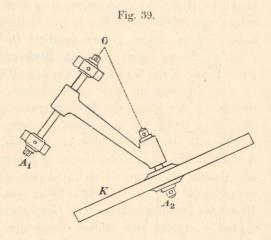
3. Drehungen um sich schneidende Achsen.

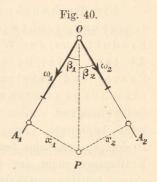
Dreht sich der Körper K um die Achse OA_2 (Fig. 39) und diese wieder um die Achse OA_1 , so sagt man, der Körper habe gleichzeitig zwei Dreh-

ungen um OA_1 und OA_2 mit den Winkelgeschwindigkeiten ω_1 und ω_2 , welche in Fig. 40 als Drehungsstrecken aufgetragen sind. Würde sich ein Körperpunkt bei O befinden, so hätte dieser die Geschwindigkeit Null; daher kann die Bewegung des Körpers als Drehung um einen festen Punkt O und nach S. 23 für jeden



Augenblick als Drehung um eine durch O gehende augenblickliche Drehachse OP aufgefasst werden. Es ist die Richtung von OP

und ihre Winkelgeschwindigkeit ψ zu bestimmen, u. zw. im Hinblick darauf, dass ein beliebiger Punkt P der Achse die Geschwindigkeit Null hat. Wählt man OP in der Ebene OA_1A_2 und hat der Punkt P von OA_1 uud OA_2 die rechtwinkligen Abstände x_1 und x_2 , so bekommt P durch ω_1 eine Geschwindigkeit $x_1\omega_1$ nach unten, durch ω_2 eine Geschwindigkeit $x_2\omega_2$ nach oben; ist also $x_1\omega_1=x_2\omega_2$, so hat P die Gesammt-



geschwindigkeit Null. Nennt man die Winkel der OP mit OA_1 und OA_2 bezw. β_1 und β_2 , ihre Summe $\beta_1+\beta_2=\alpha$, so ist

$$x_1 = OP \sin \beta_1; \quad x_2 = OP \sin \beta_2,$$
daher muss
$$\omega_1 \sin \beta_1 = \omega_2 \sin \beta_2, \quad \text{d. h.}$$

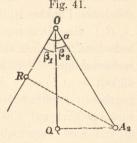
$$\frac{\sin \beta_1}{\sin \beta_2} = \frac{\omega_2}{\omega_1} \quad \text{sein.}$$

Um die Winkelgeschwindigkeit ψ der Achse OP zu erhalten, fällt man von A_2 aus die Winkelrechten A_2Q und A_2R (Fig. 41), dann muss

$$\psi \cdot \overline{QA_2} = \omega_1 \cdot \overline{RA_2}$$
 oder $\psi \cdot \overline{OA_2} \cdot \sin \beta_2 = \omega_1 \cdot \overline{OA_2} \cdot \sin \alpha$, d. h.

9)
$$\psi = \omega_1 \frac{\sin \alpha}{\sin \beta_2} = \omega_2 \frac{\sin \alpha}{\sin \beta_1}$$
 sein.

Es lässt sich aber zeigen, dass nicht nur parallele, sondern auch sich schneidende Drehungsstrecken wie Einzelkräfte

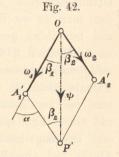


zusammengesetzt und zerlegt werden können, dass also für Drehungsstrecken der Satz vom Parallelogramm (1. Theil, S. 38) gültig ist.

Konstruirt man nämlich (Fig. 42) aus $OA_1'=\omega_1$ und $OA_2'=\omega_2$ ein Parallelogramm, so ist dessen Diagonale die gesuchte Drehungsstrecke ψ nach Grösse, Richtung und Sinn. Denn es ist in dem Dreieck $OA_1'P'$

10)
$$\sin \beta_1 : \sin \beta_2 : \sin \alpha = \omega_2 : \omega_1 : \psi$$
, was den Gl. 8 und 9 entspricht.

Wie aus dem Satze vom Parallelogramm der Kräfte der Satz vom Parallelepiped, vom Vieleck und der geometrischen Summe der Kräfte hergeleitet wurde (1 Theil S 39 41)



Kräfte hergeleitet wurde (1. Theil, S. 39-41), so kann dies auch hier bezüglich der Drehungsstrecken in gleicher Weise geschehen.

4. Drehungen um Achsen, die nicht in derselben Ebene liegen.

Sind (Fig. 43) $A_1B_1=\omega_1$ und $A_2B_2=\omega_2$ zwei zu einander windschiefe Drehungsstrecken, so lege man durch A_2 zwei Drehungsstrecken A_2C_2 und A_2D_2 , beide = und $\|A_1B_1$, aber unter sich von entgegengesetztem Sinne. Diese beiden heben sich gegenseitig auf, denn zwei gleiche entgegengesetzte Drehungen um dieselbe Achse tilgen sich gegenseitig. A_2B_2 und A_2C_2 lassen sich nach