
Marin Krmpotic, BSc

Implementation and Evaluation of
Low-Latency Key-Exchange Protocols

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Computer Science

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl.-Ing. Dr.techn. Christian Rechberger

Dipl.-Ing. Dr.techn. David Derler, BSc
Dipl.-Ing. Dr.techn. Sebastian Ramacher, BSc BSc MSc

Institute of Applied Information Processing and Communications

Faculty of Computer Science and Biomedical Engineering

Graz, September 2019



Affidavit

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly indicated
all material which has been quoted either literally or by content from the sources
used. The text document uploaded to tugrazonline is identical to the present
master’s thesis.

Date Signature

ii



Acknowledgments

Throughout the writing of this thesis I have received a great deal of support
and assistance. I would first like to express my gratitude to my thesis advisor,
Christian Rechberger, for the support and opportunity to work on a project of
such nature.

I want to thank my two co-advisors for their wise counsel during the many
different phases of this thesis. David Derler, thank you for the willing explana-
tions of the many schemes, and the support during the Java implementation.
An equal thank you to Sebastian Ramacher for the invaluable help with the C
implementation and guidance in writing this thesis. Sebastian helped me cross
the finish line even when he was no longer at TU Graz, this type of kindness
did not go unnoticed.

In addition, I wish to thank my colleagues at BearingPoint, for consistently
understanding that my studies are of high priority and for never trying to
convince me otherwise.

Finally, I wish to express my gratitude to those closest to me. I am truly grateful
to Lea for pushing me forward even when it felt like the end was nowhere near,
and for all the fun we have had in Graz. The biggest THANK YOU goes to my
family, especially my parents, for the support throughout my studies. Thank
you for never questioning my decision to move to Graz, and also for sending
me hundreds of emails asking me about the progress of my thesis. If the theory
is correct, and Google’s AI is reading all of our emails, I must certainly be
recognized as some sort of a master of their universe.

iii



Abstract

Forward secrecy is an important property of cryptographic primitives such
as encryption schemes or key-exchange protocols. The new TLS 1.3 protocol
mandates forward secrecy for all TLS sessions. In addition, it also defines zero
round-trip time (0-RTT) handshakes. Yet, forward secrecy can not not be
achieved for all data exchanged in this mode.

Derler, Jager, Slamanig, and Striecks (Eurocrypt’18) introduced the concept of
Bloom Filter Encryption, yielding the first fully forward secret, 0-RTT protocol
with replay protection, being efficient enough to be used in practice.

In this master’s thesis an implementation and in-depth evaluation of this
primitive is performed in practical settings. We collected and analysed results of
test runs with different parameters to propose an efficient selection of parameters.
As a result, we conclude that the preliminary implementation of Bloom Filter
Encryption is already efficient enough to be deployed in practice, albeit with
some performance trade-offs.

Bloom Filter Encryption is furthermore implemented as a TLS 1.3 extension
providing a fully forward secret 0-RTT mode. We present the ways in which the
protocol had to be adapted to minimally interfere with existing functionalities.
We evaluate and compare the performance of this new TLS handshake protocol
with the existing one. A slow down in TLS handshake package processing is
recorded, but we argue that such implementation could still be effective in low
bandwidth environments.
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1 Introduction

Today’s world is unimaginable without global connectivity. Almost any activity,
from web browsing to storing data in the cloud or connecting to a company’s
internal network, is based on connections running through the public Internet.
With the rapid popularization of the Internet and its applications like online
banking, online shopping or the use of eGovernment services, the amount of
sensitive data transferred using it is increasing. For example, in 2019 around 1.5
billion users access Facebook daily [Fac19b], and almost 100 billion messages are
sent daily across all Facebook apps [Fac19a]. This private correspondence ought
to be protected from eavesdroppers. Concerns about securing online payment
transactions were present much before privacy became a mainstream topic. This
market is still rapidly growing: 9.9 billion transactions were made via PayPal
in 2018 [Pay19] totalling $578 B in volume. This is 27% more transactions
than the year before. Online transactions have close connections with online
sales. To put things into perspective, in just two days of Prime Day sale in
2019, Amazon sold more than 175 million items [Ama19]. These orders contain
sensitive information such as credit card data, addresses, contact information,
etc.

The Transport Layer Security (TLS) protocol ensures the secrecy of our com-
munication during transport. In September 2015 around 46% of all connections
made with the Chrome browser were secured with TLS, with more than 84%
of connections being secured by June 2019 [Goo19]. This upward trend shows
general acceptance and the need for encryption on the Internet. Chrome even
went one step further and started marking all websites without TLS as insecure,
and Firefox followed shortly thereafter. The latest version of this protocol,
TLS 1.3, was published in August 2018 as a proposed standard.

Forward secrecy [Gün90] is an important property of cryptographic primitives
such as encryption schemes or key-exchange protocols. In forward secret schemes,
if a secret key used for decryption leaks, this does not compromise ciphertexts
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1 Introduction

from the past. This means the attacker that was eavesdropping on, and collecting,
encrypted messages from some private conversation, will not be able to decrypt
those messages even after acquiring the key later in time. The new TLS 1.3
protocol mandates forward secrecy for all TLS sessions. In addition, it also defines
less exchanges between the client and the server during the TLS handshake, a
process in place before the secure communication can be made. It directly allows
the sending of encrypted application data within the first message from the
client to the server, dramatically speeding it up. This is called a zero round-trip
time (0-RTT) mode. Yet, forward secrecy can not not be achieved for all data
exchanged in this mode.

With more companies moving their business online each day, network latency
is a hot topic due to its direct influence on revenue. In a study by TABB
Group [Rep08], the author estimates that if a broker’s electronic platform is 5
milliseconds behind the competitor’s, it could result with a 1% loss in revenue
per millisecond. That is around 4 million dollars revenue loss per millisecond.
In addition, the study claims latency of up to 10 milliseconds could result in a
10% revenue loss. On the same note, in 2010, the Mozilla Foundation [Cut10]
reported a 15.4% increase in Firefox download conversions after they had
improved page loading time by 2.2 seconds. This meant more than 10 million
additional downloads of their browser per year.

Different factors influence load times. Work is usually done to optimize and
compress the code, with often a Content Delivery Network (CDN) deployed to
cache the content and decrease the latency caused by geographical distance.
Still, before any data transfer is possible, a TLS handshake has to be performed
in order for the data to remain secure. The solution to this problem would be
the 0-RTT TLS mode, but maintaining full forward secrecy in this mode was
deemed impossible.

Recently, Günther, Hale, Jager, and Lauer [GHJ+17] made a huge step forward
and presented the first construction of a key-exchange protocol achieving full
forward secrecy, 0-RTT handshakes and replay protection at the same time.
Unfortunately, their construction is by far not efficient enough to be used in
practice. To this end, Derler, Jager, Slamanig, and Striecks [DJS+18] intro-
duced the concept of Bloom Filter Encryption (BFE), yielding the first such
protocol that was efficient enough to be used in practice. This paper was later
extended with efficiency improvements by Gellert [DGJ+18]. In their work,
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1 Introduction

many decryption keys are precomputed and mapping between ciphertext and
decryption keys is done with a probabilistic Bloom filter [Blo70] data structure.
After each decryption, all keys capable of decrypting the given ciphertext are
destroyed. While the work on this thesis was ongoing, Aviram, Gellert, and
Jager [AGJ19] presented their construction of the forward secure 0-RTT pro-
tocol. Their construction uses a special case of a constrained pseudorandom
function (PRF) [BW13] called puncturable PRF, that enables the derivation
of keys for a subset of inputs. In [DGJ+18], with each decryption the key is
updated with a smaller subset making it incapable of decrypting the same
message again. Looking from a higher level, all three mentioned protocols are
based on similar ideas of providing forward secrecy by updating the secret key
with each decryption.

1.1 Contribution

There are two types of Bloom Filter Encryption presented in [DJS+18], known
as Basic BFE and Time-Based BFE. In this thesis we present implementations
of both primitives, each in Java and C. We evaluate the implementations
by measuring performance with different sets of parameters. The selection of
parameters highly depends on intended use-case and in general comes as a
trade-off between lower memory consumption and longer-lasting secret keys.
We present the performance results in detail to demonstrate this correlation.

To demonstrate practical usage of BFE, we created a new TLS 1.3 extension
the GnuTLS library, providing a fully forward secret 0-RTT mode. Here, we
measure performance of this new TLS handshake protocol and we evaluate and
compare it with the full TLS handshake. We discuss why such implementation
incorporates nicely into TLS 1.3 while not being easily implementable with
previous versions of TLS.

To support further development and the reproducibility of results, all code
created as part of this research is released to the public domain.
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1 Introduction

1.2 Outline

Chapter 2 discusses the preliminaries with an overview of basic secure commu-
nication concepts. In Chapter 3, the encryption schemes used for construction
of BFE are described in detail.

The implementations of Basic BFE and Time-Based BFE with justifications for
the specific design decisions are presented in Chapter 4. Separate sections are
dedicated to the C and Java implementations of the schemes. Expected results
of performance tests and their outcomes are presented as a part of the same
chapter.

The implementation of the bfe key TLS 1.3 extension is presented in Chapter 5.
There, the performance measurements are elaborated in detail and compared
with the full TLS handshake.

4



2 Preliminaries

This chapter provides an overview of secure communication concepts used today.
We start by discussing the problems such communication faces and continue by
describing protocols used to mitigate them. Furthermore, in order to support
easier comprehension of cryptographic primitives used in the implementation
part of the thesis, we describe the probabilistic data structure Bloom filter.

2.1 Key Exchange

Key exchange protocols are integral parts of today’s communication. With
such a protocol, two parties are able to agree on a set of keys used for secure
transmission of messages over insecure channels. As the key exchange takes place
before the real application data can be sent, it naturally adds a performance
overhead to connection itself. The time it takes can be unambiguously expressed
in the number of roundtrips between the two parties before a secure connection
is achieved. Protocols currently used in practice make several roundtrips prior
to the secure connection. Sending application data with the very first message
sent to the other party would yield the lowest transmission latency. This type of
protocol is called a zero round-trip time (0-RTT) protocol. Some novel protocols
offer 0-RTT but their real-life applicability is often unproven, or they have
weaker security properties.

0-RTT protocols are especially vulnerable when it comes to replay attacks and
forward secrecy. Replay attacks are trivial to perform: an attacker does not
need any secret information from any of the involved parties. With access to the
communication channel, an attacker takes a data package while in transit and
then resends the same package again to the receiving party. If not protected, a
receiving party will interpret the message again like it was legitimately sent. If
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2 Preliminaries

the protocol does not mitigate replay attack threats, they are still manageable
at the application layer.

In case the decryption key leaks at some moment, encrypted messages sent
previously are at risk of being decrypted. A basic solution to this problem is
updating the public and secret key before each message, adding latency to the
communication. In more advanced forward-secure schemes [Gün90], the public
key remains unchanged. Still, if the key leaks at time t, it can’t be used to
decrypt messages sent at t−1. This is usually achieved by periodically updating
the secret key at the receiver’s end, and since it does not affect the public key
there is no need for key renegotiation.

The first such non-trivial construction of forward-secure public key encryption
was presented in [CHK03]. Their construction is based on Hierarchical Identity
Based Encryption (HIBE) [GS02] where each node is a secret key of one time
interval, with messages being encrypted for the specific time interval using a
single public key. Except for communication protocols, forward secrecy is an
important property of other cryptographic schemes as well. In digital signatures,
forward secrecy can insure signatures pertaining to the past can not be forged
in the case of current key leakage [BM99].

2.2 Transport Layer Security Protocol

The main purpose of the Transport Layer Security (TLS) protocol is ensuring
private data exchange between two parties. It does so by using symmetric
encryption protocols with different keys being used for each connection. In sym-
metric encryption schemes, the same key is used for encryption and decryption.
To retain data confidentiality, the key must not be transferred unprotected via
insecure channels. In TLS this is handled by a handshake protocol established
by asymmetric key exchange prior to exchange of application data.

Being a proposed standard for communication between independently developed
applications, TLS aims to achieve interoperability. It eliminates the need for
potentially flawed proprietary protocols by facilitating secure data flow without
having to know implementation details of the other system. Moreover, it is
application layer independent so higher level protocols can build on top of it.

6



2 Preliminaries

2.2.1 Version 1.2

As version 1.3 of the protocol was finalized only recently in 2018, TLS 1.2 [RD08]
is still extensively used today. It was presented in 2008 as a successor of
TLS 1.1.

When initiating communication, a client and a server have to agree on a protocol
version and cryptographic algorithms to be used. Both sides can then derive
shared secrets. The protocol can additionally require authentication of a client
and/or a server, which is enforced by digital certificates.

The client initiates the connection by sending a ClientHello message to the
server. This has to be the first message sent from a client to a server, and can
also be sent as a response to a HelloRequest coming from server. ClientHello
consists of a session identifier, the supported TLS version, random value, cipher
suite list, compression methods, and optional extensions. If set, the session
identifier implies the request for a session resumption. The cipher suite list sent
is a list of all cryptographic options client supports in the order of preference.
The server decides on a specific one from the list to be used, or fails the whole
connection if none of the provided ones is acceptable. Extensions are used for
additional functionality that may be supported by the server on top of the
default protocol. After sending the ClientHello message to the server, the
client waits for a server to respond with the ServerHello message.

The server will dispatch a ServerHello message if there was an acceptable cipher
suite in the received ClientHello. ServerHello consists of a TLS version,
random value, session identifier, selected cipher suite, selected compression
method, and extensions. If a session identifier was received in the ClientHello

message, the server uses this value for a cache lookup searching for an existing
session state. If such a state exists, the server may initiate session resumption
skipping the rest of the handshake process. Otherwise, it generates a new session
identifier. The cipher suite and compression method are strictly one entry each
from the ones proposed by the client. In case of session resumption those values
are taken from the existing session state. The server is allowed to include only
extensions that were a part of ClientHello. If an additional extension is sent
to a client, the client will abort the handshake.

Right after, sometimes the server sends a Certificate message to authenticate

7



2 Preliminaries

Client Server

ClientHello

ServerHello

(Certificate)

(ServerKeyExchange)

(CertificateRequest)

ServerHelloDone

(Certificate)

ClientKeyExchange

(CertificateVerify)

ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

Figure 2.1: Client-server messages during a full TLS 1.2 handshake. Data shown in parentheses
is optional or situation dependent.

itself to the client. This message is optional depending on the key exchanged
method, since not all key exchange methods defined in TLS 1.2 use certificates.
If the Certificate is not being sent, or if it does not contain enough data for
premaster secret exchange, a ServerKeyExchange is sent to provide this data. In
general, it contains a public key for the chosen cipher suite. If the server requires
a client to be authenticated as well, it sends a CertificateRequest message.
The very last message sent as a part of the server hello is ServerHelloDone,
after which the server waits for the client’s response.

The client sends its Certificate message after receiving the ServerHelloDone
message, but only if one was requested by the server. The client may, or
may not, send a certificate when requested, leaving a decision to the server if
authentication is necessary. The following message is the ClientKeyExchange.
It contains either the RSA-encrypted [RSA78] premaster secret with the server’s
public key, or Diffie-Hellman (DH) parameters that will be used for premaster
secret derivation. If the client sent a certificate with signing capability, it

8



2 Preliminaries

additionally sends a CertificateVerify message with a signature over all
previously exchanged handshake messages. This proves to a server the client
indeed is the owner of the provided certificate. The Finished message is sent
straight after a ChangeCipherSpec message, and it contains all the messages
from that handshake. This is the first message encrypted by the negotiated
algorithms and it is used for verification on both sides before real data can be
sent. The message flow of TLS 1.2 full handshake is illustrated in Figure 2.1.

The premaster secret acquired from the handshake is used to derive a master
secret. This is done on both sides with pseudorandom function (PRF) family
using premaster secret, client random, and server random, as input values. The
prototype of the PRF used for TLS 1.2 master secret derivation is shown in
Section 5.1.2.

Forward secrecy in TLS 1.2 is possible, but not mandatory. Whether the protocol
is forward-secure or not depends on the key exchange mode used. It is forward-
secure for Diffie-Hellman Ephemeral (DHE) key exchange, a modification of
DH where a new key is generated for each key exchange. Together with DHE,
TLS 1.2 supports its elliptic curve variation known as Elliptic Curve Diffie-
Hellman Ephemeral (ECDHE) [BBG+06]. The two are referred together as
(EC)DHE, both providing forward secrecy.

PSK Key Exchange Algorithm TLS 1.2 supports a use of pre-shared keys
(PSKs) [ET05] that are shared in advance between the involved parties. The
main reason for establishing a connection using the PSK is avoiding public key
operations. Depending on the situation, this could be desirable in case of low
computing power, or when the connection is configured manually in advance.
As stated by the authors of [ET05], using PSKs is intended for only a small
set of applications. All certificate related messages are excluded when a PSK
key exchange algorithm is used. The client indicates the intention of using the
PSK by sending PSK ciphersuites in its ClientHello message. If the server
accepts the use of PSK, it chooses one of the given ciphersuites and sends it
to the client in its ServerHello message. The client indicates which PSK to
use by sending the identity of the key in a ClientKeyExchange message. The
server can optionally send an identity hint in its ServerKeyExchange message
in order to help the client in choosing the correct identity,

9



2 Preliminaries

Client Server

ClientHello

ServerHello

ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

Figure 2.2: Client-server messages during a TLS 1.2 session resumption handshake

Session Resumption

Provided that a client and a server have already performed a full handshake in
the past, they can skip the full handshake process and perform a resumption
handshake. Such case is shown in Figure 2.2. A client sends a session identifier
from the previous session in its ClientHello message. The server then retrieves
session parameters from its cache and responds with a ServerHello containing
the same session identifier. Both sides then send a ChangeCipherSpec followed
with the Finished message. This completes a session resumption handshake
and application data can be safely transmitted.

2.2.2 Version 1.3

TLS 1.3 is the latest version of the protocol. It is not directly compatible with
TLS 1.2, but client and server are capable of negotiating a version they both
support due to TLS versioning mechanism. TLS 1.3 uses an (EC)DHE key
exchange imposing forward secrecy in all modes except one. The exception, of
special interest for this thesis, is the new 0-RTT handshake mode [Res18], which
speeds up the session resumption time at a cost of some security features.

Session identifier is now a legacy parameter in the ClientHello. The session
renegotiation from TLS 1.2 is replaced by preshared key support, thus this
parameter is used only for legacy and compatibility purposes. Extensions are still
used for additional functionality, but some extensions are defined as mandatory.
This shift to extensions was made to ensure compatibility with previous versions.

10



2 Preliminaries

Client Server

ClientHello

(key share)

(signature algorithms)

(psk key exchange modes)

(pre shared key)

ServerHello

(key share)

(pre shared key)

EncryptedExtensions

(CertificateRequest)

(Certificate)

(CertificateVerify)

Finished

(Application data)

(Certificate)

(CertificateVerify)

Finished

Application data

Figure 2.3: Client-server messages during a full TLS 1.3 handshake. Only chosen extensions
are shown, all written in snake case style. Data shown in parentheses is optional
or situation dependent.

There are a number of novel extensions defined in [Res18]. The ClientHello

message must include at least the supported versions extension, likewise
for ServerHello, which is only allowed to include extensions important for
establishing cryptographic context and protocol version. Extensions not needed
for this establishment are sent in an EncryptedExtensions message. As is
evident from the name, extensions sent inside it are encrypted by the server’s
handshake traffic secret.

The client can send signature algorithms extensions with a list of supported
signature algorithms. This extension is only mandatory if the client requests
the server to authenticate itself with a certificate. If a different set of signature
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2 Preliminaries

algorithms is to be used for the certificates and internally in TLS, an additional
signature algorithms cert extension can be used to separate the two. In
the key share extension a client sends multiple key shares, each for at most
one supported finite field group. This list is ordered by the client’s preference
and strictly one or none is chosen by the server. In the former case the server
returns its key share for the chosen group, while in the latter it sends a
HelloRetryRequest with a key share of the client supported group that was not
included in the key share extension. The server knows the client’s supported
groups as they are sent by the client in a supported groups extension. A
simplified TLS 1.3 full handshake is illustrated in Figure 2.3.

Session Resumption and Early Data

At any time after a full handshake has been carried out, a server can send a
NewSessionTicket message. In the message there is a unique connection of the
ticket with the PSK derived from the resumption master secret. This value is used
by a client in a pre shared key extension when trying to resume a connection.
Each ticket has a lifetime defined and should not be used after the expiration
time. The extension has to be sent in pair with a psk key exchange modes

extension notifying the server which PSK modes a client supports. This informa-
tion is used by the server to send only compatible tickets in a NewSessionTicket.
Possible key exchange modes are a PSK-only mode and a PSK with (EC)DHE.
With (EC)DHE key establishment in place, the session keys are forward secret.
This is not the case with PSK-only mode, as keys are derived exclusively from
the PSK.

If a PSK with early data support is used, an early data extension can be sent.
The extension indicates application data is being sent with the very first set of
messages from the client. This is referred to as a 0-RTT session resumption. The
extension itself does not carry any application data, but instead the application
data is sent after all extensions. The client is permitted to send early application
data only until it receives a server’s Finished message. To avoid deadlocks in a
handshake, the server will not wait until the end of early data, but will instead
send its ServerHello as soon as possible. In addition, the pre shared key

extension has to be sent together with the pre shared key extension as 0-RTT
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is not supported in the full handshake mode. The early application data is
encrypted with the first PSK listed in the pre shared key extension.

Using PSK to encrypt early data makes the data less secure compared to data
transmitted after a handshake has been completed. Similar to the PSK-only key
exchange mode, early data is encrypted exclusively with PSK-derived keys. This
leaves data without forward secrecy and replay protection. Some mitigation
techniques are offered in [Res18], the simplest one of which is using the single-
use tickets. In that case, a server would maintain a database of valid tickets,
destroying individual tickets upon usage. Still, the correct usage of the 0-RTT
mode would be not to relay data not safe to be replayed. One such example
is Cloudflare’s selective 0-RTT usage [Sul17] where they use it exclusively for
HTTP GET requests with no query parameters. By definition, GET requests
should not change the server’s state, and avoiding the ones with parameters
circumvents security vulnerabilities due to their potential misusage.

2.3 Bloom Filter

A Bloom filter [Blo70] is a data structure used for checking whether an element is
a part of the set or not. While its main functionalities are querying and inserting
into the set, the Bloom filter does not store the elements. This is achieved with
a number of hash functions and a series of bits stored in the memory. Not
having to store the elements comes in quite useful with large data sets where
storing would be infeasible. That aside, this also comes with a price - the Bloom
filter is a probabilistic data structure. The error rate is manipulable with a set
of parameters that are subject to assessment depending on the application. A
Bloom filter is defined by algorithm set BF = (BF.Setup,BF.Insert,BF.Query).

2.3.1 Insertion

Elements are not inserted in the Bloom filter. Instead, a number of bits inside
the filter is set which are used for querying later in time. Each Bloom filter has
a predefined number of hash functions h, and a number of bits n inside it. As
Figure 2.4a indicates, at first, all bits are set to 0. The Bloom filter is formally
a pair (H,T ) where H = H1, . . . ,Hh and T = 0n initially. When an element is

13



2 Preliminaries

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(a) Bloom filter in initial state

el1

0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0

H1(el1)

H2(el1)

H3(el1)

(b) Insertion of an element to a Bloom filter with three hash functions

Figure 2.4: Insertion of an element to a Bloom filter

to be inserted, it first gets hashed h times, once by each hash function. These
digest values are mapped to bit array indices indicating which bits in the Bloom
filter should be set. Evidently, the number of affected bits equals n, as shown
in Figure 2.4b. Removing elements from the filter is not permitted considering
it is impossible to know if a certain bit was set by another element in addition
to the one being removed. This could easily cause the unintentional removal of
multiple elements.

2.3.2 Query

Querying a Bloom filter is a probabilistic operation. False positives are possible
with no chance of false negatives. The element goes through the same hashing
procedure as for insertion, yielding bit array indices. Bits with these indices are
then checked whether all of them are set or not. If not, the element is definitely
not in the set, otherwise it possibly is. False positive results occur if all bits
corresponding to an element have already been set by other elements at the
time of querying. Figure 2.5 depicts the mentioned scenarios.

2.3.3 Parametrization

A Bloom filter is defined by three parameters: the number of bits m, the number
of hash functions h, and the number of elements, or capacity, n. These together

14
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influence the filter’s false positive probability.

Assuming the hash function yields uniform results, the probability a certain
bit is addressed is 1/m. The probability that this bit remains unset is therefore
1 − 1/m, being (1 − 1/m)h when having h hash functions. By adding new
elements to the filter, the probability of a bit remaining unset decreases. After
all elements are inserted into the filter, the probability of a certain bit to be 0
is (1− 1/m)hn. Inversely, the probability a bit is set is 1− (1− 1/m)hn. From
here, the probability of a false positive is given by [FCA+98]:

Prfalse =

(
1−

(
1− 1

m

)hn)n
≈
(

1− e−
hn
m

)h
.

This is minimized for h = ln 2 · mn , where h is an integer.
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(b) When checking whether an element is inside a filter or not, the element is hashed h times and
corresponding bits are checked if all are 1
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(d) False positive results occur when all bits for a certain element are set by other elements

Figure 2.5: Different results of Bloom filter queries
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The encryption schemes we implement in this thesis rely on bilinear pairings,
Identity Based Encryption (IBE), and a concept of puncturable encryption. In
this chapter we discuss these topics and additionally describe two IBE schemes
that are used for the construction of a Bloom Filter Encryption (BFE) scheme.
This leads us to the last remaining preliminary that is the construction of BFE
itself.

3.1 Bilinear Pairings on Elliptic Curves

In 1986, Miller [Mil86] came up with the polynomial time algorithm for cal-
culating Weil pairings [Wei40] on elliptic curves. This fast-tracked the usage
of pairings in cryptography that started in early 1990’s. Weil pairings were
originally used for attacks on elliptic curve discrete logarithm problem. In
1992, Menezes, Vanstone and Okamoto [MVO91] demonstrated a reduction of
the elliptic curve discrete logarithm problem to the logarithm problem in a
multiplicative group of an extension of a finite field.

Nowadays, pairings are recognized as a constructive mechanism for crypto-
graphic protocols. First to recognize this potential was Joux [Jou00], who in
2000 presented a one round DH tripartite key exchange protocol. The year
after, Boneh and Franklin [BF03] constructed an efficient IBE scheme and
in the same year Boneh, Lynn and Shacham [BLS01] presented a short sig-
nature scheme based on pairings. To name a few more, pairings have been
used for the construction of self-blindable credentials [Ver01], unique signa-
tures [Lys02] used for constructing verifiable random functions (VRFs) [MVR99],
group signatures [BBS04; BS04; CL04], and non-interactive zero-knowledge
proofs [GS08].
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Definition 1 (Bilinear Pairing). With groups G1, G2, and Gt of prime order
p, and e : G1 ×G2 → Gt, map e is a pairing if:

• e is bilinear, meaning e(ua, vb) = e(u, v)ab; ∀u ∈ G1, ∀v ∈ G2, ∀a, b ∈ Z
• e is non-degenerate, implying e(g1, g2) 6= 1; g1 ∈ G1, g2 ∈ G2

• e is computable, indicating there is an efficient algorithm for computing e.

There are three types of bilinear pairings.

Definition 2. Let e : G1 ×G2 → Gt be a bilinear pairing, then e is

• Type-1, if G1 = G1

• Type-2, if G1 6= G2 and there is an efficiently computable isomorphism
ψ : G2 → G1

• Type-3, if G1 6= G2 and there is no efficiently computable isomorphism ψ.

The evaluation of security levels achieved for different field sizes is an on-
going topic. The latest influential work in this area is by Barbulescu and
Duquesne [BD18] where they show the security levels of pairings over popular
elliptic curves are lower than previously considered. In Chapter 4, we test
our implementation with different curve types and field sizes. From [BD18],
pairings over Barreto-Lynn-Scott (BLS) curves [BLS03] of a 381 bit prime order
provide 120 bit security1, and pairings over BLS and Barreto-Naehrig (BN)
curves [BN06] of a 461 bit order provide 128 bit security.

3.1.1 Bilinear Diffie-Hellman Assumption

In order to prove the security of cryptographic schemes based on bilinear
pairings, the security of those schemes is based on the difficulty of some well
known problems. One of such problems is a Bilinear Diffie-Hellman (BDH)
problem.

Definition 3 (BDH Problem). Let G and Gt be groups of prime order p,
ê : G × G → Gt a bilinear map, and g a generator of G. The BDH problem
in (G,Gt, ê) is the following: given (g, ga, gb, gc) for some a, b, c ∈ Z∗, compute
v = ê(g, g)abc ∈ Gt.

1According to Razvan Barbulescu from personal communication
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In order to define a BDH assumption, first we have to introduce a notion of the
BDH parameter generator.

Definition 4 (BDH Parameter Generator). A randomized algorithm G that
takes security parameter λ as an input is a BDH parameter generator if it runs
in time polynomial in λ and outputs descriptions of groups G and Gt of prime
order p, and a map e : G×G→ Gt.

Definition 5 (BDH Assumption). We define the advantage of an algorithm A
solving BDH as:

AdvBDH
A,G = Pr

[
ê(g, g)abc ← A(G,Gt, ê, g, g

a, gb, gc)
]
≥ ε.

A parameter generator G satisfies the BDH assumption, if for any randomized
polynomial time algorithm in the security parameter ε, the advantage AdvBDH

A,G
is negligibly small.

3.2 Identity Based Encryption

Public key cryptography is a cryptographic scheme that uses two keys of different
kind for carrying out private communication. One key is publicly available,
while the other is being held private by the specific owner. A pair of entities has
to exchange public keys before they are able to engage in secure communication.
After a sender has the receiver’s public key, it uses it to encrypt the message
that can only be decrypted by the receiver’s private key. Hence, this scheme is
often called asymmetric cryptography.

Shamir [Sha85] introduced a cryptographic scheme for private communication
without a need to exchange the keys beforehand. It uses unique strings as public
keys for communication with certain entities. As a result of these strings being
intuitive identity-based values such as email address or username, the scheme
is called Identity Based Encryption. By knowing the identity of the receiver,
a sender can relay a message without knowing any other information about
the receiver. The receiver has to contact the key generation service once at
registration to acquire the private key, after which he may receive messages
from anyone regardless of their identity. Identities being no secret are the reason
why a key generation service is needed. If anyone could derive a private key for

19



3 Encryption Schemes

identity, a scheme would be insecure. Complementary to this, the key generation
service must be well trusted considering it has the ability to generate private
keys for all possible identities in the system.

Definition 6 (IBE). An IBE is defined by the following randomized algorithms:
IBE.Setup, IBE.Extract, IBE.Encrypt, and IBE.Decrypt.

IBE.Setup(1λ): takes a security parameter λ and returns system parameters and
master key. System parameters are publicly available, while the master key
is known only to the key generation service. System parameters include
descriptions of finite message space M and a finite ciphertext space C.

IBE.Extract(params,mk, id): takes system parameters, master key, and a string
id ∈ {0, 1}∗, returns a private key sk for the given id. The id is used as a
public key with sk as corresponding private key.

IBE.Encrypt(params,M, id): takes system parameters, id, and M ∈M, returns
ciphertext C ∈ C.

IBE.Decrypt(params, C, sk): takes system parameters, sk, and C ∈ C, returns
M ∈M.

The algorithms must satisfy a consistency constraint, with sk being a private
key for identity id:

∀M ∈M : IBE.Decrypt(params, C, sk) = M

where C = IBE.Encrypt(params,M, id).

IBE Correctness We require that a ciphertext can always be decrypted with
the secret key of the identity for which the message was initially encrypted.

Definition 7 (IBE Correctness). For all M ∈M, id ∈ {0, 1}∗ and a pair (mk,
params) generated by IBE.Setup(1λ), for any skid←$ IBE.Extract(params,mk, id)
and C←$ IBE.Encrypt(params,M, id), then IBE.Decrypt(params, C, skid) = M .

IBE Security The scheme is chosen plaintext attack secure (IND-CPA) assum-
ing BDH assumption is hard in the used groups generated by G. The IND-CPA
experiment is presented in Experiment 1.
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ExpIND−CPA
A,IBE

(
1λ
)
:

(mk,params)←$ IBE.Setup(1λ)

(M0,M1, id
∗, st)←$AIBE.Extract(mk,·)(params)

b←$ {0, 1}
C∗←$ IBE.Encrypt(params,Mb, id

∗)

b∗←$AIBE.Extract(mk,·)(st, C∗)

return 1, if b∗ = b

return 0

Experiment 1: IND-CPA experiment for IBE

Definition 8 (IBE Security). The advantage of adversary A in the IND-CPA
experiment ExpIND−CPA

A,IBE (λ) is defined as

AdvIND−CPAA,IBE (λ) =

∣∣∣∣Pr
[
ExpIND−CPA

A,IBE (λ) = 1
]
− 1

2

∣∣∣∣ .
An IBE is IND-CPA secure if AdvIND−CPAA,IBE (λ) in λ is negligible for all adversaries
A.

Shamir was incapable of proposing a feasible implementation of IBE, but only
provided concrete implementation details of the analogue signature scheme. In
2003, Boneh and Franklin [BF03] came up with the construction of a usable
IBE scheme.

3.2.1 Boneh-Franklin Identity-Based Encryption

Boneh and Franklin [BF03] realized the first practical IBE scheme based on
bilinear pairings. Moreover they also presented a security definition of IBE. The
scheme described here and used later in the work is named BasicIdent.

Analogous to the definition of IBE, Boneh-Franklin IBE (BFIBE) scheme is
defined by four algorithms: BFIBE.Setup, BFIBE.Extract, BFIBE.Encrypt, and
BFIBE.Decrypt.
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BFIBE.Setup(1λ): Security parameter λ ∈ Z+ is given as input to the BDH
generator. The public key is computed as pk = gmk

1 , g1 ∈ G being
a random generator, and a random integer mk ∈ Z∗p as a master key.
Bilinear map e : G×G→ Gt is defined, with p being the order of groups
G and Gt. Two cryptographic hash functions are defined, G1 mapping
an arbitrary number of bytes to a point in G, and G2 mapping a point
from Gt to a digest of length n. The system parameters are params =
(p,G,Gt, e, n, g1, pk, G1, G2). It is assumed all algorithms described below
implicitly receive these parameters.

BFIBE.Extract(mk, id): The provided string id is hashed: Qid = G1(id) ∈ G,
and the private key is returned as skid = Qmk

id . Individual private keys for
each identity can be reproduced as long as the master key exists.

BFIBE.Encrypt(M, id): Identity string id is again hashed, producing Qid that
is paired with the public key as gid = e(Qid,pk) ∈ Gt. After choosing
a random r ∈ Z∗p, the ciphertext of message M is a pair C = (gr1,M ⊕
G2(grid)).

BFIBE.Decrypt(skid, C): With a private key skid, a message M is retrieved
from the ciphertext of form C = (u, v) as M = v ⊕G2(e(skid, u)). This
is where the bilinearity of a map is imperative, as then grid from the
BFIBE.Encrypt algorithm can be reformulated as grid = e(Qid,pk)r =
e(Qmk

id , g
r
1) = e(skid, g

r
1). Thus, retrieval of original message is possible due

to same values being used for encryption and decryption.

Theorem 1 ([BF03]). Let hash functions G1 and G2 be random oracles. The
Boneh-Franklin IBE scheme is then IND-CPA secure assuming BDH assumption
is hard in the groups generated by G. Suppose there is an IND-CPA adversary
A with advantage ε(λ). Assuming A makes at most qE private key extraction
queries and at most qG2 queries to random oracle G2. There is then an adversary
B that solves BDH problem in groups generated by G with advantage:

AdvBDH
B,G (λ) ≥ 2ε(λ)

ε(1 + qE) · qG2

.

3.2.2 Hierarchical Identity Based Encryption

Organizational structures are rarely horizontal. Generally, one group of entities
has authority over another group, that group has authority over some other
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group, et cetera. This implies that not all identites should be trusted with same
level of power. Hierarchical Identity Based Encryption (HIBE) is best portrayed
as a full binary tree. In a full binary tree of depth l, every node up to level l− 1
has exactly two child nodes. Each node has a capacity to hold one private key
that can recursively generate private keys of its child nodes. A node is incapable
of generating private keys for its parent or sibling nodes.

Definition 9 (HIBE [HL02]). A HIBE is defined by four algorithms: HIBE.Setup,
HIBE.KeyGen, HIBE.Encrypt, and HIBE.Decrypt.

HIBE.Setup(1λ): takes a security parameter λ and returns system parameters
params and a level-0 secret key skε as a master key.

HIBE.KeyGen(params, skid′ , id): takes params, an identity id = (I1, . . . , Ik) at
level k, and a private key skid′ where id′ = (I1, . . . , Ik−1). Returns a
private key skid for identity id.

HIBE.Encrypt(params,M, id): takes params, a message M , and an id. Returns
a ciphertext C.

HIBE.Decrypt(params, skid, id, C): takes params, a ciphertext C, an id, and a
private key skid. Returns a message M .

HIBE Correctness Identical to IBE, we require that a ciphertext can always
be decrypted with the secret key of the identity for which the message was
initially encrypted.

Definition 10 (HIBE Correctness). For all l ∈ N, M ∈M, id ∈ {0, 1}∗ and a
pair (mk, params) generated by the HIBE.Setup(1λ, l) algorithm, for any private
key skid←$ HIBE.KeyGen(skid′ , id) and ciphertext C←$ HIBE.Encrypt(M, id), it
holds that HIBE.Decrypt(skid, C) = M .

HIBE Security Chosen plaintext security for HIBE is defined under a chosen
identity attack where the adversary is allowed to adaptively choose the identity
on which it will be challenged. The IND-CPA experiment is presented in
Experiment 2.
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ExpIND−CPA
A,HIBE

(
1λ, l

)
:

(mk,params)← HIBE.Setup(1λ, l)

(M0,M1, id
∗, st)← AHIBE.KeyGen(mk,·)(params)

b←$ {0, 1}
C∗ ← HIBE.Encrypt(params,Mb, id

∗)

b∗ ← AHIBE.KeyGen(mk,·)(st, C∗)

return 1, if b∗ = b and A is valid

return 0

Experiment 2: IND-CPA experiment for HIBE

Definition 11 (HIBE Security). The advantage of adversary A in the IND-CPA
experiment ExpIND−CPA

A,HIBE (1λ, l) is defined as

AdvIND−CPAA,HIBE (1λ, l) =

∣∣∣∣Pr
[
ExpIND−CPA

A,HIBE (1λ, l) = 1
]
− 1

2

∣∣∣∣ .
A HIBE is IND-CPA secure if for any l > 0, AdvIND−CPAA,HIBE (1λ, l) in λ is negligible
for all adversaries A.

Boneh, Boyen, and Goh [BBG05] presented a HIBE scheme with constant
ciphertext size and decryption cost. The private key size of the highest authority
is proportional to l, but the size of keys decreases as the depth increases.

Interface of the Boneh-Boyen-Goh HIBE (BBGHIBE) is similar to the one
of BFIBE, having BBGHIBE.Setup, BBGHIBE.KeyGen, BBGHIBE.Encrypt, and
BBGHIBE.Decrypt algorithms. From a black box perspective the two schemes
look similar, with some restrictions and additions. The most evident differences
are that identities have a strict naming convention and a maximum length of l,
and that a master key is not the only key with key generation capacity.

BBGHIBE.Setup(1λ, l): e : G×G → Gt is a bilinear map. System parameters
are params = (g, g1, g2, g3, h1, . . . , hl), where g, g2, g3, h1, . . . , hl ∈ G are
random elements, and g1 = gr with random r ∈ Zp. The master key is
stored as mk = gr2. It is assumed all algorithms described below implicitly
receive system parameters.
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BBGHIBE.KeyGen(skid′ , id): A private key for identity id = (I1, . . . , Ik) ∈ (Z∗p)k
is generated as

skid =
(
gr2 ·

(
g3 · hI11 · · ·h

Ik
k

)s
, gs, hsk+1, . . . , h

s
l

)
, k ≤ l,

where s ∈ Zp is a random value. With a private key of form skid′∈(Z∗p)k−1 =

(a, b, ck, . . . , cl), the private key for id ∈ (Z∗p)k is derived as

skid∈(Z∗p)k =
(
a · cIkk ·

(
g3 · hI11 · · ·h

Ik
k

)u
, b · gu, ck+1 · huk+1, . . . , cl · hul

)
,

where u ∈ Zp is random. Set (ck+1, . . . , cl) gets smaller as k increases,
proving the keys are shorter deeper in the tree.

BBGHIBE.Encrypt(M, id): A message M ∈ Gt is encrypted for the identity
id = (I1, . . . , Ik) as

C =

(
e(g1, g2)t ·M, gt,

(
g3 · hI11 · · ·h

Ik
k

)t)
=
(
a′, b′, c′

)
with random t ∈ Zp.

BBGHIBE.Decrypt(skid, C): To decrypt a ciphertext C with the private key skid

of form (a, b, ck+1, . . . , cl), the algorithm outputs

M = a′ · e (b, c′)

e (b′, a)
.

This again holds due to map bilinearity.

Definition 12 (BDHI Problem [BB04]). Let g be a bilinear group of prime
order p, e : G×G→ Gt a bilinear map, g a generator of G, and r ∈ Z∗p. The
q-th Bilinear Diffie-Hellman Inversion problem denoted as q-BDHI, is as follows:
given the tuple (g, gr, g(r2), . . . , g(rq)), compute e(g, g)1/r.

Definition 13 (BDHI Assumption). We define the advantage of an algorithm
A solving q-BDHI as:

Advq−BDHI
A,G = Pr

[
e(g, g)1/r ← A

(
g, gr, g(r2), . . . , g(rq)

)]
≥ ε.

We say that the (t, q, ε)-BDHI assumption holds in G if no t-time algorithm has
advantage at least ε in solving the q-BDHI problem in G.
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Definition 14 (Weak BDHI Problem [BBG05]). Let g and h be two random
generators of G, and s ∈ Z∗p. The q-wBDHI problem is as follows: given the

tuple (g, h, gs, g(s2), . . . , g(sq)), compute e(g, h)(sq+1).

Definition 15 (Weak BDHI Assumption). We define the advantage of an
algorithm A solving q-wBDHI as:

Advq−wBDHI
A,G = Pr

[
e(g, h)(sq+1) ← A

(
g, h, gs, g(s2), . . . , g(sq)

)]
≥ ε.

We define the advantage of an algorithm B, that outputs b ∈ {0, 1}, in solving
decisional q-wBDHI as:

AdvDec.q−wBDHI
A,G =

∣∣∣∣Pr
[
B
(
g, h, gs, g(s2), . . . , g(sq), e(g, h)(sq+1)

)
= 0
]

−Pr
[
B
(
g, h, gs, g(s2), . . . , g(sq), T

)
= 0
]∣∣∣∣ ≥ ε.

We say that the (Decision) (t, q, ε)-wBDHI assumption holds in G if no t-time
algorithm has advantage at least ε in solving the (Decision) q-wBDHI problem
in G.

Theorem 2 ([BBG05]). Let G be a bilinear group of prime order p. Suppose
the Decision (t, q, ε)-wBDHI assumption holds in G. Then the q-BBGHIBE
system is (t′, pS, ε)-selective identity, chosen plaintext (IND-sID-CPA) secure
for arbitrary q, pS, and t′ < t− θ(τqpS), where τ is the maximum time for an
exponentiation in G.

Hierarchical Identity Based Key Encapsulation

Key encapsulation methods are used for the construction of hybrid encryption
schemes. For a secure exchange of a symmetric key via an insecure channel,
the key is first encrypted using asymmetric encryption. A Hierarchical identity
based key encapsulation mechanism (HIBKEM) is such a scheme built with
HIBE.

Definition 16 (HIBKEM). A Hierarchical identity based key encapsulation
mechanism is defined as a tuple of algorithms HIBKEM = (HIBKEM.KGen,
HIBKEM.Del,HIBKEM.Enc,HIBKEM.Dec) with the following syntax:
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HIBKEM.KGen(1λ): takes a security parameter λ and returns a public key pk
and a level-0 secret key skε.

HIBKEM.Del(skid′ , id): takes a secret key for identity id′ at level k − 1, and an
identity at level k. It returns a secret key skid for identity id.

HIBKEM.Enc(pk, id): takes a public key pk and an identity id, and returns a
pair (C,K) where C is encapsulated K.

HIBKEM.Dec(skid, C): takes a private key skid and an encapsulated key C, and
returns a key K or a notification of error.

HIBKEM Security The construction of scheme from [DJS+18] requires only
one-wayness under selective-ID and chosen-plaintext attacks (OW-sID-CPA)
security notion. The OW-sID-CPA experiment is presented in Experiment 3.

Definition 17 (HIBKEM Security). The advantage of adversary A in the
OW-sID-CPA experiment ExpOW−sID−CPA

A,HIBKEM (λ) is defined as

AdvOW−sID−CPA
A,HIBKEM (λ) = Pr

[
ExpOW−sID−CPA

A,HIBKEM (λ) = 1
]
.

A HIBKEM is OW-sID-CPA secure if AdvOW−sID−CPA
A,HIBKEM (λ) in λ is negligible for

all adversaries A.

3.3 Puncturable Encryption

Green and Miers [GM15] came up with a new form of forward secure encryption
named puncturable encryption. The problem they tried to solve is providing
forward secrecy in asynchronous messaging systems. In such systems, there is
no requirement for the receiver and the sender to be online simultaneously and
messages can be delayed for longer periods of time. Their approach was creating
a fine-grained revocation of decrypting capability for specific messages.

As a form of tag-based encryption [MRY04], each message in their scheme is
marked with a tag uniquely identifying the message. The receiver can modify
the decryption key to make it unusable for decrypting messages with specific
tag whilst still being able to decrypt other messages. The public key does not
change, nor does the other party have to be notified. Key modification of such
a type is called key puncturing, therefore the term puncturable encryption.
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ExpOW−sID−CPA
A,HIBKEM (λ):

(id∗, st)←$A(1λ)

(pk, skε)←$ HIBKEM.KGen(1λ)

(C,K)←$ HIBKEM.Enc(pk, id∗)

K∗←$A(pk, C, st)

return 1, if K∗ = K

return 0

Experiment 3: OW-sID-CPA experiment for HIBKEM

Definition 18 (Puncturable Encryption). The puncturable encryption scheme
is a tuple of algorithms PPKE = (PPKE.KeyGen,PPKE.Puncture,PPKE.Encrypt,
PPKE.Decrypt) with the following syntax:

PPKE.KeyGen(1λ, d): takes security parameter λ and a maximum number of
tags per ciphertext d. Returns a public key pk and initial secret key sk0.

PPKE.Puncture(pk, ski−1, t): takes a public key pk, secret key ski−1 at time
i−1, and a tag t. Outputs an updated secret key ski capable of decrypting
all the same ciphertexts as ski−1, except the ones encrypted with t.

PPKE.Encrypt(pk,M, t1, . . . , td): takes a public key pk, a message M , and a list
of tags t1, . . . , td. Outputs a ciphertext C.

PPKE.Decrypt(pk, ski, C, t1, . . . , td): takes a public key pk, a secret key ski, a
ciphertext C, and a list of tags t1, . . . , td. Outputs a message M or ⊥ if
decryption fails.

In recent years, puncturable encryption has found its use in different applications.
To mention some, these include forward secure key exchange protocols [GHJ+17;
DJS+18], where in both constructions puncturing is not based on identification
by tags, but instead on a specific ciphertext. In [BMO17] they use it to ensure
their searchable symmetric encryption scheme is backward secret by using
puncturable encrpytion as a tool for secure deletion. Puncturable encryption
is also used for devising a chosen-ciphertext secure fully homomorphic encryp-
tion [CRR+17] and a forward secret proxy re-encryption scheme [DKL+18].
In the latter, the authors present a concept of fully puncturable encryption
extending the puncturing from [GM15] in a way that it is also possible to punc-
ture a secret key with a tag making the secret key only capable of decrypting
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ciphertexts with this tag.

3.4 Bloom Filter Encryption

Bloom Filter Encryption (BFE) [DJS+18] combines IBE schemes with Bloom
filters introducing a replay attack resistant and forward secure encryption scheme
usable in real-life scenarios. Decryption keys in this scheme are pregenerated
and stored in an indexed collection (e.g. array). The IBE identities for which
the keys are derived correspond to the index at which the key is stored inside a
collection. Each key is used once before it gets destroyed, strictly enforcing the
scheme’s security properties. Alongside with keys, a Bloom filter of the same
size is used for mapping data to particular keys.

3.4.1 Basic Bloom Filter Encryption

To generate n keys, a Bloom filter of size m with h hash functions is first
initialized in an all-zero state. The BFIBE.Setup is then triggered producing a
master key followed by m BFIBE.Extract calls filling up all slots of BFE key
collection. The master key is destroyed immediately after collection has been
finalized, preventing regeneration of the keys later in time.

As for 0-RTT application only key encapsulation mechanism (KEM) is needed for
symmetric key exchange, BFE is formulated as a puncturable key encapsulation
mechanism (PKEM).

Definition 19 (PKEM). A PKEM scheme with key space K is a tuple of
algorithms PKEM = (PKEM.KGen,PKEM.Punc,PKEM.Enc,PKEM.Dec). The
algorithms are as follows:

PKEM.KGen(1λ,m, h): Given security parameter λ and parameters m and h,
it outputs a secret key sk and public key pk.

PKEM.Punc(sk, C): Given the secret key sk and a ciphertext C, it outputs
updated secret key sk’.

PKEM.Enc(pk): Given a public key pk, it outputs a ciphertext C and a key K.
PKEM.Dec(sk, C): Given a secret key sk and a ciphertext C, it outputs the key

K or ⊥ if decapsulation fails.
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ExpT
A,PKEM (λ,m, h):

(sk,pk)←$ PKEM.KGen(1λ,m, h)

(C∗,K0)←$ PKEM.Enc(pk)

Q ← ∅
K1←$K
b←$ {0, 1}
b∗←$AO,PKEM.Punc(sk,·),Corr(pk, C∗,Kb)

where O ← {PKEM.Dec′(sk, ·)} if T = IND-CCA and O ← ∅ otherwise.

PKEM.Dec′(sk, C) behaves as PKEM.Dec but returns ⊥ if C = C∗

PKEM.Punc(sk, C) runs sk←$ PKEM.Punc(sk, C) and Q ← Q∪ {C}
Corr returns sk if C∗ ∈ Q and ⊥ otherwise

return 1, if b∗ = b

return 0

Experiment 4: IND-CPA and IND-CCA experiments for PKEM, T ∈ {IND-CPA, IND-CCA}

PKEM Correctness We require that a ciphertext can always be decapsulated
with unpunctured secret keys. In addition, when decapsulating a ciphertext
with punctured secret keys, the probability that decapsulation fails is bounded
by a non-negligible function of scheme’s parameters m and h.

Definition 20 (PKEM Correctness). For all λ,m, h,∈ N, together with any
(sk, pk)←$ PKEM.KGen(1λ,m, h) and (C,K)←$ PKEM.Enc(pk), then we have
PKEM.Dec(sk, C) = K. Additionally, for any number of invocations of function
sk′←$ PKEM.Punc(sk, C ′) determined by m, h, for any C ′ 6= C it holds that
Pr[PKEM.Dec(sk′, C) = ⊥] ≤ µ(m,h).

PKEM Security Two security notions defined for PKEM are IND-CPA and
IND-CCA, experiments for both are defined in Experiment 4.

Definition 21 (PKEM Security). Let T ∈ {IND-CPA, IND-CCA}, where the
advantage of adversary A in the T experiment ExpT

A,PKEM(λ,m, h) is defined as

AdvTA,PKEM(λ,m, h) =

∣∣∣∣Pr
[
ExpT

A,PKEM(λ,m, h) = 1
]
− 1

2

∣∣∣∣ .
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A PKEM is T secure if for any m,h > 0, AdvTA,PKEM(λ,m, h) in λ is negligible
for all adversaries A.

Let e : G1 × G2 → Gt be a bilinear map of prime groups G1 and G2, with
generators g1 and g2 of each group respectively. BFE is defined as tuple of
algorithms BFE = (BFE.KGen,BFE.Enc,BFE.Punc,BFE.Dec) defined as:

BFE.KGen(1λ,m, h): A Bloom filter (H,T )← BF.Setup(m,h) is initialized and
random r ∈ Zp is chosen. Let G1 : N→ G2 and G2 : Gt → {0, 1}λ be cryp-
tographic hash functions. Secret key is defined as sk = (T, (G1(i)r)i∈[m])
and public key as pk = (gr1, H).

BFE.Enc(pk): A random keyK ← {0, 1}λ and s ∈ Zp are generated. It computes
indices ij = Hj(g

s
1)j∈[h];Hj ∈ H. Ciphertext is defined as

C = (gs1, (G2(e(gr1, G1(ij))
s ⊕K)j∈[h])).

Finally, the algorithm outputs a pair (C,K).
BFE.Punc(sk, C): Value gs1 from ciphertext C is used as a tag when inserting to

T , T ′ ← BF.Insert(H,T, gs1). With a secret key of form sk = (T, sk[i])i∈[m],
the updated secret key is computed as

sk′[n] =

{
sk[n] if T ′[i] = 0,

⊥ if T ′[i] = 1.

A pair sk′ = (T ′, (sk′[i])i∈[m]) is returned to replace the existing secret key.
Figure 3.1 illustrates the state of sk after a single key puncturing.

BFE.Dec(sk, C): Given a secret key sk = (T, sk[i])i∈[m] and ciphertext C =
(t, c[j])j∈[h], if BF.Query(H,T, t) = true, the ciphertext cannot be de-
crypted and ⊥ is returned. This happens if a ciphertext with the same tag
t had prevously been decrypted, or in the case of a false positive query. If a
query returns false, it means there is at least one key in the key collection
capable of decrypting the ciphertext. The first index i′ = i[j] ∈ [i] is taken
for which sk[i′] 6= ⊥ and as a result of successful decryption the key of
form

K = c[j]⊕G2(e(t, sk[i′]))

is returned.
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0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
s0 s1 s2 s4 s5 s7 s8 s9 s10s11s12s13s14s15 s17s18s19

Figure 3.1: BFE’s Bloom filter and accompanying key collection after single key puncturing,
h = 3

Basic BFE Security IND-CPA security for Basic BFE is based on Bilinear
Computational Diffie-Hellman (BCDH) in groups generated with G.

Definition 22 (BCDH assumption). The advantage of adversary A in solving
the BCDH problem is defined as

AdvBCDH
A,G (λ) = Pr [e(g1, h2)rs = A(params, gr1, g

s
1, g

s
2, h2)] ,

with params = (p, e,G1,G2,Gt, g1, g2)←$G(1λ), (params, gr1, g
s
1, g

s
2, h2)←$G2

1×
G2.

Theorem 3 ([DJS+18]). Assuming that the BCDH assumptions holds, BFE
is a IND-CPA secure PKEM. More precisely, from each efficient adversary B
against IND-CPA of BFE that sends q queries to random oracle G2, an efficient
adversary A against BCDH is defined as

AdvBCDH
A,G (λ) ≥

AdvIND−CPAB,PKEM (λ,m, h)

hq
.

The Fujisaki-Okamoto (FO) transformation [FO99] is used to acquire an adaptive
chosen ciphertext attack secure (IND-CCA) scheme. We shortly sketch how the
FO can be applied to BFE:

IND-CCA-secure Construction If PKEM has separable randomness, this
means (C,K) ← BFE.Enc(pk) = BFE.Enc(pk; (r,K)) for uniformly random
(r,K) ← {0, 1}p+λ. Let R : {0, 1}∗ → {0, 1}p+λ be a hash function, and the
following are algorithms that differ from the ones of IND-CPA scheme.

BFE.Enc′(pk): Random key K ← {0, 1}λ is generated. Then it computes
(r,K ′)← R(K), runs (C,K)← BFE.Enc(pk; (r,K)), and returns (C,K ′).
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BFE.Dec′(sk, C): Original key K is retrieved by K ← BFE.Dec(sk, C). If K = ⊥
then ⊥ is returned, otherwise it computes (r,K ′) ← R(K). If (C,K) =
BFE.Enc(pk; (r,K)) it returns K ′, otherwise it returns ⊥.

Theorem 4 ([DJS+18, Theorem 3]). After applying the FO transformation to
BFE, BFE is a IND-CCA secure PKEM.

Correctness Error The correctness error of the scheme corresponds to the cor-
rectness of the Bloom filter, together with the statistically small probability that
two different ciphertexts share the same randomness r. As noted in Section 2.3.3,

the false positive probability of the Bloom filter is Prfalse ≈ (1− e−
hn
m )h ≤ 2−h.

If two independent ciphertexts would share the same r, this would yield the
same tag t, leading to the collision of the two ciphertexts in the Bloom filter.
As r is uniformly random, the probability for this to happen is upper bounded
by n/p, where n is the number of ciphertexts. From this, a correctness error of
Basic BFE is given as approximately 2−h + n/p.

3.4.2 Time-Based Bloom Filter Encryption

After using up all the keys from the BFE key collection, a new instance of the
BFE scheme has to be initialized. This results with a new public key that has
to be shared with other parties. Having a longer-lasting public key increases
the scheme’s setup time resulting with a longer secret key. Time-Based Bloom
Filter Encryption (TBBFE) is an extension of the Basic BFE scheme in which
the lifetime of one BFE instance is divided into multiple time slots. The key
collection of each time slot can be calculated independently at different times,
keeping the same public key for all intervals.

Similar to formulating a Basic BFE scheme as PKEM, a Time-Based BFE is for-
mulated as a puncturable forward secret key encapsulation (PFSKEM) [GHJ+17]
defined below. Different from the PKEM defined in Definition 19, algorithms
are defined with a specific time interval context, and additional algorithm
PFSKEM.PuncInt is introduced for puncturing a secret key with respect to an
entire time interval.

Definition 23 (PFSKEM). A puncturable forward secret key encapsula-
tion scheme is defined as a tuple consisting of five probabilistic polynomial
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time algorithms PFSKEM = (PFSKEM.KGen,PFSKEM.Enc,PFSKEM.PuncCtx,
PFSKEM.Dec,PFSKEM.PuncInt).

PFSKEM.KGen(1λ,m, h, t): Given a security parameter λ, parameters m and h,
and a number of time intervals t, it outputs a secret key sk and a public
key pk.

PFSKEM.Enc(pk, τ): Given a public key pk and time interval τ , it outputs a
ciphertext C and a key K.

PFSKEM.PuncCtx(sk, τ, C): Given a secret key sk, time interval τ , and a ci-
phertext C, it outputs updated secret key sk′.

PFSKEM.Dec(sk, τ, C): Given a secret key sk, time interval τ , and a ciphertext
C, it outputs the key K or ⊥ if decapsulation fails.

PFSKEM.PuncInt(sk, τ): Given a secret key sk and time interval τ , it outputs
an updated secret key sk′ for time interval τ + 1.

PFSKEM Correctness The correctness definition of PKEM is extended to
take into account time intervals.

Definition 24 (PFSKEM Correctness). For all λ,m, h, t,∈ N, together with any
(sk,pk)←$ PFSKEM.KGen(1λ,m, h, t), τ∗, and (C∗,K)←$ PFSKEM.Enc(pk, τ∗),
for any number of invocations of sk′←$ PFSKEM.PuncCtx(sk, τ, C ′) determined
by m, h for any (C ′, τ) 6= (C∗, τ∗), or sk′←$ PFSKEM.PuncInt(sk, τ) for any
τ 6= τ∗, it holds that Pr[PFSKEM.Dec(sk′, τ∗, C∗) = ⊥] ≤ µ(m,h).

PFSKEM Security PFSKEM security is defined as a selective time experiment,
meaning an adversary has to choose a specific time interval τ∗ to attack before
seeing the public key. The IND-CPA and IND-CCA experiments are presented
in Experiment 5.

Definition 25 (PFSKEM Security). Let T ∈ {IND-CPA, IND-CCA}, the
advantage of adversary A in the s-T experiment Exps−T

A,PFSKEM(λ,m, h, t) is
defined as

Advs−TA,PFSKEM(λ,m, h, t) =

∣∣∣∣Pr
[
Exps−T

A,PFSKEM(λ,m, h, t) = 1
]
− 1

2

∣∣∣∣ .
A PFSKEM is s-T secure if for any m,h, t > 0, Advs−TA,PKEM(λ,m, h, t) in λ is
negligible for all adversaries A.
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Exps−T
A,PFSKEM (λ,m, h, t):

τ∗←$A(1λ)

(sk,pk)←$ PFSKEM.KGen(1λ,m, h, t)

(C∗,K0)←$ PFSKEM.Enc(pk, τ∗)

K1←$K
b←$ {0, 1}
QC ← ∅
Qτ ← ∅
b∗←$AO,PFSKEM.PuncCtx(sk,·,·),PFSKEM.PuncInt(sk,·),Corr(pk, C∗,Kb)

where O ← {PFSKEM.Dec′(sk, ·)} if T = IND-CCA and O ← ∅ otherwise.

PFSKEM.Dec′(sk, τ, C) behaves as PFSKEM.Dec but returns ⊥ if C = C∗

and τ = τ∗

PFSKEM.PuncCtx(sk, τ, C) runs sk←$ PFSKEM.PuncCtx(sk, τ, C) and

QC ← QC ∪ {(C, τ)}
PFSKEM.PuncInt(sk, τ) runs sk←$ PFSKEM.PuncInt(sk, τ) and

Qτ ← Qτ ∪ {τ}
Corr returns sk if (C∗, τ∗) ∈ Q or τ∗ ∈ Qτ and ⊥ otherwise

return 1, if b∗ = b

return 0

Experiment 5: IND-CPA and IND-CCA experiments for PFSKEM

TBBFE is based on HIBE whose nodes are binary-coded. 0-th level leaf has an
empty string identity ε, while the identites of i-th level nodes are of length i.
Each identity consists of its parent’s identity string with additional 0 in case of
a left node, or 1 if it is a right node. Thus, a node at level i is an ancestor of a
node at level i+ j, if the former’s identity is a prefix of the latter’s. Similarly,
two nodes at level i are siblings if the first i− 1 characters of their identities
are equal.

TBBFE capable of 2t time intervals is formed by a TBBFE tree of depth
t+ log2m, where m is a number of bits in the Bloom filter of a single interval.
This number is calculated the same way as in Basic BFE. Keys at level t are
time interval keys. Under each of the time interval keys an independent binary
tree is generated. Leaves of each independent tree form a BFE key collection.

35



3 Encryption Schemes

ε

0

00

00000

01

1

10 11

11111

Figure 3.2: Full TBBFE private key tree with 22 time intervals. Black nodes are time interval
keys, making the subtree above them a time tree with leaves 00, 01, 10, 11. Each
of these leaves is a starting node of independent Bloom filter tree whose leaves are
stored in a key collection. Dashed line outlines a Bloom filter tree of time interval
01.

Such a tree is depicted in Figure 3.2. It is important to delete intermediate
keys as soon as they are not needed anymore to ensure the scheme’s security
properties. There is no need for all subtrees to be generated at one point in
time. It suffices to have a single fully generated subtree with key material for
generating other time intervals. Generation of the next time interval subtree
can be started before the existing one is fully used, ensuring it is ready when
needed without down-time.

TBBFE.KGen(1λ,m, h, t): The first step is the initialization of Bloom filter
(H,T )← BF.Setup(m,h) followed by (pk, skε)← HIBKEM.KGen(1λ). The
private key is divided on time interval keys and Bloom filter keys. Time
interval keys are recursively generated for the first time interval with
identity 0t as

sk0d ← HIBKEM.Del(sk0d−1 , 0), ∀d ∈ [t].

Bloom filter keys for the same interval are then recursively generated as

skbloom =
{

sk0t|d ← HIBKEM.Del(sk0t , d)
}
,∀d ∈ [m].

The updated time interval keys do not include the key that could be used
to generate keys on the same path again. This time interval puncturing is
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expressed as

sktime =
{

sk0d−1|1 ← HIBKEM.Del(sk0d−1 , 1
)
},∀d ∈ [t].

The algorithm returns a secret key sk = (T, skbloom, sktime), and a public
key PK = (pk, (Hj)j∈[h]).

TBBFE.Enc(pk, τ): Given HIBKEM public key pk and a time interval identifier
τ ∈ {0, 1}t as input, it generates a random tag c← {0, 1}λ and a key K ←
{0, 1}λ. Then it generates h HIBKEM key encapsulations as (Cj ,Kj)←
HIBKEM.Enc(pk, dj) where dj = (τ,Hj(c)), j ∈ [h] is a HIBKEM identity.
The algorithm returns a ciphertext

C = (c, (Cj , G2(Kj)⊕K)j∈[h]),

G2 being a cryptographic hash function.
TBBFE.PuncCtx(sk, τ, C): Puncturing a secret key for a specific ciphertext is

similar to the one of Basic BFE. Given a secret key sk = (T, skbloom, sktime)
and a ciphertext of form C = (c, (a)j∈[h]), the Bloom filter is first updated
as T ′ = BF.Insert(H,T, c). With the Bloom filter key of form skbloom =
(skτ |d)d∈[m], the updated secret key is computed as

sk′τ |d =

{
skτ |i if T ′[i] = 0,

⊥ if T ′[i] = 1,

for each i ∈ [m]. A triple sk′ = (T ′, sk′bloom, sktime) is returned as an
updated secret key.

TBBFE.Dec(sk, τ, C): With a secret key of form sk = (T, skbloom, sktime) and
a ciphertext of form C = (c, (a)j∈[h]) where a = (Cj , Dj), the algorithm
checks if there is any key left capable of decrypting the given ciphertext.
The returned value is defined as

K =

{
⊥ if skτ |Hj(c) = ⊥,∀j ∈ [h],

Dj ⊕G2(Kj) if skτ |Hj(c) 6= ⊥,∃j ∈ [h].

TBBFE.PuncInt(sk, τ): After it has been used up, an interval is punctured. It
starts by resetting all Bloom filter bits. Having a secret key of form
sk = (T, skbloom, sktime) for time interval τ ′ < τ , it uses sktime key set to
derive a time key for interval τ , destroying all intermediary keys laying
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on the traversal path. Bloom filter keys for the new interval are then
recursively generated as

skbloom =
{

skτ |d ← HIBKEM.Del(skτ , d)
}
,∀d ∈ [m].

If the τ interval key is a left child node, its sibling node key is generated
before both the τ and its parent node are destroyed. This new key is
stored in sktime set and will be used as the key for the next time interval.

Theorem 5 ([DJS+18]). From each efficient adversary B against IND-s-CPA
of Time-Based BFE that sends q queries to random oracle G2, an efficient
adversary A can be constructed as

AdvOW−sID−CPA
A,HIBKEM (λ) ≥

AdvIND−s−CPAB,PFSKEM (λ,m, h)

hq
.

Correctness Error Much the same as with Basic BFE, the correctness error
of TBBFE is defined by the false positibe probability of the Bloom filter, and
by the probability of two ciphertexts having the same tag c. This yields the
correctness error of the scheme as approximately 2−h + n · 2−λ.
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Implementations of BFE and TBBFE were carried out in two phases. We
implemented both encryption schemes first in Java. We made this decision to
first create an easily understandable implementation due to Java’s higher level
of abstraction. Moreover, implementation errors in such high-level languages
are in most cases logic errors, as every basic data structure can be imported
from one of existing packages. Implementation of same schemes later in C was
then accelerated by the experience collected from the Java implementation. Fol-
lowing both implementations, we performed a series of tests yielding interesting
performance comparisons.

Both Java and C implementations of BFE are released under CC0 license.
Third-party libraries and code used or included in these implementations are
licensed separately by their copyright owners. Their respective licences will be
noted with library’s first mention in the further text.

Bloom filter is common for both schemes. We used MurmurHash3 as its internal
hash function. MurmurHash3 code we use in the BFE was written by Austin
Appleby and released to the public domain. It is a non-cryptographic hash
function, chosen due to its high speed hash calculation intended for hash-based
indexing [Ram15]. We use two MurmurHash3 hash functions to simulate h hash
functions with no influence on false positive probability [KM06]. This is achieved
with the following formula:

G′i(x) = G1(x) + iG2(x) + i2 mod m, i ∈ [h].

Such solution conveniently simplifies implementation of use cases with non-
constant number of hash functions.
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4.1 Basic Bloom Filter Encryption

Together with the Bloom filter, BFIBE is one of the main building blocks of
Basic BFE. This IBE scheme was originally constructed for Type-1 pairings.
Nevertheless, BFIBE is proven secure in asymmetric setting of Type-2 [SV07].

Protocols in the Type-2 setting are transformable to the Type-3 setting [CM11]
that we use in this implementation. For this to work, a generator g1 and
consequent public key pk are elements of G1. Hash function G1 maps to G2.
The rest remains as originally described.

Furthermore, the scheme requires a cryptographic hash function G2 : Gt →
{0, 1}λ. As its digest is not of fixed length, this called for an extendable output
function (XOF). We use the SHAKE256 function, being the first XOF approved
by the National Institute of Standards and Technology (NIST) [Nat15]. It is
a part of the SHA-3 family offering 256 bits of security for a sufficiently long
digest. In general, to achieve the highest security level a digest has to be at
least 512 bits in size.

4.1.1 Java Implementation

The minimum requirement for Java implementation of the scheme is Java 7. We
use libraries IAIK-JCE 5.51 [Ins18b] and ECCelerate 5.0 [Ins18a] for cryp-
tographic functionality and elliptic curve cryptography protocols respectively.
Both libraries are commercial, but offering free licenses to educational, research,
and open source projects.

The scheme is implemented as a single-threaded application, therefore no
performance gains from concurrency are possible. In a real-world scenario
this would be a major oversight since in the key generation phase each key
is generated independently. Concurrent execution of key generation would
noticeably boost the performance, especially considering servers have a higher
number of central processing unit (CPU) cores than personal computers. As
Java implementation was only a step before the real implementation in C, we
placed multithreading out of scope.

Pairings are Type-3 over Barreto-Naehrig (BN) curves [BN06]. The base field
size depends on the intended level of security. The ECCelerate library supports
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a large set of field sizes that are configurable on runtime. We used different field
sizes during testing and then made the comparison.

All introduced data structures are used in an abstract way to separate specific
implementations and libraries from the main class. The Bfe was designed as
a stateless class with all exposed methods being static. Following the original
algorithm description in [DJS+18], the methods exposed are:

Bfe.generateKeys(keySize, n, fPosProbability): Initializes the Bloom filter and
an array of private keys of size equivalent to the filter’s capacity. It iterates
over the elements of the array and extracts the private keys that are then
stored in the array. System parameters and the filter with the key array
are returned separately.

Bfe.encapsulate(sysParams): Generates the random symmetric key and calcu-
lates positions in the Bloom filter for which the key will be encrypted.
After encrypting the key for all defined positions, it returns the ciphertext
object which is fundamentally an array of ciphertexts, together with the
key K ′, explained in more detail as part of IND-CCA-secure construction
in Section 3.4.1.

Bfe.decapsulate(sysParams, sk, C): Queries the Bloom filter for the presence of
the ciphertext in the set. If there is no such element already in the set, it
calculates positions in the Bloom filter for which the key was encrypted.
From the key array it takes over the first available key from the calculated
positions and decrypts the ciphertext. The retrieved key is then encrypted
again as part of the consistency check described in more detail as part
of IND-CCA-secure construction in Section 3.4.1. If the check holds it
returns the key K ′, otherwise no value is returned.

Bfe.puncture(sk, C): It inserts the given ciphertext to the Bloom filter followed
by the deletion of the keys from the key array at the positions equal to
the affected ones of the Bloom filter.

Due to the class being stateless, its consumers are responsible for the storage
and handling of system parameters. System parameters including the public
key are returned as publicly known results of the key generation.
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4.1.2 C Implementation

Basic BFE is implemented as a library for C99 standard. For cryptographic
and elliptic curve operations we use the RELIC library [AG], dual-licensed under
Apache 2.0 and LGPL 2.1. The last RELIC stable release 0.4.0 was rolled out in
2014, and for this reason we use the unreleased 0.5.0 that is still under active
development. RELIC supports different types of curves configurable separately
from the BFE library at build time. Base field sizes depend on the chosen curve
and can not be chosen separately.

Additionally, we use SimpleFIPS202 from the eXtended Keccak Code Package
(XKCP) for its SHAKE256 implementation. Being released under CC0 license,
this code is included as part of the BFE library, therefore no separate installation
is necessary.

C implementation was carried out mostly by rewriting Java code to C, with
differences coming out predominantly from the additional complexity of memory
handling. The bloomfilter enc.h header file exposes following functions:

bloomfilter enc init setup pair(keySize, n, fPosProbability): Allocates the mem-
ory for the used data structures, initializes the Bloom filter, and sets
the system parameters excluding the public key. Returns a setup pair
structure.

bloomfilter enc keygen(setupPair): Iterates over the key array inside the setup
pair and extracts the private key storing them in the array. Only the
status code is returned since storing is done in place affecting the existing
array inside the setup pair.

bloomfilter enc init ciphertext(sysParams): Allocates the memory for the cipher-
text. Returns a ciphertext pair structure.

bloomfilter enc encapsulate(ciphertextPair, sysParams): Identical to a matching
method from Section 4.1.1. The exception is, the ciphertext is stored in
the passed ciphertext pair structure with the function itself returning only
a status code.

bloomfilter enc decapsulate(K, sysParams, sk, C): Identical to the method from
Section 4.1.1. The exceptions is, the byte array K in which the decapsu-
lated key will be stored has to be initialized beforehand and passed to the
function as a parameter. After successful decapsulation the key is stored
in it, while the function itself returns only a status code.

42



4 Scheme Implementation

bloomfilter enc puncture(sk, C): Identical to the matching method from Section
4.1.1.

There are additional helper utility functions exposed in the header file together
with additional memory de/allocation functions for introduced data structures.
In addition to the single-threaded mode this implementation of Basic BFE
supports multithreaded key generation.

Multithreaded Key Generation

Following the general idea of the protocol, key generation will be executed on
a server. Such computers are equipped with multi-core CPU units, enabling
applications to benefit from internal task concurrency. While not likely used for
a standard web application, cloud computing platforms like Microsoft Azure
already offer server instances with more than a hundred CPU cores.

The highest CPU load is during key generation. Moreover, it is also the only
phase where concurrency makes sense due to a high number of repetitive
independent function calls. The implementation itself is intuitive as the keys are
stored inside an indexed data structure. We extended the key generation function
bloomfilter enc keygen(setupPair, t) with additional argument t for the number
of threads. After Bloom filter size calculation and key collection initialization,
the collection is logically divided on t equal parts. Each part is assigned to a
different thread to generate and fill in the keys. With a large enough Bloom
filter this could in theory increase the key generation speed close to t times.

The number of threads is left to be defined by the integrator as it depends on
the system’s CPU. As a rule of thumb, on a n-core processor, the number of
threads should be somewhere between n and 2n, depending on whether the
CPU supports hyper-threading or not. Creating too many threads on a smaller
target key collection could negatively influence the performance due to thread’s
lifecycle overhead.

4.1.3 Performance Expectations and Results

All performance tests were conducted on a standard F4s Microsoft Azure virtual
machine with 4 virtual CPU cores (2.4 GHz Intel® Xeon® E5-2673 v3 Haswell)
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and 8 GB of RAM. We measured full key generation, encryption, decryption,
and puncturing times. We used different elliptic curves allowing different levels
of security.

Testing Process

Constant values defined the same for all test scenarios are:

• false positive probability Prfalse = 10−3

• single key size λ = 128 bit
• number of encryption operations executed per test nenc = 500
• number of decryption operations executed per test ndec = 500
• number of puncturing operations executed per test npunc = 500.

Values that changed over different test scenarios are elliptic curve type and a
Bloom filter size defined by the number of possible puncturings for given Prfalse

n ∈ {5 · 103, 10 · 103, 20 · 103, 30 · 103, 40 · 103, 50 · 103}.

For time measurement in Java we used StopWatch from Apache Commons Lang

3.8.1 API. In C we measured time with a Unix system call gettimeofday from
sys/time.h.

We measured full key generation time as a run time of the BFE.KGen function.
Encryption times were measured in a loop over nenc. Right after a single
encryption was performed, a decryption of the produced ciphertext was triggered
followed by key puncturing. Each of the three operations had a dedicated time
counter aggregating total times. From the measured values we derive average
times for a single encryption, decryption, and puncturing operation.

The testing setup was able to identify false positive hits and includes the number
of such cases in the test report. This was done for completeness’ sake of the
tests, but such situations were not expected as defined npunc is not high enough
to pose a threat of this happening.

We tested each scenario twice and derived a unique result as an average of the
two.
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Table 4.1: Average run times of basic elliptic curve functions in Java and C; BN-382; n = 500

Operation tJava [ms] tC [ms] tJava/tC

Multiplication in G1 2.726 0.466 5.85
Multiplication in G2 7.204 1.556 4.63
Addition in G1 0.024 0.002 9.48
Addition in G2 0.034 0.006 5.33
Pairing 16.087 6.758 2.38
Multiplication in Gt 0.054 0.019 2.76
Exponentiation in Gt 20.414 5.058 4.04

Expected Performance Results

The most noteworthy difference between Java and C is the layers of abstraction.
Java is compiled to Java Bytecode that is interpreted on a Java Virtual Machine
(JVM), which then runs the code on the native environment. This makes Java
highly portable. C is more straightforward than Java as it is compiled directly to
binary code. This makes it platform dependent, but it runs faster than Java.

Performance expectations were made prior to implementation. To do that, the
most computationally expensive elliptic curve operations used were identified
and individually measured in Java and C. The results that are shown in Table
4.1 present significant differences in run times between the two.

As the number of function calls is known, expected run times of BFE functions
were estimated. Together with BFE functions there are other functions as well
that collectively impact the performance. Since this impact is not taken into
account for the estimation, estimated values present the lower boundary of
the run times. Elliptic curve operations used by each of BFE functions are
presented in Table 4.2. This data was used to calculate the expected times of C
implementation with the formulae:

tBFE.KGen ≥ tG1mul +m · tG2mul (4.1)

tCBFE.Enc ≥ tG1mul · (2h+ 1) + tpair · h (4.2)

tJava
BFE.Enc ≥ tG1mul · (h+ 1) + tpair · h+ tGtexp (4.3)
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Table 4.2: Elliptic curve operations per each BFE function. Values in brackets are specific to
Java implementation, values in parentheses are specific to C implementation.

BFE.KGen BFE.Enc BFE.Dec BFE.Punc

Mult. in G1 1 h + 1 (+ h) h + 1 (+ h) 0
Mult. in G2 m 0 0 0
Pairing 0 h h + 1 0
Exp. in Gt 0 [h ] [h ] 0

tCBFE.Dec ≥ tG1mul · (2h+ 1) + tpair · (h+ 1) (4.4)

tJava
BFE.Dec ≥ tG1mul · (h+ 1) + tpair · (h+ 1) + tGtexp (4.5)

BFE.Enc functions were implemented differently in Java than in C. In C, expo-
nentiation was replaced with multiplication in G1 for performance benefits. This
is why Formulae 4.2 and 4.3 are not the same. The same holds for Formulae
4.4 and 4.5 since encapsulation is a part of decapsulation’s consistency check.
There are no computationally expensive operations in BFE.Punc, and for this
reason no estimations were made.

Key Generation Considering an elliptic curve and a prime field size is fixed
for all test-runs of one test scenario, the only factor influencing the total key
generation time is the number of keys generated. In other words, key generation
time is proportional to Bloom filter size. As described in Section 2.3.3, this is
defined by the number of possible key puncturings and a defined false positive
probability.

From Formula 4.1, we expect the run times of the BFE.KGen function to be
linear over the different number of possible key puncturings. This would make
it possible to define the scheme’s parameters before having to deploy it on a
larger scale. The function for the estimation of the key generation run time is
t =

ntarget

x , where x is a constant defined for a specific environment where the
scheme is to be deployed. To define this constant, a scheme would have to be
deployed with a small key set of size n from where the constant is acquired as
x = n

t′ .
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Encryption The single variable affecting the encryption run time is a number
of hash functions inside a Bloom filter. This is evident from Table 4.2. Since
false positive probability is constant over all test scenarios, it means the number
of hash functions is also constant. Therefore we do not expect encryption run
times to be influenced by the change in the key set size.

Decryption Focusing solely on elliptic curve operations, the single difference
between encryption and decryption is the latter having an additional pairing
operation. This yields the same conclusion as for encryption, that we do not
expect run time to be influenced by the change in the key set size.

Results

We will start presenting performance results by comparing the results of im-
plementations in Java and C. Further on, all results will be focused on the C
implementation. As libraries used in the two different implementations do not
support all the same elliptic curve types, a one to one comparison of the two is
very limited. For this purpose, we use a Barreto-Naehrig curve of 382 bit prime
order since it is supported by both libraries.

Barreto-Naehrig 382 The comparison of Java and C run time performance
is shown in Figure 4.1. It is evident from the plot that the BFE.KGen function
indeed is linear. The figure also supports the expectation for encryption run
times, showing them to be nearly constant. The expectation for decryption
also proved to be correct, with a noticeable difference from encryption due to
the additional pairing operation. The difference in run times of encryption and
decryption from Table 4.3 can be paired almost perfectly with the run time of
a single pairing operation from Table 4.1.

Other Elliptic Curves The following elliptic curves were used for the testing
of C implementation:

• Barreto-Naehrig (BN) of a 446 bit (BN-446) and 638 bit (BN-638) prime
order
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Figure 4.1: Comparison of Java ( ) and C ( ) run times of BFE operations in relation
to the number of possible puncturings; BN-382. Expected run time lower boundary
is indicated by for C, and by for Java.
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Table 4.3: Run times of BFE functions in Java and C; BN-382; n = 5 · 104 ⇒ m = 718882

Function tJava tC test
Java test

C tJava/tC

BFE.KGen [min] 170.25 41.11 86.31 18.64 4.14
BFE.Enc [ms] 496.62 86.19 211.27 77.37 5.76
BFE.Dec [ms] 512.28 92.55 227.36 84.12 5.54
BFE.Punc [ms] 0.086 0.022 ∅ ∅ 3.96

Table 4.4: Run times of BFE functions in C over different elliptic curves; n = 5 · 104 ⇒ m =
718882

Function tBN−382 tBN−446 tBN−638 tBLS−381 tBLS−446

BFE.KGen [min] 41.11 54.15 153.15 34.05 47.90
BFE.Enc [ms] 86.19 123.79 268.31 74.08 104.59
BFE.Dec [ms] 92.55 132.99 285.10 79.23 112.01
BFE.Punc [ms] 0.022 0.024 0.031 0.020 0.024

• Barreto-Lynn-Scott (BLS) of a 381 bit (BLS-381) and 446 bit (BLS-446)
prime order

Run times of BFE functions with different curves are presented in Table 4.4,
with data plotted in Figure 4.2.

In [DJS+18] the authors defined npunc = 220 as a choice of parameter reasoning
that amounts to adding 212 elements to the Bloom filter each day for a year.
We fitted our measurements to linear curves allowing us to estimate how much
time such key generation would take on our test system. We present the results
in Table 4.5.

Multithreaded Key Generation Particularly noticeable performance improve-
ments are the result of the concurrent key generation. Key extractions are
completely independent of each other and therefore a speed up is expected
when the number of threads is up to the number of cores. Such a setup was
tested with a different number of threads with fixed n = 5 · 104. The results are
presented in Table 4.6. We can see in Figure 4.3 there is a steep drop in key
generation time as soon as one additional thread is mobilized, and then run
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Table 4.5: Estimated run times of BFE key generation in C; n = 220 ⇒ m ≈ 15.076 · 106

Elliptic Curve tkeygen [h]

BN-382 14.43
BN-446 19.25
BN-638 52.78
BLS-381 11.86
BLS-446 16.95

Table 4.6: Run times of BFE operations relative to the number of threads; n = 5 · 104 ⇒ m =
718882. Unit of time is a minute.

nthreads tBN−382 tBN−446 tBN−638 tBLS−381 tBLS−446

1 41.11 54.15 153.15 34.05 47.90
2 23.16 29.89 79.28 19.06 25.86
3 15.62 20.30 55.58 13.78 17.60
4 12.27 16.03 45.17 10.85 13.61
5 12.36 16.49 45.55 10.72 13.67
6 12.39 16.54 46.83 11.33 14.66
7 12.05 16.34 46.05 11.01 14.64
8 12.63 15.97 45.94 11.15 14.92
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Figure 4.2: Run times of BFE operations in relation to the number of possible puncturings, C
implementation
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Figure 4.3: Run times of multithreaded BFE key generation over the number of threads;
n = 5 · 104 ⇒ m = 718882

time becomes nearly constant after 4 threads. The CPU of the test environment
has 4 cores so this fits the expectations.

Memory Consumption The BFE secret key has to be created at once before
using the scheme. Considering there is one Boneh-Franklin IBE secret key stored
per each Bloom filter position, this key can become rather large. To measure the
real memory allocation of such a key we used Valgrind together with Massif

Visualizer to profile the memory on a small key set. Results are presented in
Table 4.7 and plotted in Figure 4.4. Memory allocation of potentially larger
keys was estimated since memory profiling is extremely time consuming and
the function is anyhow linear. Puncturing keys does not affect the memory
allocation since the whole memory block stays allocated up until the key is fully
used. For Prfalse = 10−3, Formula 4.6 can be used for estimation of memory
allocation of the secret key.

sizeheap ≈
xnpunc

103
[MB] (4.6)

xBN−382,BLS−381 = 4.06, xBN−446,BLS−446 = 4.72, xBN−638 = 6.69
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Table 4.7: Measured heap allocation of BFE secret key in MB

npunc BN-382/BLS-381 BN/BLS-446 BN-638

100 0.406 0.483 0.669
200 0.812 0.966 1.339
300 1.218 1.415 2.008
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Figure 4.4: Heap allocation of BFE secret key. Values for npunc > 300 are estimations.

In [DJS+18] the authors estimated for BLS-381 and npunc = 220 the expected
size of the secret key to be approximately 700 MB. By Formula 4.6, for a same
BFE configuration, the secret key size would be approximately 4257 MB. Time
performance had higher priority over memory performance in this implementa-
tion, therefore to avoid time costly decompression operations we did not store
the elliptic curve points in a compressed format. If points would have been
compressed, the total secret key size would be close to the one expected in
[DJS+18].
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4.2 Time-Based Bloom Filter Encryption

The Time-Based Bloom Filter Encryption (TBBFE) is built on top of the
HIBE scheme. This IBE scheme is originally constructed for symmetric bilinear
pairings. Because of the libraries used and potential performance benefits we had
to adapt it to work in the Type-3 setting. We accomplished this by duplicating
all system parameters into both groups [AHO16]. If g ∈ G1 and ĝ ∈ G2, then
the HIBE system parameters are (g, g1, g2, g3, h1, . . . , hl, ĝ, ĝ1, ĝ2, ĝ3, ĥ1, . . . , ĥl),
with mk = gr2.

In BBGHIBE.Setup, a private key for identity id = (I1, . . . , Ik) is

skid =
(
gr2 ·

(
g3 · hI11 · · ·h

Ik
k

)s
, gs, hsk+1, . . . , h

s
l

)
= (a, b, ck+1, . . . , cl) .

Having a secret key in G1 makes it more compact, meaning the TBBFE key col-
lection is smaller. The trade-off is having larger ciphertexts. In BBGHIBE.Encrypt,
a single ciphertext is computed as

C =

(
e (g1, ĝ2)t ·M, ĝt,

(
ĝ3 · ĥI11 · · · ĥ

Ik
k

)t)
=
(
a′, b′, c′

)
,

with all elements ending up either in G2 or Gt. BBGHIBE.Decrypt retrieves the
original message as

M = a′ · e(b, c
′)

e(a, b′)
.

HIBE keys are generated in a recursive function that runs in a single thread. We
did not implement TBBFE to support multithreading. This is still achievable
for key generation where time performance benefits should be noticeable.

Outstanding Improvements While not implemented as part of this work,
worth mentioning are two potential improvements that could have a significant
performance impact. In Section 4.1.3 we have already demonstrated how much
key generation can benefit from multithreading. Key generation of TBBFE is
slightly more complex due to dependencies between the keys. Multithreading
could be implemented for 2t threads by generating the tree nodes recursively
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down to level t, from where a new thread would be created for each node and
parts of the tree continued to be generated independently in separate threads.
Another improvement would be passing forward intermediary results between
the nodes during key generation. For a single node on level k, this would replace
current k point additions in G1 with a single addition. While point additions
are not costly, on a larger scale this could potentially become noticeable.

4.2.1 Java Implementation

TBBFE is a part of the same codebase as the BFE implementation. Time
interval keys are stored in a hash map while final Bloom filter keys are stored
in a list. We did not use a tree-like data structure since intermediary keys are
destroyed on the fly and the full tree is never formed in practice. Both hash
map and list offer element retrieval of time complexity O(1) suitable for optimal
time performance.

TimeBasedBfe was designed as a stateless class with all exposed methods being
static. The methods exposed are:

TimeBasedBfe.generateKeys(keySize, n, fPosProbability, timeExp): Initializes a
Bloom filter and two hash maps storing the time keys and Bloom filter
keys separately. It extracts two keys for identities 0 and 1, stores them in
the time interval hash map, and then punctures the first interval. System
parameters and a secret key object are returned separately. The secret
key includes the Bloom filter, both hash maps, and a current time interval
identity.

TimeBasedBfe.encapsulate(sysParams, timeInt): Generates the random symmet-
ric key and calculates positions in the Bloom filter for which the key will
be encrypted. It returns an array of encapsulated keys after encrypting
the key for all defined positions.

TimeBasedBfe.decapsulate(sysParams, sk, C): Queries the Bloom filter for the
presence of the ciphertext in the set. If there is no such element already
in the set, it calculates positions in the Bloom filter for which the key
was encrypted. From the Bloom filter key hash map it takes over the first
available key from the calculated positions and decrypts the ciphertext.
The decrypted value is the symmetric key being returned as the output
of the method.
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TimeBasedBfe.punctureKey(sk, C): Inserts the given ciphertext to the Bloom
filter followed by deletion of the keys from the Bloom filter key hash map
at the positions equal to the affected ones of the Bloom filter.

TimeBasedBfe.punctureInterval(sysParams, sk, timeInt): It recursively extracts
the keys until reaching the last level of the tree. It stores the last-level
keys in the Bloom filter hash map, and the time keys needed for future
time intervals in the time hash map. Intermediary keys not relevant for
future time intervals are deleted on-the-fly. The time interval parameter
is optional and typically not recommended since unsystematic puncturing
of time intervals could lead to unreachable time intervals.

As with Basic BFE, the library consumers are responsible for the storage and
handling of system parameters.

4.2.2 C Implementation

TBBFE is a part of the same library as BFE implementation. Time interval
keys and Bloom filter keys are both stored inside a same list. Developing a hash
map in C for a small number of time interval keys was infeasible, instead we
identified a maximum possible number of time interval keys at one point of
time. A TBBFE scheme with 2t time intervals can at a certain time store a
maximum of t time interval keys. This holds under the assumption that the
intervals are punctured from left to right in a correct order. It is a reasonable
assumption since doing it in any other order would only incur additional memory
overhead.

The tb bloomfilter enc.h header file exposes the following functions:

tb bloomfilter enc init setup pair(n, fPosProbability, timeExp): Allocates mem-
ory for the used data structures, initializes the Bloom filter, and sets a
part of system parameters. Returns a setup pair structure.

tb bloomfilter enc setup(setupPair, keySize): Extracts two keys for identities 0
and 1, stores them in the key array, and then punctures the first interval.
Time keys and Bloom filter keys are stored inside the same array with
time keys stored at lower indexes followed with Bloom filter keys at the
higher ones. The generated keys are stored inside the passed setup pair
and the function returns only a status code.
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tb bloomfilter enc init ciphertext(sysParams): Allocates the memory needed for
the ciphertext and returns the ciphertext structure.

tb bloomfilter enc encapsulate(C, sysParams, timeInt): Identical to a matching
method from Section 4.2.1. The exception is, the ciphertext is stored in
the passed ciphertext structure with the function itself returning only a
status code.

tb bloomfilter enc decapsulate(K, sysParams, sk, C): Identical to the matching
method from Section 4.2.1. The exception is, the byte array K in which
the decapsulated key will be stored has to be initialized beforehand and
passed to the function as a parameter. After successful decapsulation the
key is stored in it, while the function itself returns only a status code.

tb bloomfilter enc puncture key(sysParams, sk, C): Identical to the matching
method from Section 4.2.1.

tb bloomfilter enc puncture int(sysParams, sk): Recursively extracts the keys
until reaching the last level of the tree. It stores the time keys needed
for future time intervals and the last-level keys together in the key array.
Intermediary keys not relevant for future time intervals are deleted on-
the-fly. Due to the limited capacity of locations reserved for time keys
inside the key array, it is not possible to select a specific time interval.
Instead, time intervals are punctured in an ordered manner.

Additionally, additional utility and memory de/allocation functions for intro-
duced data structures are exposed.

4.2.3 Performance Expectations and Results

The same environment as for Basic BFE was used with the same time measure-
ment functions. We measured partial key generation, encryption, decryption,
and puncturing of keys and time intervals. We used different elliptic curves
offering different levels of security.

Testing Process

Constant values defined the same for all test scenarios are:

• false positive probability Prfalse = 10−3
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• single key size λ = 128 bit
• number of encryption operations executed per test nenc = 500
• number of decryption operations executed per test ndec = 500
• number of puncturing operations executed per test npunc = 500
• total key capacity mtotal = ntime ·mbloom = mtotal = 291725.

The values changed over different test scenarios are the elliptic curve type and
a Bloom filter size of a single time interval nbloom defined by the number of
possible puncturings for given Prfalse. To keep mtotal constant, ntime has to be
changed accordingly. For each test scenario, the parameter configuration for
test runs was nbloom = 222 − i and ntime = 2i, for i = 2, . . . , 15.

We measured time tree key generation (also known as time interval puncturing)
and Bloom filter key generation times separately. Bloom filter key generation
was measured only for the first Bloom filter tree. Measuring the generation
times of all trees would take a long time and the results should be similar for
each of the trees. Run times of time interval puncturing highly depend on the
interval being punctured. In the best case, it is instant as the key was generated
as a part of previous interval puncturing. If not, intermediate keys are generated
along the way to the final one. To be as general as possible, in all test scenarios
all time intervals were punctured and we measured the time collectively. The
time tree generation time was then defined as an average of all intervals.

We tested encryption and decryption times in the same way as for Basic BFE.
Again, we tested each configuration twice, and derived a unique result as an
average of the two.

Expected Performance Results

As with Basic BFE, we used values from Table 4.1 to estimate the expected C
implementation run times.

As the TBBFE.KGen function can not be a synonym for key generation as it
was in Basic BFE, parts of this function were not measured to simplify the
process. Excluded from measurement are the time key derivations for two first
level keys. We consider this as negligible on a larger scale.
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Table 4.8: Elliptic curve operations per TBBFE function

ntime · TBBFE.PuncInt TBBFE.Enc TBBFE.Dec

Mult. in G1 Formula 4.8 h 0
Mult. in G2 0 2h 0
Add. in G1 Formula 4.7 0 0
Add. in G2 0 h(l + 1) 0
Pairing 0 h 2
Mult. in Gt 0 0 1
Point doubling in G1 Formula 4.9 h(l/2) 0

Elliptic curve operations used by each of the TBBFE functions are presented
in Table 4.8. To simplify the formulae, tree generation times were estimated
as one full tree including both time interval tree and Bloom filter trees. The
number of point additions in G1 in full tree generation is approximately

nG1add = 4n+
l∑

i=1

2i (l + 1) . (4.7)

The number of point multiplications in G1 in full tree generation is approxi-
mately

nG1mul =
5

2
n+

l∑
i=1

2i (l − i+ 1) , (4.8)

where n = 2l+1 − 1 is the total number of nodes. The number of point doubling
in G1 in full tree generation is approximately

nG1dbl =
l∑

i=1

i · 2i−1. (4.9)

There are no computationally expensive operations in TBBFE.PuncCtx. The
run times were estimated as follows:

ntime · tTBBFE.PuncInt ≥ tG1add · nG1add + tG1mul · nG1mul + tG1add · nG1dbl (4.10)

tTBBFE.Enc ≥ tG1mul · h+ tG2mul · 2h+ tG2add · h(l + 1)

+ tpair · h+ tG2add · h
l

2

(4.11)
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Table 4.9: Run times of TBBFE functions in Java and C; BN-382; mbloom = 218 ⇒ nbloom =
18233, ntime = 24

Function tJava tC test
Java test

C tJava/tC

TBBFE.PuncIntbloom [min] 246.64 31.97 115.05 18.98 7.71
TBBFE.PuncInttime [ms] 97.06 27.46 115.36 19.61 3.53
TBBFE.Enc [ms] 716.19 110.87 343.77 105.40 6.46
TBBFE.Dec [ms] 31.43 11.67 32.23 13.54 2.69
TBBFE.PuncCtx [ms] 0.095 0.019 ∅ ∅ 5.00

tTBBFE.Dec ≥ 2tpair + tGtmul (4.12)

In Formulae 4.10 and 4.11, instead of point doubling times we use point addition
times as we expect these two functions to be very close.

Results

Comparison of Java and C implementation performance results will again serve
as an introduction to the results. Further on, we focus on the performance of
C implementation. We use the BN-382 curve for comparison for the already
mentioned reasons.

Barreto-Naehrig 382 The comparison of Java and C run time performance is
shown in Figure 4.5, with values being presented in Table 4.9.

Other Elliptic Curves We use the following elliptic curves for testing of C
implementation: BN-446, BN-638, BLS-381, and BLS-446. The run times of
TBBFE functions with different curves are presented in Table 4.10, with data
plotted in Figure 4.6. From these results it is noticeable that the encryption
time does not depend on the ratio between time tree and Bloom tree size. This
is as expected since the full tree is of constant size, meaning the number of
point additions is constant over all test scenarios. Furthermore, we can see that
the average time of single interval puncturing is decreasing as the number of
time intervals is decreasing. This is explainable by the fact that there are less
intermediary keys to be derived as part of the time tree generation.
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Figure 4.5: Comparison of Java ( ) and C ( ) run times of TBBFE operations in relation
to the number of possible puncturings in a single time interval; BN-382

61



4 Scheme Implementation

0 10 20 30 40 50 60 70 80
·10310−2

10−1

100

101

102

103

npunc

tb
lo

o
m

k
ey

g
en

[m
in

]

0 20 40 60 80
·103

50

100

npunc

tt
im

e
k
ey

g
en

[m
s]

0 20 40 60 80
·103100

200

300

400

npunc

t e
n

cr
y
p

t
[m

s]

0 20 40 60 80
·10310

20

30

40

npunc

t d
ec

ry
p

t
[m

s]

0 20 40 60 80
·1031.8

2

2.2

·10−2

npunc

t p
u

n
ct

u
re

[m
s]

BN-446 BN-638 BLS-381 BLS-446

Figure 4.6: Run times of TBBFE operations in relation to the number of possible puncturings
per one time interval, C implementation
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Table 4.10: Run times of TBBFE functions in C over different elliptic curves; mbloom = 218 ⇒
nbloom = 18233, ntime = 24

Function tBN−382 tBN−446 tBN−638 tBLS−381 tBLS−446

TBBFE.PuncIntbloom [min] 31.97 42.16 105.49 27.58 36.21
TBBFE.PuncInttime [ms] 27.46 37.87 109.25 20.55 27.60
TBBFE.Enc [ms] 110.87 159.27 405.29 91.24 122.07
TBBFE.Dec [ms] 11.67 17.47 41.54 10.41 13.81
TBBFE.PuncCtx [ms] 0.019 0.018 0.023 0.018 0.018

Table 4.11: Estimated run times of TBBFE single bloom tree generation in C; mbloom =
220 ⇒ mbloom ≈ 15.076 · 106

Elliptic Curve tkeygen [h]

BN-382 31.64
BN-446 41.47
BN-638 104.60
BLS-381 27.35
BLS-446 36.46

63



4 Scheme Implementation

Table 4.12: Measured heap allocation of TBBFE secret key in MB

npunc BN-382/BLS-381 BN/BLS-446 BN-638

72 1.825 2.109 2.958
143 3.639 4.203 5.897
285 7.265 8.392 11.774
570 14.515 16.768 23.525
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Figure 4.7: Heap allocation of Time-Based BFE secret key. Values for npunc > 570 are
estimations.

Similar as we did for Basic BFE, we estimate how much time it would take
to generate keys for npunc = 220 inside a single time interval. The results are
presented in Table 4.11. We do not estimate time tree generation times, but
those should be negligible in this setup for a reasonable number of intervals
considering the size of a bloom tree.

Memory Consumption As described in Section 3.4.2, the final BFE secret key
stored in TBBFE is structurally equivalent to the one of the basic scheme with
the addition of stored time interval keys. Considering there is one HIBE secret
key stored per each Bloom filter position, this key can become rather large. We
used the same tools to measure memory consumption of the key as for the Basic
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BFE. Results are presented in Table 4.12 and plotted in Figure 4.7. Again, a
small key set was profiled while potentially larger keys were estimated from the
results. Memory is statically allocated so puncturing keys does not affect the
memory allocation during its life span.

For Prfalse = 10−3, Formula 4.13 can be used for the estimation of memory
allocation of the secret key.

sizeheap ≈
xnpunc

103
[MB] (4.13)

xBN−382,BLS−381 = 25.5, xBN−446,BLS−446 = 29.4, xBN−638 = 41.3
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The presented implementations can now be used as cryptographic primitives for
building high-level protocols. As a proof of concept for this thesis, we use Basic
BFE to extend the TLS 1.3 protocol with the 0-RTT replay attack secure and
forward secret application data transfer. The goal of such an extension would
be the faster initialization of a connection between a client and a server. In
low-bandwidth areas this could cause noticeable speed improvement without
weakening the security.

To avoid breaking existing TLS functionality, and also to comply with the
protocol standard, we implemented the additional functionality as a new bfe key

extension. The client can send early data as described in the protocol, but
this time without owning a previously received PSK. The PSK is dynamically
generated on the client-side in the bfe key extension. The key is then encrypted
by BFE using the public key of the server and sent out as extension data. The
public key is something a client should have obtained earlier, such as a part of
server’s certificate.

Key Derivation Schedule Figure 5.1 shows the full key derivation schedule
of TLS 1.3 with adaptations made with this implementation. Early secrets
are always derived prior to the derivation of handshake secrets. In this imple-
mentation we replace PSK with a random byte array generated by the client.
Additionally, we replace the (EC)DHE shared secret with zero-valued bytes, as
forward secrecy is anyhow provided by BFE.

Upon receiving data from the client, the server decrypts the PSK from the
extension and uses it to decrypt the early data. The early data is not a part
of the extension data, but instead the data is sent after all the extensions
as described in TLS 1.3. After decryption the server punctures its secret key
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Table 5.1: Captured TLS network packets of full TLS 1.3 handshake with application data

t [ms] ∆t [ms] Direction Len. [B] Message

0 0 C −→ S 417 Client Hello
1.119 1.101 S −→ C 200 Server Hello, Change Cipher Spec
5.822 4.485 C −→ S 72 Change Cipher Spec
9.827 4.005 S −→ C 1759 Application Data
10.435 0.563 C −→ S 140 Application Data
46.576 0.020 C −→ S 130 Application Data
46.708 0.106 S −→ C 90 Application Data

making it impossible to decrypt the same data again. This ensures replay attack
protection and forward secrecy of the early data.

5.1 Implementation

We extended the GnuTLS 3.6.4 library. It is licensed under LGPLv2.1+ license
and is known as one of the more popular C TLS libraries.

The implementation was undertaken in an elementary way. We implemented
only the parts directly needed for the proof of concept. This means whenever
early data is sent, the new extension is initialized and used, with no fallback
system in place.

We extended the BFE library with functions for writing and reading the scheme’s
parameters and keys to and from a file system. This allowed for a client to access
the server’s public key without having to do any kind of public key obtainment.
It additionally simplified implementation as there was no need to extend server
initialization functions since key generation was performed offline. Reading the
key from a file was done in the bfe key itself.

With all the mentioned shortcuts in place the implementation is not appropriate
for usage on production systems. Nonetheless, it proves BFE can be implemented
as a part of the TLS 1.3 protocol and provide a testing ground for performance
measurements.
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Table 5.2: Captured TLS network packets of TLS 1.3 handshake with early data and bfe key

t [ms] ∆t [ms] Direction Len. [B] Message

0 0 C −→ S 747 Client Hello
97.772 97.751 S −→ C 127 Server Hello, Change Cipher Spec
97.861 0.074 C −→ S 72 Change Cipher Spec
97.921 0.052 C −→ S 106 Application Data
103.097 5.168 S −→ C 1763 Application Data
103.898 0.781 C −→ S 92 Application Data
143.340 0.024 C −→ S 164 Application Data
143.477 0.128 S −→ C 90 Application Data

5.1.1 Performance Results

TLS performance tests were conducted on a machine with 2 CPU cores (1.8 GHz
Intel® Core™ i5 Ivy Bridge) and 6 GB of RAM. Server application was set up
on a local socket listening for client data and the client application was executed
on the same machine. Network traffic was recorded using Wireshark.

Two different test scenarios were executed, one with the full TLS 1.3 handshake
followed by application data, and one with the early data and bfe key extension
(BLS-381). Captured TLS network packets of the former are shown in Table
5.1 and packets of the latter are shown in Table 5.2. In both tests the same
application data was sent.

The handshake with the bfe key extension is noticeably slower in a scenario
where the ping time is essentially zero. In other words, the total processing
time of packets in the TLS handshake with bfe key is higher than the total
processing time of packets in full TLS 1.3 handshake. This was expected as
we have introduced additional cryptographic operations in the protocol. The
most noticeable performance downgrade is on the ServerHello message. This is
because prior to sending this message, a server first decrypts the PSK from the
bfe key extension. Additional time cost is caused by the trivial implementation
of the extension. In a production-ready implementation, the BFE parameters
and keys would be loaded in the memory instead of being read from the file
system prior to each usage. Reading BFE parameters and secret key from the
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file system takes in total 25.77 ms which is the cost of trivial implementation.

Furthermore, the measurements we present are in a perfect zero ping time
environment. In the real world where each roundtrip takes time, especially
in low-bandwidth conditions, we expect that the early data handshake with
bfe key could outperform the full TLS 1.3 handshake with application data. The
time difference between handshake start and first application data transfer from
client to server, taking into account the system parameters memory read time
overhead, provides an effectiveness ping threshold of the extended handshake.
The early data handshake with bfe key is more effective than the full TLS 1.3
handshake with application data for

tping & 75 ms.

5.1.2 Upgrading TLS 1.2 with Early Data

A question that may come up is whether the TLS 1.2 protocol could be extended
in a similar fashion to offer an early data mode. In TLS 1.2 a master secret is
derived with PRF as

master_secret = PRF(pre_master_secret, "master secret",

ClientHello.random + ServerHello.random)

[0..47];

A pre_master_secret is generated by the client and encrypted with the server’s
public key before sending to the server. Both client and server can then generate
the master secret by using client and server randoms. This provides replay
attack protection since even if the the same premaster secret and client random
would be sent, the server will generate a new random and a master key will be
different each time.

This type of master secret generation is a reason why early data implementation
with a bfe key extension or similar can not be implemented in TLS 1.2. It is
not possible for a client to obtain a server random without at least one prior
roundtrip. Without this random value the master secret cannot be properly
derived.
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0

HKDF-Extract = Early SecretPSK

Random[32]

Derive-Secret(., "derived", "")

Derive-Secret(., "ext binder" | "res binder", "")

= binder key

Derive-Secret(., "c e traffic", ClientHello)

= client early traffic secret

Derive-Secret(., "e exp master", ClientHello)

= early exporter master secret

HKDF-Extract = Handshake Secret(EC)DHE

0

Derive-Secret(., "derived", "")

Derive-Secret(., "c hs traffic",

ClientHello...ServerHello)

= client handshake traffic secret

Derive-Secret(., "s hs traffic",

ClientHello...ServerHello)

= server handshake traffic secret

HKDF-Extract = Master Secret0

Derive-Secret(., "c ap traffic",

ClientHello...server Finished)

= client application traffic secret 0

Derive-Secret(., "s ap traffic",

ClientHello...server Finished)

= server application traffic secret 0

Derive-Secret(., "exp master",

ClientHello...server Finished)

= exporter master secret

Derive-Secret(., "res master",

ClientHello...server Finished)

= resumption master secret

Figure 5.1: Implemented changes in the TLS 1.3 key derivation schedule
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To this end, a client could generate a kind of early data secret by using the same
PRF without a server random. This secret could then be used for encrypting
early data and sending it with the first set of messages together with a variant
of the bfe key extension that would carry the BFE encrypted key. While the
server would be able to decrypt the early data that way, a master secret derived
from both client and server randoms would have to be acquired for further
communication. This is something that is easily implemented in TLS 1.3 due
to the key derivation process that supports early secrets without the server’s
contribution. In TLS 1.2 this would require breaking changes to the protocol
resulting in its variant that would not be compliant with [RD08] anymore.
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6 Conclusion

Implementation and performance of Bloom Filter Encryption together with
its applicability to TLS was discussed in this thesis. Chapter 2 explained
the preliminaries with an overview of basic secure communication concepts.
The focus of the chapter was on presenting the improvements that TLS 1.3
brought compared to its preceding version as these improvements enabled us to
integrate our library into the protocol. In Chapter 3, encryption schemes used
for construction of BFE were described in detail.

In Chapter 4, implementations of Basic BFE and Time-Based BFE were pre-
sented with justifications for specific design decisions. Performance tests were
executed for multiple different elliptic curves under different sets of parameters.
We presented the results and compared them with expected outcomes. We
demonstrated how key generation of Basic BFE benefits from multithreaded
execution. To complement the presented implementations, we also mentioned
some improvements that could be applied to our implementation in order to
improve performance. Multithreaded key generation in TBBFE would be one
the improvements that would certainly make a noticeable difference.

In Chapter 5, implementation of the bfe key TLS 1.3 extension was presented.
This extension extends the TLS 1.3 handshake by providing a fully forward
secret 0-RTT mode. We elaborated performance measurements of the new
handshake protocol in detail and compared them with the full TLS handshake.
A slow down in TLS handshake package processing is recorded, but we argue
such implementation could still be effective in low-bandwidth environments.

6.1 Future Work

Future work can be done in the areas of code optimization, further testing, and
implementation with the TLS. It would be satisfying to see the development of
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the BFE library continued in the form of an open-source project. There are finer
performance improvements that could be made, as well as the multithreaded
version of the TBBFE key generation.

Further, it would be interesting to conduct a larger set of tests on different
environments, possibly on the devices with less processing power. We would
like to see the tests performing key generations of larger keys that are suitable
for use on production systems for months, or a year. In the context of TBBFE,
further testing of interval puncturing would have to be done to analyze the
performance impact of moving the key generation to the right side of the tree.

Interesting conclusions could come to light with a non-trivial implementation
of the bfe key extension. Additionally, an implementation of the extension in
the library such as the OpenSSL could be beneficial for further testing. If the
extended TLS would be deployed on a real server, the speed comparisons under
different conditions could be made, hopefully proving it indeed has practical
benefits in specific scenarios.
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