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Abstract

In motor racing, the behaviour of drivers and their interactions with the vehicle has a
big influence on the competitivity of racing teams. By manipulating the vehicle proper-
ties to specifically suit the driving behaviour of drivers, the adaptability and the peak
performance of the driver-vehicle interactions may be improved significantly. Common
approaches for describing driver specific properties rely on empiric knowledge which re-
quire lots of experience that is very time extensive to obtain. This thesis treats the
problem of objectively describing driving styles of professional race car drivers with
driver metrics. The validation of the metrics is done by a driver classification problem
using established machine learning algorithms. A method is presented to calculate the
theoretical maximum vehicle performance in terms of acceleration based on simulator
data. Thereupon, metrics are developed to yield information on the vehicle performance
exploitation by the drivers. The correlation to other metrics gives valuable information
regarding their performance relevance. The transferability of driver metrics among two
racing series with different vehicle classes is analyzed. Some metrics can be successfully
transferred, while others deviate among the racing series.



Kurzfassung

Im Motorsport hat der Fahrstil von Rennfahrern und deren Interaktion mit dem Fahrzeug
einen grofien Einfluss auf die Wettbewerbsfiahigkeit von Rennteams. Durch spezielle
Anpassung der Fahrzeugeigenschaften auf die spezifischen Anspriiche der Fahrer, kann
deren Anpassungsfihigkeit erhoht und mehr Potential vom Fahrzeug ausgenutzt werden.
Bestehende Ansétze zur Beschreibung fahrerspezifischer Eigenschaften basieren auf em-
pirischen Erkenntnissen, welche viel Erfahrung voraussetzen. Diese wissenschaftliche Ar-
beit behandelt das Problem der objektiven Beschreibung des Fahrstils von professionellen
Rennfahrern durch Metriken. Um die Metriken zu validieren, wird eine Fahrerklassi-
fizierung unter Verwendung etablierter Algorithmen fiir maschinelles Lernen durchge-
fithrt. Es wird eine Methode vorgestellt, welche die maximal mogliche Fahrzeugbeschle-
unigung basierend auf Simulatordaten berechnet. Darauthin werden Metriken definiert,
die Aufschluss iiber die Ausnutzung der Fahrzeugperformance von den Fahrern geben.
Zusatzlich gibt die Korrelationsanalyse mit anderen Metriken eine Aussage iiber deren
Performance Relevanz. Weiters, wird die Ubertragbarkeit von Metriken zwischen zwei
Rennserien mit verschiedenen Fahrzeugklassen analysiert. Einige Metriken konnen mit
zufriedenstellenden Ergebnissen iibertragen werden, wihrend andere Unterschiede zwis-
chen den Rennserien aufweisen.
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1. Introduction

1.1. Background and Motivation

Since the existence of mankind competitions always played a big role in the society
for entertainment purposes of the individuals. The roman empire had gladiator fights,
the medieval period used jousting tournaments for entertaining the people and since the
beginning of the 20" century, when the automotive industry started to rise, motor racing
became a fascinating discipline with machines whose capabilities amazed the people. The
more attention was given to motorsport by the society, the more it got attractive for
big automotive companies, as it is a very good advertising factor to have the fastest car
within given regulations compared to other competitors.

As the budget of companies for motorsport applications started to reach significant
amounts, also the effort invested in the research of racing performance rised significantly.
Thus, increasing the need for carrying out physical tests to validate the theoretical meth-
ods was a necessary factor to achieve the performance goal of lowering the laptimes or
increasing the travelled distance within a given amount of time. However, nowadays
the number of physical tests is decreasing which leads to an increase of virtual tests car-
ried out in computer simulations. Simulations of vehicles are already well understood.
As the computational resources are increasing continuously, the physical properties can
be modeled with a high accuracy resulting in more and more sophisticated simulations.
However, racing performance is not depending solely on the vehicle, but it is more an
interaction of the driver, the vehicle and the environment. The interactions among these
systems can be described by the principles of a control loop in control theory where the
driver is the controller which gives inputs to the vehicle. The vehicle gives then a certain
output to the environment fulfilling the driving task and furthermore, the signal is fed
back to the driver and thereby closing the loop [BTTPI17]. Thereupon, for improving
the performance, besides the vehicle also the driver and the environment have to be con-
sidered and especially their interactions with each other. The environment performance
factors are given on the properties of the track surface, impeding obstacles (traffic) and
air pressure and density, just to name some of them. Even if race track conditions are
varying continuously, the variations appear equally for all competitors. Therefore, ad-
vantages regarding the environment can only be taken by optimally timing runs, hence,
selecting the right tires regarding the conditions or avoiding impeding competitors on
qualification runs.

The drivers have a large influence on the performance of the dynamical system driver-
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vehicle-environment. Knowing the behaviour and characteristics of the drivers, the vehi-
cle can be adapted in such a way that it suits the requirements of them. This results in
facilitating the drivers control tasks as they can operate in a more natural way, without
having to focus on the driving style adaption to the vehicle. In addition, also the amount
of time needed for the adjustment to new conditions is reduced, leading to a maximized
performance. However, it is not trivial, to describe the characteristics and properties of
the drivers seperately, as they are always closely related to the driven vehicle and envi-
ronment. The driver characterization usually relies on subjective statements and needs
a big amount of experience to choose meaningful and relevant assumptions. This leads
to the need of objective descriptions of driver properties that are able to be implemented
in the virtual development process, to adapt the vehicle to the driver requirements from
the early design stages on.

The scope of this thesis lies in the extension and analyzation of an established work for a
specific racing series at BMW Motorsport which describes driving styles of race drivers
by objective criteria and proves the method with a driver classification problem. The
objective criteria should enable a track independent characterization of driving styles.
New objective criteria should be developed as well as racing series specific ones. The
transferability of the existing objective criteria to another racing series have to be proven
and compared respecting the different vehicle classes. Additionally, the application of
encroaching objective criteria should be analyzed.

1.2. State of the Art

In the second half of the 20" century, investigations about the behaviour of drivers while
fulfilling the driving task were made by the introduction of first driver models. Fiala et
al. [Fia66] contributed to this topic with first scientific publications.

In the last decades, more detailed approaches of driver models gained popularity, build-
ing the basis for recently published researches. Rasmussen et al. [Ras83] introduces
a three level approach with varying cognitive demandings of each level in a human
workflow which ranges from simple everyday repeated tasks over unexpected challenges
until rarely occured extraordinary cases. This approach initially was developed for ex-
perienced participants with a completed study phase, but established to be applicable
on different learning processes as well. Complex unexpected situations which demand
actions that were never trained by a participant lead to the level of knowledge-based
behaviour. This behaviour consists in weighting the different available acting options
for the best possible outcome, based on available or still acquirable knowledge. The
chosen acting option can then be set as rule for similar cases appearing in the future. In
contrast, the rule-based behaviour is defined for situations which already occured several
times where the participant could derive rules, based on the past outcomes of the chosen
actions. Thereupon, the acting option with the subjectively best outcome is retrieved.
The third level is defined as skill-based behaviour. It consists of knee jerk reactions based
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on a stimulation and a resulting automatically, unconsciously performed action which
has to be trained in a relative extensive amount of time. This behaviour is the most
time effective one and typical for processes which have a given routine. Even a certain
capacity for the processing of other not necessarily related secondary tasks is left over.
Rasmussen’s work relies on the principles of engineering psychology and is related to
general human workflows with goal targeted activities.

Donges et al. [Don82] developed a three level approach of the driving task from an engi-
neering point of view. The three defined levels are navigation, guidance and stabilization.
The navigational level includes the appropriate route from a given road infrastructure
while also taking an approximate time needed for the route into account. Additional
information of traffic, incidents or roadworks can be considered. In an unknown envi-
ronment, the navigation is a process of the consciously choosing actions and is therefore
correlated to the knowledge-based behaviour of Rasmussen. The main driving process is
defined in the guidance and stabilization level. The guidance consists in deriving a target
trajectory and target velocity, considering the planned driving route and the constantly
changing conditions of the traffic environment. According to the derived targets, control
actions are chosen in an anticipatory manner (open loop) to yield the best possible initial
condition with the least deviations from the targets. On the stabilization level the driver
has to take corrections on the vehicle controls to stabilize the deviations to the target
at an acceptable level. As current states are given as input information for the driver
in reference to the target, this level is considered a closed loop behaviour. Figure [1.1
represents the proposed model by Donges.

A common approach to characterize driving behaviour is to classify driving states with
machine learning algorithms according to driver inputs. Samiee et al. [SAKT14] detects
driver drowsiness states of road car driving simulator data, by using artificial neural net-
works. He uses image processing-based techniques as well as driver-vehicle interactions
to improve the robustness of the method. Arefnezhad et al. [ASENT9] classifies drowsy
and awake states using a support vector machine with statistical features of the steering
wheel angle and the steering wheel angle rate as inputs. The feature selection is based
on a combination of filter and wrapper algorithms using a neuro-fuzzy inference system.
Particle swarm optimization is applied to adjust parameters of an adaptive fuzzy system
for exploiting the accuracy of the classifier. The method is proved on 20.5h of road car
driving simulator data and shows a higher accuracy than recent available algorithms.

Kegelman et al. [KHGI7] observes the repeatability of professional race car driver per-
formance by investigating the statistical dispersion of their driven trajectories, based on
a public database from vintage race cars. He concludes that similar lap times can be
achieved by employing distinct driving styles, as driving at the limit allows a family of
solutions in terms of speed and paths.

Segers et al. [Segld] evaluates driving behaviour of race car drivers, by introducing
measures based on the performance, smoothness, response and consistency of the driver
input signals, as shown in figure [1.2 The measures are used for simple comparisons
among different drivers and to objectively detect differences between them.
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Figure 1.1.: Three level driving approach for the driving task [Don82]

Worle et al. [WGE1S] defines objective criteria of race drivers in professional motorsport,
based on their driving control inputs and on their chosen driving trajectories hence,
using the principles of the stabilization and guidance level of Donges’ method. The
algorithm automatically detects cornering maneuvers and uses pattern recognition to
find characteristic points within the corners which define the calculation intervals for
the objective criteria. To proof the method, objective criteria are supplied as features
to a random forest decision tree classifier, resulting in an average driver identification
accuracy of 77%.

Similarly, Schleinitz et al. ﬂm derives 14 manually engineered metrics from time
series data by using throttle and brake pedal interactions of race drivers in a professional
motorsport environment. Supervised learning models in form of multi layered perceptron
artificial neural networks and random forest decision trees are used for classifying drivers.
With the input data of one corner a classifier accuracy of 77% is reached. Moreover a
driver can be detected reliably over different sessions, tracks and seasons.
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Figure 1.2.: Schematic presentation of the measures used to compare drivers objectively,
adapted from [Segl4]

1.3. Overview

This chapter gives an overview of the following topics in this thesis. Four chapters or-
ganize the presented contents. First, information of the motivation and task for this
work is given with a presentation of state of the art methods relating to similar problem
formulations as in this work. In the next chapter, the methodology is presented used
to develop results from the given task. The results group an own chapter where objec-
tive descriptions of the presented data occurs and the resulting data is discussed and
interpreted.

First of all, the data recorded during racing weekends, test events and Driver-in-the-
Loop (DIL) simulator sessions is preprocessed to filter out irrelevant information. The
presented methods are only valid for drivers operating at their performance limits, there-
fore, only the fastest laps of sessions during racing events are considered for further
processing. The measures of interest are recorded with a common data acquisition sys-
tem for motor racing application. However, there are some laps with incomplete data
channels which are approximated if possible.

Next, objective criteria are developed containing only the most relevant information
regarding the description of driving styles, referred to as metrics or features. The calcu-
lation interval of the metrics, named sector, plays an important role and is defined for
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grip limited corners with applied braking. Grip limited states typically are the phases
where the most driving style related properties are requested, as the drivers have to react
the vehicle behaviour on its performance limit which is highly nonlinear. The sectors
are further divided into characteristic throttle, brake and steering points, to additionally
select the calculation interval containing the most driving style related information for
each metric. Sectors are detected and numbered subsequently and as the vehicle, envi-
ronment or driver conditions change, also the sector detection changes. Hence, the sector
counting does not always correlate to the appearance of the sector on the track. There-
upon, a sector merging algorithm is applied to reassign numbers to the sectors regarding
to their spatial position on the track. Driver behaviours are then compared directly on
specific sectors of a race track which highlights the different driving approaches.

Driver metrics are based on the throttle, brake and steering wheel signals as well as on
spatial trajectory related measures. Easy interpretable metrics are derived as gradients,
distances or duration times of the latter signals in the sector intervals and are the most
suitable to describe driving styles with the methods of this work. More abstract metrics
are based on statistical quantities of the steering wheel angle and the steering wheel
angle rate. Additionally, the statistical calculation methods are also applied for the
highpass filtered signals of the steering wheel angle and the steering wheel angle rate, to
avoid trajectory related information in these metrics. The filtered metrics show a better
performance than the trajectory related measures, but cannot reach the importances
of the metrics which are based on pedal gradients. Gear shift or energy management
metrics are developed specifically for one racing series each and cannot be applied on
the other one. Especially gearshift properties are able to distinct driver behaviour for
the corresponding racing series.

To use the advantage that every physical measure of the vehicle in data recorded during
DIL simulator sessions is available, a method is presented which determines the theo-
retical maximum vehicle performance potential in terms of acceleration. On every data
sample the absolute vehicle acceleration is maximized using the measured data as start-
ing point and starting direction for an optimizer. Further constraints are used to assure
that the vehicle is able to follow the path trajectory and to replicate the powertrain
properties with simplifications in the vehicle model. Metrics are then developed based
on the acceleration margin to the theoretical maximum absolute vehicle acceleration,
unused by the drivers. The metrics based on this method are not the most suitable for
characterizing driving styles. Nevertheless, with the acceleration being a performance
indicator, the correlation of the latter metrics to other metrics which are difficult to
classify regarding their performance relevance is of special interest.

For validation purposes, the driving style characterization problem is introduced to the
machine learning environment. Assuming that drivers have their own unique driving
styles, a random forest algorithm is used to classify drivers based on the driver metrics.
For better classification results and to limit the information amount, only the most
relevant metrics in terms of their ability to describe driving styles are kept and used
for the classifier. The metrics are first selected according to their correlation with each
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other, correlated metrics are dropped subsequently. Of the remaining metrics only the
first twenty, regarding to their importance factors derived directly from the random
forest algorithm, are kept and used for the classification method.

Driving styles are usually closely related to the driven vehicle, leading to differences for
the results of the objective criteria among the different racing series. Therupon, for
the application of the method on several racing series with different vehicle classes, the
transferability of the metrics is analyzed and a method is developed to normalize the
metric values in respect of the vehicle class in the racing series.



2. Methodology

The following chapter describes methods to objectively characterize driving styles in a
motor racing environment. Objective driving style criteria are developed and applied on
different racing series. To obtain performance relevant driving style criteria, a method
is elaborated where the theoretical vehicle exploitation regarding the maximum accelera-
tions by a racing driver is calculated. Another point of interest lies in the transferability
of the criteria among different racing series with the occurrence of different vehicle classes.
The objective driving style criteria are referred as metric or feature throughout this work.

Driving style descriptions usually rely on subjective statements. To successfully charac-
terize driving styles, timeseries data is transformed into objective criteria and calculated
in predefined sectors as described in detail in section

In motorsports, the main goal is to achieve the lowest time needed for covering a given
distance or to cover the maximum distance in a fixed time period, respecting given
boundaries, defined by specific rules of the race series. These goals correlate to the
accelerations reached by the vehicle, hence, accelerations can be seen as performance
measures. Thereupon, it makes sense to develop metrics based on the exploitation of the
vehicle acceleration as elaborated with the method of section Besides the property
of giving driving style information, correlations to other metrics are calculated which are
not trivial to interpret in terms of their performance relevance.

Assuming that each racing driver has its own distinct driving style, the ability of the
objective criteria to describe driving styles is validated by predicting drivers using no
other information than the developed criteria. The driver prediction task is approached
by machine learning which methods are explained in section [2.4.3]

The expected close relation of the driving styles to the vehicle is suspected for difficulty in
transferring driver metrics from one racing series with a specific vehicle class to another
racing series with a different vehicle class. In section a comparison of the metrics
and the driver predictions for different racing series is done and normalization methods
are introduced to adapt the metrics for a better suitability in describing driving styles
among different racing series. The racing series are referred to as racing series A and
racing series B. As a Driver-in-the-Loop (DIL) simulator is used for the drivers to train
racing scenarios, additional, valuable driving style information is gathered and used for
the method. A transferability analysis of the metrics from the real car data to DIL
simulator data is inevitable, though, and done accordingly to gain information on the
validity of the additional data in terms of the driving style description.
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2.1. Data Preprocessing

The data used in this work were recorded by different sensors mounted on the vehicle
during race weekends or testing events which consist of several sessions with several
runs for each session. The driver inputs (throttle, brake and steering wheel), vehicle
accelerations and the yaw angular velocity are the main measures used for the methods
described in this work and usually available for every run of the vehicle. Chassis side slip
angles and gearshift or recuperation pedal actuations are further measures of interest, but
were not recorded for every racing session. The usage of chassis side slip angle sensors
is not allowed during race weekends and is therefore only present for testing sessions.
The gearshift or other special pedals are only used for specific racing series, hence, these
measures are also not present in every outing. To capture driving trajectory specific
information a Global Positioning System (GPS) is used in every session for racing series
B and not allowed to use in racing series A, being therefore only available at testing
sessions.

Data recorded in DIL simulator sessions has the advantage of always containing all the
interested measures. Furthermore, data which in a real car cannot be measured with the
current state of technology, are available at DIL simulator sessions as they are calculated
by the vehicle model during the simulation.

During the vehicle runs, some recorded laps are marked by comments of special occur-
rences. The fastest laps within a run are marked as best lap. The median of all best
laps within a session is defined as a target time. Laps with higher laptimes than 105%
and laptimes lower than 95% of the target time are excluded. The thresholds are cho-
sen empirically to exclude non physical low laptimes and laps where the drivers are not
competing on their performance limit. For some sessions of racing series B, no best lap
markers are available, therefore the target time is defined as the fifth quantile of all
uncommented laps with laptimes above an empiric threshold of 40 seconds.

2.1.1. Approximation of Missing signals

Some laps have missing data channels for the path curvature x and the yaw angular
velocity ¢ which are necessary for the calculation of specific driver metrics. These
channels are approximated by other measured quantities and simple kinematic relations
from a vehicle model on a given spatial path sy as visualized in figure Furthermore,
an error analysis of the approximations is done where the results are presented in section

B.LI

The curvature k, is defined as the reciprocal of the path radius R. The radius is related
to the radial acceleration a, and the vehicle velocity v. Assuming small chassis side slip
angles [, cos 8 can be approximated by using the small-angle approximation of .
For side slip angles || < 8.1° the error is lower than one percent of the approximated
value. Using the measured lateral acceleration a, and the measured longitudinal velocity
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IC

Figure 2.1.: Exemplary single track vehicle model

vx leads then to ([2.3)).

o L_ o
R w2’

with ay = a, - cos f3,
Vx = U - COs 3
and cos 3 =~ 1,

Gy

R~
2
Ux

(2.1)

(2.2)

(2.3)

The resulting approximation can be seen in figure[2.2] where the path curvature calculated
from known GPS data is compared with the approximated calculation method from a

simulator session.

The yaw rate v, as defined by (2.4), can be approximated by assuming the chassis side
slip angle rate 8 as much smaller than the ratio % a5 follows in (2.5)) which then yields
v

10
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Approximated Curvature calculation

0.03

0.02

0.01

o

Path curvature [1/m]

-0.01

-0.02 - 4

2400 2500 2600 2700 2800 2900 3000 3100 3200
Distance [m]

Figure 2.2.: Comparison of curvature calculation methods

(2.6). Figure represents a comparison of the measured and the approximated yaw
rate in a cornering maneuver.

. Qy .

with ay = a, - cos 3 ,
Uy =V - COs 3 (2.5)

and ﬁ < &,

v
. ay

~ = 2.6
g (2.6

By using the latter approximations, a systematic error is introduced. The error propaga-
tion gets further analyzed by using a Taylor series expansion. When an arbitrary error
ex is assumed to be small, terms of higher order can be neglected leading to equation

D).

B 1 0y 1 0%y 9
y(x +e,) = y($)+ﬂ%ex+5@ex+... , 21

0
ey = ylote) —yle) = Jrex

With the errors eqosg = cos 3 — 1 and e 5= 8 of the corresponding approximations, the
error distribution of the path curvature e, and yaw rate € within a lap is determined

11
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Figure 2.3.: Comparison of measured and calculated yaw rate

by and .

€r = _or e
" S(COSB) cos (28)
er = U—}:-(cosﬁ—l),
A
veoap P (2.9)
e¢ = lﬂ

2.2. Metric Definition

In this chapter, the metric definitions for the driver classification used in this work are
presented. Before calculating metrics, the metric calculation intervals have to be defined,
which are named sectors. The sectors are automatically detected and chosen with the
subjective assumption in containing the most valuable information regarding the driving
style characterization. Then, the developed metric selection of Worle et al. [WGEIS)]
gets presented, followed by the metrics of Arefnezhad et al. [ASEN19] and Segers et al.
[Segl4]. Lastly, racing series specific metrics are presented relying on data only available
for one racing series. All the introduced metrics are used for the metric selection and
driver classification methods of section 2.4.3

12
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2.2.1. Sector Interval Definition

The driver metrics are calculated only in sectors which are considered containing the
most valuable information regarding driving style characteristics. Generally, the bound-
aries of the driver - vehicle - environment system are defined as being limited by the
power output of the vehicle powertrain, hence power limited, or by the maximum acceler-
ation capabilities of the vehicle - environment interactions, named as grip limited. Grip
limitations typically occur during cornering events where the tires are the limiting factor
in terms of the vehicle accelerations. Grip limited corners can be further divided into
occurrences of simple throttle lift-offs without braking or throttle lift offs followed by a
brake application in approach to a corner. The sectors are defined as intervals of grip
limited corners with applied braking.

The automatic sector detection algorithm observes the throttle percentage and brake
pressure signals. In the first step, extreme values of the signal are calculated as the
fifth and the 95" quantile of the signal range. Next, static intervals can be defined
where the median of all values that are five percent higher or lower than the respective
extremum value are not exceeded. Each detected interval is cut on both sides by 0.5
seconds to avoid short spikes in the signal interval. In addition, intervals smaller than
one second are not detected. The maximum static value and the minimum static value
is then defined as the median of all values within the respective static interval. Contrary
to using absolute values, this approach ignores offset and gain errors that might appear
during the data logging. Knowing the static values, characteristic driver input points
can be defined within a sector: the off-throttle and no-throttle points are defined as the
last sample satisfying equation and respectively. Similarly, the on-throttle
point is the last throttle sample below where the full-throttle point is the first
sample satisfying condition ([2.10)).

TThI‘ 2 TThrl\laxStat - 001 ! TThrMaxStat7 (2]‘0)
TThr < TThryisear T 0-01 * 7"Thrytasear (2.11)

By detecting the no-throttle point before the off-throttle point, small lift offs are not
detected. Similarly, to avoid the detection of taps on the trottle, the full-throttle point
is detected before the on-throttle point. This detection sequence improves the robustness
of the sector recognition. Contrary to the throttle signal, no static maximum is present
in the brake pressure signal. Therefore, braking events get detected if 15 percent of the
99t quantile of the brake pressure gets exceeded. From thereon the on-brake, maz-brake
and no-brake points get detected in a similar way as the throttle points. The max-brake
point is characterized by the first peak of the signal which often also represents the
maximum brake pressure within the sector. There are some sectors though where the
max-brake point is followed by a rise of the brake pressure, resulting in a different point,
representing the maximum brake pressure within the sector as appears in figure [2.5
This behaviour may already be an indicator of unique driving styles. Characterizing the
steering wheel signal needs a different approach than for the throttle and brake pressure

13
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signal. A turn-in point gets defined as the point where the integral of the steering wheel
signal reaches five percent of its extremum value. The extremum value is defined as the
maximum absolute value of the steering wheel angle between the detected throttle points.
In order to take into account the different signs of the signal at left and right turns, the
turn-in point must have the same sign as the extremum value. By this approach, steering
wheel movements induced by the driver in order to stabilize the car (typically in braking
phases) are ignored and not mistakenly defined as turn-in points [WGE1S§|. Figure
shows exemplary throttle, brake and steering points in the respective signals.

14
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Figure 2.4.: Detected throttle, brake and steering points in the driver input signals
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Figure 2.5.: Brake pressure signal with the max-brake point not corresponding to the
maximum brake pressure in the sector
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2.2.1.1. Sector-merging Algorithm

The sector detection algorithm recognizes sectors successively and might not always
detect the same amount sectors on a given race track. This may be explained by different
race situations. For example as tires wear out, a power limited corner can turn into a
grip limited one or if different drivers have a different amount of recognized sectors,
driving style differences and changing track conditions also come into effect. Observing
driver metrics on the same sectors leads to driver comparisons without track influences,
besides the changing environmental conditions. A sector merging algorithm is introduced
to identify and number the sectors according to their appearances on the track from
the start-finish line. Figure represents boxplots [MTL7§| of the successively initial
numbered sectors with the corresponding track distances. The median is shown as
horizontal red line, the first and third quartiles as a blue box and outliers as red dotted
crosses. The amount of outliers indicates that many sectors are not numbered according
to their track distances.

First, the sectors are checked for data that should belong to a farther or to a new sector.
If datapoints lie closer to the median of the next sector than to the median of the
current sector, they are reassigned correspondingly. In the next step, sectors are checked
for datapoints below two defined thresholds thqy, the and should therefore define a new
sector. The thresholds are chosen empirically in equation (2.12) and (2.13), where Z,
represents the median of the n'® sector distances, Qi the first quartile of sector n and
IQR the interquartile range of the data in sector n. For defining a new sector at least
ten percent of the datapoints from the mean of the datapoints of the other sectors must
satisfy the conditions.

thy = @n — 0.3+ (Zn — Fn_1) (2.12)
thy = Qly — 2-IQR, (2.13)

In addition, datapoints which do not satisfy the conditions for a new sector but still
lie closer to the median of the sector before, are moved correspondingly. When moving
datapoints from one sector to another, statistical quantities like the first quartile and
the interquartile range change hence the algorithm has to be iterated consecutively. For
the last two iterations the data is checked again for sectors that could not be recognized
from the previous steps. If at least ten percent of datapoints of the mean from the other
sectors lie above the upper threshold th,, a new sector is detected. @3, in equation
(2.14]) represents the third quartile of sector n.

thy = Q3n + 4-IQR, (2.14)

After the last iteration, sectors with medians that still lie closer than 50 meters to
each other are merged and datapoints farther away than 70 meters of their median are
defined as outliers and marked with a negative sector number. Negative sector numbers
are ignored for further analyzes. Figure shows the resulting sector assignment on the
same race track as figure [2.6
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2.2.2. Grip Limited Sector Metrics

The following metrics are based on grip limited corners with the defined throttle, brake
and steering points as a reference according to Worle et al. [WGEILS]. As already
mentioned, the throttle signal is indexed with the off-throttle, the no-throttle, the on-
throttle and the full-throttle points, where in the brake pressure signal the on-brake,
the max-brake and the no-brake points are marked. From the steering wheel angle the
turn-in point is defined. Table lists the metrics selected by Worle et al. [WGE1S].
The linearized gradients are defined as

y(t1) — y(to)

dPdlPhase = ,
i1 — 1o

(2.15)
where y is a placeholder for the throttle percentage rry, or the brake pressure pgri
signal. tg and t; represent the beginning and the ending of the corresponding gradient
interval. Pdl is a placeholder for the used driver pedal inputs as throttle ratio ry, or
brake pressure pp;x. Phase denotes whether the gradient gets calculated at the pedal
activation (On) or deactivation phase (Off).

As the gradient metrics represent the derivative of a linearized throttle action, a measure
for describing the validity of the assumed linearity is of interest. The Root Mean Square
(RMS) error of the linearity deviation of the throttle and the brake gradients is defined

by (1),

t1

D (W) = yin ()2, (2.16)

t=to

1
t1 — to

PdlRmseLin =

with g, as the linear approximation of the signal according to (2.17)):

y(t1) — y(to)

. 2.17
o (2.17)

Yin(t) = y(to) +

The RMS of the second derivative, rd2PdlRmse, is calculated in a similar way with the
difference of using the second derivative §j of the signal instead of the linearity deviation

as written in ([2.18)).

PdlRmseLin = 2 (2.18)

The distance metrics are denoted with s followed by the corresponding pedal and phase.
Finally, a notation is added whether the metric is calculated as an absolute measure
or relative to the entire sector distance. Time metrics are named similarly with the
exception that instead of the s a t for time is used.

The V-Angle metrics aV Curv and aV Apex rely on the manoeuvre level of the three level
driving task approach [Don82]. The curvature V-Angle aV Curv is defined as the angle
between the vectors V1 and V2. Vector V1 represents the trajectory curvature signal
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from the turn-in point to the point with the maximum curvature. Whereas Vector V2 is
defined from the point with the maximum curvature to the full-throttle point, as can be
seen in figure 2.8l In an analogous way, the V-Angle of the apex distance aV Apex can
be defined based on the distance from the vehicle to the inner track limit. The tip of
vector V1 and the shank of vector V2 are then defined as the point with the minimum
distance value (figure [2.9).

Additionally, the minimum and maximum vehicle velocities vCarMin and vCarMax
are calculated for each sector.

Table 2.1.: Metric selection by Woerle et al.

Metric Description

dr'ThrOff Gradient of linearized throttle deactivation

drThrOn Gradient of linearized throttle activation

rThrRmseLin | Deviation of linearity throttle activation

rd2ThrRmse | Root mean square error of second derivative of throttle deact.

sThrOffRel Relative no throttle distance

dpBrkOff Gradient of linearized brake deactivation

dpBrkOn Gradient of linearized brake activation

pBrkRmseLin | Deviation of linearity brake deactivation

rd2BrkRmse | Root mean square error of second derivative of brake act.

tBrkDlyAbs Time delay between throttle deact. and brake act.

sBrkRel Relative braking distance

rd2StrRmse Root mean square error of second derivative of steering signal

sTurnInRel Relative distance between off-throttle and turn-in

sTrailRel Relative distance between turn-in and off-brake

sRollRel Relative distance between off-brake and on-throttle

cMax Maximum of absolute curvature

sCurvRel Relative distance between off-throttle and maximum curvature

aVCurv V-angle of curvature from turn-in to the maximum curvature and
back to the full-throttle point

aVApex V-angle of distance to inner track limit between turn-in to minimum
distance and back to the full-throttle point

xApexMin Minimum distance to inner track limit

sApexRel Relative distance between off-throttle and apex

vCarMin Minimum velocity

vCarMax Maximum velocity
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2.2.3. Statistical Metrics

The steering behaviour of drivers contains useful information regarding driving styles. To
capture as much information as possible metrics relying on statistical theory are defined,
based on previous works on driving state detection which were used for road vehicles
[HHRHII)[SAKF14)[FYI0]. In contrast to the grip limited sector metrics (section [2.2.2)),
the statistical metrics are not calculated between specific throttle, brake or steering
points, but within entire sectors as defined in 2.2.1.1] Table lists the introduced
statistical metrics where y acts as a placeholder for the steering wheel angle agt,, the
steering wheel angle rate dgy- or the road curvature filtered signals of both quantities
asuHp, dserap- The road curvature is filtered out of the steering wheel signal by applying
a highpass filter. More precisely, a finite impulse response highpass filter is used with a
stopband frequency of 0.3Hz, a passband frequency of 2Hz and a passband ripple of 0.1Hz.
The highpass filter properties are defined empirically to remove the road curvature while
still keeping the stabilization steering wheel inputs of the driver. Figure shows
the unfiltered and the filtered signal, respectively. The pronounced extremum of the
unfiltered curvature signal shows the process of steering through a corner where in the
filtered signal only oscillations derived from the stabilization inputs of the driver can be
noticed.
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Figure 2.10.: Highpass filtered steering wheel angle signal compared to the raw signal
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Table 2.2.: Statistical metrics

Metric Description
Time domain

yAvg Average Mean value of signal

yRange Range Difference between minimum and maximum
of signal

yStd Standard deviation Dispersion of the data around mean value

yEnergy Energy Sum of the square of signal magnitude

yZCR Zero Crossing Rate Number of signal direction changes per sec-
ond

y1Quart First Quartile 25t quantile of signal

yMed Median (second quar- | 50" quantile of signal

tile) of signal

y3Quart Third quartile of signal 75t quantile of signal

yKFD Katz Fractal Dimension | Index for characterizing fractal patterns or
sets by quantifying their complexity as a ra-
tio of the change in detail to the change in
scale

ySkwn Skewness of signal Measure for signal similarity

yKurt Kurtosis of signal Measure of tailedness of the probability dis-
tribution of a random variable

yAppEnt Approximate entropy Complexity of signal in time domain based
on distance in embedding dimension

ySamEnt Sample entropy Conceptually similar to Approximate en-
tropy, but less dependend on the datasize

yShannEn Shannon Entropy Complexity of signal in time domain based
on probability function

yRenEn Renyi entropy Generalization of Shannon entropy

yMob Mobility parameter Proportion of standard deviation of the
power spectrum

yComp Complexity parameter Represents the change in frequency

Frequency domain

yFreqVar Frequency variability Variance of the frequency in the defined fre-
quency band

ySpecEn Spectral entropy Complexity of signal in frequency domain

yCogF Spectral center of gravity | Spectral centroid of the signal

yDomFreq | Dominating frequency The frequency that has maximum value of
the Power Spectral Density (PSD)

yPSDMean | Average PSD Mean value of PSD

yPSDMin Min PSD Minimum value of PSD

yPSDMax | Max PSD Maximum value of PSD
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2.2.4. Metrics Defined for a Full Lap

Similar to the statistical metrics, the metrics defined by Segers et al. [Segl4] do not
correspond to specific throttle, brake or steering points. Originally, they were calculated
in the intervall of a whole lap but can easily be applied on the grip limited sector intervals.
The metric definitions are summed up in table where r1y., prk and agty represent
the throttle position, the combined brake pressure of the front and rear axle as well
as the steering wheel angle, respectively. Some metrics share the same intention as the
metrics of Worle et al. but are defined for different intervals, namely drThrSp, dpBrkSp,
tCoast, tCrQOver. Further metrics are calculated as the means of only the positive or
negative derivative values (dpBrkAgg, dpBrkRls) and generally many definitions rely
on thresholds which have to be satisfied for the activation of the metric calculation. This
approach may lead to different results as calculating the metrics between specific pedal
points. For example the coast time metric tCoast shares a similar intention as sRollRel,
but gets activated at throttle values below ten percent of the 99*" quantile of the signal.
Thus, even when the driver is still slightly applying the pedal, tCoast is active where the
definition of coasting would imply no pedal application. In contrary, the relative rolling
distance sRollRel is calculated as the distance between the no-brake and the on-throttle
point relative to the sector length. Based on the definition of these points this interval
assures no pedal application of the drivers. However, some drivers tend to rest their
foot in coasting phases on the brake pedal which results in missing information of the
sRollRel metric. The end of a grip limited sector is defined with the full-throttle state.
Thereupon the time spent at full-throttle tThr Full will be always zero in such intervals
and the full-throttle time is only used for the comparison of different feature extraction
methods of section [2.6] and not considered for further applications in grip limited sectors.
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Table 2.3.: Metrics defined by applying Segers et al.

Metric Description
d
drThrSp mean< rThI)
dt
drrhy
drThrAgg mean < Eh > V rone > 25% and ayx > 0.2g
Gy .
rThrAccept ﬁ("gy), with ayy . = ay(rTne = 100%)
rThrMean mean(rp;)
gThrEf mean < o > , Yax>02g
TThr
b 1 1
tThrFull — , Vy>95%
t=to f S tLap
t1 1
rThrint > rhr o
t=to fs
gBrkMax min(ay)
pBrkMax max(pprk)
dpBrk
dpBrkSp mean
dt
dpp:k dpp:k
dpBrkA N4 0
pBrkAgg mean < 0t , 0t >
i1 1
pBrkInt > DBk —
t=to fS
gBrkEff mean < ox ) , Vay <—0.2g
PBrk
dpBrkRls mean dppr v dpori <0
dat )’ dt
h 1 1
tBrkOn — , YV pBrk > Hbar
t=to f S tsector
d
nStrSmooth mean< aStr>
dt
aStrMax max(|astr|)
o1 1
tStr - y v astr > 10°
t=to fs tsector
t1 1 1
aStrInt > last| = -
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cMean mean(|x|)
1 1 2
tCoast — . , YV 7rree < 10% and pgri < Sbar g
t=to fs tsector
b 1] 1
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2.2.5. Shiftmetrics

For racing Series A, a set of metrics listed in table[2.4]can be introduced which rely on gear
shift applications. The first category rdShft is based on the absolute and relative engine
speed when the driver executes a downshift. In order to not compare engine mappings
with different engine speed limiters, the relative measure is calculated by dividing the
absolute value by the maximum engine speed per lap. The maximum engine speed driven
in a lap may not always correspond to the engine speed limiter value but is assumed as
a suitable reference. Time based shift metrics tdShft are defined as the absolute and
relative time between two downshifts. The reference is the time spent in the respective
sector. To ease the downshifting process for the powertrain, throttle blipﬁﬂ are applied
automatically during the gear downshifting phase. With this technique the engine speed
is matched better to the shifted lower gear which results in a smoother engine drag torque
curve thus, a more predictible behaviour of the vehicle for the drivers. Without applying
throttle blips the rotational inertia of the powertrain parts lead to sudden increases of
the drag torque which may influence the stability of the vehicle. To analyze the brake
pedal behaviour at downshift throttle blips, the gradient of the front brake pressure is
observed at peaks in the throttle signal between the on-brake and the off-brake points
named as dpBrkBlip. Figure shows a grip limited sector with applied throttle
blips on the downshifts. Racing series B does not use gear shifts, therefore the metrics
introduced in this chapter cannot be applied on racing series B.

!Short throttle actuations during downshifting to synchronize the engine speed with the gearbox speed.
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Table 2.4.: Shiftmetrics based on racing series A

Metric Description

rdShftiAbs Engine revolutions per minute (rpm) at the point when
the driver applies the downshift paddle in order to shift
to the indicated gear; with ¢ = 1...5

rdShftAbs ‘ Mean of the downshift engine rpm of every gear

rdShftiRel Engine rpm at the point when the driver applies the
downshift paddle in order to shift to the indicated gear
relative to the maximum engine rpm of one lap; with
1=1...5

rdShftRel ‘ Mean of the relative downshift engine rpm of every gear

tdShftiAbs Time spent in the indicated gear between two down-
shifts; with ¢ = 2...5

tdShftAbs ‘ Mean of the downshift time for every gear

tdShftiRel Time spent in the indicated gear between two down-
shifts relative to the time spent in the sector; with
1=2..5

tdShftRel ‘ Mean of the relative downshift time for every gear

dpBrkBlip ‘ Mean of brake pressure gradient at throttle blip points
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2.2.6. Energy Management Metrics

In racing series B, energy saving while still maintaining fast laptimes is a key factor for
performance. Lift and coast is a technique where the driver does not brake immediately
when he lifts off the throttle approaching a corner, but lets the car coast until the brake
point is reached. Applying lift and coast at the end of long straights, generally is the
most efficient way to save energy while still maintaining low laptimes, as the time loss is
smaller if a high vehicle velocity is already present. For further energy saving, the drivers
have the ability to apply a recuperation pedal to decelerate the car while recuperating
the kinetic energy. The metrics presented in table are defined as the absolute and
relative time differences of the of the recuperation pedal or the off-throttle application
points compared to all the laps. These driver metrics cannot be applied on racing series

A.

Table 2.5.: Coast and recuperation metrics for racing series B
Metric Description

tRgnDlyAbs | Absolute time differences between recuper-
ation pedal activation points

tRgnDlyRel | Relative time differences between recupera-
tion pedal activation points with the sector
time as reference

tCstDlyAbs | Absolute time differences between off-
throttle points

tCstDlyRel | Relative time differences between off-
throttle points with the sector time as ref-
erence

2.3. Grip Optimization Algorithm

In this chapter, a method is introduced to investigate driving style characteristics on
the stabilization level of the three level driving task approach [Don82]. The goal is
to get information of the acceleration margin to the maximum capability of the vehicle.
Driver metrics are developed with this method and additionally, correlations to the other
metrics are investigated to observe the performance relevance of each metric.

The acceleration is defined as the second derivative of the driven distance by the time.
If a driver is capable of extracting more acceleration out of the car in the same direction
than another driver on the same spatial path and initial velocity, he will necessarily
achieve faster laptimes. Therefore the acceleration margin left can be seen as a direct
performance indicator.
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Dal Bianco et al. [DLGI8] formulated a laptime simulation based on a vehicle from the
GP2 racing series with a very sophisticated vehicle model including highly dynamical
effects. Besides the longitudinal, lateral and yaw Degrees of Freedom (DOF) used for
the spatial information of the vehicle, tire vertical, chassis pitch, roll and heave DOF
are included as well for the calculation of tire loads with high precision. The driving
force is modelled with a single control variable imitating the throttle and brake pedal
actuation by the driver which determines the torque distribution of the tires. Respect-
ing the dynamic angular behaviour of the wheels, the traction forces can be calculated
from the tire torques hence, additional four DOF were introduced. Summarized, 14
DOF were included into the vehicle model, seven for the dynamic tire loads, four for
the wheel angular motion and three for the spatial information of the vehicle. Addi-
tionally, the kinematic relationships between the unsuspended and the suspended mass
induced by the suspension is implemented as well as an aerodynamic map containing
the force distribution generated by aerodynamic effects depending on the front and rear
rideheights. The laptime simulation is formulated as an indirect optimal control problem
and solved with the Pins software which generally is faster than nonlinear programming
based solvers [BBB16].

Kehrle et al. [KJKSI11] developed a method to optimize the gear selection of the vehicle
in real time to provide gear recommendations for the driver in a driving simulator. The
method is based on Nonlinear Model Predictive Control (NMPC) which relies on optimal
control theory principles. An optimal control problem is formulated within a limited time
horizon to keep the computational effort relatively small which is necessary to perform
it in real time. The vehicle is modelled with three DoF describing the spatial properties
of the system. This method considers the influence of the gear selection at the driving
trajectory as the steering wheel angular velocity, the brake pedal, the throttle pedal and
the gear selection are defined as control inputs.

A laptime simulation is not suitable for the scope of developing driver metrics based on
the exploitation of the vehicle performance by the drivers, as all the spatial discretiza-
tion points are solved in a combined manner for a minimum laptime. This leads to
a mathematically best solution without considering the driving characteristics of the
drivers. NMPC is considering the driver behaviour up to a certain point, as the simula-
tion starting point is based on the driver data derived from DIL simulator sessions, but
the simulation optimization space is considering the near future of the driver without
optimizing the initial state. The method introduced in this chapter focusses on the op-
timization of data, choosing the data of the drivers as starting point and treating every
sample as an independent optimization problem. Constraints are used to assure the
driver intentions and to not loose driving style related information, as for example the
driving trajectory is considered in the optimization.
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2.3.1. Algorithm

A two track vehicle model is used to calculate the longitudinal and lateral accelerations
of the vehicle. The input state vector x;, of equation for the vehicle model comes
from simulator sessions where every needed physical quantity is available. The steering
angle §, bodyslip angle 8 and the slip ratio k,s (suffix a € r, f stands for rear (r) or
front (f) axle, while the suffix s € r,1 stands for right (r) or left (1) side) of the four tires
define the solver vector x4, presented in equation . These variables are varied
by an optimizer on every spatial sample of the recorded data with the objective to
maximize the norm of the lateral and longitudinal accelerations. Figure illustrates
the sequence of the algorithm. The direction of the resulting acceleration vector and
the angular momentum are held constant during the optimization in order to restrict
the search space of the solver and to assure the ability of the vehicle to follow the given
trajectory curvature. For simplicity reasons the slip ratios are optimized directly, instead
of modeling the powertrain and defining the throttle input as optimization variable. The
input state vector contains the following signals

Xin = W v Fzq Fzyp Fag Fa af, _ Ofy,_q Oyl Opry_q
KA e fol for A D brl D e Y Yol Yer DT Dy (2'19)

. T
T Tfr Trl Trr MEngine ?Tot do0 Bo Kfly Kfrg Rrlg Hrro] )

Xsolv = [5 ﬁ Rl Kfr Krl Krr]T s

where 1 is the angular velocity, v the resultant velocity of the vehicle, Fzys the tire loads,
Qvas, , the side slip angles of the previous sample n — 1, p,s the dynamic toe angles, bag
the half tracks, v,5 the camber angles, Dz and Dy the aerodynamic drag forces, ras the
tire radii, ngngine the angular velocity of the engine, i1, the overall gearing from engine
to tire, dp the initial steering wheel angle, By the initial bodyslip angle and k.5 are the
initial slip ratios of the tires.

The optimization process can be illustrated in an exemplary Miliken moment diagram
[MM95] shown in figure Miliken moment diagrams are created by letting the chassis
side slip angle constant and calculating the yaw moment and the lateral acceleration
resulting from the tire forces for varying steering wheel angles. Similarly the lines for
a constant steering wheel angle and varying chassis side slip angles are calculated. The
diagram is valid for a constant longitudinal acceleration. In the optimization process the
lateral acceleration moves from an initial state driven in the simulator to the boundary
of the miliken moment diagram on a horizontal line (due to the constant yaw angular
acceleration), while increasing the norm of the longitudinal acceleration (due to the
constant acceleration ratio) by varying the slip ratios and thus, the longitudinal tire
forces.
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Figure 2.12.: Flowchart of the grip optimization method
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Figure 2.13.: Miliken moment diagram of a Formula Student racing vehicle with constant
steering wheel angle (delta) and constant chassis side slip angle (beta) lines

[KL19]

2.3.2. Vehicle model

A two track vehicle model as presented in figure 2.14] with non linearized kinematic tire
relations in combination with a Paceijka Magic Formula tire model [PB92][PB12] is used
by the grip optimization method. At first the kinematic tire velocities are calculated from
the input state vector x;j, which are needed to calculate the side slip angles of the tires
according to equation and . In order to consider the dynamic behaviour of
the tires, a first order lag element for the side slip angle is introduced in . The
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dynamic side slip angle a,s, can be calculated by discretizing the dynamic equation with
a backward differencing scheme, which contrary to a central differencing scheme assures
that the solver has an influence on the dynamic side slip angle at the sample point n. The
longitudinal slip ratios get solved by the optimizer and longitudinal dynamic tire effects
are neglected in the model as they are typically much smaller than lateral dynamic tire
effects. Eventually the slip quantities are needed as input for the tire model as well as
the vertical tire loads and the tire camber angle to obtain the lateral and longitudinal
tire forces Fxmas, Fyras and the corresponding tire aligning torque M zT,s. The external
forces are calculated in (2.24]) and (2.25). With the known tire forces, aligning torques
and external forces, finally the lateral, longitudinal and angular momentum equations

can be defined (2.26[ to [2.28)).

s = ve — by -, wyrg = vy + lp - ¥,
WTTH = VT + by - Y, WYTHE = VY + I - P,

Ty = v — by - ¥, YT = vy — IR - P,

i i (2.20)
T Ty = VT + by - Y, 10y = vy — IR -V,
with vx = v - cos(8) and vy = v - sin(f),
_ |:Iva3Tas:|
IVTas =
1VYTas
TVTas = TTlas - IVTas »
(2.21)
COS0Tas —Sindmys 0
with Trpag = [sindras  cosdmas  Of
0 0 1
(o} .
4 Qas + Qas = Qstatass (222)
1UXTas
o Qas. — O

y . asnp asp—1 + Qlas, = Olstatoes
VT Tas At (2.23)

with agtat,, = L}yTaS,

T,UxTaS

Fapy = —Dy, (2.24)
Fypxe = Dya (2.25)
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m-ay = Fory-cosdm + Fary - cos oy — Fyty - sin Ol — Fyryr

Fxrq - cosdrg + Farg - cosdrg — Fyra - sindra — Fyrg: -

FﬂjEXta

m-ay = Faopy-sindm + Fory - sin Oy + Fym - €08 0 + Fyme -
-cosOrpt,  (2.27)

Fxrq - sindrpg + Forg - sindry + Fyra - cosorg + Fyre

F YExt

- 8in O+

sindrp+ (2.26)

CoS Oyr+

Jps b = lp - (Farq - sindrg + Fapg - sindpg + Fyrg - cos o + Fyre - €08 Opgr ) —
Ig - (Fapy - sin oy + Fomy - sin 0y + Fymy - €08 01y + Fymyy - €08 Oy )+
bi - (Farg - o8 O — Fytee - sin o) + by - (—Farq - cos dg + Fyrq - sindg)+
brr - (Fryy - €08 0y — Fyryr - Sindmyy) + by + (—Faqy - €08 01y + FyTy - sin 0y )+

Mzra + Mzrs + Mz + M2y

(2.28)

with m as the vehicle mass, J,, the vehicle angular inertia, ay, a, and 1/1 the longitudinal,
lateral and angular vehicle acceleration, Ir and Ig the front and rear lever from the

respective axle to the COG and d1,5 the tire steering angles.
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Figure 2.14.: Two track vehicle simplification representing kinematic relationships

2.3.3. Constraints

To ensure that the vehicle can still follow the same trajectory as the driver has intended
in the DIL simulator, the yaw angular acceleration ¢ has to satisfy equation ([2.30)).

r
R7
d
e = 5 (VR (2.29)

. 1 a-Kk+k-ar
Wy = =+ ———,
2 ay - K

Wtr =

Y = G+ B (2.30)
For simplicity the radial acceleration a,, the angular acceleration of the side slip angle

B and thus also the yaw angular accelerauon 1/) are kept constant Wlthm the constraint
calculation process, leading to constraint ( . The constraint | consists in setting
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the angle of the acceleration vector to be constant throughout the optimization process,
in order to indicate the optimization direction and limit the search space of the solver.
Limiting the search space leads to increased robustness and decreases calculation time.
As already mentioned in section the driving forces are modeled by defining the
slip ratios ks directly as optimization variables. To realistically model the powertrain
properties, constraints for the slip ratios have to be introduced accordingly: the tire
braking torque difference between the left and the right tire has to be forced constant
; the relation of the tire braking torque of the front axle to the rear axle has
to be constant as it is guided by the braking distribution which the driver sets
and lastly the driving torque has to be distributed between the left and the right tire
according to (2.34). Equation is the approximated continuously differentiable
braking distribution constraint with the cutoff property to set the front axle torque to
the offset parameter €5 if the torque of the rear axle becomes positive, as can be seen in

figure [2.15]

Ix 50 _ (2.31)
ay  ayo

Joz - (1/] - Q;Z)O) = Oa (232)
Ty — Tt — (Tho — Tio) = O, (2.33)
Trl - Trr - (Trl() - TrrO) = 07 (234)

T — (T +Ty) - bragise = 0,
' P (T4 1) - brais (2.35)

with Tt = T+ T, and T, = Ty + Ty,

tan(—e; - (Tf — 1

N Tp— (Th+To) - brae (arc an( 617T (Tt — €2)) 4 2> = 0, (2.36)

where the quantities with the suffix 0 represent the variables at the starting point of the
optimization, T,s are the tire driving and braking torques, brgist is the braking distribu-
tion and €; and € are the smoothness and the offset parameters for the approximation.

The normalization of the nonlinear inequality constraints has a big impact on the robust-
ness of the optimization. A successful normalization yields to a solver search space with
equally distributed gradients which increases the probability in finding the point with the
minimum objective function value. The nonlinear equality constraints are normalized
by the standard deviation of the following simulator signals within a lap corresponding
to the order of the constraint equations (2.31)) to : longitudinal and lateral acceler-
ation, angular acceleration, torque of the front left tire, driving torque difference of the
rear tires, torque of the front tires. Additionally, different weighting factors wy,; and wr
for the brake distribution torque constraint are introduced in and which are
activated at different vehicle states. At largely lateral cornering states with the absolute

a
acceleration ratio ]—X\ < 0.28 and the longitudinal acceleration ax < 0, wiy; is multiplied
a

y
to the constraint. For every other maneuver the torque constraint gets multiplied with
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Figure 2.15.: Braking distribution constraint violation with brqiy = 0.5 and €; = 10%,
e =0
the factor wr. The weighting values and activation conditions are chosen empirically
and improve the convergence probability significantly.
Wy = 1071 (2.37)
wr = 6 (2.38)

To limit the tire operating window inequality constraints for the tire side slip angles and
the slip ratios are set accordingly in (2.39)) and (2.40)). Equation (2.41]) assures that the
driving torque does not exceed the maximum torque available from the engine.

( Gas )2 ~1 <0, (2.39)

Qmax
P 2
(i> -1 <0, (2.40)
Rmax
Tr - TEnginemax : 'iTot S 07 (2.41)

2.3.4. Solver

The optimization is run with the fmincon solver of the MathWorks® MATLAB optimiza-
tion toolbox package [MATIS]| as it accepts nonlinear constraints for the optimization
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problem. The derivative information of the constraint and objective function is supplied
to the solver using the automatic differentiation tool ADiGator [WR17] in the MATLAB
environment. A sequential quadratic programming [BT95] solver algorithm is choosed,
as it is established for the usage of nonlinear constraints with the settings of table
to reach a fast and stable convergence rate. The stepsize tolerance of the solver vector
is set with fio1. The optimization will be stopped at a possible local minimum if the
stepsize goes below the value of the stepsize tolerance, regardless whether the first order
optimality condition is satisfied or not. The satisfaction of the first order optimality
tolerance optio indicates the presence of a local minimum. Both stopping criteria are
interpreted as a successful result, as typically a local minimum is reached if the step-
size gets smaller than the defined stepsize tolerance. If the relative constraint violation
is below its respective tolerance con, (related to the constraint violation of the first
iteration), the solution is declared as feasible. To abort the optimization process if no
optimal solution can be found, fyax delimits the maximum number of iterations.

Table 2.6.: Solver Settings for the optimization
Setting Value

Jtol 1-10~*
frnax 2-103

COMNol 1-1071
optio 1-107%

2.3.5. Performance Relevance
From the kinematic relations of a point mass travelling on a given trajectory in a polar
coordinate system the radial acceleration a, can be expressed as function of the tangential
velocity v and the given radius R in (2.42)).

ar = — (2.42)

Assuming this relation constant the velocity can be seen as the time derivative of the
distance s hence, integrating the velocity with respect to the time ¢ leads to (2.43)).

L s
dt’
T S
/vdt = / ds, (2.43)
0 0
- S
- a - R’

with S and 7, as the distance travelled and the time spent with the latter mentioned
assumptions. Eventually the approximation of small side slip angles, as already explained
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in section @ yields to a relation between the lateral acceleration ay of the vehicle and
the time as performance measure ([2.44]).

S
TS R (2.44)

Similarly a relation between the longitudinal vehicle acceleration and the time can be
elaborated with the definition of the longitudinal acceleration a, as time derivative of

the velocity ([2.45)).

dvy
ay = ——
X dt Y
t Ux
/ax dt = / duy,
0 0
ax -t = vy,

.. dsx 2.45
with E = Ux, ( )
T S

/ax-tdt = / dsy,
0 0
2.5
T = 4/—,
ax

with sy as the longitudinal distance variable.

The introduced relations state that the time is inversely proportional to the lateral accel-
eration and is inversely proportional to the square root of the longitudinal acceleration.
Hence, acceleration improvements should be prioritized for the lateral acceleration. Of
course these relations are not valid throughout an entire lap but only for a small time
interval 7 where the accelerations and the travelled distance S remain constant. Nev-
ertheless, it proves the performance relevance of variables which represent the vehicle
acceleration exploitation by the driver and therefore gives the motivation to develop
driver metrics upon these measures.

2.3.6. Metrics derived from the Grip Optimization Method

To use the grip optimization algorithm for the driving style characterization, the resulting
time series of the theoretical maximum acceleration of the vehicle ago(t) has to be
transformed to driver metrics. The ratio of the unused grip potential to the actual
acceleration of the vehicle rago(t) is defined in (2.46)). Equation defines the
absolute difference between the theoretical maximum grip and the actual grip of the
vehicle Aago,, (t), where the suffix dir € {z, y} stands for longitudinal (x) or lateral
(v) related to the acceleration direction

rago(t) = 260 (2.46)
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Aacoy, (1) = lacoy, (t) — aa(t)]. (2.47)

In table metrics are developed on the absolute and the relative integrated value of
the introduced measures. The reference time for the relative quantities is the time spent
in the sector. The metrics are split for the corresponding corner phase entry, mid or exit
as summarized in table The values tg and t; represent the beginning of the corner
phase and the end of the corner phase for the definition of the integration intervals. The
acceleration signal follows the driver inputs with a certain lag, due to the dynamic be-
haviour of load transfer transition phases. Load transfer transition phases usually occur
in the beginning of the braking application at corner entries or the beginning of the
throttle application at corner exits. In addition with the fact that the grip optimization
algorithm operates in the direction of the measured initial acceleration, acceleration mar-
gins may be defined in the wrong directions regarding the drivers intention. For example
at the beginning of the braking phase the longitudinal acceleration is still positive even
if the drivers are already applying the brakes with the aim of decelerating the vehicle.
Now the grip optimizer searches acceleration margins which would result in the positive
longitudinal direction hence, accelerating the vehicle which is not in accordance with the
drivers. This behaviour is avoided by introducing longitudinal acceleration conditions
during the metric definition: ax < 0 for the corner entry and ax > 0 for the corner exit
phase. Thereupon, only data points with the correct sign in respect to the cornering
phase are considered for the calculation of the metrics.

Table 2.7.: Corner phase split points

Corner phase Split points

to t
Entry on-brake off-brake
Mid off-brake on-throttle
Exit on-throttle full-throttle
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Table 2.8.: Metrics based on the grip optimization algorithm

Metric ‘ Description

t1 1
rGOEntryAbs > rago(t) - —
rGOMidAbs =l fs
rGOExitAbs

1 i1 1

rGOEntryRel - > rago(t) - —
rGOMidRel tsector t=to fs
rGOExitRel

t1 1
dGOLongEntryAbs | > AaGO ., (1) +
dGOLongMidAbs | =t fs
dGOLongExitAbs

t

dGOLongEntryRel L Zl AaGOy o, (1) - 1
dGOLongMidRel | ‘sector t=io Is
dGOLongExitRel

t
dGOLatEntryAbs 21: Aago,,, (1) - =
dGOLatMidAbs | =10 fs
dGOLatExitAbs

t

dGOLatEntryRel L. Zl: Aago,,, (t) - 1
dGOLatMidRel fsector 1=ty fs
dGOLatExitRel

2.3.7. Limitations

The input state vector x;, is loaded from the simulator data and remains constant within
the optimization process and the calculation for the yaw angular acceleration constraint
is based on the initial state, instead of being a function of the radial acceleration and the
side slip angular acceleration. This is a simplification of the model, as these quantities
would be a function of the solver vector entries x¢.,. However, on the other hand it
has also a positive influence on the numerical effort. Instead of modeling the entire
powertrain and giving the pedal application as solver input, the slip ratios k,s of the
four tires are supplied to the solver directly. Therefore the torque constraints mentioned
in section have to be introduced, to replicate the properties of the powertrain. The
constraints lead to difficulties in the solving process if a tire load gets close to zero,
causing variations in the tire slip quantities to have only very small influences on the
vehicle model. With this approach the angular tire dynamics are neglected completely
which may also lead to inaccuracies of the method.
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2.3.8. Validation and Error Estimation

The tire steering angles o1, are calculated with a linear ratio from the steering wheel
angle § and the tire actual toe angles u,s as an offset. In the real car the tire steering
angles may not be proportional to the steering wheel angle, but a function of many
parameters which determine the kinematic relationships of the suspension-tire system.
This results in a modeling error of the initial state es,,  which propagates through the
tire model to the lateral, longitudinal and angular momentum equations and may have
a not negligible impact on the vehicle model. The error propagation is analyzed by a

taylor series expansion in equation (2.48)), (2.49) and (2.50)).

Oay Oay

e, = 20 g 49 oo (2.48)
orA OTfr !
Oa Oa

eay — gf}l’ . eéTﬂ _|_ ﬁ . e6Tfr7 (249)
o o

€h = g Comat g e (2.50)

with ea,, €a,, e as the lateral, longitudinal and angular momentum error.

However, as not all modelling errors are known, the lateral, longitudinal and yaw angular
acceleration calculated from the grip optimization vehicle model are directly compared
to the vehicle model from the DIL simulator in section [3.2.3

2.4. Metric Selection

The metrics with the most relevant information according to their ability to distinct
driving styles have to be selected. It is important to know the relevance in combination
with the meaning of the metrics when it comes to analyzing drivers for their performance.
Furthermore, classification algorithms, as the one presented in section [2.4.3] generally
show higher accuracies if they are not feeded with nonrelevant information. Thus, only
the most important metrics in terms of driving style classification are used.

First, the amount of Not a Number (NaN) values in the driver metrics is determined. If
a metric contains more than ten percent NaN it gets removed for the driver classification.
Then, a correlation matrix is generated to avoid using metrics that have a high correlation
with each other. High correlated metrics show a similar importance for driving style
classification, while decreasing the overall importance of them. The F-values of an
Analysis of Variance (ANOVA) are used to get information about the relative variance
of the metrics and the importance factors of the driving style classification algorithm are
determined. These methods are applied recursively as each feature selection measure
is dependend on the set of features used in the method [GWBV02]. On the combined
information of these methods finally the most relevant metrics are selected.
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2.4.1. Correlation Analysis

In general, the Pearson correlation describes measures of the linear dependency of two
random variables that are defined by using the mean ua, pug and standard deviation op,
op of variable A and B accordingly to (2.51) [CDO03].

oA B) = — - (Ai_“A) (Bi_“B> (2.51)

N -1 OA OB

i=1

For the Spearman correlation, the rank rg of the variables is used instead of the direct

variable as in (2.52)).

(A B) = % Z <7‘9(Ai) - Mrg(A)> <T9(Bi) - Mrg(B)> (2.52)

i=1 Urg(A) Jrg(B)

As a result, the Spearman correlation determines the strength and the monotonic re-
lationship between two variables, instead of the strength and direction of the linear
relationship as the Pearson correlation does [HKII].

Given the correlation coefficients among the metrics, a correlation coefficient matrix
R € R?*2 in (2.53)) can be calculated, in order to get a better information representation
with a correlation coefficient range from minus one (inversely correlated) over zero (not
linearly correlated) to one (correlated).

psEAv A) ps(Aa B)

R =
Ps BaA) pS(BvB)

(2.53)

If a metric can not be calculated in a specific sector the metric gets the value NaN. As
these NaN values cannot be used for the correlation analysis the affected entire sectors get
neglected. In addition, metrics with more than 50 percent NaN values are not considered
for the analysis.

Metrics that show a correlation higher than an empirically defined critical correlation
of perit > |0.85] are removed from the classification task. The metrics with the higher
importance factor according to section is kept.

2.4.2. F-Value in ANOVA

The F-value of ANOVA gives an indication if the variance between the means of two
populations is significantly different [Arc94]. Generally it can be defined as the ratio
of the variance between the class means to the mean of the within class variances, see
equation , where in the case of driver classification the different drivers represent
a class. This means that higher F-values in the driver class indicate a better suitability
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for metrics to distinct drivers and thus driving styles.

between-group variability

F =
within-group variability
K
2 iy — py)?/ (K —1) (2.54)
F ==

)

§1<yu — )2/ (N = K)
P2

[Nk

=1

where nj is the amount of metric values in the i*" group, [y, is the mean in the ith group,
K denotes the number of groups, y;; is the 4% value in the i*" group and N is the overall
amount of data.

In addition, for further observations of track dependencies of the metrics, the F-values
of the track class are calculated. This gives information of how a metric variates among
different race tracks for all drivers. If metric values for a specific driver do not variate
among tracks, they may be able to describe driving styles independently.

2.4.3. Driver Classification based on a Decision Tree Approach

Driving styles show extensive properties with patterns that are difficult to describe man-
ually by mathematical relations. Hence, pattern recognition approaches may be used to
handle the problem of driving style distinction. In addition, the categorization of driv-
ing styles is rather complex and investigations are mainly based on subjective measures.
For the task to objectively distinguish driving styles it is assumed as a first benchmark
that every driver has an individual driving style. Thus the problem can be formulated
by classifying drivers. A Machine Learning algorithm is applied is used for recognizing
distinctive patterns in the data derived by the driver inputs.

Convential programming has a simple goal, namely automation. A traditional program-
mer would provide the computer program in collaboration with an input to produce
a certain output. This approach would only be successful if a mathematical formula
could be derived in order to solve a given problem. Machine Learning is characterized
by automating the process of automation and takes input and output data to create a
program itself. It breaks the approach of conventional programmers and works even if it
is not possible to formulate a mathematical principle, by repeatedly recognizing patterns
and developing its own algorithms as the input data changes [SAS19].

The random forest method which is used in this work relies on principles of decision
tree algorithms. Decision trees logically combine a sequence of simple tests comparing
numeric attributes against threshold values in order to split data recursively. The split
points are named nodes, where the topmost nodes are referenced as root and the ter-
minal nodes as leaves. Each leave represents a classification label that is used to make
the prediction. Such symbolic classifiers are relative comprehensible. The logical rules
followed by a decision tree rely on simple, easy interpretable principles for the decision
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makers and thus improve the understandability of the model [Kot13]. Since a decision
tree can implement boolean functions, there is a danger of overfitting: If the training set
is not sufficiently large, there will still be too many consistent functions to make useful
predictions on the training set. Overfitted models show poor generalization performance,
thus the model might be not able to make successfull predictions based on new patterns
that were not used to build the decision tree [Nil96].

In order to build a decision tree model an optimization algorithm is used to maximise
the decrease of an impurity measure Air(st,tr) for each node ¢ and split st in the
tree T' according to equation [LWSG13]. As criteria for node impurity the Gini
Index g; is applied [Moi08]. Feature importance measures can be introduced as the Mean
decrease in Gini, which is defined as the total decrease in node impurity weighted by
the probability of reaching that node. The node probability is approximated by the
proportion of samples reaching the corresponding node [LWSG13]. The mean decrease
in gini of a feature is dependent on all the other features in the training set and may
vary if different features are used for the model [GWBV02].

Air(st,tT) = i7(tT) — pr ir(tr) — PR iT(tTR),

with ip(tv) = gi(tr), (2.55)
N, N,
and py, = T;:L PR = Tﬁtm
T T

where Ny, represents the sample size at the node tT and Ny, Ny, the sample size of
the splitted partition at the node.

The Mean decrease in Gini is primarily used in the construction phase of the Decision
Tree but may also be utilized as an approximation for the importance of the metric for
a classification task.

Random forests are a type of ensemble method, where each tree is trained in isolation and
the predictions of several decision trees are combined using bagging. Bagging is a method
for generating multiple versions of a predictor and using these to get an aggregated
predictor. The aggregated predictor is given by averaging the base versions and in order
to predict a class, a plurality vote is done [Bre96]. Due to the controlled injection of
randomness and the strong law of large numbers, random forests always converge so that
overfitting is not a problem in contrary to Isolate Decision Trees [Bre01]. The application
of the method is done with the ranger package of the programming language R [R_C19]
and R Studio Integrated Development Environment [RSt18]. It is a fast implementation
of random forests for high dimensional data and the package is already studied and
validated with success by Wright et al. [WZ17).
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2.5. Metric Transferability

2.5.1. Transferability from real Car to Simulator

In order to use simulator data for the methodology of this work, the application and
specifically the transferability of the metrics from real car to DIL simulator data is
studied. Histogram probability distributions, F-values and decision tree importance
factors are compared among the data of both racing series.

2.5.2. Transferability between Racing Series

For the application of the driver metrics on more racing series with generally different
vehicle classes, differences in the histogram distributions, F-values and decision tree
importance factors are analyzed. In table a short overview of the vehicle properties
of the two racing series is given. Vehicle class A is characterized by high power to
weight and high downforce properties with slick tires made for driving on wide racing
circuits. Whereas vehicle class B is pronounced by a relatively low power to weight ratio,
a chassis with a low downforce low drag concept and grooved tires. Racing series B is
mainly competing at tight street circuits with corners of high curvatures. Energy saving
plays a big role in racing series B while in racing series A generally enough energy is
available.

Table 2.9.: General relative vehicle concept differences for the corresponding racing series

Module Racing Series Vehicle properties
Powertrain A High power to weight ratio with a
characteristic driving torque curve
B Low power to weight ratio with a

more constant driving torque

Aerodynamics A High downforce concept with asso-
ciated high drag
B Low downforce concept with low
drag
Tires A High peak friction coefficient with
high tire slip stiffness
B Lower peak friction coefficient with

lower tire slip stiffness

Energy A Sufficient energy available, energy
saving not needed primarily
B High priority on energy manage-
ment
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The consideration of the driver-vehicle-environment interaction as a closed loop system
implies that the driving style strongly depends on the driven vehicle. To compare driver
characteristics of racing series B with racing series A, the metrics must be transferred to
the corresponding vehicle class. A transfer offset ¢ fietric is introduced for each metric as
the median of the metric values from racing series A o subtracted by the median of the
metric values from racing series B yg. The offset of is then added to the metric
values of racing series B where y represents a specific metric.

tfmetric = QA - gB (2.56)

For the metrics of table 2.10] other definitions are used for the normalization across the
racing series. The gradient of the linearized throttle activation is normalized by multiply-
ing the maximum power output of the powertrain related to the vehicle mass, resulting in
drThrOnNorm. As the brake pressure depends on the respective vehicle, the linearized
brake activation and deactivation gradients are divided by the maximum brake pressure
of the corresponding sector (dpBrkOnNorm, dpBrkO ffNorm). The vehicle of racing
series B has the possibility to recuperate energy instead of braking conventionally by
dissipating energy with the mechanical braking system. In order to decelerate the vehi-
cle with the focus on saving energy, drivers would practice lift and coast followed by the
application of the recuperation pedal. Followingly, if more deceleration is necessary than
the recuperation system can deliver, the mechanical brakes are actuated subsequently.
The intention of the metric sBrkRel and tBrkDIlyAbs is to capture the deceleration
with the brake pressure signal that for racing series B is not necessarily correlated with
the deceleration phase. Thus for the normalization of the latter metrics they are defined
on the recuperation pedal actuation if a recuperation actuation is recognized, otherwise,
the original definition with the on-brake point detection as activation condition is used.

Table 2.10.: Specific normalized metrics
Metric Description

drThrOnNorm drThrOn - Penginepax /M
dpBrkOnNorm | dpBrkOn - 1/max(ppk)
dpBrkOffNorm | dpBrkOf f - 1/max(pp.k)

sBrkRgnRel Relative distance between on- and off-brake points or if the
recuperation is actuated relative distance between recuper-
ation actuation and off-brake points

tBrkRgnDlyAbs | Time delay between off-throttle and on-brake points or if
the recuperation is actuated time delay between off-throttle
and recuperation actuation points
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2.6. Comparison of Feature Extraction Methods

As machine learning methods are used for the driver prediction, it is important to provide
the algorithm with only the most significant information measures (features) with respect
to the required task (see section . Therefore, the feature calculation intervals must
be chosen with care and three different feature extraction methods are compared with
each other in this chapter.

Arefnezhad et al. [ASEN19] defines features using sliding windows with a constant width
of three seconds and 50 percent overlap for identifying driver drowsiness states for road
car drivers. The features of section based on the steering wheel angle and the
steering wheel angle rate are used. Before calculating the features from the steering
wheel angle, the signal gets filtered from the road curvature by subtracting the mean
of the signal within a sliding window of the raw signal. However, racing car drivers
usually have a very high bandwidth for their control inputs compared to common road
car drivers. This leads to a higher steering wheel activity and a higher information
density in the signal. Thereupon, a highpass filter is applied for the filtering of the road
curvature from the steering wheel angle, instead of subtracting the mean of the signal
within a sliding window. The highpass filter properties (explained in section are
defined empirically to remove the road curvature while keeping the information of the
stabilization effects which typically occur in braking maneuvers.

Segers et al. [Segl4] calculates features with a more practical meaning for driving styles
in racing application and many of them are similar to the features defined by Worle et
al., presented in section The features are calculated in the interval of entire laps.

The aforementioned feature extraction methods are directly compared to the method
of Worle et al. [WGEIS|. He uses grip limited sectors as metric calculation intervals
which is the foundation of the method elaborated in this work and further explained in
section For the comparison, the features originally used in the feature extraction
methods of Arefnezhad et al. and Segers et al. are applied directly on grip limited sector
intervals.
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The following chapter contains the results of the methods elaborated in this work. First,
information about the database on which the methods are applied is given, followed by
the error propagation of the introduced approximations. Next, the results of the grip
optimization algorithm are presented including the derived driver metrics. An in depth
analysis of the metrics calculated from the different racing series is illustrated includ-
ing the results from the driver classification problem. Furthermore, the transferability
analyzes of the metrics among the racing series and the data sources (real car or DIL
simulator) are represented. The chapter is concluded by the results of a comparison of
different feature extraction methods.

3.1. Database

The biggest part of the data was gathered from racing series A. During three seasons
16840 laps were recorded of ten different drivers competing at 28 race weekends where
each consists of three free practices, two qualifyings and two races (figure . The
races were held at ten different race tracks. For racing series B 1096 laps are available,
recorded during two seasons with 17 race weekends consisting of two free practices, one
to two qualifyings and one race for four different drivers (figure [3.2). The least amount
of data is derived from DIL simulator sessions for racing series A (figure . Twelve
DIL events and four additional events for a dissertation project with five different drivers
lead to further 1374 laps which are analyzed for this work. No race track information is
available for DIL simulator sessions.
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3.1.1. Approximation of Missing signals

The approximations introduced in section [2.1.1] generate errors in the corresponding
signals. For small chassis side slip angles the approximation cos 5 = 1 is applied which
results in an error with a maximum of ecos -1 = —3- 103 at high chassis side slip angles,
as can be seen in figure Typical values of the mean and standard deviation of the
chassis side slip angle during a lap are pug =~ 0.25° and o3 ~ 1.31°. The approximation
influences the calculation of the path curvature in figure with a maximum error of
ex = 6-107%[1/m]. The mean of the relative error between the two calculation methods
is fte, &~ —0.006[1/m] and the standard deviation equals o, &~ 0.099[1/m]. The yaw
angular velocity is approximated by assuming the chassis side slip angle 5 to be constant
wich leads to a chassis side slip angle rate 3 of zero. Hence, the yaw angular velocity is
determined by the curvature of the driven trajectory. The yaw velocity error equals the
chassis side slip rate (ﬁgure and the mean of the relative error is fhe; ~ —0.013°/s and
the standard deviation equals .. ~ 0.599°/s. It can be seen that all the error maxima
lie in areas with high chassis side slip angles. The yaw angular velocity approximation
has a relatively big maximum error of €)= +20° /s compared to the exact measure, but
is also the quantity with the least amount of missing data.
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3.2. Grip Optimization Algorithm

The results from this chapter are based on DIL simulator data of five drivers recorded
during one season for racing series A. First the results of the grip optimization method
(section are presented, followed by metrics defined on these quantities. Next, a
validation and error analysis is done, to evaluate the used vehicle model. The chapter is
concluded with a discussion on the results.

3.2.1. Results

The grip optimization method yields the theoretical maximum vehicle performance in
terms of acceleration. Figure illustrates the resulting optimized acceleration in longi-
tudinal and lateral direction, exemplary at a sector with a relatively large braking zone.
The biggest difference between the measured longitudinal acceleration and the optimized
longitudinal acceleration occurs from 1950 to 2050 meters at the beginning of the brak-
ing phase. In the lateral acceleration signal only small deviations between the measured
and the optimized quantity are visible between 2080 and 2120 meters which corresponds
to the rolling phase in the corner. Figure [3.8]is calculated at one sample and illustrates
the optimization process of the longitudinal tire forces for all four tires. The blue cross
represents the slip ratio and the corresponding longitudinal tire force of the initial opti-
mization starting point, whereas the yellow circle shows the optimized tire force. Due
to the characteristics of the used tire model which includes the modeling of the friction
circle, the longitudinal tire force is influenced by the lateral side slip angle. Thereupon
the blue dashed curve represents the longitudinal tire force distribution for the initial
side slip angle at the optimization starting point and the red solid curve represents the
distribution for the optimized side slip angle. Similarly, figure [3.9] illustrates the opti-
mization process of the lateral tire forces for all tires. For the front right tire it can be
clearly noticed how the lateral force curve changes due to the increased slip ratio. The
constraints of the constant angle between the translatory accelerations and the constant
yaw acceleration is shown in figure[3.10} Figure [3.11]exemplarily compares the measured
and optimized longitudinal and lateral accelerations in dependence of the vehicle veloc-
ity. The biggest differences occur at negative longitudinal accelerations, corresponding
to braking maneuvers.
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3.2.2. Grip Optimizer Metrics

Every metric with more than ten percent of NaN values is not considered for the driver
classification. Figure shows the amount of NaN in the corresponding metrics. To
use a shift metric for the driver classification, the NaN values of rdSh ft Rel are replaced
with a zero. As the apex distance is only available for a few DIL simulator sessions,
the apex metrics aV Apex, xApexMin and sApexRel contain 100% NaN values for real
vehicle data of racing series A.
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Figure 3.12.: Occurrences of NaN’s in the metric values of simulator data in racing series
A recorded during one season

Figure [3.13| represents the spearman correlation factors of the grip optimization metrics
related to the rest of the metric set. Most of the brake, path curvature and steering
metrics show relative high correlations to the entry grip optimization metrics. The
rolling distance sRollRel correlates with the grip optimization mid metrics and most
of the throttle metrics show relative high correlation factors for grip optimization exit
metrics. In figure [3.14] as expected, the grip optimization absolute metrics correlate
with the corresponding relative measures. The correlations with the statistical metrics
are represented in figure [A77] and where similar observations can be seen as for
correlations to the throttle, brake and steering metrics. Driver metrics with performance
correlations higher than | + 60|% are listed in table

One grip optimization metric is within the first twenty driver metrics in terms of the
decision tree importance factors, as shown in figure [3.15] with the importance factors of
the residual grip optimization metrics. The ranking according to the importance factor
is represented in table where the relative entry metrics show the highest and the
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Figure 3.13.: Spearman correlation matrix of metrics valid for DIL simulator data of
racing series A except the statisticals

Table 3.1.: Metric with absolute correlation factors higher than 60%

Metric Correlations [%] Correlated Performance Metric
sTurnInRel -63 dGOLongEntryAbs

sRollRel 69 rGOMidRel

cMax -62 dGOLatEntryRel

vCarMin 62 dGOLatEntryRel

gThrEf -63 dGOLatEntryRel

pBrkInt -64 dGOLongEntryAbs

tStr 69 dGOLongEntryAbs

aStrStd -63 dGOLatEntryRel

aStrRange -63 dGOLatEntryRel

absolute mid and exit metrics the lowest importances.

The grip optimization entry metrics, except dGO LongEntryAbs/— Rel, show the highest
F-values in the variance analysis, illustrated in figure [3.16

The probability distributions for the grip optimization metrics for four drivers are repre-
sented in figure The number below the driver name indicates the amount of data
available corresponding to the driver and the special colored bin represents the outliers
with the binheight as the sum of the probabilities of the outliers. Upper outliers are
defined as data above the third quartile plus three and a half times the interquartile
range of metric values for one driver. Identically the lower outlier threshold is defined
as the first quartile minus three and a half times the interquartile range.
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Figure 3.14.: Spearman correlation matrix of grip optimization metrics for DIL simulator

data of racing

series A

60



3. Results and Discussion

tBrkDlyAbs
rdShftRel
dpBrkSp
drThrOff

tCrOver

dpBrkOn
rd2BrkRmse
aStrHpStd
dpBrkOnNorm
rGOEntryRel
aStrHp1Quart
aStr3Quart
pBrkRmseLin
drThrSp
aStrHpFreqVar
dStrHp1Quart
dpBrkOff
dpBrkRls
aStrHpPSDMean
rd2ThrRmse
dGOLongEntryRel
dGOLatEntryAbs
dGOLatEntryRel
dGOLatExitRel
dGOLatExitAbs
rGOMidRel
dGOLongEntryAbs
dGOLongMidRel
rGOEXxitRel
dGOLatMidRel
dGOLongMidAbs
dGOLatMidAbs
dGOLongEXxitAbs
dGOLongEXxitRel

Metric

1

1

1

1

20

40
Relative importance [%]

60

80 100

Figure 3.15.: Decision tree importance factors of simulator data of one season for racing

series A
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Table 3.2.: Decision tree importance factors for the metrics derived from the grip opti-
mization method

#  Metric Importance [%]
15 | rGOEntryRel 20
21 | dGOLongEntryRel 16
30 | dGOLatEntryAbs 14
31 | dGOLatEntryRel 14
38 | dGOLatExitRel 12
43 | dGOLatExitAbs 12
50 | rGOMidRel 11
51 | dGOLongEntryAbs 10
56 | dGOLongMidRel 10

71 | rGOExitRel 9
73 | dGOLatMidRel 9
79 | dGOLongMidAbs 9
83 | dGOLatMidAbs 8
93 | dGOLongExitAbs 8
94 | dGOLongExitRel 8
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Figure 3.16.: F-values for the driver and track class of DIL simulator data of racing series
A
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Figure 3.17.: Histogram probability distributions among the drivers of the relative grip
optimization metrics for DIL simulator data of racing series A
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3.2.3. Validation

Figure represents the differences of the accelerations resulting from the grip opti-
mization vehicle model compared to the DIL simulator vehicle model during a braking
and cornering maneuver. In the lateral and longitudinal acceleration signals maximum
deviations of eaq, = 0.03g and €aGOLong 0.03g can be observed. No significant cor-
relation between the tire steering angle error and the acceleration errors can be noticed.
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3.2.4. Error Analysis

Due to the deviation of the accelerations calculated by the vehicle model used for the grip
optimization method and the vehicle model from the DIL simulator, the grip optimization
metrics are afflicted with errors. In table 3.3 an exemplary error calculation is shown
with the maximum acceleration deviations of section [3.2.3l The error of the metrics is
depending on the duration of the cornering phase ?g, 1, the occured accelerations ay, ay
and on the duration time of the grip limited sector tsector- The exemplary values in the
error table are calculated with constant signal values of ay = —2g, ay = 0.5g, t1 —tg = 1s
and tsector = 3s which could represent an entry cornering phase. The resultant error e,
and acceleration a is calculated according to and :

_ 2 2
eaGO N \/eaGoLong + ea’GOLat7 (31)

a = y/a2+al. (3.2)

Table 3.3.: Error analysis for grip optimization metrics (Phs is a placeholder for entry,

mid, erit

Metric ) Error Exemplary value
rGOPhsAbs i Cago , 100 +2.06% - s

t=ty @ s
rGOPhsRel 3 faoo.. 1;30 . L to60%
dGOPhsLongAbs tez:omng (t1 —Sto) o +0.03g - s
dGOPhsLongRel CaGoong (t;m_ti)) +0.01g
dGOPhsLatAbs | €ago, (1 —10) +0.03g - s
dGOPhsLatRel aGoy ., (tt1—to) +0.01g

sector

The exemplary errors are not values of a completely negligible size, but also not of a
magnitude which distortes interpretable results. Furthermore, for the task of comparing
driving styles of different drivers, tendencies of the grip optimization results are of a
higher interest than absolute values.

3.2.5. Discussion

The metrics derived by the grip optimization algorithm seem to be not very suitable
for the driver classification according to their decision tree importance factors. The
long term intention of describing driving styles with objective metrics is to improve the
performance by adapting the vehicle properties to suit the driver metrics. However,
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the performance relevance of the metrics with the highest importances for the driver
classification task is difficult to interpret. As already mentioned, grip optimization mea-
sures give information of the vehicle performance exploitation by the drivers, thereupon
correlations to other metrics to obtain their performance relation are of a high inter-
est. For example the downshift metric rdShftRel has clearly a high importance for
the driver classification, but it is difficult to interpret the metric regarding the perfor-
mance relevance. Looking at the correlation matrix of the grip optimization metrics, the
downshift metric has a correlation of —38% to the longitudinal acceleration corner exit
metric dGOLongFExitAbs which indicates that if drivers have an aggressive downshift
behaviour, they are able to extract more acceleration out of the vehicle during the corner
exit phase. It seems that the biggest performance differences in driving styles mostly
occur in the corner entry phase during braking maneuvers. The metrics with the high-
est correlations are influenced by the corner phase length and the trajectory chosen by
the drivers which indicates that finding an optimal racing line has a high importance
regarding the performance. Furthermore, it can be noticed that for example some met-
rics correlate negatively to the entry and show a positive correlation factor for the exit.
Hence, for observations on the overall cornering performance all the cornering phases
have to be taken into account and analyzed together.

3.3. Final Metric Selection and Evaluation

In this chapter the driver metrics are observed seperately based on three datasets: racing
series A, racing series B and both racing series combined.

For the driver classification task metrics with more than ten percent NaN values are
removed. Then, after the analysis with a spearman correlation, every metric with cor-
relations higher than |ps| = 85% is considered to be removed. Taking additionally the
decision tree importance factors into account and analyzing subjectively the importances
of the metrics for their ability to describe driving styles, a list of initially dropped metrics
can be defined in table For the driver selection method only the first 20 metrics
according to the decision tree importance factors of the residual metrics are used. Fur-
thermore, observations on the F-values of ANOVA and the normalized probability dis-
tributions in histograms are presented. The special colored bins in the histogram plots
represent the outliers with the amount of outliers as bin height. Outliers are defined
identically as in section

3.3.1. Racing Series A

The highest amount of NaN values are containing the shift metrics (figure . To
still obtain information of at least one shift metric, the NaN values of rdShftRel are
replaced with a zero and the other shift metrics are removed. The metrics gBrkEf f to
dpBrkO f f Norm contain less than 1% NaN values.
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Figure 3.19.: Occurrences of NaN’s in the metric values of racing series A

In figure high correlations between the steering and the path curvature metrics can
be seen. As expected, for racing series A the normalized metrics show a 100% correla-
tion with the respecting initial metric: drThrOn and dr'ThrOnNorm, t BrkDlyAbs and
tBrkRgnDlyAbs, sBrkRel and sBrkRgnRel. Only for racing series B these metrics
differ from the initial definitions. The sector phases (entry, mid, exit) influence each
other, therefore some brake metrics correlate negatively with steering metrics and posi-
tively with throttle metrics. For example the brake pressure integral pBrkInt shows a
correlation of —70% on the steering time ¢Str and 57% on the positive throttle gradi-
ent drThrAgg. The average throttle gradient drThrSp remains relatively uncorrelated
because of the high amount of zero values if the throttle is applied constantly. The statis-
tical metrics (figure and show partially relative high correlations with the other
metric set. Most of the statistical metrics based on the steering wheel angle correlate
with the respective measure based on the steering wheel angle rate.

The first 20 driver metrics according to their decision tree importance factors are il-
lustrated in figure The off-throttle gradient drThrOf f and the on-brake gradient
normalized by the maximum brake pressure within a sector dpBrkOnN orm show clearly
the highest importances. The influence of the normalization can be noticed when com-
paring the importances of the normalized on-brake gradient (79%) with the value of
the not normalized measure dpBrkOn (46%). The brake metrics represent the highest
importances with five of the first seven driver metrics being related to the brake pressure
signal.

The confusion matrices in figure [3.22] represent the absolute and relative amount of
predictions among the driver class. The highest accuracies are shown for driver A and
D with 92% and 93%. The lowest relative accuracy is achieved for driver G with 59%.
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Figure 3.20.: Spearman correlation matrix of metrics valid for racing series A except the
statisticals

The mean prediction accuracy among the drivers lies at 79%.

Figure illustrates the F-values of the driver and the track class. The highest F-
values in the driver class with relatively low values in the track class correspond to the
metrics with the highest decision tree importance factors of figure

The histograms in figure represent the probability distributions of the metrics for
the drivers of racing series A. Driver D and H have the slowest off-throttle gradient
drThrOf f. The normalized on-brake gradient dpOnBrkNorm is the highest for driver
A and I. Driver A has the least deviated brake delay time tBrkDlyAbs whereas driver
B shows the biggest range of values, indicating that driver B may slightly apply the
brake pedal even before the braking point. Driver B and H have a distinct behaviour
at the mean brake speed metric dpBrkSp. Figure compares the metric values for
a specific high speed sector of a track where the driving style differences can be noticed
even clearer.
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Figure 3.21.: Decision tree importance factors of racing series A
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Figure 3.24.: Histogram probability distributions among the drivers for racing series A
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3.3.2. Racing Series B

Observing the NaN values of the metrics in figure it can be seen that the recupera-
tion and coast phase are not detected regularly. In the data preprocessing the data gets
filtered according to their best laptimes. If the drivers apply the coasting and recupera-
tion technique, they decelerate slower than if they would at braking with the mechanical
brake system. Therefore, most of the laps with recuperation and coasting information
may be filtered out. The metrics from gBrkE ff to dpBrkO f f Norm contain less than
1% of NaN values.
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Figure 3.26.: Occurrences of NaN’s in the metric values of racing series B

The spearman correlation matrix of figure shows similar tendencies as the one of
racing series A (figure with noticeable differences in the brake metrics. Further
differences to racing series A can be seen by observing the correlation information of the
statistical driver metrics in figure [A.T] and [A.2] where most of the metrics from racing
series B show slightly lower correlation values.

Figure [3.28| represents the decision tree importance factors for racing series B. The
off-throttle gradient drThrOff and the normalized on-brake gradient dpBrkOnNorm
importances have decreased significantly to 51% and 49% compared to 100% and 79% for
racing series A. Again the driver metrics based on the brake pedal represent the group
with the highest importances with three brake metrics among the first four metrics. The
mean brake speed metric dpBrkSp has the highest importance (100%) for the decision
tree classification compared to 52% for racing series A. The second highest importance
is represented by the brake delay ¢tBrkRgnDlyAbs with 51% (56% for racing series A).
The big differences in the decision tree importance factors between the first two metrics
indicates that the classifier detects one or more drivers by a specific behaviour.

In figure the confusion matrices for the driver classification of racing series B are
presented. Driver B was predicted with a relative accuracy of 94% and also contains the
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Figure 3.27.: Spearman correlation matrix of metrics valid for racing series B except the
statisticals

highest amount of data. The lowest prediction accuracy occured for driver B with 76%
and the mean accuracy for the dataset of racing series B equals to 82%.

The F-values of the dpBrkSp and gBrkE f f metric are high for the driver and low for
the track class (figure The throttle efficiency ¢gThrE ff metric has the highest
values for the driver class, but also relative high track class values. The relative rolling
distance sRollRel and the first quartile of the steering wheel angle aStrl1Quart show
relative high decision tree importance factors of 35% and 29% but have low F-values for
the driver class and higher F-values for the track class. For racing series B, the F-value
distribution does not correspond to the decision tree importance factors as well as for
racing series A.

In the histogram probability distributions of figure the biggest differences among the
drivers can be seen in the dpBrkSp where driver K shows a distinct behaviour. Looking
at the throttle metrics driver L represents slightly distinct properties compared to the
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3.3.3. Results from both Racing Series

The results of this chapter combine those of racing series A and racing series B. Racing
series A contains nearly 16 times of the amount of data that represents racing series B.
Thereupon racing series A is weighted more and has a bigger influence on the results of

the combined dataset, hence, figures to have similar tendencies as the ones of
racing series A in section [3.3.1]
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Figure 3.33.: Occurrences of NaN’s in the metric values of both racing series

The decision tree importance factors (figure are similar to the dataset of racing
series A with the influence of racing series B as for example the mean brake gradient
dpBrkSp has an importance of 59% compared to 52% in racing series A. Compared to the
seperate datasets, the importance of the normalized brake delay time tBrkRgnDlyAbs
increased at the combined dataset to 72%. Driver D still has the highest prediction
accuracy of 93% in figure[3.36, where driver A is predicted with a slightly lower accuracy
of 90% compared to 92% for racing series A. The accuracy of 87% of driver B has settled
in between the dataset of racing series A (82%) and racing series B (94%). Driver G
has with a relative prediction accuracy of 58% the lowest value, but was also the driver
with the worst classification result for the dataset of racing series A. The combined mean
prediction accuracy equals 78% compared to 82% in racing series B and 79% in racing
series A. The histogram probability distributions (figure show similar behaviours
for the two drivers which competed in both racing series with slight deviations in the
mean brake gradient dpBrkSp and the relative rolling distance sRollRel.
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Figure 3.35.: Decision tree importance factors of both racing series combined
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3.3.4. Discussion

The F-value and histogram analyzes seem to correlate with the results from the driver
classification. The metrics with the highest driver and low track class F-values are
within the first metrics ranked to their decision tree importances factors. Qualitatively,
the correlation is better for racing series A than for racing series B. Furthermore, these
metrics show noticeable differences in the probability distributions among the drivers.

Interestingly, for racing series A the on-brake gradient metric shows a much better be-
haviour if it gets normalized by the maximum brake pressure of the corresponding sector
(dpOnBrkNorm). For the dataset in racing series B the importance for the normalized
metric is only slightly smaller than the initial metric dpOnBrk. Generally, the brake
metrics represent the group with the highest decision tree importance factors for the
classification algorithm. The mean brake gradient dpBrkSp shows the highest impor-
tance for racing series B where for racing series A dpOnBrkNorm has the highest brake
metric importance. Compared to racing series A and racing series B the importance of
the normalized brake delay time tBrkRgnDIlyAbs increased at the combined dataset.

Another point of interest lies in the observation of the longitudinal acceleration related
to the throttle ratio gThrE ff and the longitudinal acceleration to the brake pressure
gBrkEff. The acceleration is a result of the pedal application, hence, one would expect
this measure to be relatively constant within a vehicle class and therefore not suitable for
describing driving styles. Clearly, the results show different properties for these metrics,
as they are within the first twenty metrics of racing series B according to their importance
factors and for racing series A gBrkFE f f is within the first twenty driver metrics.

The decision tree importance factors do not necessarily represent the metrics with the
best ability to describe driving styles. For example if a metric shows an anomaly for one
driver, the classifier can predict this driver with a relative high accuracy leading to a
high importance factor. This could explain the extreme importance factor of the mean
brake gradient dpBrkSp for racing series B which is almost twice as high as the second
ranked metric for the dataset.

3.4. Metric Transferability - Real Car to DIL Simulator

In this chapter driver metrics derived from simulator data are compared with metrics
calculated from data of the real car. The data is based on racing series A and contains
the respective set of metrics.

In figure it can be noticed that no throttle blips are applied during the downshifting
phase, therefore the brake gradient at throttle blips dpBrkBlip contains nearly 100%
NaN values. Again, as in section the NaN values of the shift metric rdSh ftRel are
set to zero. For the entire DIL simulator dataset, not enough information of the apex
distance metrics aV Apex, x ApexMin and sApexRel is available, therefore they are also
not considered for the driver classification.
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Figure 3.39.: Occurrences of NaN’s in the metric values of simulator data in racing series

A

The decision tree importance factors of figure differ to those of figure [3.21] from
real car data. The relative downshift engine speed rdShftRel shows a much higher
relative importance (100%) than for real car data (41%). Furthermore, the off-throttle
gradient drThrO f f and the normalized on-brake gradient dpBrkOnN orm importances
have decreased, while the absolute brake delay tBrkDIlyAbs importance has increased.

Figure represents the classification accuracies of the driver prediction. For driver A
and D the relative accuracy correlates with real car data. Driver E, H and I show much
better results for simulator DIL sessions with relative prediction accuracies of 90%, 91%
and 92% compared to 84%, 81% and 69% of the real car dataset. The simulator driver
classification represents the highest mean classification result of 92%.

The ANOVA in figure [3.42]illustrates the F-values of the driver class together with the F-
values among the source class which stands for DIL simulator or real car data. The source
class clearly shows higher values than the driver class which means that the variances
among the drivers are smaller than the variances between real car and simulator data.

The histograms of figure[3.43] compare the probability distributions of the simulator data
with the data of the real car for the drivers and metrics. Clear differences can be seen
at the off-throttle gradient drThrOff, the brake delay time tBrkDlyAbs, the relative
rolling distance sRollRel and the mean brake gradient dpBrkSp. For the normalized
on-brake gradient dpBrkOnNorm only driver A shows clear deviations.

87



3. Results and Discussion

rdShftRel
tBrkDlyAbs
drThrOff
dpBrkOnNorm
dpBrkOn
dStrMed
vCarMax
tCoast
tCrOver
aStrHpStd
sRollRel
rd2BrkRmse
dpBrkAgg
dpBrkSp
gBrkMax
dpBrkOffNorm
drThrSp
aStrHp1Quart
dpBrkRls
dStrHp1Quart

| I DL Simulator | |

Metric

0 20 40 60 80 100
Relative importance [%]
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3.4.1. Discussion

The classification accuracies show impressive results for the DIL simulator dataset, but
this could also be related to the smaller amount of data compared to the real car. Similar
as at the real car dataset, driver A and D have very high classification results, indicat-
ing a distinct driving behaviour which manifests at observing the histogram distribu-
tions. Mainly for the brake metrics dpBrkOnNorm and tBrkDIlyAbs distinct driving
behaviours can be noticed which again indicates the high importance of the braking
metrics for the driving style classification.

Observing the histogram probability distributions of the metrics and drivers, big differ-
ences between real car and DIL simulator data can be noticed. The ANOVA F-values
for the source class further prove this behaviour. Probably the pedal properties of the
simulator are not correlating well with those of the real car which should be further
investigated in future.

3.5. Transferability of Metrics - Among different Racing Series

In this chapter the transferability of the driver metrics among the racing series is ana-
lyzed.

In figure the decision tree importance factors of the eleven metrics in common of
both racing series from figures and are illustrated. The brake metrics show
higher relative importances in racing series A with the exception of the mean brake
gradient dpBrkSp which has half the relative importance compared to racing series B.
Similarly the throttle metrics have higher relative importance factors in racing series A,
drThrOf f has even twice the importance as in racing series B. The roll distance driver
metric sRollRel also shows higher relative importances in racing series A compared
to racing series B. However, without the high importance of the mean brake gradient
dpBrkSp in racing series B which could be caused by anomalies in the brake pressure
signal for a specific driver, the relative importances of the other metrics would be more
similar to the dataset of racing series A.

The variance analysis of figure[3.45|illustrates the F-values of the driver and racing series
class for the initial metric set and for the offset transferred metrics according to section
The transferred dataset shows significantly lower F-values in the series class while
the F-values in the drivers class remain relatively constant compared to the initial dataset
with the exception for the on-brake gradients dpBrkOn and dpBrkOnNorm.

However, observing the initial probability distributions in figure and the offset
transferred histograms in figure the transferability indicated in the variance analysis
is not proved. The initial dataset shows some metrics with a poor transferability as
illustrated quantitatively in table especially for the brake delay time tBrkDlyAbs
and the mean brake gradient dpBrkSp. Contrary, the normalized on-brake gradient
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Figure 3.44.: Decision tree importance factors of racing series A compared to racing series
B

dpBrkOnN orm, the brake efficiency ¢ BrkE f f and the relative rolling distance for driver
B sRollRel shows good correlations among the racing series.

The transferred metrics show significantly worse transferabilities for the on-brake gra-
dients dpBrkOn and dpBrkOnNorm and the brake delay time tBrkDIlyAbs, resulting
in smaller histogram overlaps in table For the transferred tBrkDIyAbs metric the
peak of the histogram distribution for racing series B is contained in the outliers. This
behaviour may result due to a median (for the offset definition) that does not corre-
late with the probability peak in the initial ¢BrkDlyAbs metric histogram. For the
off-throttle gradient drThrOf f, the relative rolling distance sRollRel and the brake
efficiency gBrkE f f the transferability is better than for the initial dataset.

Figure shows adapted metric definitions (table to improve the transferability
among different racing series. The throttle and brake metric adaptions of drThrOnNorm
and dpBrkOnNorm show better results which are quantitatively proved in table
The not adapted off-brake gradient dpBrkO f f has the highest probability overlap and
decreases with the normalization. The adaptions for tBrkDIlyAbs and sBrkRel seem
to have less impact on the transferability which may be explained by the relative rare
actuation of the recuperation pedal in the observed data.
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Figure 3.48.: Histogram probability distributions among the drivers for both racing series
of the initial and adapted metrics
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Table 3.4.: Relative overlap of the probability distributions from the two racing series

Metric Driver B Driver C
drThrOff 33% 40%
dpBrkOnNorm 58% 48%
sRollRel 63% 28%
gBrkEff 58% 50%
dpBrkSp 13% 9%
dpBrkOn 39% 36%
o ThrEff 48% 37%
tBrkDlyAbs 6% 43%

Table 3.5.: Relative overlap of the probability distributions from the two racing series
with an applied racing series offset

Metric Driver B Driver C
drThrOff 42% 35%
dpBrkOnNorm 25% 29%
sRollRel 66% 44%
oBrkEf 58% 58%
dpBrkSp 19% 22%
dpBrkOn 26% 32%
o ThrEff 47% 36%
tBrkDlyAbs 13% 29%

Table 3.6.: Relative overlap of the probability distributions from the two racing series of

the initial and adapted metrics

3.5.1. Discussion

Metric Driver B Driver C
drThrOn 48% 25%
drThrOnNorm 48% 60%
dpBrkOn 39% 36%
dpBrkOnNorm 58% 48%
dpBrkOff 60% 60%
dpBrkOffNorm 50% 44%
tBrkDlyAbs 6% 43%
tBrkRgnDlyAbs 6% 45%
sBrkRel 35% 35%
sBrkRgnRel 24% 28%

The brake pedal metrics seem to have a better ability to describe driving styles for racing
series A than for racing series B, as the corresponding decision tree importance factors
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differ between the racing series. Generally the importance factors are lower for racing
series B which can also be seen in the worse mean prediction accuracy.

Without modifications the metrics show partially noticeable differences between the rac-
ing series. Driver C spends more time in the rolling phase at racing series B. The brake
pressure efficiency ¢BrkE f f seems to correlate well which indicates that the brake pres-
sure has the same influence on the longitudinal acceleration for both racing series. The
throttle efficiency gThrE ff differs between the racing series which can be explained
by the differences in the power output and vehicle mass of the two racing series. Both
drivers tend to have a slightly higher brake delay time in racing series B which may be
explained by the softer suspension setup of the low downforce vehicles of racing series B.
With a softer suspension the needed time for the load transfer increases and the drivers
adapt their brake delay.

Transferring racing series B with an offset shows partially better results, but also worse
for some metrics. For example, the relative rolling distance sRollRel overlap can be
increased, while the brake delay time tBrkDIlyAbs and the on-brake gradients dpBrkOn
and dpBrkOnNorm show a worse behaviour.

A better transferability of some metrics among the racing series is achieved by adapting
specific metrics individually. The on-brake gradient dpBrkOn indicates a faster brake
application for racing series A. Contrary, the normalized measure dpBrkOnN orm shows
a better correlation. Thereupon, the differences in dpBrkOn come from different maxi-
mum brake pressures of the vehicle classes. The off-brake gradient dpBrkO f f appears
to be already correlating well without normalizing it by the maximum brake pressure
which indicates that the drivers are releasing the brakes without considering the maxi-
mum brake pressure. Interestingly the on-throttle gradient seems to be transferable when
it is normalized by an empiric factor depending on the vehicle power output divided by
the vehicle mass.

Training the classifier with data from racing series A and letting it classify the drivers
from racing series B would produce meaningful statements on the transferability. On
the other hand, only two drivers are competing in both racing series which is not enough
to yield valuable information with this method.

3.6. Comparison of Feature Extraction Methods

For the feature extraction method comparison eleven drivers on ten different tracks of
one racing series without DIL simulator data are analyzed. The data was recorded during
three racing seasons with a sum of 16840 laps, an average of 5.4 sectors and 113.3 sliding
windows per lap.

In figure the F-values for the driver class on the left and the track class on the right
are compared for the full lap feature extraction intervals and the grip limited sector
intervals. For the comparison the metrics of section [2.2.4] are used, as these metrics were
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initially defined for the driver comparison

on entire laps.

T T T
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Figure 3.49.: F-value driver and track class comparison of full lap and grip limited sector
feature extraction methods

Figure [3.50] illustrates the driver and track class F-values of the statistical metrics based
on the steering wheel angle calculated in sliding window intervals and in grip limited
sector intervals. For most of the metrics the sliding window intervals show higher F-
values at the driver and especially at the track class. A similar, but less pronounced
behaviour can be observed for the statistical metrics based on the steering wheel angle
rate in figure [3.51
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Figure 3.51.: F-value driver and track class comparison of sliding window and grip limited
sector feature extraction methods for steering wheel angle rate statistic
metrics
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3.6.1. Discussion

For the statistical based metrics and the metrics initially defined on a full lap, the
corresponding original feature extraction method results in higher F-values for both, the
driver and especially the track class. To describe driving styles independently from the
race tracks, the high variances in the metrics among the race tracks are not preferable,
hence, the feature extraction interval of grip limited sectors seems to be the most suitable
one for the scope of this work. Additionally, as racecar drivers are well experienced and
perform on a high level, the definition of driver metrics based on the performance limit of
the driver-vehicle-environment system should result in more driver specific information.
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The goal in motorsports is to maximize the average vehicle speed during competitions
which is determined by the dynamic interactions of the system driver-vehicle-environment.
Even if the environment is changing continuously, it can be assumed constant among the
competitors. Thereupon, maximizing the performance is focussed on the manipulation
of the driver-vehicle interactions. The aim of this work was to develop driver metrics to
objectively describe driving styles of professional race car drivers independently of the
race tracks for two racing series. The development of the objective metrics is based on
a novel method introduced by Woérle et al. [WGEIS]. As driving behaviours are usu-
ally strongly depending on the interactions of the driver-vehicle-environment dynamical
systems, a transferability analysis of the metrics among different racing series with the
background of different vehicle classes was a further point of interest.

Driver metrics were calculated in automatically detected sectors. To extract the most
driving style specific information, the sectors are defined in grip limited corners with
applied braking and further divided into characteristic throttle, brake and steering points.
Two additional metric extraction intervals were analyzed and rejected because of a higher
track dependency of the metrics.

The driver metrics were defined as driver input gradients, distances and duration times,
as well as measures depending on the trajectory curvature. Further metric definitions
were introduced, relying on statistical quantities for the steering wheel angle and for the
steering wheel angle rate. These definitions were additionally applied for the highpass fil-
tered signals, to remove the race track dependend curvature. Racing series specific driver
metrics were calculated as shift metrics for racing series A and as energy management
metrics for racing series B.

These metrics gave a lot of information on the driver input behaviour and the spatial
trajectory chosen by the drivers. Nevertheless, no statements about the direct perfor-
mance relevance could be made, therefore a grip optimization method was elaborated to
calculate the theoretical maximum acceleration which the vehicle is capable of. Due to
the choice of the optimizations initial point relying on DIL simulator data of the drivers,
driver specific statements on the vehicle exploitation could be made. The biggest devi-
ations between the optimized acceleration and the acceleration achieved by the drivers
occur during braking phases which indicates the difficulty of exploiting the vehicle per-
formance in braking maneuvers. Metrics were then defined using the grip optimization
measures, but proved not to be suitable for characterizing driving styles. However, the
performance relevance of the grip optimization metrics could be used to observe the cor-
relations to other metrics and therefore gain information on the nontrivial performance
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relevance of metrics which were more suitable to describe specific driving behaviours.

For validation purposes of the driver metrics regarding their ability to describe driving
styles, a decision tree classification algorithm was applied to classify drivers using driver
metrics. The relative prediction accuracies showed partially high variations for different
drivers. The drivers with the highest prediction accuracies had distinctive patterns in
the probability distributions for some metrics, proving the assumption that driving styles
differ throughout different drivers. Brake pedal metrics represented the group with the
highest importances for the classification algorithm.

For the combined usage of DIL simulator and real car data, the transferability among
the data sources had to be analyzed. Partially, high deviations for metrics of the same
driver but different data sources could be observed. Thereupon, it is suggested to only
analyze the results for each data source independently.

Additionally, a transferability analysis of the driver metrics among the two racing series,
showed differences in the results of a driver for two different vehicle classes. A normal-
ization with an offset for each metric based on the median of the metric values did not
lead to an acceptable outcome. However, for some driver metrics specific normalization
methods proved to yield racing series independend values. Furthermore, some normal-
ized metrics even improved the classifier accuracy on the single racing series dataset
significantly.

For future works, a more in depth analysis on the individual normalization of specific
driver metrics could lead to improved driving style representation within the racing series,
as well as to a better transferability performance among different racing series. To use
a bigger amount of data and to be independend of real car deployments, the correlation
between DIL simulator and real car data has to be investigated further. At the moment
the differences in the driver metrics compared to the real car are not negligible, hence,
a reasonable combined usage of the data is not possible. The vehicle model of the grip
optimization method can be improved as well, to sort out the deviations to the vehicle
model of the simulator. Additionally, the method could be used for other applications,
besides the definition and observation of driver metrics. As the goal of describing driver
behaviours by objective criteria lies in maximizing the performance of the driver-vehicle
interactions, the next step is the investigation of how the driver metrics can be used to
influence the setup of a vehicle. Subsequently, the vehicle properties can be adjusted
to meet the driver specific needs. The methods of this work could then lead to a faster
identification of the performance relevant metrics and to improved driver metrics of
different racing series.
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A. Appendix
Table A.1.: Dropped metrics according to too high correlations
Category Metric Category Metric
Grip limited sector metrics | rd2StrRmse Full lap metrics pBrkMax
Statistical metrics aStrAvg tBrkOn
aStrShannEn Shiftmetrics rdShft5Abs
aStrStd rdShft4Abs
aStrAppEnt rdShft3Abs
aStrKFD rdShft2Abs
aStrRenEn rdShft1Abs
aStrRange rdShft5Rel
aStrEnergy rdShft4Rel
aStrHpShannEn rdShft3Rel
aStrHpMob rdShft2Rel
aStrHpAppEnt rdShft1Rel
aStrHpKFD tdShft5Abs
aStrHpRenEn tdShft4Abs
aStrHpRange tdShft3Abs
aStrHpEnergy tdShft2Abs
aStrHp3Quart tdShft5Rel
dStrAvg tdShft4Rel
dStrShannEn tdShft3Rel
dStrStd tdShft2Rel
dStrAppEnt Grip optimizer metrics | rGOEntryAbs
dStrSpecEn rGOMidAbs
dStrRenEn rGOExitAbs
dStrCogF
dStrRange
dStrEnergy
dStrHpAvg
dStrHpShannEn
dStrHpStd
dStrHpAppEnt
dStrHpKFD
dStrHpRenEn
dStrHpFreqVar
dStrHpRange
dStrHpEnergy
dStrHp3Quart
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Correlation matrix of the statistical metrics based on the steering wheel
angle for both racing series

Figure A.5.
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Figure A.7.: Correlation matrix of the statistical metrics based on the steering wheel
angle and the grip optimization metrics for DIL simulator data of racing
series A recorded during one season

XVI



A. Appendix

-1

drThrOff
drThrOn
rThrRmseLin
rd2ThrBmse
sThrOffRel
dpBrkOff
dpBrkOn
pBrkRmseLin

rd2BrkRmse| -

tBrkDlyAbs
sBrkRel
rd2StrBRmse
sTurninRel
sTrailRel
sRollRel
cMax
sCurvRel
aVCurv
vCarMin
vCarMax
dStrAvg
dStrShannEn
dStrStd

dStrSkwn | -

dStrKurt
dStrMob
dStrComp
dStrAppEnt
dStrSamEnt
dStrZCR
dStrKFD
dStrSpecEn
dStrRenEn

StrDomFreq| -

d
dStrPSDMin
dStrPSDMax
dStrPSDMean
dStrCogF
dStrFreqVar
dStrRange
dStrEnergy

dStriQuart| -
dStrMed | -
dStr3Quart| -

pKurt
dStrHpMob
dStrHpComp
dStrHpAppEnNt
dStrHpSamEnt
dStrHpZCR
dStrHpKFD
dStrHpSpecEn
dStrHpRenEn

dStrHpDomFreq| -

dStrHp3Quart
drThrSp
drThrAgg
rThrAccept
rThrMean
gThrEff
rThrint
gBrkMax
pBrkMax
ngrkSp

dp rkA?g
pBrkint
BrkEff

nStrSmooth
aStrMax

tCrOver
rdShftRel
sBrkR?nRel
tBrkRgnDIyAbs
drThrOnNorm
dpBrkOnNorm
dpBrkOffNorm

00

-80

-60

Correlation [%]

-40  -20 0 20

40

60

80

100

9 4 13 4 2 19 7 1210 12 1016 3 4 19 6 1
11 -8 -8214 1 17 9 78515 1 20 2 -5-29 20 8
418 -3-21 51013 0 6 23 2 13 -1 2 8 8 -3
440 1130 112 9 212-10-1 0 5 4 1 6
2039/ -3 9 37 -10-28 10 1 -19 12 -5 -23 18 -13/-31 12
29 -19 4 14 25 -4 -27 23 10 -13 28 2 4 29 -5 -7 |-37
6 8 8 2 4 6 208 14-13 5 1324 8 -1 27 4
13 5 6 3 -10 3 22 5 13 -13 9 10 -19-10 -4 -25-15
6 9 2-156 -6 -1-113 8 -9 0-17 9 -9-215
12 5 5 9 4 013 4 2 16 -3 3 13 3 -1 10 0
33 -39 3 38 42| 1150/ -1 11 [56] 3 19 -26 29 -7 -21 -27
2 42 29 17 38 17 5 9 35 12 13 25 -28 20 1140 10
45 -11 13 41 -16 14 568125 22 F6fl-19 24 -36 3 -1 -85 1
28 -39 -15 -13 -34 -6 36 43 20 23 37 -12 29 47 -5 36 -41
22165 -9 29169 -18 31 3 1339 -7 21 8 48 -3 2 46
31 29 33 7 21 20 -35 2 (41 -14 9 29 49| 12 15§62 -1
11 2 20 13 -1 21 -18 -26 -14 20 -26 -14 -14 4 -28 -1 4
37 12 -30 25 6 26 44 6 38 34 0 36 49 -7 -9 [54 -1
32 27 -32 -8 -19-19 36 -0 40 15 -8 -29 48 -12 -13/62 1
22 25 -18 22 -28 -16-42 25 -14[42/22 12 4 6 23 2 5
8 41 29 9 37 19 -9 12 37 5 16 2943 18 4 [52| 8
31 52 37 -7 40 1233 5 44 2 15 21 -23 27 23 -50 7
10 44 30 -8 40 20 -11 12 38 4 16 30 -41 20 6 52| 10
128 6 828 1 1024 3 1723 -2 9 6 6 -13 3
129141427 6 0 8 15 11 10 8 1213 4 20 6
38 -11 -20 -30 -8 -16 37 -10 22 31 -14 20 21 -2 -13 27 4
18 -12-23 -11 10 22 26 2 26 22 -1 -25 15 -10 -14 18 -7
27 1217 -20 -9 -15 27 -4 21 20 -7 -19 25 -3 -6 29 0
19 13 15 14 11 14 23 4 19 17 1 1924 -9 3 25 -7
413 7 8 5 58 9 -9 5-10-8 16 7 -4 17 9
20 46 29 -0 [40 17 -18 16 35 -0 21 24 -34 20 12 47 8
30 13 -22 24 11 19 26 3 22 21 -7 -19 4 -7 -17 10
-165511-35 10 [45/-20 17 -12/-44 -5 -18 -30 41 -24 -11[58] -9
9 9 4 3137 13 8 -1 7 7 2 3 5 5 9 8
2638 23 3 29 4 29 -4 29 -1 4 11-17 24 141:37 9
18 9 11 7 4 6 -2211 15 -13 14 11 17 0 13 25 5
14 6 1513 5 15 6 12-12 7 -13-13 6 1 -16 4 2
32 111224 7 -7 30 -10-14 23 -13 9 14 -1 -10 20 4
36 -24 -30 -23 -19 22 31 -5 -31 20 -10 -24 10 -12-22 21 -4
9 44 30 -11 40 19 -11 10 38 6 15 28 -36 20 8 [49 9
16 51 35 1045 20 -17 12 44 5 18 30 -41 24 1158/ 9
6 -26-16 2 -25-11 -0 -22-15 -7 23-11 23 -5 -6 28 0
2163 2181 821 4 825 1 -1 6 1 -0
111 14127 8 -4 -8 26 6 -5 2024 8 -2-30 2
10 30 18 -20 29 12 8 6 23 16 7 18 -22 15 3 -27 10
3152 37 -7 40 12383 5 44 2 15 21 -23 27 2350 7
9 30 18-1928 12 5 4 24 14 6 19 -24 16 3 -30 10
36 206 1 4131202523206 2
2 16121012 5 8 -4 17 3 -1 11-18 9 2 25 3
29 -14-34 22 -11-32 29 3 33 24 -1 82 15 -11-25 19 -6
21 17 -23 -12 -15 20 26 -1 26 20 -5 25 22 -11 -12 26 -7
0 4 7 3 3-657-126-1016 -4 1 15 -4
4 7 57 6 -3 2 8 -8-28 710 -7 210 -7
17 4 1715 3 1615 2 18 13 0 17 6 -4 -12 8 -1
12143 29 -5 /39 20 -12 13 387 2 17 29142/ 19 5 [5fl 9
13 6 -16-10 -5 -15 9 -1 14 6 -2 -13 1 -4 -13 3 -2
1 18925 20 -35-14 2 -6 -32-14 -9 -22 27 20 -8 (39 -10
9 4 8 8 -3 7 1 -4 7 2 3
27 36 27 2 28 -16 22 1935 7
10 5 15 6 3 4 0 20 8 -2
5 -5 10 5 -5 - 4 0 -0 3 1
23 -13 -28 -17 -10 7 -9 2212 4
16 -15 -21 6 -12 5 -8 -16 13 -2
5 31 20 -19 29 2516 4 -34 9
139 25 -20 35 27 20 8 139 10
12 27 13 18 27 13 -12 -2 17 -8
2 2 4 2 2 3 3 4 3 3
13 27 13 19 27 4311 1 17 7
18 19 3 2 14 - 5 9 5-16 0
16 -32 -13 27 -32 131416 -4 -9
-30 -19 41 -17 -15 32 9 -18 39 -3 -
22 -7 5 -19 6 29 -5 17 29 -4
25 21 24 1 12 49 8 4 |68l 5
0 29 24 24 23 12 12 25 -8 -1
27 -3 1819 2 33 -4 -7 37 1
25 4 22 17 A 35 4 1138 0
11 5 1112 5 15 4 10 13 4
1235 1 28 -33 2220 -3 9 -12
43 4 23 26 -4 41 1 6 [51 -8
28 5 31 23 2 30 0 22-33 -3
25 16 2 18 -19 14 23 1 7 27
2546 1 34 147 21-35 -7 -13-32
9 41 28 -8 38 44 18 3 8
20 27 21 -3 18 46 16 3 3
21 27 27 1 19 -48 10 12 -1
|57 -2 -24%54] 2 29 -8 -7 381 5
7 44 17 27 34 28 25 5 [51 7
17 44 -20 -15 48 8 46 -16 9 49
35 -38 -37 5 -30 - 2 17 25 25 -
29 -12 -35 -16 -7 4 1 -23 16 10
3339 3 3842 26 29 -7 -21 -27
12 5 5 9 4 13 3 1 10 0
11 -8 32 14 1 2 52920 8
43 4 32741 6 12 7 2915 9
43 -8 19 25 -16 24 16 3 35 25
2 22T 300 QL8033 TLL LT
g gL
z2 i E8Fz25£8sFz228¢£82
£ £ £ =
S50000538d2o52Ea%
OO0 0RO 0C 5 S22 6w a3a@A
OLLQLLS_‘JoJJJOOJO
) 32232288%8¢¢g*s
8 2% g©°s3® ©
o

-6

dGOLatExitRel | B =

Figure A.8.: Correlation matrix of the statistical metrics based on the steering wheel
angle rate and the grip optimization metrics for DIL simulator data of
racing series A recorded during one season
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