure 3.16 (a) an initially densely packed swarm
is shown, which then expands in Figure 3.16 (b) and (c) until it is fully
expanded in Figure 3.16 (d). To test the primitive empirically, a simulation
run was considered successful if the average distance between any agent
and its neighbors was greater than 0.8r.

Data: Paradigm parameters
Result: Expanded swarm

Function Initiate-CodeBlock
L timer(t,) < random integer € (0, £}'**];
Function Relay-CodeBlock
timer(t,) < t’;f“x;
record ping direction;
calculate average of incoming pings;
move away from incoming ping;

Algorithm 3.10: Code block for primitive “gas expansion”

50

3.3 Primitives

(a) Time: 0 t;ﬂ”x

(c) Time: 0.95 tg‘” (d) Time: 2.3 t;"”

Figure 3.16: A swarm performing the primitive “gas expansion”. The initial state
of the swarm is shown in (a), where it is aggregated. In (b) and (c) it gradually
expands. The final state is shown in (d) with the trajectories of each swarm depicted
as blue lines. Parameters: N = 100, R = 0.677, t,.f = 105, t’;f”" = 1000s.

51

3 WOSP: Wave Oriented Swarm Paradigm

3.4 Combining primitives

By combining primitives more elaborate behaviors can be produced and
by enabling a swarm to switch between a set of primitives it can operate
autonomously. The most intuitive way of combining primitives is to execute
primitives one after another in a sequential manner. This allows the design
of complex tasks which can be executed by the swarm autonomously. This
is schematically shown in Figure 3.17.

A — B -

Figure 3.17: Schematic illustration of sequential execution of three primitives A, B
and C.

3.4.1 Combining primitives: exploration

An example for sequential execution of primitives producing an autonomously
acting swarm is a collective exploration procedure, shown in Figure 3.18.
The following sequence of primitives is executed periodically: aggregation,
leader election, moving collectively, gas expansion. In Figure 3.18(a)-(b) the
swarm aggregates and then determines a leader in Figure 3.18(c)). This
leader chooses a random direction and leads the swarm to a new location,
as shown in Figure 3.18(c) to (d). Then, the entire swarm expands before
aggregating again and restarting the same procedure. Due to the limited
abilities of the individual members of the swarm, they have no awareness
of the collective state or if the execution of a primitive has converged. For
the present example, the execution times of all primitives were fixed.

52

3.4 Combining primitives

&. {

(a) Time: 2 £, (b) Time: 4 £ (c) Time: 9 5%

. &

(d) Time: 10 tg“ (e) Time: 13 t’;,”" (f) Time: 14 t’;”x

Figure 3.18: Consecutive execution of the primitives aggregation, leader election,
moving collectively and gas expansion as example for an exploring routine of
an autonomous swarm. The swarm prepares for changing its location and thus
aggregates from (a) to (c). It then decides upon a leading agent (marked in red)
which then leads the swarm towards the top right of the system, a target area,
shown in (c) and (d). The swarm expands again as shown in (e). In (f) the final
state is shown along with the trajectories of all agents over the entire simulation.
Parameters: N = 50, t,.r and tzmx vary for each primitive.

3.4.2 Combining primitives: collective transport

An instance of combining primitives in a sequential manner can be demon-
strated by solving a simplified version of the collective transport problem.
A scenario where a group of agents transports an object is presented here.
In order to be able to move an object, additional physical abilities of agents
are assumed. An agent can detect the presence of an object or a goal in

53

3 WOSP: Wave Oriented Swarm Paradigm

its near vicinity (one space unit). Additionally, it is also assumed that the
agents can exert a force on the object. As for the motion of the object, it is
assumed that if more than three agents exert force on the object, it can be
moved along with the movement of the respective agents. The sequence of
primitives executed here are as follows: gas expansion, aggregate at goal
(only by agents which detected the object). The red and green patches in
Figure 3.19 represent the object to be moved and the goal respectively. The
swarm executes gas expansion in order to find both the goal and the object
to be moved as shown in Figure 3.19(b). Those agents that detect the goal
generate pings and those agents which find the object attach to the object
and move it towards the incoming pings as shown in Figures 3.19(c) - (f).
Through this combination of primitives, the agents can move the object to
the goal without explicitly being told where the target is.

Evidently, the collective transport shown here is a simplified version. In
order to present combining WOSP primitives to solve complex problems,
complexities specifically associated with collective transport have been
ignored. The area of collective transport has received much attention in the
previous years. Broadly, the collective transport problem has been solved by
either lifting/grasping (Grof3 et al., 2006) the object or pushing/caging (Fink
et al., 2008; Kube and Bonabeau, 2000) the object. Using the approach
presented here, the position of the goal is implicitly associate with the
direction of the pings. Therefore, the need for each agent to know the
position of the goal (global knowledge) is obviated. The advantage of using
pings to guide the “pushers” to the goal comes at the cost of needing a large
number of agents. The number of agents required for this task will depend
on the sensor range of the agents. A large enough swarm with a specific
sensor range can expand and discover both the source and the goal without
losing connectivity.

It is important to note that the aim of presenting this scenario is not to
present a perfect solution for the collective transport problem but rather to
point out the wide range of possibilities using a minimalisitc communication
paradigm. Using WOSP, a swarm programmer can combine several basic
primitives with the physical abilities of the agents in order to accomplish
complex behaviors.

Another approach to combining primitives is to execute several primitives
in an interleaved manner. This allows the emergence of a larger variety of
complex behaviors. For executing several primitives in a quasi-simultaneous

54

3.4 Combining primitives

o '::o' .
oo:....:o.. . .-':..::'.‘..o
.’o .’.'o:l ee® o ". :.'
A o nolosen®
B .,..’ -,.:..;..:;. i f ::.'-:!.
‘ ..‘0:..0.“:too. *%e e .-:.o % o
..: ?.o~‘. ° :‘ ‘: . .{ ., .:..: oe
¢ 0% Te ol % o‘.%o.oo..
o, ° LA) Y 3
~ *% oc e TR A
oo °%° Ao:... .
(a) Time: Ot’;”’x (b) Time: 1.35 t’;}”" (c) Time: 3.35 t;’“’x
. . °
° .o..:... .0:0.0 ° .o..:... .0:0.0 ° .o..:....o..o.O
.:. :.o%..o:. S :.o%..o - S O.o‘..o :.:oo
o0 00 .'. o g0 0000 .’. o.o.'.oo" o°,
[d = Y [d o0 o ° [] @
T .:..,‘ 3% RS T Mt N K
o 0 g0%9 @ . e0%e ©] °® o...
ERR AT ERRRIHEE BN RIHAL
.0.$.Oo:o...¢ .'.S.co:o .'.o .‘:.3.0..0...0
R T IR P IR S PO
d) Time: 4.35 t/4* e) Time: 5.45 t'7% (f) Time: 5.45 ¢74*
(@) " © " "

Figure 3.19: Collective transport by sequential execution of gas expansion and
aggregation at the object. In (a), the red and the green colored patches represent
the object and the goal respectively. In (b), the agents expand in all directions to
find the object and the goal. Once both the object and the goal is found, the agents
that found the object (shown in blue color) exert a force on the object to move it
towards the incoming pings. Since the incoming pings originate from the agents
that found the goal, the object is moved towards the goal as shown in figures (c) -
(e). The trajectories of the object and the agents which move the object are shown
in the red and the blue lines in (f).

55

3 WOSP: Wave Oriented Swarm Paradigm

manner, the previously presented single-bit communication can be extended.
A simple option is to introduce several individual layers of single-bit com-
munication, one for each primitive. Alternatively, multi-bit signals could
be used to encode each waves of each primitive separately. However, in-
terleaved execution of primitives is beyond the scope of this thesis and
therefore, will not be presented.

3.5 Analysis and discussion of parameters

In this section, the influence of parameters and initial conditions of the
swarm on the functionality of primitives are examined. Exemplary scenarios
are chosen, which allow to infer the relation between parameters and the
swarm’s behavior.

3.5.1 Parameter dependencies

As seen in Section 3.3, the WOSP paradigm utilizes various characteristics
of the incoming pings to infer global level properties of the swarm or to
coordinate with each other to accomplish a common goal. For example, the
estimation of swarm members is done by counting the number of pings in a
single cycle length. The three main characteristics of incoming pings which
contribute to the working of the primitives are: 1) the direction from which
pings come in, 2) the number of pings received in one cycle length and 3)
the timing of the incoming pings. Based on these characteristics, an analysis
can be conducted and the dependence of the WOSP primitives on various
parameters can be established. In this section, I will use “estimation of
swarm members”, “leader election” and “aggregation” to demonstrate the
dependence of the performance of each of these primitives on their parame-
ters. From such an analysis, inferences can be drawn on other primitives
which employ similar characteristics of incoming ping waves.

Estimation of swarm members

The dependence of the estimate of swarm members on the ¢}/** is shown in

the color map in Figure 3.20, where the percentage deviation N, from the

56

3.5 Analysis and discussion of parameters

actual number of swarm members N depending on the maximum possible
cycle length #7'“* is shown. For every data point the simulation was run
for 25t7"* which was sufficiently long for the estimate to converge. With
increasing t;"* the deviation from the actual number of members of the
swarm decreases. Knowing the order of magnitude of N of a swarm, the £~
can be chosen to be sufficiently large such that the deviation is sufficiently
small. For instance, considering a swarm of a maximum of 30 agents of the
presented kind, a cycle length of £/** > 1500 would ensure a deviation as
low as 10 %. It can be therefore said in general that for primitives that are
dependent on the count of incoming pings, the performance of the primitive
will depend heavily on the choice of £5*.

100 100
90
80
70
70
60

-]
(%

55

40

Actual number of agents N

25}

300 600 900 1200 1500
Cycle length t:‘a" [s]

Figure 3.20: Percentage deviation of the estimated number of agents in the swarm
versus cycle length and the actual number of agents in the swarm. Agents con-
sistently underestimate the number of members of the swarm. The deviation de-
creases for decreasing N and increasing t’;]“x . Parameters used: N € {10,20,..,100},
Rs =17, t,;f = 55, t)** € {100,200, .., 1500s}.

Time taken to elect a leader

An analysis on time taken for the convergence (7) of the primitive “leader
election” is performed with varying refractory time f,,r and cycle length £5*.
Figure 3.21 shows that for a given number of agents, the selection of cycle
length ** affects the time taken to select a single leader. The refractory

57

3 WOSP: Wave Oriented Swarm Paradigm

time #,,y does not seem to have a significant effect on the time taken to elect
a leader. For each data point, 10 simulation runs were conducted. Since
the leader election primitive is dependent on the timing of incoming pings,
similar conclusions can be drawn about primitives such as synchronization
where timing of the incoming ping is crucial.

%0
3000
2500
2000
1500
1000
500

1
500 2000 4000 6000 8000 9500
Cycle length (t:“) [s]

20

Refractory time (t,) [s]
= =
=) w

w

Figure 3.21: Time to convergence (selection of a single leader) is visualized, showing
the effect of the refractory time f,.s and the cycle length £,'**. As expected, the
time to convergence (7) rises with the increase in cycle length. t,.; does not seem
to have a noticeable effect on 7. Parameters used: N = 200, Ry = 3.337, t,,f €
{1,5,10,15,20s}, ¥ € {500,1500,..9500s }.

Aggregation success

Figure 3.22 shows the percentage success of the aggregation primitive being
evaluated with varying lengths of steps d taken by agents and also the
angular resolution Aw of incoming ping direction. It can be inferred that
at least an angular resolution of Aw = 90° is necessary for consistent
and successful operation of the aggregation primitive. Smaller step sizes
allow for minimizing the effects of an inaccurate movement direction and
therefore enable the primitive to be successful in aggregation more often.
The dependency of aggregation on Aw that is found here can be applied
to other primitives which depend on the direction of the incoming ping.
Therefore, it can be said that primitives such as “localizing swarm center”,

58

3.5 Analysis and discussion of parameters

4 ‘"

“localizing an object”, “estimate extremities of the swarm” will also be
similarly affected by Aw.

0% convergence

Angular resolution Aw I

0.13 0.27 0.49 0.71 0.93
Step size d [r]

Figure 3.22: The percentage success of the aggregation primitive is evaluated with
varying lengths of steps d taken by agents and also the angular resolution Aw of
incoming ping direction. It can be observed that when the length of steps taken
by agents is below a third of sensor range, until about 90° angular resolution,
the success of the aggregation primitive is not adversely affected. As the angular
resolution decreases below 90°, the success of the primitive falls rapidly even
for small step sizes. Generally, as the length of step d increases for any angular
resolution, the success of the aggregation primitive suffers. Parameters used: N =
100, Ry = 2.337, Aw € {30,60,..,180°}, d € {%, %8, 28/}

3.5.2 Empirical analysis and choice of parameters

In order to empirically validate the observed collective behaviors of WOSP,
each primitive was simulated 10 times with its respective convergence
condition which is listed under each primitive. The results of this empirical
simulation test can be found in Table 3.1. It can be observed that primitives
reliably converge for the given set of parameters. This shows that a set

of parameters can be found for the convergence of various primitives of
WOSP.

When designing a swarm following this paradigm, parameters can be
chosen according to the following guidelines. Using the time for an agent

59

3 WOSP: Wave Oriented Swarm Paradigm

Primitive N ter Rs t’;}”x T S
s] [[s]][] [%]
Synchronization 100 10 2.33 1000 | 0.03 100
Leader Election 200 10 3.33 1000 | 0.06 100
Localize Object 100 10 2.33 1000 | 0.11 100
Locate Swarm Center 100 10 2.33 1000 | 0.23 100

Estimate Swarm Members | 100 10 2.33 2500 | 6.17 100
Locate Swarm Extremities | 100 10 2.33 1000 | 1.4 100

Aggregation 100 10 2.33 1000 | 0.14 100
Moving Collectively 100 10 2.33 1000 | 20.10 100
Gas expansion 100 10 0.67 1000 | 2.39 100

Table 3.1: The parameters which were used for the empirical analysis of the pre-
sented primitives are shown here. Apart from the parameters previously presented,
T refers to the average time taken for each of the primitives to converge and S is
the convergence rate. A set of parameters can be reliably found for the convergence
of each primitive.

to be activated by an incoming signal s as basic temporal unit and the
perception range r as basic spatial unit, both usually determined by technical
equipment, the speed with which a signal propagates is approximately
Uping /2 1/s. Estimating an upper limit for the spatial extension of a swarm
R{** (considering its environment and its expected maximum number of
Niax agents) the maximum time for a signal to propagate from one end of
the swarm to the other is te &~ R{"*/v}i,e. Once the the aforementioned
quantities are determined for a swarm, the cycle length %, refractory time
trer and step size of a moving agent, d,can be set accordingly.

Cycle length (%)

For primitives where the accuracy with regards to counting the number
of agents is used, the proper selection of ;** is crucial. £,/** should be
large enough to allow every agent to initiate a ping wave which should
ideally reach all other agents in the swarm. In other words, each agent
needs to be assigned a time slot (Q) in a cycle of length £*, which is large
enough before another agent pings, that is, the length of the Q; > ¢, . In
case the slots are assigned to individual agents in a top down manner, the

60

3.5 Analysis and discussion of parameters

number of slots needed would be equal to the number of agents. However,
if the agents pick a random slot to ping, there is a non-zero probability
of ping collision which might affect the performance of certain primitives.
Depending on the desired accuracy, the designer will need to choose the
cycle length accordingly.

For a swarm of N agents, the probability that all agents select a different
slot to ping, thus having no collisions between two pings, can be expressed
as P(no — collision) in Equations 3.1.

Slot length (Q;) = max(tr.r , tee) (3.1)
No : of availableslots (Qn) = % (3-2)
)
P(no — collision) = & : Q”Q; !] _Q(j\]) (3-3)
1 N=1
P(no — collision) = n — 1 :
(no — collision) AL i:O(Q i) (3-4)

In order to avoid collisions in a self-organized system using the simple
system of each agent picking a random slot, P(no — collision) can be max-
imized according to the desired performance. The internal timer of each
agent starts at a random initial condition in order to facilitate each agent
choosing a random slot.

Refractory time (t,.f)

The main consideration when selecting refractory time is the forward prop-
agation of waves and avoiding the reactivation of the wave originator.
Refractory time f,,s should be just large enough to avoid waves propagating
through the system continuously and re-activating agents periodically. In
Equation 3.5, k is the safety factor and needs to be appropriately chosen
according to the application.

tref 2 k- tee (3-5)

61

3 WOSP: Wave Oriented Swarm Paradigm
Step size (d)

For the primitives in which the agents move, one main consideration is
the distance moved by each agent per time step or the step size (d). Since
connectivity is an important requirement for WOSP to function, maintain-
ing connectivity is an important consideration. Therefore, the step size is
selected in such a manner that the connectivity to the rest of the swarm is
not lost due to large step sizes. Generally, the relation between step size and
sensor range can be expressed as presented in Equation 3.6. In contrast to
an agent based simulation for a realistic swarm, the sensor range is limited
depending on the hardware that is employed, that is, r is a constant for such
swarms. A safety factor L can then be suitably set so that connectivity in
the swarm is maintained. In the simulations presented in this chapter, r = 3
space units and L is selected to be a sixth of r.

=

3.6 Robotic experiments

In order to validate WOSP, robotic experiments were conducted with ten
mobile robots capable of directional communication.

3.6.1 Setup

The robots were made by modifying the thymio-II robotic platform (Riedo
et al., 2013) to be able to run the WOSP code and directionally transmit and
receive signals. For this purpose, the thymio-II robots were integrated with
a raspberry pi (Pi, 2017) and a blue-light communication module developed
in Project subCULTron (Thenius et al., 2016). The raspberry pi was used to
run the WOSP code and also to coordinate communications between the
code, the blue-light board and the thymio-II robotic platform. The blue-light
board consists of four blue light modules (a resulting angular resolution
of Aw = 90°) which are able to send and receive 16-byte messages in
their respective direction. The range of the blue-light modules used here is

62

3.6 Robotic experiments

Blue-light module

-

~
.
& .

Connection board

Raspberry pi zero

(a)

Figure 3.23: Photographs of electronic module integrated with thymio-II platform
for directional communication. (a) Photograph shows the blue-light module which
is integrated with raspberry pi zero to form the directional communication mod-
ule. Figures (b) and (c) show the thymio-II robotic platform integrated with the
electronics module.

about one meter (Thenius et al., 2016). The blue-light module was used to
communicate using modulated blue light. Although the blue-light boards
send 16-byte messages by default, the WOSP program developed here
checked whether a message was received from the four different directions
without considering the content of the received message in order to emulate
single-bit signaling. The electronics module containing the connection board,
blue-light module and the raspberry pi zero is shown in Figure 3.23(a).
Figures 3.23(b) and (c) show the electronics module integrated on the
thymio-II platform to enable the entire robot to move and communicate
directionally.

63

3 WOSP: Wave Oriented Swarm Paradigm

Primitive N | trp | £/ | d | repetitions | S
[sec] | [sec] | [r] [%]
Estimate Swarm Members | 10 | 10 | 300 | 0.1 10 100
Leader election 10| 10 | 300 | 0.1 10 100
Aggregation 10| 10 | 300 | 0.1 10 100

Table 3.2: Table showing the parameters used in the robotic experiments and also
the empirical results of the ten repetitions conducted.

3.6.2 Experiments

The robotic platforms were programmed to execute the primitives, estimat-
ing number of swarm members, leader election and aggregation. The start
of the experiment is shown in the photograph in Figure 3.24(a). Initially, all
robots were randomly distributed in the arena and all agents considered
themselves candidate leaders and therefore they have their green LEDs
turned on. During the leader election primitive, all but one robot, are elimi-
nated from leadership. All robots which were eliminated as leaders turned
on their red LEDs as shown in Figure 3.24(b). Here, only one robot remains
with its green LED turned on showing that it is the leader. Subsequently,
all the robots aggregate at the leader as shown in Figure 3.24(c) during the
aggregation primitive. Additional to the WOSP based aggregation found
in the above sections, a simple obstacle avoidance behavior was also inte-
grated into the aggregation primitive. The experiment was stopped when
the thymio-II platforms were only executing obstacle avoidance behavior
repeatedly. The trajectory of the aggregating robots executing the aggrega-
tion primitive is shown using a long exposure photograph in Figure 3.24(d).
This sequential execution of primitives was repeated ten times to validate
the experiment empirically. The estimate of population of the individual
robots over ten runs are shown in Figure 3.25. It can be noted that the mean
estimate of population for each robot (between 5 and 7) is below the actual
value as expected. The deviation from the actual value of the number of
swarm members is close to what was achieved in simulation as shown in
Figure 3.10. As discussed under the respective primitive, the value of £;*
can be adjusted for a better estimated of the total number of members in the
swarm. All the parameters used for the experiment are shown in Table 3.2.
The parameters, ., t;"* were selected according to the selection guidelines
provided in the Section 3.5. The experiments were conducted on a flat arena.

64

3.7 Discussion

A laptop computer was used to start the code quasi-simultaneously on all
the robots.

11 T T T T T T T T T T

Nest
——
— -
— -
T+
-1
—F
—
T+
------CT1]

e i SR

[-

0 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10

Robot number

Figure 3.25: Plot showing estimate of population of each of the 10 robots in the
swarm across 10 experiments. X axis shows the identity of robots € {0,1,2...10}.
Parameters used: N = 10, t,,y = 10 seconds, t’;j“" = 300 seconds.

3.7 Discussion

In Section 3.3, a set of primitives is presented, which can be utilized and
combined as basic building blocks for a meta control scheme for a swarm,
covering the categories “internal organization”, “swarm awareness” and
“locomotion”. Two exemplary realizations of combination of previously
presented primitives for complex collective behaviors are presented in
Section 3.4. In this chapter, it is demonstrated that WOSP unifies common
collective behaviors and thus enables swarms consisting of agents with
limited abilities to collectively perform a large variety of complex behaviors.
Due to its simple and flexible fundamental concept of “scroll wave” based
communication, this paradigm is applicable to a large spectrum of different
types of swarms and environments while requiring minimal communication
abilities.

65

3 WOSP: Wave Oriented Swarm Paradigm

Figure 3.24: Photographs of various stages of WOSP validation using robotic
experiments. An exemplary experiment is recorded in the following photographs.
Figure (a) shows the start of an experiment. In (b), after the leader election primitive,
one robot (shown in green) is elected as the leader. The non-leader robots have their
red LEDs turned on. In (c), the final state of the experiment is shown where all the
non-leader (red) robots have aggregated around the leader robot (green). In (d), a
trace of the trajectories of the non-leader robots moving towards the leader while
executing the aggregation primitive is shown through a long exposure photograph.

66

3.7 Discussion

3.7.1 General features

The primitives of WOSP inherit a set of features due to the nature of the
underlying communication paradigm. The features are discussed in the
following sections.

Unification

Evidently, many primitives such as leader election (Karpov and Karpova,
2015; Ben-Shahar et al., 2014), synchronization (Perez-Diaz et al., 2018),
aggregation (Trianni et al., 2003; Bahge¢i and $ahin, 2005; Schmickl et al.,
2008), estimating the number of members in a swarm (Melhuish et al., 1999;
Brambilla et al., 2009) are collective behaviors that have been implemented
using various mechanisms. As shown in Section 3.3, WOSP unifies collective
behaviors under a single minimialistic paradigm. Since the paradigm uses
the same communication framework for all the primitives, the sequential
combination of primitives can be easily accomplished as shown in Sec-
tion 3.4. Apart from the conceptual simplicity of unifying behaviors, one
benefit of such unification is that the same incoming signals can be used
for inferring global properties of the swarm. For example, the number of
agents in the swarm can be estimated at the same time as estimating the
area of ping origin.

Minimalism

Minimalism is another benefit of WOSP that has been emphasized through-
out the chapter. All primitives presented in Section 3.3 use single-bit com-
munication. Although in the real world there is seldom such a stringent
limitation of using such a narrow bandwidth to communicate between
robots, the extreme assumption is made in order to demonstrate that much
behavioral diversity is possible with a low bandwidth. In a real imple-
mentation of WOSP, a larger bandwidth will usually be available to the
programmer. With an increased bandwidth, more primitives can be added
and more easily combined with each other. In Section 3.4, a time based
sequential execution of primitives is employed. A broader bandwidth will
enable an easier parallel combination of behaviors. For example, if there
are two bits of communication payload, one can be used to communicate

67

3 WOSP: Wave Oriented Swarm Paradigm

a detected obstacle and the other for the occasional pings from agents, the
swarm can go around an obstacle and still stay together by moving towards
the incoming ping from agents while moving at a certain angle to the in-
coming bit indicating the obstacle. In essence, more complex combinations
can be done by increasing the bandwidth of communication.

Resilience

Resilience to ping loss is a benefit WOSP inherits from using scroll waves.
An analysis has been conducted on the resilience of scroll wave based
communication (Varughese et al., 2017) where its robustness against signal
loss was examined. It was shown that due to redundancy in signal pathways,
a system using slime mold based communication, as utilized in WOSP,
can compensate up to 70% individual probability of signal loss without
significant decrease in performance. The ability of this basic behavior to cope
with high amounts of signal loss endows WOSP with resilient functioning
when pings fail to be sent or received. A detailed analysis of this aspect can
be found in Chapter 5.

Scalability

As opposed to approaches such as the one presented by Le Goc et al. (2016),
decentralized control in WOSP allows scalability limited primarily by the
communication abilities relative to operational time scales. For the class
of swarms presented in this chapter the main constraint to scalability is
constituted by the condition that maximum internal cycle length ;/** must
be significantly larger than the time for a ping wave to propagate from one
end of the swarm to the other. It ensures that ping waves likely propagate
through the entire system without colliding with other waves, thus enabling
swarm-wide communication. For example, as shown in Figure 3.20, in the
primitive “estimating the number of swarm members”, the performance of
the estimate is affected by the choice of #;/**. Now, considering a case where
tee is high due to the employment of a slow communication mechanism
for agent-to-agent communication, a high f.e will necessitate a high #;"**.
In such a case, there needs to be a trade off between the number of agents
and operational time scales. However, more sophisticated techniques can
be employed in addition to the simple ping counting mechanism used in

68

3.7 Discussion

Section 3.3 for estimating the number of swarm members. Brambilla et al.
(2009) suggests a variation of Melhuish et al. (1999) to more efficiently
estimate the number of members in a swarm by changing the cycle length
during the run time. Such mechanisms can be used to increase the efficiency
of the primitives and improve their scalability.

3.7.2 Design considerations

Directives for parameter selection for primitives in general have already
been discussed in Section 3.5 and in Section 3.2. The selection of parameters
is crucial for successfully using the WOSP paradigm. However, there is a
wide range of parameters for which the primitives function and a set of
parameters can be reliably found for each primitive. The optimality of the
selected parameter set needs to be evaluated based on the operating time
scales and available hardware by the swarm programmer. For example, if
the cycle length of the swarm is large enough, there will be less collisions
of pings and therefore, there can be a more reliable count of the number
of members in the swarm. If the time scales of operation demand a faster
convergence for a given number of agents, then the programmer must
resort to an alternate method for counting the number of members in the
swarm. However, an analysis paying attention to physical parameters for
a prospective implementation of WOSP in a robotic swarm is beyond the
scope of this thesis.

One of the prerequisites for a swarm to be able to implement WOSP is
directional communication similar to most animals in nature which exhibit
swarm behavior. In this chapter, most simulations conducted follow the
assumption that agents have the ability to precisely detect the direction of
incoming pings. In practice, this requirement can be substantially loosened
for the agents to have a lower angular resolution without significant loss of
functionality as shown in Figure 3.22. In other words, a rough perception
of the direction of the incoming ping is sufficient for the basic functional-
ity of WOSP primitives that depend upon incoming ping direction. More
specifically, primitives involving motion or directionality such as aggrega-
tion, gas expansion, collective motion, localizing an object will suffer in
preciseness with a lower resolution of angular perception. For primitives
that requires the agent to move in a particular direction, low resolution can
be compensated with slower movement speeds.

69

3 WOSP: Wave Oriented Swarm Paradigm

The development of WOSP is closely associated with the project subCUL-
Tron (subCULTron, 2015), a project aiming at deploying a heterogeneous
swarm of underwater robots to monitor environmental parameters in the
lagoon of Venice. Within the framework of this project, individual primitives
of WOSP are already being used for swarm control. Robotic systems such as
subCULTron, which employ a large number of individual agents in a noisy
environment aiming for autonomous operation, can benefit from WOSP.
A practical application of the subCULTron swarm is shown in Chapter 6.
In a real world implementation of WOSP, simplifying assumptions em-
ployed in this chapter will need to be addressed. For example, the speed
of the communication mechanism will determine the speed with which
a message travels through the swarm. The physical speed of the agents
will need tuning with respect to communication speed in order to keep the
swarm together. A number of other practical considerations will need to
be addressed depending on the specific physical properties of the swarm.
In the experiment conducted in Section 3.6, this concern was not a major
concern since it was not physically possible for thymio-II robots to be faster
than the communication speed of the blue-light modules. In general, WOSP
unifies several useful swarm behaviors under one paradigm. However, the
simplifications made in this chapter to demonstrate the capabilities of WOSP
need to be addressed by the programmer for each individual swarm.

Conclusively, a general unifying paradigm for common swarm behaviors
which can be used to control a swarm of agents is presented in this chapter.
As demonstrated through the individual primitives in this chapter, the
1-bit bioinspired communication paradigm can be used in swarm robotics
to produce a large variety of behaviors for simple robotic systems with
limited capabilities and minimalistic communication. The basic primitives
can also be combined to form complex behaviors using the same underlying
minimalisitic paradigm.

70

4 Collective Emergent taxis

In the previous chapter, I discussed various collective behaviors a swarm can
inherit by following a simple, minimalistic and bio-inspired communication
paradigm. In Section 3.4, examples are demonstrated as to how simple
primitives can be combined to accomplish complex collective tasks. In this
chapter, I showcase an alternate option for using emergent tendencies to
accomplish swarm wide gradient “taxis” (Webb, 1998; Grodzicki and Caputa,
2005) behavior. This chapter is based on the following publication:

e Varughese, J. C., Thenius, R., Wotawa, F.,, and Schmickl, T. (2016).
FSTaxis algorithm: Bio-inspired emergent gradient taxis. In Proceedings
of the 15th International Conference on the Synthesis and Simulation of
Living Systems. MIT Press

“Taxis” is a term borrowed from the field of biology where it is defined as
the motion of an organism in response to a particular stimuli (Kendeigh,
1961). In the context of swarm robotics and for this thesis, taxis refers to the
motion of an agent or a robot in response to a measured quantity (Kengyel
et al., 2011; Varughese et al., 2016). In contrast to combining primitives in a
sequential manner to accomplish taxis (as shown in Section 3.4), aggregation
behavior can be performed while modulating the cycle time (based on some
measured physical quantity) of the agents in parallel. When repeated, the
collective moves towards the global maximum of the physical quantity
being measured and used for modulating the maximum cycle time. This
collective resultant movement to the global maximum happens provided
there is a gradient leading to the global maximum. We call this algorithm
based on WOSP behavior the “Firefly and Slime mold Taxis” or the “FSTaxis”
algorithm.

71

4 Collective Emergent taxis

Sense Scale Execute
local gradient :> cycle length :> Aggregation

Figure 4.1: Figure shows the overall scheme of the FSTaxis algorithm where the
individual agents measure the local value of the physical quantity being measured,
scale the cycle length accordingly and then execute the aggregation primitive by
moving towards incoming pings.

4.1 FSTaxis: a WOSP based taxis algorithm

The “FSTaxis” (Firefly and Slime mold Taxis) algorithm is an emergent
gradient taxis algorithm based on the paradigm introduced in Section 3.2.
In addition to the agent capabilities mentioned in Section 3.2, the agent has
an on-board sensor which can measure a physical quantity. The aggregation
primitive is repeatedly executed and the value of the individual agent’s
maximum internal timer value t]'** is reset according to the measured
sensor value to ascend a gradient. A schematic diagram of agent behavior is
shown in Figure 4.1. A more specific explanation of the FSTaxis algorithm is
given below and is categorized into communication and motion behaviors
of the individual agents.

The communication behavior of the FSTaxis algorithm is the same as that of
WOSP as introduced in Section 3.2 and naturally, the parameters used in
Section 3.2 will be used here as well. In order to build an emergent gradient
taxis, each agent sets its cycle length (#;/**) modulated by the measured value
of the environmental gradient at its position. If the internal timer of any
agent counts down to zero before a ping is received, the agent broadcasts a
ping and resets its own cycle length £,/** by associating it with the measured
value, gy, at its position. Following the communication behavior of WOSP,
that “original” ping is further relayed by the neighboring agents. In order
to provide scaling of pinging frequencies to meaningful values, two preset
maximum and minimum are selected for the gradient under consideration:
max and g,i, respectively. Equation 4.1 shows the relation between the
ping frequency of agents and the inherent cycle time of agents. « and w
are constants with unit of time (s) and are selected in a manner that «
corresponds to the minimum £ possible and w provides resolution for

72

4.1 FSTaxis: a WOSP based taxis algorithm

meaningful corresponding change in £, according to changes in the values
of the measured environmental quantity. The values of constants used are
the same throughout this chapter and is shown in Table 4.1. Here, the
physical quantity being measured is considered to be of unit u.

max 1
tp =]Tp (41)
= e =

As for movement, an agent being in an inactive mode does not move. As
shown in Figure 4.2, motion is initiated in the active mode. When any agent
receives a ping it sets itself to active mode, sets its own heading towards
the received ping and moves a fixed step of length, d. A ping can only be
perceived within the limited sensor range, r, of the agent, therefore limiting
the number of agents that are able to influence any particular agent. In the
scenario described above, it is possible that each agent receives multiple
pings from different directions. In such as case, the agent will calculate the
mean heading and will move a distance d in that particular direction. If an
agent’s internal clock triggers, it transitions into the active state, sends out a
ping but does not move in that particular cycle.

When a swarm of agents executes the FSTaxis algorithm as per description
above, scroll waves of pings similar to that in slime mold propagate through
the swarm as in the case of all primitives presented in Section 3.3. In contrast
to the primitives in Section 3.3, the #/** is not same for all agents. Since
the internal timer of the agent with the highest gradient value will count
to zero first, it pings first. Therefore, the direction of the wave will be from
areas with higher values towards areas with lower gradient values. When
an agent receives a ping or multiple pings, it will move towards the mean
direction of the incoming pings. Since the agents whose internal timer
triggers (“initiator”) do not move, the other agents will gather around the
initiator. When the agents are in their new position, their internal clock
values are reset to values of the environmental value. Whichever agent’s
internal clock triggers first becomes the new “initiator” and the swarm
then gathers around this agent. This repeated execution of the aggregation
primitive results in an emergent gradient taxis. The pseudo code of the
algorithm can be found in Algorithm 4.1.

73

4 Collective Emergent taxis

Communication Behavior

Ping
or A
Internal

timer trigger

T PN

ping relay\/

Figure 4.2: The state transition diagram of the FSTaxis algorithm is shown here. The
agents can be in three states: active, refractory and inactive. An agent transitions
into the active state when it receives a ping from a neighboring agent or when its
own internal clock triggers. After broadcasting the ping, the agent transitions into
a refractory mode. After the refractory time, the agent transitions into the inactive
mode. The active mode triggers motion behavior and the agent takes a preset step
of length d in the average of the direction of all incoming pings. After the motion is
complete, their internal clock values are reset to values of the environmental value
according to Equation 4.1.

Motion Behavior

move distance d

Constants
W |t fl T d e Smax | &min
Value [0.1| 5 | 3 |0.5]|0.008| 50 5
Units | s s [pl] 7 S u u

Table 4.1: Table showing all parameters used in the FSTaxis algorithm.

4.2 Gradient ascent with FSTaxis

To demonstrate the gradient ascent capability in simulation, a linear gradient
represented by Equation 4.3 and a hyper ellipsoid gradient represented in
Equation 4.4 are used. Noisy variants of these gradients are also used as

"unit p in Table 4.1 represents distance unit in Netlogo

74

4.2 Gradient ascent with FSTaxis

Data: Paradigm parameters

Result: -

state < inactive;

timer(t,) < random integer € (0, t’;f“x] ;
while primitive do

decrement timer(t);

if agent in refractory state then

wait for refractory_time;

if refractory_time is over then
| state <— inactive

o o

f agent in active state then
broadcast ping;
| state < refractory

o

f agent in inactive state then
listen for incoming pings;
if ping received then

state «+ active;

execute Relay-CodeBlock;

ot

if timer(t,) < o then
state < active;
| execute Initiate-CodeBlock;

Function Initiate-CodeBlock
L timer(t,) < £ ;

Function Relay-CodeBlock
timer(t,) < t’;f“x;
record ping direction;
Calculate average of incoming pings;
move d steps towards incoming ping;
fp < f(local gradient value) ;

Algorithm 4.1: Pseudo code for the FSTaxis algorithm

75

4 Collective Emergent taxis

test functions in order to test the FSTaxis algorithm. All the constants used
in this experiment are shown in Table 4.1.

4.2.1 Simulations without noise

Figures 4.3(a) and 4.3(b) show the simulation environment setup with both
a linear and a hyper ellipsoid gradient. The color scaling represents the
gradient value of the environment. The goal of the gradient ascent algorithm
will be to go towards the dark colored areas. The red line represents the
trajectory of the mean position of the swarm from the starting point (repre-
sented by the star) to convergence (represented by the inverted triangle). The
swarm is considered to have converged when its mean position oscillates
around the area with the maximum gradient value. The trajectory shown is
the result of one of the exemplary runs from the 100 runs conducted with
the test gradients. 100% of the runs resulted in convergence to the maximum
gradient value.

flx) =x (4.3)

The axis parallel hyper ellipsoid, represented by its standard equation 4.4,
is a convex, continuous function and multiple modal function.

2
flx) =Y x?, where — 5.12 < x; < 5.12 (4-4)
i=1

For the hyper ellipsoid gradient, there are four goals at the corners of the
arena with the highest gradient value. The area of the goal (corners of the
ellipsoid) is merely 0.23% of the total area of the arena. Therefore, random
chances of the swarm converging to the goal are minimal. Figure 4.3(b)
shows the FSTaxis algorithm tested with a hyper ellipsoid gradient, the
thick red line shows the trajectory of the swarm. The black star marks the
starting point and the inverted triangle shows the area of convergence. The
trajectory shown is the result of one of the exemplary runs from the 100 runs
conducted with this test gradient. 100% of the runs resulted in convergence
to the maximum gradient value.

76

4.2 Gradient ascent with FSTaxis

(a) Linear Gradient (b) Hyper ellipsoid gradient

Figure 4.3: Behavior of the FSTaxis algorithm to two gradients. (a): A linear gradient
was presented to the FSTaxis algorithm. (b): An axis parallel hyper ellipsoid gradient
was presented to a swarm executing FSTaxis algorithm. In both (a) an (b), the gray-
scale shows the gradient value and the goal is the darkest area; the star symbol
represents the starting point and the inverted triangle marks the point where the
swarm converged.

W
°
o

End point

N
°

1t . . 25 runs s

1 2 3 4
Start quadrant

Figure 4.4: Bubble plot showing the region of convergence relative to the starting
point of the swarm for 100 iterations. The reference line in the right lower corner
shows the diameter of a 25 run bubble. The X-axis shows the quadrant in the arena
where the swarm started and the Y-axis shows the region of convergence. Numbers
1, 2, 3, 4 refer to the quadrants as referred to in the Cartesian coordinate system. It
is seen that in 95% of the runs, the swarm converges to the goal nearest to it.

7

4 Collective Emergent taxis

In case of Figure 4.3(b), it can be seen that the swarm starts at the center
and has the possibility of ascending four different gradients towards four
corners. Figure 4.4 shows the region of convergence relative to the starting
point of the swarm for 100 iterations. The X-axis shows the quadrant in
the arena where the swarm started and the Y-axis shows the region of
convergence. It is seen that in 95% of the runs, the swarm converges to
the goal nearest to it. The 5 % errors are attributed to the fact that, when
the swarm starts at the midpoint between two gradients, it has to choose
which gradient to ascend. This decision depends on which agent’s internal
clock triggers first and hence, is dependent on agent placement and initial
conditions.

4.2.2 Gradients with local optima

In order to test the ability of the FSTaxis algorithm to overcome small local
optima, 20 randomly generated obstructions or “hills” have been introduced
to the smooth gradient. These obstacles attract them to stay at these local
optima if sufficient exploration is not introduced. Figure 4.5(b) and 4.5(a)
show the result of a random successful attempt out of the 10,000 iterations
of FSTaxis algorithm run with noisy hyper ellipsoid gradient and linear
gradient respectively. As shown in Figure 4.6, the simulations with noisy
gradients were conducted with varying steepness of local optima and spread
of each optima. The number of obstructions were kept constant at 10. For
each obstruction spread ranging from 1 to 10 and steepness ranging from
1 to 3 times the normal gradient, 100 iterations were run to observe the
convergence to the goal.

78

4.2 Gradient ascent with FSTaxis

L

(a) Linear Gradient with noise (b) Hyper ellipsoid gradient with noise

Figure 4.5: Behavior of the FSTaxis algorithm to two noisy gradients. (a): An axis
parallel hyper ellipsoid gradient with numerous local maxima was presented to
the FSTaxis algorithm. The gray-scale shows the gradient value and the goal is the
darkest area; the star symbol represents the starting point and the inverted triangle
marks the point where the swarm converged. (b): An axis parallel hyper ellipsoid
gradient with numerous local maxima was presented to the FSTaxis algorithm.
The gray-scale shows the gradient value and the goal is the darkest area; the star
symbol represents the starting point and the inverted triangle marks the point
where the swarm converged.

From figures 4.5(a) and 4.5(b), when the agents executing FSTaxis algorithm
are presented with obstructions in the gradient, they are able to overcome
local optima introduced. As individual agents move towards the leader,
they overshoot the leader (agent whose internal clock triggered a ping) and
escape the local optima. Figure 4.6 shows a graph representing the change
in rate of convergence rate with the steepness of the local optima introduced.
It is seen that for 20 obstacles in the arena, when the size of local optima
(Roptima) is below one sensor range 7, that is Ropsima < 17, 100% of the runs
converge to the goal. As empirically shown in Figure 4.6, as the size and
spread of local optima rises, the rate of convergence decreases.

79

4 Collective Emergent taxis

-]
o

Local optima size [r]

a5
15k .
1 15 2 2.5

Steepness factor (k)

Figure 4.6: The color map shows the percentage convergence in presence of noise.
A set of 10 obstructions or local optima were introduced into each gradient. The
X-axis represents the factor of multiplication of steepness of obstructions with
respect to the normal gradient. The Y-axis represents the area covered by each of
these 10 obstructions. For each set of hill size and steepness, 100 iterations were run.
Yellow colored areas show 100% convergence. It is seen that as for a fixed sensor
range r and distance traveled with each ping d, the percentage of convergence
largely depends upon how steep and how large the local optima is.

80

4.3 Summing up the FSTaxis algorithm

4.3 Summing up the FSTaxis algorithm

By calling the taxis algorithm emergent, I point out that the algorithm
does not explicitly seek to do taxis but the taxis behavior is a property
that is more than the sum of its parts. While emergence does not have an
all encompassing accepted definition, the commonly accepted definition
is “the whole is more than the sum of parts”. Alternatively in Bonabeau and
Theraulaz (1994), the authors define emergence as “a process through which
entirely new behaviors appear, whose properties cannot be derived from a given
model of how the system behaves, so that another model has to be built in order to
deal with these new behaviors”. Since the agents do not actively compare their
current gradient value and the previous gradient value but merely move
towards the incoming ping, the gradient ascent of the agents is an emergent
phenomenon.

In addition to the gradient ascent being an emergent property, since there is
no comparison of gradient values, it can be said that the FSTaxis algorithm
remains strictly temporally and spatially local. In order for FSTaxis to work,
agents have to be merely informed about the presence of other agents in
their sensor range. Therefore, it is only required of the agent to sense the
gradient value at current position, adjust the agent’s own ping behavior
accordingly and broadcast a single-bit ping to make its presence known.
Since the algorithm uses a single-bit ping as in the case of WOSP, it is
minimalistic in its communication requirements. It also inherits all the
properties of WOSP described in Section 3.7.

In Section 4.2, it has been shown that the FSTaxis algorithm is able to work
with multiple local optima. As seen in Figure 4.6, in presence of local optima
that are steep enough, the FSTaxis algorithm is likely to get stuck in the
local maxima. Drawing from these results, it can be concluded that while
FSTaxis is able to ascend simple gradients with noise, they do not guarantee
the convergence to the global maxima in case of multi-modal gradients. One
way to combat the swarm getting stuck in a local maxima is to increase
the spread of the swarm so that some agents in the swarm reach the area
where local conditions are more optimal than those in the local optimum.
In such a case, these agents will be able to pull the agents out of the local
optimum. Figure 4.7 shows the different spreads of swarms (R;s) over run
times for various step sizes d for the agents while keeping the sensor range
r constant. Here, R, is the root mean square distance of each agent from

81

4 Collective Emergent taxis

Fd=r/6
- ~-d =r/4.2
B d=r/3
Fd=r

~N

o
T

ul
T T
.)

w
T

Swarm spread ers [r]
»

N
T

!
0 500 1000 1500 2000
Time [s]

Figure 4.7: The change of the spread of the swarm represented by R,,s during
four different runs. It can be seen that when d, the step size of each agent is low,
the swarm stays coherent. As d increases, the swarm spreads out too much due
to the large step sizes taken. Therefore, d has to be so selected with continuous
connectivity of the swarm in mind.

the center of mass of the swarm. It can be seen that for small step sizes such
asd = g and d = [ﬁ, the swarm remains coherent, that is, the agents
maintain their connectivity with one another. This is shown by the swarm
spread R,;;s remaining within a single sensor range r. However, for larger
step sizes d > r, although the spread of the swarm increases as shown
by the rise in R;;;s, the swarm loses its coherence, that is, the agents lose
connectivity with each other due to large distances traveled based on single
pings. Therefore, the spread of the swarm can be increased partially by
increasing the step sizes but beyond a limit, the swarm loses its coherence.
Other ways of increasing the spread of the swarm are to add more agents
and to use communication devices that have an increased range, r.

Through this chapter, it is demonstrated that FSTaxis algorithm is a an
emergent solution for gradient ascent using WOSP in a swarm of agents.
The minimalism FSTaxis inherits from the WOSP communication paradigm
makes it attractive because it requires only a single-bit communication
between the agents. Additionally, the FSTaxis algorithm works based on
simple rules and requires basic hardware.

82

5 A Resilience Case Study

One of the most fascinating aspects of swarming behavior is their high
tolerance towards the loss of individual entities without losing the overall
performance of the superorganism. Inspired by natural swarms and its
resilience, much effort has been directed at designing systems in a decen-
tralized and self-organizing manner for higher resilience and flexibility
(Angerer et al., 2015). In this chapter, I will explore the resilience of the
WOSP paradigm to communication failures. As detailed in Appendix A,
this chapter is based on the following publications:

e Varughese, J. C., Moser, D., Thenius, R., Wotawa, E.,, and Schmickl, T.
(2019b). swarmFSTaxis: Borrowing a Swarm Communication Mechanism
from Fireflies and Slime Mold, pages 213—222. Springer International
Publishing, Cham

e Varughese,]J. C., Thenius, R., Schmickl, T., and Wotawa, F. (2017).
Quantification and analysis of the resilience of two swarm intelligent
algorithms. In GCAI 2017. 3rd Global Conference on Artificial Intelligence,
volume 50 of EPiC Series in Computing, pages 148-161. EasyChair

5.1 Resilience of swarms

Several studies have been conducted about the aforementioned robustness
of swarm intelligent algorithms. In Kengyel et al. (2016), the authors pre-
sented an analysis of the BEECLUST algorithm and experimentally verified
the robustness of the algorithm by adding agents with impaired temper-
ature sensors. In Bjerknes and Winfield (2013), the authors performed a
comprehensive analysis of the resilience of the swarmtaxis algorithm with
respect to failure modes such as IR sensor failure and motor failure. In this
chapter, I will explore the resilience of the WOSP behavior using “taxis”
behavior introduced in Chapter 4 as a case study. I consider “resilience” as

83

5 A Resilience Case Study

the ability of a system to perform its overall goals even with sub-optimal agent
behavior. In order to approach the topic of resilience of the algorithms in a
comprehensive manner, all the capabilities of the individuals of a swarm
and how their failure could affect the overall goals of the swarm need to be
considered. Broadly speaking about functional components in any robotic
system, they can be categorized into communication systems, sensors and
actuators. Failure of each of these systems can affect the performance of the
swarm in different ways. Since this thesis presents a paradigm for commu-
nication, I will concentrate on agent-to-agent communication failures and
their effects on the overall swarm behavior in this chapter.

This resilience study is part of the project subCULTron (subCULTron, 2015)
which aims at developing a swarm of autonomous underwater robots to
perform environmental measurements and monitoring. One of the sub-tasks
that has been identified is the swarm being able to follow a gradient. This
motivation leads the authors to investigate swarm intelligent behaviors
which can be used to navigate a group of robots from a starting point to a
predefined goal. Since this chapter deals with the effects of communication
behavior on the overall swarm performance, I have to clarify what kind
of communication is available on the robotic platforms being considered.
Classic long range underwater communication is mainly based on acoustics.
However, acoustics are expensive and susceptible to interference and cross
talk especially when a swarm of several robots need to communicate with
one another. The robots in subCULTron are therefore equipped with local
communication modes such as blue-light communication, where small
packets of modulated blue-light signals are exchanged. The range of such a
communication device has been tested to be around one meter under water.
Keeping the limited communication bandwidth and also the possibility
of loss of packets in mind, our algorithms and tasks must be resilient to
failure in agent-to-agent communication. The rest of the chapter is dedicated
to selecting two swarm intelligence algorithms and subjecting them to a
resilience test.

5.2 Relevant algorithms

Algorithms for collective navigation and foraging problems are well inves-
tigated fields in swarm intelligence (Tan and Zheng, 2013; Ducatelle et al.,

84

5.2 Relevant algorithms

2014; Senanayake et al., 2016). Many of these algorithms that are inspired
by natural swarms can be broadly subdivided into pheromone based navi-
gation (Sugawara et al., 2004), navigation based on physical robot chains
(Maes et al., 1996), navigation based on signaling (Bjerknes et al., 2007;
Varughese et al., 2016) and navigation based on pheromone-like gradients
(Schmickl and Crailsheim, 2008; Hoff et al., 2010). In Sugawara et al. (2004),
the authors used a combination of cameras and LEDs to project virtual
pheromone trails which “evaporate” over time. Such global observation
based algorithms are evidently not suitable for an underwater environment
where global observation is expensive and difficult to implement. In Maes
et al. (1996), the authors used immobile robots as “chains” from the “food”
to the “nest”, which is a navigation algorithm based on physical robot
chains. Considering that the range of blue-light communication mechanism
is low, a large number of robots will be needed to form “beacons”, which
would then act as a navigation landmarks for moving robots. Therefore,
such an implementation is also unfeasible for subCULTron and similar
underwater projects. In the approach used by Schmickl and Crailsheim
(2008) and Hoff et al. (2010), the authors presented algorithms in which a
value is exchanged between robots and this value acts as a gradient, which
enables the robots to navigate between the “food source” and the “nest”.
This can be viewed as a combination of using explicit signaling and physical
robot chains as a means to emulate the function of a pheromone trail. This
approach also has disadvantages with respect to scalability as it would need
a large number of robots for a longer trail. In the taxis approach presented
in Bjerknes et al. (2007) and Varughese et al. (2016), the authors used a
single-bit ping as a signaling mechanism in their algorithms to achieve
gradient taxis and source localization respectively. This approach seems
to be the most suitable for underwater environments where robots need
to stay cohesive and connected. Henceforth, approaches which employ a
single-ping communication between agents are examined.

The underwater environment introduces additional constraints over and
above the widely accepted swarm intelligence criteria (Turgut et al., 2007).
These additional constraints are as follows:

1. Algorithms must involve cohesive movement of agents.

2. Algorithms must involve purely local communication.

3. Algorithms must aim at navigating a swarm from a starting point to
the goal.

85

5 A Resilience Case Study

The swarmtaxis algorithm (Bjerknes et al., 2007) and the FSTaxis (Varughese
et al., 2016) algorithm fulfil all of the above criteria. They are similar to each
other in some aspects which include the utilization of a single ping, purely
local communication etc. The main difference between these algorithms is
that the swarmtaxis algorithm uses a technique that forces all the agents
to be connected to every agent in the swarm while in FSTaxis, the agents
need to be indirectly connected to the rest of the swarm through at least one
neighbor. Despite few differences, largely, the algorithms are comparable to
each other, thus enabling us to use the performance parameters I designed
for this comparison. Since the FSTaxis algorithm has already been introduced
in Chapter 4, I will only detail the swarmtaxis algorithm in this section.

5.2.1 The swarmtaxis algorithm

The swarmtaxis algorithm (Bjerknes et al., 2007) uses a differential move-
ment to navigate a swarm to the goal. Each of these agents is equipped
with a communication device to emit a single-bit, a long range sensor to
sense the goal, a local communication device to sense the pings (single-bit
communication) emitted by other agents and an avoid sensor to detect its
surroundings. The “source” or “goal” can be occluded from one agent by
another agent. If an agent is occluded by another agent from the source, it is
said to be in “shadowed” mode; otherwise, it is in “illuminated” mode. The
“avoid radius” of those agents in shadowed mode is smaller than those in
illuminated mode. This means that an agent in illuminated mode can detect
agents in shadowed mode before the latter can detect the former. While
implementing the swarmtaxis algorithm, each agent is allowed to be in one
of the following states: “forward”, “coherence”, “avoid” or “random”. All
agents are set to the “forward” state by default and each agent chooses
one of the other states depending on certain conditions. When the agent
detects a drop in the number of locally connected agents below the entire
population of the swarm, it enters the “coherence” state. Alternatively, when
the agent detects a rise in the number of connected agents, it enters the
“random” state. When an agent detects another agent within its “avoid
radius”, it enters the avoid state. The behavior of agents in each of these
states is as follows:

1. “Forward” state: The agent moves straight ahead at a constant speed.

86

5.2 Relevant algorithms

Coherence state ‘ Random state

I U

Forward state

i L

Avoid state Avoid state
(shadow) (illuminated)

Figure 5.1: State transition diagram of the swarmtaxis algorithm (Bjerknes et al.,
2007).

2. “Coherence” state: The agent executes a 180 ° turn and then enters
into the “forward” state.

3. “Random” state: The agent takes a random turn and then enters into
the “forward” state.

4. “Avoid” state: The agent takes a turn in the opposite direction with
respect to the agent it detected within its avoid radius and then enters
the “forward” state.

This algorithm enables a group of agents to move together towards the goal
(or source). The goal in the case of the swarmtaxis algorithm is a quantity
that can be sensed from afar by means of a long range sensor. For example,
a light source can be the goal for the swarmtaxis because it can be measured
using a long range sensor and can be occluded from some agents by other
agents. Since the illuminated agents see the shadowed agents before the
latter can see the former, this results in the illuminated agents moving
away from the shadowed agents, which is in fact, the direction of the goal.
A typical run in the swarmtaxis algorithm is shown in Figure 5.2(a). As
discussed above, the “coherence” state of the swarmtaxis algorithm keeps
the agents together. After the initial publication (Bjerknes et al., 2007), the
authors presented a method where the entire swarm needed to be connected
for the swarm to consistently move towards the goal without entering
the “coherence” state. In later modifications of the swarmtaxis algorithm
(Winfield and Nembrini, 2012; Bjerknes and Winfield, 2013), the authors
presented an improved version (B and w versions) of the algorithm, where
the agents were required to communicate more than a single ping in order
to work reliably. In this chapter, I will therefore consider the basic algorithm

87

5 A Resilience Case Study

(a) (b)

Figure 5.2: Typical runs of the swarmtaxis and the FSTaxis algorithms are shown in
figures 5.2(a) and 5.2(b), respectively. The green patch represents the starting point
(randomly chosen), the yellow patch represents the goal, the blue trace represents
the trajectory of the centroid (blue circle) of the swarm. The red arrow like shapes
at the goal represent agents and the patch colors in Figure 5.2(b) represent the local
gradient value.

presented in Bjerknes et al. (2007), and based on the connectivity study
presented in Winfield and Nembrini (2012), I will present the improvement
in resilience due to the relaxation of the connectivity constraint «.

5.3 FSTaxis vs swarmtaxis: Comparing resilience

In this section, the simulation of failures in the algorithms of interest and the
performance measures used to study the effects of agent-to-agent commu-
nication failure in each of these algorithms are described. The parameters
used for simulation are the same as those used in Chapter 4 and Bjerknes
et al. (2007) for FSTaxis and swarmtaxis respectively. In order to ensure
fair comparison, a common communication range and agent velocity has
been used for agents in both algorithms. Initially, the agents are distributed
uniformly around the starting point. In order to minimize run to run dif-
ferences and enable appropriate comparison, the same starting point and
ending point are used for all experiments conducted henceforth for both
algorithms.

5.3.1 Simulating failures

In Section 5.2, I discussed each algorithm and saw that in both of these
algorithms, agents use a single-bit communication method to let the sur-

88

5.3 FSTaxis vs swarmtaxis: Comparing resilience

rounding agents know of their presence. A failure in the communication
device would mean that the other agents will not detect the presence of the
failed agent. The illustration of such a case in the FSTaxis algorithm and in
the swarmtaxis algorithm is shown in figures 5.3 and 5.4 respectively. In
order to simulate this failure, I used a probability based roll of a dice each
time the agent attempted to communicate and decided whether the com-
munication should fail or not. Then, this failure probability was increased
progressively and, for each failure probability, I collected 100 data sets in
order to gain substantial data to support our conclusions. In the following
section, I will discuss data collection during each simulation run and why
each parameter is suitable to analyze the performance of the swarm.

PING TRIGGER

Figure 5.3: A scenario showing a ping failure in the FSTaxis algorithm. Agent
1, triggered by its internal counter, broadcasts a ping. The arrows represent the
relaying of that ping to those agents whose communication device can detect this
ping (represented by dotted circles for agents 5 and 2). Agent 2 is normal and
relays the ping to the nearby agents. Agent 5 (black color) has a malfunction in
its communication module and hence, does not relay the ping to agents 6 and 7.
Agent 6 gets the ping via agent 4 and that ping is in turn relayed to agent 7.

Ping failure in FSTaxis

Figure 5.3 illustrates an event of ping failure in the FSTaxis algorithm. Agent
1, triggered by its internal counter, broadcasts a ping. The arrows represent
the relaying of that ping to the agents whose communication device can
detect this ping. Agent 2 is normal and relays the ping to the surrounding
agents. Agent 5 (black color) has a malfunction in its communication module

89

5 A Resilience Case Study

Figure 5.4: Two scenarios showing a successful and a failed communication in the
swarmtaxis algorithm. Scenario 1 is shown on the left, where agent 1 broadcasts
its periodic ping and all other agents in the range perceive this ping. Scenario 2 is
shown on the right, where agent 1 (black) has a ping malfunction which prevents it
from broadcasting the ping, and hence, the other agents in range are blind to the
presence of agent 1.

and hence, does not relay the ping to agents 6 and 7. This makes agent 5
invisible to the other agents in the surroundings and in effect, the “original”
ping direction is misunderstood by agent 6. The result is that agent 7 does
not move at all, while agent 6 incorrectly moves towards agent 4.

Ping failure in swarmtaxis

Figure 5.4 illustrates two scenarios of ping success and failure in the swarm-
taxis algorithm. In Figure 5.4(a), a successful scenario of pinging agents
within a range is shown. The circle represents a range within which all
agents can communicate with each other. In Figure 5.4(b), a failed scenario
of pinging is shown. Agent 1 (black) has a malfunction and hence, does not
broadcast the ping to the other agents in range. Since the swarmtaxis algo-
rithm is based on counting the number of connected agents, a failed ping
means that the other agents in range (agents 2, 3, 4, 5) register a decrease in
the number of connected agents.

90

5.4 Performance measures

5.4 Performance measures

In this section, I describe two observer level performance parameters which
can be used to quantify the resilience of each algorithm as well as to compare
the algorithms with each other.

5.4.1 Time performance

One of the intuitive performance measures is the time or the number
of simulation ticks (defined in unit s in Section 3.2) the swarm takes to
“converge” to the goal. Here, I define convergence as the centroid (or centre
of mass) of the swarm reaching the goal. The “time to convergence” for
different probabilities of failure is measured for comparison with the other
runs. This is a very intuitive way of penalizing runs which take longer
than the baseline time for the respective algorithm. A typical run with no
communication failure takes on average 2000 s for the FSTaxis algorithm
and 10000 s for the swarmtaxis algorithm. The standard deviation of the
number of ticks for each of these algorithms does not exceed 200 s. The
difference in the average of ticks does not imply worse performance as the
simulation time is also dependent on step size of individual agents and
other parameters. During experimentation with communication failure, it
is possible that the swarm never converges to the goal. In order to prevent
infinite run time, keeping in mind the mean and standard deviation of the
number of simulation ticks typically needed for convergence, I limited the
simulation time to 10 times the average ticks a swarm needs to converge
to the goal with all functions intact. Thus, the simulation time is taken
to be 100000 s for the swarmtaxis algorithm and 20000 s for the FSTaxis
algorithm. Therefore, the time performance, normalized against its own
ideal performance, can thus be represented as per Equation 5.1.

number of ticks
maximum simulation time

timeperformance = (5.1)

5.4.2 Optimal path and deviation

From figures 5.2(a) and 5.2(b), it is evident that the typical trajectories of
the centroid of the swarm (hereafter referred to as “centroid trajectory”)

91

5 A Resilience Case Study

for both algorithms do not follow a straight path from the starting point
to the goal. Assuming that the optimal path is a straight line connecting
the starting point with the goal, experiments with faulty agent-to-agent
communication modules show that the centroid trajectory has a tendency to
swerve away from the optimal path. Therefore, the deviation of the centroid
trajectory from the optimal path reveals some information about suboptimal
swarm behavior. Following this logic, I consider the error between the
actual path and the optimal path to be a performance measure of the
swarm. Figure 5.5 shows an illustration of deviation of a centroid trajectory
from the displacement vector. Here, “start” block represents the starting

point S = (xs,ys) of the swarm and “goal” block represents the goal

= (xg,¥g). The freely drawn line traces the actual trajectory p of the
centroid of the swarm and the ideal path can be represented as a vector D.
The trajectory p can be represented as set T of point vectors in Cartesian
coordinates that the centroid of the swarm passed through during the actual
runs. For each failure probability py, I conducted 100 runs and obtained

the set of all centroid trajectories, Oy, and, for each run, I obtained a set
pxj which contains points T;;. Here, py; corresponds to the trajectory in the

k' failure probability and j* run and Tji corresponds to one point in the
centroid trajectory of the i iteration in the j run with k" failure probability.

Subsequently, the projection of the point vector Tj; on D was computed.
Furthermore, the error vectors, obtained as shown in Equation 5.5, can
be used to represent the deviation from the optimal path. From all the
computed error vectors, the root mean square error E,Z.“S can be obtained

across a single run from start to goal as per Equation 5.6. Ez?“ represents

a window of operation for the centroid trajectory of the swarm for runs
with a certain py. The optimal window of operation is the range of Ei* for

all runs with zero probability of failure. Therefore, the set of all EZ?“ for a

particular py, say ¢, as formulated in Equation 5.7, can be represented on
a box-plot to visualize how the window of operation shifts with changing

Pk-

P = {pc|pe =0.05,01,015 ...1}
, wherek = 1,2,3, ..., | P |

92

5.5 Results

G=(xzy)

Goal

Figure 5.5: Illustration of the deviation of a swarm centroid trajectory from the
straight line passing through (xs,ys) and (x¢,y¢). The “start” block represents the
starting point of the swarm and the “goal” block represents the end point of the
swarm. The freely drawn line represents the actual trajectory "T” of the swarm
and the displacement vector is considered as the ideal path 'D’. Points Tj, T, etc.
represent samples from the swarm trajectory and e, e; etc. shows the distance of
points on T to the corresponding points on D.

V px 3 Ok, where O = {pj | j = 1, 2,..., 100}

— (5.3)
andpk]- = {Tka'| 1 = 1, 2,..., Nk]}
— = — = — =
V Tyji 3! Dyjis-t. (Tgji — Dyji) L (Drji— S) (5-4)
— =
ei = Dyi — Tii (5.5)
1%
Ei =) lleill (5.6)
! Nyj i =
V pr e, wheree = {Ej° | j€[l,2,..., 100]} (5.7)

5.5 Results

%
In order to minimize run to run differences, the same starting point S and

goal C are used for all 100 runs for each pk- Also, agents in both algorithms
move with the same individual step size d = 0.5 units, where one unit is
unit length in Cartesian coordinates.

93

5 A Resilience Case Study

5.5.1 Time performance

Figure 5.6 shows the performance parameter e, formance and how it changes
as the probability of failure increases. We see that t,,; formance Saturates as
maximum simulation time is reached. Time performance saturates rapidly
for the swarmtaxis algorithm, while the FSTaxis shows a wider range of
operation before tpgr formance Saturates.

o 9
)

performance
(8}
T

t
o
»

0.3
0.2

0.1¢ eFSTaxis -
Hswarmtaxis
L 1 1

o

))))))
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
probability of communication failure P,

Figure 5.6: The performance parameter, f,; formance and how it changes as the
probability of failure increases. The presented data is based on 1000 simulation
runs (100 runs per py).

5.5.2 Root mean square error

Figures 5.8 and 5.9 show the distribution of mean square errors (E") of the
centroid trajectory with respect to the optimal path ‘D’ of a swarm executing
both the FSTaxis algorithm and the swarmtaxis algorithm respectively. We
see that as the probability of failure increases, the median and spread
of E" increase for the FSTaxis algorithm, while it remains more or less
constant for the swarmtaxis algorithm. It is also important to note the
“outliers” in the box-plot as they also contribute to the increasing spread of
the distribution. The increasing deviation from the optimal path, or, in other
words, the increasing range of root mean square error, shows the increasing
deviation of the swarm centroid from the optimal path. This means that the

94

5.6 Discussion: swarmtaxis vs. FSTaxis

100¢%

Convergence rate [%]
v
=)

FSTaxis
swarmtaxis
& o s & &

1
o 0.1 02 03 04 05 06 0.7 0.8 0.9 1
Probability of communication failure P,

Figure 5.7: Percentage of runs of each algorithm that converged to the goal with
increasing probability of failure. The presented data is based on 1000 simulation
runs (100 runs per py).

“window of operation” (as defined in Section 5.7.2) widens as the ping loss
increases for the FSTaxis algorithm. The probabilities with more than 50%
non-converging runs are marked as “non-converging runs”.

5.6 Discussion: swarmtaxis vs. FSTaxis

From figures 5.7 and 5.6, a “Resilient operating limit”"(ROL) of failure
probabilities px can be observed. In Figure 5.7, the percentage of runs of
each algorithm that converged to the goal for the FSTaxis algorithm is
consistently 100% until p; = 70%, while the swarmtaxis algorithm tolerates
only a 5% failure probability for 100% convergence. Therefore, for the
FSTaxis algorithm, ROL of py= 70%, while for the swarmtaxis algorithm,
ROL of pi = 5%. The reason for this limited ROL of the swarmtaxis algorithm
is that the swarmtaxis algorithm needs all the members of the swarm to
be connected to each other in order to avoid losing swarm members. In
Bjerknes et al. (2007), it can be seen that the a value (connected swarm
members) is set to the population of the swarm. This constraint makes the
swarm enter repeatedly into “coherence” state which drives the swarm
away from the goal. As the probability of failure increases, the probability

95

5 A Resilience Case Study

10

T T T T T T T T T T T
[Enon-converging runs |
9 - -

»
£ 8f . .
] * *
*
s 71 1
-
o
26' + . . J
o 4 * —_ H
3 5 * 3+ 1 -
g H 1 1
c 4} - + 1 1 T i
3 1 1 1 :
.
€ 3t + ! .
- 1 +*
8 P T |
3
N 1
L
L

1

1 o
. 0.4 05 0.6 0.7 0.8 0.9 1.0
Probability of failure P,

=Y
FIF-4+-
il

oL+ {TF

o O

Figure 5.8: Distribution of root mean square error of centroid trajectory of a swarm
executing FSTaxis. The probabilities of failure with more than 50% non-converging
runs are marked as “non-converging runs”. The red ‘+ signs represent the root
mean square error of a single run among the total 1000 (100 runs per pi) runs.

T T T T T T T T T T T
I]non-converging runs

=
N
1

[
(=]
T

1

©

Root mean square error E™*
o
T

1
4

S E . W T, S T S T S -
00 0.1 0.2 03 04 05 06 0.7 0.8 09 1.0
Probability of failure P,

Figure 5.9: Distribution of root mean square error of centroid trajectory of a
swarm executing swarmtaxis. The probabilities of failure with more than 50% non-
converging runs are marked as “non-converging runs”. The red “+’ signs represent
the root mean square error of a single run among the total 1000 (100 runs per py)
runs.

96

5.6 Discussion: swarmtaxis vs. FSTaxis

of at least one agent not being connected to the rest of the swarm increases
drastically and, hence, the swarm remains in coherence state. In contrast,
the reason for high resilience of the FSTaxis algorithm is that the behavior of
the swarm is not based on the number of pings received, but rather on the
presence of a ping. Even if a high number of pings are lost due to agents
failing to relay it further, due to the presence of some incoming pings, the
agents move towards it. This is not always the correct direction for successful
gradient taxis, but nevertheless has some information about the gradient
due to the sole origin of pings being the agent at the local gradient extrema.
Therefore, the swarm takes many unnecessary steps swinging away from
the optimal path, but still it manages to reach the goal each time even with
a very high ping loss. In Winfield and Nembrini (2012) and Bjerknes and
Winfield (2013), the authors present a modified swarmtaxis algorithm and
experiment with various « values, that is, they relax the connectivity criteria
presented in Bjerknes et al. (2007). Such an approach will intuitively reduce
the number of transitions into the “coherence” state and therefore slightly
improve the ROL but the basic state transition is still based on a polling
method which depends on the number of pings received.

From Figure 5.8, it can be inferred that the median of root mean square error
of the FSTaxis algorithm increases with increasing probability of failure. A
swarm operating with high probability of failure p; has a very irregular
movement around the optimal path in contrast to the exemplary run of the
FSTaxis algorithm shown in Figure 5.2(b). This is due to the fact that pings
that originate from the agent whose internal trigger counts out are lost as
shown in Figure 5.3. As a result, the agents in the swarm either do not
receive the pings or receive the pings via other agents whose communication
mechanism works. This in turn causes the agents to move towards the
incoming ping and hence, in a suboptimal direction as compared to the
goal. These suboptimal movements explain the increase in spread of root
mean square error signified by the median and quartile shift. We also
see more outlying data points (Figure 5.8) as compared to the runs with
lower probability of failure due to the same reason mentioned above. It
is remarkable that even with a very high amount of ping loss, the swarm
manages to find the goal most of the time as shown in Figure 5.7.

97

5 A Resilience Case Study

5.7 “swarmFSTaxis”: making swarmtaxis more
resilient

Since the behavior of swarmtaxis algorithm is not tightly coupled with the
polling mechanism it employs, one very interesting question at this point
is “What would be the result if one was to implement the communication
strategy of the FSTaxis algorithm in swarmtaxis?”. Section 5.7.1 introduces
a modified swarmtaxis algorithm to employ the communication method
of FSTaxis based on the research presented in the previous sections. In
Section 5.2, it was established that the communication mechanisms of both
the FSTaxis and the swarmtaxis algorithms have non-zero resilience to agent-
to-agent communication failures while the FSTaxis algorithm exhibited a
significantly higher resilience. Subsequently, I present how the resilient
communication behavior of WOSP can improve the performance of the
swarmtaxis algorithm. We refer to this hybrid between swarmtaxis and
FSTaxis (with the communication behavior of WOSP) as the “swarmFSTaxis”
algorithm.

5.7.1 The swarmFSTaxis Algorithm

In the swarmFSTaxis algorithm, additional to all capabilities described
in Section 5.2.1, each agent is assumed to have internal timers and local
directional communication. The goal can be occluded from an agent similar
to the case of the swarmtaxis scenario. The behavior of the agents differ
depending on whether they are “illuminated” or “shadowed”. Figures 5.10
and 5.12 shows the state machine of the swarmFSTaxis algorithm.

As in the case of the FSTaxis algorithm described in Section 4.1, there are
two types of behaviors in the swarmFSTaxis algorithm: the “ping” behavior
and the “motion” behavior. The ping behavior describes the agent-to-agent
communication during the execution of the algorithm. In ping behavior,
as shown in Figure 5.10, the agents may assume three states: “pinging”,
“refractory” and “inactive”. Initially, all agents are set to the inactive state.
In the inactive state, the agent monitors its receivers for incoming single-
bit local communication (pings). In the event of an incoming ping, the
agent broadcasts a ping and enters the refractory state. During refractory
time, t,.¢, the agent is insensitive to all incoming pings. At the end of the

98

5.7 “swarmFSTaxis": making swarmtaxis more resilient

Iluminated ping behavior Shadowed ping behavior
Internal
Trigger Inactive mode Ping Inactive mode
End of received End of

refractory refractory

. period & eriod
End of \% = End of <

ping ping

Refractory mode r:b Refractory mode

Figure 5.10: A state transition diagram of the ping behavior of the swarmFSTaxis
algorithm is shown in the figure. Illuminated and shadowed agents differ in ping
behavior in that the shadowed agents only relay pings while the illuminated agents
both produce and relay pings.

Oor %
Ping y
received £

refractory time, the agent transitions back to the inactive state. Apart from
the above ping behavior, the “illuminated” agents have internal timers that
are constantly counting down. When the timer counts down to zero, the
agent broadcasts a ping. This means that an “illuminated” agent produces
a ping either when the agent receives another ping or when its internal
timer counts down to zero. The difference between the ping behaviors of
shadowed and illuminated agents are illustrated in Figure 5.11.

In addition to the ping behavior described above, the agents also have a
“motion” behavior. Unlike the ping behavior, the motion behavior is the same
for all agents regardless of whether they are “illuminated” or “shadowed”.
There are two kinds of motion behavior: “general motion behavior” and
“avoid motion behavior” as shown in Figure 5.12. In “General motion
behavior”, an agent at the event of an incoming ping, moves towards the
incoming ping. In case there are multiple incoming pings, the agent moves
towards the mean of the directions of all incoming pings.

During “avoid motion behavior”, an agent moves away from a detected
neighbor. As in the case of the parent algorithm, the swarmFSTaxis algo-
rithm also implements dissimilar avoidance radii for “illuminated” and
“shadowed” agents: avoidj,,, and avoidgy,;,,. The sensor range of the illu-
minated agents are set to a higher value which in effect, enables the agents
to move away from an approaching shadowed agent.

Since the illuminated agents trigger pings when their internal timer counts
down to zero, the waves will originate at the “illuminated” agents and
propagate through the “shadowed” agents as they relay the pings. The

99

5 A Resilience Case Study

lluminated Shadowed

O %Q@O =
=0 &>
w0 OO0 e

O= O> e

pings triggered
by internal timer relayed pings

Figure 5.11: The ping mechanism of the swarmFSTaxis algorithm is illustrated in
this figure. The “illuminated” agents have a low internal timer value and hence, will
hijack the pinging frequency of the system by pinging frequently. The shadowed
agents will keep relaying the pings produced by the illuminated agents.

General Motion Behavior

Incoming 8

Initial state moved =B

Start motion — Stoy i
c p motion
towards ping Distance -

Avoid Motion Behavior

neighbor
) detected?

Initial state moved =

Move away
from detected > Stop motion
neighbor Distance

Figure 5.12: A state transition diagram of the motion behavior of the swarmFSTaxis
algorithm is shown in this figure. Illuminated and shadowed agents have the same
motion behavior triggered by either an incoming ping or a neighbor.

100

5.7 “swarmFSTaxis": making swarmtaxis more resilient

Table 5.1: Table showing all parameters used in the modified swarmtaxis algorithm.

Constants
tref r d | swarm_size | avoidjm | av0idspadow
Value 3 2.5 | 0.1 21 0.28 0.16
Units | timestep | p! r - r r

“general motion behavior” ensures that the swarm stays together with the
agents moving towards the incoming ping while the “avoid motion behav-
ior” ensures that the illuminated agents move away from the shadowed
agents and, in effect, move towards the goal.

5.7.2 Testing swarmFSTaxis

As in the case of Chapters 3 and 4, r is used as a unit representing one
sensor radius of the agent. At the beginning of a typical run, the agents are
distributed uniformly around a starting point and then, the algorithm is
executed. The centroid of the swarm is used as a collective position estimate
of the swarm. Once the centroid of the swarm reaches the goal as shown in
Figure 5.13(b), the run is terminated. During the entire run, the position of
the centroid of the swarm is tracked in order to produce a representative
trajectory for the motion of the swarm as a whole in each run. The constants
used for simulation are shown in Table 5.1.

In order to compare the modified algorithm with its parent, I will use the
time performance measure introduced in Section 5.4. A set of 100 simulation
runs has been conducted for each algorithm. To make the runs comparable,
all runs were started from the same point, had the same swarm size and
the same parameters as shown in Table 5.1 and had the same goal. Also,
the parameters used such as sensor range of illuminated and shadowed
agents, range of directional communication and distance moved during
motion behavior were kept the same for all 100 runs. The time performance
of each of these algorithms has been recorded and plotted in Figure 5.14 for
the swarmFSTaxis algorithm and the parent algorithm. Later, in Section 6.5,
Figure 5.14 is discussed in detail.

"unit p in Table 5.1 represents distance unit in Netlogo.

101

5 A Resilience Case Study

(@) (b)

Figure 5.13: The starting condition of a typical simulation run of the swarmFSTaxis
is shown in Figure 5.13(a). Figure 5.13(b) shows a converged run. The green patch
(occluded by the white circle in Figure 5.13(a)) shows the starting point, the white
circle shows the centroid of the swarm and the yellow patch shows the predefined
goal. The white trace in Figure 5.13(b) shows the trajectory of the centroid of the
swarm. The yellow agents are the illuminated agents and the blue ones are the
shadowed agents.

12000

—_
8000 +
—_

z —
] L
£ 6000
e

4000

2000

0 L L
swarmFSTaxis swarmtaxis

Algorithms

Figure 5.14: A box plot showing the simulation time each algorithm took to con-
verge to the goal. The data from 100 runs of each algorithm are shown in the plot.

102

5.7 “swarmFSTaxis": making swarmtaxis more resilient

100¢%

90 -

80

70+

60

50

a0}

Convergence rate [%]

30
20

10 swarmFSTaxis

swarmtaxis
0 L s s & o s & &

o 0.1 02 03 04 05 06 0.7 0.8 0.9 1
Probability of communication failure P,

Figure 5.15: A plot showing the percentage of runs that converged to the goal for
all failure probabilities.

For testing the algorithms for their resilience towards agent-to-agent com-
munication failure, a probability of failure, 0 < p; < 100, was introduced
to each ping that an agent broadcast. Before each agent broadcasts a ping,
a roll of dice was performed with probability p; to decide whether that
ping should fail to be communicated. For each value of pg, 100 runs were
conducted and the simulation time taken by each algorithm to converge
to the goal was recorded. Figure 5.15 shows the plot of the percentage of
runs that converged to the goal for each failure probability. For both algo-
rithms, 1000000 s were set as a limit beyond which a run was considered
“non-converging”.

5.7.3 Discussion: swarmFSTaxis

From Figure 5.15, I can conclude that the resilience of the swarmFSTaxis
algorithm has increased dramatically as compared to the parent algorithm.
This phenomenal increase in resilience of the algorithm is due to the fact
that the algorithm does not depend on the count of pings for its state
transitions but rather the direction of incoming pings. Even when as low
as only a single ping reaches an agent, the agent performs general motion
behavior. Meanwhile, in the case of the parent algorithm, if a ping from
some of the agents fail, to be transmitted or received, the algorithm executes

103

5 A Resilience Case Study

sub-optimal transitions into the coherence state as it perceives that the
swarm connectivity falls below the threshold «. The disadvantage of such
an approach is that it makes the algorithm dependent on the success of
communication of all the agents in the swarm. As shown in Equation 5.8,
assuming the probability of failure of each ping as py, there is a collective
probability, peonerence, that an agent counting the pings makes a transition
into the “coherence” state. In contrast, the swarmFSTaxis algorithm fails
in its state transitions only when all the agents in the swarm or almost all
agents in the swarm fail to transmit or receive a ping. This probability is
of the order of (py)N where N is the number of members in the swarm
and this is hence, very small for even very high values of py as seen in
Figure 5.15.

Pcoherence = le + P% + Pl% ey plﬁ (5.8)

In Figure 5.14 it can be seen that out of 100 runs of both algorithms, swarmF-
STaxis algorithm is consistently faster than the parent algorithm. From
Figure 5.14, the mean of the number of ticks to convergence for the swarmF-
STaxis and the parent algorithms is 6597 and 9540 respectively. Therefore,
the swarmFSTaxis algorithm has become about 30% faster than the parent
algorithm. As explained above, fewer transitions into the “coherence” state
helps the swarmFSTaxis algorithm to be faster than the parent algorithm.
In a later publication (Winfield and Nembrini, 2012) the parent algorithm
was improved and was made more resilient to such failures, however, the
state transitions were still based on a poll based count. In contrast to this
approach, the swarmFSTaxis algorithm uses the direction of the incoming
ping instead of a poll based count to keep the swarm coherent.

From this chapter it is evident that due to the communication mechanism
of WOSP, the FSTaxis algorithm exhibits resilient behavior even with a high
ping loss. The reason for its high resilience is the ping relaying mechanism of
WOSP as described in Section 3.2. This mechanism increases the probability
of pings being relayed reliably despite ping loss. The communication mech-
anism of FSTaxis can be implemented in other swarm robotic algorithms
or even for multi-robot systems where communication is crucial to goal
achievement.

The operating range of the swarmtaxis algorithm is cut short to a resilient
operating range - 0 < p; < 0.05 due to the algorithm repeatedly driving the

104

5.7 “swarmFSTaxis": making swarmtaxis more resilient

swarm into the “coherence” mode. In Winfield and Nembrini (2012), the
authors present various techniques to ensure connectivity and avoid unnec-
essary state transitions into”“coherence” state. However, these modifications
do not retain the 1-bit communication feature which is a strong argument
for underwater swarms since communication is expensive and subject to
noise.

A modification of the swarmtaxis algorithm has been suggested and subse-
quent improvements in resilience have been demonstrated in this chapter.
In the future, the WOSP communication mechanism has the potential to
replace poll based counts that are common in engineered systems. Fur-
ther research in this direction can ensure that the full capacity of such a
communication mechanism is utilized.

105

6 WOSP for Event Detection

As the last chapter of this research, I present a practical application based on
WOSP, which has so far been presented in simulation or in lab conditions. As
detailed in Appendix A, this chapter is based on the following publication:

e Varughese, J. C., Hornischer, H., Thenius, R., Wotawa, F., and Schmickl,
T. (2019a). Collective event detection using bio-inspired minimalistic
communication in a swarm of underwater robots. Number 31, pages

634641

6.1 Event detection

With the decreasing size of computation and memory devices, the num-
ber of computers has been increasing dramatically. Koh and Magee (2006)
observed that computing power available per dollar has increased by a
factor of ten roughly every four years over the last quarter of a century. The
increase in the available computation power has brought massive parallel
multi-agent systems to the forefront, such as ubiquitous computers (Kim
and Follmer, 2017), IoT systems (Gubbi et al., 2013), swarm robotics (Zaha-
dat and Schmickl, 2016; Witkowski and Ikegami, 2016). Such systems with
increasingly large numbers of individual interacting parts pose challenges to
the traditional top down control schemes. Therefore, decentralized comput-
ing strategies with little or no top down control are being widely explored
and implemented (Schmickl et al., 2008; Cazangi et al., 2005). Inspiration
for such strategies is drawn from self-organizing natural systems such as
starling murmurations (Cavagna et al., 2010), honeybee colonies (Seeley,
1992) and slime mold aggregates (Durston, 1973; Bonner, 1949).

A decentralized algorithm is presented here for a swarm of underwater
robots to detect, to collectively validate and to report significant variations
in environmental parameters. In a nutshell, if a member of the swarm

107

6 WOSP for Event Detection

detects an anomaly in its measurements it will register an event and alert its
neighbors. A periodic oscillator and traveling wave based communication
paradigm inspired by slime mold and fireflies is then used to periodically
communicate with the neighbors who registered the event. As soon as the
event is validated by a sufficient number of neighbors, an alert is sent to a
base station.

The algorithm presented here is developed for a swarm of underwater robots
which is intended to detect the anoxia phenomenon (Runca et al., 1996) in
the lagoon of Venice. During anoxia the oxygen content of a small part of
the lagoon decreases suddenly, resulting in the death of flora and fauna
and thus, damaging the local ecosystem. Thenius et al. (2016) suggested
a strategy for examining and documenting this recurring phenomenon by
utilizing a swarm of underwater robots. According to this strategy, a team
of underwater robots, known as “aMussels”, will be used for monitoring a
set of environmental parameters, including oxygen concentration levels, to
detect the phenomenon within the framework of project subCULTron (sub-
CULTron, 2015). On the one hand, the detection of anoxia by individual
robots needs to be validated with a number of neighbors before a global
alarm can be raised for greater reliability. On the other hand, underwater
communication is expensive, noisy and therefore, exchange of information
between the robots needs to be minimized. For this reason I will focus on
detecting and validating the event of anoxia with a swarm of robots while
considering the modes of communication available on the aMussel robots.

Many environmental monitoring systems, which use sensor networks to
collect data in a large area, have focused on reducing the energy consump-
tion in order to increase network longevity (Zhou et al., 2015; Kaur and
Sood, 2017). However, most of the existing protocols and algorithms for
underwater sensor networks focus on making the algorithms usable for a
wide range of communication devices, especially for deep sea environments.
By contrast, I focused on designing an event detection algorithm suitable for
the low cost, narrow bandwidth and low payload communication devices
used in subCULTron. Specifically, aMussels are equipped with three kinds
of underwater communication devices. Modulated blue light communica-
tion and electric sense for extremely short ranges (~ 1 meter) as well as a
low-frequency acoustic nanomodem for a comparatively longer range un-
derwater communication (~ 100 meter). In addition to that, aMussel robots
are not mere sensor nodes but have the capability of diving up and down in
a water column. This enables the aMussels to dive up to the water surface

108

6.2 Related work

and report the occurrence of an event using ultra long range communication
devices rather than forwarding packets to the sink nodes like traditional
sensor networks do. Keeping these constraints and special capabilities of
the aMussel robots in mind, I suggest an algorithm for event detection in
autonomous swarms of robots in the following .

6.2 Related work

Many algorithms and protocols have been proposed and implemented
to improve deep sea monitoring using underwater wireless sensor net-
works (UWSNSs)(Zhou et al., 2015; Debont et al., 2012). Although many
techniques used in the classical wireless sensor networks can be used for
their underwater counterparts, communication in an underwater environ-
ment is especially challenging. Therefore, I will give a brief overview of
some event localization schemes suggested for UWSNSs.

Since underwater sensor networks might be mobile due to underwater cur-
rents, the communication protocol presented by Zhou et al. (2015) includes
a “heartbeat” which periodically communicates with neighboring nodes
and constructs a routing tree. Additionally, the system aggregates data and
processes it locally to detect an event before forwarding the event to the
sink node.

Debont et al. (2012) suggested a solution for event detection using a cyclic
graph model. The solution optimally placed “beacon” nodes which act as
location-aware references for surrounding nodes. In Debont et al. (2012)
the authors showed that the intelligent placement of beacons reduces the
number of sends required by 8o % as compared to a naive placement. In case
of an event, a message is forwarded to the beacon node which in turn acts
as a buffer to collect more event messages from other nodes. Then, a batch
of messages containing alarms is forwarded to the sink node. While such
an implementation is helpful for underwater sensor networks in general, it
requires elaborate routing protocols and non-minimal message lengths.

Repeated and periodic exchange of information is employed in the above
implementations of event detection. While a “heartbeat” signal (Zhou et al.,
2015) is important for dynamic deep sea sensor networks, where nodes move
with currents, it is a costly solution for the shallow lagoon of Venice with

109

6 WOSP for Event Detection

minimal water movement. As previously mentioned, each aMussel robot is
able to dive up to the surface of the lagoon and use their ultra long range
communication capabilities to alert the base station and therefore, obviates
beacon nodes as in Debont et al. (2012) or “data aggregator” nodes. In
addition, the construction of an elaborate routing tree as suggested by Zhou
et al. (2015) and Debont et al. (2012) necessitates an increased communication
payload which is not necessary for event detection in systems such as the
robotic swarms developed within the framework of subCULTron.

6.3 The algorithm

To enable a swarm to detect and report an event in an energy efficient
manner, | introduce three modes of operation of the robots (or agents):

“observation mode”, “alert mode” and “event mode”. A schematic represen-
tation of the different modes can be found in Figure 6.1.

e Observation mode: Initially, all agents are in this mode where they
periodically take measurements but refrain from any means of active
communication.

e Alert mode: If an agent in the observation mode receives any active
communication signal, it will enter the alert mode. In the alert mode
an agent also increases its frequency of measurement in order to detect
a prospective event as early as possible but refrains from any active
communication.

e Event mode: When an agent in observation or alert mode deducts
the potential occurrence of an event from its own measurements, it
enters the event mode. In this mode, an agent takes measurements
with higher frequency in order to observe changes in the environment
and collect data with higher temporal resolution. Furthermore, in the
event mode agents periodically send 1-bit signals which are received
by neighboring agents. If an agent in the event mode receives a signal,
it simply relays the signal. In the event mode the agents also estimate
the number of other swarm members which are in the event mode.
As soon as an agent reaches a sufficiently high estimate of other
agents detecting an event, it reports the event to the base station. The
mechanism used by the agents to estimate the number of agents in the
event mode is explained below.

110

6.3 The algorithm

E | m | (m | m|[m|[m
B | m m | m E | m
@ O O W O
m | m | | m | = m
Hy My Hy Hy Hg Hy
E m||m| m||m||m
@ ® © @ @ ®

Figure 6.1: A schematic representation of the modes of operation. (a): a swarm of
agents in observation mode (black). (b): an irregularity in environmental parameters
occurs (blue area). (c): the agent in the blue area takes a measurement and detects
the irregularity. The agent enters the event mode (yellow). (d): The agent in the
blue area sends a signal to neighboring agents. (e) The neighboring agent receives
the signal and subsequently enter alert mode (red). The agent which sent a signal
stays insensitive to incoming signals (dark blue) for a defined duration after which,
in (f) it is able to receive signals again.

The algorithm is designed to validate the event with a sufficient number
of neighboring agents in order to cope with sensor failure and hence,
potentially erroneously reported events. The swarm validates the occurrence
by estimating the total number of agents in the swarm which are in event
mode. Evidently, the concepts introduced in Section 3.2, such as refractory
time (fy.f), fixed cycle length (£;*) applies to the aMussel swarm for event
detection. Every time an agent in event mode sends a signal, it gets relayed
by all the other agents in event mode. This leads to the wave-like propagation
of signals through a sub-swarm of agents in event mode which is similar to
that demonstrated in Section 3.2. The propagation of a wave through the
sub-swarm of robots which has detected an event is schematically shown
in Figure 6.2. Once the agent enters the event mode, it executes the WOSP
primitive “estimate number of swarm members” in order to estimate how
many agents around it are in the event mode. As soon as an agent detects
a predefined number of agents (1) in the event mode, it dives up to the
water surface and reports the event to a base station via the ultra long range
communication mode.

111

6 WOSP for Event Detection

@ t=0 b)t=1 ©t=2 dt=3

Figure 6.2: A schematic representation of the relaying of signals in the event mode.
(a): An agent in event mode initiates the sending of a signal (yellow star). After
signaling, an agent stays insensitive to incoming signals for a specified duration
(shown in dark blue). The consecutive relaying of this signal by neighboring agents
in event mode is shown in (b) - (d), respectively.

6.3.1 Simulation

Netlogo 6.0.2 is used to conduct simulations. The fundamental units for
space and time are referred to as “patches” and “s” respectively. Agents
are randomly distributed within a system of size 110 x 110 patches with
periodic boundary conditions. Agents have a communication range of 9,
that is, a signal can be received by all agents within euclidean patch-to-
patch distance of r = 9. The perception of communication for the individual
agents is taken to be circular and therefore, the communication area to be
sa ~ 1 -8l. At a random position in the system, the anoxia phenomenon
is initialized with an area of 1 patch and spreads to all adjacent patches
within the Moore neighborhood at a constant rate (s). The agents can detect
anoxia solely at the exact position where they are located. All agents choose
random times during each of their internal periods at which they measure
and potentially send signals. The refractory time during which agents stay
insensitive to incoming signals after sending a signal is ¢,y = 5 s. Figure 6.3
shows two screen shots of an exemplary simulation in an early state as
well as in its final state where an agent reports the occurrence of an event.
If not stated otherwise, the number of agents necessary to agree on the
occurrence of an event in order to report it is set to n, = 5. The parameters
are deliberately selected to demonstrate the working of the algorithm, and
those parameters which affect the performance will be introduced in the
upcoming section.

112

6.3 The algorithm

(@) (b)
Figure 6.3: Screen shots of a simulation run of the presented algorithm. The agents
are placed randomly in the arena with uniform probability; in (a) and (b) the
blue domain represents the presence of anoxia. The black, yellow and red squares
represent the individual robots which are in observation mode, event mode and

alert mode, respectively. The red target symbol in (b) represents the agent in event
mode which sends an alert to the base station.

6.3.2 Swarm level parameters

In order to quantify the performance of the algorithm, I introduce some
parameters which reflect the characteristics and performance of the swarm
of robots monitoring the environment for the event.

e Measurement and communication periodicity (£,%): This parameter
signifies the periodicity with which all agents in the system communi-
cate. tgwx is measured in unit tick, s.

e Density of robots (D): This parameter measures how densely or
sparsely the agents are spread in the environment. D is measured
in robots/r? where 72 - 77 is the area of perception of one robot.

e Time until reporting (T): Assuming the start of anoxia at tick = 0, the
number of simulation ticks taken until an agent sends a message to
the base station. The unit of measurement of this parameter is s.

e Area of spread of anoxia(A): The total area anoxia covers until an
agent sends a message to the base station. The unit of measurement of
this parameter is in patches.

113

6 WOSP for Event Detection

770001 II | -
F 6500 H .
o -
c

'E 6000 I II

Time until repo

B » u u
o [*] o u
o o o o
o o o o
T T T T
—

d

3500

3000 L L L L L
0o 500 1000 1500 2000 2500 3000

Measuring Periodicity t:ax [s]

Figure 6.4: Time T until reporting an event versus measuring periodicity £;*, that
is, the periodicity of agents taking measurements of environmental parameters and
optionally (if they are in event state) send signals. Parameters: D =1, t,,y = 5 s.

6.4 Results

In Figure 6.4 the dependence of time T until agents report an event on the
Periodicity t’;’”.x of agents is shown. Every data point is averaged over 100
independent simulations.

As 15" approaches 1, the time until reporting diverges towards infinity.
For 7% < 100, the agents communicate so frequently that due to the
refractory time associated with each broadcast, they rarely receive signals.
Thus, agents rarely get to confirm that other agents share their opinion on
the occurrence of an event. For ;)" ~ 300, the time until reporting has a
minimum value of T ~ 4500 s. Thereafter, T grows in an approximately
linear manner for increasing t'"*. In the extreme case of ¥ — oo, the
area of the event spreads throughout the system and is detected only when
agents first measure and then signal. From Figure 6.4, the optimal measuring
periodicity of t}** € [200,500] for which time T is at a minimum is derived.
Since within the interval the time to report the event T remains rather
stable, £** = 500 is chosen in order to minimize signal collisions among
the pinging agents.

Figure 6.5 shows the time until reporting of an event (averaged over 100

114

6.4 Results

5000 -

4000

3000

Time until reporting T [s]

2000

1000

L 1 1 " " 1 1
1 1.5 2 2.5 3 3.5 4 4.5 5
Agent density [robots/r?]

Figure 6.5: Time T until reporting of an event versus agent density D, that is, the
number of agents within an area of r2.

independent simulations per data point) versus the spatial density of agents
D, that is, the average number of agents within an area of 7. For D = 1, the
average time until reporting of an event is T ~ 6200 s. For increasing D, T
decreases until D = 3.5 and it subsequently reaches a plateau at T ~ 2000 s.
As D approaches 0, T is expected to diverge, since the density is too low
for agents to communicate with neighbors and therefore too low to confirm
the occurrence of an event. However, for D > 3.5, agents are sufficiently
well connected such that a further increase in density does not change the
collective behavior or performance of the swarm anymore.

Since for D > 3.5 the time T does not dramatically decrease any further
and therefore the performance in detecting events as fast as possible does
not further increase, for the following simulations D = 3.5 is chosen as the
optimal parameter value.

For a set of agents within the vicinity of an occurring event a set of parame-
ters for optimal performance of the swarm is identified, that is, to minimize
the time until reporting an event. However, in case a swarm succeeds in
detecting and reporting an event relatively quickly, the area of the event
is comparably small and therefore the majority of all agents in the swarm
is not within the neighborhood of the event. Furthermore, in a practical
application a swarm is likely to be deployed over a long time period until an
event might occur. In order to minimize energy consumption not only the

115

6 WOSP for Event Detection

communication between agents can be minimized but also the frequency of
taking measurements in the observation mode. In the following, I examined
how well a swarm performs if there is a decrease in periodicity ;" of tak-
ing measurements for all agents in observation mode. As soon as an agent
enters alert mode or event mode, they adjust their periodicity #,/** to the
original value again. Therefore, agents in observation mode measures less
frequently, but as soon as they detect an anomaly, they take measurements
(and potentially send signals) more frequently.

Figure 6.6 shows the time T until reporting an event versus the factor k
by which the periodicity in taking measurements for agents in observation
mode is reduced (black circles). All data points shown are averaged over 100
independent simulations. For k = 1, agents have the same periodicity £,
in all states and take on average T ~ 2700 s until reporting an event. Up to
k = 4 the time T fluctuates around T = 2900 s or slightly increases. For k > 4
time T increases linearly. For k approaching oo, agents in observation mode
take measurements (linearly) increasingly rarely such that over time the
event area spreads out until agents first measure and subsequently report
the event. Therefore, for large value of k, a linear increase is expected. The
number of measurements taken until reporting of the event is also shown
in Figure 6.6. The blue squares denote the total number of measurements
taken by the swarm, averaged over the simulation runs. With increasing
k, the agents which are in observation mode detect the phenomenon later,
thus letting anoxia spread over a larger area. A large number of agents then
transitions into event mode, therefore increasing the number of messages
sent. The blue crosses denote the total number of measurements taken
averaged over each simulation run. As expected, as periodicity is scaled
down by an increasing k, the number of measurements taken decreases.

It can be concluded from the graph that for the given system a value of k = 4
will produce relatively fast reporting of events while reducing the number
of measurements taken and therefore reducing the energy consumed.

6.4.1 Robotic experiments

In order to validate the algorithm, I implemented it on the aMussel robots
and tested it under laboratory conditions. Five aMussels were arranged
in a linear manner in an arena as shown in the photographs in Figure 6.7

116

6.4 Results

6000

2500

T T T
ime until reporting
vg. number of signals sent

Avg. number of measurements

O

5000
42000

»
[=]
[=]
o

41500

3000

41000

o
T

Time until reporting T [s]
S
=3
=)

wu
[~
o

1000

Signals sent / measurements taken

A’//.

o & 7 1 — 1 L 1 1 0
1 2 3 4 5 6 7 8 9 10
Factor of reduction in periodicity k

Figure 6.6: Time until reporting T (black circles) versus the factor by which the
agents in the observation mode reduce their £;/** as compared to the agents in alert
mode or event mode. The number of signals sent and measurements taken (blue
squares and crosses, respectively) are also visualized against the factor of reduction
k. Parameters: t’;””‘ = 500, tref = 5s.

(a). A projector was used to manipulate the local ambient light around the
aMussels to represent oxygen content in the lagoon of Venice. The robots
were programmed to register an event when the measured ambient light
fell below a particular threshold. As the experiment progressed, the dark
patch on the right side of the arena expanded towards the center of the
arena as shown in figures 6.7 (b), (c) and (d). The robots were programmed
to light up the LEDs on their top-caps to represent their mode of operation.
As shown in Figure 6.7 (b), the first robot from the right transitioned into
the event mode as represented by the green LED on its top-cap. At the same
time, a signal was broadcast by that robot using the short range modulated
blue light communication module. That signal triggered the second robot
from the right into the alert mode as shown by the blue LEDs on its top-cap.
As the dark patch expanded towards the center of the arena (figures 6.7 (b) -
(d)), the robots transitioned into the alert mode and subsequently into the
event mode. In the event mode, the robots counted the incoming signals to
estimate the number of other robots in event mode. In Figure 6.7 (d), the
event threshold of n, = 3 was reached for the second robot from the right.
It sent a signal via bluetooth to the monitoring station and lit up the red
LEDs on its top-cap to signal a validated event in its locality.

117

6 WOSP for Event Detection

(d)

Figure 6.7: An exemplary run of the robotic experiments conducted with aMussels
under laboratory conditions. The agents indicate their modes of operation using
the LEDs on their respective top-caps. The blue, green and red LEDs signify the
alert mode, the event mode and contacting base station respectively. When there is
no LED lit, it means that the agents are in the observation mode.

118

6.5 Discussion

6.5 Discussion

In the above sections, I presented a simple but practical bio-inspired event
detection algorithm for detecting the anoxia phenomenon in the lagoon of
Venice using the aMussel robots. Our solution is designed to minimize the
amount of communication needed while specifically taking into account the
communication and locomotion capabilities of the aMussel robots. Although
energy minimization is an ongoing subject of research in sensor networks,
the main body of existing literature focuses on reducing the frequency of
communication. In contrast to the energy minimization discussed in Zhou
et al. (2015) and Debont et al. (2012), this work does not only focus on
reducing the number of messages required for effective coordination but
also on minimizing the length of each message. From figures 6.4 and 6.5, it
can be concluded that the periodicity of measurement and communication
as well as the density of distribution of robots are crucial factors in limiting
the spreading time of a phenomenon like anoxia. Figure 6.6 implicitly
shows the energy consumed for taking measurements by displaying the
total number of measurements taken by the swarm as well as the average
number of measurements taken per robot.

For a spreading phenomenon it is intuitive that an increase in the number
of robots which are monitoring the area ensures a faster detection of a
spreading phenomenon. Figure 6.5 shows how the density of robots in the
area of interest affects the performance of the algorithm. In order to ensure
an interconnected network, a requirement for the presented algorithm to
reliably work, each robot needs to be connected to the rest of the swarm
through at least one other robot being in its communication range. It follows
that there must be at least one robot per sensor area. Assuming a perfectly
circular sensor radius of robots, the limits of density of robots D and its
relation to sensor area (s4), and the event threshold (7,) can be modeled
by equations 6.1 and 6.2. In simulations, robots are randomly placed in the
environment. In reality, rather than using a naive placement or random
distribution of robots, a set of GPS positions will be generated to deploy the
aMussels. Since there is a set threshold of n, agents necessary to agree on
detecting the anoxia across a preset maximum area of Ay, the density can
be so chosen to be D according to Equation 6.2.

32
D,,in = 1robots/ss ~ % robots (6.1)

119

6 WOSP for Event Detection

p =" robots/s 4 (6.2)

max

Figure 6.4 shows the relation between periodicity ;" of measurement and
communication and the time until reporting T. In general, as £;** decreases,
the time taken for reporting the event decreases, since faster measurement
and communication enables faster detection. However, below a particular
minimum value of £;** the event cannot be detected due to signal collisions
as shown by the initial spike in Figure 6.4. Therefore, £ has to be selected
so as to minimize the probability of signal collisions. Generally, £;/** has to
be large enough to allow each agent to communicate in a different “time
slot”. Each of these slots consists of a temporal span for each robot to send
the single-bit signal and complete its associated refractory time. As a rule
of thumb, I used the relation t’;}”x > 3 n*(tref +1) s in order to allow n,
agents to communicate in different temporal slots. The maximum value of
ty™* can be selected to minimize T and is therefore a design choice.

Some assumptions were made in this chapter which need revisiting when
considering the application of the algorithm to detect anoxia or any other
environmental phenomenon. Anoxia is a local phenomenon which spreads
to its surroundings. In this chapter, I simplified the dynamics of this phe-
nomenon by assuming a constant spreading rate, starting from a random
patch and spreading radially outwards. In reality, the periodicity of measure-
ment and communication as well as sensor placement need to be modified
according to the actual dynamics of the phenomenon being examined. In
contrast to anoxia, not all events that are of interest have a spreading nature.
While tragedies like oil spills move through the water body (Oudhuis and
Tengblad, 2018), an aircraft crash (Kaiser, 2014) is an example of an event of
interest that does not spread. In this chapter, I assume that an event can be
detected easily using simple thresholding of some parameters. While this is
true for the detection of anoxia, other methods such as machine learning
(Bahrepour et al., 2009) or other event specific techniques can be employed
for the detection of events. Even in such cases, the algorithm presented
in this chapter can be employed for confirming the detected event with
neighbors using minimal communication.

As part of future work, the algorithm presented here will be tested in the
tield for anoxia detection. There are many more energy saving techniques
which can be employed but which are likely to require more than single-bit
communication. A study of energy consumed per bit can be conducted in

120

6.5 Discussion

order to establish the relation between energy consumed and the communi-
cation payload. This will enable the implementation of more sophisticated
algorithms for event detection. Such a method might allow for a certain
amount of node-to-node data exchange.

In conclusion, I presented a simple, bio-inspired, energy conserving event
detection algorithm for the detection of the anoxia phenomenon in the
lagoon of Venice using aMussel robots. The suggested algorithm can go
beyond detecting anoxia using the subCULTron system. Robotic or sensory
systems with limited local communication can utilize the algorithm pre-
sented here to generate an alarm based on the number of swarm members
that detected a local event.

121

7 Conclusion & Future Work

7.1 Conclusion

Answering the questions raised in Section 1.2 of Chapter 1, I presented a
minimalistic design paradigm for swarms. In Chapter 2, I looked at various
existing swarm intelligence algorithms and the individual self-organizing
solutions they propose to perform commonly found collective behaviors.
It was concluded that there is very little work which attempts a design
level unification of a variety of behaviors. In Chapter 3, I presented how
designing agents in the swarm according to the WOSP paradigm enables
the swarm to inherit rich collective behaviors. The paradigm consists of
an agent based model for agent-to-agent communication and responding
to incoming communication. In a nutshell, WOSP can be explained with
a quick example on aggregation. If every agent in a swarm periodically
pings and every agent which receives a ping broadcasts it, then traveling
waves like “scroll waves” found in slime mold propagate through the
swarm. If agents can perceive the direction from which the pings arrive
and move towards the pings, they will aggregate at the average origin of
pings. Apart from aggregation, quite a few other collective behaviors can
be inherited on swarm level by reacting differently to incoming signals.
Using the WOSP paradigm, a collective is able to perform leader election,
synchronization, localizing an object, estimating the number of swarm
members, estimating swarm center, aggregation etc. More importantly, there
exists a multitude of possibilities apart from the presented primitives which
can be designed using the characteristics of incoming 1-bit ping signals such
as incoming ping direction, ping frequency and ping timing. In Section 3.4,
I also demonstrated serial combination of individual primitives to perform
exploration of an arena and a basic form of collective transport.

Taking advantage of the fact that WOSP aggregation enables a group of
agents to aggregate at the area of origin of pings, I designed an emergent

123

7 Conclusion & Future Work

gradient taxis in Chapter 4. Emergent gradient taxis was demonstrated in
simulation and was then used as a case to study the resilience of WOSP
based behaviors in Chapter 5. It was found through the study that due to
the relaying of all pings received, WOSP can stand up to 70% probability of
individual failures in agent-to-agent communication. WOSP communication
behavior was then used to modify an existing taxis algorithm which initially
had low resilience to agent-to-agent communication failures due to the
polling mechanism it employed. By plugging in the WOSP communication
mechanism of relaying pings, the resilience of the swarmtaxis algorithm to
communication failures improved by 30%.

Towards the end of this thesis (Chapter 6), I demonstrated an application
of a primitive of WOSP in an underwater robotic swarm deployed in the
lagoon of Venice. An algorithm based on WOSP was designed to enable
simple robots with limited sensing and locomotion to detect a spreading
event with purely local sensing and communication.

7.2 Limitations

In this section the main limitations of WOSP are briefly discussed.

7.2.1 Absolute requriement of connectivity and
directionality

As mentioned in Chapter 3, most primitives in WOSP rely heavily on
connectivity to the rest of the swarm and the ability to perceive incom-
ing communication in a directional manner. Most sophisticated wireless
communication mechanisms which are popularly employed typically are
based on radio waves and are not typically directional. Although, such a
non-directional technology could be combined with positioning systems
or additional reception hardware for directionality, the process is tedious.
Such a constraint of connectivity and directionality is not surprising for
a bio-inspired paradigm since most swarms in nature evolved in close
vicinity and used local signaling mechanisms to coordinate collective ac-
tions. Therefore, the WOSP paradigm can be most effectively combined
with short range explicit or implicit directional communication for example

124

7.2 Limitations

based on visual, olfactory or auditory cues. In robotics, light modulated
communication, vision based detection, sound based signaling etc. are di-
rectional communication techniques that can be used to implement WOSP
behaviors.

7.2.2 Scalability limited by communication speed

As mentioned in Chapter 3, since WOSP relies on the relaying of pings, the
end-to-end signaling time increases with increasing size and spread of the
swarm. Using present technology (such as modulated light communication)
there is a substantial time delay for the signal to be passed on from one
robot to the other. With the increase in this delay, the time taken to complete
the execution of certain primitives (such as “estimating the number of
swarm members”) increases. Although this is not the case for all primitives,
for certain WOSP primitives scalability remains limited by communication
speed.

7.2.3 Resilience at the cost of communication

As mentioned in Chapter 5, WOSP shows higher resilience than polling
based communication mechanism. It should however be noted that this
communication comes at a higher cost of relaying every ping. Although one
could argue that single pings used in the case of WOSP will incur lower
cost, the cost of communication needs to be weighed against the required
resilience while selecting WOSP for an application.

7.2.4 Unification through WOSP

WOSP paves way for a general model of swarm behavior in various natural
systems at an algorithm level as envisioned by Sumpter (2005). While such
an all unifying model of collective behaviors is still elusive, WOSP might
be the start of a discussion which could help us to better understand what
unifies swarms in general.

125

7 Conclusion & Future Work

7.3 Future work

Since there is always something one can do with an idea, I would like to
point out a few avenues which are worth exploring and researching in the
future.

7.3.1 1-bit to multi-bit communication

While I presented a design paradigm for swarms based on single-bit com-
munication, it naturally follows that the use of multi-bit communication
would enable more possibilities. One main addition to the existing results
would be to implement parallel execution of primitives based on the re-
ceived pings. In such a case, a longer multi-bit communication would enable
certain “layers” of WOSP, with each having a different effect on the agents.
With such a setup it would be possible to realize a new level of complexity
and enable the usage of the full potential of wave based “programming”.
Such possibilities are research goals that would add value to the existing
paradigm.

7.3.2 Developing syntax and grammar

As mentioned in Section 3.7, developing a programming syntax and a
robotic embodiment for WOSP would be a promising direction worth pur-
suing in the future. This thesis focuses on presenting a unifying paradigm
for several self-organized behaviors. In the future, a WOSP language will
be defined with syntax and grammar in order to enable prospective users
to combine primitives in a convenient manner and apply them as control
scheme to a swarm of robots. Alternatively, existing programming languages
like Buzz (Pinciroli et al., 2016) can be used for implementing the WOSP.
Availability of a practical implementation of WOSP will further facilitate
the usage and application of WOSP and the development of increasingly
elaborate primitives allowing easier designing of fully autonomous swarms
with the ability to flexibly adapt to varying environmental conditions. Apart
from autonomous operation, a programming syntax also paves way for
WOSP to be used as a Human-Swarm-Interface. WOSP is a suitable frame-
work for a human swarm interface as the parameters of WOSP can be used

126

7.3 Future work

by a human observer to change the behavior of the swarm without needing
any underlying design change. In combination with a human observer who
can observe the swarm, WOSP primitives can be effectively combined in
contrast to the suggestions in Section 3.4, where execution time is used as a
basis for estimating transition time from one primitive to the other.

7.3.3 WOSP in three dimensions

Another promising direction of investigation is how WOSP would work
in three dimensions. This is especially relevant for applications in under-
water robotics or aerial robotics where the agents can typically move in
three dimensions. Although a detailed discussion about WOSP in three
dimensions is beyond the scope of this thesis, in principle, WOSP should be
able to function in three dimensions. If the agents are able to communicate
in three dimensions directionally, then the functionalities of WOSP can
be preserved in three dimensions. Communicating directionally in three
dimensions will involve placing communication transmitters and receptors
on different planes on the agent in contrast to the modulated light modules
placed on a single plane in the robots in subCULTron (Thenius et al., 2016).
In order to illustrate WOSP in three dimensions, a simulation is presented
where a swarm executes the aggregation primitive in three dimensions as
shown in Figure 7.1. Here, it is assumed that the agents can communicate
in three dimensions.

LT v

Y.

(a) Time: 0.5 t;”“"‘ (b) Time: 5.5 t?’”‘ (c) Time: 13 t?“x

Figure 7.1: Illustration of a three dimensional adaptation of the aggregation primi-
tive. Initially, the agents are placed randomly in a sphere as shown in (a). Subse-
quently, the agents aggregate as shown in (b), (c) and (d). In order for primitives
to work in three dimensions, it is necessary for agents to communicate in three
dimensions. Parameters: N = 100, R; = 37, trer =55, t;””x =50s.

127

Appendix

129

A List of Publications

A.1 Published

1. Varughese, J. C., Thenius, R., Wotawa, F.,, and Schmickl, T. (2016).
FSTaxis algorithm: Bio-inspired emergent gradient taxis. In Proceedings
of the 15th International Conference on the Synthesis and Simulation of
Living Systems. MIT Press

e Prof. Thomas Schmickl came up with the idea of using wave
propagation in swarm robotics in several early papers. Dr. Ronald
Thenius proposed the initial idea for this paper. I implemented,
analyzed, authored and presented the paper. Dr. Ronald Thenius,
Prof. Thomas Schmickl and Prof. Franz Wotawa were involved in
proof reading and giving suggestions for improvement.

2. Thenius, R., Varughese, J. C., Moser, D., and Schmickl, T. (2018).
WOSPP - a wave oriented swarm programming paradigm. IFAC-
PapersOnLine, 51(2):379 — 384

e Prof. Thomas Schmickl came up with the idea of using wave
propagation in swarm robotics in several early papers. Dr. Ronald
Thenius proposed the idea of a using wave based communication
in swarms for producing multiple behaviors. He proposed the
experiments and wrote this paper as an initial concept paper. I
helped him with the making of a some figures, proof reading
the paper and suggesting improvements based on the reviewer
comments. Other authors proof read the paper.

3. Varughese, J. C., Moser, D., Thenius, R., Wotawa, E,, and Schmickl, T.
(2019b). swarmFSTaxis: Borrowing a Swarm Communication Mechanism

from Fireflies and Slime Mold, pages 213—222. Springer International
Publishing, Cham

e Prof. Thomas Schmickl came up with the idea of using wave
propagation in swarm robotics in several early papers. I further

131

A List of Publications

developed this idea through this paper by implementing the algo-
rithm and writing this paper. Dr. Ronald Thenius, Prof. Thomas
Schmickl and Prof. Franz Wotawa were involved in proof reading
and giving suggestions for improvement.

4. Varughese, J. C., Thenius, R., Schmickl, T., and Wotawa, E. (2017).

Quantification and analysis of the resilience of two swarm intelligent
algorithms. In GCAI 2017. 3rd Global Conference on Artificial Intelligence,
volume 50 of EPiC Series in Computing, pages 148-161. EasyChair

o Prof. Wotawa suggested testing the resilience of the paradigm. I
developed this idea, formulated tests, implemented the algorithm
and wrote this paper. Dr. Ronald Thenius, Prof. Thomas Schmickl
and Prof. Franz Wotawa were involved in proof reading and
giving suggestions for improvement.

. Varughese, J. C., Hornischer, H., Thenius, R., Wotawa, F., and Schmickl,

T. (2019a). Collective event detection using bio-inspired minimalistic
communication in a swarm of underwater robots. Number 31, pages

634641

e Prof. Thomas Schmickl came up with the idea of using wave prop-
agation in swarm robotics in several early papers. I developed
this concept further by proposing and developing the idea for
this particular paper, implementing the algorithm in both simula-
tion and on robots and by writing the paper. Hannes Hornischer
did a part of the analysis of the paper. Dr. Ronald Thenius, Prof.
Thomas Schmickl and Prof. Franz Wotawa were involved in proof
reading and giving suggestions for improvement.

A.2 Submitted

1. Varughese, J. C., Hornischer, H., Thenius, R., Zahadat, P., Wotawa,

132

F., and Schmickl, T. (2018a). Controlling swarms: A programming
paradigm with minimalistic communication. CoRR, abs/1804.04202

e Dr. Ronald Thenius proposed the idea of using wave based com-
munication for a wider application in swarm robotics an earlier
paper (mentioned above). This paper was conceptualized, ar-
ranged, developed and written by me. I conducted simulations,

A.2 Submitted

analyzed the data, constructed robots, conducted real world ex-
periments and wrote text for most of the sections of this paper.
Mr. Hannes Hornischer contributed to parts of the paper where
he generated data for graphs and wrote text for some sections.
Prof. Thomas Schmickl, Prof. Franz Wotawa and Dr. Payam Za-
hadat were involved in proof reading and giving suggestions for
improvement.

133

Bibliography

Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Knight Jr, T. F,,
Nagpal, R., Rauch, E., Sussman, G. J., and Weiss, R. (2000). Amorphous
computing. Communications of the ACM, 43(5):74-82.

Ahl, V. and Allen, T. E (1996). Hierarchy theory: a vision, vocabulary, and
epistemology. Columbia University Press.

Alcantara, F. and Monk, M. (1974). Signal propagation during aggregation
in the slime mould dictyostelium discoideum. Microbiology, 85(2):321-334.

Alkilabi, M. H. M., Narayan, A., and Tuci, E. (2017). Cooperative object
transport with a swarm of e-puck robots: Robustness and scalability of
evolved collective strategies. Swarm Intelligence, 11(3):185—209.

Amé, J.-M., Halloy, J., Rivault, C., Detrain, C., and Deneubourg, J. L. (2006).
Collegial decision making based on social amplification leads to opti-
mal group formation. Proceedings of the National Academy of Sciences,

103(15):5835-5840.

Angerer, A., Vistein, M., Hoffmann, A., Reif, W., Krebs, F.,, and Schonheits,
M. (2015). Towards multi-functional robot-based automation systems. In
2015 12th International Conference on Informatics in Control, Automation and
Robotics (ICINCO), volume 02, pages 438-443.

Bahgeci, E. and Sahin, E. (2005). Evolving aggregation behaviors for swarm
robotic systems: A systematic case study. In Swarm Intelligence Symposium,
2005. SIS 2005. Proceedings 2005 IEEE, pages 333—340. IEEE.

Bahrepour, M., Meratnia, N., and Havinga, P. J. (2009). Use of Al tech-
niques for residential fire detection in wireless sensor networks. In AIAI
Workshops, pages 311-321.

Bak, P, Tang, C., and Wiesenfeld, K. (1988). Self-organized criticality. Physical
Review A, 38(1):364—374.

135

Bibliography

Baldassarre, G., Nolfi, S., and Parisi, D. (2003). Evolving mobile robots able
to display collective behaviors. Artificial Life, 9(3):255—267.

Beckers, R., Deneubourg, J.-L., Goss, S., and Pasteels, J. M. (1990). Collective
decision making through food recruitment. Insectes sociaux, 37(3):258-267.

Ben-Shahar, O., Dolev, S., Dolgin, A., and Segal, M. (2014). Direction election
in flocking swarms. Ad Hoc Networks, 12:250-258.

Beni, G. (2005). From swarm intelligence to swarm robotics. In Swarm
Robotics - SAB 2004 International Workshop, volume 3342 of LNCS, pages
1-9. Springer-Verlag.

Beni, G. and Wang, J. (1989). Swarm intelligence in cellular robotic systems.
In Robots and Biological Systems: Towards a New Bionics?, volume 102 of
NATO ASI Series (Series F: Computer and Systems Sciences), pages 703—712.
Springer.

Bjerknes, J. D., Winfield, A., and Melhuish, C. (2007). An analysis of emer-
gent taxis in a wireless connected swarm of mobile robots. In IEEE Swarm
Intelligence Symposium, pages 45-52. IEEE Press.

Bjerknes, J. D. and Winfield, A. F. (2013). On fault tolerance and scalability
of swarm robotic systems. In Distributed autonomous robotic systems, pages

431—444. Springer.

Bonabeau, E., Dorigo, M., and Theraulaz, G. (1999). Swarm Intelligence: From
Natural to Artificial Systems. Oxford University Press.

Bonabeau, E. W. and Theraulaz, G. (1994). Why do we need artificial life?
Artificial Life, 1(3):303—325.

Bonner, J. T. (1949). The social amoebae. Scientific American, 180(6):44—47.

Brambilla, M., Pinciroli, C., Birattari, M., and Dorigo, M. (2009). A reliable
distributed algorithm for group size estimation with minimal communi-
cation requirements. In 2009 International Conference on Advanced Robotics,
pages 1-6.

Brock, V. E. and Riffenburgh, R. H. (1960). Fish schooling: A possible factor
in reducing predation. ICES Journal of Marine Science, 25(3):307-317.

136

Bibliography

Buck, J. and Buck, E. (1966). Biology of synchronous flashing of fireflies.
Nature, 211:562-564.

Buck, J. and Buck, E. (1968). Mechanism of rhythmic synchronous flashing
of fireflies: Fireflies of southeast asia may use anticipatory time-measuring
in synchronizing their flashing. Science, 159(3821):1319-1327.

Bugrim, A., Fontanilla, R., Eutenier, B. B., Keizer, J., and Nuccitelli, R. (2003).
Sperm initiate a Ca2+ wave in frog eggs that is more similar to Ca2+
waves initiated by ip3 than by Ca2+. Biophysical journal, 84(3):1580-1590.

Camazine, S., Deneubourg, J.-L., Franks, N. R., Sneyd, J., Theraulaz, G.,
and Bonabeau, E. (2001). Synchronized flashing among fireflies. pages
143-166. Princeton University Press.

Campo, A., Nouyan, S., Birattari, M., Grof3, R., and Dorigo, M. (2006).
Negotiation of goal direction for cooperative transport. In Ant Colony
Optimization and Swarm Intelligence, pages 191-202. Springer.

Cavagna, A., Cimarelli, A., Giardina, 1., Parisi, G., Santagati, R., Stefanini, F,,
and Viale, M. (2010). Scale-free correlations in starling flocks. Proceedings
of the National Academy of Sciences, 107(26):11865-11870.

Cazangi, R. R., VonZuben, F.,, and Figueiredo, M. F. (2005). BeeAdHoc: An
energy efficient routing algorithm for mobile ad hoc networks inspired
by bee behavior. In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO) 2005, pages 121-128.

Cejkovad, J. (2015). Aggregation of slime mold Dictyostelium discoideum.
Youtube Video.

Chisholm, R. L. and Firtel, R. A. (2004). Insights into morphogenesis from
a simple developmental system. Nature reviews Molecular cell biology,

5(7):531-541.

Christensen, A. L., O’grady, R., and Dorigo, M. (2007). Morphology control
in a multirobot system. IEEE Robotics Automation Magazine, 14(4):18-25.

Codling, E., Pitchford, J., and Simpson, S. (2007). Group navigation and
the “many-wrongs principle” in models of animal movement. Ecology,
88(7):1864-1870.

137

Bibliography

Coore, D. (2004). Towards a universal language for amorphous computing.
In International Conference on Complex Systems (ICCS2004).

Couzin, I. D., Krause, J., Franks, N. R., and Levin, S. A. (2005). Effective
leadership and decision-making in animal groups on the move. Nature,

433(7025):513.

Sahin, E. (2005). Swarm robotics: From sources of inspiration to domains of
application. In Lecture Notes in Computer Science, volume 3342 of LNCS,
pages 10—20, Berlin, Germany. Springer-Verlag.

Daido, H. (1988). Lower critical dimension for populations of oscillators
with randomly distributed frequencies: A renormalization-group analysis.
Physical Review Letters, 61:231—-234.

de Oliveira, D. R,, Parpinelli, R. S., and Lopes, H. S. (2011). Bioluminescent
swarm optimization algorithm. In Evolutionary Algorithms, chapter 5.
IntechOpen.

Debont, M., Jamshaid, K., Shihada, B., and Ho, P. (2012). Event localization
in underwater wireless sensor networks using monitoring courses. In
2012 1st IEEE International Conference on Communications in China (ICCC),

pages 769-774.

Decugniere, A., Poulain, B., Campo, A., Pinciroli, C., Tartini, B., Osée, M.,
Dorigo, M., and Birattari, M. (2008). Enhancing the cooperative transport
of multiple objects. In International Conference on Ant Colony Optimization
and Swarm Intelligence, pages 307-314. Springer.

Devreotes, P. (1989). Dictyostelium discoideum: A model system for cell-cell
interactions in development. Science, 245(4922):1054-1058.

Dorigo, M., Trianni, V., Sahin, E., Grof3, R., Labella, T. H., Baldassarre, G.,
Nolfi, S., Deneubourg, J.-L., Mondada, E, Floreano, D., and Gambardella,
L. M. (2004). Evolving self-organizing behaviors for a swarm-bot. Au-
tonomous Robots, 17(2):223—245.

Ducatelle, F.,, Di Caro, G. A., Forster, A., Bonani, M., Dorigo, M., Magnenat,
S., Mondada, F., Pinciroli, C., Rétornaz, P., Trianni, V., Gambardella, L. M.,
Ducatelle, F.,, Di Caro, G., Forster, A., Gambardella, L., Bonani, M., Mag-
nenat, S., Mondada, F,, Rétornaz, P., Dorigo, M., Pinciroli, C., and Trianni,
V. (2014). Cooperative navigation in robotic swarms. Swarm Intell, 8:1-33.

138

Bibliography

Durston, A. (1973). Dictyostelium discoideum aggregation fields as excitable
media. Journal of theoretical biology, 42(3):483-504.

Durston, A. (2013). Dictyostelium: The mathematician’s organism. Current
genomics, 14(6):355-360.

Eberhart, R. C., Shi, Y., and Kennedy, J. (2001). Swarm intelligence. Elsevier.

Enright, J. T. (1980). Temporal precision in circadian systems: A reliable
neuronal clock from unreliable components? Science, 209(4464):1542-1545.

ePuck (2009). e-puck desktop mobile robot - website. http://www.e-
puck.org/.

Ermentrout, G. B. (1985). Synchronization in a pool of mutually coupled os-
cillators with random frequencies. Journal of Mathematical Biology, 22(1):1—

9.

Ferrante, E., Turgut, A. E., Huepe, C., Stranieri, A., Pinciroli, C., and Dorigo,
M. (2012). Self-organized flocking with a mobile robot swarm: A novel
motion control method. Adaptive Behavior, 20(6):460-477.

Fink, J., Hsieh, M. A., and Kumar, V. (2008). Multi-robot manipulation
via caging in environments with obstacles. In 2008 IEEE International
Conference on Robotics and Automation, pages 1471-1476. IEEE.

Garnier, S., Gautrais, J., Asadpour, M., Jost, C., and Theraulaz, G. (2009).
Self-organized aggregation triggers collective decision making in a group
of cockroach-like robots. Adaptive Behavior, 17(2):109-133.

Garnier, S., Jost, C., Gautrais, J., Asadpour, M., Caprari, G., Jeanson, R.,
Grimal, A., and Theraulaz, G. (2008). The embodiment of cockroach
aggregation behavior in a group of micro-robots. Artificial life, 14(4):387—
408.

Grodzicki, P. and Caputa, M. (2005). Social versus individual behaviour:
A comparative approach to thermal behaviour of the honeybee (Apis
mellifera L.) and the american cockroach (Periplaneta americana L.). Journal
of Insect Physiology, 51(3):315 — 322.

Grof3, R., Tuci, E., Dorigo, M., Bonani, M., and Mondada, E. (2006). Object
transport by modular robots that self-assemble. In Proceedings 2006 IEEE

139

Bibliography

International Conference on Robotics and Automation, 2006. ICRA 2006., pages
2558-2564. IEEE.

Grof3, R. and Dorigo, M. (2009). Towards group transport by swarms of
robots. International Journal of Bio-Inspired Computation, 1(1-2):1-13.

Gubbi, J., Buyya, R., Marusic, S., and Palaniswami, M. (2013). Internet
of Things (IoT): A vision, architectural elements, and future directions.
Future Generation Computer Systems, 29(7):1645-1660.

Gutiérrez, A., Campo, A., Monasterio-Huelin, F,, Magdalena, L., and Dorigo,
M. (2010). Collective decision-making based on social odometry. Neural
Computing and Applications, 19(6):807-823.

Hall, S., Wardle, C., and MacLennan, D. (1986). Predator evasion in a fish
school: Test of a model for the fountain effect. Marine biology, 91(1):143—
148.

Hayes, A. T., Martinoli, A., and Goodman, R. M. (2003). Swarm robotic
odor localization: Off-line optimization and validation with real robots.
Robotica, 21(4):427-441.

Hoff, N. R., Sagoff, A., Wood, R. J., and Nagpal, R. (2010). Two foraging
algorithms for robot swarms using only local communication. In 2010
IEEE International Conference on Robotics and Biomimetics, pages 123—130.

Holldobler, B. and Wilson, E. O. (1978). The multiple recruitment systems
of the African weaver ant Oecophylla longinoda (Latreille)(Hymenoptera:
Formicidae). Behavioral Ecology and Sociobiology, 3(1):19—60.

Huth, A. and Wissel, C. (1992). The simulation of the movement of fish
schools. Journal of theoretical biology, 156(3):365-385.

Izhikevich, E. M. (1999). Weakly pulse-coupled oscillators, FM interactions,
synchronization, and oscillatory associative memory. IEEE Transactions on
Neural Networks, 10(3):508-526.

Kaiser, S. A. (2014). Legal considerations about the missing Malaysia airlines
flight MH 370. Air and Space Law, 39(4):235—244.

Karpov, V. and Karpova, I. (2015). Leader election algorithms for static
swarms. Biologically Inspired Cognitive Architectures, 12:54—64.

140

Bibliography

Kauffman, S. A. (1993). The Origins of Order: Self-organization and Selection
in Evolution. The Origins of Order: Self Organization and Selection in
Evolution. Oxford University Press.

Kaur, N. and Sood, S. K. (2017). An energy-efficient architecture for the
Internet of Things (IoT). IEEE Systems Journal, 11(2):796-805.

Kendeigh, S. C. (1961). Animal ecology. London: Prentice-Hall International.

Kengyel, D., Schmickl, T., Hamann, H., Thenius, R., and Crailsheim, K.
(2011). Embodiment of honeybee’s thermotaxis in a mobile robot swarm.
In 10th European Conference on Artificial Life (ECAL’09), volume 5777/5778
of LNCS. Springer-Verlag.

Kengyel, D., Zahadat, P., Kunzfeld, T., and Schmickl, T. (2016). Collective
decision making in a swarm of robots: How robust the beeclust algorithm
performs in various conditions. In Proceedings of the 9th EAI International
Conference on Bio-inspired Information and Communications Technologies (For-
merly BIONETICS), BICT 15, pages 264—271. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering).

Kennedy, J. and Eberhart, R. C. (1995). Particle swarm optimization. In [EEE
International Conference on Neural Networks. IEEE Press.

Kennedy, J. S. and Wigglesworth, V. B. (1951). The migration of the desert
locust (Schistocerca gregaria forsk.) I. The behaviour of swarms. II. A theory
of long-range migrations. Philosophical Transactions of the Royal Society of
London. Series B, Biological Sciences, 235(625):163-290.

Kim, L. H. and Follmer, S. (2017). UbiSwarm: Ubiquitous robotic interfaces
and investigation of abstract motion as a display. Proceedings of the ACM
on Interactive, Mobile, Wearable and Ubiquitous Technologies, 1(3):66.

Koh, H. and Magee, C. L. (2006). A functional approach for studying tech-
nological progress: Application to information technology. Technological
Forecasting and Social Change, 73(9):1061-1083.

Kube, C. R. and Bonabeau, E. (2000). Cooperative transport by ants and
robots. Robotics and autonomous systems, 30(1-2):85-101.

Kuramoto, Y. (1975). Self-entrainment of a population of coupled non-linear
oscillators. In International symposium on mathematical problems in theoretical
physics, pages 420—422. Springer.

141

Bibliography

Labella, T. H., Dorigo, M., and Deneubourg, J.-L. (2006). Division of labor in
a group of robots inspired by ants’ foraging behavior. ACM Transactions
on Autonomous and Adaptive Systems (TAAS), 1(1):4—25.

Le Goc, M., Kim, L. H., Parsaei, A., Fekete,].-D., Dragicevic, P., and Follmer,
S. (2016). Zooids: Building blocks for swarm user interfaces. In Proceedings
of the 29th Annual Symposium on User Interface Software and Technology,
pages 97-109. ACM.

Maes, P., Mataric, M. J., Meyer, J., Pollack, J., and Wilson, S. W. (1996).
Robotic “Food” Chains: Externalization of State and Program for Minimal-Agent
Foraging. MIT Press.

Melhuish, C., Holland, O., and Hoddell, S. (1999). Convoying: Using chorus-
ing to form travelling groups of minimal agents. Robotics and Autonomous
Systems, 28(2-3):207-216.

Michaels, D. C., Matyas, E. P.,, and Jalife, J. (1987). Mechanisms of sinoa-
trial pacemaker synchronization: A new hypothesis. Circulation Research,

61(5):704—714.

Middleton, E. J. and Latty, T. (2016). Resilience in social insect infrastructure
systems. Journal of The Royal Society Interface, 13(116):20151022.

Mirollo, R. E. and Strogatz, S. H. (1990). Synchronization of pulse-coupled
biological oscillators. SIAM Journal on Applied Mathematics, 50(6):1645—
1662.

Mondada, F, Pettinaro, G. C., Guignard, A., Kwee, I. W., Floreano, D.,
Deneubourg, J.-L., Nolfi, S., Gambardella, L. M., and Dorigo, M. (2004).
Swarm-bot: A new distributed robotic concept. Autonomous robots, 17(2-

3):193—221.

Nagpal, R. (2002). Programmable self-assembly using biologically-inspired
multiagent control. In Proceedings of the first international joint conference on
Autonomous agents and multiagent systems: part 1, pages 418—425. ACM.

Nagpal, R. (2006). Engineering amorphous systems, using global-to-local
compilation. In Complex Engineered Systems, pages 291—306. Springer.

Nagpal, R., Kondacs, A., and Chang, C. (2003). Programming methodol-
ogy for biologically-inspired self-assembling systems. In AAAI Spring
Symposium on Computational Synthesis, pages 173-180.

142

Bibliography

Nicolis, G. (1977). Self-organization in nonequilibrium systems. Dissipative
Structures to Order through Fluctuations, pages 339—426.

O’Keeffe, K. P,, Hong, H., and Strogatz, S. H. (2017). Oscillators that sync
and swarm. Nature Communications, 8(1):1504.

Oudhuis, M. and Tengblad, S. (2018). BP and deepwater horizon: A catas-
trophe from a resilience perspective. In The Resilience Framework, pages
71-87. Springer.

Perez-Diaz, F., Trenkwalder, S. M., Zillmer, R., and Grofs, R. (2018). Emer-
gence and inhibition of synchronization in robot swarms. In Distributed
Autonomous Robotic Systems, pages 475—486. Springer.

Pi, R. (2017). Raspberry pi hardware. https://www.raspberrypi.org/
documentation/hardware/raspberrypi/README.md.

Pinciroli, C., Lee-Brown, A., and Beltrame, G. (2016). Buzz: An extensi-
ble programming language for heterogeneous swarm robotics. In 2016
IEEE/RS] International Conference on Intelligent Robots and Systems (IROS),

pages 3794-3800.

Rabb, G. B., Woolpy, J. H., and Ginsburg, B. E. (1967). Social relationships in
a group of captive wolves. American zoologist, 7(2):305-311.

Reid, C. R. and Latty, T. (2016). Collective behaviour and swarm intelligence
in slime moulds. FEMS Microbiology Reviews, 40(6):798-806.

Reynolds, C. W. (1987). Flocks, herds, and schools. Computer Graphics,
21(4):25-34.

Reynolds, C. W. (1999). Steering behaviors for autonomous characters. In
Game developers conference, volume 1999, pages 763-782.

Riedo, E, Chevalier, M., Magnenat, S., and Mondada, E. (2013). Thymio II, a
robot that grows wiser with children. In 2013 IEEE workshop on advanced
robotics and its social impacts, pages 187-193. IEEE.

Roberts, G. (1996). Why individual vigilance declines as group size increases.
Animal behaviour, 51(5):1077-1086.

Ross Ashby, W. (1947). Principles of the self-organizing dynamic system.
Journal of General psychology, 37:125-128.

143

https://www.raspberrypi.org/documentation/hardware/raspberrypi/README.md
https://www.raspberrypi.org/documentation/hardware/raspberrypi/README.md

Bibliography

Rubenstein, M., Ahler, C., Hoff, N., Cabrera, A., and Nagpal, R. (2014a).
Kilobot: A low cost robot with scalable operations designed for collective
behaviors. Robotics and Autonomous Systems, 62(7):966—975.

Rubenstein, M., Cabrera, A., Werfel, J., Habibi, G., McLurkin, J., and Nagpal,
R. (2013). Collective transport of complex objects by simple robots: theory
and experiments. In Proceedings of the 2013 international conference on
Autonomous agents and multi-agent systems, pages 47-54. International
Foundation for Autonomous Agents and Multiagent Systems.

Rubenstein, M., Cornejo, A., and Nagpal, R. (2014b). Programmable self-
assembly in a thousand-robot swarm. Science, 345(6198):795-799.

Runca, E., Bernstein, A., Postma, L., and Silvio, G. D. (1996). Control of
macroalgae blooms in the lagoon of venice. Ocean & Coastal Management,
30(2):235 — 257. Coastal Zone Management in the Mediterranean.

Russell, M. J., Switz, G. M., and Thompson, K. (1980). Olfactory influences
on the human menstrual cycle. Pharmacology Biochemistry and Behavior,

13(5):737-738.

Schmickl, T. and Crailsheim, K. (2008). Trophallaxis within a robotic swarm:
bio-inspired communication among robots in a swarm. Autonomous Robots,
25(1-2):171-188.

Schmickl, T., Thenius, R., Moslinger, C., Radspieler, G., Kernbach, S., and
Crailsheim, K. (2008). Get in touch: Cooperative decision making based
on robot-to-robot collisions. Autonomous Agents and Multi-Agent Systems,

18(1):133-155.

Seeley, T. D. (1992). The tremble dance of the honey bee: message and
meanings. Behavioral Ecology and Sociobiology, 31:375-383.

Senanayake, M., Senthooran, 1., Barca, J. C., Chung, H., Kamruzzaman, J.,
and Murshed, M. (2016). Search and tracking algorithms for swarms of
robots: A survey. Robotics and Autonomous Systems, 75:422-434.

Sherwood, L. (2015). Human physiology: From cells to systems. Cengage
learning.

Siegert, F. and Weijer, C. J. (1992). Three-dimensional scroll waves organize
Dictyostelium slugs. PNAS, 89(14):6433—6437.

144

Bibliography

Simons, A. M. (2004). Many wrongs: The advantage of group navigation.
Trends in ecology & evolution, 19(9):453—455.

Simpson, S. J., McCaffery, A. R., and Haegele, B. F. (1999). A behavioural
analysis of phase change in the desert locust. Biological Reviews, 74(4):461—
480.

Soysal, O. and $ahin, E. (2006). A macroscopic model for self-organized
aggregation in swarm robotic systems. In International Workshop on Swarm
Robotics, pages 27—42. Springer.

Squire, L., Berg, D., Bloom, F. E., Du Lac, S., Ghosh, A., and Spitzer, N. C.
(2012). Fundamental neuroscience. Academic Press.

subCULTron (2015). Submarine cultures perform long-term
robotic exploration of unconventional environmental niches.
http:/ /www.subcultron.eu/.

Sugawara, K., Kazama, T., and Watanabe, T. (2004). Foraging behavior
of interacting robots with virtual pheromone. In 2004 IEEE/RS] Inter-
national Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.
No.o4CH37566), volume 3, pages 3074—3079.

Sumpter, D. J. (2005). The principles of collective animal behaviour. Philo-
sophical transactions of the royal society B: Biological Sciences, 361(1465):5—22.

Szopek, M., Schmickl, T., Thenius, R., Radspieler, G., and Crailsheim, K.
(2013). Dynamics of collective decision making of honeybees in complex
temperature fields. PLOS ONE, 8(10):e76250.

Tan, Y. and Zheng, Z.-y. (2013). Research Advance in Swarm Robotics.
Defence Technology, 9(1):18-39.

Thenius, R., Moser, D., Varughese, J. C., Kernbach, S., Kuksin, I., Kernbach,
O., Kuksina, E., Miskovi, N., Bogdan, S., Petrovi, T., Babi, A., Boyer, F,,
Lebastard, V., Bazeille, S., William Ferrari, G., Donati, E., Pelliccia, R.,
Romano, D., Jansen Van Vuuren, G., Stefanini, C., Morgantin, M., Campo,
A., and Schmickl, T. (2016). subCULTron - Cultural Development as a Tool
in Underwater Robotics Consortium for coordination of research activities
concerning the Venice lagoon system. In Artificial Life and Intelligent Agents.
Springer.

145

Bibliography

Thenius, R., Varughese, J. C., Moser, D., and Schmickl, T. (2018). WOSPP
- a wave oriented swarm programming paradigm. IFAC-PapersOnlLine,

51(2):379 — 384.

Trianni, V. and Campo, A. (2015). Fundamental Collective Behaviors in Swarm
Robotics, pages 1377-1394. Springer.

Trianni, V., Grofs, R., Labella, T. H., Sahin, E., and Dorigo, M. (2003). Evolving
aggregation behaviors in a swarm of robots. In European Conference on
Artificial Life, pages 865-874. Springer.

Turgut, A. E., Celikkanat, H., Gokge, F.,, and Sahin, E. (2008). Self-organized
flocking in mobile robot swarms. Swarm Intelligence, 2(2-4):97-120.

Turgut, A. E., Gokce, F, Celikkanat, H., Bayindir, L., and Sahin, E. (2007).
Kobot: A mobile robot designed specifically for swarm robotics research.
Middle East Technical University, Ankara, Turkey, METU-CENG-TR Tech. Rep,

5(2007).

Varughese, J. C., Hornischer, H., Thenius, R., Wotawa, F., and Schmickl,
T. (2019a). Collective event detection using bio-inspired minimalistic
communication in a swarm of underwater robots. Number 31, pages

634-641.

Varughese, J. C., Hornischer, H., Thenius, R., Zahadat, P., Wotawa, F., and
Schmickl, T. (2018a). Controlling swarms: A programming paradigm with
minimalistic communication. CoRR, abs/1804.04202.

Varughese, J. C., Moser, D., Thenius, R., Wotawa, F., and Schmickl, T. (2019b).
swarmFSTaxis: Borrowing a Swarm Communication Mechanism from Fireflies
and Slime Mold, pages 213—222. Springer International Publishing, Cham.

Varughese, J. C., Thenius, R., Leitgeb, P., Wotawa, F., and Schmickl, T.
(2018b). A model for bio-inspired underwater swarm robotic exploration.
IFAC-PapersOnLine, 51(2):385 — 390.

Varughese,]. C., Thenius, R., Schmickl, T., and Wotawa, F. (2017). Quantifi-
cation and analysis of the resilience of two swarm intelligent algorithms.
In GCAI 2017. 3rd Global Conference on Artificial Intelligence, volume 50 of
EPiC Series in Computing, pages 148-161. EasyChair.

146

Bibliography

Varughese,]J. C., Thenius, R., Wotawa, F., and Schmickl, T. (2016). FSTaxis
algorithm: Bio-inspired emergent gradient taxis. In Proceedings of the 15th
International Conference on the Synthesis and Simulation of Living Systems.
MIT Press.

Vicsek, T., Czirok, A., Ben-Jacob, E., Cohen, 1., and Shochet, O. (1995). Novel
type of phase transition in a system of self-driven particles. Physical
Review Letters, 6(75):1226—1229.

Walker, P., Amraii, S. A., Chakraborty, N., Lewis, M., and Sycara, K. (2014).
Human control of robot swarms with dynamic leaders. In 2014 IEEE/RS]
International Conference on Intelligent Robots and Systems, pages 1108-1113.

Walker, T. J. (1969). Acoustic synchrony: two mechanisms in the snowy tree
cricket. Science, 166(3907):891-894.

Wang, L., Wang, X., and Hu, X. (2013). Connectivity preserving flocking
without velocity measurement. Asian Journal of Control, 15(2):521-532.

Webb, B. (1998). Robots, crickets and ants: Models of neural control of
chemotaxis and phonotaxis. Neural Networks, 11:1479-1496.

Werner-Allen, G., Tewari, G., Patel, A., Welsh, M., and Nagpal, R. (2005).
Firefly-inspired sensor network synchronicity with realistic radio effects.
In Proceedings of the 3rd international conference on Embedded networked sensor
systems, pages 142—-153. ACM.

Winfield, A. F. and Nembrini, J. (2012). Emergent swarm morphology
control of wireless networked mobile robots. In Morphogenetic Engineering,
pages 239—-271. Springer.

Winfree, A. T. (1967). Biological rhythms and the behavior of populations of
coupled oscillators. Journal of theoretical biology, 16(1):15—42.

Wischmann, S., Hiilse, M., Knabe, J. F., and Pasemann, F. (2006). Synchro-
nization of internal neural rhythms in multi-robotic systems. Adaptive
Behavior, 14(2):117-127.

Witkowski, O. and Ikegami, T. (2016). Emergence of swarming behavior:
Foraging agents evolve collective motion Based on signaling. PLOS ONE,

11(4):€0152756.

147

Bibliography

Wolfram, S. (1984). Cellular automata as models of complexity. Nature,
311(5985):419.

Yang, X.-S. (2009). Firefly algorithms for multimodal optimization. In
Stochastic algorithms: foundations and applications, pages 169-178. Springer.

Zahadat, P.,, Hahshold, S., Thenius, R., Crailsheim, K., and Schmickl, T.
(2015). From honeybees to robots and back: division of labour based on
partitioning social inhibition. Bioinspiration & biomimetics, 10(6):066005.

Zahadat, P. and Schmickl, T. (2016). Division of labor in a swarm of au-
tonomous underwater robots by improved partitioning social inhibition.
Adaptive Behavior, 24(2):87-101.

Zaikin, A. and Zhabotinsky, A. (1970). Concentration wave propaga-
tion in two-dimensional liquid-phase self-oscillating system. Nature,
225(5232):535.

Zhou, Z., Xing, R., Duan, Y., Zhu, Y., and Xiang, J. (2015). Event coverage
detection and event source determination in underwater wireless sensor
networks. Sensors, 15(12):31620-31643.

148

	Abstract
	Kurzfassung
	Acknowledgement
	Introduction
	Problem statement
	Research questions
	Outline

	Background and Related Work
	Collective behavior in biological systems
	``Self-organization'' to ``Swarm robotics''
	Self-organization
	Swarm intelligence and swarm robotics

	Common swarm behaviors
	Synchronization
	Flocking
	Aggregation
	Collective decision making
	Collective transport

	``WOSP'': a novel unification of collective behaviors?

	WOSP: Wave Oriented Swarm Paradigm
	Inspiration
	Traveling waves
	Pulse coupled oscillators

	WOSP - Wave Oriented Swarm Paradigm
	Parameters

	Primitives
	Internal organization: leader election
	Internal organization: synchronization
	Internal organization: localize object
	Swarm awareness: localize swarm center
	Swarm awareness: estimating number of swarm members
	Swarm awareness: estimate extremities of the swarm
	Locomotion: aggregation
	Locomotion: moving collectively
	Locomotion: gas expansion

	Combining primitives
	Combining primitives: exploration
	Combining primitives: collective transport

	Analysis and discussion of parameters
	Parameter dependencies
	Empirical analysis and choice of parameters

	Robotic experiments
	Setup
	Experiments

	Discussion
	General features
	Design considerations

	Collective Emergent taxis
	FSTaxis: a WOSP based taxis algorithm
	Gradient ascent with FSTaxis
	Simulations without noise
	Gradients with local optima

	Summing up the FSTaxis algorithm

	A Resilience Case Study
	Resilience of swarms
	Relevant algorithms
	The swarmtaxis algorithm

	FSTaxis vs swarmtaxis: Comparing resilience
	Simulating failures

	Performance measures
	Time performance
	Optimal path and deviation

	Results
	Time performance
	Root mean square error

	Discussion: swarmtaxis vs. FSTaxis
	``swarmFSTaxis'': making swarmtaxis more resilient
	The swarmFSTaxis Algorithm
	Testing swarmFSTaxis
	Discussion: swarmFSTaxis

	WOSP for Event Detection
	Event detection
	Related work
	The algorithm
	Simulation
	Swarm level parameters

	Results
	Robotic experiments

	Discussion

	Conclusion & Future Work
	Conclusion
	Limitations
	Absolute requriement of connectivity and directionality
	Scalability limited by communication speed
	Resilience at the cost of communication
	Unification through WOSP

	Future work
	1-bit to multi-bit communication
	Developing syntax and grammar
	WOSP in three dimensions

	Appendix List of Publications
	Published
	Submitted

	Bibliography

