
Insitute for Software Technology

Roxane Koitz-Hristov, Dipl.-Ing. Dipl.-Ing. BSc

From Theory to Practice: Abductive
Model-based Diagnosis and its Industrial

Application

DISSERTATION

to achieve the university degree of

Doctor of Technical Sciences

submitted to

Graz University of Technology

Supervisor Univ.-Prof. Dipl.-Ing. Dr. techn. Franz Wotawa
Insitute for Software Technology
Graz University of Technology

Graz, June 2018

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other than the
declared sources/resources, and that I have explicitly indicated all material which has been
quoted either literally or by content from the sources used. The text document uploaded to
TUGRAZonline is identical to the present doctoral thesis.

Date Signature

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und
inhaltlich entnommenen Stellen als solche kenntlich gemacht habe. Das in TUGRAZonline
hochgeladene Textdokument ist mit der vorliegenden Dissertation identisch.

Datum Unterschrift

Abstract
Due to the increasing complexity of technical systems, efficient and effective fault diagnosis is
crucial in order to reduce service costs and system downtime. Particularly in domains where
maintenance poses an extensive part of the entire operation cost, accurate identification
of failure sources has a large economic impact. Model-based diagnosis, as a subfield of
Artificial Intelligence, derives explanations for observed anomalies by relying on a formal
representation of the artifact under consideration. Two notions of model-based diagnosis
exist; first, the consistency-based variation determining root causes through discrepancies
between the predicted and actual behavior and second, the abductive form which is founded
in logic-based abduction. Although the theoretical background was established decades ago
and various research prototypes have been implemented, industrial applications are sparse.
The barriers separating science from practice include among others the initial modeling
effort, the high computational complexity associated with the fault identification task, and
the difficulties of consolidating model-based diagnosis tools and existing software.

To bridge the gap between academic research and industrial applications, this thesis
proposes a methodology for applying abductive model-based diagnosis to an industrial
setting. We define a process that positions the diagnostic task in the overall operational
life of a technical system and enables an easy integration into practice by splitting model
generation, fault detection, and fault identification into separate modules. To reduce or
even eliminate the initial modeling effort, we automatically construct suitable diagnosis
models from failure assessments available in practice. Within the troubleshooting portion
of the process, we show a general technique for combining diagnosis, solution ranking,
and the selection of probing points. An essential aspect when transporting research into
practical applications is to ensure the calculation of solutions is done in a reasonable time
frame. Hence, we investigate computational approaches to diagnostic problem-solving which
allow us to extract explanations efficiently. Thus, based on the characteristics of the models
generated on top of the failure records, we explore different notions of abductive reasoning
such as conflict-driven or direct procedures. Our experimental evaluations show that for
simple bipartite abduction problems deriving explanations via hitting set computation is
favorable. Yet, for more expressive representations we could not determine that either
conflict-directed or direct methods are superior.

The practicality of the proposed framework for incorporating abductive model-based
diagnosis into real-world domains is evaluated in an industrial use case on wind turbines.
Turbine maintenance costs are high and idle times lead to substantial revenue loss mak-
ing exact and fast fault identification a highly relevant pursuit. Therefore, we apply the
theoretically formalized diagnosis process by exploiting automatically retrieved turbine
health variables and expert knowledge of failures and their effects. To consolidate the fault
identification engine with the existing monitoring software and current work processes, we
present a user interface and interaction design as well as a workflow that should foster user
acceptance of the diagnosis application. The evaluations up to this point have shown that
the diagnosis approach is appropriate and permits practical usage.

v

Kurzfassung
Aufgrund der zunehmenden Komplexität technischer Systeme ist eine effiziente und ef-

fektive Fehlerdiagnose entscheidend, um Servicekosten und Systemausfallzeiten niedrig zu
halten. Insbesondere in Bereichen, in denen Wartung einen großen Teil der Gesamtbetriebs-
kosten ausmacht, hat die akkurate Identifizierung von Fehlerquellen große wirtschaftliche
Auswirkungen. Die modellbasierte Diagnose als Teilgebiet der Künstlichen Intelligenz leitet
Erklärungen für beobachtete Anomalien ab, indem sie sich auf eine formale Darstellung des
betrachteten Artefakts stützt. Zwei Richtungen der modellbasierten Diagnose können in der
Literatur identifiziert werden: erstens, die traditionelle konsistenzbasierte Variante bestimmt
Ursachen durch Diskrepanzen zwischen dem vorhergesagten und dem tatsächlichen Ver-
halten des Systems und zweitens die abduktive Form, die in der logikbasierten Abduktion
begründet ist. Obwohl die theoretischen Grundlagen bereits seit Jahrzehnten etabliert sind
und bereits mehrere Forschungsprototypen implementiert wurden, sind industrielle Anwen-
dungen spärlich. Zu den Barrieren, die Wissenschaft und Praxis trennen, gehören unter
anderem der anfängliche Modellierungsaufwand, die mit der Fehleridentifikationsaufgabe
verbundene hohe rechnerische Komplexität und die Schwierigkeiten des Zusammenführens
von modellbasierten Diagnosewerkzeugen und bestehender Software.

Um die Lücke zwischen akademischer Forschung und industriellen Anwendungen zu
schließen, wird in dieser Arbeit eine Methodik präsentiert, um abduktive modellbasierte
Diagnose in einem industriellen Umfeld anzuwenden. Wir definieren einen Prozess, der
die Diagnoseaufgabe innerhalb der Gesamtlebensdauer eines technischen Systems darstellt
und eine einfache Integration in die Praxis ermöglicht, indem Modellgenerierung, Fehler-
erkennung und Fehleridentifikation in separate Module aufgeteilt werden. Um den initialen
Modellierungsaufwand zu reduzieren oder gar zu eliminieren, leiten wir aus in der Praxis
verfügbaren Fehleranalysedokumenten automatisch geeignete Diagnosemodelle ab. Ein
wesentlicher Aspekt beim Übertragen von Forschungsergebnissen in die Praxis besteht darin,
sicherzustellen, dass die Berechnung der Lösungen in einem angemessenen Zeitrahmen er-
folgt. Daher untersuchen wir computergestützte Ansätze zur Lösung von Diagnoseproblemen,
die eine effiziente Ableitung von Erklärungen ermöglichen. Basierend auf den Eigenschaften
der Modelle, die auf Grundlage der Fehleranalysedokumente erstellt werden, untersuchen
wir unterschiedliche Konzepte des abduktiven Schließens, wie beispielsweise konfliktbasierte
oder direkte Verfahren. Unsere experimentellen Auswertungen zeigen, dass für einfache
bipartite Abduktionsprobleme die Ableitung von Erklärungen durch Hitting Set Berechnung
vorteilhaft ist, während wir für aussagekräftigere Darstellungen nicht feststellen konnten,
dass konfliktgesteuerte oder direkte Methoden überlegen sind.

Die Anwendbarkeit des vorgeschlagenen Frameworks für die Integrierung abduktiver
modellbasierter Diagnose anhand von realen Problemstellungen wird in einem industriellen
Anwendungsfall an Windkraftanlagen untersucht. Die Kosten für die Wartung von Turbinen
sind hoch und Ausfallzeiten führen zu erheblichen Umsatzverlusten, was eine genaue Fehler-
identifizierung zu einem höchst relevanten Problem macht. Wir wenden den theoretisch
formalisierten Diagnoseprozess an, bei dem wir automatisch gelieferte Turbinenzustands-
variablen und Expertenwissen über Fehler und ihre Auswirkungen ausnutzen. Um die
Diagnose-Berechnung in die vorhandene Überwachungssoftware und den aktuellen Arbeit-
sprozess einzubinden, präsentieren wir ein Design für die grafische Benutzeroberfläche
sowie einen Arbeitsablauf, der die Benutzerakzeptanz der Diagnoseanwendung fördern soll.
Die bisherigen Auswertungen haben gezeigt, dass der Diagnoseansatz geeignet ist und eine
praktische Nutzung zulässt.

vii

Acknowledgement

„Praise the bridge that carried you over.

— George Colman the Younger
"Heir-at-Law". 1797.

My sincere thanks go out to my supervisor Franz Wotawa, who has given me the opportu-
nity to pursue a PhD in the first place and has been most influential in shaping this thesis
and myself as a scientist. His experience, guidance, and ideas throughout the last four years
have made this research possible. I would also like to thank the DX community and other
researchers I have met along the way for their input on my work.

As this thesis has emerged from the AMOR project, I would like to express my gratitude to
everybody involved, especially Uptime Engineering; without their experience, insights, and
commitment to the project, we would not have come this far. In addition, this thesis was
partially funded by the Austrian Research Promotion Agency (FFG) under grant 842407.

My research would have been impossible without the aid and support of my students,
who have either contributed directly to the content of this thesis or indirectly by supporting
me in my teaching duties. Further, I cannot go without mentioning my colleagues at the
Institute for Software Technology and other institutes/competence centers. Not only do I
appreciate the scientific discussions and counseling, but first and foremost the non-work
related conversations that put things in perspective and helped me through the ups and
downs that is a PhD.

Heartfelt thanks go to my parents and brother, who have always motivated me to challenge
myself and supported me during my entire life and studies.

More than anyone else I would like to thank my husband. This thesis would not have
been possible without him. His encouragement, reassurance, and especially patience were
indispensable in order to achieve this PhD thesis.

ix

Contents

Abbreviations xix

I The Basics 1

1 Introduction 3
1.1 Motivation . 3
1.2 Applied Model-Based Reasoning (AMOR) Project 5
1.3 Research Objectives and Contribution . 5
1.4 Outline . 8

2 Preliminaries 9
2.1 Diagnosis of Complex Systems . 9
2.2 Abductive Reasoning . 11

2.2.1 Logic-based Abduction . 13
2.2.2 Abduction by Set-covering . 22
2.2.3 Probabilistic Abduction . 25

2.3 Abductive Model-Based Diagnosis . 26
2.3.1 Abduction with the Assumption-Based Truth Maintenance System . . 30
2.3.2 Reformulating the PHCAP . 32

II From Theory to Practice 35

3 A Process for Applying Model-Based Diagnosis in Industrial Applications 37
3.1 Motivation . 37
3.2 Defining a General Abductive Diagnosis Process 39
3.3 Integration of Failure Assessments into the Diagnostic Process 40

3.3.1 Failure Mode Effect Analysis . 40
3.3.2 Fault Tree Analysis . 52

3.4 Fault Identification . 55
3.4.1 Observation Discrimination . 55
3.4.2 Fault Ranking . 56

3.5 Conclusion . 56

4 Solving Bipartite Diagnosis Problems 59
4.1 Motivation . 59
4.2 Conflict Driven Techniques . 60

4.2.1 Minimal Unsatisfiable Subset and Minimal Correction Subset 61
4.2.2 Conflict-Driven Search via HS-DAG 64
4.2.3 Empirical Evaluation . 66

4.3 Abductive Diagnosis by Hitting Set Computation 70
4.3.1 Hitting Set Algorithms . 72

xi

4.3.2 Empirical Evaluation . 79
4.4 Conclusion . 84

5 Faster Horn Diagnosis - Finding Explanations in Horn Clause Abduction 87
5.1 Motivation . 87
5.2 Selected Diagnosis Algorithms . 89

5.2.1 Abduction with the ATMS . 90
5.2.2 Abduction as Consequence Finding via SOL-resolution 90
5.2.3 Conflict-Driven Search via HS-DAG 93
5.2.4 Conflict-Driven Search via Power Set Exploration 97
5.2.5 Abduction under Stable Model Semantics 100

5.3 Empirical Results . 101
5.3.1 Algorithms . 102
5.3.2 Data . 103
5.3.3 Results . 105
5.3.4 Discussion . 109

5.4 Conclusion . 112

6 Exploiting Structural Metrics in Abductive Diagnosis 113
6.1 Motivation . 113
6.2 Meta-Approach . 115
6.3 Bipartite Models . 116

6.3.1 Structural Metrics . 117
6.3.2 Empirical Results . 120

6.4 Horn Models . 125
6.4.1 Structural Metrics . 125
6.4.2 Evaluation . 126

6.5 Conclusion . 134

III Case Study: Wind Turbine Fault Identification 135

7 Wind Turbine Diagnosis 137
7.1 Motivation . 137
7.2 Related Work . 139
7.3 Model-Based Wind Turbine Diagnosis . 140
7.4 Conclusion . 143

8 Extending the Modeling Framework for Abductive Diagnosis beyond Horn
Clauses 145
8.1 Motivation . 145
8.2 Extended Modeling . 147
8.3 Empirical Evaluation . 152
8.4 Physics of Failure . 155

8.4.1 Model Development . 156
8.4.2 Advantages and Limitations of Using PoF 159

8.5 Conclusions . 159

9 Designing a Diagnosis Application and its Graphical User Interface 161
9.1 Motivation . 161
9.2 Abductive Model-Based Diagnosis Prototype 162

9.2.1 Workflow and GUI Design . 165
9.2.2 Realization of the Diagnosis and Modeling Engine 170

xii

9.3 Conclusion . 172

IV Conclusion and Future Work 175

10 Summary and Conclusion 177

11 Future Work 183

Bibliography 185

xiii

List of Figures

1.1 Research objectives addressed throughout the thesis. 6

2.1 Tison’s strategy to avoid redundant resolutions. [Kle92] 17
2.2 Tree method for ΨDNF . 18
2.3 Tree method for Ψ. 19
2.4 Causal associative network [PR90]. 23
2.5 And-or-graph considering the first two clauses of Th. 31
2.6 And-or-graph after all clauses have been considered. 32

3.1 Process for incorporating abductive model-based diagnosis in an industrial
setting [Koi+18]. 39

3.2 And-or-graph representation of the PHCAP comprising hypotheses {h1, . . . , hn}
and effects {e1, . . . , em} where some of the latter can be observed. 46

3.3 Structure of the artificial examples used for the first evaluation. 48
3.4 Runtime versus number of rules of the first experiment. 49
3.5 Runtime versus number environments in the observation node of the first

experiment. 49
3.6 Box-and-whisker plots of the underlying statistical distributions of the log

runtimes for the second experiment. 51
3.7 Fault Tree (adapted from [Már+12; Bot+12]). 52

4.1 Initial DAG. 65
4.2 First level. CONF = {{H1}} . 65
4.3 Second level.CONF = {{H1}, {H2}} . 65
4.4 Cumulative runtimes of ABDUCTIVEEXPLANATIONS and SATAB for the FMEA

instances. 68
4.5 Cumulative runtimes of ABDUCTIVEEXPLANATIONS, HSDAGAB, MUSAB, and

SATAB for the experiment. 69
4.6 D before pruning. 73
4.7 Final D. 73
4.8 Subset Enumeratation Tree. 74
4.9 Before pruning. 76
4.10 After pruning. 77
4.11 BHS-Tree construction . 78
4.12 Hitting set computation . 78
4.13 Number of samples solved for growing cumulative log runtime. 81
4.14 Scatter plots comparing the penalized log runtimes on the artificial examples. 82
4.15 Scatter plots comparing the log runtimes on the FMEA examples. 82
4.16 Cumulative runtimes on the second artificial benchmark. 85
4.17 Scatter plots comparing the log runtimes on the second set of artificial examples. 85

5.1 And-or-graph considering the first three clauses of Th. 90
5.2 And-or-graph after propagating all Horn clauses of Th. 90

xv

5.3 Depth 1. 93
5.4 Depth 2. 93
5.5 Depth 3. 93
5.6 Initial DAG. 95
5.7 First level. 96
5.8 Second level. 96
5.9 Initial map. 99
5.10 First maximum model seed {D,B,L,C}. 99
5.11 Shrinking {D,B,L,C} to first the MUS {D} and blocking all supersets of {D}. 99
5.12 Second seed/MUS {B,L,C} and blocking all supersets of {B,L,C}. 100
5.13 Third seed {B,C} and blocking all subsets of {B,C}. 100
5.14 Final map. 100
5.15 Structure of the artificial examples used for evaluation. 104
5.16 Numbers of diagnosis samples solved over time for the artificially generated

diagnosis problems. 105
5.17 Scatter plots comparing the penalized runtimes [10y ms] on Artificial Samples I. 108
5.18 Scatter plots comparing the penalized runtimes [10y ms] on Artificial Samples II.108
5.19 Numbers of diagnosis samples solved over time for the FMEA diagnosis problems.109
5.20 Scatter plots comparing the penalized runtimes [10y ms] on FMEA Samples. . 110

6.1 DAG and hypergraph representation. The DAG shows shared hypotheses (left
oval) and common effects (right oval) for pairs of nodes. 119

6.2 Features. 120
6.3 Cumulative runtime for the test sets. 122
6.4 Statistical distribution for the runtimes [10y ms] on the test set. 123
6.5 Underlying statistical distributions of the log runtimes. 124
6.6 Directed graph G. 126
6.7 Undirect graph of cause nodes. 126
6.8 Features. 126
6.9 Statistical distribution for the runtimes [10y ms] on the test set. 131
6.10 Scatter plots of runtime [10y ms] comparisons on the test set of Artificial Samples.132
6.11 Scatter plots of runtime [10y ms] comparisons on the test set of FMEA Samples. 133

8.1 Mapping from one theory to another creating intuitive diagnoses. 149
8.2 Experiment results for the extended modeling. 155

9.1 Workflow of the diagnosis application. 165
9.2 Operations Center. 166
9.3 Repair Task Screen. 167
9.4 Preparation and overview interface. 168
9.5 Diagnosis and probing interface. 169
9.6 Mobile reporting interface. 170

xvi

List of Tables

2.1 Execution of BRUTE FORCE. 16
2.2 Nodes content after the execution of TREE METHOD for ΨDNF 18
2.3 Nodes based on Ψ after the execution of TREE METHOD. 19

3.1 FMEA excerpt (adapted from [Rad+93]). 41
3.2 Features of the failure mode and effect analyses and experiment results of the

first experiment. 48
3.3 Features of the FMEAs and empirical results for the second experiment. For

each component we conducted the evaluation using the original model as well
as a model fulfilling the OSFDP. The last three columns display the maximum
number of single faults, double faults, and triple faults, respectively. 50

4.1 Experimental results. For each component we conducted the experiment using
an implementation of ABDUCTIVEEXPLANATIONS and SATAB. The columns SF,
DF, TF display the maximum number of single faults, double faults, and triple
faults, respectively. 67

4.2 Features of the models and the evaluation examples. SF, DF, and TF refer to
single, double, and triple faults, respectively. 69

4.3 Experimental runtime [in ms] results of the four algorithms on the experiment
instances. Models, where an algorithm exceed the given run time threshold at
least once, are marked with T.We only include the minimum runtime MIN for
MUSAB since it is the only algorithm with minimal runtimes > 1. 69

4.4 Execution of HST. 76
4.5 Runtime results for the first evaluation [in ms]. 81
4.6 Runtime results for the second evaluation [in ms]. 84

5.1 Computation of the answer sets. 101
5.2 Sample set statistics for the artificial benchmarks. 104
5.3 Sample set statistics for the FMEA benchmark. 104
5.4 Runtime results. 106

6.1 Classification Statistics. 121
6.2 Confusion matrix of the Artificial benchmark. 122
6.3 Confusion matrix of the FMEA benchmark. 122
6.4 Confusion Matrix for the artificial test set. The rows represent the actual number

of instances within the category, while the columns show the predicted outcome.123
6.5 Classification Statistics. 128
6.6 Attribute Selected Classification Statistics. 128
6.7 Selected Attributes. 129
6.8 Confusion matrix Artificial Samples. 129
6.9 Confusion matrix FMEA Samples. 129
6.10 Classifier performance measures Artificial Samples. 130
6.11 Classifier performance measures FMEA Samples. 130

xvii

6.12 Runtime results of the meta-approach in comparison to ATMS and HS-DAGQX. 131

7.1 FMA of the converter. 141
7.2 Exemplary SCADA data types. 142

8.1 L and Horn model statistics. 153
8.2 Experimental results on 144 samples (1440 comparisons). 153
8.3 FMA Example. 156
8.4 Processed Failure Mode Assessment (FMAp) of the Converter. 157

xviii

Abbreviations

ACD the Anticoincidence Detector mounted on the Large Area Telescope of the Fermi
Gamma-ray Space Telescope.

AI Artificial Intelligence.

ALP Abductive Logic Programming.

AMOR Applied Model-Based Reasoning.

ASP Answer Set Programming.

ATMS Assumption-based Truth Maintenance System.

BBN Bayesian Belief Network.

BDD Binary Decision Diagram.

BHS-Tree Binary Hitting Set Tree.

CBR Case-based Reasoning.

CNF Conjunctive Normal Form.

DAG Directed Acyclic Graph.

DLP Disjunctive Logic Programming.

DNF Disjunctive Normal Form.

FDI Fault Detection and Isolation.

FMA Failure Mode Assessment.

FMEA Failure Mode Effect Analysis.

FMECA Failure Mode, Effects, and Criticality Analysis.

FMMEA Failure Modes, Mechanisms and Effects Analysis.

FTA Fault Tree Analysis.

GDE General Diagnosis Engine.

GUI Graphical User Interface.

HIFI-FPU Focal Plane Unit of the Heterodyne Instrument for the Far Infrared built for the
Herschel Space Observatory.

xix

HS-DAG Hitting Set Directed Acyclic Graph.

HST Hitting Set Tree.

IGBT insulated-gate bipolar transistor.

ILP Integer Linear Programming.

INDIA Intelligent Diagnosis in Industrial Applications.

LTUR Linear Time Horn Clause Theorem Prover.

MAP Maximum a posteriori assignment problem.

MCS Minimal Correction Subset.

MiTS the Maritim ITStandard.

MONET Model-based systems and qualitative reasoning.

MPE Most probable explanation.

MSS Maximal Satisfiable Subset.

MUS Minimal Unsatisfiable Subset.

O&M Operation and Maintenance.

OSFDP One Single Fault Diagnosis Property.

PAP Propositional Abduction Problem.

PCB printed circuit boards.

PoF Physics of Failure.

RPN Risk Priority Number.

SCADA Supervisory Control And Data Acquisition.

SFK-resolution Skip-Filtered Kernel-Resolution.

SOL-deduction Skipping Ordered Linear Deduction.

SOL-resolution Skipping Ordered Linear Resolution.

SOL-tableau calculus Skipping Ordered Linear tableau calculus.

WEKA Waikato Environment for Knowledge Analysis.

ZBDD Zero Suppressed Binary Decision Diagram.

xx

Part I

The Basics

1Introduction

„Destiny guides our fortunes more favorably than we could
have expected. Look there, Sancho Panza, my friend, and see
those thirty or so wild giants, with whom I intend to do battle
and kill each and all of them, so with their stolen booty we
can begin to enrich ourselves. This is nobel, righteous warfare,
for it is wonderfully useful to God to have such an evil race
wiped from the face of the earth.

— Miguel de Cervantes Saavedra
"Don Quixote". 1605.

1.1 Motivation
Accurate failure diagnosis in technical systems is a topic of interest from an industrial as

well as research point of view and has grown in importance due to the increasing complexity
and magnitude of such systems. On December 18, 2017, right around the corner of the
winter holidays, Hartsfield-Jackson Atlanta International Airport faced an eleven-hour power
outage causing Delta Air Lines to cancel around 1,400 flights. The utility provider identified
the root of the failure as a failing piece of gear that caused a fire which also damaged the
backup system. This incident may cost Delta Air Lines up to $50 million [Reu17]. Right
around that time, the cost of Brent crude oil hit its highest level since 2015 as the news about
a system breakdown of the Forties pipeline became public. The Forties pipeline is the only
connection transporting oil extracted in the North Sea to the United Kingdom. Given the
collapse of the supply channel originated from a hairline crack [Gua17] and the cold winter
months, experts expected that the unscheduled maintenance of two to three weeks could
seriously affect the country’s energy supply [Gur17]. In the presence of a failure, diagnosing
the origin of a malfunction is a pivotal precondition for any repair or replacement activity
aiming at reestablishing the system’s intended operation.

Diagnosis is a hard task requiring a considerable amount of expertise of subsystems,
their interactions and behavior, as well as expertise of previous fault situations [CT06].
Hence, in the 1970s, the Artificial Intelligence (AI) community began to develop knowledge-
based systems that assisted in the task of fault identification. These systems were based on
expert knowledge of symptoms and their corresponding causes and have proven especially
useful in the medical domain, such as MYCIN [BS84], which provides decision support
for antibiotic therapies. Yet in large applications the interdependences between the rules
defining the information led to considerable maintenance issues [Got+90]. To avoid these
complications, model-based approaches have emerged in the nineteen-eighties. Model-based
diagnosis exploits an abstract description of the underlying system in order to single out the
cause for an observed anomaly. During the last decades a solid theoretical background has
been developed with two approaches emerging: consistency-based and abductive diagnosis.
Consistency-based diagnosis relies on a formalization of the correct system response and
identifies anomalies through inconsistency [DKW87; Rei87]. The abductive version is
founded in logic-based abduction, where the observation is a logical consequence of the
explanation given the background knowledge of the system [CT06]. Thus, this type of

3

inference is especially suited for fault identification as it coincides with human diagnostic
solving. An abductive diagnosis model considers information on failures and how they affect
detectable system measurements. For technical systems this entails that the model depends
on a systematic and analytic knowledge of components, their possible malfunctions, and the
subsequent effects.

Model-based diagnosis has been applied to various domains, such as space probes [WN96]
or software debugging [Fri+99]. Although it is an active research topic, where the field
continuously improves the techniques and contributes with its results to other application
areas as well, the use of this technology in industrial applications is still sparse. In recent
years, there have been several attempts to carry model-based diagnosis techniques over
to industrial applications. For instance, the Intelligent Diagnosis in Industrial Applications
(INDIA) project aimed at integrating model-based diagnosis in industrial applications by
analyzing how the theoretically developed techniques can be related to already accepted
tools and systems [Mil+00]. The goals of the INDIA project were the transfer of theoretical
results to real industrial domains, to direct research towards the issues uncovered, and
finally drive science to create approaches that are applicable in practice. Within the project a
model-based engine for real-time on-board automotive diagnosis was developed [Sac+00]
as well as a tool for facilitating the construction of Failure Mode Effect Analyses (FMEAs)
in the aeronautics domain [CR01]. Another approach to bridge the gap between science
and practice has been the integrated diagnosis toolkit DiKe that encompasses different
diagnosis engines, a Graphical User Interface (GUI) to promote user acceptance, and a
language for formalizing diagnostic models that does not require a comprehensive education
in logic [Fle+01]. On the European side, the Model-based systems and qualitative reasoning
(MONET) initiative dedicated to the promotion of model-based techniques revealed certain
barriers between industry and research [TMM98]:

• Technical Gaps are first and foremost the lack of automatic modeling tools and the
difficulties of consolidating model-based tools and existing software.

• Human Gaps result from management or organization issues. These barriers include
obstacles that concern technology acceptance and user interaction, the difference in
expertise regarding modeling between human operators and the knowledge engineers,
and the unavailability of tools allowing novices to rapidly build models to experiment
with the techniques.

• Economic Gaps are, for instance, the absence of data on the financial benefits of
implementing model-based tools and the need for approaches dealing with model
evolution.

This thesis aims at providing notions about how to reduce these barriers. Our main
goal is to develop a methodology for applying abductive model-based diagnosis to indus-
trial practice. Particularly, we define a framework to integrate the industry-relevant task
of diagnostics in the overall operational life of systems that allows for easy integration
with existing tools. We show a general technique for consolidating diagnosis, explanation
ranking, and measurement selection and provide a method for reducing/eliminating the
initial modeling effort associated with model-based diagnosis. Moreover, in this thesis we
investigate computational approaches to diagnostic problem-solving which allow us to derive
explanations in reasonable time for real-world applications.

We work towards these objectives from two perspectives. On the one hand, we theoretically
define a blueprint for intercalating abductive model-based diagnosis into practical operations.
This framework explores the possibilities to rely on existing expert knowledge for compiling
a system description suitable for fault identification and performs refinements to the initial
diagnosis result. While the formalizations used as a diagnostic model can be quite diverse,

4 Chapter 1 Introduction

the models in our case comprise subsets of propositional logic. Based on the underlying
system description, we reveal which abduction inference mechanism is advantageous.

As with any thesis that is located at the intersection of theory and practice, we seek to
verify on a case study if the theory fits reality. To provide evidence that the methodology can
be effectively used in industrial applications, we showcase the incorporation of an abductive
modeling and diagnosis engine into the industrial wind turbine domain. The wind energy
sector has been growing steadily as a source for electrical power generation around the world.
With this expansion, the complexity of industrial wind turbine installations has increased
significantly over the last decades [Ass14]. Service costs are high and turbine downtimes are
associated with substantial revenue loss. Thus, in order to make wind a competitive force on
the energy market it is critical to improve turbine reliability and optimize the maintenance
process. As the currently implemented standard alarm systems deliver a large number of
false positives, they are not well suited as a standalone fault identification tool [GW10].
Besides the economic considerations, wind turbine accidents have increased in recent years.
In catastrophic situations an instantaneous bearing failure may cause an entire turbine
blade to become separated from the hub, possibly leading to a blade beeing thrown into
the surrounding areas [Rob+13]. Therefore in the second half of the thesis, we attend
to the integration of an abductive diagnosis application into the wind turbine domain to
optimize the maintenance and fault identification task. This research has been conducted
in cooperation with our industrial partner on the Applied Model-Based Reasoning (AMOR)
project.

1.2 Applied Model-Based Reasoning (AMOR)
Project

The majority of the work presented in this thesis was conducted in the context of the
AMOR project1 (Austrian Funding Agency FFG under contract number 842407). AMOR aims
at developing a methodology and framework for exploiting model-based diagnosis in daily
industrial practice as well as produce a proof-of-concept diagnosis system to be of practical
use.

To provide evidence of the feasibility and utility of the approach in a practical setting, the
project utilizes the wind turbine industry as an application domain. Our industrial partner,
Uptime Engineering2, provides expertise as reliability experts and developers of condition
monitoring software for wind power plants and conducts the evaluation of the project results
within the given context.

1.3 Research Objectives and Contribution
This work is strongly influenced by the AMOR project; hence, all theoretical work is

tightly connected to the goal of implementing abductive model-based diagnosis in real-world
applications. Therefore, the main research objective can be phrased as follows:

RO Develop a framework for facilitating the application of abductive model-based diagnosis
in industrial practice.

Adopting a divide and conquer strategy we break this research objective down into two parts:
first, we examine the issue from a theoretical perspective and second, we take the findings

1http://www.ist.tugraz.at/amor/
2http://www.uptime-engineering.com/

1.2 Applied Model-Based Reasoning (AMOR) Project 5

http://www.ist.tugraz.at/amor/
http://www.uptime-engineering.com/

from theory and consider them in an industrial context. Figure 1.1 depicts the research
objectives as well as the chapters of this thesis concerned with achieving each goal.

RO: Develop a framework for facilitating the application of abductive model-based diagnosis in
industrial practice.

Theoretical Objectives Practical Objectives

RO1: Develop a process for abductive model-
based diagnosis in practice that (1) facilitates
model generation, (2) can be easily integrated
in current work processes, (3) allows for
efficient abduction procedures, and (4)
incorporates techniques to improve upon the
initial diagnosis results.

RO2: Explore procedures that enable an
efficient computation of explanations for
abduction problems obtained in a diagnosis
scenario.

RO3: Optimize the reasoning approaches to be
suitable for practical applications in regard to
efficiency.

RO4: Analyze current wind turbine diagnosis
techniques and identify available data and
tools.

RO5: Identify modifications to the theoretical
process necessary to match the information
available and the domain requirements.

RO6: Show how to integrate an automated
modeling and diagnosis approach into current
work processes.

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 4

Chapter 3

Figure 1.1: Research objectives addressed throughout the thesis.

Theoretical Objectives
RO1 Develop a process for abductive model-based diagnosis in practice that (1) facilitates

model generation, (2) can be easily integrated into current work processes, (3) allows
for efficient abduction procedures, and (4) incorporates techniques to improve upon the
initial diagnosis results.

As a starting point for the theoretical portion of this thesis, we have to develop a hypothesis
about how such a methodology for incorporating model-based diagnosis in practice may
present itself. In addition, it is essential that the gaps between research and real-world
applications be contemplated and circumvented if possible. Thus, the goal of Chapter 3 is
to establish a strategy suitable for industrial applications that incorporates solutions to the
modeling dilemma, permits efficient diagnostic reasoning, and aids in limiting the number
of diagnoses to process by the human operator.
RO2 Explore procedures that enable an efficient computation of explanations for abduction

problems obtained in a diagnosis scenario.
The fault identification task is, in general, a hard problem. To ensure user acceptance,
however, diagnoses are to be computed in an acceptable time span. While acceptable in
this context is application dependent, there is a strong need to determine a notion of the
magnitude at which various abduction procedures derive explanations to ensure that given
an explicit domain an approach with suitable runtime behavior can be selected. In Chapter 4
and 5 we study algorithms exploitable for the types of diagnosis problems we are concerned
with to determine superior tools and tactics.

6 Chapter 1 Introduction

RO3 Optimize the reasoning approaches to be suitable for practical applications in regard to
efficiency.

To ensure that abduction is appropriate even in time-critical applications, we are interested
in whether there are strategies we can adopt to improve the efficiency of the abduction
approaches investigated previously. Chapter 6 achieves this objective by exploiting the
concept of algorithm selection.

Practical Objectives
For the second portion, we rely on our industrial partner of the AMOR project and

their domain expertise. In particular, we strive after providing a case study presenting our
theoretically defined process in the industrial wind turbine domain. Again in order to achieve
this goal, we define objectives at a deeper level of granularity.
RO4 Analyze current wind turbine diagnosis techniques and identify available data and tools.
Our integration approach must consolidate model-based fault identification with existing
software and facilitate the development of a diagnosis model. Initially, the available knowl-
edge and tools are to be investigated in order to determine to what extent the previously
defined methodology can be mapped to practice and what kind of modifications may be
necessary. In Chapter 7, we give an overview of fault identification in the wind turbine
domain and discuss the type of information at our disposal.
RO5 Identify modifications to the theoretical process necessary to match the information

available and the domain requirements.
Given the analysis of the initial situation, it is necessary to determine how the approach
may be modified in order to fit the specifics of the application domain. Throughout the
AMOR project, the underlying expressiveness of the failure assessment utilized for compiling
the system descriptions changed. Thus, it is essential to handle these circumstances by
adapting—in this case—the compilation approach in Chapter 8.
RO6 Show how to integrate an automated modeling and diagnosis approach into current work

processes.
To complete the case study on wind turbine diagnosis, we seek to show the manner in which
we integrate the automated modeling approach and the abductive diagnosis engine into
current software systems. Besides the technical solution, it is essential to consider factors
that have been found to affect the acceptance of a software product. Thus, in Chapter 9
we provide a workflow that respects the current fault identification process of the service
technicians maintaining the turbine and advocates for the importance of usability and
usefulness.

By addressing the research objectives, we contribute to the fields of abductive reasoning,
model-based diagnosis, and the application of knowledge-based systems in industry. More
specifically, our main contributions are the following:

• We provide a methodology for abductive model-based diagnosis in an industrial setting.
Suitable models are created automatically from failure assessments available and
methods for improving upon the initial diagnosis results are given.

• By showing the equivalence between models generated on top of structured failure
analyses and bipartite diagnosis problems in simple set-covering theory, we can utilize
hitting set enumeration for abduction over this class of models. Through empirical eval-
uations, we show that for these types of models a hitting set approach is advantageous
over other abductive reasoning methods.

• Furthermore, we analyze direct reasoning and conflict-driven techniques, which can
be employed for abduction on propositional Horn clause models, theoretically and
empirically.

1.3 Research Objectives and Contribution 7

• To improve the efficiency of abduction, we are the first to apply algorithm selection to
model-based diagnosis. We present a meta-approach based on structural features of
the diagnosis problems to choose the fastest technique for a new abduction instance.

• Given the developed methodology, we apply it to the industrial wind turbine domain,
where we (1) provide adaptations to the diagnosis model in order to retrieve "intu-
itive" explanations more similar to human diagnostic reasoning, and (2) describe the
realization of a model-based diagnosis tool under specific consideration of the current
work processes as well as user interface and interaction design.

1.4 Outline
This thesis is organized as follows. In Part I we attend to the basics for this thesis, i.e.,

motivational aspects in Chapter 1 and preliminaries for the remaining work in Chapter 2.
Part II is concerned with barriers to applying model-based diagnosis in practice: the lack
of convenient modeling capabilities, the integration into current work processes, and the
efficient computation of diagnoses. In particular, in Chapter 3 we define a process for
incorporating abductive model-based diagnosis in practice that is based on the automatic
compilation of failure assessments to system descriptions appropriate for fault identification.
Chapter 4 and 5 examine abduction and suitable reasoning procedures within a subset of
propositional logic, i.e., simple bipartite diagnosis problems and Horn clause abduction,
respectively. Both chapters utilize different formulations of abductive reasoning and provide
empirical comparisons of the presented algorithms. Based on these results, we investigate
in Chapter 6 the possibility of improving abductive reasoning in terms of efficiency by
exploiting the notion of algorithm selection. Part III covers the case study, in which we
seek to apply our process and theoretical results to the industrial wind turbine domain. We
open in Chapter 7 by giving some contextual information on wind turbine diagnosis, before
discussing in Chapter 8 adaptations we have to perform to the model in order to provide
intuitive explanations that are more on par with human-like diagnostic reasoning. Chapter 9
closes this part of the thesis and is concerned with applying the process defined in Chapter 3
to the wind turbine domain. We discuss the integration of an abductive modeling and
diagnosis engine with special regard to the application’s workflow, the user experience, and
the GUI design to foster acceptance by the human operators. Lastly, in Part IV, we summarize
the thesis, discuss limitations, and express open challenges that present themselves as
possible future work.

8 Chapter 1 Introduction

2Preliminaries

„... abduction starts from the rule and guesses that the fact is a
case under that rule: All people with tuberculosis have bumps;
Mr. Jones has bumps; perhaps Mr. Jones has tuberculosis.

— Warren S. McCulloch
"What’s in the brain that ink may character?". 1964.

This chapter is based on the following publications:

• [KW16a] Roxane Koitz and Franz Wotawa. „Improving Abductive Diagnosis Through
Structural Features: A Meta-Approach“. In: Proceedings of the 2016 International
Workshop on Defeasible and Ampliative Reasoning. 2016, pp. 1–9

Parts of the definitions in Section 2.2.2 on Abduction by Set-covering have been published in
[KW16a].

2.1 Diagnosis of Complex Systems
Fault1 diagnosis is the process of identifying root causes of an incorrect system behavior

based on observable symptoms. That is, a diagnostic system maps anomalies to defects.
The tasks associated with diagnostic reasoning is are debatable; most work associates
diagnosis with fault detection, fault identification, and/or repair [WS01]. In this thesis, the
diagnosis is mainly concerned with fault identification. Determining the origin of a failure
is a crucial prerequisite before any corrective action may be taken in order to restore a
healthy system status. Automating this process has proven necessary especially in domains,
(1) where the scale of systems and magnitude of fault sources complicates diagnosis, e.g.,
communication networks, (2) where systems are inherently complicated, e.g., spacecrafts,
or (3) in cases where the presence of a failure is hazardous or linked to excessive revenue
loss, e.g., industrial wind turbines [Sol+17].

Many industrial systems have monitoring software installed that allow the detection of
anomalies; yet, these tools usually do not provide information on the failure location. This
of course does not hold for systems where there is a one to one correspondence between
failures and their manifestations. However, more commonly a symptom can be triggered by
a diverse set of malfunctions and a single defect may affect several components within the
system. The fundamental difficulty of diagnosis, is the complicated relation between failures,
intermediate consequences, and observable effects. Unfortunately, automatic monitoring
and troubleshooting systems often fail to correctly identify the occurrence of a failure or
point towards a unit not responsible for the detected anomaly. Thus, diagnosis itself has
been mostly a manual endeavor [Kav+12].

Without the claim of providing an exhaustive review on troubleshooting approaches, we
want to give a notion of some common fault identification techniques. As stated by Dressler
and Puppe [DP99] in knowledge-based fault identification there are three major knowledge
types: (1) experience, (2) models, and (3) cases. Heuristic diagnosis systems are based

1While there is a difference between failure and fault for instance in the field of Root Cause Analysis, we use these
terms synonymously throughout this thesis [Sol+17].

9

on experience of solving diagnosis problem. One of the commercially most successful ap-
proaches to AI are expert systems. Empirical expert knowledge is encoded as rules describing
the relation between symptoms and failures. These instructions consist of a premise and
a consequence, e.g., "IF EngineDoesNotStart THEN PossibleCauseBatteryFlat" [Str08].
Rule-based techniques provide a clear separation between domain knowledge and inference
mechanisms and their inference is similar to human diagnostic reasoning. The diagnostic
applications of expert systems range from the medical domain [BS84] over telecommuni-
cations networks [Bru+93] to wind turbine gearbox fault identification [ZL+12]. A main
disadvantage is the structure of the knowledge representation that renders these applications
hard to maintain; in large systems rules are usually interdependent and hence, modifying a
single instruction may cause unexpected effects. Additionally, given a new fault to consider
within the diagnostic application, all rules with a relevant symptom as premise have to be
adapted [Got+90]. Another issue, as pointed out by Struss [Str08], is that the nature of the
knowledge is empirical and thus depends on the context it was produced in. That means
that the model may implicitly contain information on structure, which may change given
different compositions of the system components, and that the model is created solely for
the purpose of diagnosis making reuse for other problems difficult to even impossible.

Once the disadvantages of the rule-based approach were discovered, model-based diag-
nosis followed as a way to assist humans in fault-identification and decision-making tasks.
Model-based diagnosis’ main idea is to reason from "first principles", i.e., the representation
of the system encompasses information about its structure (static knowledge) and functional
behavioral (dynamic knowledge). As with rule-based systems, there is a separation between
the domain and task knowledge, however, an essential benefit of the model-based approach
should be the possibility to use a component library. This library contains models of different
units that can be connected together into various comprehensive system descriptions. Differ-
ent representation formalisms have been proposed such as logic, constraints, quantitative
mathematical equations, or qualitative models [Str08]. There are two variations of the
model-based diagnosis: given the system description and a set of symptoms, we can derive
the root causes either through the observations contradicting the model (consistency-based
diagnosis) or the observations following from the model (abductive model-based diagno-
sis) [Str08]. Importantly, model-based diagnosis relies on a comprehensive collection of
faults on an appropriate abstraction level [DP99]. Besides AI theFault Detection and Isolation
(FDI) community of Control Engineering has developed model-based approaches. Based on
a system model formalizing the behavior of components, it is checked whether the sensor
observations are consistent with the model, i.e., the residual is derived. The residual is
the difference between the measured process variables and their estimates. Cordier et
al. [Cor+04] have shown the links between the FDI and the consistency-based approach by
investigating their relations and developing a unified framework. In Section 2.3, we provide
more information on model-based diagnosis with a special focus on the abductive variant.

In the absence of a model and expert knowledge, there may be a collection of reports
on previous failure incidents and their maintenance that can be utilized for Case-based
Reasoning (CBR). Case-based reasoners solve new problems by using or adapting solutions
that were employed to answer prior queries. As with the rule-based strategy this type of
fault diagnosis offers a reasoning paradigm that is similar to the way humans routinely
solve problems. Althoff et al. [Alt+89] present the early CBR system PATDEX used in
the troubleshooting of Computerized Numeric Control machining centers. The PATDEX
architecture is based on diagnostic cases. Solutions are derived based on a similarity measure
and the application takes into account symptom relevance and test selection. Portinale,
Magro, and Torasso [Por+04] present a system combining case-based and model-based
reasoning. Whenever a new diagnosis problem is applied, a suitable solution from the case

10 Chapter 2 Preliminaries

memory is fetched and adapted if necessary based on behavioral models of the system.
Hence the case-based reasoning portion aims at speeding up the model-based diagnosis
part. Other diagnosis approaches include statistical classification methods, such as belief
networks that are suitable when dealing with incomplete information or lack of data, neural
classifications that exploit knowledge implicitly provided by a large number of samples, or
decision trees that encode actions, decisions and their consequences [DP99].

2.2 Abductive Reasoning
Abduction reasoning originates from philosophy where it has been introduced by

Peirce [Pei74] as the only synthetic reasoning method, i.e., the sole procedure capable
of suppling new ideas. This type of inference derives a minor premise (case) given the major
premise (rule) and conclusion (result) [Ino02].

Example 2.1 [Ino02]

(rule) All the beans from this bag are white.
(result) These beans are white.
(case) These beans are from this bag.

It was later rediscovered for AI as another inference type since deduction has been found
inadequate for many problem solving activities [Pop73]. In essence, abductive reasoning
aims at generating a set of plausible explanations for given observations. We can describe
abduction by the following inference rule [Pau93]:

ψ → φ, φ

ψ

That is, given a fact φ in conjunction with a rule ψ → φ, an explanation ψ is hypothesized
accounting for φ. Yet abduction does not characterize the relation between ψ and φ, i.e.,
causality as suggested by the material implication is not a necessary condition.

Abduction is an “ampliative” reasoning strategy that allows to draw conclusions beyond
what is already contained in the premises, i.e., the conclusions derived are not necessarily
true, but rationally justified. Hence, abductive reasoning is a “probable” inference [Ino02].
Given these characteristics, abduction represents a non-monotoning reasoning type, i.e., an
inferred explanation may become invalid given additional observations [EG95]. The process
of abduction is connected on the one hand to hypothesis generation and on the other hand to
a selection of admissible explanations. Typically, a consistency requirement is enforced upon
the explanations in addition to quality measure classifying a “best” solution. The notion of
“best” is related to a preference criteria, such as Occam’s razor, which accepts the simplest
explanations [PR90].

Pople’s [Pop73] work is one of the first on abduction in the field of AI providing a
formulation of abductive reasoning in a theorem proving framework. Many publications
followed afterwards; one of the first abduction systems was the medical diagnosis application
INTERNIST-I performing medical diagnosis based on causal links between diseases and
symptoms [Mil+82]. Cox and Pietrzykowski [CP86] present an algorithm for computing
minimal and nontrivial causes for events given a knowledge base. Their approach is similar
to Pople’s [Pop73] by deriving explanations from the dead ends of failed resolution proofs on
the background theory and negated symptoms. Similarly, the framework Theorist [Poo+87]
augments the background theory with the observations and abducible primitives to derive

2.2 Abductive Reasoning 11

contradictions. Theorist [Poo+87] is a logic programming system based on clausal form of
first order logic that uses abduction to perform several tasks such as default reasoning or
diagnosis. Later, Levesque [Lev89] presents a different variant of abduction based on belief.
His knowledge-level account is independent of the chosen knowledge representation, but
characterizes it on the symbol level as a formal model of belief. Eshghi and Kowalski [EK89]
relate abduction to negation as failure in the context of logic programming. The authors
translate a logic program into an abduction framework. Later based on this work, abductive
logic programming emerged [Kak+92]. In abductive logic programs, additional integrity
constraints and abducible predicates are used to define the fragments and their conditions
allowed to constitute solutions. While diagnosis is the most prominent application field
for abductive reasoning, its operation has been utilized for several applications such as
natural language understanding [Hob+93], test case generation [McI94], or ontology
debugging [WK+14]. The body of research on abductive reasoning is extensive. Hence, we
focus in the subsequent sections on different types of abduction, and discuss related literature
in more detail there2. For overviews and reviews on abduction we refer to Paul [Pau93],
Eiter and Gottlob [EG95], and McIlraith [McI98], who provide excellent work on abductive
reasoning in AI.

Given background knowledge about a domain of discourse, an abduction problem is char-
acterized as the search for a set of elements taken from a sub-vocabulary of the representation
language that explains a given set of observed facts. This sub-vocabulary specifies the frag-
ments of the language that can be considered within explanations, i.e., are abducible3. These
vocables are often referred to as assumptions or hypotheses, which should stress the fact
that this type of inference generates “probable” solutions rather than definite explanations.
We take the formal definition of an abduction problem from Eiter and Gottlob [EG95]:

Definition 2.1 (Abduction Problem [EG95]). An abduction problem is a 4-tuple (T , H,
M4,M∗), where

• T is the background theory representing the domain knowledge,

• H denotes the set of abducible primitives (i.e., assumptions or hypotheses),

• M is a set of manifestations (also referred to as effects or symptoms), and

• M∗ ⊆M describes the set of observed manifestations.

There are many formalizations of abduction within AI. Similar to previous reviews, we
distinguish three main characterizations [Pau93; EG95; McI98]:

• Logic-based abduction

• Abduction by set-covering

• Probabilistic abduction

In our analysis, we focus mainly on logic-based and set-covering abduction, and only dis-
cuss the basics of the probabilistic perspective5. The remaining Chapter is structured as
follows: First, we discuss logic-based abduction and relate it to prime implicates/prime im-
plicants, consequence finding, and proof-tree completion. Then in Section 2.2.2, we examine
abduction by set-covering before we give a short overview of probabilistic abduction.

2Note that our literature review is not comprehensive, but discusses some of the most influential works.
3Determining which parts of the language should be abducible is a problem itself, since an abducible may be

appropriate in one scenario but not in another.
4Often H andM are defined as disjoint sets.
5Of course there are intersections between these formalizations and probabilistic reasoning has been considered

within logic and set-covering abduction.

12 Chapter 2 Preliminaries

2.2.1 Logic-based Abduction
An extensive amount of research has concerned itself with abduction based on a logical

model, which is an especially suitable problem formulation if the domain knowledge can be
easily described by logical sentences. This is, for instance, the case when the relation between
causes and their effects is available. However, logics can further represent knowledge
containing disjunctive information or integrity constraints [EG95].

In logic-based abduction, the background knowledge T consists of logical sentences,
describing the relations between variables. Hypotheses are a subset of the variables that are
allowed to constitute solutions to the abduction problem. In this thesis, we focus on the
propositional case and assume standard definitions for propositional logic [Ino91; Bit08]. A
propositional formula φ in Conjunctive Normal Form (CNF), defined over a set of Boolean
variables (or atoms) X = {x1, x2, . . . xn}, is a conjunction of m clauses (C1, C2, . . . , Cm).
The Boolean constants true (>) and false (⊥) as well as the connectives ¬,∧,∨,→ are
interpreted in the standard way. A clause Ci = (l1, l2, . . . , lk) is a disjunction of literals,
where each literal l is either a Boolean variable or its complement. L± denotes the set of
literals of φ, while L+ (L−) represents the set of positive (negative) literals. A conjunctive
clause or term C ′i = (l1, l2, . . . , lk) is a conjunction of literals, where each literal l is either a
Boolean variable or its complement. A truth assignment is a mapping µ : X ⇒ {0, 1} and
a satisfying assignment for φ is a truth assignment µ such that φ evaluates to 1 under µ.
Hence, a Propositional Abduction Problem (PAP) is defined as:

Definition 2.2 (Propositional Abduction Problem (PAP) [EG95]). A tuple 〈PROPS,H,
M∗, T 〉 forms a PAP, where PROPS is a finite set of propositional variables, H ⊆ PROPS
is the set of hypotheses, M∗ ⊆ PROPS is the set of observed manifestations, and T is a
propositional formula of the background knowledge, i.e., the theory.

Logic-based abduction provides an intuitive notion of explanation, i.e., a set of hypotheses
is an explanation for an observed symptom if the observation is a logical consequence of
the explanation given the background knowledge. A conclusion ϑ is said to be a logical
consequence of a set of premises ψ, if and only if for any interpretation in which ψ is true ϑ
is also true. We write this relation as ψ |= ϑ and say ψ entails ϑ.

Definition 2.3 (Solution; Abductive Explanation [EG95]). A solution or abductive expla-
nation to PAP is a set Σ such that

(1) Σ ⊆ H,

(2) T ∪ Σ |=M∗, and

(3) T ∪ Σ 6|= ⊥.

Sol(PAP) is the set containing all solutions to the PAP.

Abduction within the logic-based framework is defined via consistency and deriveability;
the observed manifestation must be derivable from T augmented with the explanation
Σ (condition (2)), while T ∪ Σ is satisfiable (condition (3)). In addition, an explanation
can only contain elements from the set of hypotheses (condition (1)). Since the goal of
abduction is to derive the “best” explanations, some preference criteria must be present to
characterize the notion of optimality. A common limitation is to only consider subset-minimal
explanations6.

6At least in the context of diagnosis, this is a preferred feature. However, other application domains may
call for different optimality criteria. For instance, in learning applications a more general solution may be
preferred [McI98].

2.2 Abductive Reasoning 13

Definition 2.4 (Minimal Abductive Explanation). An explanation Σ is minimal iff there
is no other abductive explanation Σ′ such that Σ′ ⊆ Σ.

Example 2.2

Consider the following knowledge (inspired by Pearl [Pea88]):

• We know that when the sprinkler is on, that the grass is wet.

• When the sprinkler is off, it is quiet.

• The sprinkler cannot be on and off at the same time.

• When it rains, not only the grass is wet, but also the street.

• Wet grass and sunshine leads to grass growth.
Given this information, we can construct a simple logical theory

T =

sprinkler_on→ wet_grass, sprinkler_off→ quiet,

¬sprinkler_on ∨ ¬sprinkler_off, rain→ wet_grass ∧ wet_street,
wet_grass ∧ sunshine→ growing_grass

 .

The proposition variables are PROPS = {sprinkler_on,wet_grass, sprinkler_off, quiet,
rain,wet_street, sunshine, growing_grass}. In addition, we define which variables are ab-
ducible, i.e., H = {sprinkler_on, sprinkler_off, rain, sunshine}.

Assume that we see the grass is wet and it is quite, i.e.,M∗ = {wet_grass, quiet}. To
compute the explanations for our phenomena, we have to find sets of elements of H which
together with T entail the observations and are consistent with the theory. Considering
the entailment relations between assumptions and the observations, we can see that

T ∪ {sprinkler_off, rain} |= {wet_grass, quiet}

and
T ∪ {sprinkler_off, sprinkler_on} |= {wet_grass, quiet} .

However, the second explanation candidate {sprinkler_off, sprinkler_on} leads to a contra-
diction given the theory, since the sprinkler cannot be on and off simultaneously, i.e., the
solution is inconsistent and does not constitute an abductive explanation. Thus, the only
minimal explanation for our observations is Σ = {sprinkler_off, rain}.

Prime Implicates and Prime Implicants

The concepts of prime implicate and prime implicant take an important role within logic-
based abduction and first have been considered in the context of circuit simplification in the
1950s [Qui55].

Definition 2.5 ((Prime) Implicate [Mar00]). Given a set of propositional formulas Ψ, a
disjunction of literals π is an implicate of Ψ iff Ψ |= π and π is not a tautology. π is a prime
implicate of Ψ iff

• π is an implicate of Ψ, and

• for every implicate π′ of Ψ, if π′ |= π then π |= π′.

As Definition 2.5 declares, an implicate π is a consequence of Ψ, with a prime implicate
being the strongest logical consequence. Note that a tautology has no prime implicates, and

14 Chapter 2 Preliminaries

the empty clause is the only prime implicate of a contradiction [Mar00]. Similarly, the dual
of prime implicates, the so called prime implicants are defined:

Definition 2.6 ((Prime) Implicant [Mar00]). Given a set of propositional formulas Ψ, a
conjunction of literals $ is an implicant of Ψ iff $ |= Ψ and $ is not a contradiction. $ is a
prime implicant of Ψ iff

• $ is an implicant of Ψ, and

• for every implicant $′ of Ψ, if $ |= $′ then $′ |= $.

Proposition 1 (Duality of prime implicates and prime implicants [Mar00]). A clause π
is a prime implicate of Ψ iff ¬π is a prime implicant of ¬Ψ. A conjunctive clause $ is a prime
implicant of Ψ iff ¬$ is a prime implicate of ¬Ψ.

Example 2.3

Let Ψ = (a ∨ b ∨ c) ∧ (¬a ∨ b). Ψ has two prime implicates, i.e., πΨ1 = (¬a ∨ b) and
πΨ2 = (b ∨ c), and two prime implicants, i.e., $Ψ1 = (b) and $Ψ2 = (¬a ∧ c). Deriving
the negation of Ψ we obtain ¬Ψ = (¬a ∨ ¬b) ∧ (a ∨ ¬b) ∧ (¬b) ∧ (a ∨ ¬c) ∧ (¬b ∨ ¬c).
Again ¬Ψ has two prime implicates, i.e., π¬Ψ1 = (¬b) and π¬Ψ2 = (a∨¬c), and two prime
implicants, i.e., $¬Ψ1 = (a ∧ ¬b) and $¬Ψ2 = (¬b ∧ ¬c). Considering the dual relation
between prime implicates and implicants, we can determine the following equivalences:

πΨ1 = (¬a ∨ b) ≡ ¬$¬Ψ1 = (¬a ∨ b)
πΨ2 = (b ∨ c) ≡ ¬$¬Ψ2 = (b ∨ c)
$Ψ1 = (b) ≡ ¬π¬Ψ1 = (b)
$Ψ2 = (¬a ∧ c) ≡ ¬π¬Ψ2 = (¬a ∧ c)

Proposition 2 (Equivalence [Bie09]). Given a formula Ψ. The conjunction of the prime
implicates and the disjunction of the prime implicants of Ψ are equivalent and both are
equivalent to the formula itself.

Example 2.3 (cont.)

For Ψ = (a ∨ b ∨ c) ∧ (¬a ∨ b) it is apparent that (a ∨ b ∨ c) ∧ (¬a ∨ b) ≡ (b) ∨ (¬a ∧ c) ≡
(¬a ∨ b) ∧ (b ∨ c).

Proposition 1 states prime implicates and the prime implicants are a representation
of the original formula, i.e., there is not information loss in replacing a formula by its
prime implicates and prime implicants [Bie09]. A minimal Disjunctive Normal Form (DNF)
representation of a function Ψ is a disjunction of some of its prime implicants, while a
minimal CNF Ψ is a conjunction of some of its prime implicates. While Proposition 1 enables
us to utilize any algorithm for computing prime implicates in order to derive prime implicants
and vice versa. Computing prime implicates is an NP-hard problem and has first been studied
in detail in the middle of the previous century as a means to simplify truth functions and
subsequently circuits. The first approaches to deriving prime implicates of a CNF formula
are based on propositional resolution [Qui55; Tis67; KT90]; however, not all resolution
strategies are suitable for deriving prime implicates. As stated by Marquis [Mar00] given
Ψ |= γ a resolution strategy R is

• proof-finding complete iff Ψ ∧ ¬γ `R �.

• deduction (consequence-finding) complete iff ∃ζ : Ψ `R ζ and ζ |= γ, where ζ is a
clause.

2.2 Abductive Reasoning 15

Given a deduction complete resolution strategy, we can derive all prime implicates: if π
is an implicate of Ψ, there is a clause π∗ that subsumes π and can be derived from Ψ by
resolution. The prime implicates can be obtained by simplifying the set of clauses to keep
only the logically strongest ones [Mar00].

Resolution-based methods construct the resolvent of two clauses and subsequently re-
move all clauses subsumed by the newly generated clause. Once all resolvents have been
derived, i.e., there are no more changes, all prime implicates have been enumerated. First,
Quine [Qui55] proposes an algorithm in the context of minimizing Boolean functions. His
method iteratively identifies consensus; the consensus of two variables that can be resolved
is their resolvent, unless the resolvent is a tautology, i.e., a consensus proof is resolution
with tautology elimination [Kle92]. Algorithm BRUTE FORCE taken from de Kleer [Kle92]
describes the brute force approach to the resolution-based technique. First, the result set Π
is empty. Whenever, a new clause ψ of Ψ is removed from Ψ and considered for computation,
it is checked for subsumption with the result set. If ψ is subsumed by any clause in Π then ψ
is skipped (Step 3). Otherwise, all clauses in Π subsumed by ψ are removed from the result
set. Then the algorithm tries to resolve ψ with every clause in Π and all derived resolvents
are added to the set of clauses Ψ. Lastly, ψ is added to Π in Step 6 before continuing the
execution with Step 2.

Algorithm 2.1: BRUTE FORCE [Kle92]

1 Let Ψ be a set of clauses for which the prime implicates are to be computed and let
Π (the result) be ∅.

2 Take the first clause ψ from Ψ. If there are no more clauses in Ψ return Π.

3 If ψ is subsumed by any clause in Π, then go to Step 2.

4 Remove all clauses of Π which are subsumed by ψ.

5 Try to derive to resolve ψ with every clause in Π. Whenever there is a resolvent and
it is not a tautology, add it to Ψ.

6 Add ψ to Π and go to Step 2.

Example 2.3 (cont.)

Consider again Ψ = {(a∨b∨c), (¬a∨b)}. Table 2.1 depicts the execution of BRUTE FORCE.
The first clause considered is (a ∨ b ∨ c). Since it is neither subsumed nor subsumes any
clause in Π and cannot be resolved, it is simply added to Π. The second clause (¬a ∨ b)
can be resolved with a clause in Π, i.e., (a∨ b∨ c). The resolvent (b∨ c) is added to Ψ and
(¬a∨ b) is added to Π. The next clause in Ψ is the resolvent (b∨ c). Since (b∨ c) subsumes
(a∨ b∨ c), (a∨ b∨ c) is deleted from Π and (b∨ c) is added to the result set. As Ψ contains
no more elements, the final set of prime implicates is Π = {(¬a ∨ b), (b ∨ c)}.
Table 2.1: Execution of BRUTE FORCE.

Ψ Π ψ action
{(a ∨ b ∨ c), (¬a ∨ b)} ∅ (a ∨ b ∨ c) add (a ∨ b ∨ c) to Π

{(¬a ∨ b)} {(a ∨ b ∨ c))} (¬a ∨ b) resolve (¬a ∨ b) with (a ∨ b ∨ c)
add (b ∨ c) to Ψ
add (¬a ∨ b) to Π

{(b ∨ c)} {(a ∨ b ∨ c), (¬a ∨ b)} (b ∨ c) remove (a ∨ b ∨ c) from Π
add (b ∨ c) to Π

16 Chapter 2 Preliminaries

{} {(¬a ∨ b), (b ∨ c)} return Π

The issue with this technique is that several unnecessary resolvents may be generated.
Ordered resolution has been proposed as a means to reduce the number of redundant
resolutions steps by defining a total ordering over the variables of the formula. Tison’s
algorithm [Tis67] and the improvements by Kean and Tsiknis [KT90] avoid many redundant
actions by ordering the symbols, iterating over them, and performing all resolutions of the
current symbol before moving on to the next variable. This ensures that possible resolutions
that may appear later using said symbol result in redundant resolvents.

Example 2.4 [Kle92]

Let Ψ = (a ∨ b) ∧ (¬b ∨ c) ∧ (¬c ∨ d), and assume a variable ordering a > b > c > d.
Figure 2.1 depicts the resolution steps. First, we try to resolve using a. Since there is no
possible actions, we continue with variable b and use the first and second clause to derive
a ∨ c. For c there are two resolution steps, i.e., 2© and 3© in Figure 2.1. Afterwards we
could resolve ¬b ∨ d with the first clause using b, however, the variable b has already been
processed. Hence, we can safely skip this resolution as this would result again in a ∨ d (as
shown with dashed lines in Figure 2.1).

a ∨ b ¬b ∨ c ¬c ∨ d

1© a ∨ c 2© ¬b ∨ d

3© a ∨ d a ∨ d

Figure 2.1: Tison’s strategy to avoid redundant resolutions. [Kle92]

Based on Kean and Tsiknis’ technique [KT90], the Complete Logic-based Truth Mainte-
nance System [Kle92] is an incremental algorithm building discrimination trees (tries) in
order to compute prime implicates with an improved subsumption check. A trie is a tree
where edges are literals and the nodes along each branch represent the literals of a clause in
descending order. The conjunction of all such clauses is a CNF equivalent to the formula.
The algorithm uses the trie structure that allows on the one hand a more compact represen-
tation of the canonical form of clauses and on the other hand more efficient subsumption
operations. Based on this work prime implicate tries were developed as an extension of tries,
dedicated to store prime implicates [Mat+09].

Slage et al. [Sla+70] introduce an approach based on decomposition of the formula in
DNF. Their tree method (Algorithm TREE METHOD) utilizes an ordered semantic tree, where
nodes correspond to set of clauses and edges represent literals, to derive prime implicates.
By computing success (X) and failure leafs (7), the semantic tree encodes implicates as paths
from the root node to a successful leaf. Slage et al. [Sla+70] suggest the use of depth-first
search to process the tree. The algorithm may possibly generate non-prime implicates, hence
an additional subsumption elimination is necessary to compute only the prime implicates.

2.2 Abductive Reasoning 17

Algorithm 2.2: TREE METHOD [Sla+70]

1 Let ΨF be the set constructed from Ψ by removing tautologies. Let the root node be
S and choose a literal ordering OS (e.g., a frequency ordering of S).

2 If all leafs are marked either X or 7, return for each success node the path from
the root to the node as a disjunction of the literals represented by the edges on the
path. These disjunctions then correspond to the implicates. Otherwise, if there is a
nonterminating node Si, create for each literal l in OS an edge from the node Si to
a node Sj . Sj holds all of Si’s clauses that do not contain l represented by the edge.

• If Sj is empty, mark it with X.

• Otherwise delete all ¬l and all literals appearing in OS before l. Afterwards, if
Sj contains the empty clause, we mark Sj with 7.

3 Repeat Step 3.

Example 2.3 (cont.)

Given Ψ = {(a ∨ b ∨ c) ∧ (¬a ∨ b)} we construct the DNF representation, i.e., ΨDNF =
(¬a ∧ c) ∨ (b). We use a literal ordering OS with ¬a > c > b. Starting from the root node
S representing all clauses in ΨDNF for each literal in ΨDNF an edge is constructed. Node
S1 then contains all terms that do not contain the literal ¬a, i.e., (b). Processing S1 all
literals with a lower index than ¬a in OS are removed, which in this case are none. Thus
the node contains (b) (see Table 2.2). Continuing in a depth-first order, we construct an
edge from S1 labeled b to node S2. For S2 there is no clause that does not contain the
literal b characterizing the edge, hence, is empty and thus a success node and marked X.
Hence, S2 is a leaf and the algorithm continues with the next edge from the root labeled b.
Node S3 contains all terms that do not contain b, that is (¬a ∧ c). Since ¬a and c have a
higher index than b in OS the literals are removed, S3 contains the empty clause and the
node is marked 7 as shown in Figure 2.2. For the node S4 and S5 we continue analogously
to nodes S1 and S2. Once all leafs are marked X or 7, we return for each X leaf the path
from the root to the node as a disjunction of the literals represented by the edges on the
path. That is the prime implicates are ¬a ∨ b and b ∨ c.

Table 2.2: Nodes content after the execu-
tion of TREE METHOD for ΨDNF .

S {(¬a ∧ c), (b)}
S1 {(b)}
S2 ∅ X
S3 {(��HH¬a ∧ �Ac)} = {} 7

S4 {(b)}
S5 ∅ X

S

S1 S3

7

S4

S2

X
S5

X

¬a b c

b b

Figure 2.2: Tree method for ΨDNF .

Given the duality of prime implicates and prime implicants, we can utilize the tree
method to derive prime implicants on the Ψ. We considering a frequency order OS with
b > c > a > ¬a. Starting from the root node S representing all clauses in Ψ for each literal
in Ψ an edge is constructed. Node S1 then contains all clauses that do not contain the
literal a, i.e., (¬a∨ b). Processing S1, first, ¬a has to be removed since it is complimentary
to a, and second, also all literal which have a lower index than a in OS are removed, i.e.,

18 Chapter 2 Preliminaries

b is deleted from S1 (see Table 2.3). As S1 now contains the empty clause, the node is
marked 7 as shown in Figure 2.3. For S2 there is no clause that does not contain the literal
b characterizing the edge, hence, S2 is empty and thus a success node and marked X. In
node S3 we remove b, since c has a higher index than b in OS . Thus, the remaining clause
is ¬a. Since the node is neither marked a success nor a failure, a new edge is constructed
and labeled ¬a. The end point of the edge is node S4, which is empty and hence marked
as successful. Lastly, the node S5 can be marked a failure analogous to S1. Since all leafs
are terminated, we can obtain the prime implicants from the paths of the success nodes as
conjunctions of the literals, i.e., for S2 we return b and for S4 we return c ∧ ¬a.

Table 2.3: Nodes based on Ψ after the exe-
cution of TREE METHOD.

S {(a ∨ b ∨ c), (¬a ∨ b)}
S1 {(¬a ∨ �Cb)} = {} 7

S2 ∅ X
S3 {(¬a ∨ �Cb)} = {(¬a)}
S4 ∅ X
S5 {(a ∨ �Cb ∨ �Ac)} = {} 7

S

S1

7

S2

X
S3 S5

7

S4

X

a b c ¬a

¬a

Figure 2.3: Tree method for Ψ.

Other approaches, are formulate to derive the prime implicants of a formula. For in-
stance, Manquinho et al. [Man+97] present a method using an Integer Linear Programming
(ILP) representation of a propositional formula in order to compute minimum-size prime
implicants, being the prime implicant with the least number of literals. Bittencourt [Bit08]
introduces quantum notation, a prime form notation that explicitly represents the relation-
ship between literals, clauses, and terms. Via A∗ search the state space is transversed and
each state is associated with a set of quanta representing an incomplete prime implicant.
Rymon [Rym94] has formalized the connection between prime implicants and minimal
hitting sets as a means to generate prime implicants/implicates.

Definition 2.7 (Hitting Set [Pil+11]). Given a set of sets CS, a set h ⊆
⋃

Ci∈CS Ci is a
hitting set for CS, iff for any set Ci ∈ CS : h ∩ Ci 6= ∅. A hitting set h is said to be minimal iff
there exists no other hitting set h′ for CS such that h′ ⊂ h.

Proposition 3 (Prime Implicants/Implicates as Minimal Hitting Sets [Rym94]). Given
a set of propositional formulas Ψ in CNF, a conjunction of literals $ is a non-trivial prime
implicant of Ψ iff $ (as a set) is a minimal hitting set for Ψ (as a collection of sets) and it
does not contain a literal and its negation. Similarly, given a set of propositional formulas
ΨDNF in DNF a disjunction of literals π is a non-trivial prime implicate of ΨDNF iff π (as
a set) is a minimal hitting set for ΨDNF (as a collection of sets) and it does not contain a
literal and its negation.

Example 2.3 (cont.)

Consider again Ψ = (a∨ b∨ c)∧ (¬a∨ b). Viewing Ψ as a collection of sets, we can define
CS = {{a, b, c}, {¬a, b}}. Computing the minimal hitting set for CS, we obtain {b}, {¬a, c},
and {¬a, a}. The last minimal hitting set, however, contains a literals and its complement,
thus we do not consider it. Hence, {b} and {¬a, c} are the set representations of the two
prime implicants of Ψ.

2.2 Abductive Reasoning 19

For ΨDNF = (¬a ∧ c) ∨ (b), we derive the minimal hitting sets for CS = {{¬a, c}, {b}},
which are {¬a, b} and {b, c} and hence the set representation of the prime implicates.

Now it remains to show how the notion of prime implicates/prime implicants be used for
abduction. Considering Definition 2.3 of a solution to a PAP, we know that T ∧ Σ |=M∗ in
order for Σ to constitute an abductive explanation. Rewriting this relation in an entailment
preserving way, we obtain T ∧ ¬M∗ |= ¬Σ, that is ¬Σ is a prime implicate of T ∧ ¬M∗.
Hence, we can establish the following proposition:

Proposition 4. Let T be the background knowledge and Ψ be a formula, then a clause Σ is
a minimal abductive explanation of Ψ iff the clause ¬Σ is a prime implicate of T ∧ ¬M∗7

and satisfies conditions (1) and (3) of Definition 2.3.

Example 2.5

Consider the following PAP with PROPS = {sprinkler_on,wet_grass, rain,wet_street},
H = {sprinkler_on, rain, }, M∗ = {wet_grass}, T = {¬sprinkler_on∨wet_grass,¬rain
∨wet_grass,¬rain∨wet_street}.

We can create T ∧ ¬M∗ = {¬sprinkler_on∨wet_grass,¬rain∨wet_grass,¬rain∨
wet_street,¬wet_grass}. Given wet_grass is false, ¬sprinkler_on and ¬rain have to be
true, i.e., are entailed by T ∧ ¬M∗. Hence, sprinkler_on and rain are explanations for the
PAP.

Besides the abductive context, the importance of prime implicates in the context of
consistency-based diagnosis has been established. There conflicts are the prime implicates
of the system description and observations, while their hitting set dual prime implicants
determine the diagnoses [DKW87].

Consequence Finding

Consequence finding represents a general reasoning scheme for obtaining solutions to
a variety of problems, such as prime implicate computation [Mar00]. In essence, the
corresponding methods infer logical consequences from a given knowledge base, while
restricting the generated solutions to a sub-vocabulary of the representation language. This
target language is referred to as the production field that defines the properties enforced
upon the derived—so called characteristic—theorems.

Definition 2.8 (Production Field [Ino91]). A production field P is a pair 〈LP ,Cond〉where
LP is a subset of L±, while Cond denotes the characteristic literals and defines a condition
to be satisfied. If Cond is not given, the production field is denoted 〈LP〉.

LP defines the limitations enforced upon the form of literals found in the derived con-
sequences, while Cond characterizes general conditions of the solution, e.g., consequences
with a certain cardinality. We say a clause C belongs to a production field, in case all literals
in C are a subset of LP and C fulfills the condition Cond [Ino91].

Definition 2.9 (Stable Production Field [Ino91]). A production field P is stable if for any
two clauses Ci and Cj where Ci ⊆ Cj8, it holds that if Cj belongs to P then also Cj belongs
to P.

7Of course, T ∪ ¬M∗ have to be consistent.
8A clause C subsumes a clause C′ if every literal in C occurs in C′[Ino91].

20 Chapter 2 Preliminaries

Definition 2.10 (Characteristic Clause [Ino91]). A clause C of Ψ is a characteristic clause
w.r.t. to a production field P s.t. Ψ |= C and is subset minimal. That is, a characteristic
clause of Ψ is a prime implicate of Ψ belonging to P.

Example 2.6

Let Ψ be (a → b) ∧ (¬a → b) and P =< {b,¬a}, of size 1 >, i.e., the target language
allows clauses containing exactly 1 literal either b or ¬a. Then b is the only characteristic
clause.

The prime implicates of a formula Ψ are equivalent to the main consequences, since they
both define the logically strongest clauses that are implied by Ψ. Hence, we can utilize
consequence finding for abductive reasoning, i.e., by defining the production field in such a
way that only hypotheses can be part of the consequences. Thus, abductive explanations
are computed deductively, in particular the theorem-proving procedure derives the prime
implicates instead of the empty clause [Ino02].

Skip-Filtered Kernel-Resolution (SFK-resolution) [Val99] is a generalization of Tison’s
prime implicate algorithm. Del Val [Val99] uses this idea and splits each clause C into
two set of literals; a kernel k(C) denoting the "usable" literals and skip s(C) the literals not
resolved upon. Hence, each clause C is a pair 〈s(C), k(C)〉. A kernel deduction proof is then
a resolution in which every literal is resolved upon the clause’s kernel. Given a resolution
step, the resolvent is split into skip and kernel based on the literal l resolved upon; i.e.,
each literal occurring before l is skipped, while each literal later in the ordering remains
in the kernel. SFK-resolution is then a restriction of kernel resolution limiting the derived
consequences to the target language.

Example 2.7 [Mar00]

Let Ψ be (a∨ b)∧ (a∨ c∨d)∧ (¬b∨¬c), P =< {a} >, and given an ordering a < b < c < d.
The following sequence is an SFK-resolution proof:

1. 〈∅, {a, b}〉 input clause
2. 〈∅, {¬b,¬c}〉 input clause
3. 〈{a}, {¬c}〉 resolution of 1. and 2. upon b
4. 〈∅, {a, c, d}〉 input clause
5. 〈{a}, {d}〉 resolution of 3. and 4. upon c

Each input clause C has s(C) = ∅ and k(C) = C. The first two input clauses can be
resolved upon b, resulting in a new clause {a,¬c}, however, since a is smaller than the
literal b resolved upon it is added to the skip set, while ¬c remains in the kernel. This
clause’s kernel can then be used for resolution with the input clause {a, c, d} resulting in
the clause in 5.. At the end the skip contains the consequence a.

Simon and Del Val [SDV01] show an efficient implementation of kernel resolution based
on bucket elimination and Zero Suppressed Binary Decision Diagrams (ZBDDs). ZBDDs
provide a compact encoding and allow to process large clause sets based on resolution and
subsumption. Their method exploits in addition to ZBDDs a variant of resolution called
multiresolution that may be applied directly on the ZBDD representation. By specifying
all allowed clauses, the authors only find implicates over a restricted language. Another
consequence finding method is Finger and Genesereth’s [FG85] RESIDUE procedure. It

2.2 Abductive Reasoning 21

generates deductive solutions for design synthesis based on the assumable variables, i.e.,
residues, left behind on resolution proofs.

Proof-Tree Completion
Besides using prime implicates or consequences for generating explanations, we can use an-

other formalization often referred to as proof-tree completion [McI98]. Recall Definition 2.3,
a set Σ ⊆ H is an explanation if T ∪ Σ |= M∗ and Σ is consistent with the background
theory. In consequence finding, we have rewritten the condition to T ∪ ¬M∗ |= ¬Σ and
obtained the explanations deductively. T ∪Σ |=M∗ is also equivalent to T ∪Σ∪¬M∗ |= ⊥.
In this case, abductive explanations are derived as the refutations based on the theory and
the negation of the observations. The procedure uses linear resolution trying to derive ⊥ and
has been first proposed by Pople [Pop73] and later also by Cox and Pietrzykowski [CP86]. In
essence, one tries to prove the observations and the parts associated with failed branches of
a proof-tree are the candidate explanations. By using linear resolution the method resolves
the negated observations with the background theory, this leads to dead-ends that could be
completed given the explanations. Theorist [Poo+87] also uses linear resolution to generate
hypotheses, but instead of deriving dead ends the background theory is augmented with
abducibles and the procedure records the hypotheses used to derive ⊥ [McI98]. Given that
linear resolution is proof-finding complete, these methods are based on a sound procedure.

2.2.2 Abduction by Set-covering
Peng and Reggia [PR90] have developed the parsimonious set covering theory as a formal

framework for abductive reasoning. Their approach relies on an associative network of
causal connections between disorders and manifestations. That is, the background theory T
describes the causal relations between H andM. Within T there exists a relation between
a disorder or hypothesis hi and a manifestation mj whenever a disorder might cause a
manifestations. Considering the logic-based abduction problem definition, there exists a
relation between a hi and mj whenever there is a clause hi → mj contained within the
theory. In its simplest form, the causal network consists of two layers of entities, i.e.,
hypotheses and manifestations. Peng and Reggia [PR90] refer to this type of abduction
problem as a bipartite problem. We focus on these abduction problems.

Definition 2.11 (Set Cover Diagnosis Problem [PR90]). A diagnostic problem is a 4-tuple
〈H,M, T ,M∗〉, whereH is a finite, non-empty set of objects called hypotheses,M is a finite,
non-empty set of objects called manifestations, T ⊆ H×M is a relation with domain(T) = H
and range(T) =M called causation, andM∗ ⊆M is said to be the manifestations present.

A set of disorder Σ ⊆ H is an abductive explanation if Σ covers M∗. In order to
characterize a covering relation within this framework, we define for every hypothesis hi the
set effects(hi) and for every manifestation mj the set causes(mj) [PR90]:

• effects(hi) = {mj | < hi,mj >∈ T }, i.e., the set of objects directly caused by hi

• causes(mj) = {hi| < hi,mj >∈ T }, i.e., the set of objects which can directly cause mj

Thus, for any subset of disorders H′, we can determine the objects directly caused by it as

effects(H′) =
⋃

hi∈H′

effects(hi) .

Along similar lines, we can observe that for anyM′ ⊆M

causes(M′) =
⋃

mj∈M′

causes(mj) .

22 Chapter 2 Preliminaries

Definition 2.12 (Cover [PR90]). A set H′ ⊆ H is said to cover M′ ⊆ M iff M′ ⊆
effects(H′).

A cover relation exists between a disorder and a manifestation whenever the latter is causally
inferred from the former. While minimality is not a necessary condition for a cover in this
first definition, Peng and Reggia [PR90] provide different parsimonious criteria, such as
cardinality minimality (minimum cover) or subset minimality (irredundant cover). Since we
are interested in subset minimal explanations, we will refer to irredundant covers as minimal
covers.

Definition 2.13 (Minimal Cover [PR90]). A cover H′ is said to be a minimal cover for a
set of manifestationM′ iff there exists no H′′ ⊆ H′ such that H′′ is also a cover forM′.

Definition 2.14 (Set Cover Explanation [PR90]). Given an abduction problem, a set Σ
⊆ H is said to be a solution to the abduction problem iff Σ is a minimal cover forM∗.

Example 2.8

Assume the following abduction problem with T given by the causal associate network
in Figure 2.4, H = {H1, H2, H3, H4, H5, H6, H7}, M = {m1,m2,m3,m4}, and M∗ =
{m1,m2,m4}. For example, effects(H1) = {m1,m2}, causes(m1) = {H1, H2, H3, H4},
effects({H3, H7}) = {m1,m4}, and causes({m3,m4}) = {H4, H5, H6, H7}.

H1 H2 H3 H4 H5 H6 H7

m1 m2 m3 m4

Figure 2.4: Causal associative network [PR90].

Considering M∗, for instance, the set {H1, H2, H6, H7} covers the current man-
ifestations, since effects({H1, H2, H6, H7}) = {m1,m2,m4}. However, this cover
is not parsimonious, since for example {H1, H6} is sufficient to explain M∗.
Given this abduction problem there are eight minimal covers, i.e., explanations:
{H1, H5},{H1, H6},{H1, H7},{H2, H5},{H2, H6},{H2, H7},{H3, H6}, and {H4, H6}.

To derive explanations for abduction problems based on bipartite networks, the authors
present a sequential construction of solutions for one manifestation at a time. They propose
a compact representation of explanations as generators and define a set of operations on
them to derive solutions.

Definition 2.15 (Generator [PR90]). Let g1, g2, . . . , gn be non-empty pairwise disjoint
subsets of H. Then GI = {g1, g2, . . . , gn} is a generator. The class generated by GI is defined
as [GI] = {{H1, H2, . . . ,Hn}|Hi ∈ gi, 1 ≤ i ≤ n}.

Definition 2.16 (Generator-Set [PR90]). G = {G1, G2, . . . , GN} is a generator-set if each
GI ∈ G is a generator and [GI] ∩ [GJ] = ∅ for I 6= J . The class generated by G is
[G] =

⋃N
I=1[GI].

A generator can be interpreted as the Cartesian Product based on unordered sets, i.e.,
a generator GI characterizes all possible sets of elements which can be formed by taking
one element of each gi ∈ GI . A generator-set represents the classes created by each of its
members, such that there is no overlap between the classes.

2.2 Abductive Reasoning 23

Example 2.9

Assume two generators:

G1 = ({H1, H2}, {H5, H6, H7}) and G2 = ({H3, H4}, {H8}) .

G1 implicitly represents six explanations, i.e., {H1, H5}, {H1, H6}, {H1, H7}, {H2, H5},
{H2, H6}, and {H2, H7}.

Combining G1 and G2 to G = {G1, G2}, we can encode eight explanations: [G] =
{{H1, H5}, {H1, H6}, {H1, H7}, {H2, H5}, {H2, H6}, {H2, H7}, {H3, H8}, {H4, H8}}.

Peng and Reggia present Algorithm BIPARTITE that incrementally computes the explana-
tions for a set of observations, considering one manifestationmnew at a time. By manipulating
generator-sets, all minimal covers can be extracted using three operations: division div,
division residual res, and the augmented residual of a division augres. Div returns a
generator-set characterizing all explanations of all previously considered observations, which
also cover the newly added manifestation mnew. The residual of a division res represents
all explanations of the previously considered manifestations, which do not cover mnew and
augres contains in addition to the residual also elements from causes(mnew) ensuring the
generator-set covers mnew. Once all observations have been considered, the computation has
finished and the returned generator-set represents all explanations to the diagnosis problem.
Due to its iterative nature, BIPARTITE is suitable for open problems, i.e., only a subset of
observations is available at a time.

Algorithm 2.3: BIPARTITE [PR90]

Require: H: the set of hypotheses,M: the set of manifestations, T : the relation between
hypotheses and manifestations, M∗: the set of observations

Ensure: G generator-set, representing the solutions to the abduction problem

1: G← ∅
2: while M∗ 6= ∅ do . Incrementally update G by causes(m) for m ∈M∗
3: mnew ← nextManifestation . Remove the next manifestation from M∗

4: F ← div(G, causes(mnew)) . Explanations of G covering mnew

5: Q← augres(G, causes(mnew)) . Explanations covering G ∪mnew

6: G← F ∪ res(Q,F) . Removes all redundant and duplicated covers
7: end while
8: return G

Example 2.8 (cont.)

BIPARTITE sequentially considers each manifestation inM∗; for the initial mnew = m1,
G simply contains all causes of m1, i.e., G = {H1, H2, H3, H4}. Taking into account the
second observation, i.e., mnew = m2 we have to compute F , the division between the
generator and the causes of m2, and Q, the augmented residual covering m2, to derive
the generator-set representing the minimal covers. We continue until all manifestations
have been considered.

24 Chapter 2 Preliminaries

mnew causes(mnew) F Q G

m1 {H1, H2, H3, H4} ∅ {({H1, H2, H3, H4})} {({H1, H2, H3, H4})}
m2 {H1, H2, H6} {({H1, H2})} {({H3, H4}, {H6})} {({H1, H2}),

({H3, H4}, {H6})}
m4 {H5, H6, H7} {({H3, H4},

{H6})}
{({H1, H2},
{H5, H6, H7})}

{({H1, H2},
{H5, H6, H7}),
({H3, H4}, {H6})}

Once there are no more manifestations left to process, the last generator G contains our
solutions, i.e., Σ ≡ [G] = {{H1, H5}, {H1, H6}, {H1, H7}, {H2, H5}, {H2, H6}, {H2, H7},
{H3, H6}, {H4, H6}}.

Peng and Reggia [PR90] provide an extension of their parsimonious covering theory,
which handles intermediate, states between manifestations and hypotheses. Given these so
called layered problems, which are restricted to cycleless networks, indirect causation has
to be accounted for. Another extension utilizes probabilistic causal models to be able to
rank explanations. Recall that the associative networks do not guarantee the occurrence of a
symptom given a disorder. To account for this uncertainty, the authors assign to each connec-
tion a causal strength value. In addition, assuming statistical independence of hypotheses,
given a-priori disorder probabilities allow to represent the quality of a solution. Several
refinements to the basic theory have been proposed such as the improvement of models with
additional knowledge or the inclusion of more complex covering relations [BS02].

Besides using algorithm BIPARTITE, Peng and Reggia [PR89] propose a two-layered
connectionist architecture, where the sets of disorders and manifestations are neurons
and T describes the set of links between the layers. Each node has a constant and a
dynamically changing value for its activation level. For each hi ∈ H the constant value is
the hypothesis’ prior probability, while the activation level ranges from 0 to 1 and indicates
whether the disorder is confirmed or not. For mj ∈M the constant value is either 1 if the
manifestation is observed or 0 otherwise. Its dynamic value depends on the activation of
all the disorders causing said manifestation. A neuron updates its activation level when it
receives information from its neighboring nodes and subsequently sends its own activation
level to its neighbors. In particular, the hypothesis nodes compete for the activity level of
their connected manifestation nodes. Once the model converges to a set of explanations
nodes, i.e., the activation levels of the disorder nodes are close to 1 or 0 respectively, then the
fully activated neurons compose the solution. Ayeb, Wang, and Ge [Aye+98] define a unified
model for abduction problems also relying on a neural architecture. Their bipartite network
consists of observation as well as hypothesis nodes, which are connected via weighted links.
The weight between a disorder and a manifestations represents the belief in the presence of
the hypothesis given the observation. Other work using neural networks and set-covering
diagnosis has been proposed by Abdelbar, Andrews, and Wunsch [Abd+03]. The authors
utilize high-order neural networks for cost-based abduction seeking minimal cost solutions.
Their network uses penalty logic, an extension of propositional logic, which associates
real-valued penalties with well-formed formulas.

2.2.3 Probabilistic Abduction
The drawback of the previously described approaches is that there is possibly a large

number of minimal solutions. Probabilistic methods restrict the admissible explanations
by searching for the most probable ones. Besides structural information this framework

2.2 Abductive Reasoning 25

also accounts for probabilistic knowledge about causes and effects. In particular, the prior
probabilities of hypotheses as well as conditional probabilities between elements ofH andM
are utilized [EG95]. For instance, the simple parsimonious set-covering framework has been
extended such that a-priori probabilities of disorders as well as the strengths, i.e., frequencies,
of causal connections are incorporated. Based on this information, the relative likelihood of
a diagnosis given the set of observations can be calculated. In essence, abductive inference
in the probabilistic framework can be viewed as a combinatorial optimization problem: the
best solution Σ ⊆ H maximizes the a-posteriori probability P (Σ|M∗). Usually the problem
solver computes the k most probable explanations given the evidence.

Bayesian Belief Networks (BBNs) were first introduced by Pearl [Pea88] and are Directed
Acyclic Graphs (DAGs) in which nodes correspond to random variables and edges charac-
terize conditional dependencies. Each root node contains a prior probability, while each
non-root node has a conditional probability based on the node’s parents. A BBN represents
the joint probability distribution P (V) =

∏n
i=1 P (Vi|pa(Vi)) over its variables, where pa(Vi)

denotes the parents of Vi in the graph. Probabilities of interest can be computed by Bayes’
theorem. In the context of probabilistic reasoning, abduction corresponds to the problem of
finding the joint value assignment to a set of variables in the network which has the highest
a-posterior probability given the observed values of other variables in the network. It is
known as Most probable explanation (MPE) or Maximum a posteriori assignment problem
(MAP). MAP is the search for the most probable instantiation of a set of unobserved variables
in a Bayesian network given some evidence. MPE, which is a special case of MAP, is the
search for the most probable instantiation of a set of unobserved variables given a particular
instantiation of the remaining variables [PD01].

While there are exact methods to derive the most probable explanation, there are var-
ious approximation techniques. For example, Fortier, Sheppard, Pillai [For+13] propose
a swarm-based approximation approach to compute k-MPE of a Bayesian network. An
overlapping swarm intelligence algorithm is utilized in which a particle swarm is associated
with each non-evidence node in the network. Charniak and Shimony [CS94] use cost-based
abduction to find the "best" explanation as the one with a minimal cost proof taking into
account the costs of assumptions and rules. Given their cost-based abduction they define
a probabilistic semantic for the costs such that they can show the equivalence to finding a
maximum-a-posteriori assignment over a belief network. A similar idea has been followed
by Hobbs et al. [Hob+93] in weighted abduction for natural language interpretation. Each
literal in an antecedence is assigned a cost representing the effort of proving it instead of
assuming it and a function favors proofs with fewer assumptions. Ovchinnikova, Gordon,
and Hobbs [Ovc+13] show how certain features of weighted abduction can be represented
in a formal probabilistic framework based on Bayesian Networks.

2.3 Abductive Model-Based Diagnosis
The concepts of model-based reasoning emerged from the limitations of expert systems.

Expert systems exploit knowledge stemming from experience within a specific context for
problem solving. This type of "shallow knowledge" contrasts the "deep knowledge" from first
principle (i.e., information on physical component behavior) that model-based diagnosis
is built upon [Str08]. Model-based reasoning was envisioned by Davis [DH88] as a means
to determine faults by using structural and behavioral information. It fosters the idea of
reusing knowledge by relying on a formalization of components. Given a component library
various physical systems can be represented by combining the models of their constituting
parts.

26 Chapter 2 Preliminaries

The system model together with a set of observed symptoms can be exploited to obtain
diagnostic hypotheses for the observations. Reiter [Rei87] proposed a formal definition of the
problem based on a component-oriented system description in first order logic characterizing
the correct system behavior. His approach uses the notion that, in the presence of a
fault a discrepancy between the fault free and the observed behavior manifests itself as
conflicting assumptions of components’ health states. A diagnosis then is a set of abnormality
assumptions about the system such that the observations and assumptions are consistent. The
set of all root causes are obtained as hitting sets on the derived conflicts. At the same time de
Kleer and Williams [DKW87] developed the General Diagnosis Engine (GDE) for detecting
and identifying multiple faults, using an Assumption-based Truth Maintenance System
(ATMS) to uncover conflicts and on that basis compute diagnoses. In addition, a technique
for selecting the next best measurement was introduced. Further developments include
improvements upon the GDE itself [FK88] and the introduction of fault modes [SD89] and
physical impossibilities9 [Fri+90b]. Since the fault detection is achieved through finding
inconsistencies, the methodology is known as consistency- based diagnosis. Of course
the model-based approach relies on certain assumptions, such as reliability of the system
description and observations or that a discrepancy between the measured and predicted
behavior does not stem from a design-error, but a fault in the system [FB+97].

Model-based diagnosis can look back at decades of research with various advances in the
computation of diagnosis, modeling strategies, and applications to real world problems. In
contrast the variants deriving inconsistencies and then diagnoses, Fröhlich and Nejdl [FN97]
directly manipulate the logical model. Most recently, Metodi et al. [Met+14] present a SAT
encoding for consistency-based diagnosis. The system description is compiled into a Boolean
formula, such that the formula’s satisfying assignments correspond to the solutions of the
diagnosis problem. Based on the encoding, a SAT solver directly computes the diagnoses.
In order to improve the solver’s performance, the authors utilize several preprocessing
techniques. An empirical comparison of their approach to other model-based diagnosis
algorithms indicates that their SAT encoding yields performance benefits. Contrasting
these results, Feldman et al. [Fel+10b] propose a translation to Max-SAT which could not
outperform a stochastic model-based diagnosis algorithm. In Nica and Wotawa [NW12] the
authors present an algorithm which ties constraint solving to diagnosis, thus renders the
detection of inconsistencies and subsequent hitting set computation unnecessary. Another
direct approach by Felfernig and Schubert [FS10] computes minimal diagnoses for over-
constrained problems by finding the sets of constraints to be relaxed in order to restore
consistency. Nayak and Williams [NW97] introduced an incremental approach that allows
for fast context switching. Their diagnosis and reconfiguration system for space autonomous
agents, called Livingston, was used in NASA’s Deep Space One [WN96]. Besides spacecraft
systems, model-based reasoning techniques have been applied to on-board diagnosis in the
automotive industry [Str+96], configuration and reconfiguration systems [Fel+04], and
software debugging [Fri+99].

In contrast, abductive model-based diagnosis is based on the notion of logical entail-
ment [Poo+87]. A set of abnormality assumptions entailing the observations constitutes an
abductive diagnosis or explanation. To derive causes for observed anomalies utilizing this
type of inference, the abductive model-based diagnosis approach depends on a model repre-
senting the links between faults and their manifestations. Even though consistency-based and
abductive diagnosis are based on different reasoning techniques, Console et al. [Con+91]
showed the close relation between both variations. While the consistency-based method
is more popular, there are applications of abductive model-based diagnosis. For instance,

9Instead of representing various fault modes, Friedrich et al. [Fri+90b] characterize situations that are impossible
under all modes, e.g., a bulb without power is never lit.

2.3 Abductive Model-Based Diagnosis 27

Portinale, Magro, and Torasso’s [Por+04] ADAPtER combines model-based and case-based
reasoning for diagnosis. Given a new diagnosis problem, the case memory is searched for
an appropriate solution. If the solution is not consistent and complete given the new diag-
nosis problem, it is adapted using the behavioral model and abductive diagnosis. Wotawa,
Rodriguez-Roda, and Comas [Wot09; Wot+09] apply abductive model-based diagnosis to
improve environmental decision support systems. Their approach is based on using the
ATMS as a consequence finding procedure.

Propositional Horn Clause Abduction

Originally, abductive model-based approaches operate on formalizations of the faulty
system behavior. Such failure knowledge can usually be expressed as Horn theories [CT91].
Besides being a suitable representation for diagnostic models, the complexity results for
this subset of logic are less daunting: in case of general propositional theories and clausal
theories, abduction is located in the second level of the polynomial complexity hierarchy,
while for Horn clauses the complexity is mitigated to the first level [EG95]. Hence, we
focus on a less expressive modeling language, in our case Horn clause models. A Horn
clause is defined as a disjunction of literals featuring at most one positive literal and can be
described by a rule, e.g., {¬a1, . . . ,¬an, an+1} can be written as a1∧ . . .∧an → an+1. Similar
to Friedrich, Gottlob, and Nejdl [Fri+90a]10, we define a KB representing the abductive
diagnosis model in the context of propositional Horn clause abduction.

Definition 2.17 (Knowledge Base (KB) [Wot+09]). A knowledge base (KB) is a tuple
(A,Hyp,Th) where A denotes the set of propositional variables, Hyp ⊆ A the set of hypotheses,
and Th the set of Horn clause sentences over A.

A hypothesis, also referred to as an assumption, is a propositional variable for which we
can presume a certain truth value. Hypotheses are the propositions which can be part of a
diagnosis, i.e., are abducible, while the Horn theory depicts the relationships between the
variables, i.e., represents the system description.

Example 2.10 (adapted from [Tag05])

Consider an ATM system. Assuming an ATM dispenses cash given a valid debit card, the
input of the correct pin, and the fact that the balance on the account linked to the debit
card is positive. Yet, the safe and cash-dispensing mechanism itself may observe several
issues. In a simplified world, the ATM may not return any money in case it has run out of
cash or the machine is jammed. Even in cases where the machine dispenses currency, the
amount delivered may differentiate from the one requested in case bills are stuck together
and the integrated sensor does not correctly evaluate the thickness of the notes or the
denominations have been stacked in the wrong tray. Hence, the account is charged with
an inaccurate total. In case a power interruption occurs while the withdrawal request is
being processed, a transaction failure arises that leads to an incorrect charge on the debit

10Friedrich, Gottlob, and Nejdl [Fri+90a] investigate definite Horn clauses, i.e., Horn clauses featuring exactly one
positive literal.

28 Chapter 2 Preliminaries

card. Given the description we can create the following Horn theory representation of the
circumstancesa:

Th =

Out_of_cash→ no_cash,Machine_jam→ no_cash,
Sensor_fault ∧ Bills_stuck_together→ incorrect_amount,
Denominations_incorrectly_stacked→ incorrect_amount,

incorrect_amount→ incorrect_charge,
Power_failure→ transaction_failure, transaction_failure→ incorrect_charge

The set of propositional variables A comprises all hypotheses as well as propositions
representing effects:

A =

Out_of_cash,no_cash,Machine_jam, Sensor_fault,

Bills_stuck_together, incorrect_amount,Denominations_incorrectly_stacked,
incorrect_charge, Power_failure, transaction_failure

The faults we want to identify during diagnosis form the set of hypotheses.

Hyp =
{

Out_of_cash,Machine_jam, Sensor_fault,
Denominations_incorrectly_stacked, Power_failure

}
aIn this example, we use the convention often seen in the ATMS literature that assumptions start with a

capitalized letter.

Definition 2.18 (Propositional Horn Clause Abduction Problem (PHCAP) [Wot+09]).
Given a knowledge base (A,Hyp,Th) and a set of observations Obs ⊆ A then the tuple
(A,Hyp,Th,Obs) forms a propositional Horn clause abduction problem (PHCAP).

A diagnosis problem involves a KB as well as a set of observations for which the explana-
tions are to be computed. In our context, these observables may only be a conjunction of
propositions and not an arbitrary logical sentence. The solution to a PHCAP or diagnosis ∆
is a set of hypotheses explaining the propositions in Obs, i.e., entailing them together with
the theory Th. In other words, the observations are a logical consequence of the failure
relations described in the theory and the determined explanation. An additional requirement
is that only consistent diagnoses are permitted, thus solutions leading to a contradiction are
disregarded. Imposing a parsimonious criterion on the solutions is a principle commonly
used in diagnosis. From our practical point of view only subset minimal explanations are of
interest.

Definition 2.19 (Diagnosis; Solution [Wot+09]). Given a PHCAP (A,Hyp,Th,Obs). A set
∆ ⊆ Hyp is a solution if and only if ∆ ∪ Th |= Obs and ∆ ∪ Th 6|= ⊥. A solution ∆ is
parsimonious or minimal if and only if no set ∆′ ⊂ ∆ is a solution. ∆-Set contains all
solutions obtained from a PHCAP.

Example 2.10 (cont.)

Considering the PHCAP and assuming the ATM dispenses an incorrect currency amount,
i.e., Obs = {incorrect_amount}, we can derive two minimal explanations; either the sensor
checking the thickness of the returned bills is broken in conjunction with a set of bills
being stuck together (∆1 = {Sensor_fault,Bills_stuck_together}) or the teller has confused

2.3 Abductive Model-Based Diagnosis 29

the trays whilst loading the banknotes (∆2 = {Denominations_incorrectly_stacked}), i.e.,
∆-Set = {{Sensor_fault,Bills_stuck_together}, {Denominations_incorrectly_stacked}}.

While abductive reasoning provides an intuitive approach for fault localization, there
might be a large number of diagnoses that is exponential in the number of abducible atoms.
Its computational complexity for general propositional theories is located within the second
level of the polynomial hierarchy [EG95]. Focusing on a less expressive modeling languages,
such as in our case Horn clause models, reduces the complexity. Friedrich et al. [Fri+90a]
focus on definite Horn theories and showed that while checking whether a solution exists
is polynomial, deciding the relevance of a hypothesis in the context of subset minimal
explanations is NP-complete. Eiter and Makino [EM03] give a broader set of results, showing
that for Horn theories given a single positive literal as observation the computation of all
explanations is possible in polynomial total-time11. The same holds for a positive term, i.e.,
the conjunction representing the observation only contains positive literals. For a single
negative literal or general term, the problem is not polynomial total-time solvable.

2.3.1 Abduction with the Assumption-Based Truth
Maintenance System

There are various techniques for computing abductive explanations, as mentioned in
the previous section. We want to present one well-known approach that has first been
introduced in the context of consistency-based diagnoses; i.e., the ATMS [DK86a]. The
ATMS functions as an abductive reasoning engine for propositional Horn theories and can
be understood as a propositional consequence finding procedure returning for a given query
a logical consequence of the theory [McI98; Lev89]. It interacts with a problem solver.
The problem solver sends inferences to the ATMS and the ATMS decides on the belief of
the data. Internally an And-or-graph of the theory is constructed, where the contradiction
and propositions are vertices and the directed edges between them are dependent on the
implications within the theory. Based on this representation the ATMS creates and updates
a label Λ for each node n such that the label records which hypotheses support the vertex.
More specifically, the label comprises a set of environments. An environment is a set of
assumptions that allows to infer the corresponding node. Since hypotheses are justified by
themselves, the label of an assumption consists of one environment having the assumption
itself as the only element. By maintaining the information within the labels, the ATMS stores
all entailment relations between variables within the underlying theory. To ensure that
labels are consistent, the ATMS retains a NOGOOD node recording contradicting assumptions.
These inconsistencies as well as their supersets are not viable within the vertices’ labels. de
Kleer [DK86c] describes a procedure for computing consistent, sound, complete, and subset
minimal labels. The algorithm incrementally updates the nodes’ labels whenever a new Horn
clause is added. Many improvements to de Kleer’s original method for computing solutions
based on ATMS exist, for instance, to account for uncertainty [Dub+91] or more expressive
logical representations [DK86b].

Due to the fact that the ATMS labels comprise all hypotheses justifying a corresponding
node and are consistent, sound, complete, as well as minimal, the ATMS already derives
parsimonious abductive explanations. In particular, the ATMS returns a conjunction of
literals Σ drawn from Hyp such that ¬Σ ∨ Obs is a prime implicate of Th [McI98]. Al-
gorithm ABDUCTIVEEXPLANATIONS [Wot+09] computes all minimal explanations given a
PHCAP. First, the theory Th is supplied to the ATMS by adding each Horn clause via the

11The diagnoses can be generated in time polynomial in the combined size of the input and entire output [Fri+90a].

30 Chapter 2 Preliminaries

method ATMS_PROPAGATE. Given a clause, ATMS_PROPAGATE incrementally computes the nec-
essary label updates within the And-or-graph. Once the information of the entire theory
has been distributed, we utilize the ATMS to obtain diagnoses. Explanations for a single
symptom can be extracted directly from the proposition’s vertex label, since it stores the
assumptions from which the node can be inferred from without leading to a contradiction.
In case of multiple observations, an additional rule is applied to the ATMS, such that a
conjunction of the observations is present in the body and a new propositional variable forms
the head, i.e.,

∧
o∈Obso→ ex, where ex is not yet contained within A. Every set of hypotheses

included within the label of ex then constitutes a minimal consistent explanation. As the
set of hypotheses is finite, computing abductive explanations via the ATMS is guaranteed to
terminate.

Algorithm 2.4: ABDUCTIVEEXPLANATIONS (based on [Wot+09])

Require: A: the set of propositional variables, Hyp: the set of hypotheses, Th: the Horn
theory, Obs: the set of observations

Ensure: ∆-Set: set of minimal explanations
for all hc ∈ Th do

ATMS_PROPAGATE(hc) . Adding all Horn clauses of the theory to the ATMS
end for
if |Obs| > 1 then

ATMS_PROPAGATE(
∧
o∈Obs o→ ex) . ex is a new proposition, i.e., ex /∈ A

∆-Set← Λ(ex) . Retrieving the label of node ex containing the explanations for Obs
else

∆-Set← Λ(o) . Retrieving the label of the observation node o ∈ Obs
end if
return ∆-Set

Example 2.10 (cont.)

To derive the abductive explanations for Example 2.10, we exploit the ATMS as follows:
Figure 2.5 depicts the And-or-graph given the first two Horn clauses. Each node is
depicted with its name and underneath its label Λ is shown in red. For the assumption
node Out_of_cash, for instance, we can observe that the hypothesis justifies itself, while
no_cash’s label value is determined by its antecedent nodes. In Figure 2.6 we see the graph
representing all sentences of Th. Given Obs = {incorrect_amount}, we can simply extract
the minimal explanations from the corresponding node’s label Λ(incorrect_amount).

Out_of_cash
{{Out_of_cash}}

Machine_jam
{{Machine_jam}}

no_cash
{{Out_of_cash},
{Machine_jam}}

Figure 2.5: And-or-graph considering the first two clauses of Th.

2.3 Abductive Model-Based Diagnosis 31

Out_of_cash
{{Out_of_cash}}

Machine_jam
{{Machine_jam}}

no_cash
{{Out_of_cash},
{Machine_jam}}

Power_failure
{{Power_failure}}

transaction_failure
{{Power_failure}}

incorrect_charge
{{Bills_stuck_together, Sensor_fault},
{Denominations_incorrectly_stacked},

{Power_failure}}

Sensor_fault
{{Sensor_fault}}

Bills_stuck_together
{{Bills_stuck_together}}

Denominations_incorrectly_stacked
{{Denominations_incorrectly_stacked}}

incorrect_amount
{{Bills_stuck_together, Sensor_fault},
{Denominations_incorrectly_stacked}}

Figure 2.6: And-or-graph after all clauses have been considered.

2.3.2 Reformulating the PHCAP
In logic-based abduction, we rely on the notion of entailment; an abductive explanation

or diagnosis is composed of a set of abducible propositions, i.e., fragments permitted to
be part of a solution, entailing the observed symptoms together with the theory while not
leading to a contradiction. Considering the definition of abduction, we can characterize two
more approaches for computing solutions to a PHCAP: proof-tree completion [McI98] and
consequence finding [Mar00], which we have already discussed previously in Section 2.2.1.
Here, we present some definitions of diagnosis based on the PHCAP in these two problem
reformulations.

Proof-Tree Completion

In proof-tree completion, abductive diagnosis is re-framed to the search for a refutation
proof consisting of abducible propositions. By logical equivalence, we can reformulate the
relation between a diagnosis, the background theory and the observations to ∆ ∪ Th ∪
{¬Obs} |= ⊥, where {¬Obs} is the disjunction containing a negation of each observation,
i.e.,

∨
oi∈Obs ¬oi. Thus, we can rewrite the theory in such a way that a contradiction arises

given the negated observations. To extract explanations, the derived conflicts have to be
propositions from Hyp and again no inconsistency may arise from the diagnoses.

Definition 2.20 (Conflict). Given a PHCAP(A,Hyp,Th,Obs) a conflict CO is a set {c1, . . . , ck} ⊆
Hyp such that CO ∪ Th ∪ {¬o1 ∨ . . . ∨¬on} is inconsistent, where {o1, . . . , on} = Obs. A
conflict is minimal iff there is no conflict CO′ such that CO′ ⊂ CO.

Definition 2.21 (Conflict-Driven Diagnosis). Given a PHCAP(A,Hyp,Th,Obs). A set ∆ is a
solution iff ∆ is a conflict and ∆ ∪ Th 6|= ⊥. A solution is parsimonious, iff ∆ is a minimal
conflict.

Example 2.10 (cont.)

Given our PHCAP from before, we assume that we received the correct withdrawal, i.e.,
¬incorrect_amount and that all our hypotheses are true, e.g., the machine has run out of
cash, the machine is jammed, and there is a power failure etc. This leads to conflicts:
for instance, according to the theory given the teller has incorrectly stacked the ATM,

32 Chapter 2 Preliminaries

we must get an incorrect amount of cash; thus, {Denominations_incorrectly_stacked} ∪
Th ∪ {¬incorrect_amount} is inconsistent. Extracting only the hypotheses, we retrieve
the first minimal conflict CO1 = {Denominations_incorrectly_stacked}. Since the conflict
is consistent with the theory Th, CO1 is a minimal diagnosis. The second parsimonious
conflict and diagnosis can be extracted analogously.

Consequence Finding
By further rewriting the relation from Definition 2.19, we can construct Th ∪ {¬Obs} |=
{¬∆}, where {¬∆} =

∨
δj∈∆ ¬δj12. In this scenario, abductive explanations are obtained

in a deductive manner by finding the logical consequences of the theory and the negated
observations comprising negations of hypotheses.

Definition 2.22 (Consequence). Given a PHCAP(A,Hyp,Th,Obs) a consequence C is a set
{c1, . . . , ck} ⊆ Hyp such that Th∪{¬o1 ∨ . . . ∨¬on} |= {¬c1 ∨ . . . ∨¬ck}, where {o1, . . . , on} =
Obs. A consequence is minimal iff there is no consequence C ′ such that C ′ ⊂ C .

Definition 2.23 (Consequence-Finding Diagnosis). Given a PHCAP (A,Hyp,Th,Obs). A set
∆ is a solution iff ∆ is a consequence and ∆ ∪ Th 6|= ⊥. A solution is parsimonious, iff ∆ is a
minimal consequence.

Example 2.10 (cont.)

Again we state that we have obtained the correct total from the ATM, i.e., ¬incorrect_amount.
This means, however, that the bills have to be stacked in the correct trays given this obser-
vation since the relation in Th postulates that if the teller in fact did mis-distribute the
denominations, then we should have received an incorrect withdrawal. Looking at the en-
tailment relation, we can deduce that the negation of Denominations_incorrectly_stacked is
a logical consequence of the theory and the observation, i.e., Th∪{¬incorrect_amount} |=
{¬Denominations_incorrectly_stacked}. Hence, {Denominations_incorrectly_stacked} is
one of the consequences as defined in Definition 2.22. Since the consequence is fur-
ther consistent with Th, {Denominations_incorrectly_stacked} is a minimal fault diagnosis.
Similarly, we can derive the second diagnosis.

12This requires that Th ∪ {¬Obs} 6|= ⊥.

2.3 Abductive Model-Based Diagnosis 33

Part II

From Theory to Practice

3A Process for Applying
Model-Based Diagnosis in
Industrial Applications

„In theory, there is no difference between theory and practice.
But in practice, there is.

— Walter J. Savitch
"Pascal: An Introduction to the Art and Science of

Programming". 1984.

1

This chapter is based on the following publications:

• [KW15b] Roxane Koitz and Franz Wotawa. „From Theory to Practice: Model-Based
Diagnosis in Industrial Applications“. In: Proceedings of the Annual Conference of the
Prognostics and Health Management (PHM) Society. 2015, pp. 197–205

• [KW15c] Roxane Koitz and Franz Wotawa. „On the Computational Feasibility of
Abductive Diagnosis for Practical Applications“. In: IFAC-PapersOnLine 48.21 (2015).
9th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes,
pp. 410–415

• [KW16b] Roxane Koitz and Franz Wotawa. „Integration of Failure Assessments into
The Diagnostic Process“. In: Proceedings of the Annual Conference of the Prognostics and
Health Management (PHM) Society. 2016, pp. 117–128

The process has been published in [KW15b] while the detailed analyses of the failure assessments
and modeling approaches in Section 3.3 are taken from [KW16b]. In [KW15c], we present the
complexity results for diagnosis based on Failure Modes and Effect Analyses and describe the
first empirical evaluation. The second experiment was published in [KW15b].

3.1 Motivation
Accurate failure localization in technical systems is a topic of interest from an industrial

as well as research point of view due to the increasing complexity and magnitude of
systems. An extensive body of research has concerned itself with this subject ranging from
fields such as Control Engineering to AI. As we have discussed, model-based diagnosis
has been proposed as reasoning from first principle to avoid the disadvantages associated
with rule-based systems. Even though model-based approaches build on solid theories,
have been applied to various domains [WN96; Str+96; Wot+10], and continuous research
improves their methods, a widespread adoption is yet to be observed. Certainly, the initial
creation of the system descriptions suitable for fault identification poses an obstacle, the
difficulties of integrating fault identification in current work processes, as well as the
computational complexity associated with diagnostic reasoning [CD99]. Further, as noted
by Milde et al. [Mil+00], the current industrial work processes have to be known in order to
integrate model-based diagnosis successfully. To account for the complexity of systems, the

1Also attributed to Jan L. A. van de Snepscheut and Yogi Berra.

37

models have to be developed in relation to existing knowledge on products, such as design,
construction, and failure information. Travé-Massuyès and Milne [TMM98] identified the
unavailability of automatic modeling tools and the complexity of seamlessly combining
model-based applications with present software as technical gaps still hindering a vast
adoption in practice. Thus, several projects have been engaged in developing methods to
integrate model-based reasoning into industrial processes [Fle+01; Mil+00].

An essential benefit promoted by the model-based diagnosis community has been the
reuse of knowledge. To emphasize this potential and provide an economic additional benefit
besides troubleshooting, research has focused on further tasks which can be performed
with the initially generated diagnosis models. Struss, Malik, and Sachenbacher [Str+96]
describe an automated approach combining diagnosis and the creation of FMEAs as well as
repair manuals based on compositional qualitative models of the intended part behavior. An
FMEA is a systematic analysis of possible component faults and the consequences said faults
have on the system behavior and function [HW98]. FMEA as a reliability analysis tool is
growing in importance as it has been established as a mandatory task in certain industries,
especially for systems that require a detailed safety assessment [Cat+10]. Similar goals to
the one’s by Struss, Malik, and Sachenbacher [Str+96] have been pursued by Hawkins and
Woollons [HW98], or Price and Taylor [PT02]. While the former two proposed methods for
FMEA, the latter automatically generates fault trees from device knowledge by predicting
the correct and erroneous behavior based on qualitative models.

In contrast, we propose a different approach to reuse knowledge: As certain reliability
assessments, such as FMEA or Fault Tree Analysis (FTA) are common practice and even
mandatory in certain industries [RH04], the information captured can be exploited for
diagnostic reasoning. In particular, these types of analyses describe the relation of failures
and their consequences on the system, thus, can form the basis for abductive diagnosis.
For instance, considering the records of an FMEA; each row represents a clear causal
dependency from a specific fault mode to a set of symptoms, i.e., it describes the system’s
response to a fault [Wot14]. Kuntz et al. [Kun+11] also stress the importance of reducing or
eliminating the modeling effort in order to incorporate diagnosis in real world problems.
Applied to avionics systems, they propose a method based on engineering documents, such
as FMEAs and other records describing the connection of components, to build a system
model for diagnosis. In contrast to our work, they transform the resulting description, which
encompasses the relation between component faults and their monitoring observation, to a
finite state machine. Based on this representation they derive a cut set of all event sequences
leading to the target state, i.e., the state representing the observation. These cut sets then
constitute the diagnoses2. Our work differs to the approach by Kuntz et al. [Kun+11] in two
ways: first, in this chapter we define an entire process for diagnosis in industrial applications
and we only rely on the failure assessment itself without the need for additional documents
revealing the internal structure of the system. Second, we generate a propositional Horn
representation instead of an automaton to capture the faulty system behavior.

The remainder of this chapter is structured as follows: First, we propose a process that
relies on failure assessments in order to develop diagnostic system models while keeping
knowledge acquisition affordable. Second, we analyze two types of assessment, i.e, FMEA
and FTA, that can be used to automatically infer abductive models. For each type of failure
analysis a modeling methodology is introduced generating a system formalization suitable
for abductive reasoning. Further, we give an overview of advantages and disadvantages
of each assessment in regard to the resulting model and its capabilities within the entire
troubleshooting task. Then, we discuss in more detail the fault identification portion of our
abductive process. Section 3.3.1 presents initial empirical results for models generated on

2Note here, that since the cut sets are sets instead of sequences, the event ordering is lost.

38 Chapter 3 A Process for Applying Model-Based Diagnosis in Industrial Applications

Fault Identification

Model Development
Mapping

KB
Failure

Assessment

Fault Detection

Data
Analysis

Data
Acquisition

Probing
ResultsObservationsDiagnosis

Engine
Diagnoses

Ranking Ranked
Diagnoses

Observation
Discrimination

Ranked Probing
Points

Additional
Measurements

Repair or Replacement

OFFLINE ONLINE

Figure 3.1: Process for incorporating abductive model-based diagnosis in an industrial set-
ting [Koi+18].

top of FMEAs based on a practical and an artificial benchmark. Lastly, we discuss general
limitations of our approach and conclude the chapter.

3.2 Defining a General Abductive Diagnosis
Process

Intercalating abductive diagnosis into real-world applications faces several issues [TMM98;
Mil+00]. We recognize the difficulties of integrating model-based diagnosis into existing
work flows, constructing the domain model, and the complexity of abduction as the main
obstacles. In this regard, we define a process addressing these two problems by dividing the
problem into subtasks and separate modules, taking advantage of information available, and
relying on the structure of the resulting system descriptions top compute solutions efficiently.
We divide the approach into three main steps as can be seen in Figure 3.1:

1 Model Development

2 Fault Detection

3 Fault Identification

Here, we give a short overview of the stages and subsequently elaborate on certain parts
in the following sections.

1 Model Development. As mentioned earlier abductive model-based diagnosis relies
on an explicit description of the system behavior in presence of a fault. Our modeling
methodology utilizes failure analyses available to compile the information recorded
automatically into abductive models offline. As these assessments capture knowledge
on failures and their symptoms, the mapping to a corresponding abductive KB is
straightforward. Some additional considerations have to be made in order to create an
appropriate model which we discuss throughout the chapter.

Since abductive diagnosis depends on the premise of model completeness, we assume
that all significant fault modes for each contributing part of the system are being
considered in the analysis3. Furthermore, our mapping approach expects consistent
effect descriptions, i.e., a symptom is described in a uniform way throughout the
assessment.

3Note here that this assumption is not particular to our approach, but is a prerequisite for model-based diagnosis
in general [FB+97].

3.2 Defining a General Abductive Diagnosis Process 39

2 Fault Detection. Abduction derives possible explanations for observed anomalies.
Consequently, to initiate the troubleshooting, the presence of a fault has to be detected.
Within our process, we assume the manifestation of a fault is discovered by a failure
detection method, e.g., a monitoring system, and therefore we do not consider data
acquisition or analysis in detail.

3 Fault Identification. Once the presence of a disturbance has been established, the
possible causes associated with the observations are to be computed. Due to the knowl-
edge represented in the types of failure assessments we are considering, abductive
diagnosis poses an intuitive approach for fault identification. We already discussed one
possible algorithm capable of computing abductive diagnoses in the previous section.
The process, however, is not limited to the use of this exact procedure [KW15a]. In the
upcoming chapters, we will elaborate on other techniques to derive explanations.

In the course of this chapter, we explain further improvements to the initial set of
solutions. We show a simple diagnoses ranking according to probability theory and
how to determine the next probing point in order to diminish the number of solutions.

3.3 Integration of Failure Assessments into the
Diagnostic Process

The initial construction of the system description related to model-based diagnosis con-
stitutes a disadvantage. To automate this task, we propose a mapping function associating
entries from failure assessments to propositional clauses to form an abductive KB [Wot14].
Risk analysis tools, such as FMEA, provide a systematic and comprehensive identification,
review, and evaluation of possible threats or hazards. Usually, the assessment comprises the
risk sources, consequences, magnitude, and likelihood [Car14]. Hence, they pose suitable
information sources for abductive fault identification.

In this work, we focus the modeling process based on FMEA as well as FTA and show how
these documents can be used for model generation. The upcoming subsections describe the
methods to translate the knowledge available into a propositional Horn theory as well as the
advantages and disadvantages of each failure assessment in regard to constituting the basis
of an abductive knowledge base.

3.3.1 Failure Mode Effect Analysis

FMEA is an established standardized reliability tool in which components are systemati-
cally assessed in regard to their possible failure modes. These rigorous and comprehensive
reliability and safety design evaluations are usually required by industry standards or govern-
ment policies [Vog+14]. Generally, the objectives of an FMEA include the identification and
prevention of failures and safety hazards, minimization of performance loss, development of
preventive maintenance plans, and the usage for diagnostic techniques [Car14]. The reason-
ing is performed in an inductive bottom-up manner, where the general theories are derived
from detailed examples on various levels of depth. Besides determining component-based
single faults, each failure mode is examined in regard to its causes, detection mechanisms,
and consequences. Further, the assessment encompasses fault probabilities and severity
ratings. As detailed knowledge about the system structure, the requirements, the behavior of
the components, and their operational relationship is necessary, such a review is conducted
by a team of specialists [RH04].

40 Chapter 3 A Process for Applying Model-Based Diagnosis in Industrial Applications

In case the criticality of each failure mode is identified the technique is referred to as
Failure Mode, Effects, and Criticality Analysis (FMECA). The criticality of a failure quantifies
how hazardous or serious the caused interference is and is determined by the occurrence
likelihood and the severity of the fault. Even though there are slight differences between the
various FMEA/FMECA standards [Vog+14], both analyses result in a detailed document with
a tabulation of components and their single point failures as well as consequences. Frequently,
the results can be utilized qualitatively as a hazard analysis method or quantitatively
considering the various ratings. The parts of an FMEA differ depending on the followed
standard or guideline. However, certain parts are usually incorporated [Car14]:

• Component/Item: The component or item determines the artifact being analyzed.

• Failure Mode: The potential failure mode encompasses the way in which a component
may neglect to deliver its intended function with the desired performance at various
levels of depth within the system.

• Failure Cause: A failure cause describes the internal and external influences as well as
their interaction which may lead up to the failure mode such as wear, aging, defective
material, or damage.

• Failure Effect: Effects are failure consequences and have to be considered at various
levels such as local effects or impacts on the overall system and operation.

• Detection Method and Rating: Often a particular detection mechanism is recorded,
such as automated warnings as well as alarms or the discovery by a human operator.
Additionally, a rating is applied to account for the detectability of a failure, i.e., the
likelihood of discovery. Evident failures are detected instantly when they occur, while
hidden failures can usually only be confirmed through testing.

• Severity: To quantify the analysis a severity rating is included, based on the most
serious failure consequences.

• Occurrence: The occurrence rating associates a failure with the likelihood of its
presence.

• Risk Priority Number (RPN): The RPN is the arithmetic product of severity, occurrence
and detection ratings.

• Actions: The actions are recommended efforts to reduce or eliminate the risk associated
with the cause of a failure.

Example 3.1

Table 3.1 depicts an excerpt of an exemplary FMEA for the yaw drive of a wind turbine.
As can be seen, not all columns described previously are present within the analysis. Yet,
as we will see the most important information for the mapping, i.e., component, failure
mode and effects, isre included.
Table 3.1: FMEA excerpt (adapted from [Rad+93]).

Component
Failure Failure Failure

Likelihood Severity
Detection

Mode Effect Cause Method

3.3 Integration of Failure Assessments into the Diagnostic Process 41

Yaw Drive Fails to
rotate

No yaw,
failure of
safety system,
decrease of
efficiency

Motor not elec-
trically powered,
Motor burned
after emergency
stop, Yaw drive
disconnected from
frame, mechanical
damage, fatigue
fracture, capaci-
tors burned during
emergency stop

2.2E-5 3 Visual in-
spection

Yaw Drive Yaw
shaft
blocked

No yaw, de-
crease of effi-
ciency

Motor not elec-
trically powered,
Motor burned
after emergency
stop, Yaw drive
disconnected from
frame, mechanical
damage, fatigue
fracture, capaci-
tors burned during
emergency stop

1.3E-5 3 Visual in-
spection

Model Development

Formally, we create an abductive knowledge base. As the failures recorded in the FMEA
represent the connections between single faults and a conjunction of effects, we can create
a theory consisting of definite propositional Horn clauses [Wot14]. This limitation of the
expressiveness of the logical model leads to an avoidance of some of the computational
inefficiencies inherent to abduction in general. For model creation, we simplify the FMEA
to three essential columns, namely the one featuring the set of components COMP, their
potential failure modes MODES, and the set of failure effects forming a subset of the set of
propositional variables PROPS.

Definition 3.1 (Failure Mode Effect Analysis (FMEA) [Wot14]). An FMEA is a set of
tuples (C,M,E) where C∈ COMP is a component, M ∈ MODES is a failure mode, and E⊆
PROPS is a set of effects.

As abductive reasoning relies on a formalization of failures and their symptoms, the
conversion of an FMEA to a propositional KB(A,Hyp,Th) is straightforward. First, we
create the set of hypotheses. In the FMEA each component-failure mode pair represents a
possible cause. Each pair is mapped to a propositional variable mode(C,M), where C is the
component and M is the failure mode. This propositional variable is then added to the set
Hyp. Equation (3.1) defines Hyp in this modeling context.

Hyp =def

⋃
(C,M,E)∈FMEA

{mode(C,M)} (3.1)

42 Chapter 3 A Process for Applying Model-Based Diagnosis in Industrial Applications

Second, the set A then is simply the union over all hypotheses as well as propositional
variables representing effects as shown in Equation (3.2).

A =def

⋃
(C,M,E)∈FMEA

E ∪ {mode(C,M)} (3.2)

Example 3.1 (cont.)

Considering the FMEA in Table 3.1, there are two component-failure mode pairs forming
the set Hyp:

Hyp =
{

mode(Yaw_Drive, Fails_to_rotate),
mode(Yaw_Drive, Shaft_blocked)

}

The set of all propositional variables then contains the hypotheses as well as all proposi-
tional variables constituting effects.

A =

mode(Yaw_Drive, Fails_to_rotate),
mode(Yaw_Drive, Shaft_blocked),

no_yaw, failure_safety_system,
decrease_of_efficiency

Lastly, the propositional theory is determined by the relation between defects and their

manifestations as depicted in the FMEA. For each record of the FMEA the mapping function
M: 2FMEA 7→ HC generates a Horn clause as a subset of the set of Horn clauses HC.

Definition 3.2 (Mapping function M [Wot14]). Given an FMEA, the function M is defined
as follows:

M(FMEA) =def

⋃
t∈FMEA

M(t) (3.3)

where
M(C,M,E) =def {mode(C,M)→ e |e ∈ E} (3.4)

Example 3.1 (cont.)

The theory then simply comprises Horn clauses where a single hypothesis implies one of
its effects.

Th =

mode(Yaw_Drive, Fails_to_rotate) → no_yaw,

mode(Yaw_Drive, Fails_to_rotate) → failure_safety_system,
mode(Yaw_Drive, Fails_to_rotate) → decrease_of_efficiency,

mode(Yaw_Drive, Shaft_blocked) → no_yaw,
mode(Yaw_Drive, Shaft_blocked) → decrease_of_efficiency

One Single Fault Diagnosis Property
The appropriateness of the models obtained from the FMEA is yet to be examined. Due

to the fact that abductive explanations are consistent by definition and complete given an
exhaustive search, suitability refers to the characteristic of the model that given all necessary
information a single diagnosis can be computed. We refer to this feature as the One Single
Fault Diagnosis Property (OSFDP).

3.3 Integration of Failure Assessments into the Diagnostic Process 43

Definition 3.3 (One Single Fault Diagnosis Property (OSFDP) [Wot14]). Given a KB (A,
Hyp, Th). KB fulfills the OSFDP if the following hold: ∀m ∈ Hyp : ∃Obs ⊆ A : {m} is a
diagnosis of (A,Hyp,Th,Obs) and ¬∃m′ ∈ Hyp : m′ 6= m such that {m′} is a diagnosis for the
same PHCAP.

The property can be checked by computing for each h ∈ Hyp the set of propositions δ(h),
such that {h}∪Th |= δ(h). In case {h}∪Th leads to a contradiction, δ(h) equals ∅. If for any
two hypotheses the derived propositions are the same, the OSFDP is not satisfiable. Besides
determining whether single fault diagnoses can be computed, the absence of the property
indicates that the KB is not complete, i.e., information is missing. In the case of FMEAs this
can signal that internal variables or observations have not been contemplated during the
analysis. Wotawa [Wot14] provides the polynomial time algorithm CHECKOSFDP for testing
whether the property is satisfied.

Algorithm 3.1: CHECKOSFDP [Wot14]

Require: A: the set of propositional variables, Hyp: the set of hypotheses, Th: the Horn
theory

Ensure: true if the KB satisfies the OSFDP property, and false otherwise

1: for all h ∈ Hyp do
2: Let δ(h) ⊆ A be the largest set such that {h} ∪ Th |= δ(h), if {h} ∪ Th |= ⊥ let
δ(h) = ∅.

3: end for
4: for all h1 ∈ Hyp ∧ δ(h1) 6= ∅ do
5: for all h2 ∈ Hyp ∧ h1 6= h2 ∧ δ(h2) 6= ∅ do
6: if δ(h1) = δ(h2) then
7: return false
8: end if
9: end for

10: end for
11: return true

Example 3.1 (cont.)

For our running example, CHECKOSFDP returns true, since δ(mode(Yaw_Drive,Fails_to_
rotate)) = {no_yaw,failure_safety_system, decrease_of_efficiency} and δ(mode(Yaw_Drive,
Shaft_blocked)) = {no_yaw, decrease_of_efficiency}. Hence, the two fault modes can be
distinguished by the intersection of their δ sets, i.e., based on whether there is a failure in
the safety system or not, we can determine which fault has occurred.

A simple procedure to enforce the OSFDP treats indistinguishable faults as a unit. Hence,
each set of indistinguishable hypotheses {h1, h2, . . . hn} is replaced by a new hypothesis h′.
We proceed with these substitutions until the OSFDP is fulfilled. Algorithm DISTINGUISH-
HYPOTHESES ensures that after termination the given KB satisfies the property. It assumes
that for each hypothesis in Hyp the set δ(h) has already been computed. Due to the finite
number of hypotheses as well as possible effects contained in δ(h), the procedure must halt.
Further, the complexity of the algorithm is determined by the three nested loops, hence
O(|Hyp|2 + |A− Hyp|).

44 Chapter 3 A Process for Applying Model-Based Diagnosis in Industrial Applications

Algorithm 3.2: DISTINGUISHHYPOTHESES

Require: A: the set of propositional variables, Hyp: the set of hypotheses, Th: the Horn
theory

Ensure: KB(A,Ψ,Th): knowledge base satisfying the OSFDP property

1: Ψ[|Hyp|]← Hyp
2: for all h1 ∈ Ψ do
3: for all h2 ∈ Ψ do
4: if h1 6= h2 then
5: if δ(h1) = δ(h2) and δ(h1) 6= ∅ then
6: Create new hypothesis h′ . h′ /∈ Hyp
7: Ψ← h′ ∪Ψ
8: A← h′ ∪ A
9: for all e ∈ δ(h1) do

10: Th← (h′ → e) ∪ Th
11: Th← Th \ (h1 → e)
12: Th← Th \ (h2 → e)
13: end for
14: Ψ← Ψ \ {h1} \ {h2}
15: A← A \ {h1} \ {h2}
16: end if
17: end if
18: end for
19: end for
20: return KB(A,Ψ,Th)

Enforcing the OSFDP has a practical rational: Since the indistinguishable faults cannot
be differentiated, all components have to be repaired or replaced in case they are part of
the diagnosis. Thus, treating them as a single unit during diagnosis does not influence the
result; however, it does have an effect on the computational effort because it reduces the
number of possible hypotheses to consider.

Complexity

Due to the topology of FMEAs the models constructed via M exhibit a specific composition.
It is apparent that the corresponding models are acyclic and further feature a forward
structure from causes to effects. In particular, the hypotheses and symptoms are disjoint
sets and implications connect one hypothesis to one effect, thus are bijunctive definite Horn
clauses4 with one exception; in case we want to state that an effect and its negation cannot
occur at the same time we introduce e ∧ n_e→ ⊥ where e is an effect and n_e represents
its negation. When using an ATMS to derive diagnoses there is another exception; the
implication that maps all effects to be observed to a special proposition ex (for details see
Section 2.3.1).

In regard to the computational complexity of computing the abductive solutions relating
to the generated models let us assume a PHCAP with h1, . . . , hn hypotheses potentially
connected with e1, . . . , em effects. Some of the effects are observable and thus lead to
the proposition ex. Figure 3.2 illustrates such a PHCAP as an And-or-graph. When using
an ATMS for implementing a solver, we have a similar representation, where the context

4That is each clause contains, exactly one positive and one negative literal, i.e., each clause represents an
implication from a hypothesis to a propositional variable from A \ Hyp.

3.3 Integration of Failure Assessments into the Diagnostic Process 45

Causes /
Hypotheses

Effects

obs

h1

nh me

e1

ex

Figure 3.2: And-or-graph representation of the PHCAP comprising hypotheses {h1, . . . , hn} and effects
{e1, . . . , em} where some of the latter can be observed.

information is stored in the labels of the graph’s vertices. The context is the set of hypotheses
or assumptions that have to be true in order for the vertex to become true. In ATMS
terminology this would refer to an environment. Each hypothesis hi has a single context
{{hi}}, whereas an effect might have more. Due to the special structure of the model
Th, each environment of an effect can only comprise exactly one hypothesis. In the worst
case an effect ej has the label {{h1}, . . . , {hn}}. Computing the label of ex incrementally
using an ATMS, results in parametrized worst case computational complexity of O(nm).
When combining two effects, n times n contexts have to be build. Incorporating another
effect leads to n3 contexts and so on. Hence, when not considering negated effects, the
computation of all solutions can be done in polynomial time. While m can become quite
large in theory the empirical results in the subsequent section suggest that in practice the
computational effort is limited. Implications of the form e ∧ n_e→ ⊥ do not increase the
computational complexity. We first compute all labels disregarding these implications and
afterwards remove all contexts, which have thus become inconsistent. Again this requires
polynomial time. The following theorem summarizes these findings.

Theorem 3.1. Given an FMEA. When applying M the corresponding PHCAP can be solved
in polynomial time O(nm) where n is the number of hypotheses (n = |Hyp|) and m the
maximum number of effects to be observed.

This result complies with the computational complexity of definite Horn abduction prob-
lems shown in Nordh and Zanuttini [NZ08] with the addition of handling negated effects.
It is worth noting that the runtime complexity in the Horn clause abduction case would be
O(2n) for finding all parsimonious solutions. A consequence of the theorem is that the stated
solution is tractable provided that m is small.

Advantages and Limitations
The application areas of FMEA are widespread as it has been applied to complex systems.

Its representation can form a comprehensive knowledge base for failures in each part of the
system, explaining their effects on subcomponents that are dependent on them and the entire
system [HW98]. Thus, the mapping to an abductive model can be automated in a simple
manner. Due to the structure of the FMEA, the resulting system descriptions are acyclic and
contain solely bijunctive definite Horn clauses, i.e, each clause is an implication leading
from one hypothesis to a single effect variable. These types of models require polynomial
time when used for computing abductive diagnoses. In addition, as FMEA usually considers
single faults, the resulting diagnostic system holds the single fault assumption. Furthermore,
the analysis contains additional information, such as data on failure occurrence likelihood
or severity, that can be incorporated in the diagnosis process for prioritizing probable or
severe defects. However, these ratings are often subjective, thus they should merely be

46 Chapter 3 A Process for Applying Model-Based Diagnosis in Industrial Applications

considered as a means to focus on a subset of diagnoses and not as a discrimination criteria.
In Section 3.4, we discuss strategies to improve the initial diagnosis result, where we can
utilize this auxiliary knowledge stored in an FMEA.

Since abductive diagnosis depends on the premise of model completeness, we assume that
all significant fault modes for each contributing part of the system are being considered in
the analysis. Moreover, our mapping approach expects consistent effect descriptions, i.e., a
symptom is represented in a uniform way throughout the FMEA. Of course, in order to count
as an observation within the diagnostic process, each effect mentioned in the analysis has to
be detectable in nature. FMEA does not take into account the potential interdependencies
between various failure modes and effects. While the absence of interconnections between
failures may apply to some systems or subsystems, a generalization is not correct. Thus,
depending on the underlying assessment artifact, the analysis might not depict the causal
relations in its entirety. Furthermore, as the set of effects corresponding to a failure is
represented by a conjunction, a contrary measure of any of these manifestations results in
a discrimination of the failure mode. This observation is essential in the context of sensor
errors and noise, since those conditions can provoke an incorrect rejection of a diagnosis.

Example 3.1 (cont.)

Assume for Example 3.1 that even though there is no yaw and a decrease in efficiency, the
safety system does not fail. Then the ∆-Set would contain mode(Yaw_Drive, Shaft_blocked)
but not mode(Yaw_Drive, Fails_to_rotate) as the Horn theory requires in case of the yaw
drive failing to rotate that the safety systems fails.

Initial Empirical Evaluations

In order to determine the feasibility of the modeling approach and Algorithm ABDUCTIVE-
EXPLANATIONS, we carried out two experiments. Both evaluations were performed on an
Intel Core i7-4700MQ processor (2.60 GHz) with 8 GB RAM on Windows 7 Enterprise (64-
bit) exploiting a Java implementation of the mapping function M and a Java implementation
of the unfocused ATMS [FK88] to derive the explanations.

In the first experiment, we tackled two benchmarks; on the one hand we used available
FMEAs to obtain abductive diagnosis problems and on the other hand created artificial
examples in order to reach practical computational limitations. For the real-world examples,
we used eleven different FMEAs and created their corresponding abductive knowledge base
KB through the mapping function M. We obtained several publicly available as well as
project internal FMEAs covering various technical systems and subsystems such as electrical
circuits, a connector system by Ford, Focal Plane Unit of the Heterodyne Instrument for
the Far Infrared built for the Herschel Space Observatory (HIFI-FPU), the Anticoincidence
Detector mounted on the Large Area Telescope of the Fermi Gamma-ray Space Telescope
(ACD), printed circuit boards (PCB), the the Maritim ITStandard (MiTS), as well as rectifier,
inverter, transformer, and backup components of an industrial wind turbine. These FMEAs
vary in the number of hypotheses, effects, and rules as can be seen in Table 3.2. In order to
create a PHCAP and compute abductive explanations we require a set of observations, thus we
randomly selected between 1 to |A \ Hyp|. For our diagnosis purposes, we further generated
additional rules and propositions as described in previous sections, e.g. e ∧ n_e → ⊥.
Table 3.2 provides the combined results from several test runs. Note that the numbers
referred in the table corresponds to the number in the underlying FMEAs and not to the
abductive model.

3.3 Integration of Failure Assessments into the Diagnostic Process 47

Table 3.2: Features of the failure mode and effect analyses and experiment results of the first experi-
ment.

FMEA Structure Runtime [in ms] #Diagnoses
#Hypotheses #Effects #Rules MIN MAX AVG MED MAX AVG

ACD 13 16 52 <1 4 <1 <1 11 2.60
Electrical circuit 32 17 52 <1 379 30.70 1 792 191.86

Ford connector system 17 17 56 <1 2 <1 <1 42 3.35
HIFI-FPU 17 11 35 <1 14 <1 <1 63 7.72
MiTS 1 17 21 47 <1 1 <1 <1 12 5.47
MiTS 2 22 15 48 <1 64 1.70 <1 288 35.52

PCB 10 11 24 <1 1 <1 <1 2 1.62
Inverter 29 38 165 <1 472 8.13 5.2 500 32.52
Rectifier 20 17 93 <1 40 1.61 <1 96 15.84

Transformer 4 8 22 <1 1 <1 <1 4 1.175
Backup components 25 30 114 <1 93 3.34 2.7 264 26.11

hi

ej

hi+1

overlap o

number of
e�ects eH per
hypothesis

Figure 3.3: Structure of the artificial examples used for the first evaluation.

The second portion of the experiment focuses on artificial examples. Figure 3.3 depicts
their principle structure. We assume n hypotheses, each connected with e effects. The degree
of effects overlapping from one hypothesis hi and its neighbor hypothesis hi+1 is denoted by
the parameter o. The parameter k which is not illustrated in Figure 3.3 refers to the number
of effects that have to be explained. In our representation, this is the number of arcs leading
from an effect to a node representing the proposition ex. For the synthetic example category,
we assume that whenever possible such an arc should be from effects that correspond to
different hypotheses.

For our practical examples, we reported maximum runtimes from less than a second, as
revealed in Table 3.2. Generally, as expected, it can be observed that the runtime correlates
to the number of hypotheses considered and hence subsequently the possible diagnoses size.
In regard to the artificial examples, we were first interested in obtaining the runtime as a
function of the number of rules, where we vary all other parameters. Figure 3.4 shows the
obtained results that are based on 5,749 generated examples. As can be seen, there is a
large variation of the runtime. Though, in most cases even when handling 20, 000 rules the
runtime did not exceed one second, there were examples causing an extensive computation
time, which can be found in the upper left part of Figure 3.4. In order to explain this behavior
we had a look at the number of environments of ex. Figure 3.5 depicts the runtime as a
function of the number of environments computed for ex and shows that the runtime and
the number of environments highly correlate with each other. For our category of examples,
the number of computed environments depends on the overlap o and the parameter k.

In the second experiment, we aimed at showing the advantage of the OSFDP property.
Hence, we utilized the same practical benchmark as exploited the first experiment with
an additional analysis concerning the main bearing of a wind turbine. We tested each
FMEA for the OSFDP and as Table 3.3 reveals none, except of the model resulting from the

48 Chapter 3 A Process for Applying Model-Based Diagnosis in Industrial Applications

Figure 3.4: Runtime versus number of rules of the first ex-
periment.

Figure 3.5: Runtime versus number environments in the ob-
servation node of the first experiment.

transformer’s failure assessment, of the original models satisfies the property. To generate
models which fulfill the OSFDP, each set of indistinguishable hypotheses was exchanged
with a new single hypothesis representing said set. Thus, the number of hypotheses and
rules diminishes for the adapted models. We do not report on the computation time of the
mapping, as model generation is executed offline and the conversions we have computed so
far took less than a second.

After model compilation, we examined the performance of a Java implementation of
Algorithm ABDUCTIVEEXPLANATIONS on the generated KBs. For each FMEA we ran the
algorithm for |Obs| from 1 to maximum number of effects possible. The observation set was
generated randomly, however, we utilized the same observations for the original as well as
for the adapted model. The results reported in Table 3.3 have been obtained from 100 trials.
Unsurprisingly, the runtime increases with the number of rules to consider. As the results
show while there are maximum computation times of around five seconds, the median of the
distributions is located around and below ten milliseconds. Comparing the original model to
the OSFDP variant, we see a performance advantage of the latter for the majority of examples.
It is worth noticing that even though the transformer example already satisfied the OSFDP,
the runtimes deviate. These discrepancies can be attributed to the small unit of measurement
in the millisecond range. Figure 3.6 depicts the underlying statistical distribution of the
performance for the original and the adapted models. In order to determine whether the

3.3 Integration of Failure Assessments into the Diagnostic Process 49

Table
3.3:

Features
of

the
FM

EA
s

and
em

piricalresults
for

the
second

experim
ent.

For
each

com
ponent

w
e

conducted
the

evaluation
using

the
originalm

odelas
w

ellas
a

m
odelfulfilling

the
O

SFD
P.The

last
three

colum
ns

display
the

m
axim

um
num

ber
ofsingle

faults,double
faults,and

triple
faults,respectively.

M
odelStru

ctu
re

R
u

n
tim

e
[in

m
s]

#
D

iagn
oses

C
om

pon
en

t
#

H
yp

#
Effects

#
R

u
les

M
IN

M
A

X
AV

G
M

ED
M

A
X

AV
G

SF
D

F
T

F

Electricalcircuit
O

riginal
32

17
52

<
1

994
48.04

2
792

191.61
11

22
44

O
SFD

P
15

17
35

<
1

40
0.99

1
1

1.00
1

1
1

Ford
connector

O
riginal

17
17

56
<

1
204

2.08
1

18
3.14

6
18

18

system
O

SFD
P

15
17

49
<

1
172

1.37
1

18
2.85

6
12

18

H
IFI-FPU

O
riginal

17
11

35
<

1
214

5.17
1

189
8.21

7
21

27

O
SFD

P
9

11
27

<
1

18
0.83

1
12

1.59
3

6
6

M
iTS

1
O

riginal
17

21
47

<
1

307
7.59

1
12

5.40
3

3
6

O
SFD

P
13

21
43

<
1

312
5.38

1
1

1.00
1

1
1

M
iTS

2
O

riginal
22

15
48

<
1

191
6.60

2
288

37.44
8

24
24

O
SFD

P
14

15
37

<
1

23
1.04

1
10

1.96
5

10
10

PC
B

O
riginal

10
11

24
<

1
140

1.29
0

2
1.55

2
2

2

O
SFD

P
9

11
23

<
1

140
0.87

0
1

1.00
1

1
1

A
C

D
O

riginal
13

16
52

<
1

210
4.47

1
15

2.44
5

8
15

O
SFD

P
12

16
39

<
1

199
3.51

1
10

1.77
5

5
10

Inverter
O

riginal
29

38
165

<
1

4,830
34.80

10
1,280

33.00
19

57
76

O
SFD

P
23

38
124

<
1

331
9.91

4
144

6.04
13

39
26

R
ectifier

O
riginal

20
17

93
<

1
53

3.80
3

160
10.76

15
40

64

O
SFD

P
14

17
66

<
1

176
4.11

2
30

3.50
9

18
24

Transform
er

O
riginal

4
8

22
<

1
70

0.73
0

4
1.17

4
2

2

O
SFD

P
4

8
22

<
1

153
1.05

0
4

1.17
4

2
2

B
ackup

O
riginal

25
30

114
<

1
856

14.77
5

864
25.08

9
42

210

com
ponents

O
SFD

P
19

30
95

<
1

172
3.67

3
90

3.53
7

30
72

M
ain

bearing
O

riginal
3

5
20

<
1

191
1.68

0
3

2.41
3

0
0

O
SFD

P
2

5
15

<
1

184
0.84

0
2

1.41
2

0
0

50 Chapter 3 A Process for Applying Model-Based Diagnosis in Industrial Applications

(a) Original models.

(b) Adapted models fulfilling the OSFDP.

Figure 3.6: Box-and-whisker plots of the underlying statistical distributions of the log runtimes for
the second experiment.

adapted models are superior in regard to the diagnosis performance, we used an adaptation
of the sign test as described by Stumptner and Wotawa [SW01]. Suppose paired runtime
data (x1, y1), (x2, y2), . . . , (xn, yn) from the original and adapted models, respectively. We
propose the hypothesis H0 : mX = mY , stating a median difference of zero. H1 : md > 0
is our alternative hypothesis, where md denotes the median of X − Y . Let Z be the sum
of pairs, where xi > yi. Given H0 is true, the test statistic Z ∼ B0.5,n has to be binomial
distributed. We refute H0 and accept H1 if the critical value zα is smaller than the z value
from the sample. Since there is a large number of samples in our evaluation, the critical
values for the sign test are not based directly on the binomial distribution, but rather on a
normal approximation. For α = 0.05 we accepted H1, i.e., the runtime performance for the
adapted models is superior to the original ones.

3.3 Integration of Failure Assessments into the Diagnostic Process 51

3.3.2 Fault Tree Analysis
Fault trees provide a systematic sequence of events leading to an incident of interest,

i.e., the top event. By employing a top-down approach the analysis reasons from effects to
causes. Starting at the root the chain of events prompting the undesired event at the top
is determined in a deductive manner. Besides basic events forming the leafs of the fault
tree, intermediate incidents leading up to the top event are considered [RH04]. Logic gates
describe the relations between these events. Each gate has a set of basic or intermediate
failures as input and the output is defined by a single event. Thus, the tree represents logical
paths of cause-effect relationships [RS15].

Based on information on event likelihood, the tree can be quantified. To compute the
frequency of the top event, the probabilities of each output event are determined by the gates
and the input events’ probabilities in a bottom-up manner. Thus, in case a quantification is
desired, the probabilities of the basic events have to be know [RH04].

Example 3.2

Figure 3.7 shows an exemplary systematic chain of events leading to insufficient lubrication
of a gearbox in a wind turbine. The depicted fault tree has a top event (Insufficient
lubrication), three basic events (Oil filter failure, Leakage/Cracks of cooler and Rusty cooling
fins of radiator), and one intermediate event (Poor cooling). These incidents are connected
by an OR as well as an AND gate. The former states that either the Leakage/Cracks of
cooler or Rusty cooling fins of radiator or both must occur to cause Poor cooling, while the
latter requires both Poor cooling and Oil filter failure for Insufficient lubrication to arise.

Figure 3.7: Fault Tree (adapted from [Már+12; Bot+12]).

Model Development

While there are several logic gates and symbols available in fault trees, we focus in our
analysis on a simple fault tree representation with three types of events (basic, intermediate,

52 Chapter 3 A Process for Applying Model-Based Diagnosis in Industrial Applications

top) and the two most common gates, i.e., AND and OR. We assume that each system is de-
scribed by a set of fault trees T, where each fault tree describes the occurrence combinations
leading to a top event that represents a certain effect of interest.

Definition 3.4 (Fault Tree (FT)). A fault tree FT is a pair (G, E) where G is a set of logic
gates and E a set of events. BE ⊂ E is the set of basic events, while ε ∈ E is the top event.
Ω(I,ω) ⊆ G denotes the set of OR gates and A(I, ω) ⊆ G the set of AND gates, where
I ⊆ {E \ ε} is the set of input events and ω ∈ {E \ BE} is the output event.

As a fault tree is a pictorial representation of a Boolean formula depicting how the top
event is caused by other events, we can simply transform the tree into a set of clauses by
determining the Boolean expression for each gate. Each event corresponds to a propositional
variable in A. In our case, we assume that the basic events represent the initial root causes,
thus, we limit the set of hypotheses to only comprise propositional variables corresponding
to these primary incidents. The relevant sets A and Hyp are defined the following way:

A =def

⋃
e∈E
{e} (3.5)

Hyp =def

⋃
β∈BE

{β} (3.6)

In case intermediate events depict failures that should be diagnosable, we would define the
set Hyp as {E \ ε}.

We define a mapping function MFTA : 2FT 7→ HC, creating for each fault tree a set of Horn
clauses based on the gates comprising the tree.

MFTA(FT) =def

⋃
g∈G

M(g) (3.7)

where

MFTA(g) =
{⋃

i∈I{i→ ω}, g ∈ Ω(I, ω)∧
i∈I i→ ω, g ∈ A(I, ω)

(3.8)

In case of an OR gate, for each input event a Horn clause is created where the input implies
the gate’s output. As the AND gate represents the relation that all inputs have to be present
in order for the output event to occur, a single implication is added, such that a conjunction
of the variables representing the inputs leads to the output event. The abductive theory then
is the union over all Horn clauses generated over the gates of the fault tree.

Example 3.2 (cont.)

For the fault tree in Figure 3.7, we can record the following set of propositional variables
and hypotheses:

A =
{

Insufficient_lubrication,Oil_filter_failure, Poor_cooling,
Leakage_cracks_of_cooler,Rusty_cooling_fins_of_radiator

}
Hyp =

{
Oil_filter_failure, Leakage_cracks_of_cooler,Rusty_cooling_fins_of_radiator

}
Thus, considering the gates the resulting theory of the fault tree is as follows:

Th =

Oil_filter_failure ∧ Poor_cooling → Insufficient_lubrication,

Leakage_cracks_of_cooler → Poor_cooling,
Rusty_cooling_fins_of_radiator → Poor_cooling

3.3 Integration of Failure Assessments into the Diagnostic Process 53

Note that the resulting KB, however, encompasses solely the information of a single tree.
Thus, to create an entire system model the knowledge bases resulting from each tree in the
system have to be combined into a single KB.

Example 3.2 (cont.)

Computing the diagnosis of Insufficient_lubrication, we obtain

∆-Set =
{

{Oil_filter_failure,Leakage_cracks_of_cooler},
{Oil_filter_failure,Rusty_cooling_fins_of_radiator}

}
.

Advantages and Limitations
Fault trees provide a clear and logical representation of cause-effect relations between

combinations of events. In order to produce a meaningful abductive theory that can be
utilized in diagnosis, each basic event has to represent a failure or cause. Further, for each
diagnosable effect there has to be a fault tree where the top event represents the symptom.
As with the FMEA a coherent description of the failures throughout the fault trees of the
systems has to be guaranteed for an automatic model creation. Additionally, since it is
a top-down approach, the analysis has to ensure that all contributors, i.e., failures, for a
particular effect have been considered within the assessment to secure completeness.

Since we assume that the fault trees contain only AND as well as OR gates, the created
theories can feature a disjunction and conjunction of hypotheses, thus, are Horn. In contrast
to the FMEA models, however, they do not feature a bijunctive form. It is apparent that
due to the knowledge encompassed within the fault tree, the resulting models are more
expressive than the ones generated on top of an FMEA, i.e., the information stored in a fault
tree can depict more relations than an FMEA due to the different logical connections that
can be represented. In case of a quantitative analysis of the fault tree, the prior probability
of the basic events are to be known. Thus, this knowledge can be utilized in the diagnostic
context to compute diagnosis probabilities as we describe in Section 3.4.

The relation between FTA and abductive reasoning is worth mentioning. A (subset)
minimal cut set encompasses a possible combination of basic events that lead to the top
event [RH04]. As a minimal cut set is a prime implicant of the top event, it is equivalent
to an abductive diagnosis for the observation of the top event. For instance, Rauzy and
Dutuit [RD97] perform qualitative and quantitative FTA by computing minimal cut sets of
operating on a Binary Decision Diagram (BDD). Another common strategy is to represent
each gate as a Boolean expression of basic events or gates and converting it into DNF such
that each conjunction represents a minimal cut set [RS15].

Example 3.2 (cont.)

Given the fault tree, we can obtain the Boolean formula φ represented by the tree, i.e.,

φ = Oil_filter_failure ∧ (Leakage_cracks_of_cooler ∨ Rusty_cooling_fins_of_radiator) .

Converting this expression to DNF, we receive

φDNF = (Oil_filter_failure ∧ Leakage_cracks_of_cooler)∨
(Oil_filter_failure ∧ Rusty_cooling_fins_of_radiator) .

54 Chapter 3 A Process for Applying Model-Based Diagnosis in Industrial Applications

Hence, the minimal cut sets are {Oil_filter_failure,Leakage_cracks_of_cooler} and
{Oil_filter_failure, Rusty_cooling_fins_of_radiator}, which in fact are the diagnoses given
the KB(A,Hyp,Th) constructed from the fault tree and Obs = {Insufficient_lubrication}.

3.4 Fault Identification
Since the modeling methodology generates (bijunctive definite) Horn theories abduc-

tive reasoning is—depending on the underlying failure assessment—either tractable or
not [NZ08]. Due to the structure of the FMEAs, the resulting system descriptions are acyclic
and contain solely bijunctive definite Horn clauses. There are two exceptions: the formulae
generated to account for contradicting observations and the implication mapping all observed
effects to the proposition ex in the context of the ATMS. Further the intersection of the set
of hypotheses and effects is empty. These features of the model all reduce the computation
complexity in regard to the abduction problem. In particular, abductive diagnosis requires
polynomial time in this case as shown in the previous section. For the models constructed on
basis of FTA the complexity of propositional Horn abduction applies. In the preliminaries, we
have already covered abductive reasoning with the ATMS and for now this mechanization to
compute diagnoses should suffice. Other approach will be covered in the upcoming chapters.
Subsequently, we focus on possibilities to improve the solutions returned by the diagnosis
engine, i.e., observation discrimination and fault ranking.

3.4.1 Observation Discrimination
Generally, there might be an exponentially many diagnoses dependent on number of

abducibles [Byl+91]. In a real world context, however, a single solution is preferred. Probe
selection has been proposed as a way to minimize the number of results. The standard
therapeutic approach presented by Friedrich, Gottlob, and Nejdl [Fri+90a] first computes a
diagnosis ∆ for the PHCAP and then checks each hypothesis of ∆ whether it applies or not.
Depending on the result of the validation, the PHCAP is modified. This approach does not
compute all diagnoses before considering treatment, but is an interleaved process between
repair and diagnosis. Checking whether a hypothesis applies would imply to check whether a
component is faulty or not, hence replacing it. However, due to the component costs and the
need for specialized equipment this is not a feasible approach in many practical application
scenarios.

The method used by Wotawa [Wot09] differs from this approach by computing all possible
diagnoses and then using additional observations to discriminate the diagnoses until—
preferably—a single solution is left. The discrimination process uses the same idea as de
Kleer and Williams [DKW87], who take advantage of entropy to select the next observation
point. Choosing an observation that is predicted by only one half of the diagnoses, allows us
to split the search space. de Kleer and Williams apply this in the context of the traditional
consistency-based approach and consider all diagnoses candidates, because any superset of
a consistency-based diagnosis candidate is a diagnosis itself. Notice that this property only
applies to approaches using models of the correct system behavior. Hence, this does not hold
for the abductive case, where a formalization of specific failures is required. Consequently in
our case only minimal abductive diagnoses are further investigated.

A discriminating observation is a measurement not yet considered, which decreases the
number of possible faults.

3.4 Fault Identification 55

Definition 3.5 (Discriminating Observation [Wot09]). Given a PHCAP (A,Hyp,Th,Obs)
and two diagnoses ∆1 and ∆2. A new observation o ∈ A \ Obs discriminates two diagnoses
if and only if ∆1 is a diagnosis for (A,Hyp,Th,Obs ∪ {o}) but ∆2 is not.

According to information theory, the observation with the highest entropy H(o) (defined in
Equation (3.9)) provides the best probing point [DKW87].

H(o) = −p(o) · log2 p(o)− (1− p(o)) · log2(1− p(o)) (3.9)

p(o) denotes the probability of observation o and is defined as:

p(o) = |{∆|∆ ∈ ∆-Set,∆ ∪ Th |= {o}}|
|∆-Set|

. (3.10)

Once the next best probing point has been selected and the additional measurements have
been taken, the probing results are passed on to the diagnosis engine as observations and
the fault identification process is restarted. Ideally, the diagnosis engine reuses the diagnoses
computed before and only considers this new information. Within the PHCAP a diagnosis ∆
is discriminated in case we observe a complementary observation, i.e., ¬o ⊆ Obs : ∆ ∪ Th |=
{o}.

3.4.2 Fault Ranking
According to Bayes rule the conditional probability of an explanation can be computed

as:

p(∆ | o) = p(o | ∆)p(∆)
p(o) (3.11)

Since we aim at determining the probability of a diagnosis given the PHCAP, we only
consider effects actually observed. Let us further assume that there is no uncertainty in
the measurement, hence the data has not be subjected to errors or noise. For any o ∈ Obs,
we can infer that p(o) = 1. As the explanation logically implies the observation we can
assign p(o | ∆) = 1. Hence, p(∆ | o) = p(∆). Assuming independence amongst faults, the
probability of each diagnosis ∆ can be computed based on the a-priori probability5 p(h) of
each hypothesis h represented within the diagnosis, as shown in Equation (3.12).

p(∆) =
∏
h∈∆

p(h)
∏
h/∈∆

(1− p(h)) (3.12)

Given a PHCAP we compute p(∆) for all diagnoses in ∆-Set and subsequently assign ranks
accordingly. Besides using a probabilistic approach, to define an ordering for diagnoses,
the failure assessments provide additional information that may be useful for determining
a priority. For instance, FMEA contains a severity rating that quantities the notion of
seriousness of the failure’s consequences and would allow to rank solutions according to
gravity of their effects.

3.5 Conclusion
In the course of the presented research, we proposed a process to facilitate the adoption of

abductive model-based diagnosis in industrial practice. The offline part of the approach auto-
matically generates diagnosis models from failure assessment documents, thus, diminishing

5The a-priori probabilities may be available from manufacturers, however, in practice more often no such
information is accessible. Hence, this knowledge has to be obtained first, e.g., by fault history analysis.

56 Chapter 3 A Process for Applying Model-Based Diagnosis in Industrial Applications

to completely avoiding the initial modeling effort hindering a practical application of model-
based diagnosis. The online portion requires a fault detection mechanism and identifies a
failure through a cycle of diagnosis, ranking, and probing. We discuss two different analysis
methods, namely FMEA and FTA, in regard to their capabilities to form the basis of an
abductive diagnosis process. These assessments contain information suitable for abductive
system descriptions and allow us to automatically build models offline. Exploiting failure
assessments is a feasible approach, as on the one hand this sort of analyses is becoming
increasingly important and on the other hand it diminishes the modeling effort required.

Depending on the utilized assessment, the resulting models differ in their structure
and expressiveness. The Horn theory constructed from the information stored within an
FMEA is the most straightforward and simple, as each clause represents a causal relation
between a single failure and a single effect. Due to the consequences of a cause being
related by conjunctions, the produced models are rather strict in the sense that in case
the opposite of one manifestation out of the effect set is perceived, the corresponding
cause is no longer a viable part of a diagnosis. Thus, the associated hypotheses have to
be removed from all solutions. In practice, this signifies that observation data have to be
preprocessed to remove noise or account for inaccurate measurements to ensure that feasible
fault modes are not discriminated prematurely. As the FMEA comprises certain information
on occurrence likelihood and severity or criticality, additional improvements to the diagnosis
results are possible. Ideally, a-priori failure probabilities are known from manufacturers or
historic data. However, even ratings, as are very commonly used in FMEA, can indicate
a prioritization. Particularly severity or criticality can signify failures most paramount in
regard to safety or economic considerations. From a practical and research point of view
interesting characteristic of the FMEA models is that they are bijunctive definite Horn clauses
and hence abduction is tractable on these system descriptions.

In comparison to the FMEA-based models, fault trees can express a wider range of
situations by allowing to represent the combination of events. To create a KB for an entire
system, the modeling requires a fault tree for each possible observation and subsequently
the knowledge bases have to be joined in a comprehensive system description. In case the
FTA is quantitative, the probabilities of the basic events corresponding to hypotheses can
be incorporated to determine cause likelihoods. Interesting enough to create abductive
diagnoses a mapping to a KB is not necessary, as we could exploit the notion of minimal cut
sets. Assume a PHCAP with Obs = {o1, . . . , on} and for each oi ∈ Obs there is a fault tree
fti ∈ T with ε corresponding to oi. To obtain a minimal cut set equivalent to the abductive
explanations for the given problem, the fault trees need to be joined. A combined fault
tree with a new top event ex is introduced with a gate α ∈ A(I, ω) such that ω = {ex} and
I =

⋃
fti∈T ε. The minimal cut sets of ex then constitute the prime implicants or minimal

abductive diagnoses of the PHCAP.

Essentially, the advantages and disadvantages of the underlying assessments are not only
inherent in the type of relation they are capable of expressing, but also in the incorporated
additional information they hold. In particular, any ranking information can be viable
to determine probable or critical diagnoses. It is apparent that the quality of the model
automatically generated is largely depended on the underlying failure assessment. Failure
modes or effects not considered in the analysis, are absent in the abductive model and
thus diagnoses involving those cannot be uncovered. Model completeness is a primary
requirement, thus, an essential aspect is a systematic and comprehensive review of the
system to achieve a high coverage of faults and their consequences [Mil+00]. Certain
assumptions are fundamental to our approach, e.g., to ensure the feasibility of an automatic
creation of the model, manifestations and failures have to be coherently reported throughout

3.5 Conclusion 57

the assessment and consequences have to be detectable in order to be useful in a diagnostic
context.

58 Chapter 3 A Process for Applying Model-Based Diagnosis in Industrial Applications

4Solving Bipartite Diagnosis
Problems

„That we find out the cause of this effect,
Or rather say, the cause of this defect,
For this effect defective comes by cause.

— William Shakespeare
"Hamlet". around 1602.

This chapter is based on the following publications:
• [KW15a] Roxane Koitz and Franz Wotawa. „Finding Explanations: An Empirical Evalu-

ation of Abductive Diagnosis Algorithms“. In: Proceedings of the 2015 International
Workshop on Defeasible and Ampliative Reasoning. CEUR-WS. org. 2015, pp. 36–42

• [KW15d] Roxane Koitz and Franz Wotawa. „SAT-Based Abductive Diagnosis“. In: 26th
International Workshop on Principles of Diagnosis. 2015, pp. 1–9

• [KW16a] Roxane Koitz and Franz Wotawa. „Improving Abductive Diagnosis Through
Structural Features: A Meta-Approach“. In: Proceedings of the 2016 International
Workshop on Defeasible and Ampliative Reasoning. 2016, pp. 1–9

• [KW16c] Roxane Koitz and Franz Wotawa. „On Structural Properties to Improve
FMEA-Based Abductive Diagnosis“. In: Proceedings of the Workshop on Knowledge-
based Techniques for Problem Solving and Reasoning. 2016, pp. 1–7

The examination and empirical evaluation of conflict-driven methods for computing explanations
have been published in [KW15d]. In [KW15a], we investigate the equivalence between set covers
and hitting sets to formulate the solutions to a bipartite abduction problem based on hitting set
computation. The benchmarks for the first experiment have been published in [KW16c] and we
conducted the second experiment allowing to solve diagnosis on the fly with experiment data
from [KW16a].

4.1 Motivation
In the previous chapter, we have introduced a general process for applying fault identifica-

tion to technical systems exploiting a model-based diagnosis approach. Even though based
on a well-defined theory, a widespread acceptance of model-based diagnosis among indus-
tries has not been accounted for yet. The initial model development and the computational
complexity of diagnostic reasoning are some of the main reasons for this observation. In
order to diminish the modeling effort, we have formulated a conversion of failure assess-
ments available in practice into a propositional logic representation suitable for abductive
diagnosis. Our first information source were FMEAs. FMEA is an established reliability
evaluation method utilized in various industrial fields that considers possible component
faults as well as their implications on the system’s behavior. Thus, this type of analysis poses
an appropriate base for automatically extracting abductive diagnosis models. Regarding
the second issue associated with model-based diagnosis, i.e., its computational effort, we
have seen that the models built on top of FMEAs observe a certain structure that leads to a
diminished complexity in comparison to general propositional Horn abduction. Each clause

59

constructed from an FMEA is a bijunctive definite Horn clause, meaning a single hypothesis
is linked to a single manifestation via an implication1.

We have provided some initial empirical evaluation using an abductive procedure exploit-
ing an ATMS. The ATMS propagates the information of assumptions through an And-or-graph
that represents the underlying Horn theory. The models based on FMEAs do not feature
various levels or depths within in this graph, but are shallow, i.e., there is exactly two levels.
In addition, there are only two types of entities, hypotheses and effects, and each directed
edge leads from one hypothesis to one effect. Hence, the theory can be represented as
a bipartite graph. Recalling the preliminaries, we have introduced the parsimonious set
covering approach. In its simplest form, the causal associative network is a bipartite graph.
Hence, the bijunctive definite Horn clause theory is equivalent to the bipartite abduction
problems in the simple set-covering theory. This simple model structure suggests that a sim-
pler procedure might also suffice in computing the explanations. Based on the equivalence
of the simple set-cover problem and abduction based on bijunctive definite Horn clause,
we can utilize the relation of set-covering and hitting set computation to exploit hitting set
procedures to extract diagnoses.

In this chapter, we provide two general directions for solving these bipartite abduction
problems. On the one hand, we evaluate proof-tree completion [McI98] as a method to
compute diagnoses for these simple abduction problems. Thus, in Section 4.2 we recall
the basics of conflict-driven abduction and subsequently present four procedures to extract
minimal explanations within this framework. On the other hand, we rely on the framework
of the parsimonious set-covering theory as proposed by Peng and Reggia [PR90]. Viewing
the simple abduction problems based on FMEAs as set cover problems allows us to compute
explanations using various hitting set algorithms. In particular, we present five hitting set
approaches and compare them to abduction using the ATMS.

4.2 Conflict Driven Techniques
The computation of explanations has not only been studied in the context of diagnosis, but

also has received attention in the field of constraint satisfaction problems and infeasibility
analysis. Junker [Jun04] describes an algorithm generating preferred explanations for over-
constrained systems. By employing a divide and conquer strategy, conflicting constraints
can be efficiently computed. These contradictions essentially constitute the causes for the
unsatisfiability of the system. Hence, we rely on this connection between conflicts and
abductive explanations that we have already discussed in the preliminaries, i.e., proof-tree
completion [McI98]. Recall that in proof-tree completion, we rely on a reformulation
of the abduction problem in such a way that a conflict arises given the observations;
∆∪Th∪¬{Obs} |= ⊥where ¬{Obs} is a disjunction of the negated literals of the observations,
i.e.,

∨
o∈Obs ¬o.

Example 4.1

Consider the following PHCAP encompassing a definite Horn theory:

A = {H1, H2, H3, o1, o2, o3},Hyp = {H1, H2, H3},

Th =
{
H1 → o1, H2 → o1, H2 → o2, H3 → o2, H3 → o3

}
,Obs = {o1}

1Note here that we ignore additional rules that may be applied to state impossibilities, i.e., an observation and its
complement cannot occur at the same time.

60 Chapter 4 Solving Bipartite Diagnosis Problems

Assuming all hypotheses are true, while stating ¬o1, conflicts arise. Just consider the
first clause in Th defining that if H1 is present o1 is observable. Now stating that H1 is
true and o1 is false is contradicting Th thus {H1} ∪ Th ∪ ¬o1 is inconsistent. Extracting
only the hypotheses we retrieve the first minimal conflict CO1 = {H1}. Since the conflict
is consistent with the theory Th, CO1 is a minimal diagnosis. The second conflict, i.e.,
solution, CO2 = {H2} is derived analogously.

4.2.1 Minimal Unsatisfiable Subset and Minimal
Correction Subset

The advances in the development of SAT solvers and their application to a vast number
of different AI problems and industrial domains have motivated us to consider a SAT-based
approach for abductive diagnosis. Given a formula φ, the decision problem SAT consists of
deciding whether there is a satisfying assignment for the formula. The performance of SAT
solvers has improved immensely over the last years and several applications of SAT solvers
in practice have proven successful. Furthermore, we are able to encode a greater variety of
models in SAT.

Within the context of infeasibility analysis conflicts are known as Minimal Unsatisfiable
Subsets (MUSes) or unsatisfiable cores. In case φ is unsatisfiable, an MUS is a set of
clauses that cannot be satisfied simultaneously, while every proper subset of an MUS is
satisfiable [LS08]. Minimal Correction Subsets (MCSes) are the clauses that corrects the
unsatisfiable formula, i.e., by removing any MCS the formula becomes satisfiable. MUSes can
be computed either directly or via enumerating their hitting set dual MCS and subsequently
deriving all irreducible hitting sets [Rei87].

Definition 4.1 (Minimal Unsatisfiable Subset (MUS) [LS08]). Given an unsatisfiable
propositional formula φ, a subset U ⊆ φ is an MUS if U is unsatisfiable and ∀Ci ∈ U,U \{Ci}
is satisfiable.

Definition 4.2 (Minimal Correction Subset (MCS) [LS08]). Given an unsatisfiable propo-
sitional formula φ, a subsetM ⊆ φ is an MCS if φ\M is satisfiable and ∀Ci ∈M,φ\(M\{Ci})
is unsatisfiable.

An MCS contains clauses that correct the unsatisfiable formula when removed and can be
defined through the set of Maximal Satisfiable Subsets (MSSes), since each MCS is the
complement of a MSS.

Definition 4.3 (Maximal Satisfiable Subset (MSS) [LS08]). Given an unsatisfiable propo-
sitional formula φ, a subset S ⊆ φ is an MSS if S is satisfiable and ∀Ci ∈ (C \ S), S ∪ {Ci} is
unsatisfiable.

Example 4.2

Consider the unsatisfiable formula

φ =
C1︷ ︸︸ ︷

(¬x ∨ ¬y)∧
C2︷︸︸︷
(z) ∧

C3︷ ︸︸ ︷
(¬z ∨ y)∧

C4︷︸︸︷
(¬y) .

The combination of clauses C2, C3 and C4 results in φ being unsatisfiable; hence,
MUSes(φ) = {{C2, C3, C4}}. By hitting set computation we derive the follow-

4.2 Conflict Driven Techniques 61

ing MCSes(φ) = {{C2}, {C3}, {C4}} and subsequently can determine MSSes(φ) =
{{C1, C3, C4}, {C1, C2, C4}, {C1, C2, C3}}.

Many algorithms for computing unsatisfiable cores, however, do not generate them directly,
but rely on their hitting set dual MCSes. Liffiton and Sakallah [LS08] propose the CAMUS
algorithm utilizing this hitting set duality to produce MUSes by first computing all MC-
Ses, since in practice finding MUSes directly is more challenging than extracting MCSes.
Recently, Liffiton et al. [Lif+16] have presented a direct MUSes extraction approach that
exploits the power-set lattice. Utilizing subsets of unsatisfiable formulas has been suggested
in regard to consistency-based diagnosis [Rei87; MS+15]. In this context, a diagnosis is
defined as the set of components which assumed faulty retains the consistency of the system.
Thus, a consistency-based diagnosis corresponds to an MCS. For instance, Felfernig and
Schubert [FS10] present a direct consistency-based diagnosis method computing MCSes for
over-constrained systems. In our abductive case, yet, we aim at extracting contradictions,
i.e., MUSes, from an unsatisfiable system description. Since MUSes contain several unsat-
isfiable subsets irrelevant for the diagnostic task, we define the set MUSesHyp, which only
contains subset minimal MUS comprising clauses referring to hypotheses, i.e., our abducible
propositions.

Definition 4.4 (MUSesHyp). Let MUSes be the set of MUSes of Hyp ∪ Th ∪ {¬Obs}, then
∀M ∈ MUSesHyp : ∃U ∈ MUSes : M = U ∩ Hyp and ¬∃M ′ ∈ MUSesHyp : M ′ ⊂M.

Corollary 1. Given a PHCAP(A,Hyp,Th,Obs), let MUSesHyp be the set of interesting MUSes. A
set ∆ ⊆ Hyp is a minimal abductive diagnosis if ∃M ∈ MUSesHyp : ∆ = M and ∆ ∪ Th 6|= ⊥.

Proof. We can restate the problem of computing inconsistencies to finding the set of prime
implicates of Th ∧ Hyp ∧ {¬Obs}. By definition, the prime implicates are equivalent to the
MUSes of said formula.

Thus, deriving a minimal abductive explanation corresponds to computing a minimal
subset of the hypotheses, which cannot be simultaneously satisfied with the theory and the
negation of observations.

Indirect Approach
We devised the algorithm SATAB that computes the set of abductive diagnoses for a given

PHCAP based on MUS enumeration. First, in order to take advantage of the MUSes, which
correspond to the solutions of the PHCAP, we create an unsatisfiable CNF encoding of the
problem. Since the Th consists of Horn clauses a conversion into CNF is straightforward.
Note that we are, however, not limited to Horn clause models, as we can create a CNF
representation based on Tseitin transformation [Tse70]. We refer to the set of clauses
associated with the theory as T . For each h ∈ Hyp we create a single clause assuming h to
be true. Additionally, we generate a disjunction containing the negated observations.

Algorithm 4.1: SATAB

Require: A: the set of propositional variables, Hyp: the set of hypotheses, Th: the Horn
clause theory, Obs: the set of observations

Ensure: ∆-Set: set of minimal diagnoses
1: MCSes← ∅
2: MCSesHyp ← ∅
3: T ← CNF(Th) . CNF representation of Th

62 Chapter 4 Solving Bipartite Diagnosis Problems

4: φ← T ∪ Hyp ∪
∨
o∈Obs ¬o

5: MCSes← MCSes(φ) . MCS enumeration algorithm
6: for all M ∈ MCSes do
7: if M ⊆ Hyp then . MCS consisting of elements of Hyp
8: for all m ∈M do
9: if m ∪ Th is inconsistent then

10: goto L1
11: end if
12: end for
13: MCSesHyp ←M ∪MCSesHyp

14: L1
15: end if
16: end for
17: ∆-Set← MHS(MCSesHyp) . Minimal hitting set algorithm
18: removeInconsistent(∆-Set) . Removes any inconsistent solutions
19: return ∆-Set

The diagnostic task consists in computing the sets of hypotheses which are responsible for
the unsatisfiability of φ, i.e. MUSesHyp(φ). We employ an MCSes enumeration algorithm on
the unsatisfiable formula and then derive the diagnoses via hitting set computation [LS08].
As we are only interested in the conflicts stemming from the assumptions that all hypotheses
are true, we select each MCS only containing clauses referring to explanations. For this
reason, we create the set MCSesHyp such that ∀m ∈ MCSesHyp : m ⊆ Hyp. In addition, this
has a practical rational: it diminishes the number of sets to be considered by the hitting
set algorithm. The corresponding MUSes derived via hitting set computation of MCSesHyp

already constitute the abductive diagnoses.

Example 4.1 (cont.)

The CNF representation φ of the abduction problem looks as follows:

φ =
C1︷ ︸︸ ︷

(¬H1 ∨ o1)∧
C2︷ ︸︸ ︷

(¬H2 ∨ o1)∧
C3︷ ︸︸ ︷

(¬H2 ∨ o2)∧
C4︷ ︸︸ ︷

(¬H3 ∨ o2)∧
C5︷ ︸︸ ︷

(¬H3 ∨ o3)∧
C6︷︸︸︷
H1 ∧

C7︷︸︸︷
H2 ∧

C8︷︸︸︷
H3 ∧

C9︷︸︸︷
¬o1

Clauses C1 to C5 correspond to T , while C6 to C8 ensure that the hypotheses are
assumed true. Lastly, the observation o1 is added as its negation in clause C9. Computing
the MCSes of φ we obtain MCSes = {{C1, C2}, {C6, C7}, {C9}} Extracting the MCSes,
which only contain clauses from Hyp and are consistent with regard to the theory, results
in MCSesHyp = {{C6, C7}}. By computing the hitting set of MCSesHyp, we obtain the
set of MUSes solely referring to explanations, which is in fact the set of diagnoses
∆-Set = {{H1}, {H2}}.

Direct Approach

Algorithm MUSAB employs a MUS enumeration procedure and thereon computes the
minimal abductive diagnoses, denoted MUSesHyp. Again we create an unsatisfiable CNF
encoding of the problem denoted φ. The MUSes returned by the MUS enumeration method
have to be stripped from all propositions not representing a hypothesis. The resulting set

4.2 Conflict Driven Techniques 63

denoted M may not be a minimal set of sets, i.e., there may be supersets. These supersets
are not copied to MUSesHyp.

Algorithm 4.2: MUSAB

Require: A: the set of propositional variables, Hyp: the set of hypotheses, Th: the Horn
clause theory, Obs: the set of observations

Ensure: ∆-Set: set of minimal diagnoses
1: MUSes← ∅
2: MUSesHyp ← ∅
3: M ← ∅
4: T ← CNF(Th) . CNF representation of Th
5: φ← T ∪ Hyp ∪

∨
o∈Obs ¬o

6: MUSes← MUSes(φ) . MUS enumeration algorithm
7: for all Υ ∈ MUSes do . Remove propositions not in Hyp
8: M ← Υ ∩ Hyp
9: end for

10: for all Υ ∈M do
11: if 6 ∃Υ′ ∈M : Υ′ ⊆ Υ and Υ ∪ Th is consistent then
12: MUSesHyp ← Υ . Disregard supersets and inconsistent solutions
13: end if
14: end for
15: ∆-Set← MUSesHyp

16: return ∆-Set

Example 4.1 (cont.)

In MUSAB the same CNF representation of the diagnosis problem is used. We obtain the fol-
lowing MUSes from φ: MUSes = {{C1, C6, C9}, {C1, C7, C9}, {C2, C6, C9}, {C2, C7, C9}}.
Since we are only interested in the abducibles, we remove all clauses not associated with
hypotheses. Let M = {{C6}, {C7}} be the resulting set. In case there are any supersets
within M those have to be removed, resulting in MUSesHyp = {{C6}, {C7}} and hence
∆-Set = {{H1}, {H2}}

4.2.2 Conflict-Driven Search via HS-DAG
By detecting a discrepancy between the predicted and actual behavior, i.e., a conflict,

Reiter [Rei87] derives consistency-based diagnoses via first identifying conflicts and subse-
quently computing the diagnosis via minimal hitting set computation. Algorithm HSDAGAB
is based on Hitting Set Directed Acyclic Graph (HS-DAG) and a theorem prover to derive
conflicts, which in our scenario can be used to subsequently extract the minimal abductive
explanations. Given a PHCAP, we generate an implication with a conjunction of observations
on the left hand side and the contradiction on the right hand side, i.e. o1∧o2∧ . . .∧on → ⊥2.
The theory Th, the implication, and the theorem prover, represented by TP, are supplied to
HS-DAG. The TP derives contradictions on demand, which should only contain assumption,
i.e., hypotheses. In particular, whenever a new node n is appended to the DAG, it is checked
for consistency using TP, i.e., the theorem prover is invoked assuming that all assumptions
except the ones in h(n) are true. In the case of an inconsistency arising, we are storing
it in CONF and ensure that CONF is consistent with the background theory Th. Note that

2The exact encoding is dependent on the applied theorem prover.

64 Chapter 4 Solving Bipartite Diagnosis Problems

depending on the utilized theorem prover these conflicts are not guaranteeing to be minimal;
thus, we remove all supersets afterwards.

Algorithm 4.3: HSDAGAB

Require: A: the set of propositional variables, Hyp: the set of hypotheses, Th: the Horn
clause theory, Obs: the set of observations

Ensure: ∆-Set: set of minimal diagnoses
1: CONF ← ∅
2: TP← Th ∪

(∧
o∈Obs o→ ⊥

)
. Theorem Prover

3: CONF← HS-DAG(TP) . Conflicts derived during HS-DAG construction
4: removeInconsistent(CONF) . Removes any inconsistent conflicts
5: for all c ∈ CONF do
6: if 6 ∃c′ ∈ CONF : c′ ⊆ c then . Remove conflict supersets
7: ∆-Set← c

8: end if
9: end for

10: return ∆-Set

Example 4.1 (cont.)

Starting from the root of the HS-DAG in Figure 4.1, the first consistency check is performed,
assuming all hypotheses are true as h(root) = ∅. We can obtain the first contradiction from
TP, i.e., CO1 = H1 which is added to the set CONF. Since the conflict has a cardinality of
1, only one new node n1 is created, such that its edge label is the union of the root’s edge
label and the conflict element, i.e., H(n1) = ∅∪{H1}. In the next step the theorem prover
is called assuming H2 and H3 true, and H1 false leading to CO2 = {H2} (see Figure 4.2).
The consistency check for n2 determines that there are no more contradictions, the node
is marked X and since there are no more nodes to process the computation is finished (see
Figure 4.3). Since the derived conflicts are consistent with the background theory and
subset minimal, they constitute the diagnoses, i.e., CONF = ∆-Set = {{H1}, {H2}}.

root

h(root) = ∅
CO1 = {H1}

Figure 4.1: Initial DAG.

root

n1

h(n1) = {H1}
CO2 = {H2}

H1

Figure 4.2: First level. CONF = {{H1}}

root

n1

n2

h(n2) = {H1, H2}
consistent
X

H1

H2

Figure 4.3: Second
level.CONF =
{{H1}, {H2}}

4.2 Conflict Driven Techniques 65

4.2.3 Empirical Evaluation
In this section, we describe our empirical evaluation set-up and report on the obtained

results. All the numbers presented in this section were obtained from a Lenovo ThinkPad
T540p Intel Core i7-4700MQ processor (2.60 GHz) with 8 GB RAM running Ubunutu 14.04
(64-bit).

Using the Indirect Approach
To determine whether computing abductive diagnoses via SAT yields any computational

advantages in the case of our models, we conducted an empirical evaluation, comparing the
ATMS referred to as Algorithm ABDUCTIVEEXPLANATIONS to SATAB on several new problem
instances based on the FMEAs (in their original and OSFDP variant) we have utilized in the
previous evaluations. In case of the former we again employed a Java implementation of
an unfocused ATMS. The algorithm SATAB exploits on the one hand an MCS enumeration
procedure and on the other hand an implementation of a hitting set algorithm. We utilized
the MCSLS

3 tool by Marques et al. [MS+13] to compute the MCSes. MCSLS is written in
C++, employs Minsat 2.24 as the SAT solver, and provides the possibility to apply several
MCS enumeration algorithms. We decided for the CLD approach of MCSLS, which takes
advantage of disjoint unsatisfiable cores and showed the best overall performance in a
preliminary experimental set-up. Regarding the hitting set computation, we engaged a Java
implementation of the Binary Hitting Set Tree (BHS-Tree) algorithm [LJ03] which performed
well in a comparison of minimal hitting set algorithms [Pil+11].

Due to Th of an abductive knowledge base comprising Horn clauses, a conversion into
a CNF representation, suitable for the MCSLS tool, is straightforward. We do not address
the model compilation times, since the system description would be compiled offline and
the mapping execution consumed less than one second for the examples we utilized so far.
Table 4.1 shows that none, except of the model resulting from the transformer’s FMEA, of the
original models satisfy the OSFDP. Therefore, we compiled a second set of models fulfilling
the property by exchanging each set of indistinguishable hypotheses with a new single
hypothesis representing said set. For example, Algorithm DISTINGUISHHYPOTHESES ensures
that the resulting knowledge base satisfies the OSFDP. In Table 4.1 the original models are
identified accordingly, and the adapted models are provided with the label OSFDP. Note that
the number of hypotheses and rules diminishes for the adapted models.

In the experiments, we computed the abductive explanations for |Obs| from one to the
maximum number of effects possible. The observations were generated randomly; however,
the same set was used for SATAB and ABDUCTIVEEXPLANATIONS on the original as well as
adapted model. The results reported in Table 3.3 have been obtained from ten trials and
both algorithms faced a 200 seconds runtime limit. Whereas some of the small runtimes
are arguable due to the measurement in the milliseconds range, Table 3.3 reveals that
SATAB (Mean = 703.73 ms, SD = 8432.07 ms, Median = 0.59 ms, Skewness = 18.61)
does not outperform ABDUCTIVEEXPLANATIONS (Mean = 3.08 ms, SD = 16.38 ms, Median
= 1 ms, Skewness = 12.68) in general. From the statistical data we can infer that the
underlying distribution of both algorithms is highly right skewed, thus the bulk of values
is located towards the lower runtimes. We can even observe that for certain instances, the
SAT-based approach performs rather poorly. Amongst these are the model of an inverter and
a rectifier of an industrial wind turbine. SATAB exceeded the given timeout four times for
the former. Notice that in all these cases the MCSes generation already reached the time
threshold. According to [MS+13] CLD requires |φ| − p+ 1 SAT solver calls, where p refers

3http://logos.ucd.ie/wiki/doku.php?id=mcsls
4http://minisat.se/

66 Chapter 4 Solving Bipartite Diagnosis Problems

http://logos.ucd.ie/wiki/doku.php?id=mcsls
http://minisat.se/

#Diagnoses Runtime [in ms]
Component MAX AVG SF DF TF Algorithm MIN MAX AVG

El
ec

tr
ic

al
ci

rc
ui

t Original 792 197.15 11 11 66 abductive Explanations < 1 425 27.87
satAB < 1 181.33 76.05

OSFDP 1 1 1 1 1 abductive Explanations < 1 8 0.33
satAB < 1 1.91 0.16

FC
S Original 18 2.93 3 6 18 abductive Explanations < 1 1 0.42

satAB < 1 6.41 1.28

OSFDP 18 2.75 3 6 18 abductive Explanations < 1 61 2.04
satAB < 1 4.73 0.56

A
C

D

Original 15 2.89 5 15 15 abductive Explanations < 1 84 1.38
satAB < 1 2.89 0.35

OSFDP 10 2.04 5 10 10 abductive Explanations < 1 1 0.29
satAB < 1 2.435 0.28

M
ai

n
be

ar
in

g Original 3 2.54 3 0 0 abductive Explanations < 1 1 0.16
satAB < 1 1 0.09

OSFDP 2 1.54 2 0 0 abductive Explanations < 1 1 0.12
satAB < 1 0.61 0.03

H
IF

I
-F

PU Original 63 8.64 3 7 21 abductive Explanations < 1 86 2.54
satAB < 1 8.33 3.00

OSFDP 6 1.55 2 2 3 abductive Explanations < 1 1 0.15
satAB < 1 1 0.09

M
iT

S
1 Original 24 8.40 3 2 6 abductive Explanations < 1 94 3.40

satAB < 1 3.02 0.39

OSFDP 1 1 1 1 1 abductive Explanations < 1 100 1.54
satAB < 1 2.15 0.16

M
iT

S
2 Original 288 39.98 4 8 18 abductive Explanations < 1 109 4.49

satAB < 1 15.16 3.43

OSFDP 5 2.02 1 5 2 abductive Explanations < 1 1 0.33
satAB < 1 1.68 0.20

PC
B

Original 2 1.49 2 2 2 abductive Explanations < 1 1 0.21
satAB < 1 1.49 0.1

OSFDP 1 1 1 1 1 abductive Explanations < 1 1 0.11
satAB < 1 1 0.1

In
ve

rt
er Original 450 23.73 19 5 50 abductive Explanations < 1 107 6.15

satAB < 1 166,593 5,007.37

OSFDP 66 5.89 14 3 6 abductive Explanations < 1 94 1.67
satAB < 1 1,110.82 38.23

R
ec

ti
fie

r Original 88 10.83 8 24 32 abductive Explanations < 1 6 1.07
satAB < 1 2,4236.90 1,070.88

OSFDP 22 3.06 5 18 8 abductive Explanations < 1 1 0.63
satAB < 1 44.74 4.88

Tr
an

s-
fo

rm
er Original 2 1.06 2 2 1 abductive Explanations < 1 1 0.16

satAB < 1 1.69 0.06

OSFDP 2 1.06 2 2 1 abductive Explanations < 1 1 0.13
satAB < 1 1.91 0.08

B
ac

ku
p Original 252 23.06 8 12 21 abductive Explanations < 1 138 5.24

satAB < 1 41.98 12.89

OSFDP 48 3.29 7 7 10 abductive Explanations < 1 4 0.79
satAB < 1 10.06 3.09

Table 4.1: Experimental results. For each component we conducted the experiment using an imple-
mentation of ABDUCTIVEEXPLANATIONS and SATAB. The columns SF, DF, TF display the
maximum number of single faults, double faults, and triple faults, respectively.

4.2 Conflict Driven Techniques 67

0.0001
0.001
0.01
0.1

1
10

100
1000

10000
100000

1000000
10000000

cu
m

ul
at

iv
e

ru
nt

im
e

[1
0y

m
s]

number of samples solved

abductiveExplanations satAB

Figure 4.4: Cumulative runtimes of ABDUCTIVEEXPLANATIONS and SATAB for the FMEA instances.

to the size of the smallest MCS of φ. In our case p = 1, as the clause representing the set of
negated observations always constitutes an MCS. Thus, |φ| SAT solver calls are necessary,
where |φ| is determined by |Th| + |Hyp| + 1, with 1 referring to the clause containing the
observations. Unsurprisingly, the larger FMEAs are more computationally demanding. It is
worth mentioning that in the majority of cases the hitting set computation accounted for a
negligible fraction of the total runtime.

Figure 4.4 illustrates the cumulative log runtimes for SATAB and ABDUCTIVEEXPLANATIONS

on the FMEA models generated. ABDUCTIVEEXPLANATIONS performs on average better
and Figure 4.4 reveals the high computational effort necessary for SATAB to compute the
diagnoses. As expected we observe particularly high runtimes when the set of observations
contains effects corresponding to different hypotheses. Generally, the data gathered in the
experiment do not suggest a performance benefit of the SAT-based approach over an ATMS
implementation.

Conflict-based Diagnosis
Besides the ATMS and the indirect approach SATAB, we utilize the HS-DAG to derive

conflicts via HSDAGAB and the direct MUS approach MUSAB. For the former, we utilize the
publicly available diagnosis engine jdiagengine that implements a conflict-driven search via
HS-DAG [PW03] exploiting a Linear Time Horn Clause Theorem Prover (LTUR) [Min88].
jdiagengine as well as HSDAGAB are Java implementations. We implemented MUSAB in Java
and employed the MUS enumeration tool MARCO5 [Lif+16]. MARCO computes MUSes
and MSSes based on an exploration of the power-set lattice6. Given an unsatisfiable clause
set, all of its supersets are unsatisfiable as well; thus, an MUS defines a "low point" in an
infeasible region. Similarly, an MSS characterizes a "high point" in a satisfiable region. In
each iteration MARCO investigates an unexplored part of the lattice and traverses through
the power-set until either an MUS or an MSS is found. MARCO is implemented in Python
using the MUS extractor MUSer27 and SAT solver MiniSat8.

For this experiment, we generate new PHCAPs based on the FMEAs. Table 4.2 provides an
overview of the models’ structure as well as some characteristics of the problem instances.

5http://sun.iwu.edu/~mliffito/marco/
6We provide a more detailed description of this algorithm in Subsection 5.2.4.
7http://logos.ucd.ie/wiki/doku.php?id=muser
8http://minisat.se/

68 Chapter 4 Solving Bipartite Diagnosis Problems

http://sun.iwu.edu/~mliffito/marco/
http://logos.ucd.ie/wiki/doku.php?id=muser
http://minisat.se/

Structure # Diagnoses
Model Hyp Obs Th Max Avg SF DF TF

Electrical circuit 32 17 52 792 189.10 3 3 12
Ford connector system 17 17 56 28 3.68 5 3 15

ACD 13 16 52 12 2.46 3 4 4
Main bearing 3 5 20 3 2.34 3 0 0

HIFI-FPU 17 11 35 42 9.44 7 21 7
MiTS 1 17 21 47 12 5.04 3 3 4
MiTS 2 22 15 48 288 33.46 4 12 6

PCB 10 11 24 2 1.52 1 2 2
Inverter 29 38 165 200 21.79 2 14 16
Rectifier 20 17 93 64 8.10 16 32 64

Transformer 4 8 22 2 1.10 2 2 2
Backup components 25 30 114 252 19.86 7 18 27

Table 4.2: Features of the models and the evaluation examples. SF, DF, and TF refer to single, double,
and triple faults, respectively.

0.0001
0.001

0.01
0.1

1
10

100
1000

10000
100000

1000000
10000000

100000000

cu
m

ul
at

iv
e

ru
nt

im
e

[1
0y

m
s]

number of samples solved

abductiveExplanations satAB hsdagAB musAB

Figure 4.5: Cumulative runtimes of ABDUCTIVEEXPLANATIONS, HSDAGAB, MUSAB, and SATAB for the
experiment.

abductive
Explanations hsdagAB satAB musAB

Model MAX AVG MAX AVG MAX AVG MIN MAX AVG
Electrical circuit 129 19.44 T 5,131.66 145.05 51.49 8 6,881 700.06

FCS 5 0.23 18 1.22 5.12 0.78 7 1,974 419.95
ACD 12 0.28 3 0.31 7.00 0.34 7 122 42.28

Main bearing 1 0.02 1 0.04 1.00 0.07 11 269 93.86
HIFI - FPU 1 0.04 174 9.42 6.05 1.98 7 469 141.82

MiTS 1 1 0.09 1 0.10 2.42 0.23 7 37 19.1
MiTS 2 12 0.57 164,891 3,522.88 11.00 2.53 7 5,281 905.45

PCB 1 0.01 1 0.01 1.99 0.12 7 12 9.36
Inverter 55 2.62 T 15,406.82 T 3,799.10 8 T 14,573.4
Rectifier 4 0.32 25,830 233.51 11,450.60 455.11 8 T 17,173.03

Transformer 1 0.01 < 0.001 < 0.001 0.73 0.04 7 36 19.63
Backup 25 2.03 T 4,113.47 35.84 9.69 8 T 14,526.67

Table 4.3: Experimental runtime [in ms] results of the four algorithms on the experiment instances.
Models, where an algorithm exceed the given run time threshold at least once, are marked
with T.We only include the minimum runtime MIN for MUSAB since it is the only algorithm
with minimal runtimes > 1.

4.2 Conflict Driven Techniques 69

Due to theory comprising Horn clauses, a conversion into a CNF representation, suitable
for the MUS-based and MCS-based computation, is straightforward. In comparison to
the previous evaluation, we do not consider the OSFDP property. In the experiments, we
computed the abductive explanations for |Obs| from one to the maximum number of effects
possible with the observations selected randomly. The results reported in Table 4.3 have
been obtained from ten trials and all algorithms faced a 200 seconds runtime limit. To
compare the algorithms, we only measured the time to compute minimal diagnoses, i.e., we
disregarded the mapping, model conversion, as well as the time it required to communicate
with the solvers. In case of MUSAB and SATAB, we parsed the execution time measured
by the tools themselves, which was available in the output. Note that for certain instances
HSDAGAB, SATAB, and MUSAB exceeded the predefined runtime threshold, which we marked
with T in the table. Thus, for the cumulative runtimes, shown in Figure 4.5, we utilized the
maximum of 200 seconds in cases the limit was surpassed.

Whereas some of the small runtimes are arguable due to the measurement in the mil-
liseconds range, Table 4.3 and Figure 4.5 reveal that ABDUCTIVEEXPLANATIONS (Mean =
2.41 ms, SD = 12.36 ms, Median = 0 ms) outperforms HSDAGAB (Mean = 12261.77
ms, SD = 3162.5 ms, Median = 1 ms), SATAB (Mean = 1741.39 ms, SD = 15633.06 ms,
Median = 1 ms), and MUSAB (Mean = 45947.85 ms, SD = 82289.36 ms, Median = 118
ms). Unsurprisingly, the larger considered examples are more computationally demanding,
especially with the model of the electrical circuit featuring a larger set of possible hypotheses
and diagnoses. In cases where the maximum cardinality of the diagnoses is limited, HS-DAG
computes solutions rather efficiently [Pil+11]. However, in our examples, we enumerated
all solutions, thus neither the size nor the number of hitting sets was restricted, which can
result in some cases in an extensive graph. The MCS-based approach performs rather poorly
on the example of the converter. According to Marques et al. [MS+13] the number of SAT
calls for the CLD approach depends on the size of the underlying formula, which in our case
is determined by the size of the theory and the number of hypotheses, which explains the
computation time for the inverter example. It is worth mentioning that in the majority of
cases the hitting set computation accounted for a negligible fraction of the total runtime of
SATAB. The performance of MARCO is very much dependent on the traversal of the graph
towards a "low point" or "high point" in the power-set lattice, i.e., MUS or MSS, respectively.
Note that we did not focus on an efficient encoding or any kind of pre-compilation to speed
up the reasoning process. Further, in the case of MUS- and MCS-based algorithms, there is
no focus on the abducibles, as for the ATMS and the HS-DAG. Thus, a large number of sets is
generated, which are not of interest for the diagnostic task.

4.3 Abductive Diagnosis by Hitting Set
Computation

Considering the structural properties of the models generated on basis of the FMEAs, we
have stated that the models consist of bijunctive definite Horn clauses. Considering the
implication-based representation of a Horn clause, a single hypothesis constitutes the premise
of the rule, while a single variable representing an effect is the consequence, i.e., Hi → ej .
In Peng and Reggia’s [PR90] simple parsimonious set-covering theory the networks consist of
a hypothesis and a manifestation layer, with the set of hypotheses and manifestations being
disjoint. These types of abduction problems are referred to as bipartite abduction problems,
since the causal network can be represented as a bipartite graph. Given this characteristic,
this causal relation representation is equivalent to logic-based abduction with a theory
restricted to bijunctive definite Horn clauses. Considering the definitions of the previous

70 Chapter 4 Solving Bipartite Diagnosis Problems

chapter, H refers to Hyp, M is A \ Hyp describing the remaining propositions not included
within the hypotheses which are in fact the effects. The causal relations T corresponds to Th
and M∗ ≡ Obs.

Example 4.3

Consider the following PHCAP with Obs = {o1, o3} and encompassing a bijunctive definite
Horn theory:

A = {H1, H2, H3, o1, o2, o3},Hyp = {H1, H2, H3},

Th =
{
H1 → o1, H2 → o1, H2 → o2, H3 → o2, H3 → o3

}
We can formulate this within the simple set covering approach to a Set Cover Diagnosis
Problem 〈H,M, T ,M∗〉, where H = {H1, H2, H3}, M = {o1, o2, o3}, M∗ = {o1, o3}, and
T = {< H1, o1 >,< H2, o1 >,< H2, o2 >,< H3, o2 >,< H3, o3 >}.

As has been shown previously, set covering is equivalent to the hitting set problem [Aus+80].
Given a universal set U and a set of sets CS, set covering aims at identifying the minimal
subsets Ci of CS such that their union covers U, i.e.,

⋃
Ci∈CS Ci = U. The hitting set problem

is dual to set covering by exchanging U and CS, i.e., searching for subsets of U that cover
the elements of CS. Formally, a hitting set is defined that given a set of sets CS, a hitting set
h is a set intersecting all sets in CS with at least one element. h is said to be minimal if there
exists no other hitting set h′ for CS that is a subset of h [Pil+11].

Recall that in the set-covering theory the knowledge about the causal relations is defined
by two sets, effects(hi) and causes(mj), and that a diagnosis is defined via a cover relation.
That is, a set of hypotheses H′ is a diagnosis if all observed manifestations are covered by H′,
i.e., Obs ⊆ effects(H′). A cover states that a certain disorder causally infers a manifestation,
i.e., the manifestation m ⊆ effects(H), where H is a hypothesis. Similarly, we can utilize the
set causes(mj) as previously defined as a similar cover indicator. For each manifestation the
set causes(mj) contains the information on all disorders causing mj . Algorithm BIPARTITE
as presented by Peng and Reggia [PR90], incrementally construct solutions covering a new
manifestation in addition to the set of observations already considered using this causes
relation. In essence, they incrementally derive hitting sets represented by generators. By
computing the hitting set of causes(mj) we derive a disjunction of all disorders included,
i.e., each cause constitutes a possible solution. Hence, in case we obtain a set of observable
manifestations m1, . . . ,mn ∈ Obs, the hitting sets of all causes(mj) ∈ Obs comprises the diag-
noses. This is apparent, as to account for all current observations one disorder causing each
manifestation has to be present within a single solution. Again we focus on parsimonious
solutions, therefore we are solely interested in subset minimal hitting sets.

Definition 4.5 (Abductive Hitting Set Diagnosis). Given a bipartite abduction problem
with (A,Hyp,Th,Obs). A set ∆ ⊆ Hyp is said to be a minimal diagnosis iff (1) ∆ is a minimal
hitting set of CS, where ∀oi ∈ Obs : causes(oi) ∈ CS, and (2) ∆ ∪ Th 6|= ⊥.

Example 4.3 (cont.)

Assuming we can observe o1 and o3, i.e. Obs = {o1, o3}, the causes sets for the cur-
rent manifestations are causes(o1) = {H1, H2} and causes(o3) = {H3}. Thus, CS =
{{H1, H2}, {H3}}. The minimal hitting sets of CS are {H1, H3} and {H2, H3} hence
correspond to ∆1 = {H1, H3} and ∆2 = {H2, H3}.

4.3 Abductive Diagnosis by Hitting Set Computation 71

Hence, we can utilize any algorithm capable of deriving all the minimal hitting sets for a
given set CS to compute the diagnosis based in abduction problems constructed on top of
an FMEA. Note, here however, that we have to take special care that the derived minimal
hitting sets are consistent with the background theory. Similarly to the NOGOOD node in the
ATMS, we could keep track of causes(⊥).

Example 4.3 (cont.)

Assume the theory Th contains further a rule, stating that H1 is contradicting, i.e.,

Th =
{
H1 → o1, H2 → o1, H2 → o2, H3 → o2, H3 → o3, H1 → ⊥

}
.

Given the same observations as before the derived minimal hitting sets are {H1, H3}
and {H2, H3}. The first hitting set, however, does not fulfill the second condition of
Definition 4.5, since {H1, H3} ∪ Th is inconsistent. Hence, in this case the only admissible
solution to the abduction problem is the second minimal hitting set {H2, H3}.

4.3.1 Hitting Set Algorithms

Given Definition 4.5 we can utilize hitting set algorithms to derive minimal abductive
explanations for bipartite diagnosis problems. In this section, we present well-known
techniques to derive minimal hitting sets. There is a growing body of literature on computing
hitting sets not detailed in this chapter. For instance, STACCATO [AG09], which is based
on the ideas of spectrum-based fault localization, provides an approximation of minimal
hitting sets, while SAT-based hitting set techniques reformulate the problem as a CNF such
that a satisfying assignment corresponds to the minimal hitting sets [Qua14]. For example,
Pill, Quaritsch, and Wotawa [Pil+11] provide a detailed evaluation of minimal hitting set
algorithms

Hitting Set Directed Acyclic Graph (HS-DAG)

By detecting a discrepancy between the predicted and actual behavior, i.e., a conflict,
Reiter [Rei87] derives consistency-based diagnoses via minimal hitting set computation.
A conflict arises when, under the assumption all components are behaving correctly, an
observation is inconsistent with the expected performance. Thus, conflicts correspond to
hypotheses contradicting observations in this context. Reiter’s approach maintains a tree to
compute all minimal hitting sets based on contradictions. These conflicts can be generated
on demand by applying a theorem prover, which returns a refutation involving hypotheses if
one exists. Starting from an initial conflict set as root node, the tree is iteratively extended
in a breadth first manner. At each node n, labeled with conflict C, an outgoing edge h(n) is
generated for each c ∈ C. Each edge label is checked for consistency. In case it is consistent,
the corresponding node determines a leaf and thus a minimal hitting set, otherwise a new
conflict set is derived, such that it is disjoint to the current set of edge labels. Several pruning
techniques ensure the minimality of the hitting sets and allow the use of non minimal
conflicts. Greiner, Smith, and Wilkerson [Gre+89] corrected some inadequacies of Reiter’s
algorithm and devised an approach performing on a DAG instead of a tree referred to as
HS-DAG. Algorithm HS-DAG lists their procedure.

72 Chapter 4 Solving Bipartite Diagnosis Problems

Algorithm 4.4: HS-DAG [Gre+89]

1 Let D represent the growing DAG. Generate a node n0 which will be the root of the
DAG.

2 Process the nodes in D in a breadth-first order as long as there are open nodes.
Define h(n) to be the set of edge labels on the path in D from the root n0 down to
node n. Set h(n0) = ∅.

a (Closing) If there is a node n′ which is labeled X and h(n′) ⊂ h(n) then close
node n, i.e., mark it 7. The closed node n does not have any successors nor is
a label computed for n.

b If for all C ∈ CS : C ∩ h(n) 6= ∅ then label n with X. Otherwise, label n by C
where C is the first member of CS with C ∩ h(n) = ∅.

c (Pruning) If a previously unused C is to label a node and there is a node n′ in
D that has been labeled by C ′ ∈ CS with C ⊂ C ′, then

i Relabel n′ with C and remove any arc labeled c : c ∈ C ′ \C under n′. The
node connected by this arc and all of its descendants are removed, except
for the nodes with another ancestor which is not being removed. Note
that this step may eliminate the node which is currently being processed.

ii Interchange the sets C ′ and C in CS (this has the same effect as eliminating
C ′ from CS).

d If n is labeled by a set C ∈ CS, for each c ∈ C generate a new downward
arc labeled by c. If there is a node n′ in D such that h(n′) = h(n) ∪ c, then
let the c-arc under n point to this existing node n′ (Reuse). Hence n′ will
have more than one parent. Otherwise let the arc c lead to a new node m
with h(m) = h(n) ∪ {c}. The new node m will be processed (labeled and
expanded) after all nodes in the same generation (i.e., same depth) as n have
been processed.

3 Return the resulting DAG D.

Example 4.4

Consider the set CS = {{a, b}, {c, d}, {b, c}, {d}}. Figure 4.6 depicts the constructed DAG
before determining the next steps for the first node n3 in the second level, i.e., the node
with h(n3) = {a, c}. The next conflict that could be used to expand the node is {d}, thus,
the pruning rule takes effect. The nodes labeled with the conflict {c, d} are labeled {d}
and the arcs leaving said node labeled c are no longer viable and hence removed. The final
DAG is shown in Figure 4.7 with the resulting minimal hitting sets {a, c, d} and {b, d}.

n0 : {a, b}

n2 : {c, d}n1 : {c, d}

n4n3 n6n5

ba

dc dc

Figure 4.6: D before pruning.

n0 : {a, b}

n2 : {d}n1 : {d}

n4 : {b, c} n6 : X

n8 : Xn7 : 7

ba

d d

cb

Figure 4.7: Final D.

4.3 Abductive Diagnosis by Hitting Set Computation 73

Hitting Set Tree (HST)

The Hitting Set Tree (HST) variant of HS-DAG operates on a tree instead of a graph and
avoids the construction of unnecessary nodes and costly subset checks [Wot01]. Based on an
ordered list of elements within CS the algorithm limits the number of outgoing edges for each
node to a specific range within the ordered list. Given this ordered list, the tree is constructed
in a deterministic fashion allowing to decide whether a node has to be generated or the
corresponding hitting set will be constructed later during the computation by checking the
current path and the tree already constructed. This renders the reuse rule of the traditional
HS-DAG unnecessary. Just as the HS-DAG, the conflict sets do not have to be known in
advance, but may be derived on the fly by a theorem prover.

We define U as the universal set, i.e., ∀C ∈ CS : C ⊆ U. HST relies on an algorithm
enumerating all subsets of U in a tree structure by using a mapping function ci associating
each element of U to a unique number between 1 and |U|. The algorithm starts by setting the
index i of the root node, representing the empty set, to |U|+ 1. For each number j between
1 and i− 1 a new vertex is constructed, such that the index of said node corresponds to j. A
vertex is identified as a leaf in case it has an index of 1 otherwise the node’s children are
created.

Example 4.5

A subset enumeration tree for {1, 2, 3} looks as follows:

n0 : ∅
i(n0) = 4

n1 : {1}
i(n1) = 1

n2 : {2}
i(n2) = 2

n4 : {1, 2}
i(n4) = 1

n3 : {3}
i(n3) = 3

n5 : {1, 3}
i(n5) = 1

n6 : {2, 3}
i(n6) = 2

n7 : {1, 2, 3}
i(n7) = 1

1 2

1

3

1 2

1

Figure 4.8: Subset Enumeratation Tree.

While in the enumeration tree all elements of |U| are considered when constructing the
child nodes, only a subset is used during the construction with Algorithm HST. In particular,
the conflicts in CS are ordered and only the first conflict C is used in case the intersection of
the conflict and path label h of the vertex v is empty, i.e., C ∩ h(v) = ∅. As in HS-DAG this
set is then used as an input to create more child nodes. A global variable MIN ensures that
each element of U is mapped to a unique number.

Algorithm 4.5: HST [Wot01]

1 Let MIN be a variable storing the lowest index not previously assigned to an element
of U. Initially, MIN = |U|.

2 Let ci be a bijective function U → {1, . . . , |U|} that maps each element of U to an
index between 1 and |U|.

74 Chapter 4 Solving Bipartite Diagnosis Problems

3 Let T represent the growing HS-tree. Generate a vertex v which will be the root of
the tree. Set i(v) = |U| + 1 and mark v as being opened, i.e., mark(v) = �. The
vertex v will be processed in Step 4.

4 Process the nodes in T in a breadth-first order. Nodes are processed in the same
order as they are generated. To process an open vertex v do the following:

a Let h(v) be the set of elements of U given by the indices i from the root to v,
i.e., h(v) = {C|ci(C) = i(v′) , where v′ is a vertex lying on the path from the
root to v}.

b If for all x ∈ CS, x ∩ h(v) 6= ∅, then mark(v) = X. Otherwise, label v as open
and let y be the first set in CS where y ∩ h(v) = ∅. For every element C from
U in y with no previously defined index ci, let ci(C) be MIN and decrement
MIN afterwards. Let min(v) be MIN + 1. If i(v) > min(v) create a new array
ranging over min(v), . . . , i(v) − 1. Otherwise, let mark(v) = 7 and create no
child nodes for v.

c For each n in min(v), . . . , i(v)− 1 create a new vertex v′ with parent(v′) = v,
child(v, n) = v′, mark(v′) = �, and let i(v′) be n. The new vertex v′ will be
processed after all vertices in the same generation as v have been processed.

5 Return the resulting tree T.

By collecting all h(v) of all nodes marked X, we obtain all minimal hitting sets. To ensure
an efficient computation and a tree as small as possible, the following rules are applied:

Closing A node v is closed if its associated hitting set is a superset of a hitting set of
another previously generated vertex p, i.e.,

∃p ∈ T : h(p) ⊂ h(v)⇒ label(v) = 7 .

Pruning Remove closed nodes v from the tree T. The arc leading from the parent node is
removed and the entry in the parents’ child array is set to ε. If all entries of the child array
are set to ε, the parent node itself is removed from T. Pruning is done until all closed
nodes and nodes with only ε entries in child are removed from the tree.

Example 4.6

Given a set of conflicts CS = {{a, b}, {c, d}, {b, c}, {d}}, we can construct the universal
set U = {a, b, c, d}. Figure 4.9 show the constructed tree without the application of the
pruning rule, while Table 4.4 records the entire execution of the algorithm. Starting from
the root, the first conflict set {a, b} is considered and added to the mapping ci. For each
element of the conflict a new node is generated. At node n1 first it is checked whether
the path label h(n1) = {b} hits all conflicts in CS. Since it does not, the next element of
CS with an empty intersection given the path label is taken, which in this case is {c, d}. c
and d are assigned a unique number by the mapping and for each element a new child
node is constructed. n3 for instance is marked X since its path label h(n3) = {b, d} hits all
conflicts and hence constitutes a minimal hitting set. Also n9’s path label is identified as
a minimal hitting set. n5 is closed due its index, while nodes n8,n10, and n12 are closed
since they are supersets of minimal hitting sets already found.

The structure of the tree ensures that not all generated nodes have to be considered
during the subset check, but only the nodes marked withX that are located to the left of the
current node with a smaller path length. For instance, consider n10 with h(n10) = {a, b, d}.

4.3 Abductive Diagnosis by Hitting Set Computation 75

To determine whether this node has to be closed due to constituting a superset of an
already found minimal hitting set, only the node n3 has to be considered which is marked
X and is in a level above n10. n9 does not have to be considered since the path length of
n9 is equivalent to the path length of n10.

n0 : {a, b}

n1 : {c, d} n2 : {c, d}

n3 : X n4 : {d} n5 : 7 n6 : {d} n7 : {c, d}

n8 : 7 n9 : X n10 : 7 n11 : {d}

n12 : 7

3 4

1 2 1 2 3

1 1 1 2

1

Figure 4.9: Before pruning.

Table 4.4: Execution of HST.

v h(v) y MIN ci(C) min(v) i(v) Action
n0 ∅ {a, b} 4 ci(a) = 4, ci(b) = 3 3 5 new child(n0, 3) = n1

and child(n0, 4) = n2

n1 {b} {c, d} 2 ci(a) = 4, ci(b) = 3 1 3 new child(n1, 1) = n3

ci(c) = 2, ci(d) = 1 and child(n1, 2) = n4

n2 {a} {c, d} 0 ci(a) = 4, ci(b) = 3 1 4 new child(n2, 1) = n5

ci(c) = 2, ci(d) = 1 and child(n2, 2) = n6

and child(n2, 3) = n7

n3 {b, d} 0 ci(a) = 4, ci(b) = 3 mark(n3) = X
ci(c) = 2, ci(d) = 1 (hits all C in CS)

n4 {b, c} {d} 0 ci(a) = 4, ci(b) = 3 1 2 new child(n4, 1) = n8

ci(c) = 2, ci(d) = 1
n5 {a, d} {b, c} 0 ci(a) = 4, ci(b) = 3 1 1 mark(n5) = 7

ci(c) = 2, ci(d) = 1 (min(n5) 6< i(n5))
n6 {a, c} {d} 0 ci(a) = 4, ci(b) = 3 1 2 new child(n6, 1) = n9

ci(c) = 2, ci(d) = 1
n7 {a, b} {c, d} 0 ci(a) = 4, ci(b) = 3 1 3 new child(n7, 1) = n10

ci(c) = 2, ci(d) = 1 and child(n7, 2) = n11

n8 {b, c, d} 0 ci(a) = 4, ci(b) = 3 mark(n8) = 7

ci(c) = 2, ci(d) = 1 (closing)
n9 {a, c, d} 0 ci(a) = 4, ci(b) = 3 mark(n9) = X

ci(c) = 2, ci(d) = 1 (hits all C in CS)
n10 {a, b, d} 0 ci(a) = 4, ci(b) = 3 mark(n10) = 7

ci(c) = 2, ci(d) = 1 (closing)
n11 {a, b, c} {d} 0 ci(a) = 4, ci(b) = 3 1 2 new child(n11, 1) = n12

ci(c) = 2, ci(d) = 1
n12 {a, b, 0 ci(a) = 4, ci(b) = 3 mark(n12) = 7

c, d} ci(c) = 2, ci(d) = 1 (closing)

76 Chapter 4 Solving Bipartite Diagnosis Problems

The pruning rule states that all closed nodes, i.e., nodes marked 7, may safely be removed.
Hence in the example in Figure 4.9, nodes n5, n8, n10, and n12 are deleted from the tree.
Given these removals, we can observe that nodes n4 and n11 have no more children, i.e., all
entries of their child array are set to ε. Thus, these nodes are also removed. Subsequently,
also n7 may be deleted from the tree as shown in Figure 4.10.

n0 : {a, b}

n1 : {c, d} n2 : {c, d}

n3 : X n6 : {d}

n9 : X

3 4

1 2

1

Figure 4.10: After pruning.

Given the resulting tree, we can obtain the minimal hitting sets as the path label of all
nodes marked X using ci , i.e., h(n3) = {1, 3} represents the minimal hitting set {b, d}
and h(n9) = {1, 2, 4} characterizes the minimal hitting set {a, c, d}.

Binary Hitting Set Tree and the Boolean Algorithm
Lin and Jiang [LJ03] propose the BHS-Tree. First, the tree is constructed by splitting

input sets on particular elements and recursively adapting the sets and building the tree.
During the bottom up traversal the hitting sets are computed by merging the data of the
child nodes.To derive minimal hitting sets a minimization function µ is used to remove any
non-minimal solutions.

Definition 4.6 (Binary Hitting Set Tree (BHS-Tree) [LJ03]). Given a minimal set of sets9

MCS = C1, C2 . . . , Cn, a BHS-Tree is a recursive binary-tree, where each node is a tuple
(C,H), where C and H are set of sets. The root node is denoted by (C = MCS, H = ∅); the
left and right children are (Cl, Hl) and (Cr, Hr) respectively. The tree is define recursively
as follows:

1 if C = ∅, then BHS-Tree is an empty tree;

2 else select any element α ∈
⋃
Ci, (Cl = {Ci \α}|α ∈ Ci), Hl = {α} and (Cr = {Ci|α /∈

Ci}, Hr = ∅).

Thus, while generating the tree, the input of conflicts is decomposed in such a way that
the left child handles sets containing the splitting element α, while the right child considers
the remaining conflicts. Analogous to Lin and Jiang [LJ03] we denote elements of C by 〈·〉,
while elements of H are contained within [·]. Once the tree is constructed it is exploited to
derive the minimal hitting sets via Algorithm BHS-TREE. By traversing the tree in a bottom
up manner, the hitting sets in H are constructed. In case not all conflicts are known at the
beginning of the computation, additional conflicts can be easily accounted for, by adding a
new branch to BHS-Tree.

9In case the set of conflicts contains any supersets of any Ci, they have to be removed before the construction of
the tree.

4.3 Abductive Diagnosis by Hitting Set Computation 77

Algorithm 4.6: BHS-TREE [LJ03]

Given a BHS-Tree the minimal hitting sets can be derived with the following rules:
1 If a nodes is a leaf node, then the minimal hitting sets of this node is H; else run

Step 2 and 3 recursively

2 Replace every parent node H with {H, {ml ∪mr|ml ∈ Hl,mr ∈ Hr}}. Notice that H
may be the empty set.

3 Minimize H at the root node with the function µ until it comprises all minimal
hitting sets.

The Boolean algorithm represents the conflict set as a Boolean formula, in such a way that
based on Boolean operations the resulting conjunctions correspond to the minimal hitting
sets. A set of conflicts CS is formalized as a Boolean formula in DNF, where each conflict
is represented by a disjunction of negative atoms corresponding to the set’s elements. The
algorithm recursively applies the function H to the formula to obtain the hitting sets.

Definition 4.7 (Function H(C) [LJ03]). C is a Boolean formula, ¬e is the negation of e
(both are atoms of the Boolean formula). H is defined recursively:

(1) H(⊥) = > and H(>) = ⊥

(2) H(¬e) = e

(3) H(¬e ∧ C) = e ∨H(C)

(4) H(¬e ∨ C) = e ∧H(C)

(5) H(C) = e∧H(C1)∨H(C2), where ¬e is an arbitrary atom of C, C1 = {c|c ∈ C ∧¬e 6∈
c}, and C2 = {c|c ∪ {¬e} ∈ C ∨ (c ∈ C ∧ ¬e 6∈ c)}

Rule (5) represents the main strategy behind the method, splitting the search into two
portions. One part assumes that the split element e is part of the solution and hence focuses
on sets not hit so far. The other part tackles the hitting sets not including e [Pil+11].

Example 4.7

BHS-Tree Given the set CS = {{a, b}, {c, d}, {b, c}, {d}}, first the non-minimal sets, i.e.,
{c, d}, are removed. The resulting set MCS = {{a, b}, {b, c}, {d}} is used to construct the
BHS-Tree in Figure 4.11.

< a, b >< b, c >< d > []

< a >< c > [b] < d > []

<> [a] < c > []

<> [c]

<> [d]

b

a

c

d

Figure 4.11: BHS-Tree construction

[b, d][a, c, d]

[b][a, c] [d]

[a] [c]

[c]

[d]

Figure 4.12: Hitting set computation

Figure 4.12 shows the computation of the minimal hitting sets. The minimal hitting sets
are generated by traversing the tree in a bottom up manner and updating the information
stored in the set H of the visited nodes. Starting at the leafs, each leaf’s H remains
unchanged. At every other node n, the Cartesian product of the left and right child’s H sets

78 Chapter 4 Solving Bipartite Diagnosis Problems

is added to H(n) and the set is minimized with µ removing all supersets. Once at the root
node the minimal hitting sets {b, d} and {a, c, d} can be extracted from H of the root.

Boolean algorithm The Boolean algorithm represents the set CS, as a Boolean formula
CSF in DNF: CSF = ((¬a∧¬b)∨ (¬b∧¬c)∨ (¬d)∨ (¬c∧¬d)). By recursively applying the
function H to the Boolean formula, the search space is continuously split and refined.

H
(
(¬a ∧ ¬b) ∨ (¬b ∧ ¬c) ∨ (¬d) ∨ (¬c ∧ ¬d)

)
(4) with e = d

= d ∧H
(
(¬a ∧ ¬b) ∨ (¬b ∧ ¬c) ∨ (¬c ∧ ¬d)

)
(5) with e = b

=
(
d ∧ b ∧H(¬c ∧ ¬d)

)
∨
(
H(¬a ∨ ¬c ∨ (¬c ∧ ¬d))

)
(3) with e = c

=
(
d ∧ b ∧ (c ∨H(¬d))

)
∨
(
H(¬a ∨ ¬c ∨ (¬c ∧ ¬d))

)
(2) with e = d

=
(
d ∧ b ∧ (c ∨ d)

)
∨
(
H(¬a ∨ ¬c ∨ (¬c ∧ ¬d))

)
(4) with e = a

=
(
d ∧ b ∧ (c ∨ d)

)
∨
(
a ∧H(¬c ∨ (¬c ∧ ¬d))

)
(4) with e = c

=
(
d ∧ b ∧ (c ∨ d)

)
∨
(
a ∧ c ∧H(¬c ∧ ¬d)

)
(3) with e = c

=
(
d ∧ b ∧ (c ∨ d)

)
∨
(
a ∧ c ∧ (c ∨H(¬d))

)
(2) with e = d

=
(
d ∧ b ∧ (c ∨ d)

)
∨
(
a ∧ c ∧ (c ∨ d)

)
Distribution and Absorption

= (b ∧ d) ∨ (a ∧ c ∧ d)

The minimal hitting sets are {b, d} and {a, c, d}.

To remove the unnecessary sub formulas from further consideration, Pill and Quar-
itsch [PQ12] redefine Rule (4) by

(4’) H(¬e ∨ C) = e ∧H(C1) with C1 = {c|c ∈ C ∧ ¬e 6∈ c} .

While the original rule does identify e as an element of the current branch, all sets already hit
by e are still considered within C. Hence, the improvement ensures that only conjunctions
not already hit are considered during computation.

Example 4.7 (cont.)

Assuming CSF = ((¬a∧¬b)∨(¬b∧¬c)∨(¬d)∨(¬c∧¬d)) as before, we apply the function
H recursively to the Boolean formula replacing Rule (4) with (4’):

H(¬a ∧ ¬b) ∨ (¬b ∧ ¬c) ∨ (¬d) ∨ (¬c ∧ ¬d) (4’) with e = d

= d ∧H
(
(¬a ∧ ¬b) ∨ (¬b ∧ ¬c)

)
(5) with e = b

= d ∧
(
b ∨H(¬a ∨ ¬c)

)
(4’) with e = a

= d ∧
(
b ∨ (a ∧H(¬c))

)
(2) with e = c

= d ∧
(
b ∨ (a ∧ c)

)
Distribution

= (b ∧ d) ∨ (a ∧ c ∧ d)

Thus in our example, the number of steps necessary to compute the minimal hitting sets
{b, d} and {a, c, d} is reduced.

An essential aspect in regard to the performance of the Boolean algorithm is the heuristic
choosing the element e to split in Rule (5). A common idea is to either select an atom e, such
that it hits the most sets in CS. Pill and Quaritsch [PQ12] improved upon this, by choosing
the elements from the smallest Ci in CS, to allow processing the smallest conflict set fast.

4.3.2 Empirical Evaluation
In this section, we describe two experiments we have conducted in regard to the most run-

time efficient abduction approach for bipartite diagnosis problems. Specifically, we compare

4.3 Abductive Diagnosis by Hitting Set Computation 79

the ATMS and various methods for deriving minimal hitting sets. The first evaluation, is
based on two benchmarks; on the one hand, we have taken the same FMEAs we have utilized
in the experiments in Chapter 3. On the other hand, we created artificial bipartite diagnosis
problems. While the first experiment exploits the Boolean approach, this method lacks the
ability to derive hitting sets on the fly. However, in a diagnosis scenario observations may
come delayed or additional information may be obtained through probing. In this case, the
Boolean approach has to restart the computation from the beginning instead of continuing
the process given the new information. Thus, in the second set of experiments we replace
the Boolean approach with another method that does possess the capability to resume the
hitting set computation given new observations. All results presented below were obtained
on a Mac Pro (Late 2013) with a 2.7 GHz 12-Core Intel Xeon ES processor and 64GB of RAM
running OS X 10.10.5.

Superiority of the Boolean Algorithm
For our first evaluation, we utilized the ATMS as well as the hitting set algorithms described

in Subsection 4.3.1. We utilize a Java implementation of Algorithm ABDUCTIVEEXPLANA-
TIONS [Wot+09] based on an ATMS [DK86a] as in the previous evaluation. Also the runtime
results of BHS-Tree [LJ03] stem from a Java implementation from the publicly available
diagnosis tool jdiagengine10 [PW03]. For the remaining hitting set procedures, i.e., HS-DAG
[Rei87], HST [Wot01] and the Boolean approach [LJ03], we exploit PyMBD11[QP14], a
Python library of model-based diagnosis algorithms.

Our data for comparing the abduction methods originate from two separate sources; on
the one hand artificial examples and on the other hand a small corpus of FMEAs. In case of
the former, we produced examples with a varying number of hypotheses (10 ≤ |Hyp| ≤ 500),
effects (4 ≤ |{A \ Hyp}| ≤ 13001), and clauses (100 ≤ |Th| ≤ 13500). We collected the
data on 215 experiments with |Obs| ranging from 1 to 25. The FMEA examples comprises
publicly available as well as internally used FMEAs recording fault knowledge from diverse
domains12. We automatically mapped these failure assessments to abductive knowledge
bases, which we can use for logic-based as well as set covering abduction. All in all we
conducted experiments on twelve FMEAs with various numbers of hypotheses, effects, and
clauses. For each experiment we randomly chose the number of observations as well as
the manifestations themselves from the effects available within the model. A total of 2120
experiments where conducted on the FMEA sample set. Clearly, the artificially generated
samples are larger in size than the FMEA examples and thus computationally more expensive.
Hence, for the evaluation, we enforced a time threshold of 1,000,000 ms, i.e., around 16
minutes.

Figure 4.13 depicts the number of samples solved based on ordered cumulative log
runtime. It is apparent that certain methods, such as the ATMS or BHS-Tree, cannot compute
all diagnoses within the given time frame on the artificial examples, while on the practical
FMEA samples none of the methods exceeds the threshold. This is also shown in the
maximum runtime listed (MAX) in Table 4.5; each method’s execution is at least one time
cut-off at the runtime limit on the synthetic samples. Each sample, where the threshold was
exceeded, the computation time was set to 1,000,000 ms for Table 4.5. Given this data,
we can conclude that the Boolean approach is superior to the other methods, while HST
preforms poorly on both example sets.

The scatter plots in Figure 4.14 and Figure 4.15 show the direct comparison of two
methods. For instance, in Figure 4.14a we see the runtimes of BHS-Tree and ATMS on the
10www.ist.tugraz.at/modremas/index.html
11http://modiaforted.ist.tugraz.at/
12The FMEAs contain the additional FMEA characterizing failures of a wind turbine’s main bearings.

80 Chapter 4 Solving Bipartite Diagnosis Problems

www.ist.tugraz.at/modremas/index.html
http://modiaforted.ist.tugraz.at/

0.1

1

10

100

1000

10000

100000

1000000

10000000

100000000

cu
m

ul
at

iv
e r

un
tim

es
 [

10
y

m
s]

number of samples solved

ATMS BHS-Tree Boolean HS-DAG HST

(a) Artificial benchmark.

0.1

1

10

100

1000

10000

100000

1000000

10000000

100000000

cu
m

ul
at

iv
e r

un
tim

es
 [

10
y

m
s]

number of samples solved

ATMS BHS-Tree Boolean HS-DAG HST

(b) FMEA benchmark.

Figure 4.13: Number of samples solved for growing cumulative log runtime.

Table 4.5: Runtime results for the first evaluation [in ms].

ATMS BHS-Tree Boolean HS-DAG HST

A
rt

ifi
ci

al
Ex

am
pl

es

MIN 0.05 0.01 0.04 0.14 0.11
MAX 1,000,000.00 1,000,000.00 1,000,000.00 1,000,000.00 1,000,000.00
AVG 137,811.50 120,449.55 56,706.66 76,346.56 353,186.84
MED 27.14 1.17 0.89 1.11 5.92
SD 341,574.88 321,321.98 180,694.54 351,245.37 2,376,405.32

FM
EA

Ex
am

pl
es

MIN < 0.01 0.01 0.04 0.14 0.09
MAX 163.81 67.45 11.12 23.60 3,652,150.40
AVG 3.24 1.42 0.49 1.12 5,212.47
MED 0.30 0.27 0.18 0.46 0.95
SD 15.24 6.00 1.30 2.61 83,340.27

artificial diagnosis problems. Each data point represents one PHCAP computation, where the
x-axis value is determined by the runtime of the ATMS, while the y-axis value depends on
BHS-Tree’s execution time. A point located above the diagonal indicates that ATMS computed
the solution faster for this particular diagnosis problem and a point below symbolizes a
superiority of BHS-Tree on the example. For the artificial benchmarks, we can further note a
dashed line, indicating the runtime limit of 1,000,000 ms. Each point on the dashed line,
hence, represents an execution terminated at the runtime threshold. From the scatter plots
we deduce that HS-DAG and Boolean observe a similar runtime behavior, indicated by most
data points located closely around the diagonal on both sample sets. However, the Boolean
method is clearly more efficient. Overall, we discover in the scatter plots that for most
comparisons the shape of the data cloud is similar on the FMEA and the artificial examples.
An exception is the ATMS, which improves on the FMEA samples. Comparing Figure 4.14a
to Figure 4.15a, we notice that on the artificially generated samples ATMS can outperform
BHS-Tree only on a few executions. However, this changes on the FMEA diagnosis problems,
where the bulk of examples is located above the diagonal in the lower left quadrant or
around the diagonal.

Comparing the absolute performance of all algorithms, we observe that the Boolean
approach is superior to the other methods. This is due to the efficient strategy for exploring
the search space. However, HS-DAG and BHS-Tree also show good runtime results on both
sample sets. For the ATMS we can see that while on the simple FMEA benchmarks, the
approach is on median acceptable, it is especially slow on the artificial examples, which
feature a larger number of hypotheses that have to be considered during the label updates.
Also HST could not provide convincing performance results, even though proposed as an
optimization of HS-DAG.

4.3 Abductive Diagnosis by Hitting Set Computation 81

0.01

1

100

10000

1000000

0.01 1 100 10000 1000000

BH
S-
Tr
ee

ATMS

(a)

0.01

1

100

10000

1000000

0.01 1 100 10000 1000000

BH
S-
Tr
ee

Boolean

(b)

0.01

1

100

10000

1000000

0.01 1 100 10000 1000000

BH
S-
Tr
ee

HS-DAG

(c)

0.01

1

100

10000

1000000

0.01 1 100 10000 1000000

BH
S-
Tr
ee

HST

(d)

0.01

1

100

10000

1000000

0.01 1 100 10000 1000000

H
S-
D
AG

Boolean

(e)

0.01

1

100

10000

1000000

0.01 1 100 10000 1000000

H
S-
D
AG

HST

(f)

Figure 4.14: Scatter plots comparing the penalized log runtimes on the artificial examples.

0.00001

0.1

1000

10000000

0.00001 0.1 1000 10000000

BH
S-
Tr
ee

ATMS

(a)

0.00001

0.1

1000

10000000

0.00001 0.1 1000 10000000

BH
S-
Tr
ee

Boolean

(b)

0.00001

0.1

1000

10000000

0.00001 0.1 1000 10000000

BH
S-
Tr
ee

HS-DAG

(c)

0.00001

0.1

1000

10000000

0.00001 0.1 1000 10000000

BH
S-
Tr
ee

HST

(d)

0.00001

0.1

1000

10000000

0.00001 0.1 1000 10000000

H
S-
D
AG

Boolean

(e)

0.00001

0.1

1000

10000000

0.00001 0.1 1000 10000000

H
S-
D
AG

HST

(f)

Figure 4.15: Scatter plots comparing the log runtimes on the FMEA examples.

Computing Abductive Diagnoses On The Fly

While the first evaluation conveys the efficiency of the Boolean approach in comparison
to the other techniques investigated, the method comes with a disadvantage: all conflicts,
i.e., observations, have to be known in advanced. Yet the solutions to a diagnosis problem
can be refined, by supplying discriminating observation to the diagnosis engine. Hence in a
real world context, the Boolean approach is unfavourable as each additional information
would result in a restart of the entire computation. Therefore, we introduce a another
algorithm used in the GDE by de Kleer and Williams [DKW87] and is also known as Berge’s
algorithm [Ber89].

82 Chapter 4 Solving Bipartite Diagnosis Problems

GDE’s or Berge’s algorithm uses an intuitive notion to compute hitting sets [DKW87;
Nyb11]. By definition a hitting set intersected with any set of CS is not empty, i.e., each
set of CS has to contribute to each hitting set. In Berge’s algorithm the minimal hitting
sets are constructed and modified incrementally. Initially, the set of minimal hitting sets
MHS is empty. Whenever a new C ∈ CS is to consider, each Hi ∈ MHS is checked whether
C ∩Hi = ∅. In case it is not, i.e., Hi already hits C, Hi remains unchanged, otherwise it
is removed from MHS and for each c ∈ C a new set is created containing Hi and c. By
checking whether subsets are present within MHS the algorithm ensures to derive minimal
hitting sets.

Algorithm 4.7: BERGE’S ALGORITHM [Nyb11]

Require: CS: a set of sets
Ensure: MHS: set containing all minimal hitting sets of CS

1: MHS← ∅
2: for all C ∈ CS do
3: MHSold ← MHS
4: MHSadd ← ∅
5: for all Hi ∈ MHS do
6: if Hi ∩ C = ∅ then
7: MHSold ← MHSold \Hi

8: for all c ∈ C do
9: Hnew ← Hi ∪ {c}

10: for all Hk ∈ MHS, Hk 6= Hi do
11: if Hk ⊆ Hnew then
12: goto L1
13: end if
14: end for
15: MHSadd ← MHSadd ∪ {Hnew}
16: L1
17: end for
18: end if
19: end for
20: MHS← MHSold ∪MHSadd

21: end for
22: return MHS

Example 4.8

We consider the same set CS = {{a, b}, {c, d}, {b, c}, {d}} as in Subsection 4.3.1. Assume
that the algorithm has already processed the sets {a, b}, {c, d}, {b, c}. Hence, MHS currently
consists of {a, c}, {b, c}, {b, d}. We start in Line 2, where the new conflict to consider from
CS is {d}.

In Line 5, the first Hi from MHS is {a, c}; {a, c}∩{d} = ∅ hence the if-branch is executed
and MHSold then comprises {b, c}, {b, d}. In Line 9 the new hitting set Hnew is built as
{a, c} ∪ {d}. Since there is no hitting set in MHS \ {a, c} which is a subset of {a, c, d} it is
added to MHSadd.

Back in Line 5, the next hitting set {b, c} is considered, which leads to Hnew = {b, c, d}.
Yet, since there is a subset of Hnew already contained in MHS ({b, d} ⊆ {b, c, d}) the
condition in Line 11 evaluates to true, hence the execution jumps to label L1. The last set

4.3 Abductive Diagnosis by Hitting Set Computation 83

of MHS to check is {b, d}. Since {b, d} ∩ {d} 6= ∅ and all sets in MHS have been checked,
in Line 20 MHS is constructed as MHS = {{b, d}, {a, c, d}}. As all sets in CS have been
processed MHS is returned.

In the second evaluation, we replace the Boolean approach implementation of PyMBD
with a Java version of Berge’s algorithm. Further, the second evaluation focuses on artificial
examples. We obtained new synthetic samples with different numbers of hypotheses, effects,
and connections. A total of 195 samples were created with a varying number of hypotheses
(12 ≤ |Hyp| ≤ 3120), effects (1 ≤ |{A \ Hyp}| ≤ 5000), clauses (12 ≤ |Th| ≤ 5100), and
observations (1 ≤ |Obs| ≤ 30).

Table 4.6: Runtime results for the second evaluation [in ms].

ATMS Berge BHS-Tree HS-DAG HST

A
rt

ifi
ci

al
Ex

am
pl

es

MIN 0.22 0.03 0.06 0.20 0.13
MAX 5,444.11 375.85 435.96 371.37 592,876.17
AVG 69.05 10.15 10.92 6.12 5,570.71
MED 1.83 0.51 0.51 0.88 0.95
SD 520.54 44.14 49.10 35.41 56,273.79

From Table 4.6 and Figure 4.16 we conclude that in contrast to the first evaluation there
is no clearly superior algorithm. In comparison, HS-DAG positions itself as the most efficient
approach on average, while BHS-Tree and Berge provide good runtime results on median.
From Figure 4.17b, we conclude that Berge and BHS-Tree have a very similar runtime
behavior indicated by the data points accumulating on the diagonal. Overall the results are
in line with the one’s we have seen in the previous evaluation, with the additional results on
Berge which provides good results on the test set.

4.4 Conclusion
In this chapter, we have focused on the computation of abductive diagnosis for prob-

lem descriptions stemming from FMEAs. The first investigation deals with conflict driven
techniques to derive diagnoses, i.e., proof-tree style abduction. Here, we augment the
theory with the negated observation and obtain explanations as refutations of the resulting
formula. We reviewed four different algorithms to compute abductive explanations for a
propositional diagnosis problem. We compared the direct strategy based on an ATMS to
three approaches relying on conflict computation of an unsatisfiable model. The first two
methods are based on computing conflict sets in the context of infeasibility analysis, i.e.,
MUSes. These unsatisfiable cores constitute the minimal abductive explanations. Since the
computation of MUSes is computationally demanding we proposed two set-ups. In the direct
version, we utilize an MUS enumeration tool, while in the indirect variant we exploit its
hitting set dual, MCSes, in order to derive minimal diagnoses. The last method utilizes
HS-DAG in combination with a theorem prover to derive refutations on demand, which in
our case constitute the explanations.

In our tests, the conflict-based methods did not offer advantages against the ATMS. The
SAT-based approaches have the drawback of not being focused on the set of abducibles, but
rather enumerate all sets regardless of the clause corresponds to a hypothesis or not. Further,
we could observe that in fact MCS enumeration and subsequent hitting set computation is
preferable to the direct MUS approach. Surprisingly, HS-DAG did not perform well even on
the smaller examples. We explain this, by the encoding of the problem, which has not been

84 Chapter 4 Solving Bipartite Diagnosis Problems

0.1

1

10

100

1000

10000

100000

1000000

cu
m

ul
at

iv
e

ru
nt

im
es

 [
10

y
m

s]

number of samples solved

ATMS Berge BHS-Tree HS-DAG HST

Figure 4.16: Cumulative runtimes on the second artificial benchmark.

0.01

1

100

10000

1000000

0.01 1 100 10000 1000000

BH
S-
Tr
ee

ATMS

(a)

0.01

1

100

10000

1000000

0.01 1 100 10000 1000000

BH
S-
Tr
ee

Berge

(b)

0.01

1

100

10000

1000000

0.01 1 100 10000 1000000

BH
S-
Tr
ee

HS-DAG

(c)

0.01

1

100

10000

1000000

0.01 1 100 10000 1000000

Be
rg
e

HS-DAG

(d)

0.01

1

100

10000

1000000

0.01 1 100 10000 1000000

H
ST

Berge

(e)

0.01

1

100

10000

1000000

0.01 1 100 10000 1000000

H
ST

ATMS

(f)

Figure 4.17: Scatter plots comparing the log runtimes on the second set of artificial examples.

ideal for utilized theorem prover. Despite the fact that the data provided no evidence of a
computational benefit in employing a SAT-based approach, we believe that the possibility to
utilize more expressive models provides an interesting incentive.

Based on the structural characteristics of the models, we examine Thus, we can take
advantage of the simplicity of the FMEA models, i.e., they contain bijunctive definite Horn
clauses where a single assumption implies a single effect, when computing explanations.
In particular, we exploit the notion of the simple set-covering problem, which can be
reframed as a hitting set problem. We discussed Greiner et al.’s HS-DAG [Gre+89], Wotawa’s
HST [Wot01] and BHS-Tree as well as the Boolean algorithm [LJ03]. In the first empirical
experiments we could see a clear superiority of the Boolean approach, which has also been
discovered in the comparison conducted by Pill, Quaritisch, and Wotawa [Pil+11], where
for the consistency-based case the Boolean method was the most efficient contender on
unrestricted searches. Further, we could see in our evaluation similar to theirs that HS-DAG
operates well in case of large conflict sets, i.e., in our case a large number of observations.

4.4 Conclusion 85

Unfortunately, the Boolean algorithm requires that in order to compute all hitting sets
all conflicts characterizing the problem have to be known in advance. Considering the
process we have depicted in the previous chapter, troubleshooting benefits from additional
observations in order to refine the diagnosis results meaning the set of observations to
consider can adapt on the fly. Thus, in the second evaluation we have replaced the Boolean
approach with Berge’s algorithm that given a set of hitting sets and a new—not necessarily
minimal—conflict derives an updated set of minimal hitting sets. Our evaluation could not
confirm the results of Pill, Quaritisch, and Wotawa [Pil+11] that Berge’s algorithm is on
several samples on par with the Boolean approach. In particular, we could see that while
Berge’s algorithm performed similar to BHS-Tree, the HS-DAG has shown most promising
on our sample set. Especially from the scatter plots of the artificial sample set, we observe
that Berge/BHS-Tree provide superior runtime results on different samples than HS-DAG
indicating that certain instances are "simpler" to Berge/BHS-Tree than HS-DAG and vice
versa.

86 Chapter 4 Solving Bipartite Diagnosis Problems

5Faster Horn Diagnosis -
Finding Explanations in Horn
Clause Abduction

„There should be no combination of events for which the wit of
man cannot conceive an explanation.

— Sir Arthur Conan Doyle
"The Valley of Fear". 1915

The content of this chapter has not been published yet.

5.1 Motivation
While in the previous chapter, we have focused on the simple models obtained from FMEAs,

we want to direct our attention to a more general case, i.e., Horn clauses. Traditionally,
abductive model-based diagnosis exploits a representation of the faulty system behavior that
can often be straightforwardly phrased in Horn clause theories [CT91]. A formalization
using this subset of logic has the advantage that diagnosis is computationally less complex
than on general theories [EG95].

Example 5.1

In the following example, we describe a simple diagnosis problem taken from the in-
dustrial wind turbine domain. Gearbox lubrication is an essential aspect in regard to
the reliability of wind turbines as it protects the contact surfaces of gears and bearings
from excessive wear and prevents overheating. In a simplified scenario, the insuffi-
cient lubrication can be caused by various component failures. On the one hand, a
broken oil pump leads to reduced oil pressure. This decreased pressure diminishes
the flow rate of oil through the system. On the other hand, damages to the oil cooler
eventually cause an overheating of the oil, which in conjunction with a blocked oil
filter also negatively affects the lubrication resulting from a reduction in the film thick-
ness at bearing and gear contacts. These relations can be described by a set of Horn
clauses HC = {Damaged_pump→ reduced_pressure, reduced_pressure→ poor_lubrication,
Broken_filter∧overheating→ poor_lubrication,Cooler_leaks∧Cooler_cracks→ overheating}.
Given the interactions between component faults and their consequences, we can identify
two root causes of insufficient lubrication: (1) a damaged oil pump and (2) a broken filter
in conjunction with cracks and leaks of the oil cooling component. These causes constitute
the faults we want to identify during diagnosis. In the remainder of this paper, we make
use of this running example to illustrate the different abductive reasoning approaches.

As abductive inference can be applied to different tasks, various techniques for solving
logic-based abduction problems have emerged. We have seen the strategy of deriving expla-
nations as the search for logical consequences, i.e., diagnoses are derived deductively. For

87

instance, we have discussed kernel resolution [SDV01] that restricts the computed conse-
quences to clauses of interest. This technique can be implemented efficiently with ZBDDs and
performs well on large problem instances. Inoue [Ino92] proposes Skipping Ordered Linear
tableau calculus (SOL-tableau calculus) for extracting consequences of interest equivalent to
abductive explanations. Another classical technique regarding abduction is Abductive Logic
Programming (ALP) [Kak+92] which has been introduced as a means to declaratively solve
abduction problems within the framework of logic programming. Logic programming is
augmented with abducible predicates, i.e., ground instances that may be part of a diagnosis,
and integrity constraints posing restrictions on what constitutes an admissible solution.
Besides specific tools such as the A-System [Kak+01], ALP can be realized using Answer Set
Programming (ASP) [Sch16]. In the previous section, we have seen proof-tree completion-
style abduction. Here the diagnosis problem is rewritten in an entailment preserving way,
such that explanations are equivalent to conflicts [McI98]. Using this notion of abduction,
innovations in extracting MUSes of logical formulae, which are equivalent to conflicts, can
be exploited to obtain abductive diagnoses [Lif+16]. Recently, inspired by the success of
implicit hitting set algorithms1 for MaxSAT, Saikko, Wallner, and Järvisalo [Sai+16] have
introduced a method that computes one minimum-cost abductive explanation by utilizing
Integer Programming to iteratively derive hitting sets. Each hitting set is then checked
whether it constitutes a solution. Ignatiev, Morgado, and Marques-Silva [Ign+16] report on
an improvement of this method by deriving the hitting sets using a MaxSAT solver.

Yet contemplating the collection of approaches and tools for abduction, the question, which
strategy to follow, remains. An analysis seeking to answer this question for consistency-
based diagnosis algorithms exists [Nic+13]. The authors compare two strategies to derive
diagnoses: on the one hand methods that directly compute the solutions given the system
description and symptoms and on the other hand conflict-based techniques that exploit
contradictions arising from correct behavior assumptions and the observations. Another study
aiming at comparing different fault identification techniques by Feldman et al. [Fel+10a]
introduces a benchmark framework for executing diagnosis methods for physical systems
under identical conditions. The performance evaluation presented includes rule-based,
(consistency) model-based, data driven, and stochastic fault detection and identification
approaches.

While there is research comparing the consensus among different abduction formaliza-
tions [McI98], assessing an emerging tool’s performance in regard to previously proposed
mechanisms [Sai+16; Egl+00], or applying a reasoning system to different domains [NM92],
a broader empirical evaluation as available in the consistency-based case is—to the best
of our knowledge—missing for abductive Horn diagnosis. For instance, McIlraith [McI98]
reviews different formal characterizations, frameworks, techniques, and application areas
for abductive inference. While the comparison is broad and extensive, it is only theoretic in
nature. Egly et al. [Egl+00] describe a translation of different non-monotonic reasoning
tasks, such as abduction, into the evaluation problem of quantified boolean formulas and
compare an implementation of their method to non-monotonic reasoning solvers, such as
dlv [Eit+98] or Theorist [Poo+87], on multiple benchmark problems. The focus of this work
is to show whether non-monotonic reasoning tasks can be solved efficiently by translation to
quantified boolean formulas; hence, only a portion of the assessment concerns abduction. A
similar undertaking can be reported in the context of consequence finding, where Simon
and del Val [SDV01] examine the capabilities of kernel resolution on structured and random
instances for prime implicate, knowledge compilation, abduction, and consistency-based
diagnosis. Ng and Mooney [NM92] have conducted an empirical analysis comparing the

1Implicit hitting set algorithms iteratively exclude answers that are not solutions based on hitting sets over these
non-solutions.

88 Chapter 5 Faster Horn Diagnosis - Finding Explanations in Horn Clause Abduction

general abduction system ACCEL to a set of problems in plan recognition as well as consis-
tency model-based and set-covering diagnosis. While the authors could show that a general
solver can derive explanations within the two application domains in reasonable time, their
experiments consider solely a single tool.

Hence in this chapter, we aim at providing guidance for deciding on an abduction proce-
dure focusing on propositional Horn theories. Our work is based on the previous chapter’s
research, in which we have assessed abductive inference on models restricted to bijunctive
Horn clauses. Besides adapting and extending the portfolio of algorithms investigated, we
further consider more expressive Horn representations in this chapter. In particular, we com-
pare the performance of propositional Horn clause abduction within two general directions,
i.e., direct and conflict-driven techniques, similar to the work by Nica et al. [Nic+13] in
the consistency-based case. The direct abduction methods include the ATMS and a tool for
consequence finding, while for the proof-tree style abduction methods we improve upon
two techniques we have already seen in the previous chapter and utilize an encoding of
abductive reasoning to exploit an ASP solver. The improvements were applied on the one
hand to the refutation search with the HS-DAG, were we employ a minimization technique
to keep the graph small and on the other hand to the direct MUS computation that we have
now framed in an assumption-based manner to fit our goal of deriving abductive expla-
nations. To identify runtime trends, we conducted an empirical evaluation in Section 5.3
based on publicly available tools, implementations of various traditional abductive reasoning
algorithms, and adaptations of recent and proven techniques. The diagnosis problems
utilized within our analysis are taken on the one hand from real-world domains and on
the other hand are artificially created similar to practical fault identification scenarios. One
of our goals is to discover whether a certain approach is dominant on these reasonable
samples. Besides seeking information on efficiency differences between direct proof and
conflict-driven algorithms, we aim at showing to what extend more general off-the-shelf
tools can compete with specific Horn reasoning methods.

5.2 Selected Diagnosis Algorithms

In this section, we describe our selected procedures comprising direct reasoning methods
and conflict-driven approaches. Direct proof procedures derive explanations via logical
consequences, while conflict-driven techniques generate refutations essentially constituting
abductive diagnoses. On the one hand, we have chosen methods, such as the ATMS,
consequence finding with linear resolution, and conflict driven search via the HS-DAG,
which have been applied frequently in consistency-based diagnosis and abduction. On the
other hand, we want to contrast those well-known techniques to more recent mechanisms.
Particularly, we take advantage of ASP as well as developments in infeasibility analysis.

All in all we present five general abduction methods as well as novel adaptations of some
of the techniques aiming at improving efficiency. For each algorithm an overview of its
functionality and how to use it in the context of abductive model-based diagnosis is provided.
Note here that depending on the utilized implementations and tools the encoding may differ
from the one we propose. The first two set-ups, i.e., the ATMS and abduction via consequence
finding, can be attributed to the direct proof methods, while the remaining techniques all
derive explanations through refutations. Since we intend to assess the performance off-the-
shelf reasoning engines can achieve, we propose two publicly available tools that can be
used for abductive diagnosis.

5.2 Selected Diagnosis Algorithms 89

5.2.1 Abduction with the ATMS
We have already discussed the workings of the ATMS in Section 2.3.1. Here, we just want

to show again the operation of the ATMS on the chapter’s running example.

Example 5.1 (cont.)

Figure 5.1 depicts the And-or-graph internally constructed by the ATMS based on the first
three clauses mentioned in the theory, where the label Λ is shown in red underneath each
node’s name. The label of the node overheating is empty because there is no knowledge
available regarding its truth state, while for the remaining nodes the label values are
determined by themselves and their antecedent nodes. Figure 5.2 shows the graph after
the information of the last Horn clause is propagated through the data structure. The
label of the node corresponding to the observation contains the parsimonious abductive
diagnoses, Λ(poor_lubrication) = ∆-Set.

Damaged_pump
{{Damaged_pump}}

reduced_pressure
{{Damaged_pump}}

poor_lubrication
{{Damaged_pump}}

Broken_filter
{{Broken_filter}}

overheating
{}

Figure 5.1: And-or-graph considering the first three clauses of Th.

Damaged_pump
{{Damaged_pump}}

reduced_pressure
{{Damaged_pump}}

poor_lubrication
{{Damaged_pump},
{Broken_filter ,
Cooler_cracks,
Cooler_leaks}}

Broken_filter
{{Broken_filter}}

Cooler_leaks
{{Cooler_leaks}}

Cooler_cracks
{{Cooler_cracks}}

overheating
{{Cooler_cracks,

Cooler_leaks}}

Figure 5.2: And-or-graph after propagating all Horn clauses of Th.

5.2.2 Abduction as Consequence Finding via
SOL-resolution

Consequence finding provides a general framework for solving a variety of reasoning
problems by obtaining logical consequences from a knowledge base given a production
field [Mar00]. Recall a production field P〈LP ,Cond〉 restricts the generated clauses to
a subset of the representation language that is of interest in the given context. These
limitations can be enforced upon the form of literals found in the derived consequences
(LP), e.g., only containing abducibles, and on general conditions of the solution (Cond),
e.g., consequences with a cardinality of 1 [Ino92].

Inoue has shown a procedural interpretation of ATMS abduction based on Skipping
Ordered Linear Resolution (SOL-resolution) [Ino91] and has mechanized consequence
finding via SOL-tableau calculus for first-order theories [Ino92]. SOL-resolution is an
extension of linear resolution with ordered clauses augmented with an additional skip

90 Chapter 5 Faster Horn Diagnosis - Finding Explanations in Horn Clause Abduction

rule allowing to bypass literals belonging to P instead of resolving them. It is sound and
complete in regard to deriving consequences, which are also referred to as characteristic
clauses. Characteristic clauses fulfill the requirements of the production field and are minimal
with respect to subsumption.

Algorithm 5.1: SKIPPING ORDERED LINEAR DEDUCTION (SOL-DEDUCTION) [Ino91]

Given a production field P , an SOL-deduction of a clause S from a theory Th∪ Top, where
Top is the top clause of the deduction, is a sequence of structured clauses D0 . . . Dn. A
structured clause is a pair 〈P,Q〉 consisting of a clause P and an ordered clause Q. Q
may contain framed literals, which are literals already resolved upon. Structured clauses
are generated iteratively starting with D0 = 〈∅,Top〉 and ending with Dn = 〈S, ∅〉. Each
proceeding clause Di+1 = 〈Pi+1, Qi+1〉 is constructed from Di = 〈Pi, Qi〉 by the following
rules [Ino91]:

a. Let l be the left most literal of Qi:

i. (skip) If Pi ∪ l belongs to P, then l is skipped, i.e., Pi+1 = Pi ∪ l and Qi+1 is
the ordered clause obtained by removing l from Qi .

ii. (resolve) If there is a clause Bi in Th such that l can be resolved with literal
k ∈ Bi, then Bi and Qi are concatenated in Qi+1, such that k is removed and
l is framed.

b. (reduce) Delete any unframed literal k in Qi+1 for which there exists a framed literal
¬k. Further, merge right any identical literals in Qi+1.

c. (truncation) Every framed literal not preceded by an unframed literal is deleted
from Qi+1.

Skip and Resolve are not exclusive operations. In addition, Pi ∪Qi may not be a tautology
and may not be subsumed by any Pj ∪ Qj , where 〈Pj , Qj〉 is a previously constructed
structured clause.

Abduction is a significant application of consequence finding. Recall that we can rewrite
the relation of diagnoses, theory, and observations so that a diagnosis is a logical consequence.
In this case, the negation of an explanation can be seen as an interesting theorem which is
obtained as the characteristic clause from the theory and the negation of the observation to be
explained. Algorithm CONSQXPLAIN describes a procedure to compute abductive diagnoses
for a PHCAP under consequence finding semantics assuming a method for enumerating
consequences, such as SOL-resolution, is available. To extract explanations the background
theory is enriched with the negation of the symptoms to be explained, i.e., the clause∨
oi∈Obs ¬oi is added as a top clause. Further, only clauses consisting of abducibles are of

interest; thus, the production field comprises the negated hypotheses, i.e., ∀h ∈ Hyp : ¬h ∈
LP . As no other conditions should be imposed upon the generated characteristic clauses,
we do not define Cond. Using a consequence finding enumeration procedure (EnumConsq),
all characteristic clauses solely consisting of negated hypothesis propositions are obtained.
Lastly, the hypotheses need to be transformed to their positive counterpart to be equivalent
to the abductive diagnoses2.

2It is important to note here, that in contrast our Definition 2.22 assumes a consequence consists of the positive
assumptions and not their negations. Thus, Definition 2.22 already implicitly assumes a transformation from
the consequences to their positive equivalents.

5.2 Selected Diagnosis Algorithms 91

Algorithm 5.2: CONSQXPLAIN

Require: A: the set of propositional variables, Hyp: the set of hypotheses, Th: the Horn
theory, Obs: the set of observations

Ensure: ∆-Set: set of minimal diagnoses
1: ∆-Set← ∅
2: Top←

∨
o∈Obs ¬o . Top clause consisting of negated observations

3: P ← 〈
⋃
h∈Hyp ¬h〉 . Specification of the production field

4: CC ← EnumConsq(P,Th,Top) . Characteristic clause enumeration
5: for C ∈ CC do
6: ∆-Set← ∆-Set ∪

⋃
¬h∈C h . Transformation of hypothesis propositions to their

positive equivalent
7: end for
8: return ∆-Set

Example 5.1 (cont.)

Considering our lubrication example from the previous section, we can reformulate the
abduction problem for consequence finding. For clarity, we repeat the theory’s Horn
clauses this time as disjunctions:

Th =

(1) ¬Damaged_pump∨ reduced_pressure,
(2) ¬reduced_pressure∨ poor_lubrication,

(3) ¬Broken_filter∨¬overheating∨ poor_lubrication,
(4) ¬Cooler_leaks∨¬Cooler_cracks∨ overheating

 .

The top clause contains the negation of the observations, i.e., Top = ¬poor_lubrication,
and the production field comprises the negations of the abducible hypotheses, i.e.,
P = 〈{¬Damaged_pump,¬Broken_filter,¬Cooler_leaks,¬Cooler_cracks}〉. We can derive
the characteristic clause ¬Damaged_pump from Th ∪ Top and P by SOL-deduction as
follows:

1. 〈∅, 〈¬poor_lubrication〉〉 top clause

2. 〈∅, 〈¬reduced_pressure, ¬poor_lubrication 〉〉 resolve ¬poor_lubrication

with (2)

3. 〈∅, 〈¬Damaged_pump, ¬reduced_pressure , ¬poor_lubrication 〉〉 resolve ¬reduced_pressure

with (1)

4. 〈¬Damaged_pump, ∅〉 skip ¬Damaged_pump
and truncation of
¬reduced_pressure and
¬poor_lubrication

Given Definition 2.22 and 2.23 of a consequence and a consequence-finding diagnosis,
Damaged_pump constitutes a minimal solution. Similarly, the second explanation can be
obtained.

While SOL-resolution was proposed in a chain format similar to model-elimination, another
technique developed uses a framework of connection tableau calculus [Nab+10]. This
method bears advantages such as allowing to retain already solved parts. A tableau T is a

92 Chapter 5 Faster Horn Diagnosis - Finding Explanations in Horn Clause Abduction

labeled ordered tree, where every node except the root node is labeled by a literal. Leaf
nodes can further be marked as closed or skipped. If all leafs are marked, a tableau is
considered solved. A selection function is used for assigning a subgoal to every unsolved
tableau based on its unmarked leafs. SOL-resolution in this framework consists of a sequence
of tableaux, where each tableau Ti+1 is constructed from Ti by first selecting a subgoal to
pursuit and then applying a set of inference rules (skip, extension, factoring, and reduction).
These rules are based on the inference rules for SOL-resolution described above. To derive
all consequences a procedure has to visit all nodes in a SOL-search tree, which explicitly
expresses all possible SOL-deductions, and enumerate the consequences of each tableau.

Example 5.1 (cont.)

Considering Example 5.1. We show how to derive the diagnosis Damaged_pump based
on tableau calculus. First, the top clause is added below the root node (Figure 5.3).
Since the only leaf ¬poor_lubrication is unmarked, it represents the only possible sub-
goal. Given the leaf and clause (2) we can resolve, i.e., extend the tableau with
¬reduced_pressure∨ poor_lubrication (Figure 5.4). Since ¬poor_lubrication was resolved
with poor_lubrication, we mark the corresponding node closed. The only new subgoal is
¬reduced_pressure and again we extend the tableau this time with clause (1). The remain-
ing subgoal is ¬Damaged_pump which belongs to P; thus, the node is marked as skipped
and since all leafs are marked the tableau in Figure 5.5 is solved. The derived charac-
teristic clause is ¬Damaged_pump, which correspond to the diagnosis Damaged_pump.

¬poor_lubrication

Figure 5.3: Depth 1.

¬poor_lubrication

¬reduced_pressure poor_lubrication
closed

Figure 5.4: Depth 2.

¬poor_lubrication

¬reduced_pressure poor_lubrication
closed

¬Damaged_pump
skipped

reduced_pressure
closed

Figure 5.5: Depth 3.

5.2.3 Conflict-Driven Search via HS-DAG
In consistency-based diagnosis, root causes are identified by detecting conflicts, which

are essentially assumptions contradicting the encountered manifestations. Within the
consistency-based framework, contradictions and diagnoses exhibit a hitting set relation,
i.e., by determining all conflicts and subsequently computing their minimal hitting sets all
parsimonious diagnoses can be extracted [Rei87; DKW87].

Reiter [Rei87] proposes an approach to derive parsimonious consistency-based diagnoses
from conflicts by maintaining a tree structure and exploiting a theorem prover to infer
refutations on demand. Some inadequacies of the original algorithm in regard to non-
minimal conflict sets were corrected by Greiner et al. [Gre+89] and they devised the method
HS-DAG which we described in Subsection 4.3.1. As we have seen in previously to utilize the

5.2 Selected Diagnosis Algorithms 93

conflict-driven search via HS-DAG for abductive diagnosis, a theorem prover TP is required
to extract refutations during the construction of the graph. As stated by Reiter, the algorithm
is relatively independent of the underlying logic and prover; thus, special purpose theorem
provers can be utilized to complement the diagnosis domain. Since we are focusing on
Horn theories, LTUR [Min88] is a suitable candidate. Algorithm HS-DAGXPLAIN3 describes
a simplified version of the basic approach of HS-DAG and how to exploit it for abductive
diagnosis. Within the proof tree type-abduction we are proposing, we need to create a
contradicting theory and supply it to the theorem prover. The conflict search and diagnosis
computation starts with a root node. The root has an empty edge label and represents
at this stage the last level of the graph, i.e., lastlevelnodes. As long as there are open
nodes to process in the last level, nodes are used for deriving new conflicts or minimal
hitting set. To determine whether a node is a minimal hitting set, a consistency check is
necessary assuming all hypotheses except the ones in the edge label of the current node
are true. We use the method checkConsistency(T, F), where T as well as F is a set of
assumptions. checkConsistency propagates the value true (false) for all assumptions in T
(F) and subsequently returns the contradicting assumptions or the empty set in case the
theorem prover is consistent. In case it is consistent, the current node is a minimal hitting
set and marked X. Otherwise, the conflict computed by TP is added to the set of conflicts CS.
For each element in the conflict a new node is created with a new edge label consisting of
the conflict element and the parent’s edge label. The newly created nodes are added to the
lastlevelnodes to be considered in the computation. Once the entire graph has been processed,
i.e., there are no more open nodes, all conflicts have been computed. Subsequently, they
have to be tested for consistency with the original theory using TP to ensure consistent
explanations. Note here that the diagnoses returned may not be parsimonious depending on
the theorem prover.

Algorithm 5.3: HS-DAGXPLAIN (based on [Gre+89])

Require: A: the set of propositional variables, Hyp: the set of hypotheses, Th: the Horn
theory, Obs: the set of observations

Ensure: ∆-Set: set of diagnoses
CS← ∅
∆-Set← ∅
TP← Th ∧ (

∧
o∈Obs o→ ⊥) . Create contradictions

root← new Node(∅) . New root node with an empty edge label
lastlevelnodes←< root >
while lastlevelnodes 6= ∅ do . Process last level

newnodes← ∅
for all n ∈ lastlevelnodes do
CO ← checkConsistency(Hyp \ h(n), h(n)) . Check consistency and return

contradiction
if CO 6= ∅ then

CS← CS ∪ CO . TP is inconsistent; add the new conflict
for all c ∈ CO do

newnodes← newnodes ∪ new Node(c ∪ h(n)) . Create new node with
new edge label

end for
else

3For simplicity we have not included the pruning enhancements proposed by Greiner et al. [Gre+89] in the
algorithm description even though these refinements may be necessary depending on whether the theorem
prover ensures to generate non-minimal refutations or not. Subsection 4.3.1 contains a more elaborate
description of the algorithm.

94 Chapter 5 Faster Horn Diagnosis - Finding Explanations in Horn Clause Abduction

n.mark ← X . TP is consistent; minimal HS
end if
lastlevelnodes← lastlevelnodes ∪ newnodes

end for
end while
return IGNOREINCONSISTENT(Hyp,Th,CS,∆-Set)

function IGNOREINCONSISTENT(Hyp,Th,CS,∆-Set)
TP← Th . Reinitialize the theorem prover only with the theory
for all CO ∈ CS do

if checkConsistency(CO,Hyp \ CO) = ∅ then
∆-Set← ∆-Set ∪ CO . Add conflict to the diagnoses if Th ∪ CO 6|= ⊥

end if
end for
return ∆-Set

end function

Example 5.1 (cont.)

In this example, we show how abductive diagnoses can be obtained via HS-DAGXPLAIN for
our running example. We can add the negated observation ¬poor_lubrications to the the-
ory. We abbreviate the hypotheses for readability within the DAG, i.e., Damaged_pump ≡
D,Broken_filter ≡ B,Cooler_leaks ≡ L,Cooler_cracks ≡ C. Starting from the root
in Figure 5.6, the first consistency check is performed. Since the edge label of the
root node is empty, i.e., h(root) = ∅, all propositions in Hyp are assumed true, i.e.,
checkConsistency({D,B,C,L}, ∅). This of course leads to a contradiction, and TP re-
turns the first conflict CO1 = D. CO1 is subsequently added to the set CS that records all
refutations derived during computation.

Since the conflict has a cardinality of 1, only one new node n1 is created, such that
its edge label is the union of the root’s edge label and the conflict element, i.e., h(n1) =
∅ ∪ {D}. Again the theorem prover is called with checkConsistency(Hyp \ h(n), h(n))
resulting in a new conflict CO2 = {B,C,L} (see Figure 5.7). For each element in
CO2 a new node is created and the edge label computed accordingly. The consistency
check for all newly created nodes n2 to n4, determines that these are consistent. These
nodes are marked with X and since there are no more nodes to process the compu-
tation is finished. Thus, CS = {{D}, {B,C,L}}. In the last steps of the algorithm, it
is checked whether Th ∪ CO does not lead to a contradiction. Therefore, TP is reini-
tialized with the original theory and each derived conflict is checked for consistency.
Since both conflicts are consistent given the initial theory, both constitute diagnoses.

root

checkConsistency({D,B,C,L}, ∅)= {D} = CO1

Figure 5.6: Initial DAG.

5.2 Selected Diagnosis Algorithms 95

root

n1

h(n1) = {D}
checkConsistency({B,C,L}, {D})= {B,C,L} = CO2

D

Figure 5.7: First level.

root

n1

n2

h(n2) = {D,B}
checkConsistency({C,L}, {D,B})= ∅

X

n3

h(n3) = {D,L}
checkConsistency({B,C}, {D,L}) = ∅

X

n4

h(n4) = {D,C}
checkConsistency({B,L}, {D,C})= ∅

X

D

B

L

C

Figure 5.8: Second level.

As mentioned above, the conflicts returned by the theorem prover may not be parsimonious.
Hence, given a prover that does not guarantee minimal conflicts, the computed explanations
have to be reduced to retrieve parsimonious solutions. We propose two set-ups in this regard:
(1) a simple method, which records the contradictions attained during the search and
afterwards removes all non-minimal conflicts via subset checks. This basically corresponds
to the conflict-driven HSDAGAB we have discussed on the previous chapter. (2) A new
approach, which does not minimize the solutions at the end of the computation, but
reduces each conflict returned by the theorem prover to a parsimonious one immediately.
As a minimization procedure we can exploit, for example, Junker’s [Jun04] QuickXplain.
QuickXplain has been proposed as an efficient method to derive a single minimal preferred
explanation for over-constrained systems based on a divide and conquer strategy. By
recursively partitioning the set of constraints, the algorithm relaxes parts of the formulae
while narrowing down on the set of constraints leading to an inconsistency. While there has
been research suggesting the use of QuickXplain as the theorem prover for HS-DAG [FS10],
our method is different as it derives the conflicts using a special purpose theorem prover and
only exploits QuickXplain as a minimization procedure invoked on the already computed
conflicting assumptions. Since we are considering QuickXplain in the context of diagnosis,
we are not interested in conflicting formulae or constraints but abducibles. Hence, we
propose an assumption-based version of the algorithm, which takes the PHCAP as well as
one conflict CO returned by the theorem prover and extracts the minimal refutation based
on CO.

96 Chapter 5 Faster Horn Diagnosis - Finding Explanations in Horn Clause Abduction

5.2.4 Conflict-Driven Search via Power Set Exploration
Within the context of infeasibility analysis conflicts are known as MUSes or unsatisfiable

cores. Recall from the previous chapter that an MUS is a set of clauses that cannot be satisfied
simultaneously, while every proper subset of an MUS is satisfiable [LS08]. Thus, in our
proof-tree style abductive context, we want to compute contradictions, i.e., MUSes, from an
rewritten inconsistent system representation. In the previous chapter, we have discussed the
MUS enumeration tool MARCO [Lif+16] that extracts conflicts of an unsatisfiable formula
based on the exploration of the power set of clauses. In this framework, the power lattice
corresponds to an infeasibility map, which allows to avoid already investigated regions, and
is encoded as a Boolean formula. The MUSes computation starts with a seed, i.e., a set of
clauses from the map indicating an unexplored section. In case the seed is unsatisfiable, it is
decreased to an MUS. To reduce the seed to a conflict any single-MUS extraction algorithm
can be utilized. The simplest procedure descends the lattice until an MUS is identified, i.e.,
an unsatisfiable set of clauses, whose children are satisfiable. In case the seed is satisfiable,
it is expanded until a maximal set of satisfiable clauses, an MSS, is determined. Again
the simplest method identifies the maximum satisfiable superset by traversing the lattice
upwards. Once an MUS or MSS has been found, clauses are added to the encoding of the
map in order to exclude supersets (subsets) of already found MUSes (MSSes), since given an
unsatisfiable (satisfiable) clause set, all of its supersets (subsets) are unsatisfiable (satisfiable)
as well. Thus, an MUS defines a “low point" in an infeasible region, while an MSS is a “high
point" in a satisfiable region. The process is restarted by determining a new seed given the
map encoding. Once the entire map has been inspected this way, it is ensured that all MUSes
and MSSes have been recovered.

This approach has been applied to axiom pinpointing for lightweight description logics,
where it has been modeled as the enumeration of group-MUSes4 of Horn formulas [Ari+15].
To boost performance, this version favors unsatisfiable seeds by computing maximal models
of the map, i.e., the maximum number of literals is true without violating a clause. This way
MUSes are derived early on and every satisfiable seed is guaranteed to already constitute
an MSS. Therefore, there is no need for an operation traversing the lattice upwards to
identify an MSS. Further as Arif et al. [Ari+15] are dealing with Horn clauses, they utilize
LTUR for satisfiability testing and present an insertion-based MUS extraction procedure
using an incremental LTUR which allows to add clauses one at a time. They have shown
that in the context of Horn formulae based on an incremental implementation of the LTUR
algorithm the insertion-based MUS extraction procedure is a competitive alternative to other
approaches.

To evaluate the traversal of the power set in the context of abductive model-based diagnosis
we have adapted the power set approach. Instead of handling constraint sets or group-
MUS, we use an assumption-based set-up. Thus, the generated conflicts only comprise
our abducible hypotheses as already discussed for HS-DAG. Algorithm XPLORER depicts
our method based on the procedure proposed by Liffiton et al. [Lif+16]. First, to create
a contradicting formula, the theorem prover TP is supplied with the theory and negated
observations. In our assumption-based version, the map holds only Boolean variables
representing elements of Hyp. To bias the procedure towards MUSes, we compute the
maximal model (getMaxModel) of the map for the seed [Ari+15]. This allows us to disregard
a growing method and right away use any satisfiable seed for blocking down within the map.
After computing a seed, TP is called to check the consistency of the seed in consideration
of the theory and negated observations. In case the theorem prover is consistent, an MSS
has been found (due to using a maximal model as seed). To ensure that the satisfiable seed

4Clauses are partitioned into disjoint sets (groups) and MUSes are expressed as sets of groups.

5.2 Selected Diagnosis Algorithms 97

and its subsets are no longer considered in the proceeding computations a blocking clause
has to be added to the map. The method blockDown creates a clause B↓ =

∨
s6∈seed s. In case

TP returns a refutation, an MUS is extracted by applying a shrinking procedure to the seed.
Subsequently, any superset of the MUS are prevented from the computation by applying
a blocking clause to the map, i.e., B↑ =

∨
m∈MUS ¬m via blockUp. As long as the map is

satisfiable, a seed is generated from the map, otherwise all MUSes and MSSes have been
found and the set of abductive diagnoses, i.e., MUSes, is returned.

Algorithm 5.4: XPLORER (based on [Lif+16])

Require: A: the set of propositional variables, Hyp: the set of hypotheses, Th: Horn
theory, Obs: the set of observations

Ensure: ∆-Set: set of minimal diagnoses
TP← Th ∧ (

∧
o∈Obs o→ ⊥) . Creates contradictions

MUSes← ∅
map← BoolFormula(nvars = |Hyp|) . Empty Boolean formula with |Hyp| variables
while true do

if map is satisfiable then
seed← getMaxModel(map) . Bias towards unsatisfiable seeds [Ari+15]
CO← checkConsistency(seed,Hyp \ seed) . Check seed’s consistency
if CO 6= ∅ then . Seed is unsatisfiable

MUS← shrink(seed) . MUS extraction
MUSes← MUS ∪MUSes
map← map ∧ blockUp(MUS) . Blocks MUS and all its all supersets

else . Seed is satisfiable
map← map ∧ blockDown(seed) . Blocks seed and all its subsets

end if
else

∆-Set← MUSes
return ∆-Set

end if
end while

Example 5.1 (cont.)

Consider the running examplea. First, the assumption-based theorem prover is set
up with the theory and negated observations in addition to the construction of the the
Boolean formula representing the map. In Figure 5.9 the initial unexplored power lattice
featuring the variables from Hyp is depicted. Since the empty map is satisfiable, a seed
is generated. In our example, the first seed is {D,B,L,C}, which is underlined within
Figure 5.10.

Using TP we check whether assuming all hypotheses in the seed being true retains
consistency. This is not the case, so the seed is reduced to an MUS, i.e., {D} (framed
within Figure 5.11). Afterwards, the blocking clause ¬D is added to the map and thus
all supersets of D will no longer be considered. Thus, the red portion of the lattice in
Figure 5.11 depicts the already explored portion of the infeasibility map.

The next seed is {B,L,C}, which again is unsatisfiable (see Figure 5.12). When
applying a shrinking function, {B,L,C} proves to already constitute a minimal conflict
and hence, is added to MUSes. Subsequently, blockUp({B,L,C}) is appended to the

98 Chapter 5 Faster Horn Diagnosis - Finding Explanations in Horn Clause Abduction

map blocking {B,L,C} and {D,B,L,C}, which has already been marked as explored
previously.

As shown in Figure 5.13 in the next step a new maximal model is retrieved, i.e., {B,C}.
Since this seed is consistent, it represents an MSS. Hence, a clause blocking downwards
B↓ = (D ∨ L), which marks all subsets of the seed as explored, is added to the map.
This process is repeated until the map is no longer satisfiable (shown in Figure 5.14).
The resulting refutations and thus minimal diagnoses are MUSes = {{D}{B,L,C}}.

{D,B,L,C}.

{D,B,L} {D,B,C} {D,L,C} {B,L,C}

{D,B} {D,L} {D,C} {B,L} {B,C} {L,C}

{D} {B} {L} {C}

∅
map=∅

Figure 5.9: Initial map.

aAgain for readability we abbreviate the hypotheses, i.e., Damaged_pump ≡ D, Broken_filter ≡
B,Cooler_leaks ≡ L,Cooler_cracks ≡ C.

{D,B,L,C}

{D,B,L} {D,B,C} {D,L,C} {B,L,C}

{D,B} {D,L} {D,C} {B,L} {B,C} {L,C}

{D} {B} {L} {C}

∅
map=∅

Figure 5.10: First maximum model seed {D,B,L,C}.

{D,B,L,C}

{D,B,L} {D,B,C} {D,L,C} {B,L,C}

{D,B} {D,L} {D,C} {B,L} {B,C} {L,C}

{D} {B} {L} {C}

∅
map=¬D

Figure 5.11: Shrinking {D,B,L,C} to first the MUS {D} and blocking all supersets of {D}.

5.2 Selected Diagnosis Algorithms 99

{D,B,L,C}

{D,B,L} {D,B,C} {D,L,C} {B,L,C}

{D,B} {D,L} {D,C} {B,L} {B,C} {L,C}

{D} {B} {L} {C}

∅
map=¬D ∧ (¬B ∨ ¬L ∨ ¬C)

Figure 5.12: Second seed/MUS {B,L,C} and blocking all supersets of {B,L,C}.

{D,B,L,C}

{D,B,L} {D,B,C} {D,L,C} {B,L,C}

{D,B} {D,L} {D,C} {B,L} {B,C} {L,C}

{D} {B} {L} {C}

∅
map=¬D ∧ (¬B ∨ ¬L ∨ ¬C) ∧ (D ∨ L)

Figure 5.13: Third seed {B,C} and blocking all subsets of {B,C}.

{D,B,L,C}

{D,B,L} {D,B,C} {D,L,C} {B,L,C}

{D,B} {D,L} {D,C} {B,L} {B,C} {L,C}

{D} {B} {L} {C}

∅
map=¬D ∧ (¬B ∨ ¬L ∨ ¬C) ∧ (D ∨ L) ∧ (D ∨ C) ∧ (D ∨B)

Figure 5.14: Final map.

5.2.5 Abduction under Stable Model Semantics
In ASP solutions to hard search problems are derived based on stable model semantics

of logic programming. Problems are represented declaratively as logic programs, while
their solutions are equivalent to the logic program’s answer sets. A normal logic program
Π consists of a finite set of rules of the form p0 ← p1, . . . , pm,¬pm+1, . . . ,¬pn, where each
pi is an atom. Given such a logic program its answer sets can be obtained by creating
the Gelfond-Lifschitz reduct of the original program and computing the models on the
reduct [Ang+05] . The reduct ΠM of a normal logic program Π relative to a set of atoms
M can be derived by removing

1 each rule with ¬l in its body, where l ∈M and

2 all negative literals in the bodies of the remaining rules [Eit+09].

If Cn(ΠM), the ⊆-smallest model of the reduct ΠM, corresponds toM, thenM is a stable
model, i.e., answer set, of Π [Ang+05].

100 Chapter 5 Faster Horn Diagnosis - Finding Explanations in Horn Clause Abduction

Example 5.2 [Ang+05]

Consider the logic program

Π =
{

(1) x← x,

(2) y ← ¬x

}
.

To derive the answer sets we start withM = ∅ and create the reduct Π∅ (see Table 5.1).
GivenM = ∅, the first condition does not apply, but we can remove the negative literal
¬x from the second rule, resulting in Π∅ = {(1) x ← x, (2) y ←}. Based on Π∅ we can
derive Cn(Π∅) = {y}. Yet, since {y} 6= ∅, i.e., Cn(ΠM) 6=M, ∅ is not an answer set.

Consider the second row in Table 5.1, where M = {x}. The first condition applies
and thus the second rule y ← ¬x is removed from the program resulting in the reduct
Π{x}. However, as Cn(Π{x}) 6= {x}, x does not correspond to an answer set. ForM = {y}
the situation is different; the reduct’s model Cn(Π{y}) and the set of atoms inM match.
Hence, {y} is an answer set for Π. More specifically, it constitutes the only answer set for
the logic program.

Table 5.1: Computation of the answer sets.

M ΠM Cn(ΠM) Cn(ΠM) =M

∅ {(1) x← x , (2) y ←} {y} 7

{x} {(1) x← x} ∅ 7

{y} {(1) x← x , (2) y ←} {y} 3

{x, y} {(1) x← x} ∅ 7

ASP has been applied to diverse domains such as planning [Lif02]. Furthermore, ASP
under stable model semantics can be used for abductive reasoning. By generating an
encoding for propositional abduction using a guess-and-test strategy, rules and constraints
determine the search space for answers (guess) and define whether generated solutions are
valid (test). Saikko, Wallner, and Järvisalo [Sai+16] have proposed such an encoding of
propositional abduction which generates minimum-cost solutions via the negation of the
conjunction of observations. Their logic program guesses a candidate solution from the set of
hypotheses and checks if it entails the manifestations and is consistent given the background
theory based on a saturation technique.

5.3 Empirical Results
In this section, we present our empirical evaluation framework and report on the obtained

results. Our focus lies on identifying runtime trends suggesting the advantage of one
approach over the other. Further, we want to contribute to answering the questions (1)
whether a general-purpose solver can be used for an efficient diagnosis in practice or if a
specifically tailored engine is required for achieving convincing performance and (2) whether
there is a superiority of direct or conflict driven methods.

First, we give some insights into the implementations of the abduction methods discussed
in the previous section. Then, we report on the benchmarks considered in the experiments.

5.3 Empirical Results 101

Particularly, we utilized artificially generated diagnosis problems as well as real world failure
models. Subsequently, we discuss the results of the experiments all obtained from a Mac Pro
(Late 2013) with a 2.7 GHz 12-Core Intel Xeon ES processor and 64GB of RAM running OS
X 10.10.5.

5.3.1 Algorithms
To compare the abductive diagnosis approaches explained in Section 5.2, we implemented

parts of the methods in Java as well as exploited available tools realizing the abductive
reasoning procedures. The following implementations are used in the empirical evaluation:

• Abduction with the ATMS (ATMS): Within our evaluation we exploit a Java imple-
mentation of ATMSXPLAIN based on a Java implementation of an ATMS in its original
form, i.e., restricted to Horn theories. Since we are dealing with Horn clauses, we
utilize LTUR as the theorem prover allowing us to compute inferences efficiently on
our models. In particular, we exploit a Java implementation of an assumption-based
LTUR of the diagnosis engine jdiagengine5 [PW03]. We refer to this entire abduction
procedure simply as ATMS within our experiments.

• Abduction as Consequence Finding via SOL-resolution (CF): We created a conse-
quence finding set-up CF using a Java implementation of CONSQXPLAIN. To enumerate
the characteristic clauses we employ SOLAR6 [Nab+10], which is a Java implemen-
tation of SOL-tableaux calculus for first order full clausal theories. The tool provides
various pruning methods, which ensure, for instance, that redundant tableaux are not
generated. We invoked SOLAR with the default setting, which executes a depth-first
search within the tableaux repeatedly, incrementing the depth limit for each iteration.

• Conflict-Driven Search via HS-DAG: We use jdiagengine [PW03], which implements
a conflict-driven search via HS-DAG coupled with an incremental assumption-based
LTUR, to realize HS-DAGXPLAIN. LTUR does not guarantee to return minimal conflicts,
hence the contradicting assumptions have to be reduced to derive minimal explanations.
We use two set-ups:

– HS-DAG: For this procedure, we simply record all refutations returned within the
search on the HS-DAG. After the computation has finished, all conflict supersets
are removed resulting in parsimonious diagnoses.

– HS-DAGQX: We adapted jdiagengine’s implementation to minimize refutations
right away after being returned from LTUR. In particular, we created a Java
implementation of QuickXplain to reduce each conflict to a parsimonious one. Our
version of QuickXplain is based on assumptions rather than on constraints with
preferences and exploits the assumption-based LTUR for its consistency checks.
Every refutation minimized by QuickXplain already constitutes an abductive
explanation.

• Conflict-Driven Search via Power Set Exploration: We realized XPLORER in Java.
To favor unsatisfiable cores early on in the computation, we implemented Arif et
al. ’s [Ari+15] method to find maximal model seeds. In addition, we used the SAT
solver SAT4J7 [ES03] in order to determine the satisfiability of the Boolean formula
representing the map. To shrink a found unsatisfiable seed to an MUS, we use two
extraction mechanisms:

5www.ist.tugraz.at/modremas/index.html
6Used version: SOLAR 2 (Build 315)
7www.sat4j.org/

102 Chapter 5 Faster Horn Diagnosis - Finding Explanations in Horn Clause Abduction

www.ist.tugraz.at/modremas/index.html
www.sat4j.org/

– XPLorer: For our first set-up we implemented the insertion-based MUS extraction
algorithm as suggested by Arif et al. [Ari+15] using jdiagengine’s incremental
assumption-based LTUR.

– XPLorerQX : Since each unsatisfiable seed already constitutes a conflict and
the MUS extraction merely reduces it towards a minimal contradiction, we
again applied the assumption-based QuickXplain implementation to minimize the
unsatisfiable seed to an MUS, i.e., abductive explanation.

• Abduction under Stable Model Semantics (ASP): By exploiting an encoding of propo-
sitional abduction [Sai+16]8 we compute diagnoses via the state-of-the-art C++ ASP
solver clingo 4.5.49 [Geb+14]. The encoding generates minimum-cost solutions using
the negation of the conjunction of observations based on a technique called saturation
to determine whether the entailment relation between diagnoses and manifestations
exists. As we want to enumerate all subset minimal answer sets, we remove the
optimization criteria included in the encoding and apply domain-specific heuristics to
the solver over the command line10. We call this approach ASP within the evaluation.

In CF and ASP, we invoke both general-purpose solvers using a separate process inside
our implementation, even though we could use SOLAR directly in our Java code. We use
this set-up to mimic that both tools are independent from the used programming language
of the abduction procedure and simply function as black boxes returning the diagnoses.

5.3.2 Data
To asses the various abductive reasoning mechanisms presented, we chose to use two

different types of models. On the one hand, we created artificial Horn clause models, which
are similar to diagnosis knowledge used in practice. On the other hand, we exploit knowledge
on how component-based failures affect real world systems, i.e., FMEAs. The information is
automatically compiled into a Horn theory via a mapping function and subsequently used in
the context of abductive model-based diagnosis.

Artificial Benchmarks

By means of a sample generator, we constructed artificial PHCAPs. The rules contained
within the theory are based on several parameters; n is the minimum number of literals
in a rule’s body. Those literals are chosen randomly from A. Thus, this value indirectly
determines the number of hypotheses present within the entire model. r bounds the number
of clauses generated per body, while o limits the overlap between head literals. The head
of each rule can only contain elements from A \ Hyp, thus, we do not have assumptions
that are caused by another hypothesis. Further, the fabricated models do not contain any
cycles. The parameter k determines the maximum number of manifestations to be explained.
Those observations are randomly selected from A \ Hyp and for simplicity comprise only
positive propositions. Figure 5.15 depicts the principle structure of these artificial examples
as an And-or-graph, where we denote hypothesis nodes with Hi and nodes representing
propositions from A \ Hyp with ej .

The examples constructed by the generator are similar to real world samples. Just
consider, for instance, medical diagnosis, where the knowledge mainly captures how a set of

8www.cs.helsinki.fi/group/coreo/abhs/
9www.potassco.org/clingo/

10clingo is invoked with - -heuristic=Domain, - -enum-mod=domRec, and- -dom-mod=5,16. This ensures the
computation of subset minimal answer sets.

5.3 Empirical Results 103

www.cs.helsinki.fi/group/coreo/abhs/
www.potassco.org/clingo/

assumptions about diseases affects a set of symptoms. Usually, we cannot observe cycles or
an excessive number of implication levels within this type of knowledge.

H1

e1

H2

e2

...

o

r

...
...
...
...

...
...
...
...
...

...

...
...
...
..

...
...
...
...

...
...
...
...

...
...

Figure 5.15: Structure of the artificial examples used for evaluation.

For the empirical evaluation we fabricated two different sets of artificial samples; Artificial
Samples I was constructed with k=5, r=o=15 and n=1 and contains 166 PHCAPs. For
Artificial Samples II the example generator was invoked with k=o=r=5 and n=1 and created
118 diagnosis problems. Table 5.2 summarizes the statistics for the generated Horn models.

Table 5.2: Sample set statistics for the artificial benchmarks.

Artificial Samples I Artificial Samples II
MIN MAX AVG MED MIN MAX AVG MED

|Hyp| 10 504 275.07 320.00 12 235 120.42 112.50
|A\Hyp| 6 6,466 1,903.23 1,668.00 13 1,055 252.74 180.00
|Th| 10 7,186 2,950.10 2,731.00 20 1,146 416.70 358.50
|Obs| 1 5 2.86 3.00 1 5 2.72 2.50
|∆-Set| 1 50 2.76 1.00 1 58,520 500.71 2.00

Real World Samples

To make use of abductive inference in industrial applications, Wotawa [Wot14] proposes
to automatically extract the required system descriptions from failure assessments which
are commonly used in practice. In particular, FMEA provides all information necessary to
function as a basis of an abductive diagnosis model.

For our experiments, we again utilize several publicly available as well as project internal
FMEAs comprising diverse technical systems and sub-systems. Based on the models we
created 213 diagnosis problems, where we randomly chose observations from the set of
effects described in the assessment. The statistical information on the FMEA models is shown
in Table 5.3.

Table 5.3: Sample set statistics for the FMEA benchmark.

FMEA Samples
MIN MAX AVG MED

|Hyp| 3 90 26.16 20.00
|A\Hyp| 5 83 26.60 21.00
|Th| 12 298 70.59 37.00
|Obs| 1 29 10.79 10.00
|∆-Set| 1 2,288 67.98 6.00

104 Chapter 5 Faster Horn Diagnosis - Finding Explanations in Horn Clause Abduction

0.1

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

0 200 400 600 800 1000 1200 1400 1600cu
m

ul
at

iv
e r

un
tim

es
 [1

0y
m

s]

number of samples solved
ATMS CF HS-DAGQX
HS-DAG XPLorer XPLorer_QX
ASP

HS-DAGQX

XPLorerQX

(a) Artificial Samples I

0.1

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

0 150 300 450 600 750 900 1050cu
m

ul
at

iv
e r

un
tim

es
 [1

0y
m

s]

number of samples solved
ATMS CF HS-DAG_QX
HS-DAG XPLorer XPLorer_QX
ASP

HS-DAGQX

XPLorerQX

(b) Artificial Samples II

Figure 5.16: Numbers of diagnosis samples solved over time for the artificially generated diagnosis
problems.

5.3.3 Results
As mentioned, all algorithms and tools are implemented in Java, except clingo, which is

a C++ ASP solver. Each method was invoked ten times on each PHCAP; for instance, we
collected 1,660 data points per abductive reasoning approach in the context of Artificial
Samples I. Since we are interested in runtime trends and trade-offs between the algorithms,
our evaluation focuses on computation times. Note here that we record the time to extract
all minimal explanations. Although we could use some of the approaches to derive a partial
set of solutions, we are not considering this possibility in the evaluation. In addition, we
disregard the rewriting of the model, the creation of the different input formats, and the
time it requires to communicate with the solvers. In case of SOLAR and clingo, we parse the
execution times recorded by the tools themselves which are available in the output11.

Table 5.4 gives an overview of the evaluation results on all sample sets for our seven
abduction methods. For clarity, we put the best values per category in bold face. Each
computation faced a runtime limit of twenty minutes. In the rows categorized Runtimes we
provide the performance statistics based on the samples that were computed in time, i.e., all
executions where the approach exceeded the limit are not considered within these numbers.
The number of samples completed in time is reported in Table 5.4 in row # solved. For
example, for Artificial Samples I only ATMS managed to derive all solutions for all executions
within the given time frame. Additionally, we report the number of samples an approach
has computed the diagnoses the fastest in row # fastest. In contrast to Runtimes, Runtimesθ
contains results where each timed out execution is penalized with θ = 40 minutes12. We do
not report on the minimal result values in Runtimesθ, as they are equivalent to Runtimes, nor
on the maximum execution times which are either the same as for Runtimes or the penalized
runtime.

Artificial Benchmarks

To illustrate the runtimes of the algorithms, we ordered all successful sample runs ac-
cording to their execution time. In Figure 5.16a and Figure 5.16b we report on the number
of samples solved for growing cumulative log runtime for Artificial Samples I and Artificial
Samples II, respectively. From the graphics in Figure 5.16 we deduce that all algorithms

11We converted the values to milliseconds for our analysis.
12We set θ to twice the runtime threshold. Of course, this value is somewhat arbitrary, since we do not know the

real computation time of an approach exceeding the time limit.

5.3 Empirical Results 105

Table
5.4:

R
untim

e
results.

ATM
S

CF
H

S-D
AG

H
S-D

AG
Q

X
XPLorer

XPLorerQ
X

A
SP

Artificial Samples I
[1,660 runs]

R
u

n
tim

es
[in

m
s]

#
solved

1,660
1,650

1,629
1,654

1,485
1,457

1,618
#

fastest
183

0
820

629
15

13
0

M
IN

0.34
70.00

0.23
0.22

0.49
0.35

8.00
M

A
X

170,838.66
899,370.00

1,177,876.77
952,760.53

567,187.64
904,397.79

1,156,071.00
AV

G
226.28

9,387.55
5,397.07

1,600.36
5,466.45

6,590.33
88,315.45

M
ED

19.91
1,080.00

9.20
8.04

88.96
80.22

17,931.50
SD

4,529.92
65,366.46

52,305.30
34,443.66

27,536.54
48,291.29

174,211.35

R
u

n
tim

es
θ

[in
m

s]

AV
G

226.28
23,788.83

50,115.55
10,269.27

257,902.21
299,278.38

146,803.85
M

ED
19.91

1,110.00
9.76

8.13
139.55

130.70
20,678.50

SD
4,529.92

196,183.91
328,376.83

148,023.42
736,034.18

785,667.50
401,804.10

Artificial Samples II
[1,180 runs]

R
u

n
tim

es
[in

m
s]

#
solved

1,171
1,139

1,130
1,170

1,055
1,015

1,168
#

fastest
231

0
534

415
0

0
0

M
IN

0.39
80.00

0.26
0.25

0.69
0.72

10.00
M

A
X

425,393.84
389,900.00

391,309.67
217,275.60

27,919.00
27,649.77

315,250.00
AV

G
367.55

4,941.55
2,783.68

1,376.12
132.65

67.36
4,031.42

M
ED

2.23
220.00

0.99
1.00

14.13
12.88

470.00
SD

12,431.07
33,547.10

27,328.01
12,864.20

1,048.81
870.91

22,215.67

R
u

n
tim

es
θ

[in
m

s]

AV
G

9,517.29
46,464.77

53,513.19
11,533.95

127,237.24
167,854.55

16,193.81
M

ED
2.26

240.00
1.02

1.00
20.45

19.49
490.00

SD
105,143.70

221,759.43
242,745.11

110,664.17
369,418.07

416,327.19
122,059.98

FMEA Samples
[2,130 runs]

R
u

n
tim

es
[in

m
s]

#
solved

2,119
2,130

1,758
2,020

1,918
1,650

2,020
#

fastest
1,267

19
294

539
8

3
0

M
IN

0.33
60.00

0.24
0.25

0.56
0.56

6.00
M

A
X

916,524.17
375,020.00

1,191,864.18
140,108.57

883,309.51
903,439.88

14,680.00
AV

G
1,854.24

2,375.50
22,709.35

641.59
10,685.16

5,662.87
239.74

M
ED

0.90
200.00

1.87
1.26

23.36
18.05

32.00
SD

30,796.96
24,030.25

111,354.35
6,775.37

68,640.88
47,594.18

1,299.25

R
u

n
tim

es
θ

[in
m

s]

AV
G

14,239.04
2,375.50

437,898.14
124,552.12

248,494.90
545,231.80

124,171.03
M

ED
0.91

200.00
4.25

1.39
29.77

30.49
35.00

SD
174,655.60

24,030.25
908,437.40

531,157.15
718,422.99

1,001,498.81
531,206.63

106 Chapter 5 Faster Horn Diagnosis - Finding Explanations in Horn Clause Abduction

experience an exponential runtime curve. In addition, the plots show that the same tech-
nique with different minimization algorithms, i.e., XPLorer and XPLorerQX as well as HS-DAG
and HS-DAGQX , feature a similar performance and only diverge in regard to their efficiency
towards the more runtime expensive instances.

ATMS is capable of solving the most PHCAPs within the given time limit for both sample
sets, followed by HS-DAGQX . In contrast, approaches based on the exploration of the power
set fail to compute solutions for up to thirteen percent of the examples in time. Hence,
the execution times in Runtimes in Table 5.4 can be deceiving since they, for instance,
might convey that XPLorerQX provides preferable results in regard to the maximum and
average runtime. Yet considering the penalized results, we can see that the approach is not
competitive. From the penalized runtimes, we deduce that ATMS and HS-DAGQX are superior
in comparison to the remaining techniques.

Unsurprisingly, the non-Horn reasoning tools, i.e., clingo and SOLAR, are about two orders
of magnitude slower than the fastest approach on the artificial examples. Although the
methods are inefficient on average, the results show that the applications are dependable
methods by solving between 97 % to 99 % of the samples in time for both evaluation sets.
From Figure 5.16, we can further conclude that for the simpler examples the computation
time for CF grows faster than for the ASP solver. This situation, however, changes with more
runtime expensive diagnosis problems.

For a more in-depth comparison of the algorithms, we created the scatter plots in Fig-
ures 5.17 and 5.18. Each data point symbolizes one sample run based on the penalized log
runtimes of the corresponding algorithm pair. The dashed lines mark the penalized runtime,
i.e., every execution exceeding the runtime limit is located on the dashed lines. Consider
Figure 5.18a; although there are executions where HS-DAGQX is rather inefficient on Artificial
Samples II in comparison to ATMS, the data points accumulate on and below the diagonal
close to the origin. This suggests that for the bulk of the samples, ATMS takes longer to
compute the diagnose; this is also indicated by the median runtime results in Table 5.4 under
Runtimesθ. Investigating the threshold lines, we can determine that only a single execution
led to a timeout on HS-DAGQX but not on ATMS. All other timed-out data points are exactly
at the intersection of the threshold lines, thus representing several instances causing both
approaches to exceed the time limit.

While HS-DAGQX provides more appealing results in comparison to the version without
QuickXplain, we cannot observe the same for XPLorer and XPLorerQX . There both conflict
extraction methods perform rather similarly. This is apparent from Figures 5.17d and 5.18d,
where data points are mostly located symmetrically around the diagonal. Yet the insertion-
based extraction of the conflict as suggested by Arif et al.’s [Ari+15] solves more samples
in time. Specifically, on Artificial Samples II only a few samples exist in which XPLorer was
penalized while XPLorerQX provided the solutions in time.

For the two non-Horn solvers, the results on the artificial samples are interesting. On the
first set of examples, the consequence finding procedure is preferable, i.e., more samples
are solved in time and on median consequence finding is more efficient than using the ASP
solver. This is also apparent from Figure 5.17f. On Artificial Samples II, yet, the situation
changes slightly since ASP can solve more samples in time than the CF method and provides
better average results. Examining the minimum runtimes, we can deduce that the two
approaches using off-the-shelfs solvers suffer from a computational overhead. Particularly,
there seems to be even more set-up effort required for SOLAR13 in comparison to clingo.

13We extract the execution times directly from the solvers’ output themselves.

5.3 Empirical Results 107

0.1

10

1000

100000

10000000

0.1 10 1000 100000 10000000

H
S-
D
AG

Q
X

ATMS

(a)

0.1

10

1000

100000

10000000

0.1 10 1000 100000 10000000
H
S-
D
AG

ATMS

(b)

0.1

10

1000

100000

10000000

0.1 10 1000 100000 10000000

H
S-
D
AG

Q
X

HS-DAG

(c)

0.1

10

1000

100000

10000000

0.1 10 1000 100000 10000000

XP
Lo
re
r Q

X

XPLorer

(d)

0.1

10

1000

100000

10000000

0.1 10 1000 100000 10000000

H
S-
D
AG

Q
X

XPLorerQX

(e)

0.1

10

1000

100000

10000000

0.1 10 1000 100000 10000000
C
F

ASP

(f)

Figure 5.17: Scatter plots comparing the penalized runtimes [10y ms] on Artificial Samples I.

0.1

10

1000

100000

10000000

0.1 10 1000 100000 10000000

H
S-
D
AG

Q
X

ATMS

(a)

0.1

10

1000

100000

10000000

0.1 10 1000 100000 10000000

H
S-
D
AG

ATMS

(b)

0.1

10

1000

100000

10000000

0.1 10 1000 100000 10000000

H
S-
D
AG

Q
X

HS-DAG

(c)

0.1

10

1000

100000

10000000

0.1 10 1000 100000 10000000

XP
Lo
re
r Q

X

XPLorer

(d)

0.1

10

1000

100000

10000000

0.1 10 1000 100000 10000000

H
S-
D
AG

Q
X

XPLorerQX

(e)

0.1

10

1000

100000

10000000

0.1 10 1000 100000 10000000

C
F

ASP

(f)

Figure 5.18: Scatter plots comparing the penalized runtimes [10y ms] on Artificial Samples II.

108 Chapter 5 Faster Horn Diagnosis - Finding Explanations in Horn Clause Abduction

Real World Samples
Reviewing the computation results for the FMEA-based examples the consequence finding

approach is the only method solving all 2,130 executions within the given time frame. This
subsequently causes it to provide good results within Runtimesθ since no additional penalty
is added. Figure 5.19, which displays the cumulative runtimes without penalty, shows that
the method is not competitive in comparison to the faster procedures such as abduction
with the ATMS or the HS-DAG approaches. On the FMEA samples, the superiority of ATMS
in comparison to HS-DAGQX and the remaining approaches is more noticeable than on the
artificial benchmarks.

In addition, we can observe in Figure 5.20c and 5.20d that the computation times of
the variations of HS-DAG and power lattice exploration diverge more in comparison to
the artificial samples. Given the runtime plot in Figure 5.19, we can determine that the
divergence mainly occurs in the last third of samples solved.

Regarding this portion of the graph, we can further discover that ASP’s and CF’s execution
times do not grow as steeply at the end as for the other approaches. Further, in Figure 5.20f
the bulk of data points is located above the diagonal, indicating more samples in which ASP
was superior. However, several examples could not be solved by ASP in time, hence, the less
convincing results in Runtimesθ.

0.1

1

10

100

1000

10000

100000

1000000

10000000

100000000

0 250 500 750 1000 1250 1500 1750 2000

cu
m

ul
at

iv
e r

un
tim

es
 [1

0y
m

s]

number of FMEA samples solved
ATMS CF HS-DAGQX
HS-DAG XPLorer XPLorer_QX
ASP

HS-DAGQX

XPLorerQX

Figure 5.19: Numbers of diagnosis samples solved over time for the FMEA diagnosis problems.

5.3.4 Discussion
Considering the experiments, two approaches seem superior: ATMS and HS-DAGQX. While

ATMS shows promising results in our set-up, it has to warrant with each added clause
all necessary vertex labels are updated, thus, labels have to be checked for consistency9

and minimality. This is a time-consuming operation especially given a greater number of
hypotheses and overlap, which both may lead to larger labels. Hence, for benchmarks with a
vast number of assumptions, we assume less convincing results from ATMS. Comparing the
FMEA-based to the artificial samples, the ATMS has to perform more propagations within the
latter due the fact that the there might be several levels within the graph, while for the FMEA
examples due to their structure it is ensured that there are at most three levels with the last
level only containing the explanation node ex. In addition, the environments themselves
consist of a single element (with the exception of the node ex), due to the bijunctive Horn
clauses comprising the theory. Yet the labels themselves can become quite large depending
on the interconnectedness of the And-or-graph, i.e., manifestations with a large number of

9Though in our case no conflicting hypotheses were generated within the PHCAPs.

5.3 Empirical Results 109

0.1

10

1000

100000

10000000

0.1 10 1000 100000 10000000

H
S-
D
AG

Q
X

ATMS

(a)

0.1

10

1000

100000

10000000

0.1 10 1000 100000 10000000

H
S-
D
AG

ATMS

(b)

0.1

10

1000

100000

10000000

0.1 10 1000 100000 10000000

H
S-
D
AG

Q
X

HS-DAG

(c)

0.1

10

1000

100000

10000000

0.1 10 1000 100000 10000000

XP
Lo
re
r Q

X

XPLorer

(d)

0.1

10

1000

100000

10000000

0.1 10 1000 100000 10000000

H
S-
D
AG

Q
X

XPLorerQX

(e)

0.1

10

1000

100000

10000000

0.1 10 1000 100000 10000000

C
F

ASP

(f)

Figure 5.20: Scatter plots comparing the penalized runtimes [10y ms] on FMEA Samples.

causes feature a large label, which has to be considered during minimization and consistency
checks. Approaches to focus the ATMS and subsequently avoid label explosion have been
proposed in the literature [FK88].

As a side note we would like to mention that the ATMS can also be exploited within a
conflict-directed set-up. In fact in the consistency-based variation of model-based diagnosis,
the ATMS records the inconsistencies arising from the health assumptions and observations.
Thus, we could use a proof-tree completion approach to derive contradictions recorded
within the NOGOOD node of the ATMS. However, to retain consistency, the ATMS has to
warrant that each node’s label does not contain the conflicts stored in NOGOOD or their
supersets. Thus, more consistency checks are necessary in a proof-tree-style abduction with
the ATMS than in our current experimental set-up where the NOGOOD node has a small or
given our benchmarks even an empty label.

While showing weak runtime results on the artificial samples, SOL-resolution with SOLAR
provides solutions for all PHCAPs within FMEA Samples. Given the simple structure of the
FMEA examples the number of inference steps in the SOL-resolution are diminished in
comparison to the artificial models. In particular, for one tableau the number of resolve,
skip, factor and truncation steps is proportional to the number of observations, while for
the artificial samples more reasoning steps may be necessary. Of course the number of
tableaux depends on the number of hypotheses inferring the observations. As already
mentioned, SOLAR requires some additional set-up time, which is unsurprising since it
is not a specialized Horn abduction solver, but designed for first-order clausal theories.
This observation relates to clingo, which is a powerful tool suitable for normal as well as
disjunctive logic programs. Therefore, within our evaluation set-up abduction with the ASP
solver is not competitive. From our analysis we know that the preparation (grounding) and
preprocessing time (program simplification) are not the driving factors in the computational
effort, but the true solving time is problematic from an efficiency point of view. We assume
that we can observe particularly bad results in Artificial Samples I due the extensive number
of variables, since the saturation technique is based on all variables within the PHCAP.

110 Chapter 5 Faster Horn Diagnosis - Finding Explanations in Horn Clause Abduction

HS-DAGXPLAIN as well as XPLORER, both restrict the search space by ensuring that
known conflicts and their supersets are not considered again during computation. In case of
the former, the construction of a pruned DAG already hinders redundant refutations, while
blocking clauses are added to the encoding of the infeasibility map in the latter. Another
optimization of XPLORER is to require the seed of the lattice traversal to be a maximal
model. This strategy favors contradictions and ensures that the entry point of the conflict
search is as “high" as possible in the power set. In contrast in the HS-DAG approach, LTUR
generates refutations, which are located somewhere between this maximum sized conflict,
as enforced by XPLORER, and a minimal one. Hence, the conflict-driven search via HS-DAG
requires less minimization effort than the power set exploration since the starting point
of the traversal is “lower". Besides the shrinking of a contradicting set of assumptions to
an MUS, which is affected by the size of the diagnosis set, XPLORER spends considerable
time to determine the maximal model for the seed. In general, all these factor contribute
to the inefficiency of XPLORER within our experiments. A remedy for this might be to use
an indirect MUS approach, which first computes the set of MCSes and afterwards derives
their minimal hitting sets. These methods have been shown to be efficient for the complete
enumeration of refutations [LS08]. Taking a look back at our evaluation in the previous
chapter, we could observe the same situation. There we contrast the MUS-enumeration tool
MARCO and a method that first computes MCSes using MCSLS and subsequently derives
the conflicts as the hitting sets on the MCSes. In comparison, the MUS extraction could not
compete with the indirect approach.

From the results, we conclude that our HS-DAGXPLAIN approach is performing well on
the samples, in particular the version which minimizes conflicts right away. Generally, HS-
DAGXPLAIN’s performance is affected by the size of ∆-Set , i.e., the number of refutations,
and the size of the conflicts. Reason being that these two features determine the depth and
breadth of the DAG; that is, the larger the conflicts, the more outgoing edges the conflict node
has and hence the more child nodes have to be checked for consistency to determine whether
they are minimal hitting sets or not. Considering Figure 5.18c, HS-DAGQX yields more
convincing runtime results than HS-DAG. By shrinking each contradiction before continuing
with the execution on the HS-DAG, the depth of the graph can be reduced as already
computed conflicts and their supersets are excluded from further considerations due to the
search pattern encoded in the DAG. Thus, the DAG constructed via HS-DAG can be larger with
more conflicts than the one generated with HS-DAGQX . Further, HS-DAGQX is advantageous
in the sense that it can provide results even though the execution has not been concluded,
since all conflicts returned already constitute minimal abductive diagnoses given they are
consistent. However, as QuickXplain still requires calls to a theorem prover, in our case the
assumption-based LTUR, the overall number of consistency checks increases in comparison to
HS-DAG. Particularly in the case that the theorem prover returns an already minimal conflict
invoking QuickXplain causes unnecessary consistency checks. Utilizing an approach which
already derives minimal conflicts makes the minimization step obsolete. For instance, instead
of using LTUR as the theorem prover to infer refutations, we could exploit QuickXplain right
away, which returns one minimal conflict [Fel+13]14. Adaptation and improvements of
QuickXplain have been proposed such as MergeXplain [Shc+15], which returns a set of
minimal conflicts. Other possible improvements encompass to adapt HS-DAGXPLAIN to a
parallelized version, which significantly improvements performance [Jan+15].

Given the structural characteristics of the FMEA-based models we can easily represent the
theory as a DAG with a forward structure from causes to effects. As we know this structure is
in fact equivalent to the problems in the simple parsimonious set covering theory proposed

14In this case, we could still use LTUR or a SAT solver as QuickXplain’s consistency check mechanism.

5.3 Empirical Results 111

by Peng and Reggia [PR90] and hence these types of diagnosis problems can be solved quite
efficiently by employing hitting set algorithms as shown in Chapter 4.

5.4 Conclusion
Abductive reasoning is an intractable problem in general. Hence, determining algorithms

that can compute explanations in an acceptable time frame is an interesting research problem
with relevance not only for the diagnosis community, but also all other application areas
of abduction. We tackle this problem in this paper by reviewing two problem formulations
within the context of propositional Horn clause abduction, i.e., direct proof and conflict-
driven methods. We have exploited well-known as well as recent abductive reasoning
algorithms and have shown possible adaptations of the techniques to enable a more efficient
computation given our context. Besides implementing abductive reasoning procedures,
we have also included preexisting tools to give a sense of their capability in regard to this
specific framework. To reveal performance trends, we created an evaluation set-up based on
artificially samples similar to fault knowledge in practice and real world examples stemming
from failure assessments.

Our results show that neither the direct nor the conflict-driven approach provides a
universal advantage for Horn clause abduction. The two most promising techniques based
on our created problem instances were ATMS and abduction via HS-DAG with an immediate
minimization of conflicts via QuickXplain. These two methods are particularly suitable to
compare direct and conflict-driven techniques, since they exploit the same theorem prover.
Both could solve a reasonable amount of samples within the given time frame and our
data shows that ATMS on average is the most efficient approach, while HS-DAGQX computes
diagnoses faster for more instances. Even though the general solvers were around two orders
of magnitude slower than the best Horn reasoner, they have shown a consistent performance
being able to compute explanations for most samples within the given runtime allowance.
These results demonstrate that off-the-shelf tools can very well function as abduction engines
despite not being competitive in regard to runtime.

Inspired by infeasibility analysis, we implemented an exploration of the power lattice.
While this strategy has accomplished good results in the environment of group-MUS for
Horn formulae, we could not confirm this for our problem domain. Yet MUS extraction
based on an incremental LTUR can produce slightly better runtime data than QuickXplain.
However, we have yet to examine in detail other improvements that can be made based on
XPLORER, e.g., to exclude all subsets of an MUS by not only ignoring all of its supersets, but
also adding a clause for blocking assumptions further down in the lattice [Mal13]. As every
subset of a MUS is satisfiable by definition, this technique focuses the search even more
towards the extraction of conflicts. In light of the results, we plan on further investigating
strategies from infeasibility analysis to improve upon the computation of abductive diagnoses
in the context of Horn formulae. In particular, it might be of interest to considering MUS
enumeration methods in conjunction with the restriction of the search space as performed by
HS-DAG to compute diagnoses very efficiently. Considering conflict extraction approaches,
such as MergeXplain, that not only derive a single refutation but compute several at once is
a possible area for future research.

112 Chapter 5 Faster Horn Diagnosis - Finding Explanations in Horn Clause Abduction

6Exploiting Structural Metrics in
Abductive Diagnosis

„The most exciting phrase to hear in science, the one that
heralds the most discoveries, is not ‘Eureka!’ (I found it!) but
‘That’s funny. . . ’

— Isaac Asimov
Ascribed to Isaac Asimov by the program “fortune”. 1987.

This chapter is based on the following publications:
• [KW16a] Roxane Koitz and Franz Wotawa. „Improving Abductive Diagnosis Through

Structural Features: A Meta-Approach“. In: Proceedings of the 2016 International
Workshop on Defeasible and Ampliative Reasoning. 2016, pp. 1–9

• [KW16c] Roxane Koitz and Franz Wotawa. „On Structural Properties to Improve
FMEA-Based Abductive Diagnosis“. In: Proceedings of the Workshop on Knowledge-
based Techniques for Problem Solving and Reasoning. 2016, pp. 1–7

• [KHW18] Roxane Koitz-Hristov and Franz Wotawa. „Applying Algorithm Selection to
Abductive Diagnostic Reasoning“. In: Applied Intelligence (2018). ISSN: 1573-7497.
URL: https://doi.org/10.1007/s10489-018-1171-9

The metrics for bijunctive definite Horn theories have first been published in [KW16c] with
minor adaptations in [KW16a]. For our experiments, we rely on the evaluations published in
[KW16c] and [KW16a]. In the second portion of the chapter, we investigate Horn abduction.
This research has been published in [KHW18].

6.1 Motivation
The previous two chapters have investigated mechanisms for solving model-based diag-

nosis problems and in particular, we have examined (1) models equivalent to the simple
set-cover theory resulting from the automatic model transformation based on FMEAs and (2)
a more general view on Horn theories. From the experimental portion of the chapters, we
could see that even though there are certain approaches more suitable for a certain system
description category, the samples “simple” to one algorithm are not necessarily efficiently
solved by all other procedures used in the comparison. As we know abduction generally is
an intractable problem, which grows exponentially in the size of the model, though there
exist certain subsets of logics where abduction is tractable. There are practical examples
of NP-complete problems that can be solved quite efficiently, however, usually there is no
universally “best” algorithm operating well on all problem instances [Kot14]. Choosing
the computation method in regard to the particular example at hand can provide better
performance results [Kot14]. Hence, within this chapter we investigate algorithm selection
as a means to efficiently compute abductive explanations in the context of diagnosis. First
formalized by Rice [Ric76], algorithm selection aims at identifying the “best performing”
approach for a specific problem instance. The basic building blocks within this framework
are (1) a portfolio of algorithms to choose from, (2) empirical performance data of the
algorithms on representative examples, and (3) a set of features, which are used to get a

113

https://doi.org/10.1007/s10489-018-1171-9

notion of the difficulty of a problem case [Hut+06]. On grounds of the empirical data and
the feature vector, a predictor is trained that is capable of determining the most suitable
approach for a distinct sample from the problem space. Machine learning has been identified
as a feasible technique for building a prediction tool. Leyton-Brown et al. [LB+03] describe
their portfolio approach to algorithm selection, where they train an empirical hardness
model for each algorithm within their portfolio to forecast each approach’s computation time
on the instance and execute the one predicted as most efficient. While there is research on
manually creating models for the predictor [Wei+08], most of the time a machine learning
classifier is exploited that categorizes a new problem instance at hand as one of the methods
in the portfolio. Static portfolio approaches have a finite and fixed set of algorithms to chose
from (though there exist methods where the number of algorithms in the portfolio is based
on the training data), while a dynamic portfolio is built online and may be constructed of
algorithmic blocks [Kot14]. Generally, since the seminal paper by Rice [Ric76] various strate-
gies have been proposed in the field of algorithm selection, e.g., in regard to the selection
itself (e.g., a single algorithm is used to solve the entire problem or interleaved/parallel
executions of various approaches are applied to a single problem instance), the number of
models built (e.g., a single one predicts the “best” method or one model per approach in the
portfolio is exploited), or the time of choosing the algorithm (e.g., at the beginning or several
times during solution search). The interested reader is referred to Kotthoff [Kot14], who
presents a comprehensive overview of different algorithm selection techniques. In addition,
the literature provides several successful applications of algorithm selection, for instance, in
the domain of SAT [Xu+08].

At the intersection of abduction and algorithm selection, there is the work by Guo and
Hsu [GH07]. The authors propose algorithm selection in the context of deriving the MPE in
probabilistic inference. Differencing from other work on algorithm selection, the authors
first use classification to determine whether the problem is solvable and then either exploit
clique-tree propagation to derive the exact solution or apply a second classifier to identify
the “best” approximation procedure. While not directly usable for abductive reasoning,
Malitsky et al. [Mal+14] apply the portfolio approach to enumerate MCSes, which can
be exploited to derive explanations based on their hitting set duals as we have discussed
in Section 4.2. Instead of choosing a single solver for the current problem instance, the
authors use a technique that switches between various enumeration procedures multiple
times. After a fixed timeout the next solver is nominated to compute the remaining solutions.
The decision for the proceeding solver is derived on demand and to ensure already computed
solutions are not extracted again, blocking clauses are added whenever a new enumeration
procedure is chosen.

In this chapter, we first restrict the problem space to propositional Horn clause models
which can be automatically generated from FMEAs available in practice. As discussed
previously, the resulting logical system descriptions are characterized by certain structural
properties. We utilize these characteristics as features for the algorithm selection process.
Based on the empirical evaluation in Section 4.3.2, we extract the attributes for a collection
of instances. On basis of the performance data and the features we train a machine learning
classifier to forecast the algorithm most suitable in regard to its runtime for a particular
abductive diagnosis scenario. We embed the selection process within a meta-algorithm
that generates the structural metrics for a given diagnosis problem, categorizes it on the
previously trained classifier, and computes the diagnoses using the algorithm chosen by the
predictor. In a second analysis, we rely on the evaluation of Chapter 5. Here, we slightly
adapt the set of attributes used to train the predictor for Horn models.

This chapter is structured as follows; in the next section, we discuss our meta-approach,
while in Section 6.3 we present the structural characteristics forming our features for

114 Chapter 6 Exploiting Structural Metrics in Abductive Diagnosis

the algorithm selection in case of the simple bipartite abduction problems. Subsequently,
we empirically evaluate our meta-approach in comparison to consistently using the same
technique in our portfolio. In the second portion starting from Section 6.4, we adapt the
features slightly in order to represent Horn clause theories rather than simple implicative
Horn clauses. Again, we show empirical results contrasting algorithm selection to a single-
method strategy.

6.2 Meta-Approach
Algorithm selection aims at identifying the most appropriate method out of a portfolio

of techniques for a given problem instance in regard to its performance. Performance in
this context is most commonly associated with the computation time but could also refer
to accuracy or simplicity. The model as described by Rice [Ric76] advocates for the use of
features inherent to the problems within the problem space in order to accurately map a
new sample to its most effective or efficient algorithm. This mapping is based on empirical
performance data on representative samples of the approaches present in the algorithm
space. On basis of the features extracted and the execution records, a predictor is trained that
can determine aspects of the problem influencing the performance of a technique. Thereby
each problem is described by a set of attributes that together with execution data allows a
predictor to forecast the most valuable algorithm on an instance. Machine learning has been
identified as a feasible approach to use as a prediction tool [Kot14].

Generally, there are two main variants; either one algorithm of the portfolio is to be
selected based on a single predictor or for each approach within the portfolio the performance
metric should be determined as a basis of the selection. The latter requires a distinct empirical
hardness model for each method within the portfolio and thus whenever the algorithm for
a new instance is to be selected, for each approach a prediction has to be made [Hut+06;
Kot14]. SATzilla [Xu+08] is an example of such a portfolio approach within the domain of
SAT solvers. For our meta-technique, however, we consider the first alternative, where we
train a single classifier for all abductive reasoning methods to select a single approach for
execution.

We consider a 1-of n portfolio with n algorithms to choose from but only one is selected
and executed to solve the diagnosis problem [Xu+08]. Within the context of troubleshooting
our meta-approach operates the following way: as mentioned the foundation of model-
based diagnosis is a description of the system under consideration. Thus, we ensure that
the majority of the features can be computed offline on the diagnosis models present.
Further, within the offline phase the empirical data on computation times of the various
abductive reasoning approaches can be collected and on basis of the metrics and the runtime
information a machine learning classifier CL is trained.

Algorithm METAB describes the online portion of the meta-approach, which is executed
whenever new diagnoses are to be computed. The diagnosis process is triggered by a
detected anomaly; at this time we retrieve our previously learned machine learning classifier
CL as well as the offline determined metrics φoffline of the diagnosis model. Online we have
to collect the current PHCAP’s instance-based features φonline, which we discuss in detail in
the upcoming section. While Hutter et al. [Hut+06] state that the feature extraction method
should be highly efficient, in our framework only the computation of a subset of these
attributes has to be performed online, namely the computation of the metrics depending on
the observations. Based on the online and offline generated attributes, we supply the feature
vector φ with the measurements of the current diagnosis problem. By providing all features
to the machine learning algorithm, we in turn retrieve a predicted best abduction method α

6.2 Meta-Approach 115

out of our portfolio for this specific diagnostic scenario based on the trained classifier and
the instance’s features. Subsequently, we can instantiate the abductive reasoning engine
with the corresponding abduction technique as well as problem instance and compute the
set of minimal explanations, i.e., ∆-Set.

Algorithm 6.1: METAB

Require: A: the set of propositional variables, Hyp: the set of hypotheses, Th: the Horn
theory, Obs: the set of observations, CL: the trained classifier, φoffline: the previously
computed model metrics

Ensure: ∆-Set: set of consistent minimal diagnoses
φonline ← computeMetrics(A,Hyp,Th,Obs) . Computes the instance-based features
φ = φoffline ∪ φonline . Combine the attributes to the entire feature vector
α← predict(φ,CL) . Forecasts the best performing algorithm α for the diagnosis
problem based on the features φ and the classifier CL
∆-Set← diagnose(α,A,Hyp,Th,Obs) . Computes solutions with α for the diagnosis
problem
return ∆-Set

6.3 Bipartite Models
In Chapter 4, we have described possibilities to solve abduction problems based on an

automatic compilation from FMEA documents. In particular, we uncovered that the models
are rather simple in the sense that they can be mapped to the simple parsimonious set
covering theory, i.e., the result of the mapping is a model consisting of bijunctive definite
Horn clauses. Thus, we can easily define their structural properties based on various graph
representations. In the simplest case, the theory is characterized as a DAG G = (V,E). Each
proposition in A corresponds to a vertex, while the edges between nodes are determined by
connections within the theory. For each clause c, there is a directed edge leading from the
node representing the negative literal in the clause to the node of the positive literal, i.e.,
E = {xi → xj |c ∈ Th, xi is the negative literal in c and xj is the positive literal in c} [EM03].
In this way, the DAG simply is the dependency graph of the Horn theory. An additional
feature of G is that it contains two disjunctive node sets, namely the propositional variables
constituting the causes and the effects, respectively, i.e., we can depict the theory as a
bipartite graph. This characterization is equivalent to the associative network as described
by Peng and Reggia [PR90] in their set covering approach.

As stated the models we are considering are bijunctive definite Horn clauses. Given a
model of this type we can easily represent it as a hypergraph H = (V,E), where V is the set
of vertices and E constitutes the set of hyperedges. The nodes of the hypergraph represent
the propositional variables, while the hyperedges are determined by the theory. For each
clause there exists a hyperedge containing all propositional variables of said clause, i.e.,
∀a ∈ A→ a ∈ V and ∀c ∈ Th→

⋃
l∈c |l| ∈ E where || is a function mapping literals to the

underlying propositions ignoring negations, i.e., |¬p| = p and |p| = p for all p ∈ A. Following
this representation we can assign a label to each vertex within a hyperedge E, such that:

label(v) =

 {v} if v ∈ Hyp⋃
x∈E∧x6=v

label(x) otherwise

116 Chapter 6 Exploiting Structural Metrics in Abductive Diagnosis

In case a vertex represents a manifestation, its label correspond to its causes-set, as it
holds the hypotheses responsible for the effect. Note here that our label differentiates from
an ATMS label, where each label is a set of environments and each environment again is
represented by a set of assumptions. We can utilize the labels of the nodes corresponding to
the observations to compute the abductive diagnoses as hitting sets. Note that by relying
on this notion we could further handle intermediate effects, which are not contained in the
simple bipartite problems, however, can occur in more expressive languages.

6.3.1 Structural Metrics
Considering the graph representations of the model, we can extract certain characteristics

of their structure that we subsequently use within the algorithm selection process. The most
intuitive measure of complexity is the cardinality of Hyp as abductive diagnosis is possibly
exponential in the number of causes to consider. In addition, we collect the number of effects
and connections within the theory.

Outdegree and Indegree
Based on the DAG, we can compute for each vertice representing a hypothesis its outdegree,

which specifies the number of manifestations affected by said cause. Similarly, we measure
the indegree of each effect, i.e., the number of hypotheses inferring the manifestation.
Considering the set covering framework, we can define the degrees as follows:

outdegree(pi) = |effects(pi)|

indegree(pj) = |causes(pj)|

Collected over the entire model these measures provide an intuitive metric of the basic
magnitude and connectedness of the theory.

Covering and Overlap
Several disorders may cover the same effect, i.e., a manifestation can be explained by

multiple causes. On basis of this we can define a covering metric for each pair of hypotheses
as the ratio between the number of common effects and the total number of symptoms
induced by the hypotheses:

covering(pi, pj) = |effects(pi) ∩ effects(pj)|
|effects(pi) ∪ effects(pj)|

In a similar manner, we define the overlap of two effects as their common sources in relation
to all their causes:

overlap(pi, pj) = |causes(pi) ∩ causes(pj)|
|causes(pi) ∪ causes(pj)|

Peng and Reggia [PR90] define a pathognomonic effect as an observation with a single cause.
Thus, whenever a pathognomonic symptom is involved, we do not compute an overlap
relation. By collecting these measures for any pair of hypotheses or effects, we can compute
a value over the entire model.

Independent Diagnosis Subproblem
Whenever there exist several subproblems in our theory we refer to them as independent

diagnosis subproblems. If several subproblems exist, the DAG and all other graphs repre-
senting the model are disconnected and each independent diagnosis subproblem itself is a

6.3 Bipartite Models 117

connected subgraph. In case all effects are pathognomonic, then each cause-effect relation
represents its own independent diagnosis subproblem and thus we can observe that the
model is orthogonal. As an additional measure to the number of subproblems we further
compute the average size, i.e., number of nodes involved, over all independent diagnosis
subproblems in case several exist.

Path Length

Another measure of connectedness within the model is the minimal path length between
any two nodes on the hypergraph. In particular, we measure the length of the minimal
path between nodes representing hypotheses, thus we compute the minimal number of
hyperedges to be traversed between each pair of hypothesis vertices. Note that for a single
model there are possibly several hypergraphs depending on the number of independent
diagnosis subproblems, thus we disregard paths between nodes belonging to different
subproblems.

Local Clustering Coefficient

The clustering coefficient is a known measure of node clusters within a graph. It is evident
that we cannot compute a clustering coefficient from the graph representations used so far,
i.e. the DAG, bipartite graph and hypergraph, in case we want to account for the two disjoint
node classes. Therefore, we transform the bipartite graph by projection. In particular, we
remove all nodes corresponding to manifestations and link two cause vertices vhi

and vhk

whenever they imply the same effect, i.e., effects(hi)∩ effects(hk) 6= ∅. Based on the resulting
undirected graph featuring only the nodes corresponding to hypotheses, we compute for
each node the local clustering coefficient as c = 2n

ki(ki−1) , where n is the number of neighbors
of the node and ki the number of edges between the neighbors of n1. While in network
analysis the projection of bipartite graphs results in coefficients differentiating from typical
one-mode networks, this does not pose an issue in our case as we are solely interested in
this feature as an attribute to our meta-algorithm. Thus, the clustering coefficient provides
for our models another measure of covering between hypotheses.

Kolmogorov Complexity

A simple encoding-based measure on a graph is its Kolmogorov complexity, which defines
a value equal to the length of the word necessary to encode the graph. A straightforward
manner in this context is to compute the complexity based on String representation of the
adjacency matrix. For this, we create a undirected graph by replacing each directed edges
with an indirect edge and use am approximation of the Kolmogorov complexity2.

Observation Dependent Metrics

Since not only the topology of the model is of interest, but also the structure of the current
diagnosis problem, we measure the indegree and the overlap among the elements of Obs
as well as the number of diagnosis subproblems involving variables of Obs, in case several
exist.

1Clustering coefficients, who’s value are not defined (division by zero) are considered as 0 in the averaging over
the entire model.

2https://goo.gl/8Ei6zs

118 Chapter 6 Exploiting Structural Metrics in Abductive Diagnosis

https://goo.gl/8Ei6zs

Example 6.1

Consider the following KB:

A = {h1, h2, h3, o1, o2, o3},Hyp = {h1, h2, h3},

Th =
{
h1 → o1, h2 → o1, h2 → o2, h3 → o2, h3 → o3

}
We see that there are three hypotheses, three manifestations and the theory consists of five
bijunctive definite Horn clauses. Based on the logical model, we can construct the graphs
and collect, for instance, the following data on the model:

h1

h2

h3

o1

o2

o3

Figure 6.1: DAG and hypergraph representation. The DAG shows shared hypotheses (left oval) and
common effects (right oval) for pairs of nodes.

• Outdegree and Indegree: In regard to the example, we can observe outdegree(h2) =
|effects(h2)| = 2 and indegree(o3) = |causes(o3)| = 1.

• Covering and Overlap: Figure 6.1 depicts on the right hand side of the DAG the
shared observation o2 between h2 and h3 as a blue oval. Thus, we can see that
covering(h2, h3) = 1

3 . The overlap of o1 and o2 at h2 is shown as a magenta colored
oval on the left side of the DAG in Figure 6.1 (overlap(o1, o2) = 1

3).

• Independent Diagnosis Subproblem: Imagine the clause h2 → o2 missing from the
theory. In this case, we would have two independent diagnosis subproblems, namely
one including h1, h2 and o1 and the other one consisting of h3, o2 and o3. Hence, the
average size of the diagnosis problems is 3.

• Path Length: Considering the hypergraph in Figure 6.1, we can observe path(h1, h2)
= 2.

• Clustering Coefficient: In this example, the projection on the bipartite graph based on
the theory constructs the undirected graph with nodes h1,h2, and h3 and the undi-
rected edges 〈h1, h2〉 and 〈h2, h3〉. Each node’s clustering coefficient computation
leads to 0 (due to division by zero), hence, the clustering coefficient of the entire
model is 0.

• Kolmogorov Complexity: For this example, we can obtain a Kolmogorov Complexity
of 14.

Assuming o2 and o3 are being observed, i.e., Obs = {o2, o3}, then label(o2) = {h2, h3} and
label(o3) = {h3}. Computing the minimal hitting set based on the two labels, we retrieve
h3 as our abductive explanation.

• Observation Dependent Metrics: We can extract the overlap information based on
o2 and o3, i.e., overlap(o2, o3) = 1

2 . Considering again that the clause h2 → o2 is
not encompassed in Th, the second diagnosis subproblem consisting of h3, o2 and o3
would comprise both observations.

Table 6.2 lists the set of features considered in the meta-approach. Considering the
requirement to compute features efficiently within an algorithm selection set-up, let us

6.3 Bipartite Models 119

1. Logic Model Specific:
• Number of hypotheses
• Number of effects
• Number of causal relations, i.e., clauses in the
theory

2. Directed Graph:
• Outdegree of hypothesis nodes: maximum,
average, standard deviation
• Indegree of effect nodes: maximum, average,
standard deviation
• Covering: maximum, average, standard devi-
ation
• Overlap: maximum, average, standard devia-
tion
• Number of independent diagnosis subproblems
• Average size of independent diagnosis subprob-
lems

3. Undirected Graphs:
• Local clustering coefficient (maximum, aver-
age, standard deviation)a

• Kolmogorov complexity based on adjacency
matrix b

4. Hypergraph:
• Path length (maximum, average, standard
deviation)c

5. Instance Specific/Observation Depen-
dent:
• Number of observations
• Indegree current observation nodes: maximum,
average, standard deviation
• Overlap current observation: maximum, aver-
age, standard deviation
• Number of independent diagnosis subproblems
including current observations

aBased on the projection of the bipartite graph only
containing hypothesis nodes.

bBased on an undirected graph constructed from the
DAG.

cPath length between hypothesis vertices.

Figure 6.2: Features.

define which portions of the meta-algorithm have to be actually derived online. Creating the
diagnosis models, computing the basic model features, i.e. feature sets 1 to 4, and training of
the classifier are all performed offline. Thus, online only the observation specific metrics are
extracted, i.e., feature set 5, the algorithm appropriate for the problem instance is predicted,
and the diagnoses are calculated.

6.3.2 Empirical Results
In this portion, we present empirical results of our meta-approach in comparison to always

choosing a single method from the portfolio of algorithms. The benchmarks and empirical
performance data we are using stem from the evaluations of the simple diagnosis problems
in Section 4.3.2. We employ a 1-of 5 portfolio for both experiments, i.e., we select one
approach from the static algorithm space containing five methods which can be utilized for
abductive reasoning based on bipartite diagnosis problems. As with the first evaluation in
Section 4.3.2, we use an ATMS as a general abduction engine for propositional Horn clauses.
Besides the ATMS our portfolio holds various hitting set algorithms, which are capable of
computing minimal diagnoses as shown in Chapter 4. The hitting set routines we include in
our meta-approach are the following: BHS-Tree, HS-DAG, HST, and the Boolean approach.
As we have seen in the first evaluation that the Boolean algorithm has been the most efficient
contester, in the second assessment of in Section 4.3.2 we exchange the Boolean algorithm
for Berge’s algorithm in order to be used in an on the fly hitting set computation. METAB
itself is implemented in Java and for the machine learning part of our meta-algorithm we
employ the Waikato Environment for Knowledge Analysis (WEKA) library [Hal+09], which
provides a vast number of classification methods.

Superiority of the Boolean Algorithm
To collect runtime data for the training and test set for classification, we exploit a Java

implementation of an ATMS as well BHS-Tree3 and a Python library [QP14]4 of the remaining

3http://www.ist.tugraz.at/modremas/index.html
4http://modiaforted.ist.tugraz.at/downloads/pymbd.zip

120 Chapter 6 Exploiting Structural Metrics in Abductive Diagnosis

http://www.ist.tugraz.at/modremas/index.html
http://modiaforted.ist.tugraz.at/downloads/pymbd.zip

Artificial Examples

Classification Method
Multinomial Logistic

Regression
Multilayer
Perceptron

|Training Set| 210 1696
|Test Set | 42 424

Total Test Time < 1 ms 5 ms
Correctly Classified Instances 30 (71.43 %) 308 (72.64 %)

Incorrectly Classified Instances 12 (28.57 %) 116 (27.36 %)
Mean absolute error 0.17 0.17

Table 6.1: Classification Statistics.

hitting set methods. With each experiment run we collected the metrics listed in Figure 6.2
except the Kolmogorov complexity and the average size of the independent diagnosis
subproblems that we will use only in the second experiment. All these metrics build our
feature vector for the classification. The variable to be predicted is the algorithm, i.e.,
ATMS, BHS-Tree, HS-DAG, HST, or Boolean, which would be the most efficient on the current
diagnosis problem. Each experiment data series was split into a training set comprising 80 %
of the data and a test set of 20 %. Before selecting the classification method, we performed
cross validation on several classification algorithms available in WEKA on the training data.
Based on the accuracy obtained we decided to use a multilayer perceptron as the classifier
for the FMEA-based models and multinomial logistic regression for the artificial examples.

As can be seen in Table 6.1 the classification based on the metrics reaches a satisfactory
success rate on the FMEA-based as well as artificial examples. The confusion matrices in
Table 6.2 and Table 6.3 show the number of correctly and wrongly classified instances. The
rows represent the actual number of instances, i.e., the number of samples the corresponding
algorithm was the most efficient, while the columns show the predicted outcome. For
example in Table 6.2, the cell in the first row in the first column states that on the artificial
examples Boolean was correctly predicted 20 times. Moving three rows down, we see that
two times the classifier predicted the Boolean algorithm to be the most efficient procedure
when in fact BHS-Tree was the fastest. Moreover, four examples were wrongly classified as
BHS-Tree instead of the Boolean approach. Note that for the FMEA samples HST and HS-DAG
were never predicted or actually measured to be the best performing algorithm, the same
holds for the ATMS in the artificial examples. Further, we see that the Boolean approach was
the most efficient, followed by BHS-Tree on both test sets. From the confusion matrix we
also infer that the neural network had difficulties in classifying instances where the ATMS
succeeded, as it categorizes several instances incorrectly and the same holds for the HS-DAG
in the artificial examples. From a deeper analysis of the results, yet, we know that whenever
the classifier categorizes the problem incorrectly, the suggested algorithm is the second or
third most efficient.

To discover whether our meta-approach provides an efficiency improvement, we compared
computation time on both test sets for all methods, i.e., our meta-algorithm and each
abductive reasoning technique. The runtime for the meta-algorithm is determined by (1)
the computation of the metrics, (2) the time it takes to create the feature vector, supply it to
the classifier, and predict the best algorithm, and (3) the diagnosis time of the suggested
procedure. Figure 6.3 shows the cumulative log runtime for the test data for growing
computation time. We observe that on the artificial examples, the meta-approach performs
better than on the FMEA sample. The plots in Figure 6.4 depict the statistical information on
the different abduction approaches. As can be seen from the figure, our meta-algorithm is
not able to outperform on average (2.22 ms) all direct diagnosis methods (Boolean 0.48 ms,
BHS-Tree 1.36 ms, HS-DAG 1.09 ms, ATMS 3.14 ms, HST 2643.17 ms) for the FMEA-based
examples. The reason being that the mean time to collect the metrics of the PHCAP is close
the actual diagnosis time of these problems. In case of the artificial examples, our approach

6.3 Bipartite Models 121

Predicted

A
ct

u
al

Boolean ATMS BHS-Tree HST HS-DAG Total
Boolean 20 0 4 1 1 26
ATMS 0 0 0 0 0 0

BHS-Tree 2 0 6 0 0 8
HST 0 0 1 0 0 1

HS-DAG 3 0 0 0 4 7
Total 25 0 11 1 5 42

Table 6.2: Confusion matrix of the Artificial benchmark.

Predicted

A
ct

u
al

Boolean ATMS BHS-Tree HST HS-DAG Total
Boolean 186 22 25 0 0 233
ATMS 35 32 12 0 0 79

BHS-Tree 16 6 90 0 0 112
HST 0 00 0 0 0 0

HS-DAG 0 0 0 0 0 0
Total 237 60 127 0 0 424

Table 6.3: Confusion matrix of the FMEA benchmark.

performs well. On average we can observe the following runtimes: Boolean 74,752.23 ms,
BHS-Tree 103,065.19 ms, HS-DAG 82,008.41 ms, ATMS 144,276.18 ms, HST 180,849.51 ms,
and MetAB 71,812.24 ms. This is due to the fact that on these instances the computation of
the properties only demands a fraction of the actual diagnosis run time as the models are
larger in general.

0.01

0.1

1

10

100

1000

10000

100000

1000000

10000000

cu
m

ul
at

iv
e

ru
nt

im
e

[1
0y

m
s]

number of samples solved
ATMS BHS-Tree Boolean

HS-DAG HST MetAB

(a) Artificial Examples.

0.01

1

100

10000

1000000

cu
m

ul
at

iv
e

ru
nt

im
e

[1
0y

m
s]

number of samples solved
ATMS BHS-Tree Boolean

HS-DAG HST MetAB

(b) FMEA Examples.

Figure 6.3: Cumulative runtime for the test sets.

Computing Abductive Diagnoses On The Fly

In this evaluation, we disregard the Boolean approach as a hitting set technique and
replace it with Berge’s algorithm due to its capabilities of deriving diagnoses on the fly. The
empirical performance data stem from the second experiment described in Section 4.3.2
that are based on artificial diagnosis problems. Before selecting the classification method,
we performed cross validation on several classification algorithms available in WEKA on the
training data. Based on the accuracy obtained we decided to use WEKA’s implementation
of a general algorithm for locally weighted learning LWL. While within this experiment we
did not compare different classifiers besides the initial informal evaluation, we do believe
that examining various machine learning algorithms will be of interest in future research
on this matter. LWL performs prediction by building a local model based on the weighted
neighborhood data of the attribute of interest. In our case, this attribute is nominal and
simply corresponds to the algorithms name. In regard to the parameters, we utilized a

122 Chapter 6 Exploiting Structural Metrics in Abductive Diagnosis

0.01

0.1

1

10

100

1000

10000

100000

1000000

Bo
ol
ea
n

AT
M
S

BH
S-
Tr
ee

H
ST

H
S-
D
AG

M
et
AB

ru
nt

im
es

 [1
0y

m
s]

(a) Artificial Examples.

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

100000

1000000

Bo
ol
ea
n

AT
M
S

BH
S-
Tr
ee

H
ST

H
S-
D
AG

M
et
AB

ru
nt

im
es

 [1
0y

m
s]

(b) FMEA Examples.

Figure 6.4: Statistical distribution for the runtimes [10y ms] on the test set.

Table 6.4: Confusion Matrix for the artificial test set. The rows represent the actual number of
instances within the category, while the columns show the predicted outcome.

Predicted

A
ct

u
al

Berge HS-DAG ATMS BHS-Tree HST Total
Berge 27 0 0 0 0 27

HS-DAG 1 0 0 0 0 0
ATMS 2 0 0 0 0 2

BHS-Tree 8 0 0 0 0 8
HST 0 0 0 0 1 1
Total 38 0 0 0 1 39

brute force nearest neighbor search algorithm, included all neighbors in the linear weighting
function, and chose an entropy based classifier.

The classification utilizing LWL and based on the metrics listed in Figure 6.2 reaches a sat-
isfactory success rate of 71.79 % (Mean absolute error=0.22, Root mean square error=0.31)
correctly predicted instances, i.e., the selected algorithm was in fact the most efficient on
the problem. The confusion matrix in Table 6.4 shows the number of correctly and wrongly
classified instances. From the contingency table it is apparent that within the test set Berge’s
algorithm was the dominant approach, thus, our predictor favors the method and classifies
all but one instance as Berge’s algorithm. A known limitation of this type of algorithm
selection, where simply a single approach is chosen and executed on the instance, is that in
case the prediction is incorrect the meta-approach might be rather inefficient. Note that in
case our classifier chose a slower approach, the selected algorithm was the second fastest
within the portfolio. On the test set the meta-approach was on average 1.57 % slower than
an optimal algorithm selection (MetABOpt), i.e., the predictor would classify every instance
correctly, would have been. Figure 6.5a shows the distribution of the log runtime data for
the test set.

We explored WEKA’s attribute selection in order to determine whether we could remove
certain features while achieving the same prediction accuracy. Utilizing the meta-classifier
with the LWL classifier, we examined various attribute selection approaches on the training
data and could diminish the set of features significantly from 32 to four5. The number and
composition of the reduced attribute set depends highly on the performed selection process.
For example, attribute selection on grounds of the information gain results in a different
feature set: the number of current diagnosis problems, the number of observations, the
average path length on the hypergraph and its standard deviation. Utilizing the support

5The feature to predict is not considered in this number and of course remains within the set of features after
attribute selection.

6.3 Bipartite Models 123

0.01

0.1

1

10

100

1000

10000

AT
M
S

Be
rg
e

BH
S-
Tr
ee

H
S-
D
AG H
ST

M
et
AB

M
et
AB
_O
pt

ru
nt

im
es

 [1
0y

m
s]

M
et
AB

O
pt

(a) Test set.

0.01

0.1

1

10

100

1000

10000

100000

1000000
AT
M
S

Be
rg
e

BH
ST
re
e

H
S-
D
AG H
ST

M
et
AB
_O
pt

M
et
_7
1.
79
%

ru
nt

im
es

 [1
0y

m
s]

M
et
AB

O
pt

M
et
AB

79
%

(b) Entire sample set.

Figure 6.5: Underlying statistical distributions of the log runtimes.

vector machine-based reduction, we receive the number of observations, the standard
deviation of the indegree of the nodes representing the observations, the average current
covering relation and its standard deviation as well as as the average of the covering relation
over the entire model. As can be seen the size of Obs plays an essential role in predicting the
preferable algorithm. In regard to the remaining selected properties they provide information
on the PHCAP, i.e., the current observations, and various metrics on how hypotheses are
connected through effects.

A premature analysis of the results of the test data would suggest that applying Berge’s
method to every instance would yield the optimal runtime for most problems. However,
from Figure 6.5b, where have depicted the distribution of the log runtimes of the various
approaches, we deduce that based on the entire set of problems, i.e., test and training, Berge
is not the most efficient approach as on several instances its computation time is notably
larger than of other algorithms. On the entire sample only considering the algorithms from
the portfolio, we observe that HS-DAG is on average the best performing approach followed
by Berge’s algorithm and BHS-Tree, while the still outperforms HST. Furthermore, based on
the prediction accuracy on the test set, we have created a mock meta-approach (MetAB71.79%)
with 71.79 % accuracy as we have experienced on the test data. Thus, in 71.79 % of the
samples we record for this approach the optimal time and for the remaining 28.21 % the
second fastest time. We choose the instances with the slower runtimes randomly and picked
the second most efficient algorithm. This mock meta-approach would still outperform, the
other algorithms in the portfolio.

124 Chapter 6 Exploiting Structural Metrics in Abductive Diagnosis

6.4 Horn Models
The second focus of our research has been the evaluation abduction methods suitable

for more expressive representations. In particular, we exploit the empirical performance
data we have obtained from the evaluation in the previous chapter. However, since the
models’ characteristics differ from the simple bipartite system descriptions, we adapt the set
of features slightly in order to account for these changed circumstances.

6.4.1 Structural Metrics
While we can rely mostly on the previously defined metrics, there are some adaptations

necessary. First, we can construct in the same manner as before a directed graph G6. In
addition, we have discussed a hypergraph representation to propagate the label information
holding the hypotheses preceding a certain node. First, we cannot use the label information
for deriving abductive explanations as in the previous chapter, since the Horn abduction
problem is not equivalent to the set covering problem. However, we can utilize the label
information as an additional structural feature. Although the hypergraph representation is
still applicable on Horn clauses, we can also achieve the same label properties based on the
directed graph by redefining how a node’s label is computed. For each vertex v ∈ G, the
label contains all hypotheses said node is (directly and indirectly) caused by:

label(v) =

 {v} if v ∈ Hyp⋃
(x,v)∈E

label(x) otherwise

Based on the directed graph and the computed label for each vertex v, which contains
all hypotheses said node is (directly and indirectly) caused by, we can state an additional
covering and overlap metric. Note that we do not contemplate the connectives of the
variables, hence, a label in our case is a simple set. Given the definition of a label, we define
an overlap based on labels:

overlaplabel(pi, pj) = |label(pi) ∩ label(pj)|
|label(pi) ∪ label(pj)|

While overlap only takes into account the direct causes of a proposition, overlaplabel uses
the information of all predecessors of a node. By collecting these measures for any pair of
hypotheses or effects, we can compute a value over the entire model.

Further, for this type of model we disregard the clustering coefficient, however, we create
an undirected graph based on the directed graph, such that it only consists of nodes that
cause another node, i.e., we only consider propositions as nodes, which are causing other
propositions. An edge is created between two propositions, in case they are directly causing
the same effect. In particular, we measure the length of the minimal path between these
nodes. Figure 6.8 lists all features considered for this type of model.

Example 6.2

For describing the features, we will use the Horn clause model with Th = {e1 ∧H1 →
e2, e1 ∧H1 → e3, H2 → e3, H2 → e4, e3 → e4, H3 → e5} as an example. Fig. 6.6 shows G
created on basis of the model. The labels are as follows:

6That is equivalent to the dependency graph of the Horn theory.

6.4 Horn Models 125

v H1 H2 H3 e1 e2 e3 e4 e5

label(v) H1 H2 H3 ∅ H1 H1, H2 H1, H2 H3

Figure 6.6: Directed graph G.

Figure 6.7: Undirect graph of cause nodes.

For instance, we can extract outdegree(H1) = 2, indegree(e2) = 2, covering(H1, H2) =
1
3 , overlap(e3, e4) = 1

4 and overlaplabel(e3, e4) = 1. We also have two independent diagnosis
subproblems, namely one including H1, H2, e1, e2, e3 and e4 and the other one consisting
of H3 and e5. To compute the path length between nodes functioning as causes, we
construct the graph in Figure 6.7. Based on the undirected graph, we can see for instance
that path(H1, e3) = 2.

Logic model specific:
1. Number of hypotheses
2. Number of effects, i.e., propositions in A \ Hyp
3. Number of causal relations, i.e., clauses in the theory

Directed Graph:
4-6. Outdegree of hypothesis nodes: maximum, aver-
age, standard deviation
7-9. Indegree of effect nodes: maximum, average,
standard deviation
10-12. Covering: maximum, average, standard devia-
tion
13-15. Overlap: maximum, average, standard devia-
tion
16-17. Overlap with labels: maximum, average, stan-
dard deviation
18. Number of independent diagnosis subproblems
19. Average size of independent diagnosis subproblems

Undirected Graph:
20. Shortest path between causes: maximum, average,
standard deviation
21. Kolmogorov complexity based on adjacency matrix

Instance specific/Observation dependent:
22. Number of observations
23-25. Indegree current observation nodes: maximum,
average, standard deviation
26-28. Overlap current observation: maximum, aver-
age, standard deviation
29-31. Overlap with labels current observation: maxi-
mum, average, standard deviation
32. Number of independent diagnosis subproblems in-
cluding current observations

Figure 6.8: Features.

6.4.2 Evaluation

In this section, we evaluate the feasibility of our meta-approach based on the an empirical
study we have conducted in the previous chapter. This foregoing evaluation has compara-
tively analyzed conflict-driven and consequence finding techniques for abductive reasoning
based on two benchmarks; one set of experiments utilizes examples stemming from practice,
while the other encompasses artificially generated diagnosis problems. The objectives of the
evaluation in this paper are two-fold; on the one hand, we aim at assessing the quality of
the structural attributes to train a machine learning classifier to forecast the most efficient
algorithm in regard to its runtime for a specific PHCAP instance. On the other hand, we want
to determine the overall efficiency of the meta-approach in comparison to consistently using
a single abductive diagnosis techniques in the portfolio.

126 Chapter 6 Exploiting Structural Metrics in Abductive Diagnosis

The portfolio of algorithms we utilize in this evaluation is comprised of the following
methods: abduction with the ATMS (ATMS), abduction as consequence finding via SOL-
resolution (CF), conflict-driven search via HS-DAG (HS-DAG minimizes the solutions at the
end of the computation, while HS-DAGQX minimizes each refutation right away), conflict-
driven search via power set exploration (XPLorer utilizes the proposed MUS extraction
procedure [Ari+15], while XPLorerQX exploits QuickXplain to derive minimal conflicts), and
abduction under stable model semantics (ASP). Our meta-algorithm METAB (MetAB) is a
Java implementation.To create the predictor based on the features, we exploit again the
WEKA library [Hal+09] which provides a vast variety of machine learning algorithms.

We exploit two sample sets for our evaluation: (1) an artificially created set of PHCAPs
(Artificial Samples7) and (2) diagnosis problems constructed based on real system failure
assessments characterizing component faults and their manifestations (FMEA Samples). For
each PHCAP execution we collect the metrics listed in Figure 6.8 to gather our attributes
for prediction. The feature vector itself holds one more nominal value: the class attribute.
It corresponds to the algorithm’s name that has solved the diagnosis problem the fastest
in the experiments conducted previously. Hence, this last attribute is to be predicted. To
evaluate the classification accuracy based on the features, we randomly split each benchmark
into a training set comprising 80 % of the data and a test set holding the remaining 20 %
of examples. Due to dividing samples arbitrarily, it is not warranted that each PHCAP is
represented in equal measures within the test set. Hence, it may also occur that the test set
comprises samples particularly suitable for a certain approach.

To determine an appropriate machine learning method, we performed model selection via
10-fold cross-validation on the training data for several classification algorithms available
in WEKA. Based on the accuracy results obtained, we chose to use the random subspace
method in combination with WEKA’s decision tree with reduced-error pruning (REP Tree)
for Artificial Samples. In the random subspace method, subsets of components of the feature
vector are selected pseudorandomly and a decision tree is generated based solely on the
chosen attributes. The resulting classifier then depends on several decision trees constructed
in this manner, i.e., a decision forest. For FMEA Samples, we decided on WEKA’s decision
table majority classifier, which also relies on a suitable subset of features to build the decision
table.

Table 6.5 depicts all classification statistics based on (1) the 10-fold cross-validation on the
training data and (2) the evaluation on the test set. Utilizing the random subspace method
we reach between 66.39 % and 67.17 % correctly labeled samples. A PHCAP is labeled
correctly in case the predicted algorithm was the most efficient on the problem instance in
our empirical performance data. For the FMEA Samples, we receive slightly better results
with more diagnosis problems (between 76.76 % and 77.79 %) classified correctly.

Ideally, we could improve upon the accuracy results. A common strategy to enhance
classification precision is to adapt the feature vector. In this respect, we explore WEKA’s
attribute selection in order to determine whether we could remove certain features while
achieving the same or better prediction quality. Since the number and composition of the
reduced feature set depends highly on the performed selection process, we conducted some
informal evaluations to decide on the leading method. In the end, we chose to rank attributes
in the artificial case due to their information gain in consideration of the class feature and in
case of the FMEA Samples based on a subset of features that are statistically relevant to the
class attribute (Relief Feature Selection). Using these methods we could diminish the set of
features to fifteen and twenty-one in case of the artificial and FMEA examples, respectively8.

7In the previous chapter, this set of examples was referred to as Artificial Samples I.
8Of course the attribute to predict, i.e., the most efficient algorithm, remains in the feature vector.

6.4 Horn Models 127

Table 6.5: Classification Statistics.

Artificial Samples FMEA Samples

Classifier Random Subspace Decision TableMethod with REP Tree

C
ro

ss
Va

li
da

ti
on

[1
0-

fo
ld

]

|Data Set| 1660 2130
Total Training Time [in ms] 114 604

Total Test Time [in ms] 29 58
Correctly Classified Instances 1102 (66.39 %) 1657 (77.79 %)

Incorrectly Classified Instances 558 (33.61 %) 473 (22.21 %)
Mean Absolute Error 0.17 0.16

Tr
ai

n
an

d
Te

st
[8

0
%

,2
0

%
]

|Train| 1328 1704
|Test| 332 426

Total Training Time [in ms] 114 604
Total Test Time [in ms] 29 58

Correctly Classified Instances 223 (67.17 %) 327 (76.76 %)
Incorrectly Classified Instances 109 (32.83 %) 99 (23.24 %)

Mean Absolute Error 0.18 0.16

Table 6.6: Attribute Selected Classification Statistics.

Artificial Samples FMEA Samples

Classifier Random Subspace Decision TableMethod with REP Tree
Attribute Selection Evaluator Information Gain Relief Feature Selection

C
ro

ss
Va

li
da

ti
on

[1
0-

fo
ld

]

|Data Set| 1660 2130
Total Training Time [in ms] 114 604

Total Test Time [in ms] 29 58
Correctly Classified Instances 1093 (65.84 %) 1655 (77.70 %)

Incorrectly Classified Instances 567 (34.16 %) 475 (22.30 %)
Mean Absolute Error 0.17 0.16

Tr
ai

n
an

d
Te

st
[8

0
%

,2
0

%
]

|Train| 1328 1704
|Test| 332 426

Total Training Time [in ms] 53 650
Total Test Time [in ms] 26 97

Correctly Classified Instances 231 (69.58 %) 334 (78.41 %)
Incorrectly Classified Instances 101 (30.42 %) 92 (21.59 %)

Mean Absolute Error 0.17 0.16

As reported in Table 6.6 the results improved from 67.17 % to 69.58 % and 76.76 % to
78.41 % on the test sets. Table 6.7 lists the selected attributes according to their rank. While
the suggested feature sets diverge, there are certain attributes which seemingly are important
in both benchmarks, namely the metrics which characterize the basic composition of the
theory, e.g., overlap and indegree.

The confusion matrices in Tables 6.8 and 6.9 give a deeper insight into the number
of correctly and wrongly labeled instances of the test set based on the attribute selected
classifiers. Each column of the matrix reports on the number of instances labeled a certain
algorithm, while the rows represent the number of PHCAPs the algorithm was superior to
the other approaches. For example, Table 6.8 shows that HS-DAG was predicted as the most
efficient method 191 of 332 times, while it actually performed the best on 169 samples.
Hence, on 22 samples the classifier incorrectly selected HS-DAG. In 33 cases, the instance
was mislabeled as HS-DAGQX though HS-DAG would have been the best suited candidate.
For 35 examples the situation was the other way around. This is due to both approaches
experiencing a similar runtime behavior for most samples.

Table 6.10 and Table 6.11 report on the binary classification measures for each approach
on the test set. The best results in each column are emphasized. Precision denotes the
proportion of cases correctly labeled an approach to all the samples the algorithm was
selected as the abduction method, whereas Recall is the ratio of samples correctly predicted
to instances where the approach is actually the fastest. The F1-Score is a combined metric
based on the weighted average of Precision and Recall. Considering for example the ATMS

128 Chapter 6 Exploiting Structural Metrics in Abductive Diagnosis

Table 6.7: Selected Attributes.

Artificial Samples FMEA Samples
1 Covering: standard deviation Number of observations
2 Overlap with labels: standard deviation Overlap current observation with label: maxi-

mum
3 Overlap with labels: average Overlap current observation with label: stan-

dard deviation
4 Indegree current observation nodes: average Overlap current observation: maximum
5 Outdegree of hypothesis nodes: standard devi-

ation
Number of independent diagnosis subproblems

including current observations
6 Indegree current observation nodes: standard

deviation
Indegree current observation nodes: maximum

7 Overlap current observation: maximum Indegree current observation nodes: standard
deviation

8 Overlap current observation with label: aver-
age

Overlap current observation: standard devia-
tion

9 Overlap current observation: average Shortest path: standard deviation
10 Indegree of effect nodes: average Indegree of effect nodes: maximum
11 Outdegree of hypothesis nodes: average Number of hypotheses
12 Indegree current observation nodes: maximum Shortest path: maximum
13 Indegree of effect nodes: standard deviation Indegree of effect nodes: standard deviation
14 Overlap current observation: standard devia-

tion
Kolmogorov complexity

15 Covering: average Number of causal relations
16 Number of effects
17 Overlap: standard deviation
18 Overlap with labels: standard deviation
19 Number of independent diagnosis subproblems
20 Overlap current observation: average
21 Indegree current observation nodes: average

Table 6.8: Confusion matrix Artificial Samples.

Predicted

A
ct

u
al

ATMS CF HS-DAG HS-DAGQX XPLorer XPLorerQX ASP Total
ATMS 12 0 16 8 0 0 0 36

CF 0 0 0 0 0 0 0 0
HS-DAG 0 0 136 33 0 0 0 169

HS-DAGQX 1 0 35 83 0 0 0 119
XPLorer 0 0 3 3 0 0 0 6

XPLorerQX 0 0 1 1 0 0 0 2
ASP 0 0 0 0 0 0 0 0

Total 13 0 191 128 0 0 0 332

Table 6.9: Confusion matrix FMEA Samples.

Predicted

A
ct

u
al

ATMS CF HS-DAG HS-DAGQX XPLorer XPLorerQX ASP Total
ATMS 216 1 10 17 0 0 0 244

CF 1 2 0 0 1 0 0 4
HS-DAG 24 0 32 14 0 0 0 70

HS-DAGQX 16 0 8 84 0 0 0 108
XPLorer 0 0 0 0 0 0 0 0

XPLorerQX 0 0 0 0 0 0 0 0
ASP 0 0 0 0 0 0 0 0
Total 257 3 50 115 1 0 0 426

6.4 Horn Models 129

in Artificial Samples, we can see that the Precision value is close to the best value of 1, since
it was only once selected incorrectly. However, the Recall value is rather disappointing due
to various samples where ATMS was in fact the fastest method, but was not identified as
such by the classifier. This trade-off is also apparent in the F1-Score, which hence is only
0.49. In contrast in the FMEA Samples, Precision and Recall values are good and hence also
the F1-Score for ATMS is promising. Other common measures in multi-class classification
are Accuracy, i.e., the overall effectiveness of a classifier, Specificity, i.e., how well negative
labels are classified, and the area under the receiver operating characteristic curve (AUROC),
i.e., the ability of the predictor to avoid false labeling [Wit+11]. From the contingency

Table 6.10: Classifier performance measures Artificial Samples.

Precision Recall F1-Score Accuracy Specificity AUROC
ATMS 0.92 0.33 0.49 0.92 1.00 0.85

CF 0.00 0.00 0.00 1.00 1.00 -
HS-DAG 0.71 0.80 0.76 0.77 0.66 0.81

HS-DAGQX 0.65 0.70 0.67 0.76 0.79 0.82
XPLorer 0.00 0.00 0.00 0.98 1.00 0.98

XPLorerQX 0.00 0.00 0.00 0.99 1.00 0.55
ASP 0.00 0.00 0.00 1.00 1.00 -

Table 6.11: Classifier performance measures FMEA Samples.

Precision Recall F1-Score Accuracy Specificity AUROC
ATMS 0.84 0.89 0.86 0.83 0.77 0.91

CF 0.60 0.50 0.57 0.99 1.00 0.99
HS-DAG 0.64 0.46 0.53 0.87 0.95 0.88

HS-DAGQX 0.73 0.78 0.75 0.87 0.90 0.92
XPLorer 0.00 0.00 0.00 1.00 1.00 -

XPLorerQX 0.00 0.00 0.00 1.00 1.00 -
ASP 0.00 0.00 0.00 1.00 1.00 -

tables is apparent that HS-DAG, HS-DAGQX, and ATMS are the best performing approaches
with some variations between the sample sets. A premature analysis of these results would
suggest that applying for instance HS-DAG to every artificial instance would yield the optimal
runtime for most problems. However, based on the entire set of problems, i.e., test and
training, HS-DAG is not the most efficient approach as its computation time is notably larger
on several instances than other algorithms. Thus, we propose to use our meta-approach
METAB which we subsequently compare to always using a single diagnosis method.

Figure 6.9a and 6.9b depict the distributions of the log runtimes of the abductive reasoning
algorithms on the test sets. In addition to the seven abduction methods, we have included
on the one hand our meta approach MetAB and on the other hand an optimal algorithm
selection approach MetABOpt. For MetABOpt we assume a classifier that labels each diagnosis
problem correctly and thus computes the explanations with the approach requiring the
minimal runtime. MetABOpt’s computation time thus consists of the collection of the online
metrics, the classification, and the diagnosis using the fastest approach. For the artificial
examples, MetAB and MetABOpt show the best average and median runtime results, with an
average percentage difference between them of 15.30 %. However, In case of the FMEA
examples, ATMS provides the best median results on the test set followed by MetABOpt and
MetAB. This is unsurprising given the dominance of ATMS on FMEA Samples. On average,
yet, ATMS is slower than MetABOpt and MetAB. The average percentage difference between
MetABOpt and MetAB is 10.93 %.

Table 6.12 lists the runtime results of MetAB in comparison to ATMS and HS-DAGQX. From
the table we can observe that for the FMEA examples the classifier at least once chose an
algorithm which cannot compute the diagnoses within the given time frame, hence, the
maximum runtime corresponds to the penality of θ = 40 minutes plus the classification
time.

130 Chapter 6 Exploiting Structural Metrics in Abductive Diagnosis

0.1

1

10

100

1000

10000

100000

1000000

10000000

M
et
a_
o

M
et
a

AT
M
S CF

H
S-
D
AG

H
S-
D
AG

_Q
X

XP
Lo
re
r

XP
Lo
re
r_
Q
X

AS
P

ru
nt

im
es

 [
10

y
m

s]

M
et
AB

O
pt

M
et
AB

AT
M
S

H
S-
D
AG

Q
X

H
S-
D
AGC
F

AS
P

XP
Lo
re
r

XP
Lo
re
r Q

X

(a) Artificial Samples

0.1

1

10

100

1000

10000

100000

1000000

10000000

M
et

a_
o

M
et

a

AT
M

S CF

H
S-

D
A

G

H
S-

D
A

G
_Q

X

X
PL

or
er

X
PL

or
er

_Q
X

A
SP

ru
nt

im
es

 [1
0y

m
s]

M
et
AB

O
pt

M
et
AB

AT
M
S

H
S-
D
AG

Q
X

H
S-
D
AGC
F

AS
P

XP
Lo
re
r

XP
Lo
re
r Q

X

(b) FMEA Samples

Figure 6.9: Statistical distribution for the runtimes [10y ms] on the test set.

Table 6.12: Runtime results of the meta-approach in comparison to ATMS and HS-DAGQX.

Artificial Samples FMEA Samples
MetAB ATMS HS-DAGQX MetAB ATMS HS-DAGQX

MIN 0.32 0.34 0.22 0.48 0.33 0.25
MAX 4,940.16 170,838.66 2,400,000.00 2,400,000.23 2,400,000.00 2,400,000.00
AVG 28.16 226.28 10,269.27 6,963.16 14,239.04 124,552.12
MED 7.38 19.91 8.13 1.04 0.91 1.39
SD 271.09 4,529.92 148,023.42 117,443.57 174,655.60 531,157.15

For a more in-depth comparison of METAB to the other diagnosis methods, we provide
various runtime scatterplots in Figure 6.10 and 6.11. As apparent from Figure 6.10a and
Figure 6.11a, MetAB performs not as good as the ideal approach MetABOpt. Nevertheless,
given the classification accuracy most data points are on the diagonal or close to it confirming
that the selected algorithm is either the fastest or among the best solvers for the PHCAP.
For the FMEA examples, we can see that on one instance, MetAB choses an algorithm
exceeding the time limit hence featuring a penalized runtime. From the remaining plots, we
can conclude that while on some PHCAPs the meta-approach cannot compete with always
choosing a single algorithm, the bulk of data points is usually located below the diagonal
suggesting the benefit of MetAB even when an ideal prediction is not possible.

To evaluate the efficiency of our meta-approach in comparison to always choosing a
single approach, we determine whether the median difference between MetAB and the
best performing approaches on the corresponding sample set is significant. Since dealing
with non-normal runtime distributions and under the assumption that the observations are
independent and identically distributed, we apply the one-tailed Wilcoxon Signed-Rank
Test [Wil45]. Suppose paired runtime data (x1, y1), (x2, y2), . . . , (xn, yn) from MetAB and the
compared abduction approach, respectively. We propose hypothesis H0 : mX = mY , stating
a median difference of zero between pairs of observations. For FMEA Samples, we compared
MetAB and ATMS and formulate our alternative hypothesis as H1 : mX > mY . Given the
one-tailed test for α = 0.05, we reject H0, i.e., stating a significant difference between MetAB
and ATMS. This indicates that on simple examples such as the one’s generated based on
FMEAs, choosing the ATMS as abduction procedure is advantageous on the test data. In
regard to the artificial examples, we compared the meta-approach to HS-DAG and HS-DAGQX

with H1 : mX < mY . In both cases, we accept the null hypothesis since the Wilcoxon
signed-rank test determined an insignificant improvement of MetAB in comparison to the
hitting set approaches.

6.4 Horn Models 131

0.1

10

1000

100000

10000000

0.1 10 1000 100000 10000000

M
et
AB

MetABOpt

(a) MetAB and MetABOpt

0.1

10

1000

100000

10000000

0.1 10 1000 100000 10000000

M
et
AB

ATMS

(b) MetAB and ATMS

0.1

10

1000

100000

10000000

0.1 10 1000 100000 10000000

M
et
AB

CF

(c) MetAB and CF

0.1

10

1000

100000

10000000

0.1 10 1000 100000 10000000

M
et
AB

HS-DAG

(d) MetAB and HS-DAG

0.1

10

1000

100000

10000000

0.1 10 1000 100000 10000000

M
et
AB

HS-DAGQX

(e) MetAB and HS-DAG
QX

0.1

10

1000

100000

10000000

0.1 10 1000 100000 10000000

M
et
AB

XPLorer

(f) MetAB and XPLorer

0.1

10

1000

100000

10000000

0.1 10 1000 100000 10000000

M
et
AB

XPLorerQX

(g) MetAB and XPLorerQX

0.1

10

1000

100000

10000000

0.1 10 1000 100000 10000000

M
et
AB

ASP

(h) MetAB and ASP

Figure 6.10: Scatter plots of runtime [10y ms] comparisons on the test set of Artificial Samples.

132 Chapter 6 Exploiting Structural Metrics in Abductive Diagnosis

0.1

10

1000

100000

10000000

0.1 10 1000 100000 10000000

M
et
AB

MetABOpt

(a) MetAB and MetABOpt

0.1

10

1000

100000

10000000

0.1 10 1000 100000 10000000

M
et
AB

ATMS

(b) MetAB and ATMS

0.1

10

1000

100000

10000000

0.1 10 1000 100000 10000000

M
et
AB

CF

(c) MetAB and CF

0.1

10

1000

100000

10000000

0.1 10 1000 100000 10000000

M
et
AB

HS-DAG

(d) MetAB and HS-DAG

0.1

10

1000

100000

10000000

0.1 10 1000 100000 10000000

M
et
AB

HS-DAGQX

(e) MetAB and HS-DAGQX

0.1

10

1000

100000

10000000

0.1 10 1000 100000 10000000

M
et
AB

XPLorer

(f) MetAB and XPLorer

0.1

10

1000

100000

10000000

0.1 10 1000 100000 10000000

M
et
AB

XPLorerQX

(g) MetAB and XPLorer
QX

0.1

10

1000

100000

10000000

0.1 10 1000 100000 10000000

M
et
AB

ASP

(h) MetAB and ASP

Figure 6.11: Scatter plots of runtime [10y ms] comparisons on the test set of FMEA Samples.

6.4 Horn Models 133

6.5 Conclusion
Algorithm selection has been proposed as a way to deal with the issue that given different

problem instances there is no universally superior approach computing solutions efficient
for all samples, but the performance of a certain method highly depends on the underlying
characteristics of the problem instance. Abductive model-based diagnosis represents a
novel application area of the portfolio approach. Utilizing a machine learning classifier and
structural attributes of these system descriptions, we have developed a meta-approach to
abductive model-based diagnosis that aims at predicting the most suitable method for a
diagnosis problem on a case-by-case basis. Algorithm selection can be particularly useful in
the context of model-based diagnosis, since the structural features of the underlying system
description can be computed mostly offline and only the dynamic portion depending on the
observations have to be derived during computation.

We tackle two abductive diagnosis frameworks with algorithm selection, namely (1) the
simple bipartite abduction problems that are obtained from FMEAs and we have examined
in Chapter 4 and (2) more expressive models, i.e., PHCAPs, from Chapter 5:

(1) We explore metrics inherent to the structure of FMEA-based models, which form
the feature vector for a classifier as part of a meta approach. Subsequently, we compared
abduction via the meta-approach to always choosing a single abductive reasoning mechanism.
Evaluated on a test set, the metrics led to a satisfactory selection of the best algorithm for
a particular diagnosis problem. In case of the FMEA-based samples our meta algorithm
was restrained by the time necessary to construct the feature vector and thus could not
outperform all abduction methods. Our approach shows its value when operating on larger
problem instances, i.e., artificial examples, where it performs well and in fact is the most
efficient on average in comparison. In the second evaluation, we exchanged the Boolean
approach with Berge’ s algorithm to allow an on the fly diagnosis computation. The empirical
evaluation showed that the extracted properties of the instances allow to determine the “best”
abduction method. Even in cases where the classification is incorrect, the approach selects the
second most efficient algorithm and thus overall outperforms the other diagnosis methods.
Therefore, we believe that this meta approach is a feasible alternative to continuously using
a single abduction procedure.

(2) In the second portion of this chapter, we evaluated the algorithm selection method
within an empirical set-up based on seven abductive reasoning methods for propositional
Horn theories and two benchmarks. The accuracy of our algorithm selection technique is
satisfactory and MetAB is in fact on average more efficient than choosing a single abductive
reasoning approach on both sample sets. Hence, based on our benchmarks we can advocate
for the benefit of using a portfolio method for abduction. While on average the fastest, our
meta-approach cannot outperform all other abduction techniques on median on the simple
diagnosis problems stemming from FMEAs. There the meta-approach’s set-up effort might
not justify the prediction. Possibly on larger models, we could observe a better performance
of MetAB in comparison to ATMS, which is known to have difficultly propagating label values
given larger more interconnected theories.

Thus, adapting and extending the benchmarks used for evaluation might provide improved
runtime results for our portfolio approach. Even though we have applied a simple attribute
selection, a deeper analysis of negligible or combinable features would definitely improve
the technique since choosing the incorrect method can be an expensive mistake within our
set-up.

134 Chapter 6 Exploiting Structural Metrics in Abductive Diagnosis

Part III

Case Study: Wind Turbine Fault
Identification

7Wind Turbine Diagnosis

„More solar energy falls on Earth in one hour than all the
energy our civilization consumes in an entire year. If we could
harness a tiny fraction of the available solar and wind power,
we could supply all our energy needs forever, and without
adding any carbon to the atmosphere.

— Ann Druyan and Steven Soter
"Cosmos: A Spacetime Odyssey". 2014.

This chapter is based on the following publications:

• [Gra+15] Christopher S Gray et al. „An Abductive Diagnosis and Modeling Concept
for Wind Power Plants“. In: IFAC-PapersOnLine 48.21 (2015), pp. 404–409

• [Koi+18] Roxane Koitz et al. „Wind Turbine Fault Localization: A Practical Application
of Model-Based Diagnosis“. In: Diagnosability, Security and Safety of Hybrid Dynamic
and Cyber-Physical Systems. Cham: Springer International Publishing, 2018, pp. 17–43.
ISBN: 978-3-319-74962-4. URL: https://doi.org/10.1007/978-3-319-74962-4_2

The majority of the chapter has been taken from [Koi+18], while Section 7.3 has been published
in [Gra+15].

7.1 Motivation
The increasing complexity and magnitude of technical systems is leading to a demand for

effective and efficient automatic diagnosis procedures to identify failure-inducing compo-
nents in practice. This is especially true in application areas experiencing excessive service
costs and idle time revenue loss. In the industrial wind turbine domain Operation and
Maintenance (O&M) constitute significant factors in terms of turbine life expenditure. This
industry has been expanding rapidly during the last fifteen years. Today many European
nations produce a significant amount of wind energy [Ass14]. This expansion has been
accompanied by an ongoing technological evolution, with the power rating, scale, and com-
plexity of individual machines having increased continuously. However, the wind industry is
under growing pressure to demonstrate profitability and offer energy at competitive costs. In
the latter context, O&M represents a significant proportion of the life-cycle costs as turbines
are located in isolated regions and weather conditions may further restrict access. Many
cases are reported, where high failure rates of major systems such as the gearbox, yaw
drive, or pitch drive resulted in extremely high repair costs. Given the isolated locations
of wind turbine installations, accurate fault identification is essential for reducing costs
and risks of component failures as well as turbine downtime. The use of remote detection
and diagnostic technology is an area which is receiving an increasing level of focus, in
particular in the offshore wind energy industry, where turbine failures are even more critical
due to the difficulties related to accessing and repairing the machines in potentially harsh
environmental conditions [GW10].

All modern wind turbines use sensors, data acquisition and on-board processing as part
of the closed-loop control system. Furthermore, a range of diagnostic functions is typically

137

https://doi.org/10.1007/978-3-319-74962-4_2

included within the system controller, so that at least basic status information can be
provided in case of faulty operation. However, such on-board diagnostics are limited by
the computing resources of the turbine controller and the absence of instant access to a
long term historical database. Additionally, wind turbine diagnosis is complicated, since
their overall reliability is affected by a multitude of failure modes concerning all major
sub-systems and furthermore load conditions change regularly [Wil+10]. While electrical
and control systems account for most wind turbine failures, other sub-systems, such as
gearboxes, cause extensive downtimes due to the complexity of maintenance and thus pose
a higher cost risk [Taz+17]. Unfortunately, currently implemented standard alarm systems
deliver a large number of false alarms and thus are not suitable for standalone fault detection
and identification [GW10].

Wind turbine operators often rely on time-based maintenance, where turbines are in-
spected periodically to assess their condition. This practice may lead to unnecessary turbine
downtime for healthy systems, while failure-inducing conditions between services remain
unnoticed. Due to these disadvantages predictive and condition-based maintenance have
become increasingly popular. Both rely on software monitoring the turbines’ operation and
diagnosis methods [Lu+09]. Condition monitoring software utilizes the signals transmitted
from the sensors integrated within the turbine and further processes the data to derive health
information of critical components, e.g., gearboxes and main bearings. This is especially
useful since, some specification indicators of a subsequent failure are observable prior to
around 99% of equipment fault occurrences. Thus, unnecessary maintenance activities can
be avoided by scheduling repair or replacement of components based on their present or
impending failure risks and complex tasks requiring specialized human resources, tooling, or
spare parts may be planned well in advance [Taz+17]. In order to support such diagnostic
activities, available information such as Supervisory Control And Data Acquisition (SCADA)
operational logs, service documentation, inspection results, and historical failure rates may
be exploited. SCADA data are of special interest for wind turbine condition monitoring, as
10-minute values of different signals provide readily available information relating to turbine
health [Tch+14].

Different fields such as control engineering have focused on methods to predict and
identify failures through the usage of condition monitoring systems and advanced data
analysis. However, an accurate and automated diagnosis of root causes for wind turbines
is complicated because of the amount of component failure modes [Wil+10]. In addition,
the effectiveness of such an approach depends strongly on an accurate definition of how
subsystems may fail and the associated physical mechanisms. Therefore, many systems are
only able to detect portions of failures from automatically retrieved data streams. Another
common restriction in available condition monitoring applications, is to merely focus on
specific error prone parts of the turbine, such as the gearbox. Hence, a system-level solution
is required that is capable of building on the existing knowledge concerning wind turbine
reliability. In addition, the approach should combine data and inspection derived state
indicators, in order to provide robust diagnosis results.

The AMOR project between Uptime Engineering1 and Graz University of Technology aims
at integrating an abductive model-based diagnosis and modeling engine, created by the
university, in consideration of the process shown in Chapter 3 into Uptime Engineering’s wind
turbine condition monitoring software. In this chapter, we first introduce state-of-the-art
research on wind turbine fault identification and then present the type of information that
is available and may be used as a basis in context of a diagnosis application. In particular,
we introduce Uptime Engineering’s comprehensive failure assessment of industrial wind
turbines that provides a structured evaluation of faults and their manifestations that is

1Uptime Engineering provides consulting services as well as software tools in the field of technical reliability.

138 Chapter 7 Wind Turbine Diagnosis

http://www.uptime-engineering.com

continuously extended and updated. This analysis can be exploited by the application as the
basis of the model development phase to construct a suitable diagnostic system description.
However, there are certain obstacles in the representation that hinder a straight forward
compilation as we have seen based on FMEAs or FTAs. Hence, we describe this issue in detail
and present a solution in Chapter 8. Chapter 9 then focuses on a model-based diagnosis
application in development. In particular, we present a GUI design and workflow of a web
application integrated into Uptime Engineering’s software.

7.2 Related Work
Wind turbine reliability presents a very interesting use-case for the application of diagnostic

methods. Condition monitoring and diagnosis are challenging tasks; however, they could
substantially contribute to a minimization of system down-time. A large and growing body of
literature has investigated fault prediction, detection, and identification in this domain that
has led to numerous approaches. Signal processing techniques analyze the multidimensional
turbine data without considering an a-priori developed mathematical model to extract faults
based on spectral analysis or trend checking techniques, while machine learning methods,
such as neural networks, can rely on historic data for failure identifications [Ham+09].
Zaher and McArthur [ZM07] present a preliminary multi-agent system for wind farms that
comprises fault and degradation detection. By collecting data from various downtimes
their application computes an overall turbine operational behavior model. Through the
employment of supervised learning of the nominal behavior, the framework is able to identify
power curve and temperature deviations. Their approach, however, is limited to a wind
turbine’s gearbox, generator, and rotor blades.

Many systems rely on SCADA data already available, as they provide a cost-effective source
of condition monitoring information. Qiu et al. [Qiu+12] focus in their research on SCADA
alarms and attempt to determine where alarms stem from and prioritize them. Based on their
results, Chen et al. [Che+12] create a BBN to model the relationship between root causes and
symptoms in wind turbines. While their use of BBNs allows a clear representation of cause-
effect relationships, the complexity of the network increases exponentially with the amount
of SCADA alarms considered. Schlechtingen, Santos, and Achiche [Sch+13] also adopt
machine learning by creating neural networks based on the normal wind turbine behavior
in combination with fuzzy rules representing expert knowledge on faults. Their approach
requires the availability of SCADA operation logs, which provide 10-minute values of various
measurements, such as power output, rotor speed, or gearbox oil temperature. Anomalies
can be detected by comparing the normal-behavior model with the actual performance.
The fuzzy inference system then automatically identifies the faulty components and further
presents possible root causes for malfunctions. In contrast to many other approaches,
their system is capable of detecting abnormal behavior in a large variety of components.
Recently, Toubakh and Sayed-Mouchaweh [TSM16] have developed a data-mining approach
to improve fault localization of hybrid dynamic systems, such as wind turbine converters.
The approach defines a feature space for the continuous dynamics of the component that
allows to define an indicator for converter degradation based on a drift in the normal
behavior classes. The system is capable of detecting and identifying a present failure early
on.

In the context of model-based reasoning, the research by Echavarria et al. [Ech+07]
is worth mentioning. The authors developed a fault diagnosis, repair, and functional
design system for offshore wind turbines. Their technique uses a model-based reasoner in
conjunction with qualitative turbine models to identify faults. In order to increase wind
turbine reliability, a functional redundancy designer is utilized, enabling the identification

7.2 Related Work 139

of substitutes for different components. In case of a fault, the system shall provisionally
reconfigure itself in order to compensate for the functionality loss, and allow the turbine to
continue its work. Future research on the authors’ side will incorporate the reconfiguration
as a maintenance strategy. The overall goal is a self-maintaining wind turbine, which is
independent from maintenance crews to some extent. Hameed et al. [Ham+09], Lu et
al. [Lu+09], and Tchakoua et al. [Tch+14] provide systematic literature reviews on the
topic of condition monitoring and fault diagnosis of wind power plants.

7.3 Model-Based Wind Turbine Diagnosis
An industrial wind turbine continuously stores operational data logs (SCADA logs), which

can be retrieved and transferred to a central data store. The use of such data stores for
detailed performance analysis and diagnostic work is becoming standard in the wind industry,
since the data is readily available and provides information about a number of systems
and components within the turbine. Today most medium to large scale operators of wind
turbine fleets have installed centralized data management systems to collect and store such
SCADA logs. Uptime Engineering has developed a software application that is capable
of performing automated and continuous analysis of such data, typically with the aim of
detecting anomalies in the behavior of individual turbines. Continuous advances have been
made in the capabilities of the analytic models, and it is now possible to detect outlying
behavior with a high degree of sensitivity. The results of such analysis are combined with
the above-mentioned on-board diagnostic results, as well as general information concerning
the turbine age, type and build status, in order to support the turbine operator in efficiently
reacting to detected anomalies.

However, such analysis activities often produce a high volume of information (multiple
turbines monitored, multiple alarms originating from many systems and accompanied by
a range of heterogeneous supporting information). The main challenge facing the user of
such a system is efficient interpretation of the results and the derivation of an effective
response strategy. Therefore a strong need has been identified to provide the software user
with “decision support”; i.e., an additional layer of intelligence built in to the software,
which combines all generated observations and produces clear recommendations for action.
Model-based diagnosis is a highly relevant solution, due to the strong capability of the
approach in combining state information from a multitude of sources and identifying the
highest likelihood root cause.

Uptime Engineering exploit a combination of diagnostic and prognostic techniques exploit-
ing the relations between operational and environmental loads as also damage accumulation
rates [GW10; Gra+11]. Based on an analysis of potential component-based failure modes
and their damage driving physics, a mathematical model is computed that can be used to
calculate the rate at which damage accumulates in response to the operating environment.
This method offers a means for determining current and projected failure probabilities based
on the derived damage model and statistical failure model. Statements about absolute
remaining useful life can not be made, since the load capacity would have to be known in
advance to a high degree of accuracy. This is very rarely the case, and considerable variation
occurs due to, e.g., variations in material quality, tolerances in component manufacture,
influence of transport, installation and configuration. Therefore the prognostic method
focuses on quantification of the applied loads instead, and uses probabilistic methods to
relate said loads to damage accumulation.

The basis of our model, which we discuss in detail in Section 8.4, is a structured Failure
Mode Assessment (FMA) of different subsystems within a wind turbine provided by our

140 Chapter 7 Wind Turbine Diagnosis

industrial partner. Experts continuously adapt and extend these records that contain each
subsystem’s key components and their possible physical and chemical failure modes. The
assessment characterizes clear causal dependencies from specific faults to various measure-
ments of the health monitoring system. Due to the fact that industrial wind turbines comprise
a large variety of components and therefore an even greater amount of possible failures,
the analysis focuses on malfunctions contributing most significantly to turbine down-time.
These failure modes are represented as abnormality assumptions, hypotheses Hyp, within in
an abduction system description, similarly as we have seen for the modeling of FMEAs.

Example 7.1

A converter is an essential component of modern industrial wind turbines, since it allows
operation at variable speed whilst connecting to a constant frequency grid. Therefore
faults of the converter result in costly turbine down-time. In addition, converter faults
produce a large amount of SCADA alarms in the control center. Hence, being able to
correctly diagnose converter faults and optimize maintenance should increase wind turbine
availability to a great extent. Table 7.1 shows parts of the FMA produced by an expert
group during a system analysis for the converter. Let us focus on the first table entry and
its underlying principles: As the electrolyte capacitor of the buck boost system degenerates
the equivalent series resistance rises (ESR), which causes the output voltage of the buck
boost to drop. The lower voltage is fed into the inverter and consequently contributes to a
reduced turbine power output (P_turbine). In addition, if the controller tries to adjust, the
insulated-gate bipolar transistor (IGBT) becomes more active as it tries to compensate the
output voltage, which causes a rise in the power cabinet temperature (T_power_cabinet)
due to more switching of the IGBT. However, it is not ensured that both the turbine output
would be decreased and the temperature in the power cabinet rises. Hence, these two
manifestations are linked with a logical ORa. Hence the first table entry can be read as:
Given the failure, electrical chemical aging of the converter and probably partial loads and
a high ambient temperature, the temperature of the power cabinet would be higher than
normal and/or the power of the turbine would be lower than expected, given the wind
speeds. Further, when inspecting the buck boost’s electrolyte capacitor, a higher equivalent
series resistance can be measuredb.

Table 7.1: FMA of the converter.

Fault
Mode

Component Damage Promot-
ing Operating
Mode

Aggravating
Boundary Condi-
tions

State Indicators/Part
Inspection

Maintenance
Task

Electrical
chemical
aging

Buck Boost -
Electrolyte
Capacitor

Partial load High ambient tem-
perature

(T_power_cabinet OR
P_turbine) AND ESR

Replace Capacitor

Corrosion Fan - Pin Full load Saline environ-
ment,
high temperature
environment

T_cabinet OR
P_turbine

Replace Fan

Thermo-
mechanical
fatigue
(TMF)

Fan - Bearing
Running Sur-
face

Start Up/ Shut
Down, Transient
current/voltage
events

Light winds (fre-
quent start up and
shot down),
changing wind di-
rection (yaw ad-
justment)

T_cabinet AND
P_turbine AND Alarm-
code_overvoltage_link

Replace Fan

High-
cycle
fatigue
(HCF)

IGBT - Wire
Bonding

Start Up/ Shut
Down, Transient
current/voltage
events

Low ambient tem-
perature

T_inverter_cabinet OR
T_nacelle OR P_turbine

Replace all IGBTs

7.3 Model-Based Wind Turbine Diagnosis 141

aWe discuss in Chapter 8 how we handle this type of knowledge and how to automatically convert such a failure
assessment to an abductive knowledge base.

bMeasuring the equivalent series resistance is part inspection task, i.e., this data is not automatically retrieved
from the turbine.

The observable anomalies refer to SCADA alarms, deviations in different SCADA data
signals from normal values, and part inspection results. Alarms are directly sent to the
control center without any filtering mechanism implemented and are activated in response
to measured signals deviating from defined limits and hence indicating a change in the
turbine status. A specific alarm may often be triggered by several root causes and therefore
cannot be used as a means to directly indicate a single failure mode. Hence, the operator
receives a vast amount of alarms, which are, however, not directly reducible to a certain
fault mode. Possible SCADA alarms are

• Turbine stopped,

• Lack of wind: Wind speed too low,

• Ice detection: Ice sensor,

• Over current inverter: L1 inverter 1,

• Pitch control error: Limit switch 95◦ blade A, or

• Fault air cooling: Pressure too high.

SCADA data signals are obtained as time series in contrast to discrete alarms and therefore
have to be preprocessed accordingly. Once discrepancies are detected, they are translated
into qualitative values suitable for our diagnosis engine, e.g. P_turbine stating that the power
output is low in comparison to what it should be2. The signals originate from different
sensors placed throughout the turbine, measuring, e.g., temperatures or currents of various
components, power output, or wind speed and direction. Table 7.2 shows some exemplary
SCADA data.

Table 7.2: Exemplary SCADA data types.

Variable Unit
Power output kW
Wind speed m/s

Wind direction ◦

Ambient temperature ◦ C
Rotor speed rpm

Gearbox oil temperature ◦ C

Some fault modes can be confirmed by an inspection task. This additional information
gained through visual checks or specific measurements at the wind turbine can be used
to discriminate among the possible root causes. Furthermore, the assessment considers
conditions that increase fault likelihood such as damage promoting operation modes, and
aggravating environmental conditions. A Physics of Failure (PoF) approach [GW10] quan-
tifies the relation between operation modes and damage accumulation. In addition, load
scenarios in conjunction with historical data can be used to compute prognostic information
on the remaining life expectancy of certain components. These conditions are excluded from
the system description we utilize for abductive reasoning, but should be utilized as inputs
to an additional ranking measure in upcoming versions of the diagnostic application. We

2Throughout the AMOR project, we have spent a considerable time in defining a taxonomy that is suitable for
mapping the turbine data to qualitative values that not only are appropriate for the wind turbine domain, but
may also be applied to other domains such as vehicle fleets.

142 Chapter 7 Wind Turbine Diagnosis

give more insights into the PoF approach and the conversion of an FMA to an abductive
knowledge base in Section 8.4 .

7.4 Conclusion
Industrial wind turbines are becoming more complex with diverse failure modes affecting

components throughout the system. The cost of electrical energy produced depends strongly
on the operational efficiency of the machines as well as the availability. Component faults
leading to unplanned downtime have been shown to impact the overall energy production
significantly, therefore the financial motivation for optimization in this respect is high. Yet,
many of the proposed diagnosis systems merely focus on parts of the turbine or only locate a
portion of the faults.

In order to create an appropriate model capable of revealing root causes for general
state indicators, a deep knowledge of the internal workings and component interactions
is necessary. Hence, our modeling approach relies on the availability of domain expertise
on the behavioral changes in case of a fault. Since such an extensive expert assessment of
potential component failures exists at Uptime Engineering, model-based diagnosis presents
itself as a fault identification approach. Hence, we propose a method which takes advantage
of available knowledge.

Given the model-based diagnosis, there is no need for additional sensor installations
or complex data analysis and extraction from the fault identification side. Thus, the fault
localization only requires some relatively minor efforts in extracting the models from the FMA,
which we show in detail in the next chapter. The well known computational drawbacks of
the abduction do not impair our troubleshooting activities, as the turbine health information
stems from SCADA data and the frequency of diagnosis is relatively low, e.g., once per
day. Furthermore, the amount of components to be considered for fault identification is
manageable, since the maintenance task mostly does not consider the smallest replaceable
unit, but higher-level components.

7.4 Conclusion 143

8Extending the Modeling
Framework for Abductive
Diagnosis beyond Horn
Clauses

„It has long been an axiom of mine that the little things are
infinitely the most important.

— Sir Arthur Conan Doyle
"A Case of Identity". 1891.

This chapter is based on the following publications:
• [KW16b] Roxane Koitz and Franz Wotawa. „Integration of Failure Assessments into

The Diagnostic Process“. In: Proceedings of the Annual Conference of the Prognostics and
Health Management (PHM) Society. 2016, pp. 117–128

The extended modeling technique and its evaluation have not been published yet. The Physics
of Failure approach and the generation of a suitable model thereof has been published in
[KW16b].

8.1 Motivation
We have introduced in the previous part, a general process for abductive model-based

diagnosis that makes use of information available after safety assessments of systems,
e.g., FMEA and FTA. There the FMEA table or fault tree is automatically compiled into
an abductive diagnosis model. In order to create a system description suitable for fault
identification, two characteristics of an appropriate modeling language are vital: (1) it is
capable of expressing information necessary for troubleshooting and (2) allows for efficient
diagnostic reasoning. The latter is of particular importance as computing subset minimal
abductive explanations for arbitrary models or theories in clausal form is located at the
second level of the polynomial hierarchy, while for Horn theories the complexity is lowered
by one level [EG95]. Although Horn clauses seem to be a reasonable limitation on the
system description providing computational benefits [CT91], for practical applications this
restriction may be too rigorous as for some domains it is necessary to express disjunctive
effects within the diagnostic models.

Example 8.1

The following example motivates the need for a more elaborate logic modeling language
beyond Horn clauses. Assume that we want to start our car for going on vacation. When
turning on the ignition we can hear the starter working but the car’s engine is not running.
We know that we need the ignition switch to be at state one, the battery must not be
empty, there needs to be enough fuel in the tank, and the car’s engine should not be faulty
(including the attached cables etc.). Using this information, we conclude that there might
be a lack of fuel or the engine is broken. However, we would rule out an empty battery

145

because the starter is working requiring the battery to be charged. As experience has
shown the last conclusion is not right. There might be enough power in the battery for
the starter but not enough for the spark plug necessary to run the engine. Hence, in this
case, the state empty battery causes two effects; either the starter is not working or there
is not enough electricity to cause the spark plugs to fire. Given our observations that the
engine is not running but we can hear the starter working, we conclude that the battery
has to be empty. Yet given the traditional framework of abduction, an empty battery would
not be considered an explanation for our symptoms. This does not coincide with human
reasoning, where given two alternative effects for a fault, in case one manifestation is
present we would consider the fault a possible explanation.

Other approaches have dealt with more expressive representations such as Disjunctive
Logic Programming (DLP). DLP has been proposed as an extension of logic programming,
allowing disjunctions within the head of a rule. Eiter, Faber, Leone, and Pfeifer [Eit+99]
introduce the dlv system, supporting abductive diagnosis based on DLP under stable model
semantics. Further, the authors provide a transformation of different diagnosis problems
into a disjunctive logic program suitable for the abductive reasoning task. Sakama and
Inoue [SI00] present a reduction of abductive programs to disjunctive programs, while
You, Yuan, and Goebel [You+00] describe how abductive reasoning can be used for DLP.
Based on these results, diagnosis problems formulated as abductive programs can be solved
using DLP systems [DK02]. Besnard, Cordier, and Moinard [Bes+08] extend abductive
reasoning by defining an ontology-based inference system that can be used for deriving
causal explanations. Based on formal inference patterns, abstraction relations defined
by ontological information, and causal statements, their approach determines tentative
explanations and has been implemented successfully using the dlv system [Moi10]. Yet these
approaches do not result in the diagnoses we are seeking to obtain, considering our example
from before.

The request for enabling a more expressive logic than Horn sentences stems directly
from industry. We are currently working together with our industrial partner, who provides
consulting in the field of technical reliability and develops condition monitoring software
for the industrial wind turbine domain. According to their failure assessments, it can
occur that component faults affect a number of system variables. These symptoms do not
necessarily co-occur, but represent possible effect alternatives. That is, a fault may cause
all of its consequences at once or just a subset of them. This distinction is essential from a
practical point of view as it avoids discriminating root cause candidates rashly given not every
symptom is present. A similar requirement can arise in case failure effects are temporally
delayed from one another. Imagine the diagnosis computation is triggered while a failure
has not entirely manifested itself within the system, i.e., not all effects are observable at the
time the fault identification process is invoked. Then given the detected anomalies and a
Horn representation of the system behavior, the failure would not constitute a diagnosis.
Furthermore, noise and uncertainty in the measurement can lead to unreliable observations,
i.e., a failure may have occurred but only a subset of its effects can be detected. Note here
that the temporal aspect or uncertainty are not our main concern, but we only list these
as possible scenarios benefiting from allowing effect alternatives1. An implementation of
the subsequently presented methods has been integrated into our industrial partner’s wind
turbine condition monitoring software and is currently being evaluated during operation in
regard to its feasibility as a fault localization approach.

1Further, directly considering these dimensions within the model would significantly increase the complexity
of the fault identification task, which we aim to avoid. Yet, for the interested reader there is a large body of
research on time and uncertainty in regard to diagnosis, e.g., [Bru+98].

146 Chapter 8 Extending the Modeling Framework for Abductive Diagnosis beyond Horn Clauses

In this chapter, we focus on logic modeling beyond Horn clause representations that are
good enough for practical applications but avoid to increase running time substantially.
By allowing in particular disjunctions within the head of the clauses, more expressive
theories can be constructed. From our industrial partner’s and our experience this relaxation
of the logical restriction of the theory allows for a more accurate description of fault-
effect relations in real world applications. With the aid of a mapping function, these
extended representations are converted to Horn models that can be used with any abductive
reasoner capable of handling Horn clauses. Given such a constructed Horn theory, a set of
observations, and a reverse mapping function, we show that the diagnoses generated on
the converted model—though not semantically sound—provide intuitive solutions similar
to human-like reasoning. We argue that this is an essential benefit of our approach, since
especially in practice, the acceptance of AI systems benefits from comprehensible problem
solving. Our goal in this chapter is to reveal whether the converted Horn models, which are
increased in size, avoid the additional computational effort associated with more expressive
representations and still allow deriving diagnoses in a practicable time frame. In particular,
we aim at identifying if diagnosis on the compiled model using a Horn clause theorem
prover tailored specifically for this task is more efficient or whether a state-of-the-art general-
purpose solver can achieve a more convincing performance. Hence Section 8.3 provides
an initial empirical evaluation. Lastly in Section 8.4, we give insights into our industrial
partner’s failure assessment method that takes advantage of PoF. In contrast to FMEAs, a
PoF analysis considers component failures in the context of operational/environmental loads
and damage accumulation rates. Their assessment enables the description of a failure, such
that logical conjunctions and disjunctions of manifestations can be expressed. Hence, we
show analogous to Section 3.3 how we can automatically compile their documents into a
system model.

8.2 Extended Modeling
In the following, we discuss how abductive theories using more elaborate propositional

languages can be mapped to PHCAPs. Particularly for practical applications an extended
expressiveness is useful and often required to represent the underlying system. In contrast
to approaches extending the fundamental reasoning mechanism [DK86a], we focus on
determining a “suitable” mapping of such an extended modeling language L to Horn
clauses. By doing so, we can rely on existing abductive diagnosis reasoning systems, whose
practicability has already been shown [KW15c]. Our suggested conversion is appropriate in
the sense that it allows to express disjunctions of effects in the underlying model and even
though the transformation is not entailment preserving the explanations obtained from the
compiled model are more rational from a human cognition view.

Example 8.1 (cont.)

Considering the example from the introduction we know that the empty battery in the car
has two potential consequences. Either the starter is not working (and thus producing no
noise) or the available electrical power is not enough to fire the spark plugs. Ignoring the
underlying reasoning chain, we can distinguish those two cases both leading to the effect
that the car’s engine is not running. The following sentence represents the corresponding
cause-effect relationship (R):

emptyBat→
(

(noStarterNoise∧ engineNotRun)
∨ (starterNoise∧ engineNotRun)

)

8.2 Extended Modeling 147

In our scenario from before we can observe that the starter is working, but the engine is
not running, i.e., Obs = {starterNoise, engineNotRun}. Given the observations as well as
the described cause-effect relation R we would conclude that the battery is empty, i.e.,
{emptyBat} is a diagnosis. However, this is a fallacy. Examining the entailment relation
we notice that

emptyBat ∪ R 6|= {starterNoise ∧ engineNotRun},

that is, the empty battery is not an explanation for our observed symptoms due to the
disjunctions in the head of the clause.

From this example we conclude that the entailment operator is more restrictive in admit-
ting explanations than human abduction given a non-Horn background theory. Relaxations
of entailment have been proposed in the context of ASP under stable model semantics, where
a brave entailment operator is introduced, such that observations have to be witnessed by
at least one stable model in contrast to all stable models in traditional (cautious) entail-
ment [Eit+99]. Yet in our framework, such a definition is too general and leads to incorrect
explanations. In practice, though, ideally abductive reasoning systems come to similar
conclusions as domain experts would. Therefore, our conversion from more expressive
representations to Horn actually allow us to infer such intuitive diagnoses (e.g., emptyBat
is an explanation given starterNoise and engineNotRun), which do not conform to classical
abductive inference but provide more realistic solutions.

The trade-off between the expressiveness of the representation language and its tractability
has been a recurring topic within AI research. General propositional reasoning is associated
with extensive computational effort, while limited knowledge descriptions are often too
restrictive for practice [DP91]. Therefore, Selman and Kautz [SK96] propose knowledge
compilation. A given representation is compiled into a restricted target language offline,
which allows for answering queries online efficiently. Since an exact translation is not
always feasible, the authors use an approximation to best convey the information stored in
the original theory. In particular, they introduce Horn approximation, where Horn clauses
function as lower and upper bounds for the set of models of the original theory. Based on
different compiled representations investigated, Darwiche and Marquis [DM02] introduce
a knowledge compilation map, describing different target languages as well as the queries
that can be performed in polynomial time. An approach applicable to diagnosis creates
an incremental approximation which decreases the size of the compiled representation by
covering only preferred solutions, e.g., most probable diagnoses [VP08]. Console, Portinale,
and Dupré [Con+96] utilize compilation as a method to focus the abductive diagnostic
process by avoiding the generation of diagnosis aspirants that are removed later on and by
generating solution candidates that allow the discrimination of other contenders.

Within our mapping, we restrict the source representation to the modeling language
L, which ensures that we are able to compile a theory written in L into a Horn clause
representation. Hence, there is no need for approximating the target encoding. The principal
idea behind our approach is best described in Figure 8.1. There we have a theory ThL

written in a subset L of propositional logic. We use a function η to map sentences written
in L to a Horn clause theory Th. Computing abductive diagnoses from Th leads to the set
of all diagnoses ∆S . When mapping this set back to the original hypotheses space using a
function η̂, we obtain solutions (∆S

L) which are not equivalent to the diagnosis results from
ThL, but are closer to human expectations of diagnoses.

In Figure 8.1 we only consider η to be applied to a theory. In the following we extend
this and allow to add new hypotheses to Th in order to represent ThL in a correct way. For

148 Chapter 8 Extending the Modeling Framework for Abductive Diagnosis beyond Horn Clauses

ThL Th

�S
L �S

⌘

diag

⌘̂

Fig. 1. Mapping from one theory to another creating
intuitive diagnoses.

as domain experts would. Therefore, our conversion from
more expressive representations to Horn actually allow
us to infer such intuitive diagnoses (e.g., emptyBat is an
explanation given starterNoise and engineNotRun), which
do not conform to classical abductive inference but provide
more realistic solutions.

The trade-o↵ between the expressiveness of the represen-
tation language and its tractability has been a recurring
topic within AI research. General propositional reasoning
is associated with extensive computational e↵ort, while
limited knowledge descriptions are often too restrictive
for practice (Doyle and Patil, 1991). Therefore, Selman
and Kautz (1996) propose knowledge compilation. A given
representation is compiled into a restricted target language
o↵-line, which allows for answering queries on-line e�-
ciently. Since an exact translation is not always feasible,
the authors use an approximation to best convey the in-
formation stored in the original theory. In particular, they
introduce Horn approximation, where Horn clauses func-
tion as lower and upper bounds for the set of models of the
original theory. Based on di↵erent compiled representa-
tions investigated, Darwiche and Marquis (2002) introduce
a knowledge compilation map, describing di↵erent target
languages as well as the queries that can be performed
in polynomial time. An approach applicable to diagnosis
creates an incremental approximation which decreases the
size of the compiled representation by covering only pre-
ferred solutions, e.g., most probable diagnoses (Venturini
and Provan, 2008).

Within our mapping, we restrict the source representation
to the modeling language L, which ensures that we are
able to compile a theory written in L into a Horn clause
representation. Hence, there is no need for approximating
the target encoding. The principal idea behind our ap-
proach is best described in Fig. 1. There we have a theory
ThL written in a subset L of propositional logic. We use a
function ⌘ to map sentences written in L to a Horn clause
theory Th. Computing abductive diagnoses from Th leads
to the set of all diagnoses �S . When mapping this set
back to the original hypotheses space using a function ⌘̂,
we obtain solutions (�S

L) which are not equivalent to
the diagnosis results from ThL, but are closer to human
expectations of diagnoses.

In Fig. 1 we only consider ⌘ to be applied to a theory. In the
following we extend this and allow to add new hypotheses
to Th in order to represent ThL in a correct way. For the
propositional modeling language L, we assume to capture
Horn clause logic with the following two extensions:

Conjunctions at the right side of a rule. For the ex-
tended logical representation we allow L to comprise
rules of the form p1 ^ . . . ^ pn ! q1 ^ . . . ^ qm where all
pi and qj are elements of A.

Disjunctions at the right side of a rule. We further
allow theories written in L to include rules of the form

p1 ^ . . . ^ pn !
✓

(q1,1 ^ . . . ^ qm1,1)_ . . .
. . . _ (q1,k ^ . . . ^ qmk,k)

◆

where all propositions are elements of A and there exists
exactly one pi in i = 1, . . . , n that is also element of
Hyp. Further we require that all q1,1 to qmk,k are to be
in A \ Hyp.

The first extension can be simply handled via introducing
a rule for each proposition used at the right side of
an implication. The second extension requires more care
when translated to a Horn theory because of the involved
disjunction. The idea behind the representation can be
best explained using the example from before, where

emptyBat!
✓

(noStarterNoise^ engineNotRun)
_ (starterNoise^ engineNotRun)

◆
.

When considering that those two classes of e↵ects are due
to a slightly di↵erent state of the battery, i.e., the battery
is not charged versus the battery is not charged enough, we
are able to represent the above sentence using two di↵erent
hypotheses as follows:

emptyBat1 ! (noStarterNoise^ engineNotRun)

emptyBat2 ! (starterNoise^ engineNotRun)

In this representation we explicitly refer to the two slightly
di↵erent causes. By doing so we refrain from prematurely
discriminating the original hypothesis in case one of the
conjunctions validates to false.

To map a model in L to Horn clauses, we have to convert
KB(A,Hyp,ThL) to KB(A0,Hyp0,Th) by transforming the
theory with the two mentioned extensions into Horn and
adapting the set of hypotheses as well as propositional
variables accordingly. Assume a ThL written in L. ThL

contains a set of Horn clauses (HC) as well as a set of rules
with conjunctions on the right hand side (C), and rules
with disjunctions at the right hand side (D). We define
the mapping function ⌘(ThL) resulting in the Horn theory
Th as follows:

⌘(ThL) = HC [
[

c2C

⌘(c) [
[

d2D

⌘(d) (1)

The Horn clause sentences do not require any adaptation.
As stated earlier, the implications stemming from the
first extension can be translated into Horn clauses in a
straightforward manner; for each proposition qj in the
head of the rule a new clause is created where qj is the
only element on the right side. Thus, 8c 2 C :

⌘(c) =

m[

j=1

p1 ^ . . . ^ pn ! qj (2)

Handling the second extension requires us to convert
the rules of the theory and adapt the set of hypotheses
and variables. We define the second extension as clauses
with a disjunction on the right hand side not containing
any hypotheses and we require the body of the rule
to comprise exactly one hypothesis and zero or more
other propositions. Assuming p1 2 Hyp, we describe the
conversion for all d 2 D as

⌘(d) =

k[

l=1

p1,l ^ p2 ^ . . . ^ pn ! q1,l ^ . . . ^ qml,l . (3)

Figure 8.1: Mapping from one theory to another creating intuitive diagnoses.

the propositional modeling language L, we assume to capture Horn clause logic with the
following two extensions:

Conjunctions at the right side of a rule. For the extended logical representation we allow
L to comprise rules of the form p1 ∧ . . . ∧ pn→ q1 ∧ . . . ∧ qm where all pi and qj are
elements of A.

Disjunctions at the right side of a rule. We further allow theories written in L to include
rules of the form

p1 ∧ . . . ∧ pn→
(

(q1,1 ∧ . . . ∧ qm1,1)∨ . . .
. . . ∨ (q1,k ∧ . . . ∧ qmk,k)

)
,

where all propositions are elements of A and there exists exactly one pi in i = 1, . . . , n
that is also element of Hyp. Further we require that all q1,1 to qmk,k are to be in A\Hyp.

The first extension can be simply handled via introducing a rule for each proposition used
at the right side of an implication. The second extension requires more care when translated
to a Horn theory because of the involved disjunction. The idea behind the representation
can be best explained using the example from before, where

emptyBat→
(

(noStarterNoise∧ engineNotRun)
∨ (starterNoise∧ engineNotRun)

)
.

When considering that those two classes of effects are due to a slightly different state of the
battery, i.e., the battery is not charged versus the battery is not charged enough, we are able
to represent the above sentence using two different assumptions as follows:

emptyBat1→ (noStarterNoise∧ engineNotRun)

emptyBat2→ (starterNoise∧ engineNotRun)

In this representation we explicitly refer to the two slightly different causes. By doing
so we refrain from prematurely discriminating the original hypothesis in case one of the
conjunctions validates to false.

To map a model in L to Horn clauses, we have to convert KB(A,Hyp,ThL) to KB(A′,Hyp′,Th)
by transforming the theory with the two mentioned extensions into Horn and adapting the
set of hypotheses as well as propositional variables accordingly. Assume a ThL written in L.
ThL contains a set of Horn clauses (HC) as well as a set of rules with conjunctions on the
right hand side (Conj), and rules with disjunctions at the right hand side (Disj). We define
the mapping function η(ThL) resulting in the Horn theory Th as follows:

η(ThL) = HC ∪
⋃

c∈Conj

η(c) ∪
⋃
d∈Disj

η(d) (8.1)

The Horn clause sentences do not require any adaptation. As stated earlier, the implications
stemming from the first extension can be translated into Horn clauses in a straightforward

8.2 Extended Modeling 149

manner; for each proposition qj in the head of the rule a new clause is created where qj is
the only element on the right side. Thus, ∀c ∈ Conj :

η(c) =
m⋃
j=1

p1 ∧ . . . ∧ pn→ qj (8.2)

Handling the second extension requires us to convert the rules of the theory and adapt the
set of hypotheses and variables. We define the second extension as clauses with a disjunction
on the right hand side not containing any hypotheses and we require the body of the rule to
comprise exactly one hypothesis and zero or more other propositions. Assuming p1 ∈ Hyp,
we describe the conversion for all d ∈ Disj as

η(d) =
k⋃
l=1

p1,l ∧ p2 ∧ . . . ∧ pn→ q1,l ∧ . . . ∧ qml,l . (8.3)

For each conjunction l on the right side of d a new rule is added such that the conjunction
constitutes the head of the rule. Moreover, the hypothesis in the body is exchanged by a new
assumption, i.e., p1,l, while all other propositions on the left side remain unchanged. This
newly created hypothesis has to be considered in Hyp′ and A′.

Depending on the number of elements within the conjunction, applying this conversion
may lead to rules in the form of the first extension. Hence, we adapt η(d) to

η(d) =
k⋃
l=1

η(cl) , (8.4)

where cl is p1,l ∧ p1 ∧ . . . ∧ pn→ q1,l ∧ . . . ∧ qml,l.

Example 8.2

Let us consider a simple example to show the conversion using η(ThL). Assume a knowl-
edge base KB(A,Hyp,ThL) with

Hyp =
{
H1, H2, H3

}
,

A =
{
H1, H2, H3, e1, e2, e3, e4, e5

}
,

ThL =
{

H1 ∧ e1 → e2, H1 ∧H2 → e3 ∧ e5,

e2 → e3, H3 → e1, H3 → e4 ∨ (e3 ∧ e5)

}
.

The second clause of the theory is an example of the first extension, i.e., Conj = {H1 ∧H2 →
e3 ∧ e5}, the last clause features a disjunction on the right side, i.e., Disj = {H3 →
e4 ∨ (e3 ∧ e2)}, and the remaining clauses are Horn, i.e., HC = {H1 ∧ e1 → e2, e2 →
e3, H3 → e1}. Applying η(ThL) results in the following KB(A′,Hyp′,Th):

Hyp′ =
{
H1, H2, H3, H3,1, H3,2

}
,

A′ =
{
H1, H2, H3, H3,1, H3,2, e1, e2, e3, e4, e5

}
,

Th =

H1 ∧ e1 → e2, H1 ∧H2 → e3,

H1 ∧H2 → e5, e2 → e3, H3 → e1,

H3,1 → e4, H3,2 → e3, H3,2 → e5

150 Chapter 8 Extending the Modeling Framework for Abductive Diagnosis beyond Horn Clauses

Once the KB(A,Hyp,ThL) has been converted to KB(A′,Hyp′,Th) and given a set of obser-
vations the diagnoses of PHCAP(A′,Hyp′,Th,Obs) can be computed as the set ∆S using any
diagnosis engine capable of processing Horn clauses. It is apparent that the hypotheses in
∆S are not necessarily part of the original Hyp due to the compilation based on the second
extension. In order to retrieve the desired diagnosis set ∆S

L, (1) ∆S has to be mapped
back into the original hypotheses space using η̂ and (2) possible inconsistencies have to be
resolved:

(1) To determine the original assumptions we have to map each newly generated hypoth-
esis Ĥ, i.e., Ĥ ∈ Hyp′ ∧ Ĥ /∈ Hyp, involved in a diagnosis back to its original hypothesis
contained in Hyp. We define the function η̂ as

η̂(pi,l) = pi , (8.5)

where pi,l ∈ Hyp′ ∧ pi,l /∈ Hyp. That is, each assumption added during the translation is
mapped back to its original source hypothesis, while no transformation is necessary in case
the proposition is already present in Hyp.

To retrieve the intuitive diagnoses of the original theory, each hypothesis in each diagnosis
in ∆S has to be converted in case it is not in Hyp. Since there might be several corresponding
Ĥ ∈ Hyp′ for each H ∈ Hyp, the mapping to the originals may lead to non-minimal solutions,
i.e., supersets of other diagnoses. Therefore, we introduce a minimization function µ that
removes all supersets to ensure parsimonious diagnoses:

η̂(∆S) = µ({
⋃

Ĥ∈∆x

η̂(Ĥ) | ∆x ∈ ∆S}). (8.6)

Example 8.2 (cont.)

Given the PHCAP(A′,Hyp′,Th,Obs) with Obs = {e3, e4} we compute the diagnoses and
obtain ∆S = {{H3,1, H3,2}, {H1, H3, H3,1}, {H1, H2, H3,1}}. Right away we can observe
that newly created hypotheses are part of the diagnoses, consequently, these have to be
converted back to their source hypotheses using η̂. Considering the first solution we see
that it contains two hypotheses which will be transformed back to the same proposition.
Hence, diagnoses may decrease in size when translated back; in this case the double fault
on the Horn model becomes a single fault diagnosis when mapped back. Converting the
diagnoses back without minimization would result in {{H3}, {H1, H3}, {H1, H2, H3}}.
Hence to retrieve parsimonious solutions an additional step is required where all supersets
are removed by µ leading to η̂(∆S) = ∆S

L = {{H3}}.

(2) It is possible that inconsistent explanations are derived due to the introduction of new
hypotheses when applying η. Yet, only consistent solutions are valid, thus, any contradiction
inducing diagnoses have to be disregarded.

Example 8.3

Given a KB(A,Hyp,ThL) with
Hyp =

{
H1, H2

}
,

A =
{
H1, H2, e1, e2, e3

}
,

ThL =
{
H1 ∧H2 → ⊥, H1 → e1, H2 → e2 ∨ e3

}

8.2 Extended Modeling 151

and a set of observation Obs = {e1, e3}, applying η(ThL) to the theory as described above
we retrieve

Hyp′ =
{
H1, H2, H2,1, H2,2

}
,

A′ =
{
H1, H2, H2,1, H2,2, e1, e2, e3

}
,

Th =
{
H1 ∧H2 → ⊥, H1 → e1,

H2,1 → e2, H2,2 → e3

}
.

The abductive explanation given PHCAP(A′,Hyp′,Th,Obs) is {H1, H2,2}. Transforming
this solution back to the original hypotheses space results in η̂(∆S) = {{H1, H2}}, which
is inconsistent with the theory and thus does not constitute a diagnosis. Hence, solution
candidates inconsistent with the theory, i.e., ∀∆x ∈ η̂(∆S) : ∆x ∪ Th |= ⊥, have to be
removed subsequentlya.

aIn case an ATMS is utilized for computing the explanations, it already provides a record of propositions that
cannot be true simultaneously, i.e., the NOGOOD node.

The mapping function η obviously increases the size of the PHCAP both in terms of the
number of literals and hypotheses. The increase is polynomial as stated in the following
theorem.

Theorem 8.1. Let Nc and Nd be the number of rules comprising conjunctions and disjunc-
tions respectively. Further let Mc and Md be the maximum number of conjunctions and
disjunctions occurring in any rule. The number of new rules is in the worst case proportional
to O(Nc ·Mc +Nd ·Mc ·Md). The number of new hypotheses is in the worst case of order
O(Nd ·Md).

Proof. In case of conjunctions on the right side of a rule, we add Mc new rules to the
system. Hence, we have Nc ·Mc new rules here in total. In case of disjunctions, we add
Md new rules comprising at the maximum Mc propositions at the right side. This leads
to Nd ·Mc ·Md new rules in total. Adding these two worst case figures leads to the total
number of added rules. Because of the conversion of disjunctions appearing on the right
side of a rule, we add at the maximum Md hypotheses for each such rule, leading to Nd ·Md

new hypotheses in total.

8.3 Empirical Evaluation

There are certain practical application areas, where the restriction to a Horn model might
not be able to grasp the entirety of how failures affect the system. We have given a simple
example in the introduction, where a fault leads to two possible scenarios connected by
a disjunction. The need for a more expressive system description has also been stated by
industry, where failure assessments often not only record effects appearing in conjunction,
but also comprise knowledge about symptom alternatives. This can be further useful in
cases where there is a time difference between the occurrence of various manifestations
or the anomaly detection method is subject to measurement inaccuracies. Furthermore,
classical abductive inference does not conform with real world diagnostic reasoning in
case disjunctive effects are involved as shown previously. Yet, it remains to show whether
the increased theory size due to the transformation to Horn sentences induces runtime
disadvantages or the computation effort remains practical. Subsequently, we provide first
experimental results.

152 Chapter 8 Extending the Modeling Framework for Abductive Diagnosis beyond Horn Clauses

In the previous section, we have seen that the conversion from a model in L to Horn
clauses increases the size of the PHCAP. To determine whether this has consequences for
practical applications, we carried out an empirical evaluation based on artificially generated
examples representing theories written in L. Before describing the abduction methods and
the needed modifications for general-purpose solvers, we report on how the L models were
created.

Our example generator constructs theories given a set of parameters: n defines the
maximum number of hypotheses, o determines the upper limit of overlap between rules (i.e.,
the maximal number of subsequent rules sharing effects), r controls the maximum number
of elements in the body, s describes the threshold for the number of literals in a conjunction
within the head of a rule, and t is the maximum of propositions within the head of rules of the
second extension. We randomly assign these propositions into conjunctions which are then
connected by disjunctions. All these parameters are upper limits, e.g., the generator produces
rules which have between 1 and r propositions in the body etc. The final number of rules
and effects vary depending on the parameters. To construct a PHCAP the generator randomly
chooses between 1 to k observations from the effect set. Furthermore, whenever an effect is
contained within the body of a rule it is added as a fact to the theory. For our evaluation
we created 144 PHCAPs, where every sample was generated with r = s = o = 5 and t = 6,
while the number of observations k was randomized between 1 and 30. For simplicity, we
chose only positive observations, to ensure that the computed diagnoses represent what
we understand as natural explanations given a general-purpose solver. Table 8.1 presents
the statistics of the original models as well as of the diagnosis problems compiled to Horn
using η. We observe in the table that the number of the hypotheses increases as well as the
size of the theory which is directly connected to the number of non-Horn rules and their
composition. The translation time with η took on average 68.5 milliseconds, however, the
compilation to Horn is part of the off-line portion of the diagnosis process.

Table 8.1: L and Horn model statistics.

MIN MAX AVG MED

L
M

od
el

s

|Hyp| 6 301 129.0 112
|A \ Hyp| 5 973 358.9 295
|ThL| 11 391 172.1 151
|Facts| 1 98 41.8 40
|Conj| 0 132 51.7 45
|Disj| 1 125 51.1 48

H
or

n
M

od
el

s |Hyp′| 9 616 293.9 352
|A′\Hyp′| 5 973 358.9 295
|Th| 20 972 475.5 567
|Facts| 1 98 41.8 40
|Conj| 0 0 0 0
|Disj| 0 0 0 0

Table 8.2: Experimental results on 144 samples (1440 comparisons).

clingo | L′ Models ATMS | Horn Models
MIN MAX AVG MED MIN MAX AVG MED

Total Time [in ms] < 1 90,430 5,548.71 1160 < 1 137,772.5 3,022.3 4.0
Runtime [in ms] < 1 90,430 5,548.71 1160 < 1 137,768.4 2,588.61 2.2
Time η̂ [in ms] - - - - < 1 61,960.3 433.7 1.44
|∆S

L| 1 256 12.1 1 1 256 12.1 1
Single Fault ∆S

L 0 5 0.2 0 0 5 0.2 0
Double Fault ∆S

L 0 14 0.2 0 0 14 0.2 0
Triple Fault ∆S

L 0 36 0.7 0 0 36 0.7 0
|∆S | - - - - 1 22,800 336.0 1
Single Fault ∆S - - - - 0 0.1 0.2 0
Double Fault ∆S - - - - 0 45 0.7 0
Triple Fault ∆S - - - - 0 1521 15.6 0

8.3 Empirical Evaluation 153

We used two scenarios and compared them to determine the computational effort of our
approach. On the one hand, we evaluated the diagnosis time on the compiled Horn models
using an ATMS written in Java as well as a Java implementation of η and η̂ to convert the
models to their Horn representation and the solutions back to the original hypotheses space.
On the other hand, we made some adaptations to the L models to ensure intuitive diagnoses
when exploiting general-purpose solvers. In particular, as shown in the previous section given
a theory {Φ→ α∨β} and an observation α, Φ is not an explanation as {Φ→ α∨β}∪Φ 6|= α.
Therefore, an abductive reasoning mechanism would not provide the explanations we receive
based on our transformed model. In this regard, we construct models for a general-purpose
solver, where the disjunctions on the right hand side are replaced by conjunctions. We refer
to these models as L′ within our analysis2. In addition, when constructing our PHCAPs we
ensure to only consider positive observations which guarantees that based on these adapted
L′ models the explanations coincide with the reasonable diagnoses we seek to extract.

To compute the diagnoses on the samples written in L′ we exploit a logic programming
meta-interpreter for propositional abduction and a logic program encoding of the diagnosis
problems as proposed by Saikko, Wallner, and Järvisalo [Sai+16]. To account for all
solutions we adapt their encoding by removing the included minimum-cost optimization
statement. Yet, as mentioned, in order to yield intuitive explanations we do not directly
convert the original L system descriptions into disjunctive logic programs, but create normal
logic programs, i.e., disjunctions on the right hand side are converted into conjunctions.
We invoked the C++ ASP solver clingo3 version 4.5.4 [Geb+14] to compute the abductive
explanations based on the logic programs. As our interest is in deriving all subset minimal
solutions we called clingo via the options - -heuristic=Domain, - -dom-mod=5,16, and -
-enum-mod=domRec, which invokes the enumeration of all subset minimal answer sets, i.e.,
all parsimonious abductive explanations.

For the experiments, each algorithm computed the minimal diagnoses for each sample ten
times on a Mac Pro (Late 2013) with a 2.7 GHz 12-Core Intel Xeon ES processor and 64GB
of RAM running OS X 10.10.5. Each diagnostic computation faced a 10 minute runtime limit
and samples where one of the algorithms exceeded the timeout were disregarded to not
distort the runtime report on η̂ and thus the overall evaluation.

Table 8.2 presents the runtime results. The total computation time of our approach
includes the diagnosis using the ATMS and the time to convert the results back via η̂. For
clingo we only considered its own measured execution time4 as part of the entire runtime.
Unsurprisingly, on average the total computation time on the Horn theories using the ATMS
is faster than the ASP solver on the L′ models. Figure 8.2a graphically shows the execution
time differences between the two approaches. Each data point depicts the relation between
the log runtimes in milliseconds of one clingo execution to the total execution time of the
compiled approach for a single diagnosis problem. Points above the diagonal represent
sample runs, where diagnosis on the Horn representation was faster than the ASP solver.
As can be seen, for the bulk of PHCAPs the ATMS computation is more efficient. However,
there are certain samples which cannot be solved efficiently using the ATMS and/or require
additional time for conversion to the original hypotheses space as can be seen from the
corresponding maximum values in Table 8.2. Figure 8.2b illustrates for each PHCAP the
runtime in relation to the number of hypotheses included within the original L theory
for both methods5. As can be seen there are two runtime behaviors for the ATMS; one

2In comparison to the system descriptions transformed via η, these L models contain fewer clauses as well as
hypotheses; hence, the resulting diagnosis problems are simpler than the one’s based on the compiled theories.

3https://potassco.org/clingo/
4clingo reports its runtime as seconds, thus, for our analysis we converted them to milliseconds.
5Note here that due to the conversion of the execution reported by clingo in milliseconds, several sample runs

feature the same computation time. Meaning that data points for clingo overlap in Figure 8.2b.

154 Chapter 8 Extending the Modeling Framework for Abductive Diagnosis beyond Horn Clauses

https://potassco.org/clingo/

where the runtime only gradually increases with the number of hypotheses and one where
the computation time grows more steeply. Investigating the reasons for this observation,
we determine that the models with an extensive computation time feature less effects
and a greater overlap on average, that is, the labels propagated by the ATMS are larger,
require more time for updating and due to the more interconnected structure more label
minimizations are likely to occur. Further, these PHCAPs are connected to a larger diagnosis
sets ∆S , which require more subset checks when mapped back with η̂ since these promote
an increased minimization time via µ.

0.1

1

10

100

1000

10000

100000

0.1 1 10 100 1000 10000 100000

cl
in

go
 –
𝔏'

m
od

el
s

ATMS – Horn models

(a) Scatter plot of total log computation times
[in ms].

0.1

1

10

100

1000

10000

100000

0 50 100 150 200 250 300

Lo
g

ru
nt

im
e [

in
 m

s]

|Hyp|

clingo ATMS

(b) Scatter plot of log runtimes [in ms] per
number of hypotheses in the L models.

Figure 8.2: Experiment results for the extended modeling.

8.4 Physics of Failure
As mentioned in the previous sections, the need for allowing a more expressive description

of effect relations comes directly from industry, where observations alternatives may occur.
Since a main focus of our work is to enable a seamless integration of model-based diagnosis
in current work processes, we show how a failure assessment may be automatically used for
constructing a knowledge base. In this regard we focus on the PoF method. The PoF approach
to reliability analyzes root causes of failures and utilizes theoretical models capturing the
relation between operational and environmental loads as well as damage accumulation rates.
Thus, these mathematical models have to represent the physics inherent to the damage
process. Based on the knowledge on failure mechanisms and potential degradation in
addition to life cycle stress information, estimates can be made in regard to the probability
of certain failures for a component or product under investigation [PD95].

Gray et al. [GW10; Gra+11] exploit this PoF approach for combining diagnostic and
prognostic techniques to create an FMA. Their method relies on a structured evaluation of
faults, in particular, physical and chemical failure mechanisms, and their manifestations.
In order to create a comprehensive assessment of a system, it is decomposed into its
subcomponents. Each part is then analyzed in regard to its potential failure modes as well
as the damage driving physics. To ensure a complete depiction of the system, top-down
and bottom-up reasoning are incorporated to determine failure relevant operational and
environmental boundary conditions. For each combination of failure mode and component,
a mathematical model is used to calculate the rate at which damage accumulates in response
to the operating environment. The approach is similar to Failure Modes, Mechanisms and
Effects Analysis (FMMEA) [Gan+05] as it emphasizes the evaluation of damage driving

8.4 Physics of Failure 155

conditions. The FMA method differentiates between automatically retrieved state indicators
such as SCADA results and measurements from inspections. In contrast to FMEA or FMMEA,
the evaluation considers a more detailed view on the relationships between failure effects.
By incorporating logical connections, namely AND as well as OR, the description of effects is
a Boolean expression representing which consequences are observed in case of a fault and
how these are linked.

Example 8.4

Table 8.3 shows parts of an FMA produced by an expert group during a system analysis
for the converter of an industrial wind turbine which we have seen in an adapted form in
Example 7.1. As can be seen the analysis encompasses the failure mechanism, i.e. fault
mode, the component, the operation and environmental conditions promoting the damage,
as well as the effects which are on the one hand state indicators automatically retrieved
from a condition monitoring system as well as manual part inspections.

Table 8.3: FMA Example.

Fault Mode Component Damage Pro-
moting Operat-
ing Mode

Aggravating
Boundary Con-
ditions

State Indicators/Part In-
spection

Electrical
chemical
aging

Buck Boost -
Electrolyte
Capacitor

Partial load High ambient tem-
perature

(T_power_cabinet OR
P_turbine) AND ESR

Corrosion Fan - Pin Full load Saline environment,
high temperature en-
vironment

T_cabinet OR P_turbine

Thermo-
mechanical
fatigue
(TMF)

Fan - Bearing
Running Surface

Start Up/ Shut
Down, Transient
current/voltage
events

Light winds (fre-
quent start up and
shot down),
changing wind
direction (yaw
adjustment)

T_cabinet AND
P_turbine AND Alarm-
code_overvoltage_link

High-cycle
fatigue
(HCF)

IGBT - Wire
Bonding

Start Up/ Shut
Down, Transient
current/voltage
events

Low ambient temper-
ature

T_inverter_cabinet OR
T_nacelle OR P_turbine

8.4.1 Model Development
As we are creating propositional Horn clauses to form a PHCAP, some adjustments to the

information stored in the FMA have to made. Again we can use three sources of information
for modeling: the set of components COMP, their potential fault modes MODES, and the
Boolean formulas FORM describing the connection between the state indicators and part
inspections.

Definition 8.1 (Failure Mode Assessment (FMA)). An FMA is a set of tuples (C, FM, ϕ)
where C ∈ COMP is a component, FM ∈ MODES is a fault mode, and ϕ ∈ FORM is the
Boolean expression relating effects to one another.

Since the effects can be connected by disjunctions, a simple mapping to Horn clauses
as with the FMEA is not possible. We have to apply the mapping we have formulated in
the previous section. Here, we give a presentation of the approach in terms of an FMA
failure record. As a disjunction of effects implies that at least one of these manifestations
is present in case of the failure, a mapping to conjunctions, as Horn clauses would require,

156 Chapter 8 Extending the Modeling Framework for Abductive Diagnosis beyond Horn Clauses

is inadequate. Thus, the underlying information has to be preprocessed in a new FMA
which we denote FMAp. The first step is to ensure that each Boolean expression in the
effect description is in DNF, i.e., each formula is a disjunction of conjunctions. Basically, this
ensures that the clauses we retrieve when mapping the record correspond to our language
L. This conversion can be simply achieved by applying the laws of Boolean algebra. Let us
assume that there is a function D converting a Boolean expression φ into its DNF form:

∀ϕ ∈ FORM : ϕ′ = D(ϕ) (8.7)

Thus, each tuple (C, FM, ϕ′) ∈ FMAp now contains the DNF formula ϕ′ of ϕ.

Now, we can apply the apply the mapping function η, thus, in the second step we create for
each record, where ϕ′ consists of a disjunction, a new fault mode FMc for each conjunction
c ∈ ϕ′. Each resulting tuple (C, FMc, c) is added to FMAp. It is apparent that each original
tuple (C, FM, ϕ′) has to be removed subsequently from FMAp.

Example 8.4 (cont.)

The first entry of the FMA in Table 8.3 results in the following tuple:

(Buck_Boost, Electrical_chemical_aging,(T_power_cabinet ∨ P_turbine) ∧ ESR)

For the first entry, we can record ϕ′ as

(T_power_cabinet ∧ ESR) ∨ (P_turbine ∧ ESR) .

The Boolean expression in DNF of the first entry comprises a disjunction with two con-
junctions, i.e. (T_power_cabinet ∧ ESR) and (P_turbine ∧ ESR). Thus, for each of the
conjunctions a new fault mode FMc is generated and the resulting tuples of the form
(C, FMc, c) are:

(Buck_Boost, Electrical_chemical_aging_1,T_power_cabinet ∧ ESR)

and
(Buck_Boost, Electrical_chemical_aging_2, P_turbine ∧ ESR) .

It is apparent that the number of records within the FMAp is increased in regard to the
primary FMA, as each DNF formula can be exponentially larger than its originala. Table 8.4
shows the processed FMAp.
Table 8.4: Processed Failure Mode Assessment (FMAp) of the Converter.

Fault Mode Component Damage Pro-
moting Operat-
ing Mode

Aggravating
Boundary Con-
ditions

State Indicators/Part In-
spection

Electrical
chemical
aging 1

Buck Boost -
Electrolyte
Capacitor

Partial load High ambient tem-
perature

T_power_cabinet AND ESR

Electrical
chemical
aging 2

Buck Boost -
Electrolyte
Capacitor

Partial load High ambient tem-
perature

P_turbine AND ESR

Corrosion 1 Fan - Pin Full load Saline environment,
high temperature en-
vironment

T_cabinet

Corrosion 2 Fan - Pin Full load Saline environment,
high temperature en-
vironment

P_turbine

8.4 Physics of Failure 157

Thermo-
mechanical
fatigue
(TMF)

Fan - Bearing
Running Surface

Start Up/ Shut
Down, Transient
current/voltage
events

Light winds (fre-
quent start up and
shot down),
changing wind
direction (yaw
adjustment)

T_cabinet AND P_turbine

High-cycle
fatigue
(HCF) 1

IGBT - Wire
Bonding

Start Up/ Shut
Down, Transient
current/voltage
events

Low ambient temper-
ature

T_inverter_cabinet

High-cycle
fatigue
(HCF) 2

IGBT - Wire
Bonding

Start Up/ Shut
Down, Transient
current/voltage
events

Low ambient temper-
ature

T_nacelle

High-cycle
fatigue
(HCF) 3

IGBT - Wire
Bonding

Start Up/ Shut
Down, Transient
current/voltage
events

Low ambient temper-
ature

P_turbine

aNote here that in our modeling approach in Section 8.2, we already restrict the right hand side of disjunctive
extension in L to be in DNF.

Then, the mapping MFMA : 2FMAp 7→ HC is similar to M and the composition of Hyp
(Equation (8.10)) and A (Eq. (8.11)) is analog to the FMEA modeling.

Definition 8.2. Given an FMAp, the function MFMA is defined as follows:

MFMA(FMAp) =def

⋃
t∈FMAp

M(t) (8.8)

where
MFMA(C, FMc, c) =def {mode(C, FMc)→ v |v ∈ c} (8.9)

Hyp =def

⋃
(C,FMc,c)∈FMAp

{mode(C, FMc)} (8.10)

A =def

⋃
(C,FMc,c)∈FMAp

{mode(C, FMc)} ∪
⋃
v∈c

v (8.11)

Example 8.4 (cont.)

Applying Equation (8.10), Equation (8.11), and MFMA to the FMAp in Table 8.4 results in
the following KB:

Hyp =

mode(Buck_Boost, Electrical_chemical_aging_1),
mode(Buck_Boost, Electrical_chemical_aging_2),

mode(Fan_Pin,Corrosion_1), . . .

A =

{
mode(Fan_Pin,Corrosion_1), T_power_cabinet, P_turbine, . . .

}

158 Chapter 8 Extending the Modeling Framework for Abductive Diagnosis beyond Horn Clauses

Th =

mode(Buck_Boost, Electrical_chemical_aging_1) → T_power_cabinet,

mode(Buck_Boost, Electrical_chemical_aging_1) → Equivalent_series_resistance_higher,
mode(Buck_Boost, Electrical_chemical_aging_2) → P_turbine,

. . .

From Section 8.2, we know that the computed diagnoses are not equivalent to the results

on the original model and the solutions do not contain the original fault modes, but the
additionally created ones of the second transformation step. Thus, these have to be mapped
back once the explanations have been computed. Also recall that due to the creation of
the auxiliary hypotheses the abductive solutions when converted back to the original fault
modes might not be minimal and it is necessary to ensure that the solutions are consistent
with the background knowledge.

8.4.2 Advantages and Limitations of Using PoF
This approach combines prognosis and diagnosis by determining damage models for

recorded fault modes. As FMA allows to express the combination of effects with disjunctions
a simple mapping to a Horn theory is not possible. Thus, a conversion prior to model creation
is necessary. The disadvantage is that the resulting processed model might be exponentially
larger than the original assessment due to the transformation, that the resulting diagnoses
have to be mapped back to the initial causes and that finally subset checks have to be
performed to ensure minimal explanations. Furthermore, due to the inclusion of disjunctions
between effects, the discrimination capability of probing is limited to a certain extend. The
main benefit of the FMA is the prognosis capabilities based on the knowledge of failure
mechanisms and life cycle stress. In comparison to the other failure assessments we have
considered as a basis for an automatic modeling approach in Section 3.3, i.e., FMEAs and
fault trees, the incorporation of information of time to failure, allows a more accurate
ranking of diagnoses.

8.5 Conclusions
In this chapter, we have shown a conversion from a subset of propositional logic to

Horn sentences in the context of abductive model-based diagnosis. By allowing a more
expressive representation of the system to be diagnosed, a more accurate depiction of the
failure behavior can be encoded and intuitive explanations can be derived. We do not
claim the diagnoses are equivalent to the ones on the original model. Nevertheless, we
argue that the solutions generated are more desirable from a practical point of view as
they resemble human diagnostic reasoning. In particular, we have defined an extension of
Horn clauses, which may feature a disjunction at the head of a rule, allowing to specify
effects which not necessarily all be observable given a failure. The need for this has been
raised by industry. Differentiating between system manifestations occurring in conjunction
and symptom alternatives is essential in order to accurately specify failure behavior and
not prematurely rule out diagnosis candidates. Yet, the transformation functions we have
presented are straight forward, easy to implement, and allow the usage of any Horn clause
abductive reasoning system to receive these natural explanations.

To convey the practicality of the approach we have conducted an initial empirical exper-
iment using artificially generated samples where we compared the computation time of
our approach, including the diagnosis on the compiled models and the transformation back
to the original hypotheses space, to abduction using a logic program encoding with some

8.5 Conclusions 159

adaptations on an ASP solver. From the data we conclude that even though the size of the
model increases due to generation of additional hypotheses, the diagnosis on the compiled
model using a Horn theorem prover is more runtime efficient than the computation based
on an ASP solver. While this observation is not surprising, the main benefit from using our
model compilation is the resulting intuitive diagnoses. Further, the transformation allows
exploiting other solvers specifically tailored to abductive reasoning which are limited to
Horn even when the underlying model does not entirely conform to this restriction.

Lastly, we have considered the PoF approach to reliability analysis that combines prog-
nosis and diagnosis by determining damage models for recorded fault modes. The failure
assessments created by our industrial partner based on the PoF method allow to express
the combination of effects with disjunctions such that a simple mapping to a Horn theory is
not possible. In addition, diagnosis on the original model would not lead to the diagnose
we aim to generate in a practical context. Thus, a compilation of the knowledge to Horn is
necessary. The disadvantage is that the resulting processed model might be exponentially
larger than the original assessment due to the transformation6, that the resulting diagnoses
have to be mapped back to the initial causes, and that finally checks have to be performed
to ensure minimal consistent explanations. The main benefit of the PoF approach is the
prognosis capabilities based on the knowledge of failure mechanisms and life cycle stress. In
comparison to FMEA and FTA, the incorporation of information of time to failure, allows a
more accurate ranking of diagnoses.

What is missing is the semantic operation necessary to define these more rational explana-
tions in a logical framework. It is clear that there is not an entailment relation between the
diagnoses and the observations w.r.t the background theory, but the explanations are consis-
tent with the theories. Other future work may include an extension of the source language,
a more detailed investigation of the trade-offs between runtime and expressiveness, and
additional evaluations of the approach. We are planning on assessing the technique in the
wind turbine domain. There our industrial partner and one of their customers are currently
operating and evaluating an implementation of our method. This trial should give us insights
into whether the approach can be applied successfully to an industrial application in regard
to computation times and fault identification effectiveness. We give some insights in the
realization in the upcoming chapter. Additionally, an analysis on a benchmark featuring
practical samples would aid in conveying the feasibility of the compilation and its resulting
diagnoses.

6This exponential explosion depends on the Boolean expression within the failure assessment and not on the
mapping function we have presented in Section 8.2.

160 Chapter 8 Extending the Modeling Framework for Abductive Diagnosis beyond Horn Clauses

9Designing a Diagnosis
Application and its Graphical
User Interface

„It is the pervading law of all things organic and inorganic, of
all things physical and metaphysical, of all things human and
all things superhuman, of all true manifestations of the head,
of the heart, of the soul, that the life is recognizable in its
expression, that form ever follows function. This is the law.

— Louis Sullivan
"The Tall Office Building Artistically Considered". 1896.

This chapter is based on the following publications:
• [Koi+17] Roxane Koitz et al. „Model-Based Diagnosis in Practice: Interaction Design

of an Integrated Diagnosis Application for Industrial Wind Turbines.“ In: Proceedings of
the 30th International Conference on Industrial Engineering and Other Applications of
Applied Intelligent Systems. 2017, pp. 440–445

• [Koi+18] Roxane Koitz et al. „Wind Turbine Fault Localization: A Practical Application
of Model-Based Diagnosis“. In: Diagnosability, Security and Safety of Hybrid Dynamic
and Cyber-Physical Systems. Cham: Springer International Publishing, 2018, pp. 17–43.
ISBN: 978-3-319-74962-4. URL: https://doi.org/10.1007/978-3-319-74962-4_2

This chapter is based on [Koi+18] of which a preliminary version has been published in
[Koi+17].

9.1 Motivation
As already mentioned, the dissemination of model-based diagnosis in practice is still

insignificant. While we have already addressed the issues of (1) developing diagnosis
models [CD99] by defining a process for abductive diagnosis in industrial practice that
is based on automatically extracting the necessary knowledge from records available and
(2) the computational effort of computing explanations through the evaluations we have
conducted, we have not discussed a real application so far. Although the previous two
chapters report on the initial situation and modeling challenge, in this chapter we attend to
the consolidation of model-based diagnosis and current industrial work processes, which is
an essential necessity for integrating new technology [Mil+00].

In cooperation between Graz University of Technology and Uptime Engineering the AMOR
project was initiated with the aim of providing a methodology and framework for model-
based diagnosis in the industrial wind turbine domain. Due to Uptime Engineerings many
years of experience and expertise in the field of wind power plant maintenance, industrial
wind turbines constitute an ideal test bed and application area for model-based diagnosis. In
cooperation with Uptime Engineering, the self maintenance of wind power plants of a local
Austrian wind energy provider should be facilitated and improved in regard to efficiency
and effectiveness. Usually, wind turbine maintenance is based on a service contract with

161

https://doi.org/10.1007/978-3-319-74962-4_2

the turbine manufacturer. In case of a failure, the maintenance provider schedules the
repair work without consideration of current wind conditions or already schedule planned
maintenance activities. Given the competitive nature of the wind energy sector this can
have a negative effect on the efficiency of the wind parks and hence affect the revenue of
the energy provider. Moreover, O&M costs are not evenly distributed over the turbine life
time but become more extensive as time progresses due to an increased component failure
probability and limited manufacturer warranty periods.

By maintaining their wind turbine installations themselves, the energy provider aims at
increasing the efficiency and effectiveness of the repair and replacement undertakings. In
particular,

• non-critical repairs should be scheduled with planned maintenance tasks,

• turbine downtime should be minimized,

• by scheduling maintenance assignments in consideration of the wind forecast the
energy harvest should be maximized,

• repair of broken components should be promoted in contrast to replacement of parts,
and

• by equipping the service technicians with the correct tools and required parts for
maintenance activities to travel efforts and hence maintenance time should be reduced.

Currently, the troubleshooting of the installations is mostly based on the SCADA alarm
codes reported by the wind turbine. However, as there is no direct correspondence between
failures and alarm codes and the codes do not provide information on the faulty component,
diagnosis is mainly based on the experience of the service technicians [Lüf18].

In this chapter, we present some of the results of the collaboration as well as the ongoing
realization of model-based diagnosis in practice. With this work we aim to bridge the gap
between the theory of model-based diagnosis and its practical application. In particular,
we tackle two barriers identified by Travé-Massuyès and Milne [TMM98], namely we focus
on human-computer interaction, i.e., how does the operator interact with the model-based
diagnosis system and which parameters do we use to increase the likelihood of system
acceptance and use even after the project is finished. Furthermore, we discuss how we
consolidate our model-based diagnosis tools and the existing condition monitoring software
in our project. We introduce an application designed to facilitate troubleshooting in the
industrial wind turbine domain. In particular, the application’s GUI is presented, which has
been created taking the needs, current work processes, and environments of the maintenance
personnel into consideration and aims at enhancing the effectiveness and efficiency of the
maintenance task. To ensure a usable interface and functionality, an iterative design process
was applied that incorporates continuous feedback from several stakeholders. Subsequently,
we discuss the current status of the integration of the model-based fault identification engine
in the industrial wind turbine domain. In the end, the diagnosis application should be part
of an existing monitoring system. Lastly, we give concluding remarks.

9.2 Abductive Model-Based Diagnosis
Prototype

To enable model-based diagnosis in industrial practice as proposed in Section 3, the neces-
sary failure information must be available to automatically extract an appropriate diagnostic
model and an anomaly detection method is needed to initiate the fault identification phase.
Furthermore, in order to yield benefits from deploying such a system, solutions need to be

162 Chapter 9 Designing a Diagnosis Application and its Graphical User Interface

computed efficiently1 and effectively reflecting defects present in the system. We argue,
however, that these technical features are not the only deciding factors determining the
success of a newly integrated diagnosis software. While current research frequently focuses
on developing and improving reasoning techniques, the suitable integration of model-based
diagnosis in operational processes is rarely addressed [Mil+00]. In addition, it is well known
that the acceptance of new technology is tightly linked to the perceived usefulness of the
product as well as its perceived ease of use [Dav89]. The former refers to the benefits for
the users and other stakeholders in regard to the performance of work tasks, whereas the
latter is on par with the usability2 of a product.

Hence, in developing a model-based diagnosis application for use in the field within our
project, we focus not only on the technical aspects of feasibility but further account for
the human factor. An interface and interaction design was incrementally developed for an
abductive model-based diagnosis engine that should function as a template for the actual
implementation of the tools that is currently being integrated into Uptime Engineering’s
software. Various prototypes were created iteratively, starting from a low-fidelity paper
mock-up to a clickable prototype depicting a usual fault identification scenario. These
prototypes reflect the above-described general process of abductive model-based diagnosis
in the context of wind power plants. Particular attention was paid to respecting current work
processes and accounting for a usable design.

The design process started with eliciting the requirements of the diagnosis application in
consideration of the stakeholders involved in the project, who are:

• the service technicians, who are the users, will operate the diagnosis software for
troubleshooting from the service center and also in the field, and are responsible for
performing the turbines’ planned maintenance, repair as well as replacement activities

• the management of a wind energy provider, planning on extending their self-maintenance
activities for their wind turbine plants in the future

• Uptime Engineering, who currently develop condition monitoring software for wind
turbines and seek to extend their portfolio with usable and extendable diagnosis
software

Requirements
A list of requirements in regard to the final diagnosis application was established during

the course of the various design iterations. The three distinct stakeholder groups have
differing requests, which were analyzed in order to resolve conflicts and prioritize the
resulting requirements. Since the success of the application depends to a great extent to
being used by the service technicians, special attention was given to their suggestions and
needs.

An important observation is that current fault detection activities performed by the service
personnel typically rely on visual inspection. Hence, in order to support diagnosis, images
should be used for easier recognition. Once a fault has been identified, the repair or
replacement task is executed according to the wind turbine manufacturer’s instruction
manuals. Therefore, such documents need to be easily accessible via the software. After
the maintenance activities have been completed, the service technicians are required to
create a report of the assignment and actions performed. The software should thus support

1Here, efficiency is subjective to the application domain, e.g., in the context of wind turbines deriving explanations
in minutes or even hours is sufficient, while for automotive on-board diagnosis this computation time is
unacceptable.

2Usability is defined in the ISO standard 9241 part 11 [Sta10] as “Extent to which a product can be used by specified
users to achieve specified goals with effectiveness, efficiency and satisfaction in a specified context of use.”

9.2 Abductive Model-Based Diagnosis Prototype 163

automation of the reporting step to reduce the overall effort. As the working environment
inside a wind turbine is often uncomfortable and limited in space, and work is performed
under time pressure in potentially difficult weather conditions, the user interface therefore
needs to be intuitive in use and must guide the user through a strictly defined sequence with
minimal user interactions. Considering the overall work process, the software should feature
a desktop software part operated in the service center as well as a mobile application, which
should be used within the turbine itself.

The management of the energy provider is interested in promoting digitalization as well as
increasing the productivity and safety of their wind operations. On the one hand the software
should support the service technicians in preparing all spare parts and tools necessary before
traveling to a wind turbine to ensure minimal downtime, while on the other hand given
the hazardous environment in the field it should support the safety processes already in
place, e.g., the service technicians personal safety equipment. In addition to the user and
management requirements, the specifications of Uptime Engineering needed to be satisfied.
To extend and update the knowledge base, i.e., abductive model, the users should be able to
report new fault modes, which have not been previously contemplated. Further, the user
interface should be extendable and adaptable to satisfy other customers as well as other
domains for future projects.

Design Process

To ensure a user friendly end product, the diagnosis engine’s GUI was developed using an
iterative process [Nie93]. Each iteration starts with a definition or adaptation of the require-
ments, then a design is created and subsequently a prototype is implemented. This prototype
is evaluated by users from the target group to determine usability issues, which must be
fixed in the interface and interaction of the proceeding cycle. According to Nielsen [Nie93]
due to the various repetitions of this loop, this type of design methodology allows gaining
sufficient insight into usability issues even given a limited number of test users.

In our case, the first iteration was kicked-off with a meeting between Graz University
of Technology and Uptime Engineering to elicit the first set of requirements. One of the
main goals identified was that the software should be designed in a way that supports the
service technicians’ current work processes without causing additional effort. Facilitating
the service personnel’s work tasks is essential as this assures usefulness, which is a key
aspect in technology acceptance [Dav89]. Furthermore, we defined the overall workflow
for the application, the general structure for an initial paper mock-up, and a small set of
features, which should be realized. The initial paper prototype and all following designs were
evaluated at meetings with the management of the energy provider and service technicians.
At these meetings the current prototype was presented and a more detailed knowledge about
the users and their work process was gained, usability issues could be uncovered and useful
features that would aid the maintenance personnel throughout the fault correction process,
were identified. During the first iterations predominant usability problems were detected
and more drastic changes to the design were introduced, while in the later cycles only minor
issues were found and as a result only slight GUI alternations were necessary.

The product of the design phase is a clickable prototype which has undergone a small-
scale qualitative usability test involving five service technicians. In the test scenario, the
participants were asked to use the clickable prototype to a mock-up fault identification
process from start to finish, i.e., from the detection of an abnormal behavior by the condition
monitoring system over performing the diagnosis and reporting the planned/conducted
repair or replacement while articulating their thoughts and impressions on the system. Based
on the video material taken during the evaluation a set of usability issues where identified

164 Chapter 9 Designing a Diagnosis Application and its Graphical User Interface

and using questionnaires and interviews a general notion of the usability of the interface was
obtained. Although the service technicians were part of the elicitation of requirements and
the design, several problems were uncovered in the experiment. In addition, the interviews
revealed that all operators have had negative experiences with diagnosis systems in the past
and hence question the usefulness and real benefit of the application. The design of the final
prototype is presented below together with the overall application workflow.

9.2.1 Workflow and GUI Design

1. send alarms

Service Center
Employee

5. prepares tools, spare parts and safety equipment at
service center

6a. performs part
inspection at turbine,

adds additional
measurements

7. repairs/replaces
faulty component(s)

8. creates report of maintenance activities

6b. manually restarts
diagnosis

Service Technician

4. selects
work assignments
based on diagnosis

results

Uptime
Engineering
Condition
Monitoring 2. triggers

diagnosis

Diagnosis
Engine

3. provides
diagnoses

Figure 9.1: Workflow of the diagnosis application.

The workflow of the diagnosis application was created in consideration of the current
functionality of Uptime Engineering’s condition monitoring software, the maintenance
process of the energy provider, and the general abductive diagnosis process of Chapter 3.
Figure 9.1 depicts the identified activity sequence of the troubleshooting. The interface
and interaction design decisions of the application were taken based on the workflow
and requirement analysis. A fault identification is invoked once an anomaly has been
encountered. Each wind turbine includes a set of sensors and a basic on-board system that
triggers alarms whenever measurements fall outside certain limits (Step 1 in Figure 9.1).
Uptime Engineering’s condition monitoring software extends and refines the fault detection
by further processing the available sensor information.

Once a symptom of a faulty turbine has been identified, Uptime Engineering’s software
triggers the diagnosis operation by supplying the previously created system description as
well as the observations to a model-based diagnosis engine (Step 2 in Figure 9.1). After
the computation, the results are accessible to the employees at the service center (Step 3 in
Figure 9.1). The diagnoses are displayed per turbine instance and displayed as collapsible
panels within Uptime Engineering’s web interface, i.e., at the Operations Center, which is
depicted in Figure 9.2 and designed for desktop or laptop computers. For each triggering

9.2 Abductive Model-Based Diagnosis Prototype 165

symptom, e.g., Error Converter Bus, the panel contains the possible root causes3 as well as
diagnosis likelihood expressed as percentages.

Figure 9.2: Operations Center.

Based on the outcome, the service center employee can create and assign repair tasks for
the service technicians preselecting some of the possible faults for consideration during the
field work (Step 4 in Figure 9.1). Each repair task is either preformed in conjunction with
the next planned maintenance, scheduled, or immediately executed. Figure 9.3 depicts an
example for a scheduled repair tasks, consisting of the anomaly and the corresponding error
codes. The service center employee can then define a troubleshooting task, schedule the
activity under consideration of the time table depicting the availability of service technicians,
assigning both a supervisor and a team for the undertaking, add the corresponding parts
and tools to the work assignment depending on the failures proposed by the engine, and
provide additional auxiliary information to the maintenance job such as previous issues with
the targeted wind turbine.

In the context of fault identification within the field, we concluded that the software
would be most usable on a mobile device since the technicians prefer not to carry a laptop.
Thus, once all work assignments for a team have been created, the rest of the diagnosis
process is conducted by the service technicians over a mobile application. An essential
aspect of the software design, was to follow guidelines and best practices for mobile user
interfaces to ensure an easy to use application. A flat navigation was thus chosen for the
prototype featuring little nesting of sub levels, and thus warranting minimal user interaction
and proving a defined role in the work process of the technicians. A simple navigation
drawer is used to allow the user to switch quickly between the top-level sites. In Figure
9.4a the Home screen of the mobile application is shown, where the technician can see
all work assignments for the day as collapsible panels with additional information. Based
on their tasks the technicians can obtain a list containing all necessary spare parts, tools,
and safety equipment required for all maintenance activities planned on that day from the
Preparation view depicted in Figure 9.4b. The preparation would usually be performed at
the service center, where the stockroom is located (Step 5 in Figure 9.1). Once at the turbine,
an overview of the maintenance task for this particular instance and assignment is shown in

3In the case of wind turbines, there is generally a strong single fault assumption. Thus, each depicted root cause
in this example only consists of a single failure, e.g., IGBT module: Diode/IGBT wire bonding - TMF. Yet, the
diagnosis engine is of course capable of determining multiple fault diagnoses.

166 Chapter 9 Designing a Diagnosis Application and its Graphical User Interface

Figure 9.3: Repair Task Screen.

the overview screen (see Figure 9.4c), where an enforcement permit for the activity must be
acquired4.

When at the turbine, the service technicians can review the computed and ranked expla-
nations represented in a collapsible panel as well as their percentage value (see Figure 9.5a).
Expanding a diagnosis, a short description of the root cause of the failure is depicted as
well as a Repair task button, leading to additional information on the required activities
to restore a healthy turbine state, e.g., manufacturer manuals on repair and replacement
of the faulty component. In cases where there is still no clear indication of the most likely
diagnosis, the service technician can improve the initial results by supplying additional ob-
servations via Improve diagnosis. The next best probing points are determined via entropy
as described previously. To obtain the additional turbine state information the application
asks the users to answer a set of questions as seen in Figure 9.5b (Step 6a in Figure 9.1).
Besides the textual representation, a picture is provided for each probe to facilitate visual
identification. Each observation can either be confirmed (Yes), denied (No), or bypassed (?).
The device camera can be used to document the measurements separately and the pictures
are later appended to the maintenance report. The layout to enter new symptoms ensures
efficient use of available screen space, logically structures the tasks, and requires minimal

4A notification for the person responsible for the entire installation is automatically generated containing the
request. Only after the permission has been granted, the technicians may perform the maintenance work.

9.2 Abductive Model-Based Diagnosis Prototype 167

(a) Home screen. (b) Preparation screen.

(c) Overview screen.

Figure 9.4: Preparation and overview interface.

interaction. Once the additional observations have been made, the diagnoses are updated by
manually restarting the computation given the new information from the device (Step 6b
in Figure 9.1). Given the updated results, the probabilities and arrangements of the faults
change accordingly in the Diagnosis screen with arrows indicating if the fault converges
or not (see Figure 9.5c). The diagnoses can be refined several times until an acceptable
certainty for a fault has been reached.

Once the root cause of the detected anomaly has been repaired (Step 7 in Figure 9.1),
the service technicians must create a report of the activities (Step 8 in Figure 9.1). This has
previously been a tedious task and therefore an essential requirement by the users was that
the tool provides support for their reporting. Thus, the mobile application allows the user to
notify the system of the final confirmed diagnosis as well as spare parts consumed and repair
or replacement activities carried out (see Figure 9.6a and 9.6b). The observations made

168 Chapter 9 Designing a Diagnosis Application and its Graphical User Interface

(a) Initial Diagnosis screen. (b) Adding observations.

(c) Diagnosis screen after recompu-
tation.

Figure 9.5: Diagnosis and probing interface.

and their visuals are automatically included in the report. Since it might be possible that a
fault has not been considered within the failure assessment and thus abductive model, the
interface provides a simple way for the service technician to reject all proposed diagnoses and
add a custom fault, as shown in Figure 9.6c. Based on the entered data the work assignment
documentation is automatically generated and sent to the Operations Center. There it is
either stored or post processed, depending on whether crucial information is missing from
the report or a custom failure has been created, which needs to be analyzed and subsequently
added to the failure assessment. It is currently planned to have the knowledge acquired
from the custom failures inserted into the failure assessment manually after ensuring the
information provided is sound and complete.

9.2 Abductive Model-Based Diagnosis Prototype 169

(a) Report screen (I). (b) Report screen (II).

(c) Adding a new custom fault.

Figure 9.6: Mobile reporting interface.

9.2.2 Realization of the Diagnosis and Modeling Engine
The full integration of the diagnosis engine as well as the associated user interfaces into

the existing Uptime Engineering condition monitoring tool was dealt with in three main
project phases. Initially it was necessary to introduce a structured taxonomy within the
failure assessments and the communication with the diagnosis engine to allow an automatic
processing. Next an interface was generated between the condition monitoring system and
the model-based diagnosis engine, via messaging bus. Finally, the user interface of Uptime
Engineering’s software has to adapted to incorporate the functionality as described in the
previous section. Each of these project phases is now described in further detail.

The use of a strict taxonomy to describe individual system components such as bearing,
filter, fan as well as sub-systems such as gearbox, generator, pitch drive within the turbine

170 Chapter 9 Designing a Diagnosis Application and its Graphical User Interface

is critical for effective automation of the diagnostic process. The absence of such a system
would lead to errors in the definition of observed system behavior, issues in regard to the
model generation based on failure assessments, as also problems in interpretation of the
recommendations. Furthermore, the naming of input signals (e.g. power, wind speed, oil
temperature) and the behavior of such signals (e.g., “high power relative to the expectation,
as defined by historical power performance”), must be coded according to a strict and
consistent taxonomy. Once established, this taxonomy must be applied accurately and
consistently throughout the software environment. Further complication results from the
need to develop a general solution that can be deployed across multiple organizations (e.g.,
several different energy utilities) and monitor technology from a variety of wind turbine
manufacturers, each with its own internal preferences for system taxonomy. Therefore much
attention was paid to the generation of a global, independent taxonomy specifically suited
to the purpose of anomaly detection and fault diagnosis.

The model-based diagnosis engine provided by Graz University of Technology is based on
a Java implementation of the model mapping as well as an ATMS for the fault identification
portion and the entropy-based computation of the next best probing point. There are two
rationals for choosing the ATMS in this context. First, we have seen in Chapter 5 that
the ATMS provides satisfactory computation results for Horn clause abduction in regard to
efficiency. In addition, we know from the application domain that (1) diagnoses are to be
computed in rather large intervals, e.g., once a day, and (2) the number of components
considered within the FMA is limited to a certain extended. Second, based on the ATMS
nodes’ labels we can conveniently compute the next best observation.

Uptime Engineering’s the condition monitoring system was developed using a range of
technologies including .NET, MSSQL, Matlab, Java. The frameworks and languages have
been selected based on their capabilities to perform signal analysis as well as their suitability
for building commercial tools. An effective communication between these two systems was
achieved using a Messaging Bus solution. Upon detection of abnormal system behavior,
the condition monitoring software generates Events, with a specific content adhering to
the taxonomy rules aforementioned. This Event is stored within the condition monitoring
system and also converted into a message which is sent via the bus system to the reasoning
engine. The message contains the latest observations for a specific wind turbine and the
current failure assessment to be converted to an abductive KB. While the model generation
can be performed offline, we decided to perform the transformation of the failure analysis
whenever a diagnosis is triggered since the mapping implementation is very efficient and
thus constitutes a negligible factor in the overall computation time. In addition, this means
the engine can be memory-less from one diagnosis computation to the next and failure
assessment updates are always considered during fault identification. The model-based
reasoning engine then processes the information received and generates its own message,
containing all possible root causes as well as recommendations for additional turbine state
information that could be added as effective discriminators and hence improve the accuracy
of the diagnosis. Note here that for each turbine instance a new model-based diagnosis
engine instance is created once an abnormal behavior has been encountered. Through this
exchange of information, the capability of the condition monitoring system is significantly
enhanced.

An intuitive and efficient user interface is seen as a critical factor for acceptance of the
system by its users, as described in Section 9.2 above. Since the software application is used
both in the office environment at the wind turbine service center and on mobile applications
by service staff working on the wind turbines, it was important to develop a graphical
interface that works effectively in both cases. In order to provide the user with a consistent
solution and also to minimize development effort, it was decided to create “adaptive user

9.2 Abductive Model-Based Diagnosis Prototype 171

interfaces”, which recognize the device currently in use and automatically switch to the most
suitable layout. The diagnosis GUI is currently in a prototype stage and still in development,
while the back-end has already been fully developed and tested. Parts of the system, however,
are already being evaluated by Uptime Engineering and the energy provider. Due to the lack
of a user interface at this point in time, a broad and exhaustive acceptance study is planned
for future work. The final product is expected to provide all relevant stakeholders with a
comfortable user experience and improve and facilitate the fault diagnosis procedure of the
wind turbine operator and its maintenance staff.

9.3 Conclusion
The theories and techniques of model-based reasoning have been applied to industrial

problems, but the approach is not well represented in practical every-day use. We applied the
process defined in Chapter 3 to the domain of industrial wind turbines. Uptime Engineering
maintains a comprehensive failure analysis of turbine faults and their effects, which can be
used as input for the automatic diagnosis model generation. Furthermore, their condition
monitoring software allows the detection of abnormal turbine behavior. Graz University of
Technology implemented an automated modeling tool creating abductive knowledge bases
from failure analyses available as well as a model-based diagnosis engine that computes ex-
planations based on the determined symptoms and provides recommendations on additional
observations to refine the diagnosis results based on entropy.

In this chapter, we show how we overcome barriers of integrating model-based diagnosis:
the main focus is on designing the human-computer interaction of a diagnosis application in
the industrial wind turbine domain and in addition we describe how we join our diagnosis
engine and the existing condition monitoring software. Various aspects, e.g., such as ensuring
an appropriate communication between existing software tools, need to be considered when
deploying model-based diagnosis to practical domains as the wind turbine industry. Moreover,
(1) integrating the approach into already established work processes, (2) delivering a benefit
to the users of the diagnosis software, and (3) providing intuitive and easy-to-use interfaces
and interactions are key factors in promoting user acceptance. In this regard, a main goal
was to facilitate not only the diagnosis portion of the work process, but also to simplify
and improve the related tasks, such as the maintenance report creation. Working closely
with the service staff and energy provider while creating and revising the user interface and
interaction design as well as the application workflow ensures a usable template for the
final software product. A prototype is currently being tested by Uptime Engineering and the
energy provider to verify the feasibility of the approach, while Uptime Engineering works
on integrating a user interface to the diagnosis engine within their condition monitoring
system.

Nevertheless open issues in the fault identification of wind turbines still remain. Even
after performing a repair, a failure might prevail in the system and its manifestations will
be visible for a certain period of time. In this case, the diagnosis must be repeated and
the original failure report should be re-opened. In addition, the automatic acquisition of
additional expert knowledge is challenging. Updating the failure assessment and thus the
abductive model cannot solely be performed by the user due to quality concerns of the
inserted data in regard to its technical soundness and the knowledge engineering capabilities
of the service staff. Nevertheless, the question remains as to whether there is a feasible
way to have the maintenance personnel make additions to the model. Further refinements
to the diagnosis results based on knowledge about damage accumulation and load history
could improve the fault identification process. This type of information can be exploited to
determine the remaining life time of components which subsequently can be used to derive

172 Chapter 9 Designing a Diagnosis Application and its Graphical User Interface

and update fault likelihoods. This realization is left to our industrial partner. Other common
considerations concern maintenance decisions based on the expected cost accounting for all
expenditures associated with the diagnostic task, such as probing, repair, or replacement
activities. In the future other application domains, such as truck fleets, should clarify whether
abductive reasoning is a suitable diagnosis approach for industrial domains in general.

9.3 Conclusion 173

Part IV

Conclusion and Future Work

10Summary and Conclusion

„A thinker sees his own actions as experiments and
questions–as attempts to find out something. Success and
failure are for him answers above all.

— Friedrich Nietzsche
"The Gay Science". 1882.

The goal of this thesis has been to develop a framework for facilitating the application of
abductive model-based diagnosis in industrial practice (RO), due to the fact that a noteworthy
dissemination of practical model-based diagnosis software of technical systems is still missing.
This work has been heavily influenced by the AMOR project in an undertaking to bridge
the gap between theory and practice. In particular, we have worked on achieving our
research objective from both a scientific and from an application-oriented perspective. On
the theoretical side, we define a process for abductive model-based diagnosis in real-world
operations and analyze algorithms for efficient generation of solutions in propositional logic.
The main practical contribution of this thesis is a case study that connects the theoretical
process to fault identification of industrial wind power plants. We conclude this work by
summing up the efforts made towards our objectives and the findings uncovered on the
way.

RO1 Develop a process for abductive model-based diagnosis in practice that (1) facilitates
model generation, (2) can be easily integrated into current work processes, (3) allows
for efficient abduction procedures, and (4) incorporates techniques to improve upon the
initial diagnosis results.

Chapter 3 contributes to achieving this first research objective by proposing a generally
applicable process for integrating abductive model-based diagnosis tools in industrial do-
mains. (1) Computation of root causes relies on the presence of a suitable system description.
From a practical point of view, however, due to the unavailability of tools that can be used
by people who are not experts in logical-based modeling, construction of an appropriate
formalization of diagnostic expertise remains a hindering factor in the adoption of model-
based diagnosis in real-world fault identification. As in the abductive variation the model
characterizes the relationship between faults and their manifestations; the proposed general
process takes advantage of failure assessments commonly used in practice for computerized
knowledge base development. In our analysis, we have discussed FMEA, fault trees, and later
in Chapter 8 we consider another failure record based on PoF. Automating this task should
greatly facilitate the introduction of this diagnostic technique in industrial applications.

(2) We argue that the framework can be straightforwardly incorporated, as the process
clearly splits the overall task into three parts: model generation, fault detection, and fault
identification. The modeling process is executed in advance and requires that the failure
assessment be available in a structured form, ideally as in FMEA in a tabulated manner. In
our methodology, fault detection is seen as an external black box that triggers the diagnosis
and provides a set of observations, while the fault identification segment is concerned with
pinpointing the failure location. Of course, the communication between the parts is essential
in regard to defining a common language respecting syntactic objectives. For instance, the

177

abductive engine relies on the detected anomalies and offline created model; thus the logical
formalism used has to be appropriate for the diagnosis procedure.

(3) The used diagnostic reasoning engine is restricted only by the characteristic of the
knowledge base and semantics of the observation. In the examined assessments, a simple
Horn clause abduction procedure is sufficient to extract the required diagnoses. Here, the
ATMS presents itself as a suitable tool, as it can be easily utilized not only for computing
solutions but also as a means to determine the ideal measurement points to improve diagnosis
results. Yet, any diagnostic engine capable of handling the underlying model formalism may
be exploited as a simple back box to derive explanations. In Chapters 4 and 5, we evaluate
different abduction procedures in regard to their efficiency.

(4) Besides automating the generation of system descriptions, the process incorporates an
entropy-based method for probe selection to discriminate explanations and a probability-
based solution ranking. As we have discussed, depending on the underlying assessment
additional information, such as failure severity, may lend itself to be used for prioritizing
diagnoses. Of course, in this regard a holistic approach considering probabilities, costs of
maintenance activities, revenue loss of idle time or decreased system power, severities etc.
would be beneficial in a practical application.

While Chapter 3 does contribute to the research objective, there are certain aspects that
have been neglected within our analysis. For instance, the approach can only operate
well under the assumption that all failures are in fact contained in the examination. This,
even though commonly accepted in model-based diagnosis, may be a strong prerequisite
from a practical perspective. To some extend, the OSFDP should supply indications in
case certain information is missing from the analysis; yet, it cannot entirely overcome the
model completeness assumption. Additionally, we have so far chosen only static failure
records for compiling our system model. Investigating other formalisms, such as Modelica
simulations [Pei+16], that are commonly used may address other application domains or
be useful in order to retrieve additional knowledge absent from the failure assessments.
Moreover, our process does not account for time or uncertainty in any way, i.e., the approach
is affected by delayed observations, measurement inaccuracies, and sensor errors. Although
the modeling proposed in Chapter 8 avoids some of these issues, it is not a comprehensive
solution. While for our practical case study our industrial partner handles this concern in
their failure detection procedure, considering it within the diagnosis portion would definitely
be of interest in future work.

RO2 Explore procedures that enable an efficient computation of explanations for abduction
problems obtained in a diagnosis scenario.

Chapter 4 and 5 investigate the efficiency of abduction approaches. Based on the model
structure and complexity results of Chapter 3, Chapter 4 aims at revealing efficient diagnosis
procedures for system descriptions stemming from FMEAs. The model compiled on the basis
of an FMEA contains bijunctive definite Horn clauses. Therefore abduction is tractable and
the problems are equivalent to the bipartite diagnosis problems that are solved in the simple
set-covering theory. Hence, we exploit the correspondence between set covers and hitting
sets to formulate the solutions to a PHCAP as a minimal hitting set. Subsequently, we discuss
several algorithms for deriving minimal hitting set and compare their efficiency on various
diagnosis scenarios stemming from practical FMEAs and artificially constructed instances.
In our first experimental setup, we could clearly identify that the Boolean approach and its
strategy of splitting the search space are superior to the other methods. Considering again
the diagnostic process of Chapter 3, we could recognize that while for certain application
domains the technique would be ideal, unfortunately, the Boolean approach is not able of
handling additional observations as often required in diagnosis. Hence, we exchanged in a

178 Chapter 10 Summary and Conclusion

second experiment the Boolean algorithm with Berge’s algorithm because it is capable of
extracting hitting sets on the fly. While there was not a clear contender for the most efficient
algorithm within this portfolio of approaches, we could identify that Berge and BHS-Tree
observe very similar runtimes, while HS-DAG can outperform the two methods on other
diagnosis problems. This observation is essential in motivating the work in Chapter 6.

Besides the hitting set formulation of abduction, we examine conflict-driven methods for
computing explanations. By rewriting the diagnosis problem in an entailment preserving
way, explanations are equivalent to refutations. Inspired by the advances in SAT solving, we
utilize the hitting set duality between MUSes, i.e., conflicts, and MCSes to propose a direct
and an indirect SAT-based abductive diagnosis procedure. We compare these two approaches
with the ATMS and the conflict-driven search of HS-DAG as it has been traditionally used
in consistency-based diagnosis. Unsurprising, we could observe that utilizing tools not
tailored towards assumption-based reasoning and Horn clause theories, such as MUS and
MCS enumeration techniques, cannot compete with the specialized reasoners. Although
the ATMS was not superior for bipartite abduction problems, it is preferable on the FMEA
samples in comparison to conflict directed procedures.

Chapter 5 aims at providing guidance on choosing an algorithm or tool when confronted
with the issue of computing explanations in propositional logic-based abduction. Our focus
lies on a Horn representation as it provides a suitable language to describe most diagnostic
scenarios. In this context, we discuss a set of abduction procedures via two contrasting
problem formulations: direct proof methods and conflict-driven techniques. To reveal
runtime performance trends, we conducted a case study, in which we compared publicly
available general-purpose tools, established Horn reasoning engines as well as new variations
of known methods as a means for abduction. We could not determine that either the direct
or the conflict-driven approaches are in general dominant on the samples. Yet, on all
benchmarks, we could again observe that the ATMS and HS-DAG are competitive, where this
version of HS-DAG is improved by ensuring that conflicts are minimized right away before
continuing to construct the DAG. While the general off-the-shelf tools, i.e., consequence
finding procedure SOLAR and ASP solver clingo, were not contenders for computing the
diagnoses the fastest, both managed to solve the majority of the problem instances given the
time constraints applied to the experiments.

Concluding both chapters, we can state that for the simple bipartite problems using an
efficient hitting set approach such as Berge’s algorithm or HS-DAG is preferable over direct
techniques such as the ATMS and conflict-driven approaches. We can deduce this as we
have carried out similar experiments based on FMEA and artificial samples on the hitting
set and the conflict-directed techniques. For the more expressive Horn clauses, we deduce
that the conflict-driven usage of HS-DAG and the ATMS have proven advantageous in our
evaluations, and thus aided us in achieving RO2.

For our evaluations in Chapter 4 and 5 there are obviously always more options of
algorithms and tools to consider. While our experiments indicate trends among the selected
set of approaches, a more in-depth analysis of the causing algorithm properties would be
desirable. In addition, our experiments—as every experimental evaluation—are limited
in the number, characteristics, and extensiveness of the utilized benchmarks. While there
are the ISCAS circuits1 for consistency-based diagnosis as a well-known and generally
accepted test bed, within the abductive model-based diagnosis community there does not
exist such a benchmark. Another apparent limitation of our empirical work is the influence
the programming language may have on the efficiency of the different abduction procedures,

1We have conducted experiments, where we attempted at abductively solving the ISCAS’85 circuits using the
ATMS. However, we ran into label explosions and thus unacceptable runtimes early on in the experiments and
hence aborted our initiative in this regard.

179

especially in regard to evaluations of hitting set algorithms in Chapter 4. Here we refer the
interested reader to Pill, Quaritisch, and Wotawa [Pil+11], who explicitly compared Java
and Python implementations of hitting set procedures.

RO3 Optimize the reasoning approaches to be suitable for practical applications in regard to
efficiency.

In Chapter 6, we investigate algorithm selection as a method to improve the efficiency
of abductive reasoning and thus work on RO2 and RO3. First, we examine the structural
properties inherent to bijunctive definite Horn theories stemming from FMEAs and proposi-
tional Horn clause models that allow evaluating the difficulty of a problem instance. Based
on the features extracted, we construct a meta-approach (METAB) taking advantage of a
machine learning classifier to predict the abductive reasoning technique yielding the “best”
performance on a specific diagnosis scenario. METAB’s overall runtime is determined by
(1) the computation of the online metrics, (2) the time it takes to create the feature vector,
supply it to the classifier, and predict the “best” algorithm, and (3) the diagnosis time of
the suggested abduction procedure. To assess whether the proposed attributes are in fact
sufficient for forecasting the appropriate abduction procedure and to evaluate the efficiency
of our algorithm selection in comparison to traditional abductive reasoning approaches,
we carried out empirical experiments. First, we rely on the same performance data as in
Chapter 4. Based on the simple bipartite diagnosis problems, we could not determine a
benefit of our meta-approach. The reason lies in the simplicity of these models, where the
computation of the online features requires around the same time as the diagnosis itself.
Hence, METAB introduces on these instances a computational overhead. Second, based on
the performance data of Chapter 5 utilizing Horn theory models, the evaluation indicates
that the trained model is able of predicting the most efficient algorithm with satisfactory
accuracy and further, we can show that the meta-approach is capable of outperforming each
single abductive reasoning method investigated at least for the artificial Horn abduction
problems.

The great benefit of applying algorithm selection to model-based diagnosis is that a
majority of features can be extracted based on the system description that has to be known
in advance. Thus, the amount of features computed online is limited. This characteristic,
however, can only be advantageous in case the extraction of the online metrics is rather
brief in comparison to computing the actual diagnosis. To summarize, on simple diagnosis
problems there is no advantage to be gained from using algorithm selection, but on more
expressive samples the meta-approach becomes valuable. Missing from our work is an
evaluation with more extensive examples on which we assume our meta-approach would
perform particularly well. Further, the attributes we have applied are rather straightforward.
There are certainly possibilities to extract more particular features from the models and in
addition improve the attribute selection process to identify metrics (and their combinations)
that increase the prediction accuracy more drastically.

RO4 Analyze current wind turbine diagnosis techniques and identify available data and tools.

The number and complexity of industrial wind turbine installations have increased sig-
nificantly over the last decades. As maintenance costs are high and down-times lead to
substantial revenue loss, increasing the reliability and optimizing the maintenance process
are crucial tasks from an industrial perspective. Analyzing the related research in Chapter 7
in regard to wind turbine fault identification, we could determine that many of the proposed
diagnosis systems merely focus on parts of the turbine or locate only a portion of the faults.
Therefore, we propose a model-based approach depending on automatically retrieved health

180 Chapter 10 Summary and Conclusion

variables from the turbine itself and on extensive expert knowledge on specific component-
oriented failure modes as well as their effects on measurable signals, i.e., FMA. As the expert
assessment provides causal links between faults and their manifestations, we can utilize this
knowledge for abductive reasoning.

A detailed description of how to handle sensor inaccuracies or the way in which aggra-
vating boundary conditions and damage promoting operation modes will be incorporated
in detail is missing in this thesis. To some extent, fallacies due to measurement errors
are avoided by our knowledge compilation to a Horn model as discussed in Chapter 8. In
addition, aggravating boundary conditions and damage promoting operation modes can be
incorporated as additional information sources to define a ranking of diagnoses; yet, the
details of the practical solution are left to our industrial partner.

RO5 Identify modifications to the theoretical process necessary to match the information
available and the domain requirements.

A common constraint of diagnosis engines is to restrict the model to comprise Horn clauses.
As we have seen in Chapter 3, we compile FMEAs and fault trees into abduction knowledge
bases consisting of sentences of this subset of logics. There are, however, practical applica-
tions where this limitation is problematic as the failure behavior of the system would require
a more expressive representation. In our AMOR project, the structure and information of the
underlying failure assessment changed thereby making it crucial to adapt the methodology
for compiling the system description. In Chapter 8, we describe a modeling method for ab-
ductive diagnosis based on an extension of Horn logic, which allows expressing conjunctions
and disjunctions of effects. In Section 8.4, we show that structured assessments based on
the PoF approach our industrial partner is using may contain this type of knowledge. Hence,
we present a mapping from this representation to a Horn theory. Besides the fact that such
a model can be applied to a wide range of diagnosis algorithms, the essential contribution
of this chapter is that diagnosis based on the models converted to Horn provides intuitive
explanations similar to human reasoning. This is especially favorable in the context of
practical fault identification, where acceptance of knowledge-based systems largely benefits
from solutions being comprehensible to the user.

We presented initial results comparing diagnosis on the ATMS and an ASP solver in regard
to the Horn transformation. To obtain our intuitive explanations, we needed to adapt the
models for the ASP framework. Ideally, we would modify the encoding used for abduction,
to allow deriving these explanations right away from the compiled model we also use for the
ATMS. In addition, our work lacks a semantic formalization of these intuitive diagnoses.

RO6 Show how to integrate an automated modeling and diagnosis approach into current work
processes.

In Chapter 9, we have developed a concept and interface design for an abductive model-
based diagnosis application based on the process of Chapter 3. Currently, this system is
being integrated into our industrial partner’s existing condition monitoring software for
industrial wind turbines. This chapter emphasizes the role of essential technology acceptance
factors, i.e., usefulness and usability, within the context of model-based diagnosis. While
model-based diagnosis research is mostly concerned with developing new techniques or
improving upon well-known approaches, the intersection of model-based diagnosis and user
experience and design is often overlooked. The outlined fault identification tool should
enhance the performance of the maintenance personnel while respecting their current work
processes, take into account their particular needs, and be easy to use under the given
work conditions. By employing an iterative design process, continuous feedback in regard
to the users’ work goals, tasks, and patterns was included, while also considering other

181

stakeholders’ requirements. The result is a workflow and interface layout proposal to be
implemented in the final software product. Further, we have discussed the current stage of
the application’s integration into the wind turbine diagnosis process, i.e., while the back-
end has been developed the user interface is still under construction hindering a broader
evaluation of the software. Yet, informal analyses have already been conducted and could
confirm that the diagnosis results and the general operation of the application are fulfilling
the requirements.

An essential aspect that we are currently handling in a simple manner is the knowledge
acquisition problem that all knowledge-based systems face. In particular, the human oper-
ator may observe certain circumstances that have not been anticipated within the failure
assessment and thus are not mapped onto the abductive knowledge base. However, these
additional failure modes or observations to a fault should be integrable into the model. Here,
the question is whether the service technicians are capable and should be able to adapt the
underlying system description or whether this would always have to be done by an expert
in the field of reliability analysis. In case the users do possess the required competence
and experience to augment the model there is still the need to develop a structured way of
adding this type of information. Another interface matter that may improve the application’s
usefulnesses, is an explanation component that illustrates how the system has come up with
the solution in order to facilitate acceptance by the service staff.

182 Chapter 10 Summary and Conclusion

11Future Work

„ ... no sooner is a discovery or invention made, than it is
already improved upon and surpassed by competing efforts.

— Prince Albert of Saxe-Coburg and Gotha
Inaugural Address of the "Great Exhibition of the Works of

Industry of All Nations". 1851.

Besides attending to the limitations of our research, which we have discussed throughout
this work and in the previous section, there are a number of interesting ideas that could not
be addressed in the scope of this thesis. From the analyses of the abduction methods, we
believe there is potential to further improve upon the methods. In particular, it seems that
the way HS-DAG is restricting the search space is advantageous. It would be interesting to
examine whether other conflict extraction methods, such as MergeXplain that generate not
only a single conflict but possibly several, would be beneficial. In regard to the exploration
of the power lattice, we can improve the method we have sketched out in Chapter 5. As
we seek to only extract MUS and are not necessarily interested in deriving MSS, blocking
with each found unsatisfiable seed up and down at the same time reduces the search space.
This, also diminishes the number of seeds necessary to explore the entire lattice. As the
computation of the maximal model for the seed has been contributing largely to the overall
runtime, this simple adjustment may allow for a more efficient extraction of conflicts within
this approach.

Further, we have applied only a simple version of the portfolio approach; there are various
advanced methods that could be beneficial, such as switching between computation methods.
This would be particularly interesting by exploiting whether certain approaches favor a
kind of explanation and would produce those early on in the computation. By switching
between those methods then and adding blocking clauses to ensure only not previously
derived diagnoses are obtained, we may be able to improve the computation even further.
These switching procedures may increase to a certain extent the computation time, and thus
would probably be better suited on larger models.

Of course, while our main goal is to allow for general applications to utilize abductive
model-based diagnosis, we have conducted a single case study in the wind turbine domain.
Certain aspects of this field are in our favor, e.g., diagnoses need only be computed in the span
of several hours, a fault identification procedure is already implemented, failure assessments
are available etc. In other industries the requirements and environments may change; thus,
a natural extension of our work would attempt to apply the process to another industrial
field to verify whether it is applicable. This ties in with the idea of the automatic model
creation from other expert knowledge available. Besides reliability analysis in the wind
turbine domain, our industrial partner further develops vehicle fleet monitoring software,
which may be another application area for our diagnostic methods.

Another aspect that has come up while working on the application concept with the service
technicians is that in their experience there are certain turbines that are more prone to error
despite being the same build as other turbines within the fleet. Given their work on the wind
power plants, these particularities are known to them. Currently, however, there is no way
for us to include or take advantage of such knowledge. A remedy may be a combination of

183

case-based reasoning and model-based diagnosis to augment the knowledge on failures and
their effects with information from previous maintenance cases of individual turbines.

184 Chapter 11 Future Work

Bibliography

[Abd+03] Ashraf M Abdelbar, Emad AM Andrews, and Donald C Wunsch II. „Abductive reasoning
with recurrent neural networks“. In: Neural Networks 16.5 (2003), pp. 665–673.

[AG09] Rui Abreu and Arjan J. C. van Gemund. „A Low-Cost Approximate Minimal Hitting
Set Algorithm and its Application to Model-Based Diagnosis“. In: Eighth Symposium on
Abstraction, Reformulation, and Approximation, SARA 2009, Lake Arrowhead, California,
USA, 8-10 August 2009. 2009.

[Alt+89] Klaus-Dieter Althoff, S Kockskämper, R Traphöner, and W Wernicke. „Knowledge acquisi-
tion in the domain of CNC machining centers: the MOLTKE approach“. In: Third European
Workshop on Knowledge-Based Systems. 1989.

[Ang+05] Christian Anger, Kathrin Konczak, Thomas Linke, and Torsten Schaub. „A Glimpse of
Answer Set Programming“. In: Künstliche Intelligenz 19.1 (2005), pp. 12–17.

[Ari+15] M Fareed Arif, Carlos Mencía, and Joao Marques-Silva. „Efficient MUS enumeration of
Horn formulae with applications to axiom pinpointing“. In: International Conference on
Theory and Applications of Satisfiability Testing. Springer. 2015, pp. 324–342.

[Ass14] European Wind Energy Association. Wind in power - 2013 European statistics. 2014. URL:
http://www.ewea.org/fileadmin/files/library/publications/statistics/EWEA_
Annual_Statistics_2013.pdf.

[Aus+80] Giorgio Ausiello, Alessandro D’Atri, and Marco Protasi. „Structure preserving reductions
among convex optimization problems“. In: Journal of Computer and System Sciences 21.1
(1980), pp. 136–153.

[Aye+98] Béchir el Ayeb, Shengrui Wang, and Jifeng Ge. „A unified model for abduction-based rea-
soning“. In: Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions
on 28.4 (1998), pp. 408–425.

[Ber89] Claude Berge. Hypergraphs, Volume 45 of North-Holland Mathematical Library. 1989.

[Bes+08] Ph Besnard, M-O Cordier, and Yves Moinard. „Ontology-based inference for causal expla-
nation“. In: Integrated Computer-Aided Engineering 15.4 (2008), pp. 351–367.

[Bie09] Meghyn Bienvenu. „Prime implicates and prime implicants: From propositional to modal
logic“. In: Journal of Artificial Intelligence Research (2009).

[Bit08] Guilherme Bittencourt. „Combining syntax and semantics through prime form representa-
tion“. In: Journal of Logic and Computation 18.1 (2008), pp. 13–33.

[Bot+12] Pantelis N Botsaris, EI Konstantinidis, and D Pitsa. „Systemic assessment and analysis of
factors affect the reliability of a wind turbine“. In: Journal of Applied Engineering Science
(Istrazivanja i projektovanja za privredu) 10.2 (2012).

185

http://www.ewea.org/fileadmin/files/library/publications/statistics/EWEA_Annual_Statistics_2013.pdf
http://www.ewea.org/fileadmin/files/library/publications/statistics/EWEA_Annual_Statistics_2013.pdf

[Bru+93] Simona Brugnoni, Guido Bruno, Roberto Manione, et al. „An expert system for real time
fault diagnosis of the Italian telecommunications network“. In: Proceedings of the IFIP
TC6/WG6. 6 Third International Symposium on Integrated Network Management with
participation of the IEEE Communications Society CNOM and with support from the Institute
for Educational Services. North-Holland Publishing Co. 1993, pp. 617–628.

[Bru+98] Vittorio Brusoni, Luca Console, Paolo Terenziani, and Daniele Theseider Dupré. „A spec-
trum of definitions for temporal model-based diagnosis“. In: Artificial Intelligence 102.1
(1998), pp. 39–79.

[BS02] Joachim Baumeister and Dietmar Seipel. „Diagnostic reasoning with multilevel set-
covering models“. In: Proceedings of the 13th International Workshop on Principles of
Diagnosis (DX-02). 2002, pp. 1–7.

[BS84] Bruce G Buchanan and Edward H Shortliffe. „Rule Based Expert Systems: The MYCIN
Experiments of the Stanford Heuristic Programming Project“. In: The Addison-Wesley Series
in Artificial Intelligence (1984).

[Byl+91] Tom Bylander, Dean Allemang, Michael C Tanner, and John R Josephson. „The computa-
tional complexity of abduction“. In: Artificial Intelligence 49.1-3 (1991), pp. 25–60.

[Car14] Carl S Carlson. „Understanding and Applying the Fundamentals of FMEAs“. In: Proceedings
of the 2014 Annual Reliability and Maintainability Symposium. 2014.

[Cat+10] Marcantonio Catelani, Lorenzo Ciani, and Valentina Luongo. „The FMEDA approach to
improve the safety assessment according to the IEC61508“. In: Microelectronics Reliability
50.9 (2010), pp. 1230–1235.

[CD99] Luca Console and Oskar Dressier. „Model-based diagnosis in the real world: Lessons
learned and challenges remaining“. In: Proceedings of the 16th international joint conference
on Artificial intelligence-Volume 2. Morgan Kaufmann Publishers Inc. 1999, pp. 1393–1400.

[Che+12] Bindi Chen, Peter Tavner, Yanhui Feng, William W Song, and Yingning Qiu. „Bayesian
network for wind turbine fault diagnosis“. In: (2012).

[Con+91] Luca Console, Daniele Theseider Dupré, and Pietro Torasso. „On the relationship between
abduction and deduction“. In: Journal of Logic and Computation 1.5 (1991), pp. 661–690.

[Con+96] Luca Console, Luigi Portinale, and D Theseider Dupré. „Using compiled knowledge to guide
and focus abductive diagnosis“. In: IEEE Transactions on Knowledge and Data Engineering
8.5 (1996), pp. 690–706.

[Cor+04] M-O Cordier, Philippe Dague, François Lévy, et al. „Conflicts versus analytical redundancy
relations: a comparative analysis of the model based diagnosis approach from the artificial
intelligence and automatic control perspectives“. In: IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics) 34.5 (2004), pp. 2163–2177.

[CP86] Philip T Cox and Tomasz Pietrzykowski. „Causes for events: their computation and appli-
cations“. In: International Conference on Automated Deduction. Springer. 1986, pp. 608–
621.

[CR01] Roman Cunis and Peter Roman. „INDIA—Intelligente Diagnose in der industriellen An-
wendung“. In: Intelligent Diagnosis in Industrial Applications (2001), pp. 1–9.

[CS94] Eugene Charniak and Solomon Eyal Shimony. „Cost-based abduction and MAP explana-
tion“. In: Artificial Intelligence 66.2 (1994), pp. 345–374.

[CT06] Luca Console and Pietro Torasso. „Automated diagnosis“. In: Intelligenza Artificiale 3.1-2
(2006), pp. 42–48.

[CT91] Luca Console and Pietro Torasso. „A spectrum of logical definitions of model-based
diagnosis“. In: Computational Intelligence 7.3 (1991), pp. 133–141.

186 Bibliography

[Dav89] Fred D Davis. „Perceived usefulness, perceived ease of use, and user acceptance of infor-
mation technology“. In: MIS quarterly (1989), pp. 319–340.

[DH88] Randall Davis and Walter Hamscher. „Model-based reasoning: Troubleshooting“. In: Ex-
ploring artificial intelligence 8 (1988), pp. 297–346.

[DK02] Marc Denecker and Antonis Kakas. „Abduction in logic programming“. In: Computational
logic: Logic programming and beyond (2002), pp. 99–134.

[DK86a] Johan De Kleer. „An assumption-based TMS“. In: Artificial Intelligence 28.2 (1986),
pp. 127–162.

[DK86b] Johan De Kleer. „Extending the ATMS“. In: Artificial Intelligence 28.2 (1986), pp. 163–196.

[DK86c] Johan De Kleer. „Problem solving with the ATMS“. In: Artificial Intelligence 28.2 (1986),
pp. 197–224.

[DKW87] Johan De Kleer and Brian C Williams. „Diagnosing multiple faults“. In: Artificial Intelligence
32.1 (1987), pp. 97–130.

[DM02] Adnan Darwiche and Pierre Marquis. „A knowledge compilation map“. In: Journal of
Artificial Intelligence Research 17.1 (2002), pp. 229–264.

[DP91] Jon Doyle and Ramesh S Patil. „Two theses of knowledge representation: Language re-
strictions, taxonomic classification, and the utility of representation services“. In: Artificial
Intelligence 48.3 (1991), pp. 261–297.

[DP99] Oskar Dressler and Frank Puppe. „Knowledge-Based Diagnosis–Survey and Future Di-
rections“. In: German Conference on Knowledge-Based Systems. Springer. 1999, pp. 24–
46.

[Dub+91] Didier Dubois, Jér̆ome Lang, and Henri Prade. „A possibilistic assumption-based truth
maintenance system with uncertain justifications, and its application to belief revision“.
In: Truth maintenance systems (1991), pp. 87–106.

[Ech+07] Erika Echavarria, Tetsuo Tomiyama, and Gerard J.W. van Bussel. „Fault Diagnosis approach
based on a model-based reasoner and a functional designer for a wind turbine. An
approach towards self-maintenance“. In: Journal of Physics: Conference Series 75 (July
2007), p. 012078. ISSN: 1742-6596. URL: http://stacks.iop.org/1742-6596/75/i=1/
a=012078?key=crossref.dce18ef408282263748fb70ab56f3a46.

[EG95] Thomas Eiter and Georg Gottlob. „The complexity of logic-based abduction“. In: Journal
of the ACM (JACM) 42.1 (1995), pp. 3–42.

[Egl+00] Uwe Egly, Thomas Eiter, Hans Tompits, and Stefan Woltran. „Solving Advanced Reasoning
Tasks Using Quantified Boolean Formulas“. In: Proceedings of the Seventeenth National
Conference on Artificial Intelligence and Twelfth Conference on Innovative Applications of
Artificial Intelligence. AAAI Press. 2000, pp. 417–422.

[Eit+09] Thomas Eiter, Giovambattista Ianni, and Thomas Krennwallner. „Answer set programming:
A primer“. In: Reasoning Web. Semantic Technologies for Information Systems. Springer,
2009, pp. 40–110.

[Eit+98] Thomas Eiter, Nicola Leone, Cristinel Mateis, Gerald Pfeifer, and Francesco Scarcello. „The
KR system dlv: Progress report, comparisons and benchmarks“. In: Proceedings of the Sixth
International Conference on Principles of Knowledge Representation and Reasoning. Morgan
Kaufmann Publishers Inc. 1998, pp. 406–417.

[Eit+99] Thomas Eiter, Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. „The diagnosis frontend
of the dlv system“. In: AI Communications 12.1-2 (1999), pp. 99–111.

[EK89] Kave Eshghi and Robert A Kowalski. „Abduction Compared with Negation by Failure“. In:
Proceedings 6th International Conference on Logic Programming. Vol. 89. 1989, pp. 234–
255.

Bibliography 187

http://stacks.iop.org/1742-6596/75/i=1/a=012078?key=crossref.dce18ef408282263748fb70ab56f3a46
http://stacks.iop.org/1742-6596/75/i=1/a=012078?key=crossref.dce18ef408282263748fb70ab56f3a46

[EM03] Thomas Eiter and Kazuhisa Makino. „Generating All Abductive Explanations for Queries
on Propositional Horn Theories“. In: International Workshop on Computer Science Logic.
Springer. 2003, pp. 197–211.

[ES03] Niklas Eén and Niklas Sörensson. „An extensible SAT-solver“. In: International Conferemce
on theory and applications of SAT. Springer. 2003, pp. 502–518.

[FB+97] Dieter Fensel, Richard Benjamins, et al. Assumptions in model-based diagnosis. AIFB, Univ,
1997.

[Fel+04] Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach, and Markus Stumptner. „Consistency-
based diagnosis of configuration knowledge bases“. In: Artificial Intelligence 152.2 (2004),
pp. 213–234.

[Fel+10a] Alexander Feldman, Tolga Kurtoglu, Sriram Narasimhan, Scott Poll, and David Garcia.
„Empirical Evaluation of Diagnostic Algorithm Performance Using a Generic Framework“.
In: International Journal of Prognostics and Health Management Volume 1 (2010), p. 24.

[Fel+10b] Alexander Feldman, Gregory Provan, Johan de Kleer, Stephan Robert, and Arjan van
Gemund. „Solving model-based diagnosis problems with max-sat solvers and vice versa“.
In: Proceedings of the 21th International Workshop on Principles of Diagnosis (DX-10). 2010,
pp. 185–192.

[Fel+13] Alexander Felfernig, Monika Schubert, and Stefan Reiterer. „Personalized diagnosis for
over-constrained problems“. In: Proceedings of the Twenty-Third international joint confer-
ence on Artificial Intelligence. AAAI Press. 2013, pp. 1990–1996.

[FG85] JJ Finger and Michael R Genesereth. „RESIDUE: a deductive approach to design synthesis“.
In: (1985).

[FK88] Kenneth D Forbus and Johan de Kleer. „Focusing the ATMS“. In: Proceedings of the Seventh
AAAI Conference on Artificial Intelligence. AAAI Press. 1988, pp. 193–198.

[Fle+01] Gerhard Fleischanderl, Thomas Havelka, Herwig Schreiner, Markus Stumptner, and Franz
Wotawa. „DiKe-A Model-Based Diagnosis Kernel and Its Application“. In: Proceedings of the
Joint German/Austrian Conference on AI: Advances in Artificial Intelligence. Springer-Verlag.
2001, pp. 440–454.

[FN97] Peter Fröhlich and Wolfgang Nejdl. „A static model-based engine for model-based rea-
soning“. In: Proceedings of the Seventeenth International Joint Conference on Artificial
Intelligence. 1997, pp. 466–473.

[For+13] Nathan Fortier, John Sheppard, and Karthik Ganesan Pillai. „Bayesian abductive inference
using overlapping swarm intelligence“. In: Swarm Intelligence (SIS), 2013 IEEE Symposium
on. IEEE. 2013, pp. 263–270.

[Fri+90a] Gerhard Friedrich, Georg Gottlob, and Wolfgang Nejdl. „Hypothesis classification, abduc-
tive diagnosis and therapy“. In: Expert Systems in Engineering Principles and Applications
(1990), pp. 69–78.

[Fri+90b] Gerhard Friedrich, Georg Gottlob, and Wolfgang Nejdl. „Physical impossibility instead of
fault models“. In: Proceedings of the eighth National conference on Artificial intelligence-
Volume 1. AAAI Press. 1990, pp. 331–336.

[Fri+99] Gerhard Friedrich, Markus Stumptner, and Franz Wotawa. „Model-based diagnosis of
hardware designs“. In: Artificial Intelligence 111.1 (1999), pp. 3–39.

[FS10] Alexander Felfernig and Monika Schubert. „FastDiag: A diagnosis algorithm for inconsistent
constraint sets“. In: Proceedings of the 21st International Workshop on the Principles of
Diagnosis (DX 2010). 2010, pp. 1–8.

188 Bibliography

[Gan+05] Sathyanarayan Ganesan, Valerie Eveloy, Diganta Das, and M Pecht. „Identification and
utilization of failure mechanisms to enhance FMEA and FMECA“. In: Proceedings of the
IEEE workshop on accelerated stress testing & reliability (ASTR), Austin, Texas. Vol. 3. 4.
2005, p. 5.

[Geb+14] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. „Clingo = ASP + Control: Prelimi-
nary Report“. In: In Technical Communications of the 30th International Conference on Logic
Programming. Ed. by M. Leuschel and T. Schrijvers. 2014, pp. 1–13.

[GH07] Haipeng Guo and William H Hsu. „A machine learning approach to algorithm selection
for NP-hard optimization problems: a case study on the MPE problem“. In: Annals of
Operations Research 156.1 (2007), pp. 61–82.

[Got+90] Georg Gottlob, Thomas Frühwirth, and Werner Horn. Expertensysteme. Springer Vienna,
1990.

[Gra+11] Christopher Gray, Franz Langmayr, Nikolaus Haselgruber, and Simon J Watson. „A prac-
tical approach to the use of scada data for optimized wind turbine condition based
maintenance“. In: EWEA Offshore Wind Amsterdam (2011).

[Gra+15] Christopher S Gray, Roxane Koitz, Siegfried Psutka, and Franz Wotawa. „An Abductive
Diagnosis and Modeling Concept for Wind Power Plants“. In: IFAC-PapersOnLine 48.21
(2015), pp. 404–409.

[Gre+89] Russell Greiner, Barbara A Smith, and Ralph W Wilkerson. „A correction to the algorithm
in Reiter’s theory of diagnosis“. In: Artificial Intelligence 41.1 (1989), pp. 79–88.

[Gua17] The Guardian. Oil jumps after Forties pipeline crack discovered. 2017. URL: https://www.
theguardian.com/business/live/2017/dec/12/oil-brent-crude-forties-oil-
pipeline-uk-inflation-business.

[Gur17] Dmitriy Gurkovskiy. Oil Calmed Down After Forties Pipeline System Failure. 2017. URL:
https://seekingalpha.com/article/4132810- oil- calmed- forties- pipeline-
system-failure.

[GW10] Christopher S Gray and Simon J Watson. „Physics of failure approach to wind turbine
condition based maintenance“. In: Wind Energy 13.5 (2010), pp. 395–405.

[Hal+09] Mark Hall, Eibe Frank, Geoffrey Holmes, et al. „The WEKA data mining software: an
update“. In: ACM SIGKDD explorations newsletter 11.1 (2009), pp. 10–18.

[Ham+09] Z Hameed, YS Hong, YM Cho, SH Ahn, and CK Song. „Condition monitoring and fault
detection of wind turbines and related algorithms: A review“. In: Renewable and Sustainable
energy reviews 13.1 (2009), pp. 1–39.

[Hob+93] Jerry R Hobbs, Mark E Stickel, Douglas E Appelt, and Paul Martin. „Interpretation as
abduction“. In: Artificial Intelligence 63.1-2 (1993), pp. 69–142.

[Hut+06] Frank Hutter, Youssef Hamadi, Holger Hoos, and Kevin Leyton-Brown. „Performance Pre-
diction and Automated Tuning of Randomized and Parametric Algorithms“. In: Principles
and Practice of Constraint Programming-CP 2006 (2006), pp. 213–228.

[HW98] P G Hawkins and David J Woollons. „Failure modes and effects analysis of complex
engineering systems using functional models“. In: Artificial Intelligence in Engineering 12.4
(1998), pp. 375–397.

[Ign+16] Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. „Propositional Abduction
with Implicit Hitting Sets“. In: arXiv preprint arXiv:1604.08229 (2016).

[Ino02] Katsumi Inoue. „Automated abduction“. In: Computational Logic: Logic Programming and
Beyond (2002), pp. 35–72.

[Ino91] Katsumi Inoue. „An abductive procedure for the CMS/ATMS“. In: Truth Maintenance
Systems (1991), pp. 34–53.

Bibliography 189

https://www.theguardian.com/business/live/2017/dec/12/oil-brent-crude-forties-oil-pipeline-uk-inflation-business
https://www.theguardian.com/business/live/2017/dec/12/oil-brent-crude-forties-oil-pipeline-uk-inflation-business
https://www.theguardian.com/business/live/2017/dec/12/oil-brent-crude-forties-oil-pipeline-uk-inflation-business
https://seekingalpha.com/article/4132810-oil-calmed-forties-pipeline-system-failure
https://seekingalpha.com/article/4132810-oil-calmed-forties-pipeline-system-failure

[Ino92] Katsumi Inoue. „Linear resolution for consequence finding“. In: Artificial Intelligence 56.2
(1992), pp. 301–353.

[Jan+15] Dietmar Jannach, Thomas Schmitz, and Kostyantyn Shchekotykhin. „Parallelized hitting
set computation for model-based diagnosis“. In: Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence. AAAI Press. 2015, pp. 1503–1510.

[Jun04] Ulrich Junker. „QUICKXPLAIN: preferred explanations and relaxations for over-constrained
problems“. In: Proceedings of the 19th national conference on Artifical intelligence. AAAI
Press. 2004, pp. 167–172.

[Kak+01] Antonis C Kakas, Bert Van Nuffelen, and Marc Denecker. „A-system: Problem solving
through abduction“. In: Proceedings of the Seventeenth International Joint Conference on
Artificial Intelligence. 2001, pp. 591–596.

[Kak+92] Antonis C. Kakas, Robert A. Kowalski, and Francesca Toni. „Abductive logic programming“.
In: Journal of logic and computation 2.6 (1992), pp. 719–770.

[Kav+12] Soila P Kavulya, Kaustubh Joshi, Felicita Di Giandomenico, and Priya Narasimhan. „Failure
diagnosis of complex systems“. In: Resilience assessment and evaluation of computing
systems. Springer, 2012, pp. 239–261.

[KHW18] Roxane Koitz-Hristov and Franz Wotawa. „Applying Algorithm Selection to Abductive
Diagnostic Reasoning“. In: Applied Intelligence (2018). ISSN: 1573-7497. URL: https:
//doi.org/10.1007/s10489-018-1171-9.

[Kle92] Johan de Kleer. „An improved incremental algorithm for generating prime implicates“.
In: Proceedings of the tenth national conference on Artificial intelligence. AAAI Press. 1992,
pp. 780–785.

[Koi+17] Roxane Koitz, Johannes Lüftenegger, and Franz Wotawa. „Model-Based Diagnosis in
Practice: Interaction Design of an Integrated Diagnosis Application for Industrial Wind
Turbines.“ In: Proceedings of the 30th International Conference on Industrial Engineering
and Other Applications of Applied Intelligent Systems. 2017, pp. 440–445.

[Koi+18] Roxane Koitz, Franz Wotawa, Johannes Lüftenegger, Chrsitopher S. Gray, and Franz
Langmayr. „Wind Turbine Fault Localization: A Practical Application of Model-Based
Diagnosis“. In: Diagnosability, Security and Safety of Hybrid Dynamic and Cyber-Physical
Systems. Cham: Springer International Publishing, 2018, pp. 17–43. ISBN: 978-3-319-
74962-4. URL: https://doi.org/10.1007/978-3-319-74962-4_2.

[Kot14] Lars Kotthoff. „Algorithm selection for combinatorial search problems: A survey“. In: AI
Magazine 35.3 (2014), pp. 48–60.

[KT90] Alex Kean and George Tsiknis. „An incremental method for generating prime impli-
cants/implicates“. In: Journal of Symbolic Computation 9.2 (1990), pp. 185–206.

[Kun+11] Fabien Kuntz, Stéphanie Gaudan, Christian Sannino, et al. „Model-based diagnosis for
avionics systems using minimal cuts“. In: Proceedings of the 22nd International Workshop
on Principles of Diagnosis. 2011, pp. 138–145.

[KW15a] Roxane Koitz and Franz Wotawa. „Finding Explanations: An Empirical Evaluation of
Abductive Diagnosis Algorithms“. In: Proceedings of the 2015 International Workshop on
Defeasible and Ampliative Reasoning. CEUR-WS. org. 2015, pp. 36–42.

[KW15b] Roxane Koitz and Franz Wotawa. „From Theory to Practice: Model-Based Diagnosis in
Industrial Applications“. In: Proceedings of the Annual Conference of the Prognostics and
Health Management (PHM) Society. 2015, pp. 197–205.

[KW15c] Roxane Koitz and Franz Wotawa. „On the Computational Feasibility of Abductive Diagnosis
for Practical Applications“. In: IFAC-PapersOnLine 48.21 (2015). 9th IFAC Symposium on
Fault Detection, Supervision and Safety for Technical Processes, pp. 410–415.

190 Bibliography

https://doi.org/10.1007/s10489-018-1171-9
https://doi.org/10.1007/s10489-018-1171-9
https://doi.org/10.1007/978-3-319-74962-4_2

[KW15d] Roxane Koitz and Franz Wotawa. „SAT-Based Abductive Diagnosis“. In: 26th International
Workshop on Principles of Diagnosis. 2015, pp. 1–9.

[KW16a] Roxane Koitz and Franz Wotawa. „Improving Abductive Diagnosis Through Structural Fea-
tures: A Meta-Approach“. In: Proceedings of the 2016 International Workshop on Defeasible
and Ampliative Reasoning. 2016, pp. 1–9.

[KW16b] Roxane Koitz and Franz Wotawa. „Integration of Failure Assessments into The Diagnostic
Process“. In: Proceedings of the Annual Conference of the Prognostics and Health Management
(PHM) Society. 2016, pp. 117–128.

[KW16c] Roxane Koitz and Franz Wotawa. „On Structural Properties to Improve FMEA-Based
Abductive Diagnosis“. In: Proceedings of the Workshop on Knowledge-based Techniques for
Problem Solving and Reasoning. 2016, pp. 1–7.

[LB+03] Kevin Leyton-Brown, Eugene Nudelman, Galen Andrew, Jim McFadden, and Yoav Shoham.
„A portfolio approach to algorithm select“. In: Proceedings of the 18th international joint
conference on Artificial intelligence. Morgan Kaufmann Publishers Inc. 2003, pp. 1542–
1543.

[Lev89] Hector J Levesque. „A knowledge-level account of abduction“. In: Proceedings of the
11th international joint conference on Artificial intelligence-Volume 2. Morgan Kaufmann
Publishers Inc. 1989, pp. 1061–1067.

[Lif+16] Mark H Liffiton, Alessandro Previti, Ammar Malik, and Joao Marques-Silva. „Fast, flexible
MUS enumeration“. In: Constraints 21.2 (2016), pp. 223–250.

[Lif02] Vladimir Lifschitz. „Answer set programming and plan generation“. In: Artificial Intelligence
138.1-2 (2002), pp. 39–54.

[LJ03] Li Lin and Yunfei Jiang. „The computation of hitting sets: review and new algorithms“. In:
Information Processing Letters 86.4 (2003), pp. 177–184.

[LS08] Mark H Liffiton and Karem A Sakallah. „Algorithms for computing minimal unsatisfiable
subsets of constraints“. In: Journal of Automated Reasoning 40.1 (2008), pp. 1–33.

[Lu+09] Bin Lu, Yaoyu Li, Xin Wu, and Zhongzhou Yang. „A review of recent advances in wind
turbine condition monitoring and fault diagnosis“. In: Power Electronics and Machines in
Wind Applications, 2009. PEMWA 2009. IEEE. IEEE. 2009, pp. 1–7.

[Lüf18] Johannes Lüftenegger. „Development and Evaluation of a User Interface Concept for
an Industrial Wind Turbine Diagnosis Application“. Master’s thesis. Graz University of
Technology, 2018.

[Mal+14] Yuri Malitsky, Barry O’Sullivan, Alessandro Previti, and Joao Marques-Silva. „A portfolio
approach to enumerating minimal correction subsets for satisfiability problems“. In: Inter-
national Conference on AI and OR Techniques in Constriant Programming for Combinatorial
Optimization Problems. Springer. 2014, pp. 368–376.

[Mal13] Ammar Malik. „Analyzing and Extending an Infeasibility Analysis Algorithm“. In: Honors
Projects. (2013).

[Man+97] Vasco M Manquinho, Paulo F Flores, Joao P Marques Silva, and Arlindo L Oliveira. „Prime
implicant computation using satisfiability algorithms“. In: Tools with Artificial Intelligence,
1997. Proceedings., Ninth IEEE International Conference on. IEEE. 1997, pp. 232–239.

[Mar00] Pierre Marquis. „Consequence finding algorithms“. In: Handbook of Defeasible Reasoning
and Uncertainty Management Systems. Springer, 2000, pp. 41–145.

[Mat+09] Andrew Matusiewicz, Neil V Murray, and Erik Rosenthal. „Prime implicate tries“. In:
Automated Reasoning with Analytic Tableaux and Related Methods. Springer, 2009, pp. 250–
264.

Bibliography 191

[McI94] Sheila A McIlraith. „Generating tests using abduction“. In: Proceedings of the Fourth
International Conference on Principles of Knowledge Representation and Reasoning. Morgan
Kaufmann Publishers Inc. 1994, pp. 449–460.

[McI98] Sheila A McIlraith. „Logic-based abductive inference“. In: Knowledge Systems Laboratory,
Technical Report KSL-98-19 (1998).

[Met+14] Amit Metodi, Roni Stern, Meir Kalech, and Michael Codish. „A novel sat-based approach to
model based diagnosis“. In: Journal of Artificial Intelligence Research 51 (2014), pp. 377–
411.

[Mil+00] Heiko Milde, Thomas Guckenbiehl, Andreas Malik, Bernd Neumann, and Peter Struss.
„Integrating model-based diagnosis techniques into current work processes–three case
studies from the INDIA project“. In: AI Communications 13.2 (2000), pp. 99–123.

[Mil+82] Randolph A Miller, Harry E Pople Jr, and Jack D Myers. „Internist-I, an experimental
computer-based diagnostic consultant for general internal medicine“. In: New England
Journal of Medicine 307.8 (1982), pp. 468–476.

[Min88] Michel Minoux. „LTUR: A simplified linear-time unit resolution algorithm for horn formulae
and computer implementation“. In: Information Processing Letters 29.1 (1988), pp. 1–12.

[Moi10] Yves Moinard. „A Formalism for Causal Explanations with an Answer Set Programming
Translation“. In: KSEM. Springer. 2010, pp. 585–590.

[MS+13] Joao Marques-Silva, Federico Heras, Mikolas Janota, Alessandro Previti, and Anton Belov.
„On computing minimal correction subsets“. In: Proceedings of the Twenty-Third interna-
tional joint conference on Artificial Intelligence. AAAI Press. 2013, pp. 615–622.

[MS+15] Joao Marques-Silva, Mikoláŝ Janota, Alexey Ignatiev, and Antonio Morgado. „Efficient
Model Based Diagnosis with Maximum Satisfiability“. In: Twenty-Fourth International Joint
Conference on Artificial Intelligence. Vol. 15. 2015, pp. 1966–1972.

[Már+12] Fausto Pedro García Márquez, Andrew Mark Tobias, Jesús María Pinar Pérez, and May-
orkinos Papaelias. „Condition monitoring of wind turbines: Techniques and methods“. In:
Renewable Energy 46 (2012), pp. 169–178.

[Nab+10] Hidetomo Nabeshima, Koji Iwanuma, Katsumi Inoue, and Oliver Ray. „SOLAR: An auto-
mated deduction system for consequence finding“. In: AI Communications 23.2-3 (2010),
pp. 183–203.

[Nic+13] Iulia Nica, Ingo Pill, Thomas Quaritsch, and Franz Wotawa. „The Route to Success - A
Performance Comparison of Diagnosis Algorithms“. In: International Joint Conference on
Artificial Intelligence (IJCAI). Bejing, China, 2013, pp. 1039–1045.

[Nie93] Jakob Nielsen. „Iterative user-interface design“. In: Computer 26.11 (1993), pp. 32–41.

[NM92] Hwee Tou Ng and Raymond J Mooney. „Abductive plan recognition and diagnosis: A
comprehensive empirical evaluation“. In: Proceedings of the Third International Conference
on Principles of Knowledge Representation and Reasoning. Morgan Kaufmann Publishers Inc.
1992, pp. 499–508.

[NW12] Iulia Nica and Franz Wotawa. „ConDiag-computing minimal diagnoses using a constraint
solver“. In: International Workshop on Principles of Diagnosis. 2012, pp. 185–191.

[NW97] P Pandurang Nayak and Brian C Williams. „Fast context switching in real-time propositional
reasoning“. In: Proceedings of the fourteenth national conference on artificial intelligence
and ninth conference on Innovative applications of artificial intelligence. AAAI Press. 1997,
pp. 50–56.

[Nyb11] Mattias Nyberg. „A generalized minimal hitting-set algorithm to handle diagnosis with
behavioral modes“. In: IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems
and Humans 41.1 (2011), pp. 137–148.

192 Bibliography

[NZ08] Gustav Nordh and Bruno Zanuttini. „What makes propositional abduction tractable“. In:
Artificial Intelligence 172.10 (2008), pp. 1245–1284.

[Ovc+13] Ekaterina Ovchinnikova, Andrew S Gordon, and Jerry Hobbs. „Abduction for discourse
interpretation: a probabilistic framework“. In: Proceedings of the Joint Symposium on
Semantic Processing. 2013, pp. 42–50.

[Pau93] Gabriele Paul. „Approaches to abductive reasoning: an overview“. In: Artificial intelligence
review 7.2 (1993), pp. 109–152.

[PD01] James D Park and Adnan Darwiche. „Approximating MAP using local search“. In: Proceed-
ings of the Seventeenth conference on Uncertainty in artificial intelligence. Morgan Kaufmann
Publishers Inc. 2001, pp. 403–410.

[PD95] Michael Pecht and Abhijit Dasgupta. „Physics-of-failure: an approach to reliable product
development“. In: Journal of the IES 38.5 (1995), pp. 30–34.

[Pea88] Judea Pearl. „Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-
ence“. In: (1988).

[Pei+16] Bernhard Peischl, Ingo Pill, and Franz Wotawa. „Abductive Diagnosis based on Modelica
Models“. In: (2016), pp. 1–9.

[Pei74] Charles Sanders Peirce. Collected papers of charles sanders peirce. Vol. 5. Harvard University
Press, 1974.

[Pil+11] Ingo Pill, Thomas Quaritsch, and Franz Wotawa. „From conflicts to diagnoses: An empirical
evaluation of minimal hitting set algorithms“. In: 22nd International Workshop on the
Principles of Diagnosis. 2011, pp. 203–210.

[Poo+87] David Poole, Randy Goebel, and Romas Aleliunas. „Theorist: A logical reasoning system
for defaults and diagnosis“. In: The Knowledge Frontier. Springer, 1987, pp. 331–352.

[Pop73] Harry E Pople. „On the mechanization of abductive logic“. In: Proceedings of the 3rd
international joint conference on Artificial intelligence. Morgan Kaufmann Publishers Inc.
1973, pp. 147–152.

[Por+04] Luigi Portinale, Diego Magro, and Pietro Torasso. „Multi-modal diagnosis combining
case-based and model-based reasoning: a formal and experimental analysis“. In: Ar-
tificial Intelligence 158.2 (2004), pp. 109 –153. ISSN: 0004-3702. URL: http://www.
sciencedirect.com/science/article/pii/S0004370204000839.

[PQ12] Ingo Pill and Thomas Quaritsch. „Optimizations for the Boolean approach to comput-
ing minimal hitting sets“. In: Proceedings of the 20th European Conference on Artificial
Intelligence. IOS Press. 2012, pp. 648–653.

[PR89] Yun Peng and James A Reggia. „A connectionist model for diagnostic problem solving“. In:
Systems, Man and Cybernetics, IEEE Transactions on 19.2 (1989), pp. 285–298.

[PR90] Yun Peng and James A Reggia. Abductive inference models for diagnostic problem-solving.
Springer, 1990.

[PT02] Chris J Price and Neil S Taylor. „Automated multiple failure FMEA“. In: Reliability Engi-
neering & System Safety 76.1 (2002), pp. 1–10.

[PW03] Bernhard Peischl and Franz Wotawa. „Computing diagnosis efficiently: A fast theorem
prover for propositional Horn theories“. In: Proceedings of the 14th International Workshop
on Principles of Diagnosis. 2003, pp. 175–180.

[Qiu+12] Yingning Qiu, Yanhui Feng, Peter Tavner, et al. „Wind turbine SCADA alarm analysis for
improving reliability“. In: Wind Energy 15.8 (2012), pp. 951–966.

Bibliography 193

http://www.sciencedirect.com/science/article/pii/S0004370204000839
http://www.sciencedirect.com/science/article/pii/S0004370204000839

[QP14] Thomas Quaritsch and Ingo Pill. „Pymbd: A library of mbd algorithms and a light-weight
evaluation platform“. In: Proceedings of the 25th International Workshop on Principles of
Diagnosis. 2014, pp. 1–5.

[Qua14] Thomas Quaritsch. „Diagnosis of LTL Specifications using Consistency-oriented Model-
based Reasoning“. PhD thesis. Graz University of Technology, 2014.

[Qui55] Willard V Quine. „A way to simplify truth functions“. In: American mathematical monthly
(1955), pp. 627–631.

[Rad+93] LWMM Rademakers, A Seebregts, and B van Den Horn. Reliability analysis in wind engi-
neering. Netherlands Energy Research Foundation ECN, 1993.

[RD97] Antoine Rauzy and Yves Dutuit. „Exact and truncated computations of prime implicants of
coherent and non-coherent fault trees within Aralia“. In: Reliability Engineering & System
Safety 58.2 (1997), pp. 127–144.

[Rei87] Raymond Reiter. „A theory of diagnosis from first principles“. In: Artificial Intelligence 32.1
(1987), pp. 57–95.

[Reu17] Reuters. Atlanta airport power outage cost Delta Air Lines up to $50 million. 2017. URL:
https://www.reuters.com/article/us- atlanta- airport- delta- air/atlanta-
airport-power-outage-cost-delta-air-lines-up-to-50-million-idUSKBN1EE2LC.

[RH04] Marvin Rausand and Arnljot Høyland. System reliability theory: Models, statistical methods,
and applications. Vol. 396. John Wiley & Sons, 2004.

[Ric76] John R Rice. „The algorithm selection problem“. In: Advances in computers 15 (1976),
pp. 65–118.

[Rob+13] C Robinson, E Paramasivam, E Taylor, A Morrison, and E Sanderson. Study and development
of a methodology for the estimation of the risk and harm to persons from wind turbines.
Tech. rep. Technical report, Health and Safety Executive, 2013.

[RS15] Enno Ruijters and Mariëlle Stoelinga. „Fault tree analysis: A survey of the state-of-the-art
in modeling, analysis and tools“. In: Computer science review 15 (2015), pp. 29–62.

[Rym94] Ron Rymon. „An SE-tree-based prime implicant generation algorithm“. In: Annals of
Mathematics and Artificial Intelligence 11.1 (1994), pp. 351–365.

[Sac+00] Martin Sachenbacher, Peter Struss, and Reinhard Weber. Advances in design and imple-
mentation of OBD functions for diesel injection based on a qualitative approach to diagnosis.
Tech. rep. SAE Technical Paper, 2000.

[Sai+16] Paul Saikko, Johannes P Wallner, and Matti Järvisalo. „Implicit hitting set algorithms for
reasoning beyond NP“. In: Proceedings of the Fifteenth International Conference on Principles
of Knowledge Representation and Reasoning. AAAI Press. 2016, pp. 104–113.

[Sch+13] Meik Schlechtingen, Ilmar Ferreira Santos, and Sofiane Achiche. „Wind turbine condi-
tion monitoring based on SCADA data using normal behavior models. Part 1: System
description“. In: Applied Soft Computing 13.1 (2013), pp. 259 –270. ISSN: 1568-4946. URL:
http://www.sciencedirect.com/science/article/pii/S1568494612003821.

[Sch16] Peter Schüller. „Modeling variations of first-order Horn abduction in answer set program-
ming“. In: Fundamenta Informaticae 149.1-2 (2016), pp. 159–207.

[SD89] Peter Struss and Oskar Dressier. „Physical negation: integrating fault models into the
general diagnostic engine“. In: Proceedings of the 11th international joint conference on
Artificial intelligence-Volume 2. Morgan Kaufmann Publishers Inc. 1989, pp. 1318–1323.

[SDV01] Laurent Simon and Alvaro Del Val. „Efficient consequence finding“. In: Proceedings of the
17th International Joint Conference on Artificial Intelligence-Volume 1. Morgan Kaufmann
Publishers Inc. 2001, pp. 359–365.

194 Bibliography

https://www.reuters.com/article/us-atlanta-airport-delta-air/atlanta-airport-power-outage-cost-delta-air-lines-up-to-50-million-idUSKBN1EE2LC
https://www.reuters.com/article/us-atlanta-airport-delta-air/atlanta-airport-power-outage-cost-delta-air-lines-up-to-50-million-idUSKBN1EE2LC
http://www.sciencedirect.com/science/article/pii/S1568494612003821

[Shc+15] Kostyantyn Shchekotykhin, Dietmar Jannach, and Thomas Schmitz. „MERGEXPLAIN: fast
computation of multiple conflicts for diagnosis“. In: Proceedings of the 24th International
Conference on Artificial Intelligence. AAAI Press. 2015, pp. 3221–3228.

[SI00] Chiaki Sakama and Katsumi Inoue. „Abductive logic programming and disjunctive logic
programming: their relationship and transferability“. In: The Journal of Logic Programming
44.1 (2000), pp. 75–100.

[SK96] Bart Selman and Henry Kautz. „Knowledge compilation and theory approximation“. In:
Journal of the ACM (JACM) 43.2 (1996), pp. 193–224.

[Sla+70] James R Slagle, Chin-Liang Chang, and Richard CT Lee. „A new algorithm for generating
prime implicants“. In: IEEE transactions on Computers 100.4 (1970), pp. 304–310.

[Sol+17] Marc Solé, Victor Muntés-Mulero, Annie Ibrahim Rana, and Giovani Estrada. „Survey on
Models and Techniques for Root-Cause Analysis“. In: arXiv preprint arXiv:1701.08546
(2017).

[Sta10] Switzerland International Organization for Standardization Geneva. Ergonomics of human-
system interaction – Part 210: Human-centred design for interactive systems.ISO 9241-
210:2010. Norm. 2010.

[Str+96] Peter Struss, Andreas Malik, and Martin Sachenbacher. „Case studies in model-based
diagnosis and fault analysis of car-subsystems“. In: Proceedings of the 1st International
Workshop Model-based Systems and Qualitative Reasoning. 1996, pp. 17–25.

[Str08] Peter Struss. „Model-based Problem Solving“. In: Handbook of Knowledge Representation.
Ed. by Frank van Harmelen, Vladimir Lifschitz, and Bruce Porter. Oxford: Elsevier Science,
2008. Chap. 10, pp. 395–465.

[SW01] Markus Stumptner and Franz Wotawa. „Diagnosing tree-structured systems“. In: Artificial
Intelligence 127.1 (2001), pp. 1–29.

[Tag05] Nancy R Tague. The quality toolbox. Vol. 600. ASQ Quality Press Milwaukee, 2005.

[Taz+17] Nacef Tazi, Eric Châtelet, and Youcef Bouzidi. „Using a Hybrid Cost-FMEA Analysis for
Wind Turbine Reliability Analysis“. In: Energies 10.3 (2017), p. 276.

[Tch+14] Pierre Tchakoua, René Wamkeue, Mohand Ouhrouche, et al. „Wind turbine condition
monitoring: State-of-the-art review, new trends, and future challenges“. In: Energies 7.4
(2014), pp. 2595–2630.

[Tis67] Pierre Tison. „Generalization of consensus theory and application to the minimization of
boolean functions“. In: Electronic Computers, IEEE Transactions on 4 (1967), pp. 446–456.

[TMM98] Louise Travé-Massuyès and Robert Milne. „Gaps between research and industry related
to model based and qualitative reasoning“. In: Proceedings of the European workshop on
Model based systems and qualitative reasoning. 1998, pp. 54–57.

[Tse70] Gregory Tseitin. „On the complexity of proofs in propositional logics“. In: Seminars in
Mathematics. Vol. 8. 1970, pp. 466–483.

[TSM16] Houari Toubakh and Moamar Sayed-Mouchaweh. „Hybrid dynamic classifier for drift-
like fault diagnosis in a class of hybrid dynamic systems: Application to wind turbine
converters“. In: Neurocomputing 171 (2016), pp. 1496–1516.

[Val99] Alvaro del Val. „A new method for consequence finding and compilation in restricted
languages“. In: Proceedings of the sixteenth national conference on Artificial intelligence and
the eleventh Innovative applications of artificial intelligence conference innovative applications
of artificial intelligence. American Association for Artificial Intelligence. 1999, pp. 259–264.

Bibliography 195

[Vog+14] Gregory W Vogl, Brian A Weiss, and M Alkan Donmez. „Standards for prognostics and
health management (phm) techniques within manufacturing operations“. In: Annual
Conference of the Prognostics and Health Management Society, September. 2014, pp. 576–
588.

[VP08] Alberto Venturini and Gregory Provan. „Incremental algorithms for approximate compi-
lation“. In: Proceedings of the 23rd national conference on Artificial intelligence-Volume 3.
AAAI Press. 2008, pp. 1495–1498.

[Wei+08] Wanxia Wei, Chu Min Li, and Harry Zhang. „Switching among Non-Weighting, Clause
Weighting, and Variable Weighting in Local Search for SAT“. In: Proceedings of the 14th
international conference on Principles and Practice of Constraint Programming. Springer-
Verlag. 2008, pp. 313–326.

[Wil+10] Michael Wilkinson, B Hendriks, F Spinato, et al. „Methodology and results of the ReliaWind
reliability field study“. In: European Wind Energy Conference and Exhibition 2010, EWEC
2010. Vol. 3. Sheffield. 2010, pp. 1984–2004.

[Wil45] Frank Wilcoxon. „Individual comparisons by ranking methods“. In: Biometrics bulletin 1.6
(1945), pp. 80–83.

[Wit+11] Ian H. Witten, Eibe Frank, and Mark A Hall. Data Mining: Practical Machine Learning Tools
and Techniques. 3rd. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc, 2011.
ISBN: 0123748569, 9780123748560.

[WK+14] Fang Wei-Kleiner, Zlatan Dragisic, and Patrick Lambrix. „Abduction framework for repair-
ing incomplete EL ontologies: complexity results and algorithms“. In: Proceedings of the
Twenty-Eighth AAAI Conference on Artificial Intelligence. AAAI Press. 2014, pp. 1120–1127.

[WN96] Brian C Williams and P Pandurang Nayak. „A model-based approach to reactive self-
configuring systems“. In: Proceedings of the thirteenth national conference on Artificial
intelligence-Volume 2. AAAI Press. 1996, pp. 971–978.

[Wot+09] Franz Wotawa, Ignasi Rodriguez-Roda, and Joaquim Comas. „Abductive Reasoning in
Environmental Decision Support Systems“. In: Proceedings of the Workshop on Artificial
Intelligence Applications on Environmental Protection. 2009, pp. 270–279.

[Wot+10] Franz Wotawa, Ignasi Rodriguez-Roda, and Joaquim Comas. „Environmental decision sup-
port systems based on models and model-based reasoning“. In: Environmental Engineering
& Management Journal (EEMJ) 9.2 (2010).

[Wot01] Franz Wotawa. „A variant of Reiter’s hitting-set algorithm“. In: Information Processing
Letters 79.1 (2001), pp. 45–51.

[Wot09] Franz Wotawa. „On the use of abduction as an alternative to decision trees in environmen-
tal decision support systems“. In: Complex, Intelligent and Software Intensive Systems, 2009.
CISIS’09. International Conference on. IEEE. 2009, pp. 1160–1165.

[Wot14] Franz Wotawa. „Failure Mode and Effect Analysis for Abductive Diagnosis“. In: Proceedings
of the International Workshop on Defeasible and Ampliative Reasoning. 2014, pp. 1–13.

[WS01] Franz Wotawa and Markus Stumptner. „Modellbasierte Diagnose—Überblick und technis-
che Anwendung“. In: e & i Elektrotechnik und Informationstechnik 118.7 (2001), pp. 360–
366.

[Xu+08] Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. „SATzilla: portfolio-
based algorithm selection for SAT“. In: Journal of artificial intelligence research 32 (2008),
pp. 565–606.

[You+00] Jia-Huai You, Li Yan Yuan, and Randy Goebel. „An abductive approach to disjunctive logic
programming“. In: The Journal of Logic Programming 44.1-3 (2000), pp. 101–127.

196 Bibliography

[ZL+12] Yang Zhi-Ling, Wang Bin, Dong Xing-Hui, and LIU Hao. „Expert system of fault diagnosis
for gear box in wind turbine“. In: Systems Engineering Procedia 4 (2012), pp. 189–195.

[ZM07] A. S. Zaher and S.D.J. McArthur. „A Multi-Agent Fault Detection System for Wind Turbine
Defect Recognition and Diagnosis“. In: 2007 IEEE Lausanne Power Tech (July 2007), pp. 22–
27. URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
4538286.

Bibliography 197

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4538286
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4538286

198 Bibliography

	Titlepage
	Declaration
	Abstract
	Acknowledgement
	Abbreviations
	I The Basics
	1 Introduction
	1.1 Motivation
	1.2 Applied Model-Based Reasoning (AMOR) Project
	1.3 Research Objectives and Contribution
	1.4 Outline

	2 Preliminaries
	2.1 Diagnosis of Complex Systems
	2.2 Abductive Reasoning
	2.2.1 Logic-based Abduction
	2.2.2 Abduction by Set-covering
	2.2.3 Probabilistic Abduction

	2.3 Abductive Model-Based Diagnosis
	2.3.1 Abduction with the Assumption-Based Truth Maintenance System
	2.3.2 Reformulating the PHCAP

	II From Theory to Practice
	3 A Process for Applying Model-Based Diagnosis in Industrial Applications
	3.1 Motivation
	3.2 Defining a General Abductive Diagnosis Process
	3.3 Integration of Failure Assessments into the Diagnostic Process
	3.3.1 Failure Mode Effect Analysis
	3.3.2 Fault Tree Analysis

	3.4 Fault Identification
	3.4.1 Observation Discrimination
	3.4.2 Fault Ranking

	3.5 Conclusion

	4 Solving Bipartite Diagnosis Problems
	4.1 Motivation
	4.2 Conflict Driven Techniques
	4.2.1 Minimal Unsatisfiable Subset and Minimal Correction Subset
	4.2.2 Conflict-Driven Search via HS-DAG
	4.2.3 Empirical Evaluation

	4.3 Abductive Diagnosis by Hitting Set Computation
	4.3.1 Hitting Set Algorithms
	4.3.2 Empirical Evaluation

	4.4 Conclusion

	5 Faster Horn Diagnosis - Finding Explanations in Horn Clause Abduction
	5.1 Motivation
	5.2 Selected Diagnosis Algorithms
	5.2.1 Abduction with the ATMS
	5.2.2 Abduction as Consequence Finding via SOL-resolution
	5.2.3 Conflict-Driven Search via HS-DAG
	5.2.4 Conflict-Driven Search via Power Set Exploration
	5.2.5 Abduction under Stable Model Semantics

	5.3 Empirical Results
	5.3.1 Algorithms
	5.3.2 Data
	5.3.3 Results
	5.3.4 Discussion

	5.4 Conclusion

	6 Exploiting Structural Metrics in Abductive Diagnosis
	6.1 Motivation
	6.2 Meta-Approach
	6.3 Bipartite Models
	6.3.1 Structural Metrics
	6.3.2 Empirical Results

	6.4 Horn Models
	6.4.1 Structural Metrics
	6.4.2 Evaluation

	6.5 Conclusion

	III Case Study: Wind Turbine Fault Identification
	7 Wind Turbine Diagnosis
	7.1 Motivation
	7.2 Related Work
	7.3 Model-Based Wind Turbine Diagnosis
	7.4 Conclusion

	8 Extending the Modeling Framework for Abductive Diagnosis beyond Horn Clauses
	8.1 Motivation
	8.2 Extended Modeling
	8.3 Empirical Evaluation
	8.4 Physics of Failure
	8.4.1 Model Development
	8.4.2 Advantages and Limitations of Using PoF

	8.5 Conclusions

	9 Designing a Diagnosis Application and its Graphical User Interface
	9.1 Motivation
	9.2 Abductive Model-Based Diagnosis Prototype
	9.2.1 Workflow and GUI Design
	9.2.2 Realization of the Diagnosis and Modeling Engine

	9.3 Conclusion

	IV Conclusion and Future Work
	10 Summary and Conclusion
	11 Future Work
	Bibliography

