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Kurzfassung

Wir sind in unserem Alltag umgeben von eingebetteten Systemen, welche uns in verschiedensten

Situationen unterstützen und uns unteranderem dabei helfen Unfälle oder gar Katastrophen

zu vermeiden. Viele eingebettete Systeme sind derart in unseren Tagesablauf involviert, man

denke hier beispielsweise an Smart Homes, Flugzeuge oder Fahrzeuge, dass sie unbemerkt

Messungen vornehmen und auch ihre Umgebung beeinflussen können.

Ein eingebettetes System besteht aus verschiedenen, meist elektronischen Bauteilen, wobei

der Mikrocontroller, als Rechen- und Datenverarbeitungseinheit, die zentrale Komponente dar-

stellt. Ein Mikrocontroller erlaubt die flexible Ausführung von Software, welche es ermöglicht,

das eingebettete System an neue Spezifikationen anzupassen, ohne dafür neue Hardware bauen

zu müssen. Die auf dem Mikrocontroller laufende Anwendungssoftware baut oftmals auf ein

Betriebssystem auf, welches die Ausführung von Applikationen unterstützt. In heutigen Betriebs-

systemen gibt es jedoch Probleme, wie beispielsweise das verschwenderische Verwenden von

Stack Speicher, welche immer noch ungelöst sind. In den letzten Jahren wurden verschiedenste

Lösungsansätze vorgestellt, um solchen Problemen entgegenzuwirken. Diese erhöhen jedoch

den Platzbedarf im Chip enorm, schränken die Planbarkeit von Tasks in einem Multi-Tasking

System ein oder erhöhen auch den Aufwand im Betriebssystem. Deshalb kann es vorkommen,

dass Zeitschranken nicht eingehalten werden. Dies kann in weiterer Folge dazu führen, dass

die Funktionsweise des eingebetteten Systems beeinträchtigt wird, was zu unangenehmen

Störungen (Weiche-Echtzeit) oder sogar zu katastrophalen Folgen (Harte-Echtzeit) führen kann.

Für harte Echtzeitsysteme wird daher oft ein statischer Systementwurf gewählt, damit sicher-

gestellt wird, dass keine harte Echtzeitschranken überschritten werden. Mit nicht statischen

realisierten eingebetteten Systemen kann man nämlich nicht zweifelsfrei vorhersehen, dass

alle Echtzeitschranken eingehalten werden. So kann es sein, dass ein Interrupt Request (IRQ)

einen Hard-Echtzeit Task unerwartet unterbricht was wiederum zu einem negativen Einfluss

auf das Systemverhalten führen kann.

Des Weiteren, um dem ständig steigenden Rechenaufwand in zukünftigen Systemen gerecht

zu werden, kommen immer mehr Mehrkernmikrocontroller zum Einsatz. Hierbei führt die

echte Parallelität in der Softwareausführung zu neuen Problemen, wie etwa dem Zugriff auf

gemeinsamen Speicher, welcher zu Race Conditions führen kann. Das Betriebssystem als auch

die Prozessorarchitektur muss dafür Sorge tragen, dies zu vermeiden.
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Das Betriebssystem und der Mikrocontroller werden meist unabhängig voneinander ent-

wickelt. Bei der Betriebssystementwicklung wird der Mikrocontroller zumeist nur als eine

Abstraktion implementiert, um somit die Portierbarkeit des Betriebssystems auf verschiedene

Mikrocontroller zu ermöglichen. Durch diese Abstraktion, kann ein Betriebssystem folglich

nicht oder nur mit hohem Implementierungsaufand die Besonderheiten jedes einzelnen Mi-

krocontrollers berücksichtigen und somit auch nur die Grundkonzepte der Mikrocontroller,

welche teils aus den 70ern Jahren stammen, verwenden. Dadurch wird es auch erschwert,

das Betriebssystem so zu entwickeln, dass alle Echtzeitschranken eingehalten werden und die

oftmals limitierten Ressourcen des Microkontrollers effizient genutzt werden.

Diese Doktorarbeit zeigt einen innovativen Mikrocontroller mit Betriebssystem-Bewusstsein

(OS awareness): Die mosartMCU besitzt Kenntnis über die Datenstrukturen des Betriebssystems

und kann auf diese auch lesend und schreibend zugreifen. Das Betriebssystem-Bewusstsein

ermöglicht eine Vermeidung bzw. eine zeitliche Begrenzung von Prioritätsinversionen sowie

eine effiziente Stackspeicher-Nutzung. Letztere führt zu geringerem Speicherbedarf im Mi-

krocontroller, wodurch die Kosten des eingebetteten Systems reduziert werden können. Die

effiziente Stackspeicher-Nutzung wird durch die vorgestellten Ansätze StackMMU und CoStack

realisiert. Mit EventIRQ und EventQueue wird zudem eine Prioritätsinversion, ausgelöst durch

das Betriebssystem, zeitlich beschränkt. Dadurch kann der aktuelle Task nicht durch einen

niedrigeren priorisierten Task oder Interrupthandler unterbrochen werden. Außerdem wird es

mit dem ebenfalls für die mosartMCU entworfenen Konzept des Remote Instruction Calls (RICs)

ermöglicht, EventIRQ und EventQueue auf einem Mehrkernsystem zu realisieren. RIC basiert

auf einem in dieser Arbeit vorgestellten System-on-a-Chip (SoC) Bus, der Prioritätsinversionen

auf SoC Ebene vermeidet. Mit RIC werden globale Aufgaben in lokale Aufgaben überführt, um

hiermit beispielsweise einen gemeinsamen Speicherzugriff mit potenziellen Race Conditions

auf globalen Speicher zu vermeiden.

Das Betriebssystem-Bewusstsein im Mikrocontroller ermöglicht ein Systemverhalten, wel-

ches mit einer reinen Softwarelösung nicht möglich oder nur mit sehr hohem Rechen- und

Verwaltungsaufwand erreichbar wäre. Deshalb eröffnen die in dieser Doktorarbeit vorgestellten

Denkansätze, welche in den mosartMCU implementiert wurden, neue Möglichkeiten auf Basis

derer ein Betriebssystem und ein Mikrocontroller nach einem Mikrocontroller/Betriebssystem

Codesign entwickelt werden können.
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Abstract

Today, we are surrounded by embedded systems that support us in safety-critical situations

and help us to avoid accidents or even disasters. Many embedded systems are seamlessly

implemented into our daily lives by silently making measurements and by influencing their

environment, such as in smart homes, airplanes, or vehicles.

An embedded system consists of various components, mostly electronic, whereby the Mi-

crocontroller Unit (MCU), as a computing and data processing unit, very often represents the

central component. An MCU allows the execution of flexible software, which makes it possible

to adapt the embedded system’s software to new specifications without having to build new

hardware. The application software running on the MCU is often based on an Operating System

(OS). In today’s OSs, however, there are still unsolved problems, such as the overbooking

use of stack memory. In recent years, various approaches were presented to counteract such

problems. However, these approaches enormously increase the space requirement in the silicon,

limit the schedulability of tasks in a multi-task system, or increase the overhead in the OS.

Therefore, it can happen that time boundaries cannot be satisfied. This can furthermore result

in the functionality of the embedded system being impaired (soft real-time) or lead even to

a catastrophe (hard real-time). Therefore, for hard real-time system a static software archi-

tecture is mainly chosen, to ensure that no time boundaries are violated. Since the execution

time of today’s non-statically implemented embedded systems cannot be predicted precisely.

The reason is, that these systems would have to adapt dynamically itself and so they cannot

guarantee with certainty that all real-time boundaries will be met. For example, an Interrupt

Request (IRQ) may unexpectedly interrupt a hard real-time task, which in turn may lead to a

negative influence on the system behavior.

In order to accomplish the constantly increasing computing effort in future systems, more

and more multi-core MCUs are being used. The real parallelism in software execution leads to

new problems, such as the access to shared memory, which can lead to race conditions. The

OS and the computer architecture must take care to avoid these new problems.

The OS and the MCU are usually developed independently of each other. During OS develop-

ment, the MCU is usually implemented only as an abstraction (i.e., Hardware Abstraction Layer

(HAL)), in order to enable portability of the OS to different MCUs. Due to this abstraction, an

OS cannot take into account, or only with a high implementation effort, the special features

of every individual MCU and can therefore only use the basic concepts of the MCU, some of
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which date back to the 70s. This also makes it more difficult to develop the OS in a way that all

real-time constraints can be satisfied and that it can efficiently handle all the MCU resources.

This doctoral thesis shows an innovative MCU with OS awareness: The mosartMCU has

knowledge of the OS’s data structures and can access them by reading and writing. The OS

awareness enables the avoidance or temporal bounding of priority inversions as well as an

efficient stack memory usage. The latter leads to a lower memory requirement in the MCU,

whereby the costs of the embedded system can be reduced. The StackMMU and CoStack

approaches presented in this thesis enable the efficient use of stack memory. With EventIRQ

and EventQueue a priority inversion, caused by the OS, is time bounded and no unpredictable

interruption may occur by a lower prioritized task or interrupt handler. Furthermore, Remote

Instruction Call (RIC), also developed for the mosartMCU, makes it possible to realize EventIRQ

and EventQueue on a multi-core system. RIC is based on a System-on-a-Chip (SoC) bus pre-

sented in this thesis, which avoids priority inversions at SoC level. With RIC, global operations

are transferred to local operations, for instance, in order to avoid potential race conditions on

globally shared memory accesses.

The OS awareness in the MCU enables a system behavior that would be impossible with a

pure software solution or would only be possible with a very high computing effort. Therefore,

the approaches presented in this doctoral thesis, which were implemented in the mosartMCU,

open a new way to develop OSs and MCUs based on an MCU/OS codesign approach.
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1. Introduction

This doctoral thesis introduces the concept of an OS-aware MCU for embedded multi-core

real-time systems. The novel MCU design, which assists the OS in its execution, is called

mosartMCU, the abbreviation for Multi-Core Operating System-Aware Real-Time MCU.

At the end of the last century, Marc Weiser [1] described his visions about computers in

the 21st century and coined the term ubiquitous computing. He predicted that computers will

be used as smart embedded systems that enhance our daily life with convenience and safety.

Applying novel concepts in the field was required to realize Weiser’s visions. Intense research

was conducted in the area of Wireless Sensor Networks (WSNs), resulting in the development

of many different sensor nodes [2, 3, 4, 5, 6]. A sensor node is a (mostly) battery powered

computer system with sensors and a radio unit for transferring measured sensor data to sinks.

At some point, WSNs have been extended to Wireless Sensor/Actuator Networks (WSANs),

which not only sense but also actuate and influence the field.

Nowadays, the trend goes from locally networked WSANs to globally distributed embedded

computers, as in the Internet of Things (IoT). Thereby, the aim is to minimize computer systems

and to integrate them into business, information, and social processes by connecting them to a

global infrastructure (i.e., the Internet) for exchanging data [7]. These conceptions bring the

idea of the IoT in line with Marc Weiser’s prediction of ubiquitous computing.

Most of the embedded systems for the IoT are battery-powered. This implies that the

operating time of the embedded system is limited, and a reduction and optimization of the

power consumption of these systems is needed. To achieve this, many techniques can be applied:

e.g., the operating frequency or voltage can be reduced and the software can put electrical

components into sleep modes. In addition to that, developers seek to use low power electronic

components whenever possible. In the case of a computational unit, low power MCUs suit

well. An MCU contains one or more processor cores, non-volatile memory (e.g., flash), volatile

memory (e.g., Random Access Memory (RAM)), peripherals (e.g., serial interfaces), and other

computer system components in one single chip; wherefore, it is also called System-on-a-Chip

(SoC).

Today’s embedded computer systems (as MCUs) are restricted in terms of computational

power and available memory compared to modern desktop or even server computer systems.

This is primarily caused by the aspired low power consumption, available space on the die,
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1. Introduction

and production costs. Furthermore, embedded systems are aiming for completely different

purposes compared to desktop computer systems. This is the reason why many different

OSs (e.g., [8, 9, 10, 11, 12]) were created to operate today’s small and resource constrained

embedded computer systems.

Due to the deep involvement of computer systems in our daily life, standards that ensure the

functional safety of a developed product have been established. Functional safety describes

how to achieve correct execution of a functionality regarding its inputs, failures in hardware

and software, or environmental changes [13]. The general safety standard for electrical/elec-

tronic/programmable electronic safety-related systems IEC 61508 [14] describes approaches to

avoid mistakes during the development process, to monitor the occurrence of failures, and to

deterministically handle errors.

For a better alignment of the safety requirements to specific fields, special safety standards

have emerged. For instance, the DO-178B Software Considerations in Airborne Systems and

Equipment Certification [15] and the ISO 26262 Road Vehicles – Functional Safety [16] are

safety standards for avionic and automotive systems. Well-known OS standards, such as the

ARNIC-653 [17] and AUTomotive Open System ARchitecture (AUTOSAR) [18] implement the

above mentioned safety standards for avionic and automotive systems, respectively. To be

compliant with the AUTOSAR standard, all independent software components must be free

from interferences. Thus, in the whole software, wrong processor allocations, incorrect memory

synchronizations, and the occurrence of blocking due to deadlocks or priority inversions must

be avoided or at least considered (Annex D in [16]), for instance by time bounding a priority

inversion. Otherwise, the system cannot be certified by the respective authority and must not

be deployed to series vehicles.

In the requirement specification, the customer specifies, among others things, the functionality

and the behavior of the application software. In order to enable software engineers to develop

jointly the same application, to reduce the development costs, and to shorten the development

time, the applications are mostly developed on top of an OS. In the OS, among of multitude of

other administrative work, the scheduler manages the allocation of a task (often independently

developed) to the computational units (i.e., cores) according to the OS’s scheduling policy. For

desktop computers, the policy is to give the user a feeling of a highly reactive system. For server

systems; however, a high data throughput is aimed [19]. For most embedded systems, the

scheduler has to satisfy specified time boundaries. Hence, embedded OSs are often Real-Time

Operating Systems (RTOSs). In an RTOS, a real-time process (e.g., measuring a physical

process) is not allowed to start before a specified lower time bound and not allowed to end after

a specified upper time bound. In a soft real-time system, the violation of time boundaries is

accepted but could reduce the output performance (e.g., inaccurate measured physical process).

In hard real-time systems, these violations must be completely avoided, otherwise they could

2



1.1. Problem Statement

result in a disaster. The probability of a disaster, caused by an embedded system, can be reduced

by satisfying the safety standards.

An increasing number of complex algorithms will be implemented in low-power embedded

real-time systems, which also increases the computational demands. The common solution

so far to satisfy this computational demand was to increase the operation frequency of the

computational unit. However, this further increases the power demand leading to critical

thermal power densities [20]. Another approach to increase the computational power is to

distribute the software among different computational units, namely to multiple cores. By

simultaneously executing the software on different cores, new challenges arise for satisfying

the freedom from interferences.

1.1. Problem Statement

In the context of real-time multi-core embedded systems, many issues are still not fully solved.

The efficient stack memory usage and the time bounding of priority inversions are two of these

issues, this thesis deals with.

1.1.1. Stack Memory Usage

An MCU, beside the computational unit and other peripherals, contains memory to store

and read data. The memory size is constrained due to the limited space on a die and to

reduce the costs. Thus, memory constrained embedded systems have to use the memory in an

efficient way. The well-known Memory Management Unit (MMU) concept of modern desktop

or server systems is only rarely found in embedded systems. The reason is the high power

consumption, the required space on the die, as well as the non-deterministic execution times

upon accesses [21, 19]. This also influences each task’s execution time in a hardly predictable

way and makes a classic MMU unsuitable for real-time systems in general.

After the initialization of a task in an MMU-less embedded system, the task’s static variables

are placed in the memory and will occupy the memory as long as the task is not removed by the

OS. The same applies for a memory space to store temporary variables and function call related

data, known as stack. The stack uses a Last-In First-Out (LIFO) data structure, and a stack

pointer that points to an address in the stack to indicate dynamically the threshold of valid and

invalid data in the stack. Furthermore, the stack pointer is used to access, with a relative offset

to the stack pointer, the data in the stack. The Application Binary Interface (ABI) specifies how

the stack is managed by the compiler, the OS, and which operations must be applied on it.

The stack contains dynamically stored variables and temporarily stored registers of the

computational unit (e.g., the return address during a function call). If an MMU-less embedded

system supports different logical execution flows, by using tasks scheduled by an OS, the
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Figure 1.1.: Example stack consumption of three tasks with individual stacks.

straightforward approach would be to assign an individual stack to every task. This approach

is frequently used in today’s embedded system OSs (e.g., [22, 11]). However, it results in

stacks that are not fully utilized simultaneously, as shown in the example in Figure 1.1. In

this example, three different tasks (i.e., τ2,τ1,τ0) are executing and every one reserves an

individual stack with the size ςτ2
= ςτ1

= ςτ0
. If we assume that all three tasks are always

executing in the same sequence, the individual stack memory reserved to each task is not

simultaneously fully used. To avoid this memory overbooking, there exist solutions in which a

common stack is shared among all tasks (e.g., [9, 23, 24]), or a combination of an individual

and a common stack is used (e.g., [25, 26]).

A common stack may reduce the overall required stack memory, but it may also restrict the

schedulability of the tasks. This happens if the stack of the task that should be scheduled is

currently not on top of the common stack. For instance, a high priority task is scheduled, builds

up some stack data, and calls a sleep function, leaving the data on the stack. A low priority task

is then scheduled by the OS and builds up stack data directly consecutive to the previous task.

While executing, the previously sleeping high priority task shall be resumed. Now, the common

stack contains data from the low priority task on the top. Hence, for the high priority task, all

the relative addresses in the stack are invalid (which can be handled with an offset), and even

worse, the situation would restrict the high priority task in growing its stack memory. This

creates the need of using non-preemptive tasks with synchronization points [9], or of using run

to completion [8] approaches, where tasks will never interleave.

Non-preemptive scheduling, where the stack is implicitly or explicitly cleared on each context

switch, restricts the OS in scheduling tasks with arbitrary interleaving. The OS can only schedule

a task on synchronization points or on the task completion. For real-time systems, this approach

limits the schedulability and probably real-time constraints cannot be meet by the OS. This is
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the reason why most RTOSs reserve an individual stack to every task, with the drawback of

overbooking memory.

1.1.2. Priority Inversion

In 1980, Lampson and Redell [27] were the first authors who mentioned the priority inversion

problem, which was later coined by Rajkumar et al., in [28].

The priority inversion problem arises, if a lower prioritized task prevents the execution of

a higher prioritized task that would be otherwise executed on the computational unit, in a

system with prioritized tasks where the priorities specify the importance of the task. The

priority inversion must be avoided or be at least time bounded (to a specific time) to guarantee

the schedulability of the tasks in a real-time system. Thus, systems that do not handle non-

preemptive resources with an appropriate approach, may lead into timely unbounded priority

inversions.

A famous example for a priority inversion occurred in the Mars Rover [29], where the

watchdog realized that a high priority task did not signal its aliveness due to a priority inversion;

and therefore, the watchdog triggered a system reset. After remote debugging, the engineers

found out that a priority inversion occurred and fixed the problem by enabling the resource

management protocol that time bounds the priority inversion, provided by the OS.

Resource management protocols are still an ongoing research field, with many different

approaches for time bounding the priority inversions in single cores [30, 24, 31] and multi-

cores [28, 32, 33, 34]. However, a priority inversion may not only occur on resources in an OS,

but everywhere where prioritized instances (e.g., tasks, OS, cores) are using shared resources

that might not immediately be accessible by the higher prioritized requesting instance.

This thesis addresses a special form of the priority inversion that emerges in the OS: While

the OS performs code for a lower prioritized task, a higher prioritized task would be ready

to be executed on the computational unit. We call this kind of priority inversion Operating

System Priority Inversion (OS-PI). Figure 1.2 depicts an example with four tasks and two OS-PI

occurrences. Let us assume that the tasks are prioritized according to their index, in which a

higher number represents a higher priority and in which the OS is prioritized above all tasks.

The tasks are using two OS events et and es, whereby an event e is a synchronization primitive

for which a task may wait, and the event can be triggered by another task or by the OS.

• At time t0, t1, and t2 the tasks τ3, τ2, and τ1 start waiting for their events, respectively.

Every waiting call is a jump into the OS, executed by a syscall. Then, the scheduler

chooses the next task according to its scheduling policy.

• At time t3, an interrupt is triggered and an Interrupt Service Routine (ISR) is immediately

executed in the context of the OS. The ISR sets the event et , for which task τ3 is waiting.
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Figure 1.2.: Example of two different Operating System Priority Inversions (OS-PIs).

The lowest prioritized task τ0 is preempted by the OS, and the OS schedules τ3 as it is

the highest priority ready task. Thus, no priority inversion occurs.

• At time t4, once again, an interrupt is triggered and the ISR is executed. There, the event

is directed to the task τ1, but the higher priority task τ3 is still interrupted by the ISR.

Here, an OS-PI occurs, due to the jump into the OS context through an Interrupt Request

(IRQ) relevant for a lower priority task.

• At time t5, task τ3 sets the event es, for which the lower priority task τ2 is waiting. Here,

a syscall is executed leading to a jump in the OS context. Once again, an OS-PI occurs,

because task τ3 is jumping into the OS for setting the event that is addressed to the lower

prioritized task τ2. This happens because task τ3 does not know, to which task the event

is addressed; therefore, which priority the receiver task has. To avoid this OS-PI, the

triggering of the event could also be deferred (but only for lower prioritized tasks); i.e.,

until either τ3 is preempted by a higher prioritized task or it preempts itself.

The example shows that the execution flow of a high priority task could be interrupted by a

lower prioritized task through the OS. This leads to an OS-PI that delays the finishing of the

required execution time for the task’s work. An OS-PI could also lead to the violation of the

task’s time bounds. To prevent the violation of real-time constraints, the approaches of this

thesis aim to avoid or at least to time bound OS-PIs. The approaches are not only limited to the

real-time issue. We can also take into account security issues. For instance, a low prioritized

task could deliberately produces Denial of Service (DoS) attacks by generating many OS-PIs

(e.g., by triggering many software events es). However, if OS-PIs were avoided, DoS attacks

would be also suppressed.
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1.2. Contributions

Real-time embedded system issues are still an ongoing research topic. This doctoral thesis

addresses them by providing a contribution in the following fields:

1. OS awareness in the MCU: OS (or part OS) integration into CPUs has been researched

and proposed in the last years, but based on the assumption that the software is static

and does not change over time. However, future embedded systems have to have support

for dynamic (and part) updates of the application code at run-time (e.g., due to new

regulations or application needs). The dynamic software adaptation is supported by the

OS awareness concept, which has been implemented into the mosartMCU, proposed in

this thesis. The OS-aware MCU integrates OS functionalities, which are traditionally

implemented in software, into hardware. Thus, those hardware-implemented OS func-

tionalities support the OS in its execution by performing some operations in hardware,

concurrently to the application code that runs on the core. Furthermore, due to the hard-

ware/software codesigned MCU approach, the OS has the knowledge of the hardware

and in particular the hardware about the OS, whereby the hardware is tailored to the

OS. In particular, the OS-aware extension is able to access and modify OS instances (e.g.,

tasks, events) and to assist the OS by performing OS operations in parallel to the running

application. This novel concept opens new opportunities for future system designs and

it is the base to implement the following presented new OS concepts for solving (or

mitigating) still unresolved embedded systems issues.

2. Efficient Stack Memory usage: To overcome the overbooking of stack memory, this

thesis proposes two different approaches. The first approach, StackMMU, divides a shared

stack memory into pages, which are allocated on demand to the requesting task through

the OS awareness of the mosartMCU. With the exception of an initialization phase, the

execution of StackMMU is transparent to the executing software. All the StackMMU

operations are executed in a constant time, which suits well for real-time systems. The

second approach, CoStack, is based on StackMMU. There, a task collaboratively frees its

stack memory for a higher prioritized task if no more memory is available on the shared

stack. Both concepts, as well as use case evaluations, are shown in the following sections

of this thesis.

3. Priority Inversion time bound/avoidance: In real-time systems, a priority inversion

may occur on every shared resource used by prioritized instances in the system. Through

the support of the mosartMCU, this thesis proposes concepts to time bound or even to

avoid priority inversions in an embedded real-time system. The first concept, EventIRQ,

is an approach, which maps all IRQs to OS events and all the ISRs are moved to regular

tasks. Therefore, a priority unification of tasks and interrupts is achieved and the OS-PI
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problem for interrupts and software events is time bounded. On top of EventIRQ, this

thesis presents a second concept called EventQueue. EventQueue is an Inter-Process

Communication (IPC) concept that allows a communication between tasks whereby here

the OS-PI is time bounded, as for EventIRQ. Both extensions are supported in multi-core

systems, too. This is achieved by the novel Remote Instruction Call (RIC) approach,

based on the idea of a Remote Procedure Call (RPC). Here, instead of procedures, the

instructions are performed on a remote core. Moreover, this thesis presents a concept

to avoid priority inversions on the SoC bus, which connects the cores together. The

following sections present these concepts along with use case evaluations.

1.3. Thesis Outline

This doctoral thesis is structured as follows: Chapter 2 presents related work in the context of

OS assistance computational units, efficient stack memory usage approaches, and approaches

to time bounding priority inversions for different situations in embedded systems. Chapter 3

introduces the underlying architecture for supporting OS awareness, the proposed concepts

for efficient stack memory handling, and OS-PI time bounding approaches for single-core and

multi-core embedded real-time systems. Chapter 4 shows evaluation results of the proposed

approaches, while Chapter 5 summarizes this thesis with an outlook on future work. Chapter 6

collects all the publications related to this thesis.
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This chapter reviews related work in the scope of this thesis. Section 2.1 gives an introduction

on the state of today’s commonly used computer architectures in embedded systems provided

by the industry. Section 2.2 investigates academic and industrial embedded systems projects

that are (partly) integrating an OS into hardware. The last two sections summarize related

work on efficient stack memory usage, priority inversions on IRQs, IPCs, as well as on SoC buses.

The sections 2.2 to 2.4, in each case, conclude with a respective summary and differentiation

of the mentioned related work with respect to the proposed solutions in this thesis.

2.1. State-of-the-art MCUs

Embedded computing systems are becoming more and more omnipresent in our daily life. In

the last 50 years, different computer architectures for embedded systems have emerged that are

targeting different kinds of applications. From consumer electronics, to healthcare systems, to

automotive systems, each computer architecture supports its application domain with specific

performance, behavior, features, as well as power characteristics.

Table 2.1 lists some MCUs, which are still relevant in the industry. An 8-Bit computational

unit was the dominant computer architecture in the late 70ies. Twenty years later, the 8-Bit

computer architecture was extended to support 16-Bit and 32-Bit operations as well as memory

addresses. Independent of the bit width, the basic concepts of all these computer architectures

exist for 15 to 40 years. OS awareness, which assists the OS to fulfill all the application’s

requirements, is either not existing or only rarely found in these architectures.

One reason for the missing OS awareness in these computer architectures is a strict separation

of the OS and the computer architecture. This separation allows that an OS can support many

computer architectures, and on a computer architecture many different OSs can be executed.

This makes it possible to develop an application that works efficiently on several computer

architectures with different Instruction Set Architectures (ISAs). Further, if a developer is already

familiar with the OS, he or she can immediately concentrate on the application software, instead

of learning the OS or computer architecture (thus, this helps to reduce the time to market).

Therefore, the OS offers a hardware independent Application Programming Interface (API) to

the developer for writing the application, and the OS uses the underlying computer architecture

through the ISA. The ISA defines the interface to the computer architecture and allows the OS
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Table 2.1.: List of frequently used computer architectures in today’s embedded systems.

Architecture Date Bit width Notes
MC68HCxx [35] 1974 8 CISC accumulator, based on Motorola 6800
PIC [36] 1976 8 RISC
8051 [37] 1980 8 CISC accumulator
MSP430 [38, 39] 1992 16 RISC-like, especially for low power
SuperH [40] 1992 32 RISC-like
Cortex-M [41] 1994 32 RISC, based on ARM7TDMI
megaAVR [42] 1996 8 RISC
TriCore [43] 1999 32 RISC-like with multi-core
MicroBlaze [44] 2002 32 RISC soft-core
NIOS [45] 2004 32 RISC soft-core
AVR32 [46] 2007 32 RISC, based on megaAVR

developers to access the hardware functions for realizing an efficient implementation of all

the OS functionalities. However, Chris Schläger from AMD Inc. explained in his talk at the

Conference on Architecture of Computer Systems (ARCS) in 2008, that this strict separation is

not always applicable in the real world:

"The influence of the operating system interface of a CPU on its overall performance

has grown tremendously. For AMD as a hardware vendor, this created a big challenge.

The traditionally long feedback cycle between us and the OS vendors had to be short-

ened dramatically. Instead of relying on outside OS developers we had to bring OS

development in-house. ..." [47]

This means, to get out the full potential of those even more complex computer architectures, the

OS developers have to have a closer interaction with the computer architecture manufactures.

This trend can also be seen in the mobile phones field; Apple and Google are aligning their

OSs to their own hardware, because they claim that the tight integration of hardware and

software is obligatory [48]. The goal of a tight integration of hardware and software as

well as the consideration of the OS in the hardware development, is to improve the whole

system performance, to increase the dependability (i.e., availability, safety, security), to use

features offered by the hardware in an efficient way, and to align the hardware to the software

architecture. For instance in [49], the authors showed that if the OS has a deeper knowledge of

the underling multithreading technology, the throughput of the computation could be improved

up to 30%.

These facts lead to the conclusion that OS developers have to have a deep interaction with

the computer architecture developers. Thus, why do not we extend the computer architectures

with OS awareness? However, how can we develop the computer architecture and the OS by

applying an appropriate MCU/OS codesign? The following related work tackles these questions,

as well as this doctoral thesis is going to propose answers to them.
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2.2. OS Implementation in Hardware

This section lists different OSs, either fully or partially implemented in hardware. The inte-

gration of OS functionalities in hardware helps the OS to provide some properties that are

impossible with a pure software solution, as mentioned in the next academic and commercial

projects.

2.2.1. FASTCHART and FASTHARD

The project FASTCHART [50] implements a complete RTOS in a user specific hardware. Its

goal is to achieve a deterministic time behavior of all the tasks by dividing the hardware into

two parts. One part is the main core for processing the task code and the second part (namely

a coprocessor) implements the OS functionalities. The hardware OS offers three different OS

functionalities provided as function calls: First, the activation of another task; second, the

termination of a task itself; and last, a function to let the task sleep for a specified time.

The coprocessor contains the scheduler, the Task Control Blocks (TCBs), and the queues for

handling the currently running task, the ready tasks, and the waiting tasks. When scheduling a

new task, the coprocessor saves the context of the preempted task into the TCB and restores

the context of the new scheduled task. Then, the new scheduled task executes on the main

core. If one of the three OS function calls is triggered by the currently running task, the

main core triggers the coprocessor to execute the requested functionality. This means, if

no OS functionality has to be performed, the coprocessor is idle. For the whole process, a

synchronization primitive between the main core and the coprocessor is used.

Due to the hardware implementation of the scheduler into the coprocessor, the approach

has a limitation of 64 tasks and a maximum priority level of eight. For each priority level, the

coprocessor has a separate queue, and a task in the highest prioritized nonempty queue will be

scheduled by the coprocessor. To support waiting for a specific time, the coprocessor has one

individual down counter for every task.

The project FASTHARD [51] implements the FASTCHART approach with some additional

extensions, such as rendezvous synchronization, interrupts, or periodic tasks. Instead of the

specialized coprocessor, FASTHARD uses a standard processor for the OS.

2.2.2. Silicon OS

The project Silicon OS [52] proposes an implementation of system calls and scheduling function-

alities as a peripheral. To perform the system calls, the application has to write the arguments

to the peripheral, by using Memory Mapped I/O (MMIO) registers. Afterwards, the application

has to read out the return value from the peripheral’s MMIO register. The detection if the system
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call or an external event lead to a rescheduling is processed in the peripheral simultaneously to

the application execution.

In comparison to FASTCHART or FASTHARD, the CPU still executes a light OS kernel

implemented in software besides the peripheral. The kernel is still responsible for performing

the memory management and time management. For the task management, synchronization,

and interrupt management; however, the peripheral is responsible. All the syscalls and external

events are recognized by the peripheral that is able to signal, with an IRQ, the CPU for scheduling

a new task.

In their work, the authors show the Field Programmable Gate Array (FPGA) resource uti-

lization that increases constantly with an increasing number of tasks, events, or timers. After

synthesizing the hardware, the number of supported tasks, events, or timers are unchangeable.

Hence, it is impossible to add new tasks to the system without resynthesizing. Another limita-

tion is that Silicon OS supports only eight different task priorities that may be insufficient for

future embedded systems.

2.2.3. RTM

The Real-Time Task Manger (RTM) described in [53], implements only parts of an RTOS in

hardware instead of a full RTOS. This leads to a partial OS on the software layer and a partial OS

in the hardware layer. Over an MMIO interface, the hardware OS is accessible like a peripheral

and communicates with the CPU that is executing the task’s code.

The RTM does the scheduling of prioritized tasks, the time management, and the event

management. Here, the hardware extension supports a predefined number of tasks, for

instance 64 or 256. For every task, a record contains task information such as the priority and

the running state i.e., running, ready, or waiting for a delay or an event. Thus, the hardware

decrements the counter in the record on each task if the task is waiting for a delay. However,

if the task is waiting for an event, the triggered event sets its trigger in the record, and the

scheduler is responsible to resume the task according to the tasks’ priorities. This approach has

the same drawback as in the work before; the number of records is unchangeable at run-time.

Thus, after the configuration of the system, the number of tasks stays constant.

2.2.4. SEOS

The project SEOS [54] aims to reduce the difficulty in adapting the system to new application

requirements. Here, the OS is fully implemented in hardware and the hardware is accessible

by MMIO address registers. The OS hardware is implemented as an Intellectual Property (IP)

module, which can be easily integrated when developing a SoC. The authors provide an API in

a source file, which makes it easy to use the OS hardware in software. They claim that with
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all their provided code, in-depth knowledge on the system design and the OS is not required

anymore.

Their hardware module supports a Rate Monotonic (RM) scheduler, inter-task communication,

synchronization, and time handling. The number of tasks, semaphores, and mailboxes can

be configured at development time. Thus, there is no possibility to increase or decrease these

numbers without resynthesizing the hardware.

2.2.5. Configurable Hardware Scheduler

Kuacharone et al. [55] proposed a configurable hardware scheduler. Their approach handles

the scheduling, the time-tick processing, and interrupts in a separate hardware module, which

relieves the CPU. Compared to the previous presented projects, here the hardware component

is reconfigurable according to the application requirements. This means that the scheduler type

(e.g., priority based, RM, or Earliest Deadline First (EDF)), the number of tasks, the number

of external interrupts, and the timer resolution are reconfigurable with a tool. Then the tool

synthesizes the hardware with the defined properties. The authors claim that in future systems,

the configuration and synthesizing of the hardware scheduler could be performed directly

on the SoC. In a SoC with a CPU and an FPGA (e.g., Xilinx Zynq-7000 [56]), the CPU may

synthesize and reconfigure the FPGA in the SoC on run-time.

The communication between the CPU and the hardware scheduler is implemented by MMIO

address registers. Furthermore, there exists an interrupt line from the hardware scheduler to

the CPU, to notify the CPU about a required context switch. For the context switch, the software

takes information from the hardware scheduler, accessible via the MMIO address registers.

The hardware scheduler supports up to eight external interrupts, which can be configured

that the IRQ handler immediately interrupts the currently running task, or that the interrupt

handler is inserted into the ready queue. Here, the ready queue is prioritized, according to the

implemented scheduling policy. This leads to a defined postponing of the IRQ handling, and

the currently running task can only be predictably interrupted, as aimed for real-time systems.

2.2.6. µC-OS-III HW-RTOS

Renesas sells their R-IN32M3 MCU family with an RTOS accelerator implemented in hardware

[57, 58]. The implemented OS is named µC-OS-III HW-RTOS, and is based on Micrium’s µC-OS-

III [22]. Thus, almost all of the provided APIs from the software implementation are offered in

hardware, too. This hardware implemented version improves the system performance compared

to the pure software Micrium µC-OS-III implementation. The OS hardware implementation

provides the task scheduling, OS resource management, timer processing, and syscalls that all

are simultaneously executed in hardware besides to the code application code. In software,
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there is still the need of calling the syscalls and of performing the dispatching of the tasks on a

context switch, which is initiated by an IRQ in the core.

Similar to the previous works, µC-OS-III HW-RTOS realizes the interface to the core with

MMIO address registers. To perform a system call, the API sets the registers and a return value

gives an error or the next task identifier. If a new task identifier is returned, the software will

perform the context switch to schedule the new task.

The maximal number of tasks and OS resources is given by the MCU specification and

cannot be increased or decreased. Although the accelerator supports resource management in

hardware, it does not support priority inheritance [30] and deadlock protection mechanisms,

as supported by the software OS.

2.2.7. xCore-200

The commercial xCore-200 [59] from XMOS offers a multi-core MCU for real-time and Digital

Signal Processing (DSP) applications. The MCU contains at least two tiles; each one can

implement eight cores. An interconnect enables the communication between the cores via

different communication approaches.

XMOS implements many different RTOS features. Thus, the MCU allows scheduling real-time

threads on different cores in a tile. Here, all the threads are event triggered, which means that

the thread may wait for an event. If the event is triggered, the hardware automatically executes

a context switch and resumes the triggered thread. The number of threads in a tile is limited to

the number of cores. However, the compilation toolchain enables the usage of logical cores.

Thus, the programmer could implement many different threads and the compilation toolchain

conflates the threads to one thread per core.

XMOS’s xCore-200 does not restrict the number of threads; however, if the compilation

toolchain is unable to conflate the threads to fit into physical cores, the compilation will end

up with an error. The number of resources, such as timers and locks, is limited. To exploit all

the offered features of the MCU, the programmer has to use an extended C language.

2.2.8. OS Assistance in widely used MCUs

If we look into today’s widely used Commercial Off-The-Shelf (COTS) MCUs, we can see that

there exists almost no OS assistance.

The early and low-cost MCUs have no OS support at all. The newer MCUs have at least the

support of a user-mode and kernel-mode environment. Here, the mode defines the privilege level,

and may restrict the user-mode to execute some instructions or to access some registers. The

user-mode is thought to execute code of the application, and the kernel-mode to execute code

of the OS. This well-known and widely found existence of the two modes is used to prevent

faults or to protect confidential data. Thus, the change from the user-mode to the kernel-
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mode should only be possible under defined conditions. One of them is initiated by a syscall

instruction. The ISA implements an instruction to enter kernel-mode in an orderly way and

then the computational unit jumps to a kernel address for executing kernel code. The purpose

is to perform an OS API function, which must be handled by the OS (e.g., synchronization,

task management). Another common way to switch from user-mode to kernel-mode is via an

IRQ. The IRQ can asynchronously interrupt the currently running task and the OS performs

the handling of the IRQ. The change back from the kernel-mode to the user-mode is usually

done by a specific instruction that selects the mode, or the CPU keeps track of the last mode

and with another specific instruction, the CPU changes to the tracked mode after executing the

specific instruction.

Multi-threading technologies [60], which are found in almost every desktop computer today

(e.g., Intel’s Hyper-Threading [61]), are also increasingly found in today’s embedded MCUs,

such as in the Infineon’s TriCore 2 [62]. The name multi-threading would suggest that the CPU

is aware of thread handling (threads are OS constructs similar to tasks); thus, it seems to be an

OS awareness feature. However, the multi-threading technology just pretends the availability

of an additional logical core. This means that the OS sees the CPU as a multi-core architecture

and the OS can assign the execution of code to the logical cores. Then, the CPU internally tries

to use simultaneously all the available computational resources (e.g., ALU, FPU) to reduce the

computation time. In the end, the hardware does not assist the OS in performing OS work,

because it only provides a further logical core to which the OS can assign a task. Therefore,

this technology is not an OS-aware feature in the sense of this thesis.

2.2.9. Summary and Difference to this Thesis

The mentioned projects partially or fully implement the OS in a hardware extension of the

MCU. Through this hardware extension, the execution of OS functionalities is performed in a

shorter and sometimes in deterministic time, which is preferred for real-time systems.

All of the mentioned works rely on the assumption that the number of tasks and other OS

instances is fixed during system development. Some of the works synthesize the hardware

exactly to the required number of OS instances (e.g., tasks), and others define a high number

and leave some OS instances unused for later usage. However, the exact instantiation of OS

instances restricts the adding of OS instances in the future, which is definitively required for

future embedded computer systems. Otherwise, the arbitrary instantiation of OS instances

negatively affects the resource utilization on an FPGA (or the size on a die for Application-

Specific Integrated Circuits (ASICs)) as well as the power consumption. Moreover, the number

of changeable OS instances in hardware would change the required area on a die with every

configuration change. This complicates the mass production (i.e., ASICs), because the sys-

tem optimization and validation process must be successfully performed for each individual

configuration.
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This doctoral thesis provides a solution to integrate OS awareness in an MCU, which avoids

the restriction of fixing the number of OS instances at development time. Apart, the number of

OS instances will not change the required area on a die and the mosartMCU must be optimized

and validated only once, which makes it suitable to be implemented into an ASIC such as

commercial MCUs.

2.3. Shared Stack Handling

As already introduced in Chapter 1, memory is a scare resource in most embedded systems.

The stack memory is a memory that changes its size at run-time (see Section 1.1.1). To reduce

the required overall embedded system’s memory; and therefore the costs of the embedded

system, the stack memory consumption is one part that must be efficiently managed.

In desktop and server systems, the allocation of stack memory to a task is enabled with the

concept of address virtualization [63]. There, all the addresses in an application are virtual and

a hardware component, namely the MMU, translates the Virtual Memory (VM) addresses to

Physical Memory (PM) addresses. Thus, the stack does not have to be continues and the MMU

can assign only that stack memory into the main memory (e.g., DRAM) that are required by

the tasks at a moment (handled in fixed sized blocks). Unused blocks are released, or sparsely

used blocks are swapped to another probably slower memory (e.g., flash). Thus, fast and costly

main memory is not wasted. When a task requests new memory or the CPU accesses memory

addresses which are not known by the MMU, the MMU interrupts the currently running task.

Then, the OS handles this interrupt by internally allocating new memory to the task, and by

configuring the MMU with the translation information (VM address to a PM address). The

allocated new memory block has a constant size and is called page. If the page is not used

anymore, the OS is able to remove the translation information and to free the page. Through

the address virtualization and the controlled memory mapping by the OS, the MMU may

allocate almost only that memory that is required by the task. For instance, if the stack memory

grows, new pages are allocated; if the stack memory shrinks, the unused pages are deallocated.

Furthermore, the approach can be used to isolate tasks from each other; thus, a task could not

corrupt the system’s data or other task’s data [19].

If the application executes an instruction or accesses data from the VM space, the MMU looks

up the VM address in the Translation Lookaside Buffer (TLB) and returns the PM (i.e., TLB

hit). The TLB is a special cache memory for the MMU for storing the translation addresses.

If the VM address is not located in the TLB (i.e., TLB miss), the MMU generates an interrupt.

Then, the OS handles the TLB miss, by resolving the VM address to a PM address mapping in

software (i.e., software memory manager), which will be than remembered by the TLB.

It is obvious that through an MMU, the CPU may be interrupted on every instruction fetch or

data memory access, which enormously increases the Worst Case Execution Time (WCET) of a
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task. To avoid an interruption of the CPU if the VM address is not found in the TLB, the MMU

in the MC68851 [64] or in the ARM’s Cortex-A5 [65] uses a table-walker. Instead of resolving

the VM to PM address in the software, the table-walker does this in hardware. It starts on a

configured base address (stored in a register), searches in the data structure for the VM to PM

translation, and updates the TLB with this translation. However, if the table-walker cannot find

the correct VM address, still an interrupt is thrown to inform the OS to allocate a new page

and to add the address mapping into the OS data structure. With the table-walker, the time for

a TLB update on a TLB miss is reduced. Nevertheless, the time is non-deterministic because it

depends on the length of the OS data structure.

To the best of our knowledge, no MMU implementation is able to achieve a predictable

memory access time. For instance, in Ng et al.’s [66] MMU implementation, on a TLB hit the

MMU takes 2 cycles and on a TLB miss 600 up to 227 000 cycles including the OS management.

In Schamani et al.’s [21] configurable MMU implemented on a FPGA, a TLB hit takes 5 cycles

and a TLB miss takes 11 cycles only to inform the OS. Furthermore, they show that the logic

of the MMU consumes in average more than 50 % of the power consumption of the whole

computational unit.

These properties (i.e., the non-deterministic behavior and the huge power consumption)

lead to the fact that MMUs are avoided in embedded real-time systems. Apart, the MMU is

not the only option to reduce the stack memory reservation, software approaches have been

developed as well.

An efficient solution regarding minimum stack memory usage of concurrently running tasks is

to use only one single stack for the whole application. The Stack Resource Protocol (SRP) [24]

is often used to handle resource allocation. SRP sees the stack memory as a resource and allows

using only one single stack, which can be shared by all tasks. Gai et al. [67] extended SRP to

multi-core in which every core has only one common shared stack.

Dunkels and Schmidt [23] invented a multitasking approach based on stackless tasks, called

protothreads, which are managed in the Contiki OS [9]. Contiki uses only a single stack

for multiple tasks. If a task is scheduled, it may use the stack until it suspends itself. The

programmer of the task must take care, that he or she backups automatic variables if they

are still used after an API call that may suspend the task. Otherwise, if the task resumes the

automatic variables, which were initial placed on the stack, may be corrupted by another

scheduled task. Apart from self-suspension, tasks are scheduled in a non-preemptive way,

which means that they run-to-completion. The reason is that if a task would preempt another

task, the preempted task’s stack pointer would not be on the top of the stack memory anymore

once the task is resumed. Thus, the preempting task would overwrite other task’s data.

A weaker approach of SRP is the preemptive threshold scheduling [68, 25] used in the

ThreadX [69] OS. In this approach, the tasks, beside their nominal priority, have a threshold

priority, which must be equal or beyond their nominal priority. Once a task is scheduled, its
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priority is risen to the threshold priority until it finishes its work. Thus, no task with priority

lower than the threshold priority of the currently running task is scheduled by the OS, although

a task’s nominal priority is higher than the nominal priority of the currently running task. This

approach creates non-preemptive task groups that are unable to preempt each other. Thus, the

tasks in a task group are able to share a common stack.

Nevertheless, non-preemptive and partly non-preemptive scheduling would reduce the

reactivity of the tasks or tasks in the task group, respectively. Whereas, for real-time systems the

approaches require knowledge at the development time, which restricts dynamic application

changes. Consequently, the time boundaries of real-time tasks are difficult to satisfy, making

these approaches ineligible for dynamic real-time embedded systems.

Around 50 years ago, in [70], the authors proposed to allocate stack memory on the heap.

This leads to a memory allocation and deallocation on the heap on every function prologue

(entry) and epilogue (exit), respectively. Thus, the run-time overhead increased extremely.

Consequently, different following works (e.g., [71, 72]) proposed the use of a code analyzer to

reduce the number of memory allocations and deallocations. Nevertheless, run-time checks

are required and an overhead is still present. Furthermore, if the heap memory management

algorithm does not have a deterministic behavior, the approach would not suit well for real-time

systems. In fact, predictable heap memory management approaches exist. For instance, [73]

shows a quad-core CPU with an allocation and deallocation time of 28 cycles and 14 cycles,

respectively. Still, this would notably increase the run-time overhead in every function prologue

and epilogue.

In the project SenSmart [74], the aim is to have an adaptive stack management for MMU-less

embedded systems. The idea is to use VM addresses for the stack memory that are translated

by software. To support the software-based translation, a tool analyzes and modifies the

compiled code between the compilation and linkage steps. After the modification, the code

uses kernel functionalities for stack memory operations. Through the software stack handling

the corresponding get, set, and reallocation operations for the stack pointer consume 45, 94,

and 2326 cycles, respectively, on an ATmega128L.

Similar to the previously mentioned project, Yi et al. [75] proposed an approach to analyze

the source code and to modify it at compile time. The modification uses an on demand stack

library on every function prologue and epilogue. Here, the next free space on a global stack

memory area is selected. The disadvantage of this approach is that the global stack memory

area is fragmented with non-regular blocks and leads to an overhead, because of frequent calls

to the library functions. Their WSN use case scenario shows a constants memory overhead and

a non-constant run-time overhead of about 10 %.

Middha et al. [76] proposed a multitasking stack sharing approach without the use of VM

addresses. Here, every task owns an individual stack. In every function prologue, a checker

function checks for a potential stack overflow if the requested memory would overflow the
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individual stack. If it will not overflow, the requested stack memory will be allocated. Otherwise,

if the stack memory would overflow, the task allocates a constant sized stack memory in another

task’s individual stack memory. Thus, unused stack memory of a task may be used by another

task. Their evaluation show that without optimization, in every function call, the stack overflow

check is executed. This results in an increase of the run-time and energy consumption by 23 %

and 24 %, respectively. Thus, the authors proposed to use an optimization at compile time,

which would improve the required stack overflow checks. Consequently, both overheads can

be reduced to 3 %. However, the optimization does not allow all programming features such as

recursive functions or function pointers. They compared their approach with an MMU, and

the run-time overhead is much lower; however, their approach works with a non-deterministic

time and therefore not suitable for hard-real time embedded systems.

In all mentioned works, a task that requires stack memory may block for a long time if stack

memory is allocated to other tasks and no stack memory is available anymore (i.e., out of stack

memory condition). None of the mentioned approaches collaboratively frees stack memory for

that high priority task. In CoMem [77], the idea of collaboratively sharing memory is applied

on the heap memory. The author proposed to divide the heap memory into blocks to which a

resource is allocated. If a task requires heap memory, the task requests for the resource. If it

is free, the memory block is allocated to the task. Otherwise, the task has to wait. Through

the dynamic hinting approach [31], a lower priority task owning the resource is requested

to release the memory. If the task follows the request, the memory will be allocated to the

highest prioritized task that is waiting for the resource. However, the heap memory is organized

and handled in a completely different way compared to the stack memory; therefore, CoMem

cannot be applied to it.

2.3.1. Summary and Difference to this Thesis

The state of the art for efficient stack sharing in embedded real-time systems is improved by

this thesis. The OS awareness in the MCU contributes to realizing the following two concepts:

Shared Real-Time Stack Management: The proposed solution for stack memory manage-

ment supports, through the OS-aware support, to share the stack memory among all

preemptive tasks with a predictable run-time behavior for stack allocation, deallocation,

and access. Furthermore, the proposed solution does not restrict programming features

as others do (i.e., recursive functions, function pointers).

Collaborative Stack: In the case, when the system runs out of stack memory, the traditional

approach throws an overflow exception, and the OS has to solve this issue somehow.

Normally, it resets the system or kills a task. The solution proposed in this thesis,

demonstrates an approach to collaboratively share stack memory. This means that

a lower prioritized task frees its collaborative stack memory if a higher prioritized task
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requires stack memory and no stack memory is available. Thus, the required stack

memory can be reduced even further. Based on the predictable run-time behavior of the

shared real-time stack management approach, the task’s blocking time for stack memory

is bounded; and the systems schedulability can be proven with a schedulability analysis.

2.4. Priority Inversion

This section investigates approaches to avoid or at least to time bound the priority inversion for

IRQs, IPC communication, and in SoC buses.

2.4.1. IRQ Handling

To avoid the constant polling of an occurred event, such as for instance from a peripheral,

processor cores offer a so called interrupt concept for the currently executing code. During the

interruption, the event (i.e., IRQ) is handled in an ISR, which is injected into the execution

flow. Such interruption can occur at an unpredictable time and this non-determinism affects

the schedulability of real-time systems. The priorities of the IRQs are always higher than every

task’s priority. Often, this is desired; however, if the IRQ is meant to trigger a lower prioritized

task compared to the currently running task, an OS-PI occurs.

Therefore, regarding interrupts in hard real-time systems, Stewart [78] proposes to disable

all interrupts to avoid priority inversions. The same is proposed by Kopetz et al. [79] in the

Mars approach, where all interrupts are disabled except the timer interrupt. The timer interrupt

is used to schedule the task on specific times and to poll periodically the occurrence of an event

(i.e., external event or peripheral). These solutions guarantee a deterministic execution of the

code; however, the polling wastes CPU time for checking every external event or peripheral.

Another disadvantage of static scheduling approaches are the difficulty in maintaining the

software if new tasks would be added or the application requirements would change over time.

To better integrate IRQs into new software, Kleiman and Eykholt [80] propose to map all

ISRs to tasks. In order to handle an IRQ in a task, the tasks are synchronized by synchroniza-

tion primitives such as events or semaphores. In their publication, the goal was to improve

the maintenance of server systems when integrating new software. The predictability was

unimportant; and the approach is therefore unsuitable for real-time systems.

In [81], Leyva-del-Foyo et al. propose an IRQ handling approach for predictable interrupt

handling on a conventional Personal Computer (PC) at software level. They introduce interrupt

service tasks in which the interrupt handling is executed. Those interrupt service tasks are

scheduled with the service tasks’ priority such as regular tasks; thus, priorities of regular tasks

and interrupt service tasks are unified. Through the mapping of an ISR to an interrupt service

task, it is now possible to use all available OS synchronization mechanisms. Therefore, the
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interrupt service task may wait for a synchronization primitive, which is triggered by a universal

ISR running at the lowest level in the OS. Their key idea is to introduce an interrupt management

component, which is capable to enable and disable the IRQs of the hardware. Further, the

component has an IRQ level, identifying the current priority and is able to set the priorities of

all the interrupts. The component disables all the IRQs that have a lower priority compared to

the IRQ level. The enabled IRQs are still handled in an ISR, actually in the universal ISR. The

universal ISR notifies the OS of the occurrence of the event. The OS schedules the triggered

interrupt service task if the scheduling policy allows it. However, the drawback of this approach

is the high overhead of reconfiguring the interrupt controller on every context switch. To

mitigate the overhead, the authors proposed, in [82, 83], the fusion of their approach with

the optimistic interrupt masking approach [84]. Here, the idea is not to mask (i.e., disable)

the interrupts on every context switch. If the priority of the IRQ level increases, no interrupt

masking is performed. However, if an undesired interrupt occurs, the interrupt management

component tracks the occurrence of the interrupt and masks all lower prioritized interrupts.

Thus, a second undesired interrupt is prevented and the priority inversion is time bounded.

The tracked interrupt will be caught up later on, when the priority allows it. Compared to their

former implementation, the overhead is reduced but still there. Moreover, the timer IRQ must

still be used in the traditional way with highest priority. The timer IRQ must trigger the OS

either periodically or sporadically for setting the time of the next task in the timeout waiting

queue.

In the project SLOTH [85], instead of moving the ISRs to tasks, all tasks are moved to

ISRs. The base of SLOTH is the Offene Systeme und deren Schnittstellen für die Elektronik im

Kraftfahrzeug (OSEK) [86]OS specification with the conformance class BCC1. The conformance

class BBC1 specifies that the application can contain a maximum of eight tasks. All tasks have

a unique priority, they cannot wait for an event, and they can only be activated by one source.

With these restrictions, the interrupt system of a state-of-the-art MCU is suitable. The only

requirement on the MCU is that IRQs can be prioritized and that the IRQs support at least eight

priority levels. The ARMv8 [87] specification or the Infineon AURIX [88] (an automotive MCU)

supports configurable priorities for IRQs; thus, their approach could be implemented there.

Every IRQ is configured with a priority. To find out if it is allowed to interrupt the CPU, an IRQ

arbitration unit checks the priority. If the priority allows an interruption, the corresponding

handler (OSEK task or OSEK ISR) is executed. Thus, the scheduling is completely managed by

the hardware, and implicit unification of the priorities is given. In this approach, the priority

of a task could be set higher than the priority of the ISR. However, this is not done in SLOTH,

because it would violate OSEK’s BCC1 conformance class. The advantage of this approach is

the priority unification of tasks, ISRs, and the small OS. In SLOTH, the OS consumes merely

200 lines. However, for future embedded computer systems, the BCC1 conformance class of

OSEK restricts the system too much.
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Gomes et al. [89] extended the interrupt controller of an ARM-compliant softcore with task

priority awareness. Thus, the interrupt controller knows the priority of the currently running

task and the priority of the IRQs. The 8-Bit IRQ priorities are configured by the task that waits

for the IRQ. Therefore, the interrupt controller interrupts the currently running task only if the

triggered task’s priority exceeds the currently running task. The responsibility of the OS is to

set the priority of the new scheduled task in the interrupt controller on every context switch.

The authors have used an OS with a periodic interval timer, which is triggered periodically by a

timer IRQ. The priority of this IRQ must be the highest, since otherwise the internal tick timer

would omit some ticks. Further, their approach allows only one task to wait for a peripheral

IRQ.

Another attempt to avoid or time bound an OS-PI caused by an IRQ is to use a second com-

putational unit, which is responsible only for handling the IRQs. Thus, every core or processor

would be able to support this approach in a multi-core system. However, most of the time, the

computational unit for IRQ handling would be idle, and therefore, this approach would waste

resources. To reduce the required space on the die for the IRQ handling computational unit,

some MCU manufactures implement a coprocessor as the Freescale HCS12X [90]. These MCUs,

beside their main core, contain a small RISC core, which preprocesses data for communication

and handles the IRQs. Thus, an ISR could be concurrently processed on the coprocessor, which

then notifies the main core about the handled ISR with a triggered semaphore. The main

core or coprocessor do not take into consideration the priorities. Exactly this is considered

in the work from Scheler et al. [91], based on the peripheral control processor of Infineon’s

TC1797 [92]. Here, the coprocessor handles the IRQ and sets a synchronization primitive for

which a task is waiting on the main core. The main core is only notified by an interrupt, if

the priority of the currently running task is lower compared to the priority of the triggered

task. With this approach, there is no possibility for an interruption of the currently running

task that would lead into a priority inversion. However, a hardware semaphore is required for

synchronizing the main core and the coprocessor. This could also lead to priority inversions

through a low priority task that allocates the hardware semaphore. Furthermore, on both

computational units the code must be implemented which sometimes is based on different

architectures. Thus, the developer must make himself/herself familiar with a new computer

architecture, which may increase the development costs.

The mentioned IRQ handling approaches are based on MCUs without OS assistance in

hardware. Partially or fully implemented OSs in hardware handle IRQs as follows: In the

FASTHARD [51] project (see Section 2.2.1), the tasks may wait for an external IRQ by using an

API call. Then, the IRQ priority is set to the priority for which the task is waiting. In case that

the IRQ is triggered, the waiting task is inserted into the ready queue handled by the hardware,

which schedules the task if necessary. Similar to FASTHARD, Silicon OS [52] (see Section 2.2.2)

handles the IRQs simultaneously to the executing task. Therefore, the computational unit is
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notified to trigger a context switch if the scheduler selects a new task. In the SEOS project [54]

(see Section 2.2.4), an interrupt posts a semaphore for which a task is waiting. The OS, partially

implemented in software, is still responsible for the time management; thus, the timer IRQ must

still interrupt the computational unit on a time IRQ. Renesas’s µC-OS-III HW-RTOS [57, 58] (see

Section 2.2.6) eliminates the interrupt handling in the same way as the mentioned hardware

OS approaches. Here, the hardware triggers the semaphore, and then the hardware scheduler

is responsible for scheduling the task if necessary.

In the commercial XMOS xCore-200 [59] MCU (see Section 2.2.7), the IRQ handling is

performed with the idea of a logical core. Here, the tasks are waiting for an event. If the event,

which could be either a software event or an IRQ, is triggered, the hardware scheduler may

schedule the corresponding event handling code.

However, all of the mentioned OS hardware approaches limit the number of OS instances

such as tasks, because of the hardware implementation of the task management.

2.4.2. IPC

IPCs are a helpful mechanism to transfer data between processes, or in our context, between

tasks. The common way to realize an IPC is by software. For instance, in the automotive

standard OSEK [86], the IPC is realized through events that signals a change in software. To

transfer data, the developer has to implement a workaround, by using shared memory and the

OSEK event mechanism. The avionic standard ARINC-653 [17] supports the event mechanism,

too. In addition, this standard defines a queue approach, which makes it possible to transfer

more than the change occurrence (i.e., event) to another task. Both software solutions relay on

shared memory for the data transfer. Shared memory is on one hand problematic, because it

must be synchronized. On the other hand, all the IPC involved tasks have to have unrestricted

memory access, because they have to work on the OS’s IPC instance. It is possible to prevent

memory accesses with MMUs or Memory Protection Units (MPUs); however, those components

do not allow arbitrary fine granular protected blocks, because this would explode the require

space in the die. Therefore, there is the need of security mechanisms, which prevent the reading

of potentially confidential information in the OS’s IPC instance. Another drawback is that

the traditional IPC calls are implemented as syscalls, which result in more context switches,

which reduce the overall performance, and which even lead to possible OS-PIs. Especially for

embedded RTOS systems, the IPC performance is a crucial property, because these RTOSs are

often designed as microkernels with a heavy frequent IPC usage compared to monolithic kernels.

In microkernels the tasks (and OS tasks) have to have to communicate between each other with

a communication approach offered by the kernel (i.e., IPC), because shared memory may not

be possible because the tasks’ memories may be protected (e.g., with an MPU). In monolithic

kernels however, shared memory is often used for IPCs, because all kernel functionalities are

anyway in the same unprotected memory space.
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More than 25 years ago, some research projects started to counteract the IPC performance

problem. For instance, [93, 94] realized the IPC with a coprocessor. In their works, they

show that the implementation of the IPC in hardware results in a huge performance increase.

However, their target are server applications; thus, power consumption and space requirements

in a die as well as a predictable execution time are of secondary importance. By contrast, these

three properties are significant in embedded real-time systems.

Furunäs et al. suggested an IPC prototype [95] implemented in hardware for real-time

applications. For supporting real-time applications, their implementation considers the priorities

of the tasks. The hardware contains 32 slots in which the priority of the messages and the

message references are stored. The message references are used to point to the content of

the message, which is located in the RAM. The hardware extension is accessed with MMIO

addresses, which are hidden by a provided API. However, the number of slots is limited to only

32 IPC channels.

A similar limitation can be found in IPC approaches for commercial computer architectures,

such as ARM’s IPC module [96] or NXP’s Queue Manager [97]. The ARM IPC module offers a

specific number of channels, called mailboxes. If a message is sent over a mailbox, the receiver

core is signaled by an IRQ. However, the IRQ interrupts the current execution flow that could

lead to an OS-PI. The NXP’s Queue Manager is a powerful hardware extension that supports

the transfer of data between all accelerators and cores in a SoC. The manager uses frames to

store the content and descriptors to handle the buffers and frames. However, for low power

embedded systems the power consumption and space requirement are too big.

To avoid the limitation of IPC channels, Srinivasan and Stewart proposed in [98] an IPC

approach for real-time embedded systems. The structure of the approach is based on shared

memory with two-levels. The first level is the local memory that every task owns. The second

level is a global level, which is used to combine the data from the local levels. The key idea

is to move the data between the two levels to exchange information between tasks. The

local level is, in contrast to the global memory level, only used by the owner task. Thus, for

the global memory level a synchronization primitive is required that increases the message

passing overhead with the number of tasks. To reduce the overhead, the authors suggested

an adapted Direct Memory Access (DMA) controller that transfers the data between the two

layers. Therefore, the time to wait for the synchronization primitive is reduced. Their proposed

approach enables a predictable execution time for the IPC; however, the double copying of the

data between the two layers is still required. Here, the significant IPC transfer overhead affects

the performance of the system. Another problem of this approach is the unprotected access to

shared memory. Here, confidential information in the shared memory may be read by another

untrusted task.
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2.4.3. SoC Bus

The SoC bus within a processor is an interconnection between the cores, the peripherals, and

the memories for exchanging data. The underlying technology significantly influences the

behavior of the SoC. Thus, for real-time systems a deterministic bus is necessary to ensure an

upper time bound for the data transfer. For a SoC with only one master, which is able to start a

bus transfer, no concurrent access handling is required. The concurrent access handling is also

called arbitration. Past embedded systems were still single-cores and this is the reason why

the mostly used SoC buses for embedded real-time systems had not the need of an arbitration.

However, in future, multi-core systems will become more important and used for real-time

embedded systems; thus, arbitration will be required.

Today’s commonly used SoC buses do not consider task priorities for the arbitration. For

instance, the ARM AMBA AHB-Lite [99] or the Altera Avalon [100] specifications do not respect

priorities when handling concurrent accesses. The royalty free Wishbone bus [101] specification

does not even specify an arbitration in its specification. It only specifies that the arbitration

technique must be defined by the end user.

The Processor Local Bus (PLB) bus [102], developed by IBM, specifies a SoC bus with priority

awareness. The specification defines two additional lines, which allow four priority levels.

The arbiter is responsible for granting access to the requester with the highest priority, and

for letting the other concurrently operating units wait. The limitation of four priority levels

restricts the mapping to task priorities, so it is mainly used to assign statically a priority to a

core instead of reflecting task priorities. The ARM AMBA specification [103] uses four lines for

the arbitration logic. Thus, it supports up to 16 different priorities, which is also insufficient in

many cases to map all the task priorities.

The mapping of task priorities is impossible with the state-of-the-art SoC buses; thus, there

exist different arbitration algorithms. In statically assigned priorities for a master [104], the

highest prioritized master is able to starve other masters in the system. Apart, the static priority

does not correspond to the priority of the task, which is accessing the slave. Thus, the mismatch

may result in a priority inversion.

To avoid a statically assigned priority and to enable a more dynamic approach, a probabilistic

approach could be used. The lottery [105] arbitration approach considers the last requesting

master and a random number for the arbitration. This solution cannot guarantee an upper

time bound. Therefore, it is not suitable for real-time systems, since the time predictability is

not given.

To time bound the waiting time for an access, the Time Division Multiple Access (TDMA) [106]

approach could be used. It assigns a time slot for each master, in which it can communicate

with a slave. Because of its predictability, this approach is commonly used in different fields of

real-time systems. However, the utilization of the SoC may be low, because not every slot is
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used. Thus, bandwidth is wasted and the WCET of the high-prioritized task is unnecessarily

increased, because it must wait for its next assigned slot to transfer its data.

To increase bandwidth, the Round Robin [104] approach improves the TDMA by antedating

transfers if a slot is free. Like in TDMA, the next allowed master is selected statically and no

priorities are considered. The WCET of Round Robin is the same as for TDMA; however, the

Average Case Execution Time (ACET) may be improved.

2.4.4. Summary and Difference to this Thesis

This thesis improves the state of the art by avoiding or at least time bounding the priority

inversion problem for the following fields, with the support of OS awareness in hardware:

IRQ Handling: This thesis proposes a new IRQ handling approach based on the OS awareness

of the mosartMCU. Thereby, it does not restrict the number of tasks compared to related

works. Furthermore, this solution allows more than one task to wait for an IRQ, similar to

the producer-consumer pattern, which is not supported by any of the mentioned related

works. The most important improvement for real-time systems is the priority unification

of IRQs and tasks for time bounding the OS-PI problem. This approach also eliminates

the high priority timer IRQ, which is still required in all of the mentioned related works

if the OS is only partially implemented into hardware. There, the software OS must still

enable a high-prioritized timer IRQ to handle properly the scheduling and to update the

internal timing, and these could lead into OS-PIs.

IPC: The solution for an IPC presented in this thesis is based on the IRQ handling approach.

Thus, the IPC is implemented in hardware, which increases the performance and timely

bounds the occurrence of an OS-PI. All mentioned related works only allow the usage of

a limited number of IPC channels, which is not the case for the proposed IPC. Besides,

the proposed IPC approach can be used to transfer confidential information, because the

sender task does not need access to shared memory. Furthermore, it works not only in a

single core, but it can also be used for communications between tasks on different cores.

SoC Bus: To support a real-time communication in multi-core systems, this thesis presents a

deterministic SoC bus that allows to fully utilizing the bus bandwidth. In comparison to

the SoC buses of the related works, the proposed solution avoids priority inversions on

the SoC layer. This is achieved by making the SoC bus aware of the task priority without

using additional wires for the priority.
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Aware Microcontroller

This chapter presents the mosartMCU, a multi-core real-time MCU with OS awareness. Sec-

tion 3.1 introduces the terminology and the assumptions made for the MCU. Section 3.2

introduces the general idea of an OS-aware MCU. Section 3.3 presents strategies that use

OS awareness in single-cores. One of the novel approaches in this work is an efficient stack

memory usage. Other novel approaches are the time bounding of OS-PIs for IRQs and IPCs.

Section 3.4 deals with multi-core systems. Further, this chapter presents techniques to avoid

priority inversions on the SoC bus, and presents RIC that integrates some proposed single-core

techniques in multi-core systems.

3.1. Terminology and Assumptions

In this doctoral thesis, we assume that a multi-core system contains several masters (in this

thesis only cores), each one defined as master m ∈ M , which are able to communicate with

a slave s ∈ S at a time. The multi-core system follows the partial scheduling approach [107],

which means that on every core a separate instance of an OS is running. The OS is a multi-

tasking system, in which a task τm,i ∈ Tm ⊂ T describes a software unit executing on the core m.

The OS is responsible for scheduling the tasks according to its scheduling policy, which in our

case follows the RM [108] policy. Thus, we define for every task τm,i a priority pτm,i
∈ P with

P := {0, 1, . . . , max_priori t y}. For convenience, the priority of a task τm,i ∈ Tm is not assigned

to another task in the taskset Tm (i.e., ∀τm,x ,τm,y ∈ Tm ∧ τm,x 6= τm,y : pτm,x
6= pτm,y

). Now,

for convenience, a task that is allocated to master m, can be represented as τm,p ∈ Tm with the

unique priority p in the taskset Tm. According to the partial scheduling strategy, a task executes

only on the allocated core. The executing task is defined as the running task τm,run ∈ Tm ⊂ T .

In case of a single-core system, we simplify the symbol of a task to τpτ
∈ T , and the running

task to τrun. Each task may be a part of a ready queue or of two different waiting queues (i.e.,

generic waiting queue or timeout waiting queue). To support a membership in two queues,

every task has a previous pointer prevτ and a next pointer nex tτ for generic queue handling

and a timeout previous pointer t prevτ and timeout next pointer tnex tτ for timeout queue

handling.
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Figure 3.1.: Architecture of the mosartMCU.

A task τ ∈ T is allowed to be executed on the computational unit, either periodically or

sporadically (with the constraints to be conform to a RM system). The period or the shortest

time between release time and the following deadline (i.e., interarrival time) is defined as Dτ

of the task τ. The longest computational time, the time that a task τ is executing on the

computational unit between its release and end of the period, is called WCET and it is defined

as Cτ. The WCET depends on the chosen compiler, core architecture or frequency, and many

other system specifications. If a task τ is prevented to execute, because of a priority inversion,

it is called blocked. The maximum time that a task τ is blocked within its interarrival time by a

lower priority task, is defined as the blocking time Bτ.

In the next sections, more system specifications are introduced on demand. Before the

OS-aware extensions are introduced, Figure 3.1 gives an overview of the system and shows the

integration of the proposed OS-aware extensions of this thesis. The next two sections provide

the basic understanding of the mosartMCU and mosartMCU-OS, in which all the proposed

OS-aware functionalities are implemented.

3.1.1. mosartMCU

Multi-core Operating System-Aware Real-Time

The idea behind the project mosartMCU is to

introduce OS awareness into single and multi-

core MCUs for real-time systems. Therefore, the

full name of the mosartMCU is Multi-core Oper-

ating System-Aware Real-Time MCU. The aim of introducing OS awareness is to assist the OS

in its execution. The OS awareness should help in reaching properties that are unfeasible
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with pure software solutions or only possible with a huge computational effort. The problems

mentioned in Section 1.1 are only a subset of all unresolved problems in today’s embedded

systems. However, in this thesis those mentioned problems are mitigated and partly avoided by

using the OS awareness in the mosartMCU.

The mosartMCU is based on vScale1, which is a Verilog [109] implementation of the zScale,

both offered by the University of Berkeley. The basis of vScale is the RISC-V [110] processor

architecture. RISC-V is an open ISA specification that has being developed since 2010, with

the aim of having an open ISA for education, research as well as for commercial projects. The

architecture is inspired by the MIPS [111] architecture, which can be noticed in the RISC-V’s

ISA.

The RISC-V specification [112] specifies the ISA for 32, 64, and 128-Bit wide RISC architec-

tures. The developer is free to choose one of the three different bit widths. RISC-V’s target

applications are embedded systems as well as desktop and server systems. Thus, RISC-V is not

restricted to a specific domain, as it is usually the case with other computer architecture specifi-

cations. To support so many different fields, the specification defines what the instructions have

to do, but not how they must be implemented. Thus, it is up to the developer to implement

computer architecture’s speedup techniques such as pipelining, out-of-order execution, etc.

Furthermore, the specification defines instructions, which are optional to implement. Only the

Integer Instruction Set, which contains the basic instructions for arithmetic, jumps, branches,

loads, and stores are obligatory to implement. According to the RISC philosophy, only the load

and store instructions are accessing the memory, while all other instructions are using the CPU

registers and a possibly immediate (i.e., constant) value. The defined ISA extensions such as

multiplication and division, atomic instructions, floating point arithmetic, bit manipulation,

etc. are optional to implement. In the Integer Instruction Set some special instructions are

specified to accesses the Control Status Registers (CSRs). The CSRs are registers to configure

core functionalities and to get information out of the core. These registers are accessed by

an atomic read-modify-write operation. For some CSRs, the access may be restricted, since

access is only allowed for privilege modes. The RISC-V ISA specifies three different privilege

modes: user-mode, supervisor-mode, and kernel-mode. The user-mode is the least privileged

mode while the kernel-mode has full privileges. Some instructions are restricted to be executed

only by higher privileged modes.

As mentioned, in the RISC-V ISA specification it is up to the developer how to implement

the computational unit. For mosartMCU, the vScale is chosen due to the following reasons:

First, the required logic resources are small by implementing only the 32-Bit specification, the

multiplication and division extension, a pipeline of only three stages, and only the user-mode

and kernel-mode. Second, for real-time it is necessary that the instructions are executed in a

predictable way. For example, out-of-order execution would not be acceptable because of an

1https://github.com/ucb-bar/vscale
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unpredictable behavior. Third, at the beginning of 2016 when the mosartMCU project started,

available implementations primarily aimed on desktop, servers, or embedded systems that

already have been extended with application specific extensions. Thus, at that time, vScale

was the only suitable basis for implementing the OS awareness into an MCU.

3.1.2. mosartMCU-OS

Multi-core Operating System-Aware Real-Time Operating System

The mosartMCU-OS is an

RTOS for the mosartMCU and

is also compatible with the ba-

sic 32-Bit RISC-V ISA. It is a

microkernel supporting events, IPC, resource management, and task management (see OS API

in Appendix B.2). The tasks are scheduled by the RM scheduler. A static priority is assigned for

every task and the scheduler selects a task according to its priority and state. The task state

is either running, ready, or waiting. In the waiting state, the task waits for a synchronization

primitive (e.g., event or resource) or/and a specific timeout. Otherwise, the task is ready. If

it is the highest prioritized task among all ready tasks, its state is running and it is executing

on the core. Beside the standard functionalities, mosartMCU-OS supports all the OS-aware

extensions of the mosartMCU, which are discussed in the next sections.

3.2. General Idea of Operating System Awareness in MCUs

For most commercial systems, the MCU development and the OS development are conducted by

different organizations. However, to support all the MCU features in the OS, the development of

both areas must conflate. The mosartMCU project [113] follows exactly this idea by developing

the OS together with the MCU, following an MCU/OS codesign approach. Figure 3.2 depicts

one realization of this idea. The MCU offers beside its general ISA an OS-aware ISA that is

triggering the OS-aware extensions. For supporting these extensions, the MCU and the OS

must have a common knowledge about the OS data structures. This happens by developing

and merging parts of the MCU and the OS together. This also leads that functionalities of the

OS are moved into the MCU while retaining the same flexibility as in traditional OSs.

In this thesis, the mosartMCU introduces OS awareness that has the knowledge of OS internals.

Here, the MCU is aware of the OS internal data structures and is able to access them by reading

and writing. This leads to the fact that the MCU is able to have the same knowledge as the

OS. To support this idea and to avoid performance restrictions caused by accessing the internal

OS data structures using the same data bus, the mosartMCU introduces a new connection to

the data memory by using a Dual-Port-RAM (DPRAM) as depicted in Figure 3.3. A DPRAM is

a memory supporting up to two memory access ports that can be simultaneously used. This
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Figure 3.3.: The base architecture idea of supporting OS awareness in the MCU.

kind of memory is widely used in today’s desktop computers, embedded systems, and it is

an integrated part of most FPGAs. Thus, the currently running task and the OS awareness

extensions are able to access simultaneously the data memory. There is no synchronization

required, because the OS awareness part accesses only OS related data, and the currently

running task only its own data. The memories are not using caches, because this would

introduce unpredictable memory access times, which is undesired for real-time systems. This

is also the reason why many real-time applications disable the offered cache memory of the

MCU. Compared to a desktop or server computer system, an embedded system’s memory is

small and directly connected to the computational unit. This allows to have a data memory

access in a few cycles (e.g., data memory read takes 2 cycles in the megaAVR [42] and 3-12

cycles in the Aurix [88]). For most of the applications, the internal memory in an embedded

system is sufficient; therefore, usually no additional external memory is required. However,

if the internal memory is insufficient, then the mosartMCU can be extended with an external
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Figure 3.4.: TCB structure referenced by the CPU register tp.

memory, but the OS instances still have to be stored in the DPRAM. Consequently, the internal

memory can be kept small, and the external memory can be large but slower. In any case, the

external memory should be deterministic in order to obtain a predictable execution time of the

software. The next section shows two examples on using the OS data connection to introduce

OS awareness into the mosartMCU.

3.2.1. Task Priority Awareness in the MCU

The RM scheduling policy forces the developer to assign a static priority to every task according

to the tasks’ deadlines. The assigned priority of the task is stored in its TCB. The TCB is an OS

data structure that stores all the required information that the OS needs to handle properly the

task. In the RISC-V specification, the CPU register tp is named thread pointer and available

individually for each core. This pointer is not managed by the compiler, but instead, the OS

may use it to optimize some thread functionalities. In the context of this thesis, the thread

pointer is renamed to task pointer and points to the TCB of the currently running task τm,run;

thus, the mosartMCU is already aware of the currently running task. Figure 3.4 shows the

mosartMCU-OS’s TCB of the currently running task referenced by the CPU register tp. With

the awareness of the OS data structure and the usage of the os connection to the data memory,

the mosartMCU is able to read and modify the data content of the currently running task. To

let the OS be aware of the currently running task’s priority pτm,run
, the hardware is triggered

to read the task’s priority in the TCB at any tp change. The calculation of the TCB memory
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Figure 3.5.: mosartMCU state machine on a tp change.

addresses is straightforward, due to the known offset and the used base address from tp. The

currently running task’s priority pτm,run
is used for adding priority awareness in the multi-core

mosartMCU, too. Thus, the master m’s priority πm ∈ P is defined as πm := pτm,run
. With this

slight extension, every core is aware of the currently running task’s priority, which can be used

internally to perform operations concurrently to the running code. Therefore, the MCU acquires

OS awareness through the knowledge of the TCB structure. Due to the MCU/OS codesign

approach, the structure is known and can be adapted for the MCU and the OS in case of need.

The OS awareness is not limited to the knowledge about the currently running task’s priority.

The next section shows how the mosartMCU’s OS awareness can be used for an implementation

of a performance monitoring unit.

3.2.2. Performance Monitoring Unit

In [114], we have implemented a Performance Monitoring Unit (PMU) that exploits the OS

awareness in the mosartMCU. The PMU is a hardware module, which can be used by the OS to

measure the computational time between two specific instruction addresses, or to count some

internal events (e.g., IRQs while a task is running). The PMU divides the measurements into

three groups. The first group, the generic counter, is used as a global counter, for times and

events, independent of the current task; thus, for the whole system and is activated at startup.

This kind of counter can also be found in other conventional computer architectures to measure

the performance. The other groups implement the OS awareness of the mosartMCU. The second

group, the task-aware counter, is used to measure and count a measurement for each running

task, whereby it is for all the same measurement type. In the last group, the counter assigned to

a task, on each task an individual measurement can be measured or counted. The task-aware

counter and the counter assigned to a task reduce the required number of performance counter

instances in hardware, by sharing them. In traditional PMU’s, for each measurement or count

a separate instance is needed, which increases the size of the required logic. In this PMU,

the shared PMU instances have to be configured to measure the desired measurements (e.g.,

task’s time running on the core) and the OS-aware MCU automatically reconfigures each PMU

instance on a task change (recognized by a tp change), as shown in Figure 3.5. The mosartMCU
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does not just read the OS data structure, as for instance for the priority, it can also overwrite

the OS data structure by storing data into the old TCB, referenced by the old tp value, on a tp

change. In case of the PMU, the mosartMCU stores the configuration and the measured time

or counter of the PMU instance. After finishing these operations, it loads the configuration of

the new scheduled task. As shown in the previous section, the mosartMCU reads the currently

running task’s priority prun and the PMU instance configurations of the new scheduled task’s

TCB. In the mosartMCU the writing and reading of those data consumes some constant cycles.

Thus, the mosartMCU compensates the measured time or counters if while the write or read

operation some time measurements or counts are missed, respectively.

3.3. Operating System Awareness in Single-Cores

This section introduces novel concepts that are handling known issues in single-core embedded

systems by using the OS awareness of the mosartMCU. Section 3.3.1 deals with efficient stack

memory reservation. Section 3.3.2 introduces a concept for handling IRQs to time bound the

OS-PIs. Lastly, Section 3.3.3 presents an IPC approach which time bounds OS-PIs, too.

3.3.1. Stack Handling

As already discussed in the previous chapters, embedded real-time systems are commonly

MMU-less and for every task τ ∈ T an individual stack is allocated. This decision leads to a

inefficient stack memory reservation, due to temporarily unused stack memory in the individual

stacks. The utilization of a task τ’s stack is defined as the stack usage στ(t) ∈ N0 at time t ∈ N0,

while the maximum stack memory required by a task τ is denoted by ςτ. To avoid an out of

stack memory condition, the individual stack size has to be at least the size of the maximum

required stack memory ςτ for a task τ. Hence, the totally allocated stack memory S̃ for all

tasks is represented with the following equation:

S̃ :=
∑

τ∈T

ςτ =
∑

τ∈T

max{στ(t) | t ∈ N0} (3.1)

StackMMU, presented in [115], counteracts this stack memory overbooking by introducing

address virtualization of the stack memory addresses. This means that every stack memory

access is performed through a VM address and StackMMU converts this address to a PM address.

There is no need of a continuous physical memory space for the stack memory anymore per

task; instead, StackMMU divides the whole stack memory into equal sized blocks, but provides

a continuous virtual addressed stack space to the tasks. Thus, no compiler or stack usage
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modification are required and the totally allocated stack memory Ŝ of the StackMMU approach

can be computed by

Ŝ :=max

{
∑

τ∈T

στ(t) | t ∈ N0

}

≤
∑

τ∈T

max{στ(t) | t ∈ N0}=: S̃, (3.2)

without considering StackMMU administration overheads. With this triangle inequality, the

required totally allocated stack memory of the StackMMU approach is lower or equal (in the

worst case) compared to the traditional approach that instantiates an individually continuous

physically addressed stack for every task.

To achieve the goal of reducing the overall stack memory reservation while keeping the stack

memory access time deterministic, as required by the real-time systems, the OS awareness of

the mosartMCU comes into account.

The idea is based on Infineon TriCore’s [116] Context Save Area (CSA), which uses a constant

sized block for storing registers of the task context on an interrupt or function call. However,

for the stack the TriCore architecture has still stack pointer to allocate local variables on the

stack. The StackMMU approach uses a stack area that is divided into same sized blocks, called

pages. All the pages are allocated one after another, between the start and the end addresses of

the stack area, as defined by the CSRs start and end on OS startup. The OS is responsible for

initializing the reference pointers between the pages, leading to a linked list of initially unused

pages. The CSR free pointer references the first free page, initialized by the OS. This CSR

is then internally adapted by the mosartMCU at run-time. Another CSR, the task stack size

register tss makes the mosartMCU aware of the maximal stack size that the currently running

task τrun can use. This CSR is filled on a tp change from the scheduled task’s TCB similar to the

task’s priority. Thus, at the task initialization, the OS must configure for every task the maximal

required stack memory, which can be analyzed with a static code analyzer. An example of the

shared stack memory structure is depicted in Figure 3.6, where every task’s TCB is extended

by the Page Pointer Look Up Table (PP-LUT). The PP-LUT is used to store all the physically

addressed references of the allocated pages to the corresponding task. Thus, the PP-LUT’s

size depends on the maximum supported stack memory size for the task. StackMMU accesses

the PP-LUT to translate the VM address (growing from high addresses to low addresses) to a

PM address (i.e., address in the stack area). With equation 3.3, the page base address of the

corresponding VM address is read from the PP-LUT.

pm_addr_base = PP-LUT

(⌊
tss+ vm_addr − end

page_size

⌋)

(3.3)

Equation 3.4 calculates the offset inside the page with the VM address.

pm_addr_o f f set = vm_addr mod page_size (3.4)
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Figure 3.6.: Memory layout of the StackMMU approach including the structure of the TCB.

Finally, with the two equations 3.3 and 3.4 the PM address is calculated, as shown in equation 3.5.

pm_addr = pm_addr_base+ pm_addr_o f f set (3.5)

The whole calculation is performed for a stack memory read or write. First, the base address of

the corresponding page is read; second, the PM address is accessed in the stack area. StackMMU

modifies the PP-LUT for allocating or deallocating a page to or from a task, respectively.

Figure 3.7 shows the memory accesses for the stack growth, access, and shrinkage operations;

whereby, the growth and shrinkage operations are only performed if the stack grows or shrinks

across the page size alignment, respectively. In the first phase, all the StackMMU operations

are reading the reference from the PP-LUT. In the second phase, the references are updated or

the stack memory access is performed. If the stack growths, the old address in the free CSR is

stored in the PP-LUT and the free CSR is updated with the next free page address. If a memory

access is performed, the address pm_addr is read or written. In case of a stack shrinkage, the

free CSR is updated with the freed page, which is stored in the PP-LUT, and the old address

of the free CSR is stored in the new freed page. By contrast, the memory access outside the

stack area is handled as a regular PM address.

In StackMMU, the stack growth and shrinkage size is limited to one page. Therefore, a

modified compiler generates code that is limiting the size of every stack growth and shrinkage

in one instruction to the page size. In MultiStackMMU [117], this limitation has been removed

by automatically assigning and deassigning the required pages one after another. This leads to
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a longer execution time for growing and shrinking the stack memory; however, the execution

time is still predictable if the underlying memory access executes in a predictable time, such

as in the mosartMCU. The time predictability of MultiStackMMU is based on StackMMU that

requires for a stack growth, shrinkage, or access only one further memory access.

StackMMU aims to reduce the totally allocated stack memory Ŝ, but it cannot avoid an out

of stack memory condition due to insufficiently allocated memory for the stack area. To avoid

an out of stack memory condition, the currently used stack memory

U(t,page_size) =
∑

τ∈T

⌈
στ(t)

page_size

⌉

· page_size (3.6)
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☛
1 # define COLLABORATE_STACK \

2 return OS_SUCCESS ; \

3 } \

4 \

5 if(tp -> coll_fp == NULL) { \

6 register uintptr_t *sp asm ("sp"); \

7 uintptr_t *fp = sp; \

8 tp -> handler = && COLLABORATE ; \

9 tp -> coll_fp = fp; \

10 asm volatile ("addi sp , sp , -48" ::: "sp"); \

11 asm volatile ("sw s0 , -0(%0) \n\t \

12 ... \

13 sw s11 , -44(%0)":: "r" (fp)); \

14 volatile int try_return = try (); \

15 /* here the OS may manipulate the PC to:*/ \

16 /* tp -> context [ CONTEXT_PC ] = tp -> handler ; */ \

17 if( try_return == OS_SUCCESS ){ // no collaboration \

18 tp -> coll_fp = NULL; \

19 asm volatile ("addi sp , sp , 48" ::: "sp"); \

20 } else { // collaboration \

21 COLLABORATE : \

22 asm volatile ("lw s0 , -0(%0) \n\t \

23 ... \

24 lw s11 , -44(%0)" :: "r" (fp)); \

25 sp = tp -> coll_fp ; \

26 tp -> coll_fp = NULL; \

27 yield ();

✡ ✠

(a) Macro implementation for COLLABORATE_STACK,
which implements the required code by CoStack.

☛
1 # define COLLABORATIVE_STACK \

2 do { \

3 __label__ COLLABORATE ; \

4 register os_tcb_t *tp asm ("tp"); \

5 volatile int try(void) {

✡ ✠

(b) Macro implementation for
COLLABORATIVE_STACK.

☛
1 int task0 (void) {

2 while (1) {

3 COLLABORATIVE_STACK {

4 uint8_t test [600];

5 /* ... */

6 /* code */

7 /* ... */

8 } COLLABORATE_STACK {

9 /* executed if

10 task collaborated */

11 } COLLABORATE_STACK_END ;

12 }

13 }

✡ ✠

(c) CoStack example that tags a code using
a 600 Byte array as collaborative stack.

☛
1 # define COLLABORATE_STACK_END \

2 } \

3 } else \

4 try (); \

5 } while (0);

✡ ✠

(d) Macro implementation for
COLLABORATE_STACK_END.

Figure 3.8.: Macros for the collaborative stack sharing approach with a usage example.

tk
τ

is not allowed to exceed the totally allocated stack memory Ŝ:

∀t ∈ N0, U(t,page_size)
!
≤ Ŝ (3.7)

However, what happens if an out of stack memory would occur? Then, MultiStackMMU

would recognize this. Then the next question is how to handle this issue? In [117], we presented

an extension of MultiStackMMU named CoStack that supports an ever bigger reduction of

the totally allocated stack memory Ŝ. Here, the idea is to define collaborative stack memory

that will be handed over to a higher prioritized task if the higher prioritized task cannot

continue because of an out of stack memory condition. Figure 3.8c shows, how a developer

tags collaborative stack memory by using macros in the code. All the macro itemizations are

demonstrated in Figure 3.8. The macro COLLABORATIVE_STACK, shown in 3.8b, is the starting

point to tag a collaborative stack memory section. It opens an inner function in which the
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developer’s code is inserted. The macro COLLABORATE_STACK (see Figure 3.8a) is the main

part of the collaborative handling. Here, the inner function is closed and it will be checked if a

collaborative frame pointer (i.e., tp->coll_fp) is already set. If so, an already upper function

call tagged (i.e., nested collaborate call) a collaborative section and so the inner function is

called. Otherwise, the executing task stores the label address (i.e., COLLABORATE) as well as the

collaborative frame pointer in the TCB for collaborating. Furthermore, the callee saved registers

are saved (lines 11-13 in Figure 3.8a) to be possibly restored in case of collaborating. Then,

the inner function is called. Unless a higher prioritized task runs in an out of stack memory

condition and the OS schedules a collaborative task, the collaborative task’s saved registers

are thrown away. Otherwise, the callee saved registers are restored and all the collaborative

stack memory is released (line 25 in Figure 3.8a). Then, the task yields for returning to the

OS, where the OS schedules the highest prioritized ready task. The computational time for

releasing the collaborative stack memory by a task τ is the collaborate time tk
τ. The macro in

Figure 3.8d concludes the collaborative stack handling.

With hardware assistance, the CoStack approach is performed as follows: If a task requests

stack memory, the hardware checks if enough stack pages are available. In the mosartMCU, the

hardware is aware of the number of free pages and knows the requested pages for the requested

stack memory size. If enough pages are available, they are allocated to the task according to the

MultiStackMMU approach. Otherwise, no pages are allocated to the task and a collaboration

exception is thrown. The exception is handled in the OS, which stores the number of requested

pages into the currently running task’s TCB. Then, the general OS operation is performed.

Before the OS dispatches the (probably new) scheduled task, it checks if the (probably new)

scheduled task requests more stack pages than available. If it does not request more stack

pages than available, the scheduled task is executed. Otherwise, the OS searches for a lower

prioritized task in the ready queue that provides collaborative stack memory, which is visible

from the task’s TCB content. If a collaborative task is found, the OS schedules it and executes

the mentioned CoStack release functionality (lines 21-27 in Figure 3.8a).

To calculate the savable stack memory for each task τ, the collaborative stack memory κτ(t)

at time t ∈ N0 is defined. With this information, the available collaborative stack size Kτ at

time t for task τ can be calculated as:

Kτ(t) =
∑

∀i:pτi
<pτ

⌈
κτi
(t)

page_size

⌉

· page_size (3.8)

In CoStack, lower prioritized tasks will voluntarily release stack memory for a higher prioritized

task if the higher prioritized task gets into an out of stack memory condition. The available

collaborative stack size Kτ helps to reduce the CoStack’s totally allocated stack memory Ŝ′
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(compared to equation 3.7) by offering collaborative memory which decreasing the actually

currently used stack memory U(t,page_size):

∀t ∈ N0 : max
∀τ∈T
{U(t,page_size)− Kτ(t)}

!
≤ Ŝ′ ≤ Ŝ (3.9)

MultiStackMMU performs time predictable due to its underlying memory access and due

to the approach itself. For real-time systems, this behavior is desired to get non-pessimistic

schedulability analyses and no priority inversion can occur if enough stack pages are available.

In CoStack however a high priority task could be prevented from executing due to a low priority

task i.e., a priority inversion occurs through the collaborative release of the collaborative stack

memory. Thus, a higher prioritized task may be blocked. The time that a higher prioritized

task τ gets blocked is bounded by the blocking time

Bτ :=
∑

∀i:pτi
<pτ

max
∀t∈N
{tk
τi
(t)} (3.10)

The blocking time Bτ is the sum of the longest collaborate time tk
τi
(t) of all lower prioritized

tasks τi ∈ {τx ∈ T | pτi
< pτ}. With the blocking time Bτ, the task τ’s WCET Cτ, and the

period or interarrival time Dτ, a schedulability test can be performed for an RM scheduling

[30] with n= #T :

Cτ0

Dτ0

+ ...+
Cτn−1

Dτn−1

+max

(

Bτ0

Dτ0

, ...,
Bτn−1

Dτn−1

)

≤ n(2
1
n − 1) (3.11)

The blocking time increases the system load, and that may exceed the threshold of a feasible

scheduling. Here, the assumption is made, that the OS is not interfering the tasks. However,

this assumption is not feasible, because the OS has an impact on the system load. In the next

section, a new approach is introduced that considers OS’s priority inversions by time bounding

all OS-PIs; and therefore, enables the possibility to consider the OS also in a schedulability

analysis.

3.3.2. IRQ Handling

Priority inversion is a big issue in embedded real-time systems, because a lower prioritized task

could block a higher prioritized task. Not only could a task directly block the execution of a

higher prioritized task, but also it could indirectly block a higher prioritized task through the

OS, such as shown with OS-PIs introduced in Section 1.1.2. There, the OS performs some work

for a low priority task and blocks the execution of a high priority task. IRQs are also executed

in the OS context. Therefore, if the IRQ is addressed for a low priority task, a high priority task

is blocked because the OS is executing work for a low priority task. Thus, an OS-PI is the result.
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With EventIRQ [118], the OS-PI issues can sometimes be avoided but can always at least

be bounded to an upper time. For that, all the ISRs, which are handlers for the IRQs, are

mapped to respective tasks and all the IRQs are mapped to OS events. An event em ∈ Em ⊂ E is

a synchronization primitive, assigned to the master m that signals a task τ ∈ Tm of a condition

change. For single core systems, and following, the event is simplified to the event e ∈ E. On

a triggered event e, only the highest prioritized task from the event queue qe is notified. The

event queue qe is defined as follows:

∀τk,τl ∈ qe ∧τk 6= τl ∧ pτk
> pτl

: qe := (. . . ,τk, . . . ,τl , . . .). (3.12)

Thus, all the tasks waiting for the event e are sorted by descending priority and the head

task he := f irst(qe) is the first task in the event queue qe for the event e.

Now, let us define for every IRQ i ∈ I , with I := {i0, ..., i|I |−1}, an event ei ∈ E. For each IRQ

an own event is defined and a task processes this event for handling the IRQ. The interrupt

vector table is transferred to an event vector table that consists of all the events ei for handling

the IRQs i. For modeling the IRQ handling approach in a traditional way, for each IRQ a task

with priority beyond all non-IRQ handling tasks must be defined. This task waits for the event ei

(triggered by the hardware on IRQ i) and implements the ISR code. If that code is executed,

the task will again wait for the event ei .

To avoid an OS-PI, or at least to time bound it, EventIRQ uses the OS awareness of the

mosartMCU. With the additional connection to the data memory, the mosartMCU is able to

perform some data memory accesses in parallel to the software execution, without interfering

the currently running task. Through the priority awareness of the mosartMCU, EventIRQ is able

to decide, depending on the priorities, if the event must be handled immediately or if it can be

deferred. For managing this, the task τ′ is appended to the pending task list φ if an event ei

triggers the task τ′ (i.e., event ei queue’s head task hei
) waiting for the event ei at time t̃τ′,ei

:

∀i, j ∈ I ,∃ei , e j ∈ E ∧∀τk ∈ qei
∧∀τl ∈ qe j

∧τk 6= τl

∧
((

t̃τk ,ei
< t̃τl ,e j

)

∨
(

( t̃τk ,ei
= t̃τl ,e j

)∧ (i < j)
))

: φ := (. . . ,τk, . . . ,τl , . . .) . (3.13)

To handle EventIRQ properly, mosartMCU internally uses the pending tasklist tail pointer pt t :=

last(φ), which allows to append triggered tasks to the pending task list φ. Due to this

appending, EventIRQ is aware of the chronological order of tasks triggered by an event. After

appending the triggered task τ′ to the pending task list φ, EventIRQ checks if the currently

running taskτrun’s priority prun has lower priority compared to the triggered taskτ′’s priority pτ′

to avoid unpredictable interruptions by a lower prioritized task. The following and Figure 3.9

demonstrate the steps performed in hardware by EventIRQ to handle an IRQ (whereby ;

demonstrates the NU LL pointer):
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τ1 τ0 pttØ ØØe0e|I|-1
e1

τ1τ0 pttØ ØØe0e|I|-1
e1

τ1τ0 pttØ Øe0e|I|-1
e1

τ1τ0 pttØ Øe0e|I|-1
e1

τ1τ0 pttØ Øe0e|I|-1
e1 Ø

τ‘:=	τ τ 	:=	τ1														 next 0
p‘:=	p(τ )1write	phase

read	phase
1
2
3

4

5

6

7

τprevτ nextτ

8 iff(	p <p‘	)	→	trigger	OSrun	

Ø	:=	NULL

Figure 3.9.: EventIRQ example for the triggered IRQ i0 ∈ I (gray colored indicates a read or write
access to the os port, i.e., channel B of the DPRAM).

1 If an IRQ i ∈ I is triggered, the hardware extension internally saves the triggered task τ′,

which is the head task hei
of the event queue qei

. EventIRQ accesses the event queue qei

by using the event vector table.

τ′ := hei

2 The next waiting task for the event ei (i.e., second(qei
)) is read if the event queue qei

is

not empty. We define the next waiting task τnex t ∈ T as follows:

τnex t :=







nex tτ′ if τ′ 6= ;

; if τ′= ;
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3 The triggered task’s priority p′ ∈ P is read from the TCB. If no task is triggered (i.e.,

τ′= ;), the priority will be set to the lowest priority.

p′ :=







p(τ′) if τ′ 6= ;

0 if τ′= ;

4 The event vector table of event ei is updated with the next waiting task τnex t , that

becomes the new head of the event ei .

5 The triggered task τ′ is appended to the pending task list φ if task τ′ is not ;: First,

the previous pointer of the triggered task is updated with the old pending task list tail

pointer:

prevτ′ = pt t if τ′ 6= ;

Second, the pending task list tail pointer pt t is updated with the triggered task τ′:

pt t = τ′ if τ′ 6= ;

6 The triggered task τ′ is now the tail of the pending task list φ and the next pointer must

be adapted:

nex tτ′ = ; if τ′ 6= ;

7 The event queue qei
now points to the next task τnex t , which becomes the new head of

the event queue. Thus, the previous pointer of the next task τnex t must also be adapted:

prevτnex t
= ; if τ′ 6= ;

8 Finally, the running task τrun will be preempted, if and only if (iff) the triggered task’s

priority p′ exceeds the currently running task’s priority prun:

iff(prun < p′)→ trigger OS

The OS is also involved in the EventIRQ approach by performing some work in software:

• If the OS is called by an interrupt, the triggered task τ′ has a higher priority compared

to the currently running task τrun. The OS removes the last appended task from the

pending task list φ (i.e., triggered task τ′), inserts it to the ready queue, and schedules

it, because it has now the highest priority in the ready queue.

• If the OS is called by a syscall, the syscall may change the currently running task τrun,

which may lead to a change of the currently running task’s priority prun. It could happen
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now that the new scheduled task has a lower priority than the previous task (e.g., task

calls a sleep syscall). In this case, some tasks in the pending task list φ might have a

higher priority compared to the new scheduled task in the ready queue. Therefore, the

OS catches up all tasks in the pending task list φ and inserts them into the ready queue

(sorted by priority). Now, the OS considers all deferred tasks and the OS will schedule

the next task according to the OS scheduling policy and priority.

A new IRQ cannot be handled while the OS is changing the internal OS structure, because this

may lead to a race condition. To counteract that, either a synchronization primitive for the OS

data structure must be used or EventIRQ has to be restricted to work only if the mosartMCU is

in the user-mode.

EventIRQ does not only support the handling of regular IRQs, as in previous related works.

It also supports the timeout event et ∈ E (i.e., timer peripheral used for the system timer) and

software events es ∈ E.

Due to the OS support for waiting for a specific time by a task, the timeout must be handled

properly: The timeout queue qet
is not sorted by the task’s priorities, but according to the task’s

timeout value. There, a trigger on the timeout IRQ does not select the highest prioritized task,

but the task with the closest timeout. EventIRQ defines the timeout event et ∈ E with the

corresponding timeout queue qet
:

∀τk,τl ∈ qet
∧τk 6= τl ∧

((

t̂τk
< t̂τl

)

∨
(

( t̂τk
= t̂τl

)∧ (pτk
> pτl

)
))

:

qet
:= (. . . ,τk, . . . ,τl , . . .)

(3.14)

The timeout queue qet
sorts all the tasks according to their timeout t̂. The timeout defines the

time as long as a task sleeps or waits for an event. If the task is ready or running, it is not part of

the timeout queue qet
. EventIRQ performs the same steps such as the previous mentioned ones

for a regular IRQ, if the timeout event et is triggered. Instead of the pointers prevτ and nex tτ

the timeout pointers t prevτ and tnex tτ are updated, respectively, in hardware. Furthermore,

for the timeout event et , the hardware extension sets in the hardware timer peripheral the new

head task het
’s timeout value. Thus, there is no need of setting the timeout value in software

and this avoids unnecessary context switches into the OS, as required in previous related works.

EventIRQ allows using the event functionality not only for IRQs; but also for software

events es. For making that possible, the mosartMCU extends the ISA with the instruction

sev src1, whereby the source register src1 points to the event es ’s Event Control Block (ECB)

address. The instruction triggers the same functionality as in the regular EventIRQ approach;

but instead of operating on the event vector table it operates on the event’s OS instance.

EventIRQ avoids, in many cases, an OS-PI by processing internal and external events concur-

rently to the normal execution flow. EventIRQ theoretically completely avoids OS-PIs by design

due to the avoidance of unnecessary context switches, the priority unification (i.e., task, IRQ,
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and OS), and because of the procedure itself. In practice however, EventIRQ cannot completely

avoid OS-PIs: If EventIRQ starts to handle a triggered IRQ, it is not possible to handle a second

IRQ before the previous one is completely processed. Thus, a possible IRQ addressed to a higher

prioritized task must wait for finishing the previous IRQ handling in hardware. The reason is,

that the functionality in the EventIRQ hardware extension requires some cycles and can only

be computed sequentially. However, the time is time bounded: EventIRQ has a deterministic

execution in hardware, where the upper time for handling an IRQ is known. Another upper time

bound is caused by the OS accessing the internal OS data structures. To avoid race conditions,

it is not possible to let the OS and EventIRQ access the data memory simultaneously. Thus, a

synchronization leads to mutual exclusion when accessing OS data structures. However, this

time can be measured (better computed) and considered in the schedulability analysis.

Idea for an OS-aware schedulability analysis

In past schedulability analyses approaches, the OS and interrupts were not considered. However,

with the elimination of unpredictable interruptions by a lower prioritized task, the IRQs as well

as the OS can now be considered for a non-pessimistic schedulability analysis. In EventIRQ the

idea is, that all ISRs are now regular tasks with a regular priority according to the RM’s priority

selection approach (i.e., shorter deadlines have a higher priority). The currently running task

will only be interrupted if the IRQ handling task’s priority have a higher priority as the currently

running task. Therefore, the interrupt handling task is considered as a normal task in the

schedulability analysis, with an interarrival time Dτ that is depending on the shortest time of two

consecutive IRQs of which the task τ may wait. The avoidance of unpredictable interruptions

by lower prioritized tasks allows to consider also the OS in the schedulability analysis. Thus, if

the OS performs operation for a task in the privileged mode, as well as the time that the OS

needs to schedule the tasks, can now be considered as additional computation time for the

task (e.g., C′τ := Cτ + tOS
schedule + tOS

task_work). Whereas, with the traditional IRQ approach each

interrupt request must be considered, to which often follows the OS and may results in many

context switches, pessimistic schedulability analysis, and consequently in an overdesigned

embedded system. This OS-aware schedulability analysis is not limited to EventIRQ; the same

idea can also be applied for the IPC approach presented in the next section.

3.3.3. Inter-Process-Communication

An event is a synchronization primitive, which notifies the highest prioritized task waiting

for an internal or external condition change. There is no possibility to transfer an additional

information, such as a pointer or integer, without a workaround (e.g., shared memory syn-

chronized by events). With EventQueue [119], this drawback is eliminated. EventQueue is an
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IPC approach that aims to avoid or time bound an OS-PI for transmitting data by a hardware

extension based on the previously proposed EventIRQ.

EventQueue enables the communication from many tasks to a single task, by a unidirectional

buffer. For transmitting data, a queue ρ ∈ Q of the queueset Q, is required. The queue ρ is

defined as:

ρ := (eρs
, eρr

, sρ, readρ, writeρ, rρ, bρ) (3.15)

It is a tuple of the events eρs
and eρr

. Both are used to notify the (possible many) senders and

the receiver about the queue’s state changes; i.e., the senders or the receiver are suspended

as long as the queue is full (i.e., f ul lρ = t rue) or the number of requested data rρ is not

reached, respectively. The size sρ represents the number of items in the buffer bρ, where the

data is stored. The indices readρ and writeρ are used as indexes for reading and writing the

content in the buffer bρ, respectively. For notifying the receiver task about received data over

the queue ρ, the requested size rρ (with 1 ≤ rρ ≤ sρ − 1) is considered; the receiver is only

notified (by the event eρr
) if the buffer length lρ is the same as the requested size rρ. The

buffer length lρ represents the number of items stored in the buffer bρ. The buffer length lρ is

calculated with the indices writeρ and readρ as follows:

lρ := (writeρ − readρ)mod sρ (3.16)

EventQueue performs the transmission of the data in hardware. To support a hardware

transmission, the mosartMCU ISA is extended with the instruction qwr dst, src1, src2.

The first source register src1 defines the Queue Control Block (QCB) address (i.e., a queue

OS instance address), and the second source register src2 the data content to transmit. The

destination register dst is used to return the success of the instruction; successful if the data is

stored in the buffer, or failure if the buffer is full. Figure 3.10 shows the single steps performed

by the instruction in hardware:

1 The size sρ of the queue ρ is read from the addressed QCB.

2 Reading of the index write writeρ of queue ρ from the addressed QCB.

3 Reading of the index read readρ of queue ρ from the addressed QCB.

4 Reading of the requested size rρ of queue ρ from the addressed QCB.

5 If the buffer condition f ul lρ is false, the index writeρ is incremented and stored in the

QCB. The destination register is filled with a value indicating success and the EventQueue

continues with the next step. Otherwise, the index write writeρ is not updated, the

destination register is filled with an error code (i.e., MCU/OS codesigned buffer full error

code), and the instruction is finished. To avoid race conditions, the computational unit is

not allowed to continue within the first five memory operations. Thus, the pipeline is

stalled for 4 cycles.
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read sρ
read writeρ
read readρ
read rρ
if f ul lρ then

dst := ERROR
abort

else

dst := SUCCESS
writeρ := (writeρ + 1)mod sρ

end if

bρ[writeρ] := src2

if rρ = lρ then

set event eρr
{following handled by EventIRQ }

end if

1
2
3
4
5

6
7

pi
pe

lin
e

st
al

le
d

Figure 3.10.: Pseudocode performed by the instruction qwr dst, src1, src2 in hardware.

6 If the queue ρ is not full, the content in the second source register will be stored to the

buffer bρ at the index writeρ.

7 If the buffer length lρ reaches the requested size rρ, EventQueue triggers the receiver

event eρr
that is located in the QCB of the queue ρ. After that, the set event approach of

EventIRQ is executed.

With a pure software solution, either the OS handles the appending of data in the queue,

which would lead to possible OS-PIs, or the sender task must have full access to QCB’s data

structure, which would require access to possible confidential data in the buffer. However,

EventQueue transfers the data to the destination buffer in hardware. Through the hardware

execution, the sender does not have to enter in the kernel mode that could produce an OS-PI,

e.g., a high prioritized task send data to a low prioritized task. Furthermore, the sender task

does not require access to the QCB’s data structure; therefore, the receiver could put the QCB in

a memory protected region, and only the hardware and the receiver task access the QCB’s data

structure memory. If the buffer length lρ reaches the requested size rρ, EventQueue, based

on the EventIRQ approach, signals the destination task of this occurrence. Then, EventIRQ is

responsible for properly handling the event and for avoiding or at least for time bounding the

OS-PI. Figure 3.11 shows the code (queue creation, send, and receiver implementation) in the

mosartMCU-OS for the mentioned EventQueue approach. With this approach, EventQueue is

an IPC that enables secure IPC and moreover avoids OS-PIs by design required by real-time

systems.

The proposed EventIRQ and EventQueue concepts work on a single-core mosartMCU. How-

ever, the computational power demand will increase even more for future embedded systems;

therefore, the next section shows how to extend EventIRQ and EventQueue to multi-core

systems by using the OS awareness of the mosartMCU.
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☛
1 // wrapper for the ASM instruction

2 int send_queue ( os_queue_t *q, os_reg_t d) {

3 os_reg_t ret;

4
5 asm volatile ("qwr %0 ,%1 ,%2 \n\t"

6 : "=r" (ret)

7 : "r" (q), "r" (d) );

8 // q->e_r is triggered if required by EventQueue

9 return ret;

10 }

11
12 /*

13 q in protected memory

14 q## _event in non protected memory

15 */

16 # define send_queue_until (q, data , size , t) \

17 intern_send_queue_until (q, &(q## _event ), ց
data , size , t)

18
19 // sycall - executed in user -mode !!!

20 int intern_send_queue_until ( os_queue_t *q, ց
os_event_t *e_s , os_reg_t *data , os_reg_t ց
size , os_time_t t) {

21
22 //non - kernel user -mode function

23 clear_event (e_s);

24
25 while (size) {

26 if( send_queue (q, *data) == OS_SUCCESS ) {

27 data ++;

28 size --;

29 } else { /* buffer is full */

30 /* if event is set while no task waits

31 -> immediately returns OS_SUCCESS */

32 if ( wait_event_until (e_s , t) == OS_TIMEOUT )

33 return OS_TIMEOUT ;

34 }

35 }

36 return OS_SUCCESS ;

37 }

✡ ✠

☛
1 # define CREATE_QUEUE (name , size) \

2 os_event_t NON_PROTECTED_MEM name ## _event ; \

3 /* (e_s , e_r , s , read , write , r , b ) */ \

4 os_queue_t PROTECTED_MEM name = {name ## _event , \

5 NONSET_EVENT , size + 1, name.buf , name.buf , \

6 0, {0, REPEAT (CONSTANT ,size ,0) } }

7
8 int syscall_wait_queue_until ( os_queue_t *q, ց

os_reg_t *data , os_reg_t size , os_time_t t) {

9 signed long diff;

10
11 // calculates number of items

12 diff = ( signed long)q-> write

13 - ( signed long)q->read;

14 diff >>= 2; // bufferitem is 32 bit wide

15 if(diff < 0)

16 diff += q->size;

17
18 if (( os_reg_t )diff < size) {

19 // There are not enought data in the buffer yet

20 q-> requested_data = size;

21
22 if ( syscall_wait_event_until_new (q->e_r , t) == ց

OS_TIMEOUT )

23 return OS_TIMEOUT ;

24 }

25
26 while (size --){ // read out the buffer

27 *data = *(q->read);

28 q->read ++;

29
30 if(q->read == ( os_reg_t *)&q->buf[q->size ])

31 q->read = ( os_reg_t *)&q->buf [0];

32
33 /* notify a sender task or set the event */

34 set_event (&(q->e_s));

35 }

36
37 return OS_SUCCESS ;

38 }

✡ ✠

Figure 3.11.: mosartMCU-OS code for supporting the creation of a queue and the sending and receiving
of data over the created queue.

3.4. Operating System Awareness in Multi-Cores

Commercial MCUs are increasingly realized as multi-core systems. The true parallelism in these

systems opens a completely new field of possibilities. However, programming guides suggest to

develop applications as independent as possible between the cores to reduce the possibility of

interferences. The reason for this suggestion is the lack of approaches for embedded multi-core

real-time systems, which this thesis is going to counteract. In this section, first a SoC bus with

priority awareness for real-time systems is shown. Then, based on a priority-aware SoC bus the

Remote Instruction Call (RIC) approach is presented, which aims to move globally handled

functionalities to local ones.

3.4.1. Task Priority-Aware SoC Bus

Priority inversion is not limited to the software layer, it can also happen at the hardware layer

such as in the SoC bus. Traditionally, SoC buses do not use priorities to arbitrate concurrently

accessing components. Some SoC buses, as shown in Section 2.4.3, do support priorities but

these are not in the same priority space as the software tasks. In [120] we presented a new
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Figure 3.12.: Masters connected to the interconnect to electrically isolate them from each others.

priority-aware SoC bus, which uses the task priority to perform the arbitration without using

additional wires for the priority.

To support multiple masters that are accessing a slave, on each slave access an arbitration

must be performed and the SoC bus must support a multi-master protocol or all the masters

must be electrically isolated from each other. The latter approach is used for the task priority-

aware SoC bus, and keeps moreover the communication protocol simple. Figure 3.12 depicts

the structure of the SoC bus. Every master is connected to the interconnect logic. There, the

master’s priority πm (i.e., πm := pτm,run
) is used for the arbitration and the crossbar switch

forwards the SoC bus signals to the addressed slave s ∈ S. The addressed slave s is selected

with an #S-Bit enable signal νm := s. Thus, for a slave access, the address to which slave the

access is directed is resolved in the masters and not in the interconnect logic. If the master’s

bus signals are not forwarded to the slave s due to another master accessing the same slave s

with higher priority, the interconnect logic uses registers (i.e., Flip Flops (FFs)) for buffering

the SoC bus signals. Then, the lower prioritized master’s slave access will be delayed and

the master will be stalled until access can be granted. To handle a delayed slave access, the

interconnect logic manages for every master m a state

γm ∈ Γ with Γ := {IDLE,DELAY, ADDRESS,BUSY, DATA}. (3.17)

Figure 3.13 shows the transitions between the states. If a master’s priority is lower than

another master’s priority accessing the same slave, the lower prioritized master moves to the

state DELAY. There, the master waits (recognized by the WAIT signal) with the slave access and

all the SoC’s address phase signals are stored in registers by the interconnect logic. If no higher

prioritized master any longer accesses the same slave, all the SoC’s address phase signals are

caught up, and then the slave access continues.

Since the connection to a slave s cannot be shared by multiple masters at the same time, the

interconnect logic admits access to only one of the requesting masters As:

As := {m ∈ M | ((γm = IDLE)∨ (γm = DELAY))∧ νm = s} (3.18)
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Figure 3.13.: Interconnect finite state machine.
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(b) The SoC bus Write data transfer with priority injection.

Figure 3.14.: SoC bus write transfer demonstrating the address phase and data phase.

The set As contains all masters that want to access the slave s. Based on the master m’s

priority πm the slave s accessing master αs that is allowed to access the slave s is defined as:

αs := ∃a ∈ As with πa := max
∀x∈As

{πx} ∧ min
{m∈As|πm=πa}

{master_id(m)} (3.19)

To integrate the task’s priority into the SoC bus protocol, the priority-aware SoC bus requires

the separation of an address phase and a data phase, such as shown in Figure 3.14a. In the

address phase, the control signals and the address are transmitted, and in the data phase, the

data is transmitted. This division allows pipelining the slave accesses. If no pipelining of the

slave access is done, the bus for the data transfer is unused in the address phase. In this case,

the master’s priority (equal currently running’s task priority, see Section 3.2.1) is injected, as

depicted in Figure 3.14b. Through the priority awareness of the mosartMCU and the used

architecture, it can be proved (see [120]) that the master’s priority πm is always the same as
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3.4. Operating System Awareness in Multi-Cores

the currently running task’s priority pτm,run
of master m. Therefore, the master’s priority πm is

used to unify the task priorities and the core priorities.

With the proposed task priority-aware SoC bus, priority inversions are avoided at the inter-

connect layer, because the tasks’ priority is considered on every slave access. This allows the

SoC bus to become predictable, in the sense that it is known that the highest prioritized task

gets preferred and the access is immediately granted, as desired by a real-time system.

3.4.2. Remote Instruction Call

Based on the predictable interconnection bus described above, RIC [121] has been developed.

The idea behind RIC is the well-known RPC concept. In RPCs, a system hands over the

procedure as well as the workload to another system. The procedure is remotely executed

and the system that transmitted the workload waits for the remote answer. This is useful

if the remote system has more computational power to compute higher workloads than an

embedded system. Moreover, an RPC executes a functionality in a completely different system

with probably a different data knowledge. Thus, the workload might be executed on a remote

system where all the required information are located in its local memory, and this avoids

the necessary to synchronization memory as a global memory that would introduce a huge

performance and management overhead. RIC’s idea is based on the property that the workload

should be executed where the information is located, but instead of performing a procedure in

another system (often in a network), it performs an instruction in another core of a multi-core

system that will not interrupt the remote currently running task (except if it is the instruction’s

intention, e.g., EventIRQ).

Today’s mostly used RISC architectures (which are mostly load-store architectures) suit well

for transmitting the arguments of an instruction over a SoC bus, because of the 3-address code

format (i.e., instruction dst, src1, src2). The address bus is used for transmitting the

first source register and the data bus for the second source register. The result of the instruction

can again be transmitted over the address bus as another RIC. The first source register must

be an address, which defines the OS instance (e.g., event, queue) on which the operations

has to be performed. Thus, it is also not necessary to distinguish between RIC instructions or

regular instructions, because the hardware recognizes, based on the first source register, if the

instruction must be performed locally or remotely. Currently, the sev (i.e., EventIRQ) and qwr

(i.e., EventQueue) instructions are implemented in the mosartMCU to support them as RICs.

To support fully RIC in the mosartMCU, some additional extensions were made:

Figure 3.15 gives an overview of the components that are involved in supporting RICs, and

next it is discussed how the RIC approach is implemented into the mosartMCU:

For transmitting the RIC instruction to another core, the mentioned task priority-aware

SoC bus is used. There, the address bus and the data bus are used for transmitting the first

source register and the second source register, respectively. To identify the remote instruction,
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Figure 3.15.: Architecture structure for supporting the RIC approach (new connections are emphasized
in bold).

the SoC bus must be adapted. The standard SoC bus has a control signal that defines if the

memory access is performed on a byte, half-word, or word. This control signal is now extended

to transmit the instruction type. The memory controller forwards all the SoC bus signals to

the interconnect fabric to which the master is connected. According to the first source register,

which represents the OS instance address, the memory controller detects to which core the RIC

is addressed. Then, all the bus signals are forwarded to the destination core by the interconnect

fabric.

The destination core receives the bus information at the slave interface. Here, the priority

awareness of the interconnect fabric arbitrates the slave access if several cores want to perform

a RIC on the same slave (i.e., a core on the slave interface). The memory controller is able

to distinguish between a remote memory access and a RIC. For a remote memory access,

the memory controller forwards the bus signals to the requested memory. For a RIC, the

memory controller forwards the information of the RIC to the core by an additional connection,

namely the connection remote. Then, the receiver core executes the RIC locally in hardware,

concurrently to the currently running task, then the core generates the return value where

required. The return value is sent back to the requester core (known by rem_ID), with another

RIC. The sender core will wait until the destination core replies if the RIC expects a return

value. Otherwise, the core does not wait and immediately continues with the next instruction.
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Through the instruction extensions sev and qwr in the mosartMCU (see Section 3.3.2 and

Section 3.3.3), EventIRQ and EventQueue are supported for multi-core systems, respectively.

In systems without RIC support, a triggered software event or an IPC to another core must

be synchronized with a multi-core synchronization primitive (e.g., test-and-set, compare-and-

swap), for avoiding race conditions. These multi-core synchronization primitives result in

busy-waiting or in global management that must be also synchronized somehow. With RIC the

global synchronization is not required anymore: RIC passes the arguments for the instruction,

which must be performed remotely, with the task priority-aware SoC that already arbitrates the

remote core (i.e., slave) access. Then, RIC’s workload (i.e., the instruction) is performed on

the remote core only with local resources (e.g., data). Thus, RIC shifts an operation usually

handled with global information to a local operation; consequently, global synchronization is

not necessary anymore. Another approach without RIC would be to use IRQs to communicate

between the cores; however, this may result in OS-PIs. RIC time bounds this by using the

OS awareness of the mosartMCU. For the EventIRQ approach, the sev instruction is sent to

the destination core where the addressed event is located. Thus, the whole EventIRQ work

is performed on the remote core where the addressed event is allocated. Remark, an event

is assigned to a specific core, to which only tasks on these cores can wait for it. The same

applies for IPCs by using EventQueue. In EventQueue, the data that must be transmitted to

the addressed queue is transferred via a RIC to the core on which the addressed queue is

instantiated. Then, the EventQueue approach is executed locally, generates the return value

of the instruction, and sends the return value back to the requester core as a RIC and this all

simultaneously to the currently running task. Hence, with RIC, the global synchronization is not

required anymore, because the instruction has to be performed only locally (including possible

local synchronizations) on the core to which the RIC is addressed. Furthermore, unpredictable

interruption by a lower prioritized task cannot occur because the RIC is executed concurrently

in hardware to the currently running task. OS-PIs are eliminated by design; however, due

to the time required to perform the remote instruction an OS-PI may occur; however, time

bounded. It is the same reason as for EventIRQ and EventQueue; a high prioritized task requests

to perform a RIC while a RIC is performing for a low prioritized task. However, locally the

instructions are performed in deterministic time, and so the possible OS-PI is time bounded.

Furthermore, through the proposed SoC bus, two RICs sent to the same core are synchronized

and the RIC sent by the higher prioritized task is preferred and executed firstly. Once the first

RIC finishes, the SoC bus caught up the RIC from the lower prioritized task. The RIC approach

is still working if two cores are sending a RIC to the other core if both are waiting for a return

value: Both core’s pipelines are stalled (because each currently running task waits for the RIC’s

return value), while remotely the return value is computed and returned with another RIC.

This works, because the passing of RIC’s arguments and its return value are two individual RICs
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and no locks are necessary. Thus, also in this case RIC still avoids unpredictable interruptions

by lower prioritized tasks and does not lead to deadlocks.
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This chapter demonstrates the evaluation results of the proposed OS-aware extensions in the

mosartMCU project presented in Chapter 3. Section 4.1 shows StackMMU in two examples.

Section 4.2 investigates the performance of CoStack, which collaboratively releases stack

memory on demand. Section 4.3 shows how the EventIRQ approach avoids the OS-PI issue in

an example. The impact of the priority-aware SoC bus is evaluated in Section 4.4. Section 4.5

demonstrates the EventQueue approach, which is used in combination with RIC in a multi-core

environment. Section 4.6 demonstrates the proposed OS awareness extensions in a single-

core mixed critical system. Finally, Section 4.7 evaluates the resource consumption of the

proposed approaches in the FPGA with different configurations. All evaluations are performed

in the mosartMCU with our own developed mosartMCU-OS. The mosartMCU runs for all

evaluations with a frequency of 50 MHz and is synthesized for the Xilinx Artix 7 FPGA[122].

The measurements were taken with an oscilloscope or were evaluated with the Xilinx Vivado

simulator’s output.

4.1. StackMMU

This section investigates the stack memory consumption of the StackMMU approach, including

the execution time impact. Figure 4.1 shows two function measurements: one of a quicksort

algorithm and the other with an allocation of a temporary buffer followed by a bubble sort algo-

rithm. We used StackMMU page sizes of 32 Byte, 64 Byte, and 128 Byte for both measurements.

In addition, we compared the different StackMMU page sizes with the standard individual

stack memory allocation approach by using the standard compiler and the adapted compiler,

which growths and shrinks the stack for maximal 32 Bytes. Remember, StackMMU limits the

stack growth and shrink size in one instruction to the size of the page (i.e., page_size). This

restriction has been eliminated with the MultiStackMMU. Furthermore, both figures contain

in the stack memory consumption the additional memory required for the PP-LUT; therefore,

starts and ends each StackMMU configuration with a different stack memory consumption.

Figure 4.1a shows the stack memory usage and execution time of a quicksort algorithm.

The quicksort algorithm uses the divide and conquer technique and is recursively implemented,

leading to many nested function calls. A function call affects the execution of the function

prologue and epilogue, which are performing register saves and restores on the stack. Thus,
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(a) Run-time stack consumption of a quicksort algorithm.
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(b) Allocation of a temporary buffer with 256 Bytes followed by a bubblesort algorithm.

Figure 4.1.: Stack consumption and required execution times for the StackMMU approach with different
page sizes (32 Bytes, 64 Bytes, 128 Bytes), a static individual stack allocation with the
adapted compiler (i.e., compiler32) for page sizes of 32 Bytes, and the standard compiler
(i.e., compilerStd).
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the stack memory grows and shrinks on every function call and exit, respectively. The example

shows that the selection of the stack page size influences not only the whole stack memory

consumption but also the execution time, because each stack growth and shrink requires two

cycles, if the changed size exceeds the page size page_size, otherwise only one. Here, for

a stack page size of 32 Bytes (i.e., StackMMU32), on every function prologue and epilogue

two stack growths and shrinkages are required. This leads to the fact that more instructions

have to be performed, leading to a longer time for growing or shrinking the stack. The same

behavior can be seen with the restricted compiler (Compiler32) that shows a longer execution

time compared to the standard compiler (CompilerStd) due to the additional required stack

growth and shrink instructions. If the stack pages are chosen to be larger, the problem of many

growths or shrinkages is reduced, but the pages could have more unused memory, leading to

more unused stack memory.

In the second measurement, shown in Figure 4.1b, at the beginning a buffer of 256 Bytes is

temporarily used. After releasing the buffer (e.g., for StackMMU32 on cycle 60), a bubblesort

algorithm is executed. Here, the example shows that with a larger stack page size, the temporary

buffer is allocated and deallocated faster; however, the stack memory consumption may

heavily exceed the required stack memory (compare Compiler128 and CompilerStd). After

the temporary buffer deallocation, the bubblesort algorithm executes, and the stack memory

consumption highly benefits from StackMMU. Comparing the StackMMU approach with the

individual allocated stack memory approach, StackMMU’s memory consumption is reduced

by 55 % to 75 % (after cycle 100) depending on the used page size. StackMMU increases the

execution time for the function by 30 % to 85 % compared to the traditional approach; however,

it still behaves deterministically if enough stack memory is available and the underlying memory

access is deterministic, which is the case for the mosartMCU.

Both measurements show that the stack page size must be chosen depending on the appli-

cation and its requirements. A smaller page size would contribute to minimize unused stack

memory, but it will deterministically increase the execution time for growing and shrinking for

the same stack memory size. With a bigger page size, the unused stack memory may increase,

but less stack growth and shrinkage operations are required and StackMMU achieves faster the

new stack memory size. Furthermore, a bigger page size reduces also the size of the PP-LUT in

the TCB. Therefore, a compromise must be found: For the mosartMCU, I would recommend

to use a page size of 32 Byte or 64 Byte to optimize StackMMU for memory consumption or

for speed, respectively. The mosartMCU is based on a RISC-V and it specifies that the stack

must growth and shrink for at least 16 Bytes. Thus, a page size of 16 Bytes leads to a page

growth or shrink on every function prologue. Whereas, a page size of 128 Bytes may lead to

more unused memory in a page, which is rare in a memory constrained embedded system.

The same tradeoff issue is for the page size in MMU environments. For instance, in general

purpose Linux and Windows the default MMU page size is configured to 4096 Byte. However,
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Figure 4.2.: Execution flow example of CoStack.

Table 4.1.: Measured times for the CoStack example in Figure 4.2.

tos1
ts tos2

tk
τ′ Bτ tτalloc

3.74µs 1.02µs 4.08µs 1.94µs 9.76µs 11.00µs

comparing general purpose systems to embedded systems, they usually have times bigger

memory sizes; e.g., an MCU has 1 MB and a PC 8 GB of RAM. Both measurements show the

potential of StackMMU to reduce the stack memory consumption. If multiple tasks are not fully

utilizing their stack memory concurrently, StackMMU helps to reduce the totally allocated stack

memory Ŝ. However, if an out of stack memory condition would happen in the StackMMU

approach, CoStack will support the OS to handle this issue.

4.2. CoStack

In case of an out of stack memory condition, CoStack searches for a lower prioritized task

that voluntarily releases its collaborative stack memory. Here, we investigate the impact of

CoStack in a real system. Figure 4.2 depicts time measurements of a task that offers 600 Byte

collaborative stack memory and Table 4.1 lists the time measurements. The measurement os

shows the execution time of the OS, coll_sched shows the time tS required to find a collaborative

task τ′, and stack_alloc represents the time tτalloc for allocating the requested 600 Bytes stack

memory by task τ:

• At time t0, task τ requests 600 Byte stack memory that is currently unavailable on the

system. An out of stack memory condition occurs and a collaborate exception is thrown,

leading to the execution of the OS. There, the context of task τ is stored. Then the OS

does management work, the scheduling of the collaborative task τ′ (i.e., ts), and the

context restore for τ′, which all takes in total time tos1
.
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• At time t1, the collaborative task τ′ starts to run. However, now instead of continuing

on the preempted program counter, task τ′ continues at the collaborate label (i.e.,

COLLABORATE, see Figure 3.8a). The task restores all its callee saved registers, releases

its collaborative stack memory κτ′, and yields to return to the OS. Now, the OS schedules

the task τ again at time t2. The releasing of the collaborative stack takes in total tk
τ′.

• At time t2, the OS leaves, and task τ runs. Now, enough stack memory is available

and the requested stack memory is available to be finally allocated at time t3. The time

between t2 and t3 is required by MultiStackMMU for growing the stack memory.

CoStack does not take a constant time, because the size of the collaborative stack, the number

of required collaborative tasks, and the requested stack memory influence the execution time.

Nevertheless, in CoStack, all the instructions for collaborating are executed in a predictable

time; therefore, they can be considered in the schedulability analysis as the blocking time Bτ

(see equation 3.10 and equation 3.11 on page 40).

4.3. EventIRQ

This section evaluates EventIRQ with four tasks T := {τ0,τ1,τ2,τ3}, where the index defines

the priority and a higher index defines a higher priority. Further, two events E := {et , es} are used

to notify the tasks of the timer event et and the software event es. This evaluation shows the task

execution and event notification of the traditional interrupt handling approach (Figure 4.3a)

and of the EventIRQ approach (Figure 4.3b), that avoids the OS-PI issue completely in that

example (in practice, EventIRQ cannot completely avoid OS-PIs but it can at least time bound

them). Both measurements were performed on a real implementation with a core frequency of

50 MHz. The following list explains Figure 4.3 in more detail:

• The tasks τ3,τ2, and τ1 start to wait for the timer event et at the times t0, t1, and t2,

respectively. This causes that the OS schedules the lowest priority task τ0.

• At time t3, the timer event et is triggered:

Traditional: The ISR is executed in the OS context. Then the OS schedules task τ2.

EventIRQ: The OS is triggered and schedules task τ2.

• At time t4, the timer event et is triggered. The timer event et notifies task τ1, because it

is the task waiting for event et with the closest timeout. However, it has a lower priority

than the currently running task τrun = τ2:

Traditional: Task τ2 is preempted by the ISR leading to an OS-PI. Then, the OS returns

and still schedules the last scheduled task τ2.

EventIRQ: No unpredictable interruption occurs, and EventIRQ adds the triggered taskτ′ =

τ1 to the pending task list φ. Thus, EventIRQ avoids an OS-PI at time t4.
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Figure 4.3.: Example with four tasks and two events for the traditional IRQ handling and the EventIRQ
approach.
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• At time t5, the timer event et triggers. Now, the timer event et notifies task τ3, because it

is the task waiting for event et with the closest timeout. This time it has a higher priority

compared to the currently running task τrun = τ2. Thus, the OS schedules task τ3.

• At time t6, task τ3 starts to wait for the timer event et . The OS schedules task τ2, which

is the highest prioritized task of all ready tasks.

• At time t7, task τ2 starts to wait for the software event es. Thus, the OS schedules task τ1

that sets a deadline, within it must be finished with its computational work.

• At time t8, the timer event et , for which task τ3 waits, is triggered. Therefore, the

OS schedules this task, due to the higher priority compared to the currently running

task τrun = τ1.

Traditional: Task τ1 is preempted even if it has not finished its computational work yet.

EventIRQ: Before task τ1 is preempted by task τ3, it has already finished with its compu-

tational work before its deadline and started to wait for a new timer event.

• At time t9, the software event es is set by task τ3 for which the lower prioritized task τ2

is waiting.

Traditional: The syscall set_event is called by task τ3. This results into a jump to the OS

that does its management work. Due to the fact, that task τ3 executes a syscall notifying

task τ2 with a lower priority, an OS-PI is the consequence. Furthermore, task τ1’s deadline

is already violated.

EventIRQ: EventIRQ adds the triggered task τ′ = τ2 to the pending task list φ. EventIRQ

checks the priorities and detects that the currently running task’s priority prun is higher

than the triggered tasks priority p′. Thus, no jump into the OS is performed and an OS-PI

is avoided.

• At time t10, task τ3 starts waiting for the timer event et and the OS schedules task τ2.

• At time t11, task τ2 starts waiting for the timer event et . The OS selects the next task in

the ready queue for processing the task on the core.

Traditional: The OS schedules task τ1, which deadline is already violated.

EventIRQ: The OS schedules task τ0. It satisfies its deadline and continues with its work.

• At time t12 in the traditional interrupt handling approach, task τ0 is scheduled by the

OS and it already missed its deadline because of the previous OS-PI occurrences.

EventIRQ avoids the occurrence of OS-PIs. This not only leads to avoided unpredictable

interruptions of the high prioritized currently running task by lower prioritized tasks, it also

supports the OS to avoid deadline violations that are unacceptable for hard real-time systems.

EventIRQ, which is based on the OS awareness of the mosartMCU, eliminates or at least time

bounds OS-PIs, leading to a more realistic schedulability analysis that now can also consider
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t0

Figure 4.4.: Task executions of four tasks assigned core m0 and m1.

Table 4.2.: Tasks’ WCETs and WCRTs comparison for static and task assigned priority to the master.

core priority static priority (π̃m0
< π̃m1

) task priority (πm = pm,run)
task WCET WCRT WCET WCRT

τm0,4 155.20µs 155.20µs 145.30µs 145.30µs
τm1,3 240.32µs 240.48µs 242.34µs 242.50µs
τm0,1 440.34µs 630.96µs 439.68µs 620.40µs
τm1,2 560.32µs 811.22µs 560.32µs 813.24µs

the OS (see Section 3.3.2). However, not only the OS may produce a priority inversion but also

other layers in the embedded system, such as the SoC bus.

4.4. Priority-Aware SoC Bus

With the priority-aware SoC bus, the priority inversion at the SoC bus layer is eliminated. This

example shows the impact of priority inversion on the SoC bus, through static assigned priorities

to the masters compared to the task priority-aware SoC bus. Figure 4.4 shows for selected tasks

in a multi-core embedded system, the times where the tasks are executing on the computational

units. All four tasks are accessing, while executing on the computational unit, heavily non-local

memory. Thus, the memory access will be routed by the SoC-bus to the destination memory.

Thereby, two of the four tasks are each assigned to different master: On master m0 ∈ M runs

the tasks Tm0
:= {τm0,4,τm0,1} and on master m1 ∈ M the tasks Tm1

:= {τm1,3,τm1,2}. The task

identifier gives the priority, higher numbers for higher priorities; and all tasks are released at

time t0. Table 4.2 lists the WCET (i.e., time on which the task executes on the computational

unit between its release and its end) and the WCRT (i.e., time between task’s release and

its end) of each task for statically assigned core priorities to the masters (with πm0
< πm1

)

and for the priority-aware SoC bus (with πm = pm,run). For the highest prioritized task τm0,4

the WCET and WCRT increase around 6 % due to the priority inversion in the static priority

approach: Task τm0,4 is higher prioritized than task τm1,3; however, the static priority prefer

master m1 and leads to a preference of task τm1,3. Thus, the execution time of task τm0,4

increases, due to the priority inversions; although, according to the priority it must be preferred.
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In the task priority-aware SoC bus, the WCET and WCRT of task τm0,4 are reduced, because

task τm0,4 is not stalled by the lower prioritized task τm1,3. On the other two tasks τm0,1 and

τm1,2 no priority inversion occurs, since the order of the static priority is the same as for the

task priorities. However, in the static priority approach, due to the previous priority inversions,

the lower prioritized task τm0,1’s WCRT is increased because the higher prioritized task τm0,4

was stalled and the whole core m0 was not able to proceed with its work.

If we recall the RM schedulability analysis, the blocking time must be considered because

it reduces the schedulability of the real time system. Therefore, for the priority inversion

caused by the static assigned priorities to the masters, must be considered as blocking time

and therefore reduces the schedulability of the real time system. However, the proposed

priority-aware SoC bus avoid priority inversion on the SoC bus by design; and therefore, it will

not negatively influence the schedulability of the real time system.

Furthermore, a priority inversion would not only prolong the response time of the task of

which a priority inversion occurs, but it would also prolong the response times of the following

tasks. Thus, not only the task on which a priority inversion occurs may violate timing constraints,

the priority inversion may affect also following scheduled task and their time constraints.

4.5. EventQueue with RIC

The RIC concept has been developed based on the proposed priority-aware SoC bus. The

priority-aware SoC bus allows predicting the memory access and the execution time of a RIC

performed on another core. In this section, we evaluate the performance of the EventQueue

instruction by using EventQueue as a RIC.

The EventQueue implements the instruction qwr dst, src1, src2 and stalls the pipeline

as long as the return value is not received, which returns the state of the buffer (i.e., if the

buffer is full or not). Figure 4.5 depicts the execution flow of the qwr instruction initiated by

core1 and executed on core0.

The following list explains the marked times in more detail:

• At time t0, core1 starts a queue write instruction qwr, addressed to the remote core0.

• At time t1, through the memory address, the memory controller recognizes that the RIC

must be performed on the core0. Thus, the memory controller forwards the memory

access to the interconnect. Now, core1 is stalled until the return value is received

(indicated by the signal osaware_WB_stall in core1).

• At time t2, core1’s memory access signals are forwarded to the core0 by the interconnect

logic. The reason for this additional cycle is that the interconnect contains a register to

reduce the longest path.
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t0 t1 t2 t3 t4 t5 t6

11 cycles

Core0

Core1

5 cycles t7

instruction start

return value
received

instruction finish

Figure 4.5.: Example of a remotely executing queue write instruction.

• At time t3, core0 takes over the two arguments and processes the EventQueue approach

(indicated by the acknowledged instruction rem_qwr_valid by rem_inst_ready in

core0).

• At time t4, the EventQueue instruction is ready to continue (after executing 5 cycles).

Then, the buffer status is known by EventQueue that returns the status to the initiator

core core1. Once again, due to the registers, the interconnect requires an additional cycle

to forward the memory access to core1.

• At time t5, the bus control signals are asserted on core1 and the memory controller

detects a RIC, which is the return value of the qwr instruction.

• At time t6, core1 receives the remaining return value (i.e., rem_inst_ready in core1 is

set). Then, an additional pipeline stage is required to store the received value into the

destination register, and at time t7 RIC is finished and core1 is able to resume with the

next instruction.

The execution of a RIC qwr instruction needs 11 cycles in the mosartMCU, where the core

is stalled for 10 cycles. From these 11 cycles, 5 cycles are needed by the qwr instruction itself.

Thus, for all RICs, a RIC adds 6 cycles to the remotely executing instruction if a return value

is defined, otherwise only 3 cycles are added. Through RICs, there is no need for a global

synchronization anymore, because the RIC approach, in combination with the proposed SoC,

performs the RIC operation locally on the core where the data (e.g., event or queue OS instance)
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is resided. Further, EventIRQ and EventQueue RICs are avoiding an unpredictable interruption

of the currently running task by a lower prioritized task. Thus, RIC introduces for multi-cores

an event and queue mechanism that is free of OS-PIs by design, which is an intended aim for

a real-time system. This is achieved by performing the RIC operations simultaneous to the

currently running task, which does not interfere the currently running task on this core.

4.6. Mixed Critical System Use Case

This use case evaluates a mixed critical system (i.e., real-time and non-real-time tasks) in the

mosartMCU with different enabled OS awareness extensions in a single core. The mixed critical

system consists of the taskset T := {τ0,τ1,τ2,τ3,τ4}. The task priorities are ordered according

to their index, where higher index means higher priority. The control system part of the mixed

critical system is a safety-critical part that must keep all time constrains for an accurate control;

the visualization part is the non safety-critical part and visuals user information about the

controller. Figure 4.6 describes the structure of the whole system. Task τ3 is the sensing task,

which periodically senses (Dτ3
= 500µs) the environment and transmits the processed sensor

value to the controller task τ2. The controller task τ2 is an event triggered task, and waits until

input data is transmitted over the IPC channel. Thus, if new data is sensed, the controller task

starts the calculation of the actuating signal, which is sent via an IPC channel to the output

task τ4. Task τ4 is the highest prioritized task in the system and is released each Dτ4
= 133µs.

If no new actuating signals are provided by the controller task τ2, the output task τ4 will

output an estimated output value, which is calculated by the help of the output history. The

output task τ4 also transmits the output value to the controller task τ2, which considers also

the estimated output value on demand. The transmission of the output value is done over

the same IPC channel that the sensing task τ3 uses. Here, the control task τ2 recognizes the

different sources by a flag in the transmitted value. The user task τ1 is not a real-time task

and waits for an event that is triggered by the output task τ4 on each performed output. The

purpose of the user task τ1 is to visualize the output trigger on a user interface (e.g., LCD

or led). Finally, the system instantiates the idle task τ0 with priority pτ0
:= 0. This task is

output τ4
perdioic
safety-critical

sensing τ  3
periodic
safety-critical

user τ  1
event triggered
non safety-critical

controller τ  2
event triggered
safety-critical

idle τ  0

IPC IPC
event

Figure 4.6.: Software architecture of the mixed critical system use case.
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Figure 4.7.: Number of context switches for the first 10 ms.

instantiated by the OS at startup, and is scheduled by the OS if no other task has to perform

operations on the computational unit.

In the mosartMCU, we measured the number of context switches, the stack consumption, the

computational load of every task, and the computational load of the OS. All of the measurements

have been executed once with no OS awareness extensions, with enabled MultiStackMMU

only, with enabled EventIRQ and EventQueue only, and finally with all enabled OS awareness

extensions. Remark, MultiStackMMU extends StackMMU with an automatic page allocation

and deallocation one after another; thus, no specific compiler is required anymore.

Figure 4.7 depicts the number of context switches (i.e., meaning a jump from a task to the OS

and back) of the mixed criticality system for the first 10 ms after system start. With EventIRQ

and EventQueue enabled, the number of context switches reduces from 106 to 68, which are

36 % less. As already demonstrated in the EventIRQ evaluation (see Section 4.3), EventIRQ

prevents context switches caused by IRQs or software events that would lead into an OS-PI.

EventQueue is using the EventIRQ for reaching the same property; thus, it will also avoid

context switches that would result in an OS-PI.

Without MultiStackMMU (i.e., None and EventIRQ/EventQueue), the OS initializes an in-

dividual stack for every task at the task initialization. Thus, the stack memory allocation

is constant for these approaches. MultiStackMMU uses pages and allocates them only on

demand. However, it also requires some additional memory for handling the PP-LUT in the

TCBs. Nevertheless, in this use case as depicted in Figure 4.8, the currently used stack mem-

ory U(t, page_size) plus the memory needed for the PP-LUTs (i.e., enabled MultiStackMMU)

is lower than the totally allocated stack memory S̃ of the individual stack memory approach
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Figure 4.8.: Sum of all task’s stack allocations as excerpts for the first 3 ms.

for every task. Thus, MultiStackMMU reduces for this system the required stack memory by

around 22 % for the specific measured time.

MultiStackMMU has an impact on the performance, because the stack growth and shrinkage

operations allocate and deallocate the pages one after another. Thus, MultiStackMMU needs

more cycles to increase or decrease the stack memory compared to the traditional approach.

This behavior can be seen in the load on the computational unit, depicted in Figure 4.9. In

cases where the MultiStackMMU is enabled, the computational unit load of the tasks τ1, τ2, τ3,

and τ4 increase. Thus, the computation unit load of the idle task τ0 reduces. MultiStackMMU

increases the computational demand, but also reduces the stack memory as shown in Figure 4.8.

Therefore, this trade off must be contemplated for every system. MultiStackMMU performs

predictably by design if the underlying memory access architecture executes in a predictable

time, as in the mosartMCU. EventIRQ and EventQueue have the goal to avoid unpredictable

interruptions of high prioritized task by lower prioritized tasks, i.e., to avoid or time bound

OS-PIs and to avoid unnecessary context switches. The avoided context switches can be seen

in the load evaluation, because with enabled EventIRQ and EventQueue, the computation unit

load of the OS is reduced.

We investigated this use case scenario also with longer execution times, and all measurements

showed the same behavior.
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Figure 4.9.: Average load for the tasks and the OS.

4.7. Resource Consumption

The last part of the evaluation investigates the resource consumption of the mosartMCU in a

Xilinx Artix 7A100T [122] FPGA by using the Xilinx Vivado 2017.4. For the mosartMCU-OS

memory consumption evaluation, the RISC-V gcc compiler (build on 24th January 2018) is

used for different enabled OS awareness extensions. Table 4.3 lists the resource utilization of a

single core mosartMCU without OS awareness support, with EventIRQ and EventQueue, with

StackMMU and CoStack, and with all OS awareness extensions enabled. The Lookup Tables

(LUTs) and Flip Flops (FFs) utilization increase with more enabled extensions. The reason for

this is that internal states must be saved and logic is required for handling all those extensions.

This also affects the maximal frequency that decreases with more enabled resources. On one

hand, the increasing logic results in longer paths in the FPGA. On the other hand, StackMMU

is implemented in the already longest path of the computational unit. An additional pipeline

stage would help to reduce the longest path and an additional register for the internal memory

would improve all the maximal achievable frequencies. Through the additional LUTs and

Table 4.3.: Synthesis results of the mosartMCU without and with OS-aware extensions.
Extensions None EventIRQ & EventQueue StackMMU & CoStack All

LUT slices 5214 6529 (+25 %) 6749 (+29 %) 7649 (+47 %)

FF slices 3802 4433 (+17 %) 4153 (+9 %) 4717 (+24 %)

max. frequency 66.32 MHz 58.12 MHz (88 %) 41.49 MHz (63 %) 39.31 MHz (59 %)

Dynamic power 29 mW 30 mW (+3 %) 32 mW (+10 %) 33 mW (+14 %)

.text 11 416 Byte 11 712 Byte (+3 %) 11 892 Byte (+4 %) 12 152 Byte (+6 %)

.data 2816 Byte 2784 Byte (-1 %) 2816 Byte (+0 %) 2784 Byte (-1 %)
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Table 4.4.: Synthesis results of the mosartMCU with different number of cores.
Number cores 2 4 8 16

LUT slices 17 078 34 059 (×1.99) 74 168 (×4.34) 162 664 (×9.52)

FF slices 9182 18 307 (×1.99) 36 870 (×4.02) 74 318 (×8.09)

max. frequency 29.55 MHz 27.97 MHz (95 %) 27.33 MHz (92 %) 25.11 MHz (85 %)

Dynamic power 112 mW 230 mW (×2.05) 458 mW (×4.09) 897 mW (×8.01)

FFs the dynamic power consumption is slightly increased. Nevertheless, StackMMU’s power

consumption only slightly increases compared to other address virtualization approaches (e.g.,

MMU [66], with a power consumption of around 50 % of the whole unit). Comparing the

mosartMCU extensions with other solutions that implement the OS fully or partly in hardware,

the mosartMCU resource utilization does not depend on the number of OS instances (e.g., tasks,

events, etc.). This is achieved with the knowledge of the internal OS data structures by the

mosartMCU and this makes the mosartMCU ready for future dynamic embedded computer

systems.

Table 4.4 lists the resource utilization and maximal reachable frequency for a multi-core

system with different number of cores and all OS-aware extensions enabled. The LUT and FF

utilization increases almost linearly with the number of cores. It is not exactly linear because

the interconnect’s complexity is O (#M ·#S), which influences the whole complexity nonlinearly.

The interconnect is also the main reason why the maximal reachable frequency is reduced

with increasing number of cores, since it has to check more concurrently accessing masters for

more slaves. The power utilization of the multi-core however increases linearly depending on

the number of cores. With the usage of another interconnect approach, which longest path

complexity growths linear (e.g., Network on Chip (NoC)), the mosartMCU may have a linear

utilization (depending on the number of cores), and may lead to a higher maximal reachable

system frequency.
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This chapter concludes this doctoral thesis: it gives a summary of the contributions, discusses

remaining issues, and shows potential future work.

5.1. Conclusion

This doctoral thesis presented the mosartMCU, an OS-aware MCU for real-time embedded

multi-core systems. The OS awareness is reached by giving the MCU the awareness of the OS

data structures and by enabling the MCU to access (read and write) the OS data structure. With

an additional connection to the data memory, the OS awareness works independently from the

currently executing task, leading to a real parallel execution of the OS-aware functionalities.

This thesis started with motivating the need for new MCU concepts, then related works were

presented that show fully or partially hardware implemented OSs. All these approaches restrict

the number of OS instances due to the static hardware. This restriction is avoided by the

mosartMCU presented in Chapter 3, which additionally covered the basic idea of OS awareness

in hardware and showed novel approaches that use the OS awareness in the mosartMCU.

StackMMU is the first presented approach that realizes a shared stack memory based on

pages, which are allocated to the task on demand. The page base addresses are stored on

the task’s TCB, which is deterministically accessed by the OS awareness in the mosartMCU.

StackMMU is able to detect an out of stack memory condition, which the presented handling

strategy CoStack is able to handle. In CoStack, a task voluntarily frees its collaborative stack

memory if a higher prioritized task is blocked due to an out of stack memory condition.

The OS awareness in the mosartMCU is not only limited to efficient stack memory handling,

it also allows avoiding or at least time bounding priority inversions caused by IRQs. With

EventIRQ, all the IRQs are mapped to OS events. This hardware extension is responsible for

handling a triggered IRQ for which a task is waiting. Through the priority awareness of the

triggered task and the currently running task, EventIRQ interrupts the currently running task

only if its priority is lower than the priority of the triggered task. Otherwise, the IRQ will

be handled later by deferring it. EventIRQ works completely simultaneously to the currently

running task. Based on EventIRQ, EventQueue has been developed. EventQueue transmits

data to a destination task in hardware. Based on the EventIRQ approach, the currently running

task is only interrupted if the triggered task (triggered by EventQueue through an event) allows
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it by considering the priorities. Otherwise, the handling is deferred and an unnecessary jump

into the OS, which would result in an OS-PI, is prevented.

With a task priority-aware SoC bus, the mosartMCU is made ready for multi-cores. The

underlying protocol uses the task priority for arbitrating a simultaneous access to the same

slave. No additional wires are required for this purpose. Upon the task-aware SoC bus, RIC is

presented. Based on the idea of an RPC, RIC executes an instruction on another core. This

leads to a shifting of a usually globally handled work to a locally one; thus, RIC reduces the

complexity for handling remote work.

The evaluation showed results of all the mentioned OS-aware extensions with use cases. The

evaluation shows, for StackMMU, that depending on the goal the page size must be defined (i.e.,

speed vs more economical memory usage). The other extensions show that the performance can

be increased and the extensions can avoid the occurrence of OS-PIs. All these extensions aim to

make the schedulability analyses realistic, and not as pessimistic as in the past, by additionally

considering the OS and IRQs. The last part of the evaluation shows how the extensions affect

the resource requirements in an FPGA and how they influence the maximal reachable frequency

and power consumption. A further investigation shows how the mosartMCU scales with all

enabled extensions in a multi-core.

5.2. Remaining Issues and Future Work

The mosartMCU is not perfect yet. Some remaining issues are discussed here including future

works on how to solve these and which additional extensions could be implemented to the

mosartMCU.

One remaining issue is the sequential handling of OS-aware functionality in the mosartMCU.

It could happen that an IRQ is not handled immediately due to the handling of a previous

triggered IRQ, although the priority of the new IRQ is higher. Therefore, EventIRQ does not

eliminate the OS-PI problem, but limits it to an upper time bound. To avoid completely OS-

PIs, a future work could investigate the usage of out-of-order concepts for all the OS-aware

functions in the mosartMCU. This may lead to a more complex control unit that may lead to

a higher resource utilization. However, the out-of-order concept has the possibility to avoid

completely an OS-PI caused by an IRQ. A weaker solution would be to use the idea of Intel’s

Hyper-Threading. There unused internal resources can be used by the next executing OS-aware

functionality leading to a better resource utilization. However, also here the resource utilization

increases.

The scalability of the mosartMCU is primarily restricted by the interconnect, that is based on

a crossbar switch with non-linear complexity. NoCs are constantly researched and are evermore

used in today’s embedded systems. Further, the real-time behavior of NoCs that possibly may
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avoid priority inversions on the interconnection level is researched. Therefore, a future work

could adapt the mosartMCU to a task priority-aware NoC.

The OS awareness does not limit the OS-aware functionalities to the proposed extensions in

this thesis. According to that, another work could be to implement resource management in

hardware by using the OS awareness idea of the mosartMCU. Therefore, a resource management

protocol could be processed in hardware, simultaneously to the current execution flow. Another

work could be to develop new lock-free algorithms with the idea of OS awareness in mind,

for further reducing possible priority inversions for synchronization primitives with locks.

Furthermore, the OS awareness could open new possibilities to implement security features

into an embedded real-time system.

Another work could be, to develop and to perform a schedulability analysis on a computational

unit with OS awareness, such as the mosartMCU. Thus, the new schedulability analysis may

consider the whole OS and all IRQs; whereby, this thesis gives already the foundation for it.

Finally, a new development process can be investigated, where developing an OS and an

MCU in one company, with developers coming from different fields. This starts by defining new

supported extensions and goes up to an automatic adaptation of the hardware through an OS

change (by using reconfigurable logic) and/or vice versa.
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Abstract—Temporal predictability is a crucial requirement
for hard real-time applications. Thus, deterministic software
execution flows are commonly aspired to achieve that require-
ment. However, as an apparently unavoidable contradiction to
this approach in today’s embedded systems, both Interrupt
Requests (IRQs) and concurrently running tasks are also
required to react to dynamic environments and to allow the
modular composition of complex software. These concepts
operate non-deterministic and thus interleave unpredictably
the program flow leading to timing violations. Even worse,
determinism is initially introduced at application level, but
affected by task scheduling at Operating System (OS) level,
and violated by IRQs at hardware level introducing the so-
called Operating System Priority Inversion (os-pi) problem: A
high priority control task can easily be preempted by an IRQ
that is eventually relevant for just a lower prioritized task.
Thus, we propose a new hardware extension to avoid os-pi by
unifying the concepts and mapping all IRQs to regular OS
events. Since the extension keeps track of task priorities and
event dependencies, an interrupt will only be executed if the
priority of the task waiting for the triggered event is higher
than the priority of the currently running task.

Keywords-real-time and embedded systems; operating system
awareness; interrupt handling; FPGA implementation

I. INTRODUCTION

Since many years, there has been ongoing research in the

field of real-time systems. New techniques and approaches

have been invented to increase real-time capability. Most of

these inventions affect the Operating System (OS), which is

responsible for scheduling tasks adequately to meet their

specific timing requirements. To simplify the design and

implementation of real-time applications, modern OSs sup-

port a multitude of features, resulting in significant admin-

istration overhead. As a particular challenge for meeting

real-time constraints in modern embedded systems, software

became much more complex in general (e.g., internet of

things or automotive domain). There, the OS has to support

high modularity at run-time, has to react dynamically to

the environment, and still has to satisfy all the real-time

requirements.

The event-driven programming paradigm is a well-known

approach and is supported by many embedded OSs (e.g.,

[1]–[3]) to interact with the environment, which is accessible

through so-called Input/Output (I/O) ports. To be responsive

to external stimuli, input ports commonly trigger an Interrupt

Request (IRQ). If the IRQ handling is enabled, the Central

Processing Unit (CPU) will immediately interrupt the current

program flow and will execute the corresponding Interrupt

Service Routine (ISR), which is implemented in software.

Finally, the OS is responsible for scheduling a task waiting

for its corresponding event, and eventually to react within a

specific upper time bound, called deadline.

However, the unspecific interruption of the current pro-

gram flow interleaves any other parts of the software (i.e.,

any task or the OS). This behavior is inherently caused by

the non-overlapping execution priorities of tasks (lowest),

the OS (medium), and the IRQs (highest) [4]. Therefore,

programming manuals recommend to keep the ISRs as short

as possible, and to forward the corresponding work to a

task [5]. Nevertheless, for each IRQ and independent from

the currently running task’s priority, the ISR will cause two

context switches: First, storing run-time information of the

running task before executing the ISR; second, restoring the

context of another or the same task after executing the ISR,

otherwise the ISR would destroy the context of the currently

running task.

To avoid such non-deterministic task switches, developers

tend to use time-driven OS concepts (e.g., [6], [7]). Here, the

input ports are explicitly and regularly checked (“polled”)

in software to detect and react on environmental changes.

The responsiveness of this approach and its support for

modularity is not as good as for event-driven OSs, but

the software execution remains predictable; therefore, it is

easier to prove it for real-time demands with a scheduability

analysis [8].

To provide the convenience of event-driven programming

and task modularity while improving the problem of non-

determinism at the same time, we suggest moving some parts

of a traditional OS into hardware. The contributions of this

paper are the following:

• Priority unification of tasks, IRQs, and the OS.

• Mapping of all IRQs to OS events trough a hardware

extension with an internally used linked list.

• Inclusion of timeout handling and event triggered by

tasks.

The rest of the paper is organized as follows. Section II
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illustrates in detail the Operating System Priority Inversion

(os-pi) problem, and Section III shows our approach to

solve that problem. Implementation details are addressed

in Section IV, and Section V shows the evaluation using

our research project mosartMCU in combination with our

mosartMCU-OS. Section VI compares similar approaches

with our proposed solution. Lastly, Section VII concludes

this work.

II. OPERATING SYSTEM PRIORITY INVERSION

Today’s state-of-the-art CPUs feature an interrupt con-

troller that could interrupt the current program flow in case

of a triggered IRQ. Due to independent priority levels, IRQs’

priorities exceed the tasks’ priorities. Thus, it can easily

happen that a higher prioritized task is preempted because

of an IRQ that is meant to trigger a lower prioritized task.

This occurrence is called rate monotonic priority inversion

[5], which is comparable to the problem of arbitrary resource

sharing as presented in [9].

IRQs and shared resources are not the only cause for

priority inversions. If a task calls an OS related function

(i.e., syscall), most OSs leave the so-called user mode

and execute the syscall in the kernel mode, above all task

priorities. Thereby, the switching into another mode leads

to save and restore the task context. That is required for

restoring the task on the preempted program point with all its

immediate values if the CPU does not supply own registers

for different modes. To support event-driven programming,

the OSs has to support the set event syscall. Thereby, the

OS is reactivating a task that is waiting for a corresponding

event. However, the setting of the event could be postponed

if a task waiting for that event has a lower priority than the

currently running task’s priority, due to the higher priority

of the currently running task. However, in state-of-the-art

OSs the set event syscall is immediately executed. Thereby

the OS will preempt the currently running task although the

event meant to trigger a lower prioritized task.

The ISR and OS cause kinds of priority inversions; thus,

we call this phenomenon the Operating System Priority

Inversion (os-pi) problem.

Next, we illustrate the os-pi problems in an example.

Assuming four tasks τ0, τ1, τ2, and τ3 arranged in increasing

priorities and an OS with the priority above all tasks. Apart,

there are two events et, and es for which the tasks may wait.

Fig. 1 shows the example execution flow and the description

below explains the marked points:

• At time t0, t1, and t2 the tasks τ3, τ2, and τ1 start

waiting for the events et, es, and et, respectively. Those

waiting result in syscalls and the OS schedules the

next highest prioritized ready task. Hence, task τ0 is

scheduled.

• At time t3, the timer IRQ is triggered and the associated

ISR is executed. The ISR sets the event et to notify the

waiting task τ3. Then, the OS is running and schedules

Figure 1. Illustration of the os-pi problem with four tasks and two events.

task τ3, because of the highest priority of all ready tasks

(i.e., τ0 and τ3).
• At time t4, once again the timer IRQ triggers, leading

to the ISR and OS execution. Now, the priority of the

currently running task is higher than the priority of the

waiting task for this event (i.e., p(τ1) < p(τ3)). Thus,

an os-pi occurs.

• At time t5, task τ3 is calling a syscall to set the

event es (e.g., setEvent(es)). The event is meant to

signal the lower prioritized task τ2. The syscall causes

a switch into the OS and leads to another os-pi.

To counteract the above mentioned os-pi problems we

propose to introduce task awareness into hardware. Before

we present our hardware extension, we first define the

underlying system and assumptions:

We are assuming a single core system with an OS. The OS

is only executing in the privileged kernel mode, processes

there the OS functionalities (i.e., syscalls), and maintains

the scheduling of tasks. A task τ ∈ T is a part of an

application which processes user programmed code. Each

task τ possesses a static priority p(τ) ∈ N and the OS

schedules a task according to its priority and its task state.

The task state can be either running, ready, or waiting.

Running means that the task is executing on the CPU or

scheduled for running, while the OS is executing. A task

is ready, if it is allowed to be executed on the CPU, but its

priority is lower than the currently running (scheduled) task.

Waiting tasks are waiting for synchronization primitives, like

an event or resource.

An OS event e ∈ E is a synchronization primitive for

that a task τ may wait. This enables the synchronization

of tasks to each other, and for supporting the event-driven

programming paradigm. If a task τ waits for an event e,

then the task will be inserted into the corresponding event

queue qe:

∀τk, τl ∈ T ∧ τk �= τl ∧ p(τk) ≥ p(τl) :

qe := (. . . , τk, . . . , τl, . . .)
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Figure 2. The system architecture to support the EventIRQ approach.

The event queue qe is ordered according to task’s priorities

and the head task he := qe,0 represents the highest priori-

tized task in that queue. The event e may be triggered by

another task or IRQ, leading the OS to remove (only) the

head task he from the event queue qe and to insert it into

the ready queue. This queue movement results in a task state

change from waiting to ready, or even running if the task

became the highest priority of all tasks in the ready queue.

The assumed system architecture is depicted in Fig. 2.

Here, the CPU possesses a connection to the instruction

memory (i.e., ROM) and twice times a connection to the

data memory (i.e., RAM). The data memory possesses a

dual-port memory connection, enabling a concurrent access

to the data memory. The CPU controls both data channels

independently to each other. Channel A is used for the com-

mon data memory access and channel B for OS-awareness

including our proposed EventIRQ.

III. EVENT BASED PRIORITY AWARE IRQ HANDLING

A. Overview

The goal of our approach is to avoid the os-pi problem.

This occurs, if the running task is interrupted by an IRQ

or syscall triggering an event that is addressed to a lower

prioritized task. Thus, the basic idea is to map the IRQs

to OS events. Furthermore, the event notification has to be

postponed until the os-pi problem no longer exists. Thereby,

the CPU is extended by some OS-awareness and is aware

of task priorities and triggered events. It is also aware of

interpreting and modifying internal OS data structures. For

each event e ∈ E an event queue qe is used. This event queue

contains a double linked list of tasks, which are ordered by

their priority that are waiting for a triggered event e. In

order to realize the linked list, each task τ ∈ T contains a

reference to the previous prevτ ∈ T and to the next task

nextτ ∈ T in the Task Control Block (TCB). If the event

e is triggered, the head task he in the event queue qe is

removed and handled as proposed in the next sections.

B. Basic Concept

We are now looking into the basic EventIRQ concept,

which only handles IRQs triggered by the hardware (e.g.,

USART, GPIO, etc.), except the OS timer IRQ for maintain-

ing time awareness. The hardware extension keeps track of

the currently running task’s priority prun := p(τrun) where

task τrun ∈ T is the currently running task on the CPU.

Figure 3. Example of the basic concept for a triggered IRQ i0 ∈ I (gray
colored indicates a read or write access to the channel B data memory).

For each hardware IRQ i ∈ I , with I := {i0, ..., i|I|−1},

an event ei ∈ E is defined in software. All events are

managed in a writable event vector table, similar to the

interrupt vector table in common interrupt systems. The

event ei ∈ E in the event vector table is pointing to the

head task hei of the event queue qei . If no task is waiting

for an event, the head task hei is empty; thus, also the

corresponding pointer in the event vector table is empty (i.e.,

∅). If the event ei triggers task τ at time

t̃τ,ei := {t ∈ N | τ ∈ T is triggered by ei ∈ E},

the task τ , which is the head task hei of the event queue qei ,

is appended to the pending task list φ:

∀τk, τl ∈ T ∧ τk �= τl∃ek, el ∈ E ∧ t̃τk,ek ≤ t̃τl,el :

φ := (. . . , τk, . . . , τl, . . .).

This way the pending task list φ keeps track of the chrono-

logical order of triggered tasks. The pending task list tail

pointer ptt := φ|φ|−1 points to the last element in the

pending task list φ, which is required for appending the

tasks to that list.

Next, and in Fig. 3, we are presenting the steps that the

hardware extension will perform if an IRQ is triggered. First,

the hardware extension performs a read phase and afterwards

a write phase:

1 If an IRQ i ∈ I is triggered, the hardware extension

internally saves the triggered task τ ′, which is the head
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task hei in the event queue qei . The EventIRQ accesses

it with the event vector table.

τ ′ := hei

2 The next waiting task for the event ei (i.e., qei,1) is

read if the event queue qei is not empty. We define the

next waiting task τnext ∈ T as:

τnext :=

{

nextτ ′ if τ ′ �= ∅

∅ if τ ′ = ∅

3 The triggered task’s priority p′ ∈ N of the triggered

task τ ′, which is located with a static offset in the TCB,

is read. If no task was triggered (τ ′ = ∅), the priority

will be set to the lowest priority.

p′ :=

{

p(τ ′) if τ ′ �= ∅

0 if τ ′ = ∅

4 The event vector table of event ei is updated with the

next waiting task τnext that becomes the new head of

the event ei.

5 Next, the triggered task τ ′ is appended to the pending

task list φ if the triggered task τ ′ is not ∅: First, the

previous pointer of the triggered task is updated with

the old pending task list tail pointer:

prevτ ′ = ptt if τ ′ �= ∅

Second, the pending task list tail pointer ptt is updated

with the triggered task τ ′:

ptt = τ ′ if τ ′ �= ∅

6 The triggered task τ ′ is now the tail of the pending task

list φ; therefore, the next pointer of it must be adapted:

nextτ ′ = ∅ if τ ′ �= ∅

7 The event queue qei now points to the next task τnext,

which is the new head of the event queue. Thus, the

previous pointer of the next task τnext must also be

adapted:

prevτnext
= ∅ if τ ′ �= ∅

8 Finally, the running task τrun will be preempted, if and

only if (iff) the triggered task’s priority p′ exceeds the

currently running task’s priority prun:

iff(prun < p′) → throw interrupt

The OS has to perform some remaining steps to finalize

the basic concept. On an interrupt, the OS has to handle it

depending on its cause:

• If an interrupt is triggered by an IRQ, the OS removes

the last appended triggered task τ ′ from the pending

task list φ and inserts it into the ready queue. The

interrupt is only triggered by the hardware extension

if the last appended task to the pending task list φ has

a higher priority than the currently running task τrun.

Therefore, the OS will also schedule the last triggered

task τ ′ before the OS returns. To avoid race conditions

on the pending task list φ (i.e., a hardware IRQ triggers

while the OS is running), the hardware extension is only

active if the CPU runs in the user mode.

• On a syscall, the execution mode is moved into the

kernel mode running the OS. The syscall functionality

probably changes the running task τrun; and thus, the

currently running priority prun. Thereby, it is possible

that some postponed tasks from the pending task list φ

must be caught up. Therefore, the OS removes each

task from the pending task list φ and insert them into

the ready queue. The OS now schedules the tasks from

the ready queue, according to its scheduling policy.

C. Extended Concept

Here, we show the extensions required to handle the timer

for the OS and to avoid the os-pi problem by setting an event

for a lower prioritized task.
1) Timeout: In an OS API without temporal awareness

for syscalls, the basic concept would be sufficient. However,

if a task is allowed to wait for an event up to a specific time t

(e.g., wait(e, t)) or for a delay d (e.g., sleep(d)), the

basic concept is not sufficient anymore. Thereby, if a task τ

is waiting, because of the reasons mentioned above, the OS

will save the reactivation time t̂τ ∈ N in the TCB.

In our approach, we add time awareness to the OS by

using an integrated hardware timer, which is supported by

almost all of today’s available CPUs.

The OS manages syscall timeouts with a double linked

timeout queue qet :

∀τk, τl ∈ T ∧ τk �= τl ∧ t̂τk ≤ t̂τl :

qet := (. . . , τk, . . . , τl, . . .)

Thereby, the tasks are not sorted by priorities as in

the event queues from the basic concept, but according to

increasing timeouts.

The timer event et is located at the timer IRQ position

in the event vector table. Now, tasks could be at the same

time in the timeout queue qet and in an event queue qe,

waiting for the timeout event et and a regular event e ∈
E \ {et}, respectively. To become member of the timeout

event queue qet , the TCBs possess two additional pointers

referencing the previous timeout task tprevτ ∈ T and the

next timeout task tnextτ ∈ T .

The next part shows the extension to support timer events:

• In the read phase the reactivation time t̂ of the next

waiting task τnext is read. This time sets the next

compare time for triggering the timer IRQ, in order

to signal the next timeout. Due to the ordered timeout

queue, the next waiting task τnext’s reactivation time

t̂τnext
is the closest timeout of all tasks in the timeout

queue qet .
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• In a configuration bit field icfg each IRQ is con-

figured to indicate either a timeout event et or a

regular event e �= et. For the timeout event, instead of

reading and updating prevτ and nextτ , the hardware

extension is reading and updating tprevτ and tnextτ ,

respectively.

To allow a task to wait simultaneously for a regular

event and for a timeout event, the OS has to perform some

additional work to maintain the correct functional behavior.

In the basic concept, the OS catches up all tasks in the

pending task list φ by removing them and inserting them into

the ready queue. However, if a task τ is located twice in the

pending task list φ (i.e., triggered regular event and timeout

event), the OS would insert the task τ twice times into the

ready queue. Further, it may overwrite some task information

(e.g., return values). Therefore, the OS is traversing the

pending task list φ from the head to the tail and catches

up all triggered tasks. The OS checks if the task is also part

of another queue/list. If so, the OS removes the task also

from the second queue/list, which could be either an event

queue, timeout queue, or the pending task list φ. For the

latter, in case that the timeout event et was triggered before

the regular event e ∈ E \ {et}, the head task he would

consume this event instead. For that, a chronological order

of the pending task list φ is required.

2) Set Event functionality: The basic and the timeout

extension showed an approach to avoid the os-pi problem

caused by IRQs. To avoid the os-pi problem for the set event

syscall an internal process for handling software events has

to be triggered. The software event es ∈ E \ {ei | ∀i ∈ I}
is still pointing to the head task hes of the event queue qes .

To set a software event es, a new hardware instruction or a

memory mapped register uses the address of the software

event es and triggers the process of the proposed basic

concept. Instead of updating the event vector table, the

passed address has to be updated.

D. Properties

In this section, we are analyzing some properties of our

EventIRQ, with the assumption that an IRQ is triggered

while the CPU runs in the user mode.

Lemma 1: A task is never interrupted by an event addressed

to a lower prioritized task.

Proof: Our hardware extension adds priority awareness and

it knows the priorities of the currently running task and

the tasks waiting for a triggered event. By comparing both

priorities, the hardware extension interrupts the currently

running task iff the priority of the waiting task is higher.

�

Theorem 2: The number of context switches in the Even-

tIRQ approach are less than or equal to the traditional IRQ

handling approach.

Proof: Follows from Lemma 1, a task will be interrupted

only if the priority allows it. Thus, if an event is addressed to

a lower prioritized task, the interruption, including a context

switch, is avoided. If the priorities of the waiting tasks are

always higher as the currently running task, each context

switch will be executed. Therefore, the maximum number

of context switches is bounded to the number of context

switches in the traditional IRQ handling approach. �

Lemma 3: The response time of a single triggered IRQ is

performed in a constant latency.

Proof: On an IRQ, our hardware extension is immediately

executing the event handling in hardware, depicted in Fig.

3. It is a state machine and always executes the same

sequences; thus, in a constant time. �

Theorem 4: On interleaving IRQs, the handling of the

highest prioritized IRQ is started within an upper time

bound.

Proof: Following Lemma 3, the IRQ is handled in a constant

time. If IRQs are triggered on the same time, the higher

prioritized IRQ will be handled first; thus, the handling time

is the same as in Lemma 3. If the higher prioritized IRQ is

triggered one cycle after the triggered lower prioritized IRQ,

the handling of the lower prioritized IRQ is first finished in a

constant time; and then, the higher prioritized IRQ is going

to be handled immediately afterwards. �

IV. IMPLEMENTATION

We implemented the extended concept for our research

platform mosartMCU running the mosartMCU-OS. Next,

we show the relevant implementation issues.

A. mosartMCU

The mosartMCU1 project aims to implement OS aware-

ness into embedded, mainly real-time, and multi-core sys-

tems. The MCU is based on the open RISC-V [10] architec-

ture, maintained by the University of California, Berkeley.

They are offering an open source CPU implementation

in Verilog, named vscale2, which is the base for our

mosartMCU. It implements the 32 bit integer and multipli-

cation/division instructions [11]. The memory bus is 32 bit
wide and the memory access is naturally aligned to the

used data type. The implementation provides a register file

with 32 registers, whereas the compiler does not touch

the register tp. This register is thought for indicating the

currently running task (they are using the term thread) by the

OS. The specifier defines three different operating modes,

whereas the mosartMCU supports only the non-privileged

user mode and the privileged kernel mode. These operating

modes define permissions for some instructions and for the

control status registers (CSRs). These registers are used to

get information from the CPU and to configure it.

1Multi-Core Operating-System-aware Real-Time MCU
2https://github.com/ucb-bar/vscale
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B. The hardware extension

The hardware extension is able to operate all proposed

approaches in parallel, avoiding the os-pi problem and to

increase the overall performance. Thus, the extension is

using an additional connection to the data memory, beside

the datapath’s data memory access through a dual-port

memory.

To perform the proposed approach, the priority of the

running task τrun has to be known. To make this possible,

on each change of the register tp the hardware extension

automatically reads the priority of the task to which the

register tp points (if it is not null), by knowing the address

offset of the priority in the TCB.

On each IRQ, the interrupt controller sets the IRQ pending

flag for the respective IRQ and passes the flag, along with

the IRQ number, to our EventIRQ. With that information,

the EventIRQ executes the proposed extended concept and

the processed IRQ is acknowledged by clearing the pending

flag. The IRQ is only handled by the hardware extension if

the user operating mode is active. This prevents the handling

of IRQs while the OS is executing. Thus, race conditions

are prevented, because all the OS functionalities are only

running in the kernel mode. Even in modern embedded

systems, interrupt handling is disabled while the kernel is

executing, because this would simplify the operating system

and may improve the kernel because there is no need for

synchronization among ISRs and the OS. Thus, if an IRQ is

triggered while the kernel mode is active, the IRQ will not

be handled until the kernel mode is finished.

The pending task list tail pointer ptt is accessible via

the CSRs. An additional pointer, the pending task list head

pointer pth := φ0 is added, pointing to the head of the

pending task list φ. This pointer supports the OS to traverse

easily the pending task list φ from the head to the tail.

All pointers in the mosartMCU are naturally aligned, what

means that the two least significant bits (LSBs) are always

zero for 32 bit addresses. Therefore, we can use these bits to

add some additional information to the pointers. If an event

is triggered, the configuration bit in the bit field icfg is read

for the corresponding IRQ. This bit is set to the LSB of all

updating pointers, while appending the triggered task τ ′ into

the task pending list φ. This helps the OS to recognize if

the task in the pending task list φ was triggered by the timer

event or by a regular event.

To support the set event functionality, the basic Instruction

Set Architecture (ISA) of the CPU was extended with an

additional instruction. The new instruction is responsible for

setting an event and uses one register as a parameter. The

content of the register is the address of the event, which

should be triggered by the hardware extension.

C. mosartMCU-OS

To support our extended IRQ handling approach, the OS

must be extended to maintain the presented properties in

Section III-D. The OS is only executed if a waiting task

was triggered or the running task called a syscall and the

priorities allow it. Firstly, the OS has to save the context of

the currently running task. Secondly, if the OS was called by

a higher prioritized waiting task, the OS removes only the

last appended task in the pending task list φ. This would

reduce the latency of the reactivation of a triggered high

prioritized task. However, if the OS was called by a syscall,

first the OS executes the syscall. Second, the OS catches up

all the tasks located in the pending task list φ. Finally, the

OS does the remaining administrative work and restores the

context of the scheduled task according to the OS scheduling

policy.

V. EVALUATION

For our implementation, we investigated the behavior and

the utilization of our EventIRQ. For the evaluation, we used

the Nexys 4 DDR board from Digilent with a Xilinx Artix 7

Field Programmable Gate Array (FPGA).

A. Behavior

The first part of the evaluation shows the behavior of a use

case, shown in Fig. 4, with four tasks T := {τ0, τ1, τ2, τ3}
arranged in increasing priorities and two events E :=
{es, et}, running in the mosartMCU. Fig. 4a and Fig. 4b

show the task scheduling of the traditional IRQ handling

and set event approach. Fig. 4c and Fig. 4d show it for

our proposed EventIRQ. Next, the market points for both

approaches are explained.

• At the times t0, t1, and t2 the tasks τ3, τ2, and τ1 are

waiting for the timeout event et, respectively. Thus,

task τ0 is scheduled.

• At time t3, the timer event et is triggered:

Traditional: Therefore, the ISR and OS are executed

and the OS schedules task τ2.

EventIRQ: Therefore, the OS is executed and schedules

task τ2.

• At time t4, the timer event et is triggered, whereby this

event is addressed to task τ1 that is lower prioritized as

the currently running task τrun = τ2:

Traditional: The ISR and OS are called and preempt

task τ2, leading to an os-pi.

EventIRQ: The EventIRQ logic adds the triggered

task τ ′ = τ1 to the pending task list φ and does not

interrupt the currently running task. Thus, an os-pi is

avoided.

• At time t5, the timer event et is triggered. This is

addressed for the higher prioritized task τ3; therefore,

the OS will schedule this task.

• At time t6, task τ3 waits for the timer event et; thus, the

scheduler is scheduling task τ2 because of the highest

priority of all ready tasks.
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(a) Schematic execution trace of the traditional approach. (b) Measured execution trace of the traditional approach.

(c) Schematic execution trace of the EventIRQ approach. (d) Measured execution trace of the EventIRQ approach.

Figure 4. Use case example with four tasks and two events for the traditional and our proposed EventIRQ approach.

• At time t7, task τ2 starts waiting for the software

event es. Task τ1 is scheduled, and has to be finished

within its deadline.

• At time t8, the timer event et is triggered for which

task τ3 waits; thus, it will be scheduled by the OS.

Traditional: Task τ1 is not yet finished with its work

and has to wait to be scheduled by the OS for finishing

it.

EventIRQ: Task τ1 is finish with its work, and started

simultaneously to the triggered event waiting for the

timer event et.

• At time t9, task τ3 sets the software event es for that

the lower prioritized task τ2 is waiting for.

Traditional: The syscall setEvent is called leading to

a jump into the OS, which performs the work there.

Further, task τ1 is not scheduled; thus, its deadline is

already violated.

EventIRQ: The EventIRQ adds the triggered task τ ′ =
τ2 to the pending task list φ. The EventIRQ recognized

that the triggered tasks priority p′ is less than the

currently running task’s priority prun; thus, no jump

into the OS is performed.

• At time t10, task τ3 starts to wait for the timer event et
and the OS schedules task τ2.

• At time t11, task τ2 starts to wait for the timer event et
and the OS schedules the next task in the ready queue.

Traditional: Task τ1 is scheduled and has to finish its

work, whereby its deadline is already violated.

EventIRQ: Task τ0 is scheduled and resumes, whereby

its deadline is satisfied.

• At time t12, task τ0 is able to continue its work.

However, its deadline is already violated because of

the previous os-pi occurrence.

Fig. 4d and Fig. 4b depict internal FPGA control signals,
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which we made accessible for the oscilloscope. Thereby,

we chose a unique priority for each task what allows us to

detect the currently running task with the oscilloscope. The

task signals are only active if the CPU is running in user

mode; otherwise, the OS output signals the execution of the

operating system. The signals es and et present the pending

of the software event and the timeout event, respectively.

The interrupt signal shows the occurrence of an interrupt,

which is triggered only through the correct priorities as

mentioned in Section III. Finally, the signal mem en shows

the activity on the channel B data memory port. It shows an

activity while tasks are running as well as the OS is running.

First, the hardware extension is performing the mentioned

steps on a triggered IRQ. On the latter, the head of the

ready queue is changed, consequently also the register tp,

which triggers the reading of the currently running task’s

priority prun by the hardware.

B. Utilization

The second part of the evaluation addresses the logic

utilization and maximal achievable frequency of the FPGA

hardware as well as the memory requirement for the mod-

ified OS. Table I compares the original mosartMCU and

mosartMCU-OS with the extended versions that includes

the additional requirements for the dual-port RAM. Since,

the used FPGA possess only dual-port memory, only the

additional connections to the second port is required by the

extended version.

Table I
RESOURCE UTILIZATION OF THE ORIGINAL AND THE EXTENDED

VERSION.

Utilization
MCU OS

LUTs FFs max. freq. ROM RAM

Original 2773 2019 73.180MHz 6636byte 20 byte

Extended 3546 2385 72.244MHz 6680byte 144 byte

The hardware extension increases the number of LUT

slices by 773 and FF slices by 366. The LUT slices increase,

because of calculations (e.g., offset addresses in the TCB)

and the increase of FF slices is caused by the need of

storing run-time information. For the timing, the extensions

reduces the maximal achievable frequency from 73.180MHz
to 72.244MHz witch is negligibly small. The OS ROM

memory increases by 60 byte and 124 byte for the RAM.

The software usage increases mainly because of the catch

up code for the pending task list φ and the interrupt vector

table is moved from the ROM section to the RAM section

as the event vector table.

The above mentioned resource requirements stay constant,

independent of the number of task and event instances,

because the proposed extension does not statically assign

tasks and events to the hardware. Only the number of

interrupts would influence the size of the event vector

table; and thus, the OS resource requirements. However, the

number of interrupts would also influence the OS resources

of the original implementation (i.e., interrupt vector table).

VI. RELATED WORK

Renesas [12] offers an MCU with hardware support for

almost all uC/OS III [3] API calls. The interface to the

OS is reflected in memory mapped registers, and the API

functions are called by reading and writing those registers.

The scheduler, which is also implemented in hardware,

executes a ready task with the highest priority. The action

in case of an IRQ is configurable; thus, the hardware can

choose to wake up a task, abort a waiting task, signal a

semaphore, or set an event flag. Hence, a task is notified by

the IRQ and scheduled by the hardware iff it has the highest

priority. Otherwise, the task is inserted into a ready queue

maintained by the hardware. This concept is constrained by

the limited number of instances for tasks and events, which

the hardware can handle due to the static memory mapped

registers. Further, these instances are available at any time,

and the MCU demands a lot of die space and energy even

the application uses only a few of them.

Silicon OS [13], FASTCHART [14], and SEOS [15] are

academic projects implementing parts of an OS into hard-

ware. Nevertheless, these implementations are constrained to

the number of OS instances; thus, limits the running of many

independent developed tasks. However, in our approach the

number of OS instances is independent; therefore, it supports

a high flexibility number of instances.

Freescale offers an MCUs series with the XGATE technol-

ogy [16]. Beside the main CPU, a co-processor for handling

IRQs; thus, the handling for IRQs is outsourced, reducing

the IRQ handling time in the main CPU. Scheler et al.

[17] proposed to use a similar concept as the XGATE

technology from Freescale, but they are adding priority

awareness. The IRQ is still processed in the co-processor.

After processing, a waiting task on the main CPU is activated

by using semaphores. Thereby, the CPU is only notified for

re-scheduling iff the currently running task’s priority is lower

than the just activated task’s priority. However, compared to

our approach, both mentioned solutions require an additional

computation unit that has to be programmed, synchronized,

and considered for real-time analysis.

In contrast, Leyva-Del-Foyo et al. [18] proposed to enable

and disable (masking) each interrupt according to the cur-

rently running task, in a traditional interrupt controller. Thus,

on each task switch, the OS adapts the interrupt controller,

which only allows higher prioritized IRQs. However, the

calculation of the mask consumes time on each task switch.

Gomes et al. [4] suggested adding task priority awareness

to the interrupt controller. Thus, an interrupt will only

be raised iff the running task’s priority is lower than the

priority of the task which is waiting for an IRQ. Similar

interrupt controllers (e.g., [19]) in ARM MCUs support that
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functionality. However, the IRQ is still handled in an ISR

and if the ISR is not handled while the next IRQ is triggered,

that IRQ is missed. Consequently, for non-prioritized waiting

queues (as for OS system timer), the mentioned concepts

cannot avoid the os-pi problem, because for those IRQs the

highest priority has to be assigned. Now with the EventIRQ

also for the system timer the os-pi problem is avoided.

VII. CONCLUSION

The impossibility of predicting the occurrence of IRQs

leads to severe problems in real-time systems. These are

more amplified by the unadjusted way in which different

system layers handle events and IRQs. In this paper, we

showed that the traditional IRQ handling could lead to

the os-pi problem. To solve that problem we presented a

hardware extension with some knowledge of task priorities

and event waiting queues. First, we presented the basic

concept. Next, we showed the support for timeout events

and for the setting of software events by avoiding the os-pi

problem. Further, we showed some properties of our Even-

tIRQ. Finally, the extended approach was implemented into

our research platform showing the functionality behavior

in a use case example and the evaluation of the resource

requirement in the hardware (i.e., FPGA) and software.

The elimination of the os-pi problem increases the pre-

dictability of schedulability tests; thus, the next step would

be to investigate the schedulability test of our proposed

EventIRQ. Since, even more embedded systems are multi-

cores; another work would be to extend the EventIRQ to

multi-core systems.
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Abstract—Due to increasing complexity of software in em-
bedded systems, performance aspects become much more
important this days. This should happen early in the develop-
ment process. Often execution times and events are not easily
countable or measurable due to a lack of functionality in these
systems. Execution time monitoring is also relevant in terms
of reacting to internal and external events dynamically.

Especially for systems using multiple tasks with internal
or external resource dependencies, this is a major discipline.
Another problem is that measurements during the development
process are often done by interfering the system as a whole.
This method leads to biases in the measurement results, because
the finalized system gets deployed without these interfering
functionalities and can therefore work more efficiently than
the development system.

The scope of the present work is to develop a module in a
hardware description language (HDL) which is able to measure
execution times and events task-aware and unaware without
interfering the system. The measurements of this module must
be handed to the programmer through an easy accessible
interface. The main focuses of the project are the scalability,
platform independency concerning processor and operating
system (OS), as well as easy extendibility. Also, reusability of
counters during runtime is included in this work.

Keywords-Embedded systems, field programmable gate ar-
ray, performance monitoring unit, hardware/software codesign

I. INTRODUCTION

Determination and monitoring of execution times and

events in an embedded system is getting more important

nowadays. Most modern processors include a so-called

Performance Monitoring Unit (PMU) to measure the

performance of a system and be able to react accordingly.

Intel [1] and ARM [2] define their own functionalities in

their developer’s manuals. The present work introduces

these possibilities into the RISC-V [3] architecture, as

used by the mosartMCU project [4]. This Instruction

Set Architecture (ISA) was defined by the University of

California, Berkeley, and was implemented by several

different organizations and companies (e.g., [5], [6], [7] and

[8]) in different hardware description languages (HDLs)

as well as discrete processors. The ISA already defines

a minimal set of performance monitoring functions, but

none of them are included in any implementation yet.

Furthermore, the specification [9] only contains simple

counters for events and has no awareness of the system

itself, as they are only triggerable by events within the

processor.

The scope of this paper is to implement a PMU within a

RISC-V processor that is aware of the software and hardware

system and can therefore also access and measure tasks,

events and other structures. This means that it has to know

the software it is addressed and used by as well as the

hardware system it is surrounded by. The main focus hereby

lays on profiling tasks within a multitask software system in

multiple ways by hardware.

Furthermore, the developed unit has to be scalable as

far as number of hardware counters and configuration is

concerned, easily extensible when new functionality like

counter types are added as well as platform independent.

It works as an external observer and does not interfere the

system at all. Additionally, the PMU is capable of assigning

hardware counters to more than one purpose without losing

measure values. Due to this fact, buffering of counter values

is important as well.

The paper is organized as follows. Section II shows

existing works on performance monitoring counters. Section

III illustrates the present structure of the processor. The

following Section IV introduces the hardware structure of

the newly developed PMU whereas Section V deals with

the corresponding software interface. Section VI shows the

experimental setup and provides measurements and investi-

gations. Finally, Section VII discusses the developed PMU

and Section VIII concludes the paper.

II. RELATED WORK

Current high-end processors like Intel- or ARM-based

include a proprietary PMU. Mostly, these units are simple

counters which increment when a certain event occurs. They

are configurable through specific registers. Intel calls them

Model Specific Registers (MSRs) [1] and ARM reserves

a certain block in its memory mapped area [2]. Both of

them have in common that they only measure events, not

execution times of tasks or other software constructs and

they are only usable with a certain processor [10] [11].

PMUs for embedded system processors are not so wide

spread. There are a few implementations for soft-cores that
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measure energy consumption or the overall performance of

the system. Examples are the scalable Event Monitoring Unit

for a multi-processor system [12] or the PMU for a LEON3

multi-core system [13].

All these systems are mainly built to measure events [14].

There are only a few methods to monitor tasks in hardware

and those systems need a lot of hardware resources. An-

other disadvantage is that hardware counters are reserved

once for a certain purpose and cannot be reused for other

measurements without stopping the current assignment.

III. PRESENT PROCESSOR HARDWARE AND

ARCHITECTURE

The processor used in this work is a V-scale1 RISC-

V soft-core implemented in Verilog. It has a three-staged

pipeline and follows the RV32IM specification [3] [15].

Hence, it supports a basic 32-bit integer unit alongside a

multiplier/divider unit for integer values.

The main module in the hardware description is the

pipeline, where all other modules like the control unit or the

register file are connected, shown in Fig. 1. After analyzing

the code of the core, the position determined best for the new

PMU module is within the pipeline’s hardware structure.

This is due to the fact that all possible information can

be gathered here without interfering the system itself. It is

also possible to access the system memory from within this

structure.

Figure 1. The pipeline of the V-scale with its modules.

To provide access to the counters of the unit, the Control

and Status Registers (CSRs) are chosen. Thus, the user can

read and write configuration or counter values directly with

software structures provided by the RISC-V ISA. As far as

platform independency is concerned, this interface can be

easily exchanged for every architecture wanted. The further

implementation as well as all the requirements of the unit

itself will be illustrated in the following sections.

1https://github.com/ucb-bar/vscale

IV. PMU HARDWARE STRUCTURE

This hardware module contains features like several con-

figurable counter registers, triggerable by events like change

of the task pointer or the program counter, interrupts or

external events. Hence, there must be different kinds of

counters for global usage, task-aware global counters as

well as counters belonging to a certain task. The PMU also

must be configurable in terms of the number of counters

itself and the number of configuration registers per counter.

As far as task-aware counters are concerned, it must be

possible to buffer counter values to the RAM at a task switch

without delay. As the system clock of a RISC-V processor

uses a 64-bit register, the same approach is taken within

this work. This is due to the fact that overflows cannot be

expected. A permanently incrementing 64-bit counter at 50

MHz clock reaches its maximum after approximately 12,000

years. Configuration registers however use the integer bit

length of the processor itself, as the native integer length is

the easiest to handle. In the present work, this bit length is

32 bit.
As stated before, the PMU is integrated directly into the

pipeline module for several reasons. Due to the defined

requirements, it has to have access to a certain amount

of information from the system as well as a connection

to the RAM. The memory link is needed to buffer values

directly to the RAM and be able to reuse values later on.

Furthermore, communication with the CSR file must be

granted. The architecture of the PMU within the present

hardware structure is shown in Fig. 2.

Figure 2. A rough scheme of the PMU and its connected modules in the
hardware system. Connections not related with the PMU are not shown and
arrows show data flow directions.

The following sections deals with a PMU of four counters

with two configuration registers per counter. Regardless of

this fact, the module stays scalable for whatever configu-

ration required. At first, the configuration of the PMU is

pointed out, followed by the combinatorial logic of a single
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counter unit. Lastly, the buffering and reloading of values to

and from the RAM is explained.

A. Configuration and registers of the PMU

The module itself consists of a main configuration register

of 32-bit, in which every counter’s type is defined. Those

counter types are represented as 8-bit value and define how

and when a counter has to measure. Additionally, every

counter has its own two 32-bit configuration registers, in

which further configurations to the certain type of counter

can be applied. This means an overall number of nine con-

figuration registers. Fig. 3 shows the configuration register’s

architecture.

A single counter value however consists of two discrete

32-bit registers, which leads to eight registers for this

hardware constellation.

Figure 3. The main configuration register and the corresponding config-
uration registers of two counters.

Currently, there are three different groups of counter

types:

• Global counters, measuring execution times and events

independent of the current task. This configuration is

globally valid and does not need to be buffered. An

example in this case is a counter which records the

time, a single task is running.

• Task-aware counters, measuring execution times and

events for every running task. Therefore, the counter

values are different from task to task. Hence, the

counter values must be buffered at every task switch

to guarantee valid values for each task. However, the

configuration is persistent (e.g., a single counter that

measures every task’s individual execution time and

buffers the values on task switches). Its configuration

can be set once and is globally valid.

• Counter belonging to a task, measuring differently

for every task. In this case, counter values as well as

configuration values have to be buffered due to the fact

that configuration is different from task to task. Here, a

counter that measures if the program counter of a task

is within a certain area is an example. The difference

is that configuration has to be set within the task itself

for every individual task and therefore must be saved

and restored on each task switch.

The configuration registers for the counters itself are used

to apply more configuration for the according type of counter

if needed. For example, if a counter is configured to measure

between two program counter values, these two addresses

must be written into the counter’s two configuration regis-

ters.
To access the registers mentioned above as well as the

counter values, they all are mapped to CSR addresses.

Hence, they are accessible via CSR operations defined in

the ISA [3]. The read and write operations are passed

from the CSR file to the PMU as soon as PMU-reserved

addresses are recognized by the CSR file. Due to the fact that

there are different address ranges defined for standard/non-

standard read-only and read/write access within the CSRs

[9], proper ranges must be chosen. To set configuration

values, read/write addresses of the non-standard range, pre-

cisely these starting with 0x8F0, are defined. The counter

values however must not be changed by the user. Fur-

thermore, there is a certain address range predefined for

hardware performance monitoring counters, starting with

address 0xC03 for low-bytes and 0xC83 for high-bytes,

respectively.
The module’s access address ranges and logic scale with

the configuration of the PMU. To ensure this functionality,

the whole addressing is calculated by means of the hardware

configuration’s number of counters and registers and is

handled by the module itself with separate address logic

blocks for read and write rather than by the present CSR

file.

B. Combinatorial logic of the counters

After proper configuration of a counter, its actual counting

logic can be explained. Therefore, a single counter unit

consists of a byte within the main configuration register,

two dedicated configuration registers, a counter register as

well as a combinatorial logic block to enable the current

incrementation of the counter register. This circumstance is

illustrated in Fig. 4.

Figure 4. A simplified schematic of the combinatorial logic to enable a
counter.

The logic block generates an enable flag to enable the

sequential clock-triggered increment of the counter value.
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Inputs for the logic block are the configuration registers as

well as the current processor information gathered by inputs

directly from the pipeline module. As this happens only by

reading from certain wires, the system is not interfered by

this approach.

The logic block itself contains sub-blocks for every dif-

ferent counter type and its own constraints. To implement an

extensible structure, a logic of combinatorial blocks with a

final or-gate of multiple inputs is chosen, as shown in Fig. 5.

Figure 5. Generalized logic to determine a counter’s enable flag.

It illustrates the part of logic for generating a counter’s

enable flag (cnt en[i]) with PMU CNT TYPE 0 as counter

type in its main configuration (cfg[0]). Therefore, this

counter measures if the current task pointer of the pipeline

(tp) has the configured value in pmu cfg[i][0], which is the

first configuration register of the current counter i. Further

counter types must be added at the inputs of the final or-gate

at the end.

In this work, different usable counter types divided by the

three groups are:

• For global counters, there are: a counter which mea-

sures all the time (i.e. system clock), one for the proces-

sor user mode execution time, a single task execution

time counter, an overall task execution time counter, a

counter for all but a specific task, an overall interrupt

counter, a counter for missed interrupts by a specific

task and an overall external port pattern match counter.

• The group of task-aware counters, which save all

counter values separately for every task in memory,

contains: an overall task execution time counter, a task

interrupt counter and an external port pattern match

counter.

• There is only one counter of which counter and config-

uration values must be buffered. The task part counter

that measures if the program counter is between two

values, has another special feature. In order to start the

counter at a certain program counter value and end it at

another one, the PMU uses the least significant bit of

the configuration registers to mark whether or not the

program counter already reached the configured value.

This sequential logic must be executed due to the fact

that it can be possible that a task is preempted while the

counter is incrementing. To carry on measuring when

the task is continued, this flag must be set and reset

accordingly.

C. Buffering of counter and configuration values

To ensure the explained functionality, buffering of counter

and configuration values is compulsory. Hence, there has to

be a memory interface within the logic and the hardware has

to be aware of the operating system’s (OS) task concept. In

particular, the current task pointer must be known in order

to integrate task awareness into the unit. On a task switch,

all the register’s values must be saved somewhere belonging

to the suspended task in the RAM and the buffered values of

the new task must be loaded into the registers, respectively.

One of the main problems concerning buffering is that

memory access collisions must be avoided. As the present

hardware structure uses a dual port RAM [4], one of the

two memory ports is reserved for PMU purposes. As the

memory allows access to a memory cell from the two

channels simultaneously, consistent values are guaranteed.

A memory like this is also placed within the used Artix-7

Field Programmable Gate Array (FPGA) [16].

The current task pointer of the OS must be stored in the tp

register [3] of the processor. This allows the PMU to detect

task switches and initiate the memory swap process on its

own by a state machine. As long as the unit’s memory access

cycle is faster than the task context switch of the software

system, valid values in the registers can be ensured. The data

structure of a task’s control block (TCB) within the OS is

shown in Fig. 6.

Figure 6. TCB in the software system.

With this knowledge, the module is able to calculate

the memory addresses by adding certain offsets to the task

pointer stored in the CPU register tp. To ensure scalabil-

ity, these calculations take the hardware configuration into

account. The state machine handles the memory swap by

swapping out all the current register values into the memory
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cells of the to be suspended task and reading data from the

new task’s TCB into the PMU registers. Task-aware and

task belonging measurements must be stopped during this

process. In order not to lose measuring cycles during this

work, every counter type must have its own compensation.

It is also important to differentiate between counter types,

as far as overwriting of configuration and counter values are

concerned. A task-aware counter’s configuration must not

be overwritten during this activity, for example. However,

the swap from the registers into the TCB is made, no matter

which counter type is configured. This is to ensure consistent

data in the memory, in order for the OS to use valid data of

a suspended task from within another task to profile it.

V. SOFTWARE INTERFACE

To use the functionality mentioned above in an embed-

ded system, a simple OS is needed. For this purpose, the

mosartMCU-OS is used. This OS is a minimalistic system

consisting of a simple task and resource management system

for a RISC-V architecture. Furthermore, there are several

syscalls to start the OS itself, create tasks and use the

system’s resources and events.

A. Hardware/Software interface

The implemented scheduler manages each task as far as

starting and preempting is concerned. Therefore, the task

pointer of the instantaneous running task is stored directly

in the register tp of the CPU. By this approach, as mentioned,

the simple interface between hardware and software is

created. This register must be maintained by the scheduler

at all time to ensure proper performance measurements. In

order to signal a task switch as soon as possible for the

hardware, the new value must be set into the register at the

very beginning of all actions related to it. Hence, the PMU

starts its swapping process at the same time the OS executes

its register context switch.

Additionally, the system’s data structure must be equiv-

alent to the one used in the buffering process of the PMU

to ensure consistent and valid data storage. Due to this, the

OS must be well aware of the hardware configuration of the

unit, as far as number of counters and configuration registers

is concerned.

B. Register access

The present system knows two types of register access:

• read counter words

• read/write configuration values

As the registers are represented by certain addresses

within the CSR file, they can also be accessed via simple

instructions defined by the RISC-V ISA [3]. Due to the fact

that the addresses of the counter values are aligned with the

RISC-V definition for hardware performance counters [9],

the keywords hpmcounterN and hpmcounterNh can be

used where N is defined within the interval [3, 31].

The user must be aware that the PMU starts measuring

at the time instant the main configuration register is set to a

valid value. To stop and reset the unit, 0x0000 must be set.

Additionally, configuration of counters belonging to a task

must be done within the context of the corresponding task

itself to ensure proper measurements.

C. Task profiling

All the accesses to registers provide the current values in

the counter registers of the instantaneous executed task. As

these values get buffered into the RAM at every task switch,

they are also stored within the TCB. This on the contrary

provides value snapshots of every past task execution. These

can be used to easily profile all tasks from within another

dedicated task or the OS itself in order to gain information

concerning execution times or events. Based on these results,

new schedules or the schedulability can be calculated for

instance [17].

VI. MEASUREMENTS AND INVESTIGATIONS

This section deals with measurements and investigations

concerning the resource usage in the Artix-7 FPGA with

different hardware configurations on the one hand and

validations of simulations and measurements of different

test cases on a certain system on the other hand. All the

illustrated studies use one setup explained as follows.

A. Experimental Setup

The setup for experimental purposes consists of a

Nexys-42 development board of Digilent based on a Artix 73

FPGA of Xilinx. To measure data and validate the results,

a digital oscilloscope – the PicoScope 2205 MSO [18] – is

used. It has two analog alongside 16 digital channels, which

can all be used simultaneously. To display results, it must

be connected to a PC via USB. It has a maximum input

frequency of 100MHz.

For measuring purposes, the PMU is extended by a

special 16-bit measurement port that is wired directly to

an output port of the development board. On this port, the

oscilloscope’s digital inputs are connected. It can be used to

display signals like enable flags of certain counters as well

as values currently stored in registers. Hence, each test case

can implement its own measurement port configuration to

achieve exact results.

The hardware system therefore consists of a mosartMCU

based on a V-scale RISC-V core, a RAM, a ROM, several

peripherals like GPIO ports and UART as well as the

designed PMU module. It operates at a clock of 50MHz.

2https://reference.digilentinc.com/reference/programmable-logic/nexys-
4/start

3https://www.xilinx.com/products/silicon-devices/fpga/artix-7.html
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B. Different hardware configurations

Our reference model is a PMU with four counters and

two configuration registers per counter (4x2). Taking the

main configuration register into account, this leads to 17

32-bit registers overall. To synthesize a full RISC-V core

with peripherals and a PMU, Xilinx Vivado 2016.24 is used.

The first column of Table I shows the primitive statistics, net

boundary statistics and clock report of the reference model.

By varying the hardware configurations by means of

increasing the number of counters and/or the number of

configuration registers per counter, the results shown in

Table I are achieved. As values for MULT and OTHERS

remain unchanged, they are not shown or discussed in the

following section.

Table I
RESOURCE USAGE IN DIFFERENT HARDWARE CONFIGURATIONS.

4x2 4x4 4x8 8x2 16x2

FLOP LATCH 682 941 1453 1235 3141
LUT 1955 2380 2735 3994 9865

MUXFX 40 163 328 317 1095
CARRY 198 197 208 371 840
NETS 513 515 502 661 1473

CLK Inst 684 943 1455 1237 3113

When firstly looking at the change of values for increasing

the number of configuration registers at a constant number of

counters, Fig. 7 shows the trend. For this, the configurations

4x2, 4x4 and 4x8 are considered. The first digit in these

configurations marks the number of counting registers, the

second the number of configuration registers per counter

(e.g., 4x2 is a PMU with four counter units and two config-

uration registers per counter). It shows a linear growth for

all values except NETS and CARRY. This can be explained

by the fact that configuration registers are not wired that

complicatedly within the module and are optimized by the

synthesis tool. The linear growth of the other values is due to

the increase of registers itself. More Lookup tables (LUTs)

and multiplexers (MUXFXs) are required to address the

new added configuration registers. The number of flip flops

(FLOP LATCH) approximately follows the amount of clock

instances (CLK Inst) for the reason that every latch needs

its own clock input.

Secondly, the number of counters is increased by constant

number of configuration registers per counter. This circum-

stance is shown in Fig. 8. In this case, the number of LUTs

grows by a square function. A similar growth can be seen

with flip flops and clock instances. This can be explained

due to the fact that by increasing the number of counters,

the overall number of configuration registers rises. Further,

the addressing of the registers gets more complicated which

can be seen at the increase of multiplexers.

4https://www.xilinx.com/products/design-tools/vivado.html

Figure 7. Growth of certain parameters when varying the number of
configuration registers.

Figure 8. Growth of certain parameters when varying the number of
counters.

C. Test cases

All the following test cases build on a 4x2 configured

PMU and a simple mosartMCU-OS setup. As the system

measures clock cycles in most times, the actual time can be

calculated by

t = Cnt ·
1

fCPU

= Cnt ·
1

50MHz
, (1)

where Cnt is the value within a counter register and fCPU is

the clock frequency of 50MHz. The resulting time t presents

time in seconds. This means, that the expected maximum

deviation ε is

ε =
1

50MHz
= 20ns. (2)
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The test cases are divided into a simulation part showing

the expected result followed by a measurement with the

oscilloscope. All simulations are carried out with Vivado’s

built in simulation tool.

Table II
COUNTER SIMULATION AND MEASUREMENT RESULTS.

Counter type Sim result Time Measurement

(1) 6736 134.72µs 134.7µs
(2) 14 280ns 280.4ns
(3) 8183 163.66µs 163.8µs
(4) 8815 176.30µs 176.38µs

(5) 709 14.18µs 14.13µs
(6) 8218 164.36µs 164.4µs
(7) 15 300ns 309.7ns
(8) 25 500ns 509.7ns

(9) 9411 188.22µs 188.6µs
(10) 946 18.92µs 19.099µs
(11) 10830 216.6µs 216.8µs
(12) 9411 188.22µs 188.6µs

1) Global counters: The first test case illustrates the

usage of global counters. In fact, the first counter (1) of the

setup measures all the time, whereas the second (2) measures

all the user mode time of the processor, the third (3) is set to

measure the overall task time and the fourth (4) the overall

task time except for the idle task. Table II lists the simulation

and measurement results of this test case at different time

instances.
2) Simple task counters: The next test cases deal with a

global counter for a single task (5), one for the overall task-

aware task time (6) as well as a counter belonging to a task,

which measures areas between two program counter values.

Two results at different time instances are shown as (7) and

(8) in the results table II. The results in (7) and (8) show the

usage of one hardware counter in two different tasks. The

values in the registers are only valid for the instantaneous

running task.
3) Task-aware test case: At last, this test case shows

a global overall task time counter, two global task time

counters for single tasks, configured to two different tasks

and a task-aware task time counter.
At the first time instant at which the global overall task

time counter results in the value (9), the single task counter

for the first task as well as the task-aware counter yield in

value (10), which proofs correctness.
At the second time instant, the other task is investigated.

The overall task time counter has the value (11) and the

corresponding values for the single task counter for the

second task and the task-aware counter again deliver the

same value (12).

All these results show that all the global counters work

properly within certain measurement uncertainties and result

in the same values within ε as expected through simulation.

Also, the final counting values in the registers match the

expected values.

VII. DISCUSSION

The developed PMU has some main advantages to other

present works. Compared to approaches which measure task

constructs within the OS, this hardware solution is able to

measure execution times without overhead or lost cycles.

Software approaches slow down the whole system and can

yield falsified results due to interferences. Additionally, the

developed module can stay within the hardware structure

rather than be removed after optimizing software structures.

The module is also able to measure a lot of different things

with very few hardware counters. This is due to the fact, that

a single counter can run a certain configuration for each task.

As far as other hardware solutions [12] are concerned,

this module’s scalability leads to minimal hardware increase,

as hardware counters can be reused rather than having

to add new ones to the system. It can also be used in

multi core systems, as every core has its own PMU. In

this case, only measurements for the certain core can be

made, as the module is connected directly to it. Future

aims towards an additional overall unit to include more

information concerning multi core operations [13].

VIII. CONCLUSION

The present paper shows a new approach on how to

measure execution times and events of an embedded system

by integrating a PMU by means of hardware/software co-

design approaches. It is constructed to be aware of the

hardware and software system it is embedded in. Further-

more, the unit is able to reuse counter elements at runtime

to minimize hardware complexity. It is also reconfigurable,

scalable and easily portable to other hardware systems, as

it is implemented in a HDL and has a simple and easily

adjusted interface to the CPU itself.

Moreover, it could be shown that re-used task-aware coun-

ters yield the same results as multiple dedicated counters

each reserved for a single task. At the same time hardware

usage is minimized through this approach. Due to this fact,

a more detailed performance profile can be created, as task

awareness is built in. It is not only possible to consider the

system as a whole, but also profile certain parts of it.

As it is non-intrusive, it can be used for worst case

execution time analysis at an early development stage.

Moreover, if deployed to an FPGA-based embedded system,

even its software works alongside the system and therefore

no altering in any execution state is expected.
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Abstract—Real-time multi-tasking systems may require an
individual stack for each task to fulfill all hard real-time re-
quirements. However, these stacks may consume a huge memory
space, even if not all stacks are simultaneously fully utilized.
Thus, sharing currently unused stack space may improve memory
utilization as possible with Memory Management Units (MMUs).
However, an MMU introduces temporal jitter to memory accesses,
influencing the real-time behavior. In this work, we propose a
new concept to share dynamically the complete available stack
space across tasks. Thereby, every stack operation executes in
a deterministic time, by giving the Microcontroller Unit (MCU)
Operating System (OS)-awareness.

I. INTRODUCTION

In the past, embedded systems were primarily designed
for one certain scenario. Thus, hardware and software were
aligned to a particular purpose. Statically designed software
applications were optimized to fit into an embedded sys-
tem’s program and data memory. However, this programming
paradigm prevents or even limits the adding and replacing of
software parts, called tasks. Even worse, the task’s memory
consumption cannot be dynamically adapted to the new envi-
ronment requirements. The Internet of Things (IoT), Industry
4.0, or automotive software are examples were dynamically
updating and adaptation of tasks at run-time are required.
Therefore, the practice of writing static software and bringing
them together in one linking step will no longer be applied;
and thus, to optimize statically the code (including memory
usage) for a particular purpose.

A way to handle dynamically memory space is the well-
known concept of address virtualization [1]. The virtualiza-
tion is performed by a hardware component, the Memory
Management Unit (MMU). It is responsible for translating
all Virtual Memory (VM) addresses into Physical Memory
(PM) addresses. However, using an MMU is not so common
in real-time embedded systems. There is the need for low
energy consumption and predictable memory access times.
These needs cannot be satisfied with a conventional MMU,
resulting in the use of simple Microcontroller Units (MCUs)
without an MMU.

Memory is a scarce resource in MCUs, because of the
significant space required in a die. Thus, more memory would
also increase the costs of the MCU; and thus, also of the
product. To counteract that issue, the developers often select
the smallest sufficient memory in an MCU.

A task usually uses a static memory space, where all
the static variables and constants of the task are placed.
Furthermore, a dynamically growing and shrinking memory
exists for function calls, storing scope variables, and storing
other temporary data. The mentioned dynamic memory is
called stack. The stack frame is the total available stack space
in which the stack pointer is pointing into the stack frame. It is
used to access stack memory with an offset and indicates the
threshold of valid and non-valid stack data. There are different
approaches to handle stack frames in embedded systems: First,
allocation of an individual stack frame for each task [2], [3].
Second, a common stack frame [4], [5] shared between all
tasks; finally, a combination of both approaches [6]–[8].

The shared stack approach may reduce the overall memory
space for stacks. However, it may also restrict the schedulabil-
ity of individual tasks, because of nested stacks. A stack could
not growth its stack memory, if the stack memory on the top
was not owned by that task. Otherwise, it would overwrite
stack memory of another task. Further, the stack shrinkage
operation would lead to stack memory defragmentation, result-
ing in a huge management overhead by the Operating System
(OS). Thus, tasks are not allowed be preempted and this fact
may reduce the overall system performance and may violate
real-time constraints especially for dynamically changing en-
vironments. Therefore, in most real-time embedded systems
the OS allocates an individual stack for each task.

An alternative way to reduce stack memory are preemption
thresholds [9], found in the ThreadX [10] OS. The OS uses the
task’s nominal priority for scheduling. If a task is scheduled,
its priority will raise to its threshold priority, which must
be defined above its nominal priority. On suspension, its
priority falls back to its nominal priority. Thus, all other
tasks prioritized with a lower nominal priority as the threshold
priority of the currently running task cannot be scheduled. This
approach could form non-preemptive task groups, where those
groups can use a shared stack memory together, because they
do not preempt to each other. Nevertheless, it is not possible to
share the whole stack memory space among non-preemptive
task groups and/or preemptive tasks if they do not use its
maximum stack memory at a time.

A. Motivation

In an MMU-equipped embedded system, application devel-
opers do not have to define statically the required stack frame
size for a task. The virtualization of the memory addresses
allows the task to use a stack space up to the full VM address978-1-5090-6505-9/17/$31.00 c© 2017 IEEE
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Fig. 1. Example stack consumption of three tasks T = {τ0, τ1, τ2}.

width. It is approximately consuming only that memory space
that the task requires at a certain moment in time. If a task
requires more stack memory, the MMU signals the OS to
assign more memory to the requesting task [11]. If the task
does not require that space anymore, the OS frees the non-used
memory and makes it available for other tasks.

However, in MMU-less embedded systems, the memory
is not virtualized, and the tasks are directly accessing the
PM addresses. Thus, for the individual stack frame approach,
developers have to define a static stack frame for each task
with a specific size. If the required stack exceeds the assigned
stack frame, a stack overflow will occur and could crash the
whole system by overwriting non-owned data in the memory.
To avoid stack overflows, in MMU-less multitasking systems,
developers have to know the maximum required stack space ςτ
for each task τ ∈ T , with T being the set of tasks.

The maximum required stack ςτ can be analyzed with a
static code analyzer tool, as for instance in [12]. These tools are
aware of the stack usage στ (t) ∈ N0 of task τ at time t ∈ N0.
However, if the entire system is unknown, because of a
compositional developed system with some unknown software
parts (e.g., libraries), the required stack size must be estimated
by the developer. Thus, the risk to run into stack overflows is
given. Stack overflows can also be detected at run-time by
checking on each procedure call if a stack overflow occurred.
However, this requires a manually inserting of checks or
an automatically inserting by the compiler, leading to more
program memory usage and longer run-time executions [13].

In a common MMU-less system with non-shared stacks,
an individual stack frame is assigned for each task τ with
its maximum required stack space ςτ . Therefore, the totally
assigned stack space S̃ ∈ N0 in that system is computed as:

S̃ :=
∑

τ∈T

ςτ =
∑

τ∈T

max{στ (t) | t ∈ N0}

For each task the full stack frame is assigned; although,
the stack frames are not completely used simultaneously. Thus,
the individual stack frames are not utilized in an efficient way.
Next, we illustrate this on an example, depicted in Fig. 1. Let’s
assume a multitasking embedded system with three tasks T :=
{τ0, τ1, τ2} that are executing always in the same sequence,
because of dependencies to each other (e.g., events). From time
t0 to t1, task τ2 is executing and uses its individual stack frame.
From time t2 to t3 task τ1 is executing and task τ0 is executing
from time t4 to t5. In the remaining time the OS is running,
which is for clarity not depicted in the Fig. 1. It shows that for

all three tasks τ ∈ T the maximum required stack space ςτ of
the individual stack is the same. Therefore, the developers have
to assign an individual stack frame to each task, with at least
the size of the maximum used stack. However, the individual
stack frames are not simultaneously fully utilized, which leads
to a worse stack memory utilization.

B. Dynamic Stack Sharing

Our concept aims to solve the issue of the wasteful stack
space utilization of an individually assigned stack frame to
each task. This is achieved with the assistance of a hardware
extension, the StackMMU. It enables the possibility to share
the whole stack space among all tasks with a minimum
intervention of the OS by using VM addressing for the stack,
leading to the following properties:

• The whole stack space is shared by all tasks. Depend-
ing on the task scheduling, the totally assigned stack
space may be temporary reduced, compared to the
traditional individual stack frame allocation approach
(i.e., S̃).

• The assignment and deassignment of stack memory to
a task and the memory accesses are executed by the
hardware extension in a predictable time.

• If a task runs into a stack overflow, the StackMMU
detects this and forwards the handling of this issue to
the OS.

• If all tasks together require too much stack space, the
StackMMU also forwards this issue to the OS, which
is responsible to handle this problem.

Section II introduces the design of our concept and its
implementation details are shown in Section III. Section IV
analyses the properties theoretically and with a use case study,
which is compared with other related works in Section V.
Section VI discusses the applicability of the concept; and
finally, Section VII concludes this work.

II. DESIGN

The key idea of our design is to eliminate the statically
individually assigned stack frame to a task; however, it will
be assigned stack memory only on task’s demand. If a task
requires more stack memory, the hardware extension auto-
matically allocates more stack memory in a predictable time,
without the influence of the OS. If the task does not require the
stack memory anymore, the hardware extension automatically
deassigns the corresponding memory. Consequently, the totally
assigned stack space S ∈ N0 leads to the next equation
under the assumption that no additional memory is required
for handling the StackMMU:

S := max

{
∑

τ∈T

στ (t) | t ∈ N0

}

This means, that the totally assigned stack space S is bounded
to the maximum used stack of all tasks at a time. Furthermore,
stack overflows and out of stack conditions are detected by
the hardware extension and are forwarded to the OS to handle
those issues.

C. StackMMU
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A. Structure

Now we are looking into the structure of our dynamic stack
sharing approach, depicted in Fig. 2.

First, the data memory is divided into two areas. One area
is the common area used with PM addresses as in common
MMU-less embedded systems. The second area is the stack
area used with VM addresses. The stack area is again divided
into same sized pages, where the size is configurable as a
power of two. The pages are handled as a linked list, whereas
the register free points to the top of non-used pages. Further,
the start and the ending of the stack area are defined with the
registers start and end, respectively. The OS must initialize all
of the mentioned registers at start-up. Furthermore, it has to
initialize each page in the stack area with the address of the
next available page. For indicating the last page, it is initialized
with NULL.

Second, the OS stores the task control blocks (TCBs) into
the common memory area. The TCB contains information
about its associated task (e.g., priority, queue pointers). The
number of task control items is defined by the OS and is
thereby constant. However, some additional content is ap-
pended at the end of the TCB, namely the Page Pointer Look
Up Table (PP-LUT), which contains the page pointers. Page
pointers are used to access the pages in the stack area by the
VM address.

During the creation of the tasks, the OS appends as much
spaces as required for the PP-LUT, in the TCB, to support the
developer’s maximum defined stack size. Further, the task’s
stack pointer has to be initialized to the same address as the
end register’s value, which is the highest VM address in the
system. In the control part of the TCB, task’s maximum stack
size must be stored, allowing the MCU to be aware of the
maximum stack size of the currently running task. On a context
switch, the MCU writes the stack size into the MCU’s register
task stack size tss. The register tss is used to detect a stack
overflow and to look up the correct page pointers in the PP-
LUT for stack access operations.

B. Stack Access

On common architectures, the stack pointer serves the
purpose to point to the top of valid stack memory. It enables
the software to have relative references to items in the stack
memory [11]. However, the computation unit may also access
the items in the stack with an absolute address, depending on
the compiler and the architecture.

Therefore, our hardware extension detects a memory access
in the stack area if the memory address is between start

and end. This range indicates that the memory access is a
VM address; then, the StackMMU triggers the memory access
through the PP-LUT for the currently running task.

The next equation shows the calculation of the page
base address pm addr base, which represents the page base
address of the corresponding VM address of a task’s stack
access:

pm addr base = PP-LUT

(⌊
tss+ vm addr − end

page_size

⌋)

In mostly all computer systems, with stack pointers, the
stack pointer grows from high addresses to lower addresses.
Thus, the PP-LUT also grows from the last page pointer to the
first page pointer (see Fig. 2).

To access a stack item in a page, the page address offset
pm addr offset is calculated with the following equation:

pm addr offset = vm addr mod page_size

Finally, the two above mentioned equations can be com-
bined together for calculating the PM address pm addr lo-
cated in the stack area:

pm addr = pm addr base+ pm addr offset

Whereas a memory access into the common area represents a
PM address and is still handled as usual.

C. Stack Pointer Change

Next, we show how the hardware extension assigns and de-
assigns a page to a task on its stack pointer sp change. A stack
pointer sp change can be performed through register addition
and subtraction instructions (e.g., addi sp,sp,-16) or
through push and pop instructions. In most computer systems,
these stack pointer modification have no side effects. However,
in our approach the stack pointer sp has the additional purpose
to assign and deassign a stack page to and from the PP-
LUT, respectively. The hardware extension behaves differently,
depending on the stack address’ change:

1) If the stack pointer sp address grows or shrinks
and does not traverse a page boundary, the hardware
extension does nothing.

2) If the stack pointer sp grows over a page boundary,
a new page is assigned by the hardware extension to
the currently running task. The hardware extension
stores the address of the first free page (by using the
free register) into the page pointer specific location
in the PP-LUT. Additionally, the address of the next
free page is read and the free register is updated
with that address.
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3) If the stack pointer shrinks over a page boundary,
the hardware extension removes the last valid page
in the PP-LUT, by reading the corresponding page
address. In this page, the reference to the next free
page is updated to the value of the free register and
the free register is updated with the address of the
recently freed page, simultaneously.

The tasks let grow and shrink the stack pointer sp (e.g.,
function call) and are not overwriting the stack pointer sp
directly with a new value. However, the OS does. To prevent
the triggering of the stack assignment and deassignment, the
hardware extension is only enabled if the OS is not running.

D. Stack Overflow Detection

For MMU-less embedded systems, one of the developer’s
jobs is to find the required stack size for each task. Un-
derestimating the stack size could lead to unexpected run-
time behavior. To detect this underestimation at run-time,
the StackMMU checks if the stack pointer grows over the
maximum defined stack size of a task. This means, if

start ≤ vm address < end− tss

holds, the hardware extension raises an exception and the OS
has the responsibility to handle this issue.

E. Out of Stack Detection

For all tasks running in an MCU, the developer defines with
the registers start and end the stack area that holds the
completely available stack space. The page_size register
divides this area into pages that may be allocated to tasks.
Therefore, the number of pages are limited. If tasks require
more pages than available, the hardware extension will raise
an exception. As for the stack overflow detection, that issue
has to be handled in the OS. The hardware extension detects
the out of stack condition, if the free register points to NULL
and a task requires a new stack page.

F. Compiler Changes

To support our dynamic stack sharing approach, some
modifications in the compiler might be needed. In some
instruction set architectures (ISAs) a single instruction can
modify the stack pointer arbitrarily, growing or shrinking over
more than one stack page. However, to add or remove a new
stack page in predictable time, the growth and shrinkage size
has to be restricted to the size of one stack page.

III. IMPLEMENTATION

We implemented the proposed approach into our research
project mosartMCU. In the following sections, we describe
the relevant points of the mosartMCU, our own developed
OS mosartMCU-OS, and the implementation details of the
hardware extension.

A. mosartMCU

The mosartMCU1 project aims to implement more OS
awareness into embedded multi-core systems. The MCU core
is based on the open RISC-V [14] architecture, maintained
by the University of California, Berkeley. The offered open
source Verilog implementation, named vscale2, is the code
base for our mosartMCU. It implements 32 bit integer and
the multiplication/division instructions [15], executing the
instructions in a three stage pipeline. The implementation
provides 32 registers; whereas, the compiler does not touch
the register tp, which is only maintained by the OS. This
register indicates the TCB of the currently running task. The
TCB contains information about the task including its priority.
We extended the basic implementation, with an automatic
read operation triggered by the hardware if the register tp
is changed. Therefore, the hardware is always aware of the
currently running task’s priority. The automatic read operation
is done in parallel to the normal execution flow by using an
additional connection to the data memory through a dual-
port memory. This dual-port memory is also used by some
other extensions. Further, the MCU specification defines four
different operating modes, whereas the mosartMCU supports
only the non-privileged user-mode and the privileged machine-
mode. These operating modes define permissions for some
instructions and for accessing control status registers (CSRs),
which are hardware registers used to configure and to get
information from the MCU.

B. mosartMCU-OS

The dynamic stack sharing concept is based on pages.
Supporting the hardware extension to find free pages, the
mosartMCU-OS has to do some initialization steps in the
initialization phase: The free CSR is set to the same address
as the start CSR, which presents the first address in the
stack area. The end CSR is also initialized to indicate the
end of the stack area. Further, the initialization code has to set
the next free page to the first address in each page. For the
last page, the first address has to be set to NULL, supporting
the hardware extension to detect an out of stack condition.
These are the one and only steps that the OS has to perform
to support our concept.

C. Dynamic Stack Sharing

The mosartMCU uses the register tp to point to the
currently running task’s TCB. The change of the register tp
triggers the hardware to read automatically the priority and
the stack size of the task. The stack size is stored into the
CSR tss, which is used to look up page pointers for the
VM addresses. To avoid an arithmetic division in hardware for
calculating the final PM address, the page size page_size

must be aligned to the power of two. Thus, the division can
be replaced with a simple shift operation.

In addition to the task pointer tp, modifying the stack
pointer sp triggers a functionality in our hardware extension.
It may perform a stack page assignment or deassignment for
the task. These operations are divided into two phases. Fig. 3
shows an example of the two different phases for a stack

1multi-core operating-system-aware real-time MCU
2https://github.com/ucb-bar/vscale
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Fig. 3. Dynamic stack sharing phases for stack growth, access, and shrinkage.

growth, access, and shrinkage operation:
Stack growth: First, the hardware extension reads the address
of the next free page from the page where the CSR free

is pointing (i.e., 0x10). Second, it stores the CSR free

value (i.e., 0x00) into the corresponding PP-LUT location and
concurrently updates the CSR free with the read address of
the next free page.
Stack access: First, the hardware extension reads the page base
address pm addr base from the PP-LUT; second, it uses the
read page base address pm addr base and the page offset
pm addr offset to access the PM address pm addr of the
corresponding VM address.
Stack shrinkage: The hardware extension has to free the last
valid page in the PP-LUT. First, it reads the corresponding
page base address pm addr base from the PP-LUT (i.e.,
0x00). Second, the hardware extension updates the reference
of the next free page with the CSR free value in the
corresponding page. Concurrently, the CSR free is updated
with the read page base address pm addr base. In the PP-
LUT the old page pointer is not changed; however, it is not
used anymore, but will be overwritten on a new stack growth
operation on this at this page pointer.

In all three operations, the first phase performs a read
access in the memory and in the second phase a read or
write access into the memory. No further memory accesses are
required. Hence, if the memory access is executed in a constant
time, also all three operations are executed in a constant time
leading to a predictable stack growth, access, and shrinkage
operation.

D. Control Unit adaption

All of those mentioned operations are implemented into the
control unit of the mosartMCU. The control unit is responsible
to operate control signals for the instructions, as for instance

the memory control signals. If the control unit detects a stack
pointer change or a memory access in the stack area while
the MCU runs in the user-mode, the StackMMU is involved.
First, it will change the memory control signals to perform the
first phase of reading the required information. Second, it will
use the read data to perform the second phase. Thereby, the
control unit operates the execution flow of the instruction; it is
also able to stall it. Thus, the control unit stalls the execution
flow if required, as for instance done for reading data from the
common memory area, too.

IV. EVALUATION

Next, we discuss the evaluation of the StackMMU. First,
we theoretically analyze the stack memory usage and the over-
head. Second, we analyze the timing overhead theoretically and
in our testbed. Third, we investigate the implementation uti-
lization, timing behavior, and power consumption in the Xilinx
Artix 7 Field Programmable Gate Array (FPGA) assembled
on a Digilent Nexys4 DDR board. Finally, an experimental
evaluation is shown.

A. Memory usage and Overhead

The dynamic stack sharing concept is based on pages.
Thus, the stack space grows and shrinks in multiples of the
page size page_size. Consequently, the sum of all currently
used stack spaces U(t,page_size) ∈ N0 at time t is
calculated as follows:

U(t,page_size) =
∑

τ∈T

⌈
στ (t)

page_size

⌉

· page_size

With the CSRs end and start in the data memory,
the developer defines the size of the totally assigned stack
space S′:

S′ := end− start

Whereby, the totally assigned stack space S′ must be a multiple
of the page size page_size; otherwise, an unexpected run-
time behavior would occur.

To avoid out of stack conditions, the currently used stack
space U is not allowed to exceed the totally assigned stack
space S′:

∀t ∈ N0, U(t,page_size) ≤ S′

To manage the StackMMU, it requires some additional
memory space for storing the page pointers in the PP-LUT.
Furthermore, if the currently stack usage στ of task τ does not
fit exactly into a page, some space in the page remains empty.
Thus, the data memory overhead O for the whole system is
calculated as follows:

O(t,page_size) :=

∑

τ∈T








⌈
ςτ

page_size

⌉

︸ ︷︷ ︸

PP-LUT size

+(στ (t) mod page_size)
︸ ︷︷ ︸

remaining free space in a page







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Fig. 3. Dynamic stack sharing phases for stack growth, access, and shrinkage.

growth, access, and shrinkage operation:
Stack growth: First, the hardware extension reads the address
of the next free page from the page where the CSR free

is pointing (i.e., 0x10). Second, it stores the CSR free

value (i.e., 0x00) into the corresponding PP-LUT location and
concurrently updates the CSR free with the read address of
the next free page.
Stack access: First, the hardware extension reads the page base
address pm addr base from the PP-LUT; second, it uses the
read page base address pm addr base and the page offset
pm addr offset to access the PM address pm addr of the
corresponding VM address.
Stack shrinkage: The hardware extension has to free the last
valid page in the PP-LUT. First, it reads the corresponding
page base address pm addr base from the PP-LUT (i.e.,
0x00). Second, the hardware extension updates the reference
of the next free page with the CSR free value in the
corresponding page. Concurrently, the CSR free is updated
with the read page base address pm addr base. In the PP-
LUT the old page pointer is not changed; however, it is not
used anymore, but will be overwritten on a new stack growth
operation on this at this page pointer.

In all three operations, the first phase performs a read
access in the memory and in the second phase a read or
write access into the memory. No further memory accesses are
required. Hence, if the memory access is executed in a constant
time, also all three operations are executed in a constant time
leading to a predictable stack growth, access, and shrinkage
operation.

D. Control Unit adaption

All of those mentioned operations are implemented into the
control unit of the mosartMCU. The control unit is responsible
to operate control signals for the instructions, as for instance

the memory control signals. If the control unit detects a stack
pointer change or a memory access in the stack area while
the MCU runs in the user-mode, the StackMMU is involved.
First, it will change the memory control signals to perform the
first phase of reading the required information. Second, it will
use the read data to perform the second phase. Thereby, the
control unit operates the execution flow of the instruction; it is
also able to stall it. Thus, the control unit stalls the execution
flow if required, as for instance done for reading data from the
common memory area, too.

IV. EVALUATION

Next, we discuss the evaluation of the StackMMU. First,
we theoretically analyze the stack memory usage and the over-
head. Second, we analyze the timing overhead theoretically and
in our testbed. Third, we investigate the implementation uti-
lization, timing behavior, and power consumption in the Xilinx
Artix 7 Field Programmable Gate Array (FPGA) assembled
on a Digilent Nexys4 DDR board. Finally, an experimental
evaluation is shown.

A. Memory usage and Overhead

The dynamic stack sharing concept is based on pages.
Thus, the stack space grows and shrinks in multiples of the
page size page_size. Consequently, the sum of all currently
used stack spaces U(t,page_size) ∈ N0 at time t is
calculated as follows:

U(t,page_size) =
∑

τ∈T

⌈
στ (t)

page_size

⌉

· page_size

With the CSRs end and start in the data memory,
the developer defines the size of the totally assigned stack
space S′:

S′ := end− start

Whereby, the totally assigned stack space S′ must be a multiple
of the page size page_size; otherwise, an unexpected run-
time behavior would occur.

To avoid out of stack conditions, the currently used stack
space U is not allowed to exceed the totally assigned stack
space S′:

∀t ∈ N0, U(t,page_size) ≤ S′

To manage the StackMMU, it requires some additional
memory space for storing the page pointers in the PP-LUT.
Furthermore, if the currently stack usage στ of task τ does not
fit exactly into a page, some space in the page remains empty.
Thus, the data memory overhead O for the whole system is
calculated as follows:

O(t,page_size) :=

∑

τ∈T








⌈
ςτ

page_size

⌉

︸ ︷︷ ︸

PP-LUT size

+(στ (t) mod page_size)
︸ ︷︷ ︸

remaining free space in a page







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(a) Run-time behavior of a quicksort algorithm.
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(b) Run-time behavior of a temporary buffer usage with 256Bytes and following
a bubblesort algorithm is executed.

Fig. 4. Stack consumption and required execution times for the StackMMU approach with different page sizes (32Bytes, 64Bytes, 128Bytes), static
individual stack frame allocation with the adapted compiler (i.e., compiler32) for page sizes of 32Bytes and the standard compiler (i.e., compilerStd).

and temporary array usage with the bubblesort algorithm, re-
spectively. The quicksort algorithm uses the divide and conquer
technique; thus, the sorting algorithm works recursively. A
recursive algorithm leads to many function calls and leaves;
therefore, a function performs many stack changes at its
beginning (prologue) and ending (epilogue). For each recursive
function call the size of stack growing and shrinking remains
constant, with a maximum of 144Bytes. Thus, the stack
consumption of the StackMMU concept is highly depending
on the stack page size, because stack memory can be allocated
only as a multiple of the stack page size. As a result, a stack
page size with 128Bytes consumes much more memory as all
other approaches. However, it is the fastest one compared to
the other StackMMU execution times, because the required
instructions for stack growth and shrinkage is lesser. This
timing influence can be seen isolated for the adapted compiler
(i.e., Compiler32), which bounds the stack grows and
shrinks to 32Bytes. Compared to the standard compiler (i.e.,
CompilerStd), it requires some additional cycles because of
splitting up the stack change. The execution of the StackMMU
generally consumes more CPU cycles, because the StackMMU
adds a cycle for stack growth, shrinkage, and access.

The second use case shows the same behavior as the first
use case, whereas the maximum required stack is needed
only for the first CPU cycles. For the other times, the stack
consumption is only around one third compared to the static
assigned stack. There, the free stack memory is available for
other tasks.

V. RELATED WORK

For real-time embedded systems, reducing temporal jitter
on memory accesses is a challenging requirement to avoid an
unknown real-time behavior. Further, memory is also a scarce
resource in these systems; therefore, sharing unused memory
is targeted.

Compared to the Context Save Areas (CSAs) and Context
Lists of the Infineon’s TriCore [16] our dynamic stack sharing
approach is similar. However, the TriCore uses the CSAs for
storing a part of the task context on function calls and inter-
rupts. Their aim is to improve the context switch performance.

Hence, there is no way to store local variables; therefore, the
architecture is still using a stack pointer, which is pointing to
a stack to handle locally allocated variables.

Schamani et al. [17] proposed a configurable MMU on a
FPGA with pages. The results of the implementation show that
the MMU adds temporal jitter to the memory access. On a hit,
the PM base address is found in a cache, the access time is 5
cycles. On a miss, the PM base address is not in the cache, after
11 cycles the OS is notified to update the internal translation
tables. In the MMU implementation from Hu-Cheung Ng et
al. [18], on a cache hit the memory access time is 2 cycles
and on a table update 16 cycles. Apart, a cache miss consumes
600 to 227 000 cycles depending on the OS that handles the
miss. Further, the power consumption showed, that the MMU
consumes more than 50% of the overall power consumption.

The MMU implementation in the MC68851 [19] and the
ARM Cortex A5 [20] are using a tablewalker in hardware
instead of the software based searching in translation tables.
The tablewalker searches, beginning on a base address in a
register, translation item in the main memory. If the tablewalker
does not find the correct one, an exception is raised to notify
the OS to handle this problem in software. In addition, the
tablewalker consumes some cycles that introduce jitter to the
memory access.

Chu et al. [21] proposed a stack virtualization based
on software. They are combining binary translation and a
kernel to achieve a VM addressed stack on an MMU-less
embedded system. Getting, setting, and reallocating the stack
pointer consumes 45, 94, and 2326 cycles, respectively. It is
an enormous impact on the system performance, which they
showed with a use case.

In [22], Middha et al. propose a stack sharing solution
without VM addresses. Thereby, a task uses unused stack
space of statically assigned stack frames of another task.
Thus, on each function the approach has to check for a
stack overflow. If it occurs, a fixed sized page is allocated
in another task’s free stack space. If the stack consumption
exceeds the page, another page is allocated in another free
stack frame. Without optimization, the run-time and energy
consumption increases up to 23% and 24%, respectively. With

6. Publications

104



code analysis optimization, they reduced both to 3%. However,
the code analysis optimization restricts programming features
(e.g., recursive functions, function pointers).

Yi et al. showed in [23] an approach to allocate stack to a
task on demand. On compile time, a tool calculates the stack
usage of each function call and manipulates the C code. The C
code will call their on demand stack library with the calculated
stack usages at the start and end of a function. The library
internally uses a linked list, pointing to the next allocated
stack area for a function. The run-time stack usage showed
that the implementation uses only that memory that a task
requires; nevertheless, for their use case the execution time of
the application increases about 10% over a long time.

VI. DISCUSSION

Section IV showed theoretically and with a use case the
evaluation of the StackMMU. It showed that the memory con-
sumption and time overhead highly depends on the behavior
of the work. For traditional MMU-less approaches the totally
assigned stack space S̃ is the sum of all individual stack
frames. Each individual stack frame of a task has to be the
same size or greater as the task’s maximum required stack
space ςτ to avoid stack overflows (see Section I-A). However,
not all tasks usually use the full assigned stack frame at a time,
resulting in a worse stack memory utilization. Whereas, in the
StackMMU concept the unused stack memory is shared, may
resulting in a better stack memory utilization. The utilization
depends on the stack usage στ (t) over time of a task τ , the
page size page_size, and the scheduling dependency of all
tasks to each other.

Therefore, if the task maximum required stack space is
needed for the whole time, the memory saving of the Stack-
MMU may be not there or even worse. However, if the
required stack space possess only a short peak, the StackMMU
takes advantage of sharing the unused stack memory. Here,
the page_size influences the memory consumption and
performance. On one side, a too small page_size increases
the PP-LUT in the TCB and may increase the execution time,
because of many required stack change instructions. On the
other side, a too big page_size allocates big pages, which
may be worse utilized; thus, it increases the memory overhead
with a better performance. The same issue has to be handled
when using an MMU. In this case, the page size also influences
the memory utilization and the memory access times. The
MMU introduces jitter to a memory access due to the usage of
a cache. In our implementation, we are not using a cache; and
thus, the latency for stack memory access, growth, or shrinkage
introduces an additional constant cycle, which is faster and
predictable compared to common MMUs.

Furthermore, the scheduling dependency of all tasks
to each other impacts the sum of all currently used
stack spaces U(t,page_size) influencing the required to-
tally assigned stack space S′. Thus, the developer must
try to minimize the sum of all currently used stack
spaces U(t,page_size) by scheduling the task in a suitable
way. In MMU-equipped embedded systems, the same approach
must be used to improve the memory utilization.

The StackMMU implementation increases the power con-
sumption by 2%. Compared to the related works in Section V

this is a small additional required power consumption. Thus,
our proposed hardware extension will suit well for real-
time embedded systems that require low power consumption,
dynamic stack sharing, and predictability as the IoT, Industry
4.0, or automotive industry.

Whereas, our proposed concept does not prevent tasks
τ ∈ T to consume their maximum required stack space ςτ
on the same time t leading to no stack memory minimization.
However, with the support of the OS’ scheduling policy and
our proposed StackMMU it will allow us to find a new
solution.

VII. CONCLUSION AND OUTLOOK

MMUs are widely used in non real-time systems. In
real-time systems, MMUs introduce temporal jitter and may
result in real-time constraint violations. Therefore, MMUs
are not used for those systems. However, the introduction
of virtual memory supports the sharing of unused memory,
which would be useful for memory constrained embedded
systems. Therefore, in this paper we presented a new dynamic
stack sharing concept based on a hardware extension and
some knowledge of the internal OS-data structures (i.e., TCB).
Our solution supports the virtualization of the stack addresses
and only adds one cycle for stack growth, shrinkage, and
access operations, resulting in a predictable operation time.
The hardware extension assigns and deassigns a stack page
automatically from a pool of stack pages and stores the refer-
ences into the TCB of the requiring task. On stack access, the
references in the TCB are read before the hardware extension
performs the stack memory access on the computed address.
The OS is not involved in these operations, but it has the
responsibility to initialize the hardware extension properly at
start-up. The handling of these operations was implemented
into the mosartMCU project running in an Artix 7 FPGA. In
the FPGA, the hardware extension consumes additionally 1066
LUT slices, 184 register slices, and 2% more power, indepen-
dent of the number of tasks and other hardware extensions.
Further, the evaluation showed that the handling of the stack
pages required some additional memory space for managing
the pages. Nevertheless, depending on the task scheduling, in a
use case scenario we showed that the stack area can be shared
between tasks and the totally assigned stack space may be
reduced compared to the traditional approaches, which waste
memory by allocating individual stacks to each task.

As potential future work, we will investigate a new schedul-
ing algorithm based on the idea of fixed-priority preemption
threshold. However, instead of using priority thresholds we
are planning to consider the required stack space for the next
part of code as the threshold. Through the operating system
awareness of our mosartMCU, it may support the online
scheduler to find a feasible schedule in a way to satisfy still all
the real-time requirements while minimizing the stack memory
usage.
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Abstract—System-on-a-Chip (SoC)-buses are designed to com-
municate from masters to slaves. In a multi-master system, the
masters combat for accessing the slaves. In the past, different
arbitration algorithms have been invented to grant access to the
slaves. However, these algorithms are not aware of the currently
running task’s priority that wants to access the slaves; thus, a
lower prioritized task could access the slave first. Other solutions
with priority awareness use additional wires and support only a
few priority levels that cannot be mapped from a task priority. In
this paper, we present a SoC-bus that is suitable for hard real-time
systems, where the highest combating prioritized task immedi-
ately gets access to the addressed slave. The lower prioritized
tasks are stalled, what is managed by the interconnect logic. We
implemented our proposed approach into a Field Programmable
Gate Array (FPGA) and we show the required hardware resource
consumption. Further, we demonstrate the considerations of the
task priorities in a use case scenario.

Keywords—Embedded systems; Multi-Core; SoC-Bus; Priority-
Awareness; FPGA implementation

I. INTRODUCTION

The complexity of embedded systems continues to grow.
In the past, embedded systems were developed for a specific
application; but today, they must be able to adapt to the
outside world. This requires a huge computation power, to
handle all these dynamics in software. One way to handle that
huge computation power is to use more computation units, so-
called multi-core systems. However, there the access to shared
resources (e.g., memories, peripherals, etc.) is critical and must
be executed as efficient as possible, otherwise it becomes the
bottleneck of the whole system. Particularly for hard real-
time systems, as automotive or avionic systems, the access to
shared resources is crucial, because it may influence accuracy,
schedulability, and the costs of the systems.

The aim of a real-time system is to fulfill all the time
boundaries [1], with an upper time bound and/or a lower
time bound. The former, defines that a functionality must be
finished within the upper time bound. The latter, defines the
earliest time on which a task could start. A violation of these
time boundaries could result in a dramatic situation, where
machines could be destroyed or even human lives could be
influenced. A system with such strong time boundaries is
called hard real-time system.

In the past, there have been investigated a lot of new
techniques to improve hard real-time systems and to prove the
strict observance of all real-time requirements. On the software
layer, the Operating System (OS) is responsible for scheduling
all the tasks, which are parts of an application, in a suitable
way. Thus, tasks are scheduled in a way to satisfy all real-
time requirements. To prove if all real-time requirements are

satisfied, the Worst Case Execution Time (WCET) of each task
is required. The WCET represents the maximum time that a
task requires to execute for its work. By contrast, the Best
Case Execution Time (BCET) and Average Case Execution
Time (ACET) are the shortest and the average times that a
task requires to finish its work, respectively.

In contrast to the software layer, also the hardware layer has
been researched to support hard real-time applications (e.g.,
pipelining, interrupts, caches, memories, or System-on-a-Chip
(SoC) buses). These adaptations may affect the BCET and the
WCET.

To prove the schedulability of hard real-time systems,
the schedulability analysis [2] takes into account the WCET,
despite the ACET is far away from it. Therefore, for real-time
systems, the hardware layer should be designed to bring the
WCET closer to the BCET. Thus, the reduced jitter results in a
more realistic schedulability analysis. Especially, the SoC-bus
is a crucial part, which must be handled in an efficient and
predictable way.

The master is always admitted to access the slaves if there
is only one master in a SoC-bus (e.g., single core systems).
There is no other master that would block or interleave its
access to the slaves. In a multi-master system (e.g., multi-
core) a master could be blocked or interleaved by another
master. There exist many different bus topologies for accessing
slaves by masters. Each approach has its advantages and
disadvantages [3]. The most common topologies for SoC-buses
are the linear bus and the crossbar switch. If two or more
masters combat to access the same slave, the bus has to solve
that conflict, what is named arbitration [3].

In this paper, we present a priority aware SoC-bus including
an arbitration policy that uses the currently running task’s
priority, leading to a predictable SoC interconnect bus.

The next sections are structured as follows: Section II
investigates related works. Section III discusses fundamentals
to get the basics for following the proposed task priority
aware SoC-bus presented in Section IV. The evaluation of our
approach is shown in Section V. Lastly, Section VI concludes
this work.

II. RELATED WORK

Priority awareness in SoC-bus communication is only re-
quired for multi-master bus systems. Each single-master could
be isolated to work in a multi-master system. Nevertheless,
single-master bus protocols as the ARM AMBA AHB [4] or
the Altera Avalon [5] are not specifying priorities in their
specification. The open Wishbone [6] specification does not
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specify a priority, too. The specification passes the arbitration
technique to the developer.

The ARM AMBA specification [7] specifies the usage of
additional wires connected to an arbitration logic. However,
the specification limits the number of masters to 16 and does
not specify how to set the priorities of each master.

IBM specifies the Processor Local Bus (PLB) [8] with pri-
ority awareness. The PLB is responsible for admitting access
to the master with the highest priority. The priority contains
four levels, for which two additional lines from the master to
the arbitration logic must be used. Thus, the priority levels
are limited to four, which is not feasible for task priorities.
Moreover, for the priority level additional wires are required.

Many known and widely used arbitration algorithms are not
deterministic, therefore not suitable for hard real-time systems.
Further, they do not utilize the full available bandwidth: For
static assigned priorities [9], the highest prioritized master gets
always access to the slave and could starve other masters.
All this is independent of the task priorities, which at the
end are performing the operations with the slave. Thus, a
lower prioritized task could get access instead of the higher
prioritized task, what would lead into a priority inversion.

Another approach is Time Division Multiple Access
(TDMA) [10], where each master gets a time slot for commu-
nicating with the slave. This approach enables predictability,
but the communication cannot be used consecutively; thus,
the WCET of a task may increase. Here, other masters are
interleaving the highest prioritized master, so the whole system
performance may be reduced.

Similar to TDMA, round robin [9] passes the access to a
slave to the next accessing master. Thereby, the next master
is statically chosen and no priorities are considered. The
properties of this approach are the same as for TDMA, but
here the ACET may improve.

The lottery [11] arbitration is a probabilistic one, which
considers the last requesting master and a random number to
grand access to an accessing master. However, this approach
does not have an upper time bound for an admitted access;
consequently, it is not predictable for hard real-time systems.

Compared to the mentioned related works, our approach
adds task priority awareness to the SoC-bus that avoids priority
inversion and leads to predictable task executions and full bus
utilization without using additional wires for the priorities.

III. BACKGROUND

In this section, we introduce fundamentals of the proposed
priority aware SoC-bus.

A. System Structure

In a system with more masters, the access has to be
controlled by considering the priorities of the masters. In our
approach, the arbiter uses the current priority πm ∈ Π ⊆ N

of the master m ∈ M . Whereas, M is the set of all masters
that has access to the slaves s ∈ S. The m’s current priority
πm maps the priority of the in master m currently running
task τm,run ∈ Tm, which is known by the mosartMCU.
Thereby, the task priorities are spread among all tasks on

different masters and each priority indicates the importance
of the respective task (e.g., Rate Monotonic (RM) [2]).

B. mosartMCU

The mosartMCU1 [12] project implements OS awareness
into embedded, real-time, and multi-core systems. The Mi-
crocontroller Unit (MCU) is based on the open RISC-V [13]
architecture, maintained by the University of California, Berke-
ley. They offer an open source Verilog implementation, named
vScale2, which is the base for the mosartMCU. It implements
the 32Bit integer and multiplication/division instructions [14].
The SoC-bus is 32Bit wide and a memory access is naturally
aligned to the used data type. The implementation provides a
register file with 32 registers, whereas the compiler dose not
touch the register tp. This register is thought for indicating
the currently running task τm,run in the OS. By using the
register tp and the knowledge of the internal OS structure, the
MCU becomes aware of the currently running task τm,run’s
priority, which is mapped to m’s current priority πm.

C. mosartMCU-OS

In each core of the mosartMCU runs an instance of our own
developed mosartMCU-OS (i.e., partitioned RM scheduling
[15]). Its main design decision is that the whole OS functional-
ities (e.g., syscall, kernel, etc.) are running in kernel-mode. The
tasks are running in the user-mode, and may call OS related
functionality by calling a syscall with a special instruction. The
instruction leads to the kernel-mode and jumps into the OS;
there, the context is saved and the syscall is executed. After
handling the syscall, the scheduler may select a new task by
changing the register tp. After some additional administrative
work, the context of the scheduled task is restored and the
Central Processing Unit (CPU) continues in the user-mode by
executing task τm,run’s program code. Thereby, the context
restore phase restores all in memory saved registers back into
the registers. Further, this phase performs some non-memory
related instructions. This property is used later on to ensure
the proper task priority assignment to the master m.

D. Bus Signals

Here we demonstrate the bus signals used by the
mosartMCU. The SoC-bus is designed to get along without
three-state signals; thus, it can be directly implemented into a
Field Programmable Gate Array (FPGA). First, we present the
signals directed from master to slave:

EN The 1Bit enable signal starts a read or write
transfer.

WEN The 1Bit write enable signal defines a read or a
write transfer if it is LOW or HIGH, respectively.

SIZE On a bus transfer, the transfer can be either a
byte, half-word, or a word access. Therefore, the
2Bit size signal distinguishes between the three
bus wide transfers.

ADDR This 32Bit signal selects the address in the mem-
ory area for the read or write operation.

WDATA This 32Bit signal updates the content on address
ADDR at a bus write operation.

1Multi-Core Operating-System-aware Real-Time MCU
2https://github.com/ucb-bar/vscale
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Fig. 1. Write data transfer demonstrating the address and the data phases.

Second, we present the remaining bus signals directed from
the slave to the master, what reflects the answer of the initiated
bus transfer:

RDATA This 32Bit signal represents the read content at
a bus read operation on address ADDR.

WAIT The access to the address ADDR may take more
than one cycle. Thus, this waiting signal notifies
the master, that the slave is busy and not even
ready to undertake the WDATA or to provide the
RDATA for a write or read operation, respectively.

BAD An active BAD signal notifies the master that the
address ADDR is invalid.

The mentioned signals are the minimum required signals
to perform a read or write bus transfer for the mosartMCU. It
is possible to add more signals to support even more features,
as for instance the AMBA 3 AHB-Lite [16] does: burst mode,
master lock, or protection mechanisms. However, these must
be handled properly.

E. Bus Transfer Protocol

The bus transfer protocol specifies the relationship and
timing of all bus signals. The used bus protocol follows the
address and data phase approach used in the ARM’s AMBA
AHB buses [4]. In the address phase, the address is chosen
with the memory size SIZE and write enable WEN signals.
In the data phase, the data is transferred. Thereby, the data is
send from a master to a slave by the WDATA signal and from
a slave to a master by the RDATA signal on a write or read
access, respectively. Fig. 1 depicts a write transfer, with the
two phases. The two missing control signals (i.e., WAIT and
BAD) are not depicted. However, both signals would only be
relevant in the data phase. The BAD signal notifies the master
if the address was invalid, and the WAIT signal will prolong
the data phase if the slave is busy. Thus, the data transfer
signals (WDATA or RDATA) are not overtaken as long as the
WAIT signal is active. If the WAIT signal is deasserted, the
data signals are overtaken completes the transfer.

The division of an address and data phase enables a
pipelined bus transfer. Thus, an address phase may start while
the data phase of the previous address phase is ongoing.
Thereby, the bus access requires two cycles (if the slave is
not busy) but the maximal throughput is the full bus width
times the bus frequency.

With this bus transfer protocol, the bridge between our bus
protocol specification and the ARM AMBA 3 AHB-Lite is
straightforward and no internal registers for holding control
or data signals are required. Therefore, the bus bridge can be
implemented efficiently only with combinational logic.

m0 m#M-1

s0 s#S-1

Arbitrer

π#M-1

Crossbar Switch

π0 regs regs

Fig. 2. Isolated masters connected to the interconnect.
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Fig. 3. Write data transfer example with priority transfer.

IV. TASK PRIORITY AWARE SOC-BUS COMMUNICATION

Here we present the task priority aware SoC-bus. First, we
present the underlying structure and the extension of the bus
transfer protocol. Second, we show the arbitration strategy; and
last, some properties of our approach are shown and proved.

A. System Structure

The fundamental bus protocol is designed to simplify the
bus transfer protocol. This leads to a minimalist and easy to
implement design. The drawback of this simple protocol is
that the protocol does not support multi-masters. Therefore, we
propose to use an interconnect that isolates all masters from
each other, as depicted in Fig. 2. This mentioned structure
connects all masters to the interconnect enabling support for
multi-master accesses. Further, it can locally perform all the
required steps for the arbitration, leading to priority aware bus
accesses on concurrent slave accesses.

The interconnect possesses for each master m instead of
a 1Bit enable signal a #S Bit enable signal νm := s that
selects a slave s. Thus, the address resolving for a slave is
done in the masters and not in the interconnect logic.

B. Bus Transfer Protocol Extension

To add priority awareness to the fundamental bus protocol,
the WDATA signal is used. In the fundamental protocol, the
WDATA signal is not used while the first address phase is
executed. There, our proposed bus transfer protocol applies
the priority, as depicted in Fig. 3. Unless an address phase was
performed in the previous cycle, the WDATA signal represents
the m’s current priority πm. Otherwise, the data phase of
the previous address phase is concurrently performed with the
new address phase. Thus, in a pipelined access, only the first
address phase contains the priority on the WDATA signal. For
the remaining bus accesses the priority is internally stored in
the interconnect logic to preserve the priority awareness.

C. Arbitration strategy

In a multi-master system, more than one master m
may select the same slave s. Thereby, the priority πm
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Fig. 4. Interconnect finite state machine.

of a master m shows the importance for accessing the
slave s. Thus, the highest prioritized master must grant
access to it and the lower prioritized masters have to
wait, to avoid a priority inversion [17]. This leads to dif-
ferent interconnect states that a bus communication pos-
sesses: Γ := {IDLE, POSTPONE,ADDRESS,BUSY,DATA}.
Thereby, each master m ∈ M , connected to the interconnect,
possesses an interconnect state γm ∈ Γ.

The arbiter admits access to a slave s to one of the
requesting masters As:

As := {m ∈ M | (γm = IDLE ∧ νm = s)

∨ γm = POSTPONE} (1)

The requesting masters As for slave s set contains all
masters that are accessing the slave s or are postponed for
accessing it. Out of this set, only the master with the highest
priority gets access to the slave s. Thus, the slave s accessing
master αs is defined as:

αs :=
{
a ∈ As | πa = max

∀x∈As

{πx}
}

(2)

Fig. 4 depicts the state-transitions of a master m connected
to the interconnect. In the state IDLE the master m is not
using the bus. If the master m initiates a slave access, m’s
interconnect state γm will be moved to POSTPONE or AD-
DRESS. In the state POSTPONE, the bus signals are not put
through, because a higher prioritized master accesses the same
slave. In the state ADDRESS the address phase is executed
by putting trough the control signals from the master m. The
interconnect puts through only the control signals and not the
data signals; therefore, the master m’s current priority is not
passed through. After the state ADDRESS follows the state
DATA, which performs the data phase if the slave is not busy.
Otherwise, the master will stay in the state BUSY as long as
the slave s is busy.

In the transaction from POSTPONE to ADDRESS the
address phase signals of the master are caught up. Thus, the
interconnect internally stores the address phase signals on
master’s address phase for catching up later. Furthermore, in
the state POSTPONE the WAIT signal to the master is asserted,
what leads to a stalled master.

Due to the used task priorities, equal priorities may occur.
For that, either it is forbidden to assign same priorities on
different masters or the arbitration has to use a backup policy.
Many different backup policies are applicable (e.g., static
priority, round robin, etc.). Each policy will influence the
access times, why it has to be chosen carefully.

D. Properties

The arbitration policy leads us to the next properties:

Theorem 1: The master priority πm in the interconnect
is always equal master m’s currently running task priority
τm,run.
Proof: If the master m interconnect state γm is POSTPONE,
the WAIT signal is asserted by the SoC-bus. Thus, master m is
stalled and the priority cannot change. If the bus is constantly
used in pipelining mode, only the first bus access transfers the
master priority πm. The syscall is executed immediately after a
context save; thus, the priority remains the same for the syscall.
Afterwards, the kernel may change the task, including the pri-
ority, and then restores the context. The context restore requires
instructions, which are not accessing the memory; thus, the
pipelined access is stopped at least one time. Therefore, the
priority of the new task is applied at the next address phase
before returning to the user-mode. �

Theorem 2: The highest prioritized master in the requesting
master set As for slave s immediately gets the permission to
the slave s.
Proof: The requesting master set As for slave s contains all
masters that are requesting access to the slave s. If the master
m in the set As is the highest prioritized master, then αs = m
and the interconnect puts these signals through. Otherwise, the
master m′, with αs 6= m′, changes its interconnect state γm′

to POSTPONE and remains there as long as αs 6= m′. �

Theorem 3: The arbitration is deadlock free.
Proof: The arbiter immediately allows access to the higher
prioritized master; and therefore, the bus is a preemptive
resource. Thus, not all four Coffman conditions [18] hold,
which are required to lead into a deadlock. �

V. EVALUATION

In this section, we are examine the implementation of
our proposed arbitration approach. For that, we used the
mosartMCU platform that is running in an FPGA. First, we
will show a behavior example in a simulation and a use case
scenario. Afterwards, we will investigate the slices utilization
and the timing behavior of the synthesized hardware, which
was done with the Xilinx Vivado 2017.3 WebPack toolchain
for a Xilinx Artix-7 [19].

A. Behavior

This part of the evaluation shows three masters M :=
{m1,m2,m3} that want to access the slave s0 ∈ S, concur-
rently. Thereby, the master priorities, which are recognized
from their currently running tasks, are set as follows:

πm2
> πm3

> πm1
(3)

Fig. 5 depicts the access flow to the slave s0 in a simulation
output and shows the priority inversion avoidance on the SoC-
bus. In the next list, the relevant times are emphasized:

• At time t0, all three masters wanted to access the
slave s0. The address and control signals of the highest
prioritized master (i.e., master m2) are passed to the
slave. For the other two masters the address and
control signals are internally stored.
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Fig. 5. Simulation example of three concurrently accessing masters with
πm2

> πm3
> πm1

to the same slave s0.

• At time t1, the data phase of master m2 starts and the
address phase of master m3 is caught up. For the two
postponed masters (i.e., state POSTPONE) the WAIT
signals are asserted.

• At time t2, master m3’s data phase is performed and
the master m2 address phase is caught up.

• At time t3, the data phase of the lowest prioritized
master m1 is performed.

B. Use Case

In this use case scenario, we investigate the measured
WCET and the measured Worst Case Response Time (WCRT)
of four tasks distributed among a dual-core system. Both cores
are connected to the SoC-bus as a master and communicate to
the shared global memory (i.e., s ∈ S). On masters m0 and m1

the tasks Tm0
:= {τm0,4, τm0,1} and Tm1

:= {τm1,3, τm1,2}
are released on the same time, respectively. Thereby, the task
identifier defines their priority and a higher number defines a
higher priority. The priorities are distributed according to the
RM scheduling policy; whereby, shorter deadlines possess a
higher priority. Table I lists the WCETs and WCRTs for static
allocated priorities to the masters (i.e., π̃m0

< π̃m1
) and the

task priorities approach. Fig. 6 plots the execution flow of the
four tasks in the task priority aware approach.

Fig. 6. Use case task executions.

TABLE I. USE CASE WCETS AND WCRTS.

Task
static priority (π̃m0

< π̃m1
) task priority

WCET WCRT WCET WCRT

τm0,4 155.20 µs 155.20 µs 145.30 µs 145.30 µs

τm1,3 240.32 µs 240.48 µs 242.34 µs 242.50 µs

τm0,1 440.34 µs 630.96 µs 439.68 µs 620.40 µs

τm1,2 560.32 µs 811.22 µs 560.32 µs 813.24 µs

In the static priority use case, master m1 is higher pri-
oritized than master m0. Therefore, the highest prioritized
task τm0,4 is being stalled while task τm1,3 is accessing the
shared memory, concurrently. This leads to a priority inversion
on the SoC-bus. However, in our proposed approach the
priority inversion is avoided; and thus, the WCET and WCRT
of the highest prioritized task τm0,4 are improved.

For the tasks τm1,2 and τm0,1 the WCETs remains almost
equal, because the order of the priorities remains the same
for both use cases. Whereas, for the task τm0,1 the WCRT is
shorted, because task τm0,4 is not stalled by the SoC-bus.

C. Slices Utilization

For FPGA developers, the slices utilization is a metric to
investigate the resource utilization in the FPGA. Thereby, in
a FPGA the slices utilization can be distinguished into Flip-
Flop (FF) and Lockup Table (LUT) slices. The FF slices are
D-FFs, which are used to implement sequential logic. The LUT
slices are used to implement combinational logic. The LUTs
are tables, which map their input values to a defined output
value. In Artix-7, the LUTs are implemented as 6Bit; thus,
they save 64 output values for all 64 input combinations.

Fig. 7a shows the FF slices utilization depending on the
number of masters and slaves. It shows the utilization with
32Bit and 16Bit wide priorities and with static assigned
priorities. Fig. 7b depicts the same for LUT slices.

In both figures, the utilization increases with the number
of increasing masters and slaves. Further, the figures show
that the complexity of the implementation is O(#M · #S),
what reflects the complexity of a crossbar switch. If we
compare the implementation of assigned static priority with the
proposed task priority approach, we see that the latter requires
more slices depending on the priority width. Nevertheless, the
resource increase is in the same complexity class.

The cause of increasing FFs is the catch up logic of the
address phase. The LUT slices are influenced by comparing
the priorities of the masters.

D. Timing Results

The last part of the evaluation covers the timing behavior
depending on the number of masters and slaves. The timing
behavior is significant to figure out the maximum achievable
frequency that an implementation could run in a FPGA. If the
maximum achievable frequency is exceeded, a setup time or
hold time could be violated resulting into an unexpected run-
time behavior. For the timing evaluation, we used the Xilinx
Artix-7 with the lowest speed grade.

Fig. 7c depicts the maximum achievable frequency with
different number of masters and slaves. The figure compares
static priorities and our task priority aware approach. All
configurations show a similar frequency behavior; whereby,
increasing masters and slaves increase also the number of
possible master to slave connections. Hence, more signals
have to be switched through. The static allocated priority
solution reaches a higher frequency than our task priority
aware approach. However, with an increasing number of slaves
both frequencies converge to the same maximum achievable
frequency; thus, the frequency gap will be even smaller.
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Fig. 7. Resource utilization and maximum achievable frequency depending
on the numbers of masters and slaves of the SoC-bus.

VI. CONCLUSION

In this paper, we presented a new task priority aware SoC-
bus for embedded systems. Thereby, we extended the basic
SoC-bus protocol with priority awareness without adding new
wires for the priority. This approach would work on all other
bus protocols that distinguish between address phase and data
phase, and where the address phase does not use the data signal
(e.g., ARM AMBA 3 AHB-Lite). The basic protocol is not
multi-master capable; therefore, we used an interconnect to
isolate all masters. The arbitration policy is implemented into
the interconnect, which is able to catch up the address phases
if a master had to wait because its priority was lower than the
one of the currently admitted master. This priority awareness
always admits an access to a slave for the highest prioritized,
namely the most important, master and avoids priority inver-
sion on the SoC-bus layer. Thereby, we used the mosartMCU
platform where the master’s priority is equal to the currently
running task in it. Further, in the evaluation we showed a
simulation output, a use case, and the resource utilization in
the FPGA. The results showed that the priority awareness in

the SoC-bus consumes more slices and the maximum reachable
frequency decreases; nevertheless, compared to the basic SoC-
bus the priority awareness requirement is small and the use
case showed that the whole system behaves according to the

task priorities as required by real-time systems.
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Abstract—Remote Procedure Calls (RPCs) are a well-known
approach on the software layer, but not on the hardware layer.
In this paper, we present, to the best of our knowledge, the
first Remote Instruction Call (RIC) approach, which supports
the execution of an instruction in another Central Processing
Unit (CPU). This leads to an instruction execution in a different
address room. RIC can perform some operations that are
otherwise only possible with a memory access into another CPU’s
address room. With RIC no synchronization is required, what
may avoid performance penalties as in common approaches. In
this work, we present the idea of RIC, an implementation into
the mosartMCU project, and the performance evaluation, which
is implemented in a Field Programmable Gate Array (FPGA).
We discuss some potential improvements and extensions, which
may make this work the base for future works.

Index Terms—Embedded Systems; Multi-Core; Remote In-
struction Call; FPGA implementation

I. INTRODUCTION

Remote Procedure Call (RPC) is a well-known and widely

used approach to execute a procedure on another machine.

More than 30 years ago [1], there was established the idea of

transferring the arguments and the identifier of the procedure

to a remote machine where the procedure is executed. In the

meantime, the caller is waiting for the return value, which is

returned by the remote machine. RPCs enable the execution

of procedures in a completely different address room. If a

procedure uses some internal values, the procedure may return

different values compared to a local execution. CORBA [2],

DCOM [3] from Microsoft, or RMI [4] in Java are RPC

specifications that are defining how the RPC execution works:

One part is about how the arguments are passed; this can be

binary, or marshaled. Another part specifies where and how

the procedures are referenced on a remote machine and how

the data is transferred.

RPCs are not limited in the execution on distributed ma-

chines; they can also be locally applied on a System on Chip

(SoC). A SoC may contain many computation units (i.e.,

Central Processing Units (CPUs)), which may communicate

between each other to exchange information or to perform

work as RPCs. For embedded systems, which are often

real-time systems, already exist real-time RPC approaches.

Nevertheless, these approaches require computation time to

encode, find the destination machine, transfer, and decode the

arguments. For the return value, once again the same steps

have to be performed. For constrained embedded systems, this

sophisticated approach could be too complex and may even

shorten their batteries lifetime. Therefore, on embedded multi-

core systems, the common way to implement an efficient RPC

is to use shared memory and a synchronization primitive as

an event to notify another task. The shared memory requires a

synchronization mechanism to avoid race conditions. However,

for real-time systems, the synchronization mechanism is still

an intense research topic, and results are either pessimistic

or difficult to implement (i.e., [5]–[7]). Another approach to

perform computation work on another CPU is to use an Inter-

Process Communication (IPC). There exist approaches based

on shared memory, which are leading to the same problems

as mentioned before. However, there are also approaches

that get along without shared memory; instead, a dedicated

hardware performs the transfer. There exist co-processor (e.g.,

[8], [9]), Direct Memory Access (DMA) (e.g., [10]), and

hardware module (e.g., [11], [12]) approaches to perform an

IPC. However, these approaches either restrict the number of

IPC channels or do not consider real-time requirements, what

leads to deadline violations.

To counteract these problems, we present in this paper

the Remote Instruction Call (RIC) approach. It works similar

to RPCs on the software layer, but instead of procedures,

instructions are remotely executed on the hardware layer.

Thereby, the arguments are passed to the destination CPU,

where the instruction should be executed. Then, the CPU

returns the return value to the caller CPU.

The rest of the paper is organized as follows. Section II

shows the specification of the, to the best of our knowledge,

first approach that moves an RPC down into the hardware

layer for performing an instruction in another CPU. Sec-

tion III demonstrates an example implementation of RIC in

a Field Programmable Gate Array (FPGA). The evaluation,

in Section IV, shows the performance of the implementation

and the synthesize results in an FPGA. Section V discusses

RIC’s issues and the capability in futures embedded multi-core

systems. Section VI concludes this work.

II. REMOTE INSTRUCTION CALL

The RIC approach is a technique that works similar to an

RPC, but instead of a remote procedure, a remote instruction is

executed. To enable that, a connection between the sender and

the receiver, which is performing the computation work, must

be possible. The arguments of the instruction and its return

978-1-5386-4053-1/18/$31.00 ©2018 IEEE 1442
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value are transmitted over the connection. For RIC, we are

assuming a multi-core system with Reduced Instruction Set

Computer (RISC) CPUs, whereby the instructions possess a

3-address format. This means, that the instructions may have

up to two source registers (src1 and src2) and up to one

destination register (dst). The first source register src1 has

the restriction that it must contain an address. The address

defines the destination CPU. This leads to the assumption,

that there exists a unique address space, whereby each CPU

is assigned to a specific address range in the unique address

space. Further, the address contains the addressed Operating

System (OS)’s construct in the remote CPU. On this OS

construct, the remote instruction will perform the instruction’s

work, with the data of the possible second argument.

To execute a remote instruction, the common memory

interface is used. Beside the control signals for starting a

memory access (i.e., en) and the control signal for defining a

write or read operation (i.e., wen), RIC requires an additional

control signal, namely type. In the base version of the

memory interface specification, it defines the data width; thus,

it defines if the memory transfer is either a double word, word,

half-word, or byte. We extended this control signal with the

identification of the remote instruction. Beside the definition

of the memory width, it defines the type of instruction that

has to be performed remotely. Over the address (i.e., addr)

and the write data signals (i.e., wdata), the first and second

arguments of the instruction are transferred, respectively.

The interconnect fabric transfers the instruction type and

the two arguments to the destination CPU as a common

remote memory access. The memory access is forwarded by

the interconnect fabric through the recognition of the address.

RIC builds on an extended memory controller that every

CPU in the multi-core system possesses. The memory con-

troller is responsible for forwarding the memory accesses from

the CPU to the addressed component, according to the address.

Thus, it could be addressed a local component or a remote

component. Here, a component can be either a memory device

or a peripheral. To support RIC, the memory controller detects

a remote address and initiates a remote memory access that

the interconnect fabric forwards to the destination CPU. The

remote memory controller detects a remote instruction and

forwards it to the CPU through the remote interface, depicted

in Fig. 1.

The remote interface is based on a handshake protocol,

similar to the AMBA AXI protocol [13], with a valid signal

for each instruction and a ready signal indicating if a remote

instruction can be performed. Additionally to the control

signals, the remote interface possesses the rem_src1_dst

port with the first argument or the return value of the response.

The rem_src2 port transmits the second argument. With the

rem_ID port, the destination CPU is aware of the requesting

CPU. If the instruction is specified with a return value, the

requesting CPU waits for the return value while the remote

instruction is executed.

ROM RAM

CPU

inst

data

osmem

remote

masterslave

ROM RAM

CPU Memory
Controller

Memory
Controller

inst

data

osmem

remote

Interconnect Fabric

masterslave

M
em

o
ry

 C
o

n
tr

o
ll

er

en

wen

type

addr/src1/dst

wdata/src2

rdata

wait

badmem

C
P

U

rem_src1_dst

rem_src2

rem_ID

inst _valid0

inst _valid(n-1)

inst_ready

M
em

o
ry

 C
o

n
tr

o
ll

er

C
P

U

Fig. 1. Architecture structure for supporting the RIC approach.

III. IMPLEMENTATION

We implemented the proposed approach into the research

platform mosartMCU. The mosartMCU is implemented into

a Xilinx Artix-7 FPGA, which is assembled on a Nexys 4 DDR

board from Digilent. In our project, we implemented two

RIC instructions, one without a return value, and one with

a return value. Before we explain the functionality of the

RIC instructions, we introduce the mosartMCU and two local

instructions, which are then extended to RICs.

A. mosartMCU

To realize the proposed architecture, we started the

mosartMCU1 project, that implements OS awareness into

embedded multi-core systems (e.g., [14], [15]). The open

RISC-V [16] Verilog implementation vScale2 from the Uni-

versity of California, Berkeley, is the code base for the

mosartMCU project. vScale implements all 32Bit integers and

the multiplication/division instructions from the Instruction

Set Architecture (ISA) specification [17] and executes the

instruction in a three stage pipeline. The specification defines

32 registers; whereas, the compiler does not use the regis-

ter tp. This register indicates the Task Control Block (TCB)

of the currently running task, which contains information

about the task including its priority. We extended the basic

implementation with an automatic read operation triggered

by the hardware if the register tp is changed. Therefore,

the hardware is always aware of the currently running task’s

priority. Concurrently to the normal execution, a read operation

is automatically performed by using the additional connection

(i.e., osmem) to the data memory through a dual-port memory.

This dual-port memory is also used by some other OS-

awareness extensions. Further, the CPU specification defines

three different operating modes, whereas the mosartMCU

supports only the non-privileged user-mode and the privileged

kernel-mode. These operating modes define permissions for

1Multi-Core Operating-System-aware Real-Time MCU
2https://github.com/ucb-bar/vscale
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some instructions and for accessing Control Status Registers

(CSRs), which are hardware registers used to configure and to

get information from the CPU.

To support predictable memory access times in a multi-

core environment, we use an interconnect fabric with priority

awareness [18]; there the arbitration of the memory accesses

depends on the tasks’ priorities. The underlying protocol op-

erates in pipeline mode; thus, an address phase is performing

while a data phase of the previous address phase is executing,

as in the ARM’s AMBA AHB-Lite bus [19] specification.

B. EventIRQ

EventIRQ [14] is a hardware extension of the basic

mosartMCU. The EventIRQ is an Interrupt Request (IRQ)

handling approach for avoiding the unpredictable interruptions

due to IRQs. To achieve that, all the interrupts are mapped to

OS events, which a task is waiting for. Therefore, the software

for the Interrupt Service Routine (ISR) is moved from the ISR

to a task. On an IRQ, the hardware extension accesses the

TCB of the triggered task by knowing the internal OS data

structures. All these operations are simultaneously performed

to the normal execution flow. At the end of the TCB access,

EventIRQ is aware of the currently running task’s priority and

the priority of the triggered task. Thus, the currently running

task is only interrupted iff the priority of the triggered task is

higher than the one of the currently running task. Otherwise,

the task is appended to a list, which will be caught up by

the OS later on. With this postponing of the IRQ handling,

the response time of the IRQ may increase; however, the

unpredictable interruption of a high-prioritized task is avoided

and no rate-monotonic priority inversion (part of Operating

System Priority Inversion (OS-PI)) occurs.

For all IRQs, expect the system timer, the tasks waiting for

the event are ordered by priority. Thus, on a set event, the

highest prioritized task consumes the event. However, for the

system timer, all the tasks are ordered by its timeout. To handle

the timeout queue properly and to avoid the OS-PI issue, the

EventIRQ additionally sets the new system timeout of the next

waiting task in hardware.

To avoid the OS-PI, caused by setting a software event

that is directed to a lower prioritized task, EventIRQ extends

the base ISA with a set software event instruction sev

src1. This instruction performs the same operations as the

mentioned process for an IRQ, but instead of updating the

event table (i.e., interrupt vector table for the EventIRQ that

is stored in data memory) it updates the triggered event.

C. EventQueue

The EventQueue approach is an IPC realization in the

mosartMCU. EventQueue enables tasks, with the support of

a hardware extension, to transfer data to another task. The

base technologies of EventQueue are the before mentioned

EventIRQ approach and the message queue mechanism.

For transferring data from one task to another, the

mosartMCU ISA is extended with a queue write instruction

qwr dst,src1,src2. The instruction triggers in the CPU

a process for adding data into the queue. There, EventQueue

checks the size in the queue’s OS data structure and checks

if the buffer is already full. This state is then passed into

the destination register. Thus, the instruction is stalled as

long as the return value is generated. Afterwards, EventQueue

operates simultaneously to the current program flow, and

the hardware may trigger the task that is waiting for some

incoming data by setting the event. The setting of the event

follows the EventIRQ mechanism and avoids the OS-PI issue

as mentioned in Section III-B.

The instruction’s arguments are the address of the refer-

encing queue and the passing data. Consequently, the sender

task does not accesses the memory of the queue (i.e., only

referencing). EventQueue can also be used to implement a

secure IPC with the combination of a Memory Protection Unit

(MPU). There, the MPU protects the queue’s OS data structure

and EventQueue adds the data into the queue.

D. RIC extension

The mentioned EventIRQ and EventQueue approaches work

only locally; thus, for single-core systems. To support these

approaches for multi-core systems, we use RIC as proposed

in this paper.

The CPU executes all its standard instructions as the base

implementation does. However, if one of the two proposed

extended instructions is detected by the instruction decoder,

the instruction decoder checks if the instruction is addressed

locally or to a remote CPU. In case that it is addressed to the

local CPU, the instructions are executed as mentioned before.

Otherwise, the CPU transfers the content of the two sources

register to the local memory controller. Here it is important

to emphasize, that for the transfer the type is set to apply

the remote instruction. The memory controller detects that the

memory access is addressed to a remote CPU and forwards

the memory access to the interconnect fabric.

The interconnect fabric forwards the memory access to the

remote CPU. Thereby the interconnect fabric considers the

task’s priorities and arbitrates the accesses according to their

priorities. The remote CPU’s memory controller detects an

RIC, due to the control signal type, and forwards all the

required information to the CPU over the remote interface.

In case of a set event instruction sev, the first argument

represents the address of the event instance in the remote

CPU. This triggers the EventIRQ mechanism, as mentioned in

Section III-B. Here, the instruction does not use a return value;

therefore, the sender CPU immediately resumes its work and

the remote CPU executes, simultaneously to its usual work,

the EventIRQ mechanism.

For the queue write instruction qwr, the first argument

represents the address of the queue instance in the remote CPU

and the second argument represents the data to transfer. Here,

the execution of the queue write instruction works similar

to the set event instruction sev, but for the return value,

some additional work has to be performed. After receiving

the queue write instruction, the CPU executes the instruction,

what consumes some cycles. If the EventQueue produces the
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t0 t1 t2 t3 t4 t5 t6

11 cycles

Fig. 2. Example of a remotely executing queue write instruction.

return value, EventQueue initiates a new memory access with

a specific type. This memory access contains the return value,

generated by EventQueue. The memory access is transferred

as before, over the interconnect fabric to the CPU, what

triggered a queue write instruction. The remote identifier

rem_ID is used for the replay address. The initiating CPU

stalls its pipeline as long as the return value is replayed by

the destination CPU.

IV. EVALUATION

In this section we show the performance evaluation of

the remotely execution of a write queue instruction and the

synthesize results in the Xilinx Artix-7 FPGA, which is

reported by the Xilinx Vivado 2017.3 synthesizer.

A. Performance Evaluation

For the local queue write instructions qwr, the CPU stalls as

long as the return value is not returned by the EventQueue. In

addition to the instruction execution, for RICs the interconnect

structure influences the execution time of the remote instruc-

tion. Fig. 2 depicts involved signals of a remotely executing

write queue instruction on the mosartMCU. In the following,

each marked time is discussed in detail:

• The CPU1 initiates, at time t0, a queue write instruction

qwr. The instruction is addressed to the remote CPU0.

• At time t1, the memory controller detects that a RIC has

to be performed and forwards the memory access to the

interconnect. Furthermore, the CPU starts to stall until

the return value is responded.

• The interconnect contains a register for forwarding the

memory access, leading to one additional cycle for the

interconnect. Therefore, at time t2, the memory access

signals are forwarded to the CPU0.

• At time t3, CPU1 is ready to take over the two arguments

and starts the EventQueue process.

• The EventQueue execution consumes 5 cycles; and at

time t4, the memory access for transferring the return

value is initiated. The interconnect needs an additional

TABLE I
SYNTHESIZE RESULTS WITH AND WITHOUT RIC SUPPORT.

FF LUT max Frequency Power

CPU with RIC 2773 4130 69.26MHz 19mW

CPU without RIC 2701 4044 77.32MHz 21mW

Mem. Contr. with RIC 129 376 323.33MHz 1mW

Mem. Contr. without RIC 117 307 323.33MHz 1mW

cycle to forward the memory access to CPU1, and at

time t5, the signals are asserted.

• At time t6, the return value is received and CPU1 resumes

its execution on the next cycle.

On the mosartMCU platform, a remote queue write oper-

ation stalls the CPU for 10 cycles. Hence, the execution of

the write queue instruction qwr for a remote CPU consumes

11 cycles. On the destination CPU, the EventQueue is executed

simultaneously to its normal execution flow. Thus, the CPU

is not blocked through another CPU and it will notify the

waiting task about new data in the queue according to the

OS-PI avoidance policy of EventIRQ.

B. Synthesize Results

In this section, we investigate the synthesize results of

involved hardware modules with and without RIC support.

Thereby, we considered the number of Flip-Flops (FFs), Look

Up Tables (LUTs), the maximal achievable frequency, and the

dynamic power consumption.

The FFs are D-FFs, which are used to implement sequential

logic; by contrast, LUTs are used for implementing combina-

tional logic. The LUTs are tables, which map their input values

to a defined output value. The Xilinx Artix-7 architecture

possesses a 6Bit LUT; thus, it saves 64 output values for

all 64 input combinations. The maximal achievable frequency

is another metric of an FPGA. This metric is influenced by the

longest path that a signal has to pass through the combinational

logic. If the maximum achievable frequency is violated, an

unexpected run-time behavior is the result. This is because a

setup time or hold time is violated. We investigated this metric

with the lowest speed grade of the Artix-7 FPGA. The last

metric is the dynamic power consumption that the modules

consume by changing their internal states. Table I lists all

mentioned metrics for the CPU and for the memory controller.

For the CPU and the memory controller the FFs and LUTs

slightly increase with RIC support. The FFs are required for

additional information that must be stored internally, and the

LUTs for feeding the additional FFs with information.

The maximal achievable frequency of the CPU is reduced

with the support of RIC because the instruction decode is

executed together with the instruction execution, which starts

the memory transfer. For supporting RICs, we had to extend

the instruction decode, which had already the longest path in

the CPU. Thus, an additional pipeline stage might mitigate

the frequency reduction impact of the RIC extension. For the

memory controller the maximal achievable frequency stays

constant.
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The power consumption depends on the required FFs and

LUTs; thus, the power consumption of the CPU will also

increase with RIC support. The additional required resources

for the memory controller are that little, that the power

consumption increase is less than the report output accuracy.

V. DISCUSSION

In traditional multi-core systems, the execution of work

with remote information results in remote memory accesses

or usage of shared memory. However, these accesses must be

synchronized with resource management protocols, which in-

troduces management overhead and are often very pessimistic.

Other techniques in multi-core systems as notifying a task

of another CPU is mostly done with an IRQ. However, an

IRQ introduces issues as the OS-PI problem. RIC triggers the

execution of an instruction on a remote CPU, similar to the

RPC for procedures at software layer. Thus, the CPU locally

has the potential to handle local issues while performing a

remote instruction; thus, no global synchronization is required.

The bus arbitration for the remote CPU is done by the

interconnect fabric. In the mosartMCU this is realized with a

crossbar switch that uses the task priorities of each accessing

task for the arbitration. RIC is not limited to a crossbar switch;

it can also be implemented by using a Network on Chip

(NoC) or other bus topologies. The only requirement is that

the interconnect fabric must be able to transfer the instruction

type and that the remote CPU is aware of the sending CPU,

for replaying the return value (e.g., for the qwr).

RIC has also the potential to be implemented more deeply

into the CPU. One extension would be to execute the remote

instruction in an out-of-order execution manner as in High-

Performance Computing (HPC) systems or to share execution

resources of the CPU as in Intel’s hyper threading [20]

approach.

VI. CONCLUSION

In this paper, we presented, to the best of our knowledge, the

first approach to perform an RIC, which enables the execution

of instructions in a remote CPU. The idea is similar to an

RPC; however, instead of operating on software layer, RIC

works on instructions; thus, on the hardware layer. Today’s 3-

address RISC architectures suite well to transfer the two source

register over the common data bus to the remote CPU, where

the instruction is then performed. This enables the execution

of instructions in a completely different address room and

avoids the demand of using shared memory concepts that

must be synchronized. We implemented RIC into our research

platform mosartMCU and investigated the performance of a

remotely executing instruction and the synthesize results in

an FPGA implementation. RIC needs more cycles, because

of the transfer over the interconnect. Nevertheless, if the

interconnect fabric and the instruction itself are predictable,

RIC is performed in a predictable time. For real-time systems

the predictable computation time is intended to get accurate

real-time analyzes. Further, we discussed the benefits of RIC

and some potential future works that may base on the proposed

RIC approach.
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Abstract—Embedded real-time systems are targeting for econom-
ical stack memory usage and predictable execution flows, what
is challenging to unify. In this paper, we propose CoStack, a
collaborative stack sharing approach across tasks. CoStack allows
defining a collaborative stack memory that can be used by a
higher prioritized task if the stack runs out-of-memory. Thus,
CoStack virtually reduces the stack memory consumption, lead-
ing to a lower memory requirement, and concurrently remains
predictable, what is desired for real-time systems. This paper
presents an experimental evaluation of CoStack, the synthesized
results in a Field Programmable Gate Array (FPGA) and some
implementation details of CoStack.

Keywords–Embedded Systems; Stack handling; Operating-
System-Awareness; FPGA implementation

I. INTRODUCTION

Modern real-time embedded systems require, due to their
growing complexity and flexibility, evermore memory to fulfill
all their challenging requirements. However, embedded sys-
tem’s memory is a restricted resource; thereby, it has to be
used in an efficient way.

Global variables are always available for the complete
embedded system’s life, but local variables are only available
and allocated on demand. Therefore, local variables are dy-
namically allocated on a specific space in the memory, named
stack frame. The stack pointer, indicating the threshold of valid
and non-valid data in the stack frame, grows if a local variable
is allocated or if Central Processing Unit (CPU) registers are
temporally stored (e.g., on function prologue and epilogue).
The stack pointer shrinks if the local variables or temporally
stored registers are not needed anymore.

In state-of-the-art real-time Operating Systems (OSs) [1][2]
for each task an own individual stack frame is allocated; al-
though, it is not fully utilized simultaneously. Therefore, [3][4]
show approaches to use a common shared stack frame among
all tasks. This reduces the overall stack memory consumption,
but restricts the schedulability of all tasks. The reason therefor
is that a stack cannot grow if the task’s stack pointer is not
on the top of the common stack frame. Otherwise, it would
destroy data from another task in the common stack frame.
Therefore, an individual stack frame is assigned to the tasks in
real-time systems by accepting an increasing overall memory
consumption. The reason therefor is, for real-time systems, the
schedulability and satisfaction of real-time constraints is an
essential requirement. This has to be improved to reduce the
required computation power and CPU frequency, to reduce the
costs and power of the developed embedded real-time system.

Consequently, both, efficient stack memory and schedula-
bility must be unified to improve the memory consumption
and to fulfill all the real-time requirements.

Observations showed [5] that not each task fully utilizes its
individual stack frame simultaneously, wherefore the approach
to share stack memory space among all tasks is used. To
avoid the restriction of the schedulability, it must be avoided
or at least timely bound that a task is blocked for requesting
stack memory. That is possible with the concept of address
virtualization [6]. However, this concept requires an additional
hardware component, namely the Memory Management Unit
(MMU). It translates all Virtual Memory (VM) addresses into
Physical Memory (PM) addresses. However, an MMU is only
rarely found in embedded systems, because it requires a lot
of power and it introduces non-predictable memory accesses.
That has to be avoided for real-time systems, which aim for
predictability. Therefore, in [7] we presented a dynamic stack
sharing approach, which uses VM addresses only for the stack
memory and ensures a predictable stack memory access and
stack pointer adjustment if the underlying memory architecture
behaves predictable, too.

Since the memory is a scarce resource, the software de-
veloper has to use it sparsely. However, sometimes it is not
possible to optimize the code (e.g., to use an algorithm with
less stack memory consumption). Thus, to avoid an out-of-
stack, the software developer must guarantee enough stack
memory spaces for all tasks at any time. Otherwise, a task
would be unpredictably blocked and deadlines may be violated.

A. Related work

In the recent years, there has been done a lot of research
to reduce the stack memory consumption, with completely
different approaches:

Wang et al. proposed the preemptive threshold scheduling
in [8], which is used in the ThreadX real-time OS [9]. It is
based on Rate Monotonic (RM) scheduling and extends each
task with a threshold priority, beyond its nominal priority. If
a task is scheduled, its threshold priority is the new priority
that must be exceeded to preempt the task by another task’s
nominal priority. This solution leads to non-preemptive task
groups and these are able to use a common shared stack
frame. Further, it may improve the schedulability compared to
the standard RM scheduling. Nevertheless, sharing the stack
memory is not possible between non-preemptive task groups
and/or preemptive tasks; thus, sharing the stack memory is
limited.
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In [10], Chu et al. proposed to use a binary translation and
a specific kernel by using VM addressed stacks in embedded
systems. Thus, their approach allocates only that memory that
is required, but the authors showed that for each stack pointer
access and adaptation the required run-time is enormous.

Yi et al. [11] showed an approach, where a tool analyzes
the stack consumption of each task and modifies the developed
code on compile time. The modified code calls the on demand
stack library at each prologue and epilogue of a function. In
their use case scenario, the stack memory consumption indeed
reduces; however, the execution time increases by 10%.

Other solutions proposed to allocate the stack memory on
the heap. In older works, as for instance [12], on each function
prologue and epilogue the heap allocation and deallocation is
called, respectively. However, these calls lead to a large run-
time overhead for each function.

Works as [13][14] also allocate the stack on the heap. With
analyses at compile time, they are able to reduce the large run-
time overhead for allocating and deallocating stack memory
on the heap. Nevertheless, run-time checks are still required
to allocate and deallocate the stack memory.

Middha et al. [5] propose to allocate an individual stack
frame to each task. If a task overflows (i.e., out-of-stack) its
individual stack frame, their approach allocates unused stack
memory in another task’s individual stack frame. Without code
optimization, their run-time consumption increases by around
23%; with an optimization about 3%. However, the optimized
solution restricts programming features as function pointers
and recursive functions.

None of the mentioned works is able to free stack memory
voluntarily for a higher prioritized task if no stack memory
is available. In [15], Baunach proposed CoMem that is a
collaborative memory management in the heap memory for
dynamic memory. There, each memory block (in the heap) is
handled as a system resource. If a task requests the memory
block and is used by another lower prioritized task, the lower
prioritized task will be informed. That task has then the control
to free the memory block or not.

CoMem enables a collaborative usage of memory blocks in
the heap but not for the stack memory. Therefore, in this paper
we present CoStack, a collaborative stack sharing concept
based on a hardware extension, which enables the reduction of
the whole stack memory consumption by defining parts in the
source code in which the stack memory is collaborative. With
the state-of-the-art approaches, there is no possibility to give a
higher prioritized task the advantage to use the stack memory
instead of a lower prioritized task that owns collaborative
stack memory that might voluntarily be released. CoStack
ensures the allocation of the required stack memory for higher
prioritized tasks by freeing collaborative stack memory from
lower prioritized tasks if an out-of-stack condition would
result. CoStack does not require a code analysis at compile
time; therefore, it is possible to use our approach also in
highly dynamic environments, as the Internet of Things (IoT),
Industry 4.0, or automotive applications.

The rest of the paper is organized as follows: First,
Section II describes in detail the fundamentals of CoStack.
Second, Section III analyses the memory improvement and
shows the schedulability analysis. Next, Section IV demon-
strates implementation aspects in our development platform.

Section V shows the CoStack evaluation with an example and
the synthesized results for a Field Programmable Gate Array
(FPGA). Last, we summarize this work in Section VI.

II. COLLABORATIVE STACK SHARING

The collaborative stack sharing approach is based on
StackMMU presented in [7]. First, we introduce the termi-
nology and the system assumption. Second, we introduce the
fundamentals of StackMMU. Third, we show the extension
of the basic StackMMU, which is needed for providing the
required information to the hardware. Last, the collaborative
stack sharing approach, CoStack, is described in detail.

A. Terminology and Assumption

For CoStack we assume a Reduced Instruction Set Com-
puter (RISC) load/store single-core CPU with Control Status
Registers (CSRs), which are CPU registers accessible by
specific instructions. Further, we define a multi-tasking system
with τ ∈ T as a task in the set of tasks T . For each task τ
we define, the priority pτ , the Worst Case Execution Time
(WCET) with Cτ defining the time executing on the CPU, and
the period or minimum interarrival time with Tτ for periodic
or sporadic tasks, respectively. The longest time, in which a
priority inversion [16] occurs (i.e., a lower prioritized task runs
instead of a higher prioritized task) is denoted as the blocking
time Bτ of task τ . Further, we assume that the context switch
in the OS and the OS itself consumes no computation time. The
stack usage στ (t) ∈ N0 defines the stack memory consumption
of task τ at time t ∈ N0, what can be analyzed with static code
analyzers.

B. StackMMU

The StackMMU [7] uses VM addresses for the stack mem-
ory. Thus, each task’s stack pointer points to a virtual address
and StackMMU translates that address to a PM address. For
that, the memory is divided into a common area and into
a stack area, as depicted in Figure 1. In the common area,

DATA MEMORY

START END

FREE
NULL

block size

stack area (used memory) stack area (unused memory)common area

Figure 1. Memory layout of the StackMMU.

all the global data of a task is stored and accessed by PM
addresses. The memory for the stack is located, in the stack
area. Thereby, the stack area is again divided into blocks,
called pages. Each page has the same size and is configurable
including the start and end of the whole stack area at startup.
A linked list contains all available pages, whereby the FREE

register points to the first free available page. Thus, if a task
requires more stack memory and exceeds the available memory
in the last appended page, the StackMMU assigns a new page
to that task. Thereby, the hardware uses the register FREE

and updates the Task Control Block (TCB) of the task with
the address of the new allocated page. On a stack memory
access, first, the hardware reads the PM base address in the
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TCB; and second, it accesses the content in the stack area. If
the stack page is not required anymore, the hardware frees
the page and updates all the required pointers (i.e., FREE
and the pointer to the next free page in the page). Before a
specific stack operation (i.e., growth, access, or shrinkage) is
executed, all three operations are performing a read memory
operation leading to an additional memory access. However,
if the memory access is deterministic, as in many embedded
systems, the whole stack operation is also executed in a
predictable time as desired for real-time systems.

C. MultiStackMMU

StackMMU restricts the size of the stack pointer change
for growing and shrinking in one instruction to the size of a
stack page. That limitation is handled by a modified compiler.
However, we purged that limitation with MultiStackMMU.

Here, if a stack grows or shrinks more than one page, the
hardware extension performs the assignment or deassigment
of pages one after another, respectively. This leads to a
longer run-time to perform these operations; nevertheless, the
execution time remains predictable if the memory accesses
itself are deterministic.

Through this extension, the modified compiler, which lim-
ited the stack pointer change to one stack page size, is not
required anymore. Besides, the hardware is now aware of the
number of required pages on a stack memory request, neces-
sary for performing our collaborative stack sharing approach
CoStack.

D. CoStack

As long as in the stack area are available more unused
pages than required by a task, the pages are properly assigned
to the task by the MultiStackMMU approach. However, if
there are not enough available pages, an out-of-stack con-
dition occurs. An out-of-stack condition is handled by the
OS; nevertheless, the task will be unpredictably blocked until
stack memory is available. This would lead to a reduction of
the system performance and may lead to real-time constraint
violations. Thus, to reduce the possibility of an out-of-stack
condition, enough stack memory must be provided.

Instead of blocking the task as long as not enough stack
memory is available, CoStack deallocates stack memory from
tasks that define their used stack memory as collaborative.

If CoStack detects that the required stack memory pages
exceed the free available pages, a collaborate exception is
triggered and the OS must handle it. Thereby, the stack growth
is aborted by the hardware and the OS saves the context of the
task. After rescheduling that task, the stack growth instruction
will be repeated (i.e., the program counter of the stack growth
instruction is stored in the TCB). In the exception handler, the
OS searches a lower prioritized task that provides collaborative
stack memory. Then, the OS modifies the program counter and
schedules the collaborative task. The collaborative task frees
the collaborative stack memory and yields itself to return to
the OS. There, the scheduler selects the highest prioritized
runnable task, which may be the same as the previous one. If
a task, that requires stack memory, is scheduled and enough
unused pages are available, the required pages are assigned
to the task. Otherwise, once again a collaborate exception is
triggered and the OS iterates through the tasks as before to

search a collaborative task. In case that there are no lower
prioritized tasks with collaborative stack memory, the OS
has to define a handling strategy to handle this failure as in
standard out-of-stack approaches.

Figure 2c demonstrates how a code part can be tagged with
collaborative stack. The macros in Figure 2a, Figure 2b, and
Figure 2d generate the code for handling CoStack properly.
Additionally to the tagged code, which uses a collaborative
stack memory, a handler is defined. The handler is only
executed if the collaborative stack memory was deallocated for
performing some clean-up work, similar to the catch primitive
in programming languages such as Java or C++.

Figure 2a shows how the collaborative stack mechanism is
performed. First, it checks if the currently running task already
defines a collaborative code part. If so, the collaborative code
part is already a part of an upper tagged collaborative code
part and the try part is immediately executed. Otherwise, the
handler address and the collaborate frame pointer are stored
in the task’s TCB. Additionally, the callee saved registers
are stored on the stack, to restore them if the collaboration
must be performed. Afterwards, the try part is executed. If
there was no other task requiring the collaborative stack, the
callee saved registers on the stack are discarded because the
program flow was not manipulated. Otherwise, the program
counter continues at the label COLLABORATE after a context
switch. There, the callee saved registers are restored and the
collaborative stack memory space is freed, by using the stored
collaborate frame pointer. After that, the collaborate frame
pointer in the TCB is cleared and the syscall yield() is
called for a self-preemption to allow the OS to schedule a
higher prioritized task that may wait for stack memory.

III. ANALYSIS

In this section, we analyze the memory utilization of the
collaborative stack sharing approach CoStack and compare it
with the StackMMU approach. Further, we show the schedu-
lability analysis of CoStack.

A. Memory Consumption

In the StackMMU approach, the stack grows and shrinks
with the stack page size page_size. There, the size of
the stack changes over time t, depending on the required
memory στ (t) by a task τ at time t. Thus, the stack memory
consumption of the whole system U is calculated as follows:

U(t,page_size) =
∑

τ∈T

⌈
στ (t)

page_size

⌉

· page_size

(1)
Let S denote the totally assigned stack space. To avoid an
out-of-stack condition, the stack memory consumption U is
not allowed to exceed the totally assigned stack memory S.
Otherwise a task would be unpredictably blocked what restricts
the schedulability:

∀t ∈ N0 : U(t,page_size) ≤ S (2)

With the introduction of the collaborative stack sharing
approach, each task τ may define some collaborative stack
memory κτ (t) at time t ∈ N0. This collaborative stack
memory κ is available for all higher prioritized tasks, leading
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✞
1 return OS_SUCCESS;

2 }

3

4 if(tp->coll_fp == NULL) {

5 register uintptr_t *sp asm ("sp");

6 uintptr_t *fp = sp;

7 tp->handler = &&COLLABORATE;

8 tp->coll_fp = fp;

9 asm volatile (" addi sp, sp, -48" ::: "sp");

10 asm volatile (" sw s0, -0(%0) \n\t

11 ...

12 sw s11, -44(%0)":: "r" (fp));

13 volatile int try_return = try();

14 /*here the OS may manipulate the PC to:

15 tp->context[CONTEXT_PC] = tp->handler; */

16 if(try_return == OS_SUCCESS){

17 tp->coll_fp = NULL;

18 asm volatile (" addi sp, sp, 48" ::: "sp");

19 } else {

20 COLLABORATE:

21 asm volatile (" lw s0, -0(%0) \n\t

22 ...

23 lw s11, -44(%0)" :: "r" (fp));

24 sp = tp->coll_fp;

25 tp->coll_fp = NULL;

26 yield();
✝ ✆

(a) Macro defines the code for handling the collaboration.

✞
1 do {

2 __label__ COLLABORATE;

3 register os_tcb_t *tp asm ("tp");

4 volatile int try(void) {
✝ ✆

(b) Start of the collaborative stack part macro.

✞
1 int task0(void) {

2 while(1) {

3 COLLABORATIVE_STACK {

4 uint8_t test[600];

5 /* other code */

6 sleep (TIME_MS(1));

7 /* other code */

8 } COLLABORATE_STACK {

9 /* executed if

10 task collaborate */

11 } COLLABORATE_STACK_END;

12 }

13 }
✝ ✆

(c) Task requires a 600Byte array which memory is tagged as collaborative.

✞
1 }

2 } else

3 try();

4 } while(0);
✝ ✆

(d) End of the collaborative stack part.

Figure 2. Macros for the collaborative stack sharing approach with a usage example.

tkτ

to the available collaborative stack pages Kτ at time t for
task τ .

Kτ (t) =
∑

∀i:pτi
<pτ

⌊
κτi(t)

page_size

⌋

· page_size (3)

As mentioned in Section II, if a higher prioritized task
requires non-available stack memory but collaborative stack
memory is available, the collaborative task deallocates its
collaborative stack memory to make it available for the higher
prioritized task. This means that the stack memory consump-
tion is virtually reduced, leading to the next equation that must
be hold to avoid an out-of-stack condition:

∀t ∈ N0, ∀τ ∈ T : U(t,page_size)−Kτ (t) ≤ S (4)

Thus, CoStack contributes to the reduction of the totally
assigned stack memory S by collaboratively sharing stack
memory as shown by comparing the equation (2) with (4).

B. Schedulability Analysis

The freeing of the collaborative stack memory is performed
in the respective lower prioritized tasks. Thus, a priority
inversion occurs: The lower prioritized task frees the stack
memory and blocks the higher prioritized task because the
required stack memory is not available. Thus, we are investi-
gating the maximum blocking time Bτ of task τ for the RM
schedulability analysis [16]:

Cτ0

Tτ0

+...+
Cτn−1

Tτn−1

+max

(
Bτ0

Tτ0

, ...,
Bτn−1

Tτn−1

)

≤ n(2
1

n −1) (5)

In CoStack, the blocking time compounds on some admin-
istrative work and the freeing of the stack memory. Thereby,
the time for freeing the stack memory is not constant, because
MultiStackMMU is based on pages, which must be released
one after another. Therefore, we are defining the collaborate
time tkτ ′(t) of task τ ′ at time t (see Figure 2a), which defines
the time required by the collaborative task τ ′ to perform
all the operations to free τ ′’s collaborative stack memory.
Consequently, the blocking time Bτ of task τ can be calculated
as follows:

Bτ :=
∑

∀i:pτi
<pτ

max
∀t∈N

{tkτi(t)} (6)

The blocking time Bτ is the sum of the longest collaborate
time tkτi of all lower prioritized tasks τi. Thus, the blocking
time highly depends on the requested stack memory, the
collaborative stack memory of each collaborative task, the
number of lower prioritized collaborative tasks, and the time
when the stack memory is requested.

IV. IMPLEMENTATION DETAILS

We implemented the collaborative stack sharing approach
into our mosartMCU research platform, running with the
mosartMCU-OS.

A. mosartMCU

The mosartMCU (i.e., Multi-Core Operating-System-
Aware Real-Time MCU) project implements OS awareness
into embedded multi-core systems. The open RISC-V [17]
architecture, maintained by the University of California of
Berkeley, is the specification of the softcore mosartMCU. The
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mosartMCU is based on the offered open source Verilog im-
plementation vScale. vScale implements all the 32Bit integers
and the multiplication/division instructions [18] and executes
the instruction in a three stage pipeline. The specification
specifies 32 registers whereas the compiler does not use the
register tp. That register indicates the TCB, which contains
information about the task including its priority, of the cur-
rently running task. We extended the basic implementation
with an automatic read operation, triggered by the hardware if
the register tp is changed. Therefore, the hardware is always
aware of the currently running task’s priority. In parallel to
the normal execution, a read operation is automatically per-
formed by using an additional connection to the data memory
through a dual-port memory. This dual-port memory is also
used by some other extensions (e.g., [19]). Further, the CPU
specification defines three different operating modes, whereas
the mosartMCU supports only the non-privileged user-mode
and the privileged kernel-mode. These operating modes define
permissions for some instructions and for accessing CSRs,
which are hardware registers used to configure and to get
information from the Microcontroller Unit (MCU).

B. mosartMCU-OS

The mosartMCU-OS is a real-time OS supporting the OS-
awareness extension of the mosartMCU. Besides other OS-
awareness concepts, it only has to initialize some CSRs (i.e.,
stack area) and the references of the next free available pages
at startup, for supporting MultiStackMMU. After that, the
MultiStackMMU operates transparent to the OS. However, the
OS must be extended to support our proposed collaborative
stack sharing approach.

C. Collaborative Stack Management

In a CSR, the hardware provides the number of required
stack pages after a collaborate exception. The exception
handler stores the number of required pages into the TCB
of the currently running task. After executing the exception
handler, the OS does its management work and selects a task
according to the RM scheduling policy. Before leaving the
OS, by restoring all the task’s registers, the OS checks if
the scheduled task requires more pages than available. The
number of available pages is provided by the hardware through
another CSR register. If there are more pages available than
required, the OS lefts and resumes with the scheduled task.
Otherwise, the OS searches, starting by the lowest prioritized
task, a collaborative task that is recognized by the information
in the TCB. If a collaborative task is found, the scheduler
selects that task for executing. Thereby, the scheduler changes
the program counter to continue at the collaborate handler,
also stored in the TCB. The collaborate code restores its callee
saved registers, frees the collaborate stack memory, and yields
itself to return to the OS.

V. EXPERIMENTAL EVALUATION

We experimentally evaluated the collaborative stack sharing
approach in the mosartMCU, running with 50MHz in a Xilinx
Artix-7 FPGA. First, we demonstrate the cooperative stack
sharing, measured with an oscilloscope; and second, we show
the synthesized results for the FPGA.

A. CoStack Evaluation

This evaluation illustrates CoStack on a collaborative
600Byte stack memory provided by task τ ′, once the stack
memory is not available for the higher prioritized task τ .
Figure 3 depicts the execution flow with the signal os showing

coll_sched
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stack_alloc

Bτ

tτalloc

tos
1

tos
2

ts

t =3,74μsos
1

t =1,94μscoll

t =4,08μsos
2

B  =9,76μsτ

t =11,00μsalloc
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t
0

t
1

t
2

tτ‘
k

Figure 3. Execution flow example of CoStack.

the execution of the OS, the signal coll sched demonstrating
the part in the scheduler that is responsible for searching
and scheduling a collaborative task, and the signal stack alloc
showing the time for allocating the required 600Bytes stack
memory to task τ . Table I lists all the measured times, and

TABLE I. Measured times for the example in Figure 3.

tos1 ts tos2 tkτ′
Bτ tτalloc

3.74 µs 1.02 µs 4.08 µs 1.94 µs 9.76 µs 11.00 µs

following emphasizes some specific points in time of Figure 3:

• At time t0, task τ requests 600Byte stack memory.
The memory is not available; therefore, the OS is
called by a collaborate exception. There, the OS saves
the context of task τ , does its management work
including the work for scheduling the collaborative
task τ ′ (i.e., ts), and restores its context. All this in
total consumes tos1 .

• At time t1, the OS returns, and task τ ′ is running.
Instead of continuing with the previous preempted pro-
gram counter it continues at the label COLLABORATE.
There, its callee saved registers are restored, the col-
laborative stack memory κτ ′ is released, and the task
yields to return to the OS, which again schedules
task τ . These operations reflect the collaborate time
tkτ ′.

• After leaving the OS (i.e., tOS2
) on time t2, there is

enough stack memory available for task τ ; therefore,
the required stack memory is allocated to task τ .

The blocking time Bτ (i.e., tkτ ′ including the OS overheads
tOS1

and tOS2
) and the stack allocation time tτalloc are not

constant, because they depend on the number of collaborative
tasks, the location of the task in the searching list, and the
number of required and collaborate stack pages. However, the
execution is still predictable because MultiStackMMU works
predictable. Further, CoStack avoids an out-of-stack, because
the collaborative task τ ′ voluntarily frees its collaborative stack
memory κτ ′ for the higher prioritized task τ . Otherwise, task τ
would not be able to execute, because no stack memory is
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TABLE II. Resource comparison of the original and the extended
mosartMCU.

mosartMCU
Original MultiStackMMU CoStack

LUT slices 2799 4283 4298

FF slices 2078 2378 2378

max. frequency 73.992MHz 63.339MHz 63.391MHz

Dynamic power 16mW 21mW 21mW

available; consequently, this might result into an unpredictable
blocking of task τ and to possibly violated real-time con-
straints.

B. Synthesized Results

The synthesized results, provided by the Xilinx Vivado
2017.3 development toolchain, for the Xilinx Artix-7 FPGA
are listed in Table II. It compares Look Up Table (LUT) slices,
Flip-Flop (FF) slices, the maximum achievable frequency, and
the dynamic power of the original mosartMCU, and the ex-
tended versions MultiStackMMU and CoStack. If we compare
the original mosartMCU with the extended versions, it is
remarkable that the original version requires about 65% and
87% of LUTs and FFs, respectively. The increased resource
utilization is caused by the VM address translation and some
other registers that are required for handling the StackMMU
approach. However, comparing the two extended mosartMCU
versions, the resource utilization remains negligible the same.

For the maximal achievable frequency, and the dynamic
power consumption the table represents a similar behavior.
For the former, the large frequency reduction is caused by
the implementation of the StackMMU in the already longest
path of the original mosartMCU. For the latter, the dynamic
power increases due to the additional required LUTs and
FFs. However, for the two extended mosartMCU versions, the
maximum achievable frequency remains almost the same and
both require the same amount of power.

VI. CONCLUSION

Memory is a rare and expensive resource in embedded sys-
tems. This makes the economical usage of memory important.
The stack memory has the potential to optimize the overall
memory consumption because its size changes dynamically
over the time. The paper proposes CoStack, an extension of
the dynamically sharing stack memory concept StackMMU
with collaborative stack memory. A task tags a code part with
collaborative stack memory and if a higher prioritized task
requires stack memory that is not available at that moment, the
collaborative task deallocates the collaborative stack memory
for enabling the higher prioritized task to continue. Our analy-
sis shows that the whole stack memory requirement is virtually
reduced. Further, we showed the impact of CoStack in the
schedulability analysis for RM scheduling. The experimental
evaluation shows that the synthesized results for the FPGA
remain almost constant. Therefore, CoStack contributes to a
reduction of the memory usage by introducing a collaborative
stack sharing mechanism and remains predictable as aimed for
real-time systems.
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Abstract—Modern embedded systems are targeting for isolated
tasks and for an efficient Interprocess Communication (IPC).
However, unifying both requirements is not a trivial challenge. In
this paper, we propose EventQueue that unifies both requirements
with the assistance of a hardware extension. With a message
queue, the data is transferred from one task to another. Thereby,
sending the data is performed in hardware, what eliminates the
problem of an Operating System Priority Inversion (OS-PI) and
concurrently enables the isolation of the tasks among each other.
We implemented EventQueue into the mosartMCU, running in
a Field Programmable Gate Array (FPGA). This is illustrated
in performance evaluations. The evaluation shows a significant
throughput improvement, what makes EventQueue well suitable
for future real-time embedded systems.

Index Terms—Embedded Systems; Interprocess Communica-
tion; OS-Awareness; FPGA implementation

I. INTRODUCTION

In today’s real-time embedded systems the real-time Oper-

ating System (OS) is still a fundamental layer of the whole

system; and therefore, still part of today’s research. In the OSs

a finite set of software parts, called tasks, is selected to be

scheduled on the Central Processing Unit (CPU). Thereby, the

OS selects a task according to the OS’s scheduling policy.

The scheduling policy of real-time OSs aims to fulfill all

task’s real-time constrains; thus, a task has to be started and/or

finished within a lower and/or upper time bound, respectively.

A violation of these timing bounds could result in dramatic

situations, where machines are smashed or even human lives

are affected. Therefore, it must be ensured that all real-time

constraints in a real-time embedded system are satisfied.

The schedulability analysis (e.g., [1]) proves if a set of tasks

does not violate real-time constrains. The analysis calculates

the utilization of the whole system that requires, among other

parameters, the Worst Case Execution Time (WCET) of each

task. A longer WCET increases the utilization of the whole

system; and thus, the utilization could exceed the threshold

to ensure a feasible scheduling. To reduce the utilization, for

instance, a faster CPU or a higher CPU frequency must be

used, what would however increase the power consumption.

However, embedded systems, as in the Internet of Things

(IoT) are mostly power constrained. Therefore, a more efficient

solution to improve the utilization is to reduce the WCET of

the tasks.

Modern real-time OSs support a multitude of features to

assist the application developers in implementing their appli-

cations and to achieve functionalities that are not achievable at

the application layer. Thus, real-time OSs support, for instance,

task management, memory management, file management, and

Interprocess Communication (IPC). The IPC represents the

exchange of data between tasks locally (i.e., single-core) or

globally (i.e., distribute systems as multi-cores). An OS may

realize an IPC in different variations. Linux [2] supports IPCs

via files, sockets, pipes, shared memory, and message queues.

Often, these methods require synchronization primitives to

avoid race-conditions (e.g., for shared memory). Thus, these

IPC methods influence the performance of the whole system

[3]. Especially for microkernels (e.g., [4], [5]), which are

mainly found in real-time embedded systems, an IPC with a

minimum of overhead is aimed, because IPCs are intensively

used there.

The Memory Protection Unit (MPU) may enable the possi-

bility to isolate confidential task data from each other. Thus, a

task puts critical data into a protected memory region and non-

critical data to the non-protected memory region. However, not

all IPC approaches are suitable for transferring critical data

from one task to another (e.g., shared memory). For protected

IPC transfers the sender must be able to send confidential

data to the protected memory region of the receiver task. This

would be possible with a one directed IPC mechanism and

suitable memory protection. Thus, message queue IPCs would

be a suitable mechanism to fulfill a secure IPC transfer.

Newly received data is recognized by polling or by receiving

an interrupt. The polling may consume a lot of CPU cycles

only for checking, what badly influences the WCET of a task.

Receiving an interrupt could introduce a rate monotonic pri-

ority inversion [6], where a high prioritized task is preempted

by an Interrupt Request (IRQ) that is addressed to a lower

prioritized task. In [7], we generalized the rate monotonic

priority inversion definition through the priority inversion

caused by the OS, as a syscall that performs operations for a

lower prioritized task. We named this phenomenon Operating

System Priority Inversion (OS-PI).

This paper presents EventQueue, a message queue based

IPC for real-time embedded systems. EventQueue is based on

an event approach that avoids the OS-PI problem, what leads

to the fact that higher prioritized tasks are not unpredictably

preempted while receiving new data from lower prioritized978-1-5386-4155-2/18/$31.00 c© 2018 IEEE
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tasks. Furthermore, EventQueue reduces the number of send

syscalls executing in the kernel-mode, what improves the

tasks’ WCETs. EventQueue does not limit the number of

IPC channels, which are usually limited in other hardware

solutions. Thus, it is already ready for future highly adaptive

embedded real-time systems. As a side effect, the proposed

approach enables the possibility of securely transferring data

to tasks, isolated from each other, by using an MPU.

The rest of the paper is organized as follows: First, Sec-

tion II shows similar message queue based IPC approaches

in hardware. Second, Section III shows the fundamental ar-

chitecture, where the EventQueue is applied, and Section IV

shows the EventQueue in detail. While Section V shows

performance evaluations and the synthesis result in a Field

Programmable Gate Array (FPGA), Section VI discusses the

performance, security, and general aspects of EventQueue.

Finally, Section VII concludes this paper.

II. RELATED WORK

More than 25 years ago, the first message passing OSs has

been developed, with a multitude number of IPC calls. At

the beginning, the pure software IPCs were slow; therefore,

already then started some research projects with the aim of

supporting the IPCs by a message co-processor [3], [8]. The

hardware solution showed a huge performance increase, but

it have been designed for server applications in which space

and power consumption are not that relevant as in embedded

systems. Moreover, the real-time constraints have not been

considered at all, what makes these IPCs not applicable for

real-time systems.

The work in [9] presents a message queue IPC with

hardware support that considers also real-time constrains by

noting the priorities. The hardware supports a limited number

of message queue channels, which can be owned by a task.

Therefore, the number of IPC channels is limited by the

hardware. This does not make this hardware suitable for

today’s complex embedded systems, which mostly require a

multitude number of IPC channels.

In [10], the authors proposed an approach of a predictable

IPC mechanism for embedded systems. Their solution is based

on a two-level shared memory structure. A local memory

level for each task and a global memory level to combine

the local levels. The data is moved between the two memory

levels, whereby the local memory level, in contrast to the

global memory level, does not require a synchronization

primitive. Thus, when synchronizing the global memory layer,

the message passing overhead increases with the number

of tasks. To counteract this issue, they adapted a Direct

Memory Access (DMA) controller to perform the transfer of

the data between the two layers and to reduce the delay to

get the synchronization primitive of the global memory layer.

Nevertheless, this approach requires the copying of the data

from the local memory layer to the global memory layer and

back to the local layer of the receiver task. This approach leads

to a predictable IPC, but each transfer requires two memory

transfers what results in a significant overhead on many IPC

transfers. Further, potentially confidential data is put on the

global memory and can be read by non-trustable tasks.

The message queue support in hardware is only rarely found

in commercial computer architectures. ARM [11] specifies its

IPC module and NXP [12] offers the Queue Manager, both

implemented in hardware. ARM’s IPC module is based on a

specific number of mailboxes. In each mailbox an element can

be sent to the receiver and the receiver is notified by an IRQ.

Thus, the IRQ interrupts the current program flow, what may

lead to an OS-PI that has to be avoided for real-time systems.

The Queue Manager on NXP chips is a huge extension with

the aim of transferring any packet to any accelerator or core in

the System on Chip (SoC). The extension is built on frames

that define the data location and size in the data memory,

and descriptors, which handle the buffering or queuing of

the frames. This is a powerful hardware extension, but not

applicable to small power and resource constrained embedded

systems.

Due to the rare hardware support in commercial computer

architectures, the common way to implement IPCs in embed-

ded real-time systems is to use pure software solutions. For

the automotive context, in AUTOSAR [13], the IPC is realized

with events. The event is a task synchronization primitive

through which the tasks are able to exchange information

between each other. Hereby, the OS overhead is increased

due to many context switches; and furthermore, all tasks have

full access to the shared memory where the information is

exchanged. The avionic domain [14] offers the same IPC

approach plus a queue approach. However, for sending data

still a syscall has to be executed, what leads to a context switch

and could lead to an OS-PI.

The proposed EventQueue approach neither restricts the

number of queues nor leads to an OS-PI, what none of the

previous works is able to handle in one solution.

III. ARCHITECTURE

A. Terminology and Assumption

For EventQueue we assume a single-core CPU with a

multi-tasking OS running a task τrun ∈ T of the set of

tasks T . Each task τ ∈ T possesses a static priority pτ that

is defined at compile time and follows the Rate Monotonic

(RM) [1] scheduling rules (i.e., shorter deadline possesses

higher priority). To synchronize the tasks with each other,

the OS supports events. An event e ∈ E is a single-directed

synchronization primitive to notify a task τ , waiting for that

specific event. If the event e is set, the highest prioritized task

in the event queue qe ⊂ T is resumed.

The computation unit owns OS-awareness at hardware level.

Thus, the computation unit is always aware of the currently

running task’s priority prun and further task’s information, as

for instance the maximum stack size. With this knowledge, the

computation unit assists the OS to achieve properties, which

are not achievable at OS level, or only with a huge computation

effort. To enable the OS-awareness, we assume a system

architecture as depicted in Fig. 1. There, the computation unit

possesses a instruction bus to the Read-Only Memory (ROM)
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Fig. 1. The system architecture to support the EventQueue approach.

for reading the instruction and a data bus to the Random-

Access Memory (RAM). Beside the data connection, a further

connection to the RAM is implemented for supporting all the

OS-awareness functionalities. To support such architecture the

data memory must be a dual-port. A dual-port memory allows

to access the memory with two independent address and data

signals and possesses an arbitration logic to handle possible

concurrent writes to the same memory address. Due to this

architecture, the OS-awareness does not interfere the normal

operation of the computation unit by operating simultaneously

to it.

B. mosartMCU

To realize the EventQueue approach, we use the

mosartMCU1 project that implements OS awareness into

embedded multi-core systems (e.g., [7], [15]). The base for

the mosartMCU is the open source vScale2, which is a

RISC-V [16] architecture, specified by the University of Cal-

ifornia, Berkeley. vScale implements all 32 bit integers and

the multiplication/division instructions from the Instruction

Set Architecture (ISA) specification [17] and executes the

instructions in a three stage pipeline. The specification defines

32 registers, whereas the compiler does not use the register tp.

This register indicates the Task Control Block (TCB) of the

currently running task τrun, which contains information about

the task including its priority prun. We extended the basic

implementation with an automatic read operation, triggered

by the hardware if the register tp is changed. Therefore,

the hardware is always aware of the currently running task’s

priority. Concurrently to the normal execution, a read operation

is automatically performed by using the additional connection

to the data memory through the dual-port memory. This

dual-port memory is also used by some other OS-awareness

extensions. Further, the RISC-V specification defines three

different operating modes, whereas the mosartMCU supports

only the non-privileged user-mode and the privileged kernel-

mode. These operating modes define permissions for some

instructions and for accessing Control Status Registers (CSRs),

which are hardware registers used to configure and to get

information from the CPU.

In the mosartMCU runs the hardware/software co-

designed full-preemptive multi-tasking mosartMCU-OS. The

1Multi-Core Operating-System-aware Real-Time MCU
2https://github.com/ucb-bar/vscale

mosartMCU-OS is an embedded real-time OS that supports all

the OS-awareness extensions of the mosartMCU. The kernel

is designed as a microkernel; therefore, IPC is an essential

required feature to communicate among tasks.

C. EventIRQ

EventIRQ [7] is a hardware extension of the basic

mosartMCU, on which EventQueue is based on. EventIRQ

is an IRQ handling approach to avoid the unpredictable

interruption of IRQs. To achieve that, all the interrupts are

mapped to OS events, which a task τ is waiting for. Therefore,

the handling of an IRQ is moved from the Interrupt Service

Routine (ISR) to a task. On an IRQ, the hardware extension

accesses the TCB of the triggered task by knowing the

internal OS data structures. All these operations are performed

simultaneously to the normal execution flow, by using the

additional connection to the data memory. At the end of the

TCB access, EventIRQ is aware of the currently running task’s

priority prun and the priority of the triggered task. Thus, the

currently running task is only interrupted iff the priority of the

triggered task is higher than the one of the currently running

task. Otherwise, the task is appended to a list, which will be

caught up by the OS later on. With this postponing of the

IRQ handling, the response time of the IRQ may increase;

however, the unpredictable interruption of a high prioritized

task is avoided and no OS-PI occurs or is at least timely

bounded.

For all IRQs, except the system timer, the tasks waiting

for the event are sorted by priority. Thus, on a set event,

the highest prioritized task consumes the event. However, for

the system timer all the tasks are sorted by its timeout. To

handle the timeout queue properly and to avoid the OS-PI

issue, EventIRQ additionally sets the system timer with the

new timeout of the next waiting task in the queue.

To avoid the OS-PI caused by setting a software event,

which is directed to a lower prioritized task, EventIRQ extends

the base ISA with the set event sev instruction. This instruc-

tion performs the same operations as the mentioned process for

an IRQ, but instead of operating on an IRQ event it operates

on the software event.

IV. EVENTQUEUE

EventQueue enables the communication between tasks,

based on the message queue mechanism and the mentioned

EventIRQ approach. For sending data to a task, a queue ρ ∈ Q,

of the queue set Q, is required. The queue ρ is represented as

a tuple

ρ := (eρs
, eρr

, sρ, readρ, writeρ, rρ, bρ). (1)

The data in the queue ρ is stored in the buffer bρ. The size

of the buffer bρ is defined with the buffer size sρ. The indices

readρ and writeρ are used to read and write the contents in

the buffer bρ, respectively. The buffer length lρ represents the

number of valid elements stored in the buffer bρ. The buffer
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length lρ is calculated with the indices writeρ and readρ as

follows:

lρ := (writeρ − readρ) mod sρ (2)

The buffer length lρ will be 0 for an empty buffer or s if the

buffer bρ would support to store sρ elements. To distinguish

between an empty and a full buffer, the buffer bρ is able to

store up to sρ − 1 elements. Therefore, for an empty buffer

the condition

emptyρ :=

{

true if readρ = writeρ

false else
(3)

and for a full buffer the condition

fullρ :=

{

true if readρ = (writeρ + 1) mod sρ

false else
(4)

reflects their states. For receiving data over the queue ρ, the

requested size rρ := [1, sρ − 1] is defined; hence, the receiver

is not notified by the event eρr
as long as the buffer length lρ

does not reach the number of the requested size rρ. The event

eρs
notifies the sender about the condition, that the buffer is not

full anymore. Both, the sender and receiver are suspended as

long as the buffer is full or the requested size rρ is not reached.

Thus, the triggering of the events will resume the suspended

tasks if the conditions become true. The next sections will

present the EventQueue realization in the mosartMCU and in

the mosartMCU-OS.

A. Hardware Assistance

EventQueue extends the mosartMCU with an additional

instruction qwr dst, src1, src2, which must also be

supported by the compiler. The instruction triggers the opera-

tion, which transfers data to the queue ρ’s buffer, in hardware.

For that, the instruction uses the two source registers for

referencing the queue ρ and for transferring a data content.

The referenced queue is described in the Queue Control Block

(QCB), which is a data structure stored in the RAM, with all

the information of the queue ρ. The destination register stores

the return value of the instruction that gives information about

the transfer’s success. After calling the qwr instruction the

following steps are performed (also depicted in Fig. 2) with

the support of the OS-awareness in the mosartMCU:

1 The size sρ of the queue ρ is read from the QCB.

2 Read of index write writeρ, of queue ρ, in the QCB.

3 Read of index read readρ, of queue ρ, in the QCB.

4 Read of requested size rρ, of queue ρ, in the QCB.

5 The index writeρ is incremented and stored in the QCB.

The destination register is filled with a value indicating

success and the EventQueue continues with the next step

if the buffer condition fullρ is not true. Otherwise, the

index write writeρ is not updated, the destination register

is filled with an error code, and the instruction is finished.

To avoid race conditions, the computation unit is not

allowed to continue, within the five memory operations.

Thus, the pipeline stalls the mosartMCU for 4 cycles.

read sρ
read writeρ
read readρ
read rρ
if fullρ then
dst := ERROR
abort

else
dst := SUCCESS
writeρ := (writeρ + 1) mod sρ

end if
bρ[writeρ] := src2

if rρ = lρ then
set event eρr {further handled by EventIRQ }

end if

1
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Fig. 2. Pseudo-code triggered by a qwr dst, src1, src2 instruction.

6 If the queue ρ is not full, the content in the second source

register will be stored to the buffer bρ at the index writeρ.

7 If the buffer length lρ reaches the requested size rρ,

EventQueue triggers the receiver event eρr
that is located

in the QCB of the queue ρ. After that, the set event

approach of EventIRQ is executed.

All these operations, including EventIRQ, are performed on

the OS connection to the RAM. Therefore, after stalling the

pipeline for four instructions (i.e., the instruction consumes

exactly 4 cycles) the remaining queue handling and event

handling steps are performed simultaneously to the regular

execution flow. The instruction replaces the syscall (i.e., call of

an OS functionality, running in the kernel-mode), thus it avoids

context switches and improves the execution time. Further,

EventQueue ensures, due to EventIRQ, that the currently

running task is only interrupted iff the priority of the waiting

task exceeds its priority. Therefore, the EventQueue approach

avoids also the OS-PI issues for transferring data from one

task to another.

B. Software Responsibility

The OS is responsible for implementing the message queue

handled in software and must consider the usage of the

introduced instruction qwr, mentioned before. The instruction

qwr allows sending one word per instruction call without a

timeout. For better programming convenience, a function is

required that calls the instruction and allows to send a specific

number of words with an upper timeout. Thereby, that function

is not running in the kernel-mode, but in the user-mode. Thus,

it avoids a syscall, what consequently reduces the number of

context switches. If the queue ρ is full (i.e., fullρ = true), the

syscall wait_event_until(eρs
, t) is called, which leads

the sending task to wait for the event eρs
for a maximum time

of t. Thus, the task is suspended until the receiver throws

the event eρs
due to the receiver that read some data in the

buffer bρ or the waiting times out.

The receiver is completely implemented in software as a

syscall and is executed in the kernel-mode. The syscall checks

if the number of valid data is at least the requested size rρ,

otherwise it calls the syscall wait_event_until(eρr
,t)
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and sets the requested size rρ in the QCB. There, the task is

suspended either until EventQueue sets the receiver event eρr

if the queue length lρ reaches the requested size rρ, or until

the timeout times out.

It is remarkable, that the sender code does not access queue

ρ’s QCB in user-mode. All the memory accesses for the QCB

are performed either in hardware or in the syscall, executed

in kernel-mode. Thus, to protect the QCBs among the tasks,

the receiver task must put the queue’s QCBs within an MPU

protected region. With that approach, the tasks are isolated

from each other and are able to communicate securely via an

IPC with a high performance and OS-PI avoidance.

V. EVALUATION

We implemented EventQueue into our research plat-

form mosartMCU in which the mosartMCU-OS runs. The

mosartMCU is implemented into a Xilinx Artix-7 FPGA,

which is assembled on the Nexys 4 DDR board from Digilent.

We compared the pure software queue implementation with the

EventQueue approach regarding the maximal throughput and

execution time for sending data. Further, we investigated the

resource utilization in the FPGA and the memory consumption

for the OS.

A. Performance Evaluations

The first performance evaluation investigates the maximal

throughput in the mosartMCU. Three tasks T := {τs, τr, τm}
are instantiated; whereby, the task τs sends data to the task τr
over the queue ρ. The queue ρ’s size is sρ = 5, which means

that the buffer bρ stores up to 4 elements. Task τm sets a

countdown and waits for it. If it expires, the task τm prints

the number of transmitted bits.

We investigated the evaluation with different configurations:

For the receiver we set the request size rρ to 1, 2, 3, and

4. The sender calls the function send_queue_until(ρ,

d, s, t), which sends the transmitting words d of sending

size s to the queue ρ. If the buffer is full, the function

waits until it is not full anymore or the timeout t expires.

We evaluated the performance with the sending size s of 1
and 4. All combinations were tested with the pure software

IPC and EventQueue approach and the results are depicted in

Fig. 3. With increasing requested size rρ and sending size s

the throughput increases for both approaches. EventQueue

possesses almost the double maximal achievable throughput

compared to the pure software solution. This is caused by the

reduced syscalls and the shorter execution times for sending

a word over the queue ρ.

The second performance evaluation investigates the exe-

cution time of the send_queue_until function in the

pure software and in the EventQueue solution. Fig. 4 depicts

the execution times of the send_queue_until function

call with different sending sizes s of transmitting words. For

EventQueue, the function requires 0.4 µs for each additional

word; for the pure software solution 0.9 µs. EventQueue does

not invoke a syscall; thus it avoids a move into the kernel-

mode. Thus, EventQueue improves the overall IPC transfers
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Fig. 3. Maximal throughput comparison of the pure software implementation
and EventQueue with different configurations.
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Fig. 4. Execution times of send_queue_until(ρ, d, s, t) with
different number of sending size s.

performance; moreover, it avoids the OS-PI in IPC transfers.

Especially microkernels, which are intensively using IPCs as

their base concept, will benefit of EventQueue.

B. Synthesize and OS Results

The second part of the evaluation investigates the synthe-

sis results of the FPGA and the OS memory consumption.

Thereby, we compare the original mosartMCU, the EventIRQ

extended, and the EventQueue extended version. Table I lists

the synthesis results, which are reported by Xilinx Vivado

2017.3.

The Look Up Table (LUT) and Flip-Flop (FF) slices in-

crease with the extension of EventIRQ and once again with the

extension of EventQueue. The original implementation does

not contain OS-awareness; and therefore, it does not require an

additional connection to the RAM. Thus, the EventIRQ and the

EventQueue approach require additional slices. EventQueue

requires additional slices to handle the instruction qwr and

TABLE I
SYNTHESIS RESULTS OF THE ORIGINAL AND THE EXTENDED mosartMCU

VERSIONS.

mosartMCU
Original EventIRQ EventQueue

LUT slices 2799 3543 3982

FF slices 2078 2413 2632

max. frequency 73.992MHz 72.124MHz 73.373MHz

Dynamic power 16mW 18mW 19mW
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TABLE II
MEMORY COMPARISON OF THE ORIGINAL AND THE EXTENDED

mosartMCU-OS VERSIONS.

mosartMCU-OS
Original EventIRQ EventQueue

ROM 3952B 4316B 4216B

RAM 12B 136B 136B

the steps to access QCB’s data over the RAM connection used

by the mosartMCU’s OS-awareness. The maximal achievable

frequency remains almost the same for all three implementa-

tions. The power consumption depends on the required slices;

thus, the EventQueue’s power consumption is the highest of

all.

We also investigated the static memory consumption of

the OS, which is reported by the gcc compiler with the

first optimization level (i.e., -O1) enabled. Table II lists the

memory utilization of the original version and the extended

versions. The original version consumes less ROM and RAM,

because EventIRQ requires additional code for catching up the

triggered tasks and because the interrupt vector table is moved

from the ROM into the RAM. The EventQueue approach

replaces the software implementation for sending an element

by using the qwr instruction; therefore, the ROM requirement

is reduced, compared to EventIRQ.

VI. DISCUSSION

The steadily growing complexity of today’s real-time em-

bedded systems requires even more security features to prevent

the access to confidential information stored in a task. Thus,

the protection of memory finds one’s way into today’s real-

time embedded systems. However, the realization of IPC is

then restricted. Shared memory is a feasible solution, but it

requires additional synchronization primitives and leads to

other issues, as for example the priority inversion problem for

resource management [18]. EventQueue enables the sending

of data between tasks, which are isolated from each other,

because only the receiver, hardware, and OS have access to

the queue’s QCB. The sender uses only the addresses of the

QCB to trigger the hardware extension to forward its data.

Thereby, the sender cannot read data in the buffer bρ; and thus,

EventQueue is suitable to forward confidential information.

Beside the potential to isolate the tasks from each other,

EventQueue improves the throughput for sending information

from one task to another. The performance of the IPC is

a crucial property, especially for microkernels, which are

intensively using IPCs. Embedded system’s kernel designs are

mostly based on microkernels; thus, the EventQueue approach

is well suitable for todays and future real-time embedded

systems, as in the automotive or IoT domain.

EventQueue is also applicable in other computer archi-

tecture, for protecting the QCB’s data and for improving

the performance. However, only by using EventQueue to-

gether with EventIRQ, the full potential of avoiding the OS-

PI issues is reached, what is only possible with the OS-

awareness approach in the mosartMCU. Furthermore, as men-

tioned in Section II, research and commercial IPC solutions

implemented in hardware, limit the number of IPC channels.

Whereby, EventQueue does limit neither the number of IPC

channels, the number of tasks, nor the number of events. This

is possible through the direct memory access to the RAM by

the additional OS connection. In the mosartMCU, the OS-

awareness functionalities are directly accessing the OS data

structures in the RAM and no hardware registers are used for

IPC channels, events, or tasks as in the mentioned past works.

VII. CONCLUSION AND OUTLOOK

In this paper, we demonstrated EventQueue for IPC

among tasks in a core. EventQueue is based on EventIRQ,

which avoids the OS-PI issue through OS-awareness in the

mosartMCU. We extended EventIRQ with an additional in-

struction that performs the insertion of an element into the

queue instead of a pure software solution. Besides the ability

to isolate the tasks’ data from each other, EventQueue admits

a communication between tasks. We implemented the ap-

proach into our mosartMCU and investigated the performance,

synthesis results, and OS requirements. The throughput of

EventQueue for transferring data from one task to another

is almost doubled, compared to the pure software solution.

The EventQueue’s synthesis results for the FPGA and the

memory consumption in the MCU remain almost the same,

compared to the EventIRQ, except the LUT and FF slices that

are required by the additional hardware logic.

At hardware level, the next step is to extend our OS-

awareness concepts to multi-core systems. Therefore, we need

to support EventIRQ and EventQueue for multi-core embed-

ded systems, to enable the queue IPC not only among tasks

in the same core, but also among tasks across different cores,

while still avoiding or at least bounding the OS-PI issue.
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Appendix

A. "O" Standard Extension for OS Awareness, Version 1.0

This section describes the standard OS awareness extension, named "O". It introduces new

CSRs and instructions. The instructions trigger an OS event and an IPC transfer, both performed

by the OS awareness in the MCU. To use the OS awareness extensions, the internal OS structure

has to follow the definition shown in Figure A.2 and Figure A.3.

☛
1 struct os_tcb {

2 os_priority_t priority ;

3 struct os_tcb *next [2];

4 struct os_tcb *prev [2];

5 os_reg_t stack_size ;

6 os_time_t timeout ;

7 // further variables , not accessed by the hardware

8 };

✡ ✠

Figure A.2.: TCB definition in mosartMCU-OS.

☛
1 struct os_qcb {

2 os_event_t tasks_wait_to_receive ;

3 os_event_t ** tasks_wait_to_send ;

4 os_reg_t tasks_waiting_to_send_num ;

5 os_reg_t size;

6 os_reg_t wait_for_size ;

7 os_reg_t *read;

8 os_reg_t * write ;

9 os_reg_t data [];

10 };

✡ ✠

Figure A.3.: QCB definition in mosartMCU-OS.

Additional instructions

To support the O extension the additional instructions listed in Table A.1 are necessary.

Table A.1.: Instructions for the O extension.
Name Arguments Description
sev src1 Set Event
qwr dst, src1, src2 Write Queue
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Set Event Instruction (sev)

31 20 19 15 14 12 11 7 6 0

imm[11:0] rs1 funct3 rd opcode

12 5 3 5 7

000000000000 src1 SEV 00000 OS
The set event instruction sev performs the EventIRQ approach at the OS instance address

stored in source register src1.

Queue Write Instruction (qwr)

31 25 24 20 19 15 14 12 11 7 6 0

imm[11:0] rs2 rs1 funct3 rd opcode

12 5 5 3 5 7

000000000000 src2 src1 QWR dst OS
The queue write instruction qwr performs the EventQueue approach at the OS instance, which

address is stored in source register src1. The source register src2 contains the data content to

be transferred. The destination register dst contains the success of the instruction; in case of

success a 0, otherwise a 1 (i.e., caused by a full queue buffer).

Additional CSRs

The CSRs, which support the O extension, are listed in Table A.2.

Table A.2.: CSRs for the O extension.
Number Name Description
0x780 pth Pending Tasklist Head
0x781 ptt Pending Tasklist Tail
0x782 mic Machine Interrupt Control
0x783 mevec Machine Event Vector
0x784 sstart Stack Start
0x785 send Stack End
0x786 sfree Stack Free
0x787 spage_size Stack Page Size
0x788 tss Task Stack Size
0x789 spf Stack Pages Free
0x800 ptp Priority Task Pointer
0x801 spr Stack Pages Required
0xFC0 core_id Core Identifier

142



A. "O" Standard Extension for OS Awareness, Version 1.0

Pending Tasklist Head Register (pth)

The pth is a read and write register indicating the first task in the pending task list φ. This

register must be implemented if EventIRQ is implemented. The PTP_ADDR contains the address

31 2 1 0

PTH_ADDR PTH_TYPE 1
30 1 1

Figure A.4.: Pending Tasklist Head Register (pth)

of the first task in the pending task list φ. The PTH_TYPE indicates if the first task was triggered

by a regular event (i.e., 0) or by a timeout event (i.e., 1). The Least Significant Bit (LSB) is

always set to 1. The pth register is used by the OS to easily traverse from the top to the tail in

the pending task list φ.

Pending Tasklist Tail Register (ptt)

The ptt is a read and write register indicating the last task in the pending task list φ. This

register must be implemented if EventIRQ is implemented. The PTT_ADDR contains the address

31 2 1 0

PTT_ADDR PTT_TYPE 1
30 1 1

Figure A.5.: Pending Tasklist Tail Register (ptt)

of the last task in the pending task list φ. The PTH_TYPE indicates if the last task was triggered

by a regular event (i.e., 0) or by a timeout event (i.e., 1). The LSB is always set to 1. The ptt

register is used by EventIRQ to append triggered tasks to the pending task list φ.

Machine Interrupt Control Register (mic)

The mic is a read-only register indicating the type of each IRQ handled by EventIRQ. This

register must be implemented if EventIRQ is implemented. Each bit corresponds to an IRQ. If

31 0

MIC
32

Figure A.6.: Machine Interrupt Control Register (mic)

an IRQ is configured with 0, EventIRQ will handle it such as a regular IRQ. Otherwise, EventIRQ

will handle it such as a timer event and sets the OS timer with the timeout value of the next

task in the timeout waiting queue.
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Machine Event Vector Register (mevec)

The mevec is a register containing a word-aligned address indicating the start of the event

vector table. This register must be implemented if EventIRQ is implemented. Starting from

31 2 0

MEVEC[31:2] -
30 2

Figure A.7.: Machine Event Vector Register (mevec)

the address stored in mevec, an event must be instantiated for each IRQ by the OS. Thus, all

the IRQs are mapped to the corresponding events in the event vector table, and EventIRQ is

responsible for handling the corresponding event on a triggered IRQ.

Stack Start Register (sstart)

The sstart CSR is a register containing the word-aligned start address of the stack area for

the StackMMU approach. This register must be implemented if StackMMU is implemented.

31 2 0

SSTART[31:2] -
30 2

Figure A.8.: Stack Start Register (sstart)

Stack End Register (send)

The send CSR is a register containing the word-aligned end address of the stack area for the

StackMMU approach. This register must be implemented if StackMMU is implemented.

31 2 0

SEND[31:2] -
30 2

Figure A.9.: Stack End Register (send)

Stack Free Register (sfree)

The sfree CSR is a register containing the word-aligned address of a free stack page in the

stack area for the StackMMU approach. This register must be implemented if StackMMU is

implemented. In the OS initialization phase, this register must be initialized to the first free

stack page to work properly. If the OS initialized all the pages properly, then, while StackMMU

runs, the sfree register is modified by the StackMMU approach.
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31 2 0

SFREE[31:2] -
30 2

Figure A.10.: Stack Free Register (sfree)

Stack Page Size Register (spage_size)

The spage_size is a partly read-only and partly read-and-write register configuring and

representing the page size in the StackMMU approach. This register must be implemented

if StackMMU is implemented. The SPAGE_SIZE is read-only and returns the stack page size

27 16 2 0

- SPAGE_SIZE - SCFG
4 12 13 3

Figure A.11.: Stack Page Size Register (spage_size)

configured with SCFG. Table A.3 lists the corresponding stack page size for the configured

SCFG.

Table A.3.: SPAGE_CONFIG configuration.
SCFG SPAGE_SIZE
000 16 Bytes
001 32 Bytes
010 64 Bytes
011 128 Bytes
100 256 Bytes
101 512 Bytes
110 1024 Bytes
111 2048 Bytes

Task Stack Size Register (tss)

The tss register is a read-only register containing the stack memory size of the currently

running task. This register must be readable in implementations with enabled StackMMU. On

31 0

TSS
32

Figure A.12.: Task Stack Size Register (tss)

a tp change, the hardware automatically reads the task’s stack size from the TCB and stores it

into tss. This value is primarily required by StackMMU to allocate correctly the pages in the

PP-LUT.
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Stack Pages Free Register (spf)

The spf CSR is a 12-Bit read-only register containing the number of free stack pages in

the StackMMU approach. This register must be readable in implementations with enabled

CoStack. The sstart, send, and space_size define the available number of stack pages for

11 0

- SPF
20 12

Figure A.13.: Stack Pages Free Register (spf)

the StackMMU. With the available number of stack pages and the internally recorded number

of allocated stack pages to tasks, the field SPF is calculated.

Priority Task Pointer Register (ptp)

The ptp register is a read-only register that indicates the priority of the currently running task.

This register must be readable in implementations with enabled OS awareness. On a tp change,

31 0

PTP
32

Figure A.14.: Priority Task Pointer Register (ptp)

the hardware automatically reads the task’s priority from the TCB and stores it into ptp.

Stack Pages Required Register (spr)

The spr register is a 12-Bit read-only register representing the required number of stack pages

on a collaboration exception. This register must be readable in implementations with enabled

CoStack. On a collaboration exception, the OS has to read the number of required stack pages

11 0

- SPR
20 12

Figure A.15.: Stack Pages Required Register (spr)

and to store it into the task’s TCB that caused the collaboration exception. By comparing this

stored information in the task’s TCB with the spf register, the OS is able to decide if enough

stack pages are available to schedule the task. Otherwise, the OS has to search a collaborative

task that offers collaborative stack memory to free it.
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Core Identifier Register (core_id)

The core_id register is a read-only register containing the identifier of the core. The register

must be readable in all implementations. For a single-core system, the register returns 0.

31 0

CORE_ID
32

Figure A.16.: Core Identifier register (core_id)
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B. mosartMCU-OS References

B.1. mosartMCU-OS Data Type Reference

☛
typedef unsigned long os_reg_t ;

typedef unsigned int os_priority_t ;

typedef uint64_t os_time_t ;

# define DEADLINE_INFINITE UINT64_MAX

typedef uint64_t os_delay_t ;

typedef struct os_tcb os_tcb_t ;

typedef union os_event os_event_t ;

typedef struct os_queue os_queue_t ;

typedef struct os_remote_queue os_remote_queue_t ;

typedef struct os_resource os_resource_t ;

✡ ✠

☛
struct os_tcb { // task τ

// --- start hardware access area

os_priority_t priority ; // task priority pτ

struct os_tcb *next [2]; // next pointers nex tτ and tnex tτ

struct os_tcb *prev [2]; // previous pointers prevτ and t prevτ

os_reg_t stack_size ; // maximum required stack memory ςτ

os_time_t timeout ; // timeout t̂τ

// --- end hardware access area

os_reg_t context [ CONTEXT_SIZE ]; // task τ’s saved context

os_priority_t base_priority ; // task base priority

struct os_tcb ** member_list ; // reference of membered priority list

os_reg_t stack_req ; // required stack pages (read from CSR spr)

os_reg_t * stack_collaborate_fp ; // CoStack ’s stored frame pointer

os_reg_t * collaborate_handler ; // CoStack ’s stored collaborate handler address

struct os_tcb * ordered_next ; // pointer to the next task

os_resource_t * wait_resource ; // reference to the waiting resource

// stack page areas start here

};

✡ ✠

☛
union os_event { // event e

os_tcb_t * queue ;

struct {

unsigned long value : 1; // 0= not set , 1= set

unsigned long type : 1; // 0= regular , 1= timer

unsigned long address : sizeof ( unsigned long) -2; // reference to task

} bits;

};

✡ ✠

☛
struct os_queue { // queue ρ

os_event_t tasks_wait_to_receive ; // receiver event eρr

os_event_t ** tasks_wait_to_send ; // sender event eρs

os_reg_t tasks_waiting_to_send_num ; // counting tasks that are blocked due to f ul lρ = t rue

os_reg_t size; // size sρ

os_reg_t wait_for_size ; // request size rρ

os_reg_t *read; // read index readρ

os_reg_t * write ; // write index writeρ

os_reg_t data []; // buffer bρ

};

✡ ✠

☛
struct os_remote_queue {

os_queue_t *q; // reference to the remote queue ρ

os_event_t e; // event for waiting if f ul lρ = t rue

};

✡ ✠
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☛
struct os_resource { // resource

os_tcb_t * owner ; // owner of the resource

os_event_t *e; // event queue

int value ; // counts how often the task called get_resource_until

#if defined (PCP) || defined (HLP)

os_priority_t priority ; // ceiling priority resource management protocol

# endif

};

✡ ✠

B.2. mosartMCU-OS API Reference

☛
void os_init (void);

void os_run (void);

int os_register_task ( task_entry_t t, os_reg_t stack_size , os_priority_t priority );

✡ ✠

☛
os_time_t get_current_time (void);

void task_exit (void);

int yield (void);

✡ ✠

☛
int set_event ( os_event_t *e);

int clear_event ( os_event_t *e);

int wait_event_until ( os_event_t *e, os_time_t t);

int wait_event_until_new ( os_event_t *e, os_time_t t);

int sleep_until ( os_time_t t);

int sleep ( os_delay_t d);

int wait_event ( os_event_t *e);

int wait_event_new ( os_event_t *e);

int wait_event_for ( os_event_t *e, os_delay_t t);

int wait_event_for_new ( os_event_t *e, os_delay_t t);

✡ ✠

☛
int resource_register_priority ( os_resource_t *t, os_priority_t p);

int get_resource_until ( os_resource_t *r, os_time_t t);

int get_resource_for ( os_resource_t *r, os_delay_t d);

int get_resource ( os_resource_t *r);

int release_resource ( os_resource_t *r);

✡ ✠

☛
# define CREATE_REMOTE_QUEUE (name , queue )

# define CREATE_QUEUE_GLOBAL (name , size , events )

# define CREATE_QUEUE_LOCAL (name , size)

int send_queue ( os_queue_t *q, os_reg_t d);

int send_queue_until ( os_queue_t *q, os_reg_t * data , os_reg_t size , os_time_t t);

int send_remote_queue_until ( os_remote_queue_t *q, os_reg_t * data , os_reg_t size , os_time_t t);

int wait_queue_until ( os_queue_t *q, os_reg_t *data , os_reg_t size , os_time_t t);

✡ ✠

☛
# define COLLABORATIVE_STACK

# define COLLABORATE_STACK

# define COLLABORATE_STACK_END

✡ ✠
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Errata

"A person who never made a mistake never tried anything new."

—Albert Einstein

page 50: The equation 3.19 and the preceding lines are to be replaced by:

The set As contains all masters that want to access the slave s. With the help of the set

X :=
{

m ∈ As | πm =max∀a∈As
{πa}

}

, which contains all masters with the same highest

priority in As that want to access the slave s, the accepted master αs is selected by

αs :=







;, if X = ;

x ∈ X | master_id(x) =min∀ x̃∈X {master_id( x̃)}, else
(3.19)
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