
Vimal Sivashanmugam B. Eng

Conversion of Control Unit Software towards AUTOSAR
Compliance

to achieve the university degree of

MASTER'S THESIS

 Master's degree programme: Information and Computer Engineering

submitted to

Graz University of Technology

Univ.-Prof. Dr.rer.nat. Marcel Baunach, ITI, Graz University of Technology
Dipl.-Ing. Tobias Scheipel, ITI, Graz University of Technology

Mr. Bhargav Adabala, AVL List GmbH

 Diplom-Ingenieur

Supervisor

Graz, October 2019

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other

than the declared sources/resources, and that I have explicitly indicated all ma-

terial which has been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present master‘s

thesis.

Date Signature

The work in this thesis has been sponsored by Dept. of Powertrain Controls, AVL

List GmbH and has been carried out under the joint supervision by AVL and

Embedded Automotive Systems Group, ITI, Graz University of Technology. Their

support is hereby greatly acknowledged.

Abstract

AUTomotive Open Standard ARchitecture (AUTOSAR) consortium has been set-up to promulgate
a common standard in software development across the automotive industry. AUTOSAR proposes
a unique layered architecture for automotive software and a unique software development method-
ology. These AUTOSAR principles have been increasingly adopted for the native software devel-
opment in the automotive industry. While AUTOSAR methodology generally involves the devel-
opment of software from scratch, the question of whether an existing non-AUTOSAR software can
be converted to AUTOSAR format has also been of greater interest to the automotive companies.
This thesis investigates an approach to convert a non-AUTOSAR AVL Hybrid Control Unit (HCU)
software towards AUTOSAR compliance. Firstly, the deviations of the AVL HCU software from
the AUTOSAR standard have been studied across the V-Model flow of Software Development Life-
cycle (SDLC). Secondly, in the conversion phase, MATLAB scripts were developed to handle the
conversion and code generation process of Application Software (ASW) models to AUTOSAR for-
mat. The original Basic Software (BSW) of AVL HCU software has been reused for integration. A
separate generator script has also been implemented in MATLAB for the generation of the interfac-
ing Run Time Environment (RTE) portion. Thirdly, in the integration phase, a total of four versions
of AUTOSAR compliant HCU software with different optimization settings have been generated.
In the next step, the generated AUTOSAR software versions have been evaluated on a Hardware-
in-the-Loop (HIL) set-up. To compare the AUTOSAR versions to the non-AUTOSAR versions,
Key Performance Indicators (KPIs) such as memory consumption, task runtime, CPU utilization,
and stack usage, etc. have been evaluated. To conclude, the degree of compliance of this direct
conversion approach towards the AUTOSAR standard is discussed.

Keywords: AUTOSAR, Application Software, Basic Software, Run Time Environment, Task run-
time, CPU utilization, Memory consumption, Stack usage

Kurzfassung

Das AUTomotive Open Standard ARchitecture (AUTOSAR) Konsortium wurde gegründet, um
einen gemeinsamen Standard in der Softwareentwicklung in der gesamten Automobilindustrie zu
etablieren. AUTOSAR bietet eine einzigartige Schichtenarchitektur für Automobilsoftware und
eine einzigartige Softwareentwicklungsmethodik. Diese AUTOSAR-Prinzipien wurden zunehmend
für die native Softwareentwicklung in der Automobilindustrie übernommen. Für die Automo-
bilunternehmen ist es aber auch von großem Interesse, ob bestehende Legacy Software auf die
AUTOSAR-Methodik umgewandelt werden kann, da AUTOSAR in der Regel nur die Entwicklung
von Grund auf neuer Software umfasst. Diese Arbeit untersucht einen Ansatz zur Umwandlung
einer nicht-AUTOSAR AVL Hybrid Control Unit (HCU) Software in Richtung AUTOSAR Com-
pliance. Zuerst wurden die Abweichungen der AVL HCU-Software vom AUTOSAR-Standard über
den V-Modellfluss des Software Development Life-Cycle (SDLC) untersucht. Danach wurden in
der Konvertierungsphase MATLAB-Skripte entwickelt, um den Konvertierungs- und Codegener-
ierungsprozess von Application Software (ASW)-Modellen in das AUTOSAR-Format zu steuern.
Für die Integration wurde die ursprüngliche Basic Software (BSW) der AVL HCU-Software ver-
wendet und für die Erstellung der Schnittstelle zum Run Time Environment (RTE) wurde in MAT-
LAB ein separates Generatorskript implementiert. Weiters wurden in der Integrationsphase insge-
samt vier Versionen AUTOSAR-konformer HCU-Software mit unterschiedlichen Optimierungse-
instellungen aus dem Build-Prozess generiert. Drittens wurden in der Integrationsphase insgesamt
vier Versionen AUTOSAR-konformer HCU-Software mit unterschiedlichen Optimierungseinstel-
lungen erstellt und im nächsten Schritt wurden die erzeugten Versionen auf einem Hardware-in-the-
Loop (HIL)-Aufbau evaluiert. Um die AUTOSAR-Versionen mit den nicht-AUTOSAR-Versionen
zu vergleichen, wurden wichtige Leistungsindikatoren wie Speicherverbrauch, Task-Laufzeit, CPU-
Auslastung und Stack-Auslastung usw. ausgewertet. Abschließend wird der Konformität des be-
nutzten direkten Konvertierungsansatzes mit dem AUTOSAR-Standard diskutiert.

Schlüsselwörter: AUTOSAR, Application Software, Basic Software, Run Time Environment,
Task-Laufzeit, CPU-Auslastung, Speicherverbrauch, Stack-Nutzung

Acknowledgments

Foremost, I am greatly indebted to my mentor at AVL, Bhargav for being continuous support and
motivation throughout the course of the work. I would also like to extend my deepest gratitude to
my supervisor at TU Graz, Prof. Dr. Marcel Baunach for his invaluable guidance and feedback
throughout this research. I am also extremely grateful for my second supervisor Tobias for review-
ing the thesis and for the practical suggestions with regard to the thesis writing.

I gratefully acknowledge the assistance of my AVL colleagues, especially Ismar and Christoph
Kreuzberger for their technical advice and useful suggestions for the implementation part. Many
thanks to Christoph Fuerst for his invaluable insights into AUTOSAR concepts. Thanks also to
Sundar and Stepan for their support with HIL validation. I am also very much grateful to Patrick
for the opportunity of pursuing this research at the Powertrain Controls Dept., AVL.

Last but not least, thanks to my family and my friends who had been the constant source of support
and encouragement throughout my studies. A special mention also to Mr. Kumar and Mr. Murugan
for their constant encouragement to pursue masters.

Vimal Sivashanmugam
Graz, Austria, October 2019

Credits

• I would like to thank Taylor and Francis Group LLC for their permission to use Figures 2.1,
2.3 and 3.13.

• I would like to thank AUTOSAR for their permission to use Figures 2.4, 2.5, 3.3 and 3.5.

XI

XII

Contents

Credits XI

List of Figures XVII

List of Tables XIX

List of Abbreviations XXI

1 Introduction 1
1.1 Need for Standards . 1
1.2 Establishment of AUTOSAR Consortium . 2
1.3 Problem Statement and Motivation . 2
1.4 Related Work . 5
1.5 Thesis Structure . 6

2 Overview of AUTOSAR and AVL HCU Software Architecture 7
2.1 AUTOSAR Layered Architecture . 7

2.1.1 Application Software . 7
2.1.2 Run Time Environment . 9
2.1.3 Basic Software . 10
2.1.4 BSW Conformance Classes . 12

2.2 AVL Hybrid Control Unit Software Architecture Overview 13
2.2.1 Background . 13
2.2.2 Application Software . 14
2.2.3 Customer Interface Layer . 15
2.2.4 Basic Software . 16

3 AUTOSAR Compliance Deviation Analysis 17
3.1 Deviation Analysis along V-Model Phases . 17
3.2 Deviations at Requirements Level . 19

XIII

3.2.1 BSW Architecture Requirements . 19
3.2.2 BSW Interface Requirements . 19

3.3 Architectural and Interface Level Deviations . 20
3.3.1 Interface Handling in AVL HCU Software 20
3.3.2 Interface Handling in AUTOSAR Standard 20
3.3.3 Differences in Scheduling Concepts . 25

3.4 Deviation at Model Development and Code Generation Level 28
3.4.1 Model Development Aspects in AVL HCU Software 28
3.4.2 Model Development Aspects in AUTOSAR Software Model 30
3.4.3 Differences in the Memory Mapping Approach 33

3.5 Integration Level Deviation . 35
3.5.1 Integration Process in AVL HCU Software 35
3.5.2 Integration Process in AUTOSAR Software Models 35

3.6 Comparison of Development Methodology . 41

4 Implementation Approach 43
4.1 Implementation Decisions . 43

4.1.1 Evaluation for Application Software Conversion 43
4.1.2 Evaluation of Basic Software for Integration 44
4.1.3 Evaluation for Run Time Environment Generation 44

4.2 Conversion Approach towards AUTOSAR Compliance 45

5 Implementation 47
5.1 Model Conversion to AUTOSAR . 47

5.1.1 Removal of TargetLink Properties . 48
5.1.2 Generation of New Model Libraries . 51
5.1.3 Model Extraction from Maestra Framework 52
5.1.4 Applying AUTOSAR Conversion . 59

5.2 RTE Generation . 64
5.2.1 Implementation of RTE Generator . 65

5.3 Integration . 70

6 Evaluation 73
6.1 Experimental Setup . 73

6.1.1 Observations . 74
6.2 Memory Consumption Analysis . 75
6.3 Task Runtime Analysis . 77
6.4 CPU Utilization Analysis . 78
6.5 Stack Usage Analysis . 79

XIV

7 Conclusion 81
7.1 Summary . 81
7.2 Discussion . 82
7.3 Recommendation . 83

A Format of Memory Mapping Keyword (AUTOSAR) 85

B Format of Memory Mapping Keyword (AVL HCU Software) 86

C tl_clear_system 87

D autosar.api.create 88

E arxml.importer 89

F find 90

Bibliography 93

XV

XVI

List of Figures

1.1 AUTOSAR partnership [4]. 3
1.2 Process flow of conversion towards a standard. 4

2.1 AUTOSAR - Layered software architecture [2]. 8
2.2 SWC - General structure [8]. 9
2.3 SWC interconnection in VFB level [2]. 9
2.4 BSW layers [16]. 11
2.5 BSW functional groups [16]. 12
2.6 HCU software architecture. Adapted from [18]. 14
2.7 AVL HCU software - ASW structure. 14
2.8 Role of layers in HCU software architecture. Adapted from [18]. 15
2.9 BSW structure - AVL HCU software. 16

3.1 Deviation analysis across V-Model. Adapted from [22]. 18
3.2 Interface handling in AVL HCU software. 21
3.3 Interface handling in AUTOSAR layered software [8]. 22
3.4 Common port types used in AUTOSAR for communication between SWCs. Adapted

from [8]. 23
3.5 An illustration of interface handling in AUTOSAR environment using port types

and SWC types. Adapted from [8]. 24
3.6 An example of a task body used to invoke ASW runnable entities in AVL HCU

software. 26
3.7 An example of a runnable entity to task body mapping done in AUTOSAR method-

ology. Adapted from [15]. 27
3.8 Software development workflow - AVL HCU software. 29
3.9 Process-flow - AVL HCU software modelling. 29
3.10 Folder structure of the model and generated code in the AVL HCU software. 30
3.11 Software development workflow - AUTOSAR. 31
3.12 Workflows in AUTOSAR model development. Adapted from [30]. 32
3.13 AUTOSAR methodology [2]. 36

XVII

3.14 Preparation of System Description and ECU Extract. Adapted from [35]. 37
3.15 Structure of ECU Configuration Description. Adapted from [34]. 38
3.16 Configuration process: Generation of ECU Configuration Description and configu-

ration code files. Adapted from [34]. 39
3.17 Comparison of software development methodology between AVL HCU software

and AUTOSAR software models. 40

4.1 AUTOSAR conversion approach used in the thesis. 45

5.1 ASW conversion flow. 48
5.2 Program flow: DeEnhanceTlProp.m . 49
5.3 Model block properties before and after deenhancement. 50
5.4 Program flow: CreateLibrariesBatch.m. 51
5.5 An example of a new model library generation. 52
5.6 Program flow - Extraction of models from Maestra framework. 53
5.7 Models before and after extraction from Maestra framework. 57
5.8 An example model subsystem in the topmost layer of the delivered model with the

I/O ports. 58
5.9 Program flow - PrepareAUTOSARDelivery.m. 60
5.10 Changes at the model subsystem level before and after the AUTOSAR conversion. 63
5.11 Structure of RTE generator. 65
5.12 RTEGenerator.m - Process flow. 66
5.13 Output files generated from the build process of AUTOSAR converted software. . . 71

6.1 HIL test environment for evaluation. 74
6.2 Analysis of memory consumption. 75

XVIII

List of Tables

3.1 Deviations in BSW requirements architecture-wise. 19
3.2 Deviations in BSW requirements interface-wise. 19
3.3 Some observed differences in the mapping keyword format between the AVL HCU

software and the AUTOSAR standard. 35
3.4 An example of parameter definition ([15], p.1014). 38

4.1 Some of the features which are not AUTOSAR conformed as per ICC3 requirements
in the proposed conversion approach. 46

5.1 Summary of label fields. 58
5.2 Various CustomStorageClass setting for AUTOSAR class package. 62

6.1 Summary of memory utilization in bytes. 76
6.2 Percentage change in task runtime. 77
6.3 Percentage change in CPU utilization. 78
6.4 Percentage change in stack usage. 79

XIX

XX

List of Abbreviations

ADD Automotive Data Dictionary
API Application Programming Interface
ARXML AUTOSAR Extensible Markup Language
ASAM Association of Standardization of Automation

and Measuring Systems
ASW Application Software
AUTOSAR Automotive Open System Architecture
BSS Basic Software Scheduler
BSW Basic Software
CAN Controller Area Network
CIL Customer Interface Layer
COM Communication stack
CRC Cyclic Redundancy Check
DCM Diagnostic Communication Manager
DDS Data Declaration System
ECU Electronic Control Unit
HCU Hybrid Control Unit
HIL Hardware-in-the-Loop
I/O Input/Output
ICC Implementation Conformance Class
KPI Key Performance Indicator
LIN Local Interconnect Network
MBD Model Based Development
MIL Model-in-the-Loop
NEDC New European Driving Cycle
NvM NVRAM Manager
NVRAM Non Volatile Random Access Memory
OEM Original Equipment Manufacturer
OS Operating System

XXI

OSEK Open Systems and their Interfaces for the Elec-
tronics in Motor Vehicles

PDU Protocol Data Unit
RPM Rotation Per Minute
RTE Run Time Environment
RTOS Real Time Operating System
SDLC Software Development Life-Cycle
SWC Software Component
TLC Target Language Compiler
VFB Virtual Function Bus
XML Extensible Markup Language

XXII

1. Introduction

1.1 Need for Standards

"Standards should be based on the consolidated results of science, technology, and
experience, and aimed at the promotion of optimum community benefits." ([1], p.12)

During the late 21st Century, there has been a growing demand for safety features, comfort and
performance parameters among the car users. The advent of computerized Electronic Control Units
(ECUs), electronic sensors, and actuators have ensured that these requirements can be successfully
incorporated in a vehicle. Nevertheless, the volume of features added in a vehicle multiplies with
every new release. This imposes additional constraints in terms of space complexity and the scaling
of the ECU capacity [2]. A possible way to ensure the scalability of ECUs is to standardize the
software to provide for additional functionalities. Owing to the distributed nature of tasks and the
variety of engineering fields involved in the manufacturing process of an automobile, apart from
the Original Equipment Manufacturers (OEMs) various automotive part suppliers, ancillaries and
service providers are also associated with the product development of an automobile. A common
standard in methodology and the business development process was also necessary to facilitate bet-
ter collaboration and process synchronization among these conglomerates [2]. Further, in order to
make sustainable utilization of resources and to drive cost efficiency throughout the manufacturing
process, automotive companies increasingly preferred reusability of software and methodologies
from the previous projects instead of beginning the work from scratch for the new projects.

The initial development methodologies followed in the OEMs have been on one to one basis and
diversified, where ECUs were developed for specific functionalities, and the development activities
were outsourced across various third party companies [2]. As mentioned in [2], this posed a major
problem during the integration of ECUs in the vehicle system, when different ECUs followed dif-
ferent proprietary implementations, and also in the collaboration with the different automotive part
suppliers throughout the development process. Additionally, the proprietary development process
increasingly failed to address the long term problems such as the growing cost of development and
quality requirements [2]. In order to move on from the shortcomings of proprietary methodologies,

1

Introduction

standardization in the development methodology has now become a matter of utmost importance in
the automotive industry.

1.2 Establishment of AUTOSAR Consortium

AUTOSAR has been established as a common standard in automotive software architecture and de-
velopment methodology. Having been set up in 2003, the AUTOSAR consortium consists of several
partner companies as shown in Figure 1.1. The setting of such a standard proves to be beneficial
not only in software engineering aspects but also towards homogeneity in the business development
process and ease of interaction among the suppliers and the OEMs, where the concept of Model
Based Development (MBD) is in practice right from concept definition to system integration. The
development of the AUTOSAR standard has aimed at fulfilling the following objectives, as per
[2, 3]:

• Ensuring scalability to different version releases.

• Efficient project planning and a smooth development process.

• Encouraging reuse of software modules.

• Driving cost efficiency throughout the development process.

• Sustainable resource utilization.

• Promising important safety requirements and availability.

• Ensuring transferability of functionalities across the ECUs within a vehicle environment.

• Providing for software maintainability and upgradability throughout the life cycle of the prod-
uct.

The higher level of abstraction in the layer-based AUTOSAR software architecture also reduces
inter-dependencies among the layers in the software development. The application developer, in
this case, can focus only on functional development without much knowledge on the internal system
behaviour. Therefore, the AUTOSAR standard is envisioned as a prospective solution, that could
lay the road for the OEMs to "compete" only on the quality of the "implementation" without caring
much about the developmental roadblocks [2].

1.3 Problem Statement and Motivation

As the AUTOSAR standard has been concretely established, the automotive companies have been
gradually migrating towards AUTOSAR over the last decade. While it is true that AUTOSAR pro-
poses a more seamless and unique software development methodology, there has been no direct so-
lution to convert a non-AUTOSAR software to AUTOSAR compatible software. Hence, researches
have also increasingly focused on migrating legacy software to AUTOSAR architecture. In this way,

2

Introduction

Figure 1.1: AUTOSAR partnership [4].

it would pave way for the automotive industries to reuse their proprietary legacy software models
for AUTOSAR requirements rather than setting up the AUTOSAR projects from scratch.

This thesis investigates the conversion of the AVL Hybrid Control Unit (HCU) software towards
AUTOSAR compliance by reusing the original software modules. The work was undertaken at the
Dept. of Powertrain Controls, AVL List GmbH in association with Institute of Technical Informat-
ics, Graz University of Technology. The conversion steps towards AUTOSAR compliance have
been investigated in this work by pointing out the differences with respect to AUTOSAR specifica-
tions and methodologies at each and every level of software development. The outcome of this work
shall also be a complete workflow of software conversion, including toolchains and work packages
involved, which can be useful for customer projects. Besides, this thesis also emphasizes the in-
corporation of automation features in the ASW model conversion to AUTOSAR format with the
intention of reducing manual effort in the conversion process. In conclusion, the degree of confor-
mance of the converted software to AUTOSAR standard and the evaluation parameters such as task
runtime, CPU usage, and memory consumption have also been comparatively analyzed with that of

3

Introduction

Analyze
deviations from

standard

Implement
missing features

Test/validate
conformance

Figure 1.2: Process flow of conversion towards a standard.

the original AVL HCU software.

A generic process flow of conversion towards a standard involves three primitive steps, as shown
in Figure 1.2: analysis of deviation from the standard; implementation of the observed deviations
and; the test of conformance with respect to the standard. Keeping the same process flow in mind,
the conversion of the HCU software towards AUTOSAR compliance, in our case, has been realized
by setting the following objectives:

• Identification of deviations from the AUTOSAR standard.

• Definition of conversion methodologies towards AUTOSAR compliance including work pack-
ages and toolchains involved.

• Implementation of the missing features of compliance.

• Evaluation of Key Performance Indicators (KPIs) and validation of software in Hardware in
the Loop (HIL) setup.

The first step involves the identification of deviations from the AUTOSAR standard in the origi-
nal AVL HCU software. In the case of AVL projects, the BSW is procured from Tier 1 supplier
companies. The primary objective in this phase is to identify deviations with regard to AUTOSAR
compliance and document these deviations appropriately. In Step 2, a distinct methodology and
the process workflow with regard to the conversion step have to be clearly defined. This also in-
cludes the definition of suitable work packages and the toolchains which facilitate conversion to
AUTOSAR standard. The subsequent step involves the conversion of ASW models to AUTOSAR
format and integration with the BSW. The interfacing RTE portion is also generated in this phase.
In the final phase, once the missing features are implemented, the performance of the software with
respect to metrics such as memory consumption and execution time, etc. have to be analyzed. The
software is subsequently validated on a HIL setup, and the performance metrics are measured in the
real ECU.

4

Introduction

1.4 Related Work

This section describes some research works already published in the field of migration from legacy
implementation to AUTOSAR and their relevance to this thesis. Comparisons are also made with
some related works from other areas in the embedded systems domain.

An approach for the conversion of legacy software to AUTOSAR architecture has been pre-
sented by Daehyun et al. [5]. The authors propose some concepts of migration including allocation
of the application software entities among various AUTOSAR Software Component (SWC) types
and apply them to a simple legacy software model for the interior lighting system. Although the
authors mention some conditions on BSW reusability, only a new BSW stack specific to AUTOSAR
has been configured and used in their case-study for integration with the AUTOSAR ASW. More-
over, the possibility of automating the conversion process to AUTOSAR has not been covered in
this work. This is necessary in the case of the ECU software system involving a higher number of
related software models. The work in this thesis, in contrast, investigates the likelihood of BSW
reusability mentioned in the work by Daehyun et al. Additionally, due to vastness of the AVL HCU
software system comprising of about 40 software models, the possibility of using the automated
features provided by tools such as MATLAB has also been examined for ASW conversion.

The work by James et al. [6] uses SystemDesk tool from dSPACE to automate the conversion
from legacy software to AUTOSAR system. The authors use MATLAB scripting to convert ASW
models to AUTOSAR format and eventually apply native Python Application Program Interfaces
(APIs) from SystemDesk for system architecture modelling and RTE generation. However, owing
to the non-availability of SystemDesk license, we chose to use automation features provided by
MATLAB for ASW conversion in this thesis. Additionally, a separate RTE generator engine has
been implemented in MATLAB M-Script based on the work by Shiquan et al. [7].

Furthermore, none of the works described above focused on the handling of calibration and
measurement variables in the AUTOSAR environment during conversion. The proper handling of
calibration and measurement variables is necessary when a software system involving a higher num-
ber of complex models is subjected to AUTOSAR conversion. In this thesis, the Parameter SWC
type specified in the AUTOSAR standard ([8], p.34) has been used for handling the calibration vari-
ables.

Due to the relevance with AUTOSAR, some works in the topics of OSEK1 migration have also
been considered here. Denil et al. in [9] use wrappers to migrate a legacy Real Time Operating
System (RTOS) application to OSEK platform. Jochen and David in [10] clearly bring out the re-
lationship of the OSEK standard with AUTOSAR and conclude that the migration from OSEK to
AUTOSAR is just the addition of the extended concepts. In our case, a modification in the OS of

1Open Systems and their Interfaces for the Electronics in Motor Vehicles (OSEK) [11] is a previously established
automotive software standard. The AUTOSAR system service specifications are based on OSEK Operating Systems
(OS) concepts. The AUTOSAR OS is considered an extended version of the OSEK OS [10].

5

Introduction

AVL HCU software is not required since the OS implemented by the BSW supplier is already com-
pliant with OSEK [12]. However, it must be noted here that the BSW as a whole is not AUTOSAR
compliant due to reasons mentioned in Section 2.2.4.

The following are some of the works referred from other domains in embedded systems in topics
related to migration. William in [13] discusses various aspects of migrating a legacy application to
the Linux platform. The author additionally mentions that there is no direct conversion step in this
regard and each feature of the legacy RTOS application must be mapped with its corresponding
feature in the Linux OS. Another example of software migration is the work by Franck et al. [14],
where the authors use an automation framework to migrate a banking application software from one
platform to the other. In contrast to the above discussed works, the work in this thesis does not focus
on migration from one source platform to another target platform in its entirety, but rather deals with
the incorporation of AUTOSAR concepts of data access and interfacing (the RTE function calls) at
the application software level without actually changing the execution platform (the BSW and the
microcontroller hardware).

1.5 Thesis Structure

The rest of the thesis is structured as follows:

1. Chapter 2 provides a brief overview of AUTOSAR layered architecture and AVL HCU soft-
ware architecture.

2. Chapter 3 presents various findings in the AUTOSAR compliance deviation analysis studied
across the V-Model phases.

3. Chapter 4 explores the implementation decisions and infers on the AUTOSAR conversion
approach followed in this thesis.

4. Chapter 5 explains the automation scripts developed for ASW conversion, RTE generation,
and the build process.

5. Chapter 6 describes the experimental setup and the results of the evaluation.

6. Chapter 7 concludes the findings in this thesis and provides some recommendations for fu-
ture works.

6

2. Overview of AUTOSAR and AVL HCU
Software Architecture

This chapter presents a general overview of AUTOSAR software architecture and a description
of each of its layers. Additionally, a description of the AVL HCU software architecture is also
provided. The AUTOSAR concepts covered in this section are primarily based on AUTOSAR
Release Specifications 4.3, Classic Platform.

2.1 AUTOSAR Layered Architecture

A model of software architecture has been proposed by the AUTOSAR standard for ECU develop-
ment. The AUTOSAR software architecture is layered in structure and can basically be divided into
three layers hierarchically as: Application Software (ASW), Run Time Environment (RTE), and
Basic Software (BSW). An overview of the AUTOSAR layered software architecture is shown in
Figure 2.1. Although the functionality of each layer is unique in nature, the layers function coopera-
tively to realize the task of the ECU system. The ASW is the functional part, wherein the functional
aspects of the system are implemented. The BSW forms the core of the system and provides the
Operating Systems (OS) and other services to the upper layers. The RTE actuates the dynamic
behaviour of the system. The primary purpose of this layer is to support inter- and intra-ECU com-
munication and also to interface the application (ASW) and core (BSW) part of the ECU software.

The three basic layers are bundled in such a way that the ASW is completely abstracted from the
BSW by the RTE and that the application Software Components (SWCs) are not allowed to interact
with the BSW modules directly, but only via the RTE [2]. The following sections present a rather
detailed account on each layer in specific.

2.1.1 Application Software

As pointed earlier, the ASW portion of the software houses the functional part of the ECU software.
The ASW, however, is not coded as a single program implementing all the functionalities required
for the ECUs. It is rather compartmentalized into dedicated SWCs, wherein each SWC is a piece of

7

Overview of AUTOSAR and AVL HCU Software Architecture

Figure 2.1: AUTOSAR - Layered software architecture [2].

code with one or more function definitions implementing a particular functionality. Those function
definitions are also known as runnable entities. According to AUTOSAR standard, a runnable or a
runnable entity is also the smallest piece of code schedulable by the RTE [15].

It is to be noted that in a single ECU there can be one or more SWCs. These SWCs execute
in close cooperation to realize the function of the whole ECU. The SWCs also communicate with
each other in passing variables and parameters. To do so, the AUTOSAR has defined a dedicated
set of ports through which the SWCs interact with each other, and in some special cases both with
the BSW modules and the RTE. Figure 2.2 represents the general structure of an SWC with various
port types and also the internal structure of the SWC with runnable entities.

The Virtual Function Bus (VFB) is another important concept within the AUTOSAR frame-
work, which means the interconnection of Application SWCs via a virtual bus system in the logical
system architecture. The VFB concept is a generalization irrespective of the ECU to which the
component actually belongs. For example, the inter-ECU and intra-ECU communication distinc-
tion are completely abstracted, and only the logical interconnections among the SWCs are visible
in the VFB view. This explains why the Application SWCs, within an AUTOSAR environment, do
not belong to the specific ECUs, and that the components can be distributed across the ECUs within
the vehicle network. Figure 2.3 shows an interconnection of such components in the VFB level.

8

Overview of AUTOSAR and AVL HCU Software Architecture

(a) SWC - Blackbox view (b) SWC - Whitebox view

Figure 2.2: SWC - General structure [8].

2.1.2 Run Time Environment

The RTE forms the key part of the AUTOSAR system and cements the ASW and the BSW through
clearly defined APIs. The Application SWCs do not need to be aware of the internal system be-
haviour, and the services offered by the BSW modules to the ASW are realized only via the RTE.
The functionalities of the RTE layer can be grouped into two areas:

Figure 2.3: SWC interconnection in VFB level [2].

9

Overview of AUTOSAR and AVL HCU Software Architecture

• Realization of communication paradigms among Application SWCs.

• Interfacing the ASW and the BSW.

In order to support the communication between the Application SWCs, the RTE provides an API
header, using which the Application SWCs can be coded. The RTE header file consists of function
prototypes for realizing the port communication between the SWCs. An example of RTE function
prototype is Rte_send_portA_d(), where an SWC sends data element d via port A [2]. The RTE also
checks for "data consistency" during communication [2].

The RTE additionally includes task bodies, which hold the function calls to the runnable entities.
These are the dedicated tasks of the OS to which the runnable entities are mapped. The problem
of ’which runnable entity belongs to which OS task’ is resolved in the RTE configuration phase
(Section 3.5.2). The OS tasks also await notifications from RTE events during execution. Further,
the scheduling of these OS tasks is handled by the Basic Software Scheduler (BSS), which is the
global scheduler in the AUTOSAR environment. The BSS is a part of the OS situated in the BSW
[15]. Moreover, the RTE also acts as a medium for the services provided by the BSW modules to
the upper layers. AUTOSAR has defined standardized port interfaces (Section 3.3.2) for handling
the BSW services to the application layer.

2.1.3 Basic Software

This section describes the BSW portion - the third layer in the AUTOSAR software architecture.
The content described in this section is based on [16]. As indicated earlier, the BSW forms the
core part of the AUTOSAR system. The BSW can be further subdivided into the following layers:
Service Layer, ECU Abstraction Layer, Microcontroller Abstraction Layer (MCAL) and Complex
Drivers [16]. The BSW layers are ordered hierarchically from hardware specific drivers to man-
agerial layers and are abstracted from each other via standardized API calls. However, the complex
driver is housed as an independent layer. The basic arrangement of these layers within the scope of
the BSW can be seen in Figure 2.4.

The software layer written over the microcontroller hardware level is the Microcontroller Ab-
straction Layer (MCAL). As the name suggests, the MCAL layer is in "direct access" with the
microcontroller hardware and abstracts the layer situated above it via standardized interfaces [16].
The MCAL layer provides interfaces for the upper layers to access individual peripherals of the mi-
crocontroller. Moreover, this layer also contains drivers such as communication drivers, I/O drivers
and memory drivers for microcontroller on-chip peripherals.

The ECU Abstraction Layer defines a broader group of hardware peripherals in addition to
the microcontroller specific peripherals. It provides interfaces for both microcontroller on-chip pe-
ripherals as well as external hardware like a watchdog timer. However, the ECU abstraction layer
cannot access the microcontroller directly, but only via the MCAL layer.

10

Overview of AUTOSAR and AVL HCU Software Architecture

Figure 2.4: BSW layers [16].

The Complex Drivers form a separate layer and are situated independently from the hierarchi-
cal structure of the BSW layered architecture, although communication may be possible with other
BSW modules. This layer is mainly provided for "migration purposes" - to accommodate features
that are not AUTOSAR compliant, or to incorporate any "time-critical constraints" into the AU-
TOSAR environment [16].

The topmost layer in the BSW hierarchy is the Service Layer. It is the managerial layer for
all the services provided to the RTE and the ASW. Some of the services provided are OS services,
memory services, communication services, and mode management, etc. The BSW hierarchical
model can be further categorized into various functional groups based on their application scope, as
shown in Figure 2.5.

The System Services are related to the group of services such as OS, mode management, diag-
nostics event management, etc. Normally, these services are used by the application layer as well
as other BSW modules. The Memory Services form the management group for the Non-volatile
Random Access Memory (NVRAM) access. The NVRAM manager (NvM) provides necessary
services and routines for the ASW for reading and writing non-volatile data into the NVRAM. The
crypto services are used in the management and access of "cryptographic primitives" [16].

The functional group responsible for the inter-ECU communication by transferring the data via
the bus lines is the Communication (COM) Manager. In addition, the COM manager acting as
Diagnostics Communication Manager (DCM) also handles the communication capabilities with ex-
ternal diagnostic tools. The COM layer has dedicated COM stacks and Protocol Data Unit (PDU)

11

Overview of AUTOSAR and AVL HCU Software Architecture

Figure 2.5: BSW functional groups [16].

router, which can seamlessly handle protocols such as Controller Area Network (CAN), Local In-
terconnect Network (LIN) and FlexRay. Similarly, the Off-board Communication services are
related to "Vehicle-2-X" communication over wireless medium [16].

The I/O Hardware Abstraction is related to the sensor I/O read and write functionalities and is
considered a part of VFB despite being a BSW software module. The module communicates with
the application layer via port interfaces on one side, and with the MCAL layer on the other side
through standardized APIs.

2.1.4 BSW Conformance Classes

This section describes ways of measuring compliance levels towards the AUTOSAR standard and
is based on [2]. The Implementation Conformance Classes (ICC) measure the degree of the con-
formance of various automotive software implementations towards the AUTOSAR standard. These
categories have been defined from ICC1 to ICC3 keeping in mind the step by step process of migra-
tion from non-AUTOSAR models to AUTOSAR models. The conformance classes, however, are
measured only with respect to the RTE and the BSW modules.

ICC1

In the ICC1 category, the RTE functionality can be integrated with the BSW and implemented as a
single entity. The BSW part is not required to follow the AUTOSAR conformed implementation.
For this reason, the suppliers are free to add their own implementations in the BSW cluster. How-
ever, the interfaces between the ASW and the BSW still need to be AUTOSAR conformed, and the

12

Overview of AUTOSAR and AVL HCU Software Architecture

BSW cluster shall offer all the necessary functionalities mentioned in the AUTOSAR specifications
[2].

ICC2

In the ICC2 category, the BSW is classified as the "cluster" of modules based on their functionality
such as the RTE part, the OS part, and the COM stack, etc. [2]. The BSW modules are also termed
as "BSW clusters" [17]. An individual or a set of BSW clusters can be obtained from different
suppliers and integrated as a BSW stack [2].

ICC3

The ICC3 category must follow the fullest AUTOSAR conformance. All the interfaces between
the ASW and the BSW and the abstraction levels between various BSW layers must comply with
AUTOSAR requirements [2]. The BSW is considered as a single-layered entity with the layers
abstracted from each other via standardized interfaces. Unlike ICC2, the RTE layer in the ICC3
category is considered an independent layer from the BSW structure.

2.2 AVL Hybrid Control Unit Software Architecture Overview

This section provides an overview of the software architecture of the AVL Hybrid Control Unit
(HCU). It is the AVL proprietary software that will be subjected to AUTOSAR conversion. The
content described in this section is based on [18].

The software architecture of HCU constitutes three basic layers: Application Software (ASW),
Customer Interface Layer (CIL), and the Basic Software (BSW) part. In spite of being designed
based on AUTOSAR principles, the software deviates in major proportion from the AUTOSAR
standards in terms of interface handling and development methodology. Figure 2.6 shows an
overview of the HCU software architecture. A brief background on choosing the above-mentioned
software architecture by AVL is provided in Section 2.2.1 and a description of each specific layer is
shown in the subsequent sections.

2.2.1 Background

This section provides a brief background on the software architecture (Figure 2.6) followed by AVL.
The AVL HCU software development team started out as an ASW development team for customer
projects. The ASW structure follows the design aspects mentioned in Section 2.2.2. At a later
point in time, AVL migrated to full-scale ECU software development. The BSW implementations
for AVL projects were ordered from Tier 1 suppliers and had to be integrated with the ASW. As
a result, the CIL layer was defined by AVL as a means to manage the interfaces between ASW
and BSW. In addition, the customer projects being handled1 by AVL have been non-AUTOSAR

1The migration to AUTOSAR methodology had been planned only at the time when this thesis was written.

13

Overview of AUTOSAR and AVL HCU Software Architecture

Application
Software

Customer Interface Layer

Basic Software

Hardware

Figure 2.6: HCU software architecture. Adapted from [18].

projects. Therefore, AVL follows their own software development methodology which includes
procurement of BSW from suppliers, development of ASW and CIL, and software integration of
BSW and ASW.

2.2.2 Application Software

The ASW structure of the HCU software has been developed by AVL. Similar to the ASW in AU-
TOSAR layered architecture described in Section 2.1.1, the ASW structure in the AVL proprietary
software constitutes individual SWCs making up for the software behaviour. The ASW behaviour is
also coded in the form of runnable entities. The SWCs in the AVL HCU software are also distinctly
grouped into various functional groups based on their functionality.

SWC2

SWC3

SWC1 SWC2

SWC3

SWC1

Functional Group1 Functional Group2

Software System

Figure 2.7: AVL HCU software - ASW structure.

14

Overview of AUTOSAR and AVL HCU Software Architecture

Figure 2.7 provides an understanding of the classification of SWCs in AVL HCU software based
on their associated functional groups. The set of all the SWCs in the ASW along with the functional
groups constitutes the complete software system of the HCU. In contrast to AUTOSAR, where
RTE function calls are used for ASW communication, the communication among the SWCs is
handled via static global variables. In the ASW code level, this property is directly adopted when
a non-AUTOSAR type code is generated from MATLAB/Simulink models. The reader can refer to
Section 3.4.1 for more details on the AVL software code generation.

2.2.3 Customer Interface Layer

AVL defines the Customer Interface layer (CIL) as the interfacing layer between ASW and BSW
providing a bidirectional signal interface. The CIL layer has been designed to handle all possible
interfaces between ASW and BSW. The role of the CIL layer can be understood from Figure 2.8.
The HCU Software architecture document [18] mentions the following functionalities to be offered
at the CIL level:

Software System

NVM Mapping UDS Callbacks
CAN Message to
Signal Mapping

Hardware Signal
Mapping

UDS
DEM
NVM

CAN Buffer Hardware I/O Drivers

Hardware

ASW

CIL

BSW

Figure 2.8: Role of layers in HCU software architecture. Adapted from [18].

• Providing signal interfaces to the ECU I/O signals.

• Interfacing signals to be transmitted over CAN bus lines. Additionally performing CAN
signal validity checks, etc.

• Interfacing diagnostic event signals.

15

Overview of AUTOSAR and AVL HCU Software Architecture

• Providing interfaces for the variables to be loaded into NVRAM.

• Invoking the ASW runnable entities with OS task execution.

2.2.4 Basic Software

COM
Service

NVRAM
System

Services
Diag

Service

Task Bodies

BASIC SOFTWARE

API Interfaces
provided by BSW

Supplier to
Application layer

Figure 2.9: BSW structure - AVL HCU software.

The BSW portion of AVL HCU software is procured from the supplier along with the hardware.
A schematic of the BSW is shown in Figure 2.9. The ’sky-blue’ portion indicates the core part of the
BSW, which provides the class of functionalities related to the OS, communication and diagnostic
services, memory services and other software drivers, etc. [19]. The implementation of the BSW is
proprietary to the supplier. The supplier additionally defines APIs (marked ’purple’ in Figure 2.9)
and task bodies for providing the BSW services to the upper layers. The API interfaces are used
to exchange information such as the CAN signals, diagnostic callbacks, I/O and NVRAM signals,
etc., between the BSW and the ASW. The task bodies are used to invoke the ASW runnable entities.

The exact software architecture used in the BSW implementation is not clearly known as it is
not indicated by the supplier in the BSW documentation, and additionally the BSW is delivered to
AVL as compiled object files. Hence it has been assumed that the BSW implementation is supplier
proprietary and are not necessarily based on AUTOSAR BSW specifications. Additionally, the API
interfaces to the upper layers are also supplier-specific (defined with respect to the CIL layer) and
are not based on AUTOSAR specifications. Hence the BSW, as a whole entity, cannot be inferred
to be AUTOSAR compliant.

16

3. AUTOSAR Compliance Deviation Anal-
ysis

In order to convert the AVL HCU software towards AUTOSAR compliance, it is important to under-
stand the deviations from the AUTOSAR standard. The V-Model type of SDLC has been chosen,
since it is a clear representation of the software development process and is also widespread in us-
age across the industries. The deviations from AUTOSAR have been studied across the V-Model
process flow and presented in this chapter.

3.1 Deviation Analysis along V-Model Phases

Like Waterfall and Spiral Model, V-Model is a type of SDLC representing the sequential steps
involved in the software development process [20]. The V-Model flow of software development
aims at seamless and fine-grained control of the development and testing process. As the case with
software development in other areas, the V-Model process flow methodology is also widespread in
usage in automotive software development. The methodology describes a "series of process stages"
from requirements, high-level design to low-level implementation in the design phase (left trunk
of V-diagram), and from unit testing until acceptance testing in the validation phase (right trunk of
V-diagram) [21], as shown in Figure 3.1.

While applying the V-Model methodology in the case of automotive software development, the
work stages across the design and the validation phases are appropriately shared among the OEMs,
Tier 1, supplier companies and service providers. The software development life-cycle starts with
the requirements phase. The system and component requirements based on customer expectations
and other boundary conditions are prepared by the OEMs in this phase and are quoted to various
supplier companies.

The design and implementation phase usually takes place at the supplier side of the particular
component (e.g. ECUs). The high-level design involves the design of architectural concepts of the
particular software. The low-level design refers to the design of granular concepts such as models,

17

AUTOSAR Compliance Deviation Analysis

Business
Requirements

System
Requirements

High Level Design

Low Level Design

Coding

Acceptance
Testing

System Testing

Integration Testing

Functional Testing

Unit Testing

Deviations at
Requirements Level

Deviations at Interface Level

Deviations at Code
Generation Level

Deviations at Software
Integration Level

Figure 3.1: Deviation analysis across V-Model. Adapted from [22].

interfaces and the implementation logic, etc. [21]. After the implementation phase, the testing is
performed at integration, component and system level. The integration and component-level testing
are the responsibility of the supplier companies, while OEMs handle the system-level testing. The
V-Model also follows the back and forth style of modelling, wherein any modifications bound to
happen at any level in the design or validation workflow shall be reflected in all the preceding levels.

While observing the deviations of AVL HCU software from the AUTOSAR standard, it is evi-
dent that the analysis should be carried out at all levels of the SDLC. The software deviation analysis
was therefore studied under the following categories, as shown in Figure 3.1:

• Deviations at requirements level.

• Deviations at architecture and interface level.

• Deviations at model development and code generation level.

• Deviations at software integration level.

The following sections provide a detailed account of the categories of deviation analysis mentioned
above.

18

AUTOSAR Compliance Deviation Analysis

3.2 Deviations at Requirements Level

AVL1 uses the requirement specifications in order to quote the supplier about the BSW and hard-
ware requirements. The deviations inferred in the requirements level can be shown in the below
categories. The descriptions in the below sections are based on AVL’s BSW requirement document
[19].

3.2.1 BSW Architecture Requirements

AVL Requirements AUTOSAR Requirements

AVL does not specify a particular software ar-
chitecture for the BSW in their requirements
to the supplier. This entails that the BSW sup-
plier has the freedom to use their proprietary
software architecture and implementations as
long as all the essential BSW functionalities
are met [19].

The BSW requirements must strictly follow
AUTOSAR specifications. AUTOSAR spec-
ifies a well-defined software architecture for
the BSW [16]. All the hierarchical arrange-
ment of the BSW modules and all the abstrac-
tion levels in the BSW layers must be imple-
mented as specified in the AUTOSAR speci-
fications.

Table 3.1: Deviations in BSW requirements architecture-wise.

3.2.2 BSW Interface Requirements

AVL Requirements AUTOSAR Requirements

AVL BSW requirement states that API inter-
faces shall be provided by the supplier for
the access of BSW signals by ASW (through
CIL) [19]. However, AVL does not specify
a specific format a for these API interfaces.
This means that the BSW supplier can choose
their own format for the API interfaces from
BSW, and the format need not be AUTOSAR
specific.

In AUTOSAR case, all the interfaces from the
BSW to upper layers (through RTE) are stan-
dardized. AUTOSAR defines a specific for-
mat for these API interfaces. The supplier im-
plementation of the API interfaces must con-
form with the AUTOSAR standard.

aThe ’format’ in this case refers to the name and syntax of the API interfaces from BSW.

Table 3.2: Deviations in BSW requirements interface-wise.

1The AVL Powertrain Controls Dept.

19

AUTOSAR Compliance Deviation Analysis

3.3 Architectural and Interface Level Deviations

3.3.1 Interface Handling in AVL HCU Software

This section describes the interface handling in AVL HCU software. The AVL HCU software archi-
tecture has been designed by AVL and is architecturally comparable to the AUTOSAR architecture
shown in Figure 2.1. Nevertheless, there are inherent differences in the low-level design aspects
such as interface handling. Figure 3.2 shows an illustration of the interface handling in AVL HCU
software. As indicated in Section 2.2.4, the supplier provides the BSW along with the API inter-
faces to the upper layers and the task bodies.

The CIL layer is implemented by AVL. The API interfaces (marked ’purple’ in Figure 3.2) pro-
vided by the supplier are used to integrate the CIL layer with the BSW. The task bodies are also
filled with function calls to the ASW runnable entities at the CIL layer level. Alternatively, it can
also be understood that the CIL is not a standardized layer; and CIL has been defined by AVL to
manage the interfaces provided by the BSW to the application layer. In short, all the interfaces
from ASW to BSW are handled only via the CIL layer. Additionally, any manually implementable
functionalities such as CAN CRC check, and hardware fault detection, etc., are also implemented
at the CIL layer level.

At the ASW level, communication among the SWCs involves static global variables (marked
’red’ in Figure 3.2). The diagnostic, NVRAM and mode information interfaces are routed only
through the CIL layer via variable mapping or function calls (marked ’blue’ in Figure 3.2).

3.3.2 Interface Handling in AUTOSAR Standard

This section provides details on the interface handling in AUTOSAR software models. An illustra-
tion of types of interfaces used in the AUTOSAR standard is shown in Figure 3.3.

The interfaces have been classified into three types based on their scope of application within
the layers. The standardized interfaces (Figure 3.3) are defined by the AUTOSAR standard. These
interfaces are standardized C-APIs and are used only by the BSW modules while communicating
with each other [16]. The AUTOSAR interfaces, on the other hand, define port communication
between the Application SWCs [16]. These interfaces are not standardized by AUTOSAR, and the
naming conventions are based on the name of the port variables. The third category of interfaces,
the standardized AUTOSAR interfaces, refer to the standardized API calls provided by the ser-
vice layer to the Application SWCs, for example, the diagnostic services offered by the Diagnostic
Event Manager (DEM) to the application layer [16, 23].

Additionally, AUTOSAR defines port types and port interfaces for different communication
types involved among the SWCs. In the high level, the port types can be classified into ’Pport’ and
’Rport’ [8]. The Pport is the provider of the data, and the Rport is the receiver or requester of the

20

AUTOSAR Compliance Deviation Analysis

SWC1 SWC2 SWC3

APPLICATION SOFTWARE

CIL

COM
Service

NVRAM
System

Services
Diag

Service

Task Bodies

BASIC SOFTWARE

Implemented
by AVL

Implemented
by Supplier

Static Global
Variables

Variable mapping
with CIL

API Interfaces
provided by supplier

to ASW

Signal Mappings, UDS Callbacks and other manually implementable functions

Figure 3.2: Interface handling in AVL HCU software.

data. Moreover, the port types are generally available for various categories of port interfaces, as
shown in Figure 3.4. According to [8], the various available port interface categories are:

• Sender-Receiver is the type of interface defined especially for data communication, wherein
the sender port transmits the data to the receiver port.

• Client-Server interface is for client-server operation. The client requests the server for an
operation to be performed via function calls, and the server responds with the results of the
operation.

• Non-Volatile (NV) interface is used for the communication between NvM and the application
in order to read and write data from and into the non-volatile memory.

• Mode Switch interface plays a role in signalling the mode transfer from mode managers to
the mode users. The mode users are SWC instances, which are generally the requester of
mode change, and a mode manager SWC initiates switching of modes.

21

AUTOSAR Compliance Deviation Analysis

Figure 3.3: Interface handling in AUTOSAR layered software [8].

More details on various port types and the related interfaces can be found in [8]. The AUTOSAR
standard also prescribes various types of SWCs that can use the above-mentioned port types and
the related port interfaces. An illustration of SWC has already been shown in Section 2.1.1. The
description of different SWC types are as follows [8]:

(A) The Application Software Component is used to code the application runnable entities
which communicate through ports. In general, all the port types mentioned above are used by
the Application SWC, so that it communicates with all kinds of SWCs such as NvM, mode
managers, etc. However, an Application SWC can access sensor signals and I/O signals only
via a Sensor and Actuator SWC type interfaced with ECU Abstraction layer [8].

(B) The ECU Abstraction Software Component, also known as I/O Hardware Abstraction Soft-
ware Component, is used to access the I/O and sensor signal data and pass to the application
layer. This type of SWC is situated in the BSW and communicates with the MCAL Layer
on one side through standardized C-APIs in order to retrieve the input signals, and interfaces
with the Sensor SWC in the application layer on the other side via client-server interface [24].
Therefore, the ECU Abstraction SWC is provided with a mandatory Pport (server). Although
situated in the BSW, the I/O Hardware Abstraction forms a part of the VFB because of the
presence of AUTOSAR interfaces.

(C) The Sensor-Actuator Software Component is also located in the application layer. This
type of SWC includes sensor and actuator related application functionalities and acquires the
services of ECU Abstraction layer to access the sensor and I/O signals from the hardware [8].

22

AUTOSAR Compliance Deviation Analysis

A). Pport (Sender) A). Rport (Receiver)

B). Pport (Server) B). Rport (Client)

C). Pport (NV Data) C). Rport (NV Data)

D). Pport (Mode
Switch)

D). Rport (Mode
Switch)

Figure 3.4: Common port types used in AUTOSAR for communication between SWCs. Adapted
from [8].

Therefore, these SWCs are normally instantiated with a mandatory Rport (client) for the I/O
interaction.

(D) The Service Software Component is used to provide BSW services to the upper layers, for
example, DEM services to the Application SWCs. Hence, this type of SWC is instantiated in
the BSW and communication with other BSW modules is also possible [8]. The Service SWC
type is usually associated with standardized AUTOSAR interfaces, which are standardized
client-server ports. Some of the use cases of Service SWC instances can occur as mode
managers, diagnostic service providers or NvM managers, etc.

(E) The NV Block Software Component represents the NvM of the BSW and is normally in-
stantiated in the RTE layer. This type of SWC uses NV interfaces for NV data transfer and
client-server interfaces in order to provide the related NvM services to Application SWCs [8].

(F) The Service Proxy Software Component is a special type of SWC to transfer mode infor-
mation from one ECU to another. While an Application SWC is not allowed to request mode
related services from a mode manager located in another ECU, the Service Proxy SWC type
serves as a proxy to take the mode related communication across ECU boundaries [25].

23

AUTOSAR Compliance Deviation Analysis

(G) The Parameter Software Component is used as a container for all the global calibration
parameters. The Parameter SWC uses parameter interfaces (a type of Sender port) to share
these calibration parameters across Application SWCs [8].

Standardized Interfaces (BSW - BSW)

Standardized Interfaces (BSW - RTE)

Communication across ECU boundaries

Port communication

Figure 3.5: An illustration of interface handling in AUTOSAR environment using port types and
SWC types. Adapted from [8].

24

AUTOSAR Compliance Deviation Analysis

An illustration of interface handling using different SWC types and port types is shown in Figure 3.5.
This example shows an ECU software module with two SWC instances present in the application
layer: SeatHeatingControl, an Application SWC, and HeatingDial, a Sensor SWC type. Both
the SWCs communicate with each other and also with other BSW modules through various port
interfaces. All the communication mechanisms are handled via the RTE (’red’ portion in Figure
3.5). It can be seen that the communication between the SWCs in the application layer involves
either sender-receiver or client-server ports. The communication with the BSW, on the other hand,
involves interface categories such as the NV data transfer, COM interface, mode transfer, and I/O
data access, etc. The mode-switch ports are used to transfer the mode information from ECU state
manager in BSW to Application SWC SeatHeatingControl. In the case of non-volatile (NV) data
handling, an NV Block type SWC is configured in the RTE, which represents the NvM and uses
NV ports and standardized services from NvM to read and store the NV signals into NVRAM
[26]. Besides, the COM stack is responsible for handling the inter-ECU communication mechanism
involving external bus lines (e.g. CAN). In the use case shown in Figure 3.5, the information
related to the power management interface (this information is received externally) is read by the
COM stack and mapped to the receiver port of SeatHeatingControl at the RTE level. The ECU
Abstraction SWC type interfaced with the Sensor component HeatingDial is used for accessing the
I/O and sensor signals. As indicated earlier, the ECU Abstraction SWC type, in the use case shown
in Figure 3.5, acts as a server and provides services related to I/O signals read/write to the Sensor
Component using a server port. The port type indicated in the leftmost corner of SeatHeatingControl
is the calibration interface. The use case of this type of interface includes the calibration parameter
access from an external Parameter SWC type, wherein all the global calibration parameters are
written. Apart from the interface categories discussed above, it can also be noted that the BSW
modules beneath the RTE use only standardized APIs for communication among them and also
with the RTE (shown ’blue’ and ’yellow’ in Figure 3.5).

3.3.3 Differences in Scheduling Concepts

This section compares the scheduling approaches for runnable entities followed in the AVL HCU
software and the AUTOSAR standard. The scheduling concepts used in both the software models
are almost similar in approach: the task bodies are used to invoke the runnable entities. In AVL
HCU software, the task bodies are provided by the BSW supplier as mentioned in Section 2.2.4,
wherein the function calls to the runnable entities are included by AVL. In the AUTOSAR stan-
dard, the mapping of the task bodies to runnable entities is determined in the RTE configuration
phase (Section 3.5.2) [15]. It is important to introduce the task types: basic and extended before
we discuss further on the scheduling concepts. A basic task does not terminate by itself due to a
waiting state. An extended task has OS events associated with it and it has wait points that require
the occurrence of the associated events to proceed with the task execution [27]. The discussion in
this section is limited to the relationship between the OS tasks and runnable entities and does not
cover in detail the scheduling concepts involved at the OS level.

In the case of AVL HCU software, the BSW supplier provides a total of four task bodies, which
are also basic tasks with different periodicities (1ms, 5ms, 10ms, and 100ms, etc.), for scheduling

25

AUTOSAR Compliance Deviation Analysis

the runnable entities. The scheduling algorithm used by the BSW supplier for these tasks and the
pre-configured priorities are not visibly known since these are supplier-specific implementation in
the BSW object files delivered to AVL. Among the tasks mentioned above, only the 10ms task has
been used by AVL to invoke the ASW runnable entities. An illustration of a task body with runnable
entities is shown in Figure 3.6. For illustrative purposes, the task name has been chosen as T1 and
the runnable entities have been named from Runnable_1 to Runnable_n. It can be seen from Fig-
ure 3.6 that the runnable entities (Runnable_1 to Runnable_n) are invoked sequentially as the T1
is scheduled for every 10ms. The complete execution of task T1 along with the runnable entities
occurs well within the next arrival time of T1. A possible reason for AVL to use the 10ms task
is to align the task runtime with the cycle-time of CAN message, which is 10ms for all the HCU
messages. Besides, the order of invocation of the runnable entities is determined by the execution
order generated by the HCU software system model via the Model-in-the-Loop (MIL) simulation.
Furthermore, it can be seen from Figure 3.6 that no events, alarms or extended task types are used in
the scheduling concept of AVL HCU software. Since the runnable entities are executed sequentially
one after another, there is no synchronized execution among the runnable entities.

Referring to Figure 3.7, in the AUTOSAR standard, there is a provision to use more than one
task type (basic or extended) depending on the application context. The AUTOSAR standard defines
RTE events, which are also the means to trigger the execution of runnable entities [15]. In addition,
the runnable entities can be classified into category 1, in which the runnable has no wait points, and
category 2, in which the runnable has one or more wait points. These wait points are resolved by the

Task Bodies

Task T1
{
 Runnable_1();
 Runnable_2();
 Runnable_3();
 …….
 …….
 Runnable_n();
}

Task: T1
Periodicity: 10ms
Type: Basic Task

Figure 3.6: An example of a task body used to invoke ASW runnable entities in AVL HCU
software.

26

AUTOSAR Compliance Deviation Analysis

occurrence of a typical RTE event (e.g. DataReceivedEvent [15]). The mapping of runnable entities
to the task types is performed in the RTE configuration and the mapping information is recorded in
the ECU Configuration Description. According to [15], the OS task to runnable mapping depends
on certain criteria: A basic task is used for category 1 runnable entity with no wait points, and an
extended task is used when the runnable entity is of category 2 and has one or more wait points.
Based on the task mapping information in the ECU Configuration Description, the task bodies are
generated during RTE generation.

Task Bodies

Task T1
{
 Runnable_1();
 Runnable_2();
}

Task: T1
Periodicity: 10ms
Type: Basic Task
Priority: 2

Task T2
{
Runnable_3();
}

Task: T2
Periodicity: Non periodic
Type: Extended Task
Priority: 1

Runnable_3();
{
//Some code
…
…
//Wait point
Rte_Receive(); //Check for Rte event
…
…
//Some code
}

Runnable_3: Function Body

Figure 3.7: An example of a runnable entity to task body mapping done in AUTOSAR
methodology. Adapted from [15].

In the example shown in Figure 3.7, a basic task T1 and an extended task T2 have been used.
The runnable entities Runnable_1 and Runnable_2 are periodic runnables of category 1 (for exam-
ple, let us assume the cycle-time is 10ms) and the runnable Runnable_3 is of category 2 which has a
wait point for an RTE event DataRecieveEvent. It can be seen that the runnable entities Runnable_1

27

AUTOSAR Compliance Deviation Analysis

and Runnable_2 are mapped to task T1 in the RTE configuration phase. The sequence of execution
for these runnable entities is also specified beforehand in the configuration phase and is available in
the ECU Configuration Description. Additionally, the Runnable_3 is mapped to the extended task
T2. In can also be seen that, in the function body of Runnable_3, the wait point for checking the
occurrence of RTE event DataRecieveEvent is implemented using the RTE API Rte_Receive() [15].
The priorities of the tasks to which the runnable entities are mapped are also decided during the OS
configuration phase [27]. In the example shown in Figure 3.7, the priorities have been assumed ’1’
for task T2 and ’2’ for task T1.

3.4 Deviation at Model Development and Code Generation Level

This section compares the model development aspects of AVL’s methodology and AUTOSAR
methodology.

3.4.1 Model Development Aspects in AVL HCU Software

In this section, the model development process of AVL HCU software and the related software
tools used are explained. As shown in Figure 3.8, the software development process begins with
the definition of the system requirements. The system in this context refers to the system of all the
powertrain ECUs2 developed by AVL. From the system requirements, the subset of requirements
related to the HCU module is filtered out and the ECU architecture is designed. The ECU design
step focuses on the definition of all the SWCs within the HCU software system and ECU labels
such as the I/O signals, calibration, and measurement variables and system constants, etc. The cal-
ibration variables, in this case, can also include single parameters, axes (1D arrays) and maps (2D
arrays). The Automotive Data Dictionary (ADD) [28] tool is used to manage all the ECU labels.
The ADD project is created as a separate container stored as .ddx files for each SWC model and
the I/O and calibration parameters to be used in the model are defined. The .ddx is the file format
of an ADD database containing the ECU labels of a particular SWC model [28]. The ADD is also
integrated with the Maestra environment in the back-end3 and is responsible for keeping the *.ddx
file up-to-date with the variable modifications.

The SWC design phase (from Figure 3.8) involves modelling the Application SWCs and gener-
ating the ASW code from SWC models using code-generators. The SWC models are developed us-
ing a dedicated model-based development tool (e.g. MATLAB/Simulink, dSpace TargetLink, etc.).
In the case of AVL HCU software, the SWC models are developed using TargetLink 3.5 integrated
with MATLAB version 2013b. An AVL proprietary tool called Maestra is also used alongside,
which finds application in MIL simulation and testing. The tool provides complete features to set

2AVL currently develops Transmission Control Unit (TCU), Hybrid Control Unit (HCU) and Engine Control Unit
(ECU).

3The ’back-end’ in this context refers to the scenario in which the user can work with an integrated environment of
software tools, but does not explicitly see how these tools are integrated.

28

AUTOSAR Compliance Deviation Analysis

System
Requirements

ECU Design

Software
Component

Design

Tools Used

Maestra

Automotive Data
Dictionary

MATLAB/
Simulink

TargetLink

Figure 3.8: Software development workflow - AVL HCU software.

up a MIL simulation environment for the models including generation of test cases for MIL testing.
The Maestra framework is integrated into the back-end with MATLAB and TargetLink. The model
under test is housed within this Maestra framework.

.dd .dat

Model *.c, *.h

Model_input *.c,
*.h

Code Generation
using TargetLinkMaestra Framework

Figure 3.9: Process-flow - AVL HCU software modelling.

29

AUTOSAR Compliance Deviation Analysis

The AVL HCU software modelling process (Figure 3.9) involves the development of models
in an integrated environment of Maestra framework, ADD, MATLAB, and TargetLink. The model
data files specific to the MATLAB and TargetLink environment for denoting the signals and param-
eters used in the SWC models are managed within the Maestra framework. As indicated earlier,
these data files are maintained up-to-date with modifications in the ADD database, for example, a
newly added parameter in the ADD database is automatically reflected in these data files. Besides,
the TargetLink is used to generate SWC code files.

Model.mdl

Model_test.mdl

Model.AVLab

Library Link

Maestra

Interface

SWC Code Files

TargetLink Code
Generation

Figure 3.10: Folder structure of the model and generated code in the AVL HCU software.

A fully developed SWC contains the following file entities: a model library, a test model, a
Maestra session file and generated SWC code files. The relationship between these file entities
is shown in Figure 3.10. The model algorithm is implemented using TargetLink blocks and is
stored as a Simulink model library in .mdl format (e.g. Model.mdl). An additional test model (e.g.
Model_test.mdl) file is created, which includes the interfaces to Maestra framework and links with
the model library mentioned above. This test model can be subjected to MIL testing. Additionally,
the Model.AVLab, which is also known as the Maestra session file, represents the MIL simulation
environment of the model. By loading the session file in Maestra, the test model can be housed
within the MIL simulation environment.

3.4.2 Model Development Aspects in AUTOSAR Software Model

The software models in AUTOSAR environment involve port types and SWC types as mentioned
in Section 3.3.2. A model development tool supporting AUTOSAR configuration provides the re-
quired AUTOSAR template with the necessary port interfaces, wherein the model algorithm can be
implemented. Additionally, the tool also provides the necessary platform to configure the settings
of ports, runnable entities and RTE events. In the generated source code, the implemented model
algorithm is coded as runnable entities.

Another important feature in the AUTOSAR model development is the involvement of the AU-
TOSAR Extensible Markup Language (ARXML) description files in every phase of development.

30

AUTOSAR Compliance Deviation Analysis

System
Design

ECU
Design

Software
Component

Design

Tools Used

Vector
Preevision

dSpace System
Desk

Vector DaVinci
developer

dSpace
System Desk

MATLAB/
Simulink

TargetLink

Figure 3.11: Software development workflow - AUTOSAR.

ARXML refers to the XML format specific to AUTOSAR environment. The AUTOSAR software
development process roots in the generation of System Description ARXML file in the system de-
sign phase (Figure 3.11), which includes information about all the Electronic Control Units (ECUs)
in a vehicle system and their interconnections. In the ECU design phase, the information about
a particular ECU is derived as ECU Extract. This includes information about the list of SWCs
in the ECU. Several network design tools from different vendors (e.g. Vector Preevision, dSpace
SystemDesk, etc.) can be used for the System Description and the ECU Extract preparation. Fur-
ther, in the SWC design phase, the information about the individual SWCs are filtered out as SWC
Description ARXML files from the ECU Extract. By importing an SWC Description file in an
AUTOSAR model development tool, the model algorithm can be developed. Alternatively, it is also
possible to design an SWC from scratch using an AUTOSAR model development tool by defining
the required port types. It shall also be noted that the SWC Description files are necessary for the
RTE contract phase generation and integration with the BSW. The model development tools such
as MATLAB/Simulink and TargetLink support AUTOSAR modelling and code generation in AU-
TOSAR format.

Furthermore, the workflows in the AUTOSAR model development process involving the SWC
description files are shown in Figure 3.12. The bottom-up approach is the conversion of non-
AUTOSAR models to AUTOSAR models and the generation of code and ARXML in AUTOSAR
format. Alternatively, an SWC can also be modeled and exported as ARXML file from an AU-

31

AUTOSAR Compliance Deviation Analysis

.ARXML

.ARXML

AUTOSAR SWC
Design Tool

SWC Description
File

SWC Description
File

AUTOSAR Model
Development Tool

Exp
ort

 ARXMLImport/Update

Import/UpdateExp
ort

 ARXML

Non-AUTOSAR
Models

Bottom-up Workflow

Top-down Workflow

Figure 3.12: Workflows in AUTOSAR model development. Adapted from [30].

TOSAR design tool. This ARXML can then be ported into a model development tool to develop
the model algorithm and generate model code respectively. This type of workflow is referred to
as a top-down approach. Additionally, there is also round-tripping approach, wherein it is also
possible to port back the SWC description file into the AUTOSAR design tool in case of any modi-
fications (e.g. addition of an extra sender/receiver port) and update the model algorithm [29].

While converting a non-AUTOSAR model to AUTOSAR model, one must carefully ensure that
the correct port interfaces and SWC types (Section 3.3.2) are mapped to the input and output ports
of the non-AUTOSAR model. For example, the ports requiring NVRAM access must be configured
as NV port types. Daehyun et al. [5] additionally mention that during the conversion process
the ASW functionality of legacy software must be distributed among the AUTOSAR SWC types.
Therefore, the model implementation involving sensor or actuator functionality must be configured
as Sensor/Actuator SWC type; all the other application functionalities must be implemented in
Application SWC type. During model development in the AUTOSAR environment, the developers
must also be aware of the interaction rules among the various SWC types specified in the AUTOSAR
specifications. An example of such interfacing rule is the ECU Abstraction component which can
interact only with the Sensor SWC type and not directly with the Application SWC type for I/O
access [8].

32

AUTOSAR Compliance Deviation Analysis

3.4.3 Differences in the Memory Mapping Approach

This section explains the differences in the memory mapping approach between the AVL HCU soft-
ware and the AUTOSAR standard. In order to include the code entities (e.g. variables, function
definitions, etc.) in the correct sections of the memory (e.g. data, text, etc.), the memory mapping
keywords are included in the SWC code files. The AUTOSAR specification defines a format for the
memory mapping keywords [31] (Appendix A). Additionally, these keywords are also remapped
to the specific memory sections in a memory mapping header file, which is also included with the
SWC code files. The variables and function (runnable entity) definitions are placed within the corre-
sponding mapping keywords in the SWC code files. An illustration of the usage of memory mapping
keywords in AUTOSAR format is shown in Listing 3.1, which provides an example of SWC code
file SeatHeatingControl.c with variables (Lines 2 to 7) and the runnable entity definition (Lines 11
to 18) grouped according to the memory mapping information. The content of the corresponding
memory mapping header file is shown in Listing 3.2. It can be seen that the mapping keywords in
Listing 3.2 are undefined (Lines 3 and 8) after being remapped to the respective memory sections
using pragma commands (Lines 2 and 7). As the pragma usage is compiler specific, the list of
compilers that support this keyword is shown in [31].

Listing 3.1: SWC Code File: SeatHeatingControl.c
1 //Variable declaration
2 SHC_START_SEC_VAR_INIT_16
3 #include "SHC_Memmap.h"
4 static uint16 var1;
5 static uint16 var2;
6 SHC_STOP_SEC_VAR_INIT_16
7 #include "SHC_Memmap.h"
8 [...]
9 [...]

10 //Runnable definition
11 SHC_START_SEC_CODE
12 #include "SHC_Memmap.h"
13 void SeatHeatingControl (void)
14 {
15 //Some code lines
16 }
17 SHC_STOP_SEC_CODE
18 #include "SHC_Memmap.h"

Listing 3.2: Memory Mapping Header: SHC_Memmap.h
1 #ifdef SHC_START_SEC_VAR_INIT_16
2 #pragma memory section ".data"
3 #undef SHC_START_SEC_VAR_INIT_16
4 [...]
5 [...]

33

AUTOSAR Compliance Deviation Analysis

6 #ifdef SHC_START_SEC_CODE
7 #pragma memory section ".text"
8 #undef SHC_START_SEC_CODE
9 #endif

The memory mapping keyword format of the AVL HCU software is defined by the BSW sup-
plier (Appendix B). Unlike the AUTOSAR format, the SWC prefix (<COMPONENT_PREFIX>) is
not a part of the keyword format provided by the BSW supplier. Consequently, AVL can only adopt
the same keyword format (from the BSW supplier) generically for all the SWCs present in the HCU
software system, without differentiating the format for SWC-specific usage. However, in order to
avoid the above scenario and to make the keyword format more distinct for SWC-specific usage,
the mapping keywords have been remapped by AVL from supplier defined format to another format
with the SWC prefix. A look at the memory mapping header file (Listing 3.3) used in the AVL HCU
software provides an understanding of the above statement. Lines 1 and 4 in Listing 3.3 represent
the keywords redefined by AVL with the SWC component prefix. These are also the mapping key-
words used in the SWC code files. Lines 3 and 6 represent the format provided by the BSW supplier.

Besides, there are no major differences in the process of memory mapping and memory handling
except for some naming conventions in the mapping keyword format, which are summarized in
Table 3.3.

Listing 3.3: Memory Mapping Header used in AVL HCU Software: Memmap.h
1 #elif defined AHM_START_SEC_CODE_10MS
2 #undef AHM_START_SEC_CODE_10MS
3 #define ASW1_OEM_START_SEC_DEFAULT_CODE
4 #elif defined AHM_STOP_SEC_CODE_10MS
5 #undef AHM_STOP_SEC_CODE_10MS
6 #define ASW1_OEM_STOP_SEC_DEFAULT_CODE

Category Used in AVL HCU Software Specified by AUTOSAR Standard

File Name Memmap.h <Component>_memmap.h,
wherein <Component> denotes
the module abbreviation of the
SWC.

SWC Module Ab-
breviation Prefix

<COMPONENT_PREFIX> is not
included in the mapping keyword
format provided by the BSW sup-
plier; however, it is used in the key-
words remapped by AVL.

<COMPONENT_PREFIX> is
a part of the memory mapping
keywords.

Variable Align-
ment Postfixes

8, 16, 32, UNSPECIFIED 8, 16, 32, PTR, UNSPECIFIED

34

AUTOSAR Compliance Deviation Analysis

Variable Initializa-
tion Postfixes

INIT, CLEARED NO_INIT, CLEARED,
POWER_ON_CLEARED, INIT,
POWER_ON_INIT

Variable Data Sec-
tions Postfixes

DEFAULT, SMALL,
SAVED_ZONE, CALIB, CONST

VAR, VAR_SLOW, VAR_FAST,
VAR_SAVED_ZONE,
VAR_SAVED_RECOVERY_ZONE,
CONST, CALIB, CONFIG_DATA

Code Section Post-
fixes

CODE CODE, CALL_OUT_CODE,
CODE_FAST, CODE_SLOW.

Table 3.3: Some observed differences in the mapping keyword format between the AVL HCU
software and the AUTOSAR standard.

Therefore, while converting a model to AUTOSAR, the memory mapping approach must be
adapted to the AUTOSAR specified format in the generated code for the converted models, in order
to facilitate integration with the generated RTE and the BSW.

3.5 Integration Level Deviation

3.5.1 Integration Process in AVL HCU Software

Once the model has been developed and tested in the MIL environment, it is subjected to code
generation. The C code is auto-generated by the TargetLink and is generally the translation of the
model algorithm, I/O signals and parameters from the Simulink model level to C code level. In the
case of AVL HCU software models, the generated code files are model *.c, *.h, model_input *.c,
*.h and model_data *.c, *.h files. All the parameters are directly read from the model data files. The
included header files provide the I/O parameters with the global scope using the extern keyword.
The model code files along with the CIL code and the BSW (compiled object files obtained from the
supplier) have to be compiled in a build environment4 and an ECU executable (binary file in .hex
[32] format) can be generated. The compiler used for building the system is generally indicated by
the supplier of the BSW and hardware. The build environment used in this case is Hightec compiler
suite [33]. The reader can refer to Section 5.3 for more details on the build procedure.

3.5.2 Integration Process in AUTOSAR Software Models

According to the AUTOSAR methodology, the configuration and description ARXML files play a
pivotal role in every phase of AUTOSAR system development and integration. In simple words,
the configuration and system description information in the ARXML schema are portable across
various AUTOSAR tools, and transferrable across the parties (OEMs and suppliers) involved in the
AUTOSAR system development. A short overview of the AUTOSAR methodology and the related

4The build environment in this context refers to the complete toolchain set used in the compilation and linking of the
SWC code files, leading to the generation of ECU executable, which can then be flashed in the ECU hardware.

35

AUTOSAR Compliance Deviation Analysis

ARXML files involved is shown in Figure 3.13.

While the System Description and the ECU Extract contain the architectural information re-
garding the system and the ECU, the ECU Configuration Description contains the configuration
information necessary for the ECU integration. A rather detailed account of each ARXML file
involved is shown hereinafter. The following sections are based on [34, 35].

System Description

As shown in Figure 3.14, the System Description is created from the SWC Description, System
Constraint Description, and the ECU Resource Description. The SWC Description is the ARXML
file representing the structure of an SWC with port interfaces without the model algorithm. As per
[35], the ECU Resource Description represents the hardware specifications such as the memory re-
quirements and pin assignments. The System Constraint Description specifies various limitations
posed on the system with specific boundary conditions. The System Description, in general, rep-
resents the whole system architecture, including all the ECUs present in the system, the related
SWCs present within each ECU and the interconnections among them in the ARXML schema.
The System Description also includes communication information among the ECUs such as the
protocols involved (CAN, LIN or FlexRay), and the entities to be transferred (message and signal
architecture). In general, the System Description is prepared at the OEM side after analyzing the
system constraints and the resource requirements. Network design tools such as Preevision [36] is
an example of the tools to be used for the preparation of System Description.

Figure 3.13: AUTOSAR methodology [2].

36

AUTOSAR Compliance Deviation Analysis

System
Hardware

Requirements

System
Constraints

SWC
Descripiton

System
Description

System or
ECU Extract

System Design
Tool (e.g.

Preevision)

System Design
Tool (e.g.

Preevision)

Figure 3.14: Preparation of System Description and ECU Extract. Adapted from [35].

ECU Extract

The ECU Extract includes information related to specific ECUs: SWCs mapped to the specific
ECU, the interconnections among the SWCs via ports for intra-ECU communication, and the com-
munication protocol involved in the communication over the ECU boundary. In general, the ECU
Extract is considered as a subset of the information present in the System Description. The system
design tool (e.g. Preevision) can be used in this case to prepare the ECU Extract from the System
Description. The ECU Extract is also prepared by the OEM and is generally provided to the sup-
pliers of the respective ECUs. The suppliers use the SWC information from the ECU Extract to
develop the ASW model algorithms for a particular ECU [35].

BSW Module Description

According to [34], the BSW Module Description (BSWMD) is an ARXML format file that contains
the definitions of the parameters to be configured during the configuration phase. It is to be noted
that the BSWMD is supplied as one of the inputs to the configuration tool. The tool refers to the
BSWMD for the definition and the list of permissible values assignable to a parameter. An example

37

AUTOSAR Compliance Deviation Analysis

of parameter definition from [15] is shown in Table 3.4.

Parameter Definition

Name ComIPduCallout
Parent Container ComIPdu.
Description "This parameter defines the existence and the

name of a callout function for the correspond-
ing I-PDU. If this parameter is omitted no
I-PDU callout shall take place for the corre-
sponding I-PDU."[15]

Multiplicity 1

Table 3.4: An example of parameter definition ([15], p.1014).

The BSWMD is included by the supplier of the BSW in the scope of delivery of the BSW
stacks. The supplier also chooses to include optional vendor-specific parameters in the BSWMD, if
required, in the ARXML schema [34].

ECU Configuration Description

The ECU Configuration Description is the result of the configuration process generated from the
configuration tool. The file is normally of 5 to 10 MB in size, in ARXML format, and contains
the configured parameters of the RTE, OS, COM and all the BSW modules [34]. The configured

Container <Name>

��Parameter 1 <Value>

��Parameter 2 <Value>

Sub - Container <Name>

��Parameter 3 <Value>

��Parameter 4 <Value>

Container Definition

Parameter Definition

Container Definition

Parameter Definition

Figure 3.15: Structure of ECU Configuration Description. Adapted from [34].

38

AUTOSAR Compliance Deviation Analysis

parameters are housed as containers and sub-containers and refer to the parameter definitions
obtained from the BSWMD. A container is generally an encapsulation of the parameters and the
related definitions. A container can additionally include a sub-container [34]. The structure of the
ECU Configuration Description can be noted in Figure 3.15. As can also be noted from Figure
3.16, the ECU Configuration Description is a prerequisite for the generation of the RTE and BSW
configuration codes.

Configuration Generation

The BSW configuration is a necessary step to be performed in the AUTOSAR integration process
resulting in the generation of the RTE and the BSW configuration code files. The BSW stacks are
delivered by the BSW supplier (supplier of the AUTOSAR BSW stacks, e.g. Vector) along with the
tools necessary for configuration. A configuration tool (e.g. DaVinci Configurator Pro from Vector
[37]) provides the necessary platform to configure every BSW module individually. The parameters
to be configured are displayed as containers in the tool window, in which the user can set the desired
value of a parameter from the parameter definitions using a drop-down box.

ECU Extract

BSW Module
Description

Software Tool
(Configurator)

ECU Configuration Description
��OS Configuration
��COM Configuration
��RTE Configuration
��Other BSW module

configuration

RTE *.c,*.h BSW Configuration
Codes *.c, *.h

Configuration
Process

Figure 3.16: Configuration process: Generation of ECU Configuration Description and
configuration code files. Adapted from [34].

In general, there are more than 1000 BSW module parameters to be configured, as per [34]. The
configuration tool reads in the ECU Extract and the BSWMD and presets some of the parameters
automatically [34] (Figure 3.16). The other parameters can be set by the user and the Base ECU
Configuration Description (Base ECUC) can be generated. The Base ECUC can be further mod-
ified for the finalization of the configuration, and thereafter the ECU Configuration Description is
produced [38]. Additionally, the RTE and the BSW configuration codes are also generated by the

39

AUTOSAR Compliance Deviation Analysis

BSW Stacks

BSWMD

BSW + Task bodies

Implementation of CIL
Application SW Models and Code

Generation

Integration and Generation
of ECU Executable

ECU Extract

Application SW Models and
Code Generation

Configuration and RTE
Generation

Integration and Generation
of ECU Executable

Supplier AVL OEM

AVL Methdology AUTOSAR Methodology

Figure 3.17: Comparison of software development methodology between AVL HCU software and
AUTOSAR software models.

configuration tool from the ECU Configuration Description.

It is also noteworthy mentioning that the BSW module parameters can fall into different config-
uration classes: pre-compile time, link-time and post-build, which determine the time in which
the BSW parameters are finalized in the build process [39]. The pre-compile time and the link-time
parameters are fixed during the compilation and the linking phase of the BSW module code5 re-
spectively, while the post-build parameters are set only during the ECU boot phase [39]. The reader
can additionally refer to [40] for more information on configuration classes.

Integration and Executable Generation

The next step involves the integration and executable generation. The BSW configuration code
files generated by the configuration tools along with the BSW module code files, RTE code files,
and SWC code files are compiled and built in a build environment. Once the system is built suc-
cessfully, the ECU executable can be generated as a binary file (.hex) which can be flashed in the
ECU hardware. Regina in [39] additionally mentions that the handling of BSW parameters in the
build process varies with different configuration class types introduced previously. For example, the
pre-compile time parameters have to be compiled along with the BSW module code files, while the
post-build and link-time parameters have to be supplied as compiled object files for linking with the
BSW module code in the generation of ECU executable [39].

5The BSW module code in this context refers to the BSW static source delivered by an AUTOSAR BSW supplier
(e.g. MICROSAR from Vector [41])

40

AUTOSAR Compliance Deviation Analysis

3.6 Comparison of Development Methodology

This section summarizes the current software development methodology of AVL and the steps to be
followed if AUTOSAR methodology is to be adopted by AVL. As per Figure 3.17, in the develop-
ment methodology of AVL HCU software, the supplier implements the BSW and the task bodies,
whereas the ASW modelling, code generation and the implementation of CIL layer are handled
by AVL. If the AUTOSAR approach is to be followed, the supplier needs to deliver the config-
urable BSW stacks along with the BSWMD and toolchains necessary for the BSW configuration
and integration. In AUTOSAR case, AVL shall be responsible for the ASW model development,
BSW configuration, RTE generation as well as the integration with BSW. The customer OEM may
additionally supply the ECU Extract with the SWC information necessary for the ASW model de-
velopment.

41

AUTOSAR Compliance Deviation Analysis

42

4. Implementation Approach

This chapter explores the choices of implementation based on some boundary conditions and out-
lines the approach followed in this thesis for AUTOSAR conversion.

4.1 Implementation Decisions

As the deviations with respect to AUTOSAR standard have now been analyzed for the AVL HCU
software, the approach for conversion had to be based upon some boundary conditions such as re-
source availability, toolchain capability, licensing constraints, etc. The evaluation of the available
toolchains has been carried out for ASW conversion and RTE generation. Additionally, the com-
patibility of the AVL HCU software’s BSW has also been analyzed for reuse in the AUTOSAR
conversion process.

4.1.1 Evaluation for Application Software Conversion

This section evaluates some of the MBD tools for ASW conversion to AUTOSAR format. MAT-
LAB and TargetLink are the standard MBD tools widely used in the application for ASW modelling
and code generation. As discussed in Section 3.4.1, the AVL software models were originally devel-
oped using MATLAB 2013b and TargetLink 3.5. In the proposed scenario, MATLAB 2017b (with
Simulink and Embedded Coder) and TargetLink 3.51 have been used for ASW model conversion
to AUTOSAR format. Both tools support all types of AUTOSAR workflows. With TargetLink,
however, the AUTOSAR properties such as ports and runnable entities have to be configured man-
ually for each and every model. There is no support offered by the TargetLink environment for
automating the conversion. This proves to be costlier in terms of effort, especially when huge num-
ber of models are to be converted. Additionally, a valid TargetLink license for AUTOSAR type code
generation was not procured for this project due to commercial reasons. Although it is possible to
generate SWC model code in AUTOSAR format with this license, the TargetLink models have to
be configured manually for AUTOSAR conversion and code generation.

1This has been the latest version being in use at AVL when this work was performed.

43

Implementation Approach

In comparison, the MATLAB/Simulink environment offers programmatic features with dedi-
cated AUTOSAR specific APIs for automating the model conversion to AUTOSAR format [45].
In addition, the Embedded Coder environment can generate code in AUTOSAR format with the
add-on ’AUTOSAR support package’ installed. The programmatic features are quite convenient
when the conversion has to be handled automatically using MATLAB scripts. In converting the
legacy application to AUTOSAR, Daehyun et al. [5] have used MATLAB for migrating the ASW
models of an interior lighting system to AUTOSAR format. However, there is no clear indication
of automation being applied in this work. James at al. [6] additionally recommend MATLAB for a
simpler and quicker way of automating the ASW conversion and have employed MATLAB scripts
to convert a body control application to AUTOSAR format. The authors in [6] have used wrap-
pers to convert the normal Simulink port types to AUTOSAR port types. The usage of wrapper
blocks is however not required with the recent versions of MATLAB (with the ’AUTOSAR support
package’) that support AUTOSAR type model development. The authors in [6] also stress upon the
need for automation when a large number of ASW models are involved. We preferred MATLAB
to TargetLink in this thesis due to its support for automation and a large number of about 40 ASW
models of HCU software system were subjected for AUTOSAR conversion.

4.1.2 Evaluation of Basic Software for Integration

It was decided to reuse the original BSW of the AVL HCU software for AUTOSAR conversion
since AUTOSAR specific BSW stacks and the related configuration tools were not procured for
this project due to commercial reasons. As mentioned in Section 2.2.4, the BSW structure used in
AVL HCU software is not AUTOSAR compliant. Nevertheless, the BSW possesses the required
features supporting the integration with an AUTOSAR ASW. For example, the task bodies provided
by the BSW supplier can be used to schedule ASW runnable entities, and the supplier-specific
API interfaces from the BSW can still be integrated with the AUTOSAR ASW via an interfacing
middleware.

4.1.3 Evaluation for Run Time Environment Generation

According to AUTOSAR, the RTE layer contains function definitions for resolving the SWC port
communication and task bodies for scheduling the runnable entities (Section 2.1.2). It can be noted
that the BSW architecture of the AVL HCU software, which is to be reused for AUTOSAR conver-
sion, already contains some of the features of the RTE, such as the task bodies (Figure 2.9) provided
by the BSW supplier, which can schedule the ASW runnable entities. Thus, the aim is to generate
the RTE portion involving only ASW communication. The RTE generation capability has been
evaluated using DaVinci developer2. DaVinci developer [42] is a Vector proprietary tool primarily
used for ECU and SWC design. As we found out that the tool can only generate RTE contract
phase header files with the code generation option, we decided to implement an RTE generator en-
gine in MATLAB based on [7], which can generate the RTE function definitions involving ASW
communication.

2We could evaluate only DaVinci developer since it was procured by AVL as an evaluation package for a customer
project. Other RTE generator tools were not procured due to commercial reasons.

44

Implementation Approach

4.2 Conversion Approach towards AUTOSAR Compliance

Figure 4.1 illustrates the conversion approach used in this thesis. The Application SWCs and the
communication features among them are already converted to AUTOSAR format (with the RTE
portion generated). The original non-AUTOSAR BSW of the AVL HCU software has been reused
for integration. Additionally, since the CIL contains functionalities related to CAN signal checks
and other signal mappings (Section 2.2.3), replacing the layer can be costlier in terms of manual
modifications needed in the code level. Hence we have decided to retain the CIL layer. The in-
terfaces between the CIL and the BSW have not been modified; therefore these interfaces are not
AUTOSAR conformed. The proposed conversion approach can still promise ICC1 AUTOSAR
conformance level, although fullest AUTOSAR ICC3 conformance is not possible. The ICC1 con-
formance category states that the BSW along with the RTE implementation is proprietary, which can
be considered as a single black-box unit, and that only the SWC communication and the interfaces
with this black-box unit need to be AUTOSAR conformed. In the proposed approach (Figure 4.1),

SWC1 SWC2 SWC3

APPLICATION SOFTWARE

CIL

COM
Service

NVRAM
System

Services
Diag

Service

Task Bodies

BASIC SOFTWARE

Static Global
Variables

Variable Mapping
with CIL

API Interfaces
provided by supplier

to Application

Signal Mappings, UDS Callbacks and other manually implementable Functions

RTE portion for ASW communication

RTE portion
implemented for
Application SWC
communication

Application
SWCs converted

to AUTOSAR
format

Considered a
single cluster

(black-box entity)

ICC1
standardized
ASW and the
interfacing

portion

Figure 4.1: AUTOSAR conversion approach used in the thesis.

45

Implementation Approach

the RTE portion along with the CIL and the BSW can be considered as a single unit, interfaced with
the Application SWCs converted to AUTOSAR format. Daehyun et al. [5] additionally mention
that if a non-AUTOSAR BSW has to be reused for AUTOSAR migration, only an AUTOSAR con-
formance of ICC1 or ICC2 can be achieved and that only a new AUTOSAR specific BSW modules
have to be used if implementation conformance of ICC3 is targeted. Thus the proposed AUTOSAR
conversion approach cannot meet ICC3 conformance requirements however, it can conform to ICC1
category. Some of the features in the proposed concept which are not conformed according to ICC3
requirements are summarized in Table 4.1.

Category Proposed AUTOSAR Conversion
Concept

AUTOSAR ICC3 Requirements

I/O Signal Access The presence of I/O Hardware Ab-
straction layer is not explicit in the
BSW implementation. I/O signals
are accessed via the supplier defined
API interfaces from the BSW and
routed via the CIL to the ASW.

I/O Hardware Abstraction SWC
type in the BSW is used for I/O sig-
nal access (Section 3.3.2).

BSW-RTE Inter-
faces

Only the RTE portion involving Ap-
plication SWC communication is
AUTOSAR conformed. The inter-
faces to the BSW are not conform
with AUTOSAR due to the pres-
ence of the CIL layer.

The RTE-BSW interaction involves
standardized API calls (Section
3.3.2).

Scheduling of
Runnable entities

The task bodies used in the runnable
scheduling are part of BSW imple-
mentation from the supplier. The
RTE events are however not part of
BSW implementation and are not
used in the scheduling of runnable
entities. The scheduling approach is
the same as that used in the original
AVL HCU software (Section 3.3.3)
since the CIL and the BSW imple-
mentations were retained.

The task bodies are configured in
the RTE configuration step and gen-
erated as part of the RTE genera-
tion. The invocation of runnable
entities may also depend on RTE
events (Section 3.3.3).

Development
Methodology

AUTOSAR methodology has not
been followed. The configuration
step of the BSW is not needed since
the BSW is pre-configured by the
supplier.

The development process must
follow the AUTOSAR proposed
methodology from scratch. The
configuration of the RTE and the
BSW is a necessary step in software
integration.

Table 4.1: Some of the features which are not AUTOSAR conformed as per ICC3 requirements in
the proposed conversion approach.

46

5. Implementation

In Chapter 3, the software deviations from the AUTOSAR standard have been analyzed, and in
Chapter 4, the concept for AUTOSAR conversion has been put forth. This chapter focuses on the
implementation part to incorporate the HCU software with AUTOSAR features.

5.1 Model Conversion to AUTOSAR

This section deals with the conversion of ASW models of AVL HCU software to AUTOSAR format.
MATLAB provides a licensed ’AUTOSAR support package’ for model development in AUTOSAR
environment and also for the conversion of non-AUTOSAR models to AUTOSAR format. MAT-
LAB also ensures that the model conversion to AUTOSAR format can be handled programmatically
without the need for manual configuration of each model. As analyzed in Section 4.1.1, the pro-
grammatic feature has been preferred in this thesis, since a software system of HCU comprising
of about 40 models are to be converted to AUTOSAR format. A cascade of MATLAB scripts was
used to automate the model conversion and code generation in AUTOSAR format. In a nutshell, the
model conversion process involves the following steps:

1. Removal of TargetLink properties.

2. Generation of new model libraries with ._Lib suffix.

3. Extraction of AVL software models from the Maestra framework.

4. Applying AUTOSAR conversion.

Figure 5.1 illustrates the steps involved in the ASW conversion process and the by-products after
each step. MATLAB scripts were developed to handle each of the above-mentioned steps. The
TargetLink models indicated in the first step of Figure 5.1 are the state of the art development
models of the non-AUTOSAR AVL HCU software. The sections hereinafter provide a detailed
description of the scripts involved and the results observed after each conversion step. The script
files are shown as excerpts in the form of listings.

47

Implementation

Deenhancing TargetLink
properties

TargetLink
models

Pure Simulink
models

Generation of new model
libraries

Extraction from Maestra
framework

Models with new
libraries

Applying AUTOSAR
conversion

Standalone
models

AUTOSAR format code
and ARXML

Figure 5.1: ASW conversion flow.

5.1.1 Removal of TargetLink Properties

The original AVL HCU software models were developed using TargetLink blocks. In order to
handle the models in the MATLAB/Embedded Coder environment, the TargetLink property has
to be removed, which is generally the replacement of TargetLink blocks in the model with the
equivalent Simulink blocks. This step is necessary since the code generation for the AUTOSAR
converted models are to be handled in the Embedded Coder environment. The MATLAB script
DeEnhanceTlProp.m was developed for the purpose of removing the TargetLink properties. Figure
5.2 provides a general understanding of the program flow.

Code and Explanation

The script is invoked as a function call from the MATLAB command window. MATLAB 2013b
has been used in this case, since it is supported by TargetLink 3.5 using which the AVL software

48

Implementation

Start

Search and collect the list
of all the test models in

MdlTestListRaw

Load model, disable
library links and save the

model

Clear TargetLink
properties

End

Save the model in .slx
format and close

Prepare logs

End of the list
MdlTestListRaw?

Yes

No

Figure 5.2: Program flow: DeEnhanceTlProp.m

models have been developed. The project path1 (Line 1 of Listing 5.1) of the AVL software models
is provided as an argument to the function. The part of the code in Listing 5.1 searches all the models
saved with the suffix _Test.mdl. As indicated in Section 3.4.1, the test models are the ones that link
with the model libraries and are loadable within the Maestra framework for MIL simulation. The
function subdir in Line 4 of Listing 5.1 is used to collect the list of all the test models present in the
project directory.

Listing 5.1: DeEnhanceTlProp.m - Collection of test model list.
1 function str = DeEnhanceTLProp(FolderPath)
2 [...]
3 %% Search for all the test models
4 MdlTestListRaw = subdir([Dereflink.Projectpath '*_Test.mdl']);
5 [...]

1The folder path to the AVL HCU software project directory which contains all the ASW model implementations.

49

Implementation

Listing 5.2: DeEnhanceTlProp.m - Saving the models by disabling the library links.
1 [...]
2 %% Break links and save the model
3 save_system(TestMdlNameName, [TestMdlPath '\' TestMdlNameName], 'BreakLinks')
4 load_system(TestMdlNameName);
5 open_system(TestMdlNameName);
6 [...]

The script in the next step goes through the list of all the test models and saves the model by
breaking the library links (Line 3 of Listing 5.2). This step is performed to unlock the library links
to the model libraries, so that the <Model_Test>.mdl can be edited.

Listing 5.3: DeEnhanceTlProp.m - Clearing TargetLink properties.
1 [...]
2 %% Applying deenhancement of TargetLink properties
3 [options, msg] = tl_clear_system('system', TestMdlNameName);
4 [...]

In the next step, the deenhancement of TargetLink properties is applied. The tl_clear_sytem
(Appendix C) is the MATLAB API provided by the TargetLink for the removal of TargetLink blocks
from the system. The API also returns logs of the function in the form of structure, which can be
used to verify the results of deenhancement from TargetLink blocks. The usage is shown in Line 3
of Listing 5.3. The logs are also stored as excel files. After the application of deenhancement, the
model is saved in .slx format and the function continues with the next iteration in the list of models.

Results

B. After Deenhancement
(Simulink Blocks)

A. Before Deenhancement
(TargetLink Blocks)

Figure 5.3: Model block properties before and after deenhancement.

All the test models were removed from TargetLink properties. Figure 5.3 compares the model
properties before and after deenhancement. For illustrative purpose, only a subset of model blocks
(AND, NOT and relational operator blocks) from the model implementation is considered in Figure
5.3. Figure 5.3A shows the TargetLink blocks before deenhancement, while the same blocks after

50

Implementation

deenhancement are replaced with the equivalent Simulink blocks in Figure 5.3B. An excel log file
is also generated for each model after the deenhancement has been applied.

5.1.2 Generation of New Model Libraries

Once the TargetLink features are removed from the test models, new model libraries have to be gen-
erated with respect to the newly replaced Simulink blocks. The new model library can be generated
by opening the Maestra session file (.AVLab file) of a deenhanced test model and selecting the op-
tion ’Create new library’, which creates a new library Model_Lib in the .slx format. As this process
is to be accomplished for the entire software system, MATLAB script CreateLibrariesBatch.m was
developed to expedite the library creation for all the available test models. This script has been ex-
ecuted in MATLAB 2017b so that the newly generated model libraries are generated in .slx format
by default. The process flow of the script is shown in Figure 5.4.

Collect the list of all
.AVLab files

AVLabListRaw

Generate libraries with
_Lib

End

End of the list
AVLabListRaw ?

Yes

No

Start

Figure 5.4: Program flow: CreateLibrariesBatch.m.

Code and Explanation

The project directory, which now contains the deenhanced test models from the previous step, is
passed as an argument to the function CreateLibrariesBatch.m. As per Figure 5.4 and Listing 5.4,
in the first step, the function CreateLibrariesBatch.m searches and collects the list of all the Maestra
session (.AVLab) files present in the project directory (Line 2 of Listing 5.4).

51

Implementation

Listing 5.4: CreateLibrariesBatch.m - Creation of new model libraries.
1 %% Check for all .AVLab files
2 AVLabListRaw = subdir([Dereflink.Projectpath '*.AVLab']);
3 OutputsTotal = length(AVLabListRaw);
4 %% Create libraries
5 for idx=1:length(AVLabListRaw)
6 try
7 AVLabses_load(AVLabListRaw(idx).name);
8 catch ME
9 ME.message;

10 end
11 mil_createlib();
12 end

In the next step, the script goes through the list of the .AVLab files and loads the test model
within the Maestra framework. Subsequently, the mil_createlib() is invoked to create new model
libraries. The usage is shown in Line 11 of Listing 5.4. The MATLAB function mil_createlib() is
associated with the Maestra framework and generates the libraries of the deenhanced models. The
new model libraries are generated with the naming convention Model_Lib for all the models since
this setting is adopted by default in the latest version of Maestra.

Results

A. Original Model
Library

B. Newly Generated
Model Library

Figure 5.5: An example of a new model library generation.

The new model libraries have now been generated. Figure 5.5 shows an example folder content
of a particular SWC model before and after the generation of the new model library. The files listed
in Figure 5.5A are the original model library (marked with ’black’ outline) and the model data files
(.dd and _data.m files). Figure 5.5B shows the contents of the same SWC model folder with the
newly created model library in .slx format.

5.1.3 Model Extraction from Maestra Framework

In this section, the extraction process of the model from the Maestra framework has been explained.
As indicated in Section 3.4.1, the AVL software models are embedded within the Maestra frame-
work integrated with TargetLink and MATLAB. Since the AUTOSAR code generation is to take

52

Implementation

place solely in the Embedded Coder environment, the models must be extracted as standalone
models. This step is necessary since the Simulink models with Maestra interface layers cannot
be adopted for AUTOSAR format code generation. The top layers which form the interface layers
to the Maestra environment are removed leaving the model with I/O ports and a subsystem with
the model implementation. The extraction from Maestra framework is also a part of the delivery
process of AVL software models to the customers. The scripts used for the model delivery are also
called as delivery scripts. The following scripts are involved with the extraction of models from the
Maestra framework2:

Start

Read batch settings
file

Goto class Batch-
options

Prepare delivery
folder

Start

Model
Delivery?

Label
Delivery?

End

Deliver models

Deliver labels

ReleaseTest.m

MakeDelivery.m

batch_wOptions.m

Yes

Yes

No

No

Figure 5.6: Program flow - Extraction of models from Maestra framework.

• The MATLAB script file ReleaseTest.m indicates the batch setting file for model delivery.

• The MATLAB script file MakeDelivery.m initializes the folder for the delivery process.

• The MATLAB class implementation batch_wOptions.m executes various batch options set
for delivery.

2The delivery scripts were originally developed by AVL and have been used in this thesis.

53

Implementation

The code files are explained in excerpts in the following section.

Code and Explanation

Figure 5.6 provides an understanding of the program flow of the delivery scripts used for model
extraction from the Maestra framework. The script file ReleaseTest.m provides the batch settings
for the options to be executed by the class file batch_wOptions.m. An excerpt from ReleaseTest.m
is shown in Listing 5.5 showing various options for the settings to be set for the delivery process.
The setting file ReleaseTest.m is instantiated in the constructor of the class batch_wOptions.m.

Listing 5.5: ReleaseTest.m - Batch options for the model delivery process.
1 %Setting for data file delivery
2 settings.EnaCalDelivery = true;
3 [...]
4 %Setting for calibration file delivery
5 settings.EnaDataDelivery = true;
6 [...]
7 %Setting for model delivery
8 settings.EnaModelDelivery = true;
9 [...]

10 %Setting for label delivery
11 settings.EnaLabelDelivery = 'full';

Listing 5.5 indicates that the batch settings for the delivery of the model, data and calibration files are
set to true (Lines 2,5 and 8). The setting of label delivery to ’full’ (Line 11) delivers the signal and
parameter list to be used in the model as .xlsx files. For the models to be delivered, it is necessary to
enable these options in the delivery process. The ReleaseTest.m is also stored in the project directory
under the folder named PrjCfg. Listing 5.6 includes the option setting in ReleaseTest.m where the
paths of .AVLab session files of the models to be delivered are placed (Lines 2 to 5). These are
also the models to be removed from the Maestra framework. Additionally, the library path is also
included which includes some Simulink libraries to be used in the models (Lines 8 to 10).

Listing 5.6: ReleaseTest.m - Maestra session file (.AVLab) paths of the various models to be
delivered.

1 %.AVLab session file paths
2 settings.AvlabSessionFiles = {...
3 'ASW\ObsrEStorg\ObsrHvbat\ObsrHvbat.AVLab'
4 'ASW\LatCtlr\TracTqLimn\TracTqLimn.AVLab'
5 };
6 [...]
7 %Library paths
8 settings.AdditionalFiles = {...
9 'ASW\Lib\ProjLib\ProjectLib.slx'

10 };

54

Implementation

The cascade of make delivery scripts is executed by invoking the script file MakeDelivery.m from
MATLAB command window by passing the project path as an argument to the function call. As
also indicated in Figure 5.6, the setting file ReleaseTest.m, present in the PrjCfg folder in the project
directory, is read by the script MakeDelivery.m. This is also shown in Line 6 of Listing 5.7. Addi-
tionally, the user is also provided with an option to select one of the setting files, if multiple setting
files are available in the PrjCfg folder.

Listing 5.7: MakeDelivery.m - Read batch setting file ReleaseTest.m.
1 % Get PrjCfg folder path
2 SettingsDirPath = fullfile(PrjRoot, 'PrjCfg', 'MakeDelivery');
3

4 if isdir(SettingsDirPath)
5 % Get the list of MATLAB files in Prjcfg folder path
6 SettingsDirList = what(SettingsDirPath);
7 [...]
8 end

Further, in Line 3 of Listing 5.8 of MakeDelivery.m, the delivery folder is prepared, which is
also the folder where the standalone models are copied. The program flow is then transferred to
the execution of the class file batch_wOptions.m, as shown in Line 2 of Listing 5.9. The class
batch_wOptions.m is responsible for executing various batch options based on the batch settings in
ReleaseTest.m. It is also in this part of the program execution that the model .AVLab session file
paths placed in ReleaseTest.m are read in (Line 4 of Listing 5.9).

Listing 5.8: MakeDelivery.m - Preparation of delivery folder.
1 % Clean up and create the delivery folder
2 if ¬isdir(DeliveryDir)
3 mkdir(DeliveryDir);
4 end

Listing 5.9: MakeDelivery.m - Transfer execution to class batch_wOptions.
1 %Initialize constructor of class batch_wOptions
2 batchobj = eval('batch_wOptions(settings)');
3 % Additionally include .AVLab files of the models to be delivered
4 mil_runbatch(batchobj, settings.AvlabSessionFiles, settings.LogFilePath);

The class file batch_wOptions.m description is shown in Listing 5.10 and Listing 5.11. Listing
5.10 shows the class definition with the batch options as the properties and the various batch set-
tings from ReleaseTest.m initialized in the constructor definition. Listing 5.11 further indicates the
method definition to process the extraction of models from the Maestra framework.

55

Implementation

Listing 5.10: batch_wOptions.m - Class body and constructor initialization.
1 classdef batch_wOptions < batch_template
2 % Class body for the execution of delivery batch options
3 % - Creates a delivery model
4 % - Zips all delivery models to a delivery folder
5

6 properties
7 % data and calibration
8 EnaCalDelivery
9 EnaDataDelivery

10 EnaLabelDelivery
11 [...]
12 % models
13 EnaModelDelivery
14

15 methods
16 %Constructor initialization
17 function obj = batch_wOptions(PreSettings)
18 % data and calibration
19 obj.EnaCalDelivery = PreSettings.EnaCalDelivery;
20 obj.EnaDataDelivery = PreSettings.EnaDataDelivery;
21 obj.EnaLabelDelivery = PreSettings.EnaLabelDelivery;
22

23 % models
24 obj.EnaModelDelivery = PreSettings.EnaModelDelivery;

Listing 5.11: batch_wOptions.m - Method definition for model extraction from Maestra.
1 %% Deliver Model as IOLayer Model or Library only
2 if obj.EnaModelDelivery
3 if obj.EnaModelDelivery == true
4 % Create the delivery model
5 [suc(end+1), msg{end+1}, ¬] = Delivery.createIOLayerMdl(ses, ...

obj.dsSearchDepth);
6 msg{end} = sprintf('Model\n%s\n', msg{end});
7 end

The function createIOLayerMdl() (Line 5 of Listing 5.11) is associated with the Maestra framework
for processing the .AVLab session files as standalone models with single I/O layer removing the
interface layers to Maestra.

Results

The models were extracted from the Maestra framework and the delivered SWC entities such as
the extracted models, the model libraries, the data files, and the labels were copied to the delivery
folder. An illustration of the extracted model is shown in Figure 5.73. It can be seen that the Maestra
interface layer forms the top layer in the original AVL HCU software models (Figure 5.7A). The

3The original model files could not be used for a clear representation. Hence image illustration has been used here.

56

Implementation

deenhanced Simulink model is shown as an ’orange’ block in Figure 5.7. After the extraction pro-
cess, the Maestra interface layers are removed and the model subsystem is extracted as a standalone
model, as shown in Figure 5.7B. This standalone model can be subjected to AUTOSAR conversion
in the next step. An example of the top layer model subsystem without the Maestra interface layers
as seen in Simulink window is additionally shown in Figure 5.8. The text in Figure 5.8 represent
various model I/O signals.

Simulink model

Maestra Interface Layer

A. Models housed within Maestra
framework (Before Delivery)

B. Standalone Models
(After Delivery)

Simulink model

Figure 5.7: Models before and after extraction from Maestra framework.

A label file in .xlsx format is delivered for each model which provides information about the
labels (I/O signals and parameters) used in the model implementation. The information contained
in the label file of a particular model is summarized in Table 5.1.

Label Fields Description

Name Indicates the name of the signals/parameters used in the model.
Description Provides a short description of the parameters/signals used in the model.
Type Indicates the type of the labels used in the model (e.g. Online for signals;

Parameter for parameters).
Classification Indicates the scope of the signals/parameters used in the model (e.g.

Local for local signals/parameters; Input/Output for I/O signals/param-
eters).

Datatype Indicates the data type of the parameters/signals used in the model (e.g.
uint8).

57

Implementation

Value Range Indicates the range of values in the hexadecimal notation for parameter-
s/signals used in the model (e.g. 0 to FF for signal/parameters with type
uint8).

Memory Range Indicates memory range in the hexadecimal notation for parameters/sig-
nals used in the model (e.g. 0 to 255 for signal/parameters with type
uint8).

Source Component Indicates the source of the signals/parameters used in the model.

Table 5.1: Summary of label fields.

Figure 5.8: An example model subsystem in the topmost layer of the delivered model with the I/O
ports.

In addition, the model parameters/signals in the data files are converted from the AVLmpt4 pack-
age to the native Simulink mpt5 package during the delivery process. A ’package’ is specific to
MATLAB/Simulink environment and can contain multiple class definitions with various storage-
class attributes to qualify the model parameters and signals [43, 44]. The storage-class attributes

4AVLmpt defines various storage-class specifiers for signals/parameters handled within the Maestra framework.
5mpt package is used to qualify signals and parameters in the Simulink environment.

58

Implementation

gain importance only in the code generation and determine how a particular signal/parameter must
be handled in the generated code [43]. For example, a parameter can be qualified to be handled as a
calibration parameter or as a system constant in the generated code. The Simulink mpt is the default
package used for the models in the Simulink environment. The AVLmpt package is defined by AVL
for the HCU software models developed within the Maestra environment. When the models are
removed from the Maestra framework, the reference to the AVLmpt package is also lost.

5.1.4 Applying AUTOSAR Conversion

As the models have been extracted from the Maestra framework, the model conversion to AU-
TOSAR can be applied in the next step. The script PrepareAUTOSARDelivery.m was developed
for applying AUTOSAR conversion to models and to generate code in AUTOSAR format. The
AUTOSAR preparation for AVL software models has been handled in the Embedded Coder envi-
ronment based on [45]. The general flow of the script PrepareAUTOSARDelivery.m is shown in
Figure 5.9.

Code and Explanation

The delivery folder path, where the models and the artifacts extracted from the Maestra framework
are stored, is provided as an argument to the MATLAB function call PrepareAUTOSARDelivery.m.
The script flow can be explained in the following steps, in accordance with Figure 5.9.

1. The delivery folder contains the SWC models and the corresponding libraries delivered from
the previous model extraction step. Each model library contains the SWC model implemen-
tation. In Step 1, the list of all the SWCs available in the delivery folder is prepared (Line
2 of Listing 5.12). The script then loops through the list and prepares a new model file
<Model>_AR.slx (Line 5 of Listing 5.12) for each SWC item in the list by creating a copy
of the model implementation from the corresponding model library. The MATLAB func-
tions shown in Lines 8 to 11 of Listing 5.12 have been used to add the subsystem block and
establish connections among the ports.

Listing 5.12: PrepareAUTOSARDelivery.m - Preparation of SWC list and <Model>_AR
file.

1 % Collection of the list of model libraries
2 SWCListRaw = subdir([PrepASDelCfg.ProjectPath '*_Lib.slx']);
3 [...]
4 %Preparation of new model file <Model>_AR
5 copyfile(SWCMainMdlPath, SWCAUTOSARMdlPath);
6 [...]
7 %Addition of model implementation in <Model>_AR from the model library
8 add_block(SWCLibPath,SubSysPath);
9 SubSysPos = get_param(SubSysPath,'Position');

10 ConnectInPrts(SubSysPath);
11 ConnectOutPrts(SubSysPath);
12 [...]

59

Implementation

Start

End

Configure AUTOSAR
properties and save
<Model>_AR in .slx

format

Generate data files in
AUTOSAR.mpt format

Generate code and
ARXML

Prepare logs

Collect the list of SWCs in
the delivery folder in

SWCListRaw

End of the list
SWCListRaw ?

Create a copy of the
model implementation
from library to a new

model file <Model>_AR

Prepare data store blocks
for local signals in the top
level of the new model file

Yes
No

Figure 5.9: Program flow - PrepareAUTOSARDelivery.m.

Additionally, the data store memory blocks are also created in this step for handling all the
local signals. The data store blocks act as internal variables to handle the local signals within
the Simulink environment. A list of local signals available is collected in DSMList and the
code excerpt from Line 3 in Listing 5.13 shows the addition of the data store memory blocks
for the list of local signals contained in DSMList.

60

Implementation

Listing 5.13: PrepareAUTOSARDelivery.m - Preparation of data store memory blocks.
1 % Preparation of data store memory blocks
2 for i=1:length(DSMList)
3 hBlock = add_block('simulink/Signal Routing/Data Store ...

Memory',[SWCAUTOSARMdlName '/' DSMList{i}]);
4 end

The above discussed part of the script PrepareAUTOSARDelivery.m involving the preparation
of the models for AUTOSAR conversion including the data store blocks was developed by
AVL for a customer project and the same concept has been used in this thesis.

2. The next step is the configuration of AUTOSAR properties for the <Model>_AR.slx created
in the above step. In order to include AUTOSAR properties for a model, the following entities
have been configured in the script:

• Configuration of Ports: As the I/O communication in the AVL HCU software models
involves static global variables, the Simulink I/O ports have been converted to Implicit
Sender/Receiver ports.

• Configuration of Runnables: The types of runnable entities configured are Runnable_init
for initialization and Runnable_step (periodic runnable entity) for functional implemen-
tation. The Runnable_step has been renamed with the corresponding SWC model prefix.

The API commands for AUTOSAR conversion described in ([45], p.4-211) have been used
for programmatically configuring the AUTOSAR properties. The model, in this case, has
been configured as a default AUTOSAR component. Line 2 in Listing 5.14 indicates the
MATLAB API autosar.api.create (Appendix D) to create a default AUTOSAR component.
In Line 3 of Listing 5.14, the AUTOSAR properties of the model are extracted to a MATLAB
object autosarProps, which can later be used to edit the runnable or port properties of the
model. The runnable namings for Runnable_init (Lines 7 to 8) and Runnable_step (Lines 11
to 12) have been configured using autosarProps as shown in Listing 5.14.

Listing 5.14: PrepareAUTOSARDelivery.m - Configuration of AUTOSAR properties.
1 %% Configuring default AUTOSAR properties
2 autosar.api.create(SWCAUTOSARMdlName,'default');
3 autosarProps = autosar.api.getAUTOSARProperties(SWCAUTOSARMdlName);
4

5 %% Configure runnable namings
6 %%Init Runnable
7 set(autosarProps,runnables{1},'symbol',PortFormatFound_Init{1});
8 set(autosarProps,runnables{1},'Name',PortFormatFound_Init{1});
9

10 %%Step runnable
11 set(autosarProps,runnables{2},'symbol',PortFormatFound_Schedule{1});
12 set(autosarProps,runnables{2},'Name',PortFormatFound_Schedule{1});

61

Implementation

3. In step 3, the signals and parameters data objects in the delivered data files have been con-
verted from the native Simulink mpt to the AUTOSAR package [45]. The AUTOSAR package
has been defined in MATLAB in order to handle the signals and parameters for AUTOSAR
model development in the Simulink environment. The AUTOSAR package has its own set of
custom storage class attributes to qualify the parameters and signals for AUTOSAR format
code generation. The parameters, for example, can be set to act as local calibration parame-
ters, global calibration parameters, or as system constants in the generated code depending on
the CustomStorageClass setting. Table 5.2 summarizes various CustomStorageClass settings
defined by AUTOSAR package and have been used in the script for various parameters and
signal types.

Parameter Types CustomStorageClass Setting

Local calibration parameters CustomStorageClass = ’InternalCalPrm’
Global calibration parameters CustomStorageClass = ’CalPrm’
System constants CustomStorageClass = ’SystemConstant’
Local signals CustomStorageClass = ’perInstanceMemory’
Signals requiring NVRAM access CustomStorageClass = ’perInstanceMemory’

CustomAttributes.needsNVRAMAccess =
True

Table 5.2: Various CustomStorageClass setting for AUTOSAR class package.

The part of the script PrepareAUTOSARDelivery.m involving the conversion of model param-
eters to AUTOSAR package was developed by AVL for a customer project and the same has
been used in this thesis.

4. As there were only limited number of signals requiring NVRAM access in the HCU soft-
ware system, these signals have been configured manually from the MATLAB workspace
by setting the CustomStorageClass to ’PerInstanceMemory’ and selecting the option need-
sNVRAMAccess to ’True’ (Table 5.2) before the code generation.

5. Once the AUTOSAR features have been set-up for the model, the model C code in AUTOSAR
format can be generated by Embedded Coder. To do so, a set of code generation settings has
been configured in the script for the Embedded Coder environment as shown in Listing 5.15.

Listing 5.15: PrepareAUTOSARDelivery.m - AUTOSAR format code generation setting.
1 %% Set code generation setting
2 cs = getActiveConfigSet(SWCAUTOSARMdlName);
3 switchTarget(cs,'autosar.tlc',[]);
4 % Start code generation
5 rtwbuild(SWCAUTOSARMdlName);

62

Implementation

Line 3 of Listing 5.15 indicates that the Target Language Compiler (TLC) [46] setting has
been set to AUTOSAR target to generate the AUTOSAR format code and the model ARXML
files. The TLC setting is native to Embedded Coder environment to customize the code gener-
ation options. Once the AUTOSAR target has been set-up, the code generation in the Embed-
ded Coder environment can be carried out using MATLAB command rtwbuild(Model_name)
as indicated in Line 5 of Listing 5.15. Additionally, the logs are also generated as .xlsx files,
in case the code generation is affected by build errors.

Results

The results observed following the AUTOSAR conversion of the models are presented as follows.
At the model level, the normal Simulink I/O ports are changed to AUTOSAR Sender/Receiver ports.
The Simulink window does not differentiate the appearances of the normal port type block and the
AUTOSAR port type block. Hence an image illustration of the model subsystem block has been
used in Figure 5.10 for comparing the port types before and after the conversion. Figure 5.10A
illustrates a subsystem block of an unconverted model with normal Simulink I/O ports (marked
’green’), and Figure 5.10B represents the subsystem block of a converted model with AUTOSAR
Sender/Receiver ports (marked ’blue’). Additionally, the data store memory blocks were also fitted
for the local signals (can be observed in the Simulink window) in the top level of the converted
models.

<Model>.slx

1

2

3

4

5

6

7

8

in1

in2

in3

in4

out1

out2

out3

out4

<Model>_AR.slx

1

2

3

4

5

6

7

8

in1

in2

in3

in4

out1

out2

out3

out4
A. Before AUTOSAR

Conversion
B. After AUTOSAR

Conversion

Normal Simulink I/O Ports

AUTOSAR Sender/Receiver
Interface

Figure 5.10: Changes at the model subsystem level before and after the AUTOSAR conversion.

The difference in the port type configuration mentioned above is reflected only in the generated
code. At the code level, the AUTOSAR format code uses RTE function calls to access signals

63

Implementation

(configured as AUTOSAR Sender/Receiver ports) and parameters in contrast to the non-AUTOSAR
implementation, which uses direct variable access for signals (configured as Simulink I/O ports)
and parameters. An example is shown in Listings 5.16 and 5.17, which compares a line of the code
generated from an SWC model <Model> before and after AUTOSAR conversion. Line 2 of Listing
5.16 shows that the parameter HVCUI_StErrBusHybCan is accessed via direct variable access.

Listing 5.16: <Model>.c - An excerpt of code generated from unconverted model SWC.
1 /*CanComDiag.c*/
2 SCCD157_Logical_Operator1 = (HVCUI_StErrBusHybCan != STERRCANMSG_BUSOFF);

On the contrary, the same parameter HVCUI_StErrBusHybCan is accessed by RTE function
call in the code generated from the AUTOSAR converted model <Model>_AR (Line 2 of Listing
5.17).

Listing 5.17: <Model>_AR.c - An excerpt of code generated from AUTOSAR converted model
SWC.

1 /*CanComDiag_AR.c*/
2 CanComDiag_AR_B.RelationalOperator1_hd = ...

(Rte_IRead_CCD_10ms_HVCUI_StErrBusHybCan_HVCUI_StErrBusHybCan() != ...
((uint8_T)Rte_SysCon_STERRCANMSG_BUSOFF));

Additionally, the parameters which have been defined as global calibration parameters have been
recorded in the generated model .ARXML file as parameter interfaces in a Parameter SWC instance
called HybridGlobal. An excerpt from the model .ARXML is shown in Listing 5.18. Line 4 in
Listing 5.18 refers to the name of the Parameter SWC instance, and Line 7 indicates the parameter
written to the Parameter SWC.

Listing 5.18: Parameter SWC instance in model .ARXML file.
1 <SHORT-NAME>HybridGlobal_AR_pkg</SHORT-NAME>
2 <ELEMENTS>
3 <PARAMETER-SW-COMPONENT-TYPE UUID="357c539a-2fc0-5dcb-0ce3-7c0bedcae973">
4 <SHORT-NAME>HybridGlobal_AR_swc</SHORT-NAME>
5 <PORTS>
6 <P-PORT-PROTOTYPE UUID="a4efdeef-5ed3-57c8-fe47-fcb81635444d">
7 <SHORT-NAME>HybGlb_NEmActForMapEff_A</SHORT-NAME>

5.2 RTE Generation

This section explains the process of RTE generation for integration with the BSW. As per the pro-
posed conversion concept in Figure 4.1, the RTE, in this case, refers to the RTE function definition
involving ASW communication and parameter access. As the ASW models of AVL HCU software
have been converted to AUTOSAR format and code has been generated from the previous steps, the

64

Implementation

RTE Generator
Script

Template files

Component
ARXML

HybridGlobal_Data.c
HybridGlobal_Data.h

RTE_<Component>.c
RTE_<Component>.h

Figure 5.11: Structure of RTE generator.

next step is to generate the RTE portion. In this thesis, the RTE generation has been handled via
RTE generator implemented using MATLAB. The following section explains the implementation
of RTE generator.

5.2.1 Implementation of RTE Generator

A design of RTE generator has already been proposed by Shiquan Piao et al. in [7]. According
to this work, an RTE generator shall contain an ARXML parser, which reads the contents of AU-
TOSAR ARXML files; a generator engine, which generates the code based on template and data
obtained from the ARXML and; a template file, which describes a code structure to be used by the
generator engine. The aforementioned model of RTE generator has been adopted for this thesis and
structured as shown in Figure 5.11. Additionally, the RTE generator has been implemented using
MATLAB M-Script and used to generate the RTE and HybridGlobal container code files as per
Figure 5.11. The HybridGlobal container code files are generated as Parameter SWC instance and
denote the global calibration and measurement variables6 to be used by all the models in the HCU
software system.

A general process flow of the RTE generator script RTEGenerator.m is shown in Figure 5.12.
The implementation is explained as follows.

Code and Explanation

1. In the first step (from Figure 5.12), the template files are read by the RTEGenerator.m. As
mentioned before, the template files provide a general structure for the RTE code text. A sepa-
rate template file has been created as a text-file for Rte_<Component>.c, Rte_<Component>.h,

6The calibration parameters include single parameter values, 1D curve arrays and 2D map arrays.

65

Implementation

Start

Read template files

Read component ARXML

End

Template files

Prepare list for I/O ports;
local and global

parameters; local signals;
system constants

Prepare variable
declaration, access

function definition and
prototype text for I/O

ports, parameters and
local signals

Perform file write
operation into .c, .h code

files

Code files

Component ARXML

Figure 5.12: RTEGenerator.m - Process flow.

HybridGlobal_Data.c and HybridGlobal_Data.h. The template structure used for Rte_<Comp-
onent>.c is shown in Listing 5.19 as an example. The template text is replaced by code text
in the generated RTE files.

Listing 5.19: RTE code template.
1 ##HEADER INCLUDE##
2

3 ##CAL START SEC##
4

5 ##PARAMETER DECLARATION##
6

7 ##CAL STOP SEC##
8

9 ##VAR START SEC##
10

66

Implementation

11 ##SIGNAL VARIABLE DECLARATION##
12

13 ##OUTPORT VARIABLE DECLARATION##
14

15 ##VAR STOP SEC##
16

17 ##CODE START SEC##
18

19 ##PARAMETER ACCESS FUNCTION DEFINITION##
20

21 ##READ FUNCTION DEFINITION##
22

23 ##WRITE FUNCTION DEFINITION##
24

25 ##SIGNAL FUNCTION DEFINITION##
26

27 ##CODE STOP SEC##

2. In Step 2, the component ARXML files are read and the parsing of ARXML takes place.
The information about an SWC including the port variables, calibration parameters, system
constants, and signals are collected and prepared as lists. Listing 5.20 denotes the MATLAB
APIs ([45], p. 6-63) used for parsing of component ARXML. Line 2 in Listing 5.20 shows
the import of component ARXML using API arxml.import (Appendix E). Additionally, the
find (Appendix F) API has been used (shown in Lines 5,8,11 and 14 of Listing 5.20) to extract
information, such as the Application SWCs, Parameter SWCs, system constants and signal
list present in the component ARXML.

Listing 5.20: RTEGenerator.m - Parsing of ARXML and collection of SWC entities.
1 %% Import of ARXML components
2 ar = arxml.importer(file)
3

4 %% Application software component search
5 aswcPath = find(ar,[],'AtomicComponent','PathType','FullyQualified');
6

7 %% Get all system constant paths
8 SysConsList = find(ar,[],'SystemConst','PathType','FullyQualified');
9

10 %% Local Signals
11 signal_list = find(ar,[],'ExclusiveArea','PathType','FullyQualified')
12

13 %% Parameter software component search
14 paramcomp = ...

find(ar,[],'ParameterComponent','PathType','FullyQualified');

67

Implementation

3. Once the list of port variables and parameters have been collected, the next step is to prepare
the code text. The MATLAB API sprintf()7 has been used to create the code text, which
involves preparing the function definitions, prototypes, and variable declarations. The data
type and values of the parameters/variables are resolved from the corresponding component
data files. An example of code text creation for RTE write functions Rte_IWrite_XXX() is
shown in Listing 5.21.

Listing 5.21: RTEGenerator.m - Preparation of code text.
1 %% Write Function Definition
2 write_function_line = sprintf('void Rte_IWrite_%s_%s_%s(%s ...

data)\r\n',runnable_step_name,sportname,sportname,datatype_outport);
3 write_function_line = sprintf('%s{\r\n',write_function_line);
4 write_function_line = sprintf('%s %s = ...

data;\r\n',write_function_line, sportname);
5 write_function_line = sprintf('%s}\r\n', write_function_line);
6 outport_func_def_text = sprintf('%s%s\r\n', outport_func_def_text, ...

write_function_line);

4. In the final step, the template text is converted into the corresponding code text and written to
*.c, *.h files. The MATLAB file-create and file-write functions fopen and fprintf have been
used in this case, as shown in Lines 2 and 3 of Listing 5.22. This step eventually generates
the required files shown in Figure 5.11.

Listing 5.22: RTEGenerator.m - Code file creation.
1 %RTE Source file creation
2 RTE_c = fopen(code_file_name,'w');
3 fprintf(RTE_c,'%s\r\n',RTE_code_text);
4 fclose(RTE_c);

Results

The code files Rte_<Component>.c, Rte_<Component>.h, HybridGlobal_Data.c, and HybridGloba-
l_Data.h were generated as a result. Excerpts from an RTE code file Rte_CTCa.c generated for
an Application SWC CluTqCalc are discussed for illustration in Listings 5.23 and 5.24. The
Rte_CTCa.c is generated based on the RTE code template file shown in Listing 5.19.

7The function sprintf() is used to store data as strings. The format of usage can be found in MATLAB Help Docu-
mentation.

68

Implementation

Listing 5.23: Rte_CTCa.c - Parameters and output variable declaration text.
1 #include "Rte_CTCa.h"
2 #include "Rte_HWCAC.h"
3 #include "HybridGlobal_Data.h"
4

5 #define CTC_START_SEC_CALIB_UNSPECIFIED
6 #include "CTC_MemMap.h"
7

8 /* Parameter Declaration */
9 const volatile float32 ClTC_ArClu0Pist_P = 5531.000000;

10 [...]
11

12 #define CTC_STOP_SEC_CALIB_UNSPECIFIED
13 #include "CTC_MemMap.h"
14

15 #define CTC_START_SEC_VAR_UNSPECIFIED
16 #include "CTC_MemMap.h"
17

18 /* signal Variable Declaration */
19

20 /* Output Variable Declaration */
21 uint8 ClTC_StClu0Act;
22 float32 ClTC_TqClu0CActEstimd;
23 [...]
24

25 #define CTC_STOP_SEC_VAR_UNSPECIFIED
26 #include "CTC_MemMap.h"
27 [...]

Lines 8 and 9 of Listing 5.23 indicate the parameter variable declaration text generated from the
corresponding template text "##PARAMETER DECLARATION##" (Line 3 of Listing 5.19). The
same can be shown for the output variable declaration text (Lines 20 to 22 in Listing 5.23) generated
from its template text in Line 13 of Listing 5.19. In the generated RTE code files, the variable types
are also associated with their corresponding memory mapping keywords in the code text (shown in
Lines 5 and 15 of Listing 5.23).

Listing 5.24: Rte_CTCa.c - Parameter access function and write function definition text.
1 [...]
2 #define CTC_START_SEC_CODE_UNSPECIFIED
3 #include "CTC_MemMap.h"
4

5 /* Parameter Access Function Definition */
6 float32 Rte_CData_ClTC_ArClu0Pist_P(void)
7 {
8 return ClTC_ArClu0Pist_P;
9 }

10 [...]
11

12 /* Read Function Definition */

69

Implementation

13 boolean ...
Rte_IRead_ClTC_10ms_SF_StClu0FillgCmplActFb_SF_StClu0FillgCmplActFb(void)

14 {
15 return SF_StClu0FillgCmplActFb;
16 }
17 [...]
18

19 /* Write Function Definition */
20 void Rte_IWrite_ClTC_10ms_ClTC_StClu0Act_ClTC_StClu0Act(uint8 data)
21 {
22 ClTC_StClu0Act = data;
23 }
24 [...]
25

26 /* signal Access Function Definition */
27

28 #define CTC_STOP_SEC_CODE_UNSPECIFIED
29 #include "CTC_MemMap.h"

Similarly, Listing 5.24 shows the function definitions generated for I/O read/write and parameter
access based on their template text in Listing 5.19. For example, the template text "##PARAMETER
ACCESS FUNCTION DEFINITION##" (Line 19 of Listing 5.19) has been filled with the parameter
access function definition in Listing 5.24 (Lines 6 to 9). The variable declaration and function
definition text for the local signals (shown in Line 18 of Listing 5.23 and Line 26 of 5.24) is filled
with empty spaces, which means that the SWC model CluTqCalc does not use any local signals and
the signal list is empty. Additionally, in the generated RTE code files, the standard data types of
variables and function declaration have been adopted according to the AUTOSAR platform types
described in [47].

5.3 Integration

This section discusses the integration and build process. As per the AUTOSAR conversion concept
proposed in Section 4.2, the pre-configured BSW of the AVL HCU software along with the CIL
layer has been reused for integration. Therefore, the configuration of BSW modules using specific
configuration tools, as specified in the AUTOSAR methodology, is not required in this case. In the
build process of the AUTOSAR converted software, the generated AUTOSAR format ASW code
files, along with the RTE, CIL and the BSW files, are compiled in a build environment. The same
build environment involving Hightec compiler suite, which is used for the original AVL HCU soft-
ware, has been used here for building the AUTOSAR converted software. The result of the build
process is the ECU executable in .hex format which can be flashed in the HCU hardware. For the
system build performed after the generation of all the code files, no additional modifications were
required in the code level to suit the compiler requirements. Infineon Aurix 32-bit TC275 [48] was
the microcontroller platform used in the HCU hardware.

The build environment makes use of a customized make file with batch options in order to in-
voke the build process as a batch run from the Windows command prompt. The build process can

70

Implementation

be explained in the following steps. In the first step, the ASW codes are compiled and the cor-
responding object files are generated. The next step involves the generation of the A2L file. The
A2L is a description file format defined by the ASAM8 standards in order to translate the memory
addresses of the calibration and measurement variables into a format accessible via the software
tools for calibration [49]. In order to generate the A2L file, Data Declaration System (DDS) [50]
software tool has been used. The SWC .ddx files are read as input in the DDS and are converted into
a single A2L file for the HCU software system. Once the A2L file is generated, in the final step, the
compiled ASW object files are linked with the BSW object files and exported as a single executable
in .hex format.

Results

As a result of the build process, the following list of files were generated (Figure 5.13):

• An A2L file for calibration access.

• An executable in .elf format which contains the debug information [51]. This format is used
for debugging the software using a debug tool9.

• An executable in .hex format which is a binary file flashable in the ECU hardware.

• A linker map file that provides the memory mapping information.

Figure 5.13: Output files generated from the build process of AUTOSAR converted software.

In addition, the executables were also generated for four different versions of AUTOSAR converted
software with different optimization settings for memory and run-time efficiency. These optimiza-
tion options include making the RTE function calls inline in the code or setting different compiler
optimization flags (from O0 to O3) during compilation. The inline keyword is an indication to the
compiler to insert the function code in the place of function calls, thereby reducing the calling and
return overheads [53]. The compiler introduces additional code optimizations during compilation
with different optimization flags, thus improving the "code size and execution time" [54, 55]. The
different flag options (O0 and O1) have been adjusted under the compiler settings in the make file.

8Association of Standardization of Automation and Measuring Systems.
9Universal Debug Engine (UDE) [52] is the debugger currently being in use at AVL.

71

Implementation

It must also be noted that only the optimization levels O0 and O1 have been used in the AUTOSAR
converted software, since introducing higher optimization levels can affect the functionality of the
software10. The different versions of AUTOSAR converted software created by varying different
optimization settings are shown as follows:

• AUTOSAR Normal Version with no optimization settings. The optimization flag is O0 in
this case, which is the default setting in the compilation and indicates that zero optimization
has been introduced.

• AUTOSAR Inline Version 11wherein all the RTE function definitions have been made inline.
The optimization level is O0 for this software version.

• AUTOSAR Optimized Version Level 1 which has been compiled with compiler optimiza-
tion flag set as O1. The RTE function calls are not inline in this software version.

• AUTOSAR Optimized Version Level 2 in which all the RTE function definitions have been
made inline as well as the compiler optimization flag O1 has been set during compilation.

The different versions of AUTOSAR software thus generated are subjected to KPI metrics evalua-
tion with the non-AUTOSAR AVL HCU software used as a reference.

10AVL uses only O0 or O1 in their original HCU software for ensuring proper software functionality and the same has
been adopted in this thesis for the AUTOSAR converted software. It has been understood that higher optimization levels
can introduce excessive round-off errors in floating point arithmetic calculations which can adversely affect the software
functionality.

11The RTE functions definitions for AUTOSAR Inline Version were modified manually from the AUTOSAR Normal
Version and the RTE generator script was not used in this case.

72

6. Evaluation

This chapter discusses the testing and evaluation of the different AUTOSAR software versions in
comparison to the reference non-AUTOSAR HCU software. For the different AUTOSAR software
versions, the functionality and performance were analyzed on a HIL setup. Subsequently, KPI
metrics such as memory consumption, task runtime, stack usage, and CPU utilization were also
evaluated.

6.1 Experimental Setup

National Instruments VeriStand [56], a real-time simulation environment with hardware and soft-
ware, is the customized setup used by AVL for HIL simulation. The software of the VeriStand
system is a Linux based environment and can be programmed to simulate a particular behaviour.
The VeriStand system, in this case, was loaded with a plant model simulating the vehicle behaviour.
Figure 6.1 shows that the HCU serves as the Device Under Test (DUT) and is connected in closed
loop mode with the simulation environment. This type of set-up is an effective way to verify the
behaviour of HCU in a simulated vehicle system. Each software version (both reference non-
AUTOSAR and AUTOSAR software versions) to be evaluated for KPI metrics was flashed in the
HCU hardware individually and the behaviour in the HIL environment was analyzed.

In order to ensure proper functionality of each software, a set of functional tests were performed.
Firstly, the behaviour of the software versions during the HCU power-on cycle was monitored.
Secondly, a simple I/O functionality test was performed, which involved passing a random input
signal from the HIL simulation environment and observing the corresponding output from the HCU.
In this phase, the correct transmission of the required CAN messages in the bus lines was also
checked. Thirdly, a simulation of the New European Driving Cycle (NEDC) [57] was carried out
in the HIL environment. In real vehicles, the NEDC is an on-road velocity profile test performed
to measure the emission levels. The NEDC test profile was employed since it involves a more
comprehensive check on the software functionality by varying multiple inter-dependent parameters
such as velocity, engine Rotation Per Minute (RPM) and transmission, etc.

73

Evaluation

Figure 6.1: HIL test environment for evaluation.

6.1.1 Observations

All the software versions (both AUTOSAR and non-AUTOSAR versions) passed the power cycle
test. The voltage and current levels of the HCU during the power-on phase were well within the
permissible levels (HCU voltage level: 12-13V; HCU current level: 0.7-0.8A). The transmission of
CAN signals in the network was also observed for all the software versions when the ignition was set
to RUN state. Additionally, all the software versions passed the I/O functionality test, wherein, for
some simulated input signals, the transmission of corresponding output CAN signal was observed
in the network. The above observations ensured that the software functionality in terms of OS task
execution and runnable entity scheduling was proper in all the software versions. The AUTOSAR
software versions, however, did not pass the simulated NEDC test, while the original AVL HCU
software was successful in the NEDC run. The root cause of the failure was found to be the improper
functionality of some of the look-up table mappings in the code generated from Embedded Coder1.
However, owing to time constraints, the issue with look-up table mappings could not be resolved
for the AUTOSAR software versions and the evaluation was limited to the analysis of KPIs such
as task runtime, stack usage, and CPU utilization. The signals pertaining to the above metrics were
recorded for about 300 seconds using the Vector CANape [58] environment.

1A similar issue could not be observed in the TargetLink generated code of the original AVL HCU software.

74

Evaluation

6.2 Memory Consumption Analysis

.sdata .text .caldata .rodata .bss .data

0

0.2

0.4

0.6

0.8

1

Various Memory Sections

M
em

or
y

C
os

um
pt

io
n

in
M

B
(=

1
06

B
yt

es
)

Reference SW Autosar - Normal Autosar - Inline Autosar - L1 Autosar - L2

Figure 6.2: Analysis of memory consumption.

This section compares the memory consumption of the ASW codes for the AVL HCU software
and the different AUTOSAR software versions. The memory consumption result was generated out
of the build process by a Python script, which calculates the total utilization per various memory
sections by analyzing the ASW compiled object files. The description of various memory sections
to be analyzed are as follows:

• .sdata and .data are used to store initialized static global variables. Unlike the .data section,
the memory size allocated to the .sdata section is comparatively limited.

• .text section contains the code portion.

• .caldata section stores the volatile calibration and measurement variables.

• .bss section holds the uninitialized global variables.

Table 6.1 lists the memory usage in bytes associated with different memory sections for all the
software versions (both reference non-AUTOSAR and AUTOSAR versions). Each numeric data

75

Evaluation

.sdata .text .caldata .rodata .bss .data TOTAL

Reference SW 12 129 501 290 72 799 9 356 5 631 19 601 224
AUTOSAR - Normal 5 071 978 152 73 760 10 214 5 631 60 910 1 133 738
AUTOSAR - Inline 5 071 915 924 73 760 10 214 5 631 60 910 1 071 510
AUTOSAR - Optimized
Version L1

5 071 486 154 73 760 10 214 5 631 60 902 641 732

AUTOSAR - Optimized
Version L2

5 071 409 564 73 760 10 214 5 631 60 902 565 114

Table 6.1: Summary of memory utilization in bytes.

per cell in Table 6.1 from Columns 2 to 7 represents the section-wise total memory consumption of
the SWCs in the HCU software system. The data in Column 8 of Table 6.1 represents the aggregate
memory consumption over all the memory sections. Figure 6.2 alternatively shows a comparative
study of the memory consumption in the form of a bar diagram.

From Figure 6.2, it can be noted that the trend of memory consumption is relatively uniform
in .caldata, .rodata and .bss sections, while contrasting differences can be observed in .text and
.data (or .sdata) portions for the non-AUTOSAR and AUTOSAR software versions. Overall, the
AUTOSAR software versions tended to occupy more byte words than the non-AUTOSAR HCU
software, unless a higher degree of optimization is applied for the AUTOSAR versions.

For the initialized global variables, the memory consumption in the .data section for the AU-
TOSAR versions is compared with that of the .sdata section for the reference software (Figure 6.2).
The reason is that the .data section was used for storing the initialized variables in the AUTOSAR
versions due to increased memory requirements, while the .sdata section was used in the case of
reference software. The total memory consumption is higher by nearly six-fold for the AUTOSAR
versions when compared with the reference software. The stark increase in the memory consump-
tion for the AUTOSAR versions can be due to the creation of local variables in the code generated
by Embedded Coder for each operation involving a Simulink block. A separate structure defini-
tion with the block variables is created for each SWC of the HCU software system, making up for
huge consumption in the .data section for the AUTOSAR software versions. The above statement
was verified from the linker map file (shown in Figure 5.13) generated for the AUTOSAR software
versions. Conversely, in the code generated by TargetLink for the reference AVL HCU software, a
majority of the TargetLink block operations are combined in a single code statement and only fewer
local variables are created, which in turn does not cause a huge demand in the memory requirements.

In the .text section, there is an increase of nearly two-fold in the memory consumption for the
AUTOSAR Normal and Inline versions (optimization level O0) when compared with that of the
reference software (Figure 6.2). The RTE function definitions contribute to the part of the increase
in the code size. Additionally, the SWC code generated from Embedded Coder (for the AUTOSAR

76

Evaluation

versions) tends to occupy more memory space than its counterpart TargetLink generated code (for
the reference software), possibly due to the difference in code structure generated from different
generator tools. Nevertheless, when O1 optimization has been set as in the AUTOSAR Optimized
version, the compiler introduces additional optimization techniques, which in turn reduce the code
size significantly.

6.3 Task Runtime Analysis

As per Sections 3.3.3 and 4.2, only one 10ms task is used to invoke the ASW runnable entities in
both non-AUTOSAR and AUTOSAR software versions. This section compares the runtime metric
of the 10ms task for the non-AUTOSAR reference software and the AUTOSAR software versions.
The task runtime is calculated in the simulation environment by computing the differences in the
time stamps between the entry and exit points in the task body. The signal pertaining to task run-
time calculation has been recorded for about 300 seconds (30000 task runs with the periodicity
being 10ms) for all the software versions and the average runtime values computed for each soft-
ware version are shown in Table 6.2.

Average Task Runtime (ms) Percentage Change

Reference SW 2.423 0
AUTOSAR SW - Normal 6.384 +163%
AUTOSAR SW - Inline 5.347 +120%
AUTOSAR SW - Optimized Version L1 4.177 +72%
AUTOSAR SW - Optimized Version L2 2.698 +11%

Table 6.2: Percentage change in task runtime.

The variation in the average task runtime values for the AUTOSAR software versions has been
analyzed by setting the average runtime value of the non-AUTOSAR software as the reference.
The average task runtime in the AUTOSAR Normal version is almost three times higher than the
reference value. The average task runtime is directly proportional to the ASW code size (shown
in Column 3 of Table 6.1). The code size is maximum for the AUTOSAR Normal version and
therefore the task runtime value peaks for this software version with a difference of about 160%
from the reference value (Table 6.2). The RTE function call overheads additionally contribute to
the delay in the task execution for the AUTOSAR Normal version. The task runtime, however,
improves significantly with the increasing optimization levels. When the RTE function calls are
made inline in the AUTOSAR Inline version, the function call overheads are eliminated and thus
the runtime improves slightly by about 40%. When O1 level optimization has been introduced as
in the AUTOSAR Optimized L1 software, a significant improvement in the average task runtime
to about 4ms can be observed. The reason is the reduction in code size due to compiler induced
optimizations, yet the RTE function calls are not inline for the L1 version. For a greater degree
of optimization as in the AUTOSAR Optimized L2 software, the runtime metric is almost equal to

77

Evaluation

the reference value. In addition to the O1 optimization flag, the L2 version also includes inlined
RTE functions, which improves the average task runtime potentially. Overall, the non-AUTOSAR
software fared better than the AUTOSAR versions in the runtime analysis. However, a significant
improvement in the performance of AUTOSAR versions could be observed with different optimiza-
tion settings. In addition, a detailed analysis in the OS level, such as the variations in the kernel
time and communication overheads, was not performed since the BSW supplier does not provide
the required interfaces to measure these parameters.

6.4 CPU Utilization Analysis

Average CPU Utilization (%) Percentage Change

Reference SW 64.29 0
AUTOSAR SW - Normal 53.84 -16%
AUTOSAR SW - Inline 91.14 +41%
AUTOSAR SW - Optimized Version L1 80.94 +25%
AUTOSAR SW - Optimized Version L2 66.70 +3%

Table 6.3: Percentage change in CPU utilization.

CPU utilization factor is the measure of the percentage of CPU time being used for program
execution in comparison with the CPU idle time. As indicated in Section 5.3, the CPU in this context
refers to the Infineon Aurix 32-bit TC275. The algorithm of CPU usage calculation is implemented
in the BSW by the supplier. The implementation of CPU usage calculation is however abstracted in
the BSW object files delivered to AVL and the supplier provides only the signal interpreting the CPU
utilization, which can be read in the Vector CANape environment. This signal measures the overall
CPU usage (in percentage) by the BSW OS and not just the CPU usage factor of the 10ms task. The
signal measuring the CPU usage was recorded for about 300 seconds and the average CPU usage
factor observed for each software versions is tabulated in Table 6.3. Column 2 of Table 6.3 shows
that average CPU usage factor observed in AUTOSAR Normal version does not correlate with the
other AUTOSAR versions. The exact reason for this variation is not clearly known. However,
looking at the trend of observations in the other AUTOSAR versions (Inline and Optimized) and the
reference software, it has been assumed that the CPU usage factor coincides with the task runtime.
More the task runtime, higher is the CPU usage factor, although the execution of CAN interrupts
can also contribute to the latter. Even though the CPU usage factor of the AUTOSAR Inline version
was critically just over 90%, the program execution was stable in all the cases and no situation of
system overloading (CPU usage factor of 100%) had occurred, in which case, an ECU reset might
have been triggered.

78

Evaluation

Average Stack Usage(%) Percentage Change

Reference SW 51.42 0
AUTOSAR SW - Normal 48.22 -6%
AUTOSAR SW - Inline 49.89 -3%
AUTOSAR SW - Optimized Version L1 46.56 -9%
AUTOSAR SW - Optimized Version L2 45.03 -12%

Table 6.4: Percentage change in stack usage.

6.5 Stack Usage Analysis

Stack usage factor is the percentage of stack memory used in program execution. The stack in this
context refers to the user stack (of the CPU Infineon Aurix 32-bit TC275), which is used when the
ASW runnable entities are executed. The size of the ASW stack memory is about 16KB. As the
case with CPU usage factor, the calculation of stack usage is implemented by the BSW supplier and
abstracted in the BSW object files. Additionally, only the signal interface measuring the stack us-
age is visible from the BSW. This signal interprets the percentage of stack occupation during ASW
execution and has been recorded for about 300 seconds. Table 6.4 shows the trend in the percentage
of stack memory used by different software versions. The trend in the stack usage is not uniform,
although the variations are only in smaller proportions. The reason for the above deviation could not
be established. However, it can be noted that the stack usage values of the all the software version
are well within the critical value of 100%, more than which indicates a condition for stack overflow.

In summary, the original AVL HCU software (the reference software) performed better than
the AUTOSAR versions in task runtime and memory consumption metrics. The observation is in
accordance with [5], wherein Daehyun et al. mention that the incorporation of AUTOSAR concepts
brings about an improvement in the performance factors such as code runtime and memory size.
However, when optimizations were applied such as using inline keywords for RTE function calls
and setting compiler optimizations, a drastic improvement in the performance factors (memory
consumption and task runtime) was observed for the AUTOSAR converted software.

79

Evaluation

80

7. Conclusion

This chapter presents a brief outlook on the research carried out in this thesis, discusses some
inferences, and provides some recommendations for further research.

7.1 Summary

The aim of this thesis was to convert the AVL HCU software towards AUTOSAR compliance and to
distinctly establish an AUTOSAR software development methodology for AVL Powertrain Controls
Dept. The software deviations from the AUTOSAR concepts had to be observed not only at the soft-
ware architecture level but also along each and every phase of software development. Therefore, the
analysis of software deviation was performed along the SDLC, namely the V-Model. A comparison
was made between the AUTOSAR methodology and the AVL’s methodology, and it had been thor-
oughly analyzed on the expectations when AVL chooses to follow AUTOSAR methodology in the
future. In terms of software conversion to AUTOSAR, a concept was proposed, in which, the ASW
was converted to AUTOSAR format and integrated with the BSW via the RTE layer generation. The
BSW, which is not AUTOSAR compliant, had been reused, and the CIL layer had been retained.
The RTE portion was generated tailoring the need for integration. The resulting software did not
meet the ICC3 conformance level however, it could satisfy AUTOSAR ICC1 requirements. MAT-
LAB scripts were additionally developed to automate the ASW conversion and the RTE generation.
Out of all the MATLAB scripts used in this thesis, the delivery scripts (Section 5.1.3) were provided
by AVL. Additionally, in PrepareAUTOSARDelivery.m (Section 5.1.4), the algorithms involving the
preparation of models for AUTOSAR conversion and the conversion of model parameters and sig-
nals to the AUTOSAR package were developed by AVL for a customer project and were adopted
in this thesis. In the system build, a total of four versions of AUTOSAR HCU software with dif-
ferent optimization techniques were prepared. These AUTOSAR software versions were validated
on a HIL set up and the performance metrics such as the memory consumption, task runtime, CPU
usage, and stack usage were compared with a reference non-AUTOSAR AVL HCU software.

81

Evaluation

7.2 Discussion

Although it has been said that the software is compliant with AUTOSAR, an ICC3 level AUTOSAR
compliance was still not achievable due to the following factors:

• The usage of non-AUTOSAR BSW in the conversion concept to AUTOSAR.

• The presence of the CIL layer and its supplier-specific interfaces to the BSW.

• The I/O Hardware Abstraction handling (Section 3.3.2) has not been implemented as per
AUTOSAR standards. This is partly due to the non-AUTOSAR BSW.

• The absence of RTE events for actuating the dynamic behaviour of ASW.

The reason here is quite obvious: The AUTOSAR methodology has not been followed from scratch
of the development process. It can be inferred that it is highly unlikely to incorporate the AUTOSAR
specific concepts at the granular level without following the AUTOSAR methodology completely.
When an ICC3 level AUTOSAR compliance is aimed, it is imperative to use the AUTOSAR spe-
cific BSW stacks for integration with the ASW, along with the standard AUTOSAR toolchains for
configuration and RTE generation. The above observation is also supported in the work by Daehyun
et al. [5]. In the proposed conversion concept, the BSW has been reused since AUTOSAR specific
BSW stacks were not procured for this project. The CIL has been retained since more manual mod-
ification in the code level may be required if the layer has to be removed. The AUTOSAR based I/O
access mechanism using ECU Abstraction type SWC can be implemented only with AUTOSAR
specific BSW stacks and has to be configured during the BSW configuration phase. In addition, the
RTE events are also included in the AUTOSAR ICC3 implementation, and they have to be config-
ured in the BSW configuration phase. These RTE events are however not part of the BSW (used in
this thesis) implementation by the supplier and therefore are not used in the AUTOSAR converted
software. The AUTOSAR conversion concept proposed in this thesis can meet ICC1 conformance
requirements since the interfaces between the ASW and the cluster consisting of RTE, BSW, and
the CIL are standardized via RTE function calls (Section 4.2). Moreover, this conversion approach
cannot be adopted for all the non-AUTOSAR legacy software models. It is rather dependent on
the architecture of the legacy software. In some cases, the complete ASW functionality has to be
decomposed into specific AUTOSAR SWC types, as indicated by Daehyun et al. [5]. As there were
about 40 non-AUTOSAR AVL HCU software models to be converted to AUTOSAR format in this
work, MATLAB scripts were developed to automate the model conversion to AUTOSAR and code
generation. The application SWCs thus converted to AUTOSAR format can also be deployed in an
AUTOSAR system (with AUTOSAR BSW stacks). However, in this case, the RTE portion has to
generated only using standard RTE generator tools. The RTE generator script used in this thesis
was developed keeping in mind the conversion concept shown in Figure 4.1 and cannot substitute a
standard RTE generator tool since the script generates only the RTE function definitions involving
SWC communication and parameter access. The RTE generator script, however, is further modifi-
able and can be adapted in the future based on the structure of the RTE code needed. Furthermore,
in terms of performance, the non-AUTOSAR software version fared better than the AUTOSAR

82

Evaluation

versions in execution time and memory consumption analysis. The reasons are the increase in the
code size for the AUTOSAR versions and the function call overheads introduced by the RTE func-
tion calls. Daehyun et al. [5] additionally indicate that the incorporation of AUTOSAR concepts
can lead to an increase in code size and execution time. Nevertheless, with several optimization
techniques such as compiler induced optimizations and inlined function calls, it is shown that the
performance of AUTOSAR versions can be significantly improved. Finally, in comparison with the
current AVL software development methodology, which also involves manual implementation of
the CIL, the migration to AUTOSAR methodology provides some benefits such as the elimination
of manual effort necessary in coding the CIL layer. However, if AVL chooses to follow AUTOSAR
methodology, additional configuration steps of the BSW modules and the RTE are also involved.

7.3 Recommendation

Based on the above discussions, further works can be carried out in one of the following areas:

• The ICC1 compliant HCU software in the next stage can be converted to a fully AUTOSAR
compliant ICC3 software. The AUTOSAR converted ASW models can be integrated with
AUTOSAR specific BSW stacks with the necessary configuration and RTE generation. The
performance metrics of the ICC3 software can also be analyzed in comparison with the ICC1
software.

• It has been said based on theoretical concepts that an ICC1 level of AUTOSAR compliance
has been achieved. Yet this compliance level is still not certified. Gilberg et al. [59] mention
the AUTOSAR conformance test scenarios and the conformance certification by a third party
agency. The software, in the next stage, can be subjected to conformance certification and
in case any deviations detected from the standard, the conversion concept can be further
improved.

• Thomas [60] mentions various optimization techniques at the BSW level to improve memory
usage and runtime performances. However, these optimization techniques cannot be applied
to the BSW used in the thesis since the BSW implementation is abstracted in the object files
delivered to AVL. In case customizable AUTOSAR specific BSW stacks are used for integra-
tion with ASW, the effects of these optimization techniques on the software performance can
be further studied. [61] and [62] further discuss other categories of optimizations that can be
applied such as in the scheduling mechanism of OS tasks or in the processing of the signals
transmitted via the COM module.

• Although the CPU used in this thesis (Infineon Aurix Tricore) is multi-core, only a single core
is used for software execution. The multi-core support has been included from AUTOSAR
4.0, and so, the possible extension of the software towards a multi-core platform can also
be investigated once the ICC3 compliance is achieved. [63] and [64] serve as good starting
points, which analyze various strategies and challenges towards multi-core migration.

83

Evaluation

84

A. Format of Memory Mapping Keyword
(AUTOSAR)

The AUTOSAR specification [31] defines a general format for the memory mapping keyword:

<COMPONENT_PREFIX>_START/STOP_SEC_<NAME>

where

• <COMPONENT_PREFIX> indicates the module abbreviation of the SWC.

• <NAME> denotes the memory section types: VAR for variables, CODE for code portion,
CONST for constants and CALIB for calibration variables.

The VAR section can additionally include:

• Initialization policy <INIT_POLICY> postfix, which indicates the initialization (or cleared)
status of the variables after reset or power cycle. Some of the postfixes are: INIT, NO_INIT
and CLEARED.

• Variable alignment <VAR_ALIGNMENT> postfix, which indicates the size of the variables
and can be denoted by one of the following postfixes: BOOLEAN, 8 bit, 16 bit, 32 bit, PTR
and UNSPECIFIED.

85

B. Format of Memory Mapping Keyword
(AVL HCU Software)

The BSW supplier of AVL HCU software defines the memory mapping keyword in the following
format [12]:

ASW_OEM_START_SEC_<DEFAULT/SMALL>_<NAME>

where

• The declaration of all fast accessible variables (variables to be placed in .sdata and .sbss
sections in the memory) is placed under the keyword with SMALL. The DEFAULT postfix is
used for all the other types of variables and the runnable entity definitions.

• <NAME> denotes the different memory section types. The code portion is placed under the
postfix CODE. The variable declarations are additionally placed with the following details:

– Initialization policy: INIT for variables initialized to previous values after reset (or
power cycle); CLEARED for variables cleared to zero.

– Allocated size of the variables: 8, 16, 32, UNSPECIFIED.

86

C. tl_clear_system

Used to clear TargetLink blocks.

Syntax

[options, msg] = tl_clear_system(’system’, Model)

Description

Clears the TargetLink properties of the Model. The output variable msg is a structure that contains
logs from deenhancement. The variable options is a structure that contains the options used.

87

D. autosar.api.create

Creates an AUTOSAR component for models developed in Simulink [45].

Syntax

autosar.api.create(Model, ’default’)

Description

Creates default AUTOSAR component for Model with all ports configured as Implicit Send/Receive
and returns AUTOSAR properties as Simulink object.

88

E. arxml.importer

Imports ARXML file as MATLAB objects [45].

Syntax

arProps = arxml.importer(componentname)

Description

Imports the ARXML with the componentname and returns AUTOSAR properties as Simulink object
to arProps.

89

F. find

Used to find the paths of AUTOSAR entities [45].

Syntax

1. find(arProps, [], SWCEntity, ’PathType’, ’FullyQualified’)

2. find(arProps, aswcPath{1}, PortEntity, ’PathType’, ’FullyQualified’)

3. find(arProps, paramcomp{1}, PortEntity, ’PathType’, ’FullyQualified’)

Description

1. For the given AUTOSAR properties arProps, the function finds the paths of one of the fol-
lowing AUTOEntities and returns as MATLAB cell array:

• AUTOEntitiy = ’AtomicComponent’ for Application SWC

• AUTOEntitity = ’ParameterComponent’ for Parameter SWC

• AUTOEntitity = ’SystemConst’ for system constants

• AUTOEntitity = ’ExclusiveArea’ for local signals

2. For the given AUTOSAR properties arProps and aswcPath, the function finds the paths of
one of the following PortEntities and returns as MATLAB cell array:

• PortEntity = ’DataRecieverPort’ for Receiver ports

• PortEntity = ’DataSenderPort’ for Sender ports

• PortEntity = ’ParameterData’ for parameters

• PortEntity = ’Runnable’ for runnable entities

3. For the given AUTOSAR properties arProps and paramComp, the function finds the paths of
one of the following PortEntities and returns as MATLAB cell array:

90

Evaluation

• PortEntity = ’ParameterSenderPort’ for Parameter Sender ports

• PortEntity = ’ParameterReceiverPort’ for Parameter Receiver ports

91

Evaluation

92

Bibliography

[1] ISO/ISE, "Guide 2: Standardization and related activities — General vocabulary," ISO Guides,
Eighth Edition, 2004. [Online]. Available: https://www.iso.org/iso-guides.html [Accessed
November 2, 2018].

[2] Nicolas Navet and Françoise Simonot-Lion, Automotive Embedded Systems Handbook, CRC
Press, Taylor & Francis, no. of pages 488, 2008.

[3] AUTOSAR Website. [Online]. Available: www.autosar.org [Accessed December 12, 2018].

[4] Atul Dixit, "AUTOSAR and Embedded Info," Wordpress.com, 2016. [Online]. Available:
https://automotiveembeddedsite.wordpress.com/why-autosar-what-it-is/ [Accessed November
3, 2018].

[5] Daehyun Kum, Gwang-Min Park, Seonghun Lee and Wooyoung Jung, "AUTOSAR Migration
from Existing Automotive Software,” in International Conference on Control, Automation and
Systems 2008, Seoul, Korea, pp. 558-562, 2008.

[6] James Joy, Anush G Nair, "Automation framework for converting legacy application to AU-
TOSAR System using dSPACE SystemDesk," in dSPACE User Conference 2012 - India,
September 14, 2012.

[7] Shiquan Piao, Hyunchul Jo, Sungho Jin, and Wooyoung Jung, "Design and Implementation
of RTE Generator for Automotive Embedded Software," in 2009 Seventh ACIS International
Conference on Software Engineering Research, Management and Applications, pp. 159-165,
2009.

[8] AUTOSAR CP Release 4.3.1, "Specification of VFB," Document ID: 056, Classic Platform,
2017.

[9] Denil J., Demeyer S., De Meulenaere P., Maudens K., Van Stechelman K., "Migrating from a
Proprietary RTOS to the OSEK Standard Using a Wrapper," In: Conti M., Orcioni S., Martínez
Madrid N., Seepold R. (eds) Solutions on Embedded Systems. Lecture Notes in Electrical
Engineering, Springer, Dordrecht, vol 81, pp 241-254, 2011.

93

Bibliography

[10] Schoof, J. and Wybo, D., "No Detour Needed: Getting to AUTOSAR via OSEK," SAE Tech-
nical Paper 2006-01-0168, 2006.[DOI: https://doi.org/10.4271/2006-01-0168]

[11] OSEK/VDX, "Operating System Specification 2.2.3," Version 2.2.3, February 17, 2005.

[12] Lufeng Zhao, "VCU 8: BSW User Manual," UAES, AVL Internal Documents, 2018.

[13] William Weinberg, "Moving Legacy Applications to Linux: RTOS Migration Revisited,"
white paper, MontaVista Software Inc., Version 2.1, July 29, 2007.

[14] Franck Fleurey, Erwan Breton, Benoit Baudry, Alain Nicolas, Jean-Marc Jézéquel, "Model-
Driven Engineering for Software Migration in a Large Industrial Context," MODELS 2007:
Model Driven Engineering Languages and Systems, Springer Berlin, Heidelberg, Lecture
Notes in Computer Science, Vol 4735, pp 482-497, 2007.

[15] AUTOSAR CP Release 4.3.1, "Specification of RTE Software," Document ID: 084, Classic
Platform, 2017.

[16] AUTOSAR CP Release 4.3.1, "Layered Software Architecture," Document ID: 053, Classic
Platform, 2017.

[17] AUTOSAR, "Specification of BSW Module Description Template," Document ID: 089, 2014.

[18] "Hybrid Control Unit - SW Architecture Document," Version 1.0, AVL Internal Documents,
2018.

[19] "S5 PHEV HCU HW & BSW Requirements," Document ID: 1117918, AVL Internal Docu-
ments, 2018.

[20] Rajkumar, "Software Development Life Cycle – SDLC | Software Testing Material". [On-
line]. Available: https://www.softwaretestingmaterial.com/sdlc-software-development-life-
cycle/ [Accessed November 14, 2018].

[21] Andreq Powell-Morse, "V-Model: What Is It And How Do You Use It?," Airbrake, 2016.
[Online]. Available: https://airbrake.io/blog/sdlc/v-model [Accessed November 14, 2018].

[22] Rajkumar, "V-Model in SW Development Lifecycle," www.softwaretestingmaterial.com,
2018. [Online]. Available: https://www.softwaretestingmaterial.com/v-model-in-sdlc/ [Ac-
cessed November 14, 2018].

[23] AUTOSAR CP Release 4.3.1, "Specification of Diagnostic Event Manager," Document ID:
019, Classic Platform, 2017.

[24] AUTOSAR CP Release 4.3.1, "Specification of I/O Hardware Abstraction," Document ID:
047, Classic Platform, 2017.

[25] AUTOSAR CP Release 4.3.1, "Guide to Mode Management," Document ID: 440, Classic
Platform, 2017.

94

Bibliography

[26] AUTOSAR CP Release 4.3.1, "NV Data Handling Guideline," Document ID: 810, Classic
Platform, 2017.

[27] AUTOSAR CP Release 4.3.1, "Specification of Operating System," Document ID: 034, Clas-
sic Platform, 2017.

[28] "ADD V19.1 Product Datasheet," VisuIT, 2019. [Online]. Available: https://www.visu-
it.de/vitdata/Download/pub/10_ADD/ADD_Info/DataSheet.pdf [Accessed May 24, 2019].

[29] Sandmann, G. and Thompson, R., "Development of AUTOSAR Software Compo-
nents within Model-Based Design," SAE Technical Paper 2008-01-0383, 2008.[DOI:
https://doi.org/10.4271/2008-01-0383]

[30] Shwetha B.M, "Simulink Advance Support for AUTOSAR: Compositions, BSW Ser-
vices Simulation and Code Generation," Mathworks Videos and Webminar, The Math-
Works, Inc., 2018. [Online]. Available: https://www.mathworks.com/videos/simulink-
advance-support-for-autosar-compositions-bsw-services-simulation-and-code-generation-
1522678366273.html [Accessed February 2, 2019].

[31] AUTOSAR CP Release 4.3.1, "Specification of Memory Mapping," Document ID: 128, Clas-
sic Platform, 2017.

[32] Intel, "Hexadecimal Object File Format Specification," Revision A, 1988. [Online]. Available:
https://archive.org/details/IntelHEXStandard [Accessed June 12, 2019].

[33] Hightec Compiler Suite Product Information, HighTec EDV-Systeme GmbH, 2019. [Online].
Available: https://hightec-rt.com/en/products/development-platform.html [Accessed May 24,
2019].

[34] Matthias Wernicke, Webminar on "AUTOSAR Configuration Process - How to handle 1000s
of Parameter," Vector Informatik GmbH, 19 Apr., 2013. [Online]. Available: https://vector-
academy.com/vi_training_elearning_en.html [Accessed January 12, 2019].

[35] Matthias Wernicke, Webinar on "Introduction to the AUTOSAR Method of ECU De-
velopment," Vector Informatik GmbH, Apr. 17, 2013. [Online]. Available: https://vector-
academy.com/vi_training_elearning_en.html [Accessed February 24, 2019].

[36] PrEEvision Product Information, Vector Informatik GmbH, 2019. [Online]. Available:
https://www.vector.com/int/en/products/products-a-z/software/preevision/ [Accessed Febru-
ary 24, 2019].

[37] DaVinci Configurator Pro Product Information, Vector Informatik GmbH, 2019.
[Online]. Available: https://www.vector.com/at/en/products/products-a-z/software/davinci-
configurator-pro/ [Accessed February 28, 2019].

[38] AUTOSAR GbR, "Specification of ECU Configuration," Version 1.0.1, 2006. [On-
line]. Available: https://www.autosar.org/fileadmin/user_upload/standards/classic/2-
0/AUTOSAR_ECU_Configuration.pdf [Accessed February 28, 2019].

95

Bibliography

[39] Regina Hebig, "Methodology and Templates in AUTOSAR," Citeseer, 2009. [Online]. Avail-
able: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.596.2903&rep=rep1&type=pdf
[Accessed August 8, 2019].

[40] AUTOSAR CP Release 4.3.1, "General Specification of Basic Software Modules," Document
ID: 578, Classic Platform, 2017.

[41] Microsar Product Information, Vector Informatik GmbH., 2019. [Online]. Available:
https://vector.com/pi_microsar_en/ [Accessed January 12, 2019].

[42] DaVinci Developer Product Information, Vector Informatik GmbH, 2019. [Online]. Avail-
able: https://www.vector.com/at/en/products/products-a-z/software/davinci-developer/ [Ac-
cessed April 24, 2019].

[43] Mathworks Documentation on "Code Generation Options," The MathWorks, Inc. [On-
line]. Available: https://de.mathworks.com/help/simulink/gui/simulink-coder-options.html
[Accessed August 8, 2019].

[44] Mathworks Documentation on "Packages Create Namespaces," The MathWorks, Inc. [On-
line]. Available: https://de.mathworks.com/help/matlab/matlab_oop/scoping-classes-with-
packages.html [Accessed August 8, 2019].

[45] Matlab User Manual on "Embedded Coder AUTOSAR" for Matlab 2016b, The MathWorks,
Inc., 2016.

[46] Matlab Documentation on "Target Language Compiler," The MathWorks, Inc. [Online]. Avail-
able: https://de.mathworks.com/help/rtw/block-authoring-with-tlc.html [Accessed April 19,
2019].

[47] AUTOSAR CP Release 4.3.1, "Specification of Platform Types," Document ID: 048, Classic
Platform, 2017.

[48] 32-bit Aurix Tricore TC275 Product Information, Infineon AG, 2019. [Online]. Available:
https://www.infineon.com/cms/de/product/microcontroller/32-bit-tricore-microcontroller/32-
bit-tricore-aurix-tc2xx/ [Accessed May 24, 2019].

[49] ASAM Standards, ASAM e.V, 2019. [Online]. Available:
https://www.asam.net/standards/detail/mcd-2-mc/wiki/ [Accessed May 24, 2019].

[50] DDS Product Information, VisuIT, 2019. [Online]. Available: https://www.visu-
it.de/products/dds/ [Accessed May 24, 2019].

[51] Tool Interface Standards, "Executable and Linkable Format (ELF)," Version 1.1. [Online].
Available: http://flint.cs.yale.edu/cs422/doc/ELF_Format.pdf [Accessed July 24, 2019].

[52] UDE Microcontroller Debugger, PLS Development Tools, 2019. [Online]. Available:
https://www.pls-mc.com [Accessed August 14, 2019].

96

Bibliography

[53] Herbert Schildt, C - The Complete Reference, Fourth Edition, McGraw - Hill, no. of pages
876, 2000.

[54] "TriCore Development Platform - User’s Guide v4.6.6.1," HighTec EDV-Systeme GmbH.,
2016.

[55] Sharang Kulkarni, Prof. Shafali Gupta, Rameez Tamboli, Anil Dake, "Review of Techniques
for Making Efficient Executable in GCC Compiler," in Imperial Journal of Interdisciplinary
Research (IJIR), Vol-3, Issue-3, 2017. [Online]. Available: https://www.semanticscholar.org
[Accessed August 12, 2019].

[56] VeriStand Product Information, National Instruments, 2019. [Online]. Available:
http://www.ni.com/veristand/ [Accessed June 06, 2019].

[57] New European Driving Cycle, Wikipedia, 2019. [Online]. Available:
https://en.wikipedia.org/wiki/New_European_Driving_Cycle [Accessed August 14, 2019].

[58] Vector CANape Product Information, Vector Informatik GmbH, 2019. [Online]. Available:
https://www.vector.com/int/en/products/products-a-z/software/canape/ [Accessed August 17,
2019].

[59] Alain Gilberg, Bernd Kunkel, Alain Ribault, Philippe Robin, Noë Spinner. "Conformance
Testing for the AUTOSAR Standard," ERTS2 2010, Embedded Real Time Software Sys-
tems, Toulouse, France, May 2010. [Online]. Available: https://hal.archives-ouvertes.fr/hal-
02264390/document [Accessed August 17, 2019].

[60] Thomas M Galla, "Beyond AUTOSAR – Optimized AUTOSAR Compliant Basic Software
Modules," ResearchGate, 2008. [Online]. Available: https://www.researchgate.net/ [Accessed
August 18, 2019].

[61] Zhao, Qingling, Gu, Zonghua, Zeng, Haibo, “Design optimization for AUTOSAR models with
preemption thresholds and mixed-criticality scheduling,” in Journal of Systems Architecture,
Vol 72, pp 61-68, 2017.

[62] Jeong-Hwan Lee, Hyun Yong Hwang, Tae Man Han and Yong Hak Ahn, “A Study on signal
group processing of AUTOSAR COM Module,” in Journal of Physics: Conference Series, Vol
450, No.1,012034, 2013.[DOI:10.1088/1742-6596/450/1/012034].

[63] Georg Macher, Andrea Hoeller, Eric Armengaud and Christian Kreiner, "Automotive Em-
bedded Software: Migration Challenges to Multi-Core Computing Platforms," in 2015 IEEE
13th International Conference on Industrial Informatics (INDIN), pp. 1389-1393, 2015.[DOI:
10.1109/INDIN.2015.7281937]

[64] Simon Widlund and Anton Annenkov, "Migrating a Single-core AUTOSAR Application to a
Multi-core Platform: Challenges, Strategies and Recommendations," Master’s thesis in Com-
puter Science and Engineering, Chalmers University of Technology, 2017.

97

	Credits
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Need for Standards
	Establishment of AUTOSAR Consortium
	Problem Statement and Motivation
	Related Work
	Thesis Structure

	Overview of AUTOSAR and AVL HCU Software Architecture
	AUTOSAR Layered Architecture
	Application Software
	Run Time Environment
	Basic Software
	BSW Conformance Classes

	AVL Hybrid Control Unit Software Architecture Overview
	Background
	Application Software
	Customer Interface Layer
	Basic Software

	AUTOSAR Compliance Deviation Analysis
	Deviation Analysis along V-Model Phases
	Deviations at Requirements Level
	BSW Architecture Requirements
	BSW Interface Requirements

	Architectural and Interface Level Deviations
	Interface Handling in AVL HCU Software
	Interface Handling in AUTOSAR Standard
	Differences in Scheduling Concepts

	Deviation at Model Development and Code Generation Level
	Model Development Aspects in AVL HCU Software
	Model Development Aspects in AUTOSAR Software Model
	Differences in the Memory Mapping Approach

	Integration Level Deviation
	Integration Process in AVL HCU Software
	Integration Process in AUTOSAR Software Models

	Comparison of Development Methodology

	Implementation Approach
	Implementation Decisions
	Evaluation for Application Software Conversion
	Evaluation of Basic Software for Integration
	Evaluation for Run Time Environment Generation

	Conversion Approach towards AUTOSAR Compliance

	Implementation
	Model Conversion to AUTOSAR
	Removal of TargetLink Properties
	Generation of New Model Libraries
	Model Extraction from Maestra Framework
	Applying AUTOSAR Conversion

	RTE Generation
	Implementation of RTE Generator

	Integration

	Evaluation
	Experimental Setup
	Observations

	Memory Consumption Analysis
	Task Runtime Analysis
	CPU Utilization Analysis
	Stack Usage Analysis

	Conclusion
	Summary
	Discussion
	Recommendation

	Format of Memory Mapping Keyword (AUTOSAR)
	Format of Memory Mapping Keyword (AVL HCU Software)
	tl_clear_system
	autosar.api.create
	arxml.importer
	find
	Bibliography

