

Thomas Kohl, BSc

Developing a Concept for the Introduction of

Behaviour Driven Development in Agile Development Teams

for E-Commerce-Platforms

Master’s Thesis

Graz University of Technology

Supervisor: Slany, Wolfgang, Univ.-Prof. Dipl.-Ing. Dr.techn.

Institute of Software Technology

Graz, July 2019

ii

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the

declared sources/resources, and that I have explicitly marked all material which has been

quoted either literally or by content from the used sources. The text document uploaded in

TUGRAZonline is identical to the present master thesis.

Graz, ___________________________ _______________________

 Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die

angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und

inhaltlich entnommenen Stellen als solche kenntlich gemacht habe. Das in TUGRAZonline

hochgeladene Textdokument ist mit der vorliegenden Masterarbeit identisch.

Graz, ___________________________ _______________________

 Datum Unterschrift

iii

Abstract

Continuously changing requirements are one of the biggest challenges software development

teams face in their daily business. This applies especially for teams focussing on the

development of web applications, such as E-Commerce-Platforms. Research has shown that

the introduction of Behaviour Driven Development in the development process is a possible

solution to prepare a team for any upcoming changes. In this thesis a concept is created to

integrate Behaviour Driven Development in teams of an organisation focussing on such E-

Commerce-Platforms. The proposed concept puts emphasis on the improvement of the

requirements engineering process as well as on the verification of requirements over the whole

life cycle of a software project. Based on a literature review on these two focal points a selection

has been made tailored to the needs of the organisation. This led to the introduction of a

workshop technique as well as a test framework as a basis of the concept. The proposed concept

serves as a foundation for a bigger process change in the selected environment. First efforts to

introduce this concept show that it can improve the development process in software

development teams. In particular, the analysis of complex requirements is enhanced. In

addition, further possible effects of the concept’s introduction are addressed.

iv

Kurzfassung

Ständig ändernde Anforderungen sind eine der größten Herausforderungen für

Softwareentwicklungsteams in ihrem Alltag. Dies gilt insbesondere für Teams, die sich auf die

Entwicklung von Webanwendungen wie E-Commerce-Plattformen spezialisieren.

Untersuchungen haben gezeigt, dass die Einführung von Behaviour Driven Development eine

mögliche Lösung ist, um ein Entwicklungsteam auf jegliche bevorstehende Änderung

vorzubereiten. In dieser Arbeit wird ein Konzept entwickelt, um Behaviour Driven

Development in die Softwareentwicklungsteams einer Organisation zu integrieren, die sich auf

solche E-Commerce-Plattformen spezialisiert hat. Das vorgeschlagene Konzept legt den

Schwerpunkt auf die Verbesserung des Prozesses zur Aufnahme von Anforderungen sowie auf

Möglichkeiten, wie Anforderungen über den gesamten Lebenszyklus eines Softwareprojekts

verifiziert werden können. Basierend auf einer Literaturrecherche zu diesen beiden

Schwerpunkten wurde eine Auswahl getroffen, die auf die Bedürfnisse der Organisation

zugeschnitten ist. So bilden eine Workshop Technik sowie ein Testframework die Basis für das

Konzept. Dieses Konzept bildet die Grundlage für eine größere Prozessänderung in der

ausgewählten Umgebung. Erste Versuche, das Konzept einzuführen, zeigen, dass es Teile des

gelebten Prozesses in den Softwareentwicklungsteams verbessern kann. Insbesondere die

Analyse komplexer Anforderungen wird dadurch verbessert. Zusätzlich dazu werden weitere

Auswirkungen, die die Einführung des Konzepts auslösen kann, behandelt.

v

Contents

1. Introduction .. 1

2. Basics ... 4

2.1. Software Development Process Models ... 4

 Linear Software Development Process Models ... 4

2.1.1.1. Waterfall Model .. 4

2.1.1.2. V-Model .. 6

 Agile Software Development Process Models .. 7

2.1.2.1. Extreme Programming .. 9

2.1.2.2. Scrum .. 11

2.1.2.3. Kanban .. 12

2.1.2.4. Agile Software Development: Summary .. 14

2.2. Requirements Engineering ... 16

 User Stories .. 18

2.3. Testing .. 22

 Test-Driven Development .. 23

2.4. Test Cases as Requirements ... 25

2.5. Behaviour Driven Development ... 27

3. Environment ... 32

4. Requirements Engineering Techniques ... 34

4.1. Feature Injection ... 34

4.2. Story Mapping .. 35

4.3. Example Mapping... 38

4.4. OOPSI-Model ... 40

5. Test Automation Tools and Frameworks ... 44

5.1. BDD Frameworks ... 45

 Cucumber ... 45

 Gauge ... 49

5.2. GUI-Testing Frameworks ... 53

 Selenium WebDriver ... 53

 WebdriverIO .. 54

 Puppeteer.. 55

vi

6. Proposed Concept .. 56

6.1. Requirements Engineering ... 56

 Extended OOPSI-Model .. 57

6.1.1.1. Extended OOPSI-Model: Concept .. 57

6.1.1.2. Extended OOPSI-Model: An Example ... 58

6.1.1.3. Extended OOPSI-Model: Summary .. 67

6.2. Automation of Requirements .. 68

 Cucumber-Puppeteer framework ... 69

6.2.1.1. Cucumber-Puppeteer framework: Detailed Description 69

6.2.1.2. Cucumber-Puppeteer framework: Verification ... 75

6.2.1.3. Cucumber-Puppeteer framework: Integration ... 76

6.3. Integration of the Proposed Concept .. 79

 Integration in a new project ... 79

 Integration in an existing project ... 80

7. Discussion .. 81

7.1. Requirements Engineering ... 81

7.2. Automation of Requirements .. 83

7.3. Concept as a whole ... 85

8. Conclusion ... 86

8.1. Future Work .. 87

9. References .. 88

vii

List of Figures

Figure 1: Waterfall Modell [4] ... 5

Figure 2: V-Model [6] .. 7

Figure 3: Cost of Change [11] ... 10

Figure 4: Example of a Kanban Board [15] ... 13

Figure 5: Stairway to Heaven [17] ... 15

Figure 6: Counting the points of a star [19] ... 16

Figure 7: Simplified TDD-Cycle [38] .. 24

Figure 8: BDD-Cycle [38] ... 29

Figure 9: Story Mapping Workshop – Big Picture [55] .. 36

Figure 10: Story Mapping Workshop – Explored Stories [55] .. 37

Figure 11: Story Mapping Workshop – Release Slices [55].. 38

Figure 12: Example Mapping Overview [56] .. 39

Figure 13: OOPSI-Mapping - User Story as Outcome [58] .. 41

Figure 14: OOPSI-Mapping [58] ... 42

Figure 15: Goal as a User Story ... 57

Figure 16: Process Steps .. 59

Figure 17: User Story for entering Address Data .. 61

Figure 18: Extended OOPSI-Model – Processes Example .. 62

Figure 19: Summary Extended OOPSI-Model .. 68

Figure 20: Architecture of Pages and Components ... 72

Figure 21: Example of a Cucumber-Report in Jenkins [97] .. 78

viii

List of Listings

Listing 1: Gherkin Example [67] ... 46

Listing 2: Step Definitions for Gherkin Example in JavaScript [67] 47

Listing 3: Gherkin – Example with Background and Scenario Outline 48

Listing 4: Command-Line execution of Cucumber with parallelisation [70] 49

Listing 5: Example of a Gauge Specification [67] ... 50

Listing 6: Step Definitions for Gauge Example in JavaScript [67] ... 51

Listing 7: Gauge - Example with Data Table, Context and Teardown 52

Listing 8: Initialisation and Execution of Gauge test suite .. 53

Listing 9: Proposed Concept: Order Scenarios .. 60

Listing 10: Extended OOPSI-Model – scenarios for Data Validation 63

Listing 11: Extended OOPSI-Model – Inputs for personal and address data 64

Listing 12: Extended OOPSI-Model – Scenario Outlines ... 65

Listing 13: Extended OOPSI-Model – Results after Child Process .. 66

Listing 14: Example npm script to run Cucumber-Puppeteer framework 70

Listing 15: Default configuration for Cucumber-Puppeteer framework 70

Listing 16: Cucumber-JS default profile.. 71

Listing 17: Tagged Hook for Puppeteer setup ... 72

Listing 18: Example of page object using a component .. 73

Listing 19: Example of step definition using page object.. 73

Listing 20: Tagged Hook for Puppeteer teardown ... 74

Listing 21: Example of using Jest for a JavaScript Unit Test .. 75

Listing 22: Cucumber Feature for Functional Testing of the proposed framework 76

ix

List of Tables

Table 1: Comparison of User Stories and Features [26] .. 19

Table 2: Comparison of different types of testing [33].. 23

1

1. Introduction

In the rapidly changing environment of software projects, there is only one constant. This

applies especially for software projects that are focussed on web development, like E-

Commerce-Platforms. This constant is continuous change. Whether it comes to customer’s

requirements towards the software itself, staff changes to the development team or all kind of

influences from the outer world, such as changing laws or regulations. A software development

team must be able to cope with all of them and must be able to address them in a timely and

decent manner.

Changes to the team set up and constantly changing requirements pose enormous challenges.

Therefore, it is immensely important to have a clear overview of the current status of the

software and, of course, if its requirements are still met. Not only existing requirements

represent obstacles for a software development team, but also new requirements need to be

addressed adequately. Thus, a team will always have to cope with one of the hardest challenges:

people understanding the same problem differently. To summarise, the following main hurdles

need to be addressed:

• How can a development team effectively handle and communicate new requirements,

in a way such that, all different stakeholders have the same understanding?

• How does a development team manage existing requirements effectively to be able to

respond if the team or the requirements change?

• How can a development team be sure that the existing requirements are still met after

changes have been made?

Thus, for a software development team, it is essential to have a common understanding on all

levels, to be able to succeed. Facing such a typical problem during development, Dan North,

with the help of others, realised, that after he started seeing the requirements as a behaviour the

application must fulfil, many of his problems vanished. Furthermore, he concluded that he was

trying to define a ubiquitous language to analyse such problems without even thinking in that

direction. By defining a template to formulate examples of those behaviours, he was able to

communicate the requirements effectively. This technique provides an efficient way of

verifying that the behaviour – the requirements – are met. He named this technique “Behaviour

Driven Development” [1].

1. Introduction

2

Gojko Adzic focussed in one of his works „Specification by Example“ on various case studies

and experiences from multiple teams, that tried to implement such a technique. Almost all

investigated case studies showed that applying these practices to their project had improved

the process, the documentation of the product as well as the quality of the delivered product

itself in comparison to the previous approaches. Gojko Adzic also showed that there are already

various techniques sharing the same key principles. According to his understanding, it can be

argued that the following terms can be used interchangeably [2]:

• Behaviour Driven Development

• Specification by Example

• Acceptance Test Driven Development

• Story Test Driven Development

The techniques named above do have numerous similarities. Therefore, it does not make sense

to distinguish between all of them but rather focus on the underlying base concepts [2]. With

that in mind, the term “Behaviour Driven Development” will be used for any following

reference to those core principles.

With this thesis, a concept is established on how a software development team focussing on E-

Commerce-Platforms might be able to deploy Behaviour Driven Development to address all

the stated well-known problems. The focus is set on two parts of Behaviour Driven

Development. Firstly, providing a proposal on how software development teams could extract

the needed requirements. As a second part, the concept describes how these requirements can

be used to drive the development process and ensure a continuous verification of the extracted

requirements.

By applying this concept an agile software development team should be able to implement the

desired functionalities more efficiently. One of the reasons for this is that all requirements are

supported by examples. Hence, the chance of introducing ambiguous requirements is

decreased. Additionally, using examples as executable tests will give the software development

team the needed security to respond to any upcoming change with the required self-confidence.

The executable requirements would indicate immediately, if any existing functionality is

broken. Moreover, this concept should help a development team to further improve its

development process and thereby making it more efficient. Additionally, the increased self-

confidence should enable the development team to reduce the needed time to deploy new

functionalities into production.

1. Introduction

3

In the following section, different well-known software development process models and some

of their practices are reflected to point out common weaknesses and problems. Furthermore,

the disciplines of requirements engineering, testing and the characteristics of Behaviour Driven

Development are outlined. After the basics, the environment, in which the concept should be

introduced, is described. The following two chapters concentrate on different techniques for

the defined focal points: requirements engineering and tools and frameworks that could be used

to support the key elements of Behaviour Driven Development. At next, the concept itself is

introduced. This approach is divided into two parts, corresponding to the points of interest as

stated earlier. The first part of it focuses on improving the way requirements are discovered

and managed. Subsequently, the second part is centred on how the requirements can be

automated sustainably. In a further section, possible ways of integrating the concept in the

desired environment are described. After that, the findings are discussed. Finally, the thesis is

concluded and an outlook for future research work is given.

4

2. Basics

In the following section, some commonly used processes and methodologies are introduced.

The focus is set on different software development process models, requirements engineering,

a short overview of software testing, how requirements could be used as test cases and the core

principles of Behaviour Driven Development. These topics are among the most important

disciplines of software development, building the foundation that needs to be understood if

Behaviour Driven Development should be introduced in a software development team.

2.1. Software Development Process Models

There are numerous different software development process models in usage. According to

Ruparelia, such a model describes the organisation and structure used for developing software.

He stated that classifications for software process models could be done based on its nature to

repeat or not repeat any of its stages. Such a model can either be linear, iterative or a

combination of both. Linear models are structured sequentially, meaning that finishing one

phase of the model leads to the next one. Iterative models repeat certain or all steps of the

process model. They aim to use the knowledge and results of the last iteration as a basis for

further improvements [3].

 Linear Software Development Process Models

Based on that classification, one of the oldest and most famous, in its pure form a completely

linear, software development process model is the “Waterfall Model”. Alongside that, the “V-

Model” is described as the two linear software development process models.

2.1.1.1. Waterfall Model

Although it wasn’t called “Waterfall Model” initially, its basic idea was already described by

Winston W. Royce in 1970. He mainly described his experience and the problems he

2. Basics

5

encountered in various big software projects for spacecraft mission planning and commanding

as well as for analysing flights. In Figure 1, the typical development life cycle of the Waterfall

Model is shown. At first, requirements are determined. Based on these requirements, the

analysis phase is conducted. After the design phase, the actual implementation is done with a

subsequent testing phase. After the testing phase, it is possible that feedback arises, that leads

to changes of program design or on the requirement level. Finally, after testing, the product is

delivered [4].

FIGURE 1: WATERFALL MODELL [4]

Royce also described possible adaptions to that basic approach. These adaptions, as listed

below, should mitigate some limitations of the pure sequential approach [4]:

1. Program Design comes first

2. Document the Design

3. Do it twice

4. Plan, Control and Monitor Testing

5. Involve the customer

2. Basics

6

These five adaptions to the Waterfall Model show that already from an early stage onwards, it

was known that late feedback could be a driver for costs in software projects. Involving the

customer throughout all phases of the project might limit the risk of delivering unusable or

unwanted software. Especially, developing a first pilot version of the project can help to reduce

the risk even further [4].

The Waterfall Model was also subject of an investigation of Laplante and Neill in 2004. They

investigated best practices and myths concerning software development. According to them,

the Waterfall Model comes from a time in which requirements rarely came from different

stakeholders and changed very infrequently. Therefore, its application had been widely

successful. However, in most of today’s software development projects, changing requirements

are omnipresent, and the Waterfall Model is not suited as it is inflexible towards change [5].

Similarly, Ruparelia analysed various software development process models, including the

Waterfall Model, and tried to categorise different process models based on the type of

application that should be developed. He chose following categories:

1. Applications providing only back-end services to other applications, such as a database

application

2. Applications wrapping around business logic to provide a service to an end-user

application, such as an Application Programming Interface

3. Applications focusing on direct end-user interaction by providing a Graphical User

Interface, such as a web application

Most of the linear process models can only be classified as suitable for the first two categories

of this list. He concluded that breaking a project into smaller parts and deliver multiple releases

can be a solution to an omnipresent change of scope. The best way to do this is by applying

agile software development process models as the chosen way of working [3].

2.1.1.2. V-Model

The before mentioned inflexibility of the Waterfall Model is tried to be mitigated in several

adaptions of it. One prominent representative of that group is the V-Model. The different

phases of this linear software development process model are arranged in a V-shape. These

phases are read from the top left to the bottom and back to the top right, resulting in a folded

version of the Waterfall Model. On the left side, the steps of requirements engineering and

2. Basics

7

design are pictured. At the bottom, the actual implementation of the application is described.

The following upward stream includes a phase for each one on the left as verification. In Figure

2, it is illustrated that the Decomposition and Definition stream oppose the Verification and

Integration Stream [6,7].

FIGURE 2: V-MODEL [6]

 Agile Software Development Process Models

In the world of agile software development, there is no way around its most basic principles:

The Manifesto for Agile Software Development by Kent Beck et al. They agreed on 12

principles to formulate a definition of what agile development is about, from which the

quintessence is even shorter [8]:

“Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan.” [8]

2. Basics

8

Based on these principles, several agile software development process models have been

implemented and reviewed in different fields of software development. In a survey by Barabino

et al. several commonly used practices were investigated. According to them, an agile software

development process model is highly suited for most web applications due to vague or

changing requirements. One of the survey’s findings was that the most commonly used agile

approach was Scrum, followed by Extreme Programming. Another interesting observation was

that most of the respondents used User Stories to organise and communicate requirements.

Whereas the use of automated acceptance tests was low. Only about 21% of the respondents

confirmed that this practice was performed regularly [9].

Additionally, the approach of agile methodologies is no longer limited to software development

alone. Moyo et al. showed that an agile method, in their case Scrum, may as well be used in

numerous other fields or research problems. They applied this idea to develop a simulation of

Alcohol Consumption Dynamics. According to them, the decision to use an agile methodology

was made because of two main reasons. Firstly, the used research data was not gathered for

their use case. Thus, they not only had to deal with the parameterisation of their research data

but also changing and balancing the used modelling requirements, meaning that they had to

deal with changing requirements. Secondly, their research project had a fixed time-constraint

of twelve months and a small development team. Therefore, they wanted to be able to deliver

a working prototype at an early stage which could evolve incrementally. Moyo et al. added that

because of choosing an agile way of working, they have been able to prioritise their work

properly and hence deliver first results at the beginning of the project. They concluded that

more researcher should think of adopting such methodologies [10].

In the next sections, some of the most commonly used agile software development models are

introduced to provide overview of these practices in detail.

2. Basics

9

2.1.2.1. Extreme Programming

Extreme Programming was introduced by Kent Beck in his work “Extreme Programming

Explained” [11]. He recognised the basic problem that all software development projects have

in common: risk, such as:

• Not being able to deliver the software in time

• To deliver the software in time, but with numerous issues

• To deliver software not solving the intended business problem

He pointed out, that for software projects, no matter which domain, there are four control

variables, which are all interrelated:

• Cost

• Time

• Quality

• Scope

The most noteworthy thing about the mentioned variables is, according to him, that all involved

stakeholders, such as developers, customers and managers, are aware of their presence. If these

variables were changed deliberately, it would have a direct effect on all the others. Hence, he

added that there is no simple relationship between them. However, Kent Beck argued that there

is one variable that, if managed properly, would leave the management and the customer with

control over cost, time and quality: scope. As scope usually varies a lot over the lifetime of a

software project, the risk of a project failure could be mitigated by getting early feedback and

implementing the most important features first. Regarding changing requirements, Beck stated,

that the cost of a change in a program will be exponentially higher the later it will be done, as

seen in Figure 3 [11].

2. Basics

10

FIGURE 3: COST OF CHANGE [11]

Beck added an additional assumption, that could influence the cost of change. He stated that

the cost of changing parts of the application would not behave in that way if a few simple rules

were followed. Simplifying the design, writing automated tests to have confidence in the code

and constant refinement of that design and tests could lead the team to not be afraid of making

changes when they must be done. With that assumption in mind, Beck stated, that managing a

software project is like learning how to drive a car. The trick is not only to head in the right

direction but paying attention and make small or big corrections to stay on track. Based on that

he stated some core values for Extreme Programming [11]:

• Communication

• Simplicity

• Feedback

• Courage

Based on these values, Kent Beck introduced a system consisting out of twelve practices, that,

if used correctly, is a powerful tool to limit the risk of project failure:

1. The Planning Game: plan the next release and respond to change by updating the plan

2. Small Releases: release a simple system as soon as possible

3. Metaphor: make a story to guide the whole team

4. Simple Design: the system contains only the parts it needs; no unused functionalities

5. Testing: developers and customer write automated tests to ensure quality

6. Refactoring: if there is a way to restructure code to make it easier to understand, do it

7. Pair Programming: two developers code together - always

8. Collective Ownership: nobody should hesitate to change any part of the code

2. Basics

11

9. Continuous Integration: after each change, the system is built and tested

10. 40-hour week: avoid overtime at all cost – stressed developers are inefficient

11. On-Site-Customer: the customer should always be available to answer questions

12. Coding Standards: communication through the code should be evident

He added that all the mentioned practices support each other. If any of these were not performed

by a team, it would bring the whole process out of balance. As another key aspect of Extreme

Programming, Kent Beck added that decisions should be taken by those who are suited to do

so, that means business stakeholders should take responsibility for business decisions, and

developers should take responsibility for technical ones. Thus, business decisions should drive

the project and developers should inform their business colleagues about costs and risks of

technical decisions. In the end, Beck concluded that all software development projects are

based on fear, but Extreme Programming prepares the development team with the ability to

respond to any change making it a powerful approach [11].

2.1.2.2. Scrum

According to Ken Schwaber and Jeff Sutherland, Scrum is not a specific process, but a

framework that allows the application of different processes and techniques. The core of Scrum

is a small independent team that could collaborate with other teams. The idea of this agile

methodology is, that the process itself evolves out of the experience of the software

development team. Therefore, three pillars have been chosen to describe how a process should

evolve inside the Scrum framework [12]:

• Transparency: the process itself has to be communicated and visible to all members

of the team

• Inspection: Scrum artefacts must be inspected regularly to indicate progress or

stagnancy

• Adaption: if an inspector finds an undesired development the process has to be adapted

For the Scrum Team itself, only the following roles were prescribed by its originators Schwaber

and Sutherland [12]:

1. Product Owner: manages the product backlog, a continuously changing list of all work

packages, by ordering and explaining the items in it

2. Basics

12

2. Scrum Team: a self-organising development team with the required skills to complete

all upcoming tasks

3. Scrum Master: plays the role of a moderator and coach that supports the Product

Owner and the Scrum Team to live and evolve the process

The momentarily most important product backlog items are chosen and planned inside a Sprint.

A Sprint is a fixed time frame of a month or less with a specified goal in which the development

team tries to complete all previously planned items, the Sprint backlog. The scope of this Sprint

backlog can be defined based on estimations of the product backlog items. These estimations

usually indicate if the development team can finish the product backlog item in the upcoming

Sprint. If this is the case, it can be planned. During the Sprint, Scrum prescribes a set of

meetings that should help the team to stay on track [12]:

• Sprint Planning: The Sprint backlog is filled with the most important items of the

product backlog that are ready to be implemented

• Daily Scrum: A short daily meeting to ensure proper communication and identifying

risks and problems during the Sprint

• Sprint Review: A meeting to present the outcome of the last Sprint to get feedback

from different stakeholders

• Sprint Retrospective: The Scrum Team sits together and tries to find ways to improve

the process and collaboration inside the team

Finally, Ken Schwaber and Jeff Sutherland concluded that it is possible to use only parts of

Scrum as well, although it should then not be called Scrum anymore as it works best if all

practices are performed as recommended in “The Scrum Guide” [12].

2.1.2.3. Kanban

In his work “Getting started with Kanban”, Paul Klipp summarised the essence of Kanban as

a tool used to guarantee an optimal flow of work in a software development team [13].

The idea behind this can be traced back to the terms “Lean” and “Just in Time (JIT)”.

According to Ebert et al., these techniques were used as a production management process in

the beginning. Toyota used such an approach to be able to deliver small batches just as they

were needed, which resulted in drastically reduced working hours and improved quality. All of

this was achieved by changing the production flow from a push to a pull mentality [14].

2. Basics

13

Klipp added that there are only three rules to be considered when working with Kanban [13]:

• Visualise Workflow: Visualise how the work packages flow through the process until

they are done, no matter how complex the workflow might be – usually a Kanban Board

is used for that purpose. An example is pictured in Figure 4.

• Limit Work in Progress (WIP): Increase efficiency by concentrating on one task at a

time, because working on different things simultaneously has proven to be slow, like

Klipp said: “Get more done by doing less” [13].

• Measure and Improve Flow: Make small adjustments to the process if needed, so that

identified bottlenecks can be dissolved.

Two of the most important indicators to identify bottlenecks in a process are lead time and

cycle time. The lead time gives an indication on how long a work package needed from the

time of request until it was done. Whereas the cycle time gives information on how much time

is needed for a work package to be finished from the moment on somebody started working on

it [13].

FIGURE 4: EXAMPLE OF A KANBAN BOARD [15]

2. Basics

14

2.1.2.4. Agile Software Development: Summary

To the question of which of these frameworks or guidelines should be used for a software

project, no definite answer can be given. According to Kniberg and Skarin, none of the named

methodologies are the answer to all problems, but they provide interesting guidelines and

constraints. Moreover, they stated that all those techniques can be mixed. Kniberg and Skarin

cannot imagine a Scrum Team not using most of the techniques Extreme Programming

prescribes or a Kanban Team that does not use Dailies, which is a Scrum practice. Thus, it is

possible to use all techniques of either methodology suitable for the specific team and use case.

However, it should be considered that in case something does not work as intended, it should

be possible to be changed. As already mentioned above, none of the named methodologies

provides a definite solution for any case. The goal should be continuous learning from

experience. Kniberg and Skarin summarised this by saying [15]:

“The only real failure is the failure to learn from failure.” [15]

According to Olsson et al., all different software development process models can be classified

towards a step on their “Stairway to Heaven”. They stated that an organisation must split up

large development groups into smaller teams, which focus on smaller junks in short

development cycles instead of big components, to get from the first step “Traditional

Development” to an “Agile Organisation”. Such a transition could be from the Waterfall

Model to Scrum or any other agile software development process model. “Continuous

Integration” as the next step implies that automated tests are developed and executed against

the code base. “Continuous Deployment” is the next step on this stairway. It requires short

feedback cycles that involve product management as well as customers. This step implies not

only that the code is checked automatically but also is continuously delivered. In the last step

a switch of thinking can be found. The deployment to the customer's system is seen as the

starting point, and the requirements of the product are extracted directly out of user feedback

of the current system. This means that the requirements evolve in real-time instead of being

declared before the start of the development. The name of this last step is “Experiment

Systems” [16,17].

2. Basics

15

FIGURE 5: STAIRWAY TO HEAVEN [17]

Thus, according to Olsson et al. adopting to an agile methodology is only one step on their

“Stairway to Heaven”, as illustrated in Figure 5. This is a crucial way of thinking about agile

software development process models, as none of them provide a definite solution. However,

agile methodologies provide guidance to a possible solution that must be discovered for each

team individually, no matter which of them is applied. Moreover, even after a team has found

a working process, there still is a long way for improvement in order to climb all steps on the

shown stairway [17].

2. Basics

16

2.2. Requirements Engineering

Gojko Adzic replicated an example by Weinberg and Gause and focused on different

interpretations people can have about the same topic [18]. He handed out cards showing the

star pictured in Figure 6 and asked the attendees how many points the star had [19].

FIGURE 6: COUNTING THE POINTS OF A STAR [19]

Adzic pointed out that most of the people were certain to have chosen the correct amount of

points for the shown card. The majority of them said that the star does have ten points.

However, some of the participants counted a different number of points, e.g. five points. Adzic

showed with this short example that even if the people were certain to have chosen the correct

answer, not all of them came to the same conclusion. This reflects the situation in most software

projects – different stakeholders talking about the same requirements despite having a

completely divergent understanding of them [19].

In general, according to Nuseibeh and Easterbrook, requirements engineering is the process of

how to formulate the needs of different stakeholders in a way, that it can be used for the

subsequent development steps. In addition to that, this process is an essential part during the

software development process itself. It is a multi-disciplinary and human-centred process,

which is usually underestimated when it comes to its effects on the overall success of a software

project. Moreover, requirements engineering is not only a process to initially capture functional

and non-functional requirements, but it should also cover the communication of these

2. Basics

17

requirements to all involved stakeholders to find consensus between all of them. This means

they came to a similar conclusion as Gojko Adzic, as shown above [19,20].

There are numerous approaches that try to make the process of requirements engineering easier

and more understandable. Reichart et al. proposed an approach that should support the process

of capturing requirements by applying a task-model-based approach to describe features. They

concluded, that the analysis of user-centred requirements is supported best by visualising

functional requirements with their proposed solution [21].

According to Eric S. K. Yu, using tools to aid the requirements engineering process is

inevitable, but using a fitting tool at the right time is challenging. He pointed out that modelling

techniques or different visualisations are often used to aid engineers with their tasks. However,

he also stated, that most of these techniques are used in “late phase” requirements engineering

tasks with a focus on completeness, precision and consistency. While those “late phase” tasks

get much attention, he noted that the “early-phase” requirements engineering tasks are being

neglected too often. Nevertheless, these “early-phase” tasks or activities represent some of the

most important questions and therefore should be asked before starting with software

development. They describe, how the planned system should behave to meet initial business

goals from a high-level perspective. Additionally, the “early-phase” tasks could help the team

to understand why a software or feature should be built in the first place. Yu concluded, that

understanding the initial reason and using the right techniques and tools during requirements

engineering activities might bring more structure to the process of discovering the requirements

itself [22].

In contrast to such an approach, there is a standard documenting best practices or guidelines

how a requirement specification document should be structured. Additionally, this standard

prescribes how the requirements should be written. This standard is named IEEE-830-Standard

[23]. It recommends writing functional requirements in a specific form: “The system shall …”.

Moreover, this standard also recommends to be as concise as possible with the requirements

before the start of the implementation and introduces guidelines to end up with requirements

in a decent quality [24].

There are various other ways of how requirements could be defined and processed, but as

already mentioned previously in chapter 2.1.2, the most commonly used approach to specify

requirements for agile software development process models is User Stories [9].

2. Basics

18

 User Stories

Mike Cohn published an article examining the advantages of using User Stories in comparison

to well-established requirement specification practices, like the IEEE-830-Standard mentioned

before. At first, he stated, that the concept of User Stories was introduced by Extreme

Programming and has ever since been adopted widely in all agile methodologies. A User Story

is a short description of a goal about a certain value the software should fulfil from the view of

the user or the end user of the product. Usually, these stories are written on so-called story

cards, which are used for further discussions [24]. According to Ron Jeffries, a User Story

should always consist of three components [25]:

1. Card

2. Conversation

3. Confirmation

Cohn built his understanding of this alliteration and added that the card is not the most

important thing of a User Story. It should be used as a reminder for subsequent planning and

as a central point for conversations around the intended goal of the story. As a result of these

conversations a documentation should be created holding the confirmations of the story. These

documented confirmations should afterwards be used to verify whether a story is completed or

not. He concluded that a User Story should encourage verbal communication, to ensure a

common understanding of the upcoming task between all involved stakeholders [25].

Antony Marcano pointed out that User Stories are often misinterpreted in a way that they

describe what the user will have and not what the user will be able to do as soon as the User

Stroy is implemented. In other words, a specific solution or thing is described instead of telling

what the user wants to do with it. Antony Marcano pointed out that there is a difference between

a feature and a User Story [26]:

“When what we want is “a thing” then what we are describing is not a user story – it is a

feature.” [26]

By using examples to highlight the difference between a User Story and a feature, Antony

Marcano made it clear that when using a User Story, there is no limitation to a specific solution.

In contrast, features clearly describe one possible way how the goal should be achieved. This

difference makes it obvious that the flexibility of achieving a certain goal is decreased if the

2. Basics

19

description depicts a feature instead of a User Story. In Table 1 some examples are pictured to

highlight this difference [26].

User Story Feature

As a cook,

I want to prepare hot food for the family,

so that we can safely enjoy various fresh

foods.

As a cook,

I want a kitchen,

so that I can prepare food.

As a parent,

I want to sleep comfortably with my

partner,

so that we can keep each other warm.

As a parent,

I want a master bedroom,

so that I can sleep comfortably with my

partner.

As a car-owner,

I want to park somewhere safe,

so that I can keep my insurance premiums

low.

As a car-owner,

I want a garage,

so that I can park my car off the street.

As a microblogger,

I want to find out as soon as I am

mentioned,

so that I can choose to respond while topics

are current.

As a microblogger,

I want a notifications screen showing my

last notification,

so that I can find out as soon as others

interact with me.

TABLE 1: COMPARISON OF USER STORIES AND FEATURES [26]

Gojko Adzic described the same problem in his work “Bridging the Communication Gap”.

According to him, requirements already form a proposed solution instead of underlying “why”

the solution is needed or “what” goal should be fulfilled with it. Thus, this is not only a problem

inherent to User Stories but seems to be a more general problem. Therefore, he added that it

would be a good practice to share as much detail about the “why” with all involved people,

since anybody could suggest a simple solution to the given problem [19].

The so-called Connextra Template describes a specific way in which User Stories should be

written. This template is structured in the following way [27]:

2. Basics

20

As a [someone]

I want to [do something]

So that [some result or benefit]

Antony Marcano stated, the motivation behind this template is to support all involved

stakeholders to start a conversation about the goal, which should be achieved with a User Story.

This is accomplished by giving a starting point for a short story to explore what the user would

want to do. Several variations of this template have been created over time, such as the

following one [27]:

As a [role]

I want [feature]

So that [benefit]

Marcano argued that these variations were introduced by teams because it was easy for them

to adapt to their User Story when they were still working with features, which described

requirements. As it can be seen in Table 1, a description of a feature is also possible with the

same template. This makes it even harder to use the Connextra Template properly for a User

Story only. Thus, according to Antony Marcano, teams working with “Features dressed as

User Stories” do have a fundamental misconception of using User Stories in the right way.

Additionally, he also agreed with Jeff Patton, who said, User Stories are not only a different

way to write requirements but are a different way to work [27,28].

The Connextra Template is not the only pattern that tries to define how a User Story should be

built and what it should contain. Another concept describing this is the “Invest Model”. Invest

is an acronym of the following words [29]:

• I - Independent

• N - Negotiable

• V - Valuable

• E - Estimable

• S - Small

• T - Testable

According to Bill Wake, a good User Story is supposed to have all these characteristics [29].

Seb Rose analysed the Invest Model rather critically in his talk “Every Process Needs

Thoughtful Participants” at a conference in 2018. He pointed out that it is not possible for a

2. Basics

21

story to always fulfil all those characteristics. It is not possible for a User Story to always be

small and independent since one small User Story is dedicated to achieving a certain goal, a

second one might be dependent on that one. Moreover, if this dependency is resolved, an even

bigger User Story would be the result. In the end, it might not be possible to fulfil these twos

requirements according to the Invest Model. He also criticised the Connextra Template.

According to him it is not always necessary to follow a certain form if the main goal of the

User Story is fulfilled. On the other hand, he agreed with some basic principles of those

methods and stated that the idea of a User Story is to deliver a piece of functionality to achieve

the specified goal and a User Story itself is not the requirement [30].

As shown above, there are multiple ways of defining whether a User Story is good or not, how

to work with a story or if it has the right size. However, this does not always reflect how a User

Story is used in practice. Liskin et al. added that the granularity of a User Story could affect its

quality massively. Big User Stories could leave out important information if they are written

not clear enough. On the other hand, small stories might not cover all the value the customer

wanted to have. Thus, they tried to find a possible measurement of how to define the right

granularity of a User Story. Especially big stories were a potential problem, as most of the

respondents of their survey stated, that big stories have been too vague or too coarse. A possible

way to deal with stories, that are too big is to split them in smaller ones. However, according

to their survey, this led to dependencies between the resulting smaller stories, which had to be

kept in mind. Splitting a User Story could as well be a powerful practice to discover any gaps

of information that must be discussed with the customer to understand the story correctly. In

the end, they concluded that there is not a perfect granularity level for a story, as different sizes

work better for different stories [31].

In literature there is no definite recipe to get to a perfect set of User Stories. However, there are

numerous techniques that show how they can be organised and structured to improve their

usage as well as their content.

2. Basics

22

2.3. Testing

Besides the used software development process models and the techniques used for

requirements engineering, testing is another crucial discipline of software development. All

development teams have to perform it in order to deliver a successful product.

Back in 2000 James Whitaker claimed in one of his articles, software testing is one of the least

understood sections in software development, and almost all bugs are reported due to the

following four reasons [32]:

1. Untested code was executed by the real user

2. Executing a process differently in an actual use case than during testing

3. Executing an untested combination of input values

4. Executing the software on an untested environment

He stated that testers must be able to think of any user interaction a piece of software might not

be prepared for. Examples might include different operating systems or events like failing

power supply or failing network connection. It should be verified that the software reacts

properly if any unforeseen event happens. Whitaker advised in his article that one of the most

important things a company can do to mitigate such issues is to recognise the complexity of

testing and listen to their experts if they warn about degrading quality [32].

According to Rodrigues et al. it has been common that software development and software

testing were two completely distinct processes, that were performed by independent teams.

However, both teams evaluated the same requirements. This led to discarding almost all testing

approaches during the development phase. Even if some testing is partially done automatically

with scripts or macros, the testing department and the development team might have performed

similar actions. They also added that it is not possible to test all inputs with a Black Box Testing

approach. Black Box Testing methods usually are performed without any knowledge of the

internal structure of the software under test. This concept is mostly used for validation if the

right software is built [33]. Due to the nature of that concept, testing can be very time-

consuming. Especially as certain faulty states or errors might only occur after a specific set of

operations were performed. This means there might be countless paths which have to be

considered during testing. Thus, by only using such a Black Box Testing approach, it is

impossible to cover all relevant system paths, regardless of the size of the testing staff. The

2. Basics

23

proposed solution by Rodrigues et al. is to shift more of the testing responsibilities to the

development team [34].

Contrary to that, White Box Testing is an approach where the software is tested while knowing

the inner structure of it and is usually done by the developers themselves. Its main use case is

to detect any logical errors in the code. A typical example of White Box Testing is Unit Testing.

These are usually written by developers to test small units of code. A mixture of both

approaches, Black Box Testing and White Box Testing, is found at Integration Testing. This

type of testing focusses on combining different components of the software to assure that they

are working together properly. Typical examples of pure Black Box Testing approaches are

Functional Testing and Acceptance Testing. These two types focus on the compliance of the

built software with the specified requirements. The difference between these two approaches

is that Acceptance Testing is performed by the customer on their environment and Functional

Testing is performed by the development team itself. Nevertheless, both are used to test the

whole application on a high level. A comparison of all mentioned testing types can be found in

Table 2 [33,35].

Type Opacity Granularity Scope

Unit

Testing

White Box Testing Low-Level Design Small units of code

Integration

Testing

White- and Black

Box Testing

Low- and High- Level

Design

Interactions between

different units of code

Functional

Testing

Black Box Testing High-Level Design Entire Product

Acceptance

Testing

Black Box Testing High-Level Design Entire Product in customer’s

environment

TABLE 2: COMPARISON OF DIFFERENT TYPES OF TESTING [33]

 Test-Driven Development

Test-Driven Development is an approach highly promoted by Extreme Programming as one of

its twelve practices. The basic idea of it is, that before a piece of code is written, automated

2. Basics

24

tests, mostly Unit Tests, are defined. Thus, a set of low-level tests is accumulated over time.

With that approach, developers receive instant feedback about the implemented functionality.

Furthermore, the automated tests ensure that the functionalities are not broken after another

change. Erdogmus et al. challenged this idea with an experiment. As the main result of their

study, they were able to show that the participants, who wrote tests before implementing the

actual functionality, wrote more tests than the control group, that wrote tests after implementing

the functionalities. Another result was that the test-first group ended up being more productive,

despite writing more tests. They believe that writing tests before the actual functionality could

lead to a better understanding of the problem, which is another advantage of this technique

[11,36].

Bhat and Nagappan evaluated this concept in another case study. They stated, that the actual

code is only written after the tests. As soon as one of the tests fails, the functionality has to be

refactored. The tests provide a low-level design of the software itself as well as reducing newly

generated errors by continuously executing tests against the implementation that would

highlight any error instantly. Their results indicated that the code quality increased significantly

in a software development team using Test-Driven Development in comparison to any other

approach inside the same organisation [37].

A similar description of Test-Driven Development was added by Gáspár Nagy and Seb Rose.

This description is illustrated in Figure 7. They stated that the development is driven by writing

a failing test first. After the functionality is implemented, the newly created test should run

successfully. If needed, the code is refactored afterwards. The test cases ensure the correct

behaviour of the functionalities even after these changes were made. After that, the next test is

written for the next part of the software [38].

FIGURE 7: SIMPLIFIED TDD-CYCLE [38]

2. Basics

25

All of that implies that there is one underlying thought that is tried to be accomplished by TDD:

not being afraid of changing existing code. This goes back to the Kent Beck, who stated the

following in his book “Test-Driven Development by Example” [39]:

“Test-driven development (TDD) is a way of managing fear during programming.” [39]

2.4. Test Cases as Requirements

The next improvement would be using test cases as requirements. Currently, in most cases,

requirement engineering and testing are viewed as two distinctive processes, which are most

likely performed by separated teams.

In a case study done by Bjarnason et al. different companies with various approaches on how

to use test cases as requirements have been examined using different variants for defining test

cases as requirements. One of these companies uses such an approach for the development of

Application Programming Interfaces (API). If a new API was created, the new set of

requirements should be defined by the system architect. The resulting test suite was used as the

most important source of truth during the implementation. This ensured that the built software

met the defined requirements. They added that for this use case, namely building APIs, this

way of requirements specification represents an efficient way of communication between the

development team and the customer. The reason for this efficiency was that only technical roles

were involved, and both parties shared a common understanding [40].

Contrary to that, if there are mainly business roles involved on the customer side, the main

effort on creating and maintaining the detailed requirements had to be done by the development

team. Customers might have an insufficient level of technical understanding to actively

participate in the process of generating test cases during this process. They concluded, one of

the main challenges in software development projects, keeping up with frequently changing

customer requirements, can be overcome by applying practices of defining requirements as test

cases. These practices enforce direct and frequent communication between the development

team and the customer. Additionally, due to the application of such practices, the created test

cases form a living documentation of the application. This documentation can give immediate

feedback to the stakeholders at any time throughout the whole life-cycle of the project [40].

Martin and Melnik argue that early writing of Acceptance Tests is a requirements engineering

technique and that both interrelate like the two sides of a Möbius strip. They additionally relate

2. Basics

26

to Gause and Weinberg, who said that one of the most effective ways of testing requirements

is with test cases like those used for testing the completed system. According to them a Black

Box Testing concept could be used during the requirements definition phase because nothing

can be opaquer than a box that does not exist yet. That means that those two techniques go

hand in hand and cannot be seperated from each other. They came up with the following

statement that sums up the relation between tests and requirements [41]:

“In other words, requirements and tests become indistinguishable, so you can specify system

behaviour by writing tests and then verify that behaviour by executing the tests.” [41]

Thus, Martin and Melnik were able to specify system behaviour by creating tests and later

verify the implemented functionality using these tests. To accomplish that, they used FitNesse

as their tool of choice for their use case [42]. They concluded, that using tests as requirements

can save time and money by focusing on important goals and thereby reducing the creation of

unnecessary features and code [41].

Wnuk et al. gave insight into a company that went a different way than what was recommended

in literature. They perform very little documentation of their requirements, but they involved

Quality Assurance experts very early in the process. The interviewed employees stating that

they had no use for long requirement documentations but used the test cases from Quality

Assurance as representatives of the requirements. All employees found that the lived process

was efficient, and the customer was satisfied with the delivered quality. They stated that several

factors might contribute to that success. One of them is open communication in the company.

Alongside that, the features form a high level description and focus on the problem and can

give feedback through benchmarks and prototypes [43].

2. Basics

27

2.5. Behaviour Driven Development

All the examples above show that using test cases as requirements, focusing on short

communication, high-level problems and early feedback can lead to success. Behaviour Driven

Development tries to do exactly that. It combines an agile methodology with requirements

engineering techniques that focus on a common understanding with a way on how to

automatically check requirements.

As the originator of the term “Behaviour Driven Development”, Dan North, stated in his article

“Introducing BDD”, it evolved out of different agile practices. He added [1]:

“Over time, BDD has grown to encompass the wider picture of agile analysis and automated

acceptance testing.” [1]

Gojko Adzic stated several key process pattern to such an approach in his work „Specification

by Example“ [2]:

• Deriving the scope from goals

• Specifying collaboratively

• Illustrating using examples

• Refining the specifications

• Automating validation without changing specifications

• Validating frequently

• Evolving a living documentation

This list of key pattern complies with the above-stated description. The living documentation

of the system is the result of all those practices. It is a representation of the implemented code

that is understandable for all involved people in the form of a domain specific language [2].

Gáspár Nagy and Seb Rose stated in their book “Discovery” that Behaviour Driven

Development is the missing link between the software and the requirements. According to

them, the examples describing the actual functionality keep the business stakeholders involved

in the whole process. Those examples are written in natural language, so it is easier to share a

common understanding. They added, Behaviour Driven Development itself is an agile practice

that is built upon three practices [38]:

2. Basics

28

1. Discovery

2. Formulation

3. Automation

For Nagy and Rose it is essential to perform all three practices to unleash the full potential of

Behaviour Driven Development. Discovery, as the first part, represents a structured approach

to mitigate misunderstandings and tries to find a common understanding of a specific goal with

examples. With Formulation, the process of documenting the found examples as scenarios is

meant, so the business-stakeholders can give detailed feedback instantly. Automation is the last

step and is provides the advantage of automatic verification of the specified business-readable

specifications from the first two steps to the team. Additionally, the automated tests are

providing an up-to-date living documentation of the system. The three steps, defined by Nagy

and Rose, are consistent with the key process patterns defined by Gojko Adzic. It could be

argued, that the core aspects of such approaches seem to be the same within various experts

[38].

In a case study about the usage of test cases as requirements, Bjarnason et al. also investigated

Behaviour Driven Development and comparable techniques. They focussed on various shapes

of such practices and underlined that breaking down Acceptance Tests to the level of Unit Tests

might be too technical for business-stakeholders for understanding the underlying

requirements. Therefore, Behaviour Driven Development came into play. As explained earlier,

it introduces a domain specific language that tries to prevent misunderstandings between

business and technical roles during the implementation process. They came to the conclusion,

that direct and frequent communication, which is supported by Behaviour Driven

Development, eases the troubles of coping with changes [40].

Furthermore, Unit Tests and Behaviour Driven Development do not exclude each other, but

instead, support each other. Usually, Unit Tests drive the development on a low level, as

explained earlier in chapter 2.3.1. Behaviour Driven Development wraps around this cycle.

This means, a developer starts working on a failing scenario, an Acceptance Test. If this

Acceptance Test is failing, the developer adds tests and code, according to Test-Driven

Development, until the scenario passes. Afterwards, the produced code is again refactored to

ensure that it is organised neatly. After that, the developer proceeds with the next scenario.

Acceptance Tests drive the development on a higher level and Unit Tests on a lower level.

According to Nagy and Rose, this cycle gives the developers a safety net for the low-level

design of the software as well as for the high-level requirements expressed with scenarios.

2. Basics

29

Moreover, it provides valuable feedback to the business users as the business-readable

specifications and the resulting test executions can be read and understood by them. This

process, the BDD-Cycle, is illustrated in Figure 8 [38].

FIGURE 8: BDD-CYCLE [38]

An experience report from Trumler and Paulisch shows the successful application of such an

approach in a practical example. They had the task to develop the core components of an MRI

(Magnetic Resonance Imaging) scanner software and to ensure that the software had as few

errors as possible. According to them the efforts of specifying requirements with examples,

formulating these requirements as executable Acceptance Tests and performing Test-Driven

Development led to very good results. They were able to deliver the software with a high level

of quality and a small number of issues. It was stated that having a big amount of Unit tests as

well as to having tests directly derived from the requirements was crucial to avoid reworking

of the implemented solution [44].

Behaviour Driven Development can not only be helpful in daily business, but it might also be

a possible way to evolve the process of a software development team one step further. In a case

study of Olsson et al., the experiences of a company were gathered to serve as input for others

who want to move to agile and beyond. The case study focused on challenges in the following

areas [17]:

• Adoption of agile methodologies

• Testing practices

• Continuous Deployment

• Customer validation

2. Basics

30

According to them, some of their challenges can be traced back to the domain-specific nature

of their product, an embedded system. The adoption of agile methodologies was a challenge as

software and hardware had to be developed, which led to different lengths of development

cycles for various parts of the product. Additionally, they stated that dependencies to external

partners had been an impediment. For testing practices, the main challenges were maintaining

and analysing the automated tests as well as removing old or outdated tests. The most profound

challenge for evolving the process towards Continuous Deployment was, to always have an

efficient rollback mechanism as that there could be problems with a new version at any time.

Regarding customer validation, one big challenge was that the collected data of the customer

system was not seen as a potential source of feedback [17].

The challenges from the case study shown above could be mitigated by trying to apply

Behaviour Driven Development, as such a process includes techniques that are aimed at solving

some of the found problems. As Gáspár Nagy said in his talk at a conference in 2018, Behaviour

Driven Development was the way how they could successfully move from Continuous

Integration to Continuous Deployment. According to him, the involvement of customer and

product management is one of the key aspects to achieve that. As this is enforced by applying

such a process a shared ownership of the tests was built up between developers, testers and

management. According to him, this was crucial for them to evolve the process. He added that

Behaviour Driven Development is not about tests. In their case, it gave them the confidence

they needed to move towards Continuous Deployment [45].

It could be said, that Behaviour Driven Development is one way for a software development

team to climb another step on the “Stairway to Heaven” introduced by Olsson et al., as it could

help a team to move from Continuous Integration towards Continuous Deployment [16,17].

As stated above, one crucial step towards that goal is, that the examples can be automated. One

way to achieve that is by writing them as scenarios according to the “Given-When-Then”

template, which was introduced by Chris Matts. This form allows the requirements to be

automated and still be readable by humans. There are already tools, such as Cucumber, that

enable the team to understand scenarios in that form and hence drive the development through

this. Those tools are introduced in section 5.1 in more detail [38,46,47].

However, introducing Behaviour Driven Development can be cumbersome. According to a

case study of Gojko Adzic there are several ways on how this methodology can be introduced

in a software development team. One of his shown approaches is to implement it as part of a

2. Basics

31

bigger process change. He mentions, that the switch to an agile methodology, like Scrum or

Extreme Programming could create an opportunity to introduce the ideas of Behaviour Driven

Development as well. For teams, that already have a running process and seek for process

improvement, a possible way is the introduction of Functional Testing. If the team does have

Functional Tests in place switching to a different tool, capable of executing human-readable

specifications, could be one possibility to start the integration. Hence, the introduced methods

could be possible first steps to start the implementation of Behaviour Driven Development [2].

32

3. Environment

The company profiting from the concept of this master’s thesis is a specialist for E-Commerce-

Platforms. As innovation is one of the core principles of the company, its management always

tries to improve the lived processes as well as the quality of the delivered products itself. Both

aspects could be improved significantly if Behaviour Driven Development is implemented as

part of the software development process of the company. The company itself will be called

“Specialist for E-Commerce-Platforms”.

On its daily business, the organisation implements E-Commerce-Platforms for a wide range of

customer groups. This includes customers with a focus on B2B-platforms, customers with a

focus on B2C-platforms as well as mixtures out of those two categories. Hence, the set of

requirements that must be dealt with could vary from project to project. As a result of this fact,

the software development teams always must cope with new challenges.

As a basis for the majority of the organisation’s projects, a basic implementation of an E-

Commerce-Platform is used. This standard implementation is available in different

peculiarities for different use cases. The development team then adapt this basis to meet the

current customers special expectations and needs. With that approach, the Specialist for E-

Commerce-Platforms is already able to deliver a working E-Commerce-Platform at an early

stage of the project. Throughout the life cycle of the project, this delivered version is changed

and extended as required.

The chosen way of working in the organisation of the Specialist for E-Commerce-Platforms is

an agile methodology. The primarily chosen one is Scrum. Furthermore, the company is

already using a Continuous Integration pipeline. This means the company can be classified as

being at the third step of the “Stairway to Heaven” as described by Olsson et al in section

2.1.2.4. [16].

The organisation uses User Stories in all its projects to document the needed requirements for

the implementation of the desired solutions. In some of the projects the Specialist for E-

Commerce-Platforms uses Story Mapping to align on an initial implementation plan. This

technique is introduced in chapter 4 [48]. Despite using this technique, none of the

requirements are specified in more detail than adding a set of acceptance criteria that must be

3. Environment

33

met for each User Story. This means, that the usage of examples as introduced in chapter 2.5

is not considered so far inside the organisation.

Within the company, various technologies are in use. However, the ones predominately used

to implement the functionalities are Java and JavaScript [49,50]. All other technologies are

mostly used to aid the development process but do not have a great influence on the actual

implementations of specified requirements.

Additionally, the company uses a test framework based on JavaScript, namely WebdriverIO

[51]. The usage of this framework implies that the organisation does have knowledge on how

such a framework should be used. Moreover, it has already been integrated in the Continuous

Integration pipeline of the company. This already used framework is described in chapter 5 in

more detail. It must be pointed out, that there have not been any considerations of using a

framework capable of executing requirements in the “Given-When-Then” format as introduced

in chapter 2.5.

As explained earlier, the adoption of Behaviour Driven Development could be a possible step

to improve the currently lived process and evolve it to Continuous Deployment. This evolution

is one of the current goals of the organisation. Hence, the concept proposed in this thesis is

needed as a starting point to accomplish that goal.

34

4. Requirements Engineering Techniques

As described earlier in chapter 2.5, a concept for the introduction of Behaviour Driven

Development must consider various aspects. One of them is the requirements engineering

process. There are numerous techniques on how the fastest path to value could be discovered.

In this chapter, the following four are described:

1. Feature Injection

2. Story Mapping

3. Example Mapping

4. OOPSI-Model

4.1. Feature Injection

With Feature Injection, Chris Matts introduced a way how a team could focus on the most

important part of any piece of software: the value that it brings to the organisation. In an article,

he and Gojko Adzic tried to explain the main idea behind this concept [52]. Kent McDonald

added a description of these core ideas later. In both works, the same fundamental aspects are

listed [53]:

• Identify the value

• Inject the features

• Spot the examples

All the authors mentioned above agree, that if the initial value a piece of software should fulfil

is understood by all involved parties the functionalities that might aid the initial goal the most

are found. All these defined stories should then be substantiated with examples to spot any

special cases, that need to be handled in one way or the other. Additionally, those examples

will guide the software development team to think about different possible scenarios. As soon

as the initial value is delivered, the cycle starts again, and additional feedback from the already

delivered piece of software is available. This feedback should be taken into account for the

next iteration [52,53].

4. Requirement Engineering Techniques

35

This framework is often misunderstood, but, according to McDonald, by following these

simple principles, it can be ensured to only build what is relevant [53].

Matts and Adzic added some ideas on how to find the value in their article. One proposal is to

ask the involved stakeholders based on an initial request “why” they wanted to have that piece

of software. This probably has to be repeated a few times until the reason can be identified and

used for further discussions [19].

Another proposed way to identify the original reason for a piece of software is to ask the

question “How would that be useful?”. In his work “Specification by Example” Adzic stated,

that asking this works better than only asking “why” since it starts the discussion without

putting someone in a defensive position [2]. Based on the resulting value, the features that may

represent the highest initial value should be injected. One important thing to keep in mind is to

always start with the outputs. Matts and Adzic added that one of the worst mistakes at any

analysis is to start with the inputs. Especially for software requirements, as the inputs do not

have any value on their own beside their effect on the outputs [52].

4.2. Story Mapping

In their work “Fifty Quick Ideas to improve your User Stories” Gojko Adzic and David Evans

present 50 possible solutions to improve on how to work with User Stories. One of those

suggestions is the creation of a Story Map [54].

The idea behind Story Mapping came from Jeff Patton originally and is about telling a story of

a person, that performs any action to achieve a certain goal. Similar, to the above stated for

Feature Injection, it is important to have a goal or a value in mind as a basis for Story Mapping.

It is essential to know why the initial request was made. A Story Map differs from a single user

story in that it attempts to view the destination as part of the journey the user must take to

achieve the original vision. Such a Story Map is built in a workshop. At this workshop it is

important that all involved parties are represented. Stakeholders from the business side as well

as technical specialists, such as developers and testers, should be present to answer questions

and bring up detailed information. The Story Map itself is a grid containing all User Stories

needed to fulfil the initial goal. On the horizontal axis the activities and backbone of the story

are described. The vertical axis defines what User Story is planned for which release. Thus, all

User Stories are placed on the map to determine to which activity they belong to and when they

4. Requirement Engineering Techniques

36

will be delivered. To get to this result, the goal and the User Stories are refined and discussed

by all participants of the Story Mapping workshop [48,54,55].

According to Jeff Patton, the process to come up with a Story Map consists of five steps [48]:

1. Frame: Defining the purpose the software should fulfil.

2. Map the Big Picture: Setting up the backbone of the user’s journey, to achieve the

goal which was set in the first step.

3. Explore: Breaking down the backbone of the Story Map into smaller tasks and discuss

all possible ideas.

4. Slice Out Viable Releases: Finding a minimum set of all parts of the story that would

enable the user to reach the goal in a first release. This first version should be enriched

with additional functionalities in the following releases.

5. Slice Out a Development Strategy: Planning how the defined releases can be

implemented – one after another [48].

A simplified example of such a Story Mapping workshop and the evolution of such a Story

Map is shown by Jim Bowes. His chosen domain is an E-Commerce Platform. The main goal

of the platform in this example is to enable users to buy a product. The backbone is mapped

into three basic features: Product Search, Product Page and Checkout. This is illustrated in

Figure 9 [55].

FIGURE 9: STORY MAPPING WORKSHOP – BIG PICTURE [55]

4. Requirement Engineering Techniques

37

After the parts of the big picture are collected on the map, Bowes added that some further

discussions between the team and the stakeholders should show that some of the User Stories

should be split into smaller and more detailed parts. Additionally, the position of all User

Stories in the defined user journey is set. As pictured in Figure 10, a user must filter the products

at first before they can be sorted. After that, the user must select a purchase option before it is

possible to add delivery information and payment data. With the integration of time on the axis,

it is easier to follow different paths through the process. This eases the process of discussing

different possibilities [55].

FIGURE 10: STORY MAPPING WORKSHOP – EXPLORED STORIES [55]

According to Bowes, this map makes it easier to find one possible path how a user can buy a

product. Filtering the products, showing its description and enabling the user to buy it has the

highest priority, as shown in the example above. The team and the business stakeholders agreed

that sorting by price or paying with credit card is not important enough to be in the first release.

Hence, these functionalities should be done in the second one. Additionally, all stories related

to customer reviews are put in the backlog. With this decision, the development team has a

clear plan, how they can start delivering the highest possible value in a shorter time, compared

to implementing everything in a single release. These decisions are mirrored in Figure 11. With

4. Requirement Engineering Techniques

38

the chosen solution, users are enabled to buy some products without implementing all features

of the E-Commerce-Platform. Furthermore, Bowes added, that the process of Story Map itself

is not fixed. The story map should be changed as soon as new insights are discovered that might

add further wishes or invalidate already taken assumptions [55].

FIGURE 11: STORY MAPPING WORKSHOP – RELEASE SLICES [55]

4.3. Example Mapping

Example Mapping was introduced by Matt Wynne. He described it with the following words:

“I’ve discovered a simple, low-tech method for making this conversation short and

powerfully productive. I call it Example Mapping.” [56]

This method is based on four basic elements to structure the conversation at an Example

Mapping workshop [56]:

4. Requirement Engineering Techniques

39

• Stories

• Rules

• Examples

• Questions

Each of these elements is usually represented by a coloured index card. The starting point is a

User Story, that shortly describes the goal. User Stories are represented by yellow index cards.

Rules are added to the story to specify already known constraints with blue index cards. Each

of these rules is then exemplified with one or more examples on green index cards. If during

the discussion of the User Story some questions arise, red index cards are used to note down

these questions indicating that there is an open point. An abstract example of such a process is

shown in Figure 12. According to Matt Wynne, this visual representation will help to find

obvious patterns. A lot of red cards indicate that there is not enough knowledge to start the

implementation of the User Story. Numerous blue cards signalise a complex User Story that

might be necessary to be split into two smaller ones. If many examples are added to a single

rule, it might be too complex. This might indicate that there could be a second, currently

undiscovered, rule [56].

FIGURE 12: EXAMPLE MAPPING OVERVIEW [56]

4. Requirement Engineering Techniques

40

Matt Wynne stated one way to apply this technique in a workshop is to assemble “The Three

Amigos”. The Three Amigos are composed out of members from the business-side, developers

and testers. From each group, at least one member must participate in the workshop. This does

not exclude any other role from the workshop. People with a different background, such as a

usability expert, might come up with valuable insights and questions in such a workshop as

well. In conclusion, everybody, who can contribute to a specific User Story should participate.

However, at least one developer, tester and representative of the business side must be present.

Matt Wynne added that it is not necessary during the workshop to formulate the examples in a

way that they can be automated. A business user could leave that part to developers and testers

and give feedback ones they are done. The focus of this approach is to reach a common

understanding of a specific topic between all involved participants [56,57].

4.4. OOPSI-Model

The OOPSI-Model introduced by Jenny Martin, and Pete Buckney is another way to discover

requirements as examples in a workshop. They argue that their approach is an extension of

Feature Injection, which was already introduced earlier in chapter 4.1. This model aims to find

the scenarios with the highest value for business and focus on these first, similar to Story

Mapping. For this approach Martin and Buckney suggest, to have at least the Three Amigos

present during the workshop, just like for an Example Mapping workshop. The term “OOPSI”

itself is an acronym out of the following words [58,59]:

• O – Outcomes

• O – Outputs

• P – Processes

• S – Scenarios

• I – Inputs

The workshop itself is organised to discover the mentioned elements exactly in this order. A

possible artefact to start with is a User Story. Such a story can represent the initial goal to be

fulfilled. Hence, it is suited to be used as the outcome. An example of that is pictured in Figure

13 [58].

4. Requirement Engineering Techniques

41

FIGURE 13: OOPSI-MAPPING - USER STORY AS OUTCOME [58]

After the definition of the outcome, the outputs, which are produced to satisfy the initial goal,

are discussed. As stated earlier, it is important to have a detailed look at the outputs before the

details of the goal are elaborated. For the example stated above, that could be the actual cash,

a receipt or any status change like an updated account balance. After a set of outcomes is

defined, the most important one is chosen for further discussions. In the shown case, it might

be the cash that is given to the customer. According to Jenny Martin, visualising the outputs

could aid the discussion. She adds that some of the outputs are inseparable, such as the cash

and the updated account balance. The next step of the workshop is to discuss which processes

and activities have to be performed to produce the desired outputs. This step allows a discussion

of possible paths to the value. Jenny Martin adds that some ideas of other techniques could be

applied in this step as well. As an example, Story Mapping can be used to illustrate the user’s

journey. For the chosen example possible steps are “Enter Card”, “Enter PIN”, “Request

Cash” and “Dispense Cash” among others. Scenarios are the next step to be discussed after

the processes are defined. Usually, a scenario is a possible path through one defined process to

generate one of the desired outputs. However, it could also be a simple rule. For her chosen

example, it might be sufficient or insufficient funds of the customer or the cash dispenser.

Possible results of this workshop after the fourth step are visualised in Figure 14 [28,52,58].

4. Requirement Engineering Techniques

42

FIGURE 14: OOPSI-MAPPING [58]

Jenny Martin adds the following statement to point out the resulting abstract scenarios are not

sufficient for actual development:

“The value of the example is in the data used to drive the example.” [58]

Thus, all the discovered scenarios should be filled with actual data, the inputs, to eliminate any

existing ambiguities. Therefore, it can be helpful to write the scenarios in the Given-When-

Then template, as introduced in chapter 2.5, and add a table to insert different data

combinations. It might be possible, that different scenarios could be pictured in one Given-

When-Then template and a data table. However, adding different inputs might also indicate,

that the found scenarios do not cover all possible cases. Therefore, adding another scenario

might be necessary [58].

Another aspect that might aid the discussion in such a workshop is the use of so-called Data

Personas. Jenny Martin states that using Data Personas add profiles of actual users to the

discussion. Winter et al. agree with Martin by stating that such Data Personas are fictional

models of real users that can represent different combinations of data, such as personal

information, career information or different skills. Moreover, these personas can be reused

across various scenarios. Hence, they can improve the quality of an ongoing conversation.

4. Requirement Engineering Techniques

43

According to them, this can help the team to envision the real users of the system as persons

with a detailed background are represented by such an abstraction [58,60].

Because of the ongoing discussion in an OOPSI-Mapping workshop, Jenny Martin states it

should be possible to recognise patterns. Such a pattern can be a grouping of most of the

scenarios around different activities of the process stream. Noticeable here is the “When” part

of the scenarios. It should be possible to set it in relation with a specific process. Moreover, the

preconditions, the “Givens”, can usually be collated to a process earlier in the stream.

Additionally, the postconditions, the “Thens”, belong to later processes. These patterns help

to find any further ambiguities and to focus on the most important things first. Hence, scenarios

that are not crucial for a first release can be addressed in a later iteration [58].

44

5. Test Automation Tools and Frameworks

To successfully deploy Behaviour Driven Development inside an organisation different tools

and frameworks should be used to automate the testing processes. As described earlier in

chapter 3, the predominant technologies used by the Specialist for E-Commerce-Platforms are

Java and JavaScript. Thus, the investigated tools should be applicable in that environment

[49,50]. Due to the fact, that the targeted organisation has some experience with the application

of a JavaScript based framework, the focus is set on them.

The process of Behaviour Driven Development, as shown earlier in chapter 2.5, focusses on

driving the development on a higher level. This means the focus is set on tools and frameworks

enabling a software development team to create automated Acceptance Tests. Thus, the tests

should be executed against a running instance of the application. Unit Tests and Integration

Tests should not be neglected but do have a different scope than Acceptance Tests. Hence, their

application is not discussed in this chapter.

As E-Commerce-Platforms are usually applications that provide a rich Graphical User Interface

(GUI) for the customers to interact with, one possible way to write Acceptance Tests is by

directly testing the GUI. Emily Bache and Geoffrey Bache show in an experience report about

GUI-Testing, that an integral point of such tests in an agile software development project is to

support the team throughout the whole development process. According to them, in traditional

waterfall projects, that kind of tests was primarily recorded after the part of the GUI has already

been implemented. Thus, it has only been possible to spot problems, but not prevent them in

the first place. This fact makes recorded tests inapplicable for Behaviour Driven Development.

Therefore, a tool must be chosen that allows a team to design the tests before the

implementation of the actual functionalities [61].

A common problem to GUI-Tests is the volatile nature of the GUI itself over the life cycle of

an agile software project. The application might change several times as new functionalities

are added or existing ones are changed. This fact requires a solution that allows the tests to

respond to any change of the graphical interface. Emily Bache and Geoffrey Bache state that

using page objects is a good solution to this problem. These page objects create a layer of

abstraction between the actual test code and the application. Thus, the tests can be designed

5. Test Automation Tools and Frameworks

45

independently from the changing application. If the GUI changes, only the page objects must

be adapted and the tests itself can stay unchanged [61].

The first frameworks in this chapter focus on the execution of human-readable requirements,

as explained in section 2.5. Afterwards, some frameworks are introduced, with which a

software development team can test the GUI of an application. In this work only open-source

solutions are considered.

5.1. BDD Frameworks

In this section two testing tools capable of executing human-readable requirements are

introduced. One limitation of this selection is that the tools should be applicable in one of the

two mainly used programming languages of the Specialist for E-Commerce-Platforms. Two

tools meeting this requirement are Cucumber and Gauge. The most important functionalities

of both frameworks for the application in the target environment are introduced in this chapter

[47,62].

 Cucumber

Cucumber is an open-source project and is currently one of the most used frameworks for

Behaviour Driven Development. It is available for most programming languages, not only Java

and JavaScript. In the official documentation of Cucumber it is also recommended to use the

same language for testing as for the actual implementation [63,64].

The basic concept of Cucumber is to have plain text files, so-called feature files, which hold

the definition of the actual requirements. In these files the context, the action and the post-

condition are described. These plain text files must be written in a specific grammar – the

Gherkin language. These grammar rules define the format in which the requirements have to

be written. Beside the feature files, step definitions are needed. These definitions are mapped

to the single steps in the feature files and hold the actual test logic. The mapping between the

feature files and the step definitions ensures that the specifications of the functionalities stay in

a human-readable form. Furthermore, it is also possible to define support code to provide

additional functionalities as needed [65,66].

5. Test Automation Tools and Frameworks

46

A simplified example how such a feature file could look like is shown in the “10 Minute

Tutorial” of the cucumber documentation. In this example, as shown in Listing 1, two scenarios

are defined for the feature to check if the current day is Friday.

Feature: Is it Friday yet?

 Everybody wants to know when it's Friday

 Scenario: Sunday isn't Friday

 Given today is Sunday

 When I ask whether it's Friday yet

 Then I should be told "Nope"

 Scenario: Friday is Friday

 Given today is Friday

 When I ask whether it's Friday yet

 Then I should be told "Yes"

LISTING 1: GHERKIN EXAMPLE [67]

The step definitions for this feature file are shown in Listing 2. For each of the above defined

steps, a step definition must be implemented. The chosen language for the step definitions is

JavaScript. It must be mentioned, that in this example the actual functionality under test, the

function “isItFriday”, should normally be in the actual implementation and not be part of the

test code [67].

In Listing 2 it is also illustrated how values can be shared between different steps. The keyword

“this” is used to store values inside the scope of a scenario execution. This scope is the so-

called “World” of a scenario and is initialised for each scenario. The clearance of this object

is important to not have any data dependencies between different scenarios. For other

languages than JavaScript, sharing data is also supported [68].

5. Test Automation Tools and Frameworks

47

const assert = require('assert');

const { Given, When, Then } = require('cucumber');

function isItFriday(today) {

 if (today === "Friday") {

 return "Yes";

 } else {

 return "Nope";

 }

}

Given('today is Friday', function () {

 this.today = "Friday";

});

Given('today is Sunday', function () {

 this.today = 'Sunday';

});

When('I ask whether it\'s Friday yet', function () {

 this.actualAnswer = isItFriday(this.today);

});

Then('I should be told {string}', function (expectedAnswer) {

 assert.equal(this.actualAnswer, expectedAnswer);

});

LISTING 2: STEP DEFINITIONS FOR GHERKIN EXAMPLE IN JAVASCRIPT [67]

The Gherkin language, as already explained, provides grammar rules that enable Cucumber to

map test code to the actual requirements. In Listing 1 some of the reserved keywords are

already used. The keyword “Feature” describes the requirements on a high-level. This

description should be short and precise. A “Scenario” describes an actual requirement by

exemplifying it as a concrete example. Beside the already mentioned keywords, “Background”

and “Scenario Outline” offer some more functionality. The former one is used to define

common preconditions for all scenarios in one feature. This is used to avoid duplication of the

same preconditions in multiple scenarios. “Scenario Outline” on the other hand can be used

instead of a “Scenario” to run the same scenario multiple times with different test data. This

template requires a definition of an “Examples” section, that defines the test data for the

“Scenario Outline” in a table. For each row of the table the template is run once. An example

of a Feature that uses “Scenario Outline” and “Background” is pictured in Listing 3. For all

these mentioned keywords, a free-text description can be added to describe the sections in more

detail. All mentioned sections use steps to describe the actual functionality. This steps can be

used in all of those sections interchangeably [69].

The most commonly used keywords for steps are “Given”, “When” and “Then”, according to

the Given-When-Then template. Additionally, the words “And” and “But” can also be used to

indicate the beginning of a step. The usage of the keywords to describe the example as good as

5. Test Automation Tools and Frameworks

48

possible is recommended, although in Cucumber only the defined text in the step definition

matters. This means that the step definition of a defined “Given” step in one scenario can be

reused as an “And” step in another one. Usually “Given” is used to set up the context and the

preconditions. “When” describes the actual functionality under test. A possible example for

this is any action that is performed by a user. In the official documentation it is recommended

to have exactly one “When” in a scenario. This limitation helps to split the scenarios in a way

to have an independent definition for each requirement. Having multiple such actions in one

scenario might indicate that the design of the specification should be reworked. The keyword

“Then” is used to check if the action produced the expected output. “And” and “But” are

usually used to extend pre- and postconditions of a scenario [69].

Feature: Login

 The Login Feature should enable the user to use the

 functionalities of the account section.

 Background:

 Given The login page is opened

 Scenario Outline: Login as a user

 Given The user enters <username> in the username field

 And The user enters <password> in the password field

 When The user clicks on the login button

 Then The user should see the account section

 Examples:

 | username | password |

 | "user1" | "pass1" |

 | "user2" | "pass2" |

LISTING 3: GHERKIN – EXAMPLE WITH BACKGROUND AND SCENARIO OUTLINE

Additionally, to the above defined keywords, Gherkin and Cucumber offer other functionalities

to organise the test suite. Two of those possibilities are hooks and tags. Tags can be added to

Features, scenarios and scenario outlines. Based on that classification, it is possible to only run

the specifications with or without a specific combination of tags. Hooks provide the

functionality of executing a specific code block before or after each scenario. One possible

example for that is opening and closing a browser session if needed by a scenario. Moreover,

tags and hooks can be combined as well. Thus, specific setup and teardown functionalities can

be applied to scenarios based on their tags. Nevertheless, it is recommended to use hooks only

for environmental setup and teardown [70].

5. Test Automation Tools and Frameworks

49

Cucumber is a command-line tool. Such a tool can be integrated in any Continuous Integration

pipeline as well as on all prevalent platforms. In Listing 4 an example of such a command is

shown. This command can take a lot of different arguments specifying the parameters for an

execution. It can be specified that the test run should be executed in parallel, among other

options. This means that the execution time of a single test run can be reduced [70].

$./node_modules/.bin/cucumber.js --parallel 5 features/**/*.feature

LISTING 4: COMMAND-LINE EXECUTION OF CUCUMBER WITH PARALLELISATION [70]

Trumler and Paulisch used Cucumber successfully as their tool of choice in an experience

report. They used it as one of three testing methods in their study. All the techniques they used

were defining requirements as examples, Unit Tests for testing the low-level architecture and

Cucumber for testing on high level. They tried to reduce the examples in the feature files to the

crucial minimum, the so-called “Happy Path”, and some additional special cases. With their

chosen approach they were able to produce a product with a high level of quality and only a

small amount of defects [44].

 Gauge

Similar to Cucumber, Gauge is another open-source framework for creating automated

acceptance tests. It does not support as many languages as its counterpart Cucumber, but the

two most important ones for the Specialist for E-Commerce-Platforms, Java and JavaScript,

are included. Although Gauge is not officially a tool for Behaviour Driven Development, as

stated by Zabil Maliackal, it offers a lot of functionalities that enables it to be used as one.

According to Maliackal, Gauge focusses on testing unlike Cucumber, that tries to improve

collaboration [62,71,72].

The biggest difference between Cucumber and Gauge is that the requirements are not defined

in Gherkin. Instead of using keywords to indicate the relevant sections of the requirement

definitions, Gauge specifications files are written in Markdown. Nevertheless, the underlying

concept is similar. Markdown is a well-established markup language. Its main elements are

specifications, scenarios and steps. A hashtag “#” indicates the start of the specification. Lines

starting with two hashtags “##” signal the start of a scenario. One specification file can always

5. Test Automation Tools and Frameworks

50

contain only one specification defined by one or more scenarios. Similar to Cucumber, a

scenario is a composition of various steps describing the actual behaviour. The beginning of

each step is indicated by an asterisk “*” at the beginning of the line. Using this form can

provide human-readable specifications as well. In Listing 5 the same example as for Cucumber

is illustrated for Gauge [73,74].

Is it Friday yet?

Everybody wants to know when it's Friday

Sunday isn't Friday

* today is Sunday

* I ask whether it's Friday yet

* I should be told "Nope"

Friday is Friday

* today is Friday

* I ask whether it's Friday yet

* I should be told "Yes"

LISTING 5: EXAMPLE OF A GAUGE SPECIFICATION [67]

To map the actual test logic to the scenarios, Gauge uses step definitions. For each line starting

with an asterisk, a step definition must be defined. Such a step definition is illustrated in Listing

6. In this example, JavaScript is used to demonstrate the implementation of the step definitions

[74].

As sharing data between step definitions is necessary, it must be possible to do so. Gauge

supports this functionality by providing three different data stores, all having a different scope:

• ScenarioStore

• SpecStore

• SuiteStore

Each of the mentioned data stores is cleared based on the defined scope. The ScenarioStore is

cleared after the execution of every scenario, the SpecStore is only available in the life cycle

of one specification and the SuiteStore can be used throughout the whole execution of the test

suite [74].

5. Test Automation Tools and Frameworks

51

const assert = require('assert');

function isItFriday(today) {

 if (today === "Friday") {

 return "Yes";

 } else {

 return "Nope";

 }

}

step("today is Friday", async function() {

 let today = "Friday";

 gauge.dataStore.scenarioStore.put('day', today);

});

step("today is Sunday", async function() {

 let today = "Sunday";

 gauge.dataStore.scenarioStore.put('day', today);

});

step("I ask whether it's Friday yet", async function() {

 let answer = isItFriday(gauge.dataStore.scenarioStore.get('day'));

 gauge.dataStore.scenarioStore.put('answer', answer);

});

step("I should be told <answer>", async function(answer) {

 assert.equal(gauge.dataStore.scenarioStore.get('answer'), answer);

});

LISTING 6: STEP DEFINITIONS FOR GAUGE EXAMPLE IN JAVASCRIPT [67]

Additionally, to the already mentioned basic functionalities of the framework, it is also possible

to define steps for the setup and teardown of a scenario. The setup section is called “Context”

and consists out of one or multiple steps. These steps have to be defined above the first scenario.

The context steps are then executed before each of the defined scenarios. Their counterpart is

the teardown section, which is indicated by a minimum of three underlines “___” at the

beginning of a line. This section must be defined underneath all scenarios in the specification

file. All defined steps in the teardown section are executed after each scenario. Another feature

of Gauge is the usage of data tables to execute a defined scenario multiple times based on the

values in the table. Listing 7 illustrates the usage of the just mentioned functionalities of the

framework [74].

5. Test Automation Tools and Frameworks

52

Login

 The Login Feature should enable the user to use the

 functionalities of the account section.

 | username | password |

 |----------|-------------|

 | "user1" | "pass1" |

 | "user2" | "pass2" |

* Open the browser

* The login page is opened

Login as a user

* The user enters <username> in the username field

* The user enters <password> in the password field

* The user clicks on the login button

* The user should see the account section

* Close the browser

LISTING 7: GAUGE - EXAMPLE WITH DATA TABLE, CONTEXT AND TEARDOWN

Furthermore, Gauge also provides the functionalities of hooks and tags. Tags can be specified

on specification and scenario level. They can be used to organise the test suite as well as to

execute only specific specifications and scenarios. Hooks can be used to execute specific test

logic before or after the following scopes:

• Suite

• Specification

• Scenario

• Step

These hooks can as well be executed based on specific tags, which gives further flexibility at

the organisation and execution of the test suite [74].

Additionally, Gauge allows to define so-called “Concepts”. This functionality combines

different steps under one definition. Such concepts can be defined in separated files with the

ending “.cpt”. Each concept is a combination of normal steps. All the defined concepts can be

used like any other step inside the specification of a scenario. This functionality allows to

combine multiple steps into a single batch to make the specifications more readable.

Furthermore, it helps to avoid the duplication of step definitions [74].

To make the setup of a Gauge test suite easier, it provides a set of templates to initialise its

basic structure. As Gauge is a command line tool, it can as well be started with different

5. Test Automation Tools and Frameworks

53

parameters, such as parallel execution. In Listing 8 commands for initialisation and execution

of a Gauge test suite are illustrated [75].

initialise JavaScript project

gauge init js

parallel execution of all specifications inside the spec-folder

gauge run --parallel -n=5 specs/

LISTING 8: INITIALISATION AND EXECUTION OF GAUGE TEST SUITE

5.2. GUI-Testing Frameworks

In this chapter some frameworks are introduced that enable a development team to write tests

simulating a user’s behaviour in a web browser. An important limitation of considering such

tools for this thesis is that the tools can be used in conjunction with one of the frameworks

introduced in chapter 5.1. There are numerous tools capable of doing so and the following ones

are explained in detail:

1. Selenium WebDriver [76]

2. WebdriverIO [51]

3. Puppeteer [77]

 Selenium WebDriver

According to their documentation, Selenium is probably the most widely used framework for

automating test cases directly in browsers. The first version of it was developed in 2004 and

has evolved ever since. Throughout the life cycle of the Selenium project, various versions and

sub-projects have been developed. For the use case of the Specialist for E-Commerce-

Platforms, the current version of Selenium WebDriver is a conceivable option. Furthermore,

Java and JavaScript are among the supported programming languages for this framework

[76,78].

The main goal of Selenium WebDriver is to have a well-structured framework to support

testing of dynamic web applications. It uses the WebDriver API to communicate with the

5. Test Automation Tools and Frameworks

54

browser. This WebDriver API provides an interface to control the behaviour of a browser. Its

protocol is independent of any language and browser, which means this abstraction is

applicable for all of them. However, each browser, that should be automated using Selenium

WebDriver, must provide its own implementation of that protocol. These implementations are

called “drivers”. Each of these drivers can therefore be used to execute the same operations on

a different browser. This makes Selenium WebDriver capable of running the same set of tests

on different browsers by just exchanging the used driver, making it possible to ensure that the

same functionality works across various environments. For executing the test suite on a local

environment only one such driver and the corresponding browser is needed. Additionally, a

Selenium Server can be used to manage the execution for different drivers [79,80].

If the test suite should be executed on multiple browsers or specific browser versions, a

Selenium Grid, another Selenium project, can be used. It allows to run the tests on different

browsers as well as to execute them in parallel. The Selenium Grid manages the distribution of

the tests and hereby provides a scalable architecture for managing test executions [81].

Selenium WebDriver itself does not come with a test runner, which means that it can be

integrated in any test runner available for the supported languages. This provides a high level

of flexibility and enables it to be possibly integrated with either Cucumber or Gauge.

 WebdriverIO

WebdriverIO is a JavaScript testing framework that provides a simple interface for writing

automated tests. Similar to Selenium WebDriver, WebDriverIO implements the WebDriver

API and can use the same drivers for different browsers to simulate a user’s behaviour. It

includes different services that provide various functionalities. One of these services is the

selenium-standalone service, that provides support for the different browsers. This service

builds up the needed Selenium Server to interact with all required drivers. This test framework

also supports the automation of tests for mobile devices by implementing the Appium Protocol.

This integration is done as well via a service, which means it can be included in the

configuration of the framework [51,82,83].

Besides all services that enable integrations to various other utilities, WebdriverIO uses a

predefined set of frameworks as test runners. Among those frameworks is Cucumber, one of

the already in section 5.1 introduced BDD frameworks [84].

5. Test Automation Tools and Frameworks

55

 Puppeteer

Another framework capable of automating acceptance tests in a browser is Puppeteer. Like

WebdriverIO it is a JavaScript framework. Other than the two already introduced frameworks,

Puppeteer does not implement the WebDriver API to control a browser. It implements the

Chrome DevTools Protocol [85]. A result of that is that only Chromium-based browsers are

supported [86]. Nevertheless, there are already efforts to provide support for other browsers,

such as Firefox, by implementing this protocol as well [77,87].

The Puppeteer project is mainly maintained by the Chrome DevTools Team, which means

directly by Google, despite being an open-source framework. Hence, everybody can contribute

to the project. It is based on the same principles as the Chromium project [77,88]:

• Speed

• Security

• Stability

• Simplicity

As one of their main goals Puppeteer aims at providing a simple library to use the DevTools

Protocol. This reference implementation could, according to the official documentation, as well

be used as a foundation layer for other frameworks. Another goal is to put more emphasis on

the growth of automated headless testing. Headless testing means, that the operations can be

executed without having a visible representation of the browser. Thus, all defined operations

will be executed in a background process. This makes the execution fast in comparison to a

non-headless setup. Puppeteer runs headless by default but also provides the functionality to

change this setting [77].

In the official documentation it is also added that Puppeteer is not intended to be a replacement

for Selenium. It focusses on providing more functionalities and a higher reliability. Whereas

Selenium aims at being compatible with a lot of different browsers. Hence, its focus is set on

cross-browser test automation [77].

Puppeteer does not provide any framework to execute a test suite. It is built in a way, that it

can be integrated in any JavaScript application. This makes it possible to integrate it with any

of the shown frameworks in chapter 5.1.

56

6. Proposed Concept

The proposed concept is based on already introduced techniques and frameworks. It should

help a software development team to discover their requirements more easily as well as to aid

their continuous verification. Therefore, a technique for the requirements engineering process

is suggested. Furthermore, a proposal which tools and frameworks could be used within the

given environment is added. After that, a recommendation is given how the two parts of this

concept can be introduced in the development process of the Specialist for E-Commerce-

Platforms.

Additionally, this concept tries to help the Specialist for E-Commerce-Platforms to climb

another step of the “Stairway to Heaven”, as introduced in chapter 2.1.2.4. Once the

development team has built up enough confidence in the code base it has produced, it can be

considered to deploy any change directly to a pre-production system, if all scenarios have been

executed successfully on the test environment. This can be extended even further, by deploying

directly on a production system. As already stated earlier in section 2.5 by Gáspár Nagy,

confidence in the code base and its verification is the key element to make the step from

Continuous Integration to Continuous Deployment [45]. The proposed concept aims at giving

a development team the needed guidance and all required tools to raise its confidence to do

exactly that.

6.1. Requirements Engineering

One crucial thing about requirements engineering is to understand why a specific functionality

is needed. As shown by Mike Cohn, User Stories encourage verbal communication to limit

misunderstandings. Thus, User Stories build a solid ground to build upon for working with an

agile software development process model [24]. Therefore, a User Story is used to illustrate an

example as a starting point of this concept. This story can be seen in Figure 15.

6. Proposed Concept

57

FIGURE 15: GOAL AS A USER STORY

With the User Story as a starting point, the goal can be examined in more detail. In chapter 4,

some possible ways to do this have already been introduced, namely Story Mapping, Feature

Injection, Example Mapping and the OOPSI-Model. Instead of using one of these techniques,

another one is proposed: the “Extended OOPSI-Model”.

 Extended OOPSI-Model

This approach is a slight adaption of the OOPSI-Model from Jenny Martin and Pete Buckney,

which has already been introduced earlier in chapter 4.4 [58]. It provides higher flexibility and

more structure than the original OOPSI-Model.

6.1.1.1. Extended OOPSI-Model: Concept

The main idea behind this model is to split up the discussions during a workshop into smaller

chunks. Especially, if the complexity is too high to discuss a big goal at once. The starting point

for the Extended OOPSI-Model is the same as for the regular OOPSI-Model. As shown earlier

in chapter 4.4, following the OOPSI-Model may reveal various patterns. If those patterns

suggest, that there is a high level of complexity that can be assigned to only one part of the

processes, this step should be divided into various others. However, this means as well, that

there can be multiple additional process steps which could be added. Instead of just adding new

process steps to the initial ones, starting another OOPSI-Model is proposed to keep the big

picture as simple as possible. Both, the parent and the child model, are linked through the order

of the process chain of the parent model. This means that the resulting scenarios from the child

6. Proposed Concept

58

process can be used as pre-conditions for the scenarios of the following process steps of the

parent.

As a starting point for the child OOPSI-Model, a goal has to be defined to represent the initial

step in the process chain. This could be done by formulating a User Story dedicated to this part

of the process. Thus, the initial discussion on the higher level can continue to identify the

highest value first. It is also possible to concentrate on the details of that process step next but

there could be other steps in the process chain that should be split as well.

After the discussions are over, there should be a set of examples that enables the development

team to deliver a first, most likely minimal, version to fulfil the initial goal. This approach

brings one of the oldest principles of software development, and other domains as well, to the

OOPSI-Model: Divide & Conquer.

After explaining the main idea of this concept, an example of the application of this model is

shown in the next section. Initially, the procedure will be the same as for the original OOPSI-

Model, but as the example advances, the advantages of the adaption to this model will be

pointed out. The example itself is demonstrated as an ongoing workshop in which the goal is

discussed in more detail.

6.1.1.2. Extended OOPSI-Model: An Example

The first step, the outcome, is defined in Figure 15, hence the next one is to think of possible

outputs, that are produced during the completion of the goal. For the chosen example, these

could be various artefacts, data sets or a changed status, just as the OOPSI-Model suggests.

Some of the possible outputs for the chosen case are listed below:

• Address data of the user

• Payment data of the user

• Consent to Terms and Conditions

• Order object

• Order confirmation mail

• Updated stock-level of the product

For the discussion, it can be helpful to visualise these outputs. Hence, it is advised to draw

visual representations instead of just writing words on a list. After no participant can add any

6. Proposed Concept

59

further outputs to the list, the next step is to discuss which of these outputs is the most important

one. Some participants might say, that all found outputs are equally important in order to fulfil

the goal. The address data is needed to know where the product should be shipped to and the

consent to the terms and conditions has to be given for legal reasons. However, all agree that

the order is the object that must contain all relevant information. Thus, it can be assumed that

it is the most important output.

The next thing to be discussed are the process steps needed to reach the goal. As already pointed

out earlier in chapter 4.4, Jenny Martin suggested that it is advisable to include other

techniques, such as Story Mapping by Jeff Patton, to drive the conversation [58]. The idea is

to tell a story about how the customer will be able to buy the product step by step. Looking

back to the chosen example, the customer wants to buy a present for his friend. To make the

discussion more substantial, a name is given to the customer as well as for the friend. This so-

called Data Personas might help the workshop participants to follow the conversation more

easily [60]. Thus, the discussion focusses on the story of how John finds and buys a present for

his friend Peter. In Figure 16 an example of the process steps is illustrated.

FIGURE 16: PROCESS STEPS

After looking back to the defined outputs, it is obvious that some of the outputs can be directly

assigned to some of the found process steps. However, the output “Updated stock-level of the

product” cannot be related with any of them. Hence, there probably is another step in this

chain, which has not been considered so far. This suggests that it is always good advice to

recheck with any of the previous higher-level steps of the OOPSI-Model to avoid disregarding

any important points during the discussion.

The next step in the OOPSI-Model is to take the most important step of the process chain and

refine it in more detail with scenarios. As the order object was defined as the most important

output, the process steps that can be related to it should be identified. The one fitting best is

probably “Confirm Purchase of Order”. This also aligns with Story Mapping, as both

techniques have a common goal – refining the stories in more detail and making the user

journey understandable. Only the used artefacts of the two methods differ.

Search
Product

Display
Product
Details

Click "Buy
Now"-Button

Enter Address
Data

Enter Payment
Data

Confirm
Purchase of

Order

Send Order
Confirmation

Mail

6. Proposed Concept

60

One of the first scenarios that comes up represents the “Happy Path”. This scenario is the most

basic path that must work. It could be called “Purchase of order successfully”. Additionally,

another scenario is discussed to specify what would happen if John provided an incorrect

address. If these scenarios are now rephrased in Gherkin, as introduced in chapter 5.1.1, it may

look like shown in Listing 9.

Feature: Order a Product

 Scenario: Purchase of Order successfully

 Given John chose a product

 And John provided a correct address

 And John provided correct payment data

 And John approved to the terms and conditions

 When John clicks to confirm the purchase of the order

 Then the order object should be created

 And a order confirmation mail should be sent to John's email

 And the stock level of the product should be updated

 Scenario: Wrong address data

 Given John chose a product

 And John provided an incorrect address

 And John provided correct payment data

 And John approved to the terms and conditions

 When John clicks to confirm the purchase of the order

 Then the order object should not be created

 And John should see a message about the incorrect address

LISTING 9: PROPOSED CONCEPT: ORDER SCENARIOS

These scenarios are discussed again in the workshop, and several questions come up from

different participants:

• How do we know John’s e-mail address? We currently only have his address data and

payment data.

• What is an incorrect address?

• There is an error message. Why haven’t we thought about that while discussing

potential outputs?

• If we show error messages, shouldn’t we show them right after the user entered

incorrect data and prevent any further advancing in the process?

By only discussing the first two scenarios, the workshop participants might have a lot of

questions, which suggest, that the complexity is higher than initially expected. Probably, there

should be a step added to enter personal information, such as John’s e-mail address.

6. Proposed Concept

61

Additionally, another step taking care of the validation of personal and address data should be

added. Within this step the definition what a correct address is and how it must be structured

might be addressed. This would be even more obvious if the scenarios would have already been

undermined with concrete inputs. However, in the shown case the scenarios give enough

insight. Hence, it has not been necessary to proceed with the last step for now. Moreover, by

taking a closer look at the provided scenarios, it can be argued, that there is a pattern in them.

As already explained at the introduction of the OOPSI-Model, some outputs can be assigned

to specific steps in the process. In the presented example, address data, and probably personal

data, can be assigned exactly to the same step in the process: “Enter Address Data”. The result

of this step acts as a precondition for the subsequent step “Confirm Purchase of Order”.

In such a use case the Extended OOPSI-Model can show its strength. Instead of just adding,

and thereby extending the process chain by more and more steps, another OOPSI-Model can

be started. The outcome of this child model is dedicated to a step in the process chain. In the

shown example, the step “Enter Address Data” can be changed to “Enter Personal and

Address Data” and another OOPSI-Model is started. Therefore, a goal must be defined as a

starting point, that defines what has to be achieved in the child model. This could again be a

User Story, which might look as shown in Figure 17.

FIGURE 17: USER STORY FOR ENTERING ADDRESS DATA

The workshop participants might decide to refine this goal right away, if they think it is

important enough. It would as well be possible to proceed with the high-level process chain in

that situation, as the goal itself is specified and therefore is ready to be discussed later.

6. Proposed Concept

62

However, in this example the workshop continues with the child model. As the goal is defined,

the first things to be clarified are the outputs, which are exemplified in the following list:

• E-mail of the customer

• Name of the customer

• Postal code of the customer

• Street name and street number of the customer

• Error messages

After the participants are sure all possible outputs are covered, they start with the next step, the

processes, for this child model. As it is a child process of the initial goal, the resulting process

chain can be much shorter than the initial one, as all the other steps are already provided. These

processes represent a detailed specification of the parent’s process step and is illustrated in

Figure 18.

FIGURE 18: EXTENDED OOPSI-MODEL – PROCESSES EXAMPLE

After the process chain is represented as well, the details can be discussed again. Therefore,

some scenarios are needed. The first one will again represent the “Happy Path”. Some others

are added to highlight that there can be invalid data combinations. The first iteration of the

scenarios is shown in Listing 10.

6. Proposed Concept

63

Feature: Enter Personal and Address Data

 Scenario: Correct Personal and Address Data provided

 Given John chose a product

 And John sets a correct name

 And John sets a correct email

 And John sets a correct street

 And John sets a correct postalcode

 And John sets a correct city

 When John clicks to confirm his provided information

 Then John should be forwarded to the Payment Page

 Scenario: Incorrect Personal and Address Data provided

 Given John chose a product

 And John sets a correct name

 And John sets an incorrect email

 And John sets an incorrect street

 And John sets a correct postalcode

 And John sets a correct city

 When John clicks to confirm his provided information

 Then an error message should be shown

LISTING 10: EXTENDED OOPSI-MODEL – SCENARIOS FOR DATA VALIDATION

From these scenarios, it is possible to derive the information that they can be assigned to the

step “Validate Personal and Address Data” in the process chain because the action, the

“When”, represents the validation of the data John provided. The preconditions for this

scenario are providing the personal and address data as well as choosing a product beforehand,

which is represented by the process of the parent OOPSI-Model. Similar to that, the

postconditions represent some error messages if the validation failed as well as the next step of

the original process chain. In this example, John would progress to the point in the process,

where he could provide his payment information if the validation succeeded. Furthermore, the

scenarios show that both are quite similar in their structure. This is important for the next step,

providing real data for the scenarios. In Listing 11 an example is shown, which enriches the

scenarios with real inputs.

6. Proposed Concept

64

Feature: Enter Personal and Address Data

 Scenario: Correct Personal and Address Data provided

 Given John chose a product

 And John sets name to be "John Doe"

 And John sets email to be "john@example.com"

 And John sets street to be "Herrengasse 1"

 And John sets postalcode to be "1010"

 And John sets city to be "Wien"

 When John clicks to confirm his provided information

 Then John should proceed to the Payment Page

 Scenario: Incorrect Personal and Address Data provided

 Given John chose a product

 And John sets name to be "John Doe"

 And John sets email to be "@example."

 And John sets street to be ""

 And John sets postalcode to be "1010"

 And John sets city to be "Wien"

 When John clicks to confirm his provided information

 Then the message "Incorrect Data entered" should be shown

LISTING 11: EXTENDED OOPSI-MODEL – INPUTS FOR PERSONAL AND ADDRESS DATA

Although these scenarios provide much more insight into the correct or incorrect data set for

personal and address data it is still not sufficient to start development. This can be improved

by giving more real inputs for a better understanding. By using some features of the Gherkin

language, Backgrounds and Scenario Outlines, it is possible to group different examples

together and add test data in a table, so the scenario is easier to read [89]. Some of the examples

are:

• Name is too short

• E-mail address has a wrong format

• Name of the city contains characters that are not allowed

All these examples are added to Scenario Outlines, as illustrated in Figure 12.

6. Proposed Concept

65

Feature: Enter Personal and Address Data

 Background:

 Given John chose a product

 Scenario Outline: Correct Personal and Address Data provided

 Given John sets name to be <name>

 And John sets email to be <email>

 And John sets street to be <street>

 And John sets postalcode to be <postal>

 And John sets city to be <city>

 When John clicks to confirm his provided information

 Then John should proceed to the Payment Page

 Examples:

 | name | email | street | postal | city |

 | "John Doe" | "john@example.com” | "Herrengasse 1" | "1010" | "Wien" |

 | "Peter Test" | "peter.test@example.com” | "Test 3" | "8010" | "Graz" |

 Scenario Outline: Incorrect Personal and Address Data provided

 Given John sets name to be <name>

 And John sets email to be <email>

 And John sets street to be <street>

 And John sets postalcode to be <postal>

 And John sets city to be <city>

 When John clicks to confirm his provided information

 Then the message "Incorrect Data entered" should be shown

 Examples:

 | name | email | street | postal | city |

 | "JD" | "john@example.com” | "Herrengasse 1" | "1010" | "Wien" |

 | "John Doe" | "@example.” | "Herrengasse 1" | "1010" | "Wien" |

 | "John Doe" | "john@example.com” | "" | "1010" | "Wien" |

 | "John Doe" | "john@example.com” | "Herrengasse 1" | "10101010" | "Wien" |

 | "John Doe" | "john@example.com” | "Herrengasse 1" | "1010" | "$$##" |

LISTING 12: EXTENDED OOPSI-MODEL – SCENARIO OUTLINES

After this discussion one of the workshop participant asks, why John should not be able to send

the present directly to Peter. In such a case, John should have the possibility to provide a second

address to distinguish between delivery address and billing address. This is a perfect example

for an additional goal that could be implemented after the most crucial set of functionalities is

delivered. Hence, this goal can be written down as a User Story, which will be a starting point

for another workshop in the future.

At this stage, there are some examples with test data determining how the application should

behave for different sets of personal and address data. This enables the discussion to focus on

the originally started OOPSI-Model. In Listing 9 two scenarios have been stated, one for a

successful order process and another one for a non-successful order process. In the chosen

example, John must provide correct personal and address data to be able to advance to the next

step in the process. This is enforced by the scenarios, that have been defined in the child model.

Thus, it is not necessary to recheck the scenario with invalid personal or address data. That

leads to the next advantage of the Extended OOPSI-Model. Through splitting up the process

chain of the original OOPSI-Model, it is possible to examine parts of the goal in detail and

provide the results as preconditions for the subsequent steps of the user’s journey. Although

6. Proposed Concept

66

the resulting scenarios are depending on each other, they are only dedicated to exactly one

behaviour. This will help to keep the resulting requirements organised. The result could look

like shown in Listing 13.

Feature: Enter Personal and Address Data

 Background:

 Given John chose a product

 Scenario Outline: Correct Personal and Address Data provided

 Given John sets name to be <name>

 And John sets email to be <email>

 And John sets street to be <street>

 And John sets postalcode to be <postal>

 And John sets city to be <city>

 When John clicks to confirm his provided information

 Then John should proceed to the Payment Page

 Examples:

 | name | email | street | postal | city |

 | "John Doe" | "john@example.com | "Herrengasse 1" | "1010" | "Wien" |

 | "Peter Test" | "peter.test@example.com | "Test 3" | "8010" | "Graz" |

 Scenario Outline: Incorrect Personal and Address Data provided

 Given John sets name to be <name>

 And John sets email to be <email>

 And John sets street to be <street>

 And John sets postalcode to be <postal>

 And John sets city to be <city>

 When John clicks to confirm his provided information

 Then the message "Incorrect Data entered" should be shown

 Examples:

 | name | email | street | postal | city |

 | "JD" | "john@example.com | "Herrengasse 1" | "1010" | "Wien" |

 | "John Doe" | "@example. | "Herrengasse 1" | "1010" | "Wien" |

 | "John Doe" | "john@example.com | "" | "1010" | "Wien" |

 | "John Doe" | "john@example.com | "Herrengasse 1" | "10101010" | "Wien" |

 | "John Doe" | "john@example.com | "Herrengasse 1" | "1010" | "$$##" |

Feature: Order a Product

 Scenario: Purchase of Order successfully

 Given John chose a product

 And John provided correct personal and address data

 And John provided correct payment data

 And John approved to the terms and conditions

 When John clicks to confirm the purchase of the order

 Then the order object should be created

 And an order confirmation mail should be sent to John's email

 And the stock level of the product should be updated

LISTING 13: EXTENDED OOPSI-MODEL – RESULTS AFTER CHILD PROCESS

After that, the discussions should continue with adding more and more scenarios to the initial

process chain, such as adding valid and invalid payment data. This is possibly another scenario,

where it might be advisable to split the discussions into smaller parts to keep the big picture as

clear as possible. The resulting scenarios of the workshop provide an unambiguous set of

requirements for the development team.

6. Proposed Concept

67

During development or any following workshop, some question might arise about potential

scenarios, that have not been considered. However, if such scenarios come up, the Extended

OOPSI-Model will give guidance where the scenario could fit in and how the team can find a

possible solution for it. Moreover, the resulting scenarios can be used for the automation of test

cases. If they are already written in Gherkin language during the meeting, they can be integrated

right away to the test suite and drive the development as suggested in chapter 2.5. Not writing

the scenarios in Gherkin means additional effort after the workshop as the scenarios must be

formulated to be automated. Nevertheless, this could speed up the workshop itself, as already

pointed out by Matt Wynne for Example Mapping [56]. It should be tested and checked which

approach is preferred by the development team, as the workshop aims primarily at finding a

common understanding of the goal.

Before the development team can start with the actual implementation, it might be advisable to

structure the upcoming work in reasonable work packages. The reasons to do this are

numerous. One reason could be that in some agile software development process models, such

as Scrum, estimations should be made in order to know if a backlog item can be implemented

in one iteration. Estimating the single process steps could be a possible way. Alternatively, it

could be a good idea to group related scenarios and form a work package out of them. Which

variant the team choses is up to the complexity of the scenarios itself. It could be that one

scenario might keep a developer busy for a whole iteration and on the other hand, for less

complex ones, some might be finished a lot faster.

6.1.1.3. Extended OOPSI-Model: Summary

The proposed Extended OOPSI-Model should be used as a workshop technique to guide the

process of finding the highest value in a structured way. It can be used in a workshop to

determine an initial roadmap with the customer as well as for detailed discussions about

specific scenarios. This makes it an extremely powerful approach. However, the principle of

Divide & Conquer should not be applied beyond the point where it adds no value to the

discussion. Thus, the conversation should only be split into smaller parts using a child OOPSI-

model if the complexity seems to be high enough. It is not possible to give a detailed rule when

this point is reached, as it is hard to compare projects and teams with each other. Teams should

be encouraged to try and find this point for themselves. The basic idea of the Extended OOPSI-

Model, splitting the discussions of a workshop into smaller parts, is summarised in Figure 19.

6. Proposed Concept

68

FIGURE 19: SUMMARY EXTENDED OOPSI-MODEL

The main benefit this approach brings, compared to the original OOPSI-Model, is that there is

a process on how the discussions can be divided into smaller parts and hence be discussed

independently. This helps to formulate the overall picture as well as the most important goals

in an understandable way. Due to the connection on the process chain, the link to the main goal

is always provided. Hence, the subsequent can be identified and used as pre- and postconditions

in the resulting scenarios. Moreover, it encourages the integration of other ideas, such as Story

Mapping and Data Personas.

6.2. Automation of Requirements

As the second part of the concept, the following section presents a framework with which the

requirements can be continuously checked. The basis for this framework is the Cucumber

framework, as introduced in chapter 5.1.1. It interprets the requirements in Gherkin. For

simulating a user’s behaviour in a browser Puppeteer is chosen.

6. Proposed Concept

69

 Cucumber-Puppeteer framework

As the basis for the framework, Cucumber is chosen as the tool of choice because it puts a lot

of emphasis on the formulation of requirements. This forces the team to focus more on the

requirements themselves. Gauge on the other hand gives the development team more freedom

at the definition of the requirements. Feature-wise, both frameworks offer comparable

opportunities. Thus, from a technical point of view either one would be a possible choice.

However, the fact that the formulation of requirements in Gherkin gives more structure to the

requirements definition is the major reason Cucumber is selected [62,64,77].

For interacting with the browser, Puppeteer has been chosen mainly because of one reason.

The Specialist for E-Commerce-Platforms hardly utilised the biggest advantage all Selenium-

based frameworks bring with them while using the WebdriverIO framework: cross-browser

testing. Only 1 out of 26 projects that used automated browser tests executed them on more

than one browser. This means that this feature was neglected almost completely. If Puppeteer

is now compared with any of the Selenium-based frameworks it can offer higher reliability.

The selection of Puppeteer implies that the resulting framework has to be written in JavaScript.

Therefore, the JavaScript implementation of Cucumber, Cucumber-JS, is used. As a foundation

for the framework “Node.js” and “npm” are used. “Node.js” is a JavaScript runtime that builds

the basis for executing the test framework. Additionally, “npm” provides further

functionalities that are needed for the test framework. It includes a package manager for

“Node.js”, a registry with a collection of all needed dependencies as well as a command line

interface. This foundation provides the required infrastructure as well as all needed

frameworks, including Cucumber-JS and Puppeteer themselves [90,91].

The framework itself also tries to follow the principle of simplicity, similar to Puppeteer. Thus,

only a minimal set of dependencies is injected. This means it is designed in a way that it is

possible to update each part independently. Hence, it is possible to update the framework with

minimal effort.

6.2.1.1. Cucumber-Puppeteer framework: Detailed Description

As already mentioned above, the framework is designed based on the principle of simplicity.

As npm provides the functionality of running scripts, it is used to execute Cucumber-JS as test

6. Proposed Concept

70

runner. In such a script all possible command line interface options provided by Cucumber-JS

can be used, as already explained in section 5.1.1. One of the most important of these options

for this framework is the “world-parameters” option. It is used to determine an environment

used for the execution of the test run. A possible example could be to specify the server on

which the tests are executed. In Listing 14, an example is depicted how the tests could be

executed on a local environment.

"test-all-local": "node_modules/.bin/cucumber-js

 --world-parameters {\\\"env\\\":\\\"local\\\"}"

LISTING 14: EXAMPLE NPM SCRIPT TO RUN CUCUMBER-PUPPETEER FRAMEWORK

For the creation of the environment itself a hierarchical structure is provided, that mitigates

duplication of environment specifications. As a foundation a default configuration is

introduced that holds all basic settings needed by the test framework. This default configuration

is shown in Listing 15. It holds the default configuration for Puppeteer as well as a section for

settings and fixtures that could be used throughout a test execution.

exports.config = {

 puppeteerConfig: {

 headless: false,

 ignoreHTTPSErrors: true,

 defaultViewport: null,

 args: ['--window-size=1600,1000']

 },

 settings: {

 baseUrl: '',

 googleBaseUrl: 'https://www.google.com'

 },

 fixtures: {

 testfixture: "default"

 }

};

LISTING 15: DEFAULT CONFIGURATION FOR CUCUMBER-PUPPETEER FRAMEWORK

This default configuration can be extended and overwritten by any of the defined environments

in the world-parameters passed by the npm script. For each of these environments a

configuration file has to be created similar to the example shown in Listing 15. It is also

possible to define multiple environments, whereas always the rightmost environment does have

6. Proposed Concept

71

the highest priority. A possible example would be defining the environment as “local-

headless”. This would end in a merge order where at first the environment “local” is merged

in the default configuration. The resulting configuration is then again overwritten by the

environment “headless”. This mechanism provides various possibilities to define the test

execution in a flexible way to execute the same set of tests on various systems.

Additionally, it is possible to define a default profile containing multiple command line options,

that are used to execute the tests. This is done by specifying those options in a “cucumber.js”

file. The configuration is used to specify that a report should be created after each test

execution. Additionally, a specific format for the produced output in the command line

interface is defined. This default profile is shown in Listing 16.

const common = [

 '-f node_modules/cucumber-pretty',

 '-f json:reports/cucumber.json'

].join(' ');

module.exports = {

 default: common

};

LISTING 16: CUCUMBER-JS DEFAULT PROFILE

To indicate that a Cucumber feature or scenario must interact with a browser, a tagged hook is

used. This is used to setup and teardown the browser object, as already suggested in section

5.1.1. If now any feature or scenario uses the tag “@UI”, the framework creates a Puppeteer

browser object based on the defined environment configuration. This browser object, as well

as an initial page are then stored in the world object of the scenario. Hence, all step definitions

can access them. Furthermore, all needed pages for the test are created and stored in the

scenario’s world. This happens before each scenario is executed to ensure there are no

dependencies or conflicts between the different scenarios. The implementation of this tagged

hook is shown in Listing 17.

6. Proposed Concept

72

Before({tags: "@UI", timeout: 15 * 1000}, async function () {

 //launch the browser based on the defined config

 this.browser = await puppeteer.launch(this.environment.puppeteerConfig);

 this.page = await this.browser.newPage();

 await this.page.setCacheEnabled(false);

 // register all available pages for the scenarios,

 // so all are available in the cucumber-world

 this.homePage = new HomePage(this.page);

 this.loginPage = new LoginPage(this.page);

});

LISTING 17: TAGGED HOOK FOR PUPPETEER SETUP

As already mentioned in chapter 5, using so-called page objects is a viable solution to organise

a test suite to keep the maintenance effort as small as possible. This concept is also considered

for this framework. Although it is possible to define all browser operations directly in the step

definitions, it is advised to do that in the page objects. This additional layer of abstractions

allows to decouple the browser actions from the test logic itself, which makes it easier to

maintain. Another important detail of this model is, that the page object itself requires the

Puppeteer page object in order to interact with the browser [92].

To make the structure of a web site even more modular, the possibility of using components

inside page object is considered. Both objects are derived from the same base class. This

“Base” class holds several functionalities that can be used by any of the derived objects. The

actual pages can then hold any component. An illustration of this architecture is shown in

Figure 20.

FIGURE 20: ARCHITECTURE OF PAGES AND COMPONENTS

6. Proposed Concept

73

A typical example for this architecture is the integration of a header component in any of the

pages containing it. In Listing 18 an exemplified implementation of a page object is shown.

The page in the example is derived from the BasePage object and contains a header component.

const BasePage = require('../Base.page');

const Header = require('../component/Header.comp');

module.exports = class LoginPage extends BasePage {

 setPage(page) {

 super.setPage(page);

 this.header = new Header(page);

 }

 get loginForm() {

 return '#loginForm';

 }

 get loginFormSubmitButton() {

 return this.loginForm + ' button[type=submit]';

 }

 //---

 async isLoginFormShown() {

 return await this.isElementVisible(this.loginForm);

 }

 async fillLoginForm(data) {

 await this.fillForm(this.loginForm, data);

 }

 async submitLoginForm() {

 await this.page.click(this.loginFormSubmitButton);

 }

};

LISTING 18: EXAMPLE OF PAGE OBJECT USING A COMPONENT

In the step definitions all functionalities from the page object as well as all from the contained

header object can be used. This is illustrated in Listing 19.

When('The user enters login credentials', async function () {

 await this.loginPage.fillLoginForm(this.fixtures.forms.login);

 await this.loginPage.submitLoginForm();

});

Then('The user should be logged in', async function () {

 expect(await this.loginPage.header.isLoggedInTextShown()).to.equal(true);

});

LISTING 19: EXAMPLE OF STEP DEFINITION USING PAGE OBJECT

6. Proposed Concept

74

After all steps of a scenario are executed, or any of them failed, another hooked tag is triggered.

This hook checks the result of the scenario before the browser object is closed. If a scenario

fails, a screenshot of the current browser page is added to the Cucumber report. This

implementation is illustrated in Listing 20. The screenshot in the report makes the investigation

of failed test runs easier.

After("@UI", async function (scenarioResult) {

 if (scenarioResult.result.status === 'failed') {

 console.log('Scenario failed: make a screenshot');

 let screenshotFile =

 constants.paths.screenshotDir + '/screenshot_' + Date.now() + '.png';

 await this.page.screenshot({path: screenshotFile });

 let image = fs.readFileSync(screenshotFile);

 // convert binary data to base64 encoded string

 let imageString = new Buffer.from(image, 'png').toString('base64');

 await this.attach(imageString, 'image/png');

 }

 await this.browser.close();

});

LISTING 20: TAGGED HOOK FOR PUPPETEER TEARDOWN

In all the examples shown above the keywords “async” and “await” are used any time a

browser interaction is made. This is needed because all Puppeteer functionalities are executed

asynchronously. The pair async/await is one way to handle asynchronous JavaScript code by

defining and waiting for JavaScript promises. “Async” before the function definition makes

the function always return a promise indicating the function is executed asynchronously.

Additionally, it enables the usage of the keyword “await”, which indicates that the code

execution will be stopped until a promise is returned by the called function. This means, that

each Puppeteer function must be awaited to continue with the test execution. However, this is

handled automatically by the async/await functionality. Hence, Puppeteer can test a web

application without having to use any sleep-functions that would force the test execution to be

idle, even if the test execution is able to continue. Furthermore, it clearly indicates the usage of

asynchronous functionalities which makes it easier to read. Cucumber-JS supports

asynchronous functionalities as well, otherwise the usage Puppeteer would not be possible.

This architecture makes the framework easy to read and fast in comparison to letting the test

run rest for a fixed amount of time [77,93].

6. Proposed Concept

75

6.2.1.2. Cucumber-Puppeteer framework: Verification

The purpose of the proposed test framework is to verify that the specified requirements are

met, and the result is documented for every test run. However, this test framework is also a

software project and thereby is subject to continuous change itself. Thus, all the functionalities

of the framework must be tested as well.

For this purpose, “Jest”, a framework for Unit Testing in JavaScript, is introduced. It is used

to test small parts of the test framework, such as verifying that the building of the environments

is working as expected. Such a testcase is shown in Listing 21 [94].

test('no environment specified - default should be set', function() {

 let environment = undefined;

 let result = buildEnvironment(environment);

 expect(result.envNames.length).to.be.equal(1);

 expect(result.envNames.includes('default')).to.be.equal(true);

 expect(result.fixtures).to.be.not.equal(undefined);

 expect(result.puppeteerConfig).to.be.not.equal(undefined);

 expect(result.settings).to.be.not.equal(undefined);

 expect(result.fixtures.testfixture).to.be.equal('default');

 expect(result.settings.baseUrl).to.be.equal('');

 expect(result.puppeteerConfig.headless).to.be.equal(false);

});

LISTING 21: EXAMPLE OF USING JEST FOR A JAVASCRIPT UNIT TEST

Furthermore, Cucumber-JS is used to test the framework on a higher level. Thus, a small set of

Functional Tests is defined to ensure all basic functionalities of the framework work as

expected. The created Functional Tests include the creation of a test report in all possible cases

as well as the presence of a screenshot if a UI Test failed. The definition of the mentioned

scenarios is shown in Listing 22.

6. Proposed Concept

76

Feature: Framework Execution

 This feature describes the basic functionalities of the test framework.

 Scenario: Execute Standard Testcase

 When a test case is executed

 Then a cucumber-report should be created

 And the cucumber-report should contain the scenario with the name 'Today is or

 is not Friday'

 Scenario: Execute Successful UI Test

 When a successful UI test is executed

 Then a cucumber-report should be created

 And the cucumber-report should contain the scenario with the name 'UI-Test

 succeeds'

 Scenario: Execute Failing UI Test

 When a failing UI test is executed

 Then a cucumber-report should be created

 And the cucumber-report should contain the scenario with the name 'Screenshot

 for failing Scenario'

 And the cucumber-report should contain a screenshot

LISTING 22: CUCUMBER FEATURE FOR FUNCTIONAL TESTING OF THE PROPOSED

FRAMEWORK

6.2.1.3. Cucumber-Puppeteer framework: Integration

As explained in section 2.5, the scenarios should drive the development process. Therefore,

they should be integrated in the code base of the Cucumber-Puppeteer framework first. This

enables the development team to work on them. Initially, the first scenarios fail directly after

their integration. Thus, the desired functionality must be implemented and refactored until all

scenarios pass. After some of the functionalities have been added according to that process, a

set of Functional Tests is acquired automatically. By using Cucumber-JS as the foundation for

the proposed framework, the team documents the requirements in a way that is easy to

understand for each member of the development team. Thus, it is also easier to react to

changing requirements, as the behaviour is documented unambiguously. Therefore, only the

existing scenarios must be changed or extended.

For any following addition to the projects code base, the members of the development team

must assure that no existing functionality is broken. Before any new line of code is added, the

developers must run the complete set of tests of the Cucumber-Puppeteer framework on their

local environment. If any of the scenarios is failing, the developers are not allowed to request

the introduction of their changes in the project’s code base. Additionally, the Cucumber-

Puppeteer framework should be integrated in the Continuous Integration pipeline of the

6. Proposed Concept

77

Specialist for E-Commerce-Platforms. It should be executed each time a new version of the

system is deployed to the test environment. This should be done automatically at least once a

day and should ensure that after each change a version is available, that meets the defined

requirements.

Inside the organisation of the Specialist for E-Commerce-Platforms Jenkins is used to build the

Continuous Integration pipeline. Therefore, this tool is the target for the integration. Jenkins is

an automation server, that is capable of building, executing and testing any kind of application.

Thus, the proposed integration must be supported by Jenkins [95].

For the integration in this pipeline, Docker is used. The Docker environment provides an

environment to run applications inside a container to make it execute independently from the

used operating system and infrastructure. Thus, the Cucumber-Puppeteer framework can be

packed and executed inside such a container. This architecture allows a software development

team to port the framework on any system regardless of the underlying infrastructure.

Nevertheless, the framework can still be executed directly on the developer’s environment

without using a Docker container [96].

In addition to being able to run the framework in a Docker container, it must be ensured that

all test runs are properly documented. As already explained earlier, a report is created after

each test execution. This report is visualised by a Jenkins plugin, the “Cucumber Reports

Plugin”. It produces an overview of the executed specifications as well as a detailed description

of each scenario. The reports itself allows the development team, as well as any other

stakeholder, to check which scenarios failed. A screenshot of the overview of such a report can

be seen in Figure 21 [97].

6. Proposed Concept

78

FIGURE 21: EXAMPLE OF A CUCUMBER-REPORT IN JENKINS [97]

6. Proposed Concept

79

6.3. Integration of the Proposed Concept

After describing the two parts of the proposed concept individually, both should be integrated

in the development process of the Specialist for E-Commerce-Platforms. As soon as both parts

of the concept are implemented, the essential elements of Behaviour Driven Development are

in place. As the Specialist for E-Commerce-Platforms uses Scrum as the preferred software

development process model, the implementation proposal relies on that. Based on the use cases

mentioned by Gojko Adzic in section 2.5 the integration of the concept is considered for the

following cases:

1. Integration in a new project

2. Integration in an existing project

 Integration in a new project

At the beginning of a new project, the first measure to implement the proposed concept is to

use the Extended OOPSI-Model as the preferred workshop technique. An initial set of

requirements should be discovered in a first workshop. During this workshop a roadmap should

be derived from the initial goal. The most important process steps and scenarios should be

pictured in it. Based on this initial roadmap, the involved stakeholders should describe the key

scenarios first and provide enough inputs to enable the development team to start working.

Furthermore, all stakeholders should plan additional workshops to ensure having enough

scenarios ready for development for the following iterations. As the Specialist for E-

Commerce-Platforms usually works with Scrum, it is advisable to always have at least enough

scenarios specified to fill the next two Scrum Sprints. To have reasonable working packages

that can be estimated and planned by a Scrum team, it is recommended to group the scenarios

together under a specific User Story, just like the Extended OOPSI-Model suggests. If the team

struggles to finish the User Story in a Sprint it should be considered to split the User Stories in

multiple smaller ones in future. Thus, the development team should be able to deliver finished

working packages each Sprint. The size of these packages must be determined by the team over

the duration of some sprints.

Additionally, the framework must be added to the project’s code base and Continuous

Integration pipeline to test the application continuously. Before the team starts with the actual

6. Proposed Concept

80

development of the introduced scenarios, they should be added in feature files. The team should

then proceed with the BDD-Cycle as introduced in chapter 2.5.

 Integration in an existing project

For software development teams, that are working on an existing project, the integration of

Behaviour Driven Development should be tried differently. At first, it should be considered to

add the Cucumber-Puppeteer framework as the used tool for Functional Testing. If there is

already a framework used for that purpose, the existing tests should be migrated. By doing so,

the software development team should get used to the new way of documenting requirements.

If no tool is used for Functional Testing, the development team should integrate the Cucumber-

Puppeteer framework to describe the most important use cases of the legacy requirements. Over

time the team should realise, that the requirements must be formulated in Gherkin to be

automated by the Cucumber-Puppeteer framework. Thus, the integration of the Extended

OOPSI-Model could provide requirements in the right format for new requirements.

Once this transition has been done, the process should not differ from that of a team that started

with the proposed concept right at the beginning of the project, as introduced in chapter 6.3.1.

This means that new requirements should be formulated as User Stories that are described by

a set of scenarios with real inputs. These working packages should then be estimated and

planned according to the development process of the team.

81

7. Discussion

The following section describes the efforts to introduce the proposed concept inside the

organisation of the Specialist for E-Commerce-Platforms as well as the identified limitations.

7.1. Requirements Engineering

As stated in chapter 6.3, a possible first step of the integration of the concept is to introduce the

Extended OOPSI-Model as the preferred workshop technique. This should ensure, that all

involved stakeholder have the same understanding of the specified requirements. Thus, a

training workshop was performed to describe the concept of this workshop technique.

The participants of the workshop had different roles inside the organisational structure of the

Specialist for E-Commerce-Platforms. Thus, a mixture of business stakeholder, developers and

other roles has been present at the training. After an initial description, the participants were

split into teams of four people to ensure that each team had at least a representative of the Three

Amigos, as suggested in chapter 4.4. Afterwards the teams had to apply the introduced concept

directly on an example tailored to their field of expertise.

All the participants stated that the model helped them to find a common understanding of the

stated goal. Thus, each team was able to formulate scenarios, enriched with detailed inputs, to

describe the most important business cases of the given problem. One point highlighted by the

participants of the workshop was that the discussions were of high quality, because the people

in the teams came from different fields. This undermines the importance of the presence of the

Three Amigos during such a workshop, as already stated by Martin and Buckney [58].

The hardest part for the workshop participant was to define the outputs within the second step

of the proposed concept. Almost all participants mentioned, that it was hard to define any

outputs before thinking of the actions producing them. Nevertheless, once the processes of the

model had been defined, the teams were able to assign the outputs to the corresponding

processes and could proceed with the discussion. The reason for that could be, that this reverse-

engineering approach was unfamiliar to them. This should be considered at the introduction of

the technique in upcoming training workshops.

7. Discussion

82

Despite the efforts of introducing the Extended OOPSI-Model as a workshop technique inside

the organisation, it was not possible to introduce it comprehensively. The introduction of this

technique to different teams is still an ongoing approach which might take years to be fully

completed. Nevertheless, all meeting participants agreed that the introduction of the Extended

OOPSI-Model could solve several existing problems of the currently lived requirements

engineering process. They argued, that it might be most useful for specifying complex

requirements.

One participant of the training workshop added, that using the proposed model could produce

unnecessary overhead. This would apply especially for simple User Stories. Hence, despite the

good reasoning of applying the model to complex requirements the usefulness of its general

application was questioned. However, contrary to this statement, it is not possible to know the

complexity of a User Story in advance, as shown in section 2.2 in an example by Gojko Adzic

[19]. Thus, even for seemingly simple requirements, it could be possible that there is not a

common understanding between all stakeholders. Using the Extended OOPSI-Model

comprehensively should help to mitigate misunderstandings right at the beginning. Such

misunderstandings could be very costly. Especially if they are discovered at the end of a

project, as already stated by Kent Beck [39]. Therefore, using the Extended OOPSI-Model

could be a possible solution to save money over time by preventing misunderstandings at an

early stage.

Due to the fact, that the model is not fully integrated in the process of the Specialist for E-

Commerce-Platforms it is not possible to show its effectiveness at the time of writing.

However, if a development team does have troubles applying the suggested approach, a

possible alternative would be a mixture of User Story Mapping and Example Mapping. User

Story Mapping tries to keep the big picture in mind while splitting the work into smaller parts.

Thus, it might be well suited to get an overview, or a roadmap, of all upcoming goals. Example

Mapping could be used to extract detailed scenarios from the resulting User Stories of the User

Story Mapping workshop. However, it is argued that the Extended OOPSI-Model brings the

flexibility and structure that is needed to guide the requirements engineering process properly.

Investigating this comparison is beyond the scope of this thesis, but future studies could take

this as a starting point.

7. Discussion

83

7.2. Automation of Requirements

As already stated in section 7.1, neither the Extended OOPSI-Model, nor any alternative, is

used comprehensively inside the organisation. Hence, the basis for the introduction of the

Cucumber-Puppeteer framework has not been built yet, as no examples are formulated in the

requirements engineering process. Thus, it was not possible to gather data that showed how the

Cucumber-Puppeteer framework was used to support the development process of previously

specified scenarios.

Nevertheless, as already stated in section 6.3, the introduction of such a tool could be a possible

first step to introduce Behaviour Driven Development in a team. Due to the lack of available

data, it is not possible to confirm this hypothesis in the selected environment at the time of

writing. However, the tool has been introduced to one software development team. The

integration of the framework inside the whole organisation is an ongoing process that should

be evaluated in a following case study. This study should focus on the implication of the

framework on the software development process of a software development team. It should

consider several teams to confirm or contradict the stated hypothesis for the organisation.

Additionally, to the integration in one development team, the framework was used to describe

and test some basic functionalities of the standard solution used by the Specialist for E-

Commerce-Platforms as a starting point for new projects. This set of test cases should ease the

introduction of the framework to any new project. During the creation of these specifications,

some observations have been made.

The first big advantage of using Cucumber as a foundation of the framework seemed to be, that

it was possible to reuse any of the created step definitions in different scenarios. Thus, the same

test logic could be used, which helped to reduce the amount of code necessary. However, after

the creation of the first few scenarios, several of them had to be changed because they were

describing the same action. Hence, the first learning was to continuously refactor the used steps,

as some of them could have the same meaning. After this first refactoring, even more step

definitions could be removed. As this became obvious after only a few scenarios have been

created, proper management of the used steps throughout the whole test suite could be one

major challenge of using the Cucumber-Puppeteer framework.

Using Puppeteer for simulated the behaviour of a user has been the right choice. It provided all

needed functionalities to operate the browser in a fast and stable way. Especially, encapsulating

7. Discussion

84

the browser functionalities in several page objects facilitated the management of all browser

related actions. This observation is in line with the experiences made by Emily Bache and

Geoffrey Bache, as stated in chapter 5 [61]. The additional integration of components, that can

be reused on different pages, made it even easier to avoid any code duplications. By using these

objects, it was possible to build an abstract representation of the web application under test.

An adaption to the proposed framework can be considered regarding its integration in the

Continuous Integration pipeline. It could be an improvement to only introduce code changes

as soon as all specifications are executed successfully in a separate build. A possible way to

approach that is to deploy the whole application inside an own Docker container after every

code change, as introduced in section 6.2.1.3. After the deployment in the Docker container,

all specifications should be executed against this version. If this test execution succeeds, the

changes can be merged to the code basis automatically. This change would imply that all

changes are tested once more in a consistent environment before they are introduced to the

code base. Compared to only having a nightly run against a test server as suggested in the

proposed concept, this change could provide another measure to increase the quality of the

product. However, the comparison of this approach would exaggerate the scope of this thesis

and should be considered in future research.

Additionally, to the adaption mentioned above, it might also be possible to exchange any of

the parts of the framework. Since the functionalities of Gauge and Cucumber are similar, Gauge

could be used as well as the tool of choice. The same applies for Puppeteer and Selenium-based

frameworks. If a development team prefers to use Selenium, it might be possible to exchange

it as well. It could also be investigated in future research which tools should be used for specific

use cases.

7. Discussion

85

7.3. Concept as a whole

Additionally, to the implications of the two distinctive parts of the concept, its overall benefit

to the environment must be validated after the concept was internalised in the process of the

Specialist for E-Commerce-Platforms. However, this investigation would go beyond the scope

of this thesis. Data should be collected from multiple development teams who have changed

their development process according to the proposed concept. In this study the focus should be

set on two points:

• Could the proposed concept help the software development teams to save time over the

whole life cycle of the project?

• Could the proposed concept help the team to evolve the process from Continuous

Integration to Continuous Deployment?

Both claims should be compared with the currently practiced process by the Specialist for E-

Commerce-Platforms as described in chapter 3. Additionally, to the above-mentioned future

research questions, the implication on the satisfaction towards the development process of all

involved stakeholders could be investigated.

Another issue that has not been addressed in this thesis because of time constraints is the impact

of different contract models on the proposed concept. These implications should be examined

in future research as well. Especially if any contractual model limits or hinders the integration

of Behaviour Driven Development for the environment under supervision.

86

8. Conclusion

In this thesis a concept is developed that should help a software development team focussing

on E-Commerce-Platforms to integrate Behaviour Driven Development as part of their

development process. The concept aims at easing the communication and collaboration of all

involved stakeholders of a project.

After introducing the basic concept of different software development process models and

Behaviour Driven Development, the focus was set on requirements engineering and automation

of these requirements. By focussing on those two disciplines, two essential parts of the

development process have been investigated in detail. The overview of the different techniques

to improve the requirements engineering process provided a foundation for the selection of a

specific methodology for the concept. For the test frameworks the same approach was used.

Based on the conducted investigations for each of the mentioned focal points and the needs of

the Specialist for E-Commerce-Platforms a selection has been made.

Adapting and extending the OOPSI-Model seemed to be a good choice as the workshop

technique for this concept. The resulting Extended OOPSI-Model has been used successfully

in a first training workshop. Especially for complex requirements, the application of this model

was highlighted. Choosing Cucumber and Puppeteer as a foundation for the test automation

framework also seemed to be the right choice, as it provides all needed features. A first set of

human-readable requirements could be created for the standard solution of the Specialist of E-

Commerce-Platforms. Being a piece of software for itself, the framework has been documented

and tested with Cucumber. Thus, Cucumber was used to verify the features of the Cucumber-

Puppeteer framework. By using this approach, the framework could be adapted and extended

with ease.

Nevertheless, each of the selected techniques or frameworks might be exchanged to fit the

needs of a development team. The concept only gives a proposal to integrate Behaviour Driven

Development in the environment of the Specialist for E-Commerce-Platform. If the core

principals of Behaviour Driven Development are still met, any of the shown workshop

techniques or test frameworks could be used successfully.

8. Conclusion

87

In conclusion, the proposed concept should help a development team to introduce Behaviour

Driven Development. This should lead to implementing the desired requirements more

efficiently, as they are formulated in an unambiguous way. Furthermore, by building up a living

documentation that continuously verifies the project’s requirements, the software development

teams can respond to any change with more confidence. This should lead the development

teams of the Specialist for E-Commerce-Platform to a progression of their lived development

process.

8.1. Future Work

Despite the fact, that the proposed concept is not implemented comprehensively at the

Specialist for E-Commerce-Platforms, it builds a solid foundation for any future research on

that topic. During the discussion of the proposed concept several new research questions have

been introduced.

Based on the proposed concept a case study should be conducted to verify if the main goal of

the concept was achieved and why it succeeded or failed. The concept itself could be improved

to make it more effective, based on the results of the case study.

The proposed concept provides a foundation for future research, as stated earlier. If the

proposed concept fails initially, but is adapted and then integrated successfully, the purpose of

the concept is fulfilled. As stated right at the beginning of this thesis, the only constant in

software development is change. Hence, the need for continuous improvement applies for the

used development process as well.

88

9. References

[1] D. North, Introducing BDD, 2006. https://dannorth.net/introducing-bdd/ (accessed 26

November 2017).

[2] G. Adzic, Specification by Example: How successful teams deliver the right software,

2nd ed., Manning, Shelter Island, N.Y., 2012.

[3] N.B. Ruparelia, Software development lifecycle models: Hewlett-Packard Enterprise

Services, in: ACM SIGSOFT Software Engineering Notes, pp. 8–13.

[4] Winston W. Royce, Managing the Development of large Software Systems, in:

Proceedings of IEEE WESCON (Nov. 1970). Reprinted in Proceedings of the 9th

International Conference on Software Engineering (1987), pp. 328–338.

[5] Phillip A. Laplante, Colin J. Neill, “The Demise of the Waterfall Model Is Imminent”

and Other Urban Myths. Penn State University, Queue February (2004).

https://doi.org/10.1145/971564.971573.

[6] Kevin Forsberg, Harold Mooz, The Relationship of System Engineering to the Project

Cycle, 1991.

[7] tryqa.com, What is V-model- advantages, disadvantages and when to use it?

http://tryqa.com/what-is-v-model-advantages-disadvantages-and-when-to-use-it/

(accessed 17 October 2018).

[8] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham,

Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern,

Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland, Dave

Thomas, Manifesto for Agile Software Development.

http://agilemanifesto.org/iso/en/principles.html (accessed 12 October 2018).

[9] Giulio Barabino, Daniele Grechi, Danilo Tigano, Erika Corona, and Giulio Concas,

Agile Methodologies in Web Programming: A Survey, in: Agile Processes in Software

Engineering and Extreme Programming, Springer International Publishing, Rome, Italy,

2014, pp. 234–241.

[10] D. Moyo, A.K. Ally, A. Brennan, P. Norman, R.C. Purshouse, M. Strong, Agile

Development of an Attitude-Behaviour Driven Simulation of Alcohol Consumption

Dynamics, JASSS 18 (2015). https://doi.org/10.18564/jasss.2841.

9. References

89

[11] K. Beck, extreme programming eXplained: Embrace change, Addison-Wesley, Reading

MA, 2000.

[12] Ken Schwaber and Jeff Sutherland, The Scrum Guide: The Definitive Guide to Scrum:

The Rules of the Game, 2017.

[13] Paul Klipp, Getting Started With Kanban, 2011.

[14] C. Ebert, P. Abrahamsson, N. Oza, Lean Software Development, IEEE Softw. 29 (2012)

26–31. https://doi.org/10.1109/MS.2012.116.

[15] Henrik Kniberg, Mattias Skarin, Kanban And Scrum making the most of both, C4Media

Inc., 2010.

[16] Olsson, H.H., Alahyari, H., Bosch, J., Climbing the Stairway to Heaven., in: Proceedings

of the 38th Euromicro Software Engineering Advanced Applications (SEAA)

Conference, Cesme, Turkey, September 5-7 (2012).

[17] Helena Holmström Olsson, Jan Bosch, Towards Agile and Beyond: An Empirical

Account Towards Agile and Beyond: An Empirical Account on the Challenges Involved

When Advancing Software Development Practices, in: Agile Processes in Software

Engineering and Extreme Programming, Springer International Publishing, Rome, Italy,

2014, pp. 327–336.

[18] D.C. Gause, G.M. Weinberg, Exploring requirements: Quality before design, Dorset

House Pub, New York, NY, 1989.

[19] G. Adzic, Bridging the Communication Gap, 2009.

[20] Bashar Nuseibeh, Steve Easterbrook, Requirements Engineering: A Roadmap, Future of

Sofware Engineering Limerick Ireland 2000 (2000) 35–46.

[21] Daniel Reichart, Peter Forbrig, Anke Dittmar, Task Models as Basis for Requirements

Engineering and Software Execution, in: Proceedings of the 3rd annual conference on

Task models and diagrams, pp. 51–58.

[22] Eric S. K. Yu, Towards Modelling And Reasoning Support For Early-phase

Requirements Engineering - Requirements Engineering, 1997., Proceedings of the Third

IEEE International Symposium on, 1997.

[23] IEEE Computer Society, IEEE Recommended Practice for Software Requirements

Specifications, 1998.

[24] Mike Cohn, Advantages of User Stories for Requirements, 2004.

https://www.mountaingoatsoftware.com/articles/advantages-of-user-stories-for-

requirements (accessed 2 July 2019).

9. References

90

[25] Ron Jeffries, Essential XP: Card, Conversation, and Confirmation, 2001.

https://ronjeffries.com/xprog/articles/expcardconversationconfirmation/ (accessed 2 July

2019).

[26] Antony Marcano, It starts with a Story…, 2014.

http://antonymarcano.com/blog/2014/05/it-starts-with-a-story/ (accessed 11 March

2019).

[27] Antony Marcano, How the industry broke the Connextra Template: Apples, Oranges and

User Stories, 2016. http://antonymarcano.com/blog/2016/08/how-the-industry-broke-the-

connextra-template/ (accessed 11 March 2019).

[28] Jeff Patton, Story Mapping: discover the whole story, 2015.

https://www.slideshare.net/jeffpatton/user-story-mapping-discovery-the-whole-story

(accessed 11 March 2019).

[29] William C. Wake, INVEST in Good Stories: The Series, 2017.

[30] Seb Rose, Every Process Needs Thoughtful Participants: P3X - People, Product &

Process eXchanges 2018, CodeNode, London, 2018.

[31] Liskin O., Pham R., Kiesling S., Schneider K., Why We Need a Granularity Concept for

User Stories, in: Agile Processes in Software Engineering and Extreme Programming,

Springer International Publishing, Rome, Italy, 2014, pp. 110–125.

[32] James A. Whittaker, What Is Software Testing? And Why Is It So Hard?: Software

testing is arguably the least understood part of the development process. Through a four-

phase approach, the author shows why eliminating bugs is tricky and why testing is a

constant trade-off. Florida Institute of Technology, IEEE Softw. January/February

(2000).

[33] S. Nidhra, Black Box and White Box Testing Techniques - A Literature Review, IJESA

2 (2012) 29–50. https://doi.org/10.5121/ijesa.2012.2204.

[34] K. James Perry Rodrigues, Orville Jay Potter 6067639, 2000.

[35] R. Owen Rogers, Acceptance Testing vs. Unit Testing: A Developer’s Perspective, in:

Extreme Programming and Agile Methods - XP/Agile Universe 2004: LNCS 3134,

Calgary, Canada, 2004, pp. 22–31.

[36] H. Erdogmus, M. Morisio, M. Torchiano, On the effectiveness of the test-first approach

to programming, IIEEE Trans. Software Eng. 31 (2005) 226–237.

https://doi.org/10.1109/TSE.2005.37.

[37] Thirumalesh Bhat, Nachiappan Nagappan, Evaluating the Efficacy of Test-Driven

Development: Industrial Case Studies: Proceedings of the 5th ACM-IEEE International

9. References

91

Symposium on Empirical Software Engineering September 21-22, 2006, Rio de Janeiro,

Brazil, Association for Computing Machinery (ACM), New York.

[38] Gáspár Nagy and Seb Rose, The BDD Books - Discovery: Explore behaviour using

examples, 2018.

[39] Kent Beck, Test-Driven Development By Example. Three Rivers Institute, 2002.

[40] E. Bjarnason, M. Unterkalmsteiner, M. Borg, E. Engström, A multi-case study of agile

requirements engineering and the use of test cases as requirements, in: Information and

Software Technology, pp. 61–79.

[41] Robert C. Martin, Grigori Melnik, Tests and Requirements, Requirements and Tests: A

Möbius Strip, IEEE Softw. January/February 2008 54–59.

[42] Fitnesse: The fully integrated standalone wiki and acceptance testing framework.

http://fitnesse.org/FrontPage (accessed 8 March 2019).

[43] Krzysztof Wnuk, Linus Ahlberg, Johannes Persson, On the Delicate Balance between

RE and Testing: Experiences from a Large Company, in: Proceedings // 2014 IEEE 1st

International Workshop on Requirements Engineering and Testing (RET), IEEE, 2014.

[44] W. Trumler, F. Paulisch, How “Specification by Example” and Test-Driven

Development Help to Avoid Technial Debt, in: 2016 IEEE 8th International Workshop

on Managing Technical Debt (MTD), IEEE, 2016, pp. 1–8.

[45] Gáspár Nagy, Continuous Behavior – BDD in Continuous Delivery: P3X - People,

Product & Process eXchanges 2018, CodeNode, London, 2018.

[46] Chris Matts, The IT Risk Manager: About. https://theitriskmanager.com/about/ (accessed

22 March 2019).

[47] Cucumber Limited, Cucumber. https://cucumber.io/ (accessed 8 March 2019).

[48] J. Patton, Story Mapping Quick Reference. https://www.jpattonassociates.com/story-

mapping-quick-ref/ (accessed 2 July 2019).

[49] Java. https://openjdk.java.net/ (accessed 3 April 2019).

[50] JavaScript. https://www.javascript.com/ (accessed 3 April 2019).

[51] WebdriverIO. https://webdriver.io/ (accessed 8 March 2019).

[52] Gojko Adzic, Chris Matts, Feature Injection: three steps to success, 2011.

https://www.infoq.com/articles/feature-injection-success (accessed 15 March 2019).

[53] Kent McDonald, Feature Injection Clarified (Hopefully), 2014.

https://www.kbp.media/featureinjectionclarified/ (accessed 17 March 2019).

[54] Gojko Adzic, David Evans, Fifty Quick Ideas to improve your User Stories, 2014.

9. References

92

[55] Jim Bowes, An introduction to user story mapping, 2017. https://manifesto.co.uk/user-

story-mapping/ (accessed 14 March 2019).

[56] Matt Wynne, Introducing Example Mapping, 2015. https://cucumber.io/blog/example-

mapping-introduction/ (accessed 22 March 2019).

[57] Brian Gilmour, Frazer Shaw, Three Amigos in the World of Agile, 2017.

http://www.edgetesting.co.uk/news-events/blog/three-amigos-in-the-world-of-agile

(accessed 22 March 2019).

[58] Jenny Martin, BDD Discovery and OOPSI, 2016.

https://jennyjmar.com/2016/04/16/bdd-discovery-and-oopsi/ (accessed 15 March 2019).

[59] Jenny Martin, OOPSI-Mapping Workshop: P3X - People, Product & Process eXchanges

2018, CodeNode, London, 2018.

[60] Dominique Winter, Jörg Thomaschewski, Eva-Maria Schön, Persona driven agile

development: Build up a vision with personas, sketches and persona driven user stories,

in: 7th Iberian Conference on Information Systems and Technologies, 2012.

[61] Emily Bache and Geoffrey Bache, Specification by Example with GUI Tests - How

Could That Work?, in: Agile Processes in Software Engineering and Extreme

Programming, Springer International Publishing, Rome, Italy, 2014, pp. 320–326.

[62] Gauge: Less Code, Less Maintenance, More Acceptance Testing. Gauge is a free and

open source test automation framework that takes the pain out of acceptance testing.

https://gauge.org/ (accessed 21 May 2019).

[63] Cucumber Installation. https://cucumber.io/docs/installation/ (accessed 21 May 2019).

[64] Cucumber Github. https://github.com/cucumber (accessed 2 July 2019).

[65] Cucumber Introduction. https://cucumber.io/docs/guides/overview/ (accessed 21 May

2019).

[66] Matt Wynne, Aslak Hellesoy, Steve Tooke, Jacquelyn Carter, The Cucumber Book:

Second Edition, 2017.

[67] Cucumber Limited, 10 Minute Tutorial. https://cucumber.io/docs/guides/10-minute-

tutorial/ (accessed 22 May 2019).

[68] Cucumber World. https://cucumber.io/docs/cucumber/state/#world-object (accessed 31

May 2019).

[69] Gherkin Reference. https://cucumber.io/docs/gherkin/reference/ (accessed 2 July 2019).

[70] Cucumber Limited, Cucumber Reference, 2019. https://cucumber.io/docs/cucumber/api/

(accessed 23 May 2019).

[71] Gauge Github. https://github.com/getgauge (accessed 2 July 2019).

9. References

93

[72] Zabil Maliackal, Why we built Gauge, 2018. https://blog.getgauge.io/why-we-built-

gauge-6e31bb4848cd (accessed 14 June 2019).

[73] Markdown. https://www.markdownguide.org/ (accessed 30 May 2019).

[74] Gauge Writing Specificatio. https://docs.gauge.org/latest/writing-specifications.html

(accessed 30 May 2019).

[75] Gauge - Getting Started Guide. https://gauge.org/getting-started-guide/ (accessed 31

May 2019).

[76] Selenium. https://www.seleniumhq.org/ (accessed 8 March 2019).

[77] Puppeteer. https://pptr.dev/ (accessed 2 July 2019).

[78] Selenium Documentation; Introduction.

https://www.seleniumhq.org/docs/01_introducing_selenium.jsp (accessed 8 June 2019).

[79] Selenium WebDriver. https://www.seleniumhq.org/docs/03_webdriver.jsp (accessed 8

June 2019).

[80] WebDriver, 2019. https://www.w3.org/TR/webdriver/ (accessed 8 June 2019).

[81] Selenium Grid. https://github.com/SeleniumHQ/selenium/wiki/Grid2 (accessed

08,06.2019).

[82] Appium: Automation for Apps. http://appium.io/ (accessed 8 June 2019).

[83] WebdriverIO Selenium Standalone Service.

https://github.com/webdriverio/webdriverio/tree/master/packages/wdio-selenium-

standalone-service (accessed 8 June 2019).

[84] WebdriverIO Frameworks. https://webdriver.io/docs/frameworks.html (accessed 8 June

2019).

[85] Chrome DevTools Protocol. https://chromedevtools.github.io/devtools-protocol/

(accessed 9 June 2019).

[86] Chromium. https://www.chromium.org/Home (accessed 9 June 2019).

[87] Puppeteer for Firefox. https://www.npmjs.com/package/puppeteer-firefox (accessed 9

June 2019).

[88] Chromium Core Principles. https://www.chromium.org/developers/core-principles

(accessed 9 June 2019).

[89] John Ferguson Smart, How not to prepare test data in JBehave and Cucumber, 2017.

https://johnfergusonsmart.com/givenstories-anti-pattern-not-prepare-test-data-jbehave-

cucumber/ (accessed 21 May 2019).

[90] Node.js Foundation, node.js. https://nodejs.org/en/about/ (accessed 15 June 2019).

[91] npm. https://www.npmjs.com/about (accessed 15 June 2019).

9. References

94

[92] Martin Fowler, PageObject, 2013. https://martinfowler.com/bliki/PageObject.html

(accessed 16 June 2019).

[93] Async/Await, 2019. https://javascript.info/async-await (accessed 16 June 2019).

[94] Jest. https://jestjs.io/ (accessed 15 June 2019).

[95] Jenkins. https://jenkins.io/ (accessed 3 April 2019).

[96] What is a Container?: A standardized unit of software.

https://www.docker.com/resources/what-container (accessed 21 June 2019).

[97] Cucumber Reports Plugin. https://plugins.jenkins.io/cucumber-reports (accessed 21 June

2019).

