Die Geschwindigkeits-Änderungen innerhalb der ganzen Dauer des Stosses erhält man nun, indem man die des ersten Abschnittes noch mit 1+k multiplicirt. Daher

(10)
$$c - v = \frac{c - c_1}{1 + \frac{M}{M_1} + \frac{M}{\mu_1}} (1 + k),$$

11)
$$v_1 - c_1 = \frac{c - c_1}{1 + \frac{M_1}{M} + \frac{M_1}{u_1}} (1 + k),$$

12)
$$a_1(\psi_1 - \omega_1) = \frac{c - c_1}{1 + \frac{\mu_1}{M} + \frac{\mu_1}{M_1}} (1 + k).$$

Das Bildungsgesetz dieser Gleichungen 10-12 ist fast ebenso einfach wie das der Gleichungen für den geraden centralen Stoss (S. 129). Es kommen hier drei Geschwindigkeits-Änderungen in Frage: die der stossenden Masse M, die des Schwerpunktes der gestossenen Masse M_1 und die Änderung der Umfangsgeschwindigkeit der Drehung um die Schwerpunktsachse S_1 , gemessen am Stosspunkte, wobei μ_1 als träge Masse auftritt. Die rechten Seiten der Gleichungen enthalten übereinstimmend im Zähler die Stossgeschwindigkeit $c-c_1$ und den Faktor 1+k. Die Nenner enthalten als Summanden 1 und zwei Verhältnisse unter den drei Massen M, M_1 und μ_1 . Diese Verhältnisse sind derartig geordnet, dass stets diejenige Masse, um deren Geschwindigkeit sich's gerade handelt, in diesem Verhältnisse den Zähler bildet, während die beiden andern Massen die Nenner darstellen Wenn man in diesem Sinne die entstehenden Gleichungen überblickt, kann man sie leicht aus dem Kopfe anschreiben.

Mittelpunkt des Stosses.

Ein beliebiger, zwischen S_1 und P im Abstand x von S_1

befindlicher Punkt Q der Masse M_1 erfährt eine gesammte Tangential-Beschleunigung p_x , welche sich aus der Verschiebungs-Beschleunigung \mathfrak{p}_1 und der Drehungs-Beschleunigung $x \, \varepsilon_1$ zusammensetzt; es ist $p_x = \mathfrak{p}_1 + x \, \varepsilon_1$, oder nach Gl. 2 und 3, S. 145:

$$p_x = N\left(\frac{1}{M_1} + \frac{x}{\mu_1 a_1}\right).$$

Zwischen P und S_1 ist $p_x > \mathfrak{p}_1$, in S_1 ist $p_x = \mathfrak{p}_1$, während die Punkte der über S_1 hinaus

verlängerten Geraden PS_1 einem negativen x entsprechen, so dass

 $p_x < \mathfrak{p}_1$ wird. Für einen Punkt C heben sich die Beschleunigungen \mathfrak{p}_1 und $CS_1 \cdot \varepsilon_1$ gerade auf, wenn nämlich

$$\begin{split} \frac{N}{M_1} &= \frac{N}{\mu_1} \frac{\overline{CS_1}}{a_1} \quad \text{oder} \\ CS_1 &= \frac{\mu_1 \, a_1}{M_1}, \quad \text{mithin} \\ CP &= \frac{\mu_1 \, a_1}{M_1} + a_1 = \frac{\mu_1 \, a_1^2 \, + \, M_1 \, a_1^2}{M_1 \, a_1} \quad \text{ist.} \end{split}$$

Da nun $\mu_1 a_1^2$ das Trägheitsmoment für die Schwerpunkts-Achse, so ist der Zähler der letzten Gleichung das Trägheitsmoment in Bezug auf eine Achse P, rechtwinklig zur Bildebene, der Nenner das statische Moment für dieselbe Achse. Somit ist (Theil 1, S. 279)

13)
$$CP = l = \frac{J_P}{M_1 \, a_1}$$

die Schwingungslänge für den an der Achse P als Pendel aufgehängten Körper oder wegen der Vertauschbarkeit von Drehachse und Schwingungsachse auch für ein bei C aufgehängtes Pendel mit der Schwingungsachse P. Sämmtliche Punkte der rechtwinklig zur Bildebene durch C gelegten Geraden erfahren übereinstimmend die Beschleunigung Null. War die Masse M, nun vor dem Stoss in Ruhe, so werden die Punkte der Geraden C auch durch den Stoss nicht aus der Ruhe gebracht werden, während alle anderen Punkte in Beschleunigung gerathen. Befestigt man daher den Körper an der Achse C, so wird diese durch einen Stoss bei P keine Einwirkung erfahren. Aus diesem Grunde nennt man dann P den Mittelpunkt des Stosses in Bezug auf die Achse C. Dabei wurde vorausgesetzt, dass die rechtwinklig zur Bildebene, d. h. parallel mit C liegende Schwerpunktsachse S, eine freie Achse sei (1. Theil, S. 289) und dass P in der zu dieser Achse rechtwinkligen Schwerpunkts-Ebene liege.

Diese Beziehung ist wichtig für Körper, welche um Achsen drehbar sind und durch den Stoss von Daumen oder dgl. bewegt werden sollen (Aufwerfhämmer); greift der Daumen im Mittelpunkte des Stosses an, so wird die Achse durch den Stoss nicht beeinflusst. Auch bei Werkzeugen, die durch einen Schlag getroffen, oder mit denen Schläge ausgeübt werden, ist es vortheilhaft, die führende

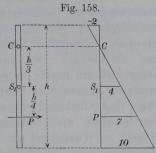
Hand bei C angreifen zu lassen, wenn bei P der Schlag erfolgt, damit die Hand keine Erschütterung (Prellung) empfinde.

Beispiel: Der Körper sei ein gerader Stab; zu dem im unteren Viertelpunkte gegebenen Stosspunkte P soll die unempfindliche Achse C gesucht werden. Es wird nach Gl. 13

$$l = \frac{J_P}{M_1 a_1} = \frac{M_1^{1/12} h^2 + M_1^{1/16} h^2}{M_1 \cdot {}^{1/4} h} = \frac{7}{12} h,$$

d. h. C liegt um $(^{7}/_{12}-^{1}/_{4})h=^{1}/_{3}h$ über C. Fasst man die Stange bei C mit der Hand, so wird ein bei P geführter Stoss der Hand nicht fühlbar werden. Das Gleiche gilt, wenn man den Stab bei P erfasst und der Schlag bei C erfolgt.

Es sollen nun auch die Geschwindigkeits-Änderungen berechnet werden, welche entstehen, wenn gegen die ruhende Stange bei P eine kugelförmige Masse M mit der



Geschwindigkeit cstösst. Der Stoss werde als une
lastisch und die Masse Mgleich der Mass
e M_1 voraüsgesetzt. Dann ist

$$egin{aligned} k &= 0 \;, & \omega_1 &= 0 \;, \\ \mathfrak{c}_1 &= 0 \;, & M_1 &= M \;, \\ \mathfrak{c}_1 &= 0 \;, & \mu_1 &= {}^4/{}_3 M_1 \end{aligned}$$

und nach den Gl. 10-12 (S. 147)

$$\begin{split} \sigma - v &= \frac{c}{1 + 1 + \frac{3}{4}} = \frac{4}{11} \, c \,; \quad v = \frac{7}{11} \, c \,. \\ v_1 &= \frac{c}{1 + 1 + \frac{3}{4}} = \frac{4}{11} \, c \,, \\ a_1 \psi_1 &= \frac{c}{1 + \frac{4}{3} + \frac{4}{3}} = \frac{3}{11} \, c \,. \end{split}$$

Da die Umfangsgeschwindigkeiten der Drehung an den verschiedenen Stellen mit dem Abstande x vom Schwerpunkte verhältnisgleich, so ist die Darstellung der Gesammt-Geschwindigkeiten eine Gerade. Trägt man in P und S_1 die Geschwindigkeiten v und v_1 durch Ordinaten 7 und 4 auf (Fig. 158), so ergiebt sich eine Gerade, die die Stange in dem Unempfindlichkeitspunkte C schneidet.

4. Schiefer centraler Stoss.

Die Schwerpunkte der beiden Körper mögen im Augenblicke des Zusammentreffens Geschwindigkeiten c und c_1 haben, die mit