
submitted to

Graz University of Technology

DOCTORAL THESIS

Dipl.-Ing. Patrick Ofner, BSc.

Evaluation of low-frequency EEG signals as an intuitive 
movement control signal for BCIs

Univ.-Prof. Dipl.-Ing. Dr.techn. Gernot R. Müller-Putz

 
Institute of Neural Engineering 

to achieve the university degree of

  Doktor der technischen Wissenschaften

Supervisor

Faculty of Computer Science and Biomedical Engineering  
 

Graz, September 2019



Affidavit

I declare that I have authored this thesis independently, that I have not used other than
the declared sources/resources, and that I have explicitly indicated all material which
has been quoted either literally or by content from the sources used. The text document
uploaded to TUGRAZonline is identical to the present doctoral thesis.

Date Signature

i



Acknowledgments

Pursuing a PhD is a demanding and challenging journey where one is rewarded with
new experiences, knowledge, and skills – and much more if you are lucky. I would like to
thank at this point the persons who have guided, supported, challenged, and entertained
me.

Gernot, thank you for your supervision, the necessary guidance, for insights on how
to handle various matters in science, and also for the hard work of collecting the funding
which allowed me to conduct my research for my PhD.

Reini, for always having a productive critical view in discussions, having an inspi-
rational pragmatic approach on scientific and technical challenges, and most of all for
spreading good vibes around the institute.

Rüdiger, for very interesting and funny talks, and sharing your vast knowledge about
the nervous system.

Joana and Andi, I think we had our moments, and I’m very grateful for that! Besides,
thank you for the cooperation, for pointing out different ways to solve problems, for
seeing things I would have missed, very often for thinking beyond not just ahead, for
being a sparring partner in discussions, and for always questioning things.
I would also like to thank all my other colleagues which I have met during my time at

the institute, from whom I learned a lot, who offered me their help, or who made it fun
and interesting, like Clemens, Alex, Breidi, Josef, David, Maria, and many, many more.
All the people from the MoreGRASP project, it was an interesting time, sometimes

funny, sometimes challenging, but always worthwhile.
My family, who always kept my back free and supported me in every imaginable

way.
My PhD, thank you for bringing me the love of my life, Joana.
Joana, the love of my life. You helped me in so many ways for this PhD! Also, you

proofread my thesis. Thank you for all that, and simply, for being by my side!

This thesis was supported by the European ICT programme projects FP7-224631
TOBI and H2020-643955 MoreGrasp, and SGM-UAV.

ii



Abstract

A device generating control signals from the information encoded in brain signals is called
a brain-computer interface (BCI). One particular type of BCI is based on electroen-
cephalography (EEG) signals. An EEG-based BCI can decode movement information
from the brain and use it to control end effectors like motor neuroprostheses or robotic
arms. Such a BCI is usually controlled via motor imaginations of different limbs. So
far, an EEG-based BCI can detect which limb is involved in the movement imagination
but not how the limb is moved. This PhD thesis researches low-frequency EEG signals
for decoding information how a limb is moved. This additional movement information
should enable a natural and intuitive control of end effectors. This thesis focuses in
the first part on the decoding of trajectories of executed and imagined continuous arm
movements, and shifts its focus in the second part on the decoding of different discrete
movements of the arm or hand. The decoding of discrete movements was then success-
fully translated from non-disabled persons to persons with spinal-cord injury (SCI). A
proof-of-concept BCI was eventually implemented and tested on a person with complete
SCI and without residual hand function. This thesis shows that low-frequency EEG
signals encode movement information highly relevant for a natural and intuitive move-
ment control. However, the performance and reliability of the developed BCI needs to
be further improved to allow for an effective movement control of end effectors.
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Kurzfassung

Eine Gehirn-Computer-Schnittstelle (auf Englisch BCI) erzeugt Steuersignale aus den
in Gehirnsignalen enthaltenen Informationen. Eine bestimmte Art von BCI basiert
dabei auf Elektroenzephalographie (EEG) Signalen. Ein EEG-basiertes BCI kann Be-
wegungsinformationen aus Gehirnsignalen extrahieren und zur Steuerung von Endeffek-
toren wie motorischen Neuroprothesen oder robotischen Armen verwenden. Es wird in
der Regel über Bewegungsvorstellungen von verschiedenen Körperteilen gesteuert, wobei
das BCI in der Regel nur erkennt auf welches Körperteil sich eine Bewegungsvorstel-
lung bezieht, nicht aber wie es in der Vorstellung bewegt wird. Diese Dissertation
beschäftigt sich mit niederfrequenten EEG-Signalen zur Dekodierung von Informatio-
nen wie diese Bewegung erfolgt. Diese zusätzlichen Informationen über die Bewegung
könnten eine natürliche und intuitive Kontrolle von Endeffektoren ermöglichen. Diese
Arbeit konzentriert sich im ersten Teil auf die Dekodierung von Trajektorien ausgeführter
und vorgestellter kontinuierlicher Armbewegungen, und verschiebt den Fokus im zweiten
Teil auf die Dekodierung von unterschiedlichen diskreten Bewegungen des Arms oder der
Hand. Die Dekodierung von diskreten Bewegungen wurde dann erfolgreich von gesun-
den Menschen auf Personen mit Querschnittlähmung übertragen. Schlussendlich wurde
ein Proof-of-Concept BCI implementiert und an einer Person mit Querschnittlähmung
und ohne residualer Handfunktion getestet. Diese Arbeit zeigt, dass niederfrequente
EEG-Signale Bewegungsinformationen beinhalten, die für eine natürliche und intuitive
motorische Kontrolle relevant sind. Die Performance und Zuverlässigkeit des entwick-
elten BCI muss jedoch weiter verbessert werden, um eine effektive Bewegungskontrolle
von Endeffektoren zu ermöglichen.

iv



Contents

1 Introduction 1
1.1 Types of Brain Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Types of Electrical Brain Signals . . . . . . . . . . . . . . . . . . 4
1.1.2 Generation of Electrical Signals . . . . . . . . . . . . . . . . . . . 4
1.1.3 Other Types of Brain Signals . . . . . . . . . . . . . . . . . . . . 6

1.2 Introduction to BCIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Modulation of Brain Signals . . . . . . . . . . . . . . . . . . . . . 8
1.2.3 Components of a BCI . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 State of the Art of Movement Control BCIs . . . . . . . . . . . . . . . . 16
1.4 Current Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5 Aim of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.6 Organization of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Methods 20
2.1 Decoding of Continuous Movements . . . . . . . . . . . . . . . . . . . . . 20

2.1.1 Primary Publication I: Decoding of Velocities and Positions of 3D
Arm Movement from EEG . . . . . . . . . . . . . . . . . . . . . . 20

2.1.2 Primary Publication II: Using a Non-Invasive Decoding Method
to Classify Rhythmic Movement Imaginations of the Arm in Two
Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.3 Secondary Publication I: Decoding of Executed Movements and
Source Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.4 Secondary Publication II: Time-Domain Correlations of Imagined
Arm Positions with Brain Sources . . . . . . . . . . . . . . . . . . 25

2.2 Decoding of Discrete Movements . . . . . . . . . . . . . . . . . . . . . . 25
2.2.1 Primary Publication III: Upper limb movements can be decoded

from the time-domain of low-frequency EEG . . . . . . . . . . . . 26
2.2.2 Primary Publication IV: Attempted Arm and Hand Movements

can be Decoded from Low-Frequency EEG from Persons with
Spinal Cord Injury . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.3 Secondary Publication III: Movement Target Decoding from EEG
and the Corresponding Discriminative Sources: a Preliminary Study 30

2.2.4 Secondary Publication IV: Visual Input Affects the Decoding of
Imagined Movements of the Same Limb . . . . . . . . . . . . . . . 31

v



Contents

3 Discussion 32
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Findings in Relation to the State of the Art . . . . . . . . . . . . . . . . 32

3.2.1 Decoding Executed Movement Trajectories . . . . . . . . . . . . . 32
3.2.2 Decoding Imagined Movement Trajectories . . . . . . . . . . . . . 34
3.2.3 Decoding Movement Targets and Directions . . . . . . . . . . . . 34
3.2.4 Decoding of Single Limb Movements from Non-Disabled Persons . 35
3.2.5 Decoding of Single Limb Movements from Persons with SCI . . . 37
3.2.6 Findings in Relation to Movement-Related Invasive BCIs in Humans 38
3.2.7 Other Movement Encoding Features . . . . . . . . . . . . . . . . . 38

3.3 Training Paradigm Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 Sensory Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5 Unification of Discrete and Continuous Movement Parameters . . . . . . 42
3.6 Limitation of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.7 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.8 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Bibliography 47

Appendix 72
Primary Publication I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Primary Publication II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Primary Publication III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Primary Publication IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Secondary Publication I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Secondary Publication II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Secondary Publication III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Secondary Publication IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

vi



Acronyms

AHP afterhyperpolarization
ANN artificial neural network
BCI brain computer interface
BMI brain machine interface
CAR common average reference
CSP common spatial pattern
ECoG electrocorticography
EEG electroencephalography
EMG electromyography
EPSP excitatory postsynaptic potential
ErrP error-related potential
FBCSP filter bank common spatial pattern
FES functional electrical stimulation
fMRI functional magnetic resonance imaging
fNIRS functional near-infrared spectroscopy
GAM generalized additive models
ICA independent component analysis
IPSP inhibitory postsynaptic potential
LDA linear discriminant analysis
LFP local field potential
LFTD low-frequency time-domain
LSTM long-short term memory
ME movement execution
MEG magnetoencephalography
MI movement imagination
MRCPs movement-related cortical potentials
MUA multiunit activity
PCA principal component analysis
PLS partial least squares
SCI spinal cord injury
SCP slow cortical potentials
sLDA shrinkage linear discriminant analysis
SMA supplementary motor area
SNR signal-to-noise ratio
SQUID superconducting quantum interference device
SSEP steady-state evoked potentials
SSAEP steady-state auditory evoked potentials
SSSEP steady-state somatosensory evoked potentials
SSVEP steady-state visual evoked potentials
SUA single-unit activity

vii



1 Introduction

Clinical and biomedical research has seen enormous progress in the last centuries, be-
ing accompanied with tremendous benefits for society and individuals. Humanity has
developed anesthesia, antibiotics, vaccines, genetic screening, and imaging techniques,
to name a few [9]. This progress was one of the essential drives behind the increase of
life expectancy, and it has allowed us to fight illnesses as never before in the history of
humankind. However, like previously in history, there are limits in our understanding
of the human physiology and the available technologies. One limit is that we are still
incapable of repairing or reconnecting nerves in persons who sustained a chronic spinal
cord injury (SCI), potentially leaving the affected persons with impairments or even loss
of their motor, sensory and autonomic functions.

The prevalence of SCI is reported to range from 250 per million (Rhone-Alps region in
France) to 906 per million (USA), and annual incidence rates of SCI range from 9.2 per
million (Denmark) to 49.1 per million (New Zealand) [10]. Most studies found falls in the
elderly population and traffic accidents as the two most common causes of SCI [10, 11].
This is also a reason why traumatic SCI incidences show a bimodal age distribution with
one peak between 15 and 29 years and another peak in older adults (50 years and above),
whereas non-traumatic SCIs show a steadily increasing incidence rate with increasing age
[11]. Depending on the level and completeness of the lesion in the spinal cord, persons
with SCI can be paralyzed on the lower extremities, called paraplegia, or even on all four
limbs, called tetraplegia. Studies reported the proportion of paraplegic and tetraplegic
persons between 19 % to 68 %, and 32 % to 75 %, respectively, while there is evidence
that older adults are more prone to SCI in the cervical area which could cause tetraplegia
[11]. Particularly tetraplegic persons have a substantially decreased movement function
and are dependent on full-time care. They also require substantial health care resources,
imposing financial costs on individuals and society [12]. Tetraplegic persons report that
the main priority is therefore the restoration of a missing grasping and reaching function
(other important priorities are bowel, bladder, and sexual functions) [13–15].

Surgical procedures, like muscle and tendon transfers or tenodeses can be applied to
restore grasp function [16, 17]. However, these procedures require a sufficient number of
voluntary controllable muscles distal to the elbow and an individual willing to undergo
surgery. If these requirements are not met, upper limb motor neuroprostheses based on
functional electrical stimulation (FES) can be an alternative in order to restore grasping
and reaching functions [18–20]. FES-based motor neuroprostheses repetitively inject
short current impulses into peripheral efferent nerves and generate physiological action
potentials. These action potentials are transmitted via nerves to muscles and cause their
contraction resulting in a movement. To elicit meaningful grasp patterns and not just
random movements, it is necessary that FES electrodes are placed or even implanted on
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1 Introduction

specific points on the extremity. Furthermore, the paralyzed targeted muscles must be
still innervated so that the action potentials can propagate along the nerves. However,
this is not always the case as peripheral nerves around the level of the spinal cord lesion
degenerate when the lower motor neuron is damaged [21, 22].

In case a person with SCI fulfills all requirements to be equipped with a motor neu-
roprosthesis, the question remains how the person controls the neuroprosthesis. A stan-
dard method is a shoulder joystick control where a joystick is placed on the contralateral
shoulder. Up/down or forward/backward movements of the shoulder are then used to
control, e.g., grasp function [20]. As a joystick is a low-tech device, this is a relatively
robust solution from a technical point of view. However, persons with SCI are often
restricted in their shoulder movements which makes it impossible for them to control a
shoulder joystick with full degree-of-freedom and high precision. Furthermore, a shoul-
der joystick imposes additional movement restrictions to an already paralyzed person
when both arms have to be used simultaneously to interact with an object. An in-
teresting alternative is a motor neuroprosthesis control via selective contraction of ear
muscles [23]. Ear muscle contractions do not interfere with a grasp action and can be
easily measured using electromyography (EMG) signals [24]. Other control inputs have
been proposed but are not practicable for a neuroprosthesis control (e.g., speech control,
tongue control) [20, 25, 26]. The common principle of all these control options is to use
a remaining movement function as a control signal, but this principle has a downside.
The control is not natural and intuitive because neuroprosthesis users are forced to use
non-grasping muscles as a control proxy. Although in some cases, it may be possible to
record EMG signals from grasp-related muscles (e.g., extensor carpi radialis longus) [27]
that are innervated but too weak to provide a function. But not every tetraplegic person
has grasp-related weak muscles, nor is the EMG easy to measure as the FES electrodes
are very close and interfere [20].

An intuitive and natural control for motor neuroprostheses is still missing. It is the
objective of this thesis to further advance the current state of the art towards a more
natural control for motor neuroprostheses or robotic arms in general. The idea behind
this thesis is to bypass the lesioned spinal cord by acquiring brain signals, extracting
the movement intention from the brain signals, and forwarding the movement intention
to the motor neuroprosthesis [28, 29]. Thus, every time a person with SCI intends to
perform a movement, this intention is detected and transformed into a real movement
with a neuroprosthesis. This idea itself, however, is not new. So-called brain-computer
interfaces (BCIs), sometimes also called brain-machine interfaces, exist now for a while
and allow to read brain signals and exploit them as a control signal for various devices
[30–34]. These BCIs can be used to control motor neuroprostheses in persons with SCI
as the pioneering work of the Graz BCI lab showed. The Graz BCI lab restored grasp
function in persons with SCI and used for that purpose a non-invasive BCI based on
electroencephalography (EEG) [28, 35, 36]. EEG is a non-invasive recording technique
which measures the electrical activity of the brain with electrodes placed on the scalp.
The underlying principle of a common type of EEG-based BCIs is that some of the brain
processes generating EEG oscillations (brain rhythms), can be intentionally altered.
These changes can be measured in the EEG and used as a control signal. For example,
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1 Introduction

in the EEG it can be detected from oscillation changes whether a person imagines a left
hand or a right hand movement, and these movement imaginations can then be used to
control the grasp state of a motor neuroprosthesis [28, 36].

Despite that thoughts about movements are detected, the resulting control is not yet
natural enough. The general state of a movement imagination (MI) is detected but not
the detailed movement: it is detected if a hand movement is imagined, but not how
the hand is moved in the imagination. To facilitate a more natural control for existing
upper limb motor neuroprostheses it would be necessary (1) to detect how a body part
is moved, and (2) to increase the spatial resolution with which body part movements are
detected. Current EEG-based BCIs can differentiate MIs of different limbs. However,
for an improved upper limb motor neuroprosthesis control, it would be necessary to
differentiate individual movements within the same limb (e.g., hand movements, elbow
movements). A detailed differentiation would then allow a more natural control of upper
limb motor neuroprostheses, as a person with SCI would attempt a movement, and the
same movement is then executed via FES. Unfortunately, this is not yet possible with
current BCIs based on EEG and further research is required. It is therefore the objective
of this dissertation to analyze and exploit the encoded movement information in the EEG
to eventually provide a more intuitive and natural control signal for an end effector like
a motor neuroprosthesis or a robotic arm.

The next sections will explain the types of measurable brain signals and the principles
of BCIs. The subsequent sections describe then the current state of the art of BCIs with
a focus on movement control and explain the aim of this thesis in detail.

1.1 Types of Brain Signals

The brain is a complex organ, and we are far from a complete understanding of its
function. We do not know, for example, how higher-order brain functions like human
intelligence, emotions, or consciousness emerge out of a biological signal processing sys-
tem. In this biological system, information is integrated, processed and transported via
dendrites, neurons, and axons [37], and one may even compare aspects of this system
with human-made information processing systems like computer chips. Both techni-
cal and biological systems process and distribute information, and if information is the
fundamental currency of our brain, technical systems may one day be able to repro-
duce, not only partly simulate, the higher-order functions mentioned before. So far,
we do not yet adequately understand how the brain interacts with itself simultaneously
on different scales (e.g., neurons, neuronal ensembles, networks), and between different
building elements on the same scale (e.g., different types of neurons or brain structures).
Thus, we lack a holistic understanding of the information processing in the human brain.
However, we can partly observe the brain during its operation and find sometimes reoc-
curring patterns associated with behavior or sensation. These patterns are called neural
correlates and can be detected by BCIs and translated into a control signal for vari-
ous devices. This section gives a short overview which brain signals can be measured,
and in particular how the electrical signals relevant for EEG are generated and form
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1 Introduction

neural correlates. Basic knowledge about neurons and information transfer via synaptic
transmission is assumed here and can be found somewhere else [37].

1.1.1 Types of Electrical Brain Signals

Electrical brain signals relevant for BCIs can be measured on various spatial scales [29,
38]. The smallest scale refers to neural activities of individual neurons or small ensembles
of neurons and is termed microscale. Microscale measurements are conducted with
microelectrodes inserted in brain tissue, and measure activity of neural tissue within
volumes of 10−3 mm3 to 1 mm3. The microelectrodes are usually embedded in a grid
which is inserted in the cortex. By high-pass filtering the measured voltage signals
(> 300 Hz), one can separate action potentials or neuronal spikes (voltage changes of
100 mV in the order of 1 ms). However, due to volume conduction, a grid electrode
receives neuronal spikes from multiple neurons. One refers to this signal mix as multiunit
activity (MUA) [39]. A spike sorting algorithm can be used to separate the overlaying
spikes [40]. A neuronal spiking signal isolated in such a way is then referred to as single-
unit activity (SUA). MUA and SUA are then usually transformed into neuronal firing
rates before further processing in a BCI. Local field potentials (LFPs) are also measured
with grid electrodes, just like SUA/MUA, but are low-pass filtered (ca. <300 Hz) to
separate synaptic currents from action potentials.

The next larger spatial scale is referred to as mesoscale. Mesoscale voltage signals can
be recorded with electrocorticography (ECoG) electrodes placed on the cortical, pia,
arachnoid, or dura surface [41]. The mesoscale corresponds to a volume of 1 mm3 to
20 mm3, which corresponds to one or more cortical columns [38].

The largest spatial scale is the macroscale covering an area of 10 cm2 to 40 cm2, which
corresponds to Brodmann areas and even brain lobes. It can be measured with EEG
electrodes, where each electrode measures the averaged activity in the order of 100
million neurons [38]. However, the spatial averaging effect can be reduced with spatial
filtering techniques or source imaging [38, 42–46]. The amplitude of the EEG signal is in
the range of 1 µV to 100 µV, and frequencies of interest are often within 1 Hz to 100 Hz.

Electrical microscale and mesoscale brain signals provide in general a better signal-to-
noise ratio than macroscale signals. However, they require invasive recording techniques,
whereas macroscale signals can be measured non-invasively with EEG.

1.1.2 Generation of Electrical Signals

Various processes in the brain cause the generation of electrical currents. Due to volume
conduction in the brain, these electrical currents propagate, and electrical currents from
various sources superimpose in the extracellular medium in the brain. These super-
imposed electrical currents are associated with a certain electrical potential at a given
point. Voltage differences between electrical potentials can then be measured invasively
with microelectrodes or ECoG, and non-invasively with EEG.
Synaptic activity is considered as the essential contributor to extracellular electrical

fields. In particular, excitatory postsynaptic potentials (EPSPs) in apical dendrites of

4



1 Introduction

pyramidal neurons found in the cortex, cause an influx of cations from the extracellular
into the intracellular space. This influx forms an active local extracellular sink. Because
of electroneutrality, the additional charges brought into the intracellular space cause a
return current which forms passive extracellular sources somewhere remote from the
sink [47]. The formed sink and sources generate a dipole which gives rise to an electrical
field which decays proportionally to 1/r2 [48]. The electrical field together with the
volume conduction leads then to the electrical currents and electrical potentials which
can be measured with electrodes. Beside EPSPs, also inhibitory postsynaptic potentials
(IPSP) contribute to the electrical field. IPSPs are often located on the soma and
lesser on the dendrites of the postsynaptic neuron. Analogous to EPSPs, the IPSPs
cause then an active extracellular source on the soma, and because of electroneutrality,
passive extracellular sinks possibly on the dendrites. Therefore, IPSPs and EPSPs can
create dipoles with similar orientation and similar electrical potentials in the extracellular
space. However, inhibitory neurons comprise only one-fifth of cortical neurons [49], and
their effect on the electrical field is therefore thought to be lower than with excitatory
neurons.

Two factors have a substantial impact on the measured electrical potentials [48]. The
first factor is the spatial configuration of the contributing neurons. Especially, the apical
dendrites of pyramidal neurons in the cortex have a parallel arrangement, and the electri-
cal fields generated by their dipoles can easily add up. Furthermore, pyramidal neurons
have long apical dendrites, which lead to distinct dipoles arising between them and the
soma. The second factor is the temporal synchronicity of the postsynaptic potentials.
Postsynaptic potentials of the same type (excitatory or inhibitory) induced simultane-
ously in a neuron or a group of neurons generate electrical fields with higher amplitude
than the same postsynaptic potentials when induced non-simultaneously. Thus, spa-
tial and temporal integration of postsynaptic potentials boosts the amplitude of the
generated electrical field.

However, synaptic activities are not the only type of biochemical activity affecting the
electrical field [48]. Also, calcium spikes can contribute substantially to the extracellular
electrical field. They are long-lasting (10 ms to 100 ms) and large events (10 mV to
50 mV) which can propagate actively within the neuron, and can be triggered by back-
propagating somatic action potentials or by EPSPs. Contrarily, fast action potentials
("spikes") do not contribute substantially to EEG and ECoG signals. Because of their
short duration (2 ms) they rarely overlap in time. However, synchronous fast action
potentials from larger neuron groups can contribute to high-frequency components in
the electrical field. Bursts of both calcium spikes and fast action potentials can be
followed by a distinct hyperpolarization in neurons, the so-called afterhyperpolarization
(AHP). AHPs are comparable in duration to synaptic events and can therefore contribute
substantially to the extracellular electrical field. Furthermore, neurons have resonance
and oscillation features, and excitation of neurons with a particular frequency can cause
self-sustained voltage oscillations in the theta or gamma band. The interested reader
can find more information on how the electrical field is generated in the detailed reviews
of Buzsáki et al. [48] and Einevoll et al. [49].
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1 Introduction

1.1.3 Other Types of Brain Signals

Beside electrical brain signals, also other brain signals applicable for BCIs can be de-
tected non-invasively. These brain signals are presented below. However, they do not
provide a clear advantage over EEG in BCI applications and are therefore of lesser
importance. These brain signals are rather used in neuroscience research or clinical
applications in general.

Brain signals can also be recorded with magnetoencephalography (MEG). MEG mea-
sures the magnetic field caused by the electrical currents in the brain (ca. 10 fT to 103 fT)
[50]. MEG employs magnetometers which are usually realized with superconducting
quantum interference devices (SQUIDs). Although both MEG and EEG are related to
electrical currents in the brain, they are not equivalent but rather complementary. At
frequencies occurring in the brain, the electric and magnetic fields can be considered as
decoupled. These fields are, however, sensitive to different sources in the brain. Due
to the propagation properties of the magnetic field, MEG is insensitive to dipoles with
axes perpendicular to the head surface, like the dipoles on cortical gyri. MEG measures
therefore preferentially dipoles on sulcal walls on the cortex [51]. Contrarily, EEG is
insensitive to the dipole orientation but measures, due to the 1/r2 electric field decrease,
preferentially sources on cortical gyri.

Moreover, brain signals based on metabolic activities can be measured. When neuronal
ensembles increase their neural activity, they also increase their metabolic activity and
consume more oxygen. The uptake of oxygen in neuronal cells is reflected in a localized
change of the concentration of oxygenated and deoxygenated hemoglobin in the blood,
which in turn causes a change of the magnetic susceptibility of the local hemoglobin.
This effect is referred to as blood-oxygen-level-dependent (BOLD) effect and can be
non-invasively detected with functional magnetic resonance imaging (fMRI) [52]. As the
BOLD effect is a result of the slow hemodynamic response, its temporal resolution is
usually longer than a second [53]. However, fMRI provides a better spatial resolution
than EEG and allows measurements from the mesoscale up to the macroscale [53, 54].
fMRI is an indirect measurement of the neural activity, and it has been shown that the
BOLD signal corresponds closer to LFPs than to spiking activity [55].

The concentration change of oxygenated and deoxygenated hemoglobin affects fur-
thermore the spectral absorption properties of hemoglobin. Functional near-infrared
spectroscopy (fNIRS) can be used to measure these changes in the cortex via infusing
light in the near-infrared spectrum through the skull in the cortex and measuring its
absorption [56].

1.2 Introduction to BCIs

1.2.1 Definition

BCIs are sophisticated technical devices which read brain signals and derive control
signals for external devices. Before further explanations of the basic components of a
BCI are given, it is expedient to give a proper definition of a BCI. A BCI, sometimes
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also called brain-machine interface (BMI), needs to fulfill four requirements according
to the definition given in [57]:

1. a BCI must rely on signals originating from the brain (i.e., brain signals)

2. the BCI user must intentionally modulate the brain signal(s)

3. the signal processing must occur in (soft) real-time and yield a communication or
control signal

4. the BCI user must perceive feedback about the state of the utilized brain signals

The last two points are sometimes emphasized by redundantly calling a BCI an online
BCI. The online aspect refers in the context of BCIs to the (1) prompt processing
of brain-signals, and (2) the output of this processing is observable by the BCI user.
However, this definition has been updated in [38]. This newer definition is:

"A BCI is a system that measures central nervous system (CNS) activity
and converts it into artificial output that replaces, restores, enhances, sup-
plements, or improves natural central nervous system output and thereby
changes the ongoing interactions between the central nervous system and its
external or internal environment."

It suffices now that the BCI interacts with the environment. Thus, the BCI users
can perceive the state of the brain signals indirectly through overt changes in the envi-
ronment. Direct observation of the state of the brain signals is not necessary anymore.
Furthermore, intentional control of brain signal is not required. This definition allows
the inclusion of so-called passive BCIs, which observe the state of the BCI user and react
to it [58]. However, in both definitions, a system which only monitors brain activity is
not a BCI.

BCIs are primarily researched and developed to support people with disabilities. They
have the potential to provide solutions in the future which are superior to conventional
approaches or complement them. BCI applications which have been developed so far
can be categorized into the following three application domains:

• communication and control

Communication and control applications include spellers to allow persons who suf-
fer from, e.g., amyotrophic lateral sclerosis (ALS), and entered a locked-in state,
to communicate with their environment [59–62]. Also, BCIs could provide a com-
munication channel to persons in a minimally conscious state [63]. Furthermore,
BCIs for wheelchair control [64, 65] or computer applications like web browser
[66–68], painting programs [69, 70], music composition programs [71], and gaming
applications [72, 73] have been implemented.

• motor restoration

Motor restoration applications provide a technical bypass around impaired brain
areas or injuries in the spinal cord to restore motor function. More BCI related
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information can be found in section 1.3, which describes the state of the art of
BCIs related to movement control.

• motor recovery

Motor recovery applications [32, 34, 74–77] support persons during a neurological
rehabilitation process after, e.g., stroke. BCIs can help to guide the mental activity
to foster brain plasticity and to suppress abnormal brain activity, probably sup-
porting the restoration of normal motor control. Furthermore, BCIs can be used to
stimulate muscles or passively move body parts whenever a movement intention is
detected (particularly with no residual movements). The resulting sensory input
can then engage the recovery process [78], especially if the sensory input is not
delayed by more than a few hundred milliseconds [79].

To build a BCI one needs to understand (1) how the different types of brain signals can
be modulated, and (2) how these signal modulations can be detected via signal processing
and classification methods. The following subsection 1.2.2 and subsection 1.2.3 address
these two questions and give an introduction to BCIs.

1.2.2 Modulation of Brain Signals

A BCI transforms brain activity or neural correlates into a control signal. While many
different brain signals can be measured, the measurement alone is not sufficient to build a
BCI. First and foremost, a BCI user needs to be able to modulate a certain brain activity
measure intentionally, or a brain activity measure is modulated due to an interaction
with the environment. Second, the BCI system can detect that modulation to derive
a control signal from it. Several modulate-able brain signals have been found, and the
most relevant for BCIs are introduced in the following.

Modulation of Neuronal Firing Rates Neuronal firing rates are derived from mi-
croscale brain activity with SUA and MUA. It was found that voluntary limb movements
affect the spiking activity of neurons in the primary motor cortex, primary somatosen-
sory cortex, supplementary motor area, premotor areas, and posterior parietal cortex in
non-human primates [37, 80–82] and that this activity does not solely arise from sen-
sory feedback [80, 81]. In particular, the spiking activity of neurons is affected by, e.g.,
exerted force, position, or velocity of body parts [83]. Georgopoulos et al. [84] found
moreover that the firing rate of individual motor neurons depends on the direction of
arm reaches, and that the movement direction is better decodable from a population of
cortical motor neurons [82], this became known as the "population vector".

Noteworthy, also movement planning and movement preparation were detected from
neuronal activity in studies which employed a delay period before movement execution
(ME) in non-human primates [85, 86] and humans [87]. See Synder et al. [88] for a
review on the planning-related activity in the posterior parietal cortex. Furthermore,
cognitive imagery modulates neuronal activity in the temporal lobe. It was shown that
neurons which respond to a particular visual stimulus also respond during recall of this
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stimulus [89]. Besides these modulations induced by behavior, subjects can also learn to
control the activity of motor neurons by neurofeedback learning. Fetz [90] showed that
non-human primates can learn to increase and decrease the activity of motor neurons
when they are rewarded. Interestingly, neuronal activity required to get the reward
was associated with limb movements, but it was then found that the neuronal activity
of motor neurons can be dissociated from movements [91–94], i.e., movements can be
suppressed during voluntary control of neural activity. For a review about volitional
control of neural activity see Fetz [95].

Modulation of Brain Oscillations Rhythmic activity or brain oscillations are an es-
sential part of brain function and occur on various spatial and temporal scales (microscale
to macroscale, and milliseconds to a day) [96]. They become measurable in EEG when
large neuronal ensembles engage in a synchronous activity. Brain oscillations were first
observed by Hans Berger [97] in macroscale EEG signals on the occipital cortex, and
afterward also on other areas like sensorimotor areas. Furthermore, it was found that
oscillations on sensorimotor areas can be blocked by movements [98]. Later it was then
found that the oscillations can be intentionally modulated by execution and imagination
of movements [99, 100], as well as mental tasks like mental rotation, mental subtrac-
tion, or spatial navigation [101]. Motor and mental tasks cause activation of respective
areas on the cortex. This increased activation presumably reflects active information
processing, and leads to a desynchronization of the involved neural ensembles. This
desynchronization manifests as a power decrease relative to a certain baseline in the
alpha/mu (8 Hz to 13 Hz) or beta band (around 20 Hz) in LFP, ECoG and EEG signals.
This effect is called event-related desynchronisation (ERD) [100, 102]. An intensification
of the idle state of neuronal ensembles, however, leads to an increase in power relative to
a baseline, which is called event-related synchronization (ERS). These effects are often
confined to the mu band and beta band. However, in the gamma band (around 40 Hz)
oscillations are interpreted as active information processing [102]. Thus, the increased
computational load due to movement tasks can cause a power increase in the gamma
band. Besides the before-mentioned movement and mental tasks, brain oscillations are
also modulated by mental states related to, e.g., mental workload, attention level, or
fatigue, which is exploited in passive BCIs [103, 104].

Brain oscillations measured on the microscale and mesoscale are particularly inter-
esting because these scales allow access to higher frequencies than at the macroscale.
This is due to the low-pass characteristic of the brain [48], which causes a decrease of
the signal-to-noise ratio (SNR) with increasing frequency. LFP and ECoG with their
increased SNR can partly compensate for that effect. Accordingly, it was found that
voluntary limb movements are accompanied by modulations of LFP signals on motor
areas up to 300 Hz [105–107]. Furthermore, movement planning modulates LFP signals
up to 250 Hz on motor areas and up to 100 Hz on the posterior parietal cortex [108, 109].
Voluntary limb movements also modulate ECoG signal on motor areas up to 180 Hz
[110, 111].

An oscillation-based BCI utilizes then these oscillations and typically transforms the
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power modulations in one or more frequency bands into a control signal.

SCP Slow cortical potentials (SCP) are changes of the cortical potentials lasting for
300 ms to several seconds [112]. A negative shift of SCPs indicates an excitation increase
of underlying neuronal circuits, whereas a positive shift indicates a decrease in excitation.
Persons can learn via neurofeedback to shift their cortical potentials and use them as a
control signal for BCIs [59, 113].

MRCPs Movement-related cortical potentials (MRCPs) are elicited during self-initiated
voluntary movements and are time-locked to the movement onset. They comprise sev-
eral subcomponents, most notably the readiness potential [114]. The readiness potential
can again be divided into an early and a late component. The early readiness poten-
tial is a potential with a negative slope which starts around 2 s before movement onset
(the movement onset is here defined as the peak of the respective averaged rectified
EMG signal). It occurs first on the supplementary motor area (SMA), and then bilater-
ally on the lateral premotor cortices. It is then replaced by the late readiness potential,
which has a steeper negative slope, approximately 0.4 s before movement onset. The late
readiness potential appears on the contralateral premotor and primary motor areas. An-
other subcomponent is the motor potential, which occurs 10 ms before movement onset
well-localized on the respective somatotopic area on the primary motor cortex. It most
likely represents the activity of pyramidal tract neurons. Beside these pre-movement
potentials, also post-movement potentials on frontal and parietal areas exist which are
thought to be related to kinaesthetic feedback. The subcomponents of the MRCPs are
not consistently defined in the literature, however, and several other names exist for
most of the potentials. See Shibasaki and Hallet [115] for a review on MRCPs and the
individual subcomponents. MRCPs are elicited in movement tasks, and their detection
with a BCI could benefit, for example, motor recovery applications [116–118].

SSEP Periodic external stimulation of sensory neurons induces oscillations on the re-
spective primary sensory areas. These induced oscillations are called steady-state evoked
potentials (SSEP). Depending on the stimulated sensory system, they can be further
subdivided into steady-state visual evoked potentials (SSVEP), steady-state somatosen-
sory evoked potentials (SSSEP), and steady-state auditory evoked potentials (SSAEP)
[119–122]. One can build a BCI by simultaneously stimulating a user with different
frequencies, where each frequency is associated with a particular class label. The user
can then select a class label by focusing the attention on the associated frequency. This
focusing causes oscillations with the fundamental frequency of the stimulation and of-
ten its harmonics or subharmonics [123, 124] to appear on the corresponding primary
sensory area. A BCI can detect these oscillations and attribute them to a class label.
Typical stimulation methods include, for example, visual stimulation via flickering icons
on a computer screen or tactile stimulation via vibrations. Especially BCIs operating
with visual stimulation combined with EEG recording from the occipital cortex, i.e.,
SSVEP-based, are reported in the literature [125, 126].
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P300 P300 [127] is an event-related potential well measurable in macroscale brain sig-
nals and is associated with stimulus evaluation [128]. One way to elicit a P300 is via the
oddball paradigm [129]. In this paradigm, non-target stimuli are presented frequently
to the BCI user. These frequent stimuli are interspersed with less frequent target stim-
uli. Importantly, the BCI user focuses exclusively on the target stimuli, which usually
comprise not more than 25 % of the stimuli. When a target stimulus occurs, a phase-
locked potential is elicited. One component of this potential is the P300, which occurs as
a positive deflection in EEG signals approximately 300 ms after stimulus presentation.
The P300 has been used to build applications such as spellers based on EEG signals
[130, 131]. A P300-based BCI speller presents the user a visual matrix of characters,
with the characters flashing in a random sequence [130]. The user selects a character
and focuses then on this character. This makes each flashing of the selected character
a target stimulus. After several flashes of the character – each flash elicits a P300 –
the BCI system can detect the selected character, and one can use such a system for
spelling. In addition to such a visual paradigm, paradigms based on tactile or auditory
stimulation are also researched [132, 133].

ErrP An error-related potential (ErrP) can be measured in macroscale brain signals
and is evoked whenever a person becomes aware of an error. Several ErrP types have
been identified so far: response ErrP, feedback ErrP, recognition ErrP, and interaction
ErrP. Important for the categorization of ErrPs is to determine who committed an
error. When an error is committed and recognized by the same person, the evoked ErrP
is either a response ErrP or a feedback ErrP. A response ErrP is elicited when the person
recognizes the error immediately after committing it, whereas a feedback ErrP is elicited
when the person recognizes the error only after feedback is provided by some system.
When an error is committed and recognized by different persons, the person recognizing
the error elicits a recognition ErrP. Especially interesting for BCIs are interaction ErrPs,
which are elicited when the controlled system, i.e., the BCI, makes an error which is then
recognized by the BCI user [134]. ErrPs can be exploited for error correction after a
wrong BCI output, e.g., in a speller application or robotic arm control, or to learn a
BCI classifier with reinforcement learning [135–137].

Haemodynamic Response-Related Signals Neuronal activity causes a local hemo-
dynamic response and changes in the BOLD signal. This can be detected via fMRI [55]
and used for neurofeedback [138, 139]. Also, mental tasks can be used as a control strat-
egy in an fMRI-based BCI [140]. The hemodynamic response can further be measured
with fNIRS and used as a control signal for BCIs [141, 142].

11



1 Introduction

1.2.3 Components of a BCI

A BCI acquires brain signals and derives a control signal or a communication channel
from it. Virtually all BCIs can be split into the following components:

1. signal acquisition

2. feature extraction

3. classification

4. control signal generation

5. feedback

This pipeline is shown in Figure 1.1. Essential is that feedback is provided to the BCI
user. Thus, the control signal generated by the BCI or its effects are perceivable by the
BCI user and the user can react to the output of the BCI. A BCI is therefore always a
closed-loop system.

Figure 1.1: Typical processing pipeline of a BCI. The BCI acquires the brain signals of
the user and generates a control signal for some device. The user is then
given feedback, resulting in a closed-loop system.

This section provides a short overview of the basic building blocks of a typical EEG-
based BCI system. Technical specifics of BCIs based on other brain signal types, e.g.,
magnetic brain signals [143], blood oxygen level signals [141], or invasive recording tech-
niques are out of the scope of this thesis. However, their differences are mainly in signal
recording, while the concepts in the subsequent steps are similar. For further informa-
tion about invasive or non-invasive BCIs, one may read the review articles [31, 32, 34,
144].
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Signal Acquisition The first step in a BCI pipeline is to acquire and to digitize
brain signals [38]. EEG-based BCIs employ electrodes placed on the scalp to mea-
sure macroscale brain signals (often on standardized positions [145]). Different types of
electrodes exist for this purpose: gel-based, water-based, or dry electrodes. Gel-based
electrodes use an electrolyte gel to establish contact between the electrodes and the skin;
water-based electrodes employ water-soaked sponges for that purpose. Dry-electrodes
use no additional conductive medium, and in general suffer therefore from more noise,
voltage offsets and unstable signals than gel or water-based electrodes [146]. The stan-
dard for research-grade gel or water-based electrodes are sintered silver/silver chloride
(Ag/AgCl) electrodes. For dry electrodes, a comparable clear standard has not yet
evolved, and different materials are in use and researched (e.g., gold alloy or electrically
conductive polymer).

Moreover, electrodes can be subdivided into active and passive electrodes. Active
electrodes have a preamplifier integrated into each electrode and are therefore less prone
to interferences on the electrode cables than passive electrodes. However, passive elec-
trodes can be combined with actively shielded electrode cables to reduce interferences on
the electrode cables. The acquired brain signals are then transmitted via the electrode
cables to a biosignal amplifier.

Biosignal amplifiers are based on so-called instrumentation amplifiers. Instrumenta-
tion amplifiers can offer a high input impedance (>100 GΩ) and high common-mode
rejection ratio (>107), allowing them to record even small voltages as in EEG with a
reasonable SNR. The amplifier digitizes the EEG signals and transmits them wired or
wireless to the BCI pipeline. Typically, it suffices to sample EEG signals with no more
than 256 Hz to cover all EEG frequency bands relevant for BCIs, as they are usually
located below 60 Hz.

Feature Extraction Once signals are acquired and digitized, one needs to preprocess
the signals and extract discriminative features from the preprocessed signal. One of
the first steps is usually a spatial filtering of the signals. Due to volume conduction,
electrodes pick up signals not just from the closest source, but also from many other
more distant sources and record therefore a mix of many sources. The further away
an electrode is placed from the source of interest, the more severe that effect becomes.
Thus, EEG is affected the most by volume conduction and has therefore a lower SNR
compared to invasive methods like ECoG. Furthermore, the conduction inhomogeneities
caused by the cerebrospinal fluid, skull, and scalp affect and distort the propagation of
the electric field [147].

Spatial filtering helps to counteract volume conduction, and various spatial filters can
be applied. Simple spatial filters are the bipolar filter or the Laplace filter [38, 148,
149]. A bipolar filter computes the voltage difference between an electrode pair, and
a Laplace filter computes the difference between a center electrode and the average of
the surrounding electrodes (typically the 4 or 8 closest electrodes). The Laplace filter is
therefore a generalization of the bipolar filter with a focus on sources below the center
electrode. Another often used spatial filter is the common average reference (CAR)
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[149]. A CAR filter calculates the average potential of all electrodes at each time instant
and subtracts the average potential from all electrodes. The potential common to all
electrodes is therefore removed. Besides these simple filters, unsupervised and supervised
data-driven spatial filters exist. Typical examples of unsupervised spatial filters are
principal component analysis (PCA) and independent component analysis (ICA). Both
methods are so-called blind-source separating methods. PCA decorrelates signals [150,
151], whereas ICA finds sources (components) which are statistically independent of
each other. Various ICA variants exist to maximize the statistical independence among
sources [152, 153]. A prominent supervised spatial filter is the common spatial pattern
(CSP) filter [43, 154, 155]. CSP finds sources which have a maximum difference in
variance between conditions. It is often used to extract mu and beta rhythms and is
usually combined with a subsequent variance computation and log transformation.

Other than enhancing the SNR, a spatial filter can also remove the influence of the
reference electrode on the recorded signals. EEG signals are recorded as difference signals
to a common reference electrode. As the reference electrode also picks up electrical
signals, the placement of the reference electrode affects the time course of the recorded
signal. Spatial filters can help here, as they can extract components independent of
the reference electrode. Especially, CAR is used for that purpose in source imaging
applications [156].

Temporal filtering is beside spatial filtering another standard signal processing tech-
nique for brain signals. The brain signals of interest are often contained in specific
frequency bands, e.g., mu rhythm. Temporal filtering increases the SNR by reducing
the power of brain signals which are not of interest (i.e., noise) as well as by reducing
the power of artifacts, e.g., muscle artifacts.

Features are then extracted from the preprocessed EEG signals, and fed in a classi-
fier. Features are often merely the time points of spatially and temporally filtered EEG
voltages (c.f. P300 based BCIs [67]), called time-domain features in this PhD thesis.
Another feature type are frequency-domain features, which are used by oscillation based
BCIs. These features refer to the power (i.e., variance), amplitude, or phase of EEG os-
cillations. Frequency-domain features are usually calculated over one or more frequency
bands obtained via temporal filters or via a discrete-time Fourier or wavelets trans-
form [157]. One prominent example of a frequency-domain feature is the so-called band
power feature. For this, one computes the instantaneous variance in a specific frequency
band and smooths it with a moving average filter. Subsequently, a log transformation
is applied to reduce the skewness of the data. Another often applied feature extraction
algorithm is the filter bank CSP (FBCSP) [158]. With FBCSP, signals are first filtered
with a filter bank, followed by a CSP filter for each frequency band. Similar to band
power features, the variances of the CSP filtered signals are computed and smoothed,
followed usually by a log transformation. Also, connectivity features can be computed
in the time or frequency-domain [159–161]. See [162] for a survey of signal processing
algorithms applied in BCIs.
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Classification Once the signals are acquired and features are extracted, the features
are fed into a classifier (see the reviews [163, 164]). Typical BCI classifiers are, e.g., linear
discriminant analysis (LDA), support vector machine, or random forest classifier. Most
classifiers share a common problem when training the classifier: the limited number of
available training trials. The consequence is an adversely low trials to features ratio.
Without countermeasures, this can lead to overfitting on the training data, especially
when the classifier model has a high degree-of-freedom (e.g., many weights). In the case
of overfitting, the classifier performs well on training data but poorly on test data. The
high risk of overfitting may be one of the reasons why relatively simple linear classification
models are still widely used for BCIs, and why regularization, like shrinkage for LDA
[165, 166], is highly advantageous. More complex classifiers like artificial neural networks
(ANNs) were also investigated, but their little performance improvement – if any at all
– may not justify the attending high computational costs [167] – at least as EEG signals
are concerned. The advent of deep learning, as seen in other domains (e.g., speech
recognition, object detection) [168], did not yet happen in the BCI domain.

A noteworthy classification concept introduced in BCI are adaptive classifiers [169].
Adaptive classifiers update their classifier model during the operation of the BCI. Thus,
they cope with the inherent short and long-term non-stationarities present in brain sig-
nals. Furthermore, they can account for the learning progress of BCI users. Particularly
the modulation of brain oscillations can be learned and improved by BCI users [170,
171]. In general, the control of a BCI needs to be seen as a skill which has to be learned
with time, and the classifier should adapt to the training progress.

Another important concept is transfer learning [172, 173]. Transfer learning in the
context of BCI refers to the usage of training data from other users (subject-to-subject
transfer) or other sessions of the same user (session-to-session transfer) to train a clas-
sifier. Transfer learning can help in cases where little training data are available, or
to shorten the training phase. Transfer learning can also be combined with adaptive
classification [174]: an initial classifier is built with transfer learning, and then improved
via adaptive classification during operation.

Control Signal Generation In a typical BCI processing pipeline, the classifier outputs
discrete class labels or continuous class probabilities (or the underlying raw scores).
Furthermore, the output can also be any predicted continuous variable, e.g., 3D hand
position. In the latter case, the term "classifier" is not accurate and is often replaced by
the more general term "decoder" [144, 175] applicable to discrete and continuous outputs.
The output of the classifier or decoder is then used as a control signal for various devices
or software programs. Examples are neuroprostheses, wheelchairs, telepresence mobile
robots, web browsers, spelling programs, or computer games [32].

Feedback The effect of the control signal on the controlled devices or on the envi-
ronment is perceived by the BCI user, which closes the control loop. The feedback
component is of more relevance for BCIs deliberately controlled by the BCI user than
for passive BCIs, but all BCIs share this feature.
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1.3 State of the Art of Movement Control BCIs

This section summarizes the state of the art of BCIs related to movement control. The
state of the art is outlined as it was at the beginning of this thesis. The limitations are
then identified in the next section section 1.4, and the research question is formulated in
section 1.5. An update of the state of the art – in so far as relevant for this thesis – is then
given in section 3.2. Both non-invasive and invasive BCIs used for the control of motor
neuroprostheses or other end effectors, like orthoses or robotic arms, are considered in
this section. Moreover, BCIs which have the potential to be used for an end effector
control are included as well (e.g., cursor control).

invasive BCIs The development of invasive BCIs for movement control applications
started in non-human primates, which are thought to provide an appropriate model for
the human nervous system. Most of the following studies recorded SUA or MUA from
premotor, primary motor or parietal areas, and decoded kinematic parameters from the
neuronal firing rates with linear (e.g., multiple linear regression) or non-linear models
(e.g., artificial neural networks, Kalman filter).

The group of Nicolelis showed that non-human primates could learn to control a
robotic arm [176]. Other research groups showed then the 2D and 3D control of a com-
puter cursor [92, 177–179], and the prediction of discrete targets on a computer screen
[180] with non-human primates. Next, the control was extended to reach and grasp
movements. Carmena et al. [93] showed the control of a robotic arm equipped with a
gripper in monkeys. The monkeys observed the robotic arm state only indirectly via
a screen and learned to reach and grasp virtual objects. Based on data from this ex-
periment, Kim et al. [181] proposed to equip the robotic arm with proximity sensors to
facilitate reflex-like reactions and augment brain-controlled trajectories. In a renowned
demonstration, the group of Schwartz has shown the real-time interaction with phys-
ical objects via a prosthetic arm attached to monkeys [182]. The monkeys learned to
control the prosthetic arm to feed themselves. Moritz et al. [183] and Pohlmeyer et al.
[184] showed a BCI combined with a motor neuroprosthesis in a monkey where forearm
muscles were transiently paralyzed. Neural activity was decoded and used to control
wrist movements via FES and allowed the subjects to grade the amount of produced
force. Moreover, grasp types were also decoded [185]. The aforementioned invasive
BCIs decoded from neuronal ensembles. Although single cortical neurons correlate with
movement parameters, the correlation varies over time, and neuronal ensembles provide
more stable predictions of movement parameters [186].

Invasive BCIs were moreover demonstrated in humans. Hochberg et al. [187] showed
the BCI control of a computer cursor in 2D, the opening and closing of a prosthetic
hand, and rudimentary actions with a robotic arm. The BCI system was tested on
a participant suffering from SCI at level C4 (ASIA A), who had an electrode array
implanted onto the surface of the arm/hand region in the primary motor cortex. Kim et
al. [188] improved this BCI by decoding velocity instead of position, and by replacing
the linear filter by a Kalman filter, and tested the system in two tetraplegic persons.

Also, studies in humans with ECoG-based BCIs were conducted. Leuthardt et al.
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[110] demonstrated a one-dimensional control of a computer cursor with different types
of imagined and executed motor and speech tasks. However, the strategy for online
control was not intuitive, as, e.g., MI of opening and closing the right hand vs. rest was
used to control a cursor in 1D. Interestingly, the authors found in an additional offline
analysis that joystick movement directions were encoded in the ECoG, namely in the
high-gamma band. The online control of a cursor was later then extended to 2D [189].

non-invasive BCIs Movement control applications were also demonstrated with non-
invasive BCIs based on EEG. The Graz BCI group showed the restoration of hand grasp
function in a tetraplegic person with no residual hand function (SCI at level C4/C5,
ASIA A) in Pfurtscheller et al. [35]. For this purpose, an oscillation-based BCI was
used to detect right hand MI and foot MI. These MIs were translated into a control
signal for a hand orthosis fitted to the left hand. Later, the same tetraplegic person
was equipped with an FES-based neuroprosthesis controlled with a BCI [28]. Foot MI
was then used to cycle through the different phases of a lateral grasp. Müller-Putz et
al. [36] also showed the control of an implanted neuroprosthesis (Freehand system) with
a BCI. The study participant, who sustained an SCI at level C5, learned to control
his right hand with left hand MI. He was able to cycle through the phases of a lateral
grasp. Moreover, Tavella et al. [190] demonstrated the BCI control of an FES-based
neuroprosthesis in healthy persons. Notably, the control strategy was more natural than
in the studies before as it included MI of the hand equipped with the FES. A hybrid
neuroprosthesis consisting of FES and a semi-active orthosis was demonstrated by Rohm
et al. [191] to restore hand and elbow function in a tetraplegic person with a complete
SCI at level C4. The control was facilitated with a shared control between a shoulder
joystick and an oscillation-based BCI. Furthermore, SSVEP-based BCIs were used to
control a hand prosthesis and a hand orthosis [192, 193] by non-disabled persons, and
a two degrees-of-freedom robotic arm by non-disabled persons and a tetraplegic person
(SCI at level C4/C5, ASIA A) [194]. The latter robotic arm was also controlled with
a hybrid BCI based on SSVEP and MI [195], and MI combined with temporal coding
[196]. Moreover, Gomez-Rodriguez et al. [197] showed the control of a robotic arm with
a single degree of freedom using an oscillation-based BCI and MI. Interestingly, haptic
feedback improved the classification accuracy.

The BCIs mentioned in the preceding paragraph all provided a discrete control signal,
i.e., one out of n classes could be selected by the BCI user. Wolpaw and McFarland [198]
demonstrated a BCI based on brain oscillations that also provided a continuous control
signal. The authors showed that users could control a computer cursor in 2D. This 2D
control was later on then extended to 3D [199]. Both studies showed that BCI users
can learn to independently modulate their mu and beta rhythms on different spatial
locations and thus provide different continuous control signals.
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1.4 Current Limitations

The last section listed BCIs which were used in control applications, in particular, in
movement restoration applications. Various BCI research groups have reported success
stories with invasive and non-invasive BCIs. Which type will prevail in the future is
difficult to predict as both methods have their advantages and disadvantages. Non-
invasive BCIs are safe to apply and do not impose any risk to the user as opposed to
invasive BCIs. The implantation of electrodes may cause an infection, and particularly
long-term usage is an issue because the insertion of electrodes leads to damages of the
neural tissue and neurovasculature. These damages cause the formation of fibrous and
cellular sheath encapsulating the electrodes [200, 201], which then impedes the recording
of neuronal activity [202]. A re-implantation of the electrodes could be the consequence.
So far, the lifetime of an electrode grid is months to years instead of decades. On the
upside, invasive BCIs can provide a better SNR than non-invasive BCIs.

In the context of movement control applications, there is another fundamental differ-
ence between both methods. Invasive BCIs are often trained on executed movements,
and a decoder learns a mapping between neuronal activity and movement parameters
such as hand trajectory or muscle force level. Subjects can control then the decoder
output with executed movements, and can also learn to suppress the motor output
and produce the proper neuronal activity without overt movements [93]. Also, imag-
ined movements in humans with SCI had been used as control signals by the time this
thesis started [187, 188]. Thus, the decoder control is associated with natural move-
ments, which is sometimes called biomimetic decoding [203]. However, the non-invasive
oscillation-based BCIs often employ a decoder or classifier which is based on MIs, but the
MIs are not associated with the desired movement of the neuroprosthesis. For example,
in Pfurtscheller et al. [28] foot MI was used to control the FES on the left hand. The
reason for this non-intuitive control is that the number of MIs which can be detected and
classified is limited, and one has to select from the set of available MIs the ones which
produce the most reliable control signal. Additionally, the details of how a movement is
performed are hardly decodable with oscillation based BCIs, e.g., if a hand is opened or
closed. Furthermore, MIs are often repetitive movements instead of single movements.

The non-intuitive control strategies for non-invasive BCIs are a limitation of the cur-
rent state of the art. It would be desirable to have a control paradigm similar to invasive
BCIs as this would allow for a more natural and therefore more intuitive non-invasive
BCI control of motor neuroprostheses or robotic arms.

This limitation could perhaps be overcome with low-frequency time-domain (LFTD)
signals. LFTD signals can be extracted from EEG by low-pass filtering with ca. 3 Hz.
In contrast to oscillations, LFTD signals have been recently shown to encode upper
limb movement trajectories in EEG [204, 205], MEG [206–208], ECoG [209–212], and
LFP signals [213]. Furthermore, upper limb movement directions or movement targets
were decoded from EEG [214, 215], MEG [216, 217], ECoG [218], and LFPs LFTD
signals [105, 213, 219]. Noteworthy, the EEG signals associated with movement direction
decoding may be related to – or are in fact – MRCPs [115], which also occur in the
LFTD. MRCPs are evoked during self-paced movements and are modulated by various
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factors, including movement speed or movement force [115, 220, 221]. MRCPs were
furthermore used to detect movement initiation in single-trial EEG [222, 223]. Thus,
hand trajectories decoded from LFTD signals could be used for intuitive and natural
control of robotic arms or sophisticated future motor neuroprosthesis. Furthermore,
decoded discrete movements like wrist movements, or movement parameters like speed
or force could be used as intuitive control signals as well.

1.5 Aim of This Thesis

So far, non-invasive BCIs employ movement control paradigms that are unnatural and
not intuitive. The aim of this thesis is hence:

1. to find non-invasive brain signals that can allow a more natural and intuitive
movement control

2. and to develop a proof-of-concept online decoder based on those signals.

A more intuitive movement control could potentially be realized by employing LFTD
EEG signals (see section 1.4). Whether continuous movements, i.e., hand/arm trajec-
tories, can be decoded from these signals with sufficient accuracy to serve as a control
signal for motor neuroprostheses or end effectors had to be researched in this thesis.
The decoding of discrete movements was here a conceivable alternative to the decoding
of continuous movements. Eventually, a natural and intuitive movement decoder had to
be realized, and a proof-of-concept BCI had to be tested on a person with SCI.

1.6 Organization of This Thesis

The next chapter explains the methodology and describes the publications comprising
this thesis (chapter 2). Four primary and four secondary publications are included. The
first part in the method section is dedicated to the trajectory decoding of executed and
imagined continuous arm movements. The second part in the method section focuses
then on the decoding of executed and imagined discrete arm and hand movements of non-
disabled persons and attempted movements in persons with SCI. Eventually, a proof-
of-concept online decoder is presented. The outcomes of the conducted studies are
then discussed and summarized in the third chapter and put in the context of the
current state of the art (chapter 3). The third chapter concludes with an outlook for
movement decoding. The primary and secondary publications created during this thesis
are collected in the appendix.
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2.1 Decoding of Continuous Movements

This section describes the studies related to continuous movement decoding from EEG
LFTD signals. The primary studies analyze the decoding of executed and imagined
hand/arm trajectories, respectively. The secondary studies cover supplemental decoding
analyses.

2.1.1 Primary Publication I: Decoding of Velocities and
Positions of 3D Arm Movement from EEG

Ofner, P. & Müller-Putz, G. R. Decoding of Velocities and Positions of 3D Arm Move-
ment from EEG in 2012 34th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (IEEE, 2012), 6406–6409. [1]

LFTD signals were shown to encode movement trajectories. For example, they encode
the velocity of the hand in 2D and 3D [204, 205]. LFTD signals may therefore be suitable
to derive an intuitive control signal for a robotic arm or a future motor neuroprosthesis.
In this work [1], hand trajectories were decoded in 3D from LFTD EEG signals with a
decoder based on the work of Bradberry et al. [205]. The primary purpose was to gain
further understanding of the decoder and to identify issues and possibilities for an online
application. The paradigm was adapted from the original center-out reaching task in
[205] to a continuous self-chosen movement task that had not yet been studied at the
time. In this task, non-disabled study participants moved their right hand continuously
in all directions in front of their body. The hand was in a position so that the thumb
was always on the upside, see Figure 2.1. The hand trajectory was tracked, and the
measured position and velocity were compared with the decoded position and velocity,
respectively.

The secondary publication [5] described in subsection 2.1.3 adds to this study, and an-
alyzed in a similar paradigm frontal and lateral arm movements and localized correlated
brain sources.

Contribution to the PhD thesis Hand velocities were successfully decoded from the
EEG using the velocity decoder initially presented in Bradberry et al. [205], see Figure 2.2
for an example. The obtained Pearson correlation coefficients between the measured and
decoded hand movements were on average 0.70/0.77/0.62 (x/y/z) with standard devi-
ations of 0.13/0.11/0.15. The publication showed moreover that it is also possible to
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Figure 2.1: Experimental setup. Participants moved their right arm in front of them
while simultaneously the hand position and EEG were measured.
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Figure 2.2: An example of measured and decoded trajectories. The left side shows ve-
locities; the right side shows positions.
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decode movements during longer self-chosen movements (65 s intervals) without external
targets. Especially, self-chosen movements are essential for an eventual free control of a
robotic arm. Additionally, in this work, the velocity decoder was modified to a position
decoder. The original velocity decoder processing pipeline comprised a low-pass filter
at 1 Hz, a difference computation, and three multiple linear regressions (for x/y/z direc-
tions) from channels and time lags to decode velocities. The low-pass filter and difference
computation were replaced with a band-pass filter to realize a position decoder. Here,
on average x/y/z correlation coefficients of 0.70/0.78/0.62 with a standard deviation of
0.12/0.09/0.14 were obtained.

Two important insights were gained in this study. First, eye movements affect the
LFTD EEG signals strongly – even on central and parietal electrodes – and therefore
had to be controlled. Second, the decoder employs solely linear operations, and can only
attenuate or amplify existing frequencies but not shift or add frequencies. Therefore,
the decoder can only decode movement frequencies that are also present in the EEG.

2.1.2 Primary Publication II: Using a Non-Invasive Decoding
Method to Classify Rhythmic Movement Imaginations of
the Arm in Two Planes

Ofner, P. & Müller-Putz, G. R. Using a Noninvasive Decoding Method to Classify Rhyth-
mic Movement Imaginations of the Arm in Two Planes. IEEE Transactions on Biomed-
ical Engineering 62, 972–981 (2015). [2]

Both ME and MI modulate the power of brain oscillations in non-disabled participants
[99, 102]. The type of MI, however, is crucial. Kinesthetic MI can activate motor areas
similar to ME and lead to classifiable patterns in the EEG. Contrarily, visual MI, i.e.,
creating a mental video in third-person view of the moving limb, yields less distinctive
patterns and causes poor classification accuracies [224]. Persons with SCI who cannot
perform ME of a limb can still perform MI. MIs can then be detected with a BCI and
used as a control signal [31–33]. For oscillation-based BCIs, it is generally assumed that
the BCI performance achieved in non-disabled persons with kinesthetic MI is a proper
proxy for performance in persons with SCI. Due to the lack of literature on LFTD-based
trajectory decoding in persons with SCI, this assumption was also made in this thesis for
movement decoding based on LFTD EEG signals. This work transferred therefore the
decoding of executed movements to imagined movements in non-disabled persons [2].
Another motivation to study MI instead of ME was the absence of movement artifacts.
If not carefully controlled, executed movements could cause particularly electrode and
cable movements, which could interfere with the brain signals at low frequencies. This
may cause overly optimistic decoding results partly based on artifacts.

The decoder comprised linear models that had to be trained with EEG and trajectory
data. However, the imagined movement trajectory can not be directly measured. An
apparent solution is to guide the imagined movement with an external moving target,
e.g., a moving ball on a computer screen which is followed by the study participant with
imagined arm movements. The problem is that this strategy would inevitably induce
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eye movements correlated to the movement trajectory. Correlated eye movements are
an immense problem here because the decoder would most likely be trained on the shifts
of the electric potentials caused by the eye dipoles instead on brain signals. While
eye artifact removal methods exist for EEG [225, 226], these methods attenuate the
influence of eye movements on the EEG but do not guarantee their complete removal. A
new paradigm was therefore designed to allow the measurement of imagined trajectories
without inducing eye movements (c.f. Figure 2.3). For that purpose, the imagined arm
movements were (1) restricted to two movement planes (horizontal and vertical), and
(2) movements were rhythmic and synchronized with a metronome. In that way, it was
possible to infer the imagined position of the right hand. A decoder was then build to
decode the imagined horizontal and vertical positions of the right hand, and a subsequent
classifier discriminated then between horizontal or vertical MI.

The sources of the brain signals carrying movement information were determined
using a partial least squares (PLS) regression. Another study of this thesis presented in
subsection 2.1.4 analyzed the same data set and used a correlation analysis instead of
PLS regression to find the brain sources [6].

Figure 2.3: Subjects imagined rhythmic movements in the horizontal or vertical plane.
The movements were synchronized with a metronome.

Figure 2.4: The classification method was based on the decoding approach introduced
in [1]. The decoded vertical and horizontal positions were correlated with a
sinusoidal oscillation, i.e., the assumed imaged trajectory. A trial was then
classified as horizontal or vertical MI depending on which decoding model
yielded a higher correlation.

Contribution to the PhD thesis The movement plane of imagined movements was
successfully classified from LFTD signals with an accuracy of 64 % ± 10 %. As the classi-
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fier was based on the position decoder introduced in [1] (c.f. Figure 2.4), it was indirectly
shown that the decoding of imagined movement trajectories is possible. Noteworthy, it
became evident in this study that the decoder weights should not be interpreted to esti-
mate the sources. Due to volume conduction, EEG channels are correlated. Especially in
low-frequency signals, which are more widespread than high-frequency signals [48]. The
correlation of prediction variables is also known as multicollinearity and prevents the
interpretation of the weights of a multiple linear regression [227]. The regression weights
may change erratically due to small changes in the data. This problem was tackled by
using PLS regression. PLS regression estimates latent variables which were then inter-
preted instead. In that way, it was found that the SMA encodes imagined movement
trajectories. As the carefully designed paradigm did not provoke artifacts and motor
areas were found to encode imagined movement trajectories, it became evident that
indeed brain signals provide the discriminative signals for the movement decoder. How-
ever, the actual correlations were very low (around 0.3), and were found to be unusable
for continuous control applications in persons with SCI. The decoding of movements
was therefore not further pursued, and instead, the decoding of discrete movements was
studied.

2.1.3 Secondary Publication I: Decoding of Executed
Movements and Source Imaging

Ofner, P., Pereira, J. & Müller-Putz, G. R. Decoding of Executed Movements and Source
Imaging in Proceedings of the 6th International Brain-Computer Interface Conference
2014 (Graz University of Technology Publishing House, 2014), 026-1–026-4. isbn: 978-
3-85125-378-8. [5]

This study [5] decoded hand movements similar to [1] in subsection 2.1.1 but analyzed
three movement conditions, and decoded from single brain sources instead of from all
EEG channels. In the first and second movement condition, participants moved their
hand frontally and laterally, respectively. In the third movement condition, participants
observed a randomly moving ball on the computer screen while executing frontal move-
ments. The correlation with the actual movements, achieved by each single brain source
was then plotted in source space.

Contribution to the PhD thesis It was possible to decode movements in all three
movement conditions, and the decoder performance was comparable between the move-
ment conditions. Furthermore, sources on the primary motor cortex encoded movement
trajectories in LFTD signals, see Figure 2.5. This supports the findings in [1] that
hand position can be decoded from LFTD EEG signals. However, also lateral areas
showed significant correlations with movement trajectories, which were possibly caused
by movement artifacts. This corroborated the decision to analyze the decoding of imag-
ined movement trajectories instead of executed movement trajectories in the follow-up
study [2] presented in subsection 2.1.2.
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frontal condition lateral condition ball condition condition average

Figure 2.5: Subject averaged correlations on a per voxel basis for all three conditions
and the average of them. Red corresponds to the maximum value, white to
50 % of the maximum value. Correlations below 50 % of the maximum are
not shown.

2.1.4 Secondary Publication II: Time-Domain Correlations of
Imagined Arm Positions with Brain Sources

Ofner, P. & Müller-Putz, G. R. Time-domain Correlations of Imagined Arm Positions
with Brain Sources in Proceedings of the BMT 2013 (Walter de Gruyter GmbH, 2013).
[6]

This work analyzed the correlation of brain sources, including time lags, with imagined
movements [6]. The imagined movements were restricted to up-down or left-right move-
ments and synchronized with a metronome. The same EEG data were used as in the
previous work [2] in subsection 2.1.2, however, informative brain sources were found with
a canonical correlation analysis instead of a PLS regression.

Contribution to the PhD thesis The correlation analysis of LFTD EEG signals
showed for four out of nine participants that the SMA encodes imagined movement
trajectories (see Figure 2.6). As no movement artifacts were provoked in the paradigm
and plausible brain areas showed higher correlations, one may assume that brain signals
encode information about movement trajectories. However, the observed correlations
on the SMA could also be caused by the perception of the metronome beats instead of
performing MI [228]. Nevertheless, the similar findings in [2] (see subsection 2.1.2) are
not affected by the metronome beat as a confounding variable. By considering both pub-
lications [2, 6], it is evident that LFTD brain signals encode indeed imagined movement
trajectories.

2.2 Decoding of Discrete Movements

Facing the poor trajectory decoder performance for ME and especially for MI in the pre-
vious studies [1, 2], two options were conceivable. Either the trajectory decoder perfor-
mance is improved substantially, or the decoding of less complex and discrete movement
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Figure 2.6: This figure shows the absolute canonical correlations for each subject. White
corresponds to a canonical correlation of 0.5 for s1, 0.4 for s4 and s9, 0.3 for
s8, and 0.2 for all others. The lowest possible value is 0 for all subjects.

parameters is researched. This PhD thesis followed the latter approach and changed the
focus from continuous trajectory decoding to classification of discrete movements of the
same upper limb. Single movements like hand open or hand close could then provide
new and more intuitive control classes for motor neuroprostheses or robotic arms. Single
movements elicit MRCPs, which are modulated by various factors like movement speed
or force [115]. MRCPs could make a movement classifier possible and are researched in
the two primary studies presented here. The two secondary studies analyzed a movement
target decoding paradigm and the influence of visual input during MI.

2.2.1 Primary Publication III: Upper limb movements can be
decoded from the time-domain of low-frequency EEG

Ofner, P., Schwarz, A., Pereira, J. & Müller-Putz, G. R. Upper Limb Movements Can
Be Decoded from the Time-domain of Low-frequency EEG. PLoS ONE 12, e0182578
(2017). [3]

This study analyzed whether MRCPs, time-locked to the movement onset, encode dis-
criminative information about hand open, hand close, pronation, supination, elbow ex-
tension, and elbow flexion for ME and MI in non-disabled persons [3]. The movement
classifier was based on a linear model where the weights were found with a shrinkage
linear discriminant analysis (sLDA) [166]. Furthermore, the classifier patterns – they
show which sources are used by a classifier – were analyzed in the source space.
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In persons with SCI, a classifier has to be trained by using MI of discrete move-
ments and some training paradigm. However, various aspects of the employed training
paradigm may affect the elicited MRCPs. For this purpose, the influence of the visual
input during imagined upper limb movements was studied in [8] (see subsection 2.2.4).

Contribution to the PhD thesis This work shows that various movements of the
same upper limb can be classified from LFTD EEG signals. Movements can be discrim-
inated from a rest class with an accuracy of 87 % ± 4 %, and the six movements can be
discriminated from each other with an accuracy of 55 % ± 9 %. However, LFTD signals
during ME provided significantly more information than during MI. The MI classifica-
tion accuracies were 73 % ± 7 % and 27 % ± 4 % for movement vs. rest and movement
vs. movement, respectively. The sources exploited by the classifier were located on
movement associated areas on the cortex, i.e., premotor areas, primary motor cortex,
somatosensory cortex, and posterior parietal cortex (see Figure 2.7). Thus, movement
discriminative LFTD signals originate from the brain and not from artifacts. Next, it
was to be studied if these findings can be translated to persons with SCI.

Figure 2.7: Classifier patterns. Shown are patterns between −0.4 s and 0.4 s relative to
movement onset (a-d) and averaged over this time period (e-h). a and e:
mov-vs-mov patterns during ME. b and f: mov-vs-rest patterns during ME.
c and g: mov-vs-mov patterns during MI. d and h: mov-vs-rest patterns
during MI.
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2.2.2 Primary Publication IV: Attempted Arm and Hand
Movements can be Decoded from Low-Frequency EEG
from Persons with Spinal Cord Injury

Ofner, P. et al. Attempted Arm and Hand Movements Can Be Decoded from Low-
frequency EEG from Persons with Spinal Cord Injury. Scientific Reports 9, 7134 (2019).
[4]

This study translated the EEG-based classification of single upper limb movements to
persons with SCI [4]. Noteworthy, the assumption that MI in non-disabled persons
provides a reasonable estimate for the expected performance in persons with SCI was
dropped. Motivated by the findings in Blokland et al. [229], the study participants were
instead instructed to perform attempted movements. The recruited participants suffered
from SCI in the range from level C1 to C7. The participants attempted palmar grasp,
lateral grasp, hand open, pronation, and supination in a cue-based paradigm. An offline
analysis was then performed to analyze if LFTD EEG signals encode discriminative
information, and the underlying sources were located in the channel space.

Furthermore, a proof-of-concept of an sLDA-based online movement classifier was in-
troduced and tested on a participant with complete SCI at level C4. While a cue-based
paradigm is suitable for an offline analysis, it is problematic for recording EEG data to
train an online classifier. The movement-related potentials generated in a typical cue-
based paradigm do not resemble the MRCPs elicited with self-paced movements [230],
and are besides contaminated with cue-related potentials. However, EEG data for train-
ing a classifier cannot simply be gathered using a self-paced movement paradigm because
the attempted movement onsets are unknown, and time-locking to the movement onsets
is therefore impossible. Methods based on unsupervised learning can probably provide
a solution, but do not yet exist in this context. The initial cue-based paradigm was
therefore modified to elicit more MRCPs-like signals (c.f. Figure 2.8), which eventually
allowed the training of an online classifier.

Contribution to the PhD thesis This publication concludes the PhD thesis by show-
ing that five attempted single upper limb movements can be classified offline from LFTD
EEG signals from persons with SCI. Thus, an intact spinal cord is not a necessity for
decoding single upper limb movements from the EEG. The obtained classification accu-
racies were on average 45 % with a 95 % confidence interval of 40 % to 50 %. Moreover,
this publication demonstrates the online detection and classification of hand open vs.
palmar grasp in a closed-loop with a person with no residual hand function. In two
sessions, the two movements were discriminated with an accuracy of 66 % and 71 %,
respectively. A movement was detected with a true positive rate of 27 % and 37 %, false
positives were detected with a rate of 3.2 and 3.6 per minute. Key to the successful
classification was the modification of the initial cue-based paradigm so that MRCPs-like
signals were elicited.
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Figure 2.8: Training and test paradigms for online classification and respective electrode
potentials. a: Training paradigm. A green filled circle shrunk with a random
speed. The participant attempted a movement hand (hand open or palmar
grasp) when it hit the inner white circle, i.e., the go cue. b: Test paradigm.
The participant repeatedly attempted self-paced movements. c: 95 % confi-
dence intervals of the electrode potentials on Cz time-locked to the go cue.
d: 95 % confidence interval of the electrode potentials on Cz time-locked to
the assumed movement onsets (i.e., corrected by detection delay).
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2.2.3 Secondary Publication III: Movement Target Decoding
from EEG and the Corresponding Discriminative Sources:
a Preliminary Study

Ofner, P. & Müller-Putz, G. R. Movement Target Decoding from EEG and the Cor-
responding Discriminative Sources: A Preliminary Study in 2015 37th Annual Inter-
national Conference of the IEEE Engineering in Medicine and Biology Society (IEEE,
2015), 1468–1471. [7]

In addition to movement trajectory decoding and single movement classification, also
movement target decoding was studied in this PhD thesis [7]. Movement target decoding
could facilitate a high-level discrete control signal for end effectors. Instead of planning
movements as in movement trajectory decoding or single movement classification, the
user would select the target and initiate a movement attempt. The actual movement
trajectory would then be planned by the end effector system instead of the user. A
preliminary study with a small participant group was conducted to analyze the potential
of LFTD EEG signals for discrete movement target decoding.

Contribution to the PhD thesis Movement targets were successfully classified in one
out of three participants before the movement onset in a self-paced movement paradigm
with an accuracy of 63 % w.r.t. four targets (see Figure 2.9) . The corresponding classifier
pattern shows discriminative sources on contralateral motor areas. As the decoding was
possible before the movement onsets, i.e., in the movement planning phase, this approach
may also be feasible for persons with SCI. This study adds to the discrete movement
paradigm in [3, 4] another possible high-level discrete control paradigm. However, this
approach was not pursued any further as the thesis focused eventually on the decoding
of discrete movements of the same upper-limb.

Figure 2.9: Participants’ classification accuracies. Timepoint 0 s corresponds to the
movement onset. The dashed line depicts the significance level.
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2.2.4 Secondary Publication IV: Visual Input Affects the
Decoding of Imagined Movements of the Same Limb

Ofner, P., Kersch, P. & Müller-Putz, G. R. Visual Input Affects the Decoding of Imagined
Movements of the Same Limb in Proceedings of the 7th Graz Brain-Computer Interface
Conference 2017 (Graz University of Technology Publishing House, 2017), 367–372. [8]

The MI classification accuracies in [3] (see subsection 2.2.1) are mediocre and need to
be improved to be applicable for a motor neuroprosthesis control. For that, a better un-
derstanding of the factors influencing the classification accuracy is necessary. This work
studied therefore whether the type of visual input (realistic vs. abstract, see Figure 2.10)
influences the classification accuracies of hand open MI vs. supination MI [8].

Contribution to the PhD thesis The study found that MI combined with realistic
visual input yields higher classification accuracies than MI combined with abstract visual
input (64 % ± 8 % vs. 57 % ± 5 %). Realistic visual input is therefore favorable to train
a movement classifier. However, it was also found that the mere observation of realistic
visual input leads to a significant classification accuracy of 62 % ± 6 %. This needs to be
considered when interpreting classification accuracies as they may not be entirely caused
by the actual MI but also by the observation itself.

Figure 2.10: Participants observed movements or performed MI while watching realistic
visual input or abstract visual input.
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3 Discussion

3.1 Overview

The brain encodes various movements parameters. This thesis investigated if move-
ment parameters relevant for movement control applications, e.g., motor neuropros-
theses, robotic arms, or exoskeleton, can be decoded non-invasively from LFTD EEG
signals. The publications comprising this thesis show that movement trajectories, as
well as single upper limb movements, can be decoded from LFTD EEG signals.

Eventually, it could be shown that different attempted upper limb movements can not
only be decoded from non-disabled persons but also from persons with SCI. The devel-
opment of a BCI complemented this thesis: a proof-of-concept of an online asynchronous
classifier was introduced. This proof-of-concept was then validated in one participant
with SCI and used to detect attempted hand open and palmar grasp movements.

This thesis recognizes the importance of localizing the sources conveying movement
information, and it was shown that indeed signals originating from movement-related
brain areas encode movement information. However, other non-brain sources, so-called
artifacts like eye dipole movements or electrode cable movements, affect EEG signals and
can easily be picked up by the movement decoder. These artifacts can therefore cause
improper high decoding performances when they are correlated with limb movements.
These artifacts must therefore be avoided by the paradigm design and the experimental
setup.

3.2 Findings in Relation to the State of the Art

3.2.1 Decoding Executed Movement Trajectories

This thesis showed in Ofner and Müller-Putz [1] for the first time that hand positions
– besides hand velocities – can be directly decoded from LFTD EEG signals. The
employed paradigm allowed self-chosen continuous movements, and it was evaluated by
calculating the correlation coefficient between the measured and the reconstructed hand
trajectory. Notably, this paradigm did not suffer from an over-optimistic estimation
of the correlation coefficient as it could be the case for classical center-out-reaching
paradigms [231]. This is because the signals to be correlated cycle through multiple
periods, yielding less noisy estimates of the correlation coefficient. However, a question
that could not be answered satisfactorily in the thesis’s first publication [1] is the location
of the sources conveying movement information. In movement decoding experiments,
care must be taken that non-brain signals do not influence the decoding results. Such
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non-brain signals could be, for example, eye dipole shifts, electrode cable movements,
electrode cap movements, or muscle artifacts. Therefore, another study [5] was carried
out, which showed that LFTD EEG signals originating from the primary sensorimotor
area, indeed convey trajectory information. However, the EEG can be contaminated
with artifacts correlated to movements. These findings of the thesis were then later
corroborated in Kobler et al. [232] where position and velocity were decoded from LFTD
EEG signals, and primary sensorimotor and premotor areas were shown to encode end-
effector velocities. Since the beginning of this PhD thesis, several more non-invasive
studies confirmed that arm and finger trajectories are encoded in low-frequency EEG
[232–236] and MEG [207, 237, 238] signals. These findings are supported by a growing
body of invasive ECoG [239–244] and LFP [109, 245] studies, which also show that low-
frequency brain signals encode movement information. Note that invasive recordings are
less prone to movements artifacts than non-invasive recordings, and their findings are
therefore less likely to be falsified.

Despite the initial success in decoding movements from EEG, a conclusive closed-loop
online movement trajectory LFTD-based decoder has so far not been shown for EEG
signals. The main reason is probably the low decoding performance. Invasive studies
based on LFTD signals achieved some success here [245, 246], but it has to be seen
whether these results can be translated to non-invasive recording techniques.

Decoding Methods The executed movement trajectory decoding studies in this thesis
[1, 5] employed a multiple linear regression. This method yielded a limited decoding
performance with a Pearson correlation coefficient of around 0.7. This raises the question
of whether more sophisticated methods can improve the decoding performance. This
paragraph gives an overview of the decoding methods that have been studied by now.
Included are EEG, MEG, and ECoG studies based on LFTD signals, which often share
a similar signal processing pipeline. Studies based on frequency-domain features are
included when the respective decoding principles could be applied to time-domain signals
as well.

Alongside multiple linear regression, also PLS regression [232], kernel ridge regression
[233], particle filter [234], and Kalman filter [247] were by now explored for trajectory
decoding from EEG low-frequency signals. In an MEG study, speed (a scalar) and direc-
tion were decoded separately with Kalman filters and a multilayer perceptron, succeeding
the direct decoding of the velocity vector [237]. ECoG studies applied sparse linear re-
gression [241, 242, 248], or regularized multi-way PLS regression [249]. Particularly, the
latter regression type can deliver a good trade-off between prediction accuracies and tra-
jectory smoothness. Furthermore, generalized additive models (GAMs) were combined
with PLS regression [249]. GAMs are interesting as they allow non-linearity but are still
tractable due to their otherwise linear structure. Another ECoG study applied an artifi-
cial neural network to decode trajectories [250]. The authors combined a convolutional
neural network with a recurrent neural network for this purpose. A different and inter-
esting concept is the usage of separate decoding models for different movement states.
The consideration is that decoder models are not universally valid but only for certain
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movement states, and that incorporating prior information of the movement state in the
models can improve the decoding [243, 251].

Unfortunately, none of the enumerated methods provided a substantial improvement
to the decoding performance, and a promising novel methodological research direction
for non-invasive trajectory decoding would be required.

3.2.2 Decoding Imagined Movement Trajectories

MI experiments with non-disabled participants are usually carried out to assess the
feasibility of a motor-task-based BCI algorithm for application in persons with SCI.
Furthermore, MI experiments are in general less prone to movements artifacts, which
makes it easier to obtain valid classification or decoding results. This thesis translated in
[2] the decoding of executed movements to the decoding of imagined movements. It was
shown that movement trajectories can be decoded in an MI task, and that the SMA con-
tributes to the decoding. The contribution of the SMA is also indicated by the findings
in the accompanying study in [6]. Imagined movement trajectories were also successfully
decoded by Kim et al. [233], which was published simultaneously with [2]. In that study,
participants executed and imagined arm movements. Arm movements were imagined
according to the movements of a robotic arm, and additionally to another human’s arm.
In their analysis, they found that the decoding accuracy dropped substantially when
eye movement-related activity was removed with a linear spatial filter from the EEG.
This indicates that the EEG data were contaminated with eye movement-related ac-
tivity. In general, it highlights once more the importance of artifact avoidance by the
paradigm design and the usage of proper artifact cleaning methods. Interestingly, a
non-linear movement decoder based on kernel ridge regression did not show that per-
formance drop. However, that raises the question if non-linear eye movement-related
activity remained in the EEG after applying a linear spatial filter.

The first report of an EEG-based trajectory decoder for imagined movements was
already published in 2011. Bradberry et al. [252] pursued their initial movement decoding
studies [205, 206], and showed the online decoding of imagined movement trajectories
from LFTD EEG signals. However, this work was soon after criticized as it was shown
that a random decoder could achieve the same decoding performance [253, 254]. In
the time since also brain oscillations have been shown to encode imagined movement
trajectories in mu, beta and, low-gamma bands [255].

3.2.3 Decoding Movement Targets and Directions

The efforts to decode the trajectories of arm movements in [1] did not yield a satisfac-
tory decoding performance with a Pearson correlation coefficient of around 0.7. Even
less promising were the results of the imagined movement trajectory decoding with a
correlation coefficient of around 0.3 [2]. The decoding performance had to be improved
beyond any conceivable level for a realistic chance to control a neuroprosthesis or a
robotic arm. Therefore, this PhD thesis changed its focus from the decoding of con-
tinuous movement parameters to the simpler problem of decoding discrete movement
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parameters. The objective was now to decode movement parameters from a small set of
possible states which involves the decoding of less information per time interval from the
EEG. Thus, a regression problem was turned into a classification problem. For that pur-
pose, the decoding of movement targets was analyzed in this thesis in [7]. The decoding
of movement targets/directions from EEG, MEG, ECoG and LFP from low-frequency
signals is already reported in the literature, see section 1.4 and the more recent papers
[246, 256–258]. The novelty of this thesis was the calculation of classifier patterns in [7]
combined with source imaging, which allowed the analysis of the discriminative sources
exploited by the classifier in the source space. Later, Úbeda et al. [259] corroborated the
target decoding results by applying trajectory decoding to decode targets from LFTD
EEG signals eventually. The authors first fitted a line through a decoded trajectory,
and then identified the target by the direction in which this line pointed. Furthermore,
the authors showed that targets could be decoded during executed movements but not
during passive movements (i.e., when the hand was moved by the experimenter). This
suggests that proprioceptive feedback alone does not modulate LFTD EEG signals so
that movement trajectories and then movement targets can be decoded from it. Hand-
iru et al. [260] developed a supervised factor analysis method and decoded movement
directions also from time-domain EEG signals but in the source space.

An issue in some studies, including [7] from this thesis, is the potential confusion of
movement targets and movement directions. In the employed paradigms, a movement
target corresponded to exactly one movement direction and vice versa. Thus, it is not
clear whether targets or directions have been decoded. Tanaka et al. [261] indicates that
both movement directions and movements targets could modulate EEG signals.

The decoding of movement targets or movement directions was not further pursued
in this thesis. Even if movement directions could be decoded with sufficient accuracy,
it would be difficult to translate them into a control signal for existing motor neuro-
prostheses because they do not yet provide the necessary movement functionality [20].
Since a change from continuous trajectory decoding to simpler paradigms was envisaged,
this PhD thesis focused instead on a control paradigm also suitable for existing motor
neuroprostheses: the decoding of single limb movements.

3.2.4 Decoding of Single Limb Movements from Non-Disabled
Persons

This PhD thesis focused eventually on the decoding of single limb movements because
they can be exploited as control signals for both existing motor neuroprostheses and
robotic arms. The following movements were identified as meaningful control classes
and analyzed in this thesis in [3]: hand open, hand close, pronation, supination, el-
bow extension, and elbow flexion. This publication showed that ME and MI of these
movements can be classified with a linear classifier from LFTD EEG signals. Further-
more, this publication shows – a novelty in that context – the corresponding patterns
of the classifier [262, 263], which confirm that the classifier exploited brain signals but
not movement artifacts or eye artifacts. Later, Zhao et al. [264] analyzed the published
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data from [3] and improved the MI classification accuracy with a convolutional neural
network.

Movements have already been classified from low-frequency EEG [265–267], MEG
[267–269] and ECoG signals [270]. However, this thesis analyzed in [3] a different or
more extensive movement set compared to the existing studies. Closely related to the
decoding of single limb movements is – at least technically – the decoding of grasps as
both movement types can be considered as discrete events. Several studies have by now
demonstrated grasp decoding from EEG [271–273], ECoG [274], and LFP [275] with
LFTD signals. This demonstrates once more that LFTD signals indeed carry various
information about discrete movements.

This thesis analyzed executed movements and imagined movements [3]. While the
classification accuracies for executed movements were reasonable, the classification ac-
curacies for imagined movements were mediocre and barely above chance level. In a
complementary study, it was therefore analyzed if the classification accuracies of imag-
ined movements can be improved by presenting the user realistic cues instead of abstract
cues, i.e., a video of a moving hand vs. an animation of a geometric object [8]. The ra-
tionale behind is that visual input has been shown to at least partly substitute missing
proprioceptive input [276], and this substitution effect might help to yield higher classi-
fication accuracies in an MI paradigm where a modulation of the proprioceptive input
is missing. How this approach can benefit an online classifier is admittedly still an open
question as a typical chicken or egg dilemma exists: the classifier output would depend
on the observation of the correct movement, and the movement would depend on the
correct classifier output. Despite this question cannot be answered at this point, the
study had its purpose as it was a first attempt to analyze the influence of the visual
input on LFTD signals, and it could inform decisions about future research directions.
This study found indeed that classification accuracies are improved by showing realistic
cues. However, the discrimination was also improved when the realistic cues were only
observed without a simultaneous movement imagination (as opposed to the abstract
cues). Whether and how this is related to the human mirror system has to be stud-
ied [277]. The initial mirror system studies [277, 278] found that the mirror system in
non-human subjects is only active when meaningful movements are observed but not
during meaningless movements such as those in this thesis’s study. However, later, it
became clear that this is different for humans, and meaningless movements can also
cause an activation of the human mirror system [277]. The outcome of this study raised
the question if (1) the increase in classification accuracy was solely a consequence of the
perception of the realistic visual input and independent of any movement intention re-
lated processes, (2) or if the realistic visual input modulated movement intention related
processes. For an LFTD-based online classifier, only the latter option could potentially
provide a performance benefit.
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3.2.5 Decoding of Single Limb Movements from Persons with
SCI

The final study in Ofner et al. [4] showed for the first time the successful classification
of different single movements of the same limb (hand open, pronation, supination) and
grasps (palmar, lateral) in tetraplegic persons using EEG signals. A significant paradigm
change eventually overcame the mediocre MI classification performance observed in [3].
So far, in this thesis, MI was unquestionably considered as a suitable proxy for the
expected classification performance in persons with SCI. Mostly, because MI [102, 279,
280], particularly kinesthetic MI [224], has been proven as an applicable mental con-
trol strategy for oscillation-based BCIs in persons with and without SCI [28, 35, 36,
77, 191, 196, 199, 281–283] since the late 90s [280]. However, it has been shown by
now that attempted movements can yield more pronounced patterns in the frequency-
domain than MI [229]. This indicates that MI in non-disabled persons may lead to an
underestimation of the classification accuracy achievable in persons with SCI when they
attempt movements. Furthermore, this underestimation might even be more severe for
movement-related LFTD signals, in particular, for LFTD signals accompanying discrete
movement events, which are, in fact, MRCPs [114, 115]. MRCPs have been shown to
exist also in persons with SCI during attempted movements but are altered [284–286].
In line with these findings, Fukuma et al. [287] could decode attempted movements from
paralyzed persons suffering from brachial plexus root avulsion, and additionally from
one amputee by using LFTD MEG signals. These insights and findings raised doubts as
to whether MI is the proper mental control strategy in an EEG-based movement control
paradigm, and were the reason why attempted movements instead of MI were used in
the paradigm in the final study [4]. This change presumably led then to the successful
classification of movements in persons with SCI.

This thesis furthermore introduced a proof-of-concept of an online closed-loop move-
ment decoder and tested this decoder on a person with SCI [4]. Four factors contributed
to the successful demonstration of this concept. First, the movement decoder exploited
LFTD EEG signals, which contain the discriminative movement information. Second,
an sLDA classifier was modified to detect the MRCPs asynchronously. Third, the study
participant was attempting movements instead of imagining movements. Fourth, a train-
ing paradigm was created, which elicited more MRCPs-like signals than other typical
cue-based paradigms, like the Graz BCI paradigm [288]. So far, only MEG studies
have shown a closed-loop control using LFTD signals in non-disabled participants [289]
and paralyzed participants [287]. However, the evaluations were based on a cue-based
paradigm. An asynchronous closed-loop control has also been implemented with MEG
LFTD signals [290, 291], but the online performance results are either not provided or
were not better than with a random decoder (the online decoding itself was not the main
objective in both publications but the effects of BCI training).
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3.2.6 Findings in Relation to Movement-Related Invasive BCIs
in Humans

This thesis focused on the derivation of a natural and intuitive movement control signal
from EEG. However, to put the results in a broader context, this section includes an
update of the state of the art of movement-related invasive BCIs since the start of this
thesis. The initial studies of continuous effector or cursor control in non-human primates
[92, 93, 176, 182, 183] were subsequently translated to humans. Whereas initially only
a rudimentary robotic arm or cursor control [187, 188] by tetraplegic persons was pos-
sible, the following studies quickly improved these results. Hochberg et al. [292] showed
a 3D control of a robotic arm, including grasp functionality, by tetraplegic persons.
Later, Collinger et al. [293] demonstrated a 7D control of a robotic arm by a tetraplegic
person (3D translation, 3D orientation, 1D grasping). Wodlinger et al. [294] extended
then the 7D control to a 10D control by enhancing the grasping functionality. The con-
trol of robotic arms was then eventually translated to the control of FES-based motor
neuroprostheses in persons with SCI, and reach and grasp function were restored [295,
296].

All studies so far employed microarrays and decoded from neuronal firing rates and in
case of [296] additionally from LFP high-frequency band power. Beside these microarray
studies, also a few ECoG studies with movement-related online control exist. The control
of a robotic arm by exploiting high-gamma ECoG signals was demonstrated in [111, 297,
298]. Milekovic et al. [246] by contrast, used LFTD ECoG signals to control a 1D cursor.
Unlike the microarray studies mentioned above, the cited ECoG studies except [246]
classified discrete movement classes instead of continuous movements, and all ECoG
study participants executed the movements.

It is apparent that particularly microarray-based BCIs decode more movement infor-
mation than non-invasive BCIs. While non-invasive BCIs were shown to control cursors
or motor neuroprostheses [20, 33], a natural and high-dimensional online control of a
motor neuroprosthesis or a robotic arm has not yet been convincingly demonstrated.
This thesis advanced the current state of the art for non-invasive BCIs, especially for
the decoding of discrete movements from EEG, but a movement control at the level of
invasive BCIs is currently not foreseeable.

3.2.7 Other Movement Encoding Features

In addition to LFTD signals, EEG oscillations in classical BCI frequency bands, i.e.,
mu, beta, and gamma bands, have been shown by now to encode trajectories of arm
movements [255, 299], movement directions [300, 301], movement phases during rhythmic
movements [302], and hand synergies in grasping movements [303]. Korik et al. [255]
found that the trajectory information in these frequency bands even surpasses the one
in LFTD signals. Also, different grasps were shown to be encoded in EEG oscillations
[273]. Those findings are not entirely consistent with the existing movement decoding
literature [304]. However, it only points out the need for further studies to investigate the
different feature types carrying movement information, and eventually integrate them
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into a consistent theory. Another frequency band providing rich movement information
is the high-gamma band (starting from ca. 50 Hz), which has been shown to encode
various movement parameters in EEG [267, 305], ECoG [111, 210, 218, 241, 243, 244,
274, 306–308] and LFP [107, 109, 309, 310] studies. However, due to the low-pass effects
of the brain structures [48], high-gamma band signals are hardly accessible with EEG
in single-trial classification. Furthermore, brain connectivity analysis can support the
extraction of movement trajectories from delta, theta, and gamma bands [311].

3.3 Training Paradigm Aspects

Paradigm design is a fundamental process in every BCI experiment, and many design
decisions have a direct influence on the outcome of the study. During this PhD several
important factors for movement decoding experiment have been identified and led to
innovative paradigms, especially in [2, 4]. This section discusses important factors related
to the choice of movement strategy, the acquisition of training data, and the visualization
of the cue.

The problem of the choice of the appropriate movement strategy has already been
introduced in the previous section. In short, MI in non-disabled persons leads to a
strong underestimation of the expected performance in persons with SCI for discrete
movement events (c.f. MI and attempted movement classification accuracies in [3] and
[4], respectively). Whether ME, instead of MI, is a better choice is however open. It
provides a more realistic estimation of the classification accuracy, but it may yield more
dissimilar MRCPs than MI. At least two potentials of the MRCPs, the readiness potential
and the motor potential, are affected in a complex way. Whereas the elicited readiness
potential is more similar between ME and attempted movements in non-disabled and
spinal cord injured persons, respectively, MI elicits a more similar motor potential [284].
Furthermore, MRCPs are modulated by the change in sensory feedback, which is present
during ME but altered or not at all during MI or attempted movements [115]. It may
be acceptable to ignore those differences when testing the performance of a particular
decoder in non-disabled persons, but those differences become important if one wants
to tune the paradigm to elicit more pronounced MRCPs.
Another problem is the acquisition of training data. A common approach is to mea-

sure behavior and find encodings of it in brain signals. However, this approach is not
possible with persons with SCI due to the lack of respective movement function. As
a workaround – which was also followed in this thesis – study participants are forced
by the paradigm in a strict set of rules. For example, participants are only allowed to
attempt certain movements at certain times and with certain characteristics (e.g., speed,
duration, trajectory). However, there are two major problems to that workaround. The
first problem is how those rules are enforced by the paradigm on the study participant.
Often, the paradigm induces artifacts (e.g., eye movements when presenting a target,
or a reference trajectory which should be followed) or evoked potentials (e.g., visual
evoked potentials due to the cue). The second and even more serious problem is the
unnatural setting. Study participants are often reduced to agents who are remotely con-
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trolled by the paradigm. However, the brain signals generated under such unnatural and
artificial conditions differ from brain signals generated during self-paced and self-chosen
movements as in realistic scenarios [312–314]. Unsupervised decoder training methods –
which do not enforce a certain movement – can enable more realistic self-controlled train-
ing paradigms. Such unsupervised decoder were proposed, e.g., by Gürel and Mehring
[315] for trajectory decoding or Schwemmer et al. [316] for discrete movement decod-
ing. Furthermore, study participants are in a state of increased attention: to follow the
paradigm rules, and possibly also to observe the results of the BCI. As a consequence,
the associated increased cognitive load might alter the brain signals as suggested by a
study which investigated the influence of the attention level on MRCPs [317].

Moreover, the visual appearance of a cue is important. A cue visualized like a human
body part can affect the EEG signals – probably due to the engagement of the putative
human mirror system [318]. This thesis has shown that the mere observation of a moving
hand in a video clip causes already a movement specific modulation of LFTD signals
while abstract video clips do not cause a movement specific modulation [8]. Furthermore,
a readiness potential occurs before an observation of a predicted human movement [319],
and also brain oscillations are modulated by observation of human movements [320–323].
Thus, the visual type of the cue affects the EEG and can activate the motor system.
However, whether this activation facilitates or impedes the training of a movement de-
coder model is not clear. If the modulation of LFTD signals by movement observation is
sufficiently similar to the modulation of LFTD signals by movement intention (which has
yet to be shown for LFTD signals), an initial movement decoder could be bootstrapped
using a movement observation or a movement copy task. In a movement observation
task, the prospective BCI user observes a realistically visualized, e.g., human arm, per-
forming movements while the EEG is recorded. Subsequently, an initial decoder model
is trained on these EEG data. This initial decoder can then be further improved in an
adaptive online training, then using an attempted movement task instead of a movement
observation task. However, when initially a movement copy task instead of a movement
observation task is performed (i.e., attempting an observed movement), two processes
can generate brain signals. One process due to the movement attempt and the other
one due to the movement observation. These processes could generate interfering brain
signals when the attempted movement is not in synchrony with the observed movement,
and in turn, distort the training data for the movement decoder. Another potential
application of a realistically visualized human arm is its possible incorporation in one’s
body schema with the so-called rubber hand illusion. After successful incorporation,
an observed movement of the visualized arm can activate the somatosensory cortex and
thus partly substitute the missing somatosensory feedback [276]. This could increase
the movement information encoded in the EEG. However, it is an open question of how
this can be exploited in an online classifier when visual feedback is only available after
a movement has been decoded.
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3.4 Sensory Feedback

In general, brain activity is generated by interacting neuronal networks and local pro-
cessing within these networks. Thus, the input from other brain areas or the periphery
drives neuronal circuits, which then can generate measurable output in the EEG. How-
ever, persons with SCI have typically no or altered sensory signals from the periphery of
paralyzed body parts. When developing an EEG-based movement decoder, it is there-
fore essential to understand what effect the loss of sensory input has on the EEG signals
generated by motor networks on cortical areas. This section discusses current findings
and relates them to this thesis.

Galan et al. [324] found that the absence of sensory feedback affects EEG scalp poten-
tials and the movement decoding performance. The authors induced an ischemic nerve
block and compared executed and attempted movements in non-disabled subjects. In
particular, they found that cortical activity was reduced for attempted movements dur-
ing the movement preparation phase on the precentral area, and during the movement
phase on the precentral and postcentral areas. Furthermore, the decoding performance
of wrist movements lowered to chance level. This study supports the idea that the modu-
lation of LFTD EEG signals is mainly caused by sensory feedback (i.e., thalamocortical
connections relaying afferents) modulating the activity in cortical neuronal networks.
However, their findings are limited by the fact that an ischemic nerve block only pre-
vents sensory feedback from being sent from the peripheral nervous system to the central
nervous system. The spinal cord networks can still generate impulses, which are then
sent to the brain, and they could affect the cortical neural networks differently than in
the case of an actual spinal cord injury. Bansal et al. [325] draws a more differentiated
picture and found that low-frequency LFP signals on the primary motor cortex and the
ventral pre-motor cortex are modulated by motor output and sensory input. They con-
clude that (1) sensory feedback (i.e., thalamocortical connections), (2) corticocortical
connections, and (3) local network spiking activity modulate low-frequency LFP signals.

The findings from this PhD thesis support the idea that cortical areas relevant for
EEG-based movement decoding are at least modulated by corticocortical connections,
i.e., motor output from other brain areas. Whether sensory feedback adds additional
information to the decoded movement signals was not investigated. However, the com-
parison of the decoding accuracies between this thesis’s studies in [3] and [4] (sensory
feedback vs. no sensory feedback) do not suggest a critical role of sensory feedback. Also,
Ubeda et al. [259] showed that passive movements lead to a poor decoding performance
compared to executed movements. Thus, sensory feedback is not the leading cause for
the encoded movement information in LFTD EEG signals. In line with that, an ECoG
study [307] achieved better movement classification using high-gamma band signals from
motor areas than from sensory areas. However, other ECoG studies [308, 326] found
movement information in the high-gamma band rather on sensory than motor areas. In
summary, sensory feedback does not seem to be necessary to decode movements from
EEG, but some contradicting findings need to be resolved in the future.
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3.5 Unification of Discrete and Continuous
Movement Parameters

LFTD signals associated with continuous and discrete movements have been strictly sep-
arated in this thesis so far, although they share the same frequency band and arise from
overlapping cortical areas. It is therefore possible that they are the same phenomenon,
and that the same cortical processes generate the respective LFTD EEG signals. This
paragraph speculates whether the LFTD signals arising from both movement types can
be united.

An important question one needs to ask is: are continuous movements encoded in
continuously active brain sources? It may be that continuous movements are encoded
instead as discrete impulses which are continuously evoked during continuous move-
ments. The reader may imagine an outstretched arm which is continuously moved in
front of the body, like in [5]. This arm movement would be composed of single movements
(left, right, up, down) executed in a specific sequence and with a specific timing. Let us
assume that every single movement of the arm causes movement specific MRCPs. One
direct consequence of such a hypothetical evoked MRCPs series is that the movement
frequency of body parts is represented in the EEG signals, due to recurrent MRCPs as-
sociated with every single movement. For example, when the arm is repetitively moved
with a frequency of 1 Hz from left to right and back similar as in [2], a signal would be
evoked in the EEG carrying that frequency. Interestingly, this is precisely what has been
found [2], and it would explain why linear decoding models for continuous movements
work to a certain degree (linear models can only decode frequencies supplied by the
input). Now, MRCPs have a relatively long duration around 2 s. They will overlap in a
continuous natural movement and could appear then as a continuous LFTD signal. Due
to the overlap, they will not resemble the shape of typical MRCPs anymore, and will
probably not contain all the subcomponents of individual MRCPs. It is thinkable that,
e.g., the motor potential is evoked as in single movements but that potentials related to
movement planning disappear as they are superseded by the motor potential, or happen
at different time scales as explained in the next paragraph.

We do not execute jerky movements but rather round and well-connected movements.
This is achieved by planning a movement sequence or a movement trajectory [327, 328].
Thus, continuous LFTD EEG signals could contain "low-level" potentials (e.g., motor
potential) directly associated with the activation of muscle groups or muscle synergies
[329, 330] (i.e., coactivation of muscles), and "high-level" potentials associated with
movement plans. The hypothetical "high-level" potentials may appear on a longer time-
scale as they relate to planning and encode a movement sequence, and are in this case
not exploitable by a linear movement decoder. The "high-level" potentials could encode
so-called complex movements [331, 332] or motor primitives [333–335] which are then
composed into movement sequences.

In summary, it may be that continuous LFTD EEG signals are timely-overlapping
MRCPs subsets, which encode the single movements that constitute a continuous move-
ment. The single movements correlate with kinematic parameters of the limb (e.g.,
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velocity of the hand), which could explain why LFTD EEG signals encode kinematic
parameters of the limb. Thus, the decoding of kinematic parameters of continuous
movements would then be, in fact, a decoding of discrete movements.

3.6 Limitation of this Thesis

The attainable outcome of this PhD thesis is bounded by several limitations regarding
the performance and reliability of the decoder, and the recording technique.

Performance The performance of the BCI in the final study [4] is not on a level as it
would be necessary for an effective motor neuroprosthesis control. While the classifica-
tion accuracy of different discrete movements is promising, the detection performance
(i.e., true positive rate, false positive rate) is not. However, the validity of this state-
ment is itself limited because the conducted single case study does not allow any inference
about the performance at the group level. Another performance limitation is the user
itself. With oscillation-based BCIs, BCI usage can be seen as a skill which can be trained
by the user, like playing the piano. Whether the user can train the generation of MR-
CPs was not investigated in this PhD thesis, but Jochumsen et al. [336] showed that
the detection of MRCPs is not trainable, even over months. This would constitute a
disadvantage compared to oscillation-based BCIs, and that performance improvements
can only be achieved with better signal recording, processing and decoding, and more
natural training paradigms, but not with user training. A further performance limita-
tion is the slow control rate achievable with LFTD signals. For an effective continuous
control of an end effector, the user must be able to quickly compensate decoding errors
or react to sudden changes in the environment. However, LFTD signals are per defini-
tion low-frequency signals and therefore cannot change quickly. Thus, it is not possible
to promptly generate control commands, especially not at control rates around 10 Hz,
which have proven to be advantageous [337].

Reliability The brain signals underlying LFTD signals are potentially MRCPs. While
MRCPs provide substantial movement information for non-invasive BCIs, they are also
susceptible to various behavioral influences. For example, level of intention, exerted
force, movement speed, movement complexity, internal or external target selection are
all factors that influence MRCPs [115], and this poses a serious challenge to a movement
decoder. A movement decoder will need to reliably predict the movement even when
the MRCPs vary in response to movement class-unrelated behavior. Furthermore, if the
decoder should support many MRCPs variations, the MRCPs variations may eventually
overlap between classes and prevent a successful movement discrimination. This is an
inherent problem of MRCPs and not yet solved.

Recording Technique EEG provides excellent time-resolution. Furthermore, it allows
the safe and easy recording of brain signals from many brain regions simultaneously.
However, EEG is limited by two main factors: a low signal-to-noise ratio and the limited
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information encoded in macroscale brain signals. The low signal-to-noise ratio impedes
a reliable detection and discrimination of MRCPs. Whether this can be overcome with
better signal processing and classification techniques has to be seen. The latter limitation
is, however, more severe: if macroscale signals like EEG contain the necessary movement
information required for an online trajectory decoder, with a performance comparable to
invasive studies, is uncertain. The intuitiveness and naturalness of the control commands
possible with EEG and the controllable degrees-of-freedom are limited in comparison to
invasive recording techniques – at least from today’s perspective.

3.7 Summary and Conclusion

This PhD thesis researched continuous and discrete movements and their non-invasive
decoding from brain signals with EEG. Several outcomes have been generated. Most
remarkably, this thesis showed that EEG signals encode movement information of con-
tinuous and discrete upper limb movements in low-frequency EEG signals. Furthermore,
these EEG signals encode movement information even when no afferent signals are sent
to the brain due to a lesion in the spinal cord. Attempted movements have proven
in that case as a suitable mental control strategy. Moreover, this thesis localized the
sources of movement encoding signals on motor-related brain areas, demonstrating the
validity of the results. Eventually, a proof-of-concept how to decode attempted discrete
movements online from the EEG of a person with complete SCI has been introduced
and demonstrated. Thus, this thesis has shown that EEG signals of persons with SCI
encode information of various movements of the upper limb. If the decoding performance
can be improved, particularly attempted discrete movements could one day be used to
intuitively control motor prostheses or robotic arms with a non-invasive BCI.

3.8 Outlook

Training Paradigm It is expected that future research focuses on the development of
better training paradigms. A training paradigm should evoke MRCPs similar to real-life
conditions so that the classifier can be trained with valid data. This is probably only
possible when the BCI user is not forced into a strict set of rules on how and when
to attempt movements (c.f. section 3.3). More realistic training paradigms could be
implemented by using unsupervised decoding methods [315, 316] which do not require a
strict paradigm. They could allow the BCI user to attempt movements in a more natural
setting. Furthermore, the influence of goal-directed vs. non-goal-directed movements
[338] needs to be further studied in the context of movement decoding, e.g., closing the
hand to grasp a bottle vs. closing the hand without an object. Thus, more realistic
MRCPs could be provided by suitable training paradigms which employ goal-directed
movements as in the prospective usage scenarios for motor neuroprostheses or robotic
arms.
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Theoretical LFTD Framework A weak point in the current EEG-based movement
decoding research is the lack of a comprehensive theoretical framework of howmovement-
related LFTD signals are generated. Although correlations with kinematic movement
parameters (e.g., position or velocity) were found in the EEG, this does not imply that
the EEG LFTD signals encode these kinematic parameters intrinsically. LFTD EEG
signals could, for example, encode kinetic parameters like muscle activation correlating
with the before mentioned movement parameters [339]. The kinematic parameter encod-
ing would be in that view the result of biomechanics. However, the decoding of, e.g., the
velocity, would then be suboptimal if it does not have a perfect correlation with the in-
trinsically encoded movement parameter. In case the brain indeed intrinsically encodes
kinematic movement parameters, they have to be encoded in some brain coordinate
system. For a successful movement decoding, this brain coordinate system needs to be
transformed into the world coordinate system used to represent the decoded movements.
A linear decoder can only perform affine transformations of the brain coordinate system,
which could result in the loss of movement information. Also, the center of the brain
coordinate system needs to be determined. Yoshimura et al. [340] and Tanaka et al.
[261] indicate that the EEG encodes both intrinsic and extrinsic coordinate systems. A
theoretical framework explaining the genesis of LFTD signals, the parameter encoding,
or the brain’s coordinate system, could help to develop better decoding models based
on EEG signals.

Artificial Neural Networks Some of the issues mentioned earlier, like the transforma-
tion of the brain coordinate system, the decoding of appropriate movement parameters,
or the sensitivity of MRCPs to behavioral and environmental influences, could be over-
come with a classifier featuring a non-linear decoding model while retaining good gen-
eralization properties. A promising candidate for such a decoder would be an ANN. An
ANN could provide the required non-linearity to transform brain coordinates to world
coordinates. Furthermore, the ANN could learn a model of the spinal cord and the
musculoskeletal system, which may allow the decoding of kinematic parameters even
when the EEG encodes intrinsically kinetic parameters. The ANN could then decode
the kinetic parameters and transform them via the learned model of the spinal cord and
the musculoskeletal system into kinematic parameters.

One type of ANNs, recurrent neural networks, are particularly suitable for time se-
quences like MRCPs. Special network elements like long short-term memory (LSTM)
blocks [341], help to avoid the typical training problem of recurrent neural networks
(i.e., vanishing gradient). ANNs can also easily exploit other frequency bands and apply
the proper feature extraction inherently in the network. Particularly, the high-gamma
band is a rich source of movement information [107, 109, 218, 241, 243, 244, 274, 306]
which, however, could not yet be successfully exploited on a single-trial basis with EEG
signals. Thus, recurrent neural networks could turn out as an all-in-one solution to
decode movement parameters from EEG. However, even LSTM-based recurrent neural
networks require much more training samples as are usually recorded. Before exploring
this approach, one needs to first come up with a solution on how to increase the number
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3 Discussion

of training samples by one or two orders. Also, clever training algorithms based on
transfer learning may help. It is thinkable that the whole BCI community makes an
effort to record and share data from thousands of study participants, and that general
artificial neural network models are build which are then adapted to the individual user
using relatively few training samples. This approach is common in, e.g., object recogni-
tion tasks where pre-trained models are publicly available. Only the last layers of this
pre-trained models are then retrained for the specific application [342].

Other Approaches An inherent problem of MRCPs is the strong sensitivity to behav-
ioral or environmental influences (e.g., movement speed, cue representation, internal or
external target selection [115]). A classifier would have to learn all the different possible
MRCPs associated with a movement, which could be difficult to realize. However, also
the classification performance will suffer because the intra-class variances will necessarily
increase, leading to a stronger class overlap and more false classifications. This can only
be overcome if movement information can be decoded from the brain – probably in early
potentials of the MRCPs – which is invariant to these influences, like movement goals
[338] or movement targets [7]. A complementary approach is to learn the voluntary
modulation of brain signals like slow-cortical potentials [59] or oscillations [198, 199],
and use them as control signals. This approach does not suffer from a strong sensitivity
to environmental influences. Future research could try to combine movement decoding
and voluntarily modulation of brain signals to build intuitive and reliable BCIs.

Another possibility to increase the BCI performance is to stimulate the brain areas
encoding movement information. Transcranial direct current stimulation (tDCS) can
enhance the modulation of brain oscillations by the user [33]. If a similar effect can be
found with movement-related LFTD EEG signals, it may boost the decoding perfor-
mance.

As the decodable movement information from the EEG is rather low, clever designed
shared-control mechanisms for robotic arms or motor neuroprostheses need to be devel-
oped as a remedy. Shared control systems are context-aware and include the state of
the environment and the control device in the control signal generation [343]. Initial
simple approaches have already been demonstrated, e.g., Rohm et al. [191]. A sophisti-
cated shared-control system could continuously scan the environment of the BCI user for
interact-able objects, and infer the desired movement from the object and from residual
movements (e.g., looking at a water glass or bringing the hand close to the water glass).
A robotic arm could then execute the movement. A BCI could provide for such a so-
phisticated shared-control system a high-level control signal. This control signal could
be used, for example, as a start signal for the movement or for target selection.
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Decoding of velocities and positions of 3D arm movement from EEG*

Patrick Ofner1 and Gernot R. Müller-Putz1

Abstract— A brain-computer interface (BCI) can be used to
control a limb neuroprosthesis with motor imaginations (MI)
to restore limb functionality of paralyzed persons. However,
existing BCIs lack a natural control and need a considerable
amount of training time or use invasively recorded biosignals.
We show that it is possible to decode velocities and positions of
executed arm movements from electroencephalography signals
using a new paradigm without external targets. This is a
step towards a non-invasive BCI which uses natural MI.
Furthermore, training time will be reduced, because it is not
necessary to learn new mental strategies.

I. INTRODUCTION

A brain-computer interface (BCI) [1] measures biosignals
originating in the brain and uses them to control devices.
One important application of a BCI is the restoration of
upper limb functionality of paralyzed persons [2]. The ideal
solution is to detect natural movement imaginations in a
non-invasive way and continuously control an arm neuro-
prosthesis. Here, natural means that the actually imagined
arm movement (in a certain direction with a certain speed)
is also executed by the arm neuroprosthesis. Thus, there
exists a direct-link between motor imagination (MI) and arm
neuroprosthesis movement. In this work, we assume that an
arm neuroprosthesis capable of executing natural movements
exists and face the problem of detecting natural movements.

Sensorimotor rhythms (SMR) [3] based BCIs detect power
modulations in certain frequency bands in electroencephalog-
raphy (EEG) signals [4] induced by MI. In [5] imaginations
of foot movements were used for closing and opening
the right hand of a patient with tetraplegia. The switching
between different phases of the lateral grasp with left hand
MI was shown in [2]. SMR based BCIs have the advantage
of operating non-invasively, but MIs are artificially assigned
to neuroprosthesis movements. Thus, MIs are not natural.

Gratifyingly, there are evidences that low frequency sig-
nals measured from cortex carry valuable information regard-
ing arm movement trajectories. It was shown in [6] that it is
possible to decode two-dimensional movement trajectories
when controlling a joystick. Signals were recorded with
electrocorticography (ECoG). A low frequency time-domain
signal was found which correlates with movement trajecto-
ries. This signal component was referenced as local motor
potential (LMP). In [7] it was shown that the arm movement

*This work is supported by the European ICT Programme Project FP7-
224631. This paper only reflects the authors’ views and funding agencies
are not liable for any use that may be made of the information contained
herein.

1Both authors are with the Institute of Knowledge Discovery, Graz
University of Technology, Krenngasse 37, 8010 Graz, Austria.

Correspondence to Patrick Ofner (patrick.ofner@tugraz.at)

direction of subjects performing a center-out task can be
decoded from ECoG. Decoding information was carried by
movement-related potentials as well as spectral amplitude
modulations in low frequencies (< 2 Hz) and in the high
gamma band. [8] successfully decoded arm movement trajec-
tories from subjects using low frequency components from
ECoG signals. There, subjects performed two-dimensional
movements to random targets.

[9] proofed that three-dimensional executed arm move-
ments can also be decoded from EEG, probably paving
the way to a new generation of BCIs which decode non-
invasively natural arm movement imaginations. In [9] low-
pass filtered (< 1 Hz) signals were used to decode arm
velocities during a center-out reaching task. It is probable
that these low frequency components measured from EEG
are the same as those measured from the ECoG, although
yet a proof remains.

In this work we were basing on the approach from [9]
and investigated if it is possible to decode arm movements
from EEG (velocities and positions) using a new paradigm
without external targets.

II. METHODOLOGY

A. Subjects

Five healthy right-handed subjects (3 females) participated
in the experiment. Subjects s1, s2 and s3 had prior experience
with BCI measurements. Subjects were seated in an armchair
with their left forearm fully supported by the armrest.

B. Paradigm

Subjects moved their right arm continuously and self-
chosen in front of the body in all three dimensions. We call
this a continuous and self-chosen movement task. The hand
was closed and the thumb was on the upside. Subjects were
instructed to perform natural, round (not jaggy) and in speed
varying arm movements when a trial started. To suppress
eye movements, subjects were asked to fixate their gaze
on a cross presented on a screen in front of them. Further
restrictions were not imposed. We recorded ten trials, each
lasted 65 s. For further analysis, we only used the last 60 s
of a trial to exclude movement onset effects. Thus, in total
we obtained 10 min movement data from each subject. The
start of a trial was indicated by a short beep tone. Breaks
were inserted between trials with a subject specific duration
(usually around 1 min) to avoid fatigue of arm and shoulder
muscles. No feedback was provided.
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C. Signal recording

Forty-nine Ag/AgCl electrodes spread over sensorimotor
and frontal areas were used to record EEG signals from
the scalp. Three electrooculography (EOG) electrodes were
positioned above the nasion, and below the outer canthi of
the eye. Reference was placed on the left ear, ground on
the right ear. All electrode impedances were below 5 kΩ.
After band-pass filtering between 0.01 Hz and 200 Hz with
an eighth-order Chebyshev filter and applying a notch filter
at 50 Hz, signals were sampled with 512 Hz using four
g.USBamp amplifiers (g.tec, Graz, Austria). x/y/z coordi-
nates of the right hand of the subjects were tracked with the
Kinect sensor device (Microsoft, Redmond, USA) using the
OpenNI framework (http://www.openni.org) and the NiTE
middleware (PrimeSense, Tel-Aviv, Israel). We rotated the
coordinate system so that the x-axis was going from right
to left, the y-axis from down to up and the z-axis from
front to back relative to the subject. EEG, EOG and hand
positions were recorded with a customized TOBI Signal
Server [10] and Matlab (MathWorks, Massachusetts, USA).
After recording, we removed linear trends from raw EEG
signals per trial. We filtered signals with a 100 Hz zero-phase,
fourth order, low-pass Butterworth filter and down sampled
to 256 Hz to reduce computational effort.

D. Decoder

1) Velocity: The velocity decoder was originally described
in [9] and is only summarized here. It transforms EEG
signals into instantaneous velocity signals of the (right) hand.
In a preprocessing step, we low-pass filtered with a fifth-
order Butterworth filter with a cutoff frequency of 1 Hz.
Then, we calculated time differences of the filtered signals
and normalized to a mean value of 0 and a standard deviation
of 1. The resulting signals are referenced as Sn[t], where n
is the EEG channel number and t is the time step. The actual
decoder comprises three linear models:

vx = ax +

N∑
n=1

L∑
k=0

bnkxSn[t− kT ] (1)

vy = ay +

N∑
n=1

L∑
k=0

bnkySn[t− kT ] (2)

vz = az +

N∑
n=1

L∑
k=0

bnkzSn[t− kT ] (3)

vi is the velocity of the hand in the i-th dimension, N is
the number of EEG channels, L is the number of time lags
used for decoding. T is the interval between two time lags
and was set to 11.7 ms, which is 3 times the smallest time
step when using a sampling rate of 256 Hz. ai and bnki are
the weights of the linear models. The weights were found
with multiple linear regressions. As dependent variables we
used 1 Hz low-pass filtered and differentiated measured x/y/z
coordinates of the hand.

2) Position: Here we present an adaption of the velocity
decoder which decodes directly hand positions of executed

movements from EEG. The differentiation of the position
yields the velocity. Thus, one can suppose removing the
differentiation step in the velocity decoder described above
would give us the actual position of the hand. We found that
frequencies below 0.5 Hz negatively influence correlations.
Therefore, instead of just removing the differentiation, we
replaced the low-pass filter and the differentiation with a
band-pass filter with cutoff frequencies at 0.5 Hz and 2 Hz.
The output of the three linear models is now the position of
the hand. To compute the model weights with multiple linear
regressions, the band-pass filtered (0.5 Hz - 2 Hz) measured
coordinates of the hand were used as dependent variables.

E. Analysis
To assess the quality of the velocity decoder we calculated

for each subject Pearson correlation coefficients (r) between
decoded x/y/z velocities and 1 Hz low-pass filtered measured
x/y/z velocities from the Kinect. We used a 30-fold cross-
validation, that means we tested against 20 s of data. For the
position decoder, measured hand positions were band-pass
filtered from 0.5 to 2 Hz and correlated with the decoded
positions. To exclude a possible decoding of eye movements
instead of brain activity, we also decoded velocities and
positions from EOG.

Each channel at each time lag has three weights (bnkx,
bnky , bnkz , corresponding to the x/y/z coordinates). These
weights form a vector contributing (weighted with the EEG
signal) to the final velocity or position, respectively. To assess
the contribution from each channel at each time lag, we
computed the euclidean norm over these weight-vectors and
averaged over cross-validation folds.

III. RESULTS
A. Velocity Decoder

For each subject, the mean value and standard deviation of
r over all 30 cross-validation folds, when decoding velocity
from EEG, are shown in Table I. The mean value and
standard deviation of r over all subjects in x, y and z axis are
0.70/0.77/0.62 ± 0.13/0.11/0.15. Decoding from normally
distributed random data yield maximal absolute r values of
0.03/0.12/0.07. Table II shows r when decoding from EOG.
Here, the mean value and standard deviation of r over all
subjects are 0.35/0.33/0.23 ± 0.22/0.20/0.16.

TABLE I
SUBJECTS MEAN VALUES AND STANDARD DEVIATIONS OF r OVER

CROSS-VALIDATION FOLDS WHEN DECODING VELOCITY FROM EEG

s1 s2 s3 s4 s5
vx 0.53±0.09 0.71±0.08 0.79±0.07 0.74±0.11 0.73±0.10
vy 0.84±0.06 0.78±0.09 0.71±0.09 0.78±0.09 0.71±0.13
vz 0.71±0.08 0.54±0.16 0.67±0.06 0.50±0.16 0.67±0.12

A common weight pattern between equivalent time lags
was not found across subjects. Subjects show basically at
least a contribution from premotor/supplementary motor area
or primary motor/sensory area. All subjects show contribu-
tion peaks at time lags 35 ms and 82 ms and a high contribu-
tion plateau between. The same contribution distribution over
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TABLE II
SUBJECTS MEAN VALUES AND STANDARD DEVIATIONS OF r OVER

CROSS-VALIDATION FOLDS WHEN DECODING VELOCITY FROM EOG

s1 s2 s3 s4 s5
vx 0.27±0.17 0.46±0.17 0.15±0.18 0.44±0.20 0.42±0.19
vy 0.42±0.12 0.28±0.18 0.13±0.14 0.48±0.18 0.33±0.18
vz 0.25±0.17 0.17±0.16 0.20±0.14 0.18±0.16 0.33±0.15

time lags can be observed when decoding from random data
drawn from the standard normal distribution. Exemplarily,
Fig. 1 shows the contribution of each EEG channel at each
time lag averaged over cross-validation folds for subject s3.

Fig. 1. Velocity decoder: Qualitative contribution of each channel at each
time lag for s3. The largest contribution is colored red, the smallest blue.

An example of decoded and low-pass filtered measured
velocities for subject s3 are shown in Fig. 2. The decoder
was tested on run 1 and trained on runs 2 to 10.

B. Position Decoder

For each subject, the mean value and standard deviation of
r over all 30 cross-validation folds, when decoding position
from EEG, are shown in Table III. The mean value and
standard deviation of r over all subjects in x, y and z axes are
0.70/0.78/0.62 ± 0.12/0.09/0.14. Decoding from normally
distributed random data yield maximal absolute r values of
0.01/0.07/0.04. Table IV shows r when decoding from EOG.
Here, the mean value and standard deviation of r over all
subjects are 0.33/0.32/0.22 ± 0.22/0.19/0.14.

A common weight pattern between equivalent time lags
was not found across subjects. Contributions from the 105 ms
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Fig. 2. Decoder example: Measured and decoded velocities (left) and
positions (right) from subject 3 in the time domain.

TABLE III
SUBJECTS MEAN VALUES AND STANDARD DEVIATIONS OF r OVER

CROSS-VALIDATION FOLDS WHEN DECODING POSITION FROM EEG

s1 s2 s3 s4 s5
x 0.52±0.08 0.71±0.06 0.79±0.08 0.75±0.09 0.73±0.10
y 0.84±0.04 0.81±0.05 0.73±0.08 0.80±0.09 0.74±0.11
z 0.71±0.08 0.54±0.16 0.66±0.07 0.54±0.17 0.64±0.11

time lag were similar to contributions from the 35 ms time
lag of the velocity decoder. All subjects show contributions
peaks at time lags 12 ms and 105 ms and low contribu-
tions otherwise. The same contribution distribution can be
observed when decoding from normally distributed random
data. Exemplarily, Fig. 3 shows the contributions for sub-
ject s3.

An example of decoded and band-pass filtered measured
positions for subject 3 are shown in Fig. 2.

IV. DISCUSSION

In this paper we proofed that velocity and position de-
coding from executed arm movements in three dimensions
without external targets is possible from EEG. r values
were reasonable high. In [9] r values for x/y/z-axes were
0.19/0.38/0.32, which are two to almost four times smaller
than correlations measured in this work. The coordinate
systems were comparable, only the x and z axes were
inverted. Reasons for this discrepancy could be that we did
not presented targets – movements were self-chosen – and
we omitted the first 5 s of runs to exclude possible existing

TABLE IV
SUBJECTS MEAN VALUES AND STANDARD DEVIATIONS OF r OVER

CROSS-VALIDATION FOLDS WHEN DECODING POSITION FROM EOG

s1 s2 s3 s4 s5
x 0.23±0.13 0.45±0.17 0.10±0.21 0.43±0.15 0.42±0.18
y 0.40±0.12 0.27±0.15 0.11±0.13 0.49±0.17 0.32±0.16
z 0.22±0.14 0.20±0.16 0.17±0.12 0.23±0.13 0.31±0.14

6408

Appendix

76



Fig. 3. Position decoder: Qualitative contribution of each channel at each
time lag for s3. The largest contribution is colored red, the smallest blue.

movement onset effects. However, in the center-out reaching
task used in [9] it is likely that movements were completed
within 5 s. In [11] similar low r values (0.37/0.24 for x/y-
axes) were obtained when decoding hand velocities from
EEG during a drawing task restricted to left/right/up/down
movements. Movement trajectories were self-chosen as in
our work. However, because of the restriction to only four
movement directions, it is obvious that executed movements
were jerky and not continuous. Thus, it is possible that our
relative high correlations are due to continuous movements
(instead of “stop-and-go” movements).

The risk that our promising results are due to eye ac-
tivity can be neglected, because the gaze of subjects was
controlled, and decoding from EOG yield lower correlations
than decoding from EEG. However, it is interesting that EOG
based correlations were not close to 0. One reason could be
that subjects moved their eyes correlated with movements
over a short period of time. Another explanation is that we
measured brain activity even perhaps at EOG electrodes.
Low frequency biosignals are conducted better over the head
than high frequency biosignals. Thus, low frequency EEG
components are widespread over the scalp, and therefore
even EOG electrodes could contain decodable movement
information.

A common weight pattern between equivalent time lags
was not observable across subjects. Weights probably include
a spatial filter – in addition to the actual decoder part –
to reduce the signal-to-noise ratio of the measured veloc-
ity/position coding sources. If this spatial filter is highly

tuned to the head properties of a person (e.g. geometry,
conductivity), each person would have an individual weight
pattern. If there is more than one area on the cortex cod-
ing velocity/position information, the weight pattern dif-
ferences between subjects would be even more distinct.
Subjects show basically at least a contribution from pre-
motor/supplementary motor area or primary motor/sensory
area. This is similar to [9] where high contributions from
precentral gyrus, postcentral gyrus, and inferior parietal
lobule were found, and to [11] where premotor, posterior
parietal and occipital areas showed the largest contributions
(using low frequency signals for decoding). Interestingly, the
contribution course over time lags can also be obtained when
decoding from random data. Thus, the contribution course
over time lags has to be attributed to general properties of
the multiple linear regression.

A non-invasive position decoding could be the basis to
control an arm neuroprosthesis in a natural manner. The
position of the hand is controlled by the user with natural
MI, and inverse kinematics is used to move the joints of the
arm neuroprosthesis in their proper position. Furthermore,
the training time will be formidable reduced, because it is
not necessary to learn new mental strategies.
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Using a Noninvasive Decoding Method to Classify
Rhythmic Movement Imaginations of the Arm

in Two Planes
Patrick Ofner, Student Member, IEEE, and Gernot R. Müller-Putz∗, Member, IEEE

Abstract—A brain–computer interface (BCI) can help to
overcome movement deficits in persons with spinal-cord injury.
Ideally, such a BCI detects detailed movement imaginations, i.e.,
trajectories, and transforms them into a control signal for a neuro-
prosthesis or a robotic arm restoring movement. Robotic arms have
already been controlled successfully by means of invasive record-
ing techniques, and executed movements have been reconstructed
using noninvasive decoding techniques. However, it is unclear if
detailed imagined movements can be decoded noninvasively using
electroencephalography (EEG). We made progress toward imag-
ined movement decoding and successfully classified horizontal and
vertical imagined rhythmic movements of the right arm in healthy
subjects using EEG. Notably, we used an experimental design
which avoided muscle and eye movements to prevent classification
results being affected. To classify imagined movements of the same
limb, we decoded the movement trajectories and correlated them
with assumed movement trajectories (horizontal and vertical). We
then assigned the decoded movements to the assumed movements
with the higher correlation. To train the decoder, we applied
partial least squares, which allowed us to interpret the classifier
weights although channels were highly correlated. To conclude, we
showed the classification of imagined movements of one limb in two
different movement planes in seven out of nine subjects. Further-
more, we found a strong involvement of the supplementary motor
area. Finally, as our classifier was based on the decoding approach,
we indirectly showed the decoding of imagined movements.

Index Terms—Brain–computer interface, electroencephalogra-
phy (EEG), movement decoding, movement imagery.

I. INTRODUCTION

ABRAIN–COMPUTER interface (BCI) [1] records brain
signals and transforms them into control signals for de-

vices. One group of potential BCI users are persons with spinal-
cord injury (SCI) [2]. Such users will have lost control of body
parts and a BCI in combination with a neuroprosthesis, e.g.,
functional electrical stimulation, can be used to restore motor
functions. Ideally, a person with SCI imagines a certain move-
ment, which is executed instantly by means of the system. The
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BCI is used to decode the movement imagination (MI), and
a neuroprosthesis is used to generate the movement. An op-
timal BCI would decode the actual detailed MI, i.e., the user
imagines with, e.g., the hand a movement on a certain trajec-
tory, and the exact trajectory should be decoded by the BCI.
Thus, a direct link between the MI and a paralyzed body part
would be reestablished, giving the user the possibility to control
movements in an entirely natural way. Of course, in addition to
a decoder, this also necessitates a highly sophisticated neuro-
prosthesis and compensation for the lacking sensory (especially
proprioceptive) feedback to execute precise movements. Today,
neuroprostheses can restore some movement functionality [3],
but are still not capable of performing natural human arm move-
ments with similar degrees of freedom and precision. Also, sen-
sory feedback compensation or restoration is still under research
[4], [5]. However, the work presented here is solely about the
MI decoding part of a neuroprothesis.

Promising results have been reported for invasive BCIs with
intracortically implanted arrays, also called brain–machine in-
terfaces (BMIs). In [6], a person with SCI controlled a cursor
and a robotic arm; in [7], two persons with tetraplegia caused
by brainstem stroke controlled a robotic arm; a person with
a motor complete injury due to spinocerebellar degeneration,
but with generally intact sensation, controlled a seven-degree-
of-freedom robotic arm in [8]. BMIs provide good brain sig-
nal qualities; however, the implantation requires the opening of
the skull and the penetration of the pia mater, which can cause
serious infections. Probably, one would feel more comfortable
with an alternative and that is where noninvasive BCIs come in.
Furthermore, experiments can be conducted with less effort and
costs.

Today’s noninvasive BCIs can detect the process of MI [9],
but not the detailed MI itself (i.e., imagined trajectories). They
are based on power changes in sensorimotor rhythms (SMR)
accompanying MI [10]. In the work of Pfurtscheller et al. [11],
foot MI was used to restore the lateral grasp in a tetraplegic
patient’s right hand. Müller-Putz et al. [2] showed the switching
between different lateral grasp phases with left hand MI, and
just recently, [12], [13] showed the restoration of hand and
elbow functions. The control of a 2-D and 3-D cursor, respec-
tively, has been demonstrated in [14] and [15] by biofeedback
training. Potentially, instead of the cursor, a robotic arm or
neuroprosthesis could also have been controlled. Although
these BCIs restored substantial movement functionality, or
could be extended to that, they were not controlled in a familiar
and natural way by the user. SMR-based BCIs often require an

0018-9294 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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artificial association between MI and movement functionality.
Classification performance is crucial, and scientists are,
therefore, forced to use the best classifiable MIs and not the
most similar MIs. Furthermore, as the user has to learn a new
mental strategy, SMR-based BCIs often require a long training
period of weeks or months. However, the learning period for
a decoder based BCI should be substantially reduced because
MIs are natural and have already been learned. Therefore, the
learning of a new mental strategy is no longer necessary.

Although Yuan et al. [16] found a correlation between mu and
beta band activity with the speed of imagery hand clenching,
the traditional mu and beta bands used in SMR-based BCIs are
rather associated with general movement activity but contain
only little information about movement trajectories [17]–[19].
Interestingly, low-frequency (<4 Hz) time-domain brain signals
measured with electroencephalography (EEG), electrocorticog-
raphy (ECoG), or magnetoencephalography (MEG) seem to
provide proper decodable information about movement trajec-
tories. Two-dimensional hand positions during arm movements
have been predicted in the work of Pistohl et al. [20] from
human ECoG low-frequency time-domain signals. Schalk et al.
[21] decoded 2-D movement trajectories during joystick control,
and Milekovic et al. [22] demonstrated an online classification
of 1-D joystick movement directions. The decoding of move-
ment directions during a center-out task has been shown by Ball
et al. [18]. Acharya et al. [23] reported about finger position
decoding during slow hand grasps. Movement decoding has
also been investigated in human MEG signals. The prediction
of movement trajectories in a pentagon copying task with a 2-D
joystick has been reported by Georgopoulos et al. in [24], and
Bradberry et al. [25] decoded hand velocities in a center-out
drawing task. Toda et al. [26] reconstructed 2-D index finger-
tip trajectories during pointing movements. Also, 3-D velocity
decoding of movements in a center-out task has already been
reported by Yeom et al. [27]. Waldert et al. [17] decoded hand
movement directions on a single-trial basis. Wang et al. [28]
decoded four different wrist MIs in a 2-D center-out task. Jerbi
et al. [29] found phase locking between slow oscillatory brain
rhythms and time-varying hand speed. Finally, movements have
been decoded from EEG too. Bradberry et al. [30] decoded hand
movement velocities in a center-out out reaching task, and Lv
et al. [31] decoded hand movement velocities during a drawing
task in four directions. Our group showed the 3-D decoding of
hand velocities and positions in a continuous self-chosen move-
ment task [32]. Notably, we used longer lasting movements,
about 1 min during each trial, instead of short lasting center-
out reaching movements, which last usually around 1 s. The
often used correlation measure of short lasting movements can
be misinterpreted (see [33]). This is because a short-time win-
dow does not contain multiple periods of the movement position
signal at low frequencies. However, as we used longer lasting
movements, this was not an issue in our work.

The aforementioned EEG studies had in common that they all
used low-frequency and mostly time-domain signals to decode
or classify executed movements. However, our targeted subjects
are persons with SCI who are mainly restricted to MI; thus, the
next step is to try to decode MI from healthy subjects. Vučković

and Sepulveda already showed the classification of imagined
wrist movements using delta band features [34], [35]. Gu et al.
found in healthy subjects [36] and in amyotrophic lateral scle-
rosis patients [37] that the speed of imagined wrist movements
(fast and slow) is encoded in the movement-related cortical
potential. Thus, discrete imagined movement types of the same
limb (wrist) and velocities have been already decoded from low
EEG frequencies. However, finally, we would like to decode
imagined continuous movement trajectories of the arm and use
it as a control signal for neuroprostheses. Bradberry et al. [38]
made a first attempt to control a computer cursor in 2-D with
decoded imagined finger/arm movements. However, only one
target was presented on a screen in each trial, and Poli and Sal-
varis [39] showed that a random cursor also hits this target after
some time, and they reached similar decoding results. Thus, we
designed a new experiment where subjects imagined arm move-
ments and decoded them (preliminary results have been shown
in [40] and [41]). However, there is one substantial issue. We
have to know the imagined movement trajectories—either the
hand velocity or position—to train and test the decoder. But the
imagined trajectories must be determined without inducing eye
movements, which excludes following a known cursor trajectory
on a computer screen. That would cause eye dipole movements
which would heavily influence the recorded EEG and the
decoder might be trained on eye movements instead of MI. Of
course, methods exist which can rid the EEG of eye movements.
They are also used in this study, but usually they just attenuate
the influence of eye movements. There is no guarantee that they
remove the influence completely. In addition to this influence
caused by the electrical fields of the eye dipoles, eye movements
could potentially modulate brain sources. In this case, eye
movements instead of MI would be decoded again. Indeed, Pe-
saran et al. [42] showed that eye movements modulate the neural
activity in the dorsal premotor area in monkeys. Therefore, we
avoided eye movements in our experimental design.

In our work, subjects imagined rhythmic arm movements
either in the horizontal or vertical plane. These movements were
synchronized to the beats of a metronome. Thus, we knew the
imagined movement trajectories. Afterward, we decoded the
MI trajectories for a few seconds from low-frequency time-
domain signals and, then, classified the movement plane. In the
following, we analyze the performance of the decoder-based
classifier and show the involved brain regions in the sensor and
source space.

II. METHODS

A. Subjects

We recruited nine healthy and right-handed subjects (four
females and five males). Most of them had already participated
in BCI experiments. They were aged between 23 and 37 with a
mean value of 26.1 and a standard deviation of 4.3.

B. Paradigm

Subjects were comfortably seated in an arm chair with a com-
puter screen in front of them displaying cues. They imagined
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Fig. 1. Subjects imagined rhythmic movements in the horizontal or vertical
plane. The gaze was fixated on a cross on the screen.

Fig. 2. Sequence of a trial. At second 0, a cue appeared (an arrow pointing
right or up) together with a beep to gain the subject’s attention, followed by a
gaze-fixation cross. Between 1.5 and 2.5 s started a metronome to tick for 20 s.

horizontal or vertical repetitive rhythmic arm movements from
left to right and back, or from bottom to top and back, respec-
tively, for 20 s within each trial (see Fig. 1). The cue was an arrow
pointing to the right, indicating horizontal movements starting
from the left, or pointing upwards, indicating vertical move-
ments starting from the bottom. Subjects were asked to imagine
natural, round, not jagged movements with the extended right
arm. During the trial, a cross was shown on the screen to fix-
ate the gaze of the subject and to suppress eye movements. We
instructed subjects to synchronize the MIs to beep tones with a
rhythm of 1 Hz presented by a computer. As a beep tone cor-
responded to an end position of the imagined trajectories, MIs
were actually done with 0.5 Hz. See Fig. 2 for the exact sequence
of a trial. We recorded ten trials per run and eight runs, in total
80 trials with equally distributed classes. To remove the influ-
ence of eye movements from the EEG using a linear regression
method, we also recorded one run with 30-s-long deliberate eye
movements. Furthermore, we recorded four runs (each of 30 s)
of baseline EEG without any beep tones and MI. These runs
were used to calculate the noise covariance matrices needed for
source imaging.

C. Recording

We recorded the EEG with 68 electrodes covering frontal,
central, and parietal areas. Reference was placed on the left
mastoid, ground on the right mastoid. Additionally, we recorded
the electrooculogram with three electrodes placed above the na-
sion and below the outer canthi of the eyes. All signals were
recorded with five g.USBamp amplifiers (g.tec medical engi-
neering GmbH, Schiedlberg, Austria). We applied an eighth-
order Butterworth bandpass filter with cutoff frequencies at 0.01
and 100 Hz, a Notch filter at 50 Hz, and then sampled the signals
with 256 Hz. For subsequent source imaging, we also measured
the positions of the electrodes with a CMS 20 EP system (Zebris
Medical GmbH, Isny, Germany).

D. Preprocessing

Using EEGLAB [43], we computed the independent compo-
nents (ICs) with the extended infomax independent component
analysis [44] in the frequency range 0.2–70 Hz (fourth-order
zero-phase Butterworth filter) and searched for ICs suspected
to be muscle, eye, technical artifacts, or ICs obviously com-
mon to all electrodes. Then, we removed artifact contaminated
ICs from the original unfiltered data. Subsequently, we applied a
zero-phase antialiasing filter and downsampled data to 16 Hz for
computational convenience. To get the signal of interest—which
was expected to be at the movement frequency of 0.5 Hz—we
bandpass filtered the data with a second-order zero-phase Butter-
worth filter with cutoff frequencies at 0.4 and 0.6 Hz. We found
empirically the filter order and the bandwidth which worked
for us. Finally, we removed possible remaining eye artifacts
[45] and removed samples when their absolute value exceeds
a threshold of 4.4 times the median absolute deviation (MAD)
[46] of a channel. MAD is a robust deviation measure and cor-
responds to three times the standard deviation with normally
distributed data. This caused a removal of 6.2–19.8% of data.

E. Partial Least Squares

As multicollinearity [47] is a serious issue in our data and
prevents the interpretation of, e.g., multiple linear regression
weights, we used partial least squares (PLS) [48], [49]. PLS is a
method used to model the relation between observed variables.
It considers the internal structure of the data by using latent
(hidden, unobservable) variables. Furthermore, it can deal with
many noisy and multicollinear variables. PLS has its usefulness
in modeling, regression, classification, and dimension reduc-
tion applications. PLS is a key component in our classification
method and source contribution analysis, and hence, we give a
brief general overview of PLS modeling and PLS regression.
PLS regression is used for decoding in Section II-F; PLS mod-
eling is used to find the sources involved in movement decoding
in Sections II-G and II-H.

1) Modelling: Let X be an n × N matrix of predictor vari-
ables (i.e., EEG data), and Y be an n × M matrix of response
variables (i.e., movement positions). The rows of these matrices
correspond to observations and the columns to predictor and
response variables, respectively. In PLS, X and Y are decom-
posed into:

X = TPT + E (1)

Y = UQT + F. (2)

T and U are the latent variables and are called scores. T and U
are n × P matrices with n observations and P components. In
general, T is an orthogonal matrix, and in our case, T was also
orthonormal, which makes a normalization step unnecessary. P
and Q are the so-called loadings and can be seen as regression
weights to approximate the original data (X and Y matrices)
with E and F as the residuals. P is of dimension N × P , and
Q is M × P . The basic idea in PLS is now to find scores T
and U with maximum covariance between them. In that way,
T multiplied by the loadings QT is also a good predictor of Y
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with a residual matrix G:

Y = TQT + G. (3)

Thus, T models the structure behind X and Y in the latent
variable space. T is calculated from X using the weight matrix
W with dimension N × P :

T = XW. (4)

How W is calculated depends on the actual PLS algorithm; here,
we used the SIMPLS algorithm [50]. Now, the loadings are use-
ful for interpreting the relations between predictor and response
variables, even when there are serious multicollinearities as the
scores T are orthogonal.

2) Regression: PLS can also be used as a regression method.
Inserting (4) in (3) gives

Y = XWQT + G. (5)

With the N × M dimensional matrix

B = WQT . (6)

Y can be approximated as Ŷ:

Ŷ = XB (7)

where the columns ofB contain the linear regression coefficients
for each dimension of the response variable. Please note that we
have shown the general case of a multidimensional response
variable, but in the remaining part of this study, we only deal
with 1-D response variables, i.e., Ŷ has the dimension n × 1.

F. Calculation of the Classification Accuracy

Our classification approach is based on the decoding prin-
ciple [30], [32]. We decoded the horizontal and vertical com-
ponent of the MI and correlated each one with an assumed
sinusoidal movement trajectory, and then assigned the MI to
the component with the higher correlation, this being a two-
class classification. The imagined movement positions in the
horizontal/vertical plane were assumed to follow a 0.5-Hz sinus
curve over time. The left/bottom end position corresponded to
−90◦ and the right/top end position to +90◦. This is justified as
movements started from a position with maximum deflection,
accelerated, and reached their maximum speed in the middle,
then decelerated and stopped at the other end point, and so forth.

We extracted the EEG and the assumed movement positions
in a certain decoding window w within train trials and indepen-
dently trained two linear models (the horizontal and the vertical
model) with PLS regression. The decoding window w ranged
from 2 to 18 s after the metronome began to tick; thus, we omit-
ted the first and last 2 s of every MI phase to avoid any transient
response of the zero-phase filter. We trained each model using
the full-channel EEG from the current time step and from three
time lags at 62.5, 125, and 187.5 ms as the predictor variables,
and the assumed movement trajectory as the response variable.
Thus, the input dimension of each model was 273 (68 chan-
nels, four time points, one bias), and the output dimension was
1. Equations (8) (horizontal or H-model) and (9) (vertical or

Fig. 3. Classification method is based on the decoding approach. The EEG
signal is bandpass filtered and the horizontal and vertical positions are decoded.
Afterward, the decoded positions are correlated with the assumed sinusoidal
positions, and the trial is classified as horizontal or vertical MI depending on
which decoding model yielded the higher correlation.

V-model) show the two linear models used for position decod-
ing. N is the number of channels, L the number of time lags, T
the interval between time lags, Sn [t] is the preprocessed EEG
signal at electrode n at time point t, h and v are the decoded
positions in the horizontal and vertical plane, respectively, and
a and b are the coefficients found with the two PLS regressions:

h[t] = ah +

N∑

n=1

L∑

k=0

bnkhSn [t − kT ] (8)

v[t] = av +

N∑

n=1

L∑

k=0

bnkvSn [t − kT ]. (9)

To classify a trial, we used the same decoding window w as
in the training step to extract the EEG from the trial and ap-
plied the H- and V-models to the extracted EEG and decoded
the positions. Subsequently, we correlated the output of each
model with a 0.5-Hz sinusoidal oscillation (Pearson correlation
coefficient, r) and assigned the trial to the class (horizontal or
vertical) corresponding to the model yielding the higher correla-
tion. See Fig. 3 for a visualization of the classification method.
To assess the classification method, we used a 10 × 10 fold
cross-validation, trained the regression models with the trials in
each train set, and classified the trials in the corresponding test
sets. Finally, we calculated the classification accuracy for each
cross-validation fold.

To test the validity of our approach, we assumed a 0.7-Hz si-
nusoidal trajectory (instead of the correct one with 0.5 Hz) and
shifted the 0.4–0.6-Hz bandpass applied in the preprocessing
step to 0.6–0.8 Hz. As the subjects did not imagined move-
ments with this frequency, there should be no correlation with
this trajectory and no significant classification accuracies should
be reached. Furthermore, we calculated the classification accu-
racies when using electrodes only from the sensorimotor area
and the supplementary motor area (SMA). Here, we used 24
electrodes of our custom made electrode caps; the electrodes
covered positions close to FC1, FCz, FC2, C3, C1, Cz, C2, C4,
CP3, CP1, CPz, CP2, CP4 (10–20 system).

G. Sensor Space Contributions

It is of great interest to determine the electrodes contributing
the most to the classification, either to validate the method or to
gain more knowledge about the underlying processes. However,
the channels were highly correlated and multiple linear regres-
sion weights would not be interpretable (see Sections III and IV
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for further information); therefore, we used PLS to analyze the
relations between EEG and MI.

In the contribution analysis, we used the whole EEG dataset as
training data for the PLS. Keeping the PLS model in Section II-E
in mind, the predictor variables in X correspond to the EEG data
including time lags, and the response variable in Y corresponds
to the assumed movement position. The n × P latent variables
T are the sources containing decodable movement information
and expand over the channels and time lags. The 1 × P load-
ings Q can be seen as regression weights, which show the MI
information contained in every single latent variable. The pro-
jection of the P = 272 latent variables (68 channels · 4 time
lags) back to the channel and time lag space is given through the
loadings P. We independently decoded the horizontal and ver-
tical MI component and, therefore, used two models with their
own set of loadings and scores, i.e., the H- and V-models. For
these models, two interpretable (N · (L + 1) × 1)-dimensional
vectors can be obtained:

ch = PhQ
T
h (10)

cv = PvQ
T
v . (11)

ch and cv consist of the back projections of the latent vari-
ables into the channel/time lag space, summed and weighted
by their importance to the decoding procedure. In this study,
we are solely interested in the origin of the decoding sources,
and not, e.g., in the decoder internals. Thus, we averaged the
elements of ch and cv over the time lags, which changed the di-
mensions of ch and cv from N · (L + 1) × 1 (channel/time lag
space) to N × 1 (channel space). Then, we calculated the
2-norm of corresponding entries in ch and cv and call that the
contribution of a channel. The contributions are proportional to
the amplitudes of the latent variables projected to the channels
and the importance of the latent variables for the decoding.

H. Source Space Contributions

To analyze the contributions in the source space, we used
the same procedure as described in Section II-G, but with brain
sources instead of electrode channels. We used the software
Brainstorm [51], computed boundary element head models with
the Colin27 brain model included in Brainstorm and subject in-
dividual electrode positions, rereferenced the data to a common
average reference (a prerequisite of Brainstorm’s source imag-
ing algorithms), and estimated the (full) noise covariance matri-
ces based on the baseline runs with a shrinkage regularization
[52]. Subsequently, we computed 15 028 brain sources using
standardized low-resolution brain electromagnetic tomography
[53]. The source orientations were constrained normal to the
cortex. Unusual high loadings in the loading matrix Q indicated
overfitting. As a remedy and because of limited computing re-
sources, we limited the number of latent variables to 150.

III. RESULTS

A. Classification Accuracies

We used the method described in Section II-F to calculate
the classification accuracies. Here, the decoding window w was

TABLE I
OBTAINED CLASSIFICATION ACCURACIES WITH THE MEAN VALUES AND

STANDARD DEVIATIONS OVER THE CROSS-VALIDATION FOLDS

subject s1 s2 s3 s4 s5 s6 s7 s8 s9 avg.

mean value [%] 65 61 51 75 65 48 68 75 74 64
std. dev. [%] 17 17 16 14 16 18 15 16 14 10

Subjects with significant classification results are written in bold. The average values
were calculated using subjects’ mean classification. values.

Fig. 4. Dependency of the classification accuracy on the decoding window w
length. Averaged values over all subjects except s3 and s6 are shown as a blue
solid line. The solid black horizontal line marks the chance level; the dashed
black horizontal line represents the significance level (α = 0.05).

fixed to 2–18 s after the start of the metronome. Table I shows the
mean values and standard deviations over all cross-validation
folds for all subjects. The significance level is 59% with
α = 0.05 [54]. The grand average over all nine subjects is
64 ± 10%. Seven subjects reached a significant classification
accuracy.

To analyze the influence of the decoding window length, we
changed the window length in 1-s steps from 2 to 16 s. The
window always started 2 s after the cue presentation. The clas-
sification accuracies in dependence on the decoding window
length are shown in Fig. 4. An increase of the classification ac-
curacy over the window length is observable for subjects s2, s4,
s5, s7, s8, and s9. Subjects s2 and s9 show initial peaks; s1 shows
a peak in the middle. Furthermore, Fig. 4 shows the averaged
accuracies over all subjects except those subjects which never
reached a significant classification accuracy (s3 and s6). A sim-
ple linear regression analysis shows a significant dependence
of the averaged classification accuracy on the window length
(p < 0.05). The fitted regression line (not shown) has a slope
of 0.66, indicating a positive dependence of the classification
accuracy on the window length, and the window length explains
R2 = 89% of the variance of the classification accuracy.

Table II shows the classification accuracies when assuming
a wrong movement trajectory, i.e., a sinusoidal trajectory with
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TABLE II
OBTAINED CLASSIFICATION ACCURACIES WITH THE MEAN VALUES AND

STANDARD DEVIATIONS OVER THE CROSS-VALIDATION FOLDS WHEN

ASSUMING A 0.7-HZ MOVEMENT TRAJECTORY

subject s1 s2 s3 s4 s5 s6 s7 s8 s9 avg.

mean value [%] 43 50 46 42 43 53 44 53 54 48
std. dev. [%] 18 16 17 18 16 17 16 17 16 5

The average values were calculated using subjects’ mean classification values.

TABLE III
OBTAINED CLASSIFICATION ACCURACIES WITH THE MEAN VALUES AND

STANDARD DEVIATIONS OVER THE CROSS-VALIDATION FOLDS WHEN USING

ELECTRODES ONLY FROM THE SENSORIMOTOR AREA AND THE SMA

subject s1 s2 s3 s4 s5 s6 s7 s8 s9 avg.

mean value [%] 63 65 48 77 56 57 57 71 84 64
std. dev. [%] 15 17 18 13 15 20 17 15 13 11

Subjects with significant classification results are written in bold. The average values
were calculated using subjects’ mean classification. values.

TABLE IV
PEARSON CORRELATION COEFFICIENT AVERAGED OVER ALL TEST TRIALS

WHEN DECODING POSITIONS USING THE H/V MODEL AND IMAGINING

HORIZONTAL/VERTICAL MOVEMENTS

subject s1 s2 s3 s4 s5

model H V H V H V H V H V

hor MI 0.55 0.46 0.23 0.18 0.02 0.05 0.52 0.09 0.11 −0.06
vert MI 0.47 0.71 0.20 0.43 0.07 0.10 0.06 0.49 −0.03 0.18

subject s6 s7 s8 s9 avg

model H V H V H V H V H V

hor MI 0.21 0.22 0.19 −0.04 0.41 0.05 0.49 0.23 0.30 0.13
vert MI 0.22 0.07 −0.03 0.11 0.01 0.35 0.25 0.63 0.14 0.34

0.7 Hz. Here, none of the subjects reached a significant classi-
fication accuracy above 59% with α = 0.05. The classification
accuracies are statistically significantly lower than the classifica-
tion accuracies yielded by the correct movement trajectory, i.e.,
0.5 Hz, with respect to the median value (sign test, p < 0.05).

Table III shows the classification accuracies when using elec-
trodes only from the sensorimotor area and the SMA. Subjects
s1, s2, s4, s8, and s9 reached again a significant classification ac-
curacy, but not s5 and s7 as when using all electrodes. However,
the classification accuracies of both electrode configurations (all
versus sensorimotor/SMA electrodes) do not differ statistically
significantly with respect to the median value (sign test, p = 1).

The classification of a trial depended on whether the V-
or H-model yield the higher correlation. Table IV shows
the mean value over all test trials of the Pearson correlation
coefficient, and the grand average over all subjects. The
subjects’ averaged standard deviations over the test trials are
0.35 (horizontal MI/H-model), 0.40 (horizontal MI/V-model),
0.38 (vertical MI/H-model), and 0.33 (vertical MI/V-model).
For subjects with a significant classification accuracy, correla-
tions are always higher when decoding a MI with the correct

TABLE V
SIGNIFICANT DIFFERENCES BETWEEN CORRELATIONS REACHED WITH THE

H- AND V-MODEL WHEN IMAGING HORIZONTAL OR VERTICAL MOVEMENTS,
TESTED WITH A BONFERRONI CORRECTED SIGN TEST

subject s1 s2 s3 s4 s5 s6 s7 s8 s9

horizontal MI ∗ ∗ ∗ ∗ ∗ ∗
vertical MI ∗ ∗ ∗ ∗ ∗ ∗ ∗

Significant differences (α = 0.05) are marked with an asterisk.

TABLE VI
BONFERRONI CORRECTED SIGN TEST IF THE CORRELATIONS REACHED WITH

AN H- OR V-MODEL AND HORIZONTAL OR VERTICAL MI HAD

A NONZERO MEDIAN

subject s1 s2 s3 s4 s5

model H V H V H V H V H V

hor MI ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
vert MI ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
subject s6 s7 s8 s9

model H V H V H V H V

hor MI ∗ ∗ ∗ ∗ ∗ ∗
vert MI ∗ ∗ ∗ ∗ ∗

Significant differences (α = 0.05) are marked with an asterisk.

(= associated) model as opposed to with the wrong model.
We used a Bonferroni corrected sign test to test for statistical
significant differences between correlations obtained with the
H- and V-models while fixating the type of MI, i.e., we tested
if the differences between paired correlations had a nonzero
median distribution. Table V shows the significant differences
(α = 0.05) when imaging horizontal or vertical movements,
respectively. Subjects s3 and s6 showed no significant differ-
ence between correlations yielded by the H- and V-models and,
therefore, did not reach a significant classification accuracy.
Subject s2 only showed a significant difference when decoding
vertical MI, not when decoding horizontal MI. This is consistent
with the observation that s2 reached the lowest significant
classification accuracy. Furthermore, we used a Bonferroni
corrected sign test and α = 0.05 to test whether the correlations
had a nonzero median (see Table VI). All subjects which
reached a significant classification accuracy had a median cor-
relation significantly different from 0 when decoding MI with
the associated decoding model. Subjects s4, s7, and s8 showed
no significant difference from a zero median when decoding an
MI with a notassociated decoding model, which was expected.
However, the other subjects have significant nonzero medians
when decoding an MI with a not-associated decoding model.
We selected the sign test because correlation coefficients are
not normally distributed (due to the range limitation).

B. Sensor Space Contributions

Due to high correlations between channels, we used PLS
regression. To assess the amount of correlation, we calcu-
lated the Pearson correlation coefficient between all channel
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Fig. 5. Histogram showing a large number of high Pearson correlation co-
efficients between EEG channels. Included are all channel combinations and
subjects.

Fig. 6. Contribution of the channels and brain sources, respectively, to the
decoded positions for each subject and the average. (a) Contributions of the
channels. Red is mapped to the maximum value, blue corresponds to zero. (b)
Contribution of the brain sources. Contributions below 50% of each subjects
maximum contribution are not shown. Red is mapped to the maximum value,
white to 50% of the maximum value.

combinations for each subject. Here, we used preprocessed data
between 2 and 18 s after the start of the metronome. Fig. 5 shows
a histogram of the Pearson correlation coefficient including co-
efficients from all channel combinations and subjects. The his-
togram shows a substantial number of high channel correlations,
which make traditional regression weights uninterpretable.

We analyzed the contribution of each channel to the decoding
as described in Section II-G. Fig. 6(a) shows the contribution of
the channels to the decoded positions for all subjects. Addition-

ally, the average over all subjects is shown. Before averaging,
we normalized all maps to the corresponding maximum con-
tribution. Subjects s1, s5, s8, and s9 show strong contributions
from channels over the SMA. A contribution of the SMA and
the parietal area can be observed in the averaged plot.

C. Source Space Contributions

Analogous to the sensor level analysis, we calculated the de-
coding contribution of each voxel or brain source, respectively.
Fig. 6(b) shows the contributions of the voxels for all subjects
and the average based on normalized maps. All subjects except
s2 show an involvement of central motor regions. Subjects s1,
s5, s8, and s9 show focal contributions from the SMA. The
averaged plot indicates contributions from the SMA.

IV. DISCUSSION

We showed the successful classification of rhythmic MI in
two orthogonal planes (horizontal versus vertical). Seven out
of nine subjects reached a significant classification accuracy.
Moreover, as our classification method is based on the decoder
presented in [30] and [32], we indirectly showed the decoding
of MI from EEG.

The correlations were lower than the correlations reached in
a decoding experiment performed by our group with executed
movements [32]. There, average correlation coefficients of 0.70
(X) and 0.78 (Y) were measured, but here we obtained 0.30 (X)
and 0.34 (Y). Reasons could be that executed movements are
better decodable than imagined movements, or that movement
execution is an easier task than MI. That is to say subjects
probably make more errors when imagining a given trajectory
because of the lack of direct feedback, which would be necessary
for movement corrections. Unfortunately, these correlations are
too low to control an arm neuroprosthesis in an efficient manner,
and the correlations’ standard deviations are relatively large
which would cause an unstable decoding performance.

All subjects with a significant classification accuracy reached
higher correlations with an MI associated decoding model than
with the not-associated decoding model. However, the correla-
tions obtained with a not-associated model were often not close
to zero. A reason could be some 0.5-Hz oscillations common to
both MI classes, maybe due to the MI itself or induced by the
metronome beats.

A key point in our classification approach is the narrow-band
filter. The decoder algorithms in [30] and [32] used solely linear
operations. These linear operations could only amplify or damp
existing frequency components, but not add or delete frequency
components (that would only be possible with nonlinear opera-
tions). Therefore, the EEG has to contain decodable movement
information in frequencies corresponding to movement fre-
quencies (we do not exclude that other EEG frequencies may
contain decodable movement information as well, but those
frequencies must be exploited with nonlinear methods). As our
movement frequency was fixed to 0.5 Hz, we were only inter-
ested in the EEG frequencies around 0.5 Hz and set a bandpass
filter appropriately to increase the signal-to-noise ratio. EEG
signals with frequencies below or above 0.5 Hz would have had
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zero correlation with the assumed 0.5-Hz movement trajectories
(with respect to infinite long signals). We designed a stable
narrow-band filter, but with a low order. That way, the output
of the filter was still able to follow the input appropriately. In
order to validate our classifier, we tested our classifier also with
an assumed 0.7-Hz movement trajectory and obtained no statis-
tically significant classification results. Therefore, our classifier
is expected to be indeed based on correlations between the EEG
and 0.5-Hz oscillations. However, we lack a neurophysiological
explanation why low EEG frequencies correspond to movement
frequencies, but observations and reasoning with respect to
linear operations. An understanding of the basic principles
behind movement decoding is desirable and should be a priority
task of all involved researchers to take forward decoding.

We assumed sinusoidal movement trajectories, which proved
to be sufficient to demonstrate the decoding. However, there
may be better assumptions which are closer to the imagined tra-
jectories, e.g., triangular trajectories, which could yield better
correlations. A sinusoidal trajectory is the most canonical form
comprising of one frequency, other trajectories would comprise
more frequency components and, therefore, would typically ne-
cessitate a broader bandpass filter.

The decoded positions were correlated with a sinus. How-
ever, the positions were not perfectly decoded but with a certain
error. Therefore, the estimated correlations were expected to be
more accurate the longer the decoding window. Because of that,
classification accuracies were also expected to increase with a
longer decoding window. Indeed, an increase of the classifica-
tion accuracy over the window length was apparent for six out of
seven subjects with a significant classification accuracy, and the
averaged classification accuracies depend statistically signifi-
cant on the window length. Notably, three out of seven subjects
with a significant classification accuracy show an apparent clas-
sification peak in the beginning or middle, respectively. This
indicates a second opposing effect, and we suspect that some
subjects experienced a decrease in their concentration level over
the trial length.

We would like to point out that the decoding window was
necessary because of our experimental design. Our design goal
was to avoid eye movements by design and to decode imag-
ined instead of executed movements. That way, we were able
to analyze MI decoding without provoking eye/muscle artifacts.
However, in a final end-user application, such a decoding win-
dow would be undesirable and imagined movement trajectories
should be decoded instantly.

The sources underlying the classification are of interest for
assessing the validity of the classification results. Our experi-
mental design avoided eye, muscle, and electrode cable move-
ments, and the metronome beats were exactly the same in both
classes. Furthermore, a classification based on electrodes only
from the sensorimotor area and SMA did not yield statistically
significant classification accuracies as when using all electrodes.
Therefore, the discriminative information must have originated
in brain sources and not in artifacts or external sources. However,
due to large channel correlations, it would not have been possi-
ble to interpret the weights of, e.g., a multiple linear regression,
a problem known in statistics as multicollinearity [47]. Intu-

itively, if two variables are correlated, weights have to be shared
in some ratio across them. Thus, a variable which correlates
with many other variables would tend to get a lower weight than
when not correlated with others. A multiple linear regression
still predicts the response variable, but the weights would not
be interpretable. Therefore, we used the PLS regression which
revealed common contribution patterns between subjects in the
sensor as well as in the source space. Strong contributions from
subareas of the SMA are observable, which become even more
clear in the averaged sensor and source space plots. Interestingly,
subjects s3 and s6 did not achieve a significant classification ac-
curacy, but show a clear involvement of central motor areas.
An explanation could be the fact that s3 and s6 indeed partly
reached significant correlations, but with no exploitable differ-
ence between the classes allowing a classification. The SMA is
responsible for higher level motor tasks. Therefore, the brain
sources contributing to the decoding are neurophysiologically
plausible and indicate that we indeed decoded from brain sig-
nals. This is consistent with the MEG studies [17], [27] showing
central regions carrying movement trajectory/direction informa-
tion. Notably, SMR power modulations triggered by MI occur
mainly on the sensorimotor cortex [10], [55], although Yuan
et al. [56] showed modulations also on the SMA. As the regions
are different, SMR modulations and low-frequency time-domain
signals are probably two different movement-related processes.
However, the literature about macroscale brain sources contain-
ing movement trajectory/direction information is not always
consistent and shows also involvements of other brain regions.
Toda et al. [26] showed the involvement of primary sensorimo-
tor, higher motor, and parietal regions when decoding 2-D finger
trajectories from MEG. Lv et al. [31] reported larger weights
in motor, posterior parietal, and occipital areas when decoding
hand movement velocities during a drawing task. Jerbi et al. [29]
found phase locking between slow oscillatory MEG activity and
time-varying hand speed in the contralateral primary motor cor-
tex. Wang et al. [28] revealed that the contralateral motor area
and the left inferior frontal gyrus encode intended movement
directions. Bradberry et al. [30] found involvements of the con-
tralateral primary sensorimotor region and the inferior parietal
lobule when decoding 3-D movements trajectories from EEG.
As there is some inconsistence, the involved brain regions and
the exact movement conditions (e.g., self-chosen/target, repet-
itive, execution/imagery, trajectory/direction decoding) should
be investigated in future studies. A limitation of our source space
analysis is that we used a template head model instead of subject
individual models acquired from magnetic resonance imaging
scans. Individual models would increase the spatial accuracy of
the estimated sources.

We restricted the number of latent variables (scores) to 150 in
the source space analysis because of two reasons. First, it was not
computationally feasible to use all latent variables. Second, we
have observed exceptionally large loadings when using a high
number of latent variables. This is an indication of overfitting,
and probably because the PLS cannot find more orthonormal
latent variables than in the sensor space.

We do not know if metronome beats were a prerequisite for
the MI decoding presented in this study. They possibly caused

Appendix

86



980 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 62, NO. 3, MARCH 2015

class-unspecific brain oscillations, which were subsequently
class-specifically modulated by the MI, and then decoded. In
functional magnetic resonance imaging studies, Grahn and Brett
[57] found that rhythm perception elicits higher activation in the
SMA and basal ganglia. Bengtsson et al. [58] reported a higher
activation of the dorsal premotor cortex, SMA, pre-SMA, and
lateral cerebellum when listening to rhythmic sequences. This
indicates a clear involvement of the SMA during beat percep-
tion, and according to our findings, the SMA is also involved
when decoding MI. However, the relation between the decoding
of rhythmic MI and the perception of rhythmic beats is yet un-
known and has to be analyzed in further studies. Nevertheless,
the metronome beats could not have influenced (but probably
facilitated) the classification results as the beats were exactly the
same in both classes. In other words, the metronome beats could
at most be a necessary condition but not a sufficient condition
for decoding MI.

Our work shows the EEG-based classification of two differ-
ent imagined movement trajectories with the same limb, and
we excluded an unintentional artifact-based classification. Fur-
thermore, we showed that the main contributions originate in
the SMA. This is also an important finding for persons with
SCI as the SMA is involved in higher level motor control and,
therefore, does not rely on an intact sensorimotor feedback loop.
Thus, decoding should be applicable to persons with SCI. For a
practical neuroprosthesis control, the decoder needs to be sub-
stantially improved, and the generalization to nonrhythmic and
nonrestricted MI remains unknown. However, we have shown
that MI decoding from EEG basically works.
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Abstract
How neural correlates of movements are represented in the human brain is of ongoing inter-

est and has been researched with invasive and non-invasive methods. In this study, we ana-

lyzed the encoding of single upper limb movements in the time-domain of low-frequency

electroencephalography (EEG) signals. Fifteen healthy subjects executed and imagined six

different sustained upper limb movements. We classified these six movements and a rest

class and obtained significant average classification accuracies of 55% (movement vs

movement) and 87% (movement vs rest) for executed movements, and 27% and 73%,

respectively, for imagined movements. Furthermore, we analyzed the classifier patterns in

the source space and located the brain areas conveying discriminative movement informa-

tion. The classifier patterns indicate that mainly premotor areas, primary motor cortex,

somatosensory cortex and posterior parietal cortex convey discriminative movement infor-

mation. The decoding of single upper limb movements is specially interesting in the context

of a more natural non-invasive control of e.g., a motor neuroprosthesis or a robotic arm in

highly motor disabled persons.

Introduction

Understanding how the human brain encodes movements is essential for the development of

an intuitive and natural control of a motor neuroprosthesis or a robotic arm. Neuroprostheses

based on functional electrical stimulation (FES) [1] can be already used to restore movement

function of spinal cord injured (SCI) persons [2]. These neuroprostheses often rely on a shoul-

der joystick as a control signal, and end users with SCI need to learn to control movements,

such as grasping, with contralateral shoulder movements. However, this control would have a

more natural feel for the end user if the movement intention is decoded with a brain-computer

interface (BCI), and subsequently translated into a control signal for a neuroprosthesis or

robotic arm. It has been shown with tetraplegic human subjects that invasive BCIs allow the

control of a robotic arm with up to 10 degrees of freedom (DoF) [3–6]. Invasive BCIs have a

better signal-to-noise ratio than non-invasive BCIs, but require extensive surgery, and the suit-

ability for long-term use is still unclear due to neural tissue response. Non-invasive BCIs based

on electroencephalography (EEG) signals on the other hand do not require surgery and are

easier to setup. They often rely on power modulations of sensorimotor rhythms (SMR)
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accompanying movement imagination (MI) (see also event-related (de)synchronization [7])

but other brain rhythms can also be exploited [8,9]. These power modulations can act as the

control signals for a neuroprosthesis [2,10–12]. Using an SMR-based BCI, our group has

already shown the restoration of the lateral grasp of a tetraplegic (C4/5 ASIA A) user with MI

of both feet [12]. In a later study, we demonstrated the switching between different lateral

grasp phases in a person with SCI (C5 ASIA A) with an SMR-based BCI and the Freehand sys-

tem [10]. Recently, Rohm et al. and Kreilinger et al. [11,13] restored not only hand but also

elbow functions of a tetraplegic end user (a review can be found in Rupp et al. [2]). However,

SMR-based BCIs can usually only detect spatially well separated patterns in the EEG as elicited

by, for example, right hand MI vs left hand MI, although recent research suggests more spa-

tially specific detections [14,15]. Furthermore, SMR-based BCIs usually require repetitive MI

of movements. This often requires BCI users to learn unnatural MI commands, such as using

repetitive left hand MI to control right hand functions [16]. However, for a more natural con-

trol the imagined movement should be as close as possible to the actual neuroprosthesis move-

ment. In this context, continuous decoding of movement trajectories from the time-domain of

the EEG has been investigated. Bradberry et al. showed in an offline study the decoding of 3D

hand velocities [17], later our group showed the decoding of 3D positions in a continuous

movement task [18] and the decoding of imagined movement trajectories [19]. Furthermore,

Agashe et al. decoded hand joint angular velocities [20], and also hand movement directions

were decoded non-invasively [21]. The current state of the art allows decoding of movement

trajectories and directions from EEG, however the low correlation with the real or intended

movement prevents a reliable and accurate control.

Another possibility to make neuroprosthesis or robotic arm control more natural is to

decode additional information about the type or quality of an imagined movement, which has

been done in the time-domain as well as in the frequency-domain of EEG. Gu et al. found that

the speed of imagined wrist movements is encoded in the time-domain in motor-related corti-

cal potentials (MRCPs) [22–24], and Yuan et al. found such a relationship in the mu and beta

rhythm with executed/imagined hand movements [25]. Jochumsen et al. [26] decoded from

MRCPs movement force and speed during executed and imagined grasping movements in

healthy persons, and attempted movements in stroke patients. Also MIs related to the same

limb were classified based on EEG power modulations in the frequency domain: Edelman

et al. [15] classified repetitive imagined hand flexion/extension and forearm supination/prona-

tion, Yong and Menon showed the classification of repetitive imagined grasp and elbow move-

ments [14]. Based on these findings, the natural control experience can be enhanced if, e.g. an

imagined repetitive supination of the arm is used to control the supination of, e.g. a robotic

arm. Furthermore, detecting different MIs related to the same limb increases the number of

control possibilities compared to classical SMR-based BCIs, which often only detect left/right

hand and foot MI. However, repetitive MIs are also not optimal since one usually does not exe-

cute repetitive hand/arm movements when manipulating objects. Of special interest are there-

fore sustained MIs, such as single supination. Vučković and Sepulveda showed the

classification of sustained wrist extension/flexion and forearm pronation/supination MIs from

the frequency-domain of the EEG in the delta and gamma band [27,28]. Gu et al. classified

imagined wrist extension and wrist rotation based on power-modulations in the mu and beta

band and the rebound rate of MRCPs but did not find any statistical difference in the rebound

rate of MRCPs [23].

In this work we hypothesize that executed and imagined sustained movements from the

same limb can be decoded from low-frequency time-domain signals (< 3 Hz). We applied a

multiclass classification comprising of 6 movement classes: elbow flexion/extension, forearm

supination/pronation, and hand open/close. Additionally, these movements were classified

Upper limb movement decoding from EEG
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against a rest class. We measured 15 healthy subjects in two separate ME and MI sessions. To

the best of our knowledge, this high number of different sustained movements of the same

limb has not been studied before using low-frequency time-domain EEG signals. Furthermore,

we show for the first time for EEG-based movement decoding the classifier patterns [29] in the

source space, which allows the estimation of the brain regions exploited by the classifier. Gen-

erally, the purpose of this work is to get a better understanding if and how single sustained

upper limb movements are encoded in the time-domain of low-frequency EEG signals.

Methods

Subjects

We recruited 15 healthy subjects aged between 22 and 40 years with a mean age of 27 years

(standard deviation 5 years). Nine subjects were female, and all the subjects except s1 were

right-handed. The subjects received payment for their participation. Written informed consent

was obtained from all subjects, and the study was conducted in accordance with the protocol

approved by the ethics committee of the Medical University of Graz (approval number 28–108

ex 15/16).

Paradigm

Subjects sat on a chair and their right arm was fully supported by an exoskeleton with anti-

gravity support (Hocoma, Switzerland) to avoid muscle fatigue, see Fig 1A (the individual in

this figure has given written informed consent, as outlined in PLOS consent form, to publish

these case details).

We measured each subject in two sessions on two different days, which were not separated

by more than one week. In the first session the subjects performed ME, and MI in the second

session. The subjects performed six movement types which were the same in both sessions and

comprised of elbow flexion/extension, forearm supination/pronation and hand open/close; all

with the right upper limb (see Fig 1B). All movements started at a neutral position: the hand

half open, the lower arm extended to 120 degree and in a neutral rotation, i.e. thumb on the

inner side. Additionally to the movement classes, a rest class was recorded in which subjects

were instructed to avoid any movement and to stay in the starting position. In the ME session,

we instructed subjects to execute sustained movements. In the MI session, we asked subjects to

perform kinesthetic MI [30] of the movements done in the ME session (subjects performed

one ME run immediately before the MI session to support kinesthetic MI).

The paradigm was trial-based and cues were displayed on a computer screen in front of the

subjects, Fig 2 shows the sequence of the paradigm. At second 0, a beep sounded and a cross

popped up on the computer screen (subjects were instructed to fixate their gaze on the cross).

Afterwards, at second 2, a cue was presented on the computer screen, indicating the required

task (one out of six movements or rest) to the subjects. At the end of the trial, subjects moved

back to the starting position. In every session, we recorded 10 runs with 42 trials per run. We

presented 6 movement classes and a rest class and recorded 60 trials per class in a session.

Recording

The EEG was measured from 61 channels covering frontal, central, parietal and temporal areas

using active electrodes and four 16-channel amplifiers (g.tec medical engineering GmbH, Aus-

tria). Reference was placed on the right mastoid, ground on AFz. We used an 8th order Cheby-

shev bandpass filter from 0.01 Hz to 200 Hz and sampled with 512 Hz. Power line interference

was suppressed with a notch filter at 50 Hz. In addition we measured the arm joint angles for

Upper limb movement decoding from EEG
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the exoskeleton using customized software and finger positions with a 5DT Data Glove (5DT,

USA) for determining movement onsets. Prior to each session, we measured the electrode

positions with a CMS 20 EP system (Zebris Medical GmbH, Germany). The individual elec-

trode positions were used for source imaging.

Fig 1. Experimental setup and movements. a: Subjects sat in a chair and executed/imagined movements according to cues presented on a computer

screen in front of them. b: Subjects executed/imagined: elbow flexion, elbow extension, forearm supination, forearm pronation, hand close, and hand

open.

https://doi.org/10.1371/journal.pone.0182578.g001

Upper limb movement decoding from EEG
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Movement onset detection

To detect movement onsets in ME sessions we used sensor data from the exoskeleton and the

data glove. The elbow and wrist sensors (exoskeleton) were used to detect elbow flexion/exten-

sion and forearm pronation/supination onsets, respectively. For opening/closing onsets we per-

formed a principal component analysis on the data glove sensor data and used only the first

principal component for further processing. A movement was detected when the absolute differ-

ence between the sensor data and the preceding time average (from -1 s to -0.5 s) crossed a

threshold. Thresholds were chosen dependent on each sensor to ensure timely detection of

movement onsets and to minimize false positive detections (typically, movements were detected

not more than 80 ms later than a human expert would detect them when visually inspecting the

sensor data). In order to account for systematic detection time differences between the classes

(e.g. different sensor thresholds and different inertiae of limb parts), we time-shifted the mean

value of the detection times of each class toward the mean value of all classes. Thus, on average

the movement onsets (wrt. to the cue) of the movement classes were all the same. For the classes

without overt movements (i.e., the rest class and the MI classes), we assumed a virtual movement

onset. This virtual movement onset was individually calculated for each subject as the average

movement onset of the movement classes. In this manner, all classes were still comparable.

Preprocessing

We used EEGLAB to detect and remove noisy channels (1.4 channels per subject on average)

based on the joint probability of each channel. We downsampled the data to 256 Hz to save

computation time. Thereafter we marked artefacts by band-pass filtering (0.3 Hz—70 Hz, 4th

order zero-phase Butterworth filter) the data and using EEGLAB[31] to find (1) values above/

below thresholds of -200 μV and 200 μV, respectively, (2) trials with abnormal joint probabili-

ties, and (3) trials with abnormal kurtosis. The methods (2) and (3) used as threshold 5 times

the standard deviation of their statistic to detect artefact contaminated trials. The artefact con-

taminated trials were only marked for removal but not yet removed. Afterwards, we filtered

the original (unfiltered) 256 Hz EEG data with a zero-phase 4th order Butterworth filter

between 0.3 Hz and 3 Hz and re-referenced the data to a common average reference. Subse-

quently, we discarded the trials previously marked as artefact contaminated.

Fig 2. Trial sequence. At second 0, a cross appeared together with a beep sound; at second 2, the cue was presented and subjects executed/imagined a

sustained movement or avoided any movement, respectively. After the trial, a break with a random duration of 2 s to 3 s followed.

https://doi.org/10.1371/journal.pone.0182578.g002
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Classification

The preprocessed signals were classified with a shrinkage regularized linear discriminant anal-

ysis (sLDA) classifier [32,33] which was embedded in the discriminative spatial pattern (DSP)

[29] framework described in the next section.

We conducted two types of classifications: first, we classified all 6 movement classes against

each other. Second, we aggregated all movement classes into one class and classified it against

the rest class. We refer to these classification types as mov-vs-mov and mov-vs-rest classifica-

tions, respectively. In the mov-vs-rest classification we randomly removed trials from the

aggregated movement class to ensure equal trial numbers in both classes. As mov-vs-mov was

a multiclass classification comprising of 6 classes, we applied an 1-vs-1 classification strategy

yielding 15 binary classifiers. To validate the classification we employed a 10x10-fold cross-

validation.

We employed two classification approaches using EEG data from: (1) single time points

and (2) time windows with different lengths (0.2–1 s). Single time point classification gives a

higher time resolution of the accuracy course and is more suitable to analyze the information

distribution over time. Furthermore, the corresponding classifier patterns can be readily

obtained with the DSP method described in the next section. The time window based classifi-

cation, on the other hand, is expected to increase the classification accuracy. Because every

method has its benefits, we analyzed both approaches in this work and refer to them as “single

time point” and “time window” based classifications.

Classifier patterns

We calculated the classifier pattern based on the discriminative spatial pattern (DSP) method

[29]. This method allows the calculation of an (s)LDA classifier and the corresponding pat-

terns simultaneously. An LDA can be formulated as an optimization problem of Fisher’s’ crite-

rion and consecutively as a generalized eigenvalue problem. When this generalized eigenvalue

problem is solved for the eigenvector corresponding to the largest eigenvalue one obtains the

LDA weight vector. DSP also solves this generalized eigenvalue problem for the remaining

eigenvectors and one obtains a weight matrix. This weight matrix can then be inverted to

obtain the pattern.

Let x(t) be a vector of the EEG channels at time t with dimension [channels x 1], wt the

computed LDA weight vector at time t with dimension [channels x 1], and the scalar y(t) the

projection of the original EEG channels to the LDA space. Then the LDA can be formulated as

xðtÞT � wt ¼ yðtÞ ð1Þ

and wt corresponds to the eigenvector with the largest eigenvalue. With DSP we get a weight

matrix instead where the first column (when sorted by the eigenvalue) corresponds to the

LDA solution:

xðtÞT �Wtð:; 1Þ ¼ yðtÞ ð2Þ

This weight matrix can be inverted to obtain the pattern at corresponding to the LDA

weights:

At ¼W � 1

t ð3Þ

at ¼ Atð1; :Þ ð4Þ
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In fact, we obtained an sLDA weight vector because we calculated the within-class scatter

matrix (a factor in the Fisher’s criterion) using shrinkage regularization. We calculated the pat-

terns for every time step in the time window from -0.4 s to 0.4 s relative to the movement

onset (indicated by the subscript t).

In general terms, a pattern explains how a source, e.g. a specific brain area or independent

component, is projected on the channels. Noteworthy, “source” can refer to two different con-

cepts: first, the sources constituting a classifier (manifesting as a pattern) in channel space (i.e.

scalp potential distribution), second, the brain sources found with source imaging methods,

i.e. voxels. This section refers solely to patterns and the next section shows how source imaging

was applied to transform this pattern to the source (voxel) space. Each element in a pattern

vector shows with what impact a source is projected on the associated channel. It is important

to bear in mind that a pattern itself does not have any physical representation, i.e. it has no

physical unit. However, a common physical unit would be a necessity when averaging and

interpreting patterns. If we multiply (scale) a source with its pattern, we get the projection to

the channel space in the same physical unit as the source, e.g. if the source corresponds to

Volt, the resulting scaled pattern corresponds to Volt too. In the case of LDA, however, we do

not have a single source but two classes in the channel space projected into an one dimensional

LDA space. Thus, we are interested in the distance between the two classes in the LDA space.

In our scaling approach we use the distance between the two class means in the LDA space as a

scaling factor for at. Let μ0,t and μ1,t be vectors with dimension [channels x 1] representing the

class means of the two classes in the channel space, then the scaled pattern can be calculated as:

ascaled;t ¼ ðm
T
0;t � wt � mT

1;t � wtÞ � at ð5Þ

With this scaling we get a pattern which has the same physical unit as the original channel

space. The pattern shows the differences of the class means in the original space as exploited

by the LDA classifier. We then transformed this pattern from the channel space into the source

space using standardized low-resolution brain electromagnetic tomography (sLORETA) [34],

see the next section for more details.

As we applied an 1-vs-1 classification strategy, we obtained several binary classifiers and

therefore also several patterns (e.g. a supination vs pronation pattern). To obtain the final clas-

sifier patterns we grouped the patterns according to the two classification types: movement vs

movement patterns (mov-vs-mov) and movement vs rest patterns (mov-vs-rest). Patterns

belonging to a group were averaged using their absolute values. We took the absolute values

because a pattern expresses the difference between two classes and its signs depend on the

order of the classes and should therefore not be considered. Finally, we averaged the patterns

over non-overlapping 100 ms time segments located between -0.4 s and 0.4 s relative to the

movement onset, i.e. yielding 9 patterns per classification type for each session and subject.

Additionally, we time averaged over the whole -0.4 s to 0.4 s period. Fig 3 summarizes the

procedure.

Source space

EEG source imaging methods allow to infer from the EEG (i.e. scalp potential distribution) the

underlying sources in the brain. The EEG signals are attributed to the “channel space”, whereas

the inferred brain sources are attributed to the “source space” and are often estimated (normal-

ized) current densities [35].

We transformed the LDA patterns (obtained from single EEG time-points) from the chan-

nel space into the source space to increase the spatial resolution of the patterns obtained. For

this purpose, we used the software Brainstorm [36]. A desirable property of scaled LDA

Upper limb movement decoding from EEG
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patterns compared to LDA weights is that they correspond to measured scalp potentials and

can be subjected to source imaging methods similar as EEG channels. Boundary element head

models were calculated based on subject individual electrode positions and the ICBM152 tem-

plate head model (ICBM152 is a head model based on a non-linear average of 152 subjects).

We estimated the full noise covariance matrices based on the EEG data from the period 0.5 to

2 s after trial start and applied shrinkage regularization [37]. Finally, we computed 15002 brain

sources, i.e. voxels, with sLORETA [34] (the dipole orientations were unconstrained).

Classifier pattern statistics

Group level statistics was done by nonparametric permutation testing [38,39] of the classifier

patterns in the source space. The statistical testing was done separately for each ME/MI and

mov-vs-mov/mov-vs-rest pattern. Beside the actual classifier patterns, we calculated random

classifier patterns by shuffling class labels once for each subject. As a test statistic, we used the

difference between the actual classifier patterns and the random classifier patterns averaged

over all subjects. We obtained the permutation distribution of the test statistic by enumerating

all 215 = 32768 actual/random classifier pattern combinations. For that, we used the maximum

of the voxels in each enumeration step to account for multiple comparisons (in case of 100 ms

time segments, we used the maximum of the whole -0.4 s to 0.4 s period). We then established

a threshold corresponding to α = 0.05. All voxels with a test statistic exceeding the threshold

were considered significant.

Results

Classification accuracies

Single time point classification. The ME classification accuracies are shown in Fig 4A (mov-vs-

mov) and Fig 4B (mov-vs-rest). The mov-vs-mov average classification accuracy over all sub-

jects reached a maximum of 42% (9% standard deviation) at 0.13 s after movement onset and

the mov-vs-rest average classification accuracy reached a maximum of 81% (7% standard devi-

ation) at movement onset (0.0 s). Accuracies were calculated from -2 s to 2 s relative to the

movement onset with a time resolution of 1/16 s. Classification accuracies are statistically sig-

nificant above 24% (mov-vs-mov) and 65% (mov-vs-rest) for a single subject, and above 18%

(mov-vs-mov) and 54% (mov-vs-rest) for the average (α = 0.05, adjusted wald interval [40,41],

Bonferroni corrected for the length of the analyzed time window). We calculated the

Fig 3. Calculation of a mov-vs-mov pattern. Patterns are calculated from each 1-vs-1 classifier; subsequently scaled and transformed into the source

space; we then calculated the absolute value and averaged over patterns. Finally, we averaged over non-overlapping time segments. The same

processing pipeline applies to the mov-vs-rest pattern.

https://doi.org/10.1371/journal.pone.0182578.g003
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significance levels based on the average number of trials available after artefact removal. In

mov-vs-mov and mov-vs-rest all subjects reached a significant classification accuracy, see

Table 1 which shows the individual maximum classification accuracies. The mov-vs-mov aver-

aged classification accuracy becomes significant at -0.94 s and stays significant until the end of

the analyzed time window (2 s); the mov-vs-rest averaged classification accuracy is significant

between -1.0 s and 1.69 s, see Fig 4A and 4B.

Confusion matrices are shown in Fig 4C (mov-vs-mov) and Fig 4D (mov-vs-rest). They

correspond to the timepoints when the average classification accuracies reached a maximum.

The confusion matrices show relative numbers, i.e. the occurrences sum up to 100%. If a

Fig 4. ME classification results for the single time point classification. a: mov-vs-mov classification accuracies of all 15 subjects and the average (thick

black line). Time point 0 s corresponds to the movement onset. b: mov-vs-rest classification accuracies. The horizontal solid line in a and b is the chance level;

the horizontal dashed line is the significance level for the average. c: mov-vs-mov confusion matrix (occurrences sum to 100%) with classes elbow flexion

(Fle), elbow extension (Ext), forearm supination (sup), forearm pronation (pro), hand close (Clo), and hand open (Opn). d: mov-vs-rest confusion matrix.

Confusion matrices were calculated at the time point with the highest average classification accuracy (mov-vs-mov: 0.13 s; mov-vs-rest: 0.0 s).

https://doi.org/10.1371/journal.pone.0182578.g004
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movement was wrongly predicted, it was often predicted as a movement involving the same

joints, see Fig 4C. In other words, movements involving different joints (e.g. open vs prona-

tion) are better distinguishable than movements involving the same joints (e.g. open vs close).

Fig 5 shows the MI classification accuracies. The mov-vs-mov average classification accuracy

over all subjects reached a maximum of 23% (3% standard deviation) at -0.13 s; the mov-vs-rest

average classification accuracy reached a maximum of 68% (8% standard deviation) at 0.06 s.

Accuracies are significant above 24% (mov-vs-mov) and 65% (mov-vs-rest) for a single subject,

and above 18% (mov-vs-mov) and 54% (mov-vs-rest) for the average (α = 0.05, adjusted wald

interval, Bonferroni corrected for the length of the analyzed time window). Ten subjects reached

a significant classification accuracy in mov-vs-mov and 15 subjects in mov-vs-rest, see Table 2.

The mov-vs-mov average classification becomes significant between -0.56 s and 0.81 s; the mov-

vs-rest average classification is significant between -0.69 s and 0.81 s, see Fig 5A and 5B.

The averaged maximum mov-vs-mov accuracies are 1.8 times higher for ME than for MI,

the averaged maximum mov-vs-rest accuracies are 1.2 times higher for ME than for MI (cf.

Table 1 and Table 2). The ME and MI accuracies are significantly different for mov-vs-mov

and mov-vs-rest (p< 5�10−4, two-sided Wilcoxon signed rank test).

MI confusion matrices are shown in Fig 5C (mov-vs-mov) and Fig 5D (mov-vs-rest). They

qualitatively show similar patterns as in ME, i.e. MI involving different joint are better discrim-

inable than MI involving same joints.

Time window classification. Beside classifying on single time points, we also classified time

windows of the EEG. The analyzed time windows ranged from 200 ms to 1 s, and features

were taken in 100 ms time intervals within these time windows (see Table 3). Fig 6 shows the

subjects’ averaged ME/MI classification accuracies for the different window lengths as well as

single time-point classification (relative to the movement onset) for comparison. The maxi-

mum averaged classification accuracies, the respective time points and standard deviations can

be read from Table 4 (ME) and Table 5 (MI), respectively. Accuracies are significant above

18% (ME/MI mov-vs-mov) and 54% (ME/MI mov-vs-rest) (α = 0.05, adjusted wald interval,

Bonferroni corrected for the length of the analyzed time window).

A one-way repeated measures ANOVA was conducted to compare the effect of the window

length on the classification accuracy (at the time point of maximum average classification

accuracy). There was a statistically significant effect for the window length for ME mov-vs-

mov [F(5,70) = 59.2, pGG = 7.0e-11], ME mov-vs-rest [F(5,70) = 7.1, pGG = 0.002], MI mov-vs-

mov [F(5,70) = 21.6, p = 5.0e-13], and MI mov-vs-rest [F(5,70) = 3.5, pGG = 0.02]. Mauchly’s

test indicated that the sphericity assumption had been violated for ME mov-vs-mov, ME mov-

vs-rest and MI mov-vs-rest (p< 0.05), and a Greenhouse-Geisser correction was applied in

these cases. Post hoc tests with Dunn & Šidák’s method were performed between groups and

results are shown in Fig 7.

Motor-related cortical potentials

The grand-average MRCPs for all movements and the rest condition are shown in Fig 8 (ME)

and Fig 9 (MI). MRCPs are aligned to the movement onset for ME and the virtual movement

Table 1. Maximum ME classification accuracies for the single time point classification.

ME s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 avg

mov-vs-mov [%] 51 51 39 60 36 38 36 40 49 50 39 43 42 54 40 44 ± 7

mov-vs-rest [%] 85 81 83 94 87 93 78 81 83 80 79 86 91 88 81 85 ± 5

Included is the average and standard deviation over subjects. Significant classification accuracies are bold.

https://doi.org/10.1371/journal.pone.0182578.t001
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onset for MI, respectively. We show the grand-average MRCPs for channels FCz, C3, Cz, and

C4, here Laplace filtered to increase the spatial resolution, the preprocessing was otherwise the

Fig 5. MI classification results for the single time point classification. a: mov-vs-mov classification accuracies of all 15 subjects and the average (thick

black line). Time point 0 s corresponds to the movement onset. b: mov-vs-rest classification accuracies. The horizontal solid line in a and b is the chance level;

the horizontal dashed line is the significance level for the average. c: mov-vs-mov confusion matrix (occurrences sum to 100%). d: mov-vs-rest confusion

matrix. Confusion matrices were calculated at the time point with the highest average classification accuracy (mov-vs-mov: -0.13 s; mov-vs-rest: 0.06 s).

https://doi.org/10.1371/journal.pone.0182578.g005

Table 2. Maximum MI classification accuracies for the single time point classification.

MI s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 avg

mov-vs-mov [%] 29 23 23 29 24 24 24 26 28 23 22 28 27 25 23 25 ± 2

mov-vs-rest [%] 71 72 68 78 77 81 66 85 68 66 77 66 74 73 76 73 ± 6

Included is the average and standard deviation over subjects. Significant classification accuracies are bold.

https://doi.org/10.1371/journal.pone.0182578.t002
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same as for the classification. Laplace filtering was done by subtracting the mean voltage of the

four surrounding orthogonal electrodes from the center electrode [42]. Generally, ME MRCPs

are more pronounced than MI MRCPs (especially on Cz), and the rest condition shows

smaller but otherwise similar shaped responses as the movements. The MRCPs show the larg-

est response on Cz (ME) and on FCz (MI), respectively.

Fig 10 shows the ME MRCPs averaged over all subjects with respect to their joint move-

ments. MRCPs on Cz for forearm supination/pronation and elbow flexion/extension are more

pronounced than for hand close/open. Elbow and forearm pronation/supination movements

have similar MRCPs prior to movement onset and show differences in the latency of their neg-

ative peak (around 50 ms and 300 ms, respectively). Also differences in the MRCPs of move-

ments belonging to the same joint are observable (see S1 Fig). The negative peak at Cz in hand

opening is 0.3 μV larger than in hand closing. Almost no differences in latency or amplitude

can be found between forearm pronation and supination. Elbow flexion leads to earlier

MRCPs at Cz (around 60 ms) and weaker MRCPs (about 0.3 μV) than elbow extension. Such a

detailed and fair comparison of the MI MRCPs between conditions is not reasonable, since the

real imagined movement onset cannot be given.

Classifier patterns

We calculated 9 classifier patterns per subject, per classification type (mov-vs-mov and mov-

vs-rest), and per movement condition (ME, MI), ranging from -0.4 s to 0.4 s relative to move-

ment onset. Additionally, we calculated classifier patterns averaged over this time period. We

subjected these patterns to statistical analysis, as described in the Methods section, and show

them in Fig 11. The figure shows the group averages of the differences between classifier pat-

terns and random classifier patterns (i.e. reference patterns) and only significant voxels are

colored.

Immediately before movement onset (around -100 ms), the ME mov-vs-mov patterns (see

Fig 11A) are prominent on premotor areas (PM). Subsequently (0–100 ms), patterns intensify

on the contralateral primary motor (M1), contralateral somatosensory cortex (S1) and the pos-

terior parietal cortex (PPC). After 300 ms, patterns remain on M1 and S1. Patterns are shortly

observable on an ipsilateral temporal area (100 ms). In the ME mov-vs-rest condition (see Fig

11B) patterns appear at movement onset (0 ms) contralaterally on PM, M1, S1 and PPC. The

pattern on PM vanishes 100 ms after movement onset and the remaining patterns vanish

almost entirely 200 ms after movement onset. S1 Video and S2 Video show the progression of

the mov-vs-mov and mov-vs-rest patterns. The mov-vs-mov MI patterns are below the signifi-

cance threshold (see Fig 11C). The mov-vs-rest MI patterns arise on central motor cortex areas

at movement onset (see Fig 11D).

The time averaged ME patterns of mov-vs-mov and mov-vs-rest are similar and are located

on PM, M1, S1 and PPC (see Fig 11E). The time averaged MI mov-vs-mov patterns are faintly

Table 3. Time windows used for classification.

window length [s] number of time points

fed into the classifier

0 (single time point) 1

0.2 3

0.4 5

0.6 7

0.8 9

1 11

https://doi.org/10.1371/journal.pone.0182578.t003
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located on central areas (see Fig 11G), whereas the mov-vs-rest patterns have a more distinct

representation on M1 and S1.

Discussion

We show in this work for the first time the successful classification of six different movements

of the right arm from low-frequency time-domain EEG. Significant classification accuracies

were reached during movement execution as well as during movement imagination. This

proves that single and non-repetitive movements of the same limb can be decoded from time-

Fig 6. Classification accuracies for different window lengths. Time point 0 s corresponds to the movement onset. The horizontal solid lines are the

chance level; the horizontal dashed lines are the significance levels. a: subject averaged ME mov-vs-mov classification accuracies. b: subject averaged ME

mov-vs-rest classification accuracies. c: subject averaged MI mov-vs-mov classification accuracies. d: subject averaged MI mov-vs-rest classification

accuracies.

https://doi.org/10.1371/journal.pone.0182578.g006
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domain EEG signals and differentiated against each other. However, despite the ME classifica-

tion accuracies being promising, the MI classification accuracies are rather low. This may be

because ME EEG signals were time-locked to the actual movement onset but MI EEG signals

were time-locked to a virtual movement onset (which corresponded to the average ME onset

of each subject). Thus, the ME onset was more accurate, and exact time-locking is important

for classifying in the time-domain as the underlying signals change over time. One could over-

come this issue by defining the virtual movement onset relative to occurring MRCPs [43]

instead as a fixed time delay. Another explanation may be that ME produces more pronounced

brain patterns than MI in the time-domain. This is indicated by studies analyzing MRCPs

[43,44]. Interestingly, Sugata et al. did not find such a dissimilarity in classification accuracy

between ME and MI in a magnetoencephalography (MEG) study using comparable features in

grasping, pinching and elbow flexion [45]. Also Wang et al. obtained more comparable classifi-

cation accuracies between ME and MI in a MEG based study employing a target decoding par-

adigm [46]. Beside that, attempted movements may produce more pronounced brain patterns

than MI and therefore yield higher classification accuracies. They may cause a stronger activa-

tion of the motor system as indicated in Blokland et al. where classification accuracies in tetra-

plegic individuals were higher with attempted movements than MI using spectral features

[47]. Furthermore, extensive user training could improve the expression of distinct brain pat-

terns. User training can be highly beneficial in SMR-based BCIs [12,48], however it is still

unclear if this is also true for time-domain signals in the context of movement decoding.

Table 4. ME classification accuracies for different window lengths.

ME

window length

0 s 0.2 s 0.4 s 0.6 s 0.8 s 1 s

mov-vs-mov

max acc [%] 42 50 53 55 55 55

std dev [%] 9 9 10 10 9 9

time [s] 0.13 0.13 0.13 0.13 0.13 0.25

mov-vs-rest

max acc [%] 81 84 87 86 87 87

std dev [%] 7 6 6 4 6 4

time [s] 0.0 0.06 0.19 -0.13 0.19 0.19

Included is the maximum of the average classification accuracy and the respective standard deviation and time point.

https://doi.org/10.1371/journal.pone.0182578.t004

Table 5. MI classification accuracies for different window lengths.

MI

window length

0 s 0.2 s 0.4 s 0.6 s 0.8 s 1 s

mov-vs-mov

max acc [%] 23 25 26 27 27 27

std dev [%] 2 3 4 3 4 3

time [s] -0.13 -0.13 -0.06 -0.06 -0.13 -0.06

mov-vs-rest

max acc [%] 68 70 73 73 73 72

std dev [%] 8 8 5 7 7 8

time [s] 0.06 0.13 0.0 0.0 -0.06 -0.06

Included is the maximum of the average classification accuracy and the respective standard deviation and time point.

https://doi.org/10.1371/journal.pone.0182578.t005
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Moreover, the obtained confusion matrices indicate that movements involving different joints

(i.e. different muscle groups) are more discriminable than movements involving the same

joints Consequently, for future applications it would be necessary to select the subset of classes

which work best for BCI users but still allow a natural control. Furthermore, a hierarchical

classifier concept may be beneficial: one meta classifier classifies movements of different joints

(e.g. hand movement vs elbow movement), and subjacent classifiers classify movements of the

same joint (e.g. hand open vs hand close).

Fig 7. Post hoc tests with Dunn & Šidák’s method between window lengths. A star indicates a statistically significant difference (p < 0.05) a: ME mov-vs-

mov b: ME mov-vs-rest c: MI mov-vs-mov d: MI mov-vs-rest.

https://doi.org/10.1371/journal.pone.0182578.g007
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A simple approach to improve the classification accuracy is to use more temporal informa-

tion when classifying the EEG. Therefore, we also classified time windows instead of single

time points of the EEG, and analysed the effect of the time window length. The results indicate

that a time window of length 0.6 s is sufficient to reach the maximum possible classification

accuracy (w.r.t. the methods used in this paper), longer time windows don’t improve the classi-

fication performance and increase the computational load. Furthermore, ME classification

profits more from a time window based approach than MI in case of mov-vs-mov. The

improvement in classification performance can be due to the temporal spread of the discrimi-

native information of the underlying signals (i.e. MRCPs) which is better captured with a time

window based classification. Another reason may be that a time window based classification

allows to fine-tune the employed 0.3–3 Hz bandpass filter. An LDA classifier which uses data

from more than one time point is basically a finite impulse response filter with trainable filter

coefficients, and can shrink or enlarge the 0.3–3 Hz passband to maximize the extracted dis-

criminative information.

Fig 8. Grand-average MRCPs and respective standard errors during ME.

https://doi.org/10.1371/journal.pone.0182578.g008
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Earlier, we pointed out some possibilities to boost the MI accuracy. However, a study con-

ducted by Lacourse et al. [49] forments doubts if MI accuracy in healthy subjects is a good pre-

dictor for the performance in SCI subjects. They found that MRCPs during attempted and

imagined hand movements in tetraplegic subjects are more similar than in a abled-bodied con-

trol group (there with executed and imagined movements). Furthermore, they found that

MRCPs between tetraplegic subjects and abled-bodied subjects are different. This challenges

the usefulness of using MI in abled-bodied subjects to predict the classification performance

for SCI subjects. Nevertheless, our results show the general applicability in able-bodied sub-

jects and point out the need for further research in SCI subjects with attempted movements.

Our work adds to the work of Vučković and Sepulveda who have shown that wrist exten-

sion/flexion and forearm pronation/supination can be decoded from the frequency-domain of

EEG [27,28] (especially from the delta band). Here, we show that also the time-domain con-

tains movement information related to individual joint movements. This is in line with previ-

ous research which shows that low-frequency time-domain EEG signals contain information

about movement trajectories, speed and force [17–19,22,23,26]. Electrocorticography (ECoG)

Fig 9. Grand-average MRCPs and respective standard errors during MI.

https://doi.org/10.1371/journal.pone.0182578.g009
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studies support this and indicate that low-frequency time-domain signals contain movement

related information [50–54]. Interestingly, the frequency bands used in classical SMR-based

BCIs, i.e. mu and beta band, contain less information about movement kinematics and muscle

activity than low-frequency bands and the high-gamma band [55–57]. Mu and beta bands are

more suitable to detect a movement intention than the details of the movement. However, our

group recently found that these frequency bands can be separated in two types of large-scale

networks where one network type is modulated by the movement phase of rhythmic finger

movements [9].

To reliably detect the movement intention is of utmost importance for a neuroprosthesis

control to avoid unexpected and potentially dangerous movements. In accordance with

[26,58], we successfully classified between movements and a rest class based on low-frequency

time-domain EEG. The classification of movement vs rest may be further improved by com-

bining time-domain signals and power modulations in mu and beta bands [59].

Fig 10. Grand-average ME MRCPs grouped with respect to their joint movements and respective standard errors. Shown are the averages of elbow

extension/flexion, forearm supination/pronation and hand opening/closing.

https://doi.org/10.1371/journal.pone.0182578.g010
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MRCPs can be retrieved with similar signal processing methods as low-frequency time-

domain signals. They show a typical negative peak around movement onset like in our results

[24]. Hence, our classification approach is based on MRCPs. Such MRCPs-like signals are also

observable in both ME and MI rest classes, i.e. without any movement intention. It is reported

that voluntary muscle relaxation causes similar potential changes to that of muscle contraction

[24]. This may be an explanation at least for ME if the subjects were already preparing for

some movement before the cue appeared on the screen, and then relaxed after the rest class

cue was presented. This can be an issue for an asynchronous BCI trained with a cue based par-

adigm. An asynchronous BCI must be trained on a rest class which truly corresponds to a

relaxation phase, and this requires a careful design of the training paradigm.

A novelty in the context of EEG-based movement decoding from a single limb is the analy-

sis of the classifier patterns. These patterns show for ME that mainly M1, S1, PM, and PPC

contain movement related information which can be decoded from low-frequency time-

domain EEG signals. This is consistent with the general understanding that PM and PPC are

involved in movement planning while M1 is active during the execution of the movement, and

S1 receives proprioceptive feedback which is eventually integrated with other sensory input at

Fig 11. Classifier patterns. Shown are patterns between -0.4 s and 0.4 s relative to movement onset (a-d) and averaged over this time period (e-h). a and e:

mov-vs-mov patterns during ME. b and f: mov-vs-rest patterns during ME. c and g: mov-vs-mov patterns during MI. d and h: mov-vs-rest patterns during MI.

Only significant voxels are colored. Blue corresponds to zero, red to the maximum value.

https://doi.org/10.1371/journal.pone.0182578.g011
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the PPC [60–62]. The ME mov-vs-mov patterns show also a slight and temporary involvement

of a non-motor related ipsilateral temporal area. However, this lateral pattern cannot be attrib-

uted to movement artefacts as the mov-vs-rest classifier would be more susceptible to move-

ment artefacts but does not have similar pronounced lateral pattern. This lateral pattern can be

a consequence of the usage of a template head model and an incomplete electrode coverage on

temporal sites. Another observation is that mov-vs-mov and mov-vs-rest patterns cover simi-

lar areas. Thus, general (mov-vs-rest) and detailed (mov-vs-mov) movement information can

be decoded from the same brain areas. One can also observe that MI produces less pronounced

patterns than ME, which is consistent with a lower classification accuracy for MI than ME.

The MI patterns are also more centrally located.

We calculated classifier patterns instead of analyzing the weights of the LDA classifier

because the EEG channels are highly correlated in lower frequencies [19] which causes a prob-

lem known as multicollinearity [63] and complicates their interpretation [64]. Classifier pat-

terns were already used as a tool to spatially analyze brain processes [65]. They can be used to

find EEG amplitude differences exploited by the classifier between experimental conditions.

The following limitations of our study can be identified. First, preprocessing filter and clas-

sification time windows were non-causal to avoid time shifts in the obtained results due to sig-

nal processing. However, for an online application causal filter and time windows must

implemented. Second, the movement onsets obtained via external sensors are not as timely as

movement onsets obtained via electromyography. Due to inertia of the body parts, muscle

activity is usually detected before overt movements. Third, we used template head models

instead of individual head models generated from magnetic resonance imaging scans for

source imaging, which can increase the location error of sources and in turn decreases the sen-

sitivity of the obtained patterns.

Future studies need to confirm if details of imagined or attempted movements can also be

decoded from individuals with SCI and if the classifier performance is sufficient to control a

neuroprosthesis or a robotic arm. Specifically, it has to be determined if the classification accu-

racies yielded by attempted movements in individuals with SCI correspond closer to the ME

or MI accuracies reported in this work. The classifier patterns show that PM, M1 and S1

encode information about the details of the movement on the macroscale, and especially these

areas have direct connections to the spinal cord [62,66]. These direct connections are impaired

in SCI users, however, and this could have an influence on the information encoded in the

MRCPs [49]. Further studies also need to analyze the influence of object interactions on the

movement information encoded in low-frequency time-domain EEG signals.

Conclusion

We have demonstrated the successful decoding of single executed and imagined upper limb

movements based on low-frequency time-domain EEG signals. These movements can be the

basis for new mental control strategies aimed at a more natural neuroprosthesis or robotic arm

control. Furthermore, we show that the patterns underlying the classification emerge from

motor related brain areas.

Supporting information

S1 Fig. MRCPs for movements belonging to the same joints. Shown is the average over sub-

jects.

(TIF)
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S1 Video. Progression of the ME mov-vs-mov patterns. Patterns were calculated for single

time points (i.e. not averaged over time) from -1 s to 1 s relative to movement onset. Statistical

analysis was not performed.

(AVI)

S2 Video. Progression of the ME mov-vs-rest patterns. Patterns were calculated for single

time points (i.e. not averaged over time) from -1 s to 1 s relative to movement onset. Statistical

analysis was not performed.

(AVI)
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51. Schalk G, Kubánek J, Miller KJ, Anderson NR, Leuthardt EC, Ojemann JG, et al. Decoding two-dimen-

sional movement trajectories using electrocorticographic signals in humans. J Neural Eng. 2007; 4:

264–275. https://doi.org/10.1088/1741-2560/4/3/012 PMID: 17873429

52. Pistohl T, Ball T, Schulze-Bonhage A, Aertsen A, Mehring C. Prediction of arm movement trajectories

from ECoG-recordings in humans. J Neurosci Methods. 2008; 167: 105–114. https://doi.org/10.1016/j.

jneumeth.2007.10.001 PMID: 18022247

53. Hammer J, Fischer J, Ruescher J, Schulze-Bonhage A, Aertsen A, Ball T. The role of ECoG magnitude

and phase in decoding position, velocity, and acceleration during continuous motor behavior. Front

Neurosci. 2013; 7: 200. https://doi.org/10.3389/fnins.2013.00200 PMID: 24198757

54. Acharya S, Fifer MS, Benz HL, Crone NE, Thakor NV. Electrocorticographic amplitude predicts finger

positions during slow grasping motions of the hand. J Neural Eng. 2010; 7: 046002. https://doi.org/10.

1088/1741-2560/7/4/046002 PMID: 20489239

55. Bundy DT, Pahwa M, Szrama N, Leuthardt EC. Decoding three-dimensional reaching movements

using electrocorticographic signals in humans. J Neural Eng. 2016; 13: 026021. https://doi.org/10.1088/

1741-2560/13/2/026021 PMID: 26902372

56. Ball T, Schulze-Bonhage A, Aertsen A, Mehring C. Differential representation of arm movement direc-

tion in relation to cortical anatomy and function. J Neural Eng. 2009; 6: 016006. https://doi.org/10.1088/

1741-2560/6/1/016006 PMID: 19155551

57. Shin D, Watanabe H, Kambara H, Nambu A, Isa T, Nishimura Y, et al. Prediction of muscle activities

from electrocorticograms in primary motor cortex of primates. PLoS One. 2012; 7: e47992. https://doi.

org/10.1371/journal.pone.0047992 PMID: 23110153
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Attempted Arm and Hand 
Movements can be Decoded from 
Low-Frequency eeG from persons 
with spinal Cord Injury
patrick ofner  1, Andreas schwarz  1, Joana pereira  1, Daniela Wyss2, Renate Wildburger2 
& Gernot R. Müller-putz  1

We show that persons with spinal cord injury (sCI) retain decodable neural correlates of attempted 
arm and hand movements. We investigated hand open, palmar grasp, lateral grasp, pronation, and 
supination in 10 persons with cervical SCI. Discriminative movement information was provided by 
the time-domain of low-frequency electroencephalography (eeG) signals. Based on these signals, 
we obtained a maximum average classification accuracy of 45% (chance level was 20%) with respect 
to the five investigated classes. Pattern analysis indicates central motor areas as the origin of the 
discriminative signals. Furthermore, we introduce a proof-of-concept to classify movement attempts 
online in a closed loop, and tested it on a person with cervical sCI. We achieved here a modest 
classification performance of 68.4% with respect to palmar grasp vs hand open (chance level 50%).

Persons with cervical spinal cord injury (SCI) have lost the majority of voluntary motor control functions. In 
addition to paralysis of the lower limbs, upper limb functionality is usually severely limited. Brain-computer 
interfaces (BCIs)1 in combination with upper-limb motor neuroprostheses2,3 have been proposed as a remedy4–6. 
A BCI can detect user induced changes in brain-signals and transform them into control signals for neuropro-
stheses or robotic arms5–16. Brain signals can be recorded invasively or non-invasively for this purpose. In the 
present work, we focus on and apply the non-invasive electroencephalography (EEG) recording technique. 
EEG-based BCIs for neuroprostheses control rely typically on changes of oscillations originating from senso-
rimotor areas17,18 to detect and differentiate executed, imagined or attempted movements involving different 
body parts15. However, oscillation-based BCIs could impose non-intuitive control paradigms (e.g. repetitive foot 
motor imagery to control a hand function). In recent years, low-frequency time-domain signals have also gained 
attention in the BCI field as these have been shown to encode even more information about movements such as 
trajectories19–23, see24 for a review. Movement-related cortical potentials (MRCPs)25,26 in particular were shown to 
encode, e.g., reaching directions/targets27–29, or force30.

MRCPs are particularly interesting when designing an intuitive control paradigm for a BCI. For example, 
MRCPs encode even various single movements of the same limb, such as hand open, hand close, or different grasp 
types31–33, which could be detected by an EEG-based BCI and transformed into movements via a neuroprosthesis. 
As a result of this a person with SCI would only need to attempt to open the right hand in order to actually open 
it, and analogously, to close it. This eventually allows a natural control paradigm. In this work, we thus analyzed 
MRCPs in participants with SCI during attempted movements.

This work comprises two parts. In the first part, we analyzed whether attempted arm and hand movements of 
participants with SCI can be classified from MRCPs. We have shown in our previous work31,32 that low-frequency 
time-domain EEG signals (which capture MRCPs) encode information about hand and arm movements of the 
same limb in able-bodied participants. The translation of these results to participants with SCI, however, is still 
lacking. MRCPs in participants with SCI are present during movement imagination and movement attempts but 
there is evidence that they are altered34–36. As a result of this they may not be encoding the same information as 
in able-bodied participants. We therefore analyzed whether single movement attempts (i.e. hand open, palmar 
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grasp, lateral grasp, supination, and pronation) can be classified based on low-frequency time-domain EEG sig-
nals in participants with SCI. Furthermore, we analyzed movement-related differences of the neural correlate.

In the second part, we propose a proof-of-concept of an MRCPs-based online classifier for self-paced 
attempted hand movements (hand open vs palmar grasp). In this proof-of-concept study, we describe the nec-
essary adaptations of the training paradigm and the classifier, and present the online results of two sessions in a 
participant with SCI.

Results
Movement classification. Classification accuracies. We measured 10 participants with cervical SCI, each 
of whom was seated in a wheelchair in front of a computer screen. Instructions were given on the computer 
screen to the participants, and according to the instructions, they attempted or executed one of the following 
movements: pronation, supination, palmar grasp, lateral grasp or hand open. The offline paradigm is shown in 
Fig. 1. Participants executed or attempted a movement depending on their individual SCI status (see Table 1 and 
Supplementary Table 1)37. We performed an offline analysis and classified the 5 movements from the band-pass 
filtered EEG signals (0.3 to 3 Hz) with a shrinkage linear discriminant analysis (sLDA) classifier. This yielded a 
grand average accuracy, which peaked with 45.3% at 1.1 s after class cue presentation. The confidence interval 
at this peak was [40.3%, 50.3%] (calculated based on a t-distribution38). A plot of the participants’ classification 

Figure 1. Offline Paradigm. (a) Participants with SCI sat in their wheelchairs and attempted the movement 
requested on a computer screen. (b) Illustration of the attempted movements.

participant sex age [years]
dominant 
hand

tested 
hand

time since lesion 
[years | months] AIS NLI

P01 male 35 right right 0 11 B sub C6

P02 male 42 right right 0 10 D sub C1

P03 male 62 right right 0 7 B sub C5

P04 female 20 right right 16 9 B C5

P05 male 57 right right 0 9 A sub C4

P06 male 78 right right 0 7 D sub C5

P07 male 27 right left 0 4 C sub C4

P08 male 69 right right 2 0 B C7

P09 male 53 right right 6 2 A sub C4

P10 male 55 right right 1 11 A sub C6

Table 1. Status of participants. Includes American Spinal Injury Association Impairment Scale (AIS) and 
Neurological Level of Injury (NLI). Explanation of AIS scores: A = complete, B = sensory incomplete, 
C = motor incomplete, D = motor incomplete.
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accuracies and the grand average can be found in Fig. 2a. The plot includes the 95% confidence interval of the 
grand average (based on a t-distribution38). The chance level for 5 classes is 20% and the significance level for 
the grand average was determined as 22.3% (α = 0.05, adjusted wald interval39,40, Bonferroni corrected for the 
length of the analyzed time interval). Additionally, the peak accuracies for individual participants with their 
corresponding latencies are shown in Table 2. The confusion matrix in Fig. 2b, calculated at the peak of the grand 
average accuracy, shows that all classes are discriminable but classes involving common joints are more prone to 
be misclassified than classes involving separate joints. We classified EEG samples using a time window of 1.4 s 
length which was shifted along the trial, and aligned the classification accuracies to the center of this time window 
(we refer to this time window as feature extraction window). Similar to31, we then also compared different lengths 
of feature extraction windows. One can see in Fig. 2d and Supplementary Table 2 that the classification accuracies 
start saturating with feature extraction windows above 1 s. We therefore did not test feature extraction windows 

Figure 2. Offline Results for the full set of participants (n = 10). All times are relative to the trial start (a) 
Classification accuracy as a function of time. Grand-average classification accuracy and its respective 95% 
confidence interval is shown in black, individual classification accuracies are shown in thin, colored traces 
(feature extraction window size = 1.4 s). The grand average classification accuracy peak is marked. (b) 
Confusion matrix at peak grand average classification accuracy. (c) Difference Topoplots. Statistically significant 
differences on electrodes are marked with an “x”. (d) Grand average classification accuracies for different feature 
extraction window sizes (0 s corresponds to one sample). (e) Grand average time courses of the electrical 
potentials on electrode Cz with 95% confidence intervals.

participant p01 p02 p03 p04 p05 p06 p07 p08 p09 p10

peak acc [%] 35.1 47.7 50.2 52.8 52.7 58.2 40.4 47.7 44.2 42.1

peak latency [s] 2.4 3.3 3.1 3.1 3 2.8 3.1 2.2 3.1 2.9

Table 2. Peak classification accuracies per participant, and respective latencies with a feature extraction 
window size of 1.4 s.
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longer than 1.4 s and selected this window length for the classification analyses. The reader must keep in mind 
here that the filter and feature extraction windows were non-causal.

The motor skills of our participants were not homogeneous and some of them had a remaining but impaired 
hand function or could rotate the forearm. We therefore selected a subset comprising 5 participants who have 
a motor score of 0 or 1 for finger flexors and finger abductors on the International Standards for Neurological 
Classification of Spinal Cord Injury (ISNCSCI) impairment scale37, i.e. no active hand movement. This subset 
was then subjected to a 3-class classification (palmar grasp, lateral grasp, hand open). By this means we analyzed 
exclusively those movement classes which could not be executed by the participants. Figure 3a shows the time 
course of the classification accuracies. The grand average peak was 53.0% at 1 s after class cue presentation with a 
95% confidence interval of [47.5%, 58.6%] (the chance level is 33.3% and significance level is 38.1%). The confu-
sion matrix in Fig. 3b indicates that all classes can be discriminated.

MRCPs. The trial averaged electrical potential on the central electrode Cz shows the typical pattern emerging in 
a synchronous paradigm (c.f. Fig. 2e). 500 ms after the presentation of the class cue, a positive peak developed cor-
responding to the cognitive processing of the cue. This positive peak is then followed by a negative peak around 
1 s after cue presentation which we attribute to the movement attempt and related to MRCPs. Also the averaged 
potentials of the 5 participant subset (i.e. without active hand movement) have qualitatively similar features (c.f. 
Fig. 3d). Signals were non-causal filtered between 0.3 to 3 Hz with a monopolar reference. The 95% confidence 
intervals are based on a t-distribution38 over participants.

Figure 3. Offline Results for the subset of participants (n = 5) with no active hand movement comprising 
only of palmar grasp, lateral grasp and hand open classes. All times are relative to trial start (a) Classification 
accuracies of individual participants (thin traces) and the grand average (black thick line) with its respective 
95% confidence interval. The classification accuracy peak is marked. (b) Confusion matrix at peak grand 
average classification accuracy. (c) Difference Topoplots. Statistically significant differences on electrodes 
are marked with an “x”. (d) Grand average time courses of the electrical potentials on electrode Cz with 95% 
confidence intervals.
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The early positive and the later negative peaks were defined as points-of-interest, and we analyzed whether 
their amplitude or latency contains discriminative information for the 5 movement classes. Descriptive statistics 
can be found in Table 3 which indicates differences of the peaks in the amplitudes and time latencies with respect 
to the movement classes. Moreover, a nonparametric Friedmann test (α = 0.05) found a statistically significant 
effect of the class on the amplitude of the positive and negative peak ([χ2(4) = 16.3, p = 0.0026], [χ2(4) = 20.3, 
p = 0.0004]), as well as on the latency of the positive and negative peak ([χ2(4) = 22.1, p = 0.0002], [χ2(4) = 12.2, 
p = 0.0158]). Thus, the early positive and the later negative peak contain discriminative information about the 
movement class.

Difference topoplots. We calculated the differences between the topoplots of each class (see Section Difference 
topoplots for further explanations). This allowed us to check the origin of the brain signals containing discrim-
inative information. The resulting plots are termed difference topoplots in this work, and can be seen in Figs 2c 
and 3c where we averaged over the full set of participants and the subset, respectively. For both sets, the differ-
ence topoplot sequences indicate differences on the central motor cortex, which peak around second 1. This 
means that at the time point of maximum classification accuracy, signals do indeed originate from plausible, i.e. 
movement-related, brain regions and not from other sources. The subset difference topoplots furthermore show 
an involvement of the occipital cortex around 1.5 s. Statistically significant differences at time points and elec-
trodes are marked (α = 0.05, one-tailed nonparametric permutation test).

Proof-of-Concept of an online classifier. We presented the offline classification of attempted movements 
in the previous section, here we introduce a proof-of-concept to demonstrate the classification of hand open vs 
palmar grasp in a closed-loop for a participant with SCI. We recruited participant P09 who has an ISNCSCI 
motor score of 0 for elbow extensors, finger flexors and finger abductors, i.e. total paralysis of the hand, and meas-
ured two sessions on different days.

We introduced a new training paradigm for the classifier. One must keep in mind that the offline paradigm is 
synchronous and has a cue which requires a cognitive processing, which is then reflected in the EEG potential. 
Figure 2e is a convenient example of this. However, in a self-paced paradigm the cue-related potential would not 
be generated at all but only the MRCPs (associated to the negative peak). Therefore, it is imperative that the clas-
sifier is trained on MRCPs which are affected to the least extent possible by the cue. Figure 4a shows the training 
paradigm used for the proof-of-concept study. We used a training paradigm where the class cue was presented 
immediately at the trial start. This class cue was then replaced by the ready cue, a green filled circle, which started 
shrinking at a random speed. When the shrinking ball hit the circumference of a small white circle, representing 
the go cue, the participant was required to attempt the movement.

The trial-averaged electrode potential of Cz, time locked to the go cue (second 0), is shown in Fig. 4c. One 
can see in Fig. 4c that the positive peak before the negative peak is reduced. The depicted potentials include 95% 
confidence intervals based on a t-distribution38 over trials. The potentials corresponding to the two sessions differ 
right after the movement attempt at around 0.5 s to 1 s, which corresponds to the characteristic negative deflection 
of MRCPs. Interestingly, it was noted that there is a second negativity around 1.5 s to 2 s exclusively for the second 
session. This difference between sessions might be due to slightly different instructions to the participant. We 
asked for a sustained single movement attempt in the first session and for a short single movement attempt in the 
second session. The additional positive peak between 2 s and 2.5 s is well separated from the negative peak and 
could have been induced by the sudden disappearance of the cues on the computer screen at trial end. Overall, we 
can see that the potential time course is closer to that of typical MRCPs25,26. This training paradigm is therefore 
apparently more applicable to train a self-paced movement classifier than the offline paradigm. Using this new 
training paradigm and additional rest trials, we trained a 3-class online classifier to detect hand open, palmar 
grasp and rest state.

Subsequently, we evaluated the classifier using the test paradigm shown in Fig. 4b. The class cue (hand open, 
palmar grasp, rest) was shown together with a white cross in the beginning of a trial. After 5 s, the class cue dis-
appeared and the white cross was shown for the next 60 s. The participant was instructed to perform in this 60 s 
period multiple self-paced movement attempts if it was a hand open or palmar grasp trial, or to remain inactive in 
rest trials. During recording, the online classifier was constantly active and provided feedback. When a movement 
was detected, a hand open or palmar grasp symbol was shown for 2 s on the computer screen. The participant was 
furthermore instructed to report a movement attempt by a soft speech sound 2 s after the movement attempt to 
mark movement events.

class

positive peak negative peak

amplitude [µV] latency [s] amplitude [µV] latency [s]

mean std dev mean std dev mean std dev mean std dev

pronation 8.01 2.97 0.44 0.14 −5.48 2.38 1.10 0.09

supination 8.44 3.79 0.49 0.13 −6.05 2.15 1.05 0.11

hand open 8.17 3.36 0.51 0.11 −5.33 2.41 1.35 0.59

palmar grasp 6.56 3.34 0.53 0.08 −4.45 2.02 1.41 0.41

lateral grasp 6.68 2.86 0.56 0.08 −3.68 2.19 1.27 0.21

Table 3. Descriptive statistics of the positive and negative peaks of the electrical potentials on Cz. Latency is 
relative to the class cue.
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We defined then a true positive window relative to these reported events. We considered a movement detec-
tion only as a true positive when it occurred within the true positive window (regardless of the movement class). 
The true positive rate (TPR) is then the number of true positives (TP) divided by the number of reported move-
ment attempts multiplied by 100. Formally, the TPR is defined as TPR = TP/P·100, where P is the number of 
condition positives (i.e. the sum of true positives and false negatives). The classification accuracy regarding hand 
open vs palmar grasp was calculated based on true positives only, i.e. detections outside the true positive window 
were ignored. We also calculate the number of false positives per minute (FP/min). To do this, every detec-
tion within a rest trial was counted as a false positive and then normalized to a per minute rate. Eventually, we 
obtained an average classification accuracy of 68.4% over both sessions, and the individual session results can be 
found in Table 4.

Finally, we analyzed whether the classifier was indeed decoding from brain signals. First, we selected all true 
positives, i.e. all movement detections within the true positive window irrespective of the movement class. Next, 
we aligned to the assumed movement onset which is the time point of the movement detection minus the detec-
tion delay (c.f. Section Detection delay). The detection delay was 2.5 s in session 1 and 2.2 s in session 2. We then 
averaged over trials for each session, and show the electrode potential of Cz in Fig. 4d. The potentials show the 
typical negativity present in MRCPs and in the potentials elicited in the training paradigm, which is shown in 
Fig. 4c. The electrode potentials are shown separate for each movement class in Fig. 5. Second, we show in Fig. 6 
the topoplots at the time lags used as features by the classifier (0 s to 1.4 s in 200 ms intervals). The topoplots (not 
to be confused with the difference topoplots) indicate that the classifier uses brain signals originating from lateral 
and central motor areas which is typical for MRCPs. Importantly, the EEG signals in Fig. 6 were causally filtered 
to show the reader what the classifier identified when it detected a true positive. The signals in Fig. 4c,d, however, 
were non-causally filtered to avoid phase distortion and ease the interpretation.

Figure 4. Training and test paradigms for online classification and respective electrode potentials. (a) Training 
paradigm. A green filled circle shrunk with a random speed. The participant attempted a movement (hand open 
or palmar grasp) when it hit the inner white circle, i.e. the go cue. (b) Test paradigm. The participant repeatedly 
attempted self-paced movements. (c) 95% confidence intervals of the electrode potentials on Cz, time locked to 
the go cue. (d) 95% confidence interval of the electrode potentials on Cz, time locked to the assumed movement 
onset (i.e. the movement detection time point corrected by the detection delay). Additionally, movement 
detection time points are shown for each session.

session movement attempts TP count TPR [%] FP/min accuracy [%] significance level [%]

1 188 50 26.6 3.2 66.0 62.4

2 130 48 36.9 3.6 70.8 65.3

Table 4. Online detection and classification results of both sessions.
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Discussion
Movement classification. We showed that participants with cervical SCI having impaired upper limb 
movements encode information about attempted arm and hand movements in low-frequency time-domain EEG 
signals. This information can be used to discriminate hand open, palmar grasp, lateral grasp, pronation, and 
supination.

We showed in our previous work the decoding of arm and hand movements from MRCPs31,32, i.e. 
low-frequency time domain signals. However, MRCPs are altered in participants with SCI34–36. It was therefore 
unclear if these participants encode similar information in the EEG as participants with an intact spinal cord. 
With respect to non-invasive recording techniques, it was so far only shown that low-frequency time-domain 
magnetoencephalography (MEG) signals can be used to discriminate a limited attempted movement set (hand 
open vs hand close) in participants with SCI41. To the best of our knowledge, this study is therefore the first to 
show that an extended arm/hand movement set can be classified from low-frequency time-domain EEG signals 
in participants with SCI.

Figure 5. Electrode potentials at the proof-of-concept classification. Shown are the 95% confidence intervals 
at electrode Cz time locked to the go cue or assumed movement onset, respectively. (a) Session 1, training 
paradigm. (b) Session 1, test paradigm. (c) Session 2, training paradigm. (d) Session 2, test paradigm.

Figure 6. Topoplots from test paradigm. The topoplots are time-locked to true positive movement detections 
and second 0 corresponds to ttrain (i.e. the detection time point minus 575 ms, see Section Detection delay). Thus, 
the time lags shown comprise the input features of the classifier. (a) Topoplot from session 1. (b) Topoplots from 
session 2.
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We focused on low-frequency signals as they encode movement trajectories, movement directions, grasp 
types, speed or force in EEG19–21,23,32,33,42–45 and ECoG signals46–51. Other frequency bands used in classical 
oscillation-based BCIs5,6,17, i.e. mu and beta band, were found to encode a general movement state rather than 
movement parameters (how a movement is performed)27,42,49,51–53. However, recent studies extend these findings. 
For example, Iturrate et al.33 found spectral power differences in the upper alpha and lower beta bands for power 
and precision grasps. Korik et al.54 demonstrated the decoding of executed and imagined 3D hand movement 
trajectories from mu, beta, and low gamma bands. Future studies will have to further investigate the decoding of 
movement parameters from time-domain and frequency-domain features and consistently integrate the findings 
from both domains.

We found the EEG neural correlates of hand and arm movements differ in central brain areas. No apparent 
lateralization effect was observable. This is plausible as central brain areas like the Supplementary motor area 
(SMA), primary motor cortex (M1), and somatosensory cortex (S1) are involved in motor control55,56. However, a 
precise localization is not possible in the channel space. Furthermore, the accuracy plots and difference topoplots 
indicate that the movement information is spread over time. Moreover the electrical potential on Cz develops 
two distinctive peaks over time, a positive peak immediately after the cue followed by a negative peak. The pos-
itive peak is most likely a complex of P3 and positive slow wave potentials related to stimulus evaluation57,58 and 
response selection59,60; earlier perception related potentials are filtered out due to their higher frequency com-
ponents. The negative peak can be explained as an MRCP25,26. Both peaks differ in their amplitude and latency 
depending on the movement, however only the negative peak around 3 s after cue leads to significant differences 
in the difference topoplots. Furthermore, we obtained significant classification accuracies at both peak latencies 
(especially with a short feature extraction window). We therefore make the assumption that processes related to 
inferring the desired behavior (evaluation of rules) as well as movement related processes can be decoded from 
low-frequency EEG signals.

We found as in31,32 that the classification accuracy improves with the length of the feature extraction window. 
This is expected as the discriminable information is spread over time. Moreover, the additional time inputs are 
weighted by the classifier which can be seen as a temporal filter. This filter could fine-tune the 0.3–3 Hz band-pass 
filter to extract the proper signals. The classification accuracies, however, show a saturation effect and time win-
dows above 1 s add little or no improvement. Furthermore, we found that the discriminability is dependent on 
the joints involved in the movement. The confusion matrix indicates that movement classes with separate joints 
are better discriminable than movement classes with common joints, e.g. pronation is better discriminable from 
hand open than from supination. This was observed before in healthy participants31, and it implies that related 
body parts are encoded closer in low-frequency time-domain EEG signals than less related body parts. Thus, their 
signal sources are spatially closer and/or the time courses of the generated signals are more similar.

One can observe in the classification accuracy plots that the accuracy raises above significance level before 
the cue onset, i.e. at a time period when no class information was yet available to the participants. We ascribe 
that effect to the employed zero-phase band-pass filter and the symmetric feature extraction window which were 
non-causal. Due to these non-causal features and the low-frequency band, future information in the signal is 
perceptibly spread back in time. This leads to discriminable signals even before the class cue onset.

Participants with SCI available for studies are often heterogeneous with respect to their residual movement 
functions, and despite all participants having restrictions in their upper limb movements, the degree of move-
ment function nevertheless varied from person to person. We therefore run an additional analysis comprised only 
of participants with no active hand movements and a restricted movement set (hand open, palmar grasp, lateral 
grasp). We obtained a statistically significant classification accuracy which peaked again around 1 s. Furthermore, 
the emerging neural correlates were similar. As before, differences in central brain areas are observable, but addi-
tionally also on occipital areas, which could be related to the visual processing of the cue. However, this effect 
vanished in a larger group and could be a spurious finding due to the small group size. Also the electrical potential 
on Cz has a qualitatively similar shape, comprising of a positive peak followed by a negative peak.

Proof-of-concept of an online classifier. An online classifier ideally detects self-paced movements (i.e. 
movement vs. rest state), and simultaneously classifies them, for example as hand open or palmar grasp as in this 
work. The critical issue for an effective online classifier is the availability of applicable training data: the train-
ing paradigm should elicit MRCPs which are as close as possible to MRCPs elicited in a self-paced paradigm. 
However, cue-based paradigms similar to the Graz BCI paradigm61 are not suitable to elicit clean MRCPs because 
they are usually contaminated with cue-related potentials (as we have observed in the first part of this study). 
An alternative would be a self-paced training paradigm where the classifier is trained by time-locking on the 
movement onset62–67. However, participants with SCI may have lost all movement functionality of the respective 
limb, and may not provide any measurable EMG signals to detect the movement onset. We therefore designed 
a suitable training paradigm and added ready and go cues in addition to the class cue. The class cue requires the 
retrieval and selection of memorized task rules, and separates these processes from the actual movement attempt. 
There were variable time intervals before the go cue in order to make class and ready cue associated potentials 
indiscernible when time-locking to the go cue and averaging. Another important point in our paradigm is that 
the ready and go cues have a class-independent appearance to avoid any class-related perception differences. Plus, 
by adding a fixation cross in the middle and a symmetrically shrinking green ball, eye movements can be mini-
mized. Finally, both cross and green ball are still displayed for 2 seconds after the go cue to avoid further evoked 
potentials close to the go cue due to their disappearance. Furthermore, the predictability of the go cue as given by 
our training paradigm is critical. The literature shows that MRCPs preceding self-paced and regular-cued move-
ments are similar in shape and topography68–70. On the downside, our training paradigm may be contaminated 
with a contingent negative variation (CNV) potential, which is elicited by a warning stimulus followed by an 
imperative stimulus71,72. The CNV comprises of two components, one occurs after the warning stimulus and one 
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before the imperative stimulus (i.e. the go cue in our paradigm). The last component in particular could form a 
potential complex with the Bereitschaftspotential (BP)26. However, for longer intervals between the warning and 
imperative stimulus (in the second range), the second component of the CNV and the late BP become similar in 
time course and scalp distribution73–75. Aside from these theoretical considerations, the potentials measured on 
participant P09 resemble the shape of band-pass filtered MRCPs. Interestingly, around 1.5 s to 2 s after the go cue 
we can observe a sustained positive potential deflection in training session 1 which is absent in training session 
2. This difference in the potentials is probably due to differences in the movement strategy. Participant P09 was 
instructed to sustain the attempted movement until the end of the trial in training session 1 but not in training 
session 2. However, the majority of the EEG samples used for classifier training are from an interval before the 
deflection differences occur. The effect of the movement strategy on the evaluation outcome should be therefore 
negligible, which is also indicated by comparable classification accuracies in the two test sessions.

Interestingly, the hand open vs palmar grasp vs rest classifier had its maximum offline classification accuracy 
at ttrain = 1.875 s (session 1) and ttrain = 1.625 s (session 2), respectively. This means that the classifier found - using 
a 1.4 s long feature extraction window - the EEG samples from 0.475 s to 1.875 s (session 1), and from 0.225 s to 
1.625 (session 2) most discriminative. Thus, the classifier was trained on an interval which started just before the 
negative potential peak on Cz and also covered the following positive deflection. This differs from the classifier 
in the offline paradigm, which on average used samples symmetrically around the negative peak. However, this 
shift could have been caused by the fact that we used a non-causal filter with the offline paradigm and/or that no 
rest class was present.

In addition to the training paradigm, we also designed an online test paradigm. This test paradigm elicited 
MRCPs which are similar in morphology to the MRCPs found in the training paradigm: they show a notable 
negative deflection followed by a positive deflection on Cz. This is to be expected since a classifier detects the 
trained pattern. However, the test MRCPs have larger amplitudes than the training MRCPs. One reason for this 
could be that self-paced movements cause similar yet more pronounced potential peaks than predictably cued 
movements70. Another reason could be the detection logic based on pre and post classes. It could be that the strict 
detection thresholds – which had to be exceeded by the pre, post and movement class – only allowed the detec-
tion of very pronounced MRCPs. Furthermore, the associated topoplots are interesting as they show a broad but 
central negativity followed by a lateralized positivity. This indicates that the classifier has indeed decoded brain 
signals, i.e. MRCPs, and not movement induced artefacts. However, the test paradigm was designed for a first 
proof-of-concept and this took place in a controlled environment, to avoid external influences. Future studies 
will need to evaluate and improve the classifier’s generalization capabilities as MRCPs depend on various factors, 
like force and speed30,76, goal-directedness77, attention diversion78, or externally or internally selected movement 
types79. This generalization is essential in the process of translating the research to the practical needs of end-users.

We obtained a TPR of around 30%, with more than 3 FP/min for participant P09. TPR and FP were calculated 
regardless of the movement class (hand open or palmar grasp). Furthermore, we obtained a classification accu-
racy of 68.4%. The classification accuracy was calculated using true positives only. False positives do not coincide 
with an intention to move and would impede the interpretation of the classification accuracy. The separation of 
TPR and FP/min from the classification accuracy allows evaluation of the movement detection performance 
separately from the movement classification. The detection of movements from MRCPs, particularly lower limb 
movements, is well reported in the literature30,44,62–65,67,80. Lower-limb MRCPs-based movement detection per-
formances up to a TPR of 82.5% with FP/min of 1.38 are reported62, which are nearly 3 times better than the 
performance reached in this work. However, those results were obtained in healthy participants, and lower limb 
movements produce more pronounced MRCPs than upper limb movements81. What is novel in our work is the 
simultaneous online classification of various self-paced hand movement attempts in a participant with SCI using 
EEG. It is noteworthy that we tested our classification approach on a participant with a chronic and complete 
cervical SCI, and without any remaining hand function (AIS A, NLI C4). Thus, an intact spinal cord is not a pre-
requisite to classify movements from MRCPs. To the best of our knowledge, only a study based on MEG applied a 
related protocol for movement online classification in participants with SCI41, although this was cue-based. In this 
MEG study, two out of five paralyzed participants reached a significant and comparable classification accuracy of 
83.3% and 66.7%, respectively, on classifying hand open vs hand close movement attempts.

The participant group size in the offline analysis (n = 10) is in the range of typical BCI studies but rather 
small compared to typical medical or general neuroscience standards. While we backed up all findings with 
state-of-the-art analysis and statistics, spurious findings cannot be fully excluded. Nevertheless, the classification 
and imaging findings are consistent with the literature, which strengthens our confidence in the interpretation of 
the results. Because of the limited group size and the resulting localization error, we refrained to do an analysis of 
the difference topoplots in the source space or to discuss the origin of the signal sources in detail. Moreover, we 
would like to point out that the band-pass filter was not systematically optimized with respect to the classification 
performance but based on previous studies31,32. Furthermore, the online classifier is a proof-of-concept. Other 
classification approaches based on, e.g. recurrent neural networks or hidden markov models for time series may 
provide a better detection and classification performance. In addition, we would like to highlight that the online 
training paradigm was in fact a cue-based paradigm. The influence of the class cue has been diminished, but a true 
self-paced training paradigm could yield more authentic MRCPs and therefore a better classification and detection 
performance. Moreover, we demonstrated our online classifier with a single person with SCI, and therefore cannot 
make any predictions of the expected performance or its variance in the population of persons with SCI.

We showed that various movement attempts of the upper limb can be classified offline from low-frequency 
time-domain EEG signals in participants with SCI. Furthermore, we have introduced a proof-of-concept on how 
to detect and classify movements in quasi real-time in a closed-loop setup. While the performance of the classifier 
is probably not yet sufficient to be used for neuroprosthesis control, we were able to show for the first time the 
general feasibility of classifying different single upper limb movements in an end-user with SCI.
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Methods
Movement classification. Participants. We recruited and measured 10 participants with subacute and 
chronic cervical SCI in a rehabilitation center (AUVA rehabilitation clinic, Tobelbad, Austria). They were aged 
between 20 and 69 years and suffered their lesion 3 months to 16 years before the study. Inclusion criteria were 
legal age of 18 years and restricted hand function, whereas artificial ventilation was an exclusion criterion. 
Their neurological level of injury (NLI) ranged from C1 to C7 and their American Spinal Injury Association 
Impairment Scale (AIS) score ranged from A to D. See Table 1 and Supplementary Table 1 for details. Written 
informed consent was obtained from all participants or a witness. The study was conducted in accordance with 
the protocol approved by the ethics committee for the hospitals of the Austrian general accident insurance insti-
tution AUVA (approval number 3/2017).

Paradigm. Each of the participants sat in front of a computer screen with an arm resting on a pillow on their 
lap or on a table and they carried out the instructions given on the computer screen. At the trial start, a fixation 
cross and a beep sound were presented. We asked the participants to focus their gaze firmly on the cross which 
was displayed during the whole trial period of 5 s to avoid eye movements, see Fig. 1a. Furthermore, we instructed 
participants to avoid swallowing and eye blinking during the trial period. The class cue was displayed 2 s after 
the trial start for 3 s (i.e. until the end of the trial) and corresponded to one of 5 classes: pronation, supination, 
palmar grasp, lateral grasp or hand open (c.f. Fig. 1b). Based on the participants’ residual motor abilities (c.f. 
Supplementary Table 1), they were asked to execute or attempt the corresponding movement immediately when 
the class cue appeared. Furthermore they were asked to avoid any other movement during the current cue phase. 
If the participants were able to execute a movement, they went back to their initial rest position after the trial 
period. Between trials, a break with a random period of 1 s to 3 s followed. We recorded 9 runs with 40 trials per 
run, i.e. 72 trials per class in total.

Recording. We measured the EEG with 61 electrodes covering frontal, central, parietal and temporal areas. 
Additionally, we measured the electrooculogram (EOG) with 3 electrodes placed above the nasion and below the 
outer canthi of the eyes. Reference was placed on the left earlobe and ground on AFF2h. Signals were recorded 
using four 16-channel g.USBamps biosignal amplifiers and a g.GAMMAsys/g.LADYbird active electrode system 
(g.tec medical engineering GmbH, Austria) with 256 Hz and a band-pass filter from 0.01 Hz to 100 Hz (8th order 
Chebyshev filter). Power line interference was suppressed with a notch filter at 50 Hz.

Preprocessing. Signals were processed using Matlab R2017a (MathWorks, Massachusetts, USA) and the exter-
nal toolboxes BioSig 3.3.082 and EEGLAB 14.1.1b83,84. In short, first (1) we removed noisy channels, next (2) we 
removed stationary artefacts with ICA, we then (3) detected trials with transient artefacts, and finally (4) we 
removed stationary and transient artefacts from a narrow band EEG signal (0.3–3 Hz). It is noteworthy that we 
performed steps 2 and 3 on the EEG signal using a broader frequency range of 0.3–70 Hz to ease the detection of 
artefacts. The ICA weights were then cached and subsequently applied in step 4.

First (1), we visually inspected signals and removed channels contaminated with perceptible noise. 
Additionally, we removed by default channel AFz as it is sensitive to eye blinks and eye movements.

Next (2), we removed stationary artefacts by filtering the signals from 0.3 Hz to 70 Hz (4th order Butterworth 
zero-phase band-pass filter) and computed independent components (ICs) with the extended infomax independ-
ent component analysis (ICA) implemented in EEGLAB. We reduced the data dimensionality before computing 
the ICA with a principal component analysis (PCA) and retained principal components explaining 99% of the 
variance of the data. Furthermore, we computed the ICA only on samples with an absolute value of less than 10.4 
times the median absolute deviation (MAD)85 of a channel. MAD is robust deviation measure and the chosen 
threshold corresponds to 7 times the standard deviation for normally distributed data. We then identified the ICs 
contaminated with muscle and eye related artefacts, removed those ICs and projected the remaining ICs back to 
the original space.

Next (3), we detected transient artefacts using EEGLAB and marked trials for rejection with (1) values above/
below −100 μV and 100 μV, respectively, (2) trials with abnormal joint probabilities, and (3) trials with abnormal 
kurtosis. The methods (2) and (3) used as threshold 5 times the standard deviation of their statistic to detect 
artefact contaminated trials.

Finally (4), we removed the previously computed and artefact contaminated ICs from the original data (i.e. 
0.01–100 Hz filtered). For this purpose we applied the cached ICA weights, removed previously identified artefac-
tual components, and back-projected to the channel space. Lastly, we applied a zero-phase 4th order Butterworth 
band-pass filter from 0.3 Hz to 3 Hz as in31, and excluded trials marked for rejection from further processing.

Classification. We re-referenced the preprocessed EEG signals to a common average reference (CAR) and clas-
sified the EEG with a multiclass shrinkage linear discriminant analysis (sLDA) classifier86,87. The input to the 
sLDA classifier were the EEG samples from all low noise channels. Furthermore, we used multiple causal and 
non-causal time points of the EEG as an input to the classifier. For this purpose, EEG samples spaced in 200 ms 
intervals were taken from a time window, i.e. the feature extraction window, and fed into the classifier (here we 
tested 8 different window lengths from 0 s to 1.4 s, see Supplementary Table 3 for the feature number). The output 
of the classifier was normalized with a softmax function to obtain probabilities.

We shifted the feature extraction window along the trial in steps of 1/16th of a second, and calculated classifi-
cation accuracies aligned to the center of the feature extraction window. Classification accuracies were validated 
with a trial-based 10 × 10 cross-fold validation.
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Difference topoplots. The EEG channel layout corresponds to the 10-5 system88. Noisy channels which were 
excluded in the preprocessing step were interpolated with a biharmonic spline interpolation (griddata command 
in Matlab). We calculated the differences of the trial averaged electrode potentials for all class combinations (i.e. 
palmar grasp vs lateral grasp, hand open vs lateral grasp, etc.). Next, we computed the absolute values of all differ-
ences as we were only interested in the intensity of the differences and not in any polarity, and averaged over all 
class combinations. Finally, we averaged over non-overlapping 250 s time segments from 0 s to 3 s relative to the 
class cue. We refer to these average absolute potential differences as difference topoplots.

We found significant differences on channels and time points with a one-tailed nonparametric permutation 
test89,90 with α = 0.05. For this purpose, we shuffled class labels once for each participant and computed shuffled 
difference topoplots. The test statistic was the difference between the shuffled and unshuffled difference topoplots. 
We accounted for multiple comparisons by calculating the permutation distribution using the maximum test 
statistic over channels and time points.

Proof-of-concept of an online classifier. Paradigm. We employed two separate paradigms in the online 
classification, one to train the classifier (training paradigm), and one to evaluate the performance (test paradigm). 
The training paradigm comprises two different trial types: movement trials and rest trials. In a movement trial 
(c.f. Fig. 4a), a class cue together with a cross and a beep were displayed in the beginning of a trial. The class cue 
represented either hand open or palmar grasp. After 2 s, the class cue was replaced by the ready cue, a filled green 
circle with a smaller inner white circle. After a random time interval of 0.5 s to 1 s, the filled green circle started 
to shrink with a random speed to the size of the inner white circle in 2 s to 4 s. The participant was instructed to 
attempt the movement corresponding to the class cue when the filled green circle hit the inner white circle, i.e. the 
go cue. In session 1, we instructed the participant to attempt to open or grasp, and deliberately hold the position 
until the end of the trial, i.e. attempt a sustained movement. In session 2, we gave the instruction not to hold the 
position, but to make a short single movement attempt. In both sessions, the experimenter demonstrated the 
participant a hand open and a palmar grasp movement executed at a regular speed, and asked the participant to 
attempt to imitate these movements. The screen was then cleared 2 s later at the end of the trial. A break of 2 s to 
3 s was between trials. The other trial type was a rest trial, where a cross was shown for 70 s and the participant 
was instructed to avoid any movement during this period. We recorded 5 movement runs, each comprises 30 
movement trials, and 4 rest runs each comprises 1 rest trial. Thus, in total we recorded 150 movement trials (75 
trials per movement class) and 4 rest trials.

In the test paradigm, the class cue (hand open, palmar grasp, rest), a fixation cross, and a beep were presented 
at the beginning of a trial. The class cue was then removed at 5 seconds and a 60 s long period of movement or rest, 
followed. In the case of a rest class cue, we instructed the participant to avoid any movement during this period. In 
the case of a movement related class cue, we instructed the participant to attempt multiple self-paced movements 
of the requested movement class during the 60 s period, see Fig. 4b. Furthermore, we instructed the participant 
to report any movement attempt 2 s afterwards by a soft speech sound. The experimenter then promptly pressed 
a button on the computer to mark the time point of a movement event. However, due to a misunderstanding, the 
participant reported movement attempts immediately afterwards in session 1, which is also reflected in different 
true positive window offsets (see Section Definition of the true-positive window). Moreover the participant was 
instructed to wait at least 3 s after reporting before attempting the next movement. The online classifier was 
constantly active and showed the corresponding movement icon (hand open or palmar grasp) for 2 s whenever 
a movement attempt was detected. We then recorded 6 runs in session 1 and 5 runs in session 2. Each run com-
prised of 4 movement trials and 1 rest trial.

Online classifier and detection thresholds. Recording, preprocessing, and classification were performed in a man-
ner similar to the descriptions in Section Movement classification except that the feature extraction window and 
band-pass filter were causal and no ICA artifact removal was applied. Using the training paradigm (see Fig. 4a) 
and the previously described classifier with a 1.4 s long feature extraction window, we classified 3 classes: hand 
open, palmar grasp and rest. Rest trials were obtained by epoching the 70 s long original rest trials into 150 
trials. Thus, the number of rest trials was equal to the total number of movement trials. We then calculated the 
offline classification accuracies on the time interval 1 s to 2 s after the go cue with a 10-fold cross-validation, and 
found the time point ttrain with the highest offline classification accuracy (ttrain = 1.875 s in training session 1, 
ttrain = 1.625 s in training session 2, respectively). In addition to the 3 original movement/rest classes, we intro-
duced a pre class and a post class to increase the robustness of the classifier. The pre and post classes respectively 
detect the early and late phases of MRCPs. These phases could otherwise increase the chance of detecting a 
wrong class if the MRCPs, which are spread over time, are not yet (or are no longer) fully covered by the feature 
extraction window. The pre class and post class features were gathered for this purpose from ttrain − 500 ms and 
ttrain + 500 ms, respectively. That is, the feature extraction window was shifted by −500 ms and 500 ms relative 
to ttrain. Pre class and post class comprised features from both hand open and palmar grasp trials but no rest 
trials. The final online classifier was then trained with the classes hand open, palmar grasp, rest, pre and post. 
If the participant attempted a movement, an ideal output of the online classifier would show a peak of the pre 
class probability, followed 500 ms later by a peak of the hand open or palmar grasp class probability, and another 
500 ms later by a peak of the post class probability. See Supplementary Fig. 1c,d for examples of the trial averaged 
classifier output.

Finally, we defined 3 time windows to detect the pre, movement, and post class probability peaks. Each time 
window was specified by time length and time position relative to a reference position t0. The pre window ranged 
from −650 ms to −350 ms relative to t0; the movement window ranged from −50 ms to 50 ms; the post window 
ranged from 350 ms to 650 ms. A movement was detected when all the following conditions were met: (1) pre 
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class probability is above 0.7 for at least 150 ms within the pre window, (2) hand open or palmar grasp class prob-
ability is above 0.9 during the movement window, and (3) post class probability is above 0.7 for at least 150 ms 
within the post window. The movement class (hand open or palmar grasp) with the higher probability within 
the movement window was then eventually detected. After a detection, a refractory period of 2 s was imposed. 
Supplementary Fig. 2 illustrates the thresholds and time windows. The thresholds were set before the evaluation 
and were not subsequently changed.

Detection delay. Different causes led to a delay between the movement attempt and the detection of the move-
ment attempt. We assume that the participant started the movement attempt exactly at the go cue in the training 
paradigm. First, due to the time extension of the MRCPs, the filter delay, and the 1.4 s long feature extraction 
window, the point with the highest classification accuracy is delayed from the go cue and is given by ttrain. Second, 
we introduced a delay by our pre, movement and post window based detection logic. We provide in the following 
a conservative estimation of the expected detection delay, i.e. the average maximum delay, under the assump-
tion that the average post class classifier output is maximal 500 ms after ttrain and symmetric (c.f. Supplementary 
Fig. 1c,d). This is a reasonable assumption, since the post class is trained on data 500 ms after ttrain. For a conserv-
ative estimation, we assume that the average post class classifier output crosses the probability-threshold (0.7) 
for exactly the length of the time-threshold (150 ms, see the description of the detection logic in the previous 
section). Shorter probability-threshold crossings do not cause a detection, and longer crossings cause an earlier 
detection. The total average maximum detection delay then comprises (1) ttrain, (2) the time delay from ttrain to the 
center of the post window (500 ms), and (3) half of the time-threshold (150/2 ms; the other half is already covered 
by the previous point). Thus, the maximum detection delay between the movement attempt and the detection 
time point is on average ttrain + 500 ms + 75 ms.

It is a conservative estimation because crossings of the post window probability-threshold for longer than 
150 ms – but still centered on ttrain + 500 ms – cause earlier crossings of the 150 ms time-threshold, and therefore 
shorter movement detection delays, see Supplementary Fig. 2. An exact assessment of the average detection delay 
would require the knowledge of the exact pre, movement, and post class probability distributions in the test para-
digm which we cannot measure. Furthermore, we estimated the average of the detection delay and not the single 
trial detection delays which are not possible to determine.

Definition of the true-positive window. In order to evaluate the performance of the online classifier, we defined a 
true positive window and counted every detection within it as a true positive, and every detection outside it as a 
false positive. We set the length of the true-positive window to 2 s which allowed for a maximum of one detection 
due to the refractory period. The center of the true-positive window was set by an offset relative to the time points 
of the reported movement attempts, whereby the true-positive window should capture the assumed movement 
onset (i.e. the movement detection corrected by the detection delay). Thus, the offset should correspond to the 
average time difference between the assumed movement onset and the movement event marked by the exper-
imenter. As the offset is not known a priori (i.e. there is no ground truth regarding the start of the movement 
attempt), we employed a systematic approach to determine it. We iterated the offset from 0 s to 5 s and calculated 
for each offset value the TP/FP ratio, to which we refer as detection ratio. The offset which maximized the detec-
tion ratio was then used as the offset for a session (leading to an offset of 2.2 s in session 1 and 4.2 s in session 2). 
See Supplementary Fig. 1a,b for the dependency of the detection ratio and classification accuracy on the offset.

As a remark, the FPs in the movement trials were solely used to determine the offset of the true-positive 
window but not to determine the FP/min rate shown in the results section. The FP/min rate was determined 
exclusively from rest trials.

Data Availability
Data are available from the BNCI Horizon 2020 database at http://bnci-horizon-2020.eu/database/data-sets (ac-
cession number 001–2019) and from Zenodo at https://doi.org/10.5281/zenodo.2222268.
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Abstract
A brain-computer interface (BCI) in combination with a neuroprosthesis can be used to

restore movement in paralyzed persons. Usually, the control of such BCIs by the deliberate
modulation of brain oscillations is unnatural and unintuitive. Recently, low-frequency
brain signals have been found to encode movement information and can be used to decode
movement trajectories. These signals are potential candidates for new types of BCIs which
can be used to naturally control neuroprosthesis by imagining movement trajectories. We
analyzed the contributing brain areas in the source space and found motor areas but also
parietal and lateral areas encoding movement information.

1 Introduction

A brain-computer interface (BCI) allows the control of devices trough brain-signals. In com-
bination with a neuroprosthesis, e.g., functional electrical stimulation (FES), a BCI can be
used to restore motor functions in paralyzed persons [5]. One type of non-invasive BCIs – so
called sensorimotor rhythm (SMR) BCIs – are usually based on the deliberate modulation of
brain oscillations [7] by movement imagery (MI). However, the control of SMR-based BCIs is
not natural and intuitive, because MIs are assigned artificially to control functions (e.g., a foot
MI controls the elbow function). Furthermore, SMR-based BCIs do not decode the imagined
movement trajectories, but the general activity at sensorimotor areas during MI. As opposed
to non-invasive BCIs, invasive BCIs were already used to decode trajectories of imagined move-
ments and to control robotic arms [2, 3]. On the downside, invasive BCIs have the drawback
that they require a major surgical intervention with the risk of infection. Gratifyingly, Brad-
berry et al. [1] discovered that low-frequency electroencephalography (EEG) signals can be
used to decode executed movement trajectories, and also our group decoded 3D hand positions
from EEG signals [6]. In this work we decoded frontal and lateral hand movements from brain
sources reconstructed from the EEG. Notably, we did not trained a decoder using all sources
simultaneously and interpreted the decoder weights. This can lead to wrong interpretations as
these weights must be seen as a filter and not as a pattern. Instead, we decoded the movements
from each brain source separately and calculated the correlation coefficients with the measured
movements, and obtained maps showing the involved brain regions when decoding movements.

2 Methods

2.1 Subjects

We recruited 8 right-handed and 1 left-handed subjects who got compensated for their par-
ticipation (5 males, 4 females). Most of them had already participated in BCI experiments.
Subjects sat comfortably in a chair with their arms supported by arm rests.
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2.2 Paradigm

We recorded 3 runs. In the first run (frontal run) subjects moved their right arm in front of
them while the gaze was fixated on a cross on a screen. The second run (lateral run) was similar
to the first run, except that subjects moved their right arm laterally. In the third run (ball
run), subjects moved their right arm in front of them again, but now observed and followed
with the eyes a moving ball on the computer screen. Subjects were instructed to execute
the arm movements independently from the ball movements. In all runs, we asked subjects
to execute round, natural movements (not jaggy) with the extended right arm, and to keep
the hand closed with the thumb being on the upper side. Each run comprised of 8 65 s long
trials, with subject specific breaks between the trials to avoid muscle fatigue (usually around
1 minute). A trial started with the presentation of a cross (run 1 and 2) or a ball (run 3),
respectively, on the computer screen. Two seconds later a beep chimed indicating to the user
to start with the movement. In run 3, also a ball on the screen started to move. Additionally
to the arm movement trials, we recorded two trials where we instructed the subjects to follow
a moving ball on the screen with the eyes, but avoid any arm movement. These two trials were
used to remove the influences of eye movements from the EEG with a linear regression method
[8], and to calculate the noise covariance matrix used for source imaging (after removal of eye
movements).

2.3 Recording

We recorded the EEG with 68 passive Ag/AgCl electrodes covering frontal, central and parietal
areas, and the electrooculogram (EOG) with 3 electrodes placed above the nasion and the
two outer canthi of the eyes. Reference was placed on the left mastoid, ground on the right
mastoid. We assured that all impedances were below 5 kOhm. All biosignals were recorded with
g.USBamp amplifiers (g.tec medical engineering GmbH, Schiedlberg, Austria). We applied an
8-th order Butterworth bandpass filter with cut off frequencies at 0.01Hz and 100Hz, a notch
filter at 50 Hz, and then sampled the signals with 512 Hz. The position of the right hand was
tracked with a Kinect sensor device (Microsoft, Redmond, US). Here, the x-axis was orientated
leftward, y upward, and z backward with respect to the subject. We also recorded the electrode
positions with a CMS 20 EP system (Zebris Medical GmbH, Isny, Germany).

2.4 Preprocessing

We computed the independent component analysis for each run in the frequency range 0.3Hz –
70Hz, using the extended infomax algorithm [4], and removed independent components sus-
pected to be muscle or technical artefacts. Subsequently, we applied a zero-phase anti-aliasing
filter and downsampled data to 16 Hz for computational convenience. Then we applied a zero-
phase 4-th order Butterworth band-pass filter with cutoff frequencies interesting for decoding
at 0.2Hz and 2Hz. Afterwards, we removed influences of eye movements on the EEG with
a linear regression method [8], and removed samples exceeding a threshold of 5.9 times the
median absolute deviation (MAD) of a channel to get rid of remaining artefacts. MAD is a
robust deviation measure, and the threshold corresponds to 4 times the standard deviation
when the data are normally distributed. Furthermore, we filtered the measured positions with
the same band-pass filter as used for the EEG (i.e. 0.2Hz – 2Hz), and centered and scaled them
to a standard deviation of one. Finally, we omitted the first 5 seconds of each trial to exclude
possible existing movement onset effects.
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2.5 Source Imaging

To transform the data from the sensor space into the source space we used the software Brain-
storm [9]. We calculated the head model using the Colin27 model included in Brainstorm, and
coregistered the electrode positions. Using the head model and a noise covariance matrix, we
calculated 15028 brain sources with the weighted minimum norm estimation (wMNE) method.
The noise covariance matrix was calculated from the two trials without arm movements after
we removed eye movements from them.

2.6 Decoding

We analyzed all runs separately using a 10-fold cross-validation. For this purpose we divided
each run in segments of 10 s length and assigned these segments to train and test sets. The
decoder [6] itself comprised of 2 multiple linear regressions between a brain source (voxel) and
the 2D position in the movement plane (frontal or lateral, respectively). We used the current
time step and time lags at ca. 60, 130, 190ms of the EEG as the input for the decoder. X and
y positions were decoded in the frontal and ball runs, and y and z positions in the lateral run.
We decoded the positions from the test sets, and calculated the Pearson correlation coefficients
between the decoded and the measured 2D positions. Subsequently, we calculated the average
of the correlation coefficients across the 10 test sets. Finally, we averaged the correlation
coefficients over the movement plane dimensions, i.e. x/y or y/z, respectively. This procedure
was performed for every single voxel, and we got one correlation coefficient for each voxel, run
and subject.

To asses the chance level, we randomly permuted the coordinate segments and performed a
10-fold cross-validation as described above and repeated this procedure 50 times. Thus, we got
50 correlation coefficients for each voxel, run and subject, and then, fitted a normal distribution
to these 50 chance correlation coefficients (this is reasonable as the correlation values are usually
around 0 and not at the limits 1/-1). Subsequently, we calculated the p-values of the correlation
coefficients based on the chance level distributions.

2.7 Results

The maximum correlation coefficient reached by a subject averaged over all subjects were (mean
value/standard deviation) 0.47 ± 0.09 (frontal), 0.52 ± 0.13 (lateral), and 0.47 ± 0.10 (ball).
The corresponding chance level correlations were 0.12 ± 0.03 (frontal), 0.12 ± 0.02 (lateral),
and 0.11 ± 0.02 (ball). Figure 1 shows the subject averaged correlations of each voxel in each
run and their average over the runs. Before averaging, all non-significant correlations were set
to 0. Observable are higher correlations on the central and left motor cortex, parietal areas,
and right lateral correlations.

3 Discussion

We have successfully decoded executed movements from frontal and lateral arm movements
on a per brain source (voxel) basis. The subject averaged correlations indicate a contribution
of the primary motor cortex. This was expected, as subjects executed movements. However,
also contributions from parietal and lateral areas are observable. These contributions can
be external sources projected onto the margins of the head model. Such an external source
could be muscle activity, although muscle activity is thought to be most prominent in higher
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frontal run lateral run ball run average

Figure 1: Subject averaged correlations on a per voxel basis for all 3 runs and the average of
them. Red corresponds to the maximum value of 0.33 in the lateral run, white to 50% of the
maximum value, and correlations below 50% of the maximum are not shown.

frequency ranges. To summarize, the findings indicate that indeed brain sources carry decodable
movement information, but the measurements are potentially contaminated by external sources.
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Abstract: We investigated how the assumed hand position
of the right arm during movement imagination correlates
with brain sources. Sources were calculated from the elec-
troencephalogram (EEG) applying a brain imaging tech-
nique. We used frequencies below 1 Hz. In 4 out of 9 sub-
jects, substantial correlations on the supplementary motor
cortex were observed. This supports that decoding move-
ment imaginations could be possible and it is neurophysio-
logically plausible.

Keywords: EEG, movement decoding, movement imagina-
tion

Introduction
An important issue of tetraplegic persons is the restoration
of the upper limb functionality. The nerves in the spinal
cord are damaged and have to be bridged. For that pur-
pose a functional electrical stimulation (FES) neuroprosthe-
sis can be combined with a brain-computer interface (BCI)
[1]. In general, a BCI measures brain signals and transforms
them into control commands for devices. Here, the move-
ment imagination (MI) is detected with a BCI and trans-
formed into a real arm movement using the FES neuropros-
thesis. Sensorimotor rhythms (SMR) based BCIs can de-
tect power modulations in the mu-band accompanying MIs.
However, SMR-based BCIs detect only the process of MI
of a body part, but not the actual MI itself. As a conse-
quence, different body parts usually have to be assigned to
different neuroprosthesis movements. That means that e.g.
a foot movement is assigned to an extension of the arm. A
more natural control schema would be to decode the actual
MI (e.g. the imagined position of the arm). Recent find-
ings have shown that also low frequency time-domain sig-
nals (< 5Hz) carry movement information when execut-
ing movements (e.g. [2]). In [3] low frequency electroen-
cephalogram (EEG) components were used decode the ve-
locity of executed arm movements. However, it is still an
open question if this movement decoding can also be ap-
plied to imagined movements, and if so, which brain re-
gions are involved. In this work we investigated if decoding
of rhythmic movement imaginations is possible and which
are the underlying brain regions.

Methods
Paradigm: We recruited 9 healthy right-handed subjects
and measured the EEG during imagined arm movements.
Subjects were seated comfortably in a chair, and in front

of them was a computer screen displaying the cues. We
asked subjects to imagine natural, round (not jaggy), re-
peated, rhythmic movements from left to right and back
(transverse plane), and from bottom to top and back (sagit-
tal plane). MIs were synchronised with a metronome with
a frequency of 1 Hz. As a beat of the metronome corre-
sponded to an endposition of the arm, the frequency of the
imagined movements was 0.5 Hz. A trial started with a
short beep tone together with a cue. The cue was either
an arrow pointing right or up and was shown for 0.5 s. Sub-
sequently, a cross was shown for the rest of the trial and
subjects were asked to fixate their gaze on this cross to sup-
press eye movements. The metronome started beating 1.5–
2.5 s after the trial start and stopped 20s later, this was also
the end of the trial. We recorded 8 MI runs, each compris-
ing 5 trials per movement plane. In this work we did not
differentiate between the two different movement planes,
leading to a combined set of 80 MI trials. To remove eye
movements from the EEG with a linear regression method,
we also recorded 2 runs with deliberate eye movements.
Recording: We recorded the EEG with 68 electrodes cover-
ing frontal, central and parietal areas. Reference was placed
on the left ear, ground on the right ear. Furthermore, we
recorded the electrooculogram (EOG) using 3 electrodes.
Signals were acquired with g.USB amplifiers (g.tec, Graz,
Austria) with a sampling frequency of 256 Hz and an 8th
order Chebyshev bandpass filter with cut off frequencies at
0.01 Hz and 100 Hz and a notch filter at 50 Hz. The po-
sitions of the EEG electrodes were measured with a CMS
20EP system (Zebris Medical GmbH, Isny, Germany).
Preprocessing: To remove artefacts, we applied an inde-
pendent component analysis and removed components sus-
pected to be eye-, muscle- or technical artefacts. We also
removed remaining influences of eye movements from the
EEG with a linear regression method. For computational
convenience, we applied an anti-aliasing filter and down-
sampled data to 16 Hz. Afterwards, we bandpass filtered
the data with a zero-phase 4th order Butterworh filter with
cut off frequencies at 0.3 Hz and 0.8 Hz, thus including the
arm movement frequency of 0.5 Hz. To remove any remain-
ing artefacts, we removed samples exceeding a threshold of
4.4 times the median absolute deviation. This corresponds
approximately to 3 times the standard deviation when the
data is normally distributed. We also removed samples 1 s
before and after a detected artefact.
Analyis: We calculated the brain sources with the software
Brainstorm. Here, we used the default anatomy data based
on the Colin27 brain delivered with Brainstorm and cal-
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Table 1: This table contains the maximum absolute canonical correlations over all brain sources for all subjects.

subject s1 s2 s3 s4 s5 s6 s7 s8 s9
max abs corr 0.54 0.21 0.14 0.37 0.16 0.19 0.12 0.25 0.36

Figure 1: This figure shows the absolute canonical correla-
tions for each subject. White (highest representable value)
corresponds to a canonical correlation of 0.5 for s1, 0.4 for
s4 and s9, 0.3 for s8 and 0.2 for all others. Canonical corre-
lations below 50 % with respect to the highest representable
value are not shown.

culated the boundary element head model. Subsequently,
15028 sources were calculated from the preprocessed EEG
with the sLORETA method. The noise covariance matrix
was set to the identity matrix. We build a feature vector
for each source consisting of the current source value and
3 time delayed values with a time interval of 62.5 ms be-
tween them. Furthermore, we assumed that subjects imag-
ined movement positions corresponding to a sine oscillation
with a frequency of 0.5 Hz. Finally, we calculated for each
source the canonical correlation between the feature vector
and the sine oscillation. Here, to avoid any possible exist-
ing movement onset effects, we removed the first 2 s of MI
data, leading to remaining 18 s of MI data per trial. As the
canonical correlation builds a linear model of the indepen-
dent variables (feature vector), the method described here is
in fact the same as the position decoding described in [4].

Results

Tab. 1 shows the maximum absolute canonical correlations
of all brain sources for each subject. Fig. 1 visualizes the
absolute values of the canonical correlations of all brain
sources. White corresponds to a canonical correlation of
0.5 for subject s1, 0.4 for s4 and s9, 0.3 for s8 and 0.2 for
all others. Canonical correlations on the supplementary mo-
tor area (SMA) with the position of the rhythmic movement
imagination are observable for subjects s1, s4, s5, s8. Sub-
ject s9 shows canonical correlations on the medial part of
the motor cortex. Higher canonical correlations on the hand
area of the primary motor cortex (M1) than on the SMA are
observable for subjects s2, s6 and s7.

Discussion
We found correlations of brain sources with imagined
rhythmic movements. Those correlations were observable
on the SMA for 4 out of 9 subjects. However, we used
a standard brain anatomy which can have caused inaccu-
racies and the central correlation pattern of s9 is similar
to the ones of s1, s4, s5 and s8. Therefore, it is possible
that this pattern has to be attributed to the SMA. The SMA
is involved in motor control. Thus, these correlations are
plausible from a neurophysiological point of view. Higher
canonical correlations on the hand area of M1 than on the
SMA were observed for 3 subjects only. Furthermore, they
were always lower than 0.21. These findings suggest that in
the time-domain primarily the SMA, and not M1, provides
decodable information about rhythmic movement imagina-
tions. Due to the lack of a control condition (metronome
beat without MI), we do not know if these correlations ex-
ist also when just listening to a metronome. Indeed, [5]
reports in an functional magnetic resonance imaging study
an increased activity of the SMA during the perception of a
beat. However, that is not conclusive for time-domain cor-
relations. We have shown that rhythmic MI, synchronised
to a beat, can be decoded from neurophysiological plausible
brain sources. In the future, methods have to be improved
to allow the decoding of non-rhythmic MI with sufficient
accuracy to control neuroprotheses.
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Movement Target Decoding from EEG and the corresponding
Discriminative Sources: a Preliminary Study

Patrick Ofner1 Student Member, IEEE, and Gernot R. Müller-Putz1 Member, IEEE

Abstract— Brain-computer interfaces (BCIs) can detect
movement imaginations (MI) which can act as a control signal
for a neuroprosthesis of a paralyzed person. However, today’s
non-invasive BCIs can only detect simply qualities of MI, like
what body part is subjected to MI. More advanced future
non-invasive BCIs should be able to detect many qualities of
MI to allow a natural control of a neuroprosthesis. In this
preliminary study, we decoded movement targets during a self-
paced center-out reaching task, and calculated corresponding
spatial patterns in the source space. We were able to decode the
movement targets with significant classification accuracy from
one out of three subjects during the movement planning phase.
This subject showed a distinct spatial pattern over the central
motor area.

I. INTRODUCTION

Tetraplegic persons have lost a substantial amount of
movement functions regarding their limbs and torso. If this
loss is due to a spinal cord injury (SCI) a remedy for
hand movement functions could be the use of a brain-
computer interface (BCI) in combination with a neuropros-
thesis. The BCI detects the movement intention and the
neuroprosthesis executes the movement. Together, these two
systems would bridge the gap in the severed spinal cord.
For example, Hochberg et al. [1] and Collinger et al. [2]
showed remarkably progress in decoding movement intention
and translation into robotic movements. Their BCIs (also
called brain-machine interfaces) rely on invasive recordings
of neuronal activities. However, probably not everyone would
be comfortably with invasive recording techniques, and also
the longterm use can not be guaranteed yet. Therefore, also
non-invasive BCIs based on electroencephalographic (EEG)
recordings are researched. Furthermore, experiments can be
conducted with less effort and costs. Non-invasive EEG-
based BCIs often exploit power changes in sensorimotor
rhythms (SMR) accompanying motor imagination (MI) [3].
For example, Pfurtscheller et al. employed foot MI to restore
the lateral grasp in a tetraplegic person’s right hand [4].
Müller-Putz et. demonstrated the switching between different
lateral grasp phases [5]. Recently, [6], [7] restored hand
and elbow movement functions. However, SMR-based BCIs
detect the process of MI but not the actual MI itself. They
can detect that one is imaging a hand movement but not
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the trajectory of the hand movement. Furthermore, SMR-
based BCIs often need to rely on MI of body parts which do
not correspond to the body part in control, e.g., foot MI is
used to restore hand movement functions. Thus, these BCIs
do not decode the actual movement intention. However, the
intended movement should be close to the executed move-
ment to allow for a natural and therefore intuitive and easy
neuroprosthesis control. An alternative BCI could be based
on low-frequency EEG signals which contain movement
information about trajectories of executed movements [8],
[9]. Recently, our group showed the decoding of imagined
restricted movements [10] from EEG. However it is unclear
if this decoding can be generalized to unrestricted movement
trajectories. Low-frequency signals seem to provide also
information about movement direction or movement target,
respectively. Here, the user imagines a reach to a target,
this imagination would be decoded with a BCI and the
neuroprosthesis executes the reach. The movement intention
would correspond to the executed movement and a natural
neuroprosthesis control could be possible. The previously
mentioned trajectory decoding would give the user more
control about the neuroprosthesis as target decoding but re-
quires the decoding of more movement information from the
brain. Target decoding would need an additional controller
which generates the movement trajectory towards the target.
However that would at the same time simplify the movement
decoding problem as we need to extract less information
from the EEG, and may be at this time the only realistic
way to decode movement intentions accurately enough to
control a neuroprosthesis. Waldert et al. [11] classified self-
chosen center-out movements with a joystick; Li et al. [12]
classified movements in a delayed saccade-or-reach task;
Hammon et al. [13] demonstrated the classification of the
target location during a reach; Lew [14] predicted directions
in self-paced center-out reaching movements. All of these
publications indicate that the planning phase before the
movement onset contains decodable information at least
in low-frequency EEG signals (delta band), and may be
used to decode movement directions/targets before the actual
movement onset.

We designed a preliminary study to classify the movement
target from the EEG before the movement onset (plan-
ning phase). We employed a self-paced center-out reaching
paradigm with 4 targets. An ARMEO Spring rehabilitation
device was used to measure the position of the hand (to
determine the movement onset), and to support the weight
of the arm to avoid fatigue. For the first time in this context,
we applied a method to find the spatial patterns containing
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discriminative information [15] (as opposed to analyzing
each channel individually) and combined it with source
imaging. Analyzing discriminative sources is important to
show that movement intention has been decoded from brain
sources and not from artifacts, and to gain understanding
about movement processes in the brain. Notably, we used a
paradigm which do not caused eye movements in the plan-
ning phase and during the movement phase. Eye movements
contain low-frequency components which otherwise could
have affected our classification results. Furthermore, we took
care that the actual movement intention and not an evoked
potential due to the cue presentation was classified.

II. METHODS

A. Subjects

Three subjects participated in this preliminary study, two
of them females. Two subjects have already participated in
earlier BCI experiments. Their age ranged from 22 to 24,
and all of them haven been right-handed. All experimental
procedures involving human subjects followed the principles
outlined in the Declaration of Helsinki.

B. Paradigm

Subjects were seated in the rehabilitation device ARMEO
Spring (Hocoma, Switzerland), see Fig. 2. The ARMEO
Spring supported the weight of the subjects’ arm and pre-
vented muscle fatigue, it is basically an arm exoskeleton.
Furthermore, it allowed us to measure the position of the
hand. We employed a self-paced center-out reaching task.
Subjects moved their right arm from a resting position —
approximately 10 cm in front of the abdomen — to one of 4
targets on a computer screen. The targets were filled green
circles positioned at the edges of the computer screen. The
paradigm is shown in Fig. 1. At second 0 a target appeared
in one of the edges of the computer screen. We instructed
the subjects to immediately look at the target. Thus, eye
movements happened in a controlled way in the beginning
of a trial, and not later during the reaching phase which may
have affected the classification. Four to 5 s after the trial start
a beep sounded serving as a go cue. This relative long and
variable delay period was inserted to ensure that the signals
resulting from eye movements and possible evoked potentials
due to cue presentation have vanished. We instructed subjects
to start the reaching movements 1 to 3 s after the go cue,
i.e., subjects executed self-paced movements. When subjects
touched a virtual wall in front of the computer screen, the
target was reached and turned from green to red. Subjects
stopped the reaching movement and moved the arm back to
the resting position. The trial ended 3 s after the target was
reached. After a trial a break of 3 s followed. We recorded
4 reaching runs, each comprising of 40 trials (10 trials for
each target, randomly distributed). Thus, in total we recorded
160 reaching trials. Additionally, we recorded 3 (subject 1),
and 4 (subject 2 and 3), respectively, resting state runs, each
run comprising of one trial with 60 s. This data were used to
estimate the noise covariance matrix in the source imaging
process.

Fig. 1: The trial sequence. Subjects reached the green target
on the screen self-paced after the go cue.

Fig. 2: A subject mounted with the electrode cap and the
Armeo exoskeleton.

C. Recording

We recorded 68 EEG channels and 3 electrooculography
(EOG) channels with 5 g.USBamp biosignal amplifiers (g.tec
medical engineering GmbH, Austria). EEG channels covered
frontal, central, parietal and temporal areas, EOG channels
were placed above the nasion and below the outer canthi of
the eyes. Reference was placed on the left mastoid, ground
on the right mastoid. We applied an 8-th order Chebyshev
band-pass filter from 0.01 Hz to 200 Hz, a Notch filter at
50 Hz, and sampled the signals with 512 Hz. For subsequent
source imaging, we measured the electrode positions with
ELPOS (Zebris Medical GmbH, Germany). Movement data,
i.e., 3D position of the right hand, was recorded using a
custom made plugin for the ARMEO Spring software.

D. Preprocessing

We did a principal components analysis (PCA) on the
aggregated EEG/EOG data and retained components which
explained 99 % of the variance of the data. Subsequently,
we filtered the data from 0.3 to 100 Hz (4-th order zero-
phase Butterworth filter) and did an independent component
analysis (ICA), then we marked components suspected to be
muscle, technical or eye movement artifacts. Samples which
exceeded a threshold of 5 times the standard deviation of
the absolute value, Kurtosis or slope (moving average of
absolute value of differentiated signal) were excluded from
the PCA and ICA. The time window for calculating the
Kurtosis and slope was 0.25 s. Then we removed artifact
contaminated components from the raw (unfiltered) but PCA
compressed EEG/EOG data. Subsequently, we applied a
zero-phase anti-aliasing filter and downsampled to 64 Hz
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to reduce the computational effort. Afterwards, we applied
a 0.3 – 3 Hz 4-th order zero-phase Butterworth band-pass
filter to extract low frequency signals. To remove possible
remaining artifacts, we removed samples from the analysis
exceeding a threshold of 4.4 times the median absolute
deviation (MAD) of an EEG channel. MAD is a robust
deviation measure, and the chosen threshold corresponds
to 3 times the standard deviation when data are normally
distributed. Finally, we referenced the EEG channels using
common average reference (CAR).

E. Classification

We computed the classification accuracy within the time
window -2 s to 2 s relative to movement onset. Within this
window, we classified with a shrinkage linear discriminant
analysis (LDA) [16] each time point individually using data
from all EEG channels, i.e., only data from the current time
point were used for classification. Each target corresponded
to a class resulting in a 4 classes classification problem,
and therefore we used an one-vs-one classification strategy.
This classification strategy required 6 binary LDA classifiers
combined with a majority vote to obtain the final class.
Classification accuracies were calculated using 5×10 fold
cross-validation. We report the accuracy for each time point
as the mean value of the test sets’ classification accuracies.

To determine the movement onset, we filtered the hand
positions with a 6 Hz 4-th order low-pass Butterworth filter
and calculated the acceleration. Finally, we defined the
movement onset when the acceleration reached 400 mm/s2.
The cutoff frequency and acceleration threshold were found
empirically so that movements were detected as early as
possible without yielding a high number of false positives.

F. Discriminative Sources

It is not only interesting to see if a classification is
possible, it is also interesting to locate the brain sources
carrying the discriminative information, i.e., patterns. To
reveal the brain sources we combined sources imaging with
discriminative spatial patterns [15]. EEG channels in the
lower frequency range are usually highly correlated [10]
which prohibits a direct interpretation of the LDA classifier
weights. The weights found by the classifier must be treated
as filters and not as patterns. However, an LDA can be
performed by solving a generalized eigenvalue problem
which yields a spatial filter matrix which can be inverted to
obtain the spatial patterns [15]. A binary LDA classifier yield
only one spatial filter with discriminative information, and
therefore only one spatial pattern of interest. As we used 6
binary classifiers due to the one-vs-one classification strategy
we also got 6 spatial patterns. We took their absolute values
and averaged them to obtain the final spatial pattern. This
was done for every time point within the time-window.

To encounter the volume conduction in the head and to
increase the spatial resolution we applied source imaging
using the software Brainstorm [17]. We computed boundary
element head models with the Colin27 brain model and

Fig. 3: Subjects’ classification accuracies. Time point 0 s
corresponds to the movement onset. The dashed line depicts
the significance level.

subject individual electrode positions. Full noise noise co-
variance were estimated based on the resting state runs with
a shrinkage regularization [18]. Subsequently, we computed
5001 brain sources using standardized low-resolution brain
electromagnetic tomography (sLORETA) [19] with source
orientations constrained normally to the cortex. Finally, we
calculated the patterns as described above using all brain
sources. To cope with the high dimensionality compared to
the trial number we utilized the shrinkage approach when
calculating the spatial patterns.

III. RESULTS

A. Classification Accuracies

Fig. 3 shows the classification accuracies for all 3 subjects
for each time point, t = 0 s corresponds to the movement
onset. The significance level (based on the number of trials)
is 38 % [20] (α = 0.05, Bonferroni corrected for the
length of the shown time window). Notably, subject 2 shows
relative high classification accuracies before and around the
movement onset. Table I shows the maximum classification
accuracies reached before and after movement onset and the
corresponding times. Only subject 2 reached above chance
level accuracies before movement onset. After movement
onset all subjects reached a significant classification accu-
racy. The average times and standard deviations to reach
the targets were: 750± 147 ms (s1), 742± 111 ms (s2), and
729± 131 ms (s3).

TABLE I: Subjects’ largest classification accuracies reached
before and after movement onset.

subjects pre movement onset post movement onset
s1 33 % @ -281 ms 42 % @ 344 ms
s2 63 % @ -47 ms 73 % @ 1078 ms
s3 35 % @ -78 ms 47 % @ 1156 ms
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s1 s2 s3

Fig. 4: Patterns showing discriminative information in source
space. All patterns have the same scale, white corresponds
to the maximum value, black to zero, the units are dimen-
sionless as sLORETA yields standardized brain sources.

B. Discriminative Sources

Fig. 4 shows the subjects’ patterns at the time point when
the largest pre movement classification accuracy was reached
(cf. Table I). Here, we averaged the absolute values of the
patterns of the 6 binary classifiers. Only subject s2 shows
a distinctive pattern which is located on the left-side of the
primary motor cortex and partly on the supplementary motor
area (SMA).

IV. DISCUSSION
We demonstrated the classification of targets when exe-

cuting a self-paced reach. One subject showed a significant
classification accuracy before the movement onset (planning
phase), and all 3 subjects showed a significant classification
accuracy after the movement onset. However, relevant for
neuroprosthesis control is the planning phase: the intended
target is decoded from the EEG and the neuroprosthesis
executes the movement towards the target. In our preliminary
study only one of three subjects showed significant classifi-
cation accuracies in the planning phase. This is different to a
comparable study with a 2-class paradigm [12] where 9 of 10
subjects reached a decent classification accuracy. However,
an evoked potential due to the cue presentation may have
contributed to the extracted signal features which we have
prevented with a long and variable delay between target cue
and go cue. Also [14] obtained higher classification accura-
cies in two healthy subjects (83 % and 68 %) in a comparable
study but with reaches via a manipulandum instead of natural
reaches as in this work. A likely reason could be that in
[14] a time window has been used for the classifier input
instead of one single time point as in this work. However,
we used only a single time point for classification to analyze
the classification accuracy over time as accurate as possible.
A main contribution of our study is the demonstration of
source imaging with spatial patterns when executing reaching
tasks. Only the subject who reached significant classification
accuracies in the planning phase showed also a distinct
pattern. The pattern is located centrally over the motor cortex
which is similar to the pattern shown in [11] where subjects
moved a joystick in 4 directions, or in a work from our
group where we decoded imagined movements trajectories
[10]. The advantage of spatial patterns compared to an often
performed individual evaluation of channels is that spatial

pattern can better deal with noise and show a more accurate
picture of the real source distribution. To assess the stability
of this pattern we plan to conduct a full study with more
participants.
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ABSTRACT: A better understanding how movements are
encoded in electroencephalography (EEG) signals is re-
quired to develop a more natural control for motor neuro-
prostheses. We decoded imagined hand close and supina-
tion movements from seven healthy subjects and investi-
gated the influence of the visual input. We found that mo-
tor imagination of these movements can be decoded from
low-frequency time-domain EEG signals with a maxi-
mum average classification accuracy of 57.3±5.0%. The
simultaneous observation of congruent hand movements
increased the classification accuracy to 64.1 ± 8.3%.
Furthermore, the sole observation of hand movements
yielded discriminable brain patterns (61.9±5.5%). These
findings show that for low-frequency time-domain EEG
signals, the type of visual input during classifier training
affects the performance and has to be considered in future
studies.

INTRODUCTION

Understanding the encoding of movements in the human
brain is paramount for the development of a new and
more intuitive control of motor neuroprostheses. Our
group already restored movement function in persons
with spinal cord injury (SCI) with motor neuroprosthe-
ses [1, 2, 3, 4] based on functional electrical stimula-
tion (FES) [5, 6]. However, the control of FES via a
non-invasive brain-computer interface (BCI) is in gen-
eral unintuitive and unnatural. The BCI requires sub-
jects to learn the expression of brain patterns which can
be unrelated to the actual restored movement (e.g. imag-
ination of foot movement to control the hand). Fur-
thermore, the imagined movements are usually repet-
itive movements and not single movements. These
BCIs are usually based on sensorimotor rhythms (SMR)
extracted from electroencephalography (EEG) signals.
However, newer research suggests that more details of
movements can be decoded from low-frequency EEG
signals [7, 8, 9, 10]. Furthermore, our group decoded
six single movements (elbow extension/flexion, prona-
tion/supination, hand open/close) of the upper limb from
low-frequency time-domain signals [11]. This is of spe-
cial interest in the context of neuroprosthesis control as,
e.g., persons with SCI may then imagine or attempt one
of these single movements to control a motor neuropros-
thesis more naturally. However, as there are no overt

movements causing a change in the sensory feedback, the
visual input (here: movement observation) becomes po-
tentially more important and may have an impact on the
decoding performance. In fact, a sole observation of an-
other movement is known to interfere with the execution
of a movement [12], and affects brain rhythms [13, 14].
Furthermore, the visual system can partly substitute the
somatosensory system [15]. This point is of special in-
terest because we speculate that the decoding of move-
ments from EEG may depend on a closed loop between
the motor cortex and the spinal cord, i.e. proprioceptive
feedback may partly be responsible for the modulation of
low-frequency EEG signals which is then decoded with
a BCI. In this work, we analysed if the lack of varying
sensory feedback during motor imagination (MI) can be
partly substituted by visual input which in turn may im-
prove the classification accuracy. We hypothesize that the
simultaneous observation of hand movements which cor-
respond to imagined movements improves the classifica-
tion accuracy. As a control condition, we used abstract
visuals.

MATERIALS AND METHODS

Subjects: Seven healthy and right-handed subjects
participated in the study. They were aged between 20
and 28 years. Three of them were female. The subjects
received payment for their participation.

Paradigm:
The subjects sat in a comfortable chair in front of a hor-
izontal computer screen which was used to give instruc-
tions and visual input to the subjects. The right arm was
positioned under the computer screen (see Fig. 1). We
instructed the subjects to perform kinesthetic motor im-
agery (MI) [14] of closing the right hand (CLOSE) or
rotating the right arm (SUPINATION) while observing a
movie showing a congruent realistic or an abstract move-
ment. The realistic visual input (RVI) was pre-recorded
from a human arm performing the movements while the
abstract visual input (AVI) was an animation of a cir-
cle turning into an ellipse (see Fig. 2). The circle nar-
rowed either from the top and bottom corresponding to
CLOSE or from the left and right side corresponding
to SUPINATION. Additionally to CLOSE and SUPINA-
TION, we recorded a REST condition where we showed
a picture (realistic or abstract) instead of a movie. In
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REST subject were instructed to not perform any MI.
However, REST was not further analysed in this work.
To disentangle the effect of MI and the observation of
visual input, we employed a movement observation con-
dition. In this condition, subjects were instructed to omit
any MI while observing the movie (OBS). Thus, we had
three types of conditions: CLOSE/SUPINATION/REST
(movement condition), AVI/RVI (visual input condition)
and MI/OBS (mental task condition) (see Fig. 3). Fig. 4
shows the sequence of one trial. At the beginning of one
trial, the subjects were informed on a computer screen
whether MI has to be performed synchronously to the
upcoming movie or whether the movie should only be
observed. When the movie appeared, it immediately
started to play for 2 seconds, paused then and finally
disappeared at the end of the trial, i.e. every MI or ob-
servation lasted 2 seconds. The movie was either an
RVI or AVI type and the movement shown was either
CLOSE, SUPINATION or REST. The initial frames of
the movies were exactly the same (AVI) or indistinguish-
able (RVI). After the movie stopped playing, a 1.5 s long
idle period followed and then the trial ended. Subse-
quent to one trial, an inter-trial interval with a random
duration of 1.5 - 2.5 s followed. We used a block de-
sign to record the trials and runs. Each block exclu-
sively comprised 3 AVI or 3 RVI runs and the blocks
where arranged as follows: RVI/AVI/AVI/RVI. Before
the first RVI and AVI run, respectively, we additionally
recorded a training run. This two training runs were used
to familiarize the subjects with the paradigm and were
not further evaluated. At the beginning, middle and end
of a recording, we also recorded runs in which subjects
performed eye movements or rested. However, those
runs were not further used in this work. Each run com-
prised 11 trials per CLOSE/SUPINATION class and 5 tri-
als per REST class. Thus, in total we recorded 66 trials
(CLOSE/SUPINATION) and 30 trials (REST) for each
RVI/AVI and MI/OBS condition.

Figure 1: Subjects observed or performed MI according
to real visual input or abstract visual input. The right hand
was under the computer screen.

Figure 2: Subjects observed movements or performed MI
with real visual input or abstract visual input.

Figure 3: Types of conditions. Subjects perceived real
(RVI) or abstract visual input (AVI). They performed
MI of CLOSE/SUPINATION/REST or observed (OBS)
CLOSE/SUPINATION/REST.

Figure 4: Trial sequence. An instruction was shown at
second 0 for 500 ms to inform the subject if a MI has
to be performed synchronously to the upcoming movie
(”think”) or if the movie should only be observed (”ob-
serve”). Subsequently, a movie appeared after a random
interval and started to play.
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Recording: We recorded 61 EEG channels covering
frontal, central, parietal and temporal areas of the head
as well as 3 EOG channels placed above the nasion and
the outer canthi of the eyes. Signals were recorded with
active electrodes and biosignal amplifiers (g.tec medical
engineering GmbH, Austria) with the reference placed on
the right mastoid and ground on AFz. We applied an 8th-
order Chebyshev bandpass filter from 0.01 Hz to 200 Hz
and sampled the signals at 512 Hz. Furthermore, a notch
filter at 50 Hz suppressed line noise.

Preprocessing: First, EEG channels were visually in-
spected and noisy or defective channels were removed.
To prepare the data for an independent component analy-
sis (ICA), we band-pass filtered with a zero-lag 4th-order
Butterworth filter from 0.3 Hz to 70 Hz. Then we cal-
culated the median absolute deviation (MAD) for each
channel using data only from trials (i.e. not from inter-
trial intervals) and marked EEG samples as artefact con-
taminated if they exceeded a threshold of 7.41 times the
MAD (corresponding to 5 times the standard deviation
for normally distributed data) of the respective channel.
All samples which were not marked as artefact contam-
inated were subjected to an Extended Infomax ICA [16]
implemented in EEGLAB [17] (which was applied using
the first n principal components explaining 99 % of the
variance of the data). ICA components corresponding to
eye movements and muscle artefacts were marked as arte-
fact contaminated. The above mentioned sample-based
MAD method was solely used to detect transient artefacts
which can impair an ICA. However, for the actual clas-
sification we used EEGLAB to detect artefact contami-
nated trials with: (1) amplitudes above/below -80µV and
80µV, respectively; (2) trials with abnormal joint prob-
abilities; (3) trials with abnormal kurtosis. The methods
(2) and (3) used 4 times the standard deviation of their
respective statistic as a threshold to detect artefacts.
Finally, we applied a 0.3 Hz to 3 Hz zero-lag 4th-order
Butterworth band-pass filter the original (unfiltered) EEG
data to extract low-frequency time-domain features from
the EEG, and removed independent components and tri-
als previously marked as artefact contaminated.

Classification: We classified the two classes CLOSE
and SUPINATION in each RVI/AVI and MI/OBS con-
dition. We used a shrinkage linear discriminant analysis
(sLDA) [18, 19] and a sliding window. In more detail,
we used the time lags -200 ms to 200 ms in 100 ms time
intervals relative to the center of the sliding window as an
input to the sLDA classifier (i.e. 5 time lags). We moved
this window over the trials (from -1 s to 3 s in 62.5 ms
time steps relative to the start of the movie) and report
the classification accuracies associated to the center point
of the sliding window. The classification results were val-
idated with a 10x10-fold cross-validation at each classifi-
cation time step.

Topoplots: To calculate the topoplots, we first inter-
polated removed channels. Then, we calculated the dif-
ference between the average scalp potentials (monopo-
lar) of CLOSE and SUPINATION for each RVI/AVI and

MI/OBS condition at each time point within a trial (using
a time resolution of 62.5 ms). Afterwards, we took the
absolute value of each channel value and time averaged
over the movie period of 2 s. Finally, we averaged over
subjects.

RESULTS

Classification Accuracies: Fig. 5 shows the classifica-
tion accuracies of CLOSE vs SUPINATION for all con-
ditions. Classification accuracies were calculated from
-1 s to 3 s relative to movie start with a time resolution of
1/16 s. The significance level with respect to a single sub-
ject is 64 % (α = 0.05, adjusted Wald interval [20, 21],
Bonferroni corrected for the time duration in Fig. 5). Five
subjects exceeded the significance level between 0 s and
2 s in the RVI-MI condition, 6 in RVI-OBS, 4 subjects in
AVI-MI, and no subject in AVI-OBS. RVI yielded higher
classification accuracies than AVI, and MI yielded higher
classification accuracies than OBS, c.f. Table 1. We con-
ducted a two-way repeated measure ANOVA with 2 fac-
tors - RVI/AVI (visual input) and MI/OBS (mental task)
- and compared the classification accuracies at the time
point of maximal average classification accuracy. The vi-
sual input main effect was significant (F (1, 6) = 8.25,
p = 0.03), i.e. the classification accuracy increase be-
tween AVI and RVI was significant. The mental task
main effect (F (1, 6) = 0.79, p = 0.41) and the in-
teraction effect (F (1, 6) = 0.04, p = 0.84) were not
significant. The sphericity assumption was tested with
Mauchly’s test and was not violated (p = 0.57).

Figure 5: Classification accuracies for RVI/AVI and
MI/OBS conditions. Shown are the individual subjects’
accuracies and the grand average in bold. At second 0 the
movie started to play for 2 seconds. The horizontal solid
line is the chance level, the dashed line is the significance
level on a single subject basis.
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Table 1: Maximum average classification accuracies with
standard deviations and times relative to the movie start

RVI-MI RVI-OBS AVI-MI AVI-OBS
max acc [%] 64.1 61.9 57.3 54.4
std dev [%] 8.3 5.5 5.0 4.3
time [t] 0.69 0.81 0.94 0.50

We also analysed the classification accuracy of MI vs
OBS with RVI. For this purpose, we aggregated CLOSE
and SUPINATION trials in the RVI-MI and RVI-OBS
conditions and classified these two conditions, see Fig. 6.
The significance level with respect to a single subject is
60 %.

Figure 6: Classification accuracy of MI vs OBS with RVI.
Shown are the individual subjects’ accuracies, the grand
average in bold, the chance level (horizontal solid line),
and the significance level (dashed line).

Topoplots: Fig. 7 shows the topoplots where a promi-
nent central pattern is observable for motor imagery dur-
ing real visual input (RVI-MI).

Figure 7: Topoplots. Shown are subject averaged abso-
lute differences between the CLOSE and SUPINATION

scalp potential maps. All plots have the same scale (blue
is the minimum, red the maximum).

DISCUSSION

We showed the classification of two MIs from the same
upper limb based on low-frequency time-domain EEG
signals. Importantly, the MIs were not repetitive as in
classical SMR-based BCIs but single ones, which are
closer to ordinary movements. Furthermore, the MIs cor-
responded closely to movements which currently could
be restored with a motor neuroprosthesis [6]. Some sub-
jects reached a significant classification accuracy when
observing abstract visual input. This indicates that the
analysed imagined movements can be decoded even in
the absence of any realistic visual input. This is in line
with [22, 23], where imagined hand movements were de-
coded from the frequency-domain of EEG. Furthermore,
consistent with our initial hypothesis, the results show
that the classification accuracy can be increased when
serving realistic visual input. Perhaps by substituting
the somatosensory feedback at the somatosensory cor-
tex with forwarded input from the visual system as in
[15]. However, in our experiment there was no dedicated
phase to incorporate the observed hand in ones own body
schema.
In a practical setup, we cannot simply present realistic
visual input to improve the classification accuracy be-
cause that would require knowledge about the indented
movement before it was classified. The idea is rather to
bootstrap the classification, i.e. presenting realistic visual
input in the initial training of the classifier when no feed-
back is provided yet (open-loop). If the classifier perfor-
mance is on an acceptable performance level, the subject
can then be trained with actual feedback (closed-loop).
A principle which has been applied in invasive studies
[24, 25] with a robotic arm. However, their the idea
was rather to obtain kinematic data for decoder calibra-
tion than observing human movements. A robotic arm
is different to a human arm, however the boundary be-
tween abstract and realistic visual feedback is probably
not sharp but continuous and the robotic arm may have
been perceived similar to an human arm. Further stud-
ies could investigate if the presentation of a human hand
is advantageous to a robotic arm in the open-loop clas-
sifier training. However, in the context of motor neuro-
prostheses, movement function is restored without using
a robotic arm and this question does not arise.
Most surprisingly, the sole observation of hand move-
ments yielded classification accuracies comparable to MI
(c.f. RVI-MI and RVI-OBS). Movement observation has
been reported to modulate brain rhythms [13, 14] (with
respect to a no-movement condition). In this work, we
show for the first time (to the best of our knowledge) that
the observation of different movements of the same limb
can be decoded from low-frequency time-domain EEG
signals. In the context of motor neuroprosthesis control,
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this raises the question if the discriminability in RVI-MI
is solely due to the simultaneously observed movement.
The classification accuracies in AVI-MI indicate that a
classification is basically possible, regardless of the vi-
sual input. Furthermore, the results show that MI and
movement observation are discriminable during real vi-
sual input. However, it can not be answered in this study
whether the classification accuracy increase is (1) solely
due to movement observation or (2) whether the neural
correlate of MI is modulated by the movement observa-
tion in a way which increases the discriminable informa-
tion or (3) a combination of both. Nevertheless, the open-
loop/closed-loop training approach may still work even
when the increase of classification accuracy is solely due
to the movement observation. Thus, the impact of this
finding on the open-loop/closed-loop training has to be
investigated in forthcoming studies. If the observation of
movements has activated the mirror neuron system which
in turn facilitated the classification is debatable. Mir-
ror neurons fire only when observing meaningful move-
ments. However, in our study no interaction of the move-
ment with the environment was given, i.e. the observed
movements were non-goal-directed and should not have
activated the mirror neuron system.
The amount of discriminative information in the 4 dif-
ferent conditions is also reflected in the topoplots. The
RVI-MI topoplot shows the largest amplitude differences
between CLOSE and SUPINATION, followed by RVI-
OBS and then the two AVI conditions. The observed RVI
patterns are widespread. However, central motor areas
are pronounced the most, showing that the discrimina-
tive information is indeed encoded in brain signals. Inter-
esting is that RVI-MI has a more amplified pattern than
RVI-OBS but similar classification accuracies. This may
be due to a more stable pattern during the video sequence
(topoplots are averaged over the whole movie period as
opposed to the classification accuracies). This indicates
that the discriminative information is encoded differently
between MI and movement observation.

CONCLUSION

We show the classification of two imagined movements
of the same upper limb and show that the classification
accuracy can be increased if the movement is simultane-
ously observed in a video. Furthermore, we show that
also the sole observation of movement videos yields dis-
criminable brain patterns.
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