
Stefan Gruber, BSc

Code Between the Lines:

A Machine Learning–Based
App Publishing Assistance System

Master’s Thesis

to achieve the university degree of

Diplom-Ingenieur

Master’s Degree Programme: Information and Computer Engineering

submitted to

Graz University of Technology

Supervisors

O.Univ.-Prof. Dipl.-Ing. Dr.techn. Reinhard Posch
Dipl.-Ing. Johannes Feichtner
Dipl.-Ing. Dr.techn. Peter Teufl

Institute of Applied Information Processing and Communications

Graz, September 2019

© Copyright 2019 by Stefan Gruber, except as otherwise noted.

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the declared
sources/resources, and that I have explicitly indicated all material which has been quoted either literally
or by content from the sources used. The document uploaded to TUGRAZonline is identical to the present
thesis.

Date Signature

Abstract

As the central app market, Google Play is the primary source for Android users to obtain applications.
Each app’s presence in the store and in particular its description text, must answer crucial questions for the
user: Does the app meet my needs? What features are included? What privacy-critical data does it share?
A thoroughly composed description allows users to make a sound decision about whether to install an app.

However, it has been shown that app publishers do not always provide comprehensive descriptions. In
many cases, the lack of enforced quality standards leads to inaccurate descriptions, both wittingly and
unwittingly. Even with the best intentions, drafting a description text that answers the questions above is
cumbersome.

Therefore, we propose an app publishing assistance system. It consists of three machine learning
models that examine a given app for the sake of improving its description. The first model finds
related apps regarding the description, and the permission set it requests. For this purpose, we employ
autoencoder neural networks and t-SNE dimensionality reduction. The evaluation demonstrates that we
can accurately identify similarities and dissimilarities, information which altogether serves as a starting
point for composing app descriptions and initial app analysis. The second model infers the app’s main
features based on its application package file. By extracting resource identifiers, string constants, and
methods from the application package, we use a dense neural network to predict words and phrases that
are likely to occur in its description. The model predictions are precise and generalized phrases that can
easily be used to verify and enhance the actual description. Moreover, the third model assesses how well
permissions are reflected in the description. The text is analyzed with a convolutional neural network that
was trained to predict nine of the dangerous permission groups. Our evaluation shows that the model
very well captures permission-related words and that their absence can encourage publishers to add them.
Ultimately, our proposed app publishing assistance system could help to improve description quality in the
thriving Android app ecosystem significantly.

Kurzfassung

Als zentraler Marktplatz ist Google Play die Hauptquelle für Android-Nutzer, um Apps zu erhalten.
Die Präsenz jeder App dort, insbesondere der Beschreibungstext, muss dem Benutzer essentielle Fragen
beantworten: Erfüllt die App seinen Zweck? Welche Funktionen enthält sie? Welche Daten, die meine
Privatsphäre betreffen, werden geteilt? Eine sorgfältig zusammengestellte Beschreibung ermöglicht es
Benutzern, eine fundierte Entscheidung zu treffen, ob sie eine App installiert sollen.

Es hat sich jedoch gezeigt, dass die Entwickler und Veröffentlicher von Apps nicht nur vollständige
Beschreibungen einreichen. In vielen Fällen führt der Mangel an erzwungenen Qualitätsstandards zu
unzureichenden Beschreibungen, sowohl bewusst als auch unbewusst. Selbst mit den besten Absichten ist
es mühselig, einen Beschreibungstext zu verfassen, der die obigen Fragen beantwortet.

Daher schlagen wir ein App-Publishing-Assistenzsystem vor. Es besteht aus drei Machine Learning
Modellen, die eine bestimmte App untersuchen, um schlussendlich ihre Beschreibung zu verbessern. Das
erste Modell findet verwandte Apps in Bezug auf die Beschreibung und die benötigten Berechtigungen.
Dazu verwenden wir Autoencoder und die t-SNE zur Dimensionsreduktion. Die Auswertung zeigt, dass
wir Ähnlichkeiten und Unterschiede identifizieren können. Gefundene Informationen können insgesamt als
Ausgangspunkt für die Erstellung von App-Beschreibungen und für erste App-Analysen dienen. Das zweite
Modell schließt auf die Hauptfunktionen der App basierend auf der Installations-Datei. Durch Extrahieren
von Resource-Identifiern, String-Konstanten und Methoden versucht ein neuronales Netzwerk, Wörter und
Ausdrücke vorherzusagen, die wahrscheinlich in der Beschreibung vorkommen. Die Modellvorhersagen
sind präzise und verallgemeinerte Phrasen, mit denen die eigentliche Beschreibung leicht überprüft und
erweitert werden kann. Darüber hinaus bewertet das dritte Modell, wie gut Berechtigungen in einer
Beschreibung widergespiegelt werden. Der Text wird mit einem Convolutional Neural Network analysiert,
das trainiert wurde, um neun der kritischen Berechtigungsgruppen vorherzusagen. Unsere Auswertung
zeigt, dass das Modell berechtigungsbezogene Wörter sehr gut erfasst und dass ihr Fehlen die Verfasser
der Texte ermutigen kann, sie hinzuzufügen. Letztendlich könnte unser vorgeschlagenes Assistenzsystem
für App-Veröffentlichungen dazu beitragen, die Beschreibungsqualität im florierenden App-Ökosystem
signifikant zu verbessern.

Contents

Contents i

Acknowledgements iii

1 Introduction 1

2 Background 5

2.1 Android . 5

2.1.1 Application Packages . 5

2.1.2 Resources . 7

2.1.3 Entry Points . 7

2.1.4 Build Process . 8

2.1.5 Dalvik Bytecode . 8

2.1.6 Code Obfuscation . 9

2.1.7 User Permission System . 10

2.2 Code Slicing . 12

2.2.1 Implicit Control Flows . 12

2.3 Natural Language Processing . 13

2.3.1 Text Preprocessing . 13

2.3.2 Term Frequency–Inverse Document Frequency 14

2.3.3 Word Embeddings . 15

2.4 Neural Networks . 17

2.4.1 Training . 17

2.4.2 Convolutional Neural Networks . 18

2.4.3 Undercomplete Autoencoders . 20

2.4.4 t-SNE Dimensionality Reduction . 20

2.4.5 Performance Evaluation . 21

2.4.6 Model Explanation . 23

2.5 Summary . 24

3 Related Work 25

i

4 Clustering based on Descriptions and Permissions 27
4.1 Motivation . 27
4.2 Approach . 28

4.2.1 Permission Autoencoder . 28
4.2.2 Description Autoencoder . 28
4.2.3 Training . 29

4.3 Dataset . 31
4.4 Evaluation . 32

4.4.1 Description Similarity . 34
4.4.2 Permission Dissimilarity . 35

4.5 Summary . 37

5 Description Inference 39
5.1 Motivation . 39
5.2 Approach . 40

5.2.1 App Behavior Modeling . 40
5.2.2 System Overview . 41
5.2.3 Resource Identifiers and String Constants . 42
5.2.4 Source Code Preprocessing . 45
5.2.5 Description Preprocessing . 47
5.2.6 Network Model . 48
5.2.7 Training . 50
5.2.8 Prediction Explanation . 50

5.3 Dataset . 51
5.4 Evaluation . 52
5.5 Summary . 57

6 Textual Permission Clarity 59
6.1 Motivation . 59
6.2 Approach . 60

6.2.1 Preprocessing . 61
6.2.2 Network Model . 63
6.2.3 Training . 64
6.2.4 Prediction Explanation . 65

6.3 Dataset . 66
6.4 Evaluation . 67
6.5 Summary . 73

7 Conclusion 75

A Cross–Platform App Detection 79

Bibliography 81

ii

Acknowledgments

Throughout the writing of this thesis, I have received a great deal of support from many sides.

First and foremost, I would like to acknowledge my supervisors for their collaboration. Continuous
support that is both challenging and motivating is not to be taken for granted. Their ideas and perspectives
shaped the outcome of this work. I want to especially thank Johannes Feichtner and Peter Teufl for their
excitement on the overall topic of deep learning and for sparking my interest to eventually confront this
challenge, which has endured until its completion. I am appreciative of the countless working hours
that they have invested for discussing my results, contributing new approaches, and revising this written
document.

Furthermore, the support of my family and friends made finishing this thesis significantly easier. Thank
you for understanding the impacts a master thesis has on someone’s schedule, priorities, and mood.

Stefan Gruber
Graz, Austria, September 2019

iii

iv

Chapter 1

Introduction

Their third-party app ecosystem has been a catalyst for the success of smartphones in the last decade.
Benefiting from its platform-openness, Android has become the most popular smartphone operating system
among developers in terms of available apps. The primary way of installing third-party applications on
mobile devices are app markets like Google Play. As of August 2019, the store contains over 2.4 Million
published apps. 1 There are additional possibilities to obtain apps, like manually downloading installable
packages from the web. Most Android apps, however, is acquired through this software distribution hub.

Google Play provides convenience features that allow users to decide whether an app is geared to their
needs. Almost every store entry contains meta information like a category, a one-sentence summary,
multiple screenshots, a descriptive text, and a list of user permissions the app requests. This information
helps the user to decide whether (a) the app’s features are of service to them, and (b) the app is trustworthy.
Although there may be users that skip reading the description, the information available should always
cover these two aspects.

To some extent, store providers like Apple and Google attempt to assess app trustworthiness and the
contents of the description. They have implemented mechanisms to scan for abuse and malware. Different
approaches exist: While human code reviews are the norm for all apps submitted to Apple, Google
mostly uses automated analysis. In recent years, Google’s pre-publish security tests have been found
to be circumventable without much effort.2 Adversaries also use techniques like cloning existing apps,
adding malicious behavior, and re-submitting them to the store. These apps are then presented just like the
original, legitimate version, but with a deceiving store entry. Detecting repackaged apps in mobile app
stores, but also malware on mobile platforms in general has become a growing research area in recent
years [7, 13, 19].

The identification of malware before its distribution is, however, not the only concern for apps in Google
Play. For this thesis and its three main contributions, we formulate the underlying problem much more
general. As we pointed out, the information about the app stated in the store entry, in particular, the
description, is crucial for deciding whether someone should download the app or not. In other words, the
app developer is obligated to formulate the description so that it briefly, but thoroughly, covers the core
functionality without omitting important features and permissions. In case there is a gap between the
description and the actual functionality, the user should be alarmed. Reasons may reach from inattentive,
careless app releases to intentional malware distribution. Therefore, we deem the examination of the
alignment between description, permissions, and functionality momentous.

1https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/

2https://blog.trendmicro.com/trendlabs-security-intelligence/a-look-at-google-bouncer/

1

https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://blog.trendmicro.com/trendlabs-security-intelligence/a-look-at-google-bouncer/

2 1 Introduction

A thorough assessment of app store descriptions would have great value but is expensive. From the store
provider’s point of view, comprehending what an app does is a complicated endeavor and time-consuming.
Every app would have to be dissected and thoroughly analyzed to understand its behavior. From the
developer’s point of view, even with best intentions, selecting the right meta information that the users
are about to see is also challenging. It requires the ability to abstract one’s own detailed view of the
implementation and to succinctly depict the developed piece of software from the end user’s perspective.
On the one side, manually drafted app descriptions are an essential tool for app marketing, making the
app appealing for users and allowing a distinction. On the other side, accurate depiction for the sake
of comparability can be measured and eventually improve description quality. Practically, a good app
description thus contains objectively measurable parts as well as creative wording to describe its behavior.

Hence, we propose an app publishing assistance system (APAS) that can guide both app developers and
store providers. The overarching objective of such a system is to enhance the app’s store presence. Based
on this objective, we have identified three questions that should be asked before publishing an app:

1. How does the app relate to other existing apps?
2. What core phrases should the description include, based on the app’s functionality?
3. How well does the description reflect permission-related functionality?

By developing a system that helps to answer these three questions for an app that is about to be published,
we aim to improve its description quality before publication.

We intend to build a system that gains knowledge from real-world apps. Statically defining rules for
classifying source code is an option. The vast number of API calls, third-party library methods, and their
combinations, however, makes it cumbersome to find and set up these rules by hand. Another factor is the
evolving nature of smartphone apps, with continually changing APIs, design patterns, and use cases. With
the advances in machine learning in recent years and especially in the field of neural networks, we attempt
to make use of established neural network designs that capture and classify relationships based on a large
number of apps. Analyzing already published applications and learning behavior from them, however,
leads to large amounts of data to be processed and any problems associated with that.

Neural networks, in general, learn patterns from a large set of examples that they are given during
training. Conventionally, before training machine learning models, humans evaluate each training sample
regarding its quality and properties. For classification tasks, i.e., predicting the class assignments for
samples, someone goes through the training data beforehand to validate the assigned target classes. The
manual examination aims to reduce the influence of incorrectly labeled samples and improves the prediction
quality. In domains where a machine learning model is used to make consequential, non-monitored
decisions, meticulously reviewing each sample is essential.

In this thesis, however, we do not work with manually labeled and hand-picked samples for practical
reasons. For our tasks on smartphone apps, manually identifying the complex relations between training
input and training output is a demanding and time-consuming task for humans. In contrast, for an image
classification task, revision by humans would take comparably less time per sample. Reviewing an Android
application and deriving a "normalized" description requires considerably more time. Practically, to
train on a broad spectrum of smartphone app types, we would have to correctly label thousands of apps
regarding their descriptions, their source code, and static resources, as well as their permission sets.

However, since our goal is an assistance system that merely makes suggestions, we make use of a
real-world app set that has not been manually reviewed. As this makes the learning process more prone
to errors, i.e., learning irrelevant or missing correlations, we try to adjust our system to that as good as
possible. On the one hand, we train our machine learning models with coarsely filtered samples. We
check them for properties like minimum description lengths, description language, or whether the app
implementation is non-native, like HTML5 cross–platform apps. On the other hand, we design the system
so that it outputs not only predictions but also their reasoning. Through the use of model explanation
algorithms, each prediction, e.g., description fragments based on the application package, is always

3

presented with a list of the input features that have led to it. Hence, although we train our model on noisy,
potential low-quality samples, we coarsely filter them during preprocessing and provide a transparent
explanation for each prediction. As our evaluations show, despite this trade-off, we still achieve good
results.

As the first step for pre-publishing assistance, we deem description-related and permission-related
comparison with other apps essential. Finding apps that are related to each other can serve multiple
purposes. From a security perspective, apps can be clustered by their malignancy, i.e., if an app is
malicious or which malware group it belongs to [32, 33, 54]. Clustering algorithms have also already been
successfully applied to smartphone app descriptions [2, 37, 58]. The main goal is usually to categorize
apps according to their usage, like finding a suitable category for Google Play or Apple’s App Store. For
our system, we intend to use clustering and dimensionality-reduction algorithms without always requiring
strict boundaries. Our goal is to visualize apps closer to each other or further apart. By measuring
distances in a low-dimensional space, we aim to find related apps to the one being examined. As pointed
out before, even though store descriptions contain app-specific phrasing, particular parts should make
the description relatable as well. A clustering system for descriptions should thus be able to position
a particular app in the proximity of other apps that serve a similar purpose in case the description is
sufficient. Analogical to the description similarity, the permission sets of related apps should theoretically
also resemble each other. In case the permission sets are very dissimilar for related apps, developers and
users may question them.

The first one of our three contributions is, therefore, an app clustering and distance measurement
approach using undercomplete autoencoder neural networks and t-SNE. Two separate autoencoders are
trained on the descriptions and the fine-grained permission sets. Their encoders produce latent space
representations that are used for further reducing the dimensionality with t-SNE. After these non-linear
transformations, we obtain 2-d representation models that we can feed the app that should be examined.
For descriptions, the approach shows that with t-SNE we can find similar apps better than with PCA. The
permission dissimilarity analysis shows that based on permissions only, we can find outliers that are not
only or not at all doing what the description claims. Reducing app complexity and representing them in
a 2-d space for descriptions and permissions can facilitate initial assessments as we are showing in our
evaluation.

Upon finding similar and dissimilar apps, the APAS should suggest potential elements the description
text might include. These suggestions could be used to enhance the first draft of a description. Such
a system thus has to analyze the app for clues that allow for inferring descriptive phrases. Deriving
explanations from source code is a challenging field that has made progress in recent year with the use of
deep learning. Neural architectures have been used to summarize code, suggest method names, or label
software projects [3, 4, 16, 40]. Specific to Android, user interface descriptors have been analyzed to
obtain words for the description [28]. These methodologies, however, only cover either source code or
a subset of the static resources, are very domain-specific (non-mobile), or computationally expensive
preprocessing and training. The description inference part of the APAS should thus make use of both the
app’s source code and its resources, while still maintaining low model complexity.

The description inference model we propose thus receives static parts of the app as well as its source
code. In particular, given an individual application package, including source code and resource files, the
system should come up with an overall picture of what the app does. Therefore, we train three different
neural networks. The networks are trained to output description fragments. The first network receives
all resource identifiers an app holds in its XML files. The second one gets string constants found in the
app’s source code and its XML files. The third model gets all method calls an app makes to the Android
API. All inputs and outputs, i.e., descriptions, identifiers, strings, and methods, are represented via term
frequency–inverse document frequency (TF-IDF), a commonly used text representation algorithm. After
training, we use the SHAP framework to provide explanations for the predictions, e.g., in case a predicted

4 1 Introduction

description phrase is photo frame it might be inferred from static resources in the app that contain tokens
like photo, crop, frame, or similar. Model explanations make the predictions more reliable since we use
non-manually labeled samples. As we show later, the three models of our description inference system
often output very concise, generalizing illustrations of what an app does. To summarize, the description
inference part of the APAS uses an occurrence-based representation of the app’s resource identifiers, string
constants, and API method calls to predict phrases of the description. Additionally, it employs a machine
learning model explanation algorithm to show how these predictions come about.

After automatically computing app similarity and description inference, the third contribution of this
thesis focuses on textual permission clarity. User permissions are one of Android’s cornerstones to
protect the user’s privacy. Whenever a third-party app requires access to privacy-critical features, e.g.,
the camera, the microphone, or the address book, the user has to white-list the corresponding permission
group. Consequently, a well-drafted description text in Google Play should reflect why an app needs
these permissions and what it does with the data it collects. Based on a description text, the required
permissions should be identifiable. In recent years, this has become an active research area [15, 45, 49].
These systems, however, have mainly used comparably small, manually labeled sample sets, match the
permission-related parts with specific strings in the source code, or used conventional machine learning
algorithms like support vector machines. These approaches are infeasible for our noisy, non-handcrafted
datasets.

We thus propose a convolutional neural network (CNN) for text classification in combination with
a model explanation algorithm. During preprocessing, we tokenize the raw text and use a pre-trained
embedding model before feeding the texts into the neural network. The CNN’s different filters capture
words and word groups. Their combination is used to predict the likelihood that an app requires a certain
permission. Then, we also apply the LIME model explanation algorithm in the prediction phase to find
the words in the text that cause the prediction score for each permission. Our evaluation shows that the
textual permission clarity model can be applied to identify shortcomings of permission usage reflection
in the description. The model explanation is used to visualize the impacts of particular words. We
see that although we use a noisy dataset, the trained model can also give valuable about the absence of
permission-usage related wording. Overall, the textual permission clarity system as the third part of the
APAS can help with identifying and improving the expression of an app’s permissions in the description
text.

The following chapters describe our contributions in detail and are structured as follows. Chapter 2
establishes the necessary background knowledge. The background includes details about Android’s
app structure, permissions, static code slicing, natural language processing methodologies, and selected
machine learning fundamentals. In Chapter 3, we show existing, related work similar to our approaches.
After that, we continue with the three main contributions of the thesis. First, we cluster apps with the use
of autoencoders and t-SNE in Chapter 4 to show their similarity and dissimilarity in regard to descriptions
and permissions. Second, Chapter 5 deals with the description inference system where we use a dense
neural network and TF-IDF to predict description fragments for an app based on its resource identifiers,
string constants, and method calls. Third, in Chapter 6, we describe our textual permission clarity model in
detail, which uses a CNN to predict the use of permission groups based on the description text. Each main
chapter includes an evaluation where we show the application of each approach. Finally, we complete this
thesis with a conclusion in Chapter 7.

Chapter 2

Background

In this chapter, we provide background knowledge about Android applications, static code analysis, and
machine learning. For Android apps, an overview of the application package structure, build process,
runtime, and code obfuscation is given, as well as details about the runtime permission system. Then,
we turn to the fundamentals of static slicing which we need later to analyze applications. The section
about natural language processing aims to give insights on how human language can be represented and
processed computationally. Ultimately, the machine learning part focuses on relevant types of neural
networks and methods to evaluate their performance.

2.1 Android
Android has become the world’s most popular operating system for smartphones. Bought by Google in
2005, the platform has evolved over time. Running on smartphones only at first, the ecosystem now covers
tablets, wearables, cars, smart home equipment, and more. The Linux-kernel based OS can, by design,
be adopted by hardware manufacturers while still providing a public market platform for third-party
applications. As of June 2019, 2.5 billion devices running the operating system are active.1 Over the
years, Android has become the most widely spread smartphone OS.

The third-party application ecosystem has played a significant role in that development. Allowing
developers to cover all sorts of custom use cases has drastically changed the way we use hand-held internet
devices. Android was designed to be an open platform for developers with a considerable amount of
documentation. The following pages cover a broad range of topics necessary to comprehend packaged and
distributed Android apps.

2.1.1 Application Packages

Installable third-party Android apps are distributed using application packages (APK). This platform-
specific archive format encapsulates runnable code plus necessary static resources, e.g., images, language
translations, or user interface descriptors. The APK file’s format is a Java archive (JAR) with ZIP file
compression. The archive itself needs to contain particular descriptors like an app manifest and an
appropriate sub-folder structure.

The Manifest file defines relevant parts of the app and serves as an entry point. 2 Listing 2.1 gives
an idea of the basic structure. The main manifest tag defines the app package name which must be

1https://9to5google.com/2019/05/07/android-pie-distribution-numbers/

2https://developer.android.com/guide/topics/manifest/manifest-intro

5

https://9to5google.com/2019/05/07/android-pie-distribution-numbers/
https://developer.android.com/guide/topics/manifest/manifest-intro

6 2 Background

unique on the system, which we refer to as app package name. Line 6 with uses-sdk puts a limit on
which minimum OS versions the app can be installed on, which is essential, i.e., for compatibility reasons
and availability of newer SDK functionality. User permissions requested by the app must be listed, as
exemplified in line 8. A more detailed look on the permission system is given later in Subsection 2.1.7.

The functional core is defined within the application tag. In general, four different component types
are available and can be implemented multiple times:

• Activities are user-interface related parts of the app.
• Services contain logic running independently from the user-interface and potentially after closing or
without an activity.

• Broadcast receivers are listeners for messages from other apps or the operating system.
• Content providers are abstracted, well-defined interfaces that can be used by other applications to

access the app’s data.

1 <?xml version="1.0" encoding="utf-8"?>
2 <manifest xmlns:android="http://schemas.android.com/apk/res/android"
3 android:versionCode="5" android:versionName="1.1"
4 package="at.tugraz.example.myapp">
5
6 <uses-sdk android:minSdkVersion="19" android:targetSdkVersion="26" />
7
8 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>
9

10 <application android:allowBackup="true"
11 android:icon="@mipmap/ic_launcher"
12 android:theme="@style/AppTheme">
13
14 <activity android:name=".MainActivity">
15 <intent-filter>
16 <action android:name="android.intent.action.MAIN" />
17 <category android:name="android.intent.category.LAUNCHER" />
18 </intent-filter>
19 </activity>
20
21 <service android:name=".PushMessageService"
22 android:label="@string/push_service_name" />
23 </application>
24 </manifest>

Listing 2.1: Android app manifest file: example structure.

Table 2.1 lists the mandatory files and folders inside the APK archive. Upon development, the Java/Kotlin
source code is compiled to Dalvik executable bytecode and stored inside the classes.dex file. The DEX
files are then loaded into Android’s virtual machine and executed on the device.

META-INF/ list of archive contents and data integrity hashes
assets/ file-system like folder for resources
lib/ non-Java, native library code
res/ pre-loaded resources like strings, icons

AndroidManifest.xml Application manifest file
classes.dex Dalvik VM source code of the whole application
resources.arsc pre-compiled version of the app’s resources

Table 2.1: APK file structure.

Android 7

The assets/ and res/ folders both contain non-executable resources. Assets are files that are
accessible by their filename. In contrast, res/ can store multiple variants of data which are referenced in
the code via a resource identifier. The information located inside the res/ folder is what we subsequently
refer to as resources.

2.1.2 Resources

Android development offers a refined system for storing and accessing resources program logic uses.3
Items such as activity layout definitions, icons, strings, animations, and others are stored under res/.
The developer is encouraged to externalize elements like the language-specific text used in the UI. For
graphical elements, device-specific content can be provided (resolution, orientation, etc.). This view
separation via resource elements facilitates code maintenance and allows for covering a broad range of
device types and users with one installable package.

In other words, this means that one resource can bundle several specific items serving the same purpose.
Listing 2.2 shows a simple example of string localization. The developer creates language-specific folders
under /res, e.g., for English, German, and a fallback case. Within these folders, XML files with the same
file name are provided. Specific items, like strings in the example case, can be referenced via the name
attribute. The operating system handles the selection of the exact, underlying item.

(i) XML file for English.

1 <?xml version="1.0" encoding="utf-8"?>
2 <resources>
3 <string name="btn_send">Send</string>
4 <string name="txt_enter_name">Enter last

name:</string>
5 <string name="msg_sent">Request has been

sent!</string>
6 </resources>

(ii) XML file for German.

1 <?xml version="1.0" encoding="utf-8"?>
2 <resources>
3 <string name="btn_send">Absenden</string>
4 <string name="txt_enter_name">Nachnamen

eingeben:</string>
5 <string name="msg_sent">Anfrage

abgeschickt!</string>
6 </resources>

(iii) Accessing multilingual resource strings programmatically.

1 private void setButtonText() {
2 Button okBtn = (Button) findViewById(R.id.btn1);
3 okBtn.setText(getResources().getString(R.string.btn_send));
4 }

Listing 2.2: Example usage of multi-lingual strings in the user interface.

Internally, name attributes in XML files are translated to numeric symbols. Each name attribute
corresponds to an integer ID (resource ID) which is randomly assigned by the compiler. Within the
program logic, the R.* constants are integers holding these values. The build system creates a table stored
in the resources.arsc file, linking each integer value with multiple versions of the resource.

2.1.3 Entry Points

In regard to activities, services, broadcasts, and providers, the app’s manifest provides a list of entry points
for the app. These Java classes contain methods the operating system looks for when it launches an app or
sub-parts of it. Examples are starting and stopping app activities and services. Resolving these gateways
is particularly useful for app analysis.

3https://developer.android.com/guide/topics/resources/providing-resources

https://developer.android.com/guide/topics/resources/providing-resources

8 2 Background

The associated XML tags in the manifest contain android:name attributes which point to Java classes.
These classes can either be referenced using the fully-qualified class name, i.e., full package name plus
class name or in an abbreviated way: The leading dot in line 14 in Listing 2.1 stands for the whole app’s
package name as defined in the top-most manifest tag. This list of Java classes can then be found in the
DEX file.

Activity Service

onCreate() onStartCommand()
onStart() onBind()
onResume() onCreate()
onPause() onUnbind()
onStop() onRebind()
onDestroy() onDestroy()

Table 2.2: Important Android lifecycle methods.

All entry classes are derived from SDK components,
meaning they have to implement or inherit a specific
class or interface.4 For activities and services, important
methods are listed in Table 2.2. After instantiating the
object, i.e., calling the constructor, the system calls these
lifecycle methods, similar to the main() function in
conventional JVM Java programs. As an example, when
an Activity is launched, the OS calls onCreate, onStart,
and then onResume. Within these methods, the app is free
to create other objects, threads, callbacks, and to access
their methods. By resolving these lifecycle entry methods,
the relevant program code can be analyzed systematically.

2.1.4 Build Process
The Android build process defines several steps on how to transform source code to installable packages.5
A set of compilation operations, file alignments, and data integrity measures assembles the APK file.
Understanding this build process is necessary to reverse engineer applications and analyze their behavior.

Figure 2.1 depicts the steps necessary for building an APK. The compile step merges app-specific
Java/Kotlin source code with third-party libraries. These libraries can contain, e.g., UI handlers, custom
cryptography, HTTP request handling, etc.Libraries are always included as a whole, with potentially
large amounts of code that is not used by the app. Apart from all the source code, also device and
language-dependent images and XML resources are compiled into the aforementioned resources.arsc
table. The compilers output one or more .dex files, containing program code, and an .arsc file, containing
the organized resources.

Upon compilation, the APK packager adds the installable archive file. The packager includes asset
files and native libraries to the APK. For data integrity measures, the user has to sign the data using an
asymmetric key-pair that is shared with the app market, i.e., Google Play Store. The APK file is then
ready to be distributed or to be installed directly on the device.

2.1.5 Dalvik Bytecode
Dalvik Executables (DEX) are the files containing the program logic loaded and run by the Android
OS. Code execution is similar to Java. A virtual machine (VM) translates bytecode statements to CPU
operations. Before Android 5.0, Dalvik VM was used and then replaced by the Android Runtime (ART).6
An Android-specific compiler to translate Java code to bytecode executable on hand-held devices is
necessary.

The d8 compiler is part of the Android Build Tools. It takes a set of Java .class files as input, optimizes
them, converts them to bytecode, and compresses them into the DEX file. For apps exceeding the number
of 64k methods, two or more DEX files are generated. These DEX files are stored in the APK file.

4https://developer.android.com/guide/components/activities/activity-lifecycle

5https://developer.android.com/studio/build

6https://source.android.com/devices/tech/dalvik/index.html

https://developer.android.com/guide/components/activities/activity-lifecycle
https://developer.android.com/studio/build
https://source.android.com/devices/tech/dalvik/index.html

Android 9

Source Code

Compilers DependenciesResources

DEX File(s)

Compiled Resources

APK Packager Keystore

APK File

Figure 2.1: Android build process.

The resulting bytecode for ART is different from the Java VM’s bytecode.7 For Java, local variables are
put on the stack, but the Dalvik VM assigns these variables to hardware registers. Hence, DEX opcodes
perform their operations directly on registers. The set of opcodes also differs from the Java VM, as well as
handling the pool of constants. For object references and reference comparison, Dalvik uses a numeric
zero as a null pointer and does not have separate OP codes for that. Amongst others, these adaptations
allow for faster code execution on embedded devices but hamper recovering the original Java code.

Reverse engineering DEX files to Java code is thus an effortful endeavor. Tools like dex2jar8 attempt to
undo one step in the build process, turning DEX files back into its Java .class files. Peculiarities of the
VM and the DEX format often cause issues since build transformations are not unambiguously invertible.

Considering these challenges, a decision has to be made whether obtaining Java code is necessary for
the app analysis. As it has been shown, work can be done on DEX code level [17, 30, 31]. Working
directly with DEX files also bypasses tools like HoseDex2Jar, which try to prevent the decompilation of
Android apps. Depending on the task, reversing the APK’s logic back to Java code might thus not be
needed and working with DEX code can be feasible.

2.1.6 Code Obfuscation

Source code obfuscation describes a transformation of program code without changing its behavior.
During the transformation process, semantic information that was needed for development is stripped
away that does not affect the execution. Obfuscation is an optimization process that also aims to protect
intellectual property.

7https://forensics.spreitzenbarth.de/2012/08/27/comparison-of-dalvik-and-java-bytecode/

8https://github.com/pxb1988/dex2jar

https://forensics.spreitzenbarth.de/2012/08/27/comparison-of-dalvik-and-java-bytecode/
https://github.com/pxb1988/dex2jar

10 2 Background

Tools provide obfuscation on different levels [36]. Layout transformations alter identifiers such as
variable names, class names, and methods names. Since Java is an interpreted language that offers reflection
features9, identifiers are included inside the compilation. Data obfuscation adapts the access, storage, and
aggregation of values, e.g., inside arrays. Control obfuscation rearranges statements, duplicates them, or
rewrites them in other ways. On all the different levels, all obfuscation measures must not change the
program’s behavior.

Code obfuscation serves two purposes. Replacing identifiers with shorter ones leads to lower memory
consumption. Mainly, however, obfuscation tools are used to make it harder to reverse-engineer the
original source code. Semantic information like variable names facilitate comprehending code fragments.
The removal of such semantics is supposed to impede theft of intellectual property, as well as program
analysis.

On Android, the most popular code obfuscation tool is ProGuard.10 Google recommends the use of
ProGuard or its own, newer compiler R8 that also provides similar functionality, to all developers. While
ProGuard only affects Java code, the R8 compiler also checks for unused references to XML resources. It
does not, however, obfuscate the resource identifiers, e.g., for language strings or activities. Both ProGuard
and R8 only alter Java code on Android.

Obfuscation hampers app analysis on a source code level. The absence of development semantics adds
additional challenges to understanding the app’s behavior. Several code properties are not modified. Apart
from the aforementioned resource identifiers, direct API calls to the OS have to be hard-coded at some
point so they can be executed. Since the transformation process can never alter the desired app behavior,
the control and data flow have to remain unchanged in the end. Despite obfuscation, structural code
analysis methods can still extract valuable information.

2.1.7 User Permission System

The Android platform security model in regard to user applications is based on a three-party consent [41]:
App developer, device user, and the OS have to mutually agree for an action to be executed. Three-party
consent especially affects privacy-related data. In contrast to traditional operating systems, apps are
security principals. An Android app has significantly fewer privileges over the whole OS, like file-system
encrypting malware or cross-app data leakage on desktop systems. These design aspects improve the
protection of private data when a user installs third-party apps.

In practice, apps work in isolated spaces and with limited authority. A sandboxing system prohibits
rigorous access between third-party apps and isolates their execution and their private data folders.
Additionally, a long list of mandatory access control features is implemented via the Security-Enhanced
Linux (SELinux) kernel extension, e.g., direct hardware access or file operation restrictions. Sandboxing
and SELinux are measures of the operating system to restrict critical app-related operations on an
operating-system-level fully. They are enforced regardless of user settings.

In addition to these measures, Android comes with a user permission system.11 These user permissions
affect all kinds of information, from communication (internet access, NFC, SMS, ...) over phone data (call
logs, wallpaper management, file access, ...) to direct hardware access (microphone, camera, location, ...).
Each permission allows, if granted, the usage of one or several API calls. The list of permissions has to be
declared in the AndroidManifest.xml file. In case a developer does not state the necessary permission
upfront, the app is not able to access certain features.

9https://docs.oracle.com/javase/8/docs/technotes/guides/reflection/index.html

10https://www.guardsquare.com/en/products/proguard

11https://developer.android.com/guide/topics/permissions/overview

https://docs.oracle.com/javase/8/docs/technotes/guides/reflection/index.html
https://www.guardsquare.com/en/products/proguard
https://developer.android.com/guide/topics/permissions/overview

Android 11

The permission system, however, has seen changes across OS releases. Up to Android 5.1.1 (Lollipop),
the list of permissions was presented to the user at install time. The user could either accept all permissions
and proceed with the installation process or decide not to install the app at all. This potentially long and
overwhelming list of critical and trivial permissions caused many users to skip assessing the requested
permissions and install apps regardless of the dialogue’s contents.

A major change was made in Android 6.0 (Marshmallow) when Google switched to runtime permissions.
For third-party apps, Android then started differentiating between normal permissions and dangerous
permissions. Normal permissions cover features that are considered non-privacy sensitive, e.g., internet
access, time-zone management, or alarms. Dangerous permissions are related to camera, location, or
shared file storage. While normal permissions are granted automatically at install time, for dangerous
ones, the user is presented a confirmation dialog when the app first requests the feature. Smartphone users,
in general, see this shift positively, adapted quickly, and prefer the new system [6]. This change to the
permission system aimed to make the user more aware of the permissions an app uses, but also give more
access control.

Granted Permission Group Entailed Permissions

CALENDAR read and write calendar
CALL_LOG read and write call log

process outgoing calls
CAMERA camera access
CONTACTS read and write contacts

get system accounts
LOCATION access both coarse and fine location
MICROPHONE audio recording
PHONE read phone state and numbers

make and answer calls;
add voice mail
SIP (voice-over-IP)

SENSORS access to body sensors
SMS send, receive and read SMS

receive WAP push notifications and MMS messages
STORAGE read and write external storage

Table 2.3: Permission groups in Android 6+.

In practice, theMarshmallow permission system change has significant security implications. Developers
are forced to state what the requested permission group is used for. In a large-scale empirical study,
however, it was found that less than a quarter of apps contained such rationales [35]. Especially the
PHONE and CONTACTS group included a plethora of incorrect rationales. The exact usage description
is either often omitted, the quality tends to be low containing only trivial details and is given a positive
spin in terms of privacy.

Another downside is that previously single permissions are now clustered into permission groups for
usability reasons. Table 2.3 shows the ten permission groups and the entailing fine-grained permissions.
It is opaque to the user which permissions within the group are requested and used. For instance, if
an app only needs to create a calendar entry, the user would not notice that it can also read all existing

12 2 Background

calendar entries. Another example would be an app that merely needs to connect to a nearby device, e.g.,
a smartwatch; it can also easily pinpoint the user down to several meters using GPS. Since the internet
permission is considered non-dangerous and granted to any app, data could be sent to an adversary in the
background. Grouping multiple permissions and creates new attack vectors for Android apps.

While the newer permission system gives more control to the user at runtime, grouping fine-grained
permissions can mislead the user to share more private data than obvious. High-quality app descriptions
in the app market can give guidance on how the app uses permissions and can potentially compensate for
lack of runtime permission rationales.

2.2 Code Slicing
Slicing is a technique to analyze how programs behave during execution [63]. While natural language can
be processed linearly, programming languages fundamentally rely on conditions and jumps. A program
usually consists of a large set of instructions that are not executed linearly. Depending on the input, e.g.,
from the user, different paths are taken. Program slicing is a method that models the specific behavior of a
program execution path.

In general, slicing differentiates between control flow and data flow. The control flow describes the
relationship between statements. It is useful to obtain a sequence of operations to describe an algorithm.
The data flow maps the change and transition of variables (data) throughout the program.

Slicing decompositions of programs can be created using mathematical graph structures. A flow graph
is a directed graph. The nodes represent program statements. For control flow graphs, edges are modeled
for each transition between such statements, i.e., conditions (multiple outgoing edges), loops (multiple
incoming edges), or simple statements like assignments (one in, one out). Treating programs as graph
structures facilitate finding the relationship between program statements.

Call graphs are a sub-category of control flow graphs specific to the execution of procedural functions
[53]. Conditions and jumps are omitted when creating the graph, only called sub-routines are followed
through, with each call being added as a graph node. In its most straightforward way, the nodes can be
collected statically when analyzing source code. In the end, call graphs yield an abstract, compact list of
relationships between sub-procedures of a program.

In practice, call graphs are used as a compressed visualization for humans to comprehend what the
program does. Nowadays, programs, and especially Android applications, contain a large code base,
including frameworks and libraries, embedded into operating systems with specific API calls. Developers
add third-party libraries to their projects. Classes and methods might only be relevant for debugging or
might be artifacts from older releases. Hence, call graphs can tell which parts of an Android application
are really used.

2.2.1 Implicit Control Flows

The sequence of triggered sub-procedures cannot always be found via the project’s source code. In
high-level programming languages and frameworks, a variety of calls is made implicitly [8]. Java offers
constructs like Reflection, which allows modifying the program code during runtime. Android provides
so-called Intents, used for communication between components. Another example in Android are event
listeners, where the registration statement and the code to be executed are triggered internally by the
operating system. For someone reading the code, the source and the target of the flow may be apparent.
However, it cannot be captured by the previously outlined flow graph creation algorithm.

EdgeMiner [12] aims to find such implicit control flows. By analyzing the Android framework’s
codebase, it looks for potential callbacks. Performing a backward-analysis of the framework’s flow graph,

Natural Language Processing 13

it generates pairs of method calls, consisting of a registration method and one or several callback methods.
The list that EdgeMiner generates enhances a flow graph with additional edges.

As with any object-oriented language, object types in Java can be decided at runtime. In case a variable
is defined using an abstract class or interface, the particular method implementation to be called is versatile.
Inheritance complicates the creation of call graphs since type-related conditions are not incorporated. It is
thus necessary to decide how to treat inheritance in the call graph by potentially resolving all possible
implementations of a parent class.

As for the overall goal of this thesis, call graphs can be used to detect particular Java and Android API
calls. Adding information about implicit flows to the graph enables resolving graph edges that are not
defined by the app but hidden inside the Android/Java framework. Call graphs can thus be used to separate
library code in the app from code needed for its execution and trace the methods that are actually called.

2.3 Natural Language Processing
In recent years, there has been a shift in how users interact with their devices. It was common that
computing devices accepted only a narrowly defined set of inputs, e.g., commands following a strict syntax
or user interfaces with dedicated action elements. Advances in the field of natural language processing
(NLP) allow programs to interpret human language better. Potential applications are information retrieval
(IR), text classification, or sequence-to-sequence translation. Despite speech recognition playing an
important role in NLP as well, this section solely focuses on processing text, which is needed later in this
thesis.

NLP is a challenging task, spanning over the fields of computer science, mathematics, and linguistics.
Languages are inherently different from each other, both semantically and syntactically. Words come
in grammatical variations and can have similar or multiple meanings. Depending on the context, the
contribution of a single word for the overall meaning varies. The dictionary limits processing capability.
For handling human text, a program must take all these properties into account [61].

2.3.1 Text Preprocessing

To be able to digest the text further, certain procedures have become established. In general, the text is
stored as a sequence of characters. As a first step, this character array has to be split into meaningful
tokens. Some of these tokens are eliminated, e.g., because of their occurrence count, while others are kept
and morphologically adjusted. Text preprocessing represents written human language so that machine
learning models can handle it efficiently.

Tokenization refers to splitting the whole text into smaller, processable entities. Semantically correct
tokenization is a complicated task. The notion of a "token" needs to be defined beforehand [62]. In practice,
as a first step, splitting is done through whitespaces (spaces, newlines, tabs, etc.). Special characters like
dots, colons, semi-colons, apostrophes are often also removed. Depending on the use case, it makes sense
to retain special characters, e.g., for third-person singular or hyphenated word combinations.

Stopwords are words that carry comparably little meaning in a text. Stopwords are usually defined in a
list that contain low-content words, high-frequency words, or function words, i.e. articles ("a", "the"),
forms of "to be", or conjunctions ("and", "or", "but"). In theory, stopword influence should be low if the
subsequent machine learning model is able to balance out tokens occurring significantly more than others.
In practice, the purpose of stopword removal is to keep the data to be processed low, e.g., memory and
time complexity for training a neural network.

Stemming is a transformation where different morphological word forms are reduced to a single word,
the root or stem [22]. Most stemming algorithms remove affixes (prefixes and suffixes) of words according

14 2 Background

to a list of pre-defined rules. Words shorter than a certain length are not truncated. The stem does not
necessarily exist in a dictionary.

Words Stem

take, taker, takes, taking take
computer, computing, computation comput

goes goe
photography photographi

Table 2.4: Stemming examples, Porter algorithm.

Before applying stemming, the quality-speed
trade-off has to be considered. Table 2.4 gives some
examples of stemmed words. "Photography" is an
example for under-stemming, where not enough
letters are removed. Stemming algorithms do not
know irregular nouns and verbs. Unlike lemmat-
izers, which use dictionaries, stemming transform-
ations are partially inaccurate. The impact of these
mistakes may be neglected. For many tasks, ef-
ficient and straightforward actions like stemming
(and also stopword removal) significantly improve
the performance of NLP tasks, while more complic-
ated techniques only add very little improvement [11]. Despite their shortcomings, stemming algorithms
in practice yield good, fast results and are widely used.

2.3.2 Term Frequency–Inverse Document Frequency

Term Frequency–Inverse Document Frequency (TF-IDF) is a popular algorithm to encode text samples
for NLP [23]. A text or document first has to be tokenized. The text is then treated as a bag-of-words,
meaning the order is not relevant anymore. Each word is assigned a weight calculated by its relevance.
The result for each document is a vector, with each cell containing a decimal weight value, corresponding
to a word in the dictionary.

The weights are generated using two components: the term frequency per document, and the inverse
document frequency of a word across all documents. Equation 2.1 shows the calculation of the term
frequency. The number of occurrences of a term in a single document is divided by the total number of
terms in that document (TF). This census implies that if a term occurs multiple times, it has a higher
weight. For the inverse document frequency (IDF, Equation 2.2), the total number of documents, and the
documents a term is used in are divided, and log-scaled.12 Multiplying these two values gives the full
TF-IDF value (Equation 2.3). This weighing algorithm gives a vector for each document, where the terms
most significant within the document have the highest values.

TF(d, i) =
|wi |

|d |
. (2.1)

IDF(i) = log
(

Ndocs

1 + ni

)
. (2.2)

TFIDF(d, i) = TF(d, i) · IDF(i). (2.3)

Despite its frugalness, TF-IDF and its adaptations are still widely used in information retrieval systems.
Used by many search engines, TF-IDF serves for querying documents [50]. A model is fitted using all
items in the database, e.g., websites, books, or scientific publications. In particular, the model contains the
word dictionary, the corresponding vector positions, and the inverse document frequencies. The document
vectors of all documents are calculated. The input query is then processed using the previously generated

12The 1 in the denominator is merely a smoothing value to avoid division-by-zero errors

Natural Language Processing 15

model. In combination with k-NN, a text categorization system can be built [57]. After fitting TF-IDF
on a corpus of data (the training set), new documents can easily be transformed. Then, for instance, the
Euclidean distance measure can be used to calculated document similarity.

TF-IDF has two notable disadvantages. First, the transformation removes any order between the words.
Treating documents as a bag-of-words makes leveraging local semantics impossible. Depending on the task,
this compromise might be acceptable or not. Second, the TF-IDF document vectors mathematically have
a size as large as the dictionary. For text in natural language, depending on the preprocessing (stemming),
these dictionaries can have millions of entries. Since most documents only use a minimal subset of the
complete dictionary, sparse vectors and sparse vector operations are used.13 Some implementations only
store the non-zero elements of the vector and their indices. Another measure to limit the dictionary size is
to set upper and lower threshold on a term’s document frequency, i.e., a term has to occur in at least ten
documents and not more often than in 50% of the documents. Sparse vectors and document frequency
bounding significantly decrease memory and computational complexity.

2.3.3 Word Embeddings
Data sparsity is a problem when working with natural language. A transformed TF-IDF document only
depends on the dictionary size and not on the length of the text. Systems that process the document as
a sequence of word tokens require a per-word representation. Vector space models, in particular word
embedding models in NLP, offer memory-efficient and arithmetically meaningful word representations.
Subsequently, we outline the approaches of two popular ones, Word2vec and GloVe.

The most straightforward word representation is one-hot encoding: a vector of zeros, where one cell
is set to 1, with the index corresponding to a word. This sparse encoding has two disadvantages. The
memory allocated for a full document sample scales both with the dictionary size and the input length.
Systems that subsequently process these one-hot vectors necessitate operations and internal parameters for
the whole dictionary, despite most input vector entries being zero. Additionally, one-hot encoding does
not utilize the relationship between words: "ship" to "ships" is as dissimilar as "cat" to "car". Statistical
neural models that learn the probabilistic distribution of words have been proposed already 20 years
ago to tackle this curse of dimensionality issue [9]. By transforming one-hot vectors to data points in
a continuous vector space, the dictionary can be processed much more memory efficient and allows for
arithmetic operations.

wt Estimator

wt−2

wt−1

wt+1

wt+2

Word Embedding

Figure 2.2: Skip-gram architecture and the generation of word embedding as a by-product. Based on
a word wt , e.g., the two words before and after it are guessed.

The most common word embedding model, Word2vec, is based on the work of Mikolov et al. [44]. The
probabilistic distribution of words is modeled via skip-grams. In other terms, based on a single word, the

13https://docs.scipy.org/doc/scipy-0.14.0/reference/sparse.html

https://docs.scipy.org/doc/scipy-0.14.0/reference/sparse.html

16 2 Background

estimator predicts the words to most likely occur around it. Figure 2.2 depicts this probability estimation
model. The model is designed so that at one point in the chain of calculations, a low-dimensional vector
contains all the information to make a prediction. This vector is then stored as the embedding for the
corresponding input word. In short, Word2vec tries to statistically find the local context of a word and
encode the probabilistic information inside a dense vector, called word embedding.

The estimator model itself is a neural network and requires large amounts of training data. Depending
on the used training set, properties of the embeddings may vary. Numerous pre-trained word embeddings
can be used out-of-the-box as dictionaries.14 As a text corpus, e.g., a dump of Wikipedia articles was used
for training. For generating skip-grams, the text is windowed. The word embeddings commonly have
a dimensionality between 50 and 1000. The model is trained until the average prediction quality of the
surrounding words plateaus.

In contrast to Word2vec, GloVe [46] is a count-based embedding model. While Word2vec uses a
predictive approach, GloVe creates the word embeddings based on co-occurrence: a large matrix X is
used where each cell Xi, j contains information how often word i occurs in the local context of word j
(n-gram). In order to model the occurrence probabilities as dense vectors, they use a simple weighted least
squares regression model instead of a neural network. The authors claim that their embedding model
performs similar to Word2vec in general, but they also show that it can outperform predictive models
for specific tasks. As there is no general rule to decide whether to use count-based or probability-based
embedding models, the performance of both should be tested, especially if the word embeddings are part
of a larger system.

cos (e1∠e2) =
e1 · e2

| |e1 | |2 · | |e2 | |2
. (2.4)

By using addition and subtraction, as well as a similarity measure, interesting embedding properties can
be shown. Table 2.5 lists a few examples. The mathematical vector operations are performed element-wise.
The resulting vector is compared to all existing vectors using the cosine similarity (Equation 2.4, with L2
norms in the denominator). The word or words corresponding to the closest vectors are listed. These
calculations show that words are assigned interpretable values in the vector space that take semantic
properties into account.

Operation Result

"Merkel" − "Germany" + "Cameron" "Britain"
"man" − "male" + "woman" "female"
"knife" − "knives" + "tool" "tools"
Top 4 words around "sea" "ocean", "seas", "oceans", "waters"

Table 2.5: Arithmetic examples for Word2vec, Google News Negative 300 dataset.

Using pre-trained word vectors has become common practice in NLP systems. They can significantly
improve the generalization of machine learning models when there is comparably little training data
[14]. Small training sets in specific use cases often do not contain enough information to derive strong
relationships between words. Subsequent systems can partially also handle words that they were not
trained on due to this generalization. It makes thus sense to employ such word-to-vector dictionaries.

14https://code.google.com/archive/p/word2vec/

https://code.google.com/archive/p/word2vec/

Neural Networks 17

The selection of a word vector dataset is not trivial. For the generation of the embeddings, essential
parameters have to be set, like window size and vector dimensionality. For common domains, the default
settings yield good results. However, for extrinsic data, more attention has to be paid to tuning these
parameters [42]. The training corpus used should also be as similar as possible to the target domain, i.e.,
regarding dialect, slang, or word order. Many publicly available data sets rely on encyclopedias, news
articles, or web sites. Taking these pitfalls into account, word embedding models like Word2vec and
GloVe are an important building block for modern NLP systems.

2.4 Neural Networks
In recent years, artificial neural networks have shown great success in solving highly complex tasks such
as image or speech recognition. Despite the mathematical fundamentals dating back as much as 60 years
[52] [24], the steep increase in computational power has aided the rise of machine learning. The principle
of machine learning is simple: leave it up to the model to find patterns in the data by providing numerous
examples. Neural networks allow computers to learn from experience were manually setting up rules is
practically infeasible, e.g., for NLP. Since machine learning is a vast field, we will only briefly outline
some concepts here that are necessary for our contributions in the main chapters.

2.4.1 Training

A machine learning model differentiates between the training phase and the prediction (or inference) phase.
Training a machine learning model like a neural network involves setting the model parameters, presenting
data to the model, and evaluating the performance. Modern machine learning frameworks and guiding
scientific publications facilitate neural network engineering.

Feed-forward neural networks consist of several connected layers that attempt to approximate a function
[18, p. 164]. Each layer holds several neurons, with links between the layers, called weights. A neuron
thus takes weights, sums them up, and applies an activation function. The weights are the parameters that
the network learns. During the learning phase, the model is repeatedly presented the training samples,
calculates the output, and measures the error. By back-propagating the error through the network, the
weights are adjusted until the performance converges. In the prediction phase, the model then can make
predictions on unseen examples through a learned generalization of the training samples’ properties.

The most challenging part with neural networks is the choice of hyperparameters. Hyperparameters
steer the training process and model capacity. Major influences are:

• General network architecture: dense network, convolutional network, recurrent network, ...
• Activation functions: ReLU, sigmoid, softmax, tanh, ...
• Learning optimizer: stochastic gradient descent, ADAM, AdaGrad, ...
• Regularization: L1/L2, dropout, batch normalization, ...
• Weight initialization
• Number of training epochs
• Batch size

Neural network engineering is an empirical field. The search for correct hyperparameters can be tedious
and time-intense due to the high-dimensional parameter space. While there is no universal solution to
every problem, following standard practices and adapting existing scientific publications have shown to
yield good results.

For a long time, so-called grid search was used to find a good set of hyperparameters. For every
adjustable parameter, an exhaustive set of values is defined. After evaluating every possible combination,
the parameter setup giving the best performance is used for the final model. Practically, however, this
has shown to be a comparably ineffective approach in contrast to random parameter search [10]. Neural

18 2 Background

networks are not equally sensitive to different adjustments. For example, evaluating five batch sizes obtains
less knowledge compared to five vastly different hidden neuron configurations. Random parameter search
is thus to be preferred over grid search.

For the implementation of neural networks, machine learning frameworks like TensorFlow [1] are
widely used. The core of TensorFlow is a two-step approach: first, the separate creation of a data-flow
graph, and second, the execution phase. The framework allows executing the code on different devices, i.e.,
CPUs, GPUs, and TPUs (Tensor Processing Units). Depending on implementation requirements, different
abstraction levels are provided, ranging from fine-grained mathematical calculations to pre-implemented,
stackable network layers, loading architectures, and fully-trained models. Especially for the use of
established architectures, high-level TensorFlow abstractions like Keras15 can be used. Essential features
like back-propagation by differentiating the computational graph, different cost functions, or standard
optimizers are implemented and can be used out-of-the-box. Although there are alternative machine
learning frameworks, TensorFlow is the most widely used one in research and production.

2.4.2 Convolutional Neural Networks

Fully-connected, dense neural networks impose a constraint on the processing capability. For dense layers,
each neuron within a layer is connected to every neuron of the adjacent layers. This dense connectivity
assumes that the input data follows a constant structure, where input features always have a fixed global
position. For certain domains, like image, text, or speech, utilizing local properties makes more sense.
Convolutional neural networks (CNN) [29] offer a solution to these limitations.

The architectural changes between fully-connected networks and CNNs are motivated to achieve three
properties [18, p. 329–339]:

1. Sparse interactions: A filter with a kernel smaller than the whole input is windowing the input data.
That leads to fewer parameters in memory and thus also fewer computing operations.

2. Parameter sharing: A learned pattern can be used for multiple inputs; it is not tied to a single one.
3. Equivariant representations: Although the detection of patterns is not strictly limited to input regions,
e.g., image position, a translation is still detectable in the output.

Input
Filter

Kernels
Feature
Maps PoolingPoolingPoolingPooling Flatten

+
Dense

Output
Classes

one or multiple

Figure 2.3: Conventional CNN architecture.

Figure 2.3 shows the basic elements of a CNN. Several filters are applied to the input and learn spatial
properties, e.g., specific small arches for an image object. The convolution operations of all filters are
intermediately stored in feature maps. The pooling layer acts as a subsampling layer of the feature maps.
It effectively reduces the number of parameters by taking the max or average value of several feature map

15https://www.tensorflow.org/guide/keras

https://www.tensorflow.org/guide/keras

Neural Networks 19

entries. In many state-of-the-art CNNs, multiple combinations of filter kernels/pooling layers are stacked
on top of each other, leading to a deep convolutional architecture. One or more dense layers commonly
flatten the pooled values and calculates the ultimate classification or regression output.

Originally, CNNs have been developed for image processing. For images, the input has three dimensions:
the resolution plus the color channels (e.g., RGB). The CNN then learns many 2-D filters to find local
patterns in the image, combining the information to obtain a global interpretation. This hierarchical
pattern recognition has been inspired by the way that the human brain processes visual signals [27].

Recently, however, CNNs have shown to be useful for NLP as well. Text processing has intuitively
been tackled by recurrent neural networks (RNN), which have been designed to process sequences of data.
Due to their recursive structure, RNN training cannot be parallelized as efficiently as for CNNs, leading
to longer training times. Instead of a 3-channel image pixel, the CNN is fed word embeddings of, e.g.,
dimensionality 300. CNNs do well in tasks where positional features have to be extracted, which is a
useful characteristic of human language as well.

Yin et al. [64] did a comparison study for RNNs and CNNs for NLP . They have evaluated various
typical NLP tasks, such as sentiment classification or handling question/answer schemes. In general,
their findings show that CNNs perform only slightly worse and overall very similar to RNNs in their
experiments. They also conclude, however, that the selection of right hyperparameters for the CNN’s
batch size and hidden neurons is crucial to obtain similar results for RNNs and CNNs. These findings
show that convolutional architectures are a reasonable and time-efficient approach for NLP tasks.

The
quick
brown
fox

jumps
over
the
lazy
dog

sentence,
w words

word embeddings
(dimensionality d)

feature
maps for
f filters

global
pooling dense layer output

classes

Figure 2.4: Text classification CNN: A sentence is represented via pre-trained word embeddings.
Different filter sizes are applied on a single convolution layer (1-d convolutions). After
pooling the maximum values, a dense layer does the classification. (Note: Weight
connections are not drawn for the sake of readability. Stride is 1, padding is set to same).

A CNN for sentence classification has been proposed by Kim et al [25]. Figure 2.4 depicts the
architecture. The model is capable of processing a fixed number of words, so the sentence has to be padded
or capped. As a first step, the input words are translated to pre-trained word embeddings and concatenated
to form a matrix. The 1-dimensional convolutions are calculated on the input matrix. The per-filter output
for the whole input is stored in a feature map. The maximum value per feature map (global max pooling)
is passed on to a dense layer. As network output, a classification is learned, e.g., with two target classes.

The model uses different filter sizes. This has the effect that filters can learn the impact of a single word
as well as short word combinations. Unlike in Figure 2.4, there are multiple filters of one kernel size in

20 2 Background

practice, so that numerous words or (word combinations) can be learned. Utilizing word embeddings
(Word2vec, Google News, 100B words in their case) allows for better generalization of the filter kernels.
The max-pooling layer finds high-impact input features. Global max-pooling allows the dense layer to
make a classification based on the whole sentence by combining single words from local contexts.

2.4.3 Undercomplete Autoencoders

Traditional compression algorithms follow a manually defined rule set to encode and decode data. From
end to end, the input is first converted to require less space and then reconstructed again, either with loss
or ideally lossless. Undercomplete autoencoders (UAE) follow this concept but learn the encoding and
decoding rules through training a neural network. These encodings have properties so they can be used for
e.g. classification and clustering.

Autoencoders aim to find a mathematical transformation between the input and the output [18, p. 499–
501], as schematized in Figure 2.5. UAEs receive the same input and output during training. The special
layer architecture causes the undercompleteness: Between the input and the output layer, there is at least
one layer of lower dimensionality than the input (and output). This forces the network to learn important
characteristics of the training data, expressed by the low-dimensional layer only, the so-called latent space.
For one forward-pass of a sample, the data there is an encoded representation of the input data. UAEs
learn a non-linear principal subspace of the data as part of neural network training.

Input Latent
Space Output

Encoder

Decoder

Figure 2.5: Undercomplete autoencoder: The input training data equals the output training data,
which lets a low-dimensional hidden layer learn a principal subspace transformation.
After training, the model can be split into an encoder and decoder part.

The latent-space vector representation of samples can be used for dimensionality reduction and clustering
tasks [55]. Traditional clustering algorithms like K-Means try to find similarities directly in the input. For
data with a vast feature space, the curse of dimensionality problem often impedes finding meaningful
clusters. UAEs address this problem by transforming the original input to a low-dimensional subspace
before clustering. Subsequently, conventional clustering algorithms are applied.

2.4.4 t-SNE Dimensionality Reduction

t-SNE is a parameterized, non-linear dimensionality reduction [39]. Data points are projected to a 2- or
3-dimensional subspace based on probabilistic estimations. The mapping both takes global and local

Neural Networks 21

context of data points into account. The t-SNE reduction is commonly used to visualize high-dimensional
data efficiently.

Stochastic Neighborhood Embedding (SNE) calculates occurrence probabilities based on point-wise
distances [20]. The Euclidean metric is used to compute distances. The probability is estimated by
a Gaussian model for each data point. The concept is that the whole neighborhood around a certain
point, meaning all other points, can be expressed by a probability function. Close points have a high
co-occurrence likelihood, while for the ones farther away, the neighboring likelihood is close to zero.
This assumption has to hold for both the original space, as well as the transformed, low-dimensional
space. The problem can be solved by approximating one distribution to another. The parameters of the
low-dimensional transformation are approximated by optimizing the Kullback-Leibler divergence between
the distributions. While SNE was found to yield reasonable visualizations, the algorithm is costly and
tends to produce crowded point regions.

For this reason, two modifications were made by Van der Maaten and Hinton to obtain t-SNE. The SNE
function was tweaked to be symmetric, i.e., the probability for point pA being next to point pB is the same
as for pB being next to pA. High-dimensional data points in practice have often the same distance, leading
to crowded regions–another effect of the curse of dimensionality. Thus, a t-distribution is used for the
low-dimensional probability function. Due to this distribution’s shape, it pulls crowded, distant points
further apart. The t-distribution creates more visual space in the 2-d or 3-d space. Using gradient descent
t-SNE can be trained much more effectively compared to SNE and gives compelling visualizations.

Original Perplexity 10

Perplexity 25 Perplexity 45

Figure 2.6: t-SNE: Sample data transformed with three differ-
ent perplexity settings. A good perplexity value
must be chosen empirically and depending on the
domain and task.

When used in practice, several properties
of t-SNE have to be considered. Since t-
SNE uses gradient descent, commonly there
is more than one local minimum and there-
fore no single solution. The iterative pro-
cess takes several epochs and might not con-
verge depending on the data. t-SNE also
has an adjustable hyperparameter, the perplex-
ity, which balances the importance of neigh-
bors against more distant points. For perplex-
ity, usually, several configurations are visu-
alized (values between 2 and 50 according
to the original paper). Different perplex-
ity settings should be tested since they can
give very different results, as shown in Fig-
ure 2.6. With knowing t-SNE’s properties
and setting its hyperparameters correctly, it
has shown to be a very effective and use-
ful tool for data visualization and cluster-
ing.

2.4.5 Performance Evaluation

For evaluating a machine learning model, a quantitative performance measure must be chosen. There are
various mathematical metrics commonly used, each having a different explanatory power. Additionally,
special attention must be paid to data set partitioning. Selecting a reasonable performance metric and
sample splits is crucial for training reliable machine learning models that generalize well in production.
Subsequently, we describe a few metrics and pitfalls for classification tasks.

The accuracy rate is the most common metric (Equation 2.5, according to a two-class confusion

22 2 Background

matrix16), but can be deceiving depending on the data. As a first reference value, the accuracy should
exceed the random guessing rate i.e., for two classes: 1 : 2 = 50%. However, this baseline does not factor
in the class distribution of the training data. If the majority of data belongs to one class, e.g., 98 out of
100 samples, a classifier could always guess the majority class–hard-coded, independently of the actual
sample. It would still achieve a deceivingly high accuracy of 98%. Especially for imbalanced data, the
accuracy rate is insufficient to portray model performance in a good way based on this accuracy paradox.

Accuracy =
TP + T N

TP + T N + FP + FN
(2.5)

For said reason, other metrics which show the cost of specific mistakes are advisable. Precision, recall,
and Fβ score (Equations 2.6) take into account all possible result configurations [18, p. 417–419]. While
accuracy only differentiates between correct and incorrect results, these metrics into account how many
true-labeled samples result in true predictions, in false predictions, and vice versa.

• Precision describes how the model makes true predictions, compared to samples that are labeled
true. It thus shows the reliability of a model, the preciseness of a true prediction.

• Recall, on the other hand, shows how many correct true predictions a model captures. A low recall
means the model is very cautious about making a positive prediction.

• The Fβ-score is the harmonic mean of precision and recall, merging the two metrics into one. β can
be used as a parameter to either weigh precision or recall higher. With F1 (β = 1) both have the same
weight.

In practice, precision, recall, and Fβ-score are always provided for a transparent presentation of the model’s
performance.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Fβ-Score = (1 + β) ·
Precision · Recall(

β2 · Precision
)
+ Recall

(2.6)

Scenarios in which a classification task outputs multiple categories per sample lead to additional
challenges. In multi-label classification, a single sample can be part of multiple output classes, e.g., an
Android app has multiple permissions. The class imbalance in this case example stems from the fact that
more applications require the camera permission than the calendar permission. In other terms, the sample
support for one class is higher than for the other class, which should be reflected in a performance metric.

The class support must be dealt with when a summarizing metric for a model, independent of the
individual classes, is required. Appropriate metrics, like precision, recall, or Fβ-score, are averaged. The
averaging is done either per-sample or per-class. The micro average computes the metric over all samples.
In contrast, the macro-average computes the metric per class first and then averages all the classes results.
If a class has low support, its influence vanishes in the micro-average. Thus, for imbalanced multi-label
classification tasks, macro-averaging is preferred.

Training a neural network also requires evaluating its generalization quality. According to the universal
approximation theorem [21], a neural network with a sufficient number of neurons can approximate
any function. This theorem implies that neural networks are very good at memorizing exact data, not

16TP...True Positives, TN...True Negatives, FP...False Positives, FN...False Negatives

Neural Networks 23

necessarily learning only relevant properties. For unseen samples, later, the performance might be
significantly worse.

To prevent over-fitting on the training data, the training data is split [18, p. 108–120]. Three partitions
are created: a training set, a validation set, and a test set. The training set contains the majority of samples.
After training the network for a few epochs, the performance metrics, e.g., the ones mentioned before, are
evaluated on both the training and the validation set. Training is stopped when the training performance
keeps increasing, but the validation performance stagnates or decreases again. Finally, the performance
is also evaluated on the test set, which has never been used for training. This regularization technique,
ending training when the validation performance decreases, is called early stopping.

For comparably few training samples, statistical differences in the sets can influence the performance
calculation. Dividing one’s training data into the sets mentioned above without negative side-effects, in
theory, requires the samples to be independent and identically distributed. For a theoretically infinite
amount of data, the set a particular sample is assigned to should not influence the performance. In
this hypothetical case, the distribution of, e.g., target labels, is identical in all sets. If in practice, this
assumption does not hold, it makes sense to create multiple set configurations.

A common way to achieve this end is k-fold cross-validation. The k parameter stands for the number of
splits. The whole training data set is divided into k partitions. One partition is used as a validation set, the
other ones as a combined training set. All possible combinations are used to train the model. In the end,
the validation performances are averaged over all splits. When the data set does not have hundreds of
thousands of examples, this method is an appropriate way to deal with statistical uncertainty in the set
configurations.

2.4.6 Model Explanation

The essence of machine learning is finding patterns via function approximations in a given set of data.
The inherent underlying problem is that based on the model output only, it is not always obvious why
models make the predictions they do. Learned relations are still correlation-based. Before putting a model
into production, often more trust than that is required. Model explanation algorithms such as LIME and
SHAP are methods that interpret how ML models make their decisions.

Decision boundary
Class A samples
Selected sample
Class B samples
LIME variations

Figure 2.7: LIME finds parameter influences by varying a single sample and handing the different
samples to the trained model. By varying different properties, e.g., shifting positional
features, the property importance for the actual sample’s prediction is estimated.

24 2 Background

LIME is a method proposed to give local, model-agnostic explanations [51]. Model agnosticism means
that the ML model is treated as a black box, i.e., LIME does not know about the inner workings of the
model. Locality means that it works based on a particular sample which is slightly varied to obtain new
samples, one by one. These samples form a local context around the original sample. The impact of each
modification causes different model outputs. In the end, all differences are aggregated to show which
properties of the input are most influential for the original sample’s prediction. This process is shown
in a 2-d example in Figure 2.7: A classifier has been trained for two classes and has learned a decision
boundary. The decision boundary itself is not evident and should be found, i.e., the influence of the x and
y coordinate. Thus, Sample � is varied in several directions to obtain the new samples ◦. Classifying
these new samples and taking the variation, i.e., how much the x/y value is changed, into account reveals
where the decision boundary is located. For high dimensional, complex input data knowledge about the
decision boundary can show which words of a sentence or which pixel areas of an image affect the output
most. LIME has an implementation in Python that modifies text or image samples systematically, feeds
them to a trained ML model, and visualizes the impacts.17

The SHAP framework is another approach to find estimate the importance of sample features [38].
The algorithm behind it is based on Shapley values, a concept in cooperative game theory: of n potential
players, several combinations of k ≤ n players are possible, i.e., can play together against the bank. Each
combination of players achieves a different (monetary) result. The Shapley value shows the contribution
of each player by incorporating different combinations. Sundberg et al. used this concept in combination
with additive feature attribution. By masking out several parts of the input features, different model results
per sample are obtained. The results can be united according to Shapley, but this is computationally
expensive. SHAP provides several approximations, e.g., one for neural networks called Deep SHAP.18 By
leveraging knowledge about the network’s parameters and structure, and not treating it as a black box,
Deep SHAP creates a simpler, approximated model. The Shapley values are linearly calculated on this
model. Unlike LIME, Deep SHAP is not model-agnostic. It uses the simplified model to estimate feature
importance and applies it to a feature. Deep SHAP is computationally efficient, consistent with human
intuition, and useful for explaining class differences.

Model interpretability, however, is only a loosely defined concept [34]. There is no formal verification
approach to prove that a neural network always works as it is designed. The claim that linear models are
more comfortable to explain than deep neural models has not yet been proven mathematically–it is merely
easier for humans to see causality. Although deep ML models have yielded astonishing results recently,
their complex inner structure requires additional effort to build trust in them. Despite that the field is in
its early stages, current explanation methods like LIME and SHAP can give useful information about a
model’s operating principles when we analyze app descriptions, permissions, and app internals.

2.5 Summary
In this chapter, we explored some concepts our subsequent contributions are based on. We started by
showing how Android apps are built and packaged. Thereupon we named starting points and associated
challenges for app reverse engineering and program behavior investigation. For processing natural
language, we looked at how text samples can be represented, both with keeping their sequential structure
(word embeddings) and without it (TF-IDF). Regarding neural networks, we first covered convolutional
nets and undercomplete autoencoders. We also summarized concepts on how to interpret results (t-SNE),
evaluate model performance, and approaches to explain complex ML models. Building on these blocks,
we propose our app publishing assistance system in the main chapters.

17https://github.com/marcotcr/lime

18https://github.com/slundberg/

https://github.com/marcotcr/lime
https://github.com/slundberg/

Chapter 3

Related Work

Analyzing mobile apps with machine learning has become a successful field in recent years. Numerous
authors proposed solutions regarding app descriptions and app features. While some are more aimed
towards permission-based malware classification, others focus on description text quality. Out of the vast
number of partially related publications, we give an overview of notable work similar to ours and show
some of their particular shortcomings that motivate this thesis.

We looked at three different fields in the broader context of app analysis in recent literature. (i) App
similarity is calculated for different reasons based on both description and program behavior. (ii) It is
common to extract a chosen set of attributes from the app, i.e., the permissions, API calls, strings, or
similar, to interpret the app to determine its purpose. (iii) Since app permissions play a crucial role in
protecting the user’s privacy, depicting them correctly within the description has become a growing field
of research. Subsequently, we give examples of interesting work in these partially overlapping fields.
While our own contributions do not directly focus on malware analysis, it is still a form of app behavior
interpretation and thus worth mentioning.

Finding similarity between apps, i.e., categorization or clustering, is desirable for several reasons.
The most apparent clusters are the categories that developers assign to their apps when they publish
them in markets, e.g., Lifestyle, Travel and Local, or Social. Google provides guidance on selecting the
appropriate category based on signal words.1 Aminordin et al. [5] conducted a preliminary study of
around one thousand apps in three categories that showed the Google guide’s shortcomings. Using word
frequency in the description, they verify category assignments. Their findings show that around a third of
these apps were miscategorized. Al-Subaihin et al. [2] proposed a system to categorize apps based on
their description automatically. They extract textual features (n-grams), apply TF-IDF, and group apps
with hierarchical clustering. They conclude that overall, their approach yields significantly better class
assignments and that for now, Google Play does not exhibit a sound categorization system.

CLANdroid [59] aims to find similar apps by defining semantic anchors. These anchors are internal
app properties such as sensor information, permissions, intents, and identifiers. A matrix per app is
generated with Latent Semantic Indexing, a method improving keyword-based information retrieval
on several "phrases"–in their case, "phrase" refers to several of their anchors. The similarity between
apps is calculated using the cosine distance. The proposed system can be used for search engines and
recommendations.

Other research is done evaluating whether a description states clearly which permissions an app uses.
AutoCog [49] divides the text into sentences and analyzes them with the Stanford NLP Parser2 to obtain

1https://support.google.com/googleplay/android-developer/answer/113475?hl=en

2https://nlp.stanford.edu/software/lex-parser.html

25

https://support.google.com/googleplay/android-developer/answer/113475?hl=en
https://nlp.stanford.edu/software/lex-parser.html

26 3 Related Work

their grammatical structure. Explicit Semantic Analysis, a specialization of TF-IDF that takes semantic
relatedness into account, is used to find related pieces of text. Subsequently, their system gives a list of
phrases correlated to specific permissions, which is then used to annotate the relevant sentences in the
description. WHYPER [45] annotates sentences as well, but with a critical difference. This system, in
contrast to AutoCog, creates a semantic graph from the Android API docs. Based on class names and
method names, relevant words are identified, e.g., the Contracts class containing a member named
email. Sentences are then compared with these words in the semantic graph. One of the most recent
publications is AC-Net [15]. A recurrent neural network is used to model the semantics of description
sentences. The authors claim their work is the first to apply deep learning to the permission-to-description
fidelity. To represent their words, they use self-trained embeddings. Instead of outputting a simple yes/no
answer, their system gives a score corresponding to the level of consistency. Compared to keyword-based
searches, these approaches perform better at identifying permission-related sentences as well as their
absence.

For modeling an app’s behavior, in general, more aspects than the set of permissions can be taken into
account. Takahashi and Ban [56] use several thousand APK-based features. They combine permissions,
API features, category, and their calculated cluster assignments and attempt malware classification on
them. They use a modified Support Vector Machine derivative called SVM-RFE, which recursively
eliminates features that have little impact on the prediction. Although their approach is used on a binary
classification problem, the comparably high number of app properties should intuitively be useful for
a more general behavior modeling as well. AndroVault [43] addresses a similar problem by creating a
knowledge graph. Also based on multiple app attributes, AndroVault creates a graph with the nodes being
the apps. The edges are probabilistic properties of the app (e.g., code similarity) and deterministic ones
(e.g., author). It uses more properties than Takahashi and Ban’s work, such as malware classes or more
APK metadata information like the description. According to them, machine learning algorithms can then
be applied on top of this graph to find malicious apps or repackaged apps. These two systems show that
the interpretation of particular application attributes to analyze the behavior is feasible.

While most work is done on the logic parts of the code, some focus also on user interfaces. Kuznetsov
et al. [28] extract identifiers and strings in human language from activity XML definitions and verify them
against the description. The descriptions are represented as bag-of-words in their work. They then use
Latent Dirichlet Analysis to find clusterable topics for both the descriptions and for the user interfaces.
The comparison of these two affiliations is used for the assessment of whether an app is sufficiently well
described. They propose that their approach can be used for enhancing insufficient description texts.

The work listed above shows the scientific interest in the intersecting fields of app behavior and
description quality analysis. Our review shows, however, that most of the work has been done with
conventional machine learning such as Support Vector Machines and segmentation algorithms like
hierarchical clustering or k-means. Apart from AndroVault, most projects are done on comparably low
sample sizes. Using as many app attributes as possible, like from the user interface, depicts the app more
accurately and improves the performance of all kinds of analysis tasks [26].

Hence, we motivate our work by filling several scientific gaps regarding the publications as mentioned
earlier. First, our work uses real-world datasets that are significantly larger than the datasets used in the
research above. Although our samples are not manually labeled, we still achieve good results. Second,
we cluster apps with non-linear algorithms and show superiority over linear algorithms. Also, third, we
use neural networks for app clustering, permission prediction, and description generation to learn more
complex relations between model inputs and outputs, compared to simpler machine learning algorithms.
Finally, we not only rely on source code parts but also make use of the knowledge stored in an Android
app’s resource system. Based on these five significant differences between our work and the current
research state, we propose our three-part app publishing assistance system for Android apps.

Chapter 4

Clustering based on
Descriptions and Permissions

After having summarized necessary background knowledge and related work, the first of our contributions
is the clustering-based analysis of apps. We focus on two attributes to cluster apps, permissions, and
descriptions. We start by briefly motivating our approach and continue with describing the preprocessing
steps required for our machine learning algorithms. Then, we lay out an autoencoder neural network
architecture to convert descriptions and permissions to low-dimensional embeddings. The clustering on
a 2-d space is done by t-SNE. We evaluate our approach with a real-world app dataset. Based on the
obtained subspaces, we first visualize a significant subset of our apps. Then, we analyze single apps to
show particularly interesting findings.

4.1 Motivation
Clustering information is an essential subdivision of data science, which is also interesting for app analysis.
Due to the high number of Android apps being published every day, it stands to reasons that many apps
have a similar purpose. By visualizing apps as data points and positioning them closer to each other or
farther away from others, quick assessment of an app is possible. With the use of cluster and dimensionality
reduction algorithms, we aim to capture apps that are alike as well as dissimilar.

As listed in Chapter 3, many previous publications do their analysis with non-neural machine learning
techniques and linear subspace transformations. With our approach, we attempt to identify similar apps
through exploiting the non-linear, adaptive characteristics of neural networks and t-SNE. Our goal is
to visualize related apps and position them close together. Additionally, we aim to be able to identify
outliers that can express potential misuse, e.g., requesting more permissions than similar apps or dissimilar
description texts despite the functional similarity.

To the best of our knowledge, no extensive evaluation of non-linear clustering approaches for apps
has been published. We argue that to efficiently capture the meaning of apps based on their permission
sets and their description texts, exploiting non-linear properties of this data is superior to linear methods.
As part of an app publishing assistance system, clustering similar apps based on their descriptions and
permissions is a useful starting point for app analysis.

27

28 4 Clustering based on
Descriptions and Permissions

4.2 Approach
To attain permission- and description-based clusters, we stack undercomplete autoencoders and t-SNE.
The autoencoders have different architectures and preprocessing steps for permissions and descriptions.
We use the data representation in the middle, the latent space, as input for t-SNE. Based on the final,
low-dimensional output of the t-SNE models, we conduct our analysis in the evaluation section.

4.2.1 Permission Autoencoder

The permission autoencoder (PAE) receives single permissions as binary values as input and output. The
preprocessing is outlined in Figure 4.1. In a first step, we parse the manifest files of all apps for their
<uses-permission> tags. Since developers can define app-related permissions as well1, we impose a
lower limit on permission occurrence. This reduction leaves us with a list of permissions of size Np that
occur in a minimum of 10 apps. We assign each permission an index 0 ≤ pi < Np to be able to represent
them with vectors. In a second step, we represent each app’s permissions with one-hot encoding. For
each app, we initialize a row vector of size 1 × Np with all zeros. If the app has a particular permission
declared in its manifest, we set the field pi corresponding to the permission to 1. Each app sample is then
represented with its permissions only as a one-hot encoded binary vector.

oð oð
oðoð
oðoð

oXML oXML

oXMLoXML

oXMLoXML

Occurrence
Counter

s

One-Hot
Encoder

3

(0 0 1 ... 0 1)

(1 0 0 ... 1 0)
...

(0 1 0 ... 0 0)

Manifest
Files

Permission
Tags

Figure 4.1: Preprocessing for the permission autoencoder: APK Manifest permissions occurring in
at least 10 apps are one-hot encoded.

4.2.2 Description Autoencoder

The description autoencoder (DAE) is supposed to receive TF-IDF vectors of the app description texts. To
obtain the tokens necessary for the TF-IDF vector calculation, we perform the following steps:

1. HTML tags: The formatting of our description texts is done with HTML. We remove all structural
information by stripping the strings of all HTML tags and keep the inner texts.

2. Special characters: Many publishers format texts not only with HTML, but also with Unicode
characters, like for listings, paragraph separation, etc. We remove all non-alphanumeric characters,
including dashes, apostrophes, and dots.

3. Tokenization: We split the texts non-alphanumeric character, including whitespace characters. This
gives us a list of tokens, where we remove all tokens that are shorter than two characters.

4. Stopword removal: In a next step, we remove the tokens that are considered to have little meaning
for a sentence, commonly referred to as stopwords. We use the list from the Python Natural Language
Toolkit.2 Although the TF-IDF algorithm would penalize such stopwords with a high document

1https://developer.android.com/guide/topics/permissions/defining

2https://www.nltk.org/

https://developer.android.com/guide/topics/permissions/defining
https://www.nltk.org/

Approach 29

frequency, removing these tokens based on a list before the machine learning model sees the data is
computationally more efficient.

5. Stemming: Finally, we attempt to strip words of their grammatical variations by applying the Porter
Stemmer algorithm [47] on each token.

6. Lowercase: All tokens are transformed into lowercase to compensate for sentence starts, parts of
brand names, misspelling, etc.

Based on these six steps, we transform each app description in a list of stemmed tokens.

These tokenized descriptions are subsequently converted into TF-IDF vectors. The TF-IDF algorithm
requires several configuration parameters to be set, which we choose empirically: A token must occur in
at least 0.5% and not more than 15% of all app descriptions. We discard any app description that does
not contain at least five of these tokens. Then, we calculate the inverse document frequency using the
smoothed log variant as described in the background chapter. Based on the obtained TF-IDF vectors per
app description, we finally do a per-sample normalization (L2 norm), so that the sum of squares of each
TF-IDF vector’s elements is 1. Upon normalization, these vectors can be used as inputs for our neural
network.

4.2.3 Training

For training our networks, we need to find suitable performance metrics for the autoencoder’s reconstruction
ability. The PAE is a common, binary multi-label task, which we evaluate using the F1-Score. For the
TF-IDF vectors, which are floating-point numbers between 0 and 1, we need a different approach. Unlike
the PAE, which is a classification problem, the DAE is a regression task. As a first metric, the mean
squared error can be used, but it has a severe interpretability downside: It does not give any details on the
actual reconstruction of words. Thus, we need a more refined performance metric for the DAE evaluation.

u(i)j =

{
1 if v(i)j ≥ θ
0 otherwise

(4.1)

Only for the performance metric, we propose a binary transformation of our regression problem as in
Equation 4.1. We set a threshold θ which transforms each TF-IDF vector v(i) for app description i. If a
TF-IDF value at position j in vector v(i) is greater than θ, it is set to 1, otherwise to 0. We chose the value
for θ so that it ignores output noise of the network, i.e., values that are close to zero but are not exactly zero
due to approximation errors. By observing the network output, we decided for θ as 10% of the average
non-zero TF-IDF vectors’ values. We emphasize that this transformation is only used for the performance
metric, not for the loss function. It allows us using binary classification metrics for early stopping.

Random search is used to decide for good network architecture. We randomly try different setups of
layer depth and hidden neurons per layer within a defined range for the autoencoders. We impose the
following constraints on our random search:

• The autoencoder has to be undercomplete, i.e., at least one layer has to be of lower dimension than
the input/output.

• The encoder part is symmetrical to the decoder part. We only generate the encoder’s architecture and
mirror it except for the latent space layer.

• The encoder has to consist of one or more hidden layers, not including the input and the latent space
layer. The number of hidden layers L can range between 1 and 8.

• The latent space layer consists of 5 hidden neurons for the PAE and 10 for the DAE. We do not require
a 2-dimensional representation since t-SNE performs the final dimensionality reduction. DAE has a
higher dimensionality because the input vectors are larger.

• Each other hidden layer j can consist of a random number of neurons nj that is derived from the
input size: between 30% and 100% of the full input size.

30 4 Clustering based on
Descriptions and Permissions

• Since deeper autoencoders are generally preferred [18, p. 505–506], we limit the hidden neuron count
further. The more layers our encoder has, the fewer hidden neurons per layer it should have. We
thus divide the randomly chosen neurons per layer by the square-root of the total number of layers:
nj/
√

L.
The other hyperparameters of the network are fixed and listed in Table 4.1.

Optimizer Adam, η = 0.001
Batch Size 32
Weight Initialization Glorot (Uniform)
Loss Function Binary Cross-Entropy (PAE)

Mean Squared Error (DAE)
Latent Activations Linear
Hidden Activations ReLU
Final Activation Sigmoid (PAE)

Linear (DAE)
Early Stopping Patience: 10 epochs

Delta: 0.5% F1-Score

Table 4.1: Neural network hyperparameters for the permissions clustering autoencoder (PAE) and the
descriptions clustering autoencoder (DAE).

The random search is done on half of the training data, so the search takes less time. Based on the
performance metric described above, the F1-Score, we choose the best architecture for permissions and
descriptions, respectively. During the random search phase, we adopt early stopping. After each epoch,
the performance is evaluated on the validation set (25% validation, 75% training). If the performance
value does not improve within the subsequent ten epochs again, this network state is used as the final state.
Otherwise, training continues. After these ten epochs where the validation performance has not improved
anymore, the previously best model state is restored and used to calculate the embedding vectors.

Figure 4.2 outlines the whole process. We first extract the permissions from the app and get their
textual descriptions. The permissions are one-hot encoded, while the descriptions are tokenized, the tokens
are stemmed and TF-IDF transformed. After finishing the parameter search, we use the final architectures
to obtain the 5-dimensional embeddings for each app’s permission set and the 10-dimensional embeddings
for each description. These embeddings are further scaled down in regard to dimensionality and clustered
with t-SNE. The number of embeddings used for t-SNE is reduced. Due to t-SNE’s gradient descent
optimization, the computational complexity heavily depends on the sample size. The reduced sample set
is used as input for t-SNE with various perplexities. After finding a suitable 2-dimensional representation,
we can analyze app properties visually and mathematically. In the next section, we demonstrate the
applicability of this process with a large app dataset and some exemplary findings.

Dataset 31

Permissions

D

Descriptions

q

One-Hot

3

TF-IDF

3

PAE

DAE

s

Select Apps
(t-SNE)

t-SNE

ó

t-SNE

ó

s

Select Apps
(Plot)

Figure 4.2: System overview: Both permissions and descriptions of the apps are preprocessed and
then used to train separate autoencoders. The embeddings calculated via their latent
spaces. For the t-SNE transformation, only a subset of all embeddings is used for
performance reasons, which is reduced further to give meaningful plots. Apps of interest
are then highlighted in the plot or distance-wise evaluated.

4.3 Dataset
In order to evaluate our approach, we use the PlayDrone dataset [60]. We explain how we select a subset
of these apps, depending on certain app properties and metadata. Based on this list, we further reduce the
apps that are used for our analysis. Finally, we list some statistical features of the dataset to provide a
clearer understanding of the data we base our evaluation on.

PlayDrone is a Google Play Store crawler that has created a dataset of over 1 million apps. The project
uses several attack vectors to circumvent the store’s protection so that it can mass-download applications.
Importantly, the project crawls not only APK files, but also the matching store’s metadata, e.g., description,
category, and download count. We use the PlayDrone snapshot provided by the Web Archive.3

We limit the number of apps we initially process to around 110,000. We download apps from all
categories except for the Games category. Since games are inherently differently developed, we entirely
exclude this category. Based on the download count, we sort the available apps and obtain them separately
for each category.

In the next step, we filter out cross–platform apps. Nowadays, many Android apps are built with
hybrid technologies that have their logic implemented in a language other than Dalvik bytecode. The
most common way is to use web technologies, i.e., HTML, CSS, and JavaScript. For these website-like
cross–platform apps, many frameworks and libraries have become established. Famous examples are
Cordova, Xamarin, and Adobe AIR. Many developers, especially of large companies, create their custom

3https://archive.org/details/android_apps&tab=about

https://archive.org/details/android_apps&tab=about

32 4 Clustering based on
Descriptions and Permissions

cross–platform architectures that suits their needs. PlayDrone’s latest available snapshot is from 2014, so
the frameworks used do not reflect the current distribution in 2019. While for the clustering task-irrelevant,
we need a way to detect these apps since the work in the next two main chapters focuses on native Android
applications.

Covering all these frameworks and custom implementations is out of scope for our work, which requires
us to find a simple and efficient detection mechanism. We focus on the 20 most widely used third-party
frameworks we found in the PlayDrone dataset. Most of them can be identified by looking at the app’s
source code folder layout. We use Apktool4 to unpack the APK and decompile its code to Smali. Smali is
a representation of DEX code that contains all class files in a hierarchical folder layout. For each app, we
create a list of directory paths and check them against our list of known paths. If one app contains such
path that relates to a known third-party framework, we dismiss this app and do not use it for any of our
subsequent work. A full list of the directories that we use to identify specific frameworks is given in the
Appendix in Table A.1.

For our two clustering tasks for descriptions and permissions, apart from filtering out games and
cross–platform apps, we set the following constraints on the samples to be selected:

• Descriptions: The raw description has to be in English, and the raw text (non-HTML) has to consist
of more than 30 characters.

• Permissions: An app has to request at least one permission. As described in the previous section, a
particular permission has to occur in more than 10 apps to be taken into account.

Table 4.2 shows some statistical details about the apps our dataset has.

Total number of apps 115,294
Categories (except gaming) 24
Detected cross–platform 7,543 (6.5%)
English descriptions 81,785 (70.9%)
English descriptions (>30 characters) 81,393 (70.5%)
No-permission apps 41 (0.04%)
5+ million downloads 1,169 (1.0%)

Table 4.2: App dataset properties.

4.4 Evaluation
Subsequently, we evaluate our clustering approach with the previously described PlayDrone app dataset.
We begin by listing the performances of our randomly chosen architectures and the final two ones we
opted for. For the descriptions, we show visualizations that compare t-SNE and PCA in regard to app
categories. Then, we select several apps manually and analyze the subspace neighborhood of certain app
descriptions. Finally, we use permission embeddings to describe interesting properties. Our visual and
textual descriptions show the usefulness of our approach for app relatedness.

Figure 4.3 shows a total of 100 evaluated architectures for the permission autoencoder and 100
architectures for the descriptions autoencoder. For permissions, all setups yield F1-scores between 85%
and 94%. The plot shows that for more than 4 layers, performance starts to decrease. The best performances
are achieved with 2 to 4 layers. The description autoencoder performed best with 2 or 3 layers. There was

4https://ibotpeaches.github.io/Apktool/

https://ibotpeaches.github.io/Apktool/

Evaluation 33

(i) Permissions (ii) Descriptions

2 3 4 5 6 7 8

0

5

10

15

Encoder Layers

#
Va

rio
us

Ru
ns

0.88

0.9

0.92

0.94

F1-score

2 3 4 5 6 7 8

0

5

10

15

Encoder Layers

#
Va

rio
us

Ru
ns

0.1

0.15

0.2

0.25

0.3
F1-score

Figure 4.3: Random architecture search for 100 setups for permissions and descriptions. Gradient
bar signifies the F1-score.

a significant performance difference over all architectures, where the ones with 4 layers or more resulted
in an F1-score between 8% and 10% only, while the other ones achieved 26% to 30%. The number of
hidden neurons per layer had a comparably low impact. The final architectures and their performances are
listed in Table 4.3. These are the autoencoder networks we use for the following examples.

Despite the assumption by Goodfellow that deep autoencoders perform better, we found that fewer layers
yielded a better performance for our data. We attribute these effects to the sparsity of the TF-IDF vectors
and one-hot vectors. In comparison with permissions, description recovery through the autoencoder is
significantly worse. We blame this on two aspects. The regression task, i.e., the linear output activation
function necessary for the TF-IDF vectors, makes function approximation harder. The input variance
is also higher for the descriptions. The variance stems from the very different subsets of words per
description compared to all descriptions. Permissions are more likely to occur together compared to words,
especially compared to rarer ones.

Permissions Descriptions
Autoencoder Autoencoder

Layers (Encoder) 3 2
Hidden Neurons 210–196–5–196–210 1368–970–10–970–1368

Precision 97% 23%
Recall 93% 45%

F1-score 95% 30%

Table 4.3: Best architectures and performances for the PAE and the DAE. Layer count does not
include latent layer and input layer.

The autoencoders are trained with the complete set of apps. However, we only use a subset of all our
apps for the clustering part for the sake of readability and computability. For the subsequent PCA and
t-SNE algorithms, we use the 1169 apps in the dataset with over 5 million downloads. We take their

34 4 Clustering based on
Descriptions and Permissions

embeddings and reduce their dimensionality to 2-d with both algorithms. We use the 2-d representations
for descriptions and permissions of these top-downloaded apps to describe our observations.

4.4.1 Description Similarity

We start by comparing t-SNE with PCA for the descriptions. We assume that textually similar apps are
put into the same category. Thus, we cluster descriptions based on their text and evaluate how the result
corresponds to the category distribution. Since we have a total of 24 categories in our dataset, it makes
sense highlight three of them for the sake of readability: Weather, Communication, and Media and Video.
We process and compare our description embeddings with PCA and t-SNE and single out specific apps or
app groups.

(i) Descriptions PCA (ii) Descriptions t-SNE

Communication Weather Media and Video Other

Figure 4.4: Embeddings of descriptions visualized with PCA and t-SNE. The highlighted data points
show that t-SNE puts apps that are in the same category closer to each other.

First, we visualize the three categories, which is shown in Figure 4.4. Compared to PCA, t-SNE
(Perplexity 45) does better at finding similar description texts and putting them in the vicinity of apps that
belong to the same category. While Weather apps are already closely together with PCA, t-SNE clusters
them even better, i.e., emphasizes the textual similarities. The other two categories have several hotspots
all over the 2-d subspace of t-SNE, but are separated better than with PCA. In PCA, the Communication
category and theMedia and Video category are significantly more overlapping. In our observations, t-SNE
is superior to PCA in clustering similar apps according to their store categories.

In addition to the visual evaluation for descriptions, we select two apps and look at their description
neighbors. By calculating the Euclidean distance to all other apps of our transformed 2-d data and sorting
them, we list the top-5 data points which are closest to the selected ones. We assume that similar apps
should be placed in each other’s vicinity.

Evaluation 35

Table 4.4 shows the description embedding neighborhood for two apps. We selected a social messenger
and a web browser. The surrounding apps in their 2-d spaces are different for PCA and t-SNE. PCA finds
apps that relate to multimedia for WhatsApp and productivity apps for Opera. t-SNE performs better at
capturing the messenger- and browser-related properties in the descriptions, i.e., the combination of words
and their different entropy within the text. t-SNE’s top five neighbors of our two apps are all messengers
and browser apps, respectively, while for PCA they are not. We emphasize that we do not use the app’s
title for our calculations, only the description text. Clustering description embeddings with t-SNE yields
significantly better description similarity results than PCA.

WhatsApp Messenger

PCA t-SNE
1 Little Photo Mercury Messenger (Free)
2 Mobo Video Player Pro Yahoo Messenger Plug-in
3 Textgram - Instagram Text Telegram
4 Photo Warp Yahoo Messenger
5 Meme Generator Free Azar-Video Chat&Call, Messenger

Opera Mobile Browser

PCA t-SNE
1 JuiceDefender - battery saver Next Browser for Android
2 SmartWho Task Manager Opera Mini – Fast web browser
3 Battery Widget Boat Browser for Android
4 Desktop VisualizeR Opera Mobile Classic
5 History Eraser - Privacy Clean Maxthon Browser - Fast

Table 4.4: Top-5 neighbors for the PCA/t-SNE reduced description embeddings of two apps.

4.4.2 Permission Dissimilarity

Unlike finding similarities between descriptions embeddings, we want to find dissimilarities between apps
based on their permissions instead. Thereby, we want to capture apps with divergent behavior. Apps that
claim to be similar, but have significantly varying permission sets, are of interest for security reasons.
Many permissions allow accessing privacy-critical information. A closer look at why a particular app
requests the permissions when related apps do not is a useful starting point for further analyses. Hence,
we use our t-SNE embeddings to analyze the permission distribution of two common app types.

As an example, we visualize all anti-malware apps and web browsers in our reduced dataset based
on their permission embeddings. Figure 4.5 depicts the t-SNE reduction of our reduced dataset with
perplexity 35. We also use the Euclidean distance as a similarity measure here.

Anti-Malware Apps

Although the 17 highlighted anti-malware apps appear mostly in one region in Figure 4.5 (i), there are
three outliers. According to the visualization, Antivirus Free, Antivirus for Android, and Dr. Web Lite
have fairly different permission sets. A closer look reveals that these three do not ask the user to give them

36 4 Clustering based on
Descriptions and Permissions

(i) Anti-malware apps

Antivirus Free Antivirus for Android
Dr. Web Light Other Anti-Malware

(ii) Web browsers

Opera Mini Puffin
Photon Launcher Perm.
System Accounts Perm. Other Browsers

Figure 4.5: Permission embeddings dissimilarity: Highlighting of anti-malware apps and web
browsers in the dataset (5M+ downloads). Outliers and clusters are useful starting points
for in-depth analysis.

access to, e.g., location, call logs, SMS, or disk storage. The other anti-virus apps request between 33
and 81 single permissions, while the two outliers only request 5 to 14. Apps that aim to find malware on
smartphones need access to critical, privacy-sensitive information to analyze suspicious behavior. For
outliers that do not request such permissions, it stands to reason that they do not serve the purpose of
identifying malware.

Web Browsers

Figure 4.5 (ii) focuses on 21 web browsers. Three isolated browsers appear in the plot: Opera Mini,
Puffin, and Photon. Opera Mini is presented as a fast browser without unnecessary features. This claim
seems to be correct in regard to permissions: the app only requests eight of them. Puffin and Photon are
two browsers that serve mainly to run Adobe Flash scripts, but barely access other permission-critical
resources. Thus, they are also positioned farther away from the other browsers. Two browsers stand out
because of their launcher permissions, i.e., permissions for creating icons in the HTC app launcher or the
Google app launcher. Apart from that, there are two larger groups. The blue cluster contains apps that are
more intertwined with the operating system. These apps read and manage accounts stored directly on the
device5, e.g., a Google or Facebook account managed by the OS. Popular examples for this group are
Firefox and Chrome. Apps in the remaining group (purple) are also full-fledged browser apps (location
access, audio recording, system settings, etc.) that do not request the system accounts. Overall, our
approach performs well in identifying related permissions that serve a similar purpose, like for launchers
or system accounts, and positions them logically correct within the subspace.

Based on these examples, we conclude that autoencoder embeddings, in combination with t-SNE,
are well-equipped to find similar and dissimilar applications for both descriptions and permissions. By
selecting three categories in our reduced dataset, we showed that t-SNE is superior to PCA in clustering
textually related description texts. In addition to the visual analysis, we listed the neighbors of two apps

5Android Permissions: MANAGE_ACCOUNTS, GET_ACCOUNTS, USE_CREDENTIALS

Summary 37

in our 2-d description subspace of both PCA and t-SNE that confirmed the better performance of the
latter due to the unequal importance of words. In regard to permission embeddings, our goal was to
identify characteristic behavior of anti-malware apps and web browsers. We succeeded in using visual
outliers as a starting point for inspecting the permission sets further. Our evaluation indicates that the
non-linear transformations by both an undercomplete autoencoder and t-SNE dimensionality reduction
yield meaningful and improved results compared to linear transformations for app description and app
permission analysis.

4.5 Summary
Over the previous pages, we have demonstrated our approach for clustering Android apps in regard to their
descriptions and their permissions. The system started by preprocessing the textual data with TF-IDF
and the permission sets with one-hot encoding. Then, undercomplete autoencoders were trained on the
preprocessed data. The layer architecture was decided by random search. The latent-space representation
of the descriptions and permissions was used to perform further dimensionality reduction via PCA and
t-SNE. The resulting 2-d subspace was then ready to be used for visualizations and distance calculations.

We evaluated our approach with a real-world dataset to train the autoencoders, generate embeddings,
and analyze the data. We calculated the 2-d subspaces for descriptions and permissions for around 1,000
apps. The description t-SNE transformation performs better than PCA in clustering apps with similar
categories. We evaluated the neighbors of apps and found that the t-SNE description subspace also
positions descriptions more closely together if looked at the actual use case, e.g., messaging apps and
browsers. For permission embeddings, we selected anti-malware apps and web browsers and analyzed
the resulting clusters and outliers. We found a meaningful correlation between cluster positions and
permission-related functionality.

Based on our findings, we conclude that the non-linear subspace created by autoencoders and t-SNE
clusters apps both via permissions and descriptions better than linear algorithms. Furthermore, we consider
our clustering approach a useful tool for quickly identifying similarities and dissimilarities between
Android apps. In regard to app publishing, the approach can be used, especially as a starting point for
subsequent in-depth analysis of permission usage and description quality.

38 4 Clustering based on
Descriptions and Permissions

Chapter 5

Description Inference

The second chapter of this thesis deals with describing an app’s purpose in an automated fashion.
After giving motivating aspects for a description inference system, we explain the preprocessing of our
three-model approach, using three different kinds of app information to infer description parts: resource
identifiers, string constants, and API calls. Subsequently, we show the neural network model we use to
infer description words. We also use a model explanation framework to find out which input features
cause particular description words. After briefly listing details about the app samples we use, we give an
extensive evaluation of our approach and conclude with a short chapter summary.

5.1 Motivation
Obtaining descriptions of an app’s behavior in human language can have numerous applications. With
the increasing complexity and number of smartphone apps, the difficulty of comprehending what an app
does is also on the rise. The wide range of use cases, in combination with the easy installation procedure,
calls for a solution that helps understanding app behavior. In this work, we focus on the human-readable,
descriptive explanation of the behavior. We claim that both end-users and experts can benefit from such
an app description inference system.

From a user’s perspective, a simple app feature description can be useful. Straightforward installation
procedures via app markets like Google Play promote users to install more third-party apps on their devices
than ever. Gaining a glimpse into what functionality an app provides can be a valuable decision-making
point on whether to install an app or not. App descriptions are among other meta information like
screenshots, title, and reviews, crucial to help the user determine if they should download an app. This
implies that a short, concise overview of the app’s features can be especially beneficial for users that do
not bother with reading longer description texts but still want to be reasonably informed about what an app
does. Automatically obtaining short app explanations helps smartphone users to figure out whether the
app does what they desire fast.

Conversely, app description inference can also help the other side, namely app publishers. As pointed
out before, the description is a significant part of the app’s store presence, which demands creators to draft
texts that describe the behavior broadly. While there are different approaches to writing a descriptive text,
we claim that a description inference system could be a helpful starting point. Many new, semi-professional
apps are put on the store with comparably short texts or no texts at all. An automatic system can propose
keywords for the description text that could either be accepted or adopted by the publishers, as they most
likely do not want their app to be misrepresented. The suggestions could function as an incentive to
write a better description. For these apps, the application of our system would significantly improve
the description texts and therefore, also user satisfaction. Additionally, even for already drafted texts,
automatic description inference could help to put one’s app in a new perspective that makes the app

39

40 5 Description Inference

better relatable. We found numerous store entries that missed keywords explicitly describing an app’s
core functionality, e.g., for wallpapers or comics. Non-mandatory assistance can improve Google Play
descriptions in general, while still leaving its philosophy of openness untouched, in contrast to the iOS
App Store and its rigorous vetting. It could help app marketing departments to write descriptions that are
appealing, distinct, but still do not omit any crucial feature explanations. By providing an app summary
that functions as a comparison, publishers could be motivated to improve their descriptions and to align
them to similar apps better.

Automatically generating brief app explanations is thus a useful instrument in nowadays’ fast-paced
smartphone app ecosystems. On the one hand, users can benefit from them to make sounder decisions on
whether to download and install an app or whether to avoid it. On the other hand, app publishers can use
auto-generated phrases as a reference to improve description quality. Hence, we claim that a solution to
infer app descriptions as a relevant contribution and extension to an app publishing assistance system.

5.2 Approach
In what follows, we outline our machine learning approach for creating a description inference system for
Android apps. Initially, we describe measures undertaken to extract significant information that models
app behavior. We focus on different information sources, coming from static elements and methods in the
source code. First, we use the resource identifiers as model inputs. Second, we make use of the resource
values (string constants). Third, we gather method calls to the Android API and use them as model inputs.
Based on these three input entities, we use a dense neural network to infer tokens that should occur in the
app’s description. After model training, we add functionality to explain which resource identifiers, string
constants, and API methods stimulate the prediction of a particular description token.

5.2.1 App Behavior Modeling
Before we can design a description inference system, we need to answer a fundamental question: which
attributes of an app describe its behavior? A user’s answer to this question would probably be installing
the app and trying it out. A developer’s take would likely be a thorough analysis of the source code. Both
perspectives influence the strategy we undertake to infer app behavior. Our goals are extracting significant
properties of an app that relate to its description while keeping the approach’s computational complexity
manageable.

As mentioned in the chapter for related work, valuable information for describing an app resides in
its user interface. The average user would describe what an app does by what they see on the screen.
Elements presented to the user may include media resources like images, videos, and sounds. This also
implies that functionality running in the background goes unnoticed. Ultimately, however, displayed
strings yield a comparably high amount of information. Consequently, we assume that text in the user
interface, i.e., static string resources shipped with the app, can give reliable indicators about what must
appear in an app’s description text.

Understanding source code is a challenging task for computer algorithms. Programming languages do
not have a linear structure like natural languages. Despite the progress in recent years in the complex
field of source code analysis, we want to focus on straightforward ways to infer behavior based on the
app’s program logic. Our assumption for understanding source code is that we can describe a program by
looking at how it interacts with the operating system and the user. In particular, we want to describe a
program by finding relevant Android API calls, like accessing sensitive information, UI effects, or event
listeners. The number of these calls, as well as their co-occurrence, should then explain an application’s
modus operandi to some extent.

Hence, we attempt to model Android app behavior relevant to its description from two different angles.
On the one hand, string resources show what an app does from a user’s perspective. On the other hand, we

Approach 41

want to track a particular method calls on a source-code level in a simple way. Subsequently, we outline in
detail how we extract, handle, and interpret this information.

5.2.2 System Overview

With the use of these app properties, we want to create three independent machine learning models that
can infer the basic purpose of an app. First, we must preprocess these properties and represent them in
a way the neural network can understand. Our goal is to predict words and word groups, which is why
we also need to preprocess app descriptions. After that, we can start the training phase. The trained
network is then used to infer descriptions of new, unseen apps. For them, we also want to explain which
input features lead to a particular word prediction. In what follows, we give an overview of the whole
description inference system.

APKs and
Descriptions

oð

oð

oð

q

q

q

Preprocess

3

Untrained Network
for String Constants

Performance
String Constants

Stop Training?

Resource IDs

API Methods

Figure 5.1: Description inference system: training phase. Three separate models are trained for the
three app property types.

Figure 5.1 summarizes the parts of the system’s training phase. For training, the APK files are
preprocessed, yielding three different TF-IDF models: one for resource identifiers, one for string constants,
and one for API methods. The descriptions are also represented as TF-IDF vectors. For each of the three
input types, a separate dense neural network is trained. Training continues over several epochs up to
until the performance plateaus. We stop then to reduce overfitting on the training set. Upon finishing the
training, the sample prediction phase can start.

In the prediction phase, the three individually trained neural network models receive samples from the
test set, as shown in Figure 5.2. These apps receive the same preprocessing as the other apps in the training
phase, meaning that the previously created TF-IDF models are used to transform the resource identifiers,
string constants, and API methods, and to decode the model output to readable words. So, each model
outputs tokens with a particular decimal value, with a descending order accounts for their importance. For
each output token, the model explanation framework SHAP is used to find the input features that contribute
most to that token’s prediction. Thus, during the prediction phase, the final models yield separate lists of
tokens that describe the app and gives a list of influencing inputs for each of these tokens.

42 5 Description Inference

Single APK

oð
Preprocess

3

Trained Network for
String Constants

Description:
sms
messenger
friends

W
0.31
0.10
0.09

Influences sms:
sms, receive,
send, notifica-
tion, provider,
contacts, . . .

String Constants

SHAP

Resource IDs

API Methods

Figure 5.2: Description inference system: prediction phase. Each of the tree models can predict
description tokens, with SHAP (model explanation) giving the input influences for these
tokens.

5.2.3 Resource Identifiers and String Constants

The first preprocessing step deals with static resources in Android apps. Developers are encouraged to
place user-interface related strings in separate XML files that facilitate, e.g., creating multi-lingual apps.
Based on our assumption that these resources can explain an app’s behavior, we extract them from each
APK file. In particular, we focus on the identifiers, which are used as a reference, as well as on their
assigned values. In what follows, we describe how we select and preprocess these resource identifiers and
string constants.

There are numerous different kinds of resources saved in an APK file. For our approach, we leave out
XML files that describe activities/fragments, animations, menus, and drawable. Instead, we solely focus
on language strings, which include the following three file types: single strings, string arrays, and plurals.
In these XML files, each node consists of at least a name tag, which we call resource identifiers, and one
or more values, which we refer to as resource values. As the first step of our analysis, we parse these XML
files and obtain a list of key/value pairs per app.

Resource Identifier Names

Identifier

pay_btn
select_image_dialog
confirmRemove
welcome_message_1
start_quiz_headline

Table 5.1: Examples names for resource
identifiers.

Resource identifiers are strings used in the program’s logic
to refer to separately stored static values. Unlike variable or
function names in the source code, these are in general not
obfuscated. The name assigned to a resource by the developer is
maintained throughout the build and obfuscation process. The
name, or identifier, usually reflects its purpose to some extent
and can also give hints about the overall app.

Table 5.1 shows examples of resource identifiers that could
be used in practice. Like variable names, they can only consist
of alphanumeric characters and underscores. Developers can
assign arbitrary names and use random or uncommon, hardly
interpretable resource identifiers. By randomly checking a plethora of apps, we found, however, that

Approach 43

most apps contain resource identifiers made up of words or partial words that are either separated by
underscores or formatted via camel-case. Hence, we need a tokenization strategy to split these into smaller,
comparable entities so that a neural network can eventually work with them.

String Constants

By design, Android apps can show user interfaces in different languages. APKs then contain various
strings for the same use. Resource names then potentially identify more than one corresponding value or
set of values, whereby the exact resolution depends on the language setting on an OS-level. So in practice,
the selection process of a particular string is handled by the OS.

We have to come up with a way to extract the desired strings by hand. For our system, we prefer
English values. However, even for the English language setup, string constants can be defined in various
sub-language files. For example, there might be phrases that are specific to Australian English (en-au),
while others are the same for all English language regions (en), and particular words, like brands, can be
language-independent (default). In the Android OS, this fallback-lookup creates an inheritance-like
structure for language resources in Android apps. As a result, we need to come up with a strategy that is
similar to the OS-approach to single out the most appropriate language variant from the APK.

Resource
Name

ü

Plain
English
en

ü

Regional
English
en-*

ü

Default
Language

ü

Other
Languages

*

Resource
Value

Miss Miss Miss

Hit Hit Hit Hit

Figure 5.3: Strategy for resolving a localized resource value that occurs in multiple language XML
files in order to obtain an English value. In case the default value or the fallback value in
other language is futile, it is filtered out later.

The process for resolving resources is shown in Figure 5.3. The desired variant of a resource value is
plain English, as we want to build our system based on frequently occurring words. Thus, we first search
these files for matching identifiers, e.g., values-en.xml. If we cannot find the identifier in there, we
check all other more specific English language files, e.g., values-en-us.xml or values-en-gb.xml.
If we still have a miss, the default language file is scanned (e.g., values.xml). In the unlikely case that
up to now there has been no hit, we check all other language files for the identifier and take the first value
we can find. Our resolving strategy ensures that we obtain the most widely used words while ruling out
that we miss a resource value, e.g., in case a developer misplaced it.

Apart from string constants stored in resources, we also want to include string constants in the source
code. Parts of the app may not be language-dependent, but still contain strings useful for us in its code,
like log output, URLs, or API parameters. Additionally, individual app developers may not outsource their
string constants at all. If we would only cover resource files, we could not infer information about the
behavior of such apps.

To obtain strings residing in the program code of an app, we extract them from the DEX file(s). The
DEX format consists of several memory areas, whereby one of them itemizes all constants. The constant

44 5 Description Inference

pool is thus an easy possibility to gather all app string constants. We add these code strings to the list
of strings we already have from the resources. Then, we can start converting these string constants into
tokens and count their frequency.

Tokenization

For the neural network architecture we intend to use, tokenization of string constants and resource
identifiers is necessary. Unlike with text in natural language, these strings follow different patterns we
need to address. We process string constants and resource identifiers so we can train our machine learning
algorithm with them.

As mentioned above, resource identifiers are mostly understandable words separated by underscores or
formatted in camel case. Their length and character set are limited. In comparison, string constants in
resource files and source code files can have arbitrary length and contents. Examples for their purpose
can be short phrases, URLs, hashes, or long HTML code. Apart from splitting all constants into small
parts that still convey meaning, we also want to maintain URLs and Java packages and Java class names
(including package names). We assume that standard app features can be derived from their frequent usage.
To tokenize these strings, but also for the steps afterward, we have to take these properties into account.

String
Constant/
Identifier

s

Length,
Numbers

Y
{

Java
Package?
x.y.myapp

®

URL?

@

Non-
Alphanum.
Splitting

@

Alphanum.
Splitting

Tokens
List

Discard

Figure 5.4: Tokenization approach for resource identifiers and string constants, which is the same for
both.

Figure 5.4 illustrates the tokenization procedure for resource identifiers and string constants. We process

Approach 45

them both the same way because the resulting tokens follow a similar pattern. Hence, the input for this
tokenization procedure can either be a string constant (from the source code or an XML file) or a resource
identifier. First, the input is checked in regard to length. Any sequence longer than 1,000 characters or
shorter than one character is discarded.1 Purely numeric inputs are also considered irrelevant. Next, in
case the whole input is either a URL, a Java package name, or a class name including package name, we
add them to the output tokens list. Either way, meaning for inputs that follow the previous pattern and for
those that do not, we attempt to split the input by non-alphanumeric entities, e.g., whitespace characters,
special characters like dots, HTML tag brackets, etc. These parts are treated like new inputs and processed
again, the same way as the original input (e.g., for resulting intermediate tokens that are too short). In case
the non-alphanumeric splitting yields only one element, we split the token further. Alphanumeric splitting
breaks up camel-case notation and transforms all tokens to lower case. This procedure is thus capable of
splitting the names of resource identifiers, their string values (constants), and the string constants in the
source code into small, processable entities while also maintaining the URLs and Java packages/classes.

With this tokenization procedure, we obtain a list of tokens from both string constants and resource
identifiers that are alphanumeric and can be processed further. While particular tokens are likely to be
app-dependent, others are supposedly frequent across multiple apps. Therefore, we use the tokens and
their occurrence count to build a TF-IDF model later and obtain a TF-IDF vector for each app. One
property of TF-IDF is that rarely occurring and very frequently occurring tokens are ignored to maintain a
reasonable dictionary size. We list the thresholds for all TF-IDF models later on.

5.2.4 Source Code Preprocessing

As for processing source code, our goal is to scan the app for API calls. In detail, we build a directed graph
of the app’s internal methods to find these calls. We also add implicit edges to this graph to better capture
relevant parts. Based on the graph, we extract relevant exit nodes and count their occurrence. A list of
method names combined with how often they are found in each app is the result of this preprocessing step.

Our search for Android API calls relies on each app’s call graph. This directed graph expresses the
method in the Android app as nodes and connects them via edges in the way that they are called. For
methods that have a concrete Java implementation, i.e., lie in the codebase of the app, method calls are
further resolved. The method calls that do not, like location retrieval or user-interface callbacks, the graph
nodes occur as terminal nodes. Our goal is to find these terminal nodes.

As we explain subsequently, we need to add more edges to the call graph to access relevant code parts.
Figure 5.5 shows the process of tracing API calls and how often they occur in the app. We take the code
from the APK file and build a call graph based on the static, explicit code statements. We enrich the graph
with additional edges: First, we resolve inheritance connections, and second, we resolve implicit flows
given on a list provided by EdgeMiner. Then, we search for entry nodes of this graph defined in the app
manifest file. After building this extended call graph, we can use find paths between nodes of API method
calls and nodes of entry nodes.

Unlike conventional Java programs, Android apps do not have single entry points like the main function.
Hence, we must find entry points that the operating system triggers. We focus on classes defined in the
manifest that are Activities, Services, and Providers. These classes usually contain overridden methods
like onStart, onCreate, onBind, etc. that appear as starting nodes in our directed graph. We start any
search through the graph from these overridden methods.

Furthermore, we have to take class inheritance into account. Java is an object-oriented language that
allows for type assignments during runtime. A static call graph cannot model this property. In the source

1Values are chosen empirically.

46 5 Description Inference

o
APK File

ð

Manifest
Classes

Î

Source Code

/

Inheritance
Tree

�

Call Graph

Edge Miner

³

3
Shortest

Path Finder

API Method Counts

Location.getLocation
Sensor.getResolution
Collections.sort

...

5
3

18
xyz

Figure 5.5: Preprocessing of Android app source code to receive API call occurrence. We create a
call graph and add additional edges before we count all API methods, starting from the
app’s entry classes.

code, such calls are stated via the parent class’ method, and the decision which implementation to use
is made during runtime. There would be simply no edges between methods that are, in fact, called
successively. An in-depth solution to this problem is out of scope for this work, as we would have to
fully incorporate every app’s control and data flow, including possible user inputs and actions. However,
neglecting these linkages altogether would sharply reduce the app parts we can cover through graph
traversal.

Thus, we strongly simplify the code so we can handle runtime type-assignments. First, we create a
tree that keeps track of all the inheritances within one app. In case we have an object of class C, and a
method is invoked on the object, we also invoke it for any class that derives from class C, given that the
derived class has an implementation of that method.2 While this, in theory, causes many false positives for
single execution paths, we argue that in practice, these additional code parts have a strong tendency to be

2This approach is applied to both interfaces and abstract classes.

Approach 47

relevant for the whole app’s behavior.

Furthermore, we have to approach the implicit edge problems. Certain execution paths are only possible
in case the user or the operating system triggers it. A prominent example is the OnClickListener, where
a custom class deriving from it implements an onClick method that is only called when a user clicks the
associated UI element. While the nodes for the registration of this listener and the implemented onClick
method exist in our call graph, there is no edge between them.

To add many implicit edges to our graph, we use EdgeMiner [12], which aims to close this gap for
Android source code analysis. Their project finds implicit edges in the control flow of programs, both
Android-specific and in Java. We use the list of method calls that are linked provided by the authors. For
these nodes, we also resolve the inheritance of app-specific method calls, as EdgeMiner only lists Android
API and Java functions. Then, we add edges between these additional nodes to receive the final version of
our call graph that we can start processing.

After adding all these additional edges between the nodes, we can start the path search. Our goal is to
count execution paths, i.e., connections, between entry methods Ein, j and API call methods Eout ,k . Thus,
we use the Dijkstra algorithm to check whether a link between two nodes in a graph exists. For each node
Ein, j we check whether there is a connection to Eout ,k . If so, we increment a counter for API call k. We
count all methods as a combination of their class (fully qualified) and their method name, but without their
arguments and return type. After iterating over all possible combinations, we receive a list of API call
counts.

Like with the resource identifiers and string constants, we also create a TF-IDF model for the API
methods. For each app, we now have a list of pairs. Each pair consists of a method call and how often it
was found in the app’s source code. By using the TF-IDF algorithm, we decide which method names end
up in the dictionary, based on their frequency. TF-IDF then transforms this information and eventually
obtains a 1-dimensional, decimal vector for each app sample that we can use as neural network input.

5.2.5 Description Preprocessing

As the output of our machine learning model, we want to infer feature-related parts of the app description.
We opt for TF-IDF representation of the description, similar to the description clustering approach in
Chapter 4. However, we expand it to cover not only single words but also short phrases. Besides that, we
also improve the human readability of stemmed tokens. The outcome serves as the network output for
three models, i.e., the training target per app.

In the clustering chapter, we calculated the TF-IDF model solely on single words, i.e., tokens. Because
of treating description texts like bag-of-words, lots of relevant information is lost. For example, we cannot
capture concrete phrases and their word order, like take photo or SD card, as they would be split into
separate tokens. This circumstance was not that significant for app similarity and dissimilarity, but with
the description inference task, the predicted outputs are supposed to be meaningful entities.

As a consequence, we generate n-grams from the description texts. Intuitively, we use n = (1,2,3) to
cover phrases that include one, two, and three words. Due to stopword removal and Porter stemming, we
reduce the number of frequent word combinations that carry comparably few meaning beforehand, e.g.,
take some photos and take a photo both become take photo. An important aspect here is setting minimum
and maximum document frequency thresholds in the TF-IDF algorithm. That ensures that the number of
resulting dictionary entries, i.e., single tokens, 2-token combinations, and 3-token combinations, does not
explode and the subsequent computations remain feasible. By stemming tokens, removing stopwords, and
windowing with three different window sizes, we aim to capture more meaning.

The tokens, regardless of whether the model finds frequent single occurrences or combinations, are
stored in their stemmed form. Stemming removes parts of the word to subsume multiple word variations

48 5 Description Inference

and facilitate computation. It often does not, however, reduce the words to a stem that can be easily read
by humans. Since the stemming transformation is not a bidirectional transformation due to the loss of
information, an accurate un-stemming method cannot exist. Stemmed tokens contrast our goal to provide
human-readable description fragments.

As a solution, we use a greedy algorithm to recover original words from their stem. Therefore, we keep
track of all the stemming transformations, i.e., whenever a token T is altered and results in its stemmed
version T̂ = fstem(T). The suffix removal of stemming leads to T̂ having multiple corresponding original
tokens T , so we collect the number of times of: T → T̂ . After processing all descriptions, we have
obtained an association count table that lists how often T̂ was caused by each original T . Two examples
are given in Table 5.2. For example, if the stemming result of a token is locat, it is then replaced with
location, regardless whether the original one was location, located, locating, or locate. By counting how
often an original token results in a particular stemmed token, we can replace the stemmed token by its
most common origin.

T̂ T #

locat location 890
located 418
locating 356
locate 208

effect effects 286
effect 109
effecting 75

Table 5.2: Example for a stemming association count table. locat would be re-transformed to location.

Ultimately, each description is represented by a list of tokens that we want to transform via a TF-IDF
model. The TF-IDF model has features that consist of single tokens, 2-grams, and 3-grams. The stemmed
tokens are re-transformed to their most likely original, non-stemmed word to be more easily readable
afterward. Hence, for each app, we here also obtain a 1-d vector with normalized, decimal numbers
between 0 and 1 for each description, which we can subsequently use as machine learning targets.

5.2.6 Network Model

As we have now processed both input and output data, we can continue to the neural network architecture
and the training process. We create three similar models that have the same output, descriptions but receive
either resource identifiers, string constants, or method names as inputs. Following preprocessing, these
three inputs and the output are represented non-positional, decimal values for which we can build a dense
neural network regression model. Subsequently, we outline our design decisions for network and training.

Figure 5.6 shows the dense network architecture we use for all three input types. The bag-of-words
representation via TF-IDF vectors enforces positional constraints, i.e., the value for a particular word
is always put into the same vector cell. This input property allows us to use a standard dense network
structure in comparison to other convolutional or recurrent architectures that factor in positional and
sequential information. Between the dense layers, we apply a dropout for regularization. Since the output
of each neuron consists of floating-point numbers, we have a regression task and use a linear activation
function for the output layer and mean-squared error as a loss function. All hyperparameters are listed in
Table 5.3.

Approach 49

TF
-ID

F
In
pu

t

N
H

1
N
eu

ro
ns

D
ro
po

ut

N
H

2
N
eu

ro
ns

D
ro
po

ut

TF
-ID

F
D
es

cr
ip
tio

n

Figure 5.6: Feed-forward dense neural architecture that either receives TF-IDF vectors of resource
identifiers, string constants, or method calls. The number of hidden layers and their
neuron counts varies for the three different input types, whereby a dropout layer follows a
hidden layer.

Optimizer Adam, η = 0.0001
Batch Size 32
Weight Initialization Glorot (Uniform)
Loss Function Mean-Squared Error
Hidden Activations ReLU
Final Activations Linear
Early Stopping Patience: 6 epochs

Delta: 0.5% F0.5-score

Table 5.3: Neural network hyperparameters for the description inference model.

The size of the input and the output depends on the dictionary size of the TF-IDF models. In particular,
the dictionary sizes are limited by the minimum document frequency and the maximum document
frequency, e.g., in how many apps a certain method call or resource identifier token occurs at all. Especially
the lower boundary is crucial. If the minimum document frequency is too high, we miss information the
neural network could use to infer the output more precisely. In case the minimum is too low, the model
remembers too many tokens that rarely occur, and the dictionary becomes very large. The larger the
input space, the more inputs and weight parameters are stored in memory, and the longer the training
process takes. The selection of TF-IDF model parameters thus binds the training process. Additionally,
we used random search similar to the previous chapter to find suitable network architectures. For this
non-exhaustive search, we trained networks with one to three hidden layers, having 1,000 to 15,000 hidden
neurons. Dropout was randomly set between 0% and 40%.

We choose the parameters empirically by trying out different setups and observing the resulting
dictionary sizes and model performances. Thereupon we set the minimum document frequency for each
of the three input types to 2% of the total number of documents (apps), and the corresponding maximum
frequency to 20%. This range means, e.g., if we have an app dataset of size N and a token occurs n times,
it only ends up in the dictionary if 0.02N ≤ n ≤ 0.2N apps to be used in the dictionary. Table 5.4 lists the
networks and TF-IDF dictionary sizes we found to give good results. We describe the results in detail later
in the evaluation part in Section 5.4.

50 5 Description Inference

Input Network Description
TF-IDF Hidden TF-IDF

Features Layers # Features

Resource Identifiers 3315 2968, 3265, 1393 (3 Layers) 6140
String Constants 6391 2898, 3105 (2 Layers) 6140
API Methods 11735 5891 (1 Layer) 6140

Table 5.4: Neural network configurations of the three models, including the size of the TF-IDF
dictionaries’ models.

5.2.7 Training

The training process resembles the one in the previous chapter, but with minor adaptations. Like before,
we again split the dataset into different sets, i.e., training, validation, and test, and use a parameterized
F-score for monitoring. We also use early stopping here. For the discretization of TF-IDF values, however,
we use a different threshold.

The three models are trained using the mean-squared error measure as a loss function. As a performance
metric, however, it is not fit for the purpose. It could be used to compare different models and runs but
does not give any intuitive expression of how well the model performs. Thus, similar to Section 4.2.3,
we discretize the description TF-IDF vectors by choosing a threshold θ, above which we set the vector
element to 1, and 0 otherwise. We can then use standard performance metrics like F-score, precision, and
recall on these binary vectors for actual description’s vector and description prediction’s vector.

For this task, we also want to factor in the actual model’s certainty for predictions. As we show later in
the evaluation, for uncertain predictions, outputs a particular state. We call this state prediction baseline,
which could also be viewed as noise floor. It stems from model input that is insufficient to infer any clear
output. We use the highest value of such a baseline prediction as a basis for θ. This way, the discrete
classification metrics do not include too much noise.

One specific property of this task is that we likely cannot recover large parts of the description. The
correlation-based learning approach tries to find similarities between apps and thus neglects app-specific
terms in the description. From a performance point of view, this means that we can expect a lower recall
than precision. For early stopping, we are required to choose a pivotal performance metric that measures
whether training should stop or continue. We thus use a weighted F-score (β = 0.5) that rates precision
higher than recall. Consequently, we use the F0.5 performance for early stopping to find a good final
training state.

5.2.8 Prediction Explanation

Once we trained our final three machine learning models, each one of them predicts a list of description
words based on their whole input. Apart from seeing this result, we also want to know which description
word predictions are caused by which input items. For this reason, we apply SHAP to our network to
explain model predictions.

For example, if our resource identifier model outputs the word dictionary, we want to find the influences
of these predictions. A reasonable, for humans understandable relation would be input tokens like search,
word, or translate. If input tokens show up that do not make sense, the model has learned that correlation
from similar apps but not regarding a particular app feature. For example, a developer could reuse parts
of an app in multiple others while mentioning the same word in all or most of their description texts.
Especially in our case, where we deal with real-world, noisy datasets, explanations where the model
prediction stems from, are essential.

Dataset 51

To find sample-based input-output causes, we use the Deep SHAP explainer, as part of the SHAP
framework.3 The explanation works on a sample-basis, meaning it has to be repeated for each new sample
again. For an app sample, the explanation algorithm returns a Shapley value for every input feature, for
every output. The Shapley values give relative information about the significance of one input feature for a
particular model output neuron. Therefore, it receives similar inputs and uses differences between them
to calculate overall influences. This method aims to find the influence of a certain input feature on one
sample’s output. Deep SHAP by default does this by incorporating the internal structure of a given neural
network, calculating partial Shapley values and adding them linearly. Eventually, we obtain a cascaded
list of Shapley values. The neural network itself gives a list of description tokens. For each predicted
description token, there’s a list of Shapley values that correspond to the input features. Each list can then
be sorted to see the most significant input influences per predicted description token.

The neural network has an ample output space, with many predictions being close to but not exactly
zero. The output space comes from each TF-IDF description model’s dictionary, which has several
thousand entries. Deep SHAP tries to find the influence of all values that are not zero, even the ones that
are insignificant. Practically, we do not need to evaluate predicted output words which have rather low
value, as they are most likely noise. Thus, we instruct Deep SHAP to only look at the input and output
values that are relevant, which we determine via the selected θ threshold (Section 5.2.7, Training). By that,
we significantly reduce the execution time.

To sum up the model explanation, we calculate the Shapley values for relevant, predicted description
tokens via Deep SHAP. This approach is the same for resource identifiers, string values, and method calls.
We sort in descending order and receive a list of the top influencing input values that explain the model’s
prediction for that sample.

5.3 Dataset
Upon setting up the preprocessing pipeline and the three neural networks, we can train and evaluate them
on a dataset. Like in the other two main chapters, we use the PlayDrone project to obtain app samples
from Google Play. Subsequently, we briefly describe which samples we use and their splitting into subsets.

For the description inference part, we rely on Android–specific development properties. Our system
cannot handle cross–platform implementation. A large part of these apps’ logic is not stored in bytecode or
APK-specific resource files. The description inference system could thus not learn from these apps or make
predictions for them. We ignore such apps during training and prediction based on the cross–platform app
detection approach in Section 4.3.

The remaining apps are split into training, validation, and test set. We design the test set so that it only
includes descriptions with a reasonably good description. We make the simplifying assumption that apps
with a higher download count tend to have higher description quality. For the test set, we thus take samples
from these comparably popular apps. We sort all apps in the whole dataset by download count and take
every third app until we obtain 1,000 test samples. The remaining samples are split into a training set
and a validation set, where 20% is used for validation and 80% for training. Additionally, we check each
sample if the resulting TF-IDF vectors for input and output contains more than non-zero values. This way,
we avoid training on empty samples. Table 5.5 shows the exact number of apps we use in the training and
prediction phase that follows from these criteria.

3https://github.com/slundberg/shap

https://github.com/slundberg/shap

52 5 Description Inference

Resource String API
Identifiers Constants Calls

Training set 33,490 54,369 53,560
Validation set (20%) 8,381 13,608 13,405
Test set 804 937 914

Table 5.5: App dataset properties.

5.4 Evaluation
This section deals with the sample-based evaluation of our description inference system. On the one hand,
we do this by looking at performance metrics, and on the other hand, we evaluate single samples. First,
we look at the performance metrics of the discretized TF-IDF description vectors and compare the three
input types. Second, we demonstrate description predictions as word clouds. Ultimately, we show SHAP
explanations for some samples. In what follows, we show our findings and draw conclusions based on a
large spectrum of apps.

Table 5.6 lists the numeric performance results of our three models. The direct comparison of the
F-scores shows that the resource identifiers yield the best results, while API calls perform significantly
worse, with string constants in between. Especially the recall value is comparably low. We attribute
this mainly to two reasons. First, descriptions contain lots of words specific to the app that are hard to
generalize. This makes reconstructing many of these rarely occurring words difficult. Second, the TF-IDF
model for the description output does not take synonyms into account. For example, if the description
contains the word image, but the word photo is predicted, it counts as a mismatch and lowers the recall
despite the semantic correctness. Although the table lists these low-performance values, the models yield
good results as we show subsequently.

Resource String API
Identifiers Constants Calls

Precision 56% 64% 51%
Recall 12% 6% 6%
F0.5-Score 33% 22% 20%

Table 5.6: Performance on the test set of the three input types via discretized TF-IDF vectors.
Discretization threshold: θ = 0.04.

Figure 5.7 demonstrates the illustration of our results via word clouds, sometimes also referred to as
tag clouds. It shows the top-ranked predictions of the three models for the app Vevo, a popular video
streaming platform similar to YouTube. A word cloud illustrates a limited number of words by setting the
font sizes of the tokens to weigh them. Given a list of tokens and numeric values, each token’s font size is
chosen relative to the other values. The position of a token is chosen randomly and has no meaning. In
the figure, for each model, the table lists the top-8 tokens and their predicted values. The tokens with
lower values are excluded. We employ word clouds to obtain a representation of our result that is easy to
understand for humans.

As we work with n-grams as well as with single tokens, we combine some of them for a clearer
illustration. In case the model predicts not only the two tokens Ti and Tj , but also their combination as
a 2-gram (Ti, Tj) (any order), we prefer the n-gram. Hence, we do not display the single tokens Ti and

Evaluation 53

(i) Resource Identifiers

Value Description Token

0.295 video
0.261 tv show
0.227 kids
0.148 music
0.123 watch
0.081 songs
0.066 subscription
0.064 content

video
tv show

kids

music

watch

songs
subscription

content

ML App Descriptions http://35.232.214.16:8087/#a2t,file=com.vevo.j...

1 of 1 8/31/19, 1:36 PM

(ii) String Constants

Value Description Token

0.136 tv channels
0.132 video
0.041 watch
0.033 movies
0.025 new
0.024 content
0.024 live
0.024 stories

tv channels
video

watchmovies

new

content
live

stories

ML App Descriptions http://35.232.214.16:8087/#a2t,file=com.vevo.j...

1 of 1 8/31/19, 1:42 PM

(iii) API Calls

Value Description Token

0.131 video
0.098 watch
0.094 tv
0.062 news
0.056 live
0.049 movies
0.046 sports
0.045 us

video
watch

tv

news live

movies

sports

us

ML App Descriptions http://35.232.214.16:8087/#a2t,file=com.vevo.j...

1 of 1 8/31/19, 1:40 PM

Figure 5.7: Word cloud representation for each model’s prediction for the app Vevo.

Tj . Regarding their weights, we take the maximum of the accumulated singular weights and n-gram:
ŵi, j = max

[
wi + wj ; wi, j

]
. For 3-grams, we take the maximum of the three single weights added up and

the 3-gram’s weight. The combination of tokens and n-grams reduces the number of top tokens without
lowering the word cloud’s expressiveness.

54 5 Description Inference

Concerning the Vevo app, the three models predict expressive words about what this app is about. Apart
from video being top-ranked, the nature of a video streaming and sharing platform is expressed through the
phrases tv show / tv channels, movies, subscription, music, live and content. The tv-related phrases show
that the models cannot differentiate between traditional television and online video streaming. Because
these predictions stem from many other apps, we reason that the neural networks understand the domain
of the input and learn to cluster video-related applications internally. We also see that the inferred tokens
based on API calls are much more general. The overall domain of the app becomes clear, but, e.g., no
n-grams like tv channels or tv show are learned. All in all, despite their independence, the three models
yield descriptive information about a potential description.

(i) Suggested Words

music player
playlist

files album

cloud

backup

ML App Descriptions http://35.232.214.16:8087/#a2t,file=com.forsh...

1 of 1 8/31/19, 9:07 PM

(ii) Actual Description

4sharedMusic was created for those, who can’t live without
music and don’t want their attention to be attracted with
anything else, but music while listening to it. When you
install this app on your Android device, you may easily
access your favorite tracks from 4shared. Using your
‘Search’ menu item you can look for music files you like
and add them to your playlist at 4shared Music. You
don’t have to look for them each time you use the app, just
create a playlist, add your favorite tracks and listen to
them exactly from your 4shared Music anytime you want.
Moreover, you can upload tracks from your Android device
to your 4shared Music. With 4shared Music you can enjoy
15GB of space for your music and nothing out of place.
Upload and add all music files you like and make your life
even more enjoyable with 4shared!

Figure 5.8: A comparison between the actual description of 4sharedMusic and our system’s prediction
shows that despite the accurate representation of the app’s purpose, the performance is
hard to measure. Many words do not exist in the text literally.

The following example demonstrates the performance metric shortcomings we mentioned above.
Figure 5.8 deals with the app 4shared Music. 4shared4 is a cloud storage provider, similar to Dropbox.
This app is a music player that accesses audio files on their platform. The description inference predicts,
based on resource identifiers, that the app is a music player, dealing with playlists and albums. The neural
network also captures the second domain of this app, the online storage platform, via cloud, backup, and
files. While all these predictions make sense, the description does not mention all of them, e.g., player,
cloud, and backup are absent. In other words, since the description text does not cover the tokens literally,
the measurable performance decreases despite the good generalization. An accurate but abstracted word
cloud that is intelligible to humans is thus difficult to measure.

Apart from giving a list of words, it is also important to estimate the confidence of a prediction. The
manual examination of several apps shows that uncertain model prediction could be easily identified.
Table 5.7 shows the top values for such a case. As the model cannot find any inputs it can make sense of, it
outputs very generic words. The numeric values at the output also have low variance. We described this

4https://m.4shared.com/

https://m.4shared.com/

Evaluation 55

state in Section 5.2.7 as a baseline model, which can be used to differentiate between certain and uncertain
predictions. Since the highest value here is 0.024, we used a slightly higher value of θ = 0.040 for the
discretization we need for performance measuring.

Value Description Token Value Description Token

0.024 application 0.022 photo
0.019 com 0.017 android
0.017 phone 0.016 features
0.016 device 0.016 share
0.015 images 0.015 video
0.015 new 0.015 free
0.014 mobile 0.014 contact
0.014 time 0.014 set
0.013 information 0.013 map

Table 5.7: Uncertain model prediction: When the neural network cannot interpret a certain app, it
outputs generic words with a relatively low numeric value.

The predictions based on resource identifiers and string constants can have different quality, as also
shown for the app 365Scores app in Figure 5.9. This app provides features for fans of different sports,
teams, and leagues, like checking past results and statistics, live standings, or video sequences. The
resulting word clouds show that although the inference via string constants roughly explains what the app
does, the one via resource identifiers does a better job. While the former shows functionality related to a
social messenger, the latter one more accurately paints a picture of the actual purpose and the app features.
Apart from the quantitative performance comparison in Table 5.6, we could also confirm this tendency
through our qualitative analysis. We attribute this tendency to the more precisely worded tokens in resource
identifiers that overall have lower variance than the ones in string constants, which are in general longer
and use more creative language. It depends on the app, which of the three neural models performs better,
but in general, we observed a higher accuracy for the inference based on resource identifiers.

(i) String Constants

chat
news

messages

team league
scores

friends

live

ML App Descriptions http://23.251.150.107:8087/#a2t,file=com.scor...

1 of 1 8/29/19, 2:54 PM

(ii) Resource Identifiers

live scores
league

match team

football

game
video

player

ML App Descriptions http://23.251.150.107:8087/#a2t,file=com.scor...

1 of 1 8/29/19, 2:55 PM

Figure 5.9: Word cloud representation based on the prediction for string constants and resource
identifiers for the app 365Scores for sports fans, whereby the latter one is more accurate.

Figure 5.10 shows the system’s output for 360 Security–Antivirus FREE. Resource identifiers and
string constants show meaningful results that make it easily identifiable for humans what the app does. In

56 5 Description Inference

contrast, the inference via API calls does not give much information. Merely the location token could
remotely describe the app’s feature to find the device. The comparably worse performance for API calls is
a behavior we commonly observed across many apps. For complex behavior, the mere occurrence count
of API calls via TF-IDF seems to be insufficient, especially with our noisy training data. For certain app
types, however, we found that the methods-based explanation generation performed significantly better
than for others. Examples are wallpapers, which often have a small code base, and themes or add-ons for
other apps that resemble each other. We still found, however, that the information provided by the API
calls neural network in addition to the other two models can be used for many apps.

(i) Resource Identifiers

security
protection

scan phone lock

privacy
block

ML App Descriptions http://35.232.214.16:8087/#a2t,file=com.qihoo....

1 of 1 8/31/19, 3:37 PM

(ii) String Constants

security
protection

passwordlock

sms
phone

device

ML App Descriptions http://35.232.214.16:8087/#a2t,file=com.qihoo....

1 of 1 8/31/19, 3:37 PM

(iii) API Calls

location
business

photo

find

ski job

car

ML App Descriptions http://35.232.214.16:8087/#a2t,file=com.qihoo....

1 of 1 8/31/19, 3:38 PM

Figure 5.10: For the 360 Security–Antivirus FREE here, and for many other samples, inference via
API calls is comparably difficult for the system.

Next, we also want to evaluate input-output relations. We thus take one sample and get the top prediction
for it, i.e., we focus on the network’s output with the highest numeric value. Then, we calculate the SHAP
values for all inputs and list the corresponding input features and their SHAP values. Table 5.8 shows this
result for the app Slacker Radio. The predicted description words with the highest values were music
player for resource identifiers and music for string constants. By looking at the top input influences, we
can see that the two different network models make their decision based on reasonable inputs. These input
tokens affect the output in a way that is easily comprehensible and verifiable by humans. We noticed that
for many samples, the information gained from the model explanation works very well for predictions
based on resource identifiers and string constants.

In contrast, however, the workings of the neural network for API calls are hard to explain with SHAP.
Although we found many apps where the method-based model gives good descriptions, the SHAP values
were hard for humans to interpret. For example, the Vevo app above (Figure 5.7) has video as its top

Summary 57

(i) Resource Identifiers

Description Input
Token(s) Tokens SHAP

music player artist 0.0122
album 0.0107
playlist 0.0071
art 0.0034
lyrics 0.0032

(ii) String Constants

Description Input
Token(s) Tokens SHAP

music playlist 0.0321
song 0.0230
stations 0.0125
songs 0.0096
tracks 0.0039

Table 5.8: SHAP model explanation: Applying the algorithm for the app Slacker Radio on particular
description words returns meaningful input tokens that caused the prediction.

predicted term. The top SHAP values for it return Android activity manipulation methods unspecific to
multimedia applications. We assume that in cases like these, library implementations tend to consist of a
particular set of methods, working as a fingerprint for video-related purposes. In some cases, however, the
SHAP explanations also give meaningful insights here, e.g., for the predicted description word shake, we
could trace the SensorManager class among the top input features that caused the prediction. The API
calls model consists of a very high number of input features that the network wires in a way that in most
cases, is difficult to understand for humans.

Our evaluation shows that although it is difficult to measure if a predicted description accurately depicts
the app’s purpose, the description inference system learned plausible relations during training. Based on
several sample apps from the test set, we can conclude that the predicted descriptive fragments are very
expressive in many cases. Their accuracy and plausibility vary between the three input types, with the
inference based on resources identifiers leading to the best results. For API calls, it is hard for humans
to comprehend the model’s decisions, while for resource identifiers and string constants, our qualitative
analysis showed meaningful correlations. All told, the three neural networks, in general, yield plausible
descriptions for most apps in our test set.

5.5 Summary
The second contribution of this thesis presented in this chapter was a system that comes up with a rough
textual portrait of an Android app. We began by outlining our approach, including preprocessing APK
files, neural network training, and explaining the predictions made. The approach was evaluated on a
real-world app set to demonstrate its practical application. In what follows, we briefly summarize this
chapter.

For the inference of app description phrases, we extracted three types of information from the APKs:
The identifiers of static resources (XML files), the values of string constants in both XML files and
the source code, and the method calls made to Android APIs and Java classes. Identifiers and string
constants were split into alphanumeric tokens, and method calls were referred to with their method
signature, including class/package. Each of these three entity types was represented via TF-IDF, meaning
we considered how often one element occurs per app and how often it occurs across all apps. Based on
these three resulting one-dimensional vectors, we trained three different dense neural networks. Their
targets were TF-IDF-modeled descriptions. The output could thus be interpreted as a list of descriptive
phrases. The entries of this list sorted in descending order gave the most relevant phrases. For these top
outputs, we used a model explanation algorithm to interpret which inputs caused them. Our system thus

58 5 Description Inference

used static and code resources of an app to infer significant words of the description.

Afterward, we evaluated the system based on overall measured performance as well as by visualizing
and examining the result for particular apps. First, we compared the performance of the three different
machine learning models with their tree different input entity types. We saw that inferring description
phrases work best via resources identifiers, followed by string constants. The inference via API calls
performed worst. Our individual evaluations of apps using word clouds emphasized these findings.
Deriving descriptions from tokenized resource identifiers yields more specific information than from API
calls. Due to the generalization of neural networks and the description TF-IDF model not understanding
synonyms, the performance metrics had to be taken with a grain of salt. Despite the use of a noisy
dataset, in overall terms the system found concise, accurate depictions for many apps. With the use of
the model explanation framework SHAP, incorrect predictions could be discovered. In some cases, the
model prediction explained the purpose even better than the app’s original description. The evaluation
showed the generalizing nature of neural networks trained on a large, diverse sample set and underlined
the effectiveness of our approach.

Depending on the app and its underlying source code and static resources, the neural network model
found meaningful descriptions for many apps. As part of the app publishing assistance system, it can
thus be used as a quick reference for drafting or verifying app descriptions. The evaluation confirms the
beneficial value of our description inference system for improving the app descriptions that users see in
Google Play.

Chapter 6

Textual Permission Clarity

After clustering apps and inferring parts of the description text, in the third main chapter, we address the
relationship between an app’s description and the permission set it requests. We start by motivating our
work on a textual permission clarity system. Then, we explain our approach for preprocessing tuples of
description text and permission set. Thereupon we describe the convolutional neural network we use to
estimate the clarity. The final section of this chapter is an evaluation of our approach to apps the model
has not seen during training. We show that our system finds text fragments that point to permission usage,
it identifies missing permission explanations, and it finds other interesting, more general correlations
between permissions and common use cases. We conclude that it can be of great use for improving app
descriptions in regard to permission usage.

6.1 Motivation
When smartphone users search for an app in Google Play, a concise depiction of its functionality is crucial,
especially concerning app permissions. Description texts are, together with screenshots, app title, and
reviews, relevant information for users before installing the app. A user must comprehend not only what
features the application has, but also the implication on their privacy. Due to the large pool of personal
data, a smartphone may disclose, the user must be briefed about the potential exposure.

In general, access to privacy-critical information, e.g., location, contacts, or personal files, is protected
by the Android permission system. Any text describing an application should thus contain direct or indirect
references to the permissions the application requests. Ideally, a short, yet concise part is provided that
includes sentences which directly describe how its requested dangerous permissions are used. Humans
may or may not read the text before downloading an app. However, a well-drafted description text ensures
that users can make reasonable decisions at install-time in regard to app functionality and protecting their
privacy.

Consequently, our goal is to obtain a system that processes a description text in human language. Based
on this text, the system should give a score for each permission. A better score corresponds to a higher
likelihood that the app requests the permission. Additionally, the system must provide information which
parts of the description texts cause the score. Ultimately, the predictions are compared to the actual
permissions to draw conclusions. The discrepancy between these two sets, the prediction based on the text
and the actual permissions, is also security-relevant.

The outlined textual permission clarity system can serve multiple purposes. Our system gives a score
for each permission group. At the same time, app markets, i.e., Google Play, also show the set of requested
permissions before downloading. Based on this additional information, a user might not want to download
an app. Furthermore, the system highlights which parts of the text affect the score for a certain permission,

59

60 6 Textual Permission Clarity

e.g., the word photo is likely to trigger permission groups for camera and external storage. App publishers
can use this information to improve the quality of their description texts. Ultimately, our approach can also
be used to find common correlations between permissions and certain words or phrases. Relations such as
the word photo for the camera permissions are apparent. Other permissions are insufficiently described, as
such a system can show. An automated system that finds word correlations based on real-world samples
can gather such information. We consider these three use cases, i.e., pre-download evaluation, description
quality improvement, and data-driven evaluation of frequent permission usage, substantial incentives for
building our textual permission clarity system.

6.2 Approach
Our system is supposed to find a relationship between text and permissions based on a large sample
dataset. Subsequently, we first cover the preprocessing steps of apps and descriptions, which differs from
the actions we undertook in the previous clustering chapter in several aspects. Then, we can present
that data to a convolutional neural network architecture equipped for text classification. To understand
why an app estimates a score, we use LIME to comprehend the decisions our model makes, meaning the
correspondence between permissions and words.

We differentiate between two phases, the training phase, and the prediction phase. Permissions and
descriptions are transformed to be processable by the network in the preprocessing step. During the
training phase, as shown in Figure 6.1, the model learns correlations between parts of description texts and
actual permissions of the app. The CNN uses backpropagation to adjust its internal parameters to predict
the app’s permissions correctly. The training continues until the performance plateaus or decreases, i.e.,
the quality of our permission scores does not improve anymore. We then use the model with the best
performance in training for the prediction phase.

Descriptions
and Permissions

q D
q D
q D

Preprocess

3

Untrained
Text CNN

Performance

Stop Training?

Figure 6.1: Textual permission clarity system: training phase.

In the prediction phase, the system receives app descriptions not seen during training. We depict the
prediction phase in Figure 6.2. The description text receives the same preprocessing steps as during
the training phase. The now-trained network outputs scores whether the description reveals hints about
permissions, based on the knowledge gained in the training phase. Additionally, we use LIME for network
interpretation to estimate which words in the description cause the scores. We thus obtain a probability for
an app to request a certain permission, as well as which parts of the text affect this score.

Approach 61

Single
Description

q

Preprocess

3

Trained
Text CNN

Camera
Contacts
SMS
. . .

31%
92%
87%

This app lets you send
text messages to your
friends in your address
book and . . .

LIME

Figure 6.2: Textual permission clarity system: prediction phase.

6.2.1 Preprocessing
To be able to train a neural network, adequate and efficient data representation is crucial. Subsequently,
we cover the preprocessing work our neural network requires. First, we deal with the processing of the
description texts, in particular, the tokenization steps and the use of pre-trained word embeddings. Then,
we transform the grouped permissions list to vectors. The preprocessing steps that we subsequently
describe are applied to all samples, regardless of whether they are used for the training phase or the
prediction phase.

Descriptions

First and foremost, we need to find a way to transform the description texts consisting of character arrays
into tokens. Unlike the bag-of-words approach with TF-IDF in the previous chapters, we now maintain the
word order. With the use of a pre-trained word embedding model, we translate the description tokens to
embedding vectors with a trial-and-error lookup strategy. We ultimately receive dense matrices of a fixed
size for each description.

The pre-trained embedding model consists of key/value dictionaries, with the key being a word or word
combination, and the value being the corresponding embedding vector. Many embedding models are not
only trained on alpha-numeric tokens, but also contain entities like hyphenated expressions, web addresses,
or brands and trademarks (including special characters). The neural network has to utilize the objects in
the pre-trained embedding model properly.

The tokenization strategy thus has to adapt to the available dictionary keys. We show our approach to
this problem in Figure 6.3. Initially, we strip the description of all formatting done with HTML tags. We
receive a raw description string. For splitting the string into tokens, we analyze the character set of our
pre-trained embeddings. A set of all particular characters available in the dictionary’s keys is created,
which we call alphabet. The keys, i.e., the words and word groups, mainly consists of alphanumeric ASCII
characters, but also of non-alphanumeric and Unicode characters. After obtaining the full alphabet, we
use its inverse as a delimiter for tokenization. Consequently, the raw string is split by every character that
does not occur in the alphabet, which leaves us with an initial set of tokens.

After acquiring this set of tokens, we start the lookup process. For each token in the initial set, we
perform the following steps: First, we check whether the full token exists in the dictionary. If it does, we
use the embedding ei corresponding to the entry (word) at dictionary position i. If not, we attempt to
clean and split it. First, we remove the leading and trailing non-alphanumeric characters and perform
another lookup. In case of another dictionary-miss, we split the cleaned token into subtokens, with all
remaining non-alphanumeric as delimiters. We perform separate lookups for all subtokens. Our goal is to
match as many tokens against the pre-trained embedding as possible.

62 6 Textual Permission Clarity

Description
Text

q

Pretrained
Embeddings

house
camera
X-ray
Android
flask
...

e0
e1
e2
e3
e4

Tokenizer

@
HTML
Strip

Repeated
Lookup

î

Embedded
Description

©­­­­­«
e3
e8
e1
e9
. . .

ª®®®®®¬

Delimiters

Pad/
Truncate

Figure 6.3: Tokenization and word embedding lookup for the permission perceptibility system: the
text is split into tokens using all characters that do not occur in the pre-trained embedding
dictionary. On a lookup-miss, the token is partitioned further.

A limitation of the token number, i.e., the description text length to be processed by the network,
is necessary. The reason is that the convolutional neural network can only handle a fixed-size input.
Descriptions practically have arbitrary length, and thus, we need to set an upper limit. We look at the
dataset and choose an upper limit in a way so that the majority of the descriptions can be fully processed.
In particular, we set the maximum description length in a way that around 95% of descriptions can be
processed as until the last token. This is a threshold we learned by experience which depends on the dataset
itself and the number of tokens that can be represented via embeddings. For texts larger than that, we
truncate them, and for the ones shorter, we add padding tokens. Ultimately, we obtain a matrix of constant
size with the row indices corresponding to the description tokens, and each row containing an embedding
vector from the pre-trained word embedding model. The matrix is a transformed representation of an
app’s description that we can subsequently use as machine learning model input.

Permissions

The permissions of each app also have to be represented in a way that a neural network can handle them.
We focus on critical, privacy-concerning permissions, so-called dangerous permissions, as described in
the background chapter. Custom permissions apart from the ones in the SDK are also not processed. The
grouped permissions are then represented in binary.

Each app comes with a list of <uses-permission> tags defined in the manifest file. In a first step,
we extract all the permission identifiers. Then, we only keep the ones that are in dangerous groups
(Android 6.0 or higher). We group these permissions according to the SDK docs. This leaves us with
nine permission groups.1 There may be apps in the dataset that target or support phones running an OS

1CALENDAR, CALL_LOG, CAMERA, CONTACTS, LOCATION, MICROPHONE, PHONE, SMS, and STORAGE.
SENSORS is omitted because it is not used by any app in our sample set.

Approach 63

version below Android 6.0, i.e., API level 22 or lower. However, grouping their permissions still subsumes
privacy-related ones. We thus represent all single permissions of an app via runtime permission groups.

These permission groups are then transformed into multi-hot encoded vectors. For each app, we check
whether it requests one or more single permissions within a group. If it does, then the corresponding
column of the vector is set to 1, and 0 otherwise. As a result, we obtain a 1-by-9 binary vector that portrays
the app’s permissions. We use these vectors as targets for the machine learning model.

6.2.2 Network Model

After finding a suitable representation for description texts and permission sets, we can build our neural
network. We create a convolutional neural network (CNN) to make use of the local properties of our
textual input. Related work for processing text with comparably simple CNNs yielded powerful results
due to the structural similarities to images. The comparably efficient training process, as described in the
background chapter, adds to our decision for CNNs. Our model performs a multi-label classification task,
with each label corresponding to a permission group. Subsequently, we describe the general architecture
of our network in regard to filters, layers, and other hyperparameters.

As a general architectural decision, we opted for a CNN for several reasons. Unlike recurrent architectures
(e.g., LSTM cells), CNNs are faster to train and more straightforward to interpret. The convolutional
architecture captures the impact of single words, word groups, and phrases. If we only wanted to examine
the existence of certain words or set of words, machine learning would not be required. However, CNNs
do not only find local patterns, but also interpret their co-occurrence. In our case, this means that decisions
are made, especially in regard to the combination of words, i.e., if certain words occur together and
how relevant each of them is for a certain permission. On the other hand, the filters allow for better
generalization. Since we use word embeddings, the 1-d filters do not remember single words. A particular
filter thus ideally captures groups of words that have similar properties in the word embedding subspace,
e.g., one filter could capture "photo" and "picture," as well as their plurals. These properties emphasize
the use of CNNs for our text multi-label classification problem.

W
or
d
Em

be
dd

in
gs

of
a
D
es

cr
ip
tio

n

1x1
Filter

1x2
Filter

1x3
Filter

Global Max
Pooling

Global Max
Pooling

Global Max
Pooling

C
on

ca
te
na

te

50
00

N
eu

ro
ns

D
ro
po

ut

25
00

N
eu

ro
ns

D
ro
po

ut

9
Pe

rm
is
si
on

G
ro
up

s

Figure 6.4: CNN architecture to process description texts (embedded) and get the permission
likelihood.

Figure 6.4 shows the full neural network in detail. We use the text CNN by Kim et al.[25] as summarized
in the background chapter as a basis and modify it to some extent. The network input is a d × m matrix,
where d stands for the embedding size and m for the maximum number of tokens (embeddings) we process
per description. Then, the network applies 1-d convolutions with different kernel sizes: 1, 2, and 3, i.e.,
filters that can cover one to three words at a time. For each of these three sizes, we allocate 1024 filters to
be trained. Each of the three filter bundles is subsequently reduced through a global max-pooling layer.
We are left with 3x1024 max-values, which are concatenated so they can be processed by the successive

64 6 Textual Permission Clarity

1-d dense layers. For regularization, we apply a dropout of 0.2 after each of the two dense layers.2 The
output layer, consisting of 9 neurons that match the nine permission groups, gives then values between 0
and 1 for each of them. Table 6.1 lists the additional hyperparameters. We used random search to find
good parameters for the number of layers, the dense neurons, and the dropout.

Optimizer Adam, η = 0.0001
Batch Size 32
Weight Initialization Glorot (Uniform)
Loss Function Binary Cross-Entropy
Filters Padding: Same

Stride: 1
Hidden Activations ReLU
Final Activations Sigmoid
Early Stopping Patience: 6 epochs

Delta: 2% Fβ-score (macro)

Table 6.1: Neural network hyperparameters for the permission perceptibility CNN.

6.2.3 Training

The training phase of the previously described network model requires some additional parameters to be
set up. Regarding the metrics, we weigh the loss function to combat class imbalance. For the same reason,
we also scale individual performance metrics. Regarding the samples, our dataset is divided into three
sets. This allows us to adopt early stopping to find a good final training state that balances overfitting and
underfitting. We briefly outline these points and their relevance to the learning process.

Class imbalance is a common problem in machine learning. In our system, the unequal distribution of
labels results from the differences in permission usage between apps. The grouped permissions of an
app heavily depend on the purpose of an app, as well as their co-occurrence. Some groups tend to occur
together more often. Additionally, some permissions are required by fewer apps than others. As we have
nine network outputs, i.e., permission groups, which can occur in any combination, the impact of class
imbalances is even higher.

We aim to partially even out the imbalance by using class weights, as shown in Equation 6.1. To this
end, we first need to find the actual distribution. We add up the binary 1-by-9 permission vectors pi of all
samples to obtain a sum vector s. We divide the inverse of the sum vector by the total number of samples.
Additionally, we normalize the vector via diving by 9, so the non-weighted loss and the class-weighted loss
can be compared directly. We receive a 1-by-9 vector c that counter-balances the overall class distribution.
It is multiplied with the actual value of the loss (error value) that is back-propagated during training
for every single output. Consequently, for a class with lower sample support, the extent of the error is
increased, and decreased for higher support. Although this balancing mechanism increases the importance
of particular samples over others, it reduces the magnitude of class-dependent overfitting.

220% of the weight connections are chosen randomly and set to zero in each training iteration.

Approach 65

pi =
[
pi,0 pi,1 . . . pi,8

]
for 0 ≤ i < Nsamples

s =
∑

Nsamples

pi

c =
Nsamples

s
·

1
9

(6.1)

As an essential requirement, our system must be able to work with real-world descriptions. This
requirement means that a portion of the texts does not contain sufficient information for each permission
group we have. For these samples, humans cannot identify permission usage in the description, and thus,
the machine learning model should not attempt to find meaningless correlations. This obstacle, in general,
is challenging to tackle, as the training set does not contain particular information of a description’s quality.
We at least want to address this problem through a weighed F-score and use the β parameter. We set it to
0.5, which causes the precision to be treated more important than the recall. Thereby, we prefer models
that make more confident predictions.

While the previously described class-weighing approach focuses on the loss function, i.e., the back-
propagation of the error during training, class imbalance must be taken into account for performance
metrics as well. We use precision, recall, and Fβ-score to measure the performance for each class. For the
sake of comparing different architectures and training states, a single numeric value for a trained model is
required. Thus, we calculate macro and micro averages over all classes. We use the macro Fβ-score for
comparing as it factors in the class imbalance through the support of true positives per class.

In regard to model overfitting, we split the samples into sets and adopt early stopping. We partition the
dataset into training data, validation data, and test data. Most samples are put into the training set, which is
used for back-propagating the error. The performance on the validation set is calculated after every epoch
to assess how well the model generalizes. The test set is not used during training. All set affinities are
decided randomly, and the order within a set is permuted after every epoch as well. We aim to find a good
epoch count for training without using a fixed epoch count. As stated, the validation set’s performance is
constantly monitored after every epoch. In the case of performance decrease, training continues for six
more epochs if another local minimum can be found later. If this is not the case, the weights are restored
to the previously best-performing state. That weight configuration is the final state of the trained network.

6.2.4 Prediction Explanation

Besides the likelihood of permission groups for a description text, we also want to gain knowledge about the
words leading to the predicted permission scores. In order to interpret how our CNN makes a prediction,
we use the model explainer LIME to find relevant parts of the input. We calculate a value for each word
that shows its significance for the output. Ultimately, we get nine heatmaps for the description, one for
every permission group.

LIME treats our machine learning classifier as a black box and evaluates variations of a particular
input sample. The input to be evaluated, meaning the description text, is split into its tokens. The LIME
algorithm then generates similar test samples: For each test sample, random tokens are removed from the
original sample. The impact of each change is then accumulated per output label (i.e., permission group).
LIME needs two parameters. First, the number of features to be varied, which we set to the number of
tokens a sample has. Second, the number of random samples to be generated, whereby a higher number
computes more different combinations. We empirically decided for 100 times as a trade-off between
computation time and result accuracy. The algorithm can then calculate the token-related significance
of the model’s decisions. In case a token occurs multiple times, LIME removes all occurrences. This

66 6 Textual Permission Clarity

unique-feature treatment makes sense in our case because of the global pooling layer that merges the
information coming from all CNN-filters. Eventually, we are left with several impact scores, one list for
each permission group, with a sub-list consisting of values for each word in the description regarding that
group.

The impact scores generated by LIME are negative and positive decimal numbers. Depending on the
exact model and the input, the minimum and maximum values of these impact scores can have arbitrary
absolute values, e.g., -3.7 for a negative impact of a single token on the result and 2.4 for a positive
impact. A negative impact means that the removal of a word causes a more confident prediction. Thus, we
need to set a lower boundary and normalize the LIME values. Additionally, we need to take the actual
prediction of our model into account. Our neural network outputs sigmoid values between 0 and 1 for
each permission group, which refers to the confidence of a decision. For example, if one class output is
close to 0.3, i.e., a confidence of only 30% that the app requires that permission, the normalized LIME
score also has to be weighed lower in comparison to, e.g., 90%.

L̃m, j =
Lm, j

maxk
(
Lm,k

) for k ... 0 ≤ j < N

hm, j = L̃m, j · pm

(6.2)

Consequently, we use the simple normalization and scaling formula in Equation 6.2. For each output
label m we have the estimated probability ym, and N tokens in the description. LIME outputs the impact
scores Lm, j for each token j and each permission m. First, we zero-out all negative values and then divide
each of these impact scores by the maximum value for that sample and label m. Then, these values L̃m, j

are scaled by the probability ym for permission m. The result is a heat value hm, j for each word between 0
and the prediction for that permission m.

Hence, hm, j can be used as a heatmap over the text. It shows the relative impact each token has on
the CNN’s prediction for a specific permission group. A shortcoming of LIME is, however, that it only
alters individual, single words. Therefore, we cannot evaluate our filter kernels that cover two and three
tokens. Despite this downside, LIME can still give meaningful information about why the model decides
for a particular permission group probability. In the evaluation section, we use the heatmaps to effectively
differentiate between good and bad correlations that the system learns.

6.3 Dataset
For the training and evaluation of our permission perceptibility model, we need a pre-trained word
embedding model and sample apps. For the embeddings, we compare two different word embedding
architectures: Word2vec and GloVe. Like in chapter 4, we use apps from the PlayDrone dataset. However,
we remove samples that would hamper training. Finally, we list some statistical properties of the obtained
samples to show in advance which kind of data we use for the evaluation.

Since our approach requires descriptions to be provided as word embedding vectors, we need to choose
a pre-trained model. Thus, we compare two different embedding methods: a prediction-based and a
count-based one. The first one is Word2vec, where we use a model trained on three text corpora at once:
Wikipedia articles, news articles and crawled websites.3 The second embedding model we make use of is
GloVe. There we use a model published by the authors which was trained on Wikipedia articles.4 The

3https://code.google.com/archive/p/word2vec/

4http://nlp.stanford.edu/projects/glove/

https://code.google.com/archive/p/word2vec/
http://nlp.stanford.edu/projects/glove/

Evaluation 67

resulting embedding vectors for both models have dimensionality 300. Table 6.2 shows some properties of
the two models. These word-vector pairs are used for tokenization (preprocessing) and word representation
(neural network input).

Word2vec GloVe

Architecture Predictive Co-occurance
Text corpora trained on Wikipedia, UMBC, Wikipedia

and statmt.org
Total corpus words ≈ 16 billion ≈ 5 billion
Output embeddings 999,994 400,000
Characters Lowercase Lowercase

Table 6.2: Word embedding model properties.

As for the descriptions, we remove particular samples. All text we process has to be in English.
Additionally, we set an upper limit on the length. Instead of using a character-based metric, we count the
embeddable tokens, i.e., the number of tokens for each description after preprocessing. All descriptions
are preprocessed as described in section 6.2.1 and transformed into a list of embeddings. Therefore, all
tokens that do not exist in the pre-trained embeddings dictionary disappear. We take the length of the
resulting list and remove all descriptions that have 20 or fewer embeddable description tokens.

The whole dataset is split into three subsets. The smallest one, the test set, contains samples we do
not use at all during the training phase: the same 1,000 apps as in the previous chapter. Training and
validation set are made up of the remaining apps, which are split so that randomly 20% are part of the latter.
This partitioning scheme is required to both prevent overfitting of our machine learning model and give
meaningful, commonly known examples in the subsequent evaluation. Table 6.3 lists the number of apps.

English descriptions 81,803 apps
20+ embeddable tokens 77,758 apps
Training and validation set 76,758 apps
Test set 1,000 apps

Table 6.3: App dataset properties, GloVe embeddings.

6.4 Evaluation
On the following pages, we evaluate our textual permission clarity system. We begin by comparing
the performance of GloVe vs. Word2vec. Then, we have a brief look at the performance metrics and
discuss their meaningfulness. We continue with a closer look at specific examples, where we analyze their
word-to-permission correspondence and compare predictions and actual permissions. Apart from showing
specific description texts, we also list words that we found to have a high impact on the model prediction.
Finally, we give a general overview in which cases the model performs well and where it does not.

For comparing the influence of the two word embedding models, we use the same network architecture.
The embedding sets we use have dimensionality 300 and are normalized, which allows us to only switch
the underlying word-to-vector mapping of the system, i.e., its input before training. There is the possibility

68 6 Textual Permission Clarity

that different architectures could better exploit and handle the mathematical properties of GloVe and
Word2vec, respectively. However, we estimate the impact of this limitation comparably low. Hence, we
only do not modify the parameters like, e.g., neurons, dropout, or layer count further and only switch the
embedding vector mapping here.

0 100 200 300 400 500 600
0

1

2

3

·104

embedded tokens (eff. description length)

#
de
sc
rip

tio
ns

w
ith

th
at
le
ng

th
GloVe

Word2vec

Figure 6.5: Histogram of the description length after embedding with the pre-trained GloVe and
Word2vec models.

First, we want to check how well the two embedding models cover descriptions, which is part of the
preprocessing step. We perform tokenization and repeated lookups, as previously described. Figure 6.5
shows the number of embeddings found, i.e., the effective description length the network sees, and how
often descriptions with a certain length occur. As seen in the histogram, both create embedded descriptions
of similar length: For GloVe, the resulting median length is 126 and Word2vec it is 127. Both embedding
models are able to cover the texts to a similar extent. In regard to how well our textual permission clarity
system can harness the pre-trained embeddings, there is no significant difference between GloVe and
Word2vec for the obtained description lengths.

GloVe Word2vec

Precision 81% 76%
Recall 55% 54%
Fβ-score 77% 70%

Table 6.4: Performance comparison for the two different embedding models GloVe and Word2vec.
Scores are macro-averaged over all labels and over five folds.

After embedding the descriptions and analyzing the lookup rate, we can train our CNN. Table 6.4
compares the performance of both embedding models on the test set. These evaluations are done using
5-fold cross-validation and averaging the single values over the five folds. We can see that the two
models compare very similar for the recall. Precision and Fβ are better for the GloVe embeddings. We
performed several more runs and saw that the differences could be slightly larger or smaller by a few
percent, depending on the randomization of samples and network initialization. Thus, we conclude that
the choice whether to use GloVe or Word2vec for our system does not affect the performance substantially,

Evaluation 69

but GloVe performs marginally better, judging by the numbers. For the following results, we only use the
GloVe-trained network models.

Precision Recall F0.5-score Support

Ext. Storage 93% 76% 89% 699
Calendar 55% 24% 42% 36
Call Log 70% 44% 62% 108
Camera 71% 56% 67% 199
Contacts 80% 65% 76% 369
Location 82% 56% 74% 327
Microphone 83% 64% 78% 125
Phone 73% 68% 72% 440
SMS 83% 52% 73% 100

Macro Average 77% 56% 70%
Micro Average 81% 65% 77%

Table 6.5: Performance of our system on the test set, GloVe embeddings, averaged over five folds.

Next, we want to evaluate the performance of our trained CNN model in-depth. Table 6.5 shows the test
set results.5 The last column shows the support, i.e., the number of true positives the model captured. As
mentioned before, the varying support for each permission group is influenced by the unequal distribution
of permission groups in apps in general. As we assumed, the recall column altogether has lower values
compared to the precision column. This can be explained by the fact that we do not have labeled samples,
but also many low-quality descriptions. Some descriptions miss permission-related phrases, and therefore,
the model cannot predict a positive result. Hence, we focus on precision scores.

The precision values range between 71% and 93%. We can see a tendency for some permissions. The
macro precision average is at 77%, and certain permission groups perform significantly better or worse
than that. Calendar is worst, while camera, phone, and call log are also on the lower end. On the opposite,
external storage has the highest precision, concurrently with the highest support. Although the scores
suggest that some permissions are more clearly identifiable in a description, a detailed look is necessary
before drawing concrete conclusions. Despite the numeric results, we can only make vague assumptions
on the model’s performance in practice. Due to our use of real-world descriptions and their qualitative
shortcomings, we need to analyze samples and predictions in detail. A high precision score can also mean
that the textual correlations found during training are not reasonable and not helpful for humans to identify
permissions. Since neural networks always learn correlation-based, we have to gain knowledge which
correlations the model has learned and whether they are meaningful or coincidental.

Hence, we want to demonstrate the result on single samples. We select three apps and show interesting
findings: a messaging app, a video editing app, and a food delivery app. For the sake of brevity and
readability, we only show relevant fragments of their descriptions, which are overlaid with the LIME
heatmaps for certain permission groups.6 The words are formatted via the heat values in a way so that the
background color’s opacity corresponds with the LIME impact score, i.e., a darker color means a higher
significance for the prediction. Subsequently, we have a look at the description words our system deems
significant, as well as how accurate the prediction is compared to the actual permission.

5All single values are averaged independently across the folds.
6We do not omit any sentences relevant for permissions.

70 6 Textual Permission Clarity

Snapchat
Actual vs. Inferred Permissions

Requested Prediction

Camera yes 90%
Ext. Storage yes 90%
Microphone yes 77%
Contacts yes 46%
Phone yes 39%
Location yes 8%
SMS yes 1%
Call Log no 1%
Calendar no 0%

Camera

Enjoy fast and fun mobile conversation! Snap a photo or
a video, add a caption, and send it to a friend. They’ll view
it, laugh, and then the Snap disappears from the screen –
unless they take a screenshot! You can also add a Snap
to your Story with one tap to share your day with all of
your friends. [...] if you’re both Here, simply press and
hold to share live video - and Chat face-to-face! Happy
Snapping! *** Please note: even though Snaps, Chats,
and Stories are deleted from our servers after they expire,
we cannot prevent recipient(s) from capturing and saving
the message by taking a screenshot or using an image
capture device.

Ext. Storage

Enjoy fast and fun mobile conversation! Snap a photo or
a video, add a caption, and send it to a friend. They’ll view
it, laugh, and then the Snap disappears from the screen –
unless they take a screenshot! You can also add a Snap
to your Story with one tap to share your day with all of
your friends . [...] if you’re both Here, simply press and
hold to share live video - and Chat face-to-face! Happy
Snapping! *** Please note: even though Snaps, Chats,
and Stories are deleted from our servers after they expire,
we cannot prevent recipient(s) from capturing and saving
the message by taking a screenshot or using an image
capture device.

Microphone

Enjoy fast and fun mobile conversation! Snap a photo or a
video , add a caption, and send it to a friend . They’ll view
it, laugh, and then the Snap disappears from the screen –
unless they take a screenshot! You can also add a Snap
to your Story with one tap to share your day with all of
your friends. [...] if you’re both Here, simply press and
hold to share live video - and Chat face-to-face! Happy
Snapping! *** Please note: even though Snaps, Chats,
and Stories are deleted from our servers after they expire,
we cannot prevent recipient(s) from capturing and saving
the message by taking a screenshot or using an image
capture device.

Figure 6.6: Snapchat: prediction for each permission group based on the description and LIME
heatmap overlays for selected permission groups.

Snapchat is a social messenger that allows sending pictures, so-called snaps, as well as sending text
messages, sharing one’s location and making calls. Figure 6.6 shows the permission prediction our system
makes, compared to the permissions an app actually requests, and heatmap overlays for three permission
groups. For the camera permission, the words snap, photo, video, and capturing have high impact. Similar
words are important for the external storage permission, which also relies on the words share. Sharing
files often necessitates access to the phone’s storage, e.g., for file pickers or saving larger files. The
prediction scores for these two permissions of 90% are thus legitimate. For the microphone permission, a
prediction score of 77% is given with a large influence from the words chat, video, and capture. This
value would likely be higher if words like voice or audio occurred in the text. In contrast, the SMS and
location permissions cannot be predicted based on the description. The absence of relevant words justifies
the stated predictions of 8% and 1%, respectively. The contacts and phone permissions are under 50%,
also due to insufficiently describing them. For this description text, the presence of significant words
for the camera, microphone, and external storage permissions can be confirmed, while the use of other
permissions is insufficiently mentioned.

AndroMedia is a video editor. Its description that we evaluate in Figure 6.7 contains information
relevant for this kind of multimedia apps. The necessity of the external storage permission is captured
by the words export, audio, files, and save. The app also requests the location, microphone, and phone
permissions, with no mentioning of their usage in the text whatsoever. There is also no apparent practical

Evaluation 71

AndroMedia
Actual vs. Inferred Permissions

Requested Prediction

Ext. Storage yes 90%
Phone yes 27% B

Microphone yes 17% B

Location yes 1% B

Contacts no 10%
Camera no 1%
Calendar no 0%
Call Log no 0%
SMS no 0%

B Prediction deviates strongly.

External Storage

AndroMedia Video Editor Video Editing App For Android Platform
AndroMedia is unique Video Editing App For Android Platform Designed
to be intuitive to use, AndroMedia is fully featured video editing program
for creating professional looking videos in minutes. Making movies
has never been easier. * Export movies in standard definition or HD
(320p 480p 720p) * Drag and drop video clips for easy video editing *
Trim and Combine both video and audio files in two different editor. *
Apply effects and transitions and more * Overlay title clips for captions
and movie credits * Apply Crop and Ken Burns effects to your video
tracks * Apply FadeIn and FadeOut effect to your audio tracks * Supports
MP4,MOV,JPG,PNG,MP3,WAV file formats * Save login credentials to
upload videos directly to YouTube from AndroMedia * Easy to use layout

Figure 6.7: AndroMedia: prediction for each permission group based on the description and LIME
heatmap overlay for the external storage permission group.

reason for video editing apps to require these privacy-critical permissions. Although the app might provide
the promoted features, the three non-mentioned permissions should alarm users. In case there is no
malicious intent, the developer is encouraged to either add information to the description or to remove that
functionality from the source code. This example shows that our textual permission clarity system can
identify critical discrepancies between described app purpose and permission usage.

Lieferheld is a German food delivery platform, with the app description given in Figure 6.8. Our
system successfully identifies the word location, in combination with current, to predict the location
permission at 90%. As these words occur next to each other and presumably exist multiple times in the
dataset, it is likely that a 1-by-2 or 1-by-3 filter of the CNN has learned this combination.7 The camera
permission is mainly triggered by camera, barcode, and QR (scanner). This relation shows that there
are many apps in our dataset that mention the words barcode and QR (codes), which tend to require the
camera permission even more likely than apps that solely contain the word camera in their description.
Although the external storage permission was predicted with 71%, there are no hints on its usage in the
text. We attribute this to the higher co-occurrence likelihood of external storage and camera. The contacts
permission’s usage was also not reflected in the description. Our analysis of the Lieferheld app thus also
shows sufficient expression for certain permissions, but a lack for others. These should be either addressed
by the app publishers or be of concern for the end-users.

Furthermore, we want to evaluate which words have a high impact for each permission group. Although
the dense layer of the CNN makes the predictions because of word combinations, frequently occurring
words can be telling for the network’s decision process. First, we gather all words across all descriptions.
Then, we sort them by how often they occur and how high their LIME impact sore is. We do this separately
for each permission group. Table 6.6 lists the most significant tokens per permission group. These words
have a comparably high impact for true positives (LIME score >70%) and occur multiple times. The word
lists demonstrate that the system captures significant words that make sense for a human reader. Certain
correlations are apparent, e.g., the word calendar for the calendar permission or map for the location
permission. Other words show correlation-based tendencies that are less evident:

• Weather apps tend to require the user’s location, which makes weather a trigger word for the location

7Due to the way the LIME algorithm is implemented, i.e., removing features one by one, we can only analyze the impact of
single words, not their co-occurrence.

72 6 Textual Permission Clarity

Lieferheld
Actual vs. Inferred Permissions

Requested Prediction

Location yes 90%
Camera yes 90%
Ext. Storage yes 71%
Contacts yes 14% B

Phone no 49%
Call Log no 1%
Microphone no 0%
Calendar no 0%
SMS no 0%

B Prediction deviates strongly.

Location

With Lieferheld you can conveniently
order food at over 7,000 food delivery
services throughout Germany – on your
Android smartphone! [...] The Liefer-
held Android app at a glance: - Fast
and convenient food ordering on your
smartphone - Over 7,000 food delivery
services throughout Germany - Plenty
of choice – pizza, pasta, sushi, burgers
and much more - Online payment by
request - Helpful restaurant reviews
Ordering food from a delivery service
via app has never been easier! [...]
Enter your delivery address or use your
current location and Lieferheld will
display a clear list of the food delivery
services in your area. Reviews from
other customers can help you to find
the right food delivery service. Build
your own menu in the twinkling of an
eye and Lieferheld forwards your order
to the food delivery service. [...] New
feature: When you see a Lieferheld
QR-voucher code somewhere, you can
simply scan it with the integrated QR
barcode scanner and save the voucher
to your account. The camera function
is solely used for the QR barcode scan-
ner! [...]

Camera

With Lieferheld you can conveniently
order food at over 7,000 food delivery
services throughout Germany – on your
Android smartphone! [...] The Liefer-
held Android app at a glance: - Fast
and convenient food ordering on your
smartphone - Over 7,000 food delivery
services throughout Germany - Plenty
of choice – pizza, pasta, sushi, burgers
and much more - Online payment by
request - Helpful restaurant reviews Or-
dering food from a delivery service
via app has never been easier! [...]
Enter your delivery address or use your
current location and Lieferheld will dis-
play a clear list of the food delivery
services in your area. Reviews from
other customers can help you to find
the right food delivery service. Build
your own menu in the twinkling of an
eye and Lieferheld forwards your order
to the food delivery service. [...] New
feature: When you see a Lieferheld
QR-voucher code somewhere, you can
simply scan it with the integrated QR
barcode scanner and save the voucher
to your account. The camera func-
tion is solely used for the QR barcode
scanner! [...]

Figure 6.8: Lieferheld: prediction for all permission groups based on the description and LIME
heatmap overlay for the location and camera permission groups.

permission.
• The contacts permission is often used for synchronizing the user’s address book with remote services,
and also for setting different ringtones for single contacts.

• The broadest spectrum of words can be found for the external storage permission. Words like
screenshot, photos, or especially files are reasonable correlations as writing or reading them mostly
requires that permission.

While these less-evident findings might be reasonably evident to developers and experienced users,
their link to a particular permission might not be so obvious for other users. Links like weather to the
location permission also show how the correlation-based learning effects. Our qualitative analyses show
that certain categories like camera or location learned clearer, more understandable links. Better and more
frequent textual reflections most likely cause this clarity. A similar clarity also counts for the calendar
and microphone permissions, which tend to have a narrower spectrum of use cases and a lower class
support, leading to more similar descriptions. The external storage permission lies on the other end of this
spectrum, as it the most frequently requested permission (support, Table 6.5) and commonly lacks good
reflections. Similar effects occur for the contacts, phone, and call log permissions, that partially rely on
the same trigger words. These overlaps show that description writers often do not differentiate sufficiently

Summary 73

when they describe these three permission groups.

Working with noisy samples that have not been manually labeled inevitably causes these effects. We
do think that our approach can be of great benefit in practice, but also want to point out that the system
should solely be used as assistance and not included in any decision pipeline without human monitoring.
In general, however, on the one hand, it can help to identify shortcomings in the reflection of permission
usage, and on the other hand, show common usages for permissions and their overlaps.

Contacts

contact(s)
call(s)
ringtone(s)
friends
sync

Location

gps
map(s)
near(est)
location
weather

Phone

call(s)
ringtones
voice
personalized
phone

Ext. Storage

photo(s)
files
sync
mp3
voicemail

Camera

qr
barcode
scanning
photo
flash(light)

Microphone

microphone
walkie / talkie
record
voice
calls

Call Log

contact(s)
call(s)
phone
sms

SMS

sms
text
message
call

Calendar

calendar

Table 6.6: Words per permission group that occur more than once and have high impact according to
their normalized LIME values. Some permission groups contain fewer than 5 words due
to their low class support in the test set.

6.5 Summary
In this chapter, we showed our approach to detect an app’s permissions based on its description. We
created a convolutional neural network model that finds relations between elements of the description text
and run-time permissions groups. Additionally, we included functionality to show the impact of certain
parts of the description on the prediction. The model was evaluated using a real-world dataset to verify the
reflection of permission usages and to find word influences per permission, both sample-based and on a
larger scale.

The approach consisted of three parts, preprocessing, neural network model, and application of a
model explanation framework. We processed the description texts by splitting them into tokens that
occur in the pre-trained word embeddings model. Therefore, we used a lookup procedure that repeatedly

74 6 Textual Permission Clarity

checked if tokens existed in the embeddings model, and if not, split them and repeated the lookup on
subtokens. Then, we used a convolutional neural network with 1-d filters. These filters captured the
meaning of words and short phrases in the text. The CNN, with its filters and dense layers, aimed to find
correlations between these word embeddings, representing the description, and the permission groups an
app actually requested. After training the network, we used the model explanation algorithm LIME to
obtain more detailed information on how the model makes its decisions. LIME’s application outputted
per-word relevance scores for each permission group per description sample. Altogether, we created a
convolutional architecture for text classification and explained which description parts lead to specific
permission probabilities.

Thereupon we evaluated this approach from several angles. First, we compared two different pre-trained
embedding models. We used GloVe and Word2vec corpora. Our findings showed that GloVe performs
better to some extent. Then, we had a look at the metric-based performance evaluation for the single
permission groups. Due to the noisy dataset we used, i.e., real-word descriptions that, to some extent, do
not contain sufficient permission-related phrases, we deemed this metric-based evaluation partially unfit.
To find out whether the network correlations were meaningful, we assessed which words caused particular
permission predictions. First, we demonstrated the application of our system based on single apps. On the
one hand, we use textual highlighting for visual identification of the relevant words. On the other hand, we
also used the permission prediction and text highlighting to assess insufficient descriptions better. We
showed based on particular apps that our system finds textual shortcomings. Second, we analyzed frequent
words that triggered the prediction of individual permissions. Due to the noisy dataset, however, we also
found non-intuitive word influences that lead to correct predictions without the words being meaningful
permission identifiers for humans. The results of our evaluation showed that, in general, our models found
meaningful relations that could help to improve or verify the corresponding descriptions.

Overall, we created a system that yields valuable information for enhancing app descriptions. We
demonstrated that a multi-label text classification CNN can be used to identify relevant description
parts and predict whether the text points towards a particular permission usage. Our approach identifies
incoherence between actual permissions of an app and its description, which can reveal permission abuse.
Hence, our textual permission clarity system can be utilized to help publishers and end-users to assess an
app’s impact on privacy and also improve app description quality. Our evaluation has shown that this
third contribution in regard to app description assessments is a vital part of an app publishing assistance
system.

Chapter 7

Conclusion

In this thesis, we presented an Android app publishing assistance system that aims to improve app
description quality in Google Play. In case an app is about to be published to the store, the assistance
system provides information to make the description more comprehensible and accurate for the end-user.
Our work consisted of three contributions. First, we used non-linear clustering and dimensionality
reduction to compare the app to be examined with others in regard to descriptions and permissions. Second,
we created a model that predicts description fragments for the app via its install package. Also, third, we
proposed another model that is capable of detecting absent permission explanations in a description text.
In what follows, we recapitulate our three approaches and their evaluation.

We began with app-relatedness in Chapter 4, Clustering based on Descriptions and Permissions. Data
clustering commonly refers to the assignment of labels to data points using a similarity measure. While
this distinction makes sense for certain aspects of smartphone apps, like the app’s category in Google Play,
we mainly wanted to work with measuring relative similarity. For an app that needed to be examined, we
aimed to find and visualize its neighbors concerning the description text and the permission set. Positioning
a new app in the already existing app universe was thus supposed to gain fundamental knowledge about
the app’s description quality and its permission usage.

For calculating app similarity and dissimilarity, our approach consisted of autoencoders and t-SNE. We
trained two undercomplete autoencoders, one for permissions and one for descriptions. The fine-grained
permission set was represented via one-hot encoding, the description texts via TF-IDF. After training, we
extracted the latent space encoding for each sample. Then, we applied t-SNE dimensionality reduction.
Eventually, this gave us two 2-d representations from these separate processes, one from the app’s
permissions, and one from the app’s descriptions. We could then use these 2-d spaces to make distance
calculations and visualize them.

Our evaluation of these non-linear transformations of permissions and descriptions showed several
things. First, we looked at descriptions in regard to similarity. A comparison with PCA showed that t-SNE
performed significantly better in positioning apps closer in regard to their category. Apart from their store
category assignments, manually assessing the neighboring apps also emphasized that t-SNE can more
accurately identify description relatedness. Second, we evaluated apps via their permission dissimilarity.
We looked at two app groups in the dataset, anti-malware apps and web browsers. Their low-dimensional
representations showed that the system captured the differences in permission sets, assigned individual
permissions different importance, and understood which permissions were related. Based on the non-linear
low-dimensional transformation of permissions, we could easily find groups of apps and spot outliers.
The identification of outliers showed to be a good starting point for further investigations. Based on our
evaluation, we concluded that our clustering approach was a valuable first angle for our app publishing
assistance system’s analyses.

75

76 7 Conclusion

Furthermore, Chapter 5 proposed a machine learning model for Description Inference. On account of
the rising number of apps being published, a concise impression about what the app does, i.e., its core
features, is an integral part of its pre-publication analysis. On the one side, smartphone apps are described
in a way to distinguish themselves from their competitors by emphasizing app-specific advantages, and
by adopting corporate wording. On the other side, apps, in general, share lots of features. A relatable,
concise expression of core app features generated by a machine learning model was thus what we found
necessary for app publishers to picture their app descriptions more accurately.

To infer such a concise description, we looked at three different information sources. We preprocessed
application packages to get neural network inputs for three separate models: Two types of static resources
in the app, namely string constants and XML resource identifiers, and the calls to the Android and Java
APIs. We represented all of these inputs occurrence-based via TF-IDF. The model output, i.e., the training
target, was a TF-IDF representation of the corresponding store description. The three different networks
we trained outputted three ranked lists of tokens that should describe a given app’s core features.

We then evaluated the three models with unseen samples to infer descriptions. Overall, we saw that
the networks depicted many apps accurately. The generalizing nature of neural networks often yielded
phrases that described core app functionality correctly but did not appear literally in the actual description
text. Depending on the actual app’s implementation, not all three models gave equally good results, with
resource identifiers giving the best performance. In general, however, our qualitative analysis showed that
for most apps, we could infer a valid result. Trained and evaluated on a broad spectrum of sample apps,
we demonstrated that our description inference system was capable of generating meaningful, concise
description phrases.

The third and last contribution of this thesis dealt with the explanation of permission-related functionality
in the description text. Our model for Textual Permission Clarity in Chapter 6 tried to find a sample-based
correlation between certain parts of the description text and the permission groups an app requests. As
part of the app publishing assistance system, its purpose was to give a score of how well a description
reflected these permissions. In case the score was low, meaning a certain permission could not be positively
predicted from the text, the publisher should reason its use better. As permissions are one of the core
concepts in Android to protect the user’s privacy, their accurate depiction an app’s store description is
pivotal.

On the basis of this idea, we built a multi-label convolutional neural network for text classification.
We preprocessed raw description texts so we could represent the embeddings that we matched from a
pre-trained word embedding model. The neural network, which had different 1-d filter sizes and several
hidden layers, gave a percentage for each of the nine dangerous Android permission groups. In addition to
the mere predictions, we employed a model explanation algorithm to find the words in the description that
caused the scores. Upon training, we could evaluate the system on unseen test apps.

Our evaluation showed that the system overall learned very reasonable relations between permission
description in human language and the request of particular permission groups. First, we analyzed the
description of several apps to gain knowledge of what words in the description caused a permission
likeliness. Many relations, like the words QR or barcode for the camera permission, were intuitive to
us. We also noticed that there is a gray area between what counted as obvious causality and what was a
correlation coming from low-quality samples. A more experienced user might understand the link between
barcode-scanning features and the camera, while others might not. Apart from showing the existence of
permission-related phrases, we also demonstrated that their absence could be irritating. A discrepancy
between requested permission and prediction could thus arise from anything between the publisher’s
negligence to intentional misinformation. We demonstrated that our textual permission clarity system
could identify these shortcomings.

In a nutshell, this thesis contained three contributions that aim to enhance the description quality of
apps in Google Play. Given an app is to be published, the solutions of this app publishing assistance

77

system focused on three critical areas: finding related apps, estimating the app’s core functionality, and
assessing the permission reflection in the description. Our evaluation of numerous real-world apps showed
that the practical application of our system could significantly enhance the portrayal of new Android apps
in Google Play. Its application could provide end-users with description texts that have higher feature
accuracy, better text conciseness, and clearer information about permissions.

78 7 Conclusion

Appendix A

Cross–Platform App Detection

Framework Name Directory

Adobe AIR com/adobe/air
air/com

Apache Cordova org/apache/cordova
Xamarin mono/
React Native com/facebook/react
Adobe Phonegap com/phonegap
Appcelerator org/appcelerator

ti/modules
org/appcelerator

Adobe Flash com/adobe/flashruntime
Kawa gnu/kawa

gnu/q2
Unity com/unity3d
AppMK com/appmk
Apache Thrift org/apache/thrift
OpenTK opentk/platform

opentk_1_0/platform
App.Yet com/appyet
AndEngine org/andengine
Conduit com/conduit/app/core
AppPlant / Cordova de/appplant/cordova
UbiKod com/ubikod
AppMakr com/appmakr
AndEngine org/anddev/andengine
Mozilla JS Library org/mozilla/javascript

Table A.1: Detection of cross–platform apps by checking the source code tree layout against the tree
layouts of known frameworks.

79

80 A Cross–Platform App Detection

Bibliography

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,
M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. A. Tucker,
V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng, TensorFlow: A System for Large-Scale
Machine Learning, Symposium on Operating Systems Design and Implementation – OSDI 2016,
USENIX Association, 2016, pages 265–283 (cited on page 18).

[2] A. A. Al-Subaihin, F. Sarro, S. Black, L. Capra, M. Harman, Y. Jia, and Y. Zhang, Clustering
Mobile Apps Based on Mined Textual Features, Proceedings of the 10th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, ESEM 2016, Ciudad Real,
Spain, September 8-9, 2016, ACM, 2016, 38:1–38:10, ISBN 978-1-4503-4427-2 (cited on pages 3, 25).

[3] M. Allamanis, E. T. Barr, C. Bird, and C. A. Sutton, Suggesting accurate method and class names,
Foundations of Software Engineering – FSE 2015, ACM, 2015, pages 38–49, ISBN 978-1-4503-3675-8
(cited on page 3).

[4] U. Alon, S. Brody, O. Levy, and E. Yahav, code2seq: Generating Sequences from Structured
Representations of Code, 7th International Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019, OpenReview.net, 2019 (cited on page 3).

[5] A. Aminordin, M. F. Abdollah, R. Yusof, and R. Ahmad, Preliminary findings: Revising developer
guideline using word frequency for identifying apps miscategorization, Proceedings of the Second
International Conference on the Future of ASEAN (ICoFA) 2017–Volume 2, Springer, 2018,
pages 123–131 (cited on page 25).

[6] P. Andriotis, M. A. Sasse, and G. Stringhini, Permissions snapshots: Assessing users’ adaptation to
the Android runtime permission model, Workshop on Information Forensics and Security – WIFS
2016, IEEE, 2016, pages 1–6, ISBN 978-1-5090-1138-4 (cited on page 11).

[7] D. Arp,M. Spreitzenbarth,M.Hubner, H. Gascon, andK. Rieck,DREBIN: Effective and Explainable
Detection of Android Malware in Your Pocket, Network and Distributed System Security Symposium
– NDSS 2014, The Internet Society, 2014 (cited on page 1).

[8] P. Barros, R. Just, S. Millstein, P. Vines, W. Dietl, M. d’Amorim, and M. D. Ernst, Static Analysis
of Implicit Control Flow: Resolving Java Reflection and Android Intents (T), 30th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2015, Lincoln, NE, USA,
November 9-13, 2015, IEEE Computer Society, 2015, pages 669–679, ISBN 978-1-5090-0025-8 (cited
on page 12).

[9] Y.Bengio, R.Ducharme, and P.Vincent,ANeural Probabilistic LanguageModel, Neural Information
Processing Systems – NIPS 2000, MIT Press, 2000, pages 932–938 (cited on page 15).

[10] J. Bergstra and Y. Bengio, Random Search for Hyper-Parameter Optimization, Journal of Machine
Learning Research, volume 13, pages 281–305, 2012 (cited on page 17).

81

http://amazon.co.uk/dp/978-1-4503-4427-2/
http://amazon.co.uk/dp/978-1-4503-3675-8/
http://amazon.co.uk/dp/978-1-5090-1138-4/
http://amazon.co.uk/dp/978-1-5090-0025-8/

82 Bibliography

[11] T. Brants, Natural Language Processing in Information Retrieval, Computational Linguistics in the
Netherlands 2003, December 19, Centre for Dutch Language and Speech, University of Antwerp,
series Antwerp papers in linguistics, volume 111, University of Antwerp, 2003 (cited on page 14).

[12] Y. Cao, Y. Fratantonio, A. Bianchi, M. Egele, C. Kruegel, G. Vigna, and Y. Chen, EdgeMiner:
Automatically Detecting Implicit Control Flow Transitions through the Android Framework, Network
and Distributed System Security Symposium – NDSS 2015, The Internet Society, 2015 (cited on
pages 12, 47).

[13] K. Chen, P. Wang, Y. Lee, X. Wang, N. Zhang, H. Huang, W. Zou, and P. Liu, Finding Unknown
Malice in 10 Seconds: Mass Vetting for New Threats at the Google-Play Scale, USENIX Security
Symposium 2015, USENIX Association, 2015, pages 659–674 (cited on page 1).

[14] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. P. Kuksa, Natural Language
Processing (Almost) from Scratch, Journal of Machine Learning Research, volume 12, pages 2493–
2537, 2011 (cited on page 16).

[15] Y. Feng, L. Chen, A. Zheng, C. Gao, and Z. Zheng, Ac-net: Assessing the consistency of description
and permission in android apps, IEEE Access, volume 7, pages 57 829–57 842, 2019 (cited on
pages 4, 26).

[16] B. Gelman, B. Hoyle, J. Moore, J. Saxe, and D. Slater, A Language-Agnostic Model for Semantic
Source Code Labeling, CoRR, volume abs/1906.01032, 2019 (cited on page 3).

[17] H. Gonzalez, A. A. Kadir, N. Stakhanova, A. J. Alzahrani, and A. A. Ghorbani, Exploring reverse
engineering symptoms in Android apps, European Workshop on System Security – EUROSEC
2015, ACM, 2015, 7:1–7:7, ISBN 978-1-4503-3479-2 (cited on page 9).

[18] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http://www.
deeplearningbook.org (cited on pages 17–18, 20, 22–23, 30).

[19] M. C. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, RiskRanker: scalable and accurate zero-day
android malware detection, Mobile Systems – MobiSys 2012, ACM, 2012, pages 281–294, ISBN
978-1-4503-1301-8 (cited on page 1).

[20] G. E. Hinton and S. T. Roweis, Stochastic Neighbor Embedding, Neural Information Processing
Systems – NIPS 2002, MIT Press, 2002, pages 833–840, ISBN 0-262-02550-7 (cited on page 21).

[21] K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural Networks,
volume 4, pages 251–257, 1991 (cited on page 22).

[22] A. G. Jivani et al., A comparative study of stemming algorithms, Int. J. Comp. Tech. Appl, volume 2,
number 6, pages 1930–1938, 2011 (cited on page 13).

[23] K. S. Jones, A statistical interpretation of term specificity and its application in retrieval, Journal of
Documentation, volume 60, pages 493–502, 2004 (cited on page 14).

[24] H. J. Kelley, Gradient theory of optimal flight paths, Ars Journal, volume 30, number 10, pages 947–
954, 1960 (cited on page 17).

[25] Y. Kim, Convolutional Neural Networks for Sentence Classification, Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL, ACL, 2014,
pages 1746–1751, ISBN 978-1-937284-96-1 (cited on pages 19, 63).

[26] E. Kowalczyk, A. M. Memon, and M. B. Cohen, Piecing together app behavior from multiple
artifacts: A case study, 26th IEEE International Symposium on Software Reliability Engineering,

http://amazon.co.uk/dp/978-1-4503-3479-2/
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://amazon.co.uk/dp/978-1-4503-1301-8/
http://amazon.co.uk/dp/0-262-02550-7/
http://amazon.co.uk/dp/978-1-937284-96-1/

83

ISSRE 2015, Gaithersbury, MD, USA, November 2-5, 2015, IEEE Computer Society, 2015,
pages 438–449, ISBN 978-1-5090-0406-5 (cited on page 26).

[27] N. Kriegeskorte, Deep neural networks: A new framework for modeling biological vision and brain
information processing, Annual Review of Vision Science, volume 1, number 1, pages 417–446,
2015. doi:10.1146/annurev-vision-082114-035447 (cited on page 19).

[28] K. Kuznetsov, V. Avdiienko, A. Gorla, and A. Zeller, Checking app user interfaces against app de-
scriptions, Proceedings of the InternationalWorkshop onAppMarketAnalytics,WAMA@SIGSOFT
FSE, Seattle, WA, USA, November 14, 2016, ACM, 2016, pages 1–7, ISBN 978-1-4503-4398-5 (cited
on pages 3, 26).

[29] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E. Hubbard, and L. D. Jackel,
Backpropagation Applied to Handwritten Zip Code Recognition, Neural Computation, volume 1,
pages 541–551, 1989 (cited on page 18).

[30] B. Li, Y. Zhang, J. Li, W. Yang, and D. Gu, AppSpear: Automating the hidden-code extraction
and reassembling of packed android malware, Journal of Systems and Software, volume 140,
pages 3–16, 2018 (cited on page 9).

[31] Q. Li and X. Li, Android Malware Detection Based on Static Analysis of Characteristic Tree, 2015
International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery,
CyberC 2015, Xi’an, China, September 17-19, 2015, IEEE Computer Society, 2015, pages 84–91,
ISBN 978-1-4673-9200-6 (cited on page 9).

[32] Y. Li, J. Jang, X. Hu, and X. Ou, Android Malware Clustering Through Malicious Payload Mining,
Recent Advances in Intrusion Detection – RAID 2017, series LNCS, volume 10453, Springer, 2017,
pages 192–214, ISBN 978-3-319-66331-9 (cited on page 3).

[33] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio, V. van der Veen, and C.
Platzer, ANDRUBIS - 1, 000, 000 Apps Later: A View on Current Android Malware Behaviors,
Third International Workshop on Building Analysis Datasets and Gathering Experience Returns
for Security, BADGERS@ESORICS 2014, Wroclaw, Poland, September 11, 2014, IEEE, 2014,
pages 3–17, ISBN 978-1-4799-8308-7 (cited on page 3).

[34] Z. C. Lipton, The Mythos of Model Interpretability, CoRR, volume abs/1606.03490, 2016 (cited on
page 24).

[35] X. Liu, Y. Leng, W. Yang, W. Wang, C. Zhai, and T. Xie, A Large-Scale Empirical Study on
Android Runtime-Permission Rationale Messages, 2018 IEEE Symposium on Visual Languages and
Human-Centric Computing, VL/HCC 2018, Lisbon, Portugal, October 1-4, 2018, IEEE Computer
Society, 2018, pages 137–146, ISBN 978-1-5386-4235-1 (cited on page 11).

[36] D. Low, Protecting java code via code obfuscation, Crossroads, volume 4, number 3, pages 21–23,
1998 (cited on page 10).

[37] D. L. B. Lulu and T. Kuflik, Functionality-based clustering using short textual description: helping
users to find apps installed on their mobile device, 18th International Conference on Intelligent User
Interfaces, IUI 2013, Santa Monica, CA, USA, March 19-22, 2013, ACM, 2013, pages 297–306,
ISBN 978-1-4503-1965-2 (cited on page 3).

[38] S. M. Lundberg and S. Lee, A Unified Approach to Interpreting Model Predictions, Neural
Information Processing Systems – NIPS 2017, 2017, pages 4768–4777 (cited on page 24).

[39] L. v. d. Maaten and G. Hinton, Visualizing data using t-sne, Journal of machine learning research,
volume 9, number Nov, pages 2579–2605, 2008 (cited on page 20).

http://amazon.co.uk/dp/978-1-5090-0406-5/
https://doi.org/10.1146/annurev-vision-082114-035447
http://amazon.co.uk/dp/978-1-4503-4398-5/
http://amazon.co.uk/dp/978-1-4673-9200-6/
http://amazon.co.uk/dp/978-3-319-66331-9/
http://amazon.co.uk/dp/978-1-4799-8308-7/
http://amazon.co.uk/dp/978-1-5386-4235-1/
http://amazon.co.uk/dp/978-1-4503-1965-2/

84 Bibliography

[40] V. Markovtsev and E. Kant, Topic modeling of public repositories at scale using names in source
code, CoRR, volume abs/1704.00135, 2017 (cited on page 3).

[41] R. Mayrhofer, J. V. Stoep, C. Brubaker, and N. Kralevich, The Android Platform Security Model,
CoRR, volume abs/1904.05572, 2019 (cited on page 10).

[42] O. Melamud, D. McClosky, S. Patwardhan, and M. Bansal, The Role of Context Types and
Dimensionality in Learning Word Embeddings, NAACL HLT 2016, The 2016 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, San Diego California, USA, June 12-17, 2016, The Association for Computational
Linguistics, 2016, pages 1030–1040, ISBN 978-1-941643-91-4 (cited on page 17).

[43] G. Meng, Y. Xue, J. K. Siow, T. Su, A. Narayanan, and Y. Liu, AndroVault: Constructing Knowledge
Graph from Millions of Android Apps for Automated Analysis, CoRR, volume abs/1711.07451,
2017 (cited on page 26).

[44] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, Distributed Representations of
Words and Phrases and their Compositionality, Neural Information Processing Systems – NIPS
2013, 2013, pages 3111–3119 (cited on page 15).

[45] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, WHYPER: Towards Automating Risk
Assessment of Mobile Applications, USENIX Security Symposium 2013, USENIX Association,
2013, pages 527–542, ISBN 978-1-931971-03-4 (cited on pages 4, 26).

[46] J. Pennington, R. Socher, and C. D. Manning, Glove: Global Vectors for Word Representation,
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group
of the ACL, ACL, 2014, pages 1532–1543, ISBN 978-1-937284-96-1 (cited on page 16).

[47] M. F. Porter, An algorithm for suffix stripping, Program, volume 14, pages 130–137, 1980 (cited on
page 29).

[48] Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group
of the ACL, ACL, ISBN 978-1-937284-96-1.

[49] Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen, AutoCog: Measuring the Description-
to-permission Fidelity in Android Applications, Conference on Computer and Communications
Security – CCS 2014, ACM, 2014, pages 1354–1365, ISBN 978-1-4503-2957-6 (cited on pages 4, 25).

[50] J. Ramos et al.,Using tf-idf to determine word relevance in document queries, Proceedings of the first
instructional conference on machine learning, Piscataway, NJ, volume 242, 2003, pages 133–142
(cited on page 14).

[51] M. T. Ribeiro, S. Singh, and C. Guestrin, Model-Agnostic Interpretability of Machine Learning,
CoRR, volume abs/1606.05386, 2016 (cited on page 24).

[52] F. Rosenblatt, The perceptron: A probabilistic model for information storage and organization in
the brain. Psychological review, volume 65, number 6, page 386, 1958 (cited on page 17).

[53] B. G. Ryder, Constructing the Call Graph of a Program, IEEE Trans. Software Eng., volume 5,
pages 216–226, 1979 (cited on page 12).

[54] A. A. Samra and O. A. Ghanem, Analysis of Clustering Technique in Android Malware Detection,
Seventh International Conference on Innovative Mobile and Internet Services in Ubiquitous
Computing, IMIS 2013, Taichung, Taiwan, July 3-5, 2013, IEEEComputer Society, 2013, pages 729–
733, ISBN 978-0-7695-4974-3 (cited on page 3).

http://amazon.co.uk/dp/978-1-941643-91-4/
http://amazon.co.uk/dp/978-1-931971-03-4/
http://amazon.co.uk/dp/978-1-937284-96-1/
http://amazon.co.uk/dp/978-1-937284-96-1/
http://amazon.co.uk/dp/978-1-4503-2957-6/
http://amazon.co.uk/dp/978-0-7695-4974-3/

85

[55] C. Song, F. Liu, Y. Huang, L. Wang, and T. Tan, Auto-encoder Based Data Clustering, Progress in
Pattern Recognition, Image Analysis, Computer Vision, and Applications - 18th Iberoamerican
Congress, CIARP 2013, Havana, Cuba, November 20-23, 2013, Proceedings, Part I, series LNCS,
volume 8258, Springer, 2013, pages 117–124, ISBN 978-3-642-41821-1 (cited on page 20).

[56] T. Takahashi and T. Ban, Android application analysis using machine learning techniques, in AI in
Cybersecurity, Springer, 2019, pages 181–205 (cited on page 26).

[57] B. Trstenjak, S. Mikac, and D. Donko, Knn with tf-idf based framework for text categorization,
Procedia Engineering, volume 69, pages 1356–1364, 2014, 24th DAAAM International Symposium
on Intelligent Manufacturing and Automation, 2013, ISSN 1877-7058. doi:https://doi.org/10.1016/j.
proeng.2014.03.129. http://www.sciencedirect.com/science/article/pii/S1877705814003750 (cited
on page 15).

[58] S. Vakulenko, O. Müller, and J. vom Brocke, Enriching iTunes App Store Categories via Topic
Modeling, Proceedings of the International Conference on Information Systems - Building a Better
World through Information Systems, ICIS 2014, Auckland, New Zealand, December 14-17, 2014,
Association for Information Systems, 2014, ISBN 978-0-615-15788-7 (cited on page 3).

[59] M. L. Vásquez, A. Holtzhauer, and D. Poshyvanyk, On automatically detecting similar Android
apps, International Conference on Program Comprehension – ICPC 2016, IEEE Computer Society,
2016, pages 1–10, ISBN 978-1-5090-1428-6 (cited on page 25).

[60] N. Viennot, E. Garcia, and J. Nieh, A measurement study of google play, Measurement andModeling
of Computer Systems – SIGMETRICS 2014, ACM, 2014, pages 221–233, ISBN 978-1-4503-2789-3
(cited on page 31).

[61] S. Vijayarani, M. J. Ilamathi, and M. Nithya, Preprocessing techniques for text mining-an overview,
International Journal of Computer Science & Communication Networks, volume 5, number 1,
pages 7–16, 2015 (cited on page 13).

[62] J. J. Webster and C. Kit, Tokenization As The Initial Phase In NLP, 14th International Conference on
Computational Linguistics, COLING 1992, Nantes, France, August 23-28, 1992, 1992, pages 1106–
1110 (cited on page 13).

[63] M. Weiser, Program Slicing, IEEE Trans. Software Eng., volume 10, pages 352–357, 1984 (cited
on page 12).

[64] W. Yin, K. Kann, M. Yu, and H. Schütze,Comparative Study of CNN and RNN for Natural Language
Processing, CoRR, volume abs/1702.01923, 2017 (cited on page 19).

http://amazon.co.uk/dp/978-3-642-41821-1/
http://worldcatlibraries.org/wcpa/issn/1877-7058
https://doi.org/https://doi.org/10.1016/j.proeng.2014.03.129
https://doi.org/https://doi.org/10.1016/j.proeng.2014.03.129
http://www.sciencedirect.com/science/article/pii/S1877705814003750
http://amazon.co.uk/dp/978-0-615-15788-7/
http://amazon.co.uk/dp/978-1-5090-1428-6/
http://amazon.co.uk/dp/978-1-4503-2789-3/

	Contents
	Acknowledgements
	1 Introduction
	2 Background
	2.1 Android
	2.1.1 Application Packages
	2.1.2 Resources
	2.1.3 Entry Points
	2.1.4 Build Process
	2.1.5 Dalvik Bytecode
	2.1.6 Code Obfuscation
	2.1.7 User Permission System

	2.2 Code Slicing
	2.2.1 Implicit Control Flows

	2.3 Natural Language Processing
	2.3.1 Text Preprocessing
	2.3.2 Term Frequency–Inverse Document Frequency
	2.3.3 Word Embeddings

	2.4 Neural Networks
	2.4.1 Training
	2.4.2 Convolutional Neural Networks
	2.4.3 Undercomplete Autoencoders
	2.4.4 t-SNE Dimensionality Reduction
	2.4.5 Performance Evaluation
	2.4.6 Model Explanation

	2.5 Summary

	3 Related Work
	4 Clustering based on Descriptions and Permissions
	4.1 Motivation
	4.2 Approach
	4.2.1 Permission Autoencoder
	4.2.2 Description Autoencoder
	4.2.3 Training

	4.3 Dataset
	4.4 Evaluation
	4.4.1 Description Similarity
	4.4.2 Permission Dissimilarity

	4.5 Summary

	5 Description Inference
	5.1 Motivation
	5.2 Approach
	5.2.1 App Behavior Modeling
	5.2.2 System Overview
	5.2.3 Resource Identifiers and String Constants
	5.2.4 Source Code Preprocessing
	5.2.5 Description Preprocessing
	5.2.6 Network Model
	5.2.7 Training
	5.2.8 Prediction Explanation

	5.3 Dataset
	5.4 Evaluation
	5.5 Summary

	6 Textual Permission Clarity
	6.1 Motivation
	6.2 Approach
	6.2.1 Preprocessing
	6.2.2 Network Model
	6.2.3 Training
	6.2.4 Prediction Explanation

	6.3 Dataset
	6.4 Evaluation
	6.5 Summary

	7 Conclusion
	A Cross–Platform App Detection
	Bibliography

		2019-09-18T14:57:28+0000
	Stefan Gruber

