
d) Widerstand beim Durchgange durch Schieber, Hähne, Drosselklappen und Ventile.

Diese Widerstände beruhen sämmtlich auf innerer Einschnürung. Weisbach's Versuche vom Jahre 1842 haben zu folgenden Ergebnissen geführt.

Schieber in kreisförmigem Rohre:

Ist F der Querschnitt des unverengten Rohres, w die Geschwindigkeit in demselben, F_1 der durch den Schieber verengte Querschnitt, $\zeta_3 \frac{w^2}{2\,g}$ die Widerstandshöhe, so ist nach Fig. 304 bei

$$\frac{x}{d} = \frac{1}{8}$$
 $\frac{2}{8}$ $\frac{3}{8}$ $\frac{4}{8}$ $\frac{5}{8}$ $\frac{6}{8}$ $\frac{7}{8}$ $\frac{F_1}{F} = 0.948$ 0.856 0.740 0.609 0.466 0.315 0.159 $\zeta_3 = 0.07$ 0.26 0.81 2.06 5.52 17.0 97.8 .

Schieber im Rohre von rechteckigem Querschnitte (Fig. 305):

 $rac{F_1}{F} = 0.9$ 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 $\zeta_3 = 0.09$ 0,39 0,95 2,08 4,02 8,12 17,8 44,5 193.

Hahn mit kreisförmiger Durchgangsöffnung; Stellwinkel δ (Fig. 306):

Stellwinkel
$$\delta = 10^{\circ}$$
 20° 30° 40° 50° 60° 65° 82° $\frac{F_1}{F} = 0.850$ 0.692 0.535 0.385 0.250 0.137 0.091 0 $\zeta_3 = 0.29$ 1.56 5.47 17.3 52.6 206 486 ∞ .

Hahn mit rechteckiger Durchgangsöffnung: Stellwinkel $\delta=10^{\circ}$ 20 $^{\circ}$ 30 $^{\circ}$ 40 $^{\circ}$ 50 $^{\circ}$ 67 $^{\circ}$

$$\frac{F_1}{F} = 0.849$$
 0.687 0.520 0.352 0.188 0 $\zeta_3 = 0.31$ 1.84 6.15 20.7 95.3 ∞ .

Drosselklappe (Fig. 307) in kreisförmigem Rohre:

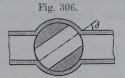


Fig. 307.

Stellwinkel
$$\delta = 10^{\,0}$$
 $20^{\,0}$ $30^{\,0}$ $40^{\,0}$ $50^{\,0}$ $60^{\,0}$ $70^{\,0}$ $90^{\,0}$ $\zeta_3 = 0.52$ 1.54 3.91 10.8 32.6 118 751 ∞ .

Drosselklappe in rechteckigem Rohre:

Stellwinkel
$$\delta = 10^{\circ} 20^{\circ} 30^{\circ} 40^{\circ} 50^{\circ} 60^{\circ} 70^{\circ} 90^{\circ}$$

 $\zeta_3 = 0.45 1.34 3.54 9.27 24.9 77.4 368 \infty.$

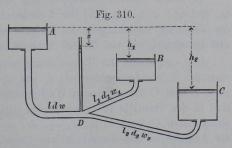
Für Kegelventile (Fig. 308) ist

$$\zeta_3 = \left(1,537 \, rac{F}{F_1} - 1
ight)^2,$$

wenn F_1 der kleinste Durchflussquerschnitt.

Für Klappenventile (Fig. 309) ist, wenn die Öffnung im Ventilsitz

Fig. 308.


$$F_2 = 0,535 F,$$

für
$$\delta = 70^{\circ}$$
 60° 50° 45° 40° 35° 30° 25° 20° 15° $\zeta_3 = 1.7$ 3,2 6,6 9,5 14 20 30 42 62 90.

e) Wasserleitung mit Verzweigung.

Von einem Hauptbehälter A (Fig. 310) werde nach zwei

Stellen B und C die sekundl. Wassermenge Q_1 bezw. Q_2 geliefert. Von A nach D führe ein Hauptrohr von der Weite d, der Länge l. Hier theile sich das Rohr in die Zweige von den Abmessungen d_1 , l_1 bezw. d_2 , l_2 . Zur Berechnung

von Q_1 und Q_2 denke man sich an der Verzweigungsstelle D einen