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Abstract  

 

 

Autonomous driving is a very current topic and both vehicle manufacturers and 
researchers around the world work intensively in that field. The School of Automotive Studies 
at Tongji University Shanghai has developed a four-wheel independent drive, four-wheel 
independent steering (4WID-4WIS) vehicle, which is the basis for research around the topic of 
autonomous driving. This thesis deals with one of many topics situated in the field of vehicle 
control by using Model Predictive Control (MPC). In the beginning, the basic research goal and 
motivation in general and specific context, which is related to the 4WID-4WIS vehicle, is 
introduced. The prototype is described briefly in order to give an idea of how the special vehicle 
architecture is realized. This introduction is followed by a closer look on Model Predictive 
Control, it’s basics, working principle, advantages and disadvantages. Building on this, a 
possible control hierarchy for autonomous vehicles is introduced and discussed. This includes 
the description and definition of special driving modes, which the vehicle is able to perform 
thanks to its advanced vehicle architecture. Additionally, the different levels of the control 
hierarchy are lined out and described. Having introduced the basic idea behind Model 
Predictive Control and the control architecture, the design process of the vehicle controllers is 
described. There, the first steps include a mathematical description of the prediction models 
used by the MPC controllers, which are transformed in a way that they are suitable for the use 
in MATLAB®. In the end, a control structure is presented, which includes a MPC Motion Planner, 
a MPC Steering Controller and a MPC Torque Vectoring Controller. After the controller design, 
the implementation in MATLAB® and Simulink® is taken care of, during which several important 
steps in controller tuning and evaluation are described. These steps ensure proper control 
behavior and the corresponding section of the thesis provides information about the control 
stability and robustness. The second to last chapter describes a big variety of conducted 
simulations, like the evaluation of different MPC strategies with respect to the influence of 
varying vehicle speed or a comparison between a PID steering controller and a MPC steering 
controller. Furthermore, the advantages of four-wheel steering are assessed and the influence 
of torque vectoring is described. In addition, this section includes information about the special 
modes, which are simulated in order to evaluate the abilities of the MPC control architecture 
to handle these situations. The chapter is concluded by the simulation of combined driving 
modes, which complete driving tasks like sideways parking, turning around in a dead end or 
performing a right angle turn on the spot. In the last chapter, a conclusion of the conducted 
work is drawn and several possible future research topics following and advancing the 
presented control approach are listed.          

 

 

Key Words:  Model Predictive Control, autonomous driving, four-wheel steering, driving 
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1 Introduction 
 

1.1 Autonomous Driving in Thesis Context 
 

Autonomous driving is a major field of research in both the automotive industry and at 
the academic level and concerns not only the scientific community but also politics and 
customers. One of the big potentials of autonomous driving is seen to be in reducing fatal car 
accidents by ruling out the human driver as the source of errors [1]. It also promises 
advantages in passenger and goods transportation. 

Automated driving can be subdivided into several different levels, as described by SAE 
[2]. Figure 1-1 shows these five levels. 

 

 

 

 

 

 

 

 

 

Level “0” refers to a conventional car, which is solely controlled by a human driver. 
Level “1” means that the vehicle is able to control the vehicle longitudinal dynamics to a certain 
extent, whereas Level “2” takes both longitudinal and lateral dynamics into account. The 
systems of the vehicle play in these levels an assisting role and the driver still has to maintain 
supervision over these functions and in case take over control again. In the highly automated 
Level “3”, the car is able to perform certain tasks and manoeuvers by itself during the driver 
can do other things. But he/she is still required to take over the controls in case the vehicle 
can’t handle a situation or the system fails. In the fully automated Level “4” no human 
intervention is needed to perform the whole driving task. But there is still a possibility for the 
driver to take over the controls if necessary. At the final autonomous Level “5”, the vehicle 
moves absolutely independent of any human interaction. The vehicle, therefore, turns into a 
self-driving robot, which can operate on its own [3].   

This thesis is part of ongoing research at the School of Automotive Studies at Tongji 
University, which deals with the automation of a highly maneuverable electric car, introduced 
in Chapter 1.3. The pursued level of automation is level 5, according to SAE/VDA. Considering 
the abilities, the vehicle should have, some basic guidelines were defined, which for example 
include the field of application and research goals. As the field of application, inner-city traffic 
or transport is taken into account, which means that the vehicle will travel at low speeds. In 
order to be suitable for numerous transportation tasks, including persons and goods, the 

Figure 1-1 SAE Levels of Automation 
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vehicle should be able to manoeuver in confined space by utilizing its high level of 
maneuverability and therefore represent a difference to conventional vehicles in these fields 
of application. 

 

1.2 Current Research Status and Motivation  
 

A vehicle with four-wheel independent drive and steering is a distributed nonlinear 
control system [4] and therefore requires a special control approach, which is able to handle a 
system of that kind. In the field of vehicle control, there are many different approaches in use. 
[5] gives an overview of the broad topic of path tracking, like for example strategies based on 
a geometric or kinematic representation of the vehicle, which are simple and have 
computational advantages but fail to represent the dynamic behavior of the vehicle. This is not 
the case with dynamic vehicle models, which take the moments and forces acting on the 
vehicle into account and are therefore able to represent the vehicle in a proper way - even 
when driving at the limits of vehicle dynamics. As mentioned before, the vehicle is a nonlinear 
system and this is mainly caused by the forces, which act between the tires and the road [6]. 
These forces are highly nonlinear and there are models available, which help to imitate this 
behavior for control design, like the “Magic Formula” from Pacejka [7], which is commonly used 
for designing nonlinear controllers. Since using a nonlinear controller rises complexity in both 
controller design and computational aspects, it is common to linearize the tire models by 
accepting the loss of a more accurate vehicle representation [5].  

The following list should give a brief overview of control strategies, which are used in the 
field of four-wheel steering control design considering nonlinear controlled systems. A control 
type, which is suitable for controlling nonlinear and linear systems, is the Fuzzy Control and is 
applied in many different fields of application. The Fuzzy Controller is a purely statistic mapping 
controller without dynamics. Under some effort in optimizing Fuzzy Control, a behavior similar 
to a human can be achieved for autonomous driving [8]. Another approach is described in [9] 
where a Backstepping Control algorithm is established based on a kinematic vehicle model in 
order to control a nonlinear four-wheel steering vehicle for trajectory tracking. It was 
successfully simulated and tested on a prototype following trajectories with sharp turns. The 
Sliding Mode Controller (SMC) uses the control signals as discontinuous functions and is 
therefore suitable for controlling nonlinear systems. It offers a control strategy, which responds 
fast and is highly robust against external disturbances. But due to the high switching frequency 
of the controller, the signals tend to chatter and that could raise problems with actuators, which 
can’t follow the rapid changing signals or even be damaged [5]. In [10] H∞ control and in [11] 
H2/H∞ mixed robust control are used for the steering control. These control types combine 
robust performance and robust stability and show good results in vehicle stability control.  

A very promising approach for controlling nonlinear systems is Model Predictive Control 
(MPC) because it can handle multiple-input multiple-output systems (MIMO) in which the 
signals can have interactions between their inputs and outputs. It can also control several 
variables simultaneously, allows interactions between several input and output signals and 
handles constraints on signal values and the signal rate-of-change. Besides these 
characteristics, it offers a preview capability, which makes it especially interesting for 
applications in autonomous driving since it offers a similar behavior like a human driver by 
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predicting future control inputs using a prediction model of the controlled system. These 
capabilities are the main motivation why the MPC control is used in this thesis. A drawback, 
however, is that Model Predictive Control is computationally complex and therefore requires 
appropriate controller hardware. The details of Model Predictive Control will be described and 
discussed throughout this thesis.   

 

1.3 The 4WID-4WIS Electric Vehicle  
 

A research group at the School of Automotive Studies at Tongji University has designed 
and built a prototype of a battery electric vehicle with four individually drive- and steerable 
wheels. The 4WID-4WIS (Four-Wheel Driving Four-Wheel Steering) electric vehicle serves the 
purpose of research work in the fields of vehicle chassis control and autonomous driving and 
represents the basis for the work conducted in this thesis.    

 

 

 

 

 

 

 

The special design can be seen in Figure 1-2, with four individual wheel-hub motors and 
a steering motor at each wheel, positioned above the wheels. With this vehicle architecture, a 
higher maneuverability can be achieved compared to a common two-wheel steering vehicle 
since all four wheels can be steered and driven individually. That allows for special driving 
manoeuvers or driving modes. Those will be discussed in Chapter 3.2. Table 1 shows selected 
parameters of the 4WID-4WIS vehicle, which are considered in controller design.   

Table 1  4WID-4WIS vehicle parameters 

Full mass � 500 kg 

Tire radius �� 0,2521 m 

Length of vehicle � 2,2 m 

Width of vehicle � 1,4 m 

Distance CoG to front axle �� 1,05 m 

Distance CoG to rear axle �� 1,15 m 

Vehicle Moment of Inertia about z-axis �	 488 kgm² 

Wheel Moment of Inertia �� 1,5 kgm² 

Figure 1-2  The 4WID-4WIS Vehicle Prototype 
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1.4 Main Research Content 
 

The vehicle prototype, which is introduced in Chapter 1.3 is a research vehicle in the 
field of autonomous driving. One crucial aspect of autonomous driving is the chassis control, 
which has to process data from a navigation system and compute driving commands by 
bearing the vehicle dynamics and physical limitations in mind. The main research content of 
this thesis aims at providing chassis control based on MPC control, which is suitable for the 
4WID-4WIS vehicle. This vehicle is designed to be an autonomous vehicle and the control 
concept of this thesis should, therefore, be suitable for this field of application. That is why a 
motion planner for computing the vehicle trajectory and enabling obstacle avoidance should 
be designed and simulated as well. Furthermore, new driving functions should be evaluated, 
implemented and simulated by utilizing the four-wheel independent steering system.   
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2 Model Predictive Vehicle Control 
 

2.1 Basic Principle and Background  
 

The roots of Model Predictive Control date back to 1979 when the concept was first 
introduced in the petrochemical industry sector. With the new approach of predicting system 
behavior, it was shown that the control outputs were less aggressive and led to a better 
convergence with the reference values. In the beginning, the predictive control strategy was 
only used in slow processes where computation time was not crucial because the optimization 
is computationally complex. Only with the development of faster solvers and more capable 
controller hardware, it was possible to use MPC in highly dynamic systems like e.g. vehicles 
[12]. 

Model Predictive Control is an interesting control approach for autonomous vehicle 
control because of the predictive nature, which is similar to human behavior. A driver will look 
ahead on the road to monitor its environment and will, therefore, be able to react in time to 
both sudden and predictable events or changes in the driving path due to e.g. turns or 
overtaking manoeuvers. Model Predictive Control makes it possible to realize a similar 
behavior and is therefore in combination with a sufficient perception system very suitable for 
autonomous driving [12].     

When talking about the basics of Model Predictive Control it makes sense to first have a 
look at Optimal Control to understand the working principle of MPC and the benefits of its 
algorithm. The Optimal Control strategy is to determine a set of control inputs to a dynamical 
system in such a way that the performance index 
 is minimized. This optimization is subject 
to initial conditions, constraints and system dynamics and is performed over a defined time 
horizon. The performance index 
, which should be minimized, could be formulated as follows:  


 = ������ + � ����� + 1�, ����, ��������
 !"

 (2.1) 

Equation (2.1) shows the performance index 
, where � is the terminal cost, � is the 
time horizon, � is the Lagrangian cost, � is the state vector, � is the vector of manipulated 
control inputs and � is the disturbance vector. This control strategy allows for optimal controller 
outputs over the considered time horizon, which are kept within a permissible range thanks to 
constraints.   
But the Optimal Control method has a major drawback because it basically represents an 
open-loop control. Due to this, crucial errors are not taken into account like e.g. model 
mismatch or external disturbances and the effects of those can therefore not be lowered by 
the controller [13].  

The strategy of MPC aims at optimizing a predicted cost, which will give the future 
control inputs. These control inputs are themselves limited by constraints in order to gain 
permissible values and only the first input resulting from the optimization is fed to the system. 
At the next time step, the whole process is repeated with newly updated information about the 
system states. That enables the MPC to respond to deviations between control outputs and 
actual system response and therefore gain a certain robustness against uncertainties like e.g. 
prediction model mismatch or disturbances [14].     
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Model Predictive Control is related to Optimal Control to a certain degree since it 
performs a similar optimization, but does that repeatedly only for a limited time span known as 
the prediction horizon #$. This approach is also known as rolling or receding horizon and gives 

MPC the characteristics of a feedback controller. As mentioned before, the computational 
complexity is a limiting factor for MPC applications and in order to reduce the needed 
computing power, the control horizon #% is introduced, which is smaller than the prediction 
horizon. The basic optimization is not changed by this but it will only be performed until the 
end of the control horizon. After that, the control input is kept constant until the end of the 
prediction horizon. The introduction of #%  does not only help to reduce computational 
complexity but also improves the stability of the controller. Another advantage of the rolling 
horizon routine is that it results in an online adaptive control scheme and this makes it possible 
to incorporate certain changes of e.g. system inputs by updating the prediction model [13]. 
This advantage will be used in the thesis and is described in Chapter 5.4.  

 

 

 

 

 

 

 

 

Figure 2-1 shows past and future control inputs over time, control step �, number of 
steps � , control horizon #% , prediction horizon #$  as well as reference, measured and 

predicted trajectory. 

 

 

 

 

 

 

 

Figure 2-2 [13] shows the two loops, which are performed in the arrangement of the MPC 
with the controlled system. The optimization loop within the controller repeats several times 
until sufficiently good control signals are found. The outside loop, on the other hand, will only 
be performed once at each control step �. It connects the system with the controller and also 
gives the feedback signals to the controller [13].     

 

Figure 2-1  Prediction of control inputs during the control interval 

Figure 2-2 Control loops of MPC [13] 
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2.2 MPC Structure and Mathematical Formulation 
 

This chapter aims at giving a general overview of the structure of MPC and the basic 
mathematical description. Since the development and simulation of the controllers used in this 
thesis was done in MATLAB® using predefined functions to create MPC, the optimization 
problem will not be formulated explicitly for each controller. Therefore, this chapter will only 
show an exemplary mathematical formulation.  

System Model 

In Model Predictive Control the prediction model plays an important role. It is derived 
from the actual controlled system and simplified in a way to balance between a sufficiently 
accurate representation of the system behavior and simplicity in order to keep the 
computational complexity low. In case of a vehicle, the system itself is highly nonlinear, mostly 
caused by external forces on the vehicle, namely the tire forces [6]. MPC is able to control 
nonlinear systems and is, therefore, suitable for the use in the automotive field. Considering 
the formulation of system models there are basically two approaches, which are either using a 
nonlinear model or a linear model and that also asks for either nonlinear or linear Model 
Predictive Controllers. The advantage of linear MPC over nonlinear MPC is the lower 
computational complexity, whereas the nonlinear MPC can represent the system dynamics 
better and is, therefore, more suitable for a wider range of applications. In case of vehicle 
control this would be driving at high vehicle dynamics or even at the limits [15]. Another 
advantage of nonlinear MPC is that the stability boundary of the controlled system can be 
raised [6]. As mentioned in Chapter 1.1, the field of application considered in this thesis is 
limited to inner-city driving and maneuvering at low speeds and low vehicle dynamics. 
Therefore, and due to the advantage of low computational complexity, only linear prediction 
models and linear MPC are considered further on.            

In this chapter, a general mathematical formulation of the Model Predictive Control 
optimization problem is shown, based on state space formulation since this is used further on 
throughout Chapter 4. Equations (2.2) and (2.3) show the general state space representation 
where &, ' and ( are the state, input and output matrices respectively and ), �, * and + are 
the system matrices.  

&, = )& + �( (2.2) 

' = *& + +( (2.3) 

In order to match with the finite dimensional optimization problem of MPC, Equations 
(2.2) and (2.3) are displayed in discrete state space form. For doing that, the following 
formulation is derived from the multiple-input multiple-output (MIMO) system used in [16] and 
adapted to the notation used in this thesis.  

&�� + 1� = )-&��� + �-(��� (2.4) 

'��� = *-&��� + +-(��� (2.5) 

Equations (2.4) and (2.5) show the discretized state space model, where &��� is the state 
variable, '��� represents the output of the model and (��� the input. )- = ) ∙ /0, �- = � ∙ /0, *- = * and +- = + are the discretized system matrixes with the sampling time /0. Furthermore, 
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this formulation contains no dead time since the MPC Controller in MATLAB compensates that 
[17].  

A new state vector 1��� is now introduced, which is composed of &��� and (�� − 1� and 
is displayed in vector form:  

1��� = 3 &���(�� − 1�4 (2.6) 

Implementing the new state vector 1��� in the discretized state space form leads to:  

1�� + 1� = )-51��� + �-5Δ(��� (2.7) 

'��� = *-51��� + +-5Δ(��� (2.8) 

The matrixes )-5 , �-5  and *-5 are composed of the discretized system matrixes described 
before and +-5 = +-. The structure of these matrixes depends on the considered system and 
will, therefore, be left out in this general description.  

Cost Function 

With the optimal control input vector Δ(�� + 7|��  a cost function is formulated. The 
objective of Model Predictive Control is to minimize this cost function. 

min<=� � >
�1���, Δ?���� = �‖'�� + 7|�� − '��� + 7|��‖AB
CD

E!�
+ � ‖Δ(�� + 7|��‖FB  CH��

E!"
I (2.9) 

In Equation (2.9) #% and #$ are the control and prediction horizon respectively, '� is the 

reference for the controller. The diagonal Matrixes J and K represent the weighting matrices.  

Furthermore, the equation is subject to Equation (2.10) and the system constraints. 

1�� + 7|�� = )-51�� + 7 − 1|�� + �-5Δ(�� + 7 − 1|�� (2.10) 

Constraints 

One of the advantages of a Model Predictive Controller is that the system constraints 
can be defined in the cost function and are therefore taken into account in the optimization. 
This makes it possible to incorporate system constraints, which might be necessary because 
of physical limitations or to represent boundaries, which should not be violated due to safety 
reasons. Constraints are formulated as inequalities to define a range within the values can 
vary and also on the signal rate-of-change. They can be applied to both input and output values 
and have the basic structure as in Equation (2.11) and (2.12).  

'LEM ≤ '�� + 7|�� ≤ 'LOP     �7 = 1,2, … , #$� (2.11) 

(LEM ≤ (�� + 7|�� ≤ (LOP     �7 = 0,1, … , #% − 1� (2.12) 

Optimizer 

There are several different solvers available for the optimization process within the MPC 
framework. When choosing a solver, it is necessary to know if the optimization problem is 
convex or non-convex. In mathematical terms, convexity is given for a range of functions and 
sets if the connecting line between two points of the set lies entirely within the set. For an 
optimization, it is crucial to have convex sets because only by that it can be guaranteed to get 
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a global optimum in the solution. The model for a convex optimization problem must be linear, 
otherwise, special solver methods need to be applied, which would make the online 
optimization computationally more complex. In other words, for the use of linear MPC the 
model must also be linear and by that, a convex optimization can be used, which results in an 
optimal solution [12]. Furthermore, when the problem formulation is convex, linear and the cost 
function is quadratic it’s called a quadratic program (QP). On the other hand, if the model is 
nonlinear it is in general also non-convex and instead of a global optimum, only a local optimum 
can be achieved [18].   

In this thesis, the MPC controllers are designed in MATLAB® using predefined functions 
and the standard KWIK algorithm [19] to solve the quadratic program (QP) problem.       

Controller Stability 

In controller development, it is important to prove stability in order to gain reliable and 
safe working behavior in practical applications. The control law of MPC is nonlinear thanks to 
the constraints, which are described by inequalities; therefore, Lyapunov stability theory can 
be applied. This is under the assumption that there is no model mismatch and that all 
disturbances can be modeled and therefore compensated [14], [18]. In order to keep the 
computational complexity low, however, it is common practice to evaluate and ensure the 
stability by conducting a series of simulations and experiments [20], [16]. Since in this thesis 
the controller is developed in MATLAB®, a possible way of checking controller stability will be 
shown in Chapter 5.2.     
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3 Control Architecture 
 

3.1 Control Hierarchy 
 

Depending on the level of automation, an autonomous vehicle needs to fulfill a certain 
amount of tasks, which would normally be done by the driver, as described in Chapter 1.1. 
This extends to a level where all driving tasks are fulfilled automatically by the vehicle without 
any human action. In order to realize this ability, several measures have to be taken in order 
to drive the vehicle safely. As described in [1] these measures can be split up into a hierarchy 
beginning with route planning at the top, followed by behavioral decision making, motion 
planning and vehicle control. This and similar basic structures are widely used in e.g. [20], [21], 
[22] and [23] and will also provide the basis for the control architecture in this thesis.  

 

 

 

 

 

 

 

 

As shown in Figure 3-1 a navigation level represents the top of the hierarchy and 
provides data for the motion planner, which itself gives commands to the lower level trajectory 
follower. The feedback flow from the bottom to the top of the hierarchy is left out in this depiction. 
The base of the structure is represented by the controlled system, which can be a vehicle or 
as in case of this thesis a vehicle model. In the next chapters, the different levels of the 
hierarchy will be discussed. 

Splitting up control levels as shown above also has practical reasons, since they perform 
different tasks, which also ask for different parameters and settings within the controllers, e.g. 
the sampling time. Another aspect is that not all levels need the same information and a control 
architecture can help to channel and distribute the signals and data accordingly. It should be 
mentioned here, that the main focus of this thesis lies on the levels of motion planning and 
trajectory following, rather than on the navigation level or the vehicle model. Both motion 
planning and trajectory following are realized using individual Model Predictive Controllers. 
The strategy of using two different controllers for these levels has certain advantages since 
the controllers can be tuned and optimized separately, specifically for their task. Therefore, 
things like prediction horizon and sampling time can be chosen individually, which e.g. allows 
the motion planner to have a long prediction horizon in order to take many obstacles into 
account and to perform the optimization at low frequency. The trajectory follower, on the other 
hand, can operate with a shorter prediction horizon and a shorter sampling time. Therefore, it 

Figure 3-1  Control Hierarchy of Autonomous Vehicles 
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can cope better with fast signals from the vehicle and respond quickly to sudden changes but 
over a smaller time horizon, which results in a computational advantage [20], [ 21].            

 

3.2 Navigation Level and Driving Modes 
 

The navigation level is a crucial part of the control framework of an autonomous vehicle 
because it represents the link between the environment surrounding the vehicle and all lower 
control levels. An example includes map data that has to be available from which a coarse 
path can be planned in the vehicle environment. In order to do that, the vehicle must be able 
to localize itself either by the perception system, other positioning systems or even 
communication with other vehicles (V2V) or to infrastructure (V2I) [23]. The perception system 
is composed of several different sensors and sensor systems like cameras, radar, LIDAR, GPS 
and several low-range sensors [1]. Combining all these functionalities in the navigation level 
represents one of the prior goals of autonomous driving that must be ensured at any time, 
which is providing safety for both the environment of the vehicle and the passengers [23].      

The Navigation Level and its functionality is not the primary concern of this thesis, but it 
delivers certain information for the lower level controllers. This includes the planned path and 
a velocity profile. Thanks to the special architecture of the 4WID-4WIS vehicle, several different 
driving modes can be realized. These driving modes enable the vehicle to perform manoeuvers, 
which would not be possible with a conventional vehicle. In the following sections, the driving 
modes are described and distinguished by the values of longitudinal velocity, lateral velocity 
and yaw rate in the vehicle coordinate system.   

 

3.2.1 Four-Wheel Steering Mode  
 

This driving mode utilizes one of the big advantages of four-wheel steering considering 
vehicle dynamics. Four-wheel steering can be distinguished in two cases, one is positive 
steering and the other one is negative steering. The difference lies in the orientation of the rear 
wheels with respect to the front wheels.  

 

 

 

 

 

 

 

 

 

Figure 3-2  Positive and negative steering configuration 
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The left side of Figure 3-2 shows positive steering, where the rear wheels point in the 
same direction as the front wheels. The vehicle on the right shows negative steering, which is 
characterized by rear wheel steering angles pointing in the opposite direction of the front 
wheels [24].      

 

Positive Steering 

In this steering configuration, the steering wheels at the rear axle turn into the same 
direction as the ones at the front axle. This can improve stability and steering response at 
higher speeds [24]. Furthermore, simulations, which will be described in Chapter 6.3.3 have 
shown, that a vehicle yaw rate of almost zero can be achieved with this steering configuration. 
A drawback can be seen when evaluating the turning radius of the vehicle, since it is larger 
than the one achieved with a two-wheel steering vehicle and thus results in lower 
maneuverability considering e.g. narrow turns [25].      

 

Negative Steering 

As described above this steering configuration is characterized by the different turning 
direction of front and rear wheels. This means e.g. that the rear wheels will turn clockwise if 
the front wheels turn anticlockwise and vice versa. The main advantage of this steering 
configuration is that the turning radius of the vehicle can be considerably reduced compared 
to a conventional two-wheel steering vehicle and thus makes it suitable for vehicles, which 
have to provide high maneuverability. [25] 

Table 2 lists the values of vehicle speed and yaw rate with which positive and negative 
steering manoeuver can be characterized. For positive steering, the yaw rate is set zero. This 
decision is described closer in Chapter 6.3.3. 

Table 2  Vehicle velocity signals of Four-Wheel Driving Mode 

 Positive Steering Negative Steering 

Vehicle Longitudinal Speed −TP ≤ 0 ≤ TP −TP ≤ 0 ≤ TP 

Vehicle Lateral Speed −TU ≤ 0 ≤ TU −TU ≤ 0 ≤ TU 

Vehicle Yaw Rate � = 0 −� ≤ 0 ≤ � 

 

In this thesis only forward driving in positive x-direction in vehicle coordinate frame is 
considered, but backward driving with four-wheel steering configuration could be achieved the 
same way. In fact, the vehicle prototype shown in Chapter 1.3 is designed in a way, that there 
is no defined front or rear end of the vehicle. So the difference between forward and backward 
driving comes down to a change in signs of the driving inputs and doesn’t ask for major 
changes. 
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3.2.2 Sideways Driving 
 

Thanks to the special design of the 4WID-4WIS electric vehicle the wheels can be 
turned up to a 90 degrees angle, which allows driving in lateral vehicle direction. This driving 
manoeuver is called sideways driving further on. 

Sideways driving is an interesting ability for many real-world applications. For example, 
it can be used to park sideways in a spot, which is only slightly longer than the vehicle itself. 
Such a manoeuver would not be possible with conventional steering. As a consequence of this 
ability, the necessary parking area for vehicles with such a steering configuration can be kept 
smaller than for conventional vehicles. This could result in a better utilization of available 
parking space in crowded cities. An example of such a parking scenario is shown in Chapter 
6.7.1. Another application for sideways driving is to utilize the improved maneuverability for 
delivery tasks. A vehicle with the ability of lateral driving can be used in narrow streets where 
conventional steering isn’t sufficient.    

 

 

 

 

 

 

 

 

Figure 3-3 shows the steering configuration for sideways driving. The wheels are turned 
90 degrees in the clockwise and counterclockwise direction respectively. Table 3 lists the 
values of vehicle speed and yaw rate with which the sideways driving manoeuver can be 
characterized. 

Table 3  Vehicle velocity signals for Sideways Driving 

Vehicle Longitudinal Speed TP = 0 

Vehicle Lateral Speed 2TU N 0 N TU 

Vehicle Yaw Rate � � 0 

   

It is obvious that this steering configuration can only be initialized when the vehicle 
stands still. In case the vehicle is traveling at a certain speed, a sudden 90 degrees turn of the 
wheels would cause the vehicle to lose stability and move uncontrolled. Therefore, a change 
into sideways driving mode can only be performed safely when the vehicle is standing still. It 
is important to consider this necessity in the planning stage of the navigation level.    

 

Figure 3-3  Sideways Driving Steering Configuration 
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3.2.3 Turning on the Spot 
 

The vehicle architecture of the 4WID-4WIS vehicle described in Chapter 1.3 allows 
turning the steering wheels in a way that the vehicle will turn on the spot. In order to stay at the 
same position during the whole manoeuver in any direction, both vehicle longitudinal and 
lateral speed have to be zero and the center of rotation should lie on the vehicle center of 
gravity (CoG), as it can be seen in Figure 3-4. This configuration allows the vehicle to be highly 
maneuverable since it can change its orientation right in the place where it is at the moment, 
which is not possible for a two-wheel steering vehicle. Therefore, it can e.g. enter dead-end 
streets, which are too narrow to turn the vehicle around with common two-wheel steering. In 
that case, the vehicle can turn on the spot and leave the dead-end street. Examples for using 
the turning on the spot mode are displayed in Chapter 6.7.2. 

 

 

 

 

 

 

 

 

 

Table 4 shows vehicle speed and yaw rate for turning on the spot.  

Table 4  Vehicle velocity signals for Turning on the Spot 

Vehicle Longitudinal Speed TP = 0 

Vehicle Lateral Speed TU � 0 

Vehicle Yaw Rate 2� N 0 N � 
Similar to sideways driving this mode requests the setting of defined steering angles at 

the beginning of the manoeuver. The steering angles are far bigger than normal and in order 
to avoid the vehicle to lose stability or drive uncontrolled, the steering angles can only be set 
when the vehicle speed is zero. This limitation has to be taken into account during route 
planning in the navigation level.    

 

3.2.4 Overview of Driving Modes and Decision Making 
 

Having established that the driving modes are tailored for certain driving situations the 
question is now in which hierarchical level of the control architecture a decision for the driving 
mode has to be made. First of all, it is necessary to define which circumstances have to be 

Figure 3-4 Turning on the Spot Configuration 
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given and which criteria have to be fulfilled in order to change a driving mode and this of course 
differs from mode to mode. But basically, a certain amount of information is necessary, e.g. 
the planned route, the global vehicle position or the dimensions and geometry of the 
environment. Furthermore, a certain driving characteristic can be defined as high comfort 
driving with a very low vehicle yaw rate or low turning circles in order to perform manoeuvers 
which need less space. When considering, for example, a parking scenario it is important to 
know the dimension of the parking spot. Depending on this information it can be evaluated if 
the vehicle can enter the parking spot with normal steering, special four-wheel steering or even 
only in sideways driving if the gap dimensions are very small. A similar situation can be found 
when the vehicle enters a narrow street or a dead end and has to turn around. If the street 
width doesn’t allow to turn the vehicle around using conventional steering, turning on the spot 
needs to be applied. The use of either positive four-wheel steering or negative four-wheel 
steering can be decided upon the wanted driving characteristics or a demand for high 
maneuverability.  

The examples above show that a decision for selecting a driving mode needs 
information, which is available at the navigation level. Therefore, it makes sense to make these 
decisions in the top level rather than e.g. in the motion planner. Since the focus of this thesis 
is on motion planner and trajectory follower, further details about the mode criteria and decision 
making won’t be dealt with here. Table 5 shows an overview of the different driving modes and 
how they can be described using longitudinal velocity, lateral velocity and yaw rate in the 
vehicle coordinate system. In order to define a driving mode for the lower level controllers, the 
navigation level has to provide the three parameters and pass them on to the lower levels. 
From these three parameters, the mode can be identified in both motion planner and trajectory 
follower. With this information, the controllers can be adjusted accordingly with respect to the 
input and output constraints, which can vary from mode to mode.      

Table 5  Driving modes and vehicle velocity signals overview 

Four-Wheel Steering Four-Wheel Drive Sideways Diving Turning on the Spot 

Positive Steering Negative Steering   

   

 

 

−TP ≤ 0 N TP 2TP N 0 N TP TP � 0 TP � 0 2TU N 0 N TU 2TU N 0 N TU 2TU N 0 N TU TU � 0 

� � 0 2� N 0 N � � � 0 2� N 0 N � 
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3.3 Motion Planning and Obstacle Avoidance  
 

The fundamental task of the motion planner is commonly described as to establish a 
collision-free and feasible path or trajectory for the lower level controllers [1], [26], [22]. In that 
context, a path is a geometric description of the route within a global frame like e.g. a Cartesian 
coordinate system. Along this path, the vehicle velocity can be defined. A trajectory, on the 
other hand, is a geometric path to which a timing law is assigned, describing an evolution of 
the system over time [27]. An exemplary scenario for motion planning is that a path has to be 
planned within the vehicle environment in order to reach the goal point, considering constraints, 
avoiding collisions on the way and therefore ensure safe driving [1]. Regarding this scenario, 
the representation of the environment is important so that it can be used in the planning stage 
and that depends on the technologies used in the perception system and the further processing 
of the gained data. The approach in [22] for example is based on a visibility graph in which the 
shortest path is found using the A* algorithm. The objects and lane markings in the vehicle 
environment are described by constraints, which can be used in the optimization problem of a 
Model Predictive Controller. Another way is discussed in [28] where a previously calculated 
trajectory is re-planned online in order to take changes in the vehicle environment and new 
situations into account.  

The motion planner in this thesis receives a geometric path in global Cartesian 
coordinates and a vehicle longitudinal velocity from the navigation level. This approach was 
chosen in order to maintain a structure, which is similar to related projects at the research 
department of School of Automotive Studies from Tongji University. Therefore, a genuine path 
planning is not necessary for the motion planner stage since the task of computing a feasible 
and a basically collision-free path within the mapped environment is done one level above. 
Nevertheless, the term motion planner is chosen here since the obstacle avoidance takes 
place in this level and therefore a certain trajectory planning for the vehicle takes place. The 
motion planner can be described as a planner that takes the geometric path information from 
the navigation level and calculates fitting velocity and yaw rate parameters considering 
obstacle avoidance. The obstacle avoidance is done in a way that utilizes the ability of Model 
Predictive Control to handle constraints both on input and output variables, which are shown 
in a simulation example in Chapter 6.6. A simplified obstacle avoidance example derived from 
[29] is discussed here in order to show the basic idea behind the motion planner. When a 
vehicle is traveling on a multilane road, the left and right road boundaries represent the 
restrictions for lateral movement of the vehicle in order to not leave the road. These road 
boundaries can be described as constraints for the lateral displacement of the vehicle. 
Assuming that the vehicle has a perception system, which can detect obstacles on the lane 
the vehicle travels in and also measure the distance to the obstacle, a safety distance between 
ego vehicle and obstacle can be defined. This safe distance can again be formulated as a 
constraint and if this constraint is violated, actions have to be taken in order to not collide with 
the obstacle. A similar approach was chosen in [21]. These actions to be taken describe 
manoeuvers like braking or swerving by the obstacle. When performing a steering manoeuver 
to pass by the obstacle, it is important to maintain a safe distance between vehicle and obstacle, 
not just because of collision avoidance as such but also due to the fact that only the vehicle 
center of gravity is taken into account on the course of the path and in order to represent the 
full dimension of the vehicle, the safety zones have to be defined accordingly. This can be 
realized by increasing the area occupied by the obstacle by a safety zone and then deriving 
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constraints from that. There are several different ways of approximating the shape of the 
objects on the road including a safety zone like e.g. a rectangular shape as described in [29], 
parabolas as used in [20] and collision cones [31], [30], just to name a few. Now the whole 
vehicle environment and the detected obstacle are defined by constraints in longitudinal and 
lateral vehicle direction, which makes it possible to perform the optimization algorithms in the 
Model Predictive Control strategy.  

 

3.4 Trajectory Following  
 

As described in Chapter 3.3, the motion planner computes velocity and yaw rate inputs, 
which then have to be translated into commands for the vehicle. In the case of this thesis, 
these commands come from the trajectory following controller and are fed to the vehicle model 
used for simulations. The task of the trajectory follower is, therefore, to compute feasible 
control inputs by considering vehicle dynamics and actuator limitations. Thanks to the use of 
Model Predictive Control this can be achieved by defining appropriate constraints. Since the 
vehicle can perform several different driving modes as described in Chapters 3.2.1-3.2.3, the 
trajectory follower needs to facilitate a chassis control for each mode. Details about the 
realization of this control are shown in Chapter 4.2 and 4.3.      
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4 Prediction Models for Controller Design 
 

In this chapter, the prediction models used for the MPC controllers in both motion planning 
and trajectory following level are introduced. They are all derived from the vehicle model used 
for simulation and show the characteristics of the 4WID-4WIS vehicle introduced in Chapter 
1.3.  

 

 

 

 

 

 

 

 

Figure 4-1 shows a vehicle and its coordinate system with the origin at the center of 
gravity. In general, a body moving in space has up to six degrees of freedom (DOF), which are 
the movement in &, ' and V-direction and a rotation around each of these three axis. Latter is 
described as yawing for rotation about the V-axis, rolling about the &-axis and pitching about 
the ' -axis. Throughout this thesis, only vehicle dynamics in the & -'  plane is taken into 
consideration, which means that all movements in the V-direction, rolling and pitching are 
neglected. Therefore, the remaining three degrees of freedom of the vehicle body are 
displacement in & and '-direction and the yaw motion. Considering not only the vehicle body 
but also the four wheels, several additional degrees of freedom have to be added to the system, 
whereas in this thesis only the wheel’s rotation around its lateral axis is considered as a degree 
of freedom, adding four additional DOF to the system. The wheel’s rotation around its V-axis is 
the steering movement and hence it’s an input to the model won’t be considered as an 
additional degree of freedom [32]. The result is a seven DOF model, which is the case for the 
vehicle model used in simulations and which is described in Chapter 6.1.   

 

 

 

 

 

 

 

 

Figure 4-1 The axis and movements in the vehicle coordinate system [32] 

Figure 4-2 Planar vehicle model 
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A planar vehicle model in global W and X Cartesian coordinates like it is shown in 
Figure 4-2 is used for the investigation of lateral vehicle dynamics [5]. In the case of this thesis, 
vehicle models for both obstacle avoidance and different driving modes are needed and 
models considering lateral vehicle dynamics were found to be suitable for that. In case of 
obstacle avoidance, the lateral vehicle movement is relevant in order to drive by the object and 
in correspondence to that also the lower level models were built as lateral vehicle models. The 
longitudinal vehicle dynamics, on the other hand, are relevant for driving and braking the 
vehicle. This aspect comes mainly into place when talking about safe braking by preventing 
the wheels from locking or accelerating the vehicle with no wheel spin. Since these factors are 
not directly related to the realization of obstacle avoidance and driving modes, they will not be 
considered in this thesis.  

The controller design in MATLAB® requires a model formulation in discrete-time, Linear 
Time-Invariant (LTI) form, which means that it has to be established by either using a transfer 
function, state space or zero-pole-gain [17]. Therefore, all the mathematical models in this 
chapter are linearized and formulated in state space form.    

 

4.1 Motion Planner 
 

In the field of motion planning for vehicles using Model Predictive Control, several 
different kinds of prediction models are used considering the mathematical formulation. For 
example, [35] and [36] use a nonlinear kinematic model. Both [21] and [20] use nonlinear point 
mass models for path planning. The study conducted in [22] uses a linearized kinematic single-
track model under small angle assumption and linear tire forces. Regarding the proposed 
control architecture in Chapter 3.1 and keeping the computational advantage of a simple 
vehicle model in mind, the decision was made to use a 2 DOF kinematic bicycle model for 
motion planning. As mentioned before, in order to design a Model Predictive Controller in 
MATLAB® using predefined functions an LTI model must be used. Therefore, the kinematic 
model is linearized under small angle assumptions and gets the longitudinal vehicle speed TP 
as an input to the system.       

 

4.1.1 Kinematic Bicycle Model for Motion Planning  
 

In a kinematic vehicle model, the forces acting on the vehicle and influencing the vehicle 
motion are not taken into account. Instead, the vehicle motion is described by geometric 
relationships only. A simplification, which is made here is that both wheels of the front axle are 
combined in one single wheel positioned in the middle of the front axle with its center on the 
longitudinal vehicle axis. The same applies to the rear wheels. This representation is often 
called a single track vehicle model or bicycle model. Another assumption of this model, which 
is worth mentioning, is that the wheel sideslip angles are assumed to be zero, which is valid 
for low vehicle speeds and therefore small lateral tire forces (e.g. up to 5 m/s) [33]. Other more 
general modeling assumptions are e.g. that the mass of the vehicle is concentrated in the 
center of gravity, the load transfer between front and rear axle during driving is neglected and 
assumed to be distributed constantly [34].   
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Figure 4-3 shows a four-wheel steering bicycle model in global W and X coordinates 
with the wheels of the axles combined to one single wheel each, derived from [34]. It is 
assumed, that the velocities act on the vehicle center of gravity (CoG), where V is the total 
vehicle velocity, Y is the vehicle sideslip angle and Z is the vehicle heading angle in relation to 
the global coordinate system. From this representation, the following equations can be derived 
in the global coordinate system, adapted from [5], [24].    

W, = TP cos Z − TU sin Z (4.1) 

X, � TP sin Z � TU cos Z (4.2) 

Z, � � (4.3) 

With 

TP � ^ cos Y (4.4) 

TU � ^ sin Y (4.5) 

and  

Y � TUTP (4.6) 

Under small angle assumptions, the equations can be linearized. 

W, � TP 2 TUZ (4.7) 

X, � TPZ � TU (4.8) 

For the state space representation of Equations (4.1)-(4.3) only the lateral and yaw 
dynamics are considered and the vehicle longitudinal speed TP is seen as an input to the 
system, which reduces the complexity of modeling and therefore also of the controller. This 
results in a two DOF vehicle model. The inputs to the system are vehicle lateral velocity TU and 

yaw rate � and the output are lateral vehicle position X and heading angle Z in the global 
coordinate system.   

Figure 4-3 Kinematic bicycle model 
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3X,Z, 4 = _0 TP0 0 ` ∙ _XZ` � _1 00 1` ∙ _TU� ` (4.9) 

_XZ` � _1 00 1` ∙ _XZ` � _0 00 0` ∙ _TU� ` (4.10) 

Equations (4.9) and (4.10) show the state space of the kinematic bicycle model used 
as the prediction model in the MPC motion planner, referring to Equations (2.2) and (2.3).  

 

 

 

 

 

 

 

Figure 4-4 shows a schematic depiction of the kinematic bicycle model within the MPC 
structure of the motion planner. Here, the inner optimization loop uses the state space model 
described in (4.9) and (4.10) and gives the vehicle lateral speed TU and the yaw rate � as 

manipulated variables (mv) to the trajectory follower one level below. The reference signal (ref), 
which should be tracked, is represented by the vehicle lateral position X and the heading angle Z in global coordinates and is compared in the MPC with the measured outputs (mo) from the 
kinematic bicycle model. In this thesis, it is assumed, that the vehicle position and heading 
angle in global coordinates can be measured, which is, of course, possible in the simulation 
using a mathematical model. It is unlikely, that the needed data is easily available in a real 
application since the global position and heading angle can’t be measured directly. They need 
to be estimated based on traveled vehicle distance and sensor information.  

 

4.2 Steering Controller 
  

The motion planning level described above computes lateral vehicle speed TU and yaw 

rate �, which then has to be translated into commands for the vehicle to follow. In the case of 
this thesis an advanced vehicle dynamic model described in Chapter 6.1 represents the 
controlled system and therefore, adequate control signals have to be computed in order to 
make the vehicle move along the planned trajectory. The advanced vehicle dynamic model is 
built in such a way that the steering angles of the four wheels represent the control inputs, next 
to the individual wheel torques. Due to this fact, it is obvious that a steering controller should 
be used for trajectory tracking and in order to take advantage of the special architecture of the 
4WIS-4WID vehicle, it will be a four-wheel steering controller.  

There are several studies and publications available, which deal with MPC steering 
controllers. In [37] and [16] a linear 2 DOF and four-wheel steering dynamic bicycle model is 
used and the steering angles are controlled using a geometric path namely global X position 
and yaw rate as the reference to be tracked. Two other publications, research [28] and [6], 

Figure 4-4 The inner and outer control loop of MPC Motion Planner 
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used a 3 DOF nonlinear bicycle model for two-wheel steering and they also use global vehicle 
position in X direction and yaw rate as tracking reference. In [20] a nonlinear four-wheel vehicle 
model with two-wheel steering is used and the controller computes all four wheel-torque inputs 
additional to the front steering angle. A more simplified approach is chosen in [20] where a 
nonlinear kinematic bicycle model with two-wheel steering is used for path tracking. This thesis 
considers a four-wheel steering vehicle and the ability to control all steering angles is 
necessary for the four-wheel steering mode described in Chapter 3.2.1.  

In order to keep the computational complexity of the controller low, a bicycle model is 
taken into consideration. With that, it is possible to compute both the front and rear steering 
angle but not all four steering angles at once. Given that both wheels on one axle turn into the 
same direction, as it is the case with the four-wheel steering mode, inner and outer wheel 
steering angle can be calculated from the single steering angle provided by the bicycle model. 
This applies to both positive and negative steering configurations. In addition to the question 
of computing the steering angles, the vehicle dynamics should be taken into account here in 
order to represent the actual vehicle in a sufficient way by still maintaining a certain simplicity, 
which helps to keep the computational complexity for the controller low. Concluding the 
aforementioned aspects and considering the signals, which are received from the motion 
planner, a 2 DOF dynamic bicycle model for vehicle lateral dynamics is chosen and as 
mentioned in Chapter 4.1 it is formulated as LTI model with the system input vehicle 
longitudinal speed TP.  

 

4.2.1 Dynamic Bicycle Model for Steering Control  
 

 

 

 

 

 

 

 

 

Figure 4-5 shows the 3 DOF dynamic bicycle model in global W and X coordinates and 
from that, the nonlinear Newton-Euler equations of motion can be derived. All equations in this 
chapter are derived and adapted from [24].  

��TP, − TU�� = aPb cos c� − aUb sin c� � aPd cos c� 2 aUb sin c� (4.11) ��TU, � TP�� � aUb cos c� � aPb sin c� � aUd cos c� � aPd sin c� (4.12) �	�, � ��aPb sin c� � ��aUb cos c� 2 ��aPd sin c� 2 ��aUd cos c� (4.13) 

Figure 4-5 3DOF Dynamic Bicycle Model 
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Equations (4.11)-(4.13) are established with respect to the vehicle center of gravity, 
whereas (4.11) describes the sum of the forces in the &-direction, (4.12) the sum of the forces 
in the '-direction and (4.13) the sum of the moments about the vehicle V-axis. �	 denotes the 
vehicle’s moment of inertia about the V-axis and � is the total mass of the vehicle. These 
equations can be rewritten in the following way when assuming small steering angles. 

��TP, − TU�� = aPb + aPd (4.14) 

��TU, + TP�� = aUb + aUd (4.15) 

�	�, = ��aUb − ��aUd (4.16) 

For small sideslip angles, e� for the front wheel and e� for the rear wheel, the lateral 

tire force can be approximated by equations (4.17) and (4.18). Here, the tire cornering 
stiffnesses *f�  of the front wheel and *f�  of the rear wheel are a sum of the individual 

stiffnesses of each wheel, as can be seen in Equations (4.19) and (4.20). 

aU� = −*f�e� (4.17) 

aU� = −*f�e� (4.18) 

*f� = *f�g + *f�F (4.19) 

*f� = *f�g + *f�F (4.20) 

The sideslip angle eE of a wheel is composed of tire sideslip angle YE and steering angle cE. Figure 4-6 shows the angles at a wheel in the case of sideslip angle eE h 0 and Equation 
(4.21) shows the relationship of the three angles. 

 

 

 

 

 

 

 

eE � YE 2 cE (4.21) 

The wheel sideslip angles for front and rear wheels can be expressed as: 

Y� � i�j tan mTU � ���TP n (4.22) 

Y� � i�j tan mTU 2 ���TP n (4.23) 

Assuming small vehicle sideslip angle Y and tire sideslip angle YE the equation of the 
sideslip angle can be formulated as:  

Figure 4-6 Angles of a cornering wheel 
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e� = Y� − c� = TU + ���TP − c� (4.24) 

e� = Y� − c� = TU − ���TP − c� (4.25) 

By inserting (4.17), (4.18), (4.24) and (4.25) one can rewrite (4.14), (4.15) and (4.16) 
into the following form: 

TP, = aPb + aPd� + TU� (4.26) 

TU, = − m*f� + *f��TP n TU + m*f��� − *f����TP − TPn � + *f�� c� + *f�� c� (4.27) 

�, = m*f��� − *f����	TP n TU − o*f���B + *f���B�	TP − TPp � + *f����	 c� − *f����	 c� (4.28) 

For constant vehicle longitudinal speed TP, Equations (4.26), (4.27) and (4.28) become 
linear and TP, = 0. Therefore, Equations (4.27) and (4.28) become independent from (4.26). 
The state space representation of a four-wheel steering dynamic bicycle model for lateral 
dynamics can be seen in Equation (4.29) and (4.30) with constant vehicle longitudinal speed TP as system input, referring to Equations (2.2) and (2.3).  

3TU,�, 4 � qrr
rs 2 m*f� � *f��TP n m*f��� 2 *f����TP 2 TPn
m*f��� 2 *f����	TP n o*f���B � *f���B�	TP 2 TPptuu

uv _TU� ` � qrr
s *f�� *f��*f����	 *f����	 tuu

v 3c�c�4 (4.29) 

_TU� ` � _1 00 1` _TU� ` � _0 00 0` 3c�c�4 (4.30) 

This state space model is used as a prediction model in the Model Predictive Controller 
in a way, that the manipulated variables (mv) of the controller are adjusted so that the reference 
(ref) from the motion planner can be tracked. The feedback from the vehicle or vehicle model 
represents the measured output (mo) and is considered to be available even in real 
applications since it can be measured and calculated based on data from an inertial 
measurement unit (IMU). The schematic structure can be seen in Figure 4-7.  

 

 

 

 

 

 

 

 

 

Figure 4-7 The inner and outer control loop of MPC Steering Controller 
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4.2.2 Ackermann Four-Wheel Steering 
  

The steering controller presented in the previous chapter is based on a single track 
model, which only has two wheels and therefore only the front wheel and rear wheel steering 
angles can be computed. These steering angles are not fully suitable to be used as an input 
signal for a four-wheel vehicle model since the steering angle of the single wheel on an axle is 
not the same as the angle would be for two wheels on one axle. Furthermore, when cornering 
the steering angle of the inner wheel should not be the same as the angle of the outer wheel. 
If they would be the same, slip-free traveling would not be given and tire wear is increased. In 
order to avoid this effects, the kinematic steering, also known as Ackermann steering, can be 
used at low speeds [24]. In order to give appropriate steering angles to the controlled system, 
this chapter introduces the equations, which are needed to realize the Ackermann steering of 
four-wheel steering vehicles. The equations and figures in this chapter are derived and adapted 
from [24].  

As shown in Chapter 3.2.1, the four-wheel steering mode can be performed with two 
different steering configurations, positive and negative steering. For each of these 
configurations, a different calculation has to be performed in order to realize Ackermann 
steering.  

Positive Steering 

 

 

 

 

 

 

 

Figure 4-8 shows a positive steering bicycle model. The vehicle center of gravity (CoG) 
is traveling on a circle with radius K and the paths of both rear and front wheel lie on circles 
with the same center of rotation. The figure shows the geometric situation when performing a 
positive steering manoeuver and from these triangles, the following equations can be derived:  

tan c� � j�K� (4.31) 

tan c� � jBK� (4.32) 

Rearranging Equations (4.31) and (4.32) in a way that they both equal K�  and 
combining them results in Equation (4.33). 

j� � jB tan c�tan c� (4.33) 

Figure 4-8  Bicycle model with positive steering configuration 
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Figure 4-10 Bicycle model with negative steering configuration 

With the geometric relationship in (4.34) using the wheel base �, j� can be expressed 
and all parameters in the equation are known. In the next step, j� and jB can be calculated 
(4.35).  

jB = j� − � (4.34) 

j� = � tan c�tan c�tan c�tan c� 2 1 jB � �w tan c�tan c�tan c�tan c� 2 1 2 1x (4.35) 

Knowing all these parameters, the kinematic steering angles for a four-wheel steering 
vehicle as shown in Figure 4-9 can be calculated using the set of equations in (4.36). � denotes 
the track width of the vehicle which is in case of the 4WID-4WIS vehicle the same for front and 
rear axle.  

 

 

 

 

 

 

 

 

 

c�E � arctan z j�K� 2 �2{ c�| � arctanz j�K� � �2{ 

(4.36) 

c�E � arctanz jBK� 2 �2{ c�| � arctan z jBK� � �2{ 

 

Negative Steering 

 

 

 

 

 

 

 

Figure 4-9 Two-track vehicle with positive steering 
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The negative steering configuration seen in Figure 4-10 shows a different geometric 
situation than the positive steering configuration discussed before because the rear wheel 
turns into the other direction than the front wheel. Nevertheless, the rules for kinematic steering 
still apply, which means that the vehicle center of gravity (CoG) is traveling on a circle with 
radius K and both rear and front wheel move along circles with their origin in the center of 
rotation. The triangles in Figure 4-10 are calculated the same way as for positive steering and 
can, therefore, be found in Equations (4.31), (4.32) and (4.33). The difference lies in the 
relationship between the wheel base �, j� and jB, which is described in Equation (4.37). 

jB = � − j� (4.37) 

With this relationship, the parameters j� and jB can be calculated for negative steering: 

j� = � tan c�tan c�1 � tan c�tan c� jB � �w1 2 tan c�tan c�tan c�tan c� 2 1x (4.38) 

Now, the kinematic steering angles for a four-wheel vehicle with negative steering as 
shown in Figure 4-11 can be established by the set of equations in (4.39).  

 

 

 

 

 

 

 

 

 

c�E � arctan z j�K� 2 �2{ c�| � arctanz j�K� � �2{ 

(4.39) 

c�E � 2arctanz 2jBK� 2 �2{ c�| � 2arctan z 2jBK� � �2{ 

 

4.3 Torque Vectoring Controller   
 

In Chapter 4.2 a steering controller is described, which can perform the trajectory 
following task by computing the vehicle steering angle inputs. It is mentioned, that the four-
wheel steering mode can be realized, but the sideways driving mode and the turning on the 
spot mode can’t. The reason for this is that in the last two modes the steering angles are 
predefined and mustn’t change during the manoeuver. Therefore, sideways driving and turning 

Figure 4-11 Two-track vehicle with positive steering 
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on the spot modes can’t be controlled with the aforementioned steering controller and only the 
individual wheel torques remain as controllable parameters. Tests with the vehicle prototype 
performing the sideways driving manoeuver have shown, that it is crucial to adjust the steering 
angles properly to a right angle in order to drive in lateral vehicle direction without drifting off 
in longitudinal vehicle direction and, due to this, leaving the desired path. Such an error is e.g. 
caused by the mechanical clearance in the steering system. Another reason for a poor 
trajectory following performance in sideways driving is a certain difference in wheel speed 
between the individual wheels of the vehicle. This inequality can also cause the vehicle to not 
reach its desired yaw rate during the turning on the spot manoeuver. Due to these effects on 
both sideways driving and turning on the spot, a wheel torque controller in torque vectoring 
fashion is introduced, which should help to counteract an undesired vehicle movement by 
influencing the vehicle yaw rate.     

 

4.3.1 Torque Vectoring Principle 
  

One of the characteristics of the 4WID-4WIS vehicle introduced in Chapter 1.3 is, that 
every wheel can be driven or braked individually and the wheel torque can be used as an input 
to the advanced vehicle dynamics model described in Chapter 6.1, which is used for the 
simulations. Due to that, the torque vectoring principle was studied in order to find a way of 
controlling the vehicle trajectory for sideways driving and turning on the spot.  

The main objective of torque vectoring control is to stabilize the vehicle during driving and 
counteract unwanted steering tendencies like over- or understeering, which is achieved by 
applying braking torque to the wheels.  

 

 

 

 

 

 

 

 

 

 

Figure 4-12 shows the basic principle of torque vectoring for counteracting over- and 
understeering as it is shown in [15] and also described in [38]. A vehicle stability control would 
act against understeering by braking the inner left wheel and oversteering by braking the outer 
front wheel.  

Figure 4-12 Braking inputs to counteract steering tendency 
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There are several studies and publications available, which use Model Predictive Control 
for Torque Vectoring. In [38] an MPC yaw stability controller is designed based on a two-track 
vehicle model and simulated performing a standardized vehicle handling manoeuver. The 
vehicle dynamic equations are simplified under small angle assumptions, small wheel slip and 
linear wheel forces. The publication [39] uses an extended bicycle model with linearized tire 
forces in the MPC lateral stability controller for path tracking. Instead of a conventional Model 
Predictive Control optimizing a quadratic program, they use matrix inversion to track a path. In 
[40] a linear Model Predictive Control strategy is used for the rear wheel torque vectoring in 
order to stabilize the vehicle at high lateral acceleration. The MPC controller computes the 
wheel slip ratios, which are then converted into torque commands via a sliding mode slip 
controller. In contrast to that, a linearized four-wheel vehicle model is used in [41] representing 
an independent four-wheel drive vehicle. The quadratic problem is formulated in a way, that 
the wheel torque distribution achieves a satisfying vehicle behavior.  

The torque vectoring strategy in this thesis for the four-wheel steering mode is derived 
from [38] and is in line with the corrective torque inputs shown in Figure 4-12. When 
considering the front steering angle c� computed by the steering controller to be greater than 

zero, the vehicle turns left. If in this case, the yaw rate is larger than the reference, the front 
right wheel will be braked and oversteering will be prevented. If in this scenario the yaw rate 
falls below the reference, the rear left wheel will be braked. Considering a right turn with c� }0, an exceeding yaw rate will be corrected by braking the front left wheel and brake torque will 
be applied to the rear right wheel if the yaw rate is below the reference.     

The torque vectoring strategy for the sideways driving mode can be seen in Figure 4-13, 
where the braking inputs for driving in positive vehicle y-direction are displayed. As described 
at the beginning of this chapter, the vehicle drifts off its desired trajectory by badly adjusted 
steering angles or differences in wheel speeds. This drifting off causes a turning of the vehicle 
body and therefore a yaw rate. The control objective is to keep the vehicle yaw rate close to 
the reference value, which is zero in case of sideways driving. 

 

 

 

 

 

 

 

 

 

As can be seen in Figure 4-13 in global W and X coordinates, the front left wheel is 
braked if the yaw rate grows above zero, which means that it would turn counterclockwise 

Figure 4-13 Torque vectoring strategy for sideways driving in positive y-direction 
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considering the left depiction. For a yaw rate less than zero, the rear left wheel has to be braked 
in order to counteract the clockwise rotation of the vehicle. When the vehicle is traveling in 
negative vehicle y-direction, the rear right wheel has to be braked in case of a yaw rate rising 
over zero. In the other case of a clockwise rotation, braking the front right wheel is necessary. 

Under the above-stated assumption that the vehicle doesn’t perform pure sideways 
driving due to certain errors, the motion of the vehicle occurs to a certain amount in lateral tire 
direction, which implies that lateral slip occurs. Basically lateral forces between ground and 
tires result in a lateral tire velocity and lateral slip. The lateral slip is the ratio between the 
velocities along the longitudinal and lateral tire axis [60].  

 

 

 

 

 

 

   

The course of the lateral tire force aU with respect to the lateral slip ~U can be seen in 
Figure 4-14, showing a linear and stable region with the maximum at ~U� and aU�, followed by 

a mix of adhesion and sliding. With further rising lateral slip pure sliding occurs after reaching ~U� at aU�. The initial inclination �aU" describes the cornering stiffness of the tire, which is one of 

the most important properties of the tire and relevant for vehicle handling and stability [61], [7].  

 

 

 

 

 

 

The relationship between the lateral tire force aU and the lateral slip ~U varies with the 

road friction coefficient ��, as it can be seen in Figure 4-15. Another factor that influences the 
lateral slip and the ability of the tire to transmit forces is the vertical wheel load because the 
distribution of tire pressure over the wheel contact area changes with rising vertical load [61]. 

These characteristics of the tire in lateral direction influence the motion of the vehicle 
during sideways driving under the assumption of steering misalignment or wheel speed 
differences. The effects are also seen in the simulation discussed in Chapter 6.5.2.    

As described at the beginning of this chapter, differences in wheel speeds of the four 
driven wheels can cause the vehicle to not reach the desired yaw rate during turning on the 

Figure 4-14 Lateral tire force over lateral slip [61] 

Figure 4-15 Lateral force over lateral slip for different road friction coefficients [61] 



31 

 

spot. Therefore, the torque vectoring strategy is applied, which aims at keeping the vehicle 
yaw rate close to the desired value, which is greater or smaller than zero depending on the 
wanted direction of rotation. In order to maintain a wanted yaw rate, a braking input is applied 
to one of the wheels, which can be chosen freely in contrast to sideways driving. This strategy 
is displayed schematically in global W and X coordinates in Figure 4-16.  

 

 

 

 

 

 

 

 

 

4.3.2 Extended Dynamic Bicycle Model for Torque Vectoring  
 

In order to understand the effect of individually applied braking force on the vehicle, it 
makes sense to have a look on the equations of a 3DOF four-wheel dynamic vehicle model. 

 

 

 

 

 

 

 

 

 

 

Figure 4-17 shows the 3DOF dynamic two-track vehicle model in global W  and X 
coordinates. The depiction of the four steering angles was omitted here in order to maintain a 
clear structure. But it should be mentioned that in the following equations the front steering 
angle c� and the rear steering angle c� computed by the steering controller will be used and 

not the steering angles calculated in Chapter 4.2. This is a simplification assuming that inner 
and outer wheel of one axle have the same steering angle, neglecting the Ackermann steering 
principle. By this assumption, the steering controller output can be used as input for the Torque 

Figure 4-16 Torque vectoring strategy for turning on the spot 

Figure 4-17 Dynamic two-track or extended bicycle model 
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Vectoring Controller and the needed state space representation of the system can be 
formulated. Based on this model, the Newton-Euler Equations with the assumption of small 
steering angles can be established, similar to (4.15) and (4.16), [24].    

��TU, + TP�� = aU�� + aU�� + aU�� + aU�� (4.40) 

�	�, = −aP���� + aU���� + aP���� + aU����−aP���� − aU����+aP����−aU���� (4.41) 

In (4.41) the sum of moments acting on the planar vehicle is described, which equals 
the time derivative of the yaw rate multiplied by the vehicle’s moment of inertia about the V-
axis. In (4.16), a bicycle model was used and no forces in vehicle longitudinal direction are part 
of the equation, which is not the case in (4.41). Equation (4.40) on the other hand does not 
contain any forces in &-direction due to the small angle assumption. Therefore, it can be seen 
that considering these equations, additional brake forces to counteract unwanted steering 
behavior will have an influence on the vehicle yaw rate only.  

The forces acting in vehicle longitudinal direction are unknown and therefore have to 
be approximated. Equation (4.42) shows such an approximation, which uses the tire 
longitudinal slip stiffness �PE and the wheel slip � [38]. The tire longitudinal slip stiffness is 
assumed to be about 50% larger than the tire cornering stiffness, which will be important for 
the simulations [7]. 

aPE = �PE�E (4.42) 

Applying the equations described in Chapter 4.2.1, namely (4.17), (4.18), (4.24) and 
(4.25), Equations (4.40) and (4.41) can be rearranged to the following form: 

TU, = − m2*f� + 2*f��TP n TU + m2*f��� − 2*f����TP − TPn � + 2*f�c�� + 2*f�c��  (4.43) 

�, = m2*f��� − 2*f����	TP n TU − o2*f���B + 2*f���B�	TP − TPp � − �P���	 ��� + �P���	 ��� − �P���	 ���
+ �P���	 ��� + 2*f���c��	 − 2*f���c��	  

(4.44) 

In Equations (4.43) and (4.44) the tire cornering stiffness is assumed to be the same 
for the front left tire and the front right tire, the same applies to the rear tires. The index of the 
wheel slip ratios �E  refers to the wheel position on the vehicle, where 7 = ��, ��, ��, ��. The 
longitudinal slip stiffness is assumed to be the same for the tires of each axle.  

For better readability, the constant terms in Equations (4.43) and (4.44) are substituted 
by letters.  

TU, = −)�TU + )B� + �� + �B (4.45) 

�, = )�TU − )�� − )���� + )���� − )���� + )���� + �� − �� (4.46) 

The wheel slip � used in Equation (4.24) is different for braking and accelerating. The 
two situations are described in Equation (4.47) for braking and (4.48) for driving [42]. 

�� = TP − ���FTP  (4.47) 

�� = ���F − TP���F  (4.48) 
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For torque vectoring, the braking wheel slip is most relevant. Normally, Equations (4.47) 
and (4.48) would use the wheel longitudinal speed in the wheel coordinate system, which is 
here approximated as the vehicle longitudinal velocity TP  since small steering angles are 
assumed. Furthermore, the equations describing wheel slip normally take the dynamic wheel 
radius into account, which is here assumed to be the same as the radius of the wheel without 
load and equal for each wheel. In a next step, the forces and torques acting on the wheel are 
analyzed.  

 

 

 

 

 

 

 

Figure 4-18, derived from [42], shows the forces and torques acting on a moving wheel, 
where /E is the braking torque, aCE is the tire normal load and ��/4�� describes a simplification 
in which the load on the wheels coming from the vehicle body are always distributed equally. 
Furthermore, rolling resistance is ignored. From this figure, Equation (4.49) for the angular 
velocity of the wheel can be derived [41].   

����, = −/E − aPE�� (4.49) 

The derivative of the wheel slip can be described in a general form described in (4.50), 
derived from [43] and [38]. 

�, = ���, ETPmax	�TPB, ����E�B� (4.50) 

For braking, the following applies:  

�, � ���, ETP  (4.51) 

Therefore, Equation (4.49) can be rearranged to:  

�, � m ����TPn �2/E 2 aPE��� (4.52) 

And for driving, the wheel slip derivative is described as:  

�, � ���, ETP �1 2 ��B (4.53) 

Which allows to write Equation (4.49) the following way:  

�, � m ����TPn �2/E 2 aPE����1 2 ��B (4.54) 

In this thesis, it is assumed that the wheel slip is kept within a stable region, which 
normally means that it is close to zero [38], [41], [43]. Therefore, the expression �1 2 ��B can 

Figure 4-18 Forces and moments acting on a moving wheel 
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be set to 1. With this assumption, both Equation (4.52) and (4.54) can be formulated the same 
way. Inserting Equation (4.42) in (4.52) and (4.54) the wheel slip of each wheel is established 
as it can be seen in the set of Equations (4.55).   

���, = − o��B�P���TP p ��� − m ����TPn /�� ���, = − o�� B�P���TP p ��� − m ����TPn /�� 

(4.55) ���, = − o��B�P���TP p ��� − m ����TPn /�� ���, = − o��B�P���TP p ��� − m ����TPn /�� 

For better readability, the following form will be used for the state space formulation, 
with 7 = ��, ��, ��, ��. 

��, � 2)E�E 2 �E/E (4.56) 

Combining Equations (4.45), (4.56) and (4.55), the state space model for the torque 
vectoring controller can be built. Referring to Equations (2.2) and (2.3) the state space vectors 
and matrices are described below. 

& �
qrr
rr
s TU�������������tu

uuu
v
 ( �

qrr
rrs
���B/��/��/��/��tu
uuu
v
 

(4.57) 

) �
qr
rr
rs)� )B 0 0 0 0)� )� )� )� )� )�0 0 )�� 0 0 00 0 0 )�� 0 00 0 0 0 )�� 00 0 0 0 0 )��tu

uu
uv
 � �

qr
rr
rs�� �B 0 0 0 0�� �� 0 0 0 00 0 ��� 0 0 00 0 0 ��� 0 00 0 0 0 ��� 00 0 0 0 0 ���tu

uu
uv
 

* � _1 0 0 0 0 00 1 0 0 0 0` + � _0 0 0 0 0 00 0 0 0 0 0` 
 

The input vector (  in Equation Set (4.57) has two variables ��  and �B , which are 
necessary to make the equation system work. They replace the steering angles, which are in 
this controller part of the state space matrices, as it is the case for the vehicle longitudinal 
velocity TP. In order to have a low influence on the other variables, �� and �B are forced to the 
value of 1 by setting appropriate constraints in the Model Predictive Controller.   

 

 

 

 

 

 

Figure 4-19 The inner and outer control loop of MPC Torque Vectoring Controller 
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Figure 4-19 shows the implementation of the state space model in the Model Predictive 
Control for Torque Vectoring.  

Almost all of the equations used to formulate the state space model have the vehicle 
longitudinal velocity TP in the denominator. As described in Chapter 3.2.4 the sideways driving 
mode and the turning on the spot mode both require that TP = 0, but that would cause a division 
by zero and has to be omitted. Therefore, two approaches were chosen.  

 

 

 

 

 

 

 

 

Figure 4-20 shows the vehicle in sideways driving mode in global W and X coordinates, 
but with the changed vehicle coordinate system. By defining TU  as TP  and vice versa, the 

sideways driving vehicle appears for the controller like a vehicle with fixed steering angles, 
which is driving straight ahead. With that modification, the equations of the state space model 
still work and vehicle control in sideways driving mode is possible. For turning on the spot, on 
the other hand, such a reconfiguration can’t be done, because both TP and TU are set to zero. 

A compromise is to set a small TP value in order to make the system of equations work. By that 
one deliberately adds an error to the system, but since the error is caused on purpose, the 
effects could be studied and compensated in the planning stage at the navigation level. In 
Chapter 6.5.3 the simulations show the influence of TP � 0 when turning on the spot. 

 

4.4 Complete Control Structure  
  

This chapter shows the complete control structure used in this thesis. It should help to 
visualize the signal flow and the hierarchy. 

 

 

 

 

 

 

 

Figure 4-20 The changed coordinate system for sideways driving 

Figure 4-21 Control structure for the four-wheel driving mode 



36 

 

Figure 4-21 shows the complete control structure for the four-wheel driving mode, which 
is also used for obstacle avoidance. In this configuration, all controllers are used. The vehicle 
longitudinal speed TP is used as input to the vehicle model since this thesis doesn’t use a slip 
controller, which takes care of the vehicle propulsion.   

 

 

 

 

 

 

 

Figure 4-22 shows the control structure used for the modes sideways driving and turning 
on the spot for which only the torque vectoring controller is used. Depending on the mode, the 
vehicle velocity and yaw rate signals are given by the navigation level and are in case input to 
the vehicle model. The steering angles are predefined by the mode settings.  

This control structure is designed upon a number of simplifications and assumptions 
made with respect to the regarded field of application, described in Chapter 1.1. This includes 
that the vehicle is considered to be operated at low speeds and certain assumptions are based 
on that, e.g. the small angle assumption for linearizing the mathematical models. Therefore, a 
major limitation of this control structure is the ability to operate at higher vehicle speeds, namely 
above 50 km/h until which the vehicle was simulated in Chapter 6. The higher vehicle speed 
also implies a rise in vehicle dynamics, which can’t be represented by the used linear vehicle 
models with a low number of degrees of freedom in a sufficient way. Due to this, the presented 
control structure is suitable for low vehicle dynamics only. The mathematical models used in 
this thesis asked for linearized tire forces, which is a major simplification since the tire forces 
are the biggest source of nonlinearity in a vehicle. Another simplification, which is a possible 
source of errors and limits the controller performance, lies in building the control models, 
whereas finding a balance between sufficiently representing the controlled system and 
maintaining simplicity for acceptable computation times is the main aspect. The simulation 
results in Chapter 6 show, that the linearized controllers can be used to control a nonlinear 
vehicle model within the considered operating range. Regarding sideways driving and turning 
on the spot, lateral vehicle speed and yaw rate were chosen in a low range since that reflects 
the situation in, for example, a sideways parking scenario. For applications using these modes, 
only low vehicle speeds and turning rates are suitable. For all of the previously described 
manoeuvers, it is crucial to bare the obstacle avoidance capabilities in mind which again ask 
for lower speeds in certain manoeuvers. For a real-world implementation of the presented 
control structure, a slip controller responsible for driving and braking the wheels in the stable 
slip zone has to be added. The error caused by setting TP � 0 during turning on the spot can 
be estimated by simulation and experiments and finally compensated during planning in the 
navigation level.  

Figure 4-22 Control structure for sideways driving and turning on the spot 
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5 MPC Controller Design in MATLAB ® and Simulink ® 
 

5.1 Controller Design in MATLAB ® Command Line 
 

The 4WID-4WIS electric vehicle introduced in Chapter 1.3 is modeled in Simulink® and 
therefore the simulations in this thesis are carried out using MATLAB® and Simulink®. The 
MPC controller design normally asks for a series of mathematical equations as described in 
Chapter 4. The Model Predictive Toolbox® from MATLAB® offers a simplified controller design 
based on a linear time-invariant (LTI) system model in the form of a transfer function, state 
space or zero-pole-gain [17].  

At the beginning of controller design stands the state space formulation of the prediction 
model. This can be done by implementing the state space matrices ), �, * and +, which are 
described in Chapter 4 for the individual vehicle models and then turning them into a discrete 
state space by using the state space command as shown in Equation (5.1).  

����7j�7������� = ~~�), �, *, +� (5.1) 

     Following this approach of controller design, it is recommended to check stability and 
controllability of the plant model. The stability can be checked by using the 7~~�i��������7j�7�������� command, which gives back 0 for an unstable plant and 1 for a 
stable plant [44]. For evaluating controllability, the j���_�i��7& = j�������7j�7�������� 
command can be used to calculate the controllability matrix, from which the rank can be 
computed by using �i���j���_�i��7&�. The plant is controllable if the rank of the matrix equals 
the number of states [45]. The following results are obtained for the state space models 
described in Chapter 4. Table 6 shows the results of the stability and controllability analysis of 
the state space models.  

Table 6  Results for stability and controllability checking 

Prediction Model Stability Controllability 

Motion Planner 1 2 

Steering Controller 1 2 

Torque Vectoring Controller 1 6 

 

From Table 6 it can be concluded, that all three state space models which will be used 
for the controllers are stable and controllable. Knowing that the established prediction models 
in state-space representation are suitable for controller design, the �¡j command can be used.  
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The code lines shown above are from the MATLAB® command line and describe the first 
steps of the controller design process in case of the MPC motion planner. After the prediction 
model is transferred into state-space form, states, input and output of the system as well as 
the number of manipulated and output variables are defined. It should be mentioned here, that 
no disturbance or noise on both input and output signals is considered. After the previously 
described checking for stability and controllability, the sampling time can be defined and the 
MPC controller can be created. The code lines above are established by referring to MATLAB® 
online information and examples like [46] and [29] in order to have the right structure. After 
these steps, the MPC controller still has to be tuned and refined in order to work properly for 
the controlled system.      

 

5.2 MPC Controller Tuning  
 

In this chapter, several controller parameters are discussed and tuned. As a result, the 
controller is adjusted in order to work appropriately with the controlled system. In this thesis, 
the basic MPC controller tuning is done according to MATLAB® information and 
recommendations. The final adjustments are made in order to fulfill the criteria in controller ��T7�¢  and the results turned out to be satisfactory, regarding the performance during 
simulations.     

Scale Factors 

The specification of scale factors in Model Predictive Control is considered to be one 
of the basic adjustments in order to gain proper controller performance. It is necessary when 
variables both on input and output side have values with profoundly different magnitudes. The 
scale factors should represent the span of the regarded variable, which is the range between 
the upper and lower value. The MPC controller will then divide the signals by their scale factor, 
which results in dimensionless signals. Defining scale factors will make later tuning steps like 
facilitating cost function weights easier since the signal scale doesn’t have to be considered 
anymore. Another advantage is that the influence of round-off errors will be lower during 
calculation [47]. 

Sample Time 

The length of the sampling time depends on the dynamics of the controlled system. For 
example, a system with slow dynamics like in the process industry will have a sampling time 
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considerably larger than one second, whereas the automotive field mostly deals with systems 
of high dynamics and therefore sample times below one second are common. In order to 
choose the sample time appropriately, the open-loop step response of the controlled system 
is analyzed [48]. In case of a vehicle, this is done by feeding a step steering input to the system, 
which are kept constant and recording the resulting yaw rate. The yaw rate will first rise, then 
oscillate around the steady-state yaw rate before it settles at a constant value. Considering the 
vehicle dynamics model described in Chapter 6.1 the step response looks as follows. 

 

 

 

 

 

 

 

 

  
 

Figure 5-1 shows the step response of the controlled system. By use of measuring 
tools, the rise time of the step response was identified /�E0£ = 0,085~ and a settling time of /0£¦¦�£ = 0,335~. The sampling time should be between 10% and 20% of the rise time, as 
suggested in [48].  

0,0085~ ≤ /0 ≤ 0,017~ (5.2) 

The advantage of a small sample time lies in the good rejection of disturbances on the 
system. The disadvantage is that a small sample time will increase the computational effort 
and therefore slow the system down or ask for bigger memory capacity. A compromise must 
be found between disturbance rejection and computational complexity [48]. Due to these 
reasons, /0 = 0,017~ was chosen. 

Prediction Horizon 

The length of the prediction horizon ¡ gives the number of control intervals, which the 
MPC controller must take into consideration for the prediction of controller outputs [48], as it 
can be seen in Figure 2-1 of Chapter 2.1. It can also be compared to the look-ahead distance 
of a human driver. If the prediction horizon is chosen too small, changes in vehicle course or 
obstacles will be recognized too late. For a prediction horizon that is too large, sudden events 
like a pedestrian stepping onto the street can’t be identified and therefore no reaction is 
possible [49]. Considering controller tuning, the prediction horizon can be calculated by using 
the sampling time /0 and the settling time /0£¦¦�£ of the steady-state system response [48], 
seen in Figure 5-1.  

¡/0 ≈ /0£¦¦�£ (5.3) 

Figure 5-1 Step response of the advanced vehicle dynamics model 
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By using Equation (5.3) and a settling time of /0£¦¦�£ = 0,335~ a prediction horizon of ¡ ≅ 20 is defined. This value is chosen for the motion planner since it should utilize the full 
prediction horizon in order to handle obstacle avoidance. The values for steering and torque 
vectoring controller are chosen smaller, namely to a value of 10. This idea behind this decision 
is described in Chapter 3.1. In a later step, the review command will show that this choice of 
prediction horizons maintains internal controller stability.   

Control Horizon 

A control horizon � describes the number of times new manipulated variables (mv) are 
calculated at the current control interval. Generally speaking, � should be between 1 and ¡, 
but [50] suggests to use at least 2 and maximum 4. The motion planner uses a control horizon 
of � = 4, steering and torque vectoring controller is set to � � 2. These decisions are in line 
with the prediction horizon lengths and the ideas presented in Chapter 3.1. Furthermore, a 
small control horizon helps to keep the computational complexity low because fewer variables 
have to be calculated at each control interval. It also helps to maintain internal controller 
stability [48].   

Constraints 

In a Model Predictive Controller, the constraints are directly used in the optimization 
problem and therefore represent an important element of the whole MPC concept. The idea 
behind constraining input or output signals is that e.g. physical limitations of actuators in the 
controlled system are taken into account or that certain signals don’t rise above a safe level. 
Besides representing the upper and lower bounds of a signal, constraints can also be applied 
on the rate-of-change of a signal. Constraints are described as inequalities and can be 
formulated hard or soft. Hard means, that the optimization has to keep the values within the 
defined limits. Soft constraining, on the other hand, allows the controller to violate the bounds 
in situations when it’s necessary in order to fulfill the hard constraints. From that, one can 
conclude that hard constraints on both input and output variables might cause conflict in the 
optimization and no feasible solution is gained. Therefore, it is recommended that the 
manipulated variables are constrained hard whereas the output variable constraints should be 
kept soft. At this point, it should be mentioned that constraining the output variables should be 
omitted if possible and instead use a reference signal and adjust the cost function weights 
accordingly. Another remark on soft constraints is that if they are chosen too soft, an 
unacceptable violation of the constrained value could occur and could, therefore, cause 
unwanted reactions of the controlled system. If they are too hard, on the other hand, the 
controller might try to match the constraint even if its importance is low. Therefore, values of 
other and possibly more important system parameters might not be matched [51]. In this thesis, 
only the manipulated variables are constrained, hard for upper and lower limits and soft for the 
rate-of-change.           

Weights 

The cost function weights of an MPC controller can help for example better track a 
reference signal by assigning weights between the inputs and outputs. By doing that, the 
controller characteristic can be influenced, like towards higher robustness if the input weights 
are higher than those on the output. A more aggressive and less robust behavior can be 
achieved by putting higher weights on the output signals than on the input [50]. During the 
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controller design in this thesis, weights are set on the output variables, which are considered 
as important for tracking, like e.g. the lateral vehicle position or velocity.  

Evaluation of Controller Tuning 

MATLAB® offers a way to check the controller tuning quality with the command ��T7�¢ 
[46]. This gives in particular information about the following aspects: 

 

• MPC Object Creation 

• QP Hessian Matrix Validity 

• Closed-Loop Internal Stability 

• Closed-Loop Nominal Stability 

• Closed-Loop Steady-State Gains 

• Hard MV Constraints 

• Other Hard Constraints 

• Soft Constraints 

• Memory Size of MPC Data 

 

MPC Object Creation checks, if the previously created controller fulfills all the 
requirements.  The QP Hessian Matrix Validity shows, if the cost function parameters, 
prediction and control horizons are chosen in a way that the quadratic program (QP) has only 
one solution. Then the Hessian matrix of the quadratic program is positive-definite. This point 
includes the evaluation of weights on both manipulated and output variables, the horizons and 
the scale factors. Closed-Loop Internal Stability checks whether the prediction model itself is 
stable and if that stability is given in combination with the controller settings. The Closed-Loop 
Nominal Stability tests if the feedback connection between the controlled system and controller 
is stable in the unconstrained nominal operating point. Closed-Loop Steady-State Gains show 
if the controller manages to bring all output variables close to their target value at steady state 
without constraints. When the review command checks the system for Hard MV Constraints, 
it evaluates whether the hard constraints are violated in both cases of hard constraints on MV 
change and rate-of-change. When Other Hard Constraints are given, like on output variables, 
the controller might not be able to match them, because the hard constraints on manipulated 
variables are part of the QP problem and have priority. If Soft Constraints are defined in the 
controller, this review step checks if there is a proper balance between hard and soft 
constraints in the system. At the end of the MPC review, an estimate of the memory size for 
the online optimization of MPC is made, not considering the memory needed for source codes 
[52]. The review results for all three controllers are listed in Table 7. Three kinds of results can 
be distinguished, “Pass” if the test was successful, “Warning” if violations occurred and “Fail” 
if there is a fundamental problem or error in the MPC controller design.   
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Table 7  MPC review results for the three controllers 

Performed Test Motion Planner Steering Controller Torque Vectoring 

MPC Object Creation Pass Pass Pass 

QP Hessian Matrix Validity Pass Pass Pass 

Closed-Loop Internal Stability Pass Pass Pass 

Closed-Loop Nominal Stability Pass Pass Pass 

Closed-Loop Steady-State Gains Pass Pass Pass 

Hard MV Constraints Pass Pass Pass 

Other Hard Constraints Pass Pass Pass 

Soft Constraints Pass Pass Pass 

Memory Size of MPC Data 10-40 kB 10-40 kB 20-60 kB 

 

For memory size, the ��T7�¢ command evaluates the case of standard MPC and MPC 
with online tuning. For each of those Single Precision (4 bytes) and Double Precision (8 bytes) 
is evaluated. In Table 7, only the lowest and highest values of all considered cases are 
displayed. It can be seen, that the torque vectoring controller needs more memory than the 
other two controllers since its state matrices have larger dimensions and therefore, the whole 
mathematical structure becomes more complex.   

 

5.3 MPC Block in Simulink ® 
 

The Model Predictive Control Toolbox™ offers predefined blocks in Simulink®, which can 
be connected to the controlled system. In these blocks, the MPC controllers designed at the 
command line can be implemented and therefore used for simulations in Simulink®.     

 

 

 

 

 

 

 

In Figure 5-2 the MPC Motion Planner is depicted with the reference signals (ref) global X-position and heading angle Z, the measured output (mo) or state feedback from the vehicle 

Figure 5-2 Conventional MPC Block of the Motion Planner 
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model, global vehicle '-position and vehicle heading angle K. The manipulated variables (mv) 
are vehicle lateral speed TU and yaw rate �. 

 

 

 

 

 

 

Figure 5-3 shows the MPC Steering Controller. The reference signals (ref) are the 
manipulated variables from the Motion Planner, vehicle lateral speed TU and yaw rate �. The 

measured output (mo) or state feedback from the vehicle model is therefore the measured 
vehicle lateral speed T and yaw rate �. The Steering Controller then computes the steering 
angles c� and c� as manipulated variables (mv) and the Ackermann Steering block calculates 

the steering inputs for the four-wheel steering vehicle model. 

The torque vectoring controller described in Chapter 4.3 can’t be realized with a 
conventional MPC controller in Simulink®. The reason lies in the mathematical model inside 
the Torque Vectoring Controller which uses the vehicle longitudinal speed and the steering 
angles as constants in the state space formulation. The vehicle longitudinal speed can be 
considered constant in certain driving situations, but the steering angles must change in order 
to drive curves. Therefore, using a model with fixed steering angles isn’t reasonable and an 
adaptive Model Predictive Controller has to be used, which is introduced in the next chapter.  

 

5.4 Adaptive MPC Block in Simulink ® 
 

The basic MPC controller designed in the command line uses an LTI plant model which 
is valid for a defined vehicle longitudinal speed TP because the state space is formulated based 
on that. In the case of this thesis, a value of TP = 2,5 �/~ is chosen, as can be seen in Chapter 
5.1. Due to this, the controller will only properly work for this defined vehicle longitudinal speed 
and the performance will decrease for other velocities. The effect of changing longitudinal 
velocities is assessed in Chapter 6.2. In order to make the controller suitable for changing 
operating conditions like e.g. TP  or steering angles, Adaptive MPC can be used, which is 
especially suitable for handling nonlinear controlled systems over a wide range of operating 
conditions. The strategy behind Adaptive MPC is to use the same prediction model as for 
normal MPC but to update it together with the changed operating conditions at every control 
interval. The prediction model is kept constant over the prediction horizon. In order to use a 
MPC controller designed at the command line for Adaptive MPC, the continuous-time 
prediction model has to be converted into discrete-time. After updating the MPC controller with 
the discretized prediction model it can be used in the Adaptive MPC block in Simulink®, which 
is part of the Model Predictive Control Toolbox™ [53], [54].    

Figure 5-3 Conventional MPC Block for the Steering Controller 
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Figure 5-4 shows the Adaptive MPC Motion Planner implemented in Simulink®. It has 
a function, which updates the prediction model at every control interval, derived and adapted 
from [55]. This function uses the varying vehicle longitudinal speed TP, the vehicle model states 
and the manipulated variables from the Adaptive MPC Controller as inputs to compute an 
updated prediction model for the controller. The Adaptive MPC block in Figure 5-4 has an input 
port called “switch”, which enables the user to switch off the optimization when the controller 
won’t be needed. This reduces the overall computational effort of the control structure. The 
internal states are still updated in order to enable optimization immediately after the controller 
gets switched on again [56]. Since the motion planner and the steering controller won’t be used 
in sideways driving and turning on the spot, they can be switched off during these manoeuvers. 
Three additional input ports called “E”, “F” and “G” are needed to enable obstacle avoidance 
and represent mixed input/output constraints. 

 

 

 

 

 

 

 

 

 

In Figure 5-5 the Adaptive Steering Controller can be seen, which has a similar 
structure as the Adaptive MPC Motion Planner described before. It also has a “switch” port to 
disable optimization when the controller is not needed. The manipulated variables are fed into 
the “Ackermann Steering” block. It can be seen in detail in Chapter 5.5.  

Figure 5-4 Blocks of the Adaptive MPC Motion Planner 

Figure 5-5 Blocks of the Adaptive MPC Steering Controller 
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Figure 5-6 shows the Adaptive Torque Vectoring Controller, which uses the same model 
update strategy as the other two controllers but has additional inputs in form of the steering 
angles, which come directly from the Adaptive MPC Steering Controller. The Adaptive MPC 
block has in contrast to the two previously described controllers no “switch” port, because it 
can be used for all driving modes. But it has ports for the constraints on manipulated variables 
and output variables. This is necessary in order to enable the different torque vectoring 
strategies for each mode, as described in Chapter 4.3.1. The constraints will then only allow 
torque inputs for the wheel, which should be braked according to the torque vectoring strategy. 
The constraints on the output variables are all set to zero and, therefore, not considered in the 
controller as it was defined in the command line. 

 

5.5 Kinematic Steering in Simulink ® 
 

   

 

 

 

 

 

 

 

The kinematic steering angle calculation from Chapter 4.2.2 is built in Simulink® and can 
be seen in Figure 5-7. A function detects if the steering controller computes steering angles in 
positive or negative steering. This is done by checking if both front and rear wheel steering 
angles have the same sign. After that, another function detects if the vehicle steers to the left 
or to the right by evaluating if the front steering angle is positive or negative. This is necessary 
in order to know, which wheels are the inner and outer wheels during cornering. Then the 
kinematic steering angles can be allocated to the wheels of the vehicle model.     

Figure 5-6 Blocks of the Adaptive MPC Torque Vectoring Controller 

Figure 5-7 Calculation of the kinematic steering angles 
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6 Simulations 
 

6.1 Advanced Vehicle Model used for Simulation  
 

The 4WID-4WIS electric vehicle prototype from the School of Automotive Studies at 
Tongji University introduced in Chapter 1.3 was modeled by a student of the department in 
Simulink® for conducting simulations regarding vehicle dynamics and control [62]. The model 
considers the planar vehicle dynamics, similar to the ones discussed in Chapter 4 by taking 
into account 7DOF. These degrees of freedom are longitudinal, lateral and yaw movement of 
the vehicle body and the rotation of each wheel around its lateral axis. The steering angles of 
the four steerable wheels are considered as system inputs. This model was developed and 
tested at the department in order to understand the dynamic behavior of the vehicle 
considering the combination of four-wheel drive and four-wheel steering, for normal driving and 
the special driving modes described in Chapter 3.2. Besides design and simulation in Simulink®, 
a similar model was created in IPG Carmaker® and the test results were compared, confirming 
the suitability of the Simulink® model.  

In order to represent the high nonlinearity of a real vehicle in modeling, the tire forces 
were described using a tire model called the “Magic Formula” from Pacejka [7]. Therefore, the 
linear MPC controllers in this thesis are used to control a nonlinear vehicle model and the 
results of this are shown in the next chapters.       

 

6.2 Simulation Scenarios 
 

A common scenario in vehicle simulation is the double lane change manoeuver and it is 
widely used for assessing the performance of path tracking controllers [21], [6], [37], [16] and 
[28].  

 

 

 

 

 

 

 

 

Figure 6-1 shows the path of the double lane change the vehicle has to follow. With 
Equations (6.1) and (6.2) [28] the path in global X�£� direction and the heading angle Z�£� can 

be calculated assuming a given longitudinal vehicle speed, which has to be kept constant in 
order to be used in a linear MPC.    

Figure 6-1 Double lane change path 
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X�£��W� = arctanz�U� m 1cosh V�nB m1,2�P�n 2 �UB m 1cosh VBnB m1,2�PBn{ (6.1) 

Z�£��W� � �U�2 �1 � tanh V�� 2 �UB2 �1 � tanh VB� (6.2) 

With the parameters V� � B,�B� �W 2 27,19� 2 1,2 , VB � B,�B�,� �W 2 56,46� − 1,2 , �P� � 25 , �PB �21,95, �U� � 4,05 and �UB � 5,7. 

 

6.3 Simulation of MPC Steering Controller 
 

In this chapter, the performance of the steering controller considering trajectory following 
is investigated. For doing that, the global X  and Z  position of the vehicle model and the 
manipulated variables of the controller are checked and compared with the feedback values 
of the vehicle model. All simulations are performed at different vehicle longitudinal speeds of 
15 km/h, 30 km/h and 50 km/h, in line with the field of application of an inner city vehicle. This 
is done in order to assess the capability of the controllers to handle varying vehicle speeds 
even though the prediction models are designed for TP � 2,5	�/~	���	9	��/¯�. All simulations 
in this chapter are done with the MPC Motion Planner and the MPC Steering Controller. The 
MPC Torque Vectoring Controller is not used here in order to assess the trajectory following 
capabilities of the steering controller alone.  

    

6.3.1 Double Lane Change with Normal MPC  
 

The MPC Motion Planner and the MPC Steering Controller are used in these simulations 
and the effect of varying vehicle longitudinal speed TP on the conventional or normal MPC 
controller is assessed.    

 

 

 

 

Figure 6-2 Double Lane Change with normal MPC at 15 km/h 
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Figure 6-2 and Figure 6-3 show the double lane change manoeuver at 15 km/h using 
conventional MPC Motion Planner and Steering Controller. The tracking performance seems 
acceptable but is not accurate since the vehicle speed TP of 15 km/h already exceeds the 
speed at which the controller was designed.   

 

 

 

 

 

 

 

 

Figure 6-4 shows the change of steering angle for the double lane change manoeuver 
at 15 km/h. It can be seen that the steering angles go in the opposite direction, indicating 
negative steering. 

 

 

Figure 6-3 Double Lane Change with normal MPC at 15 km/h 

Figure 6-4 Steering angles of the double Lane Change at 15 km/h 

Figure 6-5 Double Lane Change with normal MPC at 30 km/h 
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In Figure 6-5 and Figure 6-6 the simulation results for a double lane change at 30 km/h 
are presented. Compared to the manoeuver at 15 km/h the tracking performance worsened 
and so do all the other signals. Both vehicle lateral speed TU  and yaw rate � show a big 

deviation between the reference values and the feedback signals from the vehicle model, 
indicating that the control structure operates outside its capabilities. 

 

 

 

 

 

 

 

 

 

Figure 6-7 shows the steering angles of front and rear wheels computed by the MPC 
Steering Controller. The course of the signals is different than during the manoeuver at 15 
km/h but still feasible and within the physical boundaries 

Figure 6-6 Double Lane Change with normal MPC at 30 km/h 

Figure 6-7 Steering angles of the double Lane Change at 30 km/h 

Figure 6-8 Double Lane Change with normal MPC at 50 km/h 
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The graphs in Figure 6-8 and Figure 6-9 show the results of a double lane change 
manoeuver at 50 km/h with the control structure composed of conventional MPC Motion 
Planner and Steering Controller. The tracking performance of the vehicle X  position and 
heading angle K is quite unsatisfying. The signal of lateral vehicle speed TU is far higher than 

in any other simulation and probably too high for safe manoeuvering. In the bottom right graph, 
the vehicle yaw rate � is depicted, which in case of the computed signal from the Motion 
Planner reaches the upper constraint.  

 

 

 

 

 

 

 

 

Figure 6-10 shows the steering angles of the double lane change at 50 km/h. The 
steering angle value of the front wheel reaches the upper constraint. The conclusion of 
simulations with conventional MPC controllers at various speeds is, that they are bad at or 
even unable to control the nonlinear vehicle model at speeds different from the velocity at 
which the controller was designed initially.   

 

6.3.2 Double Lane Change with Adaptive MPC  
 

In this chapter, the double lane change manoeuver will be performed at different 
speeds in order to find out if the Adaptive MPC Controller is able to control the nonlinear plant 
at varying speeds. 

Figure 6-10 Steering angles of the double Lane Change at 50 km/h 

Figure 6-9 Double Lane Change with normal MPC at 50 km/h 
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The simulation results in Figure 6-11 show very good results for trajectory following 
during the double lane change manoeuver at TP = 15��/¯ . All signals are tracked with 
satisfying accuracy, even though the vehicle lateral speed TU  deviates slightly from its 

reference.   

 

 

 

 

 

 

 

 

 

The front and rear wheel steering angles in Figure 6-12 show a smooth and feasible 
course and indicate negative steering since the wheels steer in opposite directions. 

Figure 6-11 Double Lane Change with Adaptive MPC at 15 km/h 

Figure 6-12 Steering angles of the double Lane Change at 15 km/h 
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Figure 6-13 shows the double lane change scenario performed a TP = 30��/¯. The 
tracking performance of lateral vehicle position X, heading angle K and yaw rate � are very 
close to their references. Strong deviations can be seen between the vehicle lateral speed TU 

and its reference. 

 

 

 

 

 

 

 

 

 

In Figure 6-14 the course of the vehicle steering angles computed by the MPC Steering 
Controller can be seen. Compared to the signals at 15 km/h, the ones at 30 km/h still show a 
basic tendency to negative steering and have a smooth curve, providing feasible control inputs 
for the vehicle model. The values of the front steering angle are bigger at 30 km/h than at 15 
km/h.   

Figure 6-13 Double Lane Change with Adaptive MPC at 30 km/h 

Figure 6-14 Steering angles of the double Lane Change at 30 km/h 
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The simulation results of a double lane change manoeuver at 50 km/h are shown in 
Figure 6-15. In terms of tracking the reference X and Z, the performance is still satisfying even 
though some deviations of the vehicle model feedback signals and the reference signals can 
be seen. The same can be said about the vehicle yaw rate �, only the vehicle lateral velocity TU  shows bad tracking performance, but the peak values are still far below those of the 

simulation with conventional MPC. 

 

 

 

 

 

 

 

Figure 6-16 shows the computed steering angles at 50 km/h, which show in contrast to 
the simulations at a lower speed a tendency to positive steering. As mentioned in Chapter 
3.2.1, positive steering can help to improve stabilization at higher speeds. The conclusion of 
these simulations is that the Adaptive MPC controllers are very capable of controlling the 
nonlinear vehicle model at various different speeds and show therefore a big advantage over 

Figure 6-15 Double Lane Change with Adaptive MPC at 50 km/h 

Figure 6-16 Steering angles of the double Lane Change at 50 km/h 
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the common MPC controllers. Another conclusion from these simulations is that the tracking 
of vehicle lateral velocity TU  worsened with rising vehicle longitudinal speed and shows 

considerable deviations between the reference signal and the feedback signal. A reason for 
this behavior could lie in the way the MPC Motion Planner was designed since it only uses a 
kinematic prediction model, which is not able to represent a nonlinear vehicle model at high 
dynamics [36].  

The Adaptive MPC steering controller shows a far better performance in trajectory 
following than the conventional MPC controller at various speeds. The reason for this is that 
the prediction model of the controller was established at a certain constant vehicle longitudinal 
speed. If this speed changes, the controller performance isn’t optimal anymore and this is the 
case for conventional MPC. The Adaptive MPC updates the plant model at every time step 
with the changing vehicle longitudinal speed and is, therefore, able to represent the controlled 
system in a better way and the performance of the MPC control strategy improves significantly. 
It is, therefore, also capable of controlling the nonlinear vehicle model, even though the plant 
model of the MPC controller is linear.   

 

6.3.3 Double Lane Change with Positive and Negative Steering  
 

As described in Chapter 3.2.1, one of the characteristics of positive steering is that the 
angular movement about the vehicle vertical axis can be kept very small. Therefore, a double 
lane change simulation was performed with a reference vehicle heading angle Z = 0 and the 
yaw rate computed by the MPC Motion Planner was constrained to � � 0.  

Negative steering configuration was achieved by performing the standard double lane 
change manoeuver as described in Chapter 6.2 at 15 km/h during which the MPC Steering 
Controller computes steering angles in negative steering fashion.    

 

In Figure 6-17 the steering angles computed by the MPC Steering Controller can be seen 
for positive steering on the left and for negative steering on the right. The double lane change 
manoeuver was carried out at 15 km/h. It can be seen that the steering angles of front and rear 
wheel are the same when performing a positive steering manoeuver. For negative steering on 

Figure 6-17 Front and rear steering angles for positive and negative steering 
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the other hand, the steering angles of the rear wheel have the opposite orientation than the 
front wheel. 

 

Figure 6-18 shows the results for the vehicle heading angle Z and yaw rate � during the 
positive steering manoeuver. As described above, the reference values were set to zero. The 
feedback signals from the vehicle are not zero but still very small, as it can be seen in the 
graphs.   

 

6.4 Simulation of a PID Steering Controller 
 

After assessing the performance of the Adaptive MPC structure using Motion Planner 
and Steering Controller, a comparison is made using a PID controller for computing the 
steering angles. Because a PID controller can be implemented easily it is often the first choice 
for designing control structures and the easy implementation represents an advantage over 
the MPC controller. The results should show the difference between using an Adaptive MPC 
controller or a PID Controller for controlling a nonlinear plant. Similar to the previous 
simulations the double lane change manoeuver is performed at different longitudinal vehicle 
velocities.    
 

6.4.1 Design of PID Steering Controller  
 

In order to make a comparison with the MPC control structure, the Motion Planner is 
kept unchanged and is used for the simulations with the PID controller as well. The reason is 
that a suitable replacement with PID controllers was not found since the Motion Planner has 
to be capable of performing obstacle avoidance and that can be achieved with the MPC by 
updating the constraints. When looking to the MPC Steering Controller in Chapter 4.2.1, it uses 
the lateral vehicle speed TU and the yaw rate � to compute both the front-wheel steering angle c� and the rear-wheel steering angle c�. Due to this, one PID controller computes c� using the 
difference between reference vehicle lateral speed TU and feedback lateral speed from the 

vehicle model. The second PID controller computes c�  with respect to the deviation of 
feedback and reference yaw rate. After conducting research in the field of four-wheel steering 
PID vehicle control a suitable concept was adapted from [57] where a PI controller is used. 
The following control structure is implemented in Simulink®. 

Figure 6-18 Heading angle and yaw rate during positive steering manoeuver 
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Figure 6-19 shows the two PI controllers used for computing the steering angles, which 
receives the reference signals from the MPC Motion Planner. The PI controllers need to be 
tuned in order to work properly for the controlled system. Because the step response of the 
vehicle model was already used for MPC controller tuning in Chapter 5.2, the “T-Sum Rule” 
[58] was applied for setting the PI parameters and tuning them, which showed good results. In 
Simulink® it is possible to perform PID controller tuning, fully done by the software. This option 
was used during the PI controller implementation but showed no improvement to the “T-Sum 
Rule” and was, therefore, not used further on.   

 

6.4.2 Comparison with MPC Steering Controller and Conclusion  
 

In order to compare the MPC Steering Controller and the PI Steering Controller, the 
double lane change manoeuver was simulated at a vehicle longitudinal speed TP of 15 km/h, 
30 km/h and 50 km/h. 

 

 

 

Figure 6-19 The PI Controllers for four-wheel steering 

Figure 6-20 Comparison of PI and MPC Controller for double lane change at 15 km/h 
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Figure 6-20 shows the simulation results of the double lane change at 15 km/h. The 
tracking performance of the PI Steering Controller can be compared with the one of the MPC 
Steering Controller, with only small deviations. The lateral vehicle speed TU caused by the PI 

Steering Controller deviates strongly from the other signals.   

 

 

 

 

 

 

 

 

 

Figure 6-21 shows the main difference in control quality between MPC Steering 
Controller and PI Steering Controller, which lies in the computed steering signal. The MPC 
controller computes smooth and feasible control inputs, which consider both constraints on 
steering angle range and turning rate. The results of the PI controller show strong fluctuation 
and won’t provide smooth control inputs. This will be a problem if used for a real vehicle since 
the actuators won’t be able to follow the computed steering commands. 

Figure 6-21 Comparison of computed steering angles at 15 km/h

Figure 6-22 Comparison of PI and MPC Controller for double lane change at 30 km/h
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Figure 6-22 shows the simulation results of the double lane change for 30 km/h. It can 
be seen, that the performance of the PI controller deteriorates, but can still maintain acceptable 
tracking of the reference signals, with the exception of TU.    

 

 

 

 

 

 

 

 

 

In Figure 6-23 the steering angles of front and rear wheel computed by MPC and PI 
controller are compared. The signal quality of the PI steering angles worsened with the 
increasing speed, whereas the MPC controller still computes smooth and feasible steering 
angles.  

The final simulation of the MPC Steering Controller and the PI Steering Controller was 
performed at 50 km/h and can be seen in Figure 6-24. At this point, the performance of the 

Figure 6-23 Comparison of computed steering angles at 30 km/h 

Figure 6-24 Comparison of PI and MPC Controller for double lane change at 50 km/h 
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MPC controller deteriorates a bit and small deviations from the reference signals can be seen. 
The PI, on the other hand, shows higher deviations, by basically still maintaining the trajectory 
following. The lateral vehicle speed TU is not matched by both controllers, which might root 

from the drawbacks of using a kinematic vehicle model in the MPC Motion Planner, as 
discussed in Chapter 6.3.2.  

 

 

 

 

 

 

 

 

 

The steering angles depicted in Figure 6-25 from the double lane change simulation at 
50 km/h show a similar behavior as the ones from the 30 km/h simulation. The fluctuations are 
high and considering a real application in a vehicle these signals can’t be used for steering 
since the actuators won’t be able to perform the rapid changes. The MPC Steering Controller 
maintains feasible control signals.   

Concluding from the conducted simulations it can be said that the PI Steering Controller 
is in contrast to the MPC Steering Controller not suitable for controlling a nonlinear vehicle 
dynamics model. The MPC controller is able to take constraints on both signal bounds and 
changing rates into accounts and maintain proper control signals over a range of different 
prediction model parameters, like the vehicle longitudinal speed TP and the PI Controller used 
in this thesis failed in gaining the same result. Furthermore, only one MPC controller was used 
in this example, whereas two PI controllers were necessary. This lies in the MPC nature of 
being able to handle multiple inputs and multiple outputs at the same time. A further aspect is 
that the PI controller showed high sensitivity to changes in vehicle longitudinal speed TP, which 
the MPC controller can handle thanks to its adaptive design. 

In addition to the simulation results using a PI controller, several simulations with PID 
and PD controllers were conducted using the same control structure as presented in Figure 6-
19. All of these variants were tuned by using both the “T-Sum Rule” and the tuning provided 
by the Simulink® software. The simulations were again performed at 15 km/h, 30 km/h and 50 
km/h and compared with the results gained from the MPC controllers. It turned out that all 
these configurations showed similar results as the previously described PI controller 
considering the tracking performance and the steering angle computation.         

 

 

Figure 6-25 Comparison of computed steering angles at 50 km/h 
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Figure 6-27 Torque inputs at 15 km/h 

6.5 Simulation of MPC Torque Vectoring Controller  
 

The MPC Torque Vectoring Controller introduced in Chapter 4.3 can be used in all driving 
modes, which means that it should provide additional support in trajectory following when four-
wheel steering mode is applied and taking over the whole vehicle control in case of sideways 
driving and turning on the spot. In this chapter, all three driving modes are simulated with the 
Torque Vectoring Controller.   

 

6.5.1 Double Lane Change with and without Torque Vectoring  
 

In Chapter 6.3.2 the double lane change manoeuver is simulated at various speeds by 
using Adaptive MPC controllers for Motion Planning and Steering Control. The results from 
these simulations are compared with the results when the MPC Torque Vectoring Controller is 
used additionally. Torque vectoring mainly influences vehicle yaw rate � , as discussed in 
Chapter 4.3. Therefore, yaw rate change during simulation is assessed. 

 

 

 

 

 

 

 

Figure 6-26 shows the yaw rate of the vehicle during double lane change at TP =15��/¯. In the left graph, no torque vectoring was applied and it can be seen that the yaw rate 
of the vehicle matches well with the reference signal. Therefore, the right picture with torque 
vectoring shows no difference to the one without. 

 

 

 

 

 

 

 

 

Figure 6-26 Yaw rate during double lane change without and with Torque Vectoring at 15 km/h 
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The corrective braking inputs of the MPC Torque Vectoring Controller can be seen in 
Figure 6-27. Compared with Figure 6-26 the corrective inputs correlate with the dynamic 
regions of the manoeuver. 

The results in Figure 6-28 were obtained by simulating the double lane change at a 
speed of TP = 30��/¯. The right graph shows the resulting vehicle yaw rate when torque 
vectoring is applied. One can see, that the vehicle yaw rate follows the reference signal more 
closely than it is the case in the left picture without torque vectoring. 

 

 

 

 

 

 

 

 

Figure 6-29 shows the torque vectoring signals to the vehicle, which were applied 
during the double lane change at 30km/h. Compared to Figure 6-27 the torque values are 
higher, which comes in line with the higher vehicle dynamics. 

Figure 6-28 Yaw rate during double lane change without and with Torque Vectoring at 30 km/h

Figure 6-29 Torque inputs at 30 km/h 

Figure 6-30 Yaw rate during double lane change without and with Torque Vectoring at 50 km/h



62 

 

In Figure 6-30 the simulation results for a double lane change at TP = 50��/ℎ are 
displayed. The left graph shows the results without and the right graph with torque vectoring. 
Similar to the results from the simulation at 30 km/h, the vehicle yaw rate follows the reference 
signal more accurate when torque vectoring is used. Especially in the regions with high yaw 
rate and rapid change of direction, the MPC Torque Vectoring Controller can achieve an 
improvement in yaw rate tracking compared to the results without torque vectoring. This results 
in a better vehicle stabilization at higher speeds and therefore improves the usability of the 
whole control structure.   

 

 

 

 

 

 

 

 

 

The double lane change at 50km/h already shows significant vehicle dynamics. The 
braking torque applied to the vehicle model is, therefore, higher than in the two simulations 
before as it can be seen in Figure 6-31. Sometimes the braking torque even reaches the 
constrained limit but stays below that most of the time.  

 

6.5.2 Sideways Driving  
 

In case of sideways driving the vehicle travels in lateral vehicle direction with defined 
steering angles. As described in Chapter 4.3.1 the only corrective input to follow a defined 
lateral trajectory is to brake certain wheels with the MPC Torque Vectoring Controller. The 
suitability of this idea is evaluated in this chapter.  

In order to simulate sideways driving where a corrective torque vectoring is needed, a 
scenario has been chosen, which can easily happen in a real application. This refers to a poor 
setting of the initial steering angles, which could also happen due to mechanical clearance in 
the steering system. Therefore, the steering angle of the front-right wheel is set as 89° and the 
one of the rear left wheel to 91°. Based on these boundary conditions, a simulation of sideways 
driving at vehicle lateral speed TU � 3��/ℎ is performed.      

Figure 6-31 Torque inputs at 50 km/h 
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Figure 6-32 shows the vehicle yaw rate � and the torque inputs from the MPC Torque 
Vectoring Controller. It can be seen that the torque signal immediately rises up to the biggest 
braking torque, which was set as -50Nm in the constraints. Due to this the vehicle yaw rate in 
the left picture caused by the torque vectoring controller is held on a constant level in order to 
counteract the steering angle error. 

 

 

The results presented in Figure 6-33 show the path in global X direction the vehicle 
traveled during the simulation and the path in the global W direction, which should be zero but 
is caused by the steering angle errors. It can be seen that the error in the global W direction is 
lowered when the MPC Torque Vectoring Controller is used.  

From this simulation it can be seen that torque vectoring has an effect in sideways 
driving and can possibly reduce errors in the trajectory. But it also shows by the high applied 
braking torque that the limits of this strategy are reached in this case. Therefore, the conclusion 
is that the MPC Torque Vectoring Controller can help to reduce errors in sideways driving but 
not fully compensate them. The reason for that is that torque vectoring cannot replace a 
steering system when it comes to correcting trajectories. Another aspect is that the motion of 
the vehicle when drifting off in longitudinal direction during sideways driving occurs mainly in 
lateral tire direction. Therefore, the tire characteristics in lateral direction influence this motion 
strongly, e.g. the lateral slip and the cornering stiffness, as described in Chapter 4.3.1.    

 

 

Figure 6-33 Lateral and longitudinal position during sideways driving with steering angle mismatch
 

Figure 6-32 Yaw rate and braking torque during sideways driving with steering angle mismatch 
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Figure 6-35 Longitudinal and lateral position during turning on the spot 

6.5.3 Turning on the Spot 
 

The driving mode for turning on the spot was described in Chapter 3.2.2 and 4.3.1 and 
only the MPC Torque Vectoring Controller can be used since the steering angles are 
predefined and therefore, an obstacle avoidance manoeuver, which would require the Motion 
Planner can’t be performed. In order to simulate the performance of the torque vectoring 
controller, a constant reference yaw rate is defined, which the vehicle must follow. As 
mentioned in Chapter 4.3.2, it is necessary to set a small vehicle longitudinal velocity e.g. TP =0,01	�/~	���	0,036	��/¯� in order to avoid dividing by zero in the state matrices, even though 
both longitudinal and lateral velocity should be zero during this manoeuver. The influence of 
this intentionally caused error will be shown in this chapter. 

Figure 6-34 shows the yaw rate and torque vectoring signals of a turning on the spot 
manoeuver. It has to be mentioned, that the simulation is started with a vehicle yaw rate of � =0. This causes the torque vectoring controller to apply the maximum driving torque on a wheel 
in order to reach the desired yaw rate. This part of the manoeuver should normally be done by 
a slip controller, which is used to drive the wheels and the torque vectoring controller should 
only take actions when there are deviations from the reference signal. Furthermore, the torque 
vectoring controller is not suitable for driving the vehicle because it doesn’t monitor the wheel 
slip and can therefore not prevent wheel spin when driving or lock when braking. The curves 
shown in Figure 6-34 are the only representative for showing the torque vectoring performance 
after roughly three seconds of simulation time when the vehicle yaw rate is already close to 
the reference value. After that, the torque vectoring principle applies braking and driving 
torques until the desired reference yaw rate can be kept almost constant.     

 

 

 

 

 

 

Figure 6-34 Yaw rate and braking torque during turning on the spot 
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The curves shown in Figure 6-35 describe the displacement of the vehicle in global W 
and X direction during the turning on the spot manoeuver. This displacement is caused by the 
vehicle longitudinal speed TP = 0,01�/~ and it can be seen that the effect on the vehicle 
position is marginal and could be compensated in the navigation level.    

 

6.6 Simulation of Obstacle Avoidance  
 

6.6.1 Obstacle Avoidance Scenario  
 

In autonomous driving, it is inevitable to have a system on board, which allows adjusting 
the vehicle trajectory in order to avoid colliding with objects in the vehicle environment and 
therefore ensure safe driving. The field of obstacle avoidance is very broad since many 
different kinds of obstacles can be distinguished and with them come different avoidance 
actions. The focus of this thesis was to establish and simulate Model Predictive Controllers for 
controlling a nonlinear vehicle model. Therefore, only a simplified obstacle avoidance scenario 
is applied in order to assess the suitability of the Motion Planner in that field. The example 
used in this simulation is derived and adapted from [29].   

 

 

 

 

 

Figure 6-36 shows an obstacle avoiding scenario considering a static obstacle on a 
three-lane road, with the dashed safety zone around the obstacle. This safety zone is 
necessary because only the motion of the vehicle center of gravity is computed, not 
representing the full vehicle size. In order to ensure passing by the obstacle, the size of it has 
to be increased. If the center of gravity of the vehicle then travels along the constrained safety 
zone, a collision is avoided. Besides the obstacle shape, the left and right road boundaries are 
defined as constraints for lateral movement. These constraints are updated at each control 
interval and represent the area in which the vehicle can drive to avoid a collision with the 
obstacle.  

The constraints that are used in this case apply on both input and output variables and 
are therefore called mixed input/output constraints.  

°( + a' ≤ ± (6.3) 

Equation (6.3) shows the mixed input/output constraints, with the constraint matrices ° , a  and ± , the input vector (  and the output vector ' . The constraint matrix ±  can, for 
example, hold the upper and lower road boundaries as limitations for sideways movement 
during normal driving [59].  

Figure 6-36 Obstacle Avoidance Scenario 
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Figure 6-37 Adaptive MPC Motion Planner for Obstacle Avoidance

6.6.2 Implementation in Simulink® 
 

 

 

 

 

 

 

 

 

 

Figure 6-37 shows the Motion Planner with obstacle avoidance in Simulink, as 
introduced in Chapter 5.4. An Object Detection function receives the current vehicle position 
in global W and X position as feedback from the vehicle model and the sensor information, 
which gives information about the obstacle position as soon as it is within the sensor detection 
range. If no obstacle is detected the Constraints function sends the standard constraints to the 
Adaptive MPC Controller, for example the road boundaries. In case an obstacle is detected, 
special constraints are computed, which include the distance to the obstacle and the safety 
zone around it. The vehicle can then move around the obstacle considering the constraints.     

6.6.3 Results and Discussion 
 

 

 

 

 

 

 

 

 

Figure 6-38 shows the path the vehicle takes around the static obstacle during the 
obstacle avoidance manoeuver at a constant vehicle longitudinal speed of TP = 15��/¯. It can 
be seen that the vehicle clearly passes by the obstacle without violating the safety zone and 
after passing, it goes back to the center of the middle lane. This example shows, that the 
designed MPC Motion Planner is basically able to perform an obstacle avoidance manoeuver.    

An obstacle avoidance manoeuver can only be done in the four-wheel steering mode. In 
case of sideways driving or turning on the spot the steering angles are fixed and therefore 

Figure 6-38 Resulting vehicle path for obstacle avoidance 
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steering around an obstacle is not possible. In these modes, only a collision avoidance can be 
achieved by stopping the vehicle driving or turning motion before a collision occurs. 

 

6.7 Simulation of Combined Modes 
 

6.7.1 Parking Scenario 
 

This simulation scenario combines the mode of four-wheel steering and sideways 
driving, which should represent a parking scenario.  

 

 

 

 

 

Figure 6-39 shows the sideways parking scenario, which combines straight-ahead 
driving with sideways driving. The parking spot is just a bit larger than the vehicle itself and 
therefore there is no other way of parking than to use sideways driving. 

 

The control inputs for the combined sideways parking manoeuver are shown in the left 
half of Figure 6-40, where the vehicle longitudinal speed TP decreases from a constant initial 
value when the parking spot is reached and settles to zero when forward driving is switched 
off. After that, the speed ramp of lateral velocity TU drives the vehicle in the lateral direction. 

The graphs on the right side of Figure 6-40 show the resulting trajectories of the vehicle in 
global W and X direction.  

 

 

Figure 6-39 Sideways parking scenario 

Figure 6-40 Input signals and results of sideways parking manoeuver 
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Figure 6-41 shows the visualization of the sideways parking manoeuver. The first 
picture on the left shows the vehicle as it has reached the parking spot. At this point a mode 
signal switches off the MPC Motion Planner and the MPC Steering Controller because they 
are not needed for sideways driving. This mode signal also initializes the steering angles for 
sideways driving, which can be seen in the middle picture. The picture on the right shows the 
vehicle in its final parking position.  

 

6.7.2 Dead-End Scenario 
 

The dead end scenario represents a combination of the four-wheel steering mode and 
turning on the spot.  

 

 

 

 

 

 

Figure 6-42 describes the dead-end scenario. The task is to turn the vehicle around at 
the end of the street. The reason for that could be that the vehicle has to drive out of the dead 

Figure 6-41 Visualization of the sideways parking scenario 

Figure 6-42  Dead end scenario 

Figure 6-43 Input signals and results of the dead-end scenario 
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Figure 6-44 Visualization of the dead end manoeuver 

end with the front end first or it could be that the dead end is a loading bay and the goods will 
be placed on the rear side of the vehicle. 

The graphs in Figure 6-43 show the input signals of the dead-end scenario and the 
resulting path. As can be seen in the top left picture, the vehicle slows down by the end of the 
street. After the mode signal triggered the switching off of MPC Motion Planner and MPC 
Steering Controller, the steering wheels are set according to the turning on the spot mode and 
the yaw rate signal shown in the bottom left part of Figure 6-43 is applied to the vehicle. It goes 
back to zero in order to gain the wanted turning angle of 180°. The results of the global W 
position and vehicle heading angle Z can be seen in the right part of Figure 6-43. The heading 
angle Z rises until 180° and therefore puts the vehicle in the right orientation to be loaded or to 
leave the dead-end.    

 

The visualization of the dead end scenario in Figure 6-44 shows some of the steps 
during the manoeuver. The first picture shows the vehicle when it has reached its final point in 
the dead-end. Then the mode is switched to turning on the spot and the four steering angles 
are set according to the turning on the spot mode. The second picture shows the vehicle during 
turning with the wheels arranged for turning on the spot. In the final picture, the vehicle 
completed a 180° turn. 

   

6.7.3 Right Angle Turn 
 

The right angle turn is another example of the combination of four-wheel driving mode and 
turning on the spot.   

 

 

 

 

 

The scenario in Figure 6-45 can be seen as a case where the high maneuverability of 
the 4WID-4WIS vehicle is utilized. At the end of the road, the vehicle should take a corner, 
which is too narrow for normal turning and the gap is too small for sideways driving. Performing 

Figure 6-45 Right angle turn scenario 
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Figure 6-46 Input signals and results for right angle turn manoeuver 

Figure 6-47 Visualization of the right angle turn manoeuver 

a 90° turn can orientate the vehicle in a way that it can drive on straight ahead into the narrow 
road and possibly fulfill a delivery task.  

 

The input signals and resulting trajectories depicted in Figure 6-46 are quite similar to 
the ones of the dead-end scenario. The difference lies in the duration the yaw rate is applied 
because the vehicle should only do a 90° turn. The achievement of the desired heading angle 
can be seen in the bottom right graph in Figure 6-46. 

 

In Figure 6-47 some simulation steps of the right angle turn manoeuver are shown. After 
the vehicle has reached the point at which it should turn by using the four-wheel steering mode, 
a switching signal is sent to the controllers in order to turn off the optimization in both Motion 
Planner and Steering Controller and to adjust the wheels with the required steering angles. 
These steering angles can be seen in the middle picture as the vehicle is turning on the spot. 
In the right picture, a 90° heading angle of the vehicle is reached and the manoeuver is 
completed.     
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7 Conclusion and Outlook 
 

7.1 Conclusion 
 

Considering the main research content described in Chapter 1.4, several tasks had to 
be accomplished. In terms of controller design, the basic vehicle models were described 
mathematically and the checking for their suitability was successful. Two different controller 
types were tested during which it turned out that the Adaptive MPC is a good choice for the 
considered vehicle control task. This is because it shows a certain robustness against changes 
in vehicle longitudinal speed and can control the nonlinear vehicle model even at higher speeds. 
The task of trajectory tracking was accomplished by the introduced MPC Steering Controller 
and refined by the use of the MPC Torque Vectoring Controller. Motion planning for obstacle 
avoidance was shown to be possible with the designed MPC Motion Planner and therefore 
accomplished one of the predefined tasks. For realizing different driving manoeuvers, the 
possible approaches were discussed and simulated, showing promising and satisfactory 
results even for the combination of modes.  

The conclusion is that the designed control strategy is suitable for the use with a 
nonlinear vehicle model for the considered field of application, fulfilling some basic 
requirements of autonomous driving. This basis can be used in a real vehicle prototype after 
further development.    

 

7.2 The Direction of Further Work 
 

During this thesis, some simplifications were made, which turned out to be acceptable 
during the conducted simulations, but a possible ongoing research in that field could include 
to test the controllers outside their designed field in order to ensure practicability for real use.  

Since the focus of this thesis was to enable trajectory following, obstacle avoidance and 
special driving modes, the propulsion of the vehicle was not taken into account. This topic 
represents a future field of research by implementing Model Predictive Control for driving the 
wheels and enabling safe and stable driving on various road conditions.   

Due to related projects in the department, the Motion Planner was designed to compute 
velocity commands from a predefined path. This path is provided by the Navigation Level and 
an interesting future work is to compute a collision-free trajectory within the Motion Planning 
level using the MPC control strategy. 
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8 Appendix 
Code of the MPC Controllers in MATLAB® Command Line:   

% MPC for Motion Planner  
  
vx=2.5;  
  
Aa=[0 vx; 0 0];  
Bb=[1 0; 0 1];  
Cc=[1 0; 0 1];  
Dd=zeros(2,2);  
PlantMP=ss(Aa,Bb,Cc,Dd);  
  
PlantMP.InputName={ 'vy' , 'r' };  
PlantMP.StateName={ 'Y' , 'Theta' };  
PlantMP.OutputName=PlantMP.StateName;  
PlantMP.InputGroup.MV=2;  
PlantMP.OutputGroup.MO=2;  
  
isstable(PlantMP)  
ctrb_matrix=ctrb(PlantMP)  
rank(ctrb_matrix)  
  
Ts1=0.017;  
  
MPCobjMP=mpc(PlantMP,Ts1);  
  
%Scale Factors  
MPCobjMP.MV(1).ScaleFactor=100;              %for vy in m/s  
MPCobjMP.MV(2).ScaleFactor=10;               %for r in deg/s  
MPCobjMP.OV(1).ScaleFactor=30;               %for Y in m  
MPCobjMP.OV(2).ScaleFactor=2*pi;             %for Theta in rad  
  
%Prediction and Control Horizon  
MPCobjMP.PredictionHorizon=20;  
p1=MPCobjMP.PredictionHorizon;  
MPCobjMP.ControlHorizon=4;  
  
%Constraints  
MPCobjMP.MV(1).Min=-5;                  %lower bound vy  
MPCobjMP.MV(1).Max=5;                   %upper bound vy  
MPCobjMP.MV(2).Min=-0.45;               %lower bound r  
MPCobjMP.MV(2).Max=0.45;                %upper bound r  
% MPCobjMP.MV(2).Min=0;                 %r for para llel steering  
% MPCobjMP.MV(2).Max=0;                 %r for para llel steering  
  
%Weights  
MPCobjMP.Weights.OV(1)=20;              % 20: High Priority  
MPCobjMP.Weights.OV(2)=10;              % 1: Average priority  
  
ct_plant1=MPCobjMP.Model.Plant;  
dt_plant1=c2d(ct_plant1,Ts1);  
MPCobjMP.Model.Plant=dt_plant1;  
  
review(MPCobjMP);  
  
%% MPC for Trajectory Follower Steering Controller SC 
  
m=500;  
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Iz=488;  
Lf=1.05;  
Lr=1.15;  
g=9.81;  
  
%values of tire cornering stifness derived from sim ulation model  
Caf=3.3469e+04;                %tire cornering stifness in N/rad  
Car=3.6656e+04;                %tire cornering stifness in N/rad  
  
%Plant Model Steering Controller  
E1=(-Caf-Car)/(m*vx);  
E2=((Lr*Car-Lf*Caf)/(m*vx))-vx;  
E3=(Lr*Car-Lf*Caf)/(Iz*vx);  
E4=(-Lf*Lf*Caf-Lr*Lr*Car)/(Iz*vx);  
F1=(Caf/m);  
F2=(Car/m);  
F3=((Lf*Caf)/Iz);  
F4=(-(Lr*Car)/Iz);  
  
E=[E1 E2; E3 E4];  
F=[F1 F2; F3 F4];  
G=[1 0; 0 1];  
H=[0 0; 0 0];  
PlantSC=ss(E,F,G,H);  
  
PlantSC.InputName={ 'Delta_f' , 'Delta_r' };  
PlantSC.StateName={ 'vy' , 'r' };  
PlantSC.OutputName=PlantSC.StateName;  
PlantSC.InputGroup.MV=2;  
PlantSC.OutputGroup.MO=2;  
  
Ts2=0.017;  
  
MPCobjSC=mpc(PlantSC,Ts2);  
  
%Scale Factors  
MPCobjSC.MV(1).ScaleFactor=pi/2;              %Steering Angle front in rad  
MPCobjSC.MV(2).ScaleFactor=pi/2;              %Steering Angle rear in rad  
MPCobjSC.OV(1).ScaleFactor=10;                %for vy in m/s  
MPCobjSC.OV(2).ScaleFactor=0.6981317;         %for r in rad/s  
  
%Prediction and Control Horizon  
MPCobjSC.PredictionHorizon=10;  
MPCobjSC.ControlHorizon=2;  
  
%Constraints  
MPCobjSC.MV(1).Min=-((45*pi)/180);      %Front steering angle lower bound  
MPCobjSC.MV(1).Max=((45*pi)/180);       %Front steering angle upper bound  
MPCobjSC.MV(2).Min=-((45*pi)/180);      %Rear steering angle lower bound  
MPCobjSC.MV(2).Max=((45*pi)/180);       %Rear steering angle upper bound  
  
MPCobjSC.MV(1).RateMaxECR=pi/30;        %Front steering angle rate  
MPCobjSC.MV(2).RateMaxECR=pi/30;        %Rear steering angle rate  
  
%Weights  
MPCobjSC.Weights.OV(1)=20;  
MPCobjSC.Weights.OV(2)=5;  
  
ct_plant2=MPCobjSC.Model.Plant;  
dt_plant2=c2d(ct_plant2,Ts2);  
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MPCobjSC.Model.Plant=dt_plant2;  
  
review(MPCobjSC);  
  
%% MPC for Torque Vectoring Control  
  
Bf=1.4;  
Br=1.4;  
df=1*10^-1;       %Initial front steering angle for the vehicl model  
dr=1*10^-1;       %Initial rear steering angle for the vehicl model  
  
Iw=1.5;  
rw=0.2521;  
kxf=Caf*1.5;  
kxr=Car*1.5;  
  
O1=(-2*Caf-2*Car)/(m*vx); O2=((2*Car*Lr-2*Caf*Lf)/( m*vx))-vx; O3=0; O4=0;  
O5=0; O6=0;  
O7=(2*Car*Lr-2*Caf*Lf)/(Iz*vx); O8=(-2*Caf*Lf*Lf-2* Car*Lr*Lr)/(Iz*vx);  
O9=(-kxf*Bf)/Iz; O10=(kxf*Bf)/Iz; O11=(-kxr*Br)/Iz;  O12=(kxr*Br)/Iz;  
O13=0; O14=0; O15=(-rw*rw*kxf)/(vx*Iw); O16=0; O17= 0; O18=0;  
O19=0; O20=0; O21=0; O22=(-rw*rw*kxf)/(vx*Iw); O23= 0; O24=0;  
O25=0; O26=0; O27=0; O28=0; O29=(-rw*rw*kxr)/(vx*Iw ); O30=0;  
O31=0; O32=0; O33=0; O34=0; O35=0; O36=(-rw*rw*kxr) /(vx*Iw);  
  
P1=(2*Caf*df)/m; P2=(2*Car*dr)/m; P3=0; P4=0; P5=0;  P6=0;  
P7=(2*Caf*Lf*df)/Iz; P8=(-2*Car*Lr*dr)/Iz; P9=0; P1 0=0; P11=0; P12=0;  
P13=0; P14=0; P15=-rw/(vx*Iw); P16=0; P17=0; P18=0;   
P19=0; P20=0; P21=0; P22=-rw/(vx*Iw); P23=0; P24=0;   
P25=0; P26=0; P27=0; P28=0; P29=-rw/(vx*Iw); P30=0;   
P31=0; P32=0; P33=0; P34=0; P35=0; P36=-rw/(vx*Iw);  
  
O=[O1 O2 O3 O4 O5 O6; O7 O8 O9 O10 O11 O12; O13 O14  O15 O16 O17 O18;  
    O19 O20 O21 O22 O23 O24; O25 O26 O27 O28 O29 O3 0; O31 O32 O33 O34 O35 
O36];  
P=[P1 P2 P3 P4 P5 P6; P7 P8 P9 P10 P11 P12; P13 P14  P15 P16 P17 P18;  
    P19 P20 P21 P22 P23 P24; P25 P26 P27 P28 P29 P3 0; P31 P32 P33 P34 P35 
P36];  
Q=[1 0 0 0 0 0; 0 1 0 0 0 0];  
R=[0 0 0 0 0 0; 0 0 0 0 0 0];  
PlantTV=ss(O,P,Q,R);  
  
PlantTV.InputName={ 'n1' , 'n2' , 'Tfl' , 'Tfr' , 'Trl' , 'Trr' };  
PlantTV.StateName={ 'vy' , 'r' , 'sfl' , 'sfr' , 'srl' , 'srr' };  
PlantTV.OutputName={ 'vy' , 'r' };  
PlantTV.InputGroup.MV=6;  
PlantTV.OutputGroup.MO=2;  
  
TsTV=0.017;  
  
MPCobjTV=mpc(PlantTV,TsTV);  
  
MPCobjTV.MV(1).ScaleFactor=1.57;           %Steering Angle front in rad  
MPCobjTV.MV(2).ScaleFactor=1.57;           %Steering Angle rear in rad  
MPCobjTV.MV(3).ScaleFactor=1000;           %Torque Front Left in Nm  
MPCobjTV.MV(4).ScaleFactor=1000;           %Torque Front Right in Nm  
MPCobjTV.MV(5).ScaleFactor=1000;           %Torque Rear Left in Nm  
MPCobjTV.MV(6).ScaleFactor=1000;           %Torque Rear Right in Nm  
  
MPCobjTV.OV(1).ScaleFactor=2;              %for vy in m/s  
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MPCobjTV.OV(2).ScaleFactor=0.4;            %for r in rad/s  
  
%Prediction and Control Horizon  
MPCobjTV.PredictionHorizon=10;  
MPCobjTV.ControlHorizon=2;  
  
%Constraints  
MPCobjTV.MV(1).Min=1;        
MPCobjTV.MV(1).Max=1;  
MPCobjTV.MV(2).Min=1;  
MPCobjTV.MV(2).Max=1;  
% Torque Constraints for normal driving  
MPCobjTV.MV(3).Min=-50;  
MPCobjTV.MV(3).Max=50;  
MPCobjTV.MV(4).Min=-50;  
MPCobjTV.MV(4).Max=50;  
MPCobjTV.MV(5).Min=-50;  
MPCobjTV.MV(5).Max=50;  
MPCobjTV.MV(6).Min=-50;  
MPCobjTV.MV(6).Max=50;  
  
MPCobjTV.MV(3).RateMaxECR=5;  
MPCobjTV.MV(4).RateMaxECR=5;  
MPCobjTV.MV(5).RateMaxECR=5;  
MPCobjTV.MV(6).RateMaxECR=5;  
  
%Weights  
MPCobjTV.Weights.OV(1)=1;  
MPCobjTV.Weights.OV(2)=20;  
MPCobjTV.Weights.MVRate=[0.01 0.01 20 20 20 20];  
  
ct_plant2=MPCobjTV.Model.Plant;  
dt_plant2=c2d(ct_plant2,TsTV);  
MPCobjTV.Model.Plant=dt_plant2;  
  
review(MPCobjTV);  
 

 


