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Abstract

With the proliferation of wearable devices, the vibrotactile capabilities are acces-

sible to a substantial number of end-users. Currently, the primary utilisation of

vibrotactile feedback is to provide additional support to visual channel interaction.

Nevertheless, haptic feedback is capable of transmitting rich information without the

need to perceive it through auditory or visual channels. Although haptic reading

using finger-tips has been used for blind individuals using Braille encoding or simply

for information transmission using Morse Code, they both suffer from the practical

aspects which makes them hard to adopt in wearable device technologies. In the

meantime, several approaches have been proposed to encode information through

spatial encoding which mainly reuses a vibrotactile Braille-like encoding in other

body parts (e.g. hands, arms). However, spatial stimulation suffers from effects

such as masking and haptic illusions which are a result of the low resolution of the

skin. Other methods use temporal encoding or variations in amplitude/frequency or

complex patterns to encode information which either require a long training period

or are very limited in the number of distinct patterns users can distinguish which

limits their applicability of them in real-world applications.

This thesis investigates the use of spatial encoding of information by leveraging

the spatial acuity of the simulated locations. Moreover, informed by numerous stud-

ies on the limitations, perception properties and resolution of the skin, it takes the

tasks of designing encoding techniques that avoid as much as possible the drawbacks

of the low resolution of the skin or in some cases it leverages them for encoding in-

formation. It first proposes overlapping spatiotemporal patterns as an efficient way

of encoding discrete abstract symbols and meanings (e.g. letters of the alphabet),

which are optimised to deliver good identification accuracy and allow constructing

very fast speed messages. The patterns leverage the sensitivity of locations in or-

der to prioritise the activation of actuators which in turn increases the perception
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and identification of such patterns. Furthermore, it investigates body locations for

suitable for conveying information using wearable displays. Additionally, it investi-

gates conveying of complex messages (e.g. words) by combining two or more simple

abstract symbols in a series. It identifies problems with such a conveying of sim-

ple discrete and compounds messages, and it proposes methods to overcome them.

Additionally, it proposes and evaluates interaction methods for navigating through

complex messages. Besides encoding discrete symbols, this thesis investigates con-

veying continuous values (e.g. continuous numbers) using phantom sensation. It

proposes sensitivity adjusted perpetual models which predict more accurately the

perception of the user and thus result in a lower error of decoding the encoded value.
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Chapter 1

Introduction

Wearable and mobile devices are already a part of our everyday life. They provide

assistance to daily activities and enrich them with additional information collected

by the sensors within them. The primary feedback modalities of mobiles and wear-

ables are visual and auditory. As such, they compete for the user’s visual and

auditory attention and distract the user from important tasks. Alternative display

modalities, such as tactile displays, can reduce demands on the predominant visual

display, but are largely under-utilised [Brewster and Brown, 2004]. With the broad

spread of wearable devices, vibrotactile capabilities are accessible to a substantial

number of end-users. Currently, the primary utilisation of vibrotactile feedback is

to provide additional support to visual channel interaction. Nevertheless, haptic

feedback is capable of transmitting rich information without the need to perceive

it through auditory or visual channels. The information can be delivered in the

form of tactons which are defined to be vibrotactile patterns representing abstract

meanings [Brewster and Brown, 2004]. Such information could offer many benefits

to provide or enhance multitasking, interactions on-the-go and sensory substitution.

Multitasking is common not only in work activities [González and Mark, 2004]

but also in runtime daily activities such as eating [Hellmich, 2004]. Interaction

with mobile devices requires visual attention and thus creates distractions which

on-the-go might even be dangerous. Visual distractions from mobile devices while

driving [Chen, 2009, News, 2017] or waking on the street [Christina London and

Rascon, 2014] can lead to life-threatening situations for drivers, passengers and or

pedestrians. Although several countries have already taken regulatory measures by

restricting the use of mobile phone while driving, such regulations seem not to be

1
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sufficient as they are not always respected [Chen, 2009, News, 2017]. Providing

methods of perceiving information through haptics, might help with multitasking

and avoid visual distractions.

For individuals that lack perception channels such as visual or auditory, vi-

sion and audio could be captured using technological solutions such as a camera

or microphone and then mapped to another sensory modality such as haptic. This

method is commonly referred to as sensory substitution. Attempts to provide a

sensory substitution for auditory impaired users date back to 1924 [Gault, 1924]

where the entire speech signal of spoken words is transformed into vibrotactile stim-

uli. Since then, such techniques have been used to provide hearing aid solutions

which supplement lip reading [Milnes et al., 1996, Yuan et al., 2005, Galvin et al.,

1999, Ranjbar, 2008, Rönnberg et al., 1998, Weisenberger et al., 1991, Reed and

Delhorne, 2003, Scott and Filippo, 1977, Galvin et al., 2001, Phillips et al., 1994]

but they are insufficient to serve as hearing solutions [Novich and Eagleman, 2015].

Substitution of vision has been explored [White et al., 1970, Bliss et al., 1970] where

images captured by a camera are imprinted in the body using vibrotactile stimuli.

Nevertheless, due to the low resolution of the skin and perception limitations, such

methods are limited to conveying very basic shapes (e.g. lines, circles, squares).

While the sensory substitution using wearable devices would be of great potential,

means of efficiently conveying information through haptics in a wearable form are

still a challenge.

The primary focus of this work is to investigate methods for conveying infor-

mation (e.g., a numerical value or a symbol) using wearable haptic displays, where

information is presented to the user via touch, typically using vibrotactile motors

(vibromotors). This differs a lot from stimulating touch effects that mimic virtual

objects for enhancing user experiences. Conveying information can be used, for ex-

ample, to perceive natural language messages (e.g. words) encoded in vibrotactile

patterns [Geldard, 1957, Luzhnica et al., 2016b]. The proposed methods can be ap-

plied in a broad range of applications. For instance, users would be able to receive

and understand the messages and notification from the mobile phone without even

having to get it out of the pocket. Deaf users would be able to use speech to text

(captured by a smartphone) and text to tactile to fully understand other persons

talking to them. Individuals with hand amputee or prosthesis that lack the tactile

and kinesthetic sensation on the hand would be able to receive the magnitude of
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applied pressure to an object while grasping for a closed loop interaction. Workers

in factories could receive tactile instructions allowing them to focus visually and au-

ditory on their work. Numerous other scenarios could benefit from wearable haptic

displays, and most importantly many barriers of technology (wireless communica-

tion, batteries, integration to fabrics) for making such haptic displays fully wearable

are already overcome.

This research spans the creation of wearable haptic prototypes, stimulation meth-

ods, information encoding, user training and methods for interacting with such wear-

able devices. One critical aspect of a haptic display is the encoding of information

as it should be optimised to be perceivable, understandable and to have a high

throughput. That is why this thesis proposes overlapping spatiotemporal patterns

(OST) which are still short but are designed to provide a better discriminability

compared to the spatial patterns. A major challenge, when encoding a vocabulary

of symbols in a small number of haptic actuators, is maintaining high throughput

and accuracy. For that, this work proposes methods which optimise the encoding of

information which maximises the perception and the comprehension of information.

Training time is also important as it can take several hours to train users to recog-

nise different encoded messages [Geldard, 1957, Luzhnica et al., 2016b]. There are

also scenarios where understanding quantitative values approximately is sufficient

(e.g. lap progress in a video game, the strength of the grasp). For such scenarios,

this work aims at constructing intuitive methods which require conveying informa-

tion with minimum or no training at all. The process of conveying information

through wearable devices is passive and the user has no control of information flow.

Thus, it might be beneficial to equip users with interactions and empower them for

controlling the flow, which is explored in this work as well.

Overall, this work addresses the following research questions:

(RQ1) Constructing patterns optimised for throughput and perception:

Do the overlapping spatiotemporal patterns result in better identification accuracy

than the baseline spatial patterns on the hands and forearms?

(RQ2) SkinReading - conveying natural messages: Are overlapping spa-

tiotemporal patterns suitable for vibrotactile skin reading on the hands and fore-

arms? More specifically, what performance on the recognition of letters and words

can participants achieve with few hours of training? (RQ3) Conveying inac-

curacy tolerant quantitative values: For scenarios where high precision is not
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required, can we encode continuous values using a discrete number of actuators using

phantom sensation? More precisely, how well (with what accuracy) can values be

decoded by users and does sensitive adjustment increase such encoding/decoding ac-

curacy? (RQ4) Interactions for skin reading: What interactions are necessary

for skin reading? What are the preferred modalities for such interactions?

1.1 Addressing Research Questions

This section describes how I addressed the research question of the thesis. Figure 1.1

presents the relations of the research questions and illustrates in which cases the

output of one research question informs the others.

Figure 1.1: An overview of the research questions of this thesis and their flow of
information. The patterns and body locations proposed in RQ1 are used to en-
code symbols and then words for investigating RQ2. The results of RQ2 are used
to reiterate RQ1 in order to find other suitable body positions for OST patterns.
The findings of RQ2 (the need for repetition) first motivate the RQ4 and then the
methods of conveying information in RQ2 are used as a basis for investigating RQ4.
RQ3 is detached from the rest of research questions as it still deals with conveying
values but not discrete ones as in the case of RQ1 and RQ2. However, both RQ1 and
RQ3 share the same vision of leveraging the sensitivity of location (spatial acuity)
to improve the performance in perception.

In summary, ten user studies were conducted to investigates the proposed re-

search questions and some extensive details related to them. For each of the two

first research questions, four user studies were conducted, until the overlapping

spatiotemporal patterns were fully investigated (including the effects of sensitiv-

ity prioritisation), the wearable vibrotactile display layouts and the encoding were
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optimised and resulted in a very high comprehension accuracy from participants.

Figure 1.2 sketches the relationship between research questions and user studies in

chronological order. In addition, it provides information on how user studies inform

each other. Moreover, as illustrated in Figure 1.2, the first two research questions

follow an iterative process, where the User Study 1 (in Section 3.1) conducted to

investigate the first research question informs the User Study 5 (in Section 4.1)

conducted for the second research question. However, due to issues found in the

User Study 5, the process is iterated, and more studies were conducted to reiterate

layouts and also patterns investigated in the first research question which then are

used to inform other studies for the second research question.

Figure 1.2: An overview of the studies, their flow of information and their con-
tribution to particular research questions. The x-axis represents the chronological
order, which could be thought as the time of execution but it is not linear. The
arrows illustrate how some user studies build on top of the evidence and knowledge
produced by other user studies. Note that the main interaction is between research
questions 1 and 2 as I go back and forth to iterate the proposed solutions until the
results are improved at a satisfactory level.

1.1.1 RQ1: Constructing vibrotactile Patterns Optimised

for Throughput and Perception

Do the overlapping spatiotemporal patterns result in better identification accuracy

than the baseline spatial patterns on the hands and forearms?

This research question takes the challenge of finding vibrotactile patterns which

are optimised to be short so that they can allow high throughput when combined in

complex messages and at the same time are highly distinguishable so that they can

be identified correctly. This problem is addressed in Chapter 3 where the prioritised
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overlapping spatiotemporal (OST) patterns are proposed as a suitable alternative on

maximising throughput and accuracy. Four user studies investigate the accuracy of

such vibrotactile patterns compared to spatial patterns and also investigate suitable

body positions for such vibrotactile patterns.

The first user study (in Section 3.1) proposes and evaluates overlapping spa-

tiotemporal (OST) in comparison with spatial patterns. It also proposes and inves-

tigates three wearable vibrotactile layouts for perceiving such patterns. The results

of this study favoured two wearable layouts as being suitable for the perception of

such patterns. It also revealed that OST patterns are perceived more accurately

than spatial patterns. A second user study (in Section 3.2) proposes and evaluates

intensity varying spatial patterns, aiming at achieving the perception performance

of OST patterns and at the same time reducing the duration of stimulation. The

study revealed that varying the intensity of the individual locus of spatial patterns

does not contribute to an increase in perception.

Additionally, a third user study (in Section 3.3) builds on the hypothesis that

the correct perception of such vibrotactile patterns can be boosted by prioritising

the activation of vibromotors based on spatial acuity (sensitivity of the location).

Results show that indeed prioritising the activation of vibromotors based on the

sensitivity of locus increases the identification accuracy significantly. The fourth

user study dealing with RQ1 (in Section 3.3), extends one of the hand based layout

proposed in the user study 1 (in Section 3.1) by adding more actuators and then

investigates the perception of OST patterns in the proposed new layout. The end

result of this user study is a layout with eight suitable locations of actuators which

are suitable for perceiving OST patterns accurately.

1.1.2 RQ2: SkinReading - Conveying Natural Messages

Are overlapping spatiotemporal patterns suitable for vibrotactile skin reading on the

hands and forearms? More specifically, what performance on the recognition of let-

ters and words can participants achieve with few hours of training?

The second research question investigates the feasibility of using such OST vi-

brotactile pattern to first encode discrete tactons representing the letters of English

Alphabet and then investigate whether such symbols can be combined to form more

complex messages such as words and phrases. This thesis first proposes an encoding
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of the English Alphabet to OST vibrotactile patterns. In four user studies presented

in Chapter 4, users are trained to recognise the vibrotactile alphabet. Then, the

studies investigate how well users can recognise symbols encoded by OST patterns,

how well users can read words when such symbols are combined into words. More-

over, they identify problems related to the encoding of the symbols and construction

of patterns and reiterate the entire process in order to maximise the recognition ac-

curacy.

The first user study (in Section 4.1) proposes an encoding for all the letters

of English Alphabet which maps every letter to an OST pattern. The encoding

uses the frequency of the letters in the English language to construct an efficient

encoding scheme. In addition, the study proposes a training program which is used

to teach participants the proposed encoding. The study evaluates the performance

of participants on recognition of letters and words after training using wearable

vibrotactile displays on the hands and forearms. Its results show that participants

are able to comprehend the information with a relatively high accuracy but also

reveals that there are potential improvements related to layout and encoding.

Thus, the second user study (in Section 4.2) proposes a two-step optimisation

process which optimises the layout and encoding. Furthermore, it evaluates the

impact of such optimisation, showing drastic improvements in the comprehension of

letters and words. Moreover, it investigates the decay of encoding knowledge over

time as well as the transferability of encoding knowledge on the untrained body

location.

When considering skin reading for real-world applications, several practical as-

pects should be taken into account as are crucial in defining its scope of applicability.

For the skin reading to be useful in multitasking scenarios, it should be feasible to use

it in parallel with other user activities. Therefore, the third user study (in Section

4.3) investigates whether participants can comprehend vibrotactile encoded symbols

in the background while performing other tasks. Another vital factor to consider

is the training procedure. Training is typically time-consuming and requires active

participation by users which might pose challenges on adoption of such a technology.

Thus the fourth user study (in Section 4.4) investigates the use of passive haptic

learning for teaching users the vibrotactile skin reading. Such a method allows users

to be trained while enjoying other activities (e.g. playing video games).
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1.1.3 RQ3: Conveying Inaccuracy Tolerant Quantitative Val-

ues through Wearable Vibrotactile Displays

For scenarios where high precision is not required, can we encode continuous values

using a discrete number of actuators using phantom sensation? More precisely, how

well (with what accuracy) can users decode such encoded values and does sensitivity

adjustment increase such encoding/decoding accuracy?

The third research question moves away from the discrete symbols and focuses

on use cases where continuous numerical values need to be presented to the user. In

discrete tactons mistaking two neighbouring values (e.g. A for B) is considered to be

a high error. On the contrary, when dealing with numerical values, the magnitude

of the error is very important. For instance, mistaking the value of 67% for 65% or

70% might not be a severe problem, but mistaking it for 15%, might be. Thus this

research question targets use cases which are tolerant to some dose of inaccuracy.

The primary goal would be to develop a method to convey such continuous nu-

merical values inspired by the existing visual presentation of such values (e.g. bar

chart, progress bar) which would require no training on learning how to decode such

values. Chapter 5 presents a user study which investigates how well the phantom

sensation with the existing perceptual models that describe it, could be used to

encode continuous numerical values. This chapter also proposes and evaluates sen-

sitivity adjusted perceptual models that can be used to estimate the perception of

the user better and thus increase the accuracy when decoding the value. Addition-

ally, it proposes a data-driven approach to estimate the parameters (sensitivities

of the locations) needed for sensitivity adjusted models. The results show that not

only the phantom sensation could be used for encoding continuous numerical values,

but also that the proposed sensitivity adjusted models can significantly increase the

accuracy of comprehension.

1.1.4 RQ4: Interactions for Skin Reading

What interactions are necessary for skin reading? What is the preferred modality

for such interactions?

When perceiving information there is a need for repeating or navigating them.

Users might need to repeat certain words from time to time as a result of attention

breaks or simply due to misperception. In both visual and Braille reading such
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interactions occur very often even if readers are not aware of it as it occurs uncon-

sciously and naturally. Readers jump backwards to revisit already visited letters

and words [Larson, 2004, Rayner, 1998, Rayner et al., 2001, Rayner et al., 2010].

This phenomenon is known as back regression, and skilled readers make regressions

back in 10 − 15% of the reading time [Rayner, 1998, Rayner et al., 2001, Rayner

et al., 2010]. Such regression is common practice also in Braille reading [Millar,

2003, Hughes et al., 2011]. In both cases, no technological solution is needed to

provide these interactions as it comes naturally. In visual reading, this is achieved

easily by shifting the fixation point visually. Similarly, in Braille, this can be easily

achieved by moving the finger backwards. However, in vibrotactile skin reading,

the user does not control what information is currently being conveyed, and thus

interactions need to be provided to enable such control.

A user study presented in Chapter 6 investigates what interactions are necessary

and what is the preferred modality of such interactions. The study reveals that users

would prefer hand-based gesture interaction for such interactions. Then it maps the

skin reading interactions to a set of meaningful hand gestures. Finally, it investi-

gates what kind of sensors would be required to recognise gestures corresponding to

interactions of skin reading.

1.2 Scientific Contributions

Overall this thesis provides guidelines for conveying information through wearable

vibrotactile displays. This research spans the creation of wearable haptic proto-

types, stimulation methods, information encoding, user training and methods for

interacting with such wearable devices. The outcomes of this research are relevant

to several communities including human-computer interaction, wearable computing,

and psychophysics. A detailed list of contributions is given in the following:

(C1) Vibrotactile Patterns. Chapter 3 proposes overlapping spatiotemporal pat-

terns (OST) which are shorter than sequential temporal patterns and can be

identified more accurately than spatial patterns. Moreover, this thesis pro-

poses to prioritise the activation of vibromotors based on spatial acuity to

maximise the perception and identification accuracy.

(C2) Wearable Vibrotactile Display Design. Throughout this thesis, four lay-
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outs on the back of the hands and forearms are designed and evaluated for skin

reading with the final one (in Section 4.2) being optimised for OST patterns

which is very suitable for skin reading. Additionally, four other layouts on the

forearm and upper arm are proposed to encode continuous numerical values

using phantom sensation (in Section 5.3). Such layouts are able to encode

continuous values of directional or circular nature.

(C3) Methods for Conveying and Encoding Letters of English Alphabet

and Textual Information. Initially, a frequency based encoding of the

English alphabet is proposed. Later another optimised encoding is proposed

which delivers outstanding accuracy in terms of being comprehended by users.

In addition, this thesis proposes methods for combining letters into words to

form textual information.

(C4) Methods for Optimising the Encoding for a Given Language. Sec-

tion 4.1.6 proposes a method and an algorithm to optimise the encoding of a

language based on the bigram frequency of the given language. An evaluation

reveals that the proposed optimised encoding delivers outstanding accuracy in

terms of being comprehended by users.

(C5) Training Methods for Learning Skin Reading. Chapter 4 investigates

different methods of training. It first (in Section 4.1) proposes an active train-

ing which uses visual, auditory and vibrotactile cues in order to train par-

ticipants to associate the vibrotactile patterns with the encoded information.

Then (in Section 4.4) it also investigates using passive haptic learning as a

training method for skin reading. Section 4.1 also proposes a training pro-

gram for teaching participants the skin reading.

(C6) Background Perception of Vibrotactile Symbols. Section 4.3 demon-

strates that the vibrotactile messages (encoded by the proposed methods) can

be comprehended in background while performing other primary tasks. More-

over, their performance is not affected by the absence of presence a primary

task and vice versa. The performance of the primary task is not affected by

the presence or absence of stimuli of background vibrotactile encoded symbols.

(C7) Knowledge Transferability of the Encoding in Untrained Body Parts.

Section 4.2 investigates and evidences that the knowledge of encoding acquired
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during the training can be transferred to an untrained body part without any

training. In other words, participants can be trained on one hand, and the

use the wearable vibrotactile device on the other hand and still be able to

recognise the encoded letters without any additional training.

(C8) Methods for Conveying Continuous Numerical Values. Chapter 5 pro-

poses a method of using phantom sensation to encode a continuous numerical

value in a chain of vibrotactile motors.

(C9) Extending Perceptual Models for Phantom Sensation. Chapter 5 ex-

tends the existing state of the art perceptual models by proposing sensitivity

adjusted perceptual models which are better at estimating the perceived stim-

uli when applying the phantom effect. In turn, this increases the accuracy of

comprehension for the encoded value using phantom sensation.

(C10) Interaction Techniques for Skin Reading and Gesture Recognition.

Chapter 6 proposes to incorporate interactions during the process of skin read-

ing. In addition to proposing and evaluating an interaction model, it proposes

a mapping of such interaction to intuitive gestures which then can be recog-

nised using wearable sensors.

(C11) Wearable Sensory Substitution using Mobile Devices and Skin Read-

ing. This thesis proposes to use mobile phones to provide a solution for sensory

substitution in combination with wearable vibrotactile devices. The solution

uses mobile devices to capture the environment which then is processed, and

its content is recognised using machine learning models. The recognise con-

tent is represented in textual form and then transmitted to the user through a

wearable vibrotactile display. Besides the conceptual work, such concepts are

also implemented in the form of mobile applications.

(C12) Hand Gesture Recognition System. In order to be able to interact with

the skin reading using gestures, a gesture recognition system is constructed.

A brief description of the methodology is given in Section 6.3.

The aforementioned contributions have been published in eight scientific peer-

reviewed papers and one peer-reviewed poster described in the following:
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(P1) Luzhnica, G., Veas, E., and Pammer, V. (2016b). Skin Reading: Encoding

Text in a 6-channel Haptic Display. In Proceedings of the 2016 ACM Inter-

national Symposium on Wearable Computers, ISWC ’16, pages 148- 155, New

York, NY, USA. ACM.

This paper lays the foundation of the vibrotactile skin reading. It first in-

troduces the overlapping spatiotemporal patterns (OST) and compares them

against the sequentially spatial patterns in three wearable layouts. Moreover,

it performs the first test of skin reading with four participants and shows that

skin reading is feasible using OST patterns. The work presented in this pa-

per includes the user study 1 described in the Section 3.1 and it serves as a

template for the user study 5 described in Section 4.1.

(P2) Luzhnica, G. and Veas, E. (2017). Vibrotactile Patterns using Sensitivity

Prioritisation. In Proceedings of the 2017 ACM International Symposium on

Wearable Computers, ISWC ’17, pages 148-155, New York, NY, USA. ACM.

This paper investigates more extensively the vibrotactile patterns for skin

reading. It investigates the effect of sensitivity prioritisation in the perception

of OST patterns. Additionally, it extends the hand based layout of vibrotactile

wearable display already proposed in P1. The work reported in this paper

includes user studies 2 (Section 3.2), 3 (Section 3.3) and 4 (Section 3.4).

(P3) Luzhnica, G. and Veas, E. (2019). Optimising the Encoding for Vibrotactile

Skin Reading. In Proceedings of the 2019 CHI Conference on Human Factors

in Computing Systems. ACM.

This paper builds upon P1 by borrowing the skin reading training program

and layouts proposed in P1. It first evaluates two wearable layouts with

a frequency based encoding as proposed in P1 with the goal of identifying

systematic errors on recognition of letters and words which are related to

wearable layout and encoding. Upon identification of such issues, it proposes

a two-step optimisation process which optimises the layout and encoding. A

second user study shows that such optimisation is very beneficial as drastically

improves the ability of participants to recognise letters and words. The content

of this paper is covered in Sections 4.1 and 4.2.
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(P4) Luzhnica, G. and Veas, E. (2019b). Background Perception and Comprehen-

sion of Symbols Conveyed through Vibrotactile Wearable Displays. In 24rd

International Conference on Intelligent User Interfaces, IUI ’19. ACM.

This paper investigates how background perception of vibrotactile encoded

messages affects other primary tasks. A user study shows that pre-trained

participants were able to perform dual tasks where the primary task was a

visual search task, and the secondary task was a comprehension of the vi-

brotactile encoded message. The study showed that participants were able to

perform both of them with high accuracy and none of them affected each other.

The content of this paper is described in the Section 4.3 and it illustrates the

potential of skin reading in multitasking and multimodal scenarios.

(P5) Luzhnica, G., Veas, E., and Seim, C. (2018). Passive Haptic Learning for

Vibrotactile Skin Reading. In Proceedings of the 2018 ACM International Sym-

posium on Wearable Computers, ISWC ’18. ACM.

This paper explores the possibility of using passive haptic learning (PHL) to

train the encoding of skin reading while users perform other activities (play a

game in this case). The primary goal is to make the training more engaging

and less tiresome. A study shows that participants were able to learn several

letters using PHL training, although not to the expected extent. The content

of this paper is described in the Section 4.4.

(P6) Luzhnica, G., Stein, S., Veas, E., Pammer, V., Williamson, J., and Smith, R.

M. (2017). Personalising Vibrotactile Displays through Perceptual Sensitivity

Adjustment. In Proceedings of the 2017 ACM International Symposium on

Wearable Computers, ISWC ’17, pages 66-73, New York, NY, USA. ACM.

This paper proposes an encoding approach of the continuous numerical values

inspired by visual progress bars. Such an encoding does not require training to

memorise the meaning of encoding. However, it can only be used in situations

where a degree of imprecision in the decoding of information is tolerable. The

encoding of information combines a chain of vibromotors and the phantom

effect to provide a sensation across the entire wearable vibrotactile display.

Furthermore, this paper also extends state of the art perceptual models of

phantom sensation by leveraging the spatial sensitivity. Such models result in
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a better decoding accuracy according to a study presented in Chapter 5.

(P7) Luzhnica, G. and Veas, E. (2018a). Investigating Interactions for Text

Recognition using a Vibrotactile Wearable Display. In 23rd International Con-

ference on Intelligent User Interfaces, IUI ’18, pages 453-465. ACM.

This paper proposes to extend the interaction of skin reading by providing

users means of interacting with the wearable vibrotactile displays. It proposes

and evaluates an interaction concept that enables users to control the flow

and navigate the presented text. Moreover, it evaluates preferred modality of

such interaction. A study shows that users prefer gesture interaction as means

of interacting with the device. Thus, the paper also maps the interaction

to gestures and explores motions sensors and machine learning to provide a

gesture recognition system to recognise such interactions. Its content is covered

in Chapter 6.

(P8) Luzhnica, G. and Veas, E. (2018b). (POSTER) Skin Reading Meets Speech

Recognition and Object Recognition for Sensory Substitution. In Proceedings

of the 2018 ACM International Joint Conference on Pervasive and Ubiquitous

Computing and Proceedings of the 2018 ACM International Symposium on

Wearable Computers, UbiComp ’18, New York, NY, USA. ACM.

This work presents two concepts of mobile applications that target users with

visual and hearing impairment using sensory substitution. Such concepts are

also implemented (iOS and Android) and use object and speech recognition

to recognise the environment surrounding the user and then provide such in-

formation to the user in the form of skin reading. The main goal of this work

is to illustrate the potential of skin reading, and its content is described in

Section 4.5.

(P9) Luzhnica, G., Simon, J., Lex, E., and Pammer, V. (2016a). A sliding window

approach to natural hand gesture recognition using a custom data glove. In

2016 IEEE Symposium on 3D User Interfaces (3DUI), pages 81-90. IEEE.

This paper uses hand worn sensors to provide a gesture recognition system.

This work does not directly contribute to the topics covered in this thesis.

However, its gesture recognition system is borrowed by P7 to enable users to

control the information flow in the skin reading. Thus, due to the indirect
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contribution, the work of this paper is considered to be out of scope and not

covered in this thesis. However, the content of this paper is provided in the

Appendix (see Chapter A).

1.3 Collaborative Statement

The work described in this thesis and the aforementioned published paper has been

achieved through the collaboration with other brilliant researchers. Their collabo-

rations are summarised in the following:

Eduardo Veas: from Know Center and Graz University of Technology, provided

advice, guidance and constructive feedback throughout all stages the work of

this thesis. He also closely collaborated in the designing of the studies 1, 5

and 8 (Sections 3.1, 4.1 and 4.4). Additionally, with his expertise in statistical

analysis, he guided and collaboratively contributed in analysing the results

of the user studies 1 and 5 (Sections 3.1 and 4.1). He also collaborated in

the writing of papers P1-P8 and provided constructive feedback on different

stages of the work presented in the P9.

Viktoria Pammer: from Know Center and Graz University of Technology, con-

tributed with valuable feedback and discussions as well as participated in the

writing of the papers P1, P6 and P9 which are part of Sections 3.1, 4.1 and

Chapter 5.

Sebastian Stein, John Williamson and Roderick Murray Smith: from Geor-

gia Tech University contributed with valuable feedback and discussions as well

as in the writing of the paper P6 which is now a part of Chapter 5.

Caitlyn Seim: from Georgia Institute of Technology with her expertise on passive

haptic learning closely collaborated in the design of the user study 8 (provided

in Section 4.4) which is published in the paper P5 as well as the writing of

the paper (P5).

Christopher Öjeling: built an Arduino based hardware prototype connected to

nine vibromotors that could be controlled programmatically. A subset of such

vibromotors and the device in all of the user studies described in this thesis.
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1.4 Structure

The rest of this thesis is first followed by Chapter 2 which provides a comprehensive

review of the background and related work. This is followed by Chapter 3 which

aims at constructing patterns that are optimal for perception and throughput. This

section presents four user studies which propose investigate overlapping spatiotem-

poral vibrotactile patterns and their perception details to collectively contribute to

the Research Question 1.

In Chapter 4 the feasibility of skin reading using the overlapping spatiotemporal

patterns is studies which contribute to the Research Question 2. Next, Chapter 5

investigates Research Question 3 by exploring the possibility of conveying contin-

uous numbers using phantom sensation on a wearable vibrotactile display. Lastly,

Chapter 6 takes the task of exploring the Research Question 4 and thus it proposes

and investigates the incorporation of interaction for skin reading.



Chapter 2

Background and Related Work

Skin is considered to be the largest organ of the human body with dimensions of

1.5 − 2m2 in adults. The receptors within it are responsible for perceiving tac-

tile sensations such as pressure, texture, puncture, temperature, softness, wetness,

shape, edges and other details of the environment or the objects we interact with

including vibrations. Given such sensing capabilities, researchers have seised the

opportunity to use the skin as input medium thus utilise the haptic perception for

human computer interaction purposes and to provide haptic interfaces.

This chapter initially provides the basic background information related to the

tactile sensation starting from somatic sensory system and then moving to higher

abstractions of perception, its properties and limitations. Additionally, it describes

the related work and state of the art relevant for skin reading including construc-

tion of vibrotactile patterns, conveying information through means of vibrotactile

patterns as well as reading patterns for other means of reading.

2.1 Somatic Sensory System

The somatic sensory system is a complex part of the sensory system, and it is respon-

sible for the sensation of touch, pressure, pain, heat, position (limbs), movement,

and vibration, which arise receptors within the skin or muscles [Purves et al., 2008].

Receptors differ in many aspects such as the type of stimuli they specialise, the

receptive field, the sensation dynamics, etc...

For the sense of touch, mechanoreceptors fire and notify the nervous system

17
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when the skin is deformed. However, the different nuances of skin deformation

will be captured by different receptors as they differ in temporal dynamics and the

stimulation response. When stimulated, some mechanoreceptors fire rapidly but

then discontinue even in the presence of continuous stimulation. They are known

as rapidly adapting mechanoreceptors and are very good at perceiving continuous

stimulus such as a movement across the skin. On the other hand, slowly adapting

ones fire continuously as long as the stimulus is present. They can be very efficient

at the perception of spatial aspects of stimulus including size and shape [Purves

et al., 2008]. An illustration of the reaction of both slowly adapting and rapidly

adapting mechanoreceptors in the presence of stimulus is given in Figure 2.1.

Figure 2.1: The response of slowly adapting mechanoreceptors versus the rapidly
adapting ones when presented to a continuous stimulus [Purves et al., 2008].

Besides the adaptations, mechanoreceptors differ on other aspects such as re-

ceptive field and their location within the skin. Thus, there are four classes of

mechanoreceptors that are specialised in receiving tactile information:

• Merkel cells are slowly adapting mechanoreceptors that are essential for light

touch sensation. They represent about 25 % of the mechanoreceptors in hand

and are unusually dense in the fingertips or similar sensitive skin regions. They

have the highest spatial resolution of all mechanoreceptors enabling the sensing

of spatial details down to 0.5 mm. Thus, they are very well suited to form

sensing shapes and textures [Purves et al., 2008].



2.1. SOMATIC SENSORY SYSTEM 19

• Meissner corpuscles are rapidly adapting mechanoreceptors that lie very

close to the surface of the skin. Given the close proximity to the skin, Meiss-

ner corpuscles are very sensitive, four times more sensitive compared to Merkel

cells. However, their receptive fields are larger compared to Merkel cells, mak-

ing them less effective in sensing the spatial aspect of stimulus. Meissner cor-

puscles are very efficient in sensing low-frequency vibrations (3-40 Hz) [Purves

et al., 2008], making them a good fit for detecting textured objects moving

across the skin. They are also tailored for sensing light touch.

• Ruffini endings are slowly adapting mechanoreceptors located in the cuta-

neous tissue and the least understood mechanoreceptors. They are very re-

sponsive to internally generated stimuli such as limb movements. Thus, they

are well suited to provide kinaesthetic sensation and control of finger position

and movement.

• Pacinian corpuscles are rapidly adapting mechanoreceptors especially sen-

sitive to vibrations and high pressure. They are able to sense even centimetres

away from the stimuli. Pacinian corpuscles have a lower response threshold

than Meissner corpuscles and adapt even more rapidly. The most sensitive

Pacinian corpuscles can sense even small skin displacements of 10 nanometers.

However, they often have large receptive fields with overlapping boundaries.

Their optimal sensitivity is at 250 Hz. Due to their properties, they are very

effective on detecting vibrations transmitted through objects that contact the

hand e.g grasping. Due to high sensitivity on vibrations, they are commonly

used on vibrotactile related applications (by transmitting vibrations at their

optimal frequency).

Figure 2.2 illustrates the four types of mechanoreceptors. It also shows their

adaption properties. Additionally, Table 2.1 provides detailed properties of each

mechanoreceptor. Note that even when two types of receptors are rapidly adapting

they differ a bit on nuances of adoption (FA1 and FA2) as presented in Figure 2.2.

The same holds for slowly adapting receptors (SA1 and SA2). In addition to four

types mechanoreceptors, there are receptors that lack any specialisation and thus

are referred to as free nerve endings. They play an important role in the sensation

of pain.
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Figure 2.2: Different types of mechanoreceptors and their details [Purves et al.,
2008].
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Small receptor field Large receptor field

Merkel Meissner Paclnian Ruffini
Axon
diameter

7-11 µm 6-12 µm 6-12 µm 6-12 µm

Sensory
function

Form and texture
perception

Motion detec-
tion; grip control

Perception of distant events
through transmitted vibra-
tions; tool use

Tangential force;
hand shape;

Effective
stimuli

Edges, points,
comers, curvature

Skin motion Vibration Skin stretch

Spatial
acuity

0.5 mm 3 mm 10+ mm 7+ mm

Response slow adaptation rapid adaptation rapid adaptation slow adaptation
Frequency
range

0-100 Hz 1-300 Hz 5-1000 Hz 0-? Hz

Peak sensi-
tivity

5 Hz 50 Hz 250 Hz 0.5 Hz

Table 2.1: Properties of different receptors based on [Purves et al., 2008].
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2.2 Tactile Perception

Tactile perception can be provided by both passive or active sensing which sometimes

are referred to as active and passive touch. Active sensing is provided by exploratory

touching and it utilises such a movement to direct the sensory system, in a useful

way for the given task, to maximise the information gain [Prescott et al., 2011].

Such active sensing, where the moment is integrated, is crucial for determining

object’s properties such as shape, texture, hardness, etc... [Lederman and Klatzky,

1993, Robles-De-La-Torre and Hayward, 2001]. On the other hand, passive sensing

is defined to be the stimulation produced by external elements. Both active and

passive touching have been used for information transmission.

A very successful application of the active touch sensing is Braille reading [Braille,

1829], which is standard form of reading for visually impaired individuals. There,

the characters have rectangular blocks called cells composed of up to six raised dots.

For reading, users scan the written text by moving the finger horizontally to precieve

the lines of text. There, the movement is essential to reading [Millar, 2003, Hughes

et al., 2011, Millar, 2004] as it enables users to scan the text, control the speed

and occasionally re-scan the text by moving the finger backwards to revisit the

information [Millar, 2003, Hughes et al., 2011, Millar, 2004].

Passive touch is used in most of the skin reading applications [Luzhnica et al.,

2017, Zhao et al., 2018, Chen et al., 2018b, Reed et al., 2018, Jiao et al., 2018,

Cauchard et al., 2016, Zhao et al., 2018, de Jesus Oliveira and Maciel, 2014], where

information is presented in the form of vibrotactile patterns stimulated by actuators.

Such systems are very suitable for wearable tactile displays as the information can

be conveyed dynamically. One disadvantage of using passive touch for presenting

information is that a user has no control over the transmission of the information or

its flow. The patterns of vibrations are stimulated by the device from start to end

without any action by the user. This might be an issue in cases where the user may

not understand parts of the information due to lack of concentration or training.

Thus external means of interaction should be provided to enable the user to control

the information flow.

When using tactile sensation for conveying information through tactile displays,

it is crucial to consider perception properties and also limitations of the skin in

the design process of such a display. Therefore in the following part, I will first
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provide a summary of perception properties and then describe some of the important

limitations of the somatic sensory system. They will be considered throughout this

thesis for the design and implementation decisions of the wearable haptic display

prototypes that used to conduct the user studies.

2.2.1 Perception Properties

When providing a tactile stimuli, many properties of stimuli need to be considered

as they affect the perception. Stimuli can be provided and perceived by means

of various aspects such as intensity, frequency, time/duration (temporal, location

(spatial) and a combination of space and time/duration (spatiotemporal).

Frequency

As show in Table 2.1 humans can perceive vibrations up to 1000 Hz with a peak

sensitivity is at 250 Hz [Gunther, 2001]. Goof [Goff, 1967] investigated the discrim-

ination threshold on the finger and it showed that the threshold depends on the

stimulation frequency. For lower frequencies (less than 25 Hz), the threshold was

5 Hz whereas in the higher frequencies (greater than 320 Hz), the discrimination

threshold increases. Along the same lines, Brewster et al. [Brewster and Brown,

2004] found that discriminating frequencies is more accurate when presented in rel-

ative way rather than absolute. Due to such nonlinearity and the interaction with

amplitude, it is difficult to estimate the discriminable levels, but Gill [Gill, 2003]

suggest that no more than nine levels should be used.

Intensity

Different parts of the body have different sensitivities. Thus, for the same stimuli,

it varies from the location to location whether the stimuli will be perceived at

all and the magnitude of the perception. Sensitive locations such as fingertip are

estimated to require only about 10 microns of indentation [Kaczmarek et al., 1991]

in order to be perceived as a stimulus. The perception threshold also depends on the

frequency of vibration. The minimal vibration thresholds are found to be around

the frequency of 250 Hz [Lofvenberg and Johansson, 1984], whereas the highest

detection thresholds are found to occur in lower frequencies of vibration [Lofvenberg

and Johansson, 1984]. An important concept of intensity perception is the so called
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just noticeable difference (JND) which defines the minimal change in amplitude that

is noticeable by the tested subject. Gunther [Gunther et al., 2002] reported values

ranging from 0.4dB to 3.2dB. Therefore, Grill [Gill, 2003] recommends that only up

to four intensity values be used when presenting a stimuli in order to maintain the

discrimination of them. However, the location of stimuli, the frequency and absolute

values of amplitude will have a huge effect on this due to the interaction of such

parameters.

2.2.2 Time/Duration

Humans can recognise two consecutive stimuli separated by only 5 ms apart as found

by Cholewiak et al. [Heller and Schiff, 2013] which is 5 times faster than vision (25

ms) [Sherrick and Cholewiak, 1986]. Gescheider [Gescheider, 1966] reported that the

threshold for detecting clicks on the fingerprint is 10 ms. The duration of stimuli has

also an impact on the nature of perception. The vibrotactile stimuli shorter than

100 ms is perceived as jabs or taps whereas longer stimuli is perceived as smoothly

flowing tactile phrases [Gunther, 2001].

2.2.3 Location

Different body parts have different sensitivity and spatial acuity. This can be seen

also to the proportion of the cortex dedicated to processing their sensory input pre-

sented in Figure 2.3. Finger tips are regarded as body parts with highest vibrotactile

sensitivity due to the high sensitivity to small amplitudes and their high spatial acu-

ity [Craig, 1982]. However, in vibrotactile applications, they are usually discarded

as they are very important for object manipulation and interaction with real world

objects. That is why this thesis mainly focuses on the back of the hand (including

fingers) and forearms.

Among the fingers (not only finger tips), they also differ in sensitivity. Different

studies [Duncan and Boynton, 2007, Vega-Bermudez and Johnson, 2001, Hoggan

et al., 2007] have shown that the sensitivity decreases from the index finger towards

the little finger: the index finger is more sensitive than the middle, ring, and pinky

finger. The thumb has the lowest sensitivity [Sterr et al., 2003]. For the forearms

the sensitivity is higher near anatomical reference points such as elbow and wrist

compared to the middle part of forearm [Cholewiak and Collins, 2003].
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Figure 2.3: The cortical homunculus: representing the human body where the body
areas are enlarged to correspond to the proportions cortex dedicated to processing
sensory and motor functions2.

Besides the amplitude thresholds and JND, there are other important measures

that are important for the spatial aspect of stimulation such as point localisation

and two point discrimination. Point localisation defines the accuracy to localise

the stimulation point. Two point discrimination defines the minimal distance

required for two stimulations to be recognised as separate stimuli. The thresholds

of point localisation and two point discrimination for different body locations are

presented in Figure 2.4. It is no coincidence that that the larger areas depicted

in the cortical homunculus presented in the Figure 2.3 correspond to smaller point

localisation and two point discrimination (in Figure 2.4).

The properties mentioned above of the skin should be considered very carefully

when designing systems that use any spatial patterns. For instance, when using

different levels of amplitude to encode information, then amplitude thresholds and

JND should be an essential guide on designing patterns. On the other hand, when

using a spatial encoding (as it is the case with the work in this thesis), two-point

discriminations should be considered in deciding the design and layout of the ac-

tuators. Otherwise, different simultaneous stimulations might not be perceived as

intended (see Section 2.3).
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Figure 2.4: Point localisation and two point discrimination thresholds for different
parts of the body [LEDERMAN, 1991].

2.3 Sensation Phenomena

Humans haptic perception has, depending on body parts, a relatively low spatial

resolution. Due to such limitations of the skin, especially when multiple stimuli are

applied, there occur some unexpected sensation phenomena. Such limitations and

phenomena should be carefully considered when designing vibrotactile systems, so

either to avoid or leverage them for creating special effects. Such phenomena are

described in the following.

2.3.1 Masking

Masking effects occurs when two stimulations are presented concurrently and one

stimuli (masker) hinders the perception of the other (masked) one [Cholewiak and

Craig, 1984, Craig, 1982, Craig, 1983]. Delaying one of the stimuli, increasing the

duration or increasing the spatial distance between stimuli can prevent such effect

from occurring [Cholewiak and Craig, 1984].

2.3.2 Adaptation

Continuously applying a vibrotactile stimulus beyond the perception threshold can

lead to reduced perception which is referred to as adaptation [Guyton, 1991].
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This is just a temporary effect and after a short duration, it passes if proper delays

between stimuli are provided. The adaption rate for fast adapting mechanoreceptors

such as Pacinian corpuscle (responsible for vibration) is very rapid [Guyton, 1991]

as also suggested by the name.

2.3.3 Phantom Sensation

Simultaneous stimulation of two or more locations in close proximity may only be

perceived as a single stimulation somewhere in between tactors. This haptic illusion

is typically referred to as phantom sensation [Alles, 1970] (sometimes also refered to

as funnelling). The exact location of the perceived stimulus depends, among other

factors, on the stimulation amplitudes [Alles, 1970, Schneider et al., 2015, Park

et al., 2016]. Thus researchers have created models to control the location and the

intensity of this perceived phantom for using it in various applications. When using

amplitudes of tactors to create the illusion, there are three main rendering models

to control the location of sensation:

• Linear model [Alles, 1970, Schneider et al., 2015, Park et al., 2016] which

assumes that the perceived position and amplitude is a linear combination of

the amplitudes of two tactors,

• Power model [Alles, 1970, Schneider et al., 2015, Park et al., 2016] where the

location is depended on the powers (square) of amplitudes and

• Logarithmic model [Alles, 1970, Park et al., 2016] where the relationship is of

logarithmic nature

The phantom sensation has been studied in the literature primarily with a fo-

cus on users’ perceived quality of temporally dynamic continuous stimuli [Schnei-

der et al., 2015, Seo and Choi, 2010, Cha et al., 2008, Eid et al., 2015, Israr and

Poupyrev, 2011]. These studies indicate that the log model provides a qualitatively

good movement sensation, as the vibration intensity is perceived as more stable

towards the middle between two tractors compared to the linear model. Results

of [Seo and Choi, 2010] suggest, however, that the linear model may yield higher

localisation precision between two tactors compared to the log model. Similarly,

the results of [Barghout et al., 2009] show that linear model could be a good choice
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for localisation of perceived stimuli. The power model introduced byIsrar [Israr and

Poupyrev, 2011] also maintains intensity across space and participants had no clear

preference between the power model and the log model [Schneider et al., 2015].

The phantom sensation is mainly used for tactile animation where the perception

is moved from one place to the another [Schneider et al., 2015, Israr and Poupyrev,

2011] and it has been proposed to be used for enriching experience while consum-

ing multimedia content [Schneider et al., 2015], creating an immersive experience

in games [Israr et al., 2012] and storytelling [Yannier et al., 2015]. The wear-

able displays presented in Chapter 5 utilise the phantom effect to encode arbitrary

continuous-valued quantities. Hence, the goal such proposed displays is to use the

phantom effect on more than two tactors to encode numerical values.

2.3.4 Apparent Movement - Sensory Saltation

The apparent movement [Kirman, 1974a, Kirman, 1983] is sometimes referred to as

sensory saltation [Geldard and Sherrick, 1972] is another tactile illusion and it is cre-

ated when two points with distance apart are stimulated with a gap in between them.

The perception is a moving stimulation from the first to the second point, some-

times referred to as ’cutaneous rabbit’ phenomenon [Geldard and Sherrick, 1972].

In this case the gap between two stimuli is called inter-stimuli-interval (ISI) and it

is essential on control the saltation effect [Cholewiak and Collins, 2000, Geldard and

Sherrick, 1972, Geldard, 1975]. The saltation effect increases with the decrease of

ISI. However, for ISI greater than 200 ms, the saltation effect disappears [Geldard

and Sherrick, 1972, Geldard, 1975].

2.4 Vibrotactile Patterns for Encoding Informa-

tion

Given that our somatic sensory system is able to perceive different properties of

vibration, varying such properties can be used to encode information. The informa-

tion can be delivered in the form of tactons which are defined to be vibrotactile

patterns representing abstract meanings [Brewster and Brown, 2004].

Vibrotactile patterns are crucial when conveying information as they will affect

many properties of the system including and the design of the display and encoding
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of the information. They dictate not only how fast the information can be conveyed

but also how many actuators are needed to convey the information. To encode

information, vibrotactile patterns need to be discriminative. in most of the cases

(e.g. conveying text), they should also be delivered as fast as possible. Typically a

combination of variations in amplitude [Summers et al., 2005, Ternes and MacLean,

2008, Xu et al., 2011], frequency [Summers et al., 2005, Ternes and MacLean, 2008,

Xu et al., 2011], duration [Gunther, 2001, Geldard, 1957] (temporal) and body

locations [Geldard, 1957, Xu et al., 2011, Nicolau et al., 2013, Seim et al., 2014b]

(spatial or spatiotemporal) have been used. Sometimes more than one parameter

is used for creating patterns. For instance, Geldard [Geldard, 1957] in his Vibratese

work used five locations, a variation of three durations and three intensities to

provide patterns for encoding the desired symbols. Reed [Reed et al., 2018] used a

layout containing 24 (6×4) tactors on the forearm to construct patterns composed of

multiple tactors (2-8). The underlying phoneme patterns were generated by varying

location, frequency, duration, waveform, movement and number of tactors involved.

Grill [Gill, 2003] has shown that some levels of both frequency and amplitude

can be discriminated. However, encoding information goes beyond discriminating

between two patterns as it requires users to precisely identify the pattern in order

to map the pattern to the encoded information. This aspect seems to be difficult

for frequency or amplitude modulated patterns and in general spatial and temporal

patterns are better dimcriminatable than frequency and intensity based patterns

[Brown et al., 2006, Geldard, 1960]. Temporal patterns have been used in encoding

information in the past. The best example is morse code [Chang et al., 2002, Tan

et al., 1997], but they result in longer patterns compared to the spatial patterns.

Therefore spatial patterns or a variation of them (spatiotemporal) are preferable

when encoding information [Luzhnica et al., 2017, Zhao et al., 2018, Chen et al.,

2018b, Reed et al., 2018, Jiao et al., 2018, Cauchard et al., 2016, Zhao et al., 2018,

de Jesus Oliveira and Maciel, 2014].

However, while easy to discriminate and remember once they are perceived,

spatial patterns are prone to masking effect if more than one location is used in

patterns and the locations are close [Novich and Eagleman, 2015]. This is the case

with Braille inspired vibrotactile patterns [Nicolau et al., 2013, Nicolau et al., 2015].

Therefore, researchers try to prevent such effect by not stimulating all points at

once but rather by incorporating the temporal aspect into it. Such patterns are
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typically referred to as spatiotemporal patterns. Given that any combination

of location and time/duration is considered spatiotemporal, there exist many varia-

tions of spatiotemporal patterns. A common type are the sequential spatiotemporal

patterns [Novich and Eagleman, 2015] where vibromotors in a pattern are turned on

and off sequentially one after the other and only one vibromotor is active at a time.

Recently, Novich [Novich and Eagleman, 2015] showed that such sequential spa-

tiotemporal patterns result in significantly better discrimination than the spatially

encoded patterns where all vibromotors in a pattern onset simultaneously. Liao [Liao

et al., 2016] utilised such a spatiotemporal encoding to encode symbols on the wrist.

Although such encoding works well in terms of being identified by participants [Liao

et al., 2016, Novich and Eagleman, 2015], it is many times slower than the spatial

encoding as the total duration of a pattern is a multiple of number of vibromotors

within the pattern. Zhao et al. [Zhao et al., 2018] and also Chen [Chen et al., 2018b]

et al. [Chen et al., 2018b] used sensory saltation to construct spatiotemporal effects

where patterns composed of more vibromotors are perceived as movements.

When using spatial or spatiotemporal patterns the number of actuators varies

a lot (5-24) [Geldard, 1957, Nicolau et al., 2013, Nicolau et al., 2015, Reed et al.,

2018] due to the use of different patterns and encodings.

In this thesis, for encoding discrete information (letters), I constructed prioritised

overlapping spatiotemporal [Luzhnica and Veas, 2017] patterns where vibromotors

are activated in sequence after a gap, and they stay on until the pattern is finished.

As I will demonstrate later (see Chapter 3), this method velds in patterns that result

in better recognition accuracy compared to spatial patterns as they avoid masking

effect. Moreover, such patterns are faster than sequential spatiotemporal patterns,

as vibromotors share most of the activated time. Also, their duration does not vary

as much in contrast to sequential spatiotemporal patterns. As for encoding contin-

uous numbers, I use phantom sensation to provide a spatially encoded continuous

value (see Chapter 5).

2.5 Conveying Textual Information

Starting with Braille’s invention of the Braille coding in 1824, tactile displays have

long been widely used by people with visual impairments. Research on tactile dis-

plays equipped with actuators has been ongoing since at least 1924 [Gault, 1924],



2.5. CONVEYING TEXTUAL INFORMATION 31

where Gault [Gault, 1924] used a piezoelectric unit to convert entire recorded speech

to touch. Similarly, Kirman [Kirman, 1974b] transmitted speech streams to the

palm using a 15 × 15 vibromotor matrix. Six participants learned to differentiate

the patterns of 15 different words. Following similar methodologies of encoding

speech directly to tactile, there are numerous works [Yuan et al., 2005, Rönnberg

et al., 1998, Reed and Delhorne, 2003, Scott and Filippo, 1977, Phillips et al., 1994]

concentrating on providing hearing aids for auditory impaired users. A more recent

work on sound to vibrotactile is provided by Novich et al. [Novich, 2015]. They used

the real-time recorded audio signal, processed and mapped to a vibrotactile vest.

Seven users were trained to recognise 50 unique words for 12 days. Participants

were able to recognise trained words with an average user accuracy of 35% − 65%.

Additionally, participants were able to recognise 50 other untrained words with an

accuracy of above chance. Another less common technique of conveying information

is imprinting a shape directly on the skin of the user [White et al., 1970, Bliss et al.,

1970, Xu et al., 2011].

A more successful approach of transmitting information through haptics was

provided by Geldard [Geldard, 1957] in 1967 through symbols. The device was

named Vibratese and used five vibromotors placed on the chest to encode 45 sym-

bols (letters, numbers and most frequent short words). For each symbol only one

vibromotor was active. The system was capable of transmitting letters at 0.12

s on average. After 65 hours of training, one subject was capable of receiving

38 wpm (words per minute). Since then, researchers have proposed numerous

ways of encoding symbols through vibrotactile cues. Typically a combination of

variations in amplitude [Summers et al., 2005, Ternes and MacLean, 2008, Xu

et al., 2011], frequency [Summers et al., 2005, Ternes and MacLean, 2008, Xu

et al., 2011, Reed et al., 2018, Jiao et al., 2018], duration [Gunther, 2001, Gel-

dard, 1957, Cauchard et al., 2016, Reed et al., 2018, Jiao et al., 2018], body loca-

tions [Geldard, 1957, Xu et al., 2011, Nicolau et al., 2013, Seim et al., 2014b, Novich,

2015] and haptic illusions [Zhao et al., 2018, Chen et al., 2018b, Reed et al.,

2018, Jiao et al., 2018] have been used. Stimuli has been presented in different

locations such as users back [Novich and Eagleman, 2015, Cholewiak and Collins,

2000, Novich, 2015], chest [Geldard, 1957], fingers [Bliss et al., 1970, Cholewiak and

Collins, 1995, Cholewiak and Craig, 1984, Cholewiak and Collins, 2000, Nicolau

et al., 2015], palms [Kirman, 1974b, Cholewiak and Collins, 1995, Cholewiak and



2.5. CONVEYING TEXTUAL INFORMATION 32

Craig, 1984, Cholewiak and Collins, 2000], with a recent focus (due to wearable de-

vices) on the back of the hand [de Jesus Oliveira and Maciel, 2014, Luzhnica et al.,

2016b, Luzhnica and Veas, 2017, Luzhnica and Veas, 2018a, Luzhnica et al., 2018],

wrist [Liao et al., 2016] and forearms [Zhao et al., 2018, Chen et al., 2018b, Reed

et al., 2018, Jiao et al., 2018, Cauchard et al., 2016].

Recently, much research concentrated on finding patterns to encode symbols

such as letters, numbers or phonemes which then are used to construct complex

messages such as words or sentences. Encoding needs to provide patterns that are

discriminative, easy to learn and deliver them as fast as possible. Usually, there is

a tradeoff between those dimensions. Typically, more than one vibromotor is used

to encode a symbol.

As already discussed, spatial patterns where all vibromotors in a pattern onset

and offset simultaneously have no time overhead when using more vibromotors and

could be made very short but are prone to masking [Novich and Eagleman, 2015] and

thus researchers use longer durations to compensate for it. Nicolau et al. [Nicolau

et al., 2013] used six vibromotors on the fingers of both hands (index, middle, finger)

to convey letters spatially encoded in a braille Alphabet. In an initial experiment,

eleven blind participants could correctly identify letters encoded by 2000ms with an

accuracy of 82%. Seven participants continued in a second study where they were

tested for word recognition. They achieved an accuracy of 32.86% when symbols

were encoded by a stimulus of 250ms, 64.29% for 500ms, 88.57% for 1000ms and

92.86% for 2000ms (the gap between symbols was the same duration as symbol

stimuli). Later, Nicolau et al. [Nicolau et al., 2015] used the same braille encoding

on the fingertips for encoding characters. Twelve blind participants could recognise

letters stimulated by 2000ms duration with an accuracy of 73%.

Sequential spatiotemporal patterns can avoid masking [Novich and Eagleman,

2015]. Liao [Liao et al., 2016] used such an encoding where actuators are activated

for 500 ms and a gap of 100ms is used between them. The alphanumeric symbols are

encoded with 2-6 (resulting in a duration of 1100ms - 3000ms) sequential activated

locations where the majority of them were encoded by 4 locations on the wrist.

Twenty-four participants were able to identify symbols with an accuracy of 85.6%−
88.6% after on hour of training.

More complex spatiotemporal patterns and encodings have been proposed and

successfully evaluated. Zhao et al. [Zhao et al., 2018] used a 6 (2×3) tactors display
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on the dorsal part of the forearm to encode phonemes either by a single tactor or

by an apparent motion between two of them. In a user study, the authors found

that although it was not feasible to generate 36 necessary distinguishable patterns,

9 patterns (6 with single and 3 with two vibromotors) were easy to discern. The

authors trained 11 users for 45 minutes to recognise 9 phonemes transmitted by

a base duration of 150 ms resulting in a duration of 180-770.5 ms for a phoneme,

and also trained them on 10 words transmitted as a series of phonemes with a 500

ms gap. Participants were able to recognise phonemes with an accuracy of 82%.

Participants were also able to identify seen words with an accuracy of 64.3%− 74%

and ten new (unseen) words with 26.7%−46% (depending on phonemes within). An

additional study trained 9 participants only on words and not phones at all [Zhao

et al., 2018] . They found that participants were able to recognise trained words

with an accuracy of 88.6%, unseen words with 55.7% and interestingly phonemes

with 90%. Furthermore, the authors tested the recognition of new (pseudo) words

with higher speeds (base duration 50-150ms, gap 100-500 ms) which resulted in a

recognition accuracy between 21.4%− 45.7% depending on the speed configuration.

Similar encoding, position and layout but with 8 (2× 4) tactors was used by Chen

et al. [Chen et al., 2018b]. Authors trained participants to recognise words encoded

by phonemes of duration 126-267 ms with a gap of 200 ms between them in words.

After 65 minutes of training (in 3 days), 19 participants achieved an accuracy of

85.7% for words that were trained using guided training and 71.5% for the ones

trained using self-guided training.

Reed [Reed et al., 2018] used a layout containing 24 (6×4) tactors on the forearm

to encode 39 phonemes. The authors provided an encoding based on articulatory

properties of the phonemes where each phoneme was encoded by multiple tactors

(2-8). The underlying phoneme patterns were generated by varying location, fre-

quency, duration, waveform, movement and number of tactors involved. The stimuli

duration of a phoneme varied between 100ms to 480 ms with a majority of them be-

ing 400ms and 480ms. Such a system was used to train 10 participants on phonemes

for 50-230 minutes (depending on the progress) after which they achieved an average

accuracy of 85.77% on phoneme recognition. The very same device, encoding and

stimuli properties were used by Jiao et. al. [Jiao et al., 2018] to conduct longer stud-

ies. The authors trained 12 participants over a course of 10 days (10 min per day) to

recognise 39 phonemes and 100 words encoded as a series of phonemes with a 300ms
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gap in between. The participants achieved 92% accuracy on phonemes. While not

all of them were tested in words as they had to achieve a certain performance on

phonemes to be eligible, the eligible ones achieved an accuracy of 80% on words.

Dunkelberger [Dunkelberger et al., 2018] introduced a multi-sensory approach by

building a haptic display composed by three types of haptic actuators: a vibromo-

tors band containing four vibromotors, a radial squeeze band, and a haptic rocker.

Such diverse actuators were able to produce concurrent sensations of vibration, ra-

dial squeeze and lateral skin stretch. The haptic display was placed on the upper

arm, and it was able to produce 48 unique haptic patterns of 350 ms. The authors

conducted a user study where 10 participants were trained for 100 minutes (in 4 dif-

ferent days) to recognise phonemes and words. Even though the device could encode

48 different messages (phonemes), the authors used only 23 phonemes in the study

which then formed 150 words. The participants were tested in words as a sequence

350 ms encoded phonemes. Within a word, phonemes were not separated by a fixed

gap but rather participants controlled when to proceed to the next phoneme which

in turn resulted in an average of 3.5 s gap between phonemes. At the end of the

study participants were able to recognise words with an accuracy of 86.6%.

Table 2.2 summarises the details of related work on skin reading that use a symbol

(e.g. letters or phonemes) based approach of encoding the information. There, some

papers are included in more than one row as they performed many testings with

different parameters (e.g. different transmission speed, the gap between symbols or

different body positions) which resulted in different recognition accuracies. The work

developed as part of this thesis is added to the table and marked by *. Moreover,

Figure 2.5 illustrates the symbol and words recognition accuracies in relation to

the time it takes to convey a symbol or word. Note that, as within the same

method, sometimes different symbols are encoded by different durations. Thus for

the representation in the figure, the average of such durations is estimated. In

addition, the duration of a word is estimated by the given formula:

wd = #l × sd + (#l − 1)× gs (2.1)

where wd represents the average duration of words, #l represents the average length

(number of symbols) of words, sd represents the average duration of conveying one

symbol and gs represents the gap between symbols within words which is sometimes
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referred to as inter-symbol duration. Note that as different methods use either

letters or phonemes as symbols, the average word length differs. Thus, for methods

that use letters as their basic unit, #l is set to be 4.79 which is deduced from the

Google Books Corpus [Michel et al., 2011]. For authors that use phonemes as basic

unit, #l is set to be 3.34 as [Lamel et al., 1989] reveals.

Figure 2.5 also uses the size of the markers to represent the vocabulary size

used by authors on their studies. This value is calculated as the number of used

symbols divided by the number of symbols that would be needed for that language

to be complete. Considering that all studies use English language, for letters the

complete number would be 26 whereas for phonemes it would be 39.

To convey textual information for skin reading, the work accomplished through-

out this thesis uses prioritised overlapping spatiotemporal (OST) patterns where

vibromotors are activated in sequence after a gap, and they stay on until the pat-

tern is finished. Such patterns are used as they deliver a better recognition accuracy

than spatial patterns, and they are faster than sequential spatiotemporal encoding,

as vibromotors share most of the activated time (see Sections 3.1, 3.3 and [Luzh-

nica et al., 2016b, Luzhnica and Veas, 2017]). This thesis also proves empirically

that prioritising the activation of actuators based on the spatial acuity as increases

the perception (see Section 3.3 and [Luzhnica and Veas, 2017]). In addition, ini-

tially, two wearable layouts with six vibromotors, one in forearms and the other on

the back of the hand are designed and evaluated in this thesis. Furthermore, an

initial letter frequency based encoding is designed to encode letters of the English

Alphabet with OST patterns. An initial study (see Section 4.1) trains 16 partici-

pants for 5 sessions ( 5h in total). While the first sessions use lower speeds to train

participants, each letter is encoded by a duration of 100ms−110ms in session 4 and

70ms− 80ms in session 5. On those sessions, participants achieve a letter recogni-

tion accuracy of 90% in session 4 and 94% in session 5. Additionally they are able

to recognise words with an accuracy of 86% − 93% depending on the gap between

letters (100ms − 250ms). To improve the recognition accuracy, another layout of

seven vibromotors and an optimised encoding of the letters is proposed in this the-

sis. The new layout and encoding aim at avoiding masking issues when letterers are

transmitted in sequence to form words. A second study (see Section 4.2) evaluates

such optimised encoding and layout, and it demonstrates that such optimisations

drastically improve the accuracy of letters (97%) and word (97%) recognition.
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Figure 2.5: Different systems used for skin reading from a related work (from more
details see Table 2.2). The figures present the average duration of conveying the
information (symbols or words) in relation to symbol (top) and word (bottom)
recognition accuracies from different systems. The size of the markers represents
the number of symbols used in the author’s vocabulary divided by the number of
symbols needed to complete the entire vocabulary (26 for letters, 39 for phonemes).
Note that some authors only test one of the recognition accuracies (either symbol
or word) and thus they do not appear in both figures. In addition to the related
work, two systems that are part of this thesis are included for comparison. The first
system uses six channels (vibromotors) wearable display either on the back of the
hand or forearms. The second system uses the improved layout of seven channels
and an optimised encoding which increases recognition accuracy. Both system will
be presented in Chapter 4 (Sections 4.1 and 4.2) and have already been published
in [Luzhnica and Veas, 2019b].
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Table 2.2: An overview of the related work in symbol based skin reading. The details include: Authors - the papers the work was

published, ACT - number of used actuators, Train - training time, Users - number of participants, Encoding - essential details of

encoding, SB - the type of symbols encoded (L- letters or P - symbols), #SB number of symbols, Duration - stimulation time for

a symbol, Gap - gap between symbols in a word, LA - letter recognition accuracy and WA - word recognition accuracy. Other

notation: NA - not applicable, NR - not reported, NC - not clearly reported, v/s - vibromotors per symbol. Note that some

papers are included in more than one row as they performed many testings with different parameters (e.g. different transmission

speed, a gap between symbols or different body positions) which resulted in different recognition accuracies. This table only

includes the symbol (e.g. letters or phonemes) based encoding of information. The items marked by * represent the work that

was developed from the author of this thesis and it is a part of it. Such work will be described in Sections 4.1 and 4.2 and is has

vibromotors been published in [Luzhnica and Veas, 2019b].

Authors ACT Location Train Users PTN Encoding SB #SB Duration Gap LA WA

[Nicolau et al.,

2013]

6 knuckles NA 11

(blind)

S braille L 26? 2000 ms 82%

[Nicolau et al.,

2013]

6 knuckles NA 7

(blind)

S braille L 26? 2000 ms 2000ms NA 92.86%

[Nicolau et al.,

2013]

6 knuckles NA 7

(blind)

S braille L 26? 1000 ms 1000ms NA 88.57%

[Nicolau et al.,

2013]

6 knuckles NA 7

(blind)

S braille L 26? 500 ms 500ms NA 64.29%

[Nicolau et al.,

2013]

6 knuckles NA 7

(blind)

S braille L 26? 250ms 250ms NA 32.86%

[Nicolau et al.,

2015]

6 fingertips NA 12

(blind)

S braille L 26? 2000 ms 2000

ms

73%
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[Liao et al.,

2016]

1 wrist NC <

60 m

24 SST 2-6 v/s L 26 1100-3000

ms

NA 85.6%-

88.6%

[Zhao et al.,

2018]

6

(2×3)

forearm 45 m 11 SAM 1-2 v/s P 9 180ms-

770.5 ms

500

ms

82% 26.7%-

74%

[Chen et al.,

2018b]

8

(2×4)

forearm 65 m 19 SAM 1-2 v/s P 13 126-267 ms 200

ms

NC

65%-

85%

71.5%-

85.7%

[Reed et al.,

2018]

24 (6

× 4)

forearm 50m -

230 m

10 STM 2-8 v/s P 39 100-480 ms NA 85.77% NA

[Jiao et al.,

2018]

24 (6

× 4)

forearm 100 m

(10 d)

12 STM 2-8 v/s P 39 100-480 ms 300ms 92% 80%

[Dunkelberger

et al., 2018]

6 upper-arm 100 m

(4 d)

10 MST vibration

+ rocker

+ squeeze

P 23 350 ms 3500ms NR 86.6%

Sections 4.1* 6 back of

hand &

forearms

5 h 16 OST 1-3 v/s L 26 70-90 ms 250ms 90-

92%

86%

Sections 4.1* 6 back of

hand &

forearms

5 h 16 OST 1-3 v/s L 26 70-90 ms 150ms 90-

92%

85% -

86%

Sections 4.1* 6 back of

hand &

forearms

5 h 16 OST 1-3 v/s L 26 70-90 ms 100ms 90-

92%

89% -

90%
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Sections 4.2* 7 back of

hand

5 h 8 OST 1-2 v/s L 26 70-80 ms 250ms 97% 98%

Sections 4.2* 7 back of

hand

5 h 8 OST 1-2 v/s L 26 70-80 ms 150ms 97% 96%

Sections 4.2* 7 back of

hand

5 h 8 OST 1-2 v/s L 26 70-80 ms 100ms 97% 97%
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2.6 Reading Patterns

When providing means for any form of reading, as I intend to do with vibrotactile

skin reading, it is important to consider the nature of the reading process itself, draw

parallels and then consider the elements that support such process. The most com-

mon form of reading is visual, where users use vision to read information represented

by symbols and a combination of them. For the individuals with vision impairment,

Braille is a standard way of reading. In Braille, the information is represented by

symbols which are conveyed as blocks constructed by raised dots. To read it, one

must scan such printed information with the fingertip.

A common belief that reading is a sequential task, where eyes glide smoothly

across the page, is merely an illusion [Rayner, 1998]. At the word level, well-

established research postulated that words are recognised as units [Larson, 2004,

Fisher, 1975, Reicher, 1969, Cattel, 1886] and they are even recognised before in-

dividual letters [Cattel, 1886]. Reading depends on the mechanics of the visual

system to stop at fixed spots in the text (fixations) and jump quickly to other spots

(saccades, covering about 8 letter spaces) [Rayner, 1998]. Skilled readers fixate on

about 2/3 of the words in a text. Beside forward movements to advance in reading,

they reread nearby material backwards in the text about 10 to 15% of the time,

occasionally driven by breakdowns on comprehension. Conversely, beginning read-

ers fixate every word (often more than once), perform shorter saccades, and up to

50% of their eye movements are regressions, as they rely more on context to identify

words [Rayner, 1998]. Obtaining meaning from printed words is not sequential; it

depends on processing words as units and uses backward jumps at word level to aid

understanding.

In Braille, it is not possible to form a global shape recognition of the entire word,

so the text has to be processed character by character [Daneman, 1988, Millar, 2004,

Millar, 2003]. The perception and flow of information in Braille are controlled by

moving the hand forward and occasionally backwards to revisit information [Millar,

2003, Hughes et al., 2011]. Thereby, Braille readers control reading speed, focus on

particular letters or re-scan entire words.

Moreover, Braille readers have full control on the perception flow of information

as by moving the hand back and forth, they can control the reading speed, can

decide to focus more on particular letters of words or re-scan entire words. People



2.6. READING PATTERNS 41

performing visual reading have similar control over the information flow. On the

vibrotactile skin reading, users are presented with the information and they have

no control over transmission. Thus, we argue that it necessary to provide means

of interaction such as re-transmitting different part of text (certain words, certain

letters of words). Users might not understand particular parts of the text due to

the lack of concentration or training. Additionally, users might want to pause,

resume the transmission or change the speed of transmission to account for the

progress in their reading skills. Thus this thesis (see Chapter 6) also investigates

what interactions are needed for efficient skin-reading, what interaction modalities

are preferred by users and how to enable such interactions using wearable sensors.





Chapter 3

Sensitivity Prioritised Overlapping

Spatiotemporal Patterns and

Wearable Display Layout Design

The work described in this chapter aims at finding vibrotactile patterns to represent

discrete information and also design a wearable vibrotactile display layout to convey

such patterns. The purpose such wearable vibrotactile display and patterns is to

transmit generic discrete tactons, which would transmit letters of the English alpha-

bet, and it should be possible to combine them to form words and sentences. Such

process of conveying textual information through vibrotactile messages is referred

to as skin reading throughout this thesis. The wearable device should be able to

communicate messages of different types and find application in different scenarios

for general purpose use as well as for users with visual or auditory impairment. Thus

the work described in this chapter lays the foundations for the skin reading which

is addressed on the Chapter 4. Both chapters have a common goal of providing

methods for stimulating, encoding, and conveying information for skin reading but

they address different aspects of it.

Given that the vibrotactile patterns are required to be used in the context of

skin reading, they should fulfil two critical requirements:

• Perceivability. Patterns should be perceivable and discriminable. This way

users should be able to easily identify them when stimulated and not confuse

them with other patterns.

43
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• Throughput. To be efficient, patterns should be stimulated with shortest pos-

sible duration so that they can transmit tactons at highest possible (given the

restrains in perception) speed. This way when combining consecutive patterns

into messages it will result in shorter transmission speed.

Note that optimising patterns for both requirements is a challenging task as such

properties have an inverse relationship. Typically the shorter the duration the less

perceivable are the patterns. Thus finding suitable patterns is a tradeoff between

the two aspects as mentioned above.

On the other hand, there should also be design considerations for wearable vi-

brotactile display regarding transmission and wearability, where the following re-

quirements should be met:

• Encoding capacity. The wearable display should be able to generate enough

unique patterns to encode the set of all required symbols, which in this case

are the letters of English alphabet. Thus, it is important for the layout to

consider the number of vibromotors needed to provide such unique patterns.

• Convenience. It should not hinder user’s normal activities which rules out

some locations such as fingertips or the palm as they are required for object

manipulation and everyday interaction.

• Wearability. It should be easy to put on and take off and be worn comfortably

with different types of clothing.

Although the requirements above are categorised either for patterns or wearable

display, some of them depend on both. For instance encoding capacity depends on

the number of vibromotors on the layout but also the number of vibromotors within

one pattern. The more vibromotors present in one pattern, the more combinations

can be created, and thus the less total vibromotors are needed in the layout.

The choices of patterns and the vibrotactile displays designed in this thesis are

guided by four user studies summarised in the following:

1. Study 1 investigates both patterns and wearable layouts. It proposes three

layouts for vibrotactile wearable displays based on the above-defined require-

ments. Additionally, it proposes the overlapping spatiotemporal patterns

(OST) as a good choice for perception and throughput. Finally, it evaluates
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the three layouts and patterns for identification and discriminability of such

patterns.

2. Study 2 proposes insensitivity varying patterns (IV), where several ac-

tuators are activated simultaneously but with different intensities. Moreover,

it investigates the effects of the sensitivity of the location (spatial acuity) on

varying the intensity of vibromotors for the insensitivity varying patterns.

3. Study 3 proposes to use the sensitivity of the location (spatial acuity) on

prioritising the activation of vibromotors for the overlapping spatiotemporal

patterns. Thus, it investigates the effect onset prioritisation based on sensi-

tivity or reverse sensitivity.

4. Study 4 investigates extending the hand based layout proposed in study 1 by

three more vibromotors and it evaluates the identification of the overlapping

spatiotemporal patterns for those locations.

While each of the studies target various research questions related to vibrotactile

patterns and wearable layouts, the main research question of this chapter is:

RQ1: Do the overlapping spatiotemporal patterns result in better iden-

tification accuracy than the baseline spatial patterns on the hands and

forearms?

The results of all four studies have already been published in two peer reviewed

scientific papers [Luzhnica et al., 2016b, Luzhnica and Veas, 2017] (P1 and P2) and

their findings enable the scientific contributions C1 (Vibrotactile Patterns) and

C2 (Wearable Vibrotactile Display Design) listed in Section 1.2.

Hardware. The same hardware device is used in the four user studies. The de-

vices consists of an Arduino-Duo board coupled to a power regulator (LM2596S)

controls 3.4 mm vibrotactile motors of type ROB-08449 (Voltage range: 2.5V 3.8V

; Amplitude vibration: 0.8G).
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3.1 Study 1: Overlapping Spatiotemporal Pat-

terns and Wearable Vibrotactile Display Lay-

out Design

The aim of this user study is first to propose and then evaluate wearable layouts

and stimulation patterns with regards to how accurately users identify the locus

of vibrotactile stimuli. For this, first three wearable layouts are designed and then

evaluated along with proposed vibrotactile patterns.

3.1.1 Wearable Designs

It is clear that the spatial acuity of the skin limits the relative number of vibrators

that can be used. To increase the number of symbols, they have to be encoded

in combinations of vibromotors. Hence, when designing a layout, the vibromotors

have to be sufficiently separated, so that they can be discriminated when stimulated

together. Taking into account the convenience, wearability and encoding capacity

requirements in contrast with the spatial acuity of the skin in different body parts,

three layouts were designed: hand and forearm and two-forearms:

• Hand layout (H). Although the skin of the palm has a high resolution in terms

of spatial acuity, positioning the device on the back of the hand makes it

unobtrusive. For this layout, the vibromotors were placed inside a glove, in the

back of the hand and fingers, as shown in Figure 3.1, so as to avoid interfering

with grasp and hand interactions typically performed with the palm. On the

fingers, vibromotors were placed on the middle phalanx leaving the fingertips

free. Using such a layout, fingers can remain uncovered by utilising a partially

finger-less glove.

• Forearm layout (F). Vibromotors were fixed within a sleeve. The relative size

of the vibromotors in relation to the spatial acuity in the forearm limited their

number to six. Three vibromotors were placed on the outer and three on the

inner side of the forearm, as shown in Figure 3.1. Due to the concern over

the insufficient distance between vibromotors, a ”two-forearms” layout was

introduced.
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• Two forearms layout (F2). On each forearm, two vibromotors were placed

on the outer side (extremes), and one in the middle on the inner side of the

forearm, see Figure 3.1. A drawback of the two-forearms layout is that it

requires wiring, e.g., across the back to the controller. Alternatively, the device

could be implemented using two controllers connected wirelessly to provide a

wireless wearable vibrotactile display.

A sketch of the wearable layouts with the locations of vibromotors is illustrated

in Figure 3.1.

Figure 3.1: Wearable layouts (hand, forearm and two forearms): positions of the
vibrotactile motors and pictures form actual wearable prototypes.

3.1.2 Overlapping Spatiotemporal Patterns

Tactons can be encoded using different patterns which are constructed by varying

different parameters such as spatial (location of stimulus), temporal (duration of

stimulus), varying amplitude or even frequency (of vibration). To fulfil the through-

put requirement, the stimulation patterns need to ensure a short time of stimulation.
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Figure 3.2: Patterns composed of three vibromotors/locations: spatiotemporal (ST),
overlapping spatiotemporal (OST), spatial (S). Base duration (d) represents the
activation time of a vibromotor (v1, v2 and v3). The gap between the activation of
vibromotors is denoted by g.

With spatial patterns, all motors in a pattern are activated concurrently for the

same duration of time. Hence, the transmission time remains constant regardless of

the number of motors involved (see Figure 3.2). However, several studies have shown

that when participants are stimulated simultaneously, they fail to recognise some

of them [Luzhnica et al., 2016b, Luzhnica and Veas, 2017, Cholewiak and Collins,

1995, Craig, 1982, Novich and Eagleman, 2015]. This problem is known as masking,

as one stimulus decreases the dectectablility (masks) of another one [Cholewiak and

Collins, 1995, Craig, 1982]. Novich [Novich and Eagleman, 2015] found out that

spatiotemporal patterns result in much better discrimination compared to spatial

ones. In spatiotemporal patterns each motor is turned on only after the previous

one has been turned off, hence yielding a higher transmission duration and lower

throughput.

As a trade-off, I used a combination of them, in which the vibromotors are

activated in sequence but their vibration time overlaps (see Figure 3.2). That is, a

pattern started with a single tactile stimulus (one active motor); after a gap time the

next motor was activated, continuing so until all motors in the pattern were active.

Hence, the total duration of a tacton equalled the duration time of a single active

motor (base duration) plus the sum of in-between gaps (see Figure 3.2). I used a gap

of 10ms; twice the minimum suggested value (5ms) [Gescheider et al., 2010]. This

method yielded in patterns with just a bit longer duration (when using more than

one stimuli) compared to spatial patterns, but it was expected to result in a better

receptivity. Given that the activation of vibromotors was shared, I refer to such

patterns as overlapping spatiotemporal patterns (OST) [Luzhnica et al., 2016b].

Moreover, the onset order of such OST patterns was prioritised based on location
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sensitivity. The least sensitive locations were assigned a higher priority. When a

tacton was composed of several stimuli, the order of the stimulus was determined

by the assigned priority. In the case of the hand layout the priority order was:

pinky, ring, middle, index and thumb. The priority was chosen following output of

many research studies [Duncan and Boynton, 2007, Vega-Bermudez and Johnson,

2001, Hoggan et al., 2007] converging to the same conclusion. For the forearm,

the middle part was assigned the highest priority followed by the upper part; the

lowest priority was assigned to the wrist. Priorities for the forearm were assigned in

accordance with the sensitivity levels of the forearm [Cholewiak and Collins, 2003].

3.1.3 Research Objectives of the Study

Given the proposed wearable display layouts and OST patterns, this study targets

two research questions:

• Do the overlapping spatiotemporal patterns result in better identi-

fication accuracy than the baseline spatial patterns?

• Are the proposed layouts (hand, forearm and two-forearms) suitable

position for recognising OST stimulated patterns?

3.1.4 Procedure

The study compares overlapping spatiotemporal (OST) patterns with spatial (S)

ones and the three designed layouts by evaluating how accurately users identify

the locus of vibrotactile stimuli. Precisely, the study counted three independent

variables: layout (F=forearm, F2=two-forearms, H=hand), stimulation (S=spatial,

OST=overlapping spatiotemporal), and active vibration motor count (1,2,3), and

random with constraints variable duration with values 100ms, 80ms, 50ms.

Every participant was subject of 162 patterns, where for every possible combina-

tion of variables (in random order) 3 random tactons were chosen (3×3×2×3×3 =

162). After each stimulation, the participant was asked to localise the stimuli, i.e.

to point to the active motors involved.
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Partial Absolute
#M S OST p S OST p

2 .88 (.23) .89 (.23) 1.0 .77(.42) .79(.41) .29
3 .80 (.24) .83 (.22) <.01 .53(.50) .59(.49) <.01

Table 3.1: Localisation partial accuracy and absolute accuracy depending on number
of used motors (#M) for both stimuli types, p: pair-wise comparison.

Participants

Twelve (four males and 8 females) persons aged between 24 and 33 years participated

in this experiment.

3.1.5 Results

Let us define two depended variables partial accuracy and absolute accuracy. The

partial accuracy value is defined to be the number of correctly identified stimuli

(active motors) versus the number of all stimuli that compose the given pattern.

On the other hand, the absolute accuracy is computed as having the value of 1 only

if the entire pattern (all active motors) is identified correctly, 0 otherwise.

First, pattern types across all layouts are analysed. Particularly the patterns

involving 2 and 3 vibromotors, as both stimulation methods yield the same stimula-

tion for single vibrator patterns. Factorial ANOVA indicates significant effects both

in accuracy (F (1) = 17.9, p < .01) and absolute accuracy (F (1) = 34.67, p < .001).

Pairwise comparisons using Wilcoxon signed-rank, shown in Table 3.2, indicates

that for patterns with three motors the OST performs significantly better. Hence,

OST will be used in further analysis.

Furthermore, Table 3.2 shows the localisation performance for layout and vi-

brator count when using the OST. A factorial ANOVA indicates significant ef-

fects in both partial accuracy (F (2) = 34.05, p < .001) and absolute accuracy

(F (2) = 12.7, p < .001). Table 3.2 shows the result of paired-wise comparisons

(Wilcoxon signed-rank) for ”two-forearms” and ”Hand”. All differences between

”hand” and ”forearm” as well as between ”forearm” and ”two-forearms” layouts are

significant (p < .001). ”Two-forearms” layout is the most accurate, followed by the

”hand”.
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#M F F2 H pH−F2

Partial

1 .92 (.27) 1.0 (.00) .99 (.07) .32
2 .78 (.30) .97 (.12) .91 (.20) <.01
3 .74 (.26) .90 (.18) .86 (.18) .03

All .81 (.29) .96 (.13) .92 (.17) <.01

Absolute

1 .92 (.27) 1.0 (.00) .99 (.07) .32
2 .61 (.49) .94 (.24) .83 (.38) <.01
3 .40 (.49) .75 (.44) .61 (.49) <.01

All .0.65 (.48) .90 (.31) .81 (.39) <.01

Table 3.2: Localisation partial accuracy and absolute accuracy for number of used
motors and layout when using OST stimulation. F: forearm, F2: two-forearms, H:
Hand, pH−F2: pair-wise comparison (between H and 2A)

3.1.6 Discussion

Comparing results for stimulation types (see Table 3.1) showed that OST performed

better. Results for the different configurations indicate that ”two-forearm” is the

layout with maximum discrimination, followed by ”hand”. The ”forearm” layout

had undoubtedly the worst performance. This may be due to the small distance

between the stimulus on each side of the forearm.

In terms of wearability, during the study I realised that sleeves could be rotated,

resulting in the undesirable effect that a participant may feel the stimulus in a

different area of the arm. Although for this study, it did not matter as the two sleeves

were worn only once by each participant. But for everyday use, the vibromotors are

expected to be at the same locus each day a user wears it, which might introduce

issues. Aforementioned technical aspects of wiring contribute to this issue; making

it difficult to wear the device as required for everyday use.

3.2 Study 2: Intensity Varying Spatial Patterns

The previous user study (see Study 1 in Section 3.1) evidenced that overlapping

spatiotemporal (OST) patterns are easier identified than spatial patterns as they

can better avoid masking. However, they introduce a gap which causes them to

be longer ((n − 1)10ms for a given n -number of vibromotors). Since masking is

expected to mask the location with lower sensitivity, one could try to avoid such

phenomena by stimulating all involved locations at the same time but with different
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Figure 3.3: The haptic display investigated in the Study 2 and the used user interface
for interaction with the study application.

intensities. This way, one could perhaps avoid masking and yet activate the motors

for the same duration which would, in turn, result in a shorter total duration than

OST patterns as it omits the gap between vibromotors.

The assumption is that stimulating less sensitive locations with higher intensity

yields a higher accuracy in recognising a pattern. In other words, different inten-

sities would be used for each vibromotor, with the vibromotor on a more sensitive

location being stimulated with a lower intensity than the vibromotor in a less sensi-

tive location. In such patterns, the transmission time remains constant. Thus this

study addresses the given research question:

Does the simultaneous activation of vibromotors with different intensi-

ties result in higher identification accuracy compared to using the same

intensity in all vibromotors?

To answer this question, this study composed patterns that differ on vibration

intensity for each vibromotor and then investigated the effects of such variations.

The study used only four vibromotors as it aimed to keep participants interested

and at the same time gather enough data for statistical analysis. It concentrated

on the fingers as locations, because of their known sensitivity order [Duncan and

Boynton, 2007, Vega-Bermudez and Johnson, 2001, Hoggan et al., 2007].
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Figure 3.4: A percipient performing the second user study.

PT PWD1 PWD2 g (ms) d (ms)
S 1 1 0 100

IV1 1 0.75 0 100
IV2 1 0.50 0 100

Table 3.3: Pattern types (PT) used on the Study 2. PWD1 and PWD1 represent the
duty cycles (vibration intensities) of the first and second vibromotor of the pattern.
The base duration is denoted by d and the gap between activation by g.

3.2.1 Procedure

This study used 4 vibromotors as shown in Figure 3.3 and 3.4. For each permutation

of the vibromotors, a set of patterns with two vibromotors was generated for spatial

(S) and two (IV1, IV2) types of intensity varying patterns (IV). In intensity varying

patters one of the vibromotors was activated with a lower intensity than the other

one (see Table 3.3 and Figure 3.5). The spatial patterns (S) used the same intensity

on both vibromotors, and will served as a baseline to compare with other IV patterns.

The two types of IV patterns differ in the intensity of vibration used on the second

vibromotor (see Table 3.3). Thus, in total three sets of patterns (S, IV1, IV2)

were used. Figure 3.5 illustrates the patterns used in the study. Note that as an

Arduino device is used to control the vibromotors, it was technically unable to set

the intensity of the vibromotors (Arduino devices do not have analogue output).

Nevertheless, the effect of lower intensity was achieved by setting a lower duty cycle

of pulse width modulation (PWD). A duty cycle of 1 produced the highest vibration

intensity.

Since for each permutation of vibromotors a pattern was generated, for spatial (S)



3.2. INTENSITY VARYING SPATIAL PATTERNS 54

Figure 3.5: Pattern types composed of two vibromotors/locations: spatiotemporal
(ST), overlapping spatiotemporal (OST), spatial (S) and intensity varying (IV).
Base duration (d) represents the activation time of a vibromotor (v1 and v2). The
gap between the activation of vibromotors is denoted by g. The height or rectangle
represents the intensity of the vibration.

patterns, each pattern was included twice on the set (as the pattern with vibromotors

1 − 2 is the same as 2 − 1). In the case of IV type (IV1 and IV2), for every two

vibromotors, two patterns with an opposite order of activation were included (e.g.

1 − 2, where 1 was activated with higher intensity and 2 with lower one, and then

2− 1 where the order was reversed). Additionally, each set included a pattern with

a single vibromotor (with max intensity) for each of the available vibromotors. In

total each of the three sets included 16 patterns (12 with two vibromotors and 4

with one vibromotor). The main reason to include single vibromotor patterns is to

prevent the cases where users would feel only one vibromotor, but being aware that

there are only two-vibromotor patterns, would motivate them to guess one they did

not feel. Each participant was tested twice for each of the three sets (S, IV1 and

IV2) of patterns. Therefore each participant was tested for 72 (2 × 3 × 12) probes

with two vibromotors and 24 (2× 3× 4) probes with single vibromotor.

The entire experiment was controlled by a Python-based application, which for

each pattern in the probes, stimulated participants in a randomised order and then

asked them to select the vibromotors in the user interface, by selecting the rectangles

representing vibromotors using the mouse (see Figure 3.4). Participants could repeat

the stimulation once if they were distracted while the stimulus was applied (e.g. if

they were making a comment or a question).

Participants

Eleven participants (six male, five female) took part in the study. All of them were

right handed, and we used the left hand for stimulation. The right hand was used

to operate the mouse.
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3.2.2 Results

Initially, let us define a variable called accuracy which represents the pattern iden-

tification accuracy and it is defined to be 1 if participants recognised all locations of

stimuli, 0 otherwise. Additionally, let us introduce a new variable called order for

pattern types IV1, IV2. We define the pattern to be ordered if the index of the first

vibromotor is smaller than the index of the second vibromotor. Otherwise, the order

is reversed. If the pattern is ordered, then it is prioritised to stimulate the higher

sensitive place with higher intensity than the lower sensitive place. If it is reversed,

the least sensitive place is stimulated with higher intensity. As presented in Figure

3.6, both ordered, and inverse variants of IV1 and IV2 result in worse accuracy than

the spatial patterns (S). Chi-square comparisons reveal:

• S vs IV1 ordered: χ2(2, N = 396) = 5.89, p = 0.015,

• S vs IV1 reversed: χ2(2, N = 396) = 3.4, p = 0.065,

• S vs IV2 ordered: χ2(2, N = 396) = 108.44, p = 0.0,

• S vs IV2 reversed: χ2(2, N = 396) = 83.76, p = 0.0

For IV1, when comparing ordered vs reversed, a chi-square comparison reveals

the differences are not significant χ2(2, N = 264) = 0.14, p = 0.71. Similarly,

for IV2 the changes between ordered and reversed are not significant χ2(2, N =

264) = 1.71, p = 0.19. When comparing S with IV1 (both ordered and reversed)

the changes are significant χ2(2, N = 528) = 6.91, p < 0.01. Also, for S and IV2

χ2(2, N = 528) = 146.85, p = 0.0 the changes are significant. Similarly, the changes

between IV1 and IV2 are significant χ2(2, N = 528) = 94.07, p = 0.0.

3.2.3 Discussion

This study investigated whether varying the intensity of vibration of parallel vibro-

motors increases the accuracy of identifying the patterns and all involved vibromo-

tors. This way one could provide an encoding which results in better accuracy than

the baseline (S) without using any gap between the activation of vibromotors. At

least with intensities that we investigated (which were controlled by a duty cycle

of PWD), such patterns did not even achieve the same accuracy as the baseline S
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Figure 3.6: Correct identification (accuracy) of patterns for each pattern types (left)
used during the Study 2. The box plot (right) presents the results averaged per user.

(spatial patterns), let alone exceed it. Nevertheless, this should not immediately

discourage other researchers to investigate the same technique with actuators that

offer a more accurate intensity control. It is entirely possible that by tuning the

intensities (examining different levels of intensities), this might bring better results.

Within the frame and settings of this study, such an encoding technique did not

prove to be useful. Therefore such patterns will not be further utilised or promoted

within the work of this thesis.

3.3 Study 3: Sensitivity Prioritised Overlapping

Spatiotemporal Patterns

Th Study 1 (see Section 3.1) introduced the overlapping spatiotemporal (OST) pat-

terns, where onset occurs in sequence after a time gap for each vibromotor after the

first one and demonstrated that it can better avoid masking compared to spatial

patterns. Moreover, it prioritised the activation of motors based on lower to higher

sensitivity of the location. The main idea is that prioritising the least sensitive lo-

cation and activating it for a gap while the more sensitive one is not active, users

would perceive it. Then later (after the gap), when both vibromotors are activated,

even if the least sensitive place is masked by the more sensitive, participants already

are aware of its simulation (during the gap). However, the effects of such onset

prioritisation were not investigated in the previous user study. Therefore, this study
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PT PWD1 PWD2 g (ms) d (ms)
S 1 1 0 100

OST1 1 1 10 100
OST2 1 1 20 100

Table 3.4: Pattern types (PT) used in the Study 3 PWD1 and PWD1 represent the
duty cycles (vibration intensities) of the first and second vibromotor of the pattern.
The base duration is denoted by d and the gap between activation by g.

investigates in details how the prioritisation affects the perception and in which

order should the prioritisation be applied for highest perception.

This study assumes that a sensitivity prioritised onset of stimulation using OST

leads to higher recognition accuracy. When using OST, the vibromotors in a pattern

are activated in sequence after a gap. The sequence of activation is given by the

sensitivity of skin in the vibromotor location. All vibromotors remain activated for

the duration of the pattern. Thus this study addresses the given research question:

RQ2. Does the prioritisation of activation of vibromotors have an effect

on the accuracy of identification of each vibromotor when using an

overlapping spatiotemporal (OST) encoding? How should we prioritise,

least sensitive to most sensitive locations or vice-versa?

To answer this question, this study composed overlapping spatiotemporal pat-

terns consisting of one or two vibromotors. Patterns differed on the gap between

the activation of vibromotors and their order. Sensitivity prioritisation guided the

onset of vibromotors in a pattern. Its effects were analysed combined with gap du-

ration. Again, the study used only four vibromotors to keep the study concise and

at the same time gather enough data for statistical analysis. The fingers were used

as stimuli locations, because of their known sensitivity order [Duncan and Boynton,

2007, Vega-Bermudez and Johnson, 2001, Hoggan et al., 2007].

3.3.1 Procedure

Initially a set of patterns of various types was created which included a set of spa-

tial patterns (S) and two (OST1, OST2) sets of overlapping spatiotemporal (OST)

patterns where a gap between activation of vibromotors was used (see Table 3.4 and

Figure 3.5). The rest of the procedure was identical to the Study 2 (Section 3.2)

including the wearable layout (location fo vibromotors) and the user interface for
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the study. Each participant was tested twice for each three sets (S, OST1, OST2)

of patterns. Therefore each participant was tested for 72 (2×3×12) trials with two

vibromotors and 24 (2× 3× 4) trials with a single vibromotor.

Participants

Twenty participants (eleven male, nine female) took part in the study.

Figure 3.7: Correct identification of patterns for each pattern types (left) used during
the Study 3.

Figure 3.8: Correct identification of patterns for each pattern types (left) used during
the Study 3. The results are averaged per user.

3.3.2 Results

Let us introduce order as a variable for pattern types OST1, OST2. If the pattern

is ordered, then the location with higher sensitivity is stimulated first, and if it is
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t1/t2 1 2 3 4

S

1 .79 (.41) .29 (.46) .70 (.46)
2 .32 (.47) .67 (.47)
3 .43 (.50)
4

t1/t2 1 2 3 4

OST1

1 .94 (.24) .62 (.49) .96 (.20)
2 .96 (.20) .75 (.44) .83 (.38)
3 .50 (.51) .50 (.51) .69 (.47)
4 .85 (.36) .85 (.36) .65 (.48)

t1/t2 1 2 3 4

OST2

1 .85 (.36) .77 (.42) .94 (.24)
2 .92 (.28) .88 (.33) .98 (.14)
3 .62 (.49) .65 (.48) .60 (.49)
4 .81 (.39) .90 (.31) .71 (.46)

Table 3.5: Results of the Study 3 for each combination of two vibromotors. The
row defines the first activated vibromotor whereas the column defines the second.
In the case of S both vibromotors are activated in parallel, therefore, the results
are displayed together. Color coding: - spatial, - ordered (OST), - reversed
(OST).

reversed, then the lowest sensitivity location is prioritised. The average identification

accuracies of ordered, reversed and neutral patterns are presented in Figure 3.7 and

Table 3.5. Additionally a boxplot of averages for each user is presented in Figure 3.8.

Figures 3.7 and 3.8 reveal that ordered OST performed better than reversed (for

both OST1 and OST2) and all combinations of OST performed better than S.

Nevertheless, for determining significance chi-square tests are used.

Comparing S with ordered and reversed of OST (combined OST1 and OST2)

reveals that changes between S and both ordered and reversed OST were significant

χ2(2, N = 960) = 57.56, p = 0.0; respectively χ2(2, N = 960) = 24.54, p = 0.0.

Additionally also the changes between ordered and reversed OST were significant

χ2(2, N = 960) = 7.23, p = 0.0072. On the other hand, all combinations of OST

and ordering performed significantly better than baseline S 1:

• OST1 ordered vs S : χ2(2, N = 720) = 27.28, p = 0.0,

1as significance a threshold of α = 0.0125 is used according to following Bonferroni correction
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• OST1 reversed vs S :χ2(2, N = 720) = 19.92, p = 0.0,

• OST2 ordered vs S : χ2(2, N = 720) = 42.64, p = 0.0 and

• OST2 reversed vs S : χ2(2, N = 720) = 11.24, p = 0.0008

Additionally, the baseline (S) seems to have performed significantly worse than

both OST1 χ2(2, N = 960) = 38.33, p = 0.0; and OST2 χ2(2, N = 960) = 39.39, p =

0.0 regardless of order. When comparing the ordering within OST1 and OST2, for

OST1 the differences were not significant between ordered and reversed χ2(2, N =

480) = 0.4, p = 0.527; whereas for OST2 the changes were significant χ2(2, N =

480) = 9.31, p = 0.002.

Interestingly, the differences between OST1 and OST2 do not seem to have

been significant χ2(2, N = 960) = 0.1, p = 0.75. Also the differences between

ordered OST1 and ordered OST2 were not significant χ2(1, N = 480) = 0.0, p =

1.0. Similarly, the differences between reversed OST1 and reversed OST2 were not

significant χ2(1, N = 480) = 0.0, p = 1.0.

3.3.3 Discussion

This user study reveals that participants identified the stimuli significantly better

using overlapping spatiotemporal patterns (OST) than Spatial ones (S). Participants

also performed significantly better when the order of vibromotors was from smallest

to the highest index (for the OST). Since that order was the exact order of sensi-

tivity of the locations [Duncan and Boynton, 2007, Vega-Bermudez and Johnson,

2001, Hoggan et al., 2007], this suggests that prioritising the onset of vibromotors

based on sensitivity in OST encoding significantly increases the accuracy of identifi-

cation of patterns. Surprisingly, the increase in accuracy was achieved by prioritising

the most sensitive locations first, which is the opposite of what was assumed to be

the case in previous research [Luzhnica et al., 2016b]. Intuitively, one would expect

that by prioritising the least sensitive location while the more sensitive one is not

active (gap), users would perceive it. Later when both vibromotors are activated,

even if the least sensitive place is masked by the more sensitive, participants al-

ready are aware of its simulation (during the gap). Although such patterns were

significantly better than the baseline (spatial patterns), the opposite, prioritising

the most sensitive location, worked significantly better. Perhaps exactly the kick of
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the second activation is much more efficient mechanism against masking. It is also

interesting that the gap (10 ms vs. 20 ms) used between activation of vibromotors in

OST did not have a significant effect on identification accuracy. In the used settings

(base duration of 100 ms), 20 ms gap increases the total duration of patterns for

9% (110 ms vs. 120 ms) over the 10 ms gap. Despite the overhead which will affect

the throughput when encoding symbols, it still did not result in a significant gain

in accuracy.

3.4 Study 4: Extending the Hand Based Layout

When using OST to provide patterns, Study 1 (see Section 3.1) revealed that encod-

ing patterns with more than two vibromotors resulted in significantly lower accuracy

than the cases with one and two vibromotors [Luzhnica et al., 2016b]. Similarly,

when encoding information (e.g. letters of English Alphabet) with such patterns

the comprehension of encoded information suffers for information represented by

patterns encoded by three vibromotors (see Section 4.1). Thus when using OST

patterns, it would be recommended to encode information by maximum 2 vibro-

motors. However, this limits the number of patterns and thus the vocabulary of

information that could be encoded by them. To increase the size of the vocabulary

that can be encoded, it becomes necessary to add vibromotors in different locations.

The number of symbols that can be encoded with one or two vibromotors is:

n =

(
m

2

)
+m =

m(m− 1)

2
+m =

m(m+ 1)

2
(3.1)

where m represents the number of vibromotors in the haptic display. A display with

m = 7, n = 28 can encode the entire English alphabet plus two other characters

(e.g. space and period). With m = 8, n = 36 and with m = 9, n = 45 it would be

sufficient to also encode most of the punctuations and symbols.

This user study aims at extending the ”hand” based layout proposed in Sec-

tion 3.1 by three vibromotors for the purpose of increasing the number of unique

OST patterns that can be generated. The vibromotors are added in such a way that

they still could be placed inside a fingerless glove. No vibromotor is placed on the

palm, to avoid interference with everyday interactions. As shown in Figure 3.9, two

of vibromotors (6 and 7) are placed on the back of the hand, at acceptable discrim-
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Figure 3.9: The proposed wearable haptic display with 9 vibromotors which extends
the ”hand” layout presented in Figure 3.1. Study 4 uses the back of the hand and
wrist locations (6− 9).

ination distances as given by the cutaneous sensitivity of the hand. Additionally,

there are two vibromotors near the wrist, one on the back and one on the front

of the hand. The primary concern about this design is whether combinations of

vibromotors 6, 7 and 8 can be used within the same pattern, considering the small

distance between them. Additionally, as the vibromotor 9 is on the opposite side of

vibromotor 8, it raises the question whether their combination would be recognis-

able as well. Combining fingers with a single vibromotor on the back of the hand

was tested in Study 1 and Study 5 (see Section 4.1) using a ”hand” based layout

with a similar distance between the hand and finger vibromotors which is assuring

that the distance between hand vibromotors and fingers is enough to avoid masking.

Thus, to keep the study procedure within a manageable time, this study does not

study patterns combining finger vibromotors (1− 5) but hand vibromotors (6− 9)

to identify whether such positions are suitable for OST patterns. Thus this study

addresses the following research question: RQ3. Can stimulation with high

throughput and accuracy be achieved in less sensitive parts of the hand

such as the back of the hand and wrist area?
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3.4.1 Procedure

Three vibromotors were placed on the back of the hand (one of them near the wrist)

and one on the palm side near the wrist. The exact positions are given on Figure 3.9

(vibromotors 6-9) of the new design. Apart from the position of vibromotors, the

rest of the study was organised in the same manner as the previous user study

(Section 3.3). Three sets of probes (S, OST1 and OST2) were used in a randomised

order to test the participants for identification. In total each user was tested for for

108 (3 × 3 × 12) probes with two vibromotors and 36 (3 × 3 × 4) probes with one

vibromotors.

Participants

In this study participated 15 people (seven male, eight female).

vibromotor 6 7 8 9
Accuracy .99 (.08) .99(.12) .90(.30) .99(.12)

Table 3.6: Average correct identification of patterns composed of only one vibromo-
tor.

3.4.2 Results

The accuracies for each combination of vibromotors are presented in Table 3.6.

The table shows that all the patterns that involve vibromotor 8 performed worse

than the others. To elaborate on this result, Figure 3.10 illustrates the accuracies

of patterns grouped by vibromotors that they contain. On the top, it visualises

the accuracies of all patterns, whereas, on the bottom, it visualises only ones that

do not involve vibromotor 8. Note that groups are not exclusive as each pattern

belongs to two groups (e.g., patterns 6-7 belongs to both groups of vibromotor 6

and vibromotor 7) and hence inaccuracies of patterns involving vibromotor 8 affect

other groups as well. Here, when comparing pairwise, each group is statistically

significant compared to group 8 ( 6 vs 8: χ2(2, N = 1728) = 62.55, p = 0.0; 7 vs 8:

χ2(2, N = 1728) = 73.15, p = 0.0; and 9 vs 8: χ2(2, N = 1728) = 64.25, p = 0.0).

In addition, the accuracies of patterns composed of only one vibromotor are

presented in Table 3.6. When looking at the comparison between accuracies for

patterns with one vibromotor only, the differences between all other vibromotors
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Figure 3.10: Correct identification of patterns for each pattern that involves the
vibromotor. Please note that each pattern is included in two categories as it contains
two vibromotors. Therefore, when removing vibromotor 8, the accuracies increase
in other groups.

and vibromotor 8 are significant (6 c 8 :χ2(2, N = 288) = 10.13, p = 0.0015; 7 vs 8:

χ2(2, N = 288) = 8.01, p = 0.0047; and 9 vs 8: χ2(2, N = 288) = 8.01, p = 0.0047),

whereas the differences between vibromotors 6, 7 and 9 are not. Both comparisons

(Figure 3.10 and Table 3.6) point out that the location for vibromotor 8 is not a

good choice for a haptic display.

Following the second study where onset prioritisation resulted in higher accu-

racy, let us define the order of activation for positions on hand as well. While for

the first and second studies the sensitivities are well known and studied [Duncan

and Boynton, 2007, Vega-Bermudez and Johnson, 2001, Hoggan et al., 2007], for

the positions chosen in this study, to the best of my knowledge, there is no evidence

comparing their sensitivities. For this, Figure 3.11 presents the average accuracies
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Figure 3.11: Correct identification of patterns for each pattern that involves two
vibromotors (only for OST patterns) in the Study 4.

for all combinations of vibromotors including the order for OST pattern types (both

OST1 and OST2). Comparing each of them (e.g 6-7 vs 7-6) reveals that the dif-

ferences between 6-9 vs 9-6 (χ2(2, N = 192) = 5.35, p = 0.0208) and 7-8 vs 8-7

(χ2(2, N = 192) = 11.84, p = 0.0006) are significant.

Based on this evidence, the priorities of stimulation for vibromotors 6 and 7

would be higher than 9. Between 6 and 7, one would prioritise 7 just because of the

average accuracy, but either way, it would not make a major difference. Whereas

for vibromotor 8, I would recommend to remove it from the design as long as it is

not required to encode a vocabulary with more than 36 symbols.

3.4.3 Discussion

This user study introduces four vibromotors on the hand and tests all combinations

of patterns composed of one and two vibromotors. The results revealed that vibro-

motor 8 is comparably poor for haptic stimulation as patterns that contain it were

identified significantly worse than patterns that do not. Other proposed locations

seem to provide comparably good accuracy with both OST encoding types.

Please note that even though accuracy is not 100%, they are still a good fit for a

haptic display as there is some learning effect to it. Numerous studies in neuroscience

shed evidence that with exposure to stimuli there is a tactile learning effect [Reuter

et al., 2014, Godde et al., 2000, Dinse et al., 2005, Pleger et al., 2001, Pleger et al.,

2003, Hodzic et al., 2004] and thus with the usage of the vibrotactile displays per-

ception might improve. For instance, in [Luzhnica et al., 2016b], participants after
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some training time performed much better in identifying the symbol associated with

the pattern (98% accurate within one hour of training) than they performed in a

pre-study where they were asked identify the location of the stimulus (83% on the

hand for patterns with two vibromotors). This suggests that as users are exposed

more to the stimulus, they can identify more accurately the stimulus.

Considering the results of the third study, the final design of the glove-based

haptic display is composed on eight vibromotors. Seven (1 − 7 in Figure 3.9) of

them placed on the back of the hand whereas one is placed on the wrist of the

palm side of the hand (9 in Figure 3.9). With eight vibromotors, the new proposed

wearable display would able to encode 36 different symbols using prioritised OST,

which is enough for the entire English alphabet and most important punctuations.

3.5 Summary

The main objectives of the work reported in this chapter are to construct vibro-

tactile patterns that are optimised for perception and transmission speed as well

as design wearable vibrotactile displays that are suitable for stimulating such con-

structed patterns. This work designed wearable vibrotactile layouts and constructed

vibrotactile patterns with the goal of using them later for skin reading. Thus, it was

also essential to consider the number of unique patterns that could be generated

for the proposed pattern types and the designed wearable layout. The design of

patterns and wearable layouts was achieved through the process of four user studies

each examining some aspects of them.

The first user study proposed three wearable display considering a thorough

discussion of perceptual factors and design considerations. Moreover, it proposed

overlapping spatiotemporal patterns with the goal of increasing the identification

accuracy compared to spatial patterns. The study revealed that two layouts: a hand

based and two-forearms based could be a good fit for identifying the proposed OST

patterns. Additionally, it showed that the proposed OST patterns are a good choice

as they result in better identification accuracy compared to the spatial patterns.

The second user study showed that using different vibration intensities between

vibromotors does not contribute to a higher accuracy (even when they are prioritised

by sensitivity) than the baseline spatial encoding where the intensities are kept

constant for both vibromotors.
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The third user study examined whether the order of activation of vibromotors

in overlapping spatiotemporal patterns has an effect in correctly identifying the

stimulus. The results suggested that prioritising the activation of vibromotors based

on highest sensitive place towards lowest significantly increases the accuracy. Such

results are surprising and exactly the opposite of what it was assumed in the first

user study. Prioritising the vibromotors suggest, will contribute to an increase in

perception accuracy when using a wearable vibrotactile display.

Moreover, the fourth user study extended the investigation on sensitivity to new

hand locations. It experimented with four additional locations and kept three for a

proposed final design with eight vibromotors. The results showed that the proposed

layout with eight vibromotors is suitable for stimulating OST patterns and thus an

excellent choice for skin reading. Such a wearable vibrotactile display can be used to

encode up to 36 characters in one or two vibromotors with prioritised OST, which

is more than necessary for the entire English Alphabet.

Overall the work reported in this chapter shows that the proposed overlapping

spatiotemporal patterns prioritised by sensitivity (highest to lowest) are a good

tradeoff for both perception (better than spatial) and speed (faster than sequential

spatiotemporal) and thus present an excellent choice for skin reading. They result in

better identification accuracy than the baseline spatial patterns and could be used

in the back of the hands and forearms (RQ1). The results also propose a layout

with enough vibromotors to encode 36 symbols. Thus the foundation for encoding

text messages is laid out in terms of wearable device and stimulation methods.





Chapter 4

Conveying Textual Information

through Vibrotactile Wearable

Displays

Wearable devices are already a part of our everyday life. They provide assistance

to daily activities and enrich them with additional information collected by the

sensors within them. The primary feedback modalities of wearables devices are

visual and auditory. Although, most of them include vibrotactile capabilities, the

primary utilisation of vibrotactile feedback is to provide additional support to visual

interaction. On the contrary, the vibrotactile feedback on wearable devices has a lot

of potential to be used on its own. A prominent application and the subject of this

chapter is the so called vibrotactile skin reading (VSR) which is sometimes referred

to as simply skin reading.

Vibrotactile skin reading uses vibrotactile patterns to encode symbols [Geldard,

1957, Luzhnica et al., 2016b, Liao et al., 2016, Zhao et al., 2018] (letters or phonemes)

which then can be combined to convey complex messages such as words and phrases [Gel-

dard, 1957, Luzhnica et al., 2016b, Zhao et al., 2018]. While traditionally, perceiving

information through skin has been applied for visually impaired users (e.g Braille

reading) and skin reading presents some good opportunities for them [Luzhnica and

Veas, 2018b, Chen et al., 2018a], users with normal vision in multi-tasking scenarios

can also benefit from a means of perceiving messages that do not recruit the visual

or auditory senses. Depending on the method, the duration of conveying symbols

69
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varies from hundreds of milliseconds to few seconds. Performance varies as well,

with most studies reporting recognition accuracies between 80% and 90% on sym-

bols and words with a few hours of training. Considering the short training time,

such performances are quite promising but yet not at a state to be considered for

real-world applications. Performance could potentially improve with more train-

ing and practice. However, limitations to design of wearable devices, locations of

simulations and encoding of information could also cause systematic performance

errors.

The work on this section explores the use of high speed overlapping spatiotem-

poral patterns (OST) and also wearable display layouts which were developed and

introduced in Chapter 3 for skin reading. In addition to encoding information and

evaluating the capabilities of OST patterns and wearable layouts, it investigates

other aspects of skin reading such as optimising encoding, training methods, human

capability of perceiving information through skin reading in multi tasking scenarios,

transferability of training and the decay effect of training through time. The work

is guided by four user studies, each investigating different aspects of skin reading:

• Study 5: investigates skin reading using overlapping spatiotemporal patterns

on two layouts (hand and forearm) designed and evaluated in Section 3.1.

It first proposes a training program and a letter frequency-based encoding

to encode letters of English Alphabet using OST patterns, which then are

combined to form words. This study enables to analyse the performance and

more importantly explore whether there are any systematic errors that could

be avoided. Given that two layouts are used, it can be considered that these

any found errors are not bound to a particular layout or body location and

contribute a generalisation of the findings. The data produced during the

study allows to successfully identifies issues on the recognition of individual

letters as well as sequences of letters (words). Given such findings, a two-step

optimisation of the alphabet encoding and layout is proposed to prevent issues

in communicating sequences of letters and avoid issues with single letters. The

optimisation process results in a new, optimised layout and alphabet encoding,

which is then later evaluated in the next user study. The locations of the new

optimised layout are based on the previous investigations (based on Study 4

four described in Section 3.4) on suitable positions of actuators.
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• Study 6: evaluates the new optimised alphabet encoding and the optimised

layout and it provides evidence on the impact of the proposed optimisation

methodology on the aforementioned issues. It shows that such an optimisa-

tion has a major impact on the recognition of individual letters and words.

In addition, results shed new evidence on the effectiveness of the proposed

method for skin reading. First, it empirically demonstrates that participants

can transfer the knowledge of encoding and letter recognition to an untrained

body part (more specifically, to the untrained hand). Additionally, it provides

evidence that such knowledge and letter recognition performance remains over

time even without re-training or usage after 3, 10 and 19 days.

• Study 7: builds on top of Study 6 to investigate skin reading in multitasking

scenarios. For the study, already trained participants were recruited to inves-

tigate whether vibrotactile encoded messages can be perceived as secondary

while performing another primary task. Moreover, it evidences the effect of

primary task on the secondary one (decoding vibrotactile messages) and vice

versa.

• Study 8: investigates the use of passive haptic learning to train for skin-

reading. Additionally, it explores the the effect of teaching structures by

comparing word based training with letter based training. Moreover, it ex-

plores the effect of different transmission speed on the recognition of encoded

information.

While each user study target different research questions related to skin reading,

the main research question of this chapter is:

RQ2: Are overlapping spatiotemporal patterns suitable for vibrotactile

skin reading on the hands and forearms? More specifically, what perfor-

mance on the recognition of letters and words can participants achieve

with few hours of training?

The work in this chapter has already been reported in peer reviewed scien-

tific papers [Luzhnica et al., 2016b, Luzhnica and Veas, 2019b, Luzhnica and Veas,

2019a, Luzhnica et al., 2018] (P1, P3, P4, P5) and one peer reviewed poster (P8).

Moreover, the findings of this work constitute for the scientific contributions C3,

C4, C5, C6, C7 and C10 as listed in Section 1.2.
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4.1 Study 5: Investigating Skin Reading using

Wearable Vibrotactile Displays on the Hand

and Forearms

The main objective of this study is investigate to what extent participants can learn

to successfully decode vibrotactile encoded messages (skin reading) in English using

the designed described vibrotactile displays and the provided encoding. Initially,

it provides encoding of the entire English alphabet and a specific training program

designed for our purpose. Participants are exposed to the encoding using a provided

training program which trains them to associate the encoded information with their

representative OST patterns. They are trained to recognise symbols and then tested

on symbols and words stimulated on two different body locations: hand and fore-

arms. Participants also are tested continuously to evaluate their performance in skin

reading.

Although not a direct objective, the results of this study are used to identify

issues that hinder performance in the task of skin reading in general. By using

two different layouts, it ensures that the findings are not bound to body part or

layout. This study uses the exact wearable layouts, and OST patterns designed and

developed and evaluated during the Study 1 (see Section 3.1).

4.1.1 Wearable Layouts

Two layouts were used for stimulation in different body parts. Figure 4.1 and

Figure 4.2 illustrate the location of vibromotors in each layouts. The wearables use

an Arduino-Duo board coupled to a power regulator (LM2596S) which controls 3.4

mm vibrotactile motors of type ROB-08449 (Voltage range: 2.5V 3.8V; Amplitude

vibration: 0.8G).

Hand layout. Six vibromotors are placed on the back of the hand and fingers, so

as to avoid interfering with grasp and hand interactions. On the fingers, vibromotors

are placed on the middle phalanx leaving the fingertips free and kept uncovered by

utilising a partially finger-less glove as shown in Figure 4.1.
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Forearms layout. On each forearm, two vibromotors were placed on the outer

side (extremes), and one in the middle on the inner side of the forearm, see Figure 4.2

fixed by elastic adhesive bandages. In practice, the motors could be placed within

two wearable sleeves in a wearable consumer product.

Figure 4.1: A finger-less glove for the ”Hand” layout with the positions of vibromo-
tors annotated and the encoding of letters [Luzhnica et al., 2016b].

Figure 4.2: Letter encoding for forearms layout. Only active motors that are used
for encoding the letters are displayed.

4.1.2 Patterns and Encoding

Each letter is encoded in patterns of one, two or three vibromotors using the over-

lapped spatiotemporal stimulation. OST delivers patterns that are very short and

yet can be discriminated with a high accuracy (see Section 3). The activation of
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vibromotors is done in sequence after a gap (g) of 10 ms, but they share most of

the activation time, as illustrated by Figure 4.5. When encoding words, there is a

between-letter gap (see Figure 4.5) to separate them. The encoding considers the

frequency of letters 1 to encode the most frequent letters each with a single vibro-

motor, and increases the number of vibromotors with decreasing frequency of letters

(see Figure 4.1 and Figure 4.2). Thereby, common letters are transmitted faster,

contributing to a higher throughput. This encoding results in 6 single-vibromotor

letters, 15 two-vibromotor and 5 three-vibromotor letters.

4.1.3 Procedure

The study was split into five sessions as proposed by Luzhnica et al. [Luzhnica et al.,

2016b]. Each session consisted of several different rounds, each serving different

purposes:

Letter Training (LT) introduced letters in a number of repetitions for partici-

pants to learn to associate them with vibrotactile patterns. Each letter would be

stimulated with the vibrotactile pattern (haptic cue), displayed on the screen (visual

cue), and spelled via speakers (audio cue). A training round would repeatedly show

letters in a predefined sequence.

Letter Reinforcement (LR) allowed participants to test if they recognised a

letter. They were stimulated with a (randomly ordered) pattern and asked to enter

(keyboard) the letter associated with it. After entering the answer, the letter was

spoken and displayed in green if correct, red otherwise. Participants could repeat the

stimuli before answering by pressing space bar. LR rounds aimed to give feedback

and served to record performance and progress.

Word Challenge (WC) stimulated full words, which participants had to type

in. Participants could repeat the entire word but not single letters within the word.

Participants were only gradually introduced to single new letters at a rate of 16,

5, 5 for each session 1− 3– the full English alphabet of 26 letters. WC rounds were

introduced from session 1, to keep participants engaged with a feeling of progress.

1https://en.wikipedia.org/wiki/Letter_frequency

https://en.wikipedia.org/wiki/Letter_frequency
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#S LT LR Letters BD Words/ unique BL Gap TD

1 8 4 16 100ms 16 / 4 800ms 45

2 10 5 21 100ms 26 / 6 800ms 70

3 5 3 26 100ms 82 / 40 500ms 75

4 3 2 26 100ms
48 / 48 250ms

4525 / 25 150ms
25 / 25 100ms

5 3 2 26 70ms
48 / 48 250ms

4525 / 25 150ms
25 / 25 100ms

Table 4.1: Training program: number of training rounds (LT), reinforcement rounds
(LR), number of letters, number of words, stimulation base duration (BD), between
letter (BL) gap and total session duration (TD) in minutes for each session (#S).

The goal of sessions 4 − 5 was to train participants with shorter letter duration

and time gaps between letters in a word. The words used in sessions 4 and 5 were

composed of 2-5 letters with an average length of 3.5 letters per word. Table 4.1

presents the number of training and testing rounds in each session, the number

of letters, words and the stimulation parameters (stimulus base duration for each

letter; gap time between letters when transmitting a word). Additionally, Figure 4.3

elaborates on the training procedure for a single session.

Figure 4.3: Training program process for a session during the studies 5 and 6.
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Participants

Sixteen participants (12 males and 4 females) aged between 20 and 37 volunteered

for this user study. Half of them (6 males and 2 females) used the hand layout

and the rest used the forearms layout. None of them had any prior experience with

skin reading, and none of them was a native English speaker. Regardless of their

performance, they were rewarded for their participation with 30 euros in the form

of a voucher. Figure 4.4 shows two participants, one using the hand layout and the

other using the forearms layout.

Figure 4.4: Participants during the Study 5 using the hand and forearms layout.

Figure 4.5: Stimulation of letters and words. Letters are encoded using OST pat-
terns where vibromotors are activated in sequence with a gap in between (g). Within
words, letters are transmitted in series with a gap in between (bl).

4.1.4 Results

For each session, the last LR and WC rounds were considered to indicate perfor-

mance by:
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• Accuracy: whether the user correctly recognised the letter or word. Letter

accuracy is a binary value defined to be 1 when correctly recognised. For

words, the accuracy is computed as σ(a, s) = 1− d(a,s)
#s

, where d is a Levenshtein

distance between a stimulated word (s) of length #s and user’s answer (a),

which is a common measurement to compare words.

• Response time: the difference between the response time-point and the first

stimulation time-point including repetitions.

• Re-stimulation: whether participant repeated the stimuli.

Hand Forearms

#S Accuracy TTR (s) Re-stim Accuracy TTR (s) Re-stim UL TL

1 .98 (.15) 2.8 (2.2) .33 (.47) .85 (.35) 2.6 (1.5) .22 (.41) 18 54
2 .93 (.25) 2.7 (1.9) .35 (.48) .90 (.30) 3.1 (2.5) .37 (.48) 23 92
3 .92 (.27) 3.4 (4.2) .47 (.50) .84 (.36) 3.9 (3.8) .45 (.50) 26 52
4 .89 (.31) 2.9 (1.9) .31 (.46) .91 (.29) 3.5 (2.9) .46 (.50) 26 52
5 .92 (.28) 2.6 (2.3) .28 (.45) .90 (.30) 3.5 (3.5) .44 (.50) 26 52

Table 4.2: Letter recognition accuracy, time to respond (TTR), the re-stimulation
rate (re-stim), number of unique letters (UL) and all tested letters (TL) for each
session (#S). The values correspond to the average and standard deviation of the
given variable.

Hand Forearms

#M Accuracy TTR Re-stim Accuracy TTR Re-stim

1 .95 (.22) 2.0 (1.2) .15 (.36) .95 (.22) 3.0 (2.8) .38 (.49)
2 .92 (.27) 2.9 (2.3) .31 (.46) .92 (.27) 3.5 (3.1) .45 (.50)
3 .80 (.41) 3.3 (2.0) .43 (.50) .79 (.41) 4.4 (3.8) .55 (.50)

Table 4.3: Letter recognition accuracy (sessions 4 and 5), time to respond (TTR)
and the re-stimulation rate (Re-stim) depending on the number of stimuli used to
encode the letter.

Letters

First, let us analyse the letter recognition accuracy across last LR rounds of all

sessions. The results for both layouts are presented in Table 4.2. Already in the
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first day, participants were able to identify letters with an accuracy of 98% for the

hand layout and 85% for the forearms layout. With increasing number of letters in

the next two sessions, the recognition accuracy balances to 90%− 93% (depending

on the layout) in session 2 and 84%− 92% in session 3.

Let us focus on the last two sessions when participants were already trained on

the entire Alphabet and the information was transmitted at a very high speed (70-90

ms for a letter in session 5 and 100− 120 ms in session 4). In session 4, participants

achieved an accuracy of 89% in hand layout and 92% in forearms layout. In session

5, they achieved an accuracy of 92% in hand layout and 90% in forearms layout.

For the rest of the analysis, the focus will be put on the last two sessions as they

use a higher speed and also represent a state where users already are trained on the

entire alphabet.

Since accuracy is a binary variable, McNemar’s test (paired) will be used to

compare the results of the two sessions which revealed no significant differences in

accuracy between the two sessions; χ2(1, N = 1664) = 0.064, p = 0.8. Thus, in the

further analysis the two sessions will be analysed together. Similarly, (unpaired)

chi-squared analysis reveals that there are no significant differences in accuracy

between the two layouts; χ2(1, N = 1664) = 0.01, p = 0.93. Thus both layouts will

be combined for the further analysis.

Table 4.3 presents the recognition accuracy depending on the number vibromo-

tors that encode a letter. To analyse its effect, let us first average the accuracy by

user, session, layout and number of vibromotors as we deal with unbalanced sets.

As the aggregated accuracy is not normally distributed (Shapiro-Wilk test: p=0.0)

and we deal with paired samples, the Wilcoxon signed-rank test is used to determine

the statistical differences. Thus a Wilcoxon signed-rank test reveals that there is no

significant change in accuracy between one-vibromotor and two-vibromotor letters;

r = 101.5, p = 0.059, but there is a significant difference between two-vibromotor

and three-vibromotor letters; r = 42.5, p = 0.0.

Words

The accuracy depending on the session and gap time between consecutive letters

(bl) when transmitting a word is presented in Table 4.4. Using a gap of 500ms in

the third session results in an accuracy of h : 90 − a : 91%. However as the gap

time between the letters is reduced and also the stimulation time is decreased, the
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performance decreased as well. In sessions 4 and 5, three different gap times are

used which yield three different results. Again, for further the analysis focus will be

placed on the last two sessions because of the fast transmission speed and maturity

of training. In session 4, depending on the gap, participants achieved an accuracy

of 84−89% with the hand layout and 84−87% with the forearms layout. Similarly,

in the last session, participants achieved an accuracy of 86 − 89% with the hand

layout and 86− 88% with the forearms layout.

Considering that the accuracy is a real value and it is not normally distributed

(Shapiro-Wilk test: p=0.0), it will be relied on non-parametric tests to determine the

significance levels. A rank-sum test reveals that there was no significant difference

in accuracy between hand and forearms layout neither for session 5 ;r = −0.8, p =

0.425 nor for session 4; r = 0.87, p = 0.385. Additionally, there was no significant

differences in accuracy between word recognition in session 4 and session 5; r =

−1.06, p = 0.29.

Hand Forearms

#S BL Gap Accuracy Re-stim Accuracy Re-stim

1 800ms .92 (.22) .45 (.50) .98 (.15) .31 (.47)
2 500ms .96 (.17) .33 (.47) .99 (.10) .40 (.49)
3 500ms .90 (.22) .90 (.29) .91 (.21) .94 (.23)

4 250ms .84 (.28) .92 (.27) .84 (.28) .89 (.31)
4 150ms .89 (.23) .84 (.37) .87 (.24) .90 (.30)
4 100ms .89 (.22) .90 (.31) .87 (.24) .95 (.22)

5 250ms .86 (.28) .88 (.33) .86 (.28) .91 (.29)
5 150ms .85 (.30) .86 (.35) .86 (.27) .87 (.34)
5 100ms .89 (.22) .86 (.35) .90 (.22) .89 (.31)

Table 4.4: Word recognition accuracy depending on the session and the gap (BL)
between subsequent letters.

Characters within Words Letter testing rounds identified problems that are

related to individual letter patterns evidencing that letters encoded with three vi-

bromotors are more difficult to recognise. However, the errors in word recognition

can not be explained through them. Due to the letter frequency based encoding,

the five letters encoded with three vibromotors appear rather infrequently in words.
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According to the Google N-gram Corpus [Michel et al., 2011]23, their frequency in

the text is 0.54% for K, 0.23% for X, 0.16% for J, 0.12% for Q and 0.09% for Z. So,

all four combined have a frequency of 1.04%. To put that in perspective the most

frequent letter E has a frequency of 12.49%. In the words used in sessions 4 and

5, 55.2% of the letters are encoded by one vibromotor, 41.4% by two vibromotors

and only 3.4% of letters were encoded by three vibromotors. Moreover, the average

word recognition accuracy of all used words in sessions 4 and 5 for both layouts

is 87.3%. When discarding the words that contain any three vibromotor letters,

the word recognition accuracy increases only slightly to 88.4%. Thus, the overall

word recognition error rate cannot be explained by the poorer recognition of three

vibromotor letters.

Nevertheless, when conveying words, patterns are transmitted in a sequence, and

this might introduce additional problems. On sessions 4 and 5 where the transmis-

sion speed was higher, participants mentioned that sometimes, when two sequential

letters (transmitted within a word) share one vibromotor, it became more difficult

to distinguish whether that vibromotor was active in both letters or only in the first

one. For instance, if when the bigram of WH (e.g. in the word WHAT) is trans-

mitted using the hand layout, the letter W and H share a vibromotor in the ring

finger. According to the claims, it would be hard to determine whether the shared

vibromotor was active in both letters or the second letter was only composed of vi-

bromotor located in index finger (which would then result in the letter E). Thus, let

us investigate the claim by analysing whether the sharing of a vibromotor between

the patterns of two subsequent letters within a word has an effect on the recogni-

tion of the letters. This could be achieved by examining the recognition of single

letters within all bigrams of tested words. For that, let us exclude the ones that

contain letters encoded with three vibromotors. Such letters have a high probability

of not being correctly identified alone and also have the higher probability of sharing

vibromotors (they have more vibromotors), thus they would skew the results.

For letters that share vibromotors, the number of vibromotors that encode the

current letter will be taken into consideration. The hypothesise is that when the

current letter is composed of only one motor, then it should not create confusion as

it is easier to perceive one stimulus than two simultaneously. Thus the three types

2storage.googleapis.com/books/ngrams/books/datasetsv2.html
3norvig.com/mayzner.html

storage.googleapis.com/books/ngrams/books/datasetsv2.html
norvig.com/mayzner.html


4.1. INVESTIGATING SKIN READING 81

of sequential letters will be noted as:

• S1 - current letter shares one vibromotor with previous letter and it is encoded

by only one vibromotor (16% of bigrams),

• S2 - current letter shares a vibromotor with previous letter and it is encoded

by two vibromotors (14% of bigrams),

• NS - current letter shares no vibromotor previous letter.

Figure 4.6 presents the recognition accuracy of such sequential letters. To further

analyse, let us first average the accuracy by user, session, layout and number of

vibromotors as we have imbalanced sets. Given that the aggregated accuracy is not

normally distributed (Shapiro-Wilk test: p=0.0) and we deal with paired samples,

the Wilcoxon signed-rank test will be used to determine significance. A combined

test for sessions 4 and 5 for both layouts reveals that there is no significant difference

on accuracy between NS (M = 0.89,MDN = 0.92, STD = 0.08) and S1 (M =

0.89,MDN = 0.91, STD = 0.1) ; r = 215.0, p = 0.36 but there is a significant

difference between NS and S2 (M = 0.7,MDN = 0.69, STD = 0.15); r = 0.0, p =

0.0. It is worth noting that also when separately analysing the sessions 4 and 5, and

the layouts, the results of the significant differences remain the same.

Figure 4.6: Letter recognition accuracy within words depending on whether the
encoding of current letter shares a vibromotor with the encoding of the previously
transmitted letter and the number of motors that encode the current letter.

4.1.5 Discussion

This user study used two layouts of vibrotactile displays: hand and forearms; the

state of the art OST patterns [Luzhnica et al., 2016b] with frequency based letter
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encoding [Luzhnica et al., 2016b] and five sessions of training/testing. For both

layouts, participants achieved a comparable and relatively good accuracy in the

letter (89%−92%) and word recognition (85%−90%). Nevertheless, in both layouts,

systematic errors occurred during both letter and word recognition.

When testing for individual letters, most problems occurred with letters encoded

with three vibromotors. Thus, I propose to avoid encoding the letters with more

than two vibromotors. For the forearms layout, the upper forearms could be used to

place six additional vibromotors (three on each upper arm). With 12 vibromotors,

78 symbols could be encoded each using at most two vibromotors. As for the hand,

eight vibromotor layouts have already been proposed and evaluated in terms of OST

pattern identification (see Section 3.4). Eight vibromotors could encode 36 symbols.

Additionally, a similar layout using two hands (with eight vibromotors each) could

encode 136 symbols each using at most two vibromotors. In both cases, such a

large number of patterns could be used to encode letters, numbers, punctuations

and even commonly used words. However, using only seven vibromotors would be

enough the encode the entire English alphabet. It would also reduce the sharing

of the vibromotors between the patterns of subsequent letters, which is a problem

when transmitting words.

When testing for words transmitted as a sequence of letters, another problem

was identified for letters encoded by more than one vibromotor. Participants had

significantly more difficulties in correctly recognising letters that are encoded with

two vibromotors and share a vibromotor with the encoding of the previous letter

(within the same word). Such letters were correctly recognised with an average ac-

curacy of only 60%− 65% (depending on the layout). I propose to use the internal

structure and representation of the used language to develop an alphabet encoding

that minimises occurrences of such cases. Moreover, I provide a complete methodol-

ogy for this process. The methodology starts by defining a metric which can be used

to measure how often such cases occur in the text by considering the probability

distribution of bigrams for the given language. Then, I model finding of an optimal

encoding by minimising the score of the defined metric. For such an optimisation

process I provide a greedy algorithm, which then is used to find an optimal encoding

for any given number of vibromotors which is enough to encode every symbol with

at most two vibromotors.
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4.1.6 Optimising the Encoding: Compensating Perception

Problems

While both layouts deliver good results, the previous study evidence that both

layouts share the same perception problems:

1. Letters encoded with patterns composed of three vibromotors result in poorer

recognition accuracy when compared with letters encoded with one or two

vibromotors. Thus, the overlapping spatiotemporal patterns (OST) with three

vibromotors are more difficult to identify correctly.

2. When two letters are transmitted in sequence (within a word), the recognition

accuracy of the second letter is negatively affected when their corresponding

patterns share vibromotors. However, this problem only occurs if the second

letter is encoded by more than one vibromotor. Thus when applying two OST

patterns in the sequence, the second pattern is prone to more errors if this

pattern uses more than one vibromotor.

Both problems are related to perception. Numerous studies in neuroscience

shed evidence that with exposure to stimuli there is a tactile learning effect [Reuter

et al., 2014, Godde et al., 2000, Dinse et al., 2005, Pleger et al., 2001, Pleger et al.,

2003, Hodzic et al., 2004] and thus with the usage of the vibrotactile displays per-

ception might improve. However, there is no assurance on how much it will improve.

Thus, in this work, methods to avoid or minimise their occurrences will be proposed

constructed following a two-step optimisation process.

Step 1: Letters Encoded with Three Vibromotors

The perception problem of patterns encoded with three vibromotors can be solved by

simply adding more vibromotors to the layout. This would result in more patterns

encoded with only one or two vibromotors. The set of all available OST patterns

OP composed of m vibromotors can be expressed as the set of all combinations with

one or two elements:

OP = {opi} =

(
V

2

)
∪
(
V

1

)
, i ∈ [1, n] (4.1)

n =

(
m

2

)
+m =

m(m+ 1)

2
(4.2)
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Figure 4.7: Letter frequency distribution and bigram frequency distribution (top 40
most frequent bigrams) for the English language based on Google Books N-gram
Corpus.

where V = {vi}, i ∈ [1,m] is the set of vibromotors and n is the total number of

patterns. A vibrotactile display with m = 7, n = 28 can encode the entire English

alphabet. With m = 8, n = 36 and with m = 9, n = 45 it would be sufficient to

also encode most of the punctuations and symbols. For the arms, there would be

enough space for more vibromotors in the upper part of the arm. For the hand

layout, more vibromotors could be placed on the back of the hand and the wrist to

provide distinguishable OST patterns as already demonstrated in Chapter 3.

Step 2: Consecutive Letters with Shared Vibromotors

Totally avoiding consecutive patterns that share vibromotors is not feasible as long

as patterns that use two vibromotors are used. However, their occurrences could

be minimised by leveraging the morphological structure of the targeted language.

For instance, in every language, some letters occur more often than others which is

modelled by the letter frequency distribution4. Similar frequency distribution can

also be observed for bigrams (a pair of consecutive letters). This information could

be utilised to construct an alphabet encoding, such that pairs of letters that are more

probable to appear in a sequence are encoded with patterns that do not share any

vibromotor. Thus, the encoding of the alphabet could be treated as an optimisation

problem which reduces the occurrences of bigrams with shared vibromotors. The

distributions of both letters and (40 top) bigrams are presented in Figure 4.7.

To approach this problem, let us first introduce a cost function, which measures

the proportion of consecutive letters with shared vibromotor occurrences, where the

4https://en.wikipedia.org/wiki/Letter_frequency

https://en.wikipedia.org/wiki/Letter_frequency
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second letter is encoded by two vibromotors. The cost function assumes that each

letter is encoded at most by two vibromotors. Let us denote the alphabet with k

letters as A = {li}, i ∈ [1, k] and the set of possible OST patterns as OP = {opi}, i ∈
[1, n], n ≥ k, where each pattern opi is a set of one or two vibromotors as defined in

Eq. 4.1. Also, let us define the bigram probability distribution: BF : A × A → R
as BF (l1, l2) = P (l2|l1) and a mapping function called encoding E : A→ OP . The

cost function is defined as:

f(E,BF,A) =
∑

l1∈A

∑

l2∈A,,l1 6=l2

BF (l1, l2) · |E(l1) ∩ E(l2)| · (|E(l2)| − 1) (4.3)

The purpose of |E(l1) ∩ E(l2)| is to count the shared vibromotors between pat-

terns. The expression |E(l2) \ E(l1)| ensures to discard bigrams that share vibro-

motors but the second letter in bigram is encoded by a single vibromotor. It also

excludes accounting for bigrams composed of the same letters.

Given that the Study 5 (see Section 4.1) showed that letters encoded by three

vibromotors are prone to recognition errors due to masking effect, it is strongly

advised avoiding them, unless the reader in the future discovers any stimulation

technique that bypasses masking. Therefore, a special case of the cost function

when each letter is encoded by at most two vibromotors is given by:

f(E,BF,A) =
∑

l1∈A

∑

l2∈A
BF (l1, l2) · |E(l1) ∩ E(l2)| · |E(l2) \ E(l1)| (4.4)

Having Equations 4.3 and 4.4 allows us to define the problem of avoiding occur-

rences of consecutive letters with shared vibromotors as a minimisation problem.

For a given language with an alphabet A and a bigram probability distribution BF,

the goal is to find a mapping E from letters to patterns (encoding) that minimises

the objective function f:

Eo = arg min
E

f(E,BF,A) (4.5)

for a given alphabet A of length k and a set of n (n ≥ k) patterns OP , a valid

mapping E can be considered an element-wise pairing (li, p̂i) of the alphabet A and

any permutation P̂ = {p̂i}, i ∈ [1, k] of OP with k elements. Therefore, the prob-

lem is reduced to a combinatorial optimisation of finding the best permutation for

a given cost function. The aim is to find an optimal solution as finding the best
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solution would require the evaluation of every possible solution, which is not feasi-

ble. For the purpose of solving such optimisation, a greedy algorithm is developed.

Existing approaches proven to provide optimal solutions in similar combinatorial

optimisations problems such as genetic algorithms [Reeves, 1995, Chu and Beasley,

1997b] and simulated annealing [Chu and Beasley, 1997a, Osman and Potts, 1989]

were also explored. However, in this case, both algorithms performed worse than

the proposed greedy approach, and thus their details will not be discussed.

Greedy Approach

The algorithm starts with a random permutation P̂ and employs an iterative process.

At each iteration, it finds a pair of elements P̂ [i], P̂ [j] for which when being swapped,

the resulting cost function score decreases the most. Then, it performs swapping

until there is no room for improvement. The pseudocode is given in Algorithm 1. As

with most of the greedy algorithms, it suffers from getting stuck at a local minimum,

and the results highly depend on the initial permutation P̂ . To avoid getting a poor

optimised local minimum, the algorithm should be executed many times (10000),

where each time the initial permutation is selected randomly. The optimal solution

is chosen as the permutation with the lowest resulting cost.

ALGORITHM 1: Greedy Encoding Optimisation

Input : P̂ - an initial permutation of patterns, BF - bigrams
probability distribution, A - alphabet, f - cost function as given
in Eq. 4.3, E(P̂ , A) : li → pi, ∀i ∈ [1, k], li ∈ A, pi ∈ P̂ - a
function that maps element wise every i-th letter to i-th
permutation, swapped(P̂ , i, j) - a function that swaps the i-th
element with j-th element

Output : P̂o - a new permutation
n← |P̂ |, k ← |A|, P̂o ← P̂ , gain← 1
while gain > 0 do

i, j ← arg mini∈[1,n],j∈[1,n] f(E(swapped(P̂ , i, j), A), BF,A)

P̂ ← swapped(P̂ , i, j)
gain← f(E(P̂o, A), BF,A) - f(E(P̂ , A), BF,A)
if gain > 0 then

P̂o ← P̂
end

end
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Bigram Probability Distribution

The Google Books N-gram Corpus [Michel et al., 2011]5 was used for the bigram

probability distribution. It contains frequency distribution of all possible 2-5 n-

grams. The data is constructed by scanning over five million books holding over a

trillion words.

Optimisation Results

As the goal of this work is to provide an encoding and layout that avoids both issues

occurring in letter and word recognition, seven vibromotors will be utilised. This

allows to encode letters with at most two vibromotors as three vibromotor letters

should be avoided. Although, when the five least frequent letters are encoded with

three vibromotors they are expected to appear rarely, they will still appear in real-

world usage. Moreover, since the new encoding will be optimised based on bigram

sharability, there is no guarantee that exactly the least common letters will be

encoded by three vibromotors.

The result of the greedy approach for seven vibromotors delivered an optimal

permutation with a cost function score of 0.038. Note that there are many solu-

tions with the same result (lowest score) as vibromotors can be arranged differently

and still preserve the same relationship between patterns. Thus, one of the optimal

encodings with the lowest score was chosen, which is presented in Table 4.5. In-

terestingly the most frequent letters are encoded with only one vibromotor without

the cost function explicitly aiming for such an optimisation. Obviously, the most

frequent letters form the most frequent bigrams. In comparison, the encodings used

in Study 5, would get a score of 0.184 for the hand and 0.188 for the forearms layout.

To outline the effects of such optimisation, let us observe a text snippet from

the ”I have a dream” speech by Martin Luther King Jr. The text is encoded with

the optimal encoding and with a randomly generated one. Clearly, when using

optimal encoding, letters share very rarely a vibromotor with the previous letter (see

Listing 4.1). Please note that the algorithm does not optimise for double letters (e.g.

ll) as there it is impossible to avoid sharing vibromotors. The optimised encoding

with seven vibromotors for the hand layout is visualised in the Figure 4.8. The

vibromotors on the hand are positioned based on the recommendation of Luzhnica

5storage.googleapis.com/books/ngrams/books/datasetsv2.html

storage.googleapis.com/books/ngrams/books/datasetsv2.html
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and Veas [Luzhnica and Veas, 2017].

I have a dream that my four
little children will one day
live in a nation where they
will not be judged by the
color of their skin but by the
content of their character.

I have a dream that my four
little children will one day
live in a nation where they
will not be judged by the
color of their skin but by the
content of their character.

Listing 4.1: Illustrating the effects of different encodings. The underlined bold letters
number of letters that are encoded with two vibromotors and share a vibromotor
with the previous letter in the same word. The text is part of Martin Luther King
Jr.’s ”I Have a Dream” speech and it is encoded with the optimal encoding (top)
and with a random encoding (down).

Letters A B C D E F G H I
Vibromotors 1 3,6 5,6 5,7 3 1,6 3,7 1,2 4

Letters J K L M N O P Q R
Vibromotors 2,3 3,4 2,7 6,7 2,6 5 3,5 2,5 2

Letters S T U V W X Y Z
Vibromotors 7 6 1,4 1,7 4,7 2,4 4,5 1,3

Table 4.5: The resulting encoding (letter, vibromotors) for seven vibromotors. The
encoding can be applied to any layout.

4.2 Study 6: Evaluating Optimised Encoding

The previous study (Section 4.1) evidenced systematic errors on recognition of letters

and words. Moreover, Section 4.1.6 proposes a two step optimisation process which

promises to avoid such systematic errors and as a result it proposes a new encoding

of letters. In order to observe the effect of the encoding optimisation, another user

study is conducted where the setup is kept relatively close to the previous study,

but the optimised encoding and layout is used.
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Figure 4.8: The optimised encoding for seven vibromotors. The positions of the
vibromotors are selected following the recommendation of Luzhnica and Veas [Luzh-
nica and Veas, 2017].

4.2.1 Procedure

In this study, a hand layout with 7 vibromotors is used, which allows to encode

every letter of English alphabet with at most two vibromotors. The locations of the

new optimised layout are based on the previous investigations (based on Study 4

four described in Section 3.4) on suitable positions of actuators

The study setup, rewarding scheme, and procedure including the training and

testing program (the letters and words) is borrowed from previous user study (Sec-

tion 4.1). Nevertheless, in order to investigate other phenomena, some minor changes

are applied in the study design without jeopardising the comparability with the pre-

vious user study (Section 4.1):

1. At the beginning of sessions 2-5 (before training), a recall test only with letters

was performed, assessing how well participants recall the letters that they were

trained on previously.

2. At the end of session 5, participants were tested with a round of letters on the

left hand, to evaluate how well they are able to transfer the skill of decoding

letters on an untrained body part. The layout was simply mirrored on the left

hand.

3. After the last training session (5), participants were invited twice and exposed
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to one round letter testing in order to evaluate how well they could still recall

the letters when no training or usage is provided for a period. Such letter

test rounds were assigned to be (i) three days and then (ii) ten days after the

session 5. I will will refer to them as recall session 6 and 7.

4. Users filled an NASA TLX questionnaire for every session and also a question-

naire evaluating the wearability and comfort of the prototypes. However due

to the focused scope, they will be not discussed in this section.

5. At the end of the session 5, in addition to NASA TLX, participants were

required to answer a simple questionnaire containing one question and two

statements to rate as follows:

Question 1: Would you consider using such a wearable glove to perceive in-

formation in any activity/task of your daily life/work? If yes in what situa-

tions? The participants had to choose one answer between ”YES”, ”NO” or

”MAYBE” and provide text for situations.

• Statement 1: Vibrotactile glove was very uncomfortable to wear! The

participants had to rate the statement using a five levels Likert scale

(from strongly agree to strongly disagree). Additionally, they were able

to provide any comment regarding uncomfortability to justify their state-

ment.

• Statement 2: The vibration in my hand did feel unpleasant!. Participants

had to rate the statement using a five levels Likert scale, and they could

provide comments if they had any.

Participants

Eight individuals participated in the study (seven males and one female) aged be-

tween 21 and 34. None of the participants had any prior experience with skin

reading, and none of them was a native English speaker. All of them used the left

hand for stimulation and the right to interact with the computer.
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Figure 4.9: Letter and word recognition for each session. Data is initially averaged
per user and session to emphasise the variation among users which is expressed via
error bars representing the 95% confidence intervals.

4.2.2 Results

Letters

First, let us analyse the letter recognition accuracy across last letter testing rounds

of all sessions. The results are presented in Table 4.6. Additionally, the results

grouped by user and session are visualised in Figure 4.9. The grouped averaging

is performed to emphasise the variations among users. When looking at the letter

recognition (Figure 4.9) on the first day, participants on average achieve the lowest

accuracy (among all sessions), and at the same time, the variation among users was

the highest. As the training session followed, the accuracy increased and at the

same time as the variation among users decreased, meaning that at the end they

achieved a comparable performance (see Figure 4.12) but with some differences in

the learning rate along the way.

For the rest of the analysis, analogously to the previous study, let us focus

on the sessions 4 and 5 where the letter recognition accuracy is 97% which is a

major improvement over six vibromotor hand layout used in previous user study

(Section 4.1). When comparing those two layouts, chi-squared analysis reveals that

the differences in the letter recognition accuracy are significant in both session 4

(χ2(1, N = 832) = 16.95, p = 0.0) and session 5 (χ2(1, N = 832) = 12.17, p < 0.001).

This improvement is attributed to the absence of the three vibromotor encoded



4.2. EVALUATING OPTIMISED ENCODING 92

Recall Post-Training

#S Accuracy TTR (s) Re-stim Accuracy TTR (s) Re-stim

1 .91 (.29) 2.9 (2.7) .41 (.49)
2 .92 (.27) 3.3 (4.5) .27 (.44) .94 (.24) 2.6 (1.9) .28 (.45)
3 .95 (.22) 2.5 (1.8) .16 (.37) .96 (.20) 2.6 (1.9) .22 (.42)
4 .92 (.27) 2.8 (1.7) .20 (.40) .97 (.17) 2.3 (1.3) .17 (.38)
5 .98 (.15) 2.6 (2.0) .17 (.38) .97 (.16) 2.4 (1.8) .22 (.42)
5L .92 (.27) 3.6 (2.9) .23 (.42)

6 .97 (.17) 2.3 (1.4) .11 (.31)
7 .94 (.24) 4.8 (8.1) .26 (.44)

Table 4.6: Letter recognition accuracy for each session using the optimised encoding
on the hand layout. Post-training represents the results of the last testing round of
the current session (at the end of the training). Recall tests of session 2-5 represent
the testing round at the beginning of the session (before any training). Recall tests
in sessions 6 and 7 represent letter testing 3 days respectively 10+ days after the
session 5. The post-train of session 5 on the left hand is noted as 5L.

letters in the optimised layout. A comparison of the results for both layouts is

shown in Figure 4.10.

Additionally, the confusion matrix of letter recognition for last round of sessions

4 and 5 is visualised in Figure 4.11. It shows that from 32 probes per letter collected

in the last rounds of session 4 and 5, most of the letters are confused once or at

most twice. The letter L seems to be an exception, where it is confused four times,

and two of them are with letter G which are very similar in terms of the patterns

(see Figure 4.8).

Recall Tests

The recall tests of sessions 2-5, which were performed at the very beginning of

each session, aim to investigate how much participants would remember from the

previous days of training. The recall tests performed on sessions 6 and 7 investigate

how the recognition of letters decays over time, as between session 5 and those

recall tests, participants were not exposed to the usage of the vibrotactile device.

The recall in session 6 was performed exactly 3 days after the last round of training

and letter/word testing which corresponds to day 8 from the first session. The recall

test in session 7 was initially planned to be exactly 10 days after the session 5 (15
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Figure 4.10: Letter and word recognition accuracy for both hand based layouts (with
six vibromotors and the optimised with seven vibromotors) using the data from the
sessions 4 and 5. Words that contain letters (K, J, Q, X and Z) are excluded.

days after session 1). However, in practice participants were not able to hold the

plan. Thus, this test was performed between 10 and 19 days after the session 5

(15-24 days after the first session) for 7 participants whereas one participant did

not perform it at all. Although initially unplanned, one participant performed an

additional recall test (session 8) 45 days after the session 5.

The results are shown in Table 4.6 and the results of the recall for session 5 and

onwards for each user are visualised in the Figure 4.12. Table 4.6 shows that for the

next day recalls (sessions 1-4), except for session 3, in other sessions participants

performed even slightly better on the recall tests on the next day compared to the

last round of testing in the current session (post-training). On the recall of session

6 which was 3 days after the last training session, participants did as good (97%) as

in the post-training test of the session 4 and 5. On the recall of session 7 which was

performed 10-19 days after the last training session, the letter recognition accuracy

dropped to 94%.The 8th recall session performed by only one user reveals that even

after 45 days after the last training session, the participant was still able to correctly

recognise 92% of the letters.

Left Hand

The results of letter recognition test on the left hand performed at the end of session

5 are presented in Table 4.6 and Figure 4.12. Table 4.6 shows that participants were



4.2. EVALUATING OPTIMISED ENCODING 94

Figure 4.11: The confusion matrix of the letter recognition using the last rounds of
the sessions 4 and 5 of the Study 6.

able to recognise the letters with an average 92% accuracy. On the other hand,

Figure 4.12 shows that the results might have been influenced by user 5 and user 7.

Words

The results of word recognition accuracy are presented in Table 4.7. Additionally,

the results aggregated by user and session are shown in Figure 4.9. The grouped

averaging is performed to emphasise the variations between users. It shows that the

overall variability is quite low. On the sessions 4 and 5 where participants achieved

a word recognition accuracy of 96% − 98% in both of the sessions. It is visible in

Figure 4.9 that when looking at the aggregated data (by user and session), in session

5 the variation between different users (STD = 0.031) is a bit higher compared to

session 4 (STD=0.017). Perhaps due to the shorter duration used in session 5 for

conveying letters. However, the differences in accuracy between sessions 4 and 5 are

not significant; r = 0.05, p = 0.96.

Let us compare the word recognition accuracy with the unoptimised six vibro-
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Figure 4.12: Letter recognition accuracy in post-training tests, recall tests and also
the test on the left hand for each user. The white numbers on the bottom represent
the day of the test it was performed relative to the first day of training (first session).
Note that the last user did not perform a the 7th recall and the first user was the
only one to perform the 8th recall test.

motor hand layout used in the previous user study (Section 4.1). The six vibromotor

layout encodes five letters with three vibromotors whereas the optimal layout en-

codes all letters with at most two. Thus, to make the comparison fair, let us exclude

from analysis all words that contain any of those five letters (K, J, Q, X and Z).

A rank-sum test analysis reveals that participants recognised significantly better

words (97% in both session) when using the optimised layout, compared to using

the unoptimised six vibromotor hand layout (88% in both session) (see Section 4.1)

in both sessions 4; r = 5.31, p = 0.0 and 5; r = 4.72, p = 0.0. Figure 4.10 shows the

comparison for both sessions.

Questionnaire

The users rating on the how uncomfortable the wearable device was; and how un-

pleasant the vibrations felt are given in Figure 4.13. The overall ratings are very

positive. From eight participants, all of them either disagreed or strongly disagreed

that the vibrations felt unpleasant. Also, seven of them disagreed that the wearable

device was uncomfortable to wear whereas one participant provided a neutral rating.
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#S BL Gap Accuracy Re-stim

1 800ms .96 (.15) .27 (.45)
2 500ms 1.0 (.05) .12 (.33)
3 500ms .97 (.11) .80 (.40)

4 250ms .98 (.12) .74 (.44)
4 150ms .96 (.14) .73 (.45)
4 100ms .97 (.12) .80 (.40)

5 250ms .98 (.13) .67 (.50)
5 150ms .96 (.18) .68 (.47)
5 100ms .97 (.13) .73 (.44)

Table 4.7: Word recognition accuracy depending on the session (#S) and the gap
(BL) between subsequent letters when using the optimised encoding in seven vibro-
motors hand layout.

Additionally, this participant noted that his rating was due to hand sweating. When

asked whether they would consider using such a device in real life, four participants

answered with yes, four others with maybe and none of them with no. Among use

cases they would consider using it, they stated: while driving, while biking, while

jogging, in presentations, for cheating in exams, for navigation, in meetings.

The results of NASA TLX for letter and word recognition tasks depending on the

session (day) are depicted in Figure 4.14.In addition to the six metrics contained in

NASA TLX, workload is calculated using the simplified R-TLX method (averaging

all metrics where performance is inverted). In the case of letter recognition, the

workload remained steady for the first three sessions as new letters were being

introduced. However, the workload fell sharply in session 4 as they did not have

to learn any new letters. In session 5, the workload increased compared to the

session 4, as the transmission speed increased. When looking at word recognition,

the workload was relatively low on the first two sessions where participants had to

recognise only a few short words. Once the number of words (and their length)

increased, the workload increased sharply on the session 3. However, once they got

used to is, the workload gradually decayed on the two subsequent sessions.
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Figure 4.13: User ratings on how unpleasant the vibrations felt and how uncomfort-
able was the prototype.

4.2.3 Discussion

The previous study found systematic erros in the skin reading. Section 4.1.6 pro-

posed optimisation methods to improve the recognition acurracy of skin reading by

avoiding such issues. To investigate the effects of such optimisation, this user study

applied and evaluated the proposed encoding optimisations. The results show that

participants were able to achieve a letter recognition accuracy of 97% in sessions

4 and 5, which is a significant improvement over the six-vibromotor layout used

in Study 5 (89% − 92%). Besides, the encoding of the new layout is optimised to

minimise the probability of two sequent letters in any word to share a vibromotor

between them in order to improve the word recognition accuracy. This allows us

to investigate the effects of such optimisation in word recognition by comparing its

results with the ones from the hand layout from Study 5. The results show that,

in sessions 4 and 5, participants were able to achieve an accuracy of 96% − 98%

on the words which indeed is a significant improvement over the hand layout used

on Study 5 (85%− 90%). The archived accuracies are outstanding considering only

5 hours of training. for comparison, sighted users have been reported to need six

months of training to for recognising the Braille alphabet [Bola et al., 2016] and

three additional months for reading words [Bola et al., 2016].

Note that, the optimal hand layout (in this user study) encodes every letter by

at most two vibromotors whereas the unoptimised layout (in previous user study)
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Figure 4.14: NASA TLX self-evaluation metrics for letter and word and recognition
tasks per each session. Notation: SA - strongly agree, A - agree, N - neutral, D -
disagree, SD - strongly disagree.

encodes five letters (K, J, Q, X and Z) by three vibromotors. However, when per-

forming a statical comparison of word recognition, the words that contain any of

those five letters are excluded. This ensures that only the optimisation effects of

sharing among bigrams are taken into account and excludes the influence three

vibromotor letters.

The second user study also tested how well participants would be able to transfer

the recognition of letters on the body parts that they did not train on. In practice,

this would mean that participants could easily change the body position of the

wearable device and be able to perceive the information without re-training. In this

user study, participants trained on the right hand and were tested at the end of the

session 5 on the left hand. Participants were able to recognise letters on the left

(untrained) hand with an average accuracy of 92%.

Besides post-training letter testing (at the end of a the session), recall tests at

the beginning of a session (for sessions 2-5) were performed. Interestingly, when

comparing the post-training letter accuracy with the letter accuracy of the recall
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session the next day, results show that except for one session (3), the accuracy in

the recall was even slightly better than in the post-training. This suggests that the

used training program might be unnecessarily extensive. Participants demonstrated

that on the very next day, they had a very good recollection of letters learned on

the previous day. Thus, re-training them on the letters of the previous session might

not have been necessary in the performed extent. Additionally, participants were

asked to do recall tests 3 days after and 10 days after the last training session. All

participants completed the recall test scheduled 3 days after the last training. Un-

fortunately, due to conflicts with participants’ private schedules, the 10 days after

the last training session proved infeasible to hold. Nevertheless, seven participants

were able to perform this recall session within 10 to 19 days after the last training

session. In the recall test 3 days after the training, they performed with 97% ac-

curacy, as good as on the day of the training. In the recall test 10-19 days after

the last training, they were still able to recognise letters with an accuracy of 94%.

Moreover, one participant performed an additional recall test 45 days after the last

day of training and was able to recognise the letters with 92% accuracy.

The proposed encoding scheme is tailored for English language and layouts with

seven vibromotors. The proposed bigram optimisation methodology can be used

for any language and number of vibromotors. The methodology could be applied

to other units of encoding such as phonemes [Zhao et al., 2018]. To use OST pat-

terns for encoding phonemes, the same methodology could be applied, simply by

constructing the bi-phoneme frequency (frequency of subsequent phonemes) dis-

tribution and then replacing the bigram frequency distribution with bi-phoneme

frequency distribution in the cost function defined in Equation 4.3.

4.3 Study 7: Background Perception of Vibrotac-

tile Encoded Messages

Previous user studies (see Sections 4.1 and 4.2) have demonstrated the feasibility

of conveying vibrotactile encoded information efficiently using vibrotactile wearable

devices. Users can understand vibrotactile encoded symbols and complex messages

combining such symbols. Clearly, perceiving information through the skin using

wearable devices can be beneficiary for a broad spectrum of applications for visual
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and/or hearing impaired users by utilising sensory substitution where a sensory

modality (e.g. vision or auditory) is captured, processed and then transmitted to a

user via vibrotactile stimuli.

Moreover, given the efficiency (perception accuracy, speed of transmission), vi-

brotactile skin reading using wearable devices could be useful beyond impaired sen-

sory substitution, in general purpose applications to facilitate multitasking or reduce

demands on the predominant visual displays. For instance, users would be able to

perceive their phone notifications, SMS, emails etc... while performing other task

e.g. driving, biking, working, etc... For most of such use case, multitasking is a key

aspect. Nevertheless, for multitasking, it would be necessary for the perception and

comprehension of vibrotactile information to be less attention demanding and not

interfere with other parallel tasks.

This section presents a user study which investigates whether vibrotactile tactons

which represent letters of English Alphabet can be concurrently perceived in the

background (as secondary task) while performing a task that requires full attention.

For the user study, the recruiting was limited to only participants who are trained

in skin-reading and are proficient on understanding such tactons. The hypothesis is

that the perception of vibrotactile encoded symbols should be handled by automatic

processing and should not affect the performance of the other primary task which

is designed to be challenging and requires controlled processing. Thus, this work

targets the following research questions:

• Can trained users perceive and decode high-speed vibrotactile en-

coded symbols in the background while performing another atten-

tion demanding primary task?

• How does the background perception of such vibrotactile encoded

symbols affect the performance of the primary task?

• How does the primary task affect the performance of the background

perception of vibrotactile encoded symbols?

4.3.1 Background Processing of Information

Cognitive processing theory suggest that, when users are presented with multiple

stimuli/tasks while multitasking, they prioritise or ignore some of them if attention
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bottlenecks occur [Schneider et al., 1982]. There are two categories of cognitive

processes: controlled and automatic, which is determined by the amount attention

needed. Automatic processes occur without the need for attention and process ini-

tiation, are considered effortless and do not draw general processing resources. As

such, they do not interfere with other parallel occurring thought processes [Uleman

and Bargh, 1989]. On the other hand, controlled processes are considered very flex-

ible but very costly at the expense of the attentional resources available [Uleman

and Bargh, 1989]. Schneider et al. [Schneider and Shiffrin, 1977] showed that the

very same tasks could be processed using one or other processing model depending

on the user experience and proficiency on the given task. In their short memory ex-

periment, in a condition where parameters (search target) of the task changed, users

needed constant attention for solving it, and thus the task required controlled pro-

cessing. When performing it in parallel with another task that required controlled

processing, the performance on both tasks declined. On the contrary, in a condition

where the same parameters were kept constant, after users gathered enough experi-

ence and became proficient with the task, the processing became automatic. When

combined with another task that required controlled processing, the performances

of both tasks were not affected by each other.

Lee and Starner [Lee and Starner, 2010] tested the perception of three vibrotactile

patterns presented on the wrist as a secondary task. They used non-overlapping

spatiotemporal patterns containing three vibromotors activated in a sequence for a

total duration of 1.5 seconds. Participants were not trained to associate patterns

with the meaning but asked to build their own mental model instead. As a primary

task, a visual search task with three levels of difficulty was used. The authors

reported that the primary task and secondary task were not significantly affected

by each other in terms of accuracy but they were affected in terms of reaction time.

The study in this section uses the same primary task proposed and used by Lee and

Starner [Lee and Starner, 2010]. As for the vibrotactile secondary task, first, the

symbols representing letters of English alphabet are encoded and participants are

trained to recognise the entire English alphabet prior to the study. Second, concise

overlapping spatiotemporal patterns are used where each symbol is encoded with

only 100-110 ms as aim is to maximise the throughput for information transmission.

Both, the very short duration and the number of encoded symbols are expected to

increase the difficulty of vibrotactile symbol identification which it is expected to
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be compensated by the pre-training where the recognition of tactons is formed and

crystallised.

4.3.2 Procedure

This user study aims at evaluating how well users can perceive tactons in back-

ground while performing another attention demanding primary task. Prior to this

study, participants were trained in 5 sessions to recognise all 26 letters of English

Alphabet. So participants were recruited for this study upon finishing the Study 6

(see Section 4.2). Three days after the last training session (session 5), participants

were invited to take part in study presented in this section. They were exposed

to a recall session where they were tested for all 26 letters of English Alphabet.

Additionally, they were tested how well they recognised letters of Alphabet in back-

ground while doing another primary task. For testing, while performing another

task, only 10 letters encoded with one or two vibromotors were selected. Note that,

participants were already trained to recognise all letters and the rationale to use

only 10 letters for this test was simply to keep the study short and yet try different

levels of difficulties in the primary task.

Pre Study Training

Prior to this study, participants were exposed to 5 sequent days (≈5h in total) of

training and testing in letters and words. This training was done for the purpose

of conducting the Study 6 (see Section 4.2) and participants were recruited for this

study after completing the Study 6. During such training, participants learned

the entire English Alphabet and were able to interpret words of 2-5 letters. For

details of the training the reader is encouraged to review the Section 4.2. Similarly

to the Study 6, the layout is hand based with seven vibromotors as illustrated in

Figure 4.17. For simplicity, let us will refer to this training phase as pre-training

throughout the section.

Patterns and Wearable Layout

Each symbol is encoded with one or two vibromotors using an OST (overlapped spa-

tiotemporal) stimulation as introduced in Chapter 3. Symbol encoding uses a base

duration (d) of 100 ms and a 10 ms gap (g) between the activation of vibromotors.
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This means that the duration (ld) is 100 ms for one vibromotor symbols and 110

ms for two vibromotor encoded symbols.

A layout design with six vibromotors on the back of the hand is used identical

to the Study 6 4.2(see Figure 4.17).

Figure 4.15: A participant performing the Study 7.

Participants

Seven participants (six males and one female) aged between 21 and 34 years old

participated in this experiment.

Apparatus

The device consisted of an Arduino Due board which controls 3.4mm vibrotactile

motors of type ROB-08449 (Voltage range: 2.3V ∼ 3.6V ; Amplitude vibration:

0.8G).

Study

Participants were equipped with the device. Initially, they were exposed to a round

of vibrotactile only (VBO) testing with all 26 letters to measure the recall accuracy.

Here, participants were stimulated with a vibrotactile pattern corresponding to a

letter and asked to provide the answer, and they were not performing any other task

during this procedure.
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Figure 4.16: Visual search task user interface used in the Study 7. First, the search
target was presented on the screen (left). Then the visual search screen was pre-
sented for 5 seconds (bottom). While this screen was active, participants were stim-
ulated with a vibrotactile cue in 50% of the tasks. In the response screen (right),
participants could still provide/change their answer.

After that, they continued to the multitasking (primary and background task)

study where first they were exposed to a trial phase and then finally continued with

the tasks. During the study, participants were asked to solve a visual search as a

primary task. During this task, participants initially were presented with an integer

representing a search target. Then a new screen was presented to them with a

set of integers within a box which will referred to as search set. Their task was

to determine whether the search target was within the search set. The screen with

search set was visible only for 5 seconds during which participants could provide

the answer. Additionally, in 50% of the cases, 0.5 seconds after the screen with

search set appeared a vibrotactile stimulus representing one of ten selected letters
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Figure 4.17: The hand based layout containing 7 vibromotors and the encoding of
letters used for the study.

was presented to the participant and they needed to solve both visual search task

and recognise the vibrotactile stimuli (VSVB) as a secondary/background task.

In the other 50%, only visual search task was required (no vibrotactile stimuli) to

solve (VSO). Participants were not informed priory whether the task contains a

vibrotactile stimuli or not. Participants had the chance to repeat the vibrotactile

stimuli by pressing the SPACE bar as long as the search set screen was visible and

they could also provide the answer during this time. After that, the visual set screen

was replaced with a new one, where participants had the chance to provide or change

the answer, but they were not able to neither see the visual search set nor repeat

vibrotactile stimuli. To provide the answer for visual search task, participants used

keyboard numbers 0 (no) and 1 (yes), whereas to provide the answer for vibrotactile

stimuli, they typed the letter representing the stimuli.

There were three difficulties of visual search task which was determined by the

number of integers (size) within the search set. 9, 25 and 36 integers are used as

such numbers have been used in the past [Lee and Starner, 2010] and suggested as

three appropriate levels of difficulties. The position of the integers was randomly

assigned. Additionally, the integers within the search set were unique and randomly

selected from 1 to 99.

In the visual search and background vibrotactile tasks, each participant was

exposed to 10 letters x 3 difficulties x 2 task type (VSO and VSVB) = 60 probes

during the study. For seven participants, 420 probes in total are collected, 210 for
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each task type (70 for each difficulty). During the trial phase, they were exposed

to 2 letters x 3 difficulties x 2 stimulation = 12 probes, but the responses were not

recorded. In 50% of trials (balanced by difficulty and stimulation), the visual target

was present in the visual search set. The entire probes appeared in random order. In

the vibrotactile only test (VBO) 26 probes (each letter once) are collected for each

participant. However, only the collected data only for the ten letters will be analysed

as that are used in the visual search and background vibrotactile tasks. Thus for

7 participants, 70 probes (7 participants x 10 letters) will be analysed. The entire

session took around 20 minutes (3-5 minutes vibrotactile only test, 3-5 minutes trail

mode and 10-14 minutes the main study), although it varied as it depended on how

fast participants responded. At the end, users filled a NASA TLX questionnaire

where they were asked to self-assess the tasks in three different categories:

1. Vibrotactile only (VBO) - where there was no visual search task,

2. Visual only (VSO) - where there were no vibrotactile stimuli during the visual

search task and

3. Vibrotactile and visual (VSVB).

Note that, this study uses only 10 letters to keep the session short and avoid

fatigue. Given that, when the entire Alphabet (26 letters) is encoded, every letter is

encoded by one or two vibromotors, 5 random letters with one motor and 5 random

with two are selected for the study. Moreover, participants were not informed that

only 10 letters would be used (or which ones). Thus, they were prepared to respond

for 26 letters of the Alphabet during the VSVB tasks.

4.3.3 Results

Performance

The recall test had dual purposes. But for the scope of this section, let us include

in the results only the ten letters that are used in primary/secondary task. Thus,

the responses of the rest of 16 letters will be ignored. Furthermore, let us define the

following independent variables for the analysis of the data:

• Task type which takes values: VBO (Vibrotactile only), Visual only (VSO)

and Visual and vibrotactile (VSVB).
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• Difficulty which is determined by the size of search set and takes values: 9,

25, 36 (for VSO and VSVB). Occasionally the value 0 (in visualisations) will

be used and it will indicate that there was no visual search task and thus

representing VBO.

Additionally, let us define the depended variables to be:

• Vibrotactile accuracy which represents the recognition accuracy letters repre-

sented by a vibrotactile stimulus.

• Visual accuracy which represents the accuracy on finding whether the search

target was present in the search set during the visual search tasks.

In this examination, first, let us compare how the primary task affects the recognition

of vibrotactile encoded symbols. For this, let us compare the performance of the

users on recognising letters in vibrotactile only (VBO) rounds with the recognition

of letters as a secondary task while they had to perform the visual search task

(VSVB) as a primary task. The results are visualised in Figure 4.18 which show that

recognition accuracy is quite the same regardless of whether users were performing

another primary task and its difficulty. The recognition accuracy is a binary variable

set to be 1 if the participant recognised the letter or 0 otherwise. Given that we are

also dealing with repeated measurements, let us use McNemar’s test in order to test

for statistical significance between groups.

Overall, participants were able to recognise letters with a comparable and very

high accuracy in both VBO (µ = 0.97, σ = 0.17)6 and VSVB (µ = 0.98, σ = 0.14)

conditions. When comparing particular difficulty levels of visual search task in

VSVB with VBO, according to McNemar’s tests, the differences in letter recognition

are not significant in neither of the levels:

1. Search size set of 9: VBO (µ = 0.97, σ = 0.17) vs VSVB (µ = 0.99, σ = 0.12);

χ2(1, N = 140) = 0.0, p = 1.0

2. Search size set of 25: VBO (µ = 0.97, σ = 0.17) vs VSVB (µ = 0.97, σ =

0.17); χ2(1, N = 140) = 0.25, p = 0.62

3. Search size set of 36: VBO (µ = 0.97, σ = 0.17) vs VSVB (µ = 0.97, σ =

0.12); χ2(1, N = 140) = 0.0, p = 1.0.

6The mean of a group is denoted by µ wheras standard deviation by σ.
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Let us also examine the repetition of vibrotactile stimuli as this could be an indica-

tion of the difficulty of perceiving the vibrotactile message. Depending on whether

there was a primary visual search task and the level of difficulty (search set size),

between 4% and 6% of letters were repeated. McNemar’s tests reveal that the dif-

ferences are insignificant between any of the groups. The groups were compared

similarly as in the case of the letter recognition accuracy (see above).

Figure 4.18: Vibrotactile letter recognition accuracy. The data is categorised de-
pending on search set size and for all tasks combined. The set size of 0 indicates
the VBO condition where no visual search task was present. Additionally, ’All’
represents all set sizes combined (9, 25 and 36).

Moreover, let us analyse how the presentation of vibrotactile stimuli as a back-

ground/secondary task did affect the primary visual search task. Thus, let us com-

pare the visual search task accuracy when participants were not stimulated with the

vibrotactile message (VSO) with the tasks where they were required to solve both

visuals search task and recognise the message/letter (VSVB). Overall, participants

were able to achieve slightly better performance on solving visual search task when

they did not have any other secondary task (VSO) (µ = 0.93, σ = 0.25) compared

to when they did have a vibrotactile secondary task (VSVB) (µ = 0.9, σ = 0.31).

To determine the statistical significance, the differences among each level of
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Figure 4.19: Visual search task accuracy depending on whether there was a vibro-
tactile task. The data is categorised depending on search set size and for all sizes
combined (’All’).

difficulty will be analysed. When looking at particular levels of difficulty, for the

set size of 9 and 36 there are only slight differences (in both directions) whereas

for the search size of 25 participants were able to solve visual search task better

when they did not have a secondary vibrotactile task. Nevertheless, performing

McNemar’s tests between conditions (VSO vs VSVB) reveal that regardless of the

level of difficulty, there are no statistically significant differences in the performance

of solving visual search task between VSO and VSVB:

1. Search size set of 9: VSO (µ = 0.99, σ = 0.12) vs VSVB (µ = 0.96, σ = 0.2);

χ2(1, N = 140) = 0.25, p = 0.62

2. Search size set of 25: VSO (µ = 0.94, σ = 0.23) vs VSVB (µ = 0.83, σ =

0.38); χ2(1, N = 140) = 3.5, p = 0.061

3. Search size set of 36: VSO (µ = 0.87, σ = 0.34) vs VSVB (µ = 0.9, σ = 0.3);

χ2(1, N = 140) = 0.06, p = 0.80
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Figure 4.20: NASA TLX self evaluation metrics for the given tasks. Metrics notation
: MD - mental demand, PD - physical demand, TD - temporal demand, P -
performance, E - effort, F - frustration and W - workload.

4.3.4 Questionnaire

The results of NASA TLX are presented in Figure 4.20. In addition to the six

metrics contained in NASA TLX, the workload is calculated using the simplified R-

TLX method (averaging all metrics where performance is inverted). Let us compare

the workload between three different task type conditions, namely VBO vs VSVB

and VSO vs VSVB.

Considering that the workload of each task is normally distributed (Shapiro-

Wilk: p > 0.05) and the variances of each compared groups are homogenous (Levene:

p > 0.05) for each compared pairs, a paired t-test is used for determining whether

there is a significant difference in workload. A paired t-test analysis reveals that

the workload for VBO task (µ = 2.1, σ = 1.94) was significantly lower compared

to the workload of VSVB task (µ = 4.38, σ = 2.65); t(14) = −5.69, p = 0.001.

Additionally, the workload for VSO task (µ = 3.29, σ = 2.26) was lower compared

to the workload of VSVB task (µ = 4.38, σ = 2.65); but not enough to be considered

significant; t(14) = −1.65, p = 0.15.

4.3.5 Discussion

This user study was designed to investigate the perception and comprehension of

tactons (representing letters of English Alphabet) in the background (as secondary

task) while performing another attention demanding primary task. For encoding, the
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overlapping spatiotemporal patterns (see Chapter 3) are used. Such patterns use a

very high speed of transmission where vibration patterns for a symbol are 100-110ms.

The participants of this study were previously trained and proficient in recognising

such tactons. Hereby, the hypothesis is that the recognition of such tactons would

be processed using cognitive automatic processing and thus performed effortlessly

and without interfering with the primary task. For the primary task, attention

demanding visual search task with three difficulties is used, which is considered

appropriate for this type of task.

Indeed, the results show that to be the case. First, the recognition of tactons

was very accurate (≥ 97%) regardless of whether this was done as a single task or

as a secondary task along the visual search task (See Figure 4.18). Similarly, visual

search task did not have any effect on the repetition of vibrotactile stimuli. Second,

the performance of primary visual search task does not seem to be significantly de-

teriorated by the presence and recognition of tactons in the background. Although,

on average the performance did slightly decrease. As shown in Figure 4.19, clearly

such deterioration seem not to be accelerated with the increase of primary task dif-

ficulty. For instance, when the search set size was 36, which represents the highest

difficulty, participants even performed better on the visual search task when having

to simultaneously recognise a tacton in the background compared to the cases when

they did not perform any task in the background. Additionally, the self-assessed

workload (see Figure 4.20) did also not significantly increased when users performed

the visual search task when the parallel background vibrotactile task was present.

The results show that transmitting information through vibrotactile wearable de-

vices, even in very high speed is very efficient and can be used along with other user

cognitive activities. As such, it provides many opportunities to support and facili-

tate multitasking especially considering that wearable devices are used. It suggests

that, information conveyed using vibrotactile wearable devices can be effortlessly

comprehended while performing other tasks as well, assuming that users are trained

properly to recognise and associate the vibrotactile patterns. The used tactons rep-

resent letters of English alphabet. However, such tactons could represent any other

abstract meaning such as commands, warnings, states etc.. as long as users are

trained to recognise them. Additionally, only 10 tactons are used in order to keep

the study short and avoid fatigue. However, participants were already trained in a

pre-training period (as part of another study) to recognise the entire Alphabet (26



4.3. BACKGROUND PERCEPTION 112

letters). During this user study, participants were not aware that they will be tested

for only 10 symbols/letters and which of them will be used. Thus, I argue that they

would have had the same cognitive load if they were tested on all 26 symbols/letters

in multitasking experiment.

Although 10 or even 26 tactons might be limiting for all use cases, yet they

can encode sufficient information in a lot of use cases (commands, warnings, states,

etc..). On the other hand, when perceiving vibrotactile encoded information, it has

already been demonstrated that individuals are able to understand words as a series

of letters (as demonstrated in Sections 4.1 and 4.2) or phonemes [Zhao et al., 2018]

as a primary task (without any other parallel task). It would be certainly very

useful if users would be able to perceive such complex messages (words, sentences)

composed of several tactons in the background as the application possibilities for

multitasking would broaden drastically.

The insights gathered in this work will serve as foundation to further investigate

the comprehension of textual information in background transmitted by wearable

vibrotactile displays. Participants were not tested on comprehending words in back-

ground information as in the pre-training they were not trained on words but only

on letters. Exposing them to words for longer periods would be necessary in order

for them to be able to read words as units and thus get enough proficiency to be

able to comprehend the words using automatic processing cognitive model. In other

forms of reading such as visual, it is a well-established theory, that fast reading is

attributed to words being read as units instead of letter by letter [Millar, 2004, Lar-

son, 2004]. Such a word recognition as a unit is achieved through exposure to words

(practice) [Whalen, 1991, Larson, 2004]. Analogously, for vibrotactile encoded in-

formation, I think that for testing in the background, users should be at a stage of

proficiency where they would interpret words as units. Therefore, I plan to conduct

such longitudinal user studies in the future work but currently it is out of the scope

of this thesis.
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4.4 Study 8: Passive Haptic Learning For Skin

Reading

This section investigates the effects of using passive haptic learning to train the skill

of reading text from vibrotactile patterns. The vibrotactile method of transmit-

ting messages, skin-reading, is effective at conveying rich information but its active

training method is quite demanding. Typically, learning to associate meanings (e.g

letters or words) with such vibrotactile patterns involves active training, where users

receive vibrotactile patterns accompanied by visual and audio cues representing the

meaning [Luzhnica et al., 2016b]. Despite being effective, such a training requires

full attention, is repetitive, extensive and tedious.

On the other hand, passive haptic learning [Seim et al., 2014a, Seim et al., 2015a]

(PHL) can be used to train users passively without requiring their attention. This

haptics-based teaching technique has been successfully used in numerous applica-

tions such as teaching people to play piano [Seim et al., 2015a] or type in braille [Seim

et al., 2014a] without them being actively focused on training. During the training,

they are exposed to audio and haptic stimuli that inform a skill, but they need not

pay attention to it. Such a technique would be beneficial for training skin-reading

as it might motivate potential users of skin reading that are interested but do not

have the inclination to go through hours of active training.

All prior work on PHL for text system (Braille, Morse code, Stenography) learn-

ing taught the system incrementally; teaching letters in small groups based on words

from a pangram [Seim et al., 2014a, Seim et al., 2015a]. It was assumed that the

small groups and their semantic associations were necessary for learning of many

letters; however, no prior work has contrasted this with a training method not requir-

ing semantic grouping. On the other hand, a passive instruction method without

having to develop word-based lessons may allow different learning durations, less

rigid passive learning structures and less system development. Such non word-based

training method without any semantic grouping has been successfully applied in

active training for skin reading. Thus, this study contrasts these learning structures

for PHL.

Additionally, As training is an extensive task, it would be useful if users could

be trained with a default transmission speed but be able to understand messages

with different transmission speed. This way users could increase the speed over time
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and they would not need re-training if the speed need to be changed. Perhaps PHL

could enable this.

This section presents a user study investigating the following research questions:

• RQ1: Can passive haptic learning can be used to train users for skin reading?

• RQ2: How does the duration of training stimuli affect recognition? Can users

understand transmissions at a different speeds than the one used for training?

• RQ3: Is it necessary to semantically group letters when using PHL as a train-

ing method for vibrotactile skin reading? Or would a non word-based training

be sufficient?

4.4.1 Passive Haptic Leraning

Passive haptic learning (PHL) began with simple music sequence training for one

hand and has since been explored for multi-limb skills, simultaneous actions, rhythm,

other areas of the body and alphabetic codes for text entry [Seim et al., 2014a, Seim

et al., 2015a, Seim et al., 2016, Seim et al., 2017]. The technique has been found

in a limited number of cases and would benefit from further study. This work aims

to replicate the technique of PHL and examine it for training users in vibrotactile

skin reading. Furthermore, prior work [Seim et al., 2015a] contrasted two teaching

structures for passive learning, but this work focused on teaching two-limb skills,

and it has not been established whether a semantic chunking structure is beneficial

to learning.

4.4.2 Procedure

The goals of this study were to investigate if PHL is useful to train for skin reading

(RQ1), establish the effects of training stimuli speed on recognition results (RQ2),

and compare a bottom up, letter by letter training (ABT) with a training based

on words cues (WBT, RQ3). This study tests reception and knowledge before and

after passive training and testing of letters and words.. PHL requires the attention

of the user on a primary task while the training takes place in the background. The

study intends to maintain the time and attention of participants within manageable

margins so, the study uses only ten letters, enough to compose words, while limiting
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training time to around 30m. Note that, the method used to encode information

is not limited to ten letters. In previous studies, it was used to encode the entire

English alphabet, which participants learnt within three hours of active training (see

sections 4.1 and 4.2). This study uses letters: ’A’, ’C’, ’E’, ’G’, ’H’, ’I’, ’M’, ’N’, ’S’

and ’T’, encoded with max. two vibromotors (see Figure 4.21). Given the native

German language of the location where user study took place, German was used

throughout the study for words and spelling. This study uses two training protocols

(RQ3: ABT, WBT), three stimulation speeds during testing (RQ2: 100, 200, 300

ms) and measures of accuracy, repetition of stimuli and testing duration (RQ1).

Figure 4.21: The wearable vibrotactile display layout and the encoding scheme of
each letter used during the study 8.

Wearable Haptic Display Design

A layout design with six vibromotors on the back of the hand is used identical to

the Study 5 presnted in Section 4.1 (see Figure 4.21). With it, the ten letters in the

study can be encoded with combinations of one or two vibromotors. The rationale

behind using only of six vibromotors is that only ten letters will be encoded for this

user study. But, for encoding the entire alphabet, a layout with more vibromotors

as proposed in Sections 4.2 and 3.4 would be a better choice. The vibromotors can

be fitted in a fingerless glove, leaving the fingers free for interaction.
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Figure 4.22: A participant (left) playing the game (right) while being trained to
recognise letters using PHL.

Vibrotactile Patterns and Encoding

Each letter is encoded with one or two vibromotors using an OST (overlapped

spatiotemporal) stimulation pattern described in Chapter 3. Moreover, the order

of activation is prioritised by the sensitivity of the finger, since it yields a higher

accuracy in identification of locus as revealed by Study 3 3.3. Sensitivity order is

assumed according to studies suggesting that sensitivity decreases from the index

finger towards the little finger: the index finger is more sensitive than the middle,

ring, and pinky finger [Duncan and Boynton, 2007, Vega-Bermudez and Johnson,

2001, Hoggan et al., 2007]. The thumb is the lowest sensitive [Sterr et al., 2003].

For example, a letter encoded with index and pinky finger, activates the index

vibromotor first, and then after a gap, the vibromotor on the pinky finger. Letter

encoding uses a base duration (d) of 200 ms and a 10 ms gap (g) between the

activation of vibromotors. So, the letter duration (ld) of a one vibromotor letter

is 200 ms and 210 ms for two-vibromotor letters. When constructing words, a gap

(bl) of 200 ms separates subsequent letters . Note that with longer training periods,

users learn to recognise letters and words with shorter stimulation (see Sections 4.1

and 4.2). This study fixes training duration to 200ms and considers shorter durations

during testing. The study aims at having training and testing in a single session

and thus the decision for a longer duration.
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Figure 4.23: The user interface used for letter reconstruction test during Study 8.

Procedure

The entire study was organised in rounds, each serving the purpose of either train-

ing or testing. PHL takes place during training, where participants are engaged in

playing a game as a primary task (internal implementation of the snake game7).

Meanwhile, they are passively trained to recognise patterns (see Figure 4.22). Test-

ing rounds use the active concentration of participant on the test. There are two

training modes: WBT and ABT Word Based Training (WBT) uses word cues

to passively train users to associate letters with vibrotactile patterns. WBT starts

with an audio cue of a word (e.g. Ich) and continues with a series of audio cues of

each letter of that word. the vibrotactile stimulation of the pattern representing the

letter follows 50ms after its audio cue. The study used the words ”ICH”, ”MAG”,

”ES”, ”NICHT”, which together form a sentence (”Ich mag es nicht”) from the chil-

dren’s book ”Grunes Ei mit Schpeck” written by Dr Seuss. Each word is played in

a loop 48 times before moving to the next one. WBT takes 32 minutes. Figure 4.24

illustrates the procedure.

7https://en.wikipedia.org/wiki/Snake_(video_game_genre)

https://en.wikipedia.org/wiki/Snake_(video_game_genre)
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Figure 4.24: Training methods: word based training (left) where letters from a word
are used to determine the order of the trained letters and sequential training (right)
where letters are trained in alphabetical order.

Figure 4.25: The entire procedure of PHL training and testing.

Alphabetical Based Training (ABT) uses letters in alphabetic order to pas-

sively train users to associate symbols with vibrotactile patterns. ABT starts with

an audio cue which represents a letter of the German alphabet, followed by its vi-

brotactile cue after 50 ms. The process is repeated four times, moving to the next

letter to compose one round. The entire procedure was repeated for 12 times (32

minutes) composing 12 rounds. In addition to the ten letters in alphabetical order,

one round also contained the letters C, H and I at the end. Doing so, the number

of letters stimulated in ABT is balanced with that of WBT where the letters C, H

and I appear twice.

• Reconstruction Testing (RT). Participants were asked to select (using the

mouse or keyboard) which locations (vibromotors) are used to encode a given

letter displayed on the screen. Figure 4.23 shows the user interface for RT.

• Letter Testing (LT). Participants were stimulated with a pattern and asked

to input the letter associated with it. They could repeat the stimuli before

answering, and they were not notified whether their answer was correct.

• Word Testing (WT). Like LT, users try to recognize stimulations. Partic-
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ipants were tested for words constructed only from letters that they trained.

These include the four words used in WBT (ES, ICH, MAG, NICHT) and four

additional words (IN, MIT, IST, GEHEN).

The first round of the study was a pre-test consisting of a round of RT and a

round of LT. Pre-test served the purpose to familiarise participants with the testing

procedure and to demonstrate their lack of knowledge about skin-reading. There-

after, participants were exposed to the game and passive training. They were ex-

plicitly instructed to focus on the game. They were randomly assigned to two equal

groups. The first group trained using WBT and the second one with ABT. After

32m of training, they were exposed to rounds of RT, LT and WT. Let us refer to this

block as post-train testing. To study the effect of transmission speed, post train LT

and WT were performed with a base duration of d ∈ [100ms, 200ms, 300ms] coupled,

in the case of words, with between letter duration of bl ∈ [100ms, 200ms, 300ms].

Finally, participants filled out a NASA TLX questionnaire, rating workload of the

letter and word recognition. They were also asked to rate the three following sen-

tences using five-level Likert scale (from strongly disagree to strongly agree):

• Effectiveness: The (voice) passive training of letters while playing is a good

way of teaching to recognise vibrotactile encoded letters!

• Annoyingness: The (voice) passive training of letters while playing the game

was annoying!

• Interruptedness: The (voice) passive training of letters while playing the

game did prevent me from focusing on the game!

On the very next day, participants were exposed to another testing, identical

to the post-train testing. Let us refer to it as recall-testing, as its purpose was to

evaluate how much users recall the next day. The entire procedure is depicted in

Figure 4.25. In the pre-train testing one probe per letter was collected in both LT

and RT. During post-train and recall, for each letter, one probe was collected in RT,

six probes (two per each speed) in LT and three probes (one per speed) WT.

The audio cues used the German spelling of letters, and also german words are

used during BWT given the native German language of the location where user study

took place. The study did not use English as due to concerns that participants would



4.4. PASSIVE HAPTIC LEARNING FOR SKIN READING 120

get confused by the letters I and E. E in English spells the same as I in German, and

thus as participants only hear the letters, they might form the wrong association.

Apparatus

The device consisted of an Arduino Due board which controls 3.4mm vibrotactile

motors of type ROB-08449 (Voltage range: 2.3V ∼ 3.6V ; Amplitude vibration:

0.8G).

Participants

Twenty (20) individuals (13 male and 7 female) aged between 23 and 46 (M=32.7,

STD=7.6) years old participated in this study. Half of participants used WBT. Only

one of them was left handed. All of them used the left hand for stimulation and the

right to interact with the computer as depicted in Figure 4.22.

4.4.3 Results

Let us define the following variables: accuracy, repetition and total duration. Repe-

tition describes how many times a user repeated the stimulation (letter or word) in

LT, WT rounds. Total duration represents the difference between the user response

time-point and the first stimulation time-point including repetitions.

Accuracy will be defined differently for different test types. For the RT accuracy

is defined to be 1 if the user provides the exact locations that encode the given

letter, otherwise 0. Similarly, for LT the accuracy is a binary variable defined to be

1 if the user’s response matches the stimulated letter. For WT, accuracy is defined

in relation to the similarity of the stimulated word to the user’s response. Word

recognition accuracy for a pair of answer and stimulated word (a,s) is computed by

the given expression:

σ(a, s) = 1− d(a, s)

#s
, (4.6)

where d is the Levenshtein distance [Levenshtein, 1966] between two words and #s

represents the word length (number of letters). The Levenshtein distance is defined

as the minimum single-letter edits (insertions, deletions or substitutions) required

to change one word into the other 8.

8https://en.wikipedia.org/wiki/Levenshtein_distance

https://en.wikipedia.org/wiki/Levenshtein_distance
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Test Phase Train Speed Accuracy Duration Repetition

Letter

Post

ABT
100ms .74 (.44) 3.94 (3.81) 2.30 (3.26)
200ms .71 (.45) 4.26 (4.56) 1.91 (2.88)
300ms .74 (.44) 4.05 (3.66) 1.64 (2.43)

WBT
100ms .68 (.47) 3.95 (3.59) 1.10 (1.74)
200ms .64 (.48) 4.59 (5.57) 1.61 (3.74)
300ms .62 (.49) 4.22 (4.21) 1.24 (2.57)

Recall

ABT
100ms .70 (.46) 3.95 (3.56) 2.76 (2.98)
200ms .72 (.45) 3.30 (2.53) 2.44 (3.02)
300ms .72 (.45) 3.55 (3.09) 2.35 (2.72)

WBT
100ms .64 (.48) 3.74 (3.83) 1.46 (4.37)
200ms .68 (.47) 3.80 (4.15) 1.15 (2.29)
300ms .67 (.47) 4.44 (5.44) 1.52 (3.30)

Words

Post

ABT
100ms .70 (.36) 6.52 (3.82) 6.35 (6.96)
200ms .69 (.34) 7.64 (5.89) 7.25 (10.3)
300ms .73 (.34) 6.17 (3.13) 4.94 (4.89)

WBT
100ms .64 (.41) 6.62 (3.94) 3.46 (3.01)
200ms .64 (.40) 6.40 (3.76) 3.65 (3.82)
300ms .71 (.36) 6.30 (3.32) 3.35 (3.78)

Recall

ABT
100ms .72 (.33) 6.05 (3.22) 5.22 (5.45)
200ms .74 (.33) 5.61 (3.25) 5.29 (5.35)
300ms .75 (.32) 5.88 (3.78) 4.29 (4.49)

WBT
100ms .69 (.40) 5.93 (3.40) 3.76 (3.48)
200ms .69 (.39) 5.53 (2.89) 3.34 (3.01)
300ms .76 (.37) 5.51 (2.20) 2.56 (2.88)

Table 4.8: Letter and word recognition results for the Study 8.

Let us define the testing phase (post-train, recall), speed (100 ms, 200 ms. 300

ms) and training method (ABT, WBT) as independent variables; the letter recon-

struction accuracy, as well as recognition accuracy on word and letters as dependent

variables. The repetition rate and total duration are considered to be dependent

variables. Moreover, let us consider comparisons of performance (accuracy, dura-

tion, repetitions) in testing phases to answer RQ1, comparisons of performance as

regards speed to answer RQ2, and effects of training method to answer RQ3.
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Method LT RT

ABT .04 (.20) .07 (.26)
WBT .09 (.29) .09 (.29)
Both .06 (.25) .08 (.27)

Table 4.9: Pre-train letter recognition and reconstruction accuracy.

Phase Train Accuracy

Post
ABT .70 (.46)
WBT .61 (.49)

Recall
ABT .71 (.46)
WBT .61 (.49)

Table 4.10: Post-train and recall letter reconstruction accuracy.

Letters

Table 4.9 lists letter reconstruction and recognition accuracies in the pre-train test.

Participants managed to guess/identify letters with an accuracy of 6% and recon-

struct them with an accuracy of 8% before the training. The results demonstrates

their lack of knowledge about the encoding of letters. The letter recognition and re-

construction accuracies for the post-train and recall tests are presented in Table 4.8

and Table 4.10.

Considering that the recognition and reconstruction accuracy are binary values,

a chi-squared analysis will be used to determine the significance of differences in

accuracy.

As regards RQ1, a chi-squared analysis revealed no significant difference in recog-

nition accuracy between the post-train phase (M = 0.69, STD = 0.46) and re-

call (M = 0.69, STD = 0.46); χ2(1, N = 2400) = 0.0, p = 0.96. There is also

no significant difference in reconstruction accuracy between the post-train phase

(M = 0.66, STD = 0.48) and recall (M = 0.66, STD = 0.47); χ2(1, N = 400) =

0.0, p = 1.0. Furthermore, a chi-squared analysis reveals that the differences in accu-

racy between the recognition (M = 0.69, STD = 0.46) and the reconstruction of let-

ters (M = 0.66, STD = 0.48) are not significant ; χ2(1, N = 2800) = 1.21, p = 0.27.

Let us also explore the relationship between the letter recognition accuracy and

the performance in the game while training which is presented in Figure 4.26. A

Pearson correlation analysis reveals that there is no significant correlation between
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Figure 4.26: The relation between the average (per user) letter recognition accuracy
and the user’s high score. The bar plots on the top and on the side represent his-
tograms and calculated the univariate distribution of the variable in the given axis.
The contours represent the multivariate distribution of both variables. The straight
line and the shades around it represent the fitted regression and its confidence. The
Pearson correlation index and the confidence value are annotated as r and p. The
colour represents the training method whereas the shape expresses the participant’s
rating on the training experience.

the average recognition accuracy and user’s high-score in the game; r = 0.35, p =

0.13. Moreover, Figure 4.26 clearly shows that the recognition accuracy varies a lot

among users. Four users do not even achieve 40% accuracy. On the other hand,

there is a cluster of eight users that perform with accuracy over 88% and the rest

lie in between.

Additionally, let us explore the total duration of users’ response. Since the values

are neither binary nor normally distributed (Shapiro-Wilk test, p ¡ 0.05), nonpara-

metric tests will be used for determining the significance. The effects of phase on

duration until response are analysed with Wilcoxon signed-rank test, considering
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that repeated measurements are being handled. The test reveals that indeed partic-

ipants were significantly faster on the recall test (MDN = 2.54,M = 3.8, STD =

3.88) compared to the post-train (MDN = 2.78,M = 4.17, STD = 4.29); V =

323582.5, p = 0.004. Also repetition rate is non binary and not normally distributed

and thus the same nonparametric test will be used. The test reveals that par-

ticipant performed significantly less repetitions on post-train phase (MDN =

1.0,M = 1.63, STD = 2.86) than in recall (MDN = 1.0,M = 1.95, STD = 3.23);

V = 146372.0, p = 0.002.

Regarding RQ2, there is no significant effect of speed in letter recognition ac-

curacy; χ2(2, N = 2400) = 0.0, p = 0.99. The Kruskal-Wallis test will be used

to analyse the effect of transmission speed on duration until response. The test

reveals that the duration is not significantly affected by the transmission speed;

H(2400) = 0.85, p = 0.654. A Kruskal-Wallis test reveals that transmission speed

had also no effect on repetition rate; H(2400) = 2.44, p = 0.295.

As regards RQ3, there is a significant difference in recognition accuracy be-

tween participants trained with ABT (M = 0.72, STD = 0.45) and those trained

with WBT (M = 0.65, STD = 0.48); χ2(1, N = 2400) = 12.09, p < 0.001. There

is also a large, albeit non-significant difference in reconstruction accuracy between

ABT (M = 0.70, STD = 0.46) and WBT (M = 0.61, STD = 0.49); χ2(1, N =

400) = 3.6, p = 0.058. To analyse how training method affects the response

time and repetitions Wilcoxon rank-sum test will be used. The test reveals that

the differences between WBT (MDN = 2.72,M = 4.12, STD = 4.53) and ABT

(MDN = 2.56,M = 3.84, STD = 3.6) are not significant; W = 1.39, p = 0.164.

Interestingly, participants trained using WBT did significantly fewer repetitions

(MDN = 0.0,M = 1.35, STD = 3.13) than those trained with ABT (MDN =

1.0,M = 2.23, STD = 2.91); W = −12.46, p = 0.0.

Words

The average word recognition accuracy, duration and repetition rate are presented

in the Table 4.8. Given that the word recognition accuracy is a real value and not

normally distributed (Shapiro-Wilk test, p ¡ 0.05), nonparametric tests (Kruskal-

Wallis, Wilcoxon rank-sum and Wilcoxon signed-rank) will be used for determining

the significance.

As regards RQ1, a Wilcoxon signed-rank test reveals that indeed participants
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perform significantly better (accuracy) on the recall test (MDN = 1.0,M =

0.72, STD = 0.36) compared to the post-train (MDN = 1.0,M = 0.68, STD =

0.37); V = 12990.5, p = 0.023. Duration is also not normally distributed (Shapiro-

Wilk, p ¡ 0.05). Comparing duration until response, a Wilcoxon signed-rank test

reveals that participants were significantly faster on the recall test (MDN =

5.05,M = 5.75, STD = 3.15) compared to the post-train (MDN = 5.39,M =

6.61, STD = 4.08); V = 45664.0, p = 0.0. Participants also performed significantly

more repetitions on post-train phase (MDN = 3.0,M = 4.83, STD = 6.18) than in

recall (MDN = 3.0,M = 4.08, STD = 4.33); V = 38467.0, p = 0.011.

Regarding RQ2, A Kruskal-Wallis test reveals that the word recognition accu-

racy is not significantly affected by the transmission speed, H(2) = 3.78, p = 0.15.

The duration is also not significantly affected by the transmission speed; H(960) =

1.36, p = 0.507. But, concerning repetition rate, the test reveals that the transmis-

sion speed had a significant effect on repetition rate; H(960) = 14.09, p = 0.001.

A further post-hoc Wilcoxon signed-rank tests reveal that participants did signif-

icantly fewer repetition when the vibrations and the gap between letters was set

to 300 ms (MDN = 2.0,M = 3.78, STD = 4.16) compared to 200 ms (MDN =

3.0,M = 4.88, STD = 6.48); V = 13594.5, p = 0.0 and 100 ms (MDN = 3.0,M =

4.7, STD = 5.1); V = 13944.0, p = 0.0. However the differences between 200 ms

and 100 ms were not significant; V = 18676.0, p = 0.592.

As regards RQ3, a Wilcoxon rank-sum test reveals that the differences in ac-

curacy between WBT (MDN = 1.0,M = 0.69, STD = 0.39) and ABT (MDN =

1.0,M = 0.72, STD = 0.34) are not significant; W = −0.63, p = 0.531. Similarly,

the differences in duration between WBT (MDN = 5.26,M = 6.05, STD = 3.31)

and ABT (MDN = 5.16,M = 6.31, STD = 4.0) are not significant; W = 0.47, p =

0.638. However, participants that were trained using WBT did significantly fewer

repetitions (MDN = 2.0,M = 3.35, STD = 3.36) than the ones that used ABT

(MDN = 4.0,M = 5.56, STD = 6.6); W = −6.29, p = 0.0.

Questionnaire

The users rating on the how effective the game based PHL is, how much it interrupts

the game and whether it is annoying during the game, are visualised in Figure 4.27.

The overall ratings are quite positive. However, there are a couple of participants

that did provide some poor ratings. While the majority of the users thought that
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Figure 4.27: User ratings on how effective, interrupting and annoying the PHL is
while playing the game.

it is effective, two users disagreed, and four others were neutral. On the matter of

being annoying, one user did find it annoying, and two others were neutral on this.

Additionally, seven users found it interrupting as they thought that the PHL did

prevent them from focusing on the game.

The results of NASA TLX for letter and word recognition tasks depending on

the training method are depicted in Figure 4.28. In addition to the six metrics

contained in NASA TLX, the workload is calculated using the simplified R-TLX

method (averaging all metrics where performance is inverted). So, let us compare

the workload of letter and word recognition tasks between the training methods.

Given that the workload values are normally distributed (Shapiro-Wilk: p ¿

0.05) and the variances of compared groups are homogenous (Levene: p ¿ 0.05), the

independent t-test will be used. A t-test analysis reveals that the workload for let-

ter recognition for participants that used ABT training method (M = 4.22, STD =

1.47) was lower that the workload of participants that trained used WBT (M =

4.5, STD = 0.88), but the differences are not significant; t(20) = −0.52, p = 0.608.

When looking at the word recognition workload, on the contrary, participants that

trained using ABT expressed a higher workload (M = 5.68, STD = 1.4) that par-

ticipants that were trained using WBT (M = 4.77, STD = 1.19). However, again

the differences are insignificant; t(20) = 1.58, p = 0.13.
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Figure 4.28: NASA TLX self evaluation metrics for letter and word and recognition
tasks for the Study 8.

4.4.4 Discussion

Our user study was designed to investigate whether PHL could be used to train users

for vibrotactile skin reading (RQ1) and explore different training methods (RQ3).

Additionally, this study investigates whether the transmission speed compared to the

one that was used to train participants affects their ability to perceive the encoded

information (RQ2).

The results of this study show that overall, both phases, both training methods

and all speeds combined, participants achieved a recognition accuracy of 69% on

letters and 70% for words. To put this in perspective, Study 10 (see Section 6.2)

reports that 20 participants achieved an accuracy of 95% on letter recognition after 5

iterations of active training rounds each followed by a reinforcement round (in total

10 rounds). The reported accuracy is higher with less training rounds compared to

this study. Nevertheless, even though the learning rate is less than what participants

could have potentially learned within the same time using active learning [Luzhnica

and Veas, 2018a], recognising 69% of the letters using PHL means that in 32 minutes

of training they were able to learn 7 letters in average. Thus in practice, for learning

the entire Alphabet, one would need to reduce the number of letters within the

32 minutes of training and have more sessions (one per day) until users learn it

entirely. Additionally, participants were able to not only recognise the letters but

also reconstruct them which is consistent with the research on PHL of Morse code
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and Braille which showed successful reception along with reproduction [Seim et al.,

2014a, Seim et al., 2016].

PHL has the benefit of letting users enjoy other activities while being trained

and thus users would not need to stare at the screen and devote focus to training.

Thus PHL could be used and presents an attractive alternative method for training

vibrotactile skin-reading (RQ1). Whether, users would prefer spending more time

in training but perform other activities during the same time (e.g. playing video

games) or less time but focus actively on training, or even mix them, it would be

up to individual preferences and should be considered as a trade-off. Moreover,

six users did achieve an accuracy of or close to 100% (see Figure 4.26), meaning

that for them, 32 minutes of PHL training was enough to learn 10 letters. Others

demonstrated less learning from PHL. While this study was unable to determine the

cause of their poor performance, such phenomena in the future could be explored

in future work. Perhaps by tuning training parameters such as the time from the

sound cue to vibrotactile stimulation, the volume, personalised training method (e.g.

different number of letters for different users) etc... one could improve the learning

effect for such users.

This study also investigates whether there is a trend that users who did well

at learning also did poorly at the game, suggesting that they possibly attended to

the stimuli actively. However, it found no such trend and those who did better at

learning were also some of the ones who did best at the game.

The results of the word based (WBT) and alphabetically based training (ABT)

methods (RQ3) demonstrated that both methods could be used for training. Nev-

ertheless, findings on learning condition differences were surprising. Results suggest

that the ABT condition enabled significantly better recognition and production of

letters, and comparable performance on words; though this group required (signifi-

cantly) more repetitions.

This would indicate that perhaps the ABT allowed comparable learning while

also helping users think of letters individually rather than strongly tied to their word.

The research team expected that learning from the disorganised ABT condition

would be very challenging and that the cognitive benefit from semantic associations

and small groups of letters in the WBT condition would allow those users to perform

significantly better. Given the surprising results which suggest the promise in the

ABT condition, this work clearly shows that further consideration of the ABT vs
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WBT learning structure is needed and is relevant to all PHL work.

The analysis of the recognition in different phases (post-train and recall) show

that participants were able to recall the learned information after one day. Reten-

tion and recall are well known for traditional learning methods; however, it is often

asked, but still unknown, whether learning from PHL lasts. The breadth of passive

tactile learning research - from piano to rehab - has yet to explore this important

question [Seim et al., 2014a, Seim et al., 2015a, Seim et al., 2016]. Further research

should investigate later recall tests in different PHL scenarios, but this initial re-

sult is encouraging that the effects of PHL are beyond short-term working memory.

Moreover, the results show an improvement on the subsequent day.Perhaps perfor-

mance improved after a night of sleep or a break as the literature suggests aids

learning [Stickgold and Walker, 2013] and even motor learning [Walker et al., 2002].

Finally, the results show that participants could comprehend the transmitted

information with the same accuracy regardless of the transmission speed (RQ3).

This is consistent with related work which showed stimuli of different durations

could be equally recognised on the fingers actively [Seim et al., 2015b], assuming

that the minimum duration threshold has been considered. The results suggest

that the duration of stimuli could be decoupled between training and the use of the

device. Participants could train with one speed and once they learn the Alphabet

and the use the device with faster speeds or even adjust the speed during usage

without re-training.

4.5 Skin Reading for Sensory Substitution

Given the efficiency demonstrated in Section 4.2, vibrotactile skin reading using

wearable devices presents an excellent opportunity for utilising in general purpose

applications to facilitate multitasking or reduce demands on the predominant visual

displays. For instance, users would be able to perceive their phone notifications,

SMS, emails etc... while performing, e.g. driving, biking, working, etc... Skin

reading could also find use in the application for users with specific impairments

which is the focus of this section. This section proposes concepts and implementation

of two mobile applications which capture the user’s environment, describe it in the

form of text and then convey its textual description to the user through a vibrotactile

wearable display. The applications target users with hearing and vision impairments.
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Note that the proposed applications are implemented to illustrate the capabilities

of skin reading. However, they are not evaluated with the target users and such

evaluation is out of the scope of this thesis.

4.5.1 Sensory Substitution

Sensory substitution has been a research subject for decades, and yet its applicability

outside of the research is very limited. Thus creating scepticism among researchers

that a full sensory substitution is not even possible [Spence, 2014]. Sensory sub-

stitution aims at re-channelling one sensory modality to another by changing the

characteristics of the later. The attempts to re-channel vision [White et al., 1970]

or speech [Gault, 1924] to tactile have been a long goal of the research community

to enhance the lives of vision or auditory impaired individuals. Typically, the trans-

formation vision to tactile stimuli is achieved by using a camera which captures the

environment, transforms it to low-resolution image and then uses an array of actu-

ators to imprint the image on the body [White et al., 1970]. Analogously, speech

to tactile is converted by capturing the entire speech by a microphone, eventually

extracting important signal features and then stimulating them to the skin [Gault,

1924, Novich, 2015]. While the methods of transforming the signal vary [Gault,

1924, Novich, 2015], they all tend to convey the entire richness and details of the

captured environment to the skin.

Despite decades of research, yet there is no solution that can serve as complete

hearing or seeing solution [Spence, 2014]. The reason for that might be connected

with two fundamental problems to such an approach. First, the tactile sensation is

not very high in resolution [Spence, 2014]. Second, there might be limiting cognitive

constraints on processing the tactile information when attempting to convey the

entire information contained within an image or sound [Spence, 2014]. On the

other hand, recent works demonstrate that with few hours of training it is feasible

to teach users to associate spatiotemporal patterns with symbols (e.g. letters of

English Alphabet) and then combine such letters into more complex messages such

as words and phrases (see Sections 4.1, 4.2, 4.4 and [Luzhnica et al., 2016b]. Thus,

instead of trying to convey an entire image, one could express its essential aspects

though text. Similarly, instead of letting users feel sound as the whole, one could

provide only the text contained within the speech. Moreover, the active research



4.5. SKIN READING FOR SENSORY SUBSTITUTION 131

and recent developments in machine learning applications have been very fruitful.

Its applications such as speech recognition and object recognition have already been

made available for consumer applications.

Now, of course, there are a considerable amount of details that will be lost when

converting to text. An image is worth of 1000 words and yet in most of the cases, its

essential representation can be described within a sentence. Similarly, the text will

not express the rich emotions, sarcasm and other important aspects contained within

the speech. However, the removal of such details lowers the bandwidth constraints

and makes it possible to comprehend it as research shows that comprehension of

text is possible. Thus, it has the potential to improve the life quality for millions of

visually or auditory impaired individuals.

4.5.2 Conecept

Figure 4.29: Application concept: (i) the environment is captured through camera
or microphone, (ii) the content is transformed to text through image or speech
recognition, (iii) alternatively the textual information is translated to the target
language and finally (iv) transmitted to the wearable vibrotactile device.

This section proposes a wearable and mobile solution which transforms the cap-

tured environment to text and then conveys the text through a wearable vibrotactile

display. The transformation is done in the following step:

1. Capture the environment using a camera (the area in front of the user) or

microphone (the person talking to them).

2. Perform recognition of either speech or image and convert the captured signal

to textual context.

3. If necessary, translate the text to a predefined language.

4. Transmit the text to wearable vibrotactile display.
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The concept uses the same wearable display methods of conveying information

as elaborated in Section 4.2. Note that as shown in Figure 4.29, to help the target

users as much as possible, it would be useful some filtering of the information which

could be done along the process. For instance, when capturing the speech of the

user, it would be useful to identify the speech that originates from nearby sources

and ignore the ones that come from far away. Similarly, when performing image

recognition, there are many details to the image and the user might be interested

only in some particular aspects of it. Such target user preferences and requirements

should be considered when performing filtering of the information.

Figure 4.30: VTT recognising the objects and sending the recognised text to the
wearable vibrotactile display.

4.5.3 Mobile Application Implementation

The concept was implemented in two mobile applications, each targeting a different

user group: speech to tactile (STT) which targets users with hearing impairments

and vision-to-tactile (VST) which targets the users with visual impairments. Both

of them use the same concept as illustrated in Figure 4.29. The interaction concept
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Figure 4.31: VTT with translation.

is the same. In both cases, the user would use a necklace phone holder which they

would wear around their neck. They have two main interaction choices:

1. Press physical volume up button for a single snapshot of the environment. In the

case of STT, the application records until it detects that the talking side is finished

talking. For VST, this action takes a single image and then describes it.

2. Press volume down button for continuous capturing. For SST this would mean

that the voice recording is always on. For VST this option would take periodical

(e.g. every 30 seconds) snapshots of the environment where the frequency depends

on a configuration parameter. In case the continues capturing is already on, this

user action turns it off.

The main interactions intentionally rely on the physical buttons (see Figure 4.29)

which are easy to reach on the mobile phone when positioned on the chest of the user

(hanging on the necklace). Additionally, both applications allow users (or caregivers)

to control different settings, mainly connected to the stimulation parameters and

translation.

The proposed applications (see figures 4.30, 4.31 and 4.32) support Android

and iOS operating systems, and they rely on existing models for both speech and
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object recognition. They rely on the speech recognition APIs offered by the mobile

operating systems whereas object recognition is accomplished using the Microsoft’s

Cognitive Services API 9.

4.5.4 Discussion and Future Work

This section presented a concept and implementation of two mobile applications

which capture the user’s environment and then convey its textual description to

the user through a vibrotactile wearable display. Such applications are fully mobile

and wearable, and as such, they present a huge potential to provide assistance and

enhance the lives of users with visual and hearing impairments. The representation

of information in the textual form is chosen as recent works demonstrate that vi-

brotactile skin reading already is feasible (see Sections 4.1, 4.2, 4.4 and [Luzhnica

et al., 2016b]).

The implemented applications run on smartphones due to their popularity. How-

ever, the same principles (sensor-text-tactile) could be used to provide the same

functionality using other mobile or wearable devices equipped with the necessary

sensors (microphone or camera) and processing units. For instance, vision to tactile

application requires only a camera as a sensor which can be found in most of the

smart glasses (e.g. Google glasses). Thus users could use such wearable devices

instead of a smartphone to capture the environment.

In future work, it is planned to evaluate the presented prototypes with the tar-

get user groups, reiterate and improve the proposed and implemented prototypes

by including their feedback. Additionally, in this version, no filter (Figure 4.29) was

implemented as initially it should carefully be investigated and determined before-

hand the content to be filtered. Thus, enhancing the applications with such filtering

capabilities will be a goal for future work.

4.6 Summary

The main objectives of the work reported in this chapter are to provide an encoding

of English Alphabet using overlapping spatiotemporal patterns and evaluate such

9https://azure.microsoft.com/en-us/services/cognitive-services/directory/

vision/

https://azure.microsoft.com/en-us/services/cognitive-services/directory/vision/
https://azure.microsoft.com/en-us/services/cognitive-services/directory/vision/
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Figure 4.32: STT performing speech recognition, translating it to the user’s language
and then conveying the text through the wearable vibrotactile display.

patterns and the layouts proposed in previous chapter for skin reading. It evaluates

the ability of participants to decode letters and words using wearable vibrotactile

device. In addition this chapter also investigates other details of skin reading such

as the background perception of vibrotactile encoded messages and passive ways of

training. The conclusions in this chapter have been supported by four user studies.

The Study 5 in Section 4.1 validated empirically the feasibility of using such

a wearable vibrotactile display with six vibromotors on the hand and forearms for

skin reading. The study used overlapping spatiotemporal patterns and a letter

frequency based encoding for letters of English Alphabet. The results showed that

participants performed similarly on recognition of letters (89% − 92%) and words

(85% − 90%) in both layouts (hand and forearms). Nevertheless, in both layouts,

systematic errors occurred during both letter and word recognition. Further analysis

showed that indeed there is room for improvement. Thus, a two step optimisation

process was proposed to avoid such issues which resulted in a new layout of seven

vibromotors, In addition to the layout a new encoding was proposed which was

optimised in the basis minimising the probability that two subsequent letters in

a word share a vibromotor to improve word recognition accuracy. This thesis also
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proposed a concrete algorithm for solving such a minimising problem which leverages

the information of the structure of a language.

The Study 6 in Section 4.2 evaluated the proposed optimisations and it shows

that such optimisation steps result in significant improvements in both letter and

word recognition accuracies. Participants achieve an accuracy of 97% on letter

recognition and 97% on word recognition within five hours of training. Such an

outstanding accuracy of comprehension makes skin reading a good candidate for

real-world applications.

The Study 7 in Section 4.3 investigated whether high speed vibrotactile encoded

messages can be perceived in the background while performing other concurrent

attention-demanding primary tasks. The results observed that users could very

accurately comprehend vibrotactile encoded messages in the background and other

parallel tasks did not affect users performance. Additionally, the comprehension

of such messages did not affect the performance of the concurrent primary task.

Such results promote the use of vibrotactile information transmission to facilitate

multitasking.

Last but not least, the Study 8 in Section 4.4 investigated the potential of passive

haptic learning (PHL) as a training tool for vibrotactile skin reading. The testing

of the recognition of letters and words shows when trained (for 32 minutes), par-

ticipants could recognise letters with an average accuracy of 69% and words with

an accuracy 70%. Additionally, the study shows that PHL can be used regardless

of whether the training is based on semantically grouped letters or alphabetically

ordered ones. Moreover, the results show that participants recognitions accuracy

was not affected by transmission speed indicating that they could be trained with a

default speed and then proceed to use the system in different levels of speed without

requiring a re-training. Overall such results demonstrate that PHL presents an alter-

native to active learning for training vibrotactile skin reading, while acknowledging

that it is considerably less effective that active training.

Moreover, Section 4.5 proposes a novel technique of sensory substitution using

vibrotactile wearable displays and the proposed conveying techniques by combin-

ing with speech and object recognition. Such application target users with visual

or auditory impairments. In addition, it implements the concepts in two mobile

applications.

Overall this chapter demonstrates that indeed the overlapping spatiotemporal
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patterns could be used for skin reading on the hand and forearms with relatively

good accuracy. Moreover, optimising the encoding brings the accuracy to a near

perfect (97% in both letters and words). However, for such results a layout of at

least seven vibromotors is needed, which is provided in this thesis (see Sections 4.2

and 3.4).





Chapter 5

Conveying Continuous Numbers

through Vibrotactile Wearable

Displays

Vibrotactile technology has been used to communicate various types of information,

supplementing or complementing other senses, supporting people with perceptual

impairments, and augmenting those with normal perception. When encoding infor-

mation, vibrotactile displays are commonly limited to transmitting a discrete set of

tactile motives. The general approach is to encode symbols of generative symbols

(e.g. letters) [Bliss et al., 1970, Geldard, 1957, Luzhnica et al., 2016b, Nicolau et al.,

2013, Xu et al., 2011], that can be combined to form text [Geldard, 1957, Luzhnica

et al., 2016b] as already discussed in Chapter 4.

However, many processes provide quantitative information that is not discrete

but rather of continuous (real-valued) nature. For instance, the progress in a per-

centage of daily steps compared to the user’s defined goal is a continuous value.

One could still use discrete symbols to encode such values [Cauchard et al., 2016],

by using having discrete tactons that represent numerical digits and then combine

such numerical digits (in series) to form the desired value similarly to the process

of forming words from letters (as applied in Chapter 4). That would be a good

approach if high precision of comprehension is required. However, in several situ-

ations, users might benefit greatly from approximate information and some degree

of inaccuracy is permitted as it is not crucial to the action taken by the user. For

139
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instance, when monitoring the running progress, the user might allow some degree

of inaccuracy as it is not crucial to the activity of continuing or stopping to run.

The goal of the work in this chapter is to communicate quantitative values cor-

responding to continuous magnitudes for active feedback by providing a spatially

continues feedback across the used wearable vibrotactile display. Such wearable vi-

brotactile displays for quantitative data could convey feedback on effort spent, the

force applied by a tool, duration of a task or progress. The challenge of creating

spatially continuous vibrotactile feedback is to imbue a continuous sensation with

a limited, small number of vibromotors. For such a spatially continuous perception

the phantom sensation is used.

The phantom effect has been used to create the illusion of spatial continuity [Cha

et al., 2008, Israr and Poupyrev, 2011, Schneider et al., 2015, Seo and Choi, 2010].

It is an interpolation effect that occurs when two vibromotors are active, and the

user attributes perception to a location in-between the active vibromotors due to an

inherently low resolution of haptic perception [Alles, 1970]. Evaluation of spatially

continuous tactile displays has so far mainly focused on the quality of perceived

continuity, the consistency of perceived intensity across space, and the perceived

smoothness of time-varying continuous movements.

For achieving the aforementioned goal, initially four vibrotactile layout displays

are designed and an encoding concept is created. The vibrotactile layout displays

and the encoding concept are evaluated in a comprehensive user study. The user

study investigates user decoding precision of spatially modulated real-valued data,

which is decoded by localising spatially continuous, temporally stationary (static)

vibrotactile stimuli. It quantifies decoding precision across two vibrotactile display

layouts (circular, worn around the wrist and the upper arm, and straight, worn

along the forearm) each positioned at two different locations on the body. In each

testing condition, it evaluates three perceptual models of phantom sensation from

the literature with respect to localisation precision: the linear model, the log model,

and the power model. Furthermore, this work introduces a data-driven method

for vibrotactile display personalisation. Such a method adjusts perceptual models

to idiosyncratic and spatial variations in perceptual sensitivity learned from user-

specific data, and quantitatively compare localisation precision using all perceptual

models with and without sensitivity adjustment.

Given the primary goal of this chapter is to convey inaccuracy tolerant contin-
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uous numerical values through wearable vibrotactile displays, this chapter targets

the following research question:

For scenarios where high precision is not required, can we encode con-

tinuous values using a discrete number of actuators using phantom sen-

sation? More precisely, how well (with what accuracy) can users decode

such encoded values and does sensitivity adjustment increase such en-

coding/decoding accuracy?

The work described in this Chapter has already been published in a peer reviewed

scientific paper [Luzhnica et al., 2017] (P6) and its findings resulted in contributions

C8 and C9 listed in Section 1.2.

5.1 Progress-bar Inspired Vibrotactile Wearable

Displays

The wearable vibrotactile displays designed in this chapter are inspired by progress-

bars and mimic the same way of representing information. As shown in Figures 5.1

and 5.2, such progress-bars encode information visually by filling one part of the bar.

The encoded value is the ratio between the filled part compared to the total length

of the progress bar. Note that, from the visual representation it is rather difficult to

decode precisely the encoded value and yet such information is sufficient and could

be very useful in many scenarios (see Section 5.4.1 for potential use cases).

Figure 5.1: A straight progress-bar (left) and its simplified representation (right)
where a marker indicated the value instead of the filled area.

A more simple representation of such progress-bar would be simply to mark the

location of the value as shown on the Figures 5.1 and 5.2 (on the right). Such a
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Figure 5.2: A circular progress-bar (left) and its simplified representation (right).
The marker indicates the encoded value instead of a filled area. Alternatively, such
a progress-bar could encode the angular value as illustrated on the right.

simplified representation will be mimicked by the vibrotactile displays where the

marker will be stimulated using vibromotors of the wearable display.

Note that in addition to the straight progress-bars depicted in Figure 5.1, one

could use also circular progress-bars as shown in Figure 5.2. Circular progress-bars

are very useful in representing information for repetitive processes. Additionally,

they could be used to represent angular information or orientation where the encoded

angle is drawn from the centre of the circle to the location os marker.

5.2 Method

Human haptic perception has, depending on body location, a relatively low spatial

resolution. Simultaneous stimulation of two or more locations in close proximity may

only be perceived as a single stimulation somewhere in between vibromotors. This

haptic illusion is typically referred to as phantom sensation [Alles, 1970]. The exact

location of the perceived stimulus depends, among other factors, on the stimulation

amplitudes [Alles, 1970, Schneider et al., 2015, Park et al., 2016]. This section

starts by briefly describing three perceptual models of phantom sensation from the

literature. Then it proposes a method for personalisation, extending these generic

models by explicitly modelling and accounting for idiosyncratic and spatial variation

in perceptual sensitivity. Furthermore, it outlines extending spatially continuous

haptic displays to more than two tactons per dimension, and describes the estimation

of local sensitivity from user data.
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Figure 5.3: Circular layout, straight layout and their corresponding user interfaces
used in the study (with black background). On the circular layout t1 and t2 are
activated whereas on the straight one, t2 and t3 are activated (see also PWM signal)
to encode the value.

5.2.1 Perceptual Models of Phantom Sensation

Perceptual models of phantom sensation for vibrotactile feedback can be described

as a generative function f : RT → [0, 1], mapping stimulation amplitudes of a fixed

set of T vibromotors onto a continuous location along one spatial axis at which

stimulation is perceived. The inverse model f−1 : [0, 1]→ RT determines the set of

stimulation amplitudes required to invoke a phantom sensation at a given location.

The amplitude with which vibromotors are stimulated in practice is bounded

within an interval [Amin, Amax] by minimum perception thresholds, hardware con-

straints, and user comfort. Consequently, let us describe models with respect to

normalised stimulation intensities I ∈ [0, 1], derived using Eq. (5.1)

I =
A− Amin

Amax − Amin

, A = I(Amax − Amin) + Amin. (5.1)

Given a pair of vibromotors i ∈ {0, 1}, actuated with intensities Ii at locations

xi = i along some spatial dimension, the location of the phantom sensation can be

described as xp ∈ [0, 1].

Let us introduce the linear model, the log model and the power model [Alles,

1970, Israr and Poupyrev, 2011]. In the linear model, shown in Eqns. (5.2), xp is

proportional to the relative stimulation intensity of I1 and, inversely, stimulation

intensities are proportional to their proximity to xp. In the log model, described by

Eqns. (5.3) and (5.4), the stimulation intensities have a logarithmic relationship with

perceived location (xp). The recently proposed power model [Israr and Poupyrev,

2011, Schneider et al., 2015] is based on the energy summation of Pacinian chan-
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nels [Makous et al., 1995]. Here, the perceived location is dependent on the square

of stimulation intensities as in Eq. (5.5),

xlp =
I1

I0 + I1
, I l0 = (1− xp), I l1 = xp (5.2)

Ig0 =
log(2− xp)

log(2)
, Ig1 =

log(1 + xp)

log(2)
(5.3)

(1 + xgp)
I0 = (2− xgp)I1 (5.4)

xpp =
I21

I20 + I21
, Ip0 =

√
1− xp, Ip1 =

√
xp. (5.5)

Between, log and linear models, usually the log model is preferred [Alles, 1970,

Seo and Choi, 2010, Schneider et al., 2015] mainly as the perceived intensity of

phantom effect decays towards the middle [Alles, 1970, Seo and Choi, 2010]. Nev-

ertheless, the results of [Seo and Choi, 2010] suggest that linear model might be

better than log model for location accuracy between two vibromotor. As for the

power model, the authors of [Schneider et al., 2015] noted participants’ preference

of the power and log model over the linear model whereas between the power and

log, there was no significant preference of one or the other.

Constructing f(A0, A1) and f−1(xp) can be achieved by combining each model

with Eq. (5.1). The phantom location f(A0, A1) is estimated by mapping stimu-

lation amplitudes to intensities using Eq. (5.1)(left) followed by estimating xlp, x
p
p

or xgp. Determining the stimulation amplitudes that create a phantom sensation

f−1(xp) involves estimating intensities (I l0, I
l
1), (Ip0 , I

p
1 ) or (Ig0 , I

g
1 ) and corresponding

amplitudes using Eq. (5.1)(right).

5.2.2 Sensitivity-adjusted Perceptual Models

All models in the literature implicitly assume a constant stimulation sensitivity

across locations on the body at which vibromotors are placed. They can, therefore,

be considered as generic models. Cholewiak [Cholewiak and Collins, 2003] provided

evidence suggesting that there are fine-grained spatial differences in perceptual sen-

sitivity on the forearm: the area around the wrist and upper part towards the elbow

are more sensitive than the middle part of the forearm. As there are spatial varia-

tions in perceptual sensitivity, it is reasonable to expect that perceptual sensitivity



5.2. METHOD 145

also varies across users. One indication for this is provided by [Rahal et al., 2009],

showing strong gender-based differences in preference between the linear model and

the log model. Therefore, this work proposes to create personalised perceptual

models by explicitly incorporating user-specific measures of local sensitivity at vi-

bromotor locations.

Intuitively, the higher the stimulation sensitivity at some location the lower the

stimulation intensity needs to be to create a fixed intensity sensation. Thus, to

account for spatial variations in perceptual differences of stimulation sensitivity,

this work proposes to scale intensities Ii with a user and location-specific scale

factor si ≥ 1. This local rescaling is independent of the perceptual model of phantom

sensations and can, therefore, be applied to all three models as shown in Eqns. (5.6)-

(5.8),

xlsp =
s1I1

s0I0 + s1I1
, I ls0 =

1− xp
s0

, I ls1 =
xp
s1

(5.6)

Igs0 =
log(2− xp)
s0 log(2)

, Ig1 =
log(1 + xp)

s1 log(2)
(5.7)

(1 + xgsp )s0I0 = (2− xgsp )s1I1 (5.8)

xpsp =
s21I

2
1

s20I
2
0 + s21I

2
1

, Ips0 =

√
1− xp
s0

, Ips1 =

√
xp

s1
. (5.9)

For the generic and personalised log models, Eqns. (5.4) and (5.8)), f(A0, A1) can

not be computed in closed form. Thus, optimization techniques should be used for

finding xgsp .

After formalising how models are extended to chains of N > 2 vibromotors, it

will be described how sensitivity values si can be estimated from data.

5.2.3 Extension to Chains of N > 2 Vibromotors

When two vibromotors are further apart than a few inches (depending on their

location on the body), the user senses two separate stimulations instead of one: one

at each vibromotor location. With additional vibromotors, the area on the body can

be increased without losing the phantom sensation. Thus. let us explore vibrotactile

displays with chains of three and four tactons.

Let us consider the general case of representing values v ∈ [0, 1] with N equidis-

tant vibromotors 0 ≤ i < N and M segments between vibromotors. In order to
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apply Eqns. (5.2)-(5.9), we need to determine the relevant pair (a, b) of vibromotors

for stimulation and estimate the within-interval value xp from v. This is accom-

plished using Eq. (5.10), where % is the modulo operator,

a = bvMc %N, b = (a+ 1) %N, xp = vM − a. (5.10)

Figure 5.3 illustrates a straight and a circular tactile display, the values v corre-

sponding to vibromotor locations, a phantom sensation and its distance to the two

closest vibromotors.

5.2.4 Data Driven Sensitivity Estimation

While sensitivity values si could naively be adjusted manually or pre-configured

for different body positions, this work proposes to estimate them from calibration

data. Let us consider a set of D datapoints {(yj, Ij1 , ..., IjN)}, where yj ∈ [0, 1] is

the stimulus location perceived by the user when vibromotors are set to stimulation

intensities Ij1 , ..., I
j
N .

The problem of finding optimal sensitivities S : s1, ..., sN can be expressed as a

minimisation problem of the mean squared error between encoded values and user

responses:

So = arg min
S

1

D

D∑

j=1

(yj − v(S, Ij1 , ..., I
j
N))2, si ≥ 1. (5.11)

Note that this optimisation requires the evaluation of v(S, Ij1 , ..., I
j
N) ∈ [0, 1] in every

step, which involves estimating xp. While xp can be calculated in closed form for

the linear model and the power model using Eqns. (5.6) and (5.9), finding xp for

the log model involves solving one optimisation problem for every data point:

xpo = arg min
xp

((1 + xgsp )s
j
aI

j
a − (2− xgsp )s

j
bI

j
b )2, 0 < xp < 1. (5.12)

For solving the optimisation problem, the L-BFGS-B algorithm [Byrd et al., 1995]

is used, which is a quasi-Newton method that can handle simple bounding box

constraints.
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5.3 Study 9: Continuous Wearable Vibrotactile

Displays

A user study was conducted to quantify real-valued data decoding precision using

spatial modulation of a stationary stimulus. Decoding precision was measured under

twenty-four conditions: two display layouts, two body positions per display layout,

and three perceptual models with and without personalisation through sensitivity

adjustment.

5.3.1 Participants

Participants were recruited among students of a local technical university. Sixteen

participants (all right-handed, ten male, aged between 26 and 41, and six female,

aged between 21 and 32) volunteered to take part in the study. Only one female

participant had previously taken part in a study on haptics. Detailed participant

characteristics, including wrist and upper arm circumference, and forearm length,

are presented in Table 5.1.

Gender Age Wrist Upper Arm Forearm

Male 25.60 (2.89) 17.47 (1.23) 28.56 (2.64) 27.13 (1.67)

Female 29.67 (5.45) 15.33 (1.21) 26.33 (4.59) 23.37 (2.65)

All 27.12 (4.48) 16.67 (1.60) 27.72 (3.64) 25.72 (2.77)

Table 5.1: Participant characteristics (mean and standard deviation): Age, wrist
circumference (cm), upper arm circumference (cm), and wrist to elbow forearm
length (cm).

5.3.2 Apparatus

An Arduino Due board (see Fig. 5.4) controlled a set of 3.4mm vibrotactile motors of

type ROB-08449 (Voltage range: 2.3V −3.6V ; Amplitude vibration: 0.8G). Instead

of changing the vibration amplitude directly, different intensities of vibration are

generated by varying PWM duty cycles.

Int his work, two vibrotactile display layouts are designed to encode real-valued

data through spatial modulation. The circular layout (Fig. 5.4, left) with four

equidistant vibromotors was worn around the wrist and the upper arm. This layout
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Figure 5.4: Participants performing the study on the wrist (left) and forearm (right).
Note that the hand (left) is supinated relative to the rest position, which may result
in user inputs being shifted.

is envisioned to be useful for encoding values that represent the state of repetitive or

circular processes, orientation or angular information. The straight layout (Fig. 5.4,

right) was fitted with three equidistant vibromotors and was worn at the front and

back of the forearm. The straight layout applies to the more general case of encoding

real-valued scalars within a bounded range.

5.3.3 Procedure

Each participant tested both display layouts (counterbalanced start with either cir-

cular or straight layout) in both positions (counterbalanced start in either position)

on their non-dominant (left) arm, with four trial conditions in total. Note that the

distance between vibromotors varies with wrist circumference, upper arm circum-

ference, and forearm length of each user.

Introduction Phase Each experiment (i.e. each pair of display layout and posi-

tion) was started with an introduction phase (3 − 4 min) involving a verbal expla-

nation and a trial of the vibrotactile display. These varied depending on the display

layout.

Straight Layout: It was explained that stimulus locations represented percent-

age values as follows: the vibromotor position at the wrist corresponded to 0%, the



5.3. CONTINUOUS WEARABLE VIBROTACTILE DISPLAYS 149

position of the vibromotor closest to the elbow corresponding to 100%, and values

in between increased linearly along the arm. Then, the graphical user interface

(GUI) for testing was shown on screen, consisting of a single vertical progress bar

(see Fig. 5.3, right). It was explained that the empty bar corresponded to 0%

the full bar corresponded to 100%. In preparation for the trial run, 80 values were

sampled uniformly. Every value was then stimulated with the corresponding GUI

representation shown on the screen. This was to familiarise participants with the

vibrotactile display and to test the phantom effect: as a condition to proceed to

the test phase, each participant was asked whether they felt one or two stimuli at a

time, whether stimuli were also perceived in between vibromotors, and whether they

found a correspondence between the location of the stimuli and the values shown

on the screen.

Circular Layout: It was explained that the stimulus location represented a

direction as on a compass, where the top vibromotor corresponded to North, the

right vibromotor corresponded to East, and so forth. Then, the GUI for testing was

shown on screen, consisting of a circle with four red dots (see Figure 5.3, left). It

was explained that the top dot corresponded to North, the right dot corresponded to

East, and so forth. In preparation for the trial run, 72 values were sampled uniformly.

Every value was then stimulated with the corresponding GUI representation shown

on the screen, where a marker in the shape of a blue dot appeared at the location

corresponding to the stimulus. Participants proceeded to the test phase under the

same conditions as explained for the straight layout.

Test Phase In preparation for the test phase, the sequence of values was shuffled

such that stimuli were applied in a new random order. The test phase uses the

exact samples of stimuli as the introduction phase. One stimulus was applied, and

participants were asked to mark the value corresponding to the perceived stimulus

on the GUI. For straight layouts, users were asked to use the mouse to click on the

empty progress bar at the location that corresponded to the stimulus. For circular

layouts, users were asked to adjust a blue visual marker initially set at North by

moving the mouse and to confirm the location with a click. Participants received

the stimulus until their response was confirmed and the next stimulus was applied.

For each stimulus, the participant’s response and the set of vibromotor intensities

are logged. Upon completion of the test phase, participants continued with the
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introduction phase for the next combination of layout and position.

5.3.4 Data Preprocessing

During the experiment, it was noticed that the circular display was shifted when

participants’ hands were supinated or pronated relative to the rest position (see

Figure 5.4, left), introducing a systematic bias in user responses. In order to avoid

systematic over-estimation of errors due to this misalignment, all user inputs by the

negative mean error were shifted. The mean errors were estimated independently

for each user and body position.

5.3.5 Results

For statistical analysis, let us considered two body positions for each layout, circular

(C): 1) wrist and 2) upper arm, and straight (S): 1) back of the forearm and 2) front

of the forearm, and six perceptual models: power (P), linear (L), log (G), sensitivity-

adjusted linear (LS), sensitivity-adjusted power (PS) and sensitivity-adjusted log

(GS). The independent variables were layout ∈ {C,S}, body position ∈ {1,2} and

model ∈ {P, L, G, PS, LS and GS}.
From each participant’s data for a given layout and position, six sets of encoded

values v were generated, one for each model, by transforming logged vibromotor

intensities to stimulus locations (see Eqns. (5.2)- (5.9)). This avoids repeating mea-

surements with participants and justifies paired t-test comparisons of random sam-

ples. The data within each combination of user, layout and position was randomly

split into equally large training and test sets. The training set was used to infer user

and location-specific sensitivities for sensitivity-adjusted models. The test set was

used to evaluate all models. Thus, all the error rates reported below are based on

the test set only.

The absolute decoding error was estimated as ε = |v − y| ∈ [0, 1], where y ∈ [0, 1]

is the user response and v ∈ [0, 1] is the encoded value. Within each combination

of layout, position, and model, each participant’s central tendency of absolute error

was estimated. As absolute the errors were not normally distributed, the median is

used as the central tendency. This aggregate error was the dependent variable in

this analysis. In total, statistical analysis was based on 16 (users) × 2 (layouts) ×
2 (positions) × 6 (models) = 384 measurements.
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Generic Models Sensitivity-adjusted Models

Layout Position εl εp εg εls εps εgs

Circular
Upper Arm .059 (.014) .054 (.014) .056 (.014) .053 (.016) .051 (.014) .054 (.013)
Wrist .052 (.009) .046 (.006) .049 (.008) .049 (.010) .044 (.008) .048 (.010)
Both .056 (.012) .050 (.012) .053 (.011) .051 (.013) .048 (.012) .051 (.012)

Straight
Front .082 (.031) .082 (.026) .080 (.029) .070 (.018) .074 (.022) .068 (.020)
Back .090 (.022) .085 (.027) .086 (.022) .067 (.018) .073 (.027) .064 (.020)
Both .086 (.027) .084 (.026) .083 (.026) .069 (.018) .074 (.024) .066 (.020)

Table 5.2: Decoding error for each layout, position and model. Notation: εl - linear model, εp - power model, εg - log
model, εls - sensitivity-adjusted linear model, εps - sensitivity-adjusted power model and εgs - sensitivity-adjusted log
model.

Layout εl vs εp εl vs εg εp vs εg εl vs εls εp vs εps εg vs εgs εls vs εps εls vs εgs εps vs εgs
Circular 0.001 0 0.008 0.006 0.205 0.175 0.069 0.925 0.032
Straight 0.603 0.008 0.697 0.001 0.01 0.001 0.116 0.116 0.006

Table 5.3: Statistical significance in p-values of paired t-tests.
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The decoding errors under all tested conditions are given in Table 5.2 and de-

picted in Fig. 5.7. For circular layouts, the power model (P) performed best on

average among all generic models, and the sensitivity-adjusted power model (PS)

showed lowest mean error overall. For straight layouts, the log model (G) outper-

formed other generic models on average, and the sensitivity-adjusted log model (GS)

best-explained user responses overall. Under every single condition, the sensitivity

adjusted model produced a lower mean decoding error compared to the correspond-

ing generic model.

The effects of independent variables on decoding error were analysed using facto-

rial ANOVA. Significant effects were found for layout; F (1, 360) = 175.56, p = 0.0,

and model; F (1, 360) = 4.64, p = 0.0. A significant interaction effect was found

between layout and model; F (1, 360) = 2.7, p = 0.02. There was no significant in-

teraction effect between layout and gender; F (1, 360) = 0.017, p = 0.98, or model

and gender; F (1, 360) = 1.7, p = 0.13.

A separate factorial ANOVA test for each layout is also performed. With the cir-

cular layout, it was found a significant effect of body position; F (1, 180) = 14.15, p =

0.0, but none of the model; F (1, 180) = 1.76, p = 0.12. For the straight layout, body

position had no significant effect; F (1, 180) = 0.20, p = 0.65, but the model did;

F (1, 180) = 4.12, p = 0.001.

The results of post-hoc paired t-tests are presented in Table 5.3. Comparing

generic models on the circular layout, all models differed significantly from each

other, whereas on the straight layout only a significant difference between the linear

model and the log model was found. Comparing generic and sensitivity-adjusted

models on the circular layout, only the linear model showed a significant difference.

On the straight layout, all sensitivity-adjusted models showed significantly lower

error than corresponding generic models. Among sensitivity-adjusted models, the

power model and the log model differed significantly with both layouts.

Inspecting the decoding error observed with circular layouts and the sensitivity-

adjusted power model, there was no significant difference between body positions;

t(32) = 2.04, p = 0.058. Equally, there was no significant difference between body

positions; t(32) = 0.65, p = 0.52 among straight layouts with sensitivity-adjusted

log model.

Pearson correlation analysis confirmed that there was no significant correlation

between the error on the straight layout (using GS) and the forearm size; r =
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Figure 5.5: The sensitivity-adjust linear model (continuous red line) approximates
user’s perception of the encoded value on a straight display. The x-axis represents
the encoded value using a linear model and the dotted lines represent positions of
vibromotors.

0.21, p = 0.22. Similarly, there was neither a significant correlation between the error

on the upper arm display (with PS) and the circumference of the upper arm r =

−0.07, p = 0.77 nor the wrist display the circumference of the wrist r = −0.35, p =

0.17.

5.4 Discussion

This study demonstrated that paricipants can decode a real-valued values with a

mean error of only 4.4% for circular displays (on the wrist) and 6.4% for straight

displays (on the back of the forearm). This low error was achieved with the proposed

method for personalisation of perceptual models for tactile displays using sensitivity

adjustment. The proposed method consistently outperformed the corresponding

generic model with regards to decoding error of real-valued data. This improvement

was significant for the best model (the log model) for straight layouts, validating our
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Figure 5.6: Normalised optimal user sensitivities.

Figure 5.7: Absolute errors for each layout, position and model.

approach. The user study showed that error-reducing local perceptual sensitivities

can be inferred from user data. An example of how a linear sensitivity-adjusted

model approximates user’s perception is presented in Figure 5.5.

Wrist-based circular displays showed lower decoding error than displays worn

around the upper arm. However, there are practical aspects that differentiate those

displays further. Wrist-based displays may be easier to offer as mainstream products

(e.g. alongside smartwatches). The potential for movement around the wrist can,

however, pose problems. The user might interpret values differently when decoding

values from a rotated display, perhaps relative to the body position. This could

be avoided by using motion sensors on the wrist to detect and compensate for the

orientation of the wrist when encoding a value. Such sensors are typically available

on wristbands, but determining the orientation is prone to error. This problem does
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not occur on the upper arm as pronation and supination are not physically possible.

Similarly, a higher accuracy was observed on the back of the forearm than at the

front, but it is often in contact and quite often attached to the body. This could

affect the perception of vibration if the motors are pushed towards the body.

The circular layout performed significantly better than the straight layout. To

some degree that is not a fair comparison, as the former had four and the later

had three vibromotors. Depending on the application and the nature of encoded

values, one layout may be better suited than the other (and vice-versa). For the

applications representing a state of a circular or repetitive processes (e.g. direction

guide, representing an angle, the progress of a lap in a racing game) the circular

display would be a great choice. For other applications, the proximity of two extreme

values in a circular layout and the risk of them being mistaken for each other would

make it an impractical choice.

Figure 5.6 presents the sensitivities of locations for each display averaged among

all users. Note that as the ratio between si values within S is important, the

sensitivities are normalised within S (
∑

i si = 1). Focusing on the front and back

displays, we see that areas near the wrist and the upper part of the forearm are

more sensitive than the middle part. This is in line with findings on vibrotactile

localisation on the forearm by Cholewiak [Cholewiak and Collins, 2003]. There is

considerable variation across participants (visualised by black lines) at each location.

This could be attributed to idiosyncratic variations of sensitivity levels. In addition

to skin sensitivity, factors influencing how strong a vibration is perceived include how

tight a vibromotor is attached to the skin, vibromotor orientation and manufacturing

inaccuracies, especially for cheaper devices. Thus, the test equipment can directly

affect the model.

As presented in the Tables 5.2 and 5.3 the sensitivity adjusted models outperform

generic models in predicting the user perceived value by capturing different levels

of sensitivity of the locations, personal sensitivity variations and the device (vibro-

motor) characteristics within a small set of parameters (si). It is interesting that,

on circular layouts, the sensitivity-adjusted power model is most accurate, whereas,

on straight layouts, the sensitivity-adjusted log model performed best. As there is

no closed form solution to predicting locations with the log model, the process of

computing optimal sensitivities is computationally expensive. However, once the

sensitivity parameters So are estimated, encoding values can be done in closed form
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for all models (Eqns. 5.6, 5.9 and 5.7). Thus, this is not expected to be an important

issue in most of the cases, but designers of wearable devices might consider this in

very specific cases (e.g. this process needs to occur often and the calculations need

to happen in device).

There is room for further improvement on the decoding error rate. In this study

participants used such a display for the first time. Long term use and feedback

on user performance is expected to result in better perception and recognition of

encoded values. Other haptic related studies provide evidence of learning effects

when using vibrotactile devices for longer duration [Kaul and Rohs, 2017, Luzhnica

et al., 2016b].

5.4.1 Potential Usage Scenarios

The proposed tactile displays can be used in scenarios where angular, repetitive or

quantitive information can be encoded, and high precision is not required. Some

such potential usage scenarios are listed in the following:

• Gaming. Both displays can be used in gaming as a supportive modality

of interaction. The circular display could be used to encode states such as

current position in lap when playing a car racing game (e.g. at 45% of the lap),

orientation such as the enemy is coming from left-behind (225◦) in a combat

game, navigation such as turn right or take the 60◦ turn in any game that

requires navigation (car racing, combat, etc...), multiplayer interaction such

as someone is asking for a ball to your top-right (75◦) in a football game. The

straight display could be used to indicate the progress of current level of the

game, the level of ammunition in a combat game, level of damage or the force

of hitting the opponent in a fighting/combat game, travelling speed/racing in

a car racing game, etc...

• Healthcare. Patients with hand amputee prosthesis or neuroprosthesis lack

the tactile and kinesthetic sensation on the hand. While such prosthesis can

help regain grasp function and some basic movements, the user still needs

feedback on simple things such as: how much force is applied, how far is the

wrist rotating. In such scenarios, a straight display can encode the pressure

applied to an object while grasping. The circular display can be used to encode
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the orientation of the hand while pronating and supinating (where the thumb

could be used as a reference vector). Such information is crucial for proving

closed loop control. Although, as for the wearable vibrotactile displays used in

this work, the chosen locations are upper arm and forearm, they can only be

directly applied in scenarios where one of the arms is sensible (perhaps only

one arm is with prosthesis). Nevertheless, the same principle used in this work

can be utilised to provide a haptic display in other body locations.

• Industry/Factory. In industrial and production line settings, often em-

ployees need to interact with the machine through a touch screen or other

conventional interfaces for adopting different settings, observe the results of

the interaction (the product being produced) and maybe obtain instructions

during this process. Some information can be transmitted through tactile dis-

plays to reduce the visual overloading. Employees can feel some of the current

settings (e.g. intensity, temperature, the amount of fuel, etc..) and concen-

trate on the process of the product without needing to look at the display of

machine.

• Fitness. Awareness for everyday activity could be effectively conveyed through

such a haptic display. For instance, the level of progress while running, walk-

ing, stair climbing goal achievements can be reminded to the user (80% of

the goal is achieved). A straight display would be more appropriate for such

encoding but a circular display would be more practical as it could fit within

a smartwatch or wristband. Such devices are very often used to track the ac-

tivities and adding vibromotors would make them bidirectional (sensing and

feedback).

5.5 Summary

This work investigated user decoding precision of spatially modulated real-valued

data, which was decoded by localising spatially continuous, temporally stationary

vibrotactile stimuli. A user study quantified decoding precision using six perceptual

models across two vibrotactile display layouts.

With the goal of improving the decoding accuracy, this work developed per-

sonalised sensitivity-adjusted perceptual models for tactile displays based on the



5.5. SUMMARY 158

linear, log and power models. The user study evidenced that the proposed mod-

els consistently outperform corresponding generic models, increasing the accuracy

of decoding information by participants. The best sensitivity-adjusted models ap-

proximated users’ perception with an average error of only 6.4% for straight display

layouts and only 4.4% for circular display layouts.

Increasing decoding accuracy has the potential to improve the sense of realism

and acceptance by users, and facilitate new applications of tactile displays in a wide

range of real-world application areas.



Chapter 6

Exploring Interactions for Skin

Reading

As portrayed in the Chapter 4 vibrotactile skin-reading uses wearable vibrotactile

displays to convey dynamically generated textual information. Such wearable dis-

plays have potential to be used in a broad range of applications. While vibrotactile

skin reading is very different from visual reading, there are common patterns and

practices from readers that might be shared across all kind of readings. A good

example of such common practices are the evidences produced by studying reading

patterns of visual reading and Braille reading. Despite of being very different in na-

ture, interaction with the text and the navigation through it, remains fairly similar

at its core.

A common belief that reading is a sequential task, where eyes glide smoothly

across the page, is merely an illusion [Rayner, 1998]. At the word level, well-

established research postulated that words are recognised as units [Larson, 2004,

Fisher, 1975, Reicher, 1969, Cattel, 1886] and they are even recognised before in-

dividual letters [Cattel, 1886]. Reading depends on the mechanics of the visual

system to stop at fixed spots in the text (fixations) and jump quickly to other spots

(saccades, covering about 8 letter spaces) [Rayner, 1998]. Skilled readers fixate on

about 2/3 of the words in a text. Beside forward movements to advance in reading,

they reread nearby material backwards in the text about 10 to 15% of the time,

occasionally driven by breakdowns on comprehension. Conversely, beginning read-

ers fixate every word (often more than once), perform shorter saccades, and up to

50% of their eye movements are regressions, as they rely more on context to identify

159



CHAPTER 6. EXPLORING INTERACTIONS FOR SKIN READING 160

words [Rayner, 1998]. Obtaining meaning from printed words is not sequential; it

depends on processing words as units and uses backward jumps at word level to aid

understanding. In Braille, it is not possible to form a global shape recognition of

the entire word, so the text has to be processed character by character [Daneman,

1988, Millar, 2004, Millar, 2003]. The perception and flow of information in Braille

are controlled by moving the hand forward and occasionally backwards to revisit

information [Millar, 2003, Hughes et al., 2011]. Thereby, Braille readers control

reading speed, focus on particular letters or re-scan entire words.

On the other hand, vibrotactile skin reading is passive: a pattern of vibrations

is stimulated by the device from start to end while users have no control over the

transmission. Yet, vibrotactile displays can evoke the perception of words as units,

by means of tactile animations [Kirman, 1974b, Tan et al., 1997]. The question that

drives this research is what interactions are needed for efficient skin-reading? Users

may not understand parts of the text due to lack of concentration or training. They

need ways to pause, resume and jump to previous units of meaning or change the

speed of transmission to account for progress in their reading skills.

To compensate for the drawback of being passive, this chapter investigates what

kind of interactions are necessary for vibrotactile skin reading and the modalities

of such interactions in order to equip users with means of controlling the reading

process. Thus this chapter targets the following research question:

What interactions are necessary for skin reading? What is the preferred

modality for such interactions?

To investigate such skin reading interaction, initially, an interaction concept is

created to enable reading interactions for vibrotactile displays. A formative study

trained novice users to recognise letters and words, and tested their behaviour while

skin-reading sentences. The study analyses participants’ interaction behaviours and

a questionnaire to determine what interactions are useful and what are the preferred

means of interactions. Finally, this work maps the interactions to gestures and dis-

cuss the wearable design choices that could allow the used wearable vibrotactile

display to be extended for supporting such gesture-based interaction concept. The

work described in this Chapter has already been published in a peer reviewed scien-

tific paper [Luzhnica and Veas, 2018a] (P7) and its findings resulted in contributions

C10 and C11 listed in Section 1.2.
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Sentence Word Character

Repeat n− th character (1− 9)

When done

Current word (↓)Previous word (←)

Next word (→)

Slowdown (−)

Speedup (+)

Repeat

Slowdown(−)
Speedup (+)

Continue (→ if at the end)

Previous word (←)

Figure 6.1: Interaction concept during sentence transmission. States (Sentence, Word and Characters) represent what
the system is transmitting to user.
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6.1 Interaction Concept

This section describes the design of an interaction concept for textual vibrotactile

skin reading, illustrated in Figure 6.1. The concept is based on a virtual fixation

point metaphor. The fixation point represents the word that is currently being trans-

mitted to the user which will be referred to as the current word. While perceiving

text/sentences, at whatever point in time, users have the possibility to request re-

transmission of the current word. In this case, the system transmits the current word

and transfers itself into the pausing state (corresponds to Word state in Figure 6.1)

where no further text is transmitted until resumed.

For elaboration purposes, let us assume that the user paused on the n-th word

of a text. While on the pausing state, the user can repeat the current (n) word

or navigate to the previous (n − 1) word in the text. In this case, the fixation

point shifts to the left in the text and the (n− 1) word is transmitted and becomes

the current word. At this point, the user can repeat the current word (n − 1),

regress to the previous one (n − 2), or go to the next one (n). Hereby, the user

navigates back an forth and scans the text. If the fixation point is at position n and

the user navigates to the next word (beyond the point where it was paused), the

system resumes and starts transmitting the rest of the words. Additionally, when

the system is in the pause mode, the user can repeat particular characters of the

fixated word. Furthermore, users can also change the speed of transmission which

would proportionally change gaps between characters and words; and the activation

time of each vibration motor (see Figure 6.4).

6.2 Study 10: Investigating Interactions and their

Modalities for Skin Reading

To investigate the proposed interaction concept and determine which of the interac-

tions are useful for the user, a user study was conducted. The user study combines

participant training and testing of characters, words and sentences. An additional

goal of the study was to investigate the word recognition process. However, the topic

is out of the scope of this chapter, and thus the results and findings concerning this

investigation are deferred to future work.
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Figure 6.2: The used vibrotactile display containing six vibromotors. The design
has been borrowed from the Section Section 4.1. The number of the vibromotor
indicates the priority of activation.

.

6.2.1 Wearable Haptic Display Design

A layout design with six vibromotors on the back of the hand is used identical to

the User Study 5 described in the Section 4.1 (see Figure 6.3). With it, the ten

letters in the study can be encoded with combinations of one or two vibromotors.

The rationale behind using only of six vibromotors is that only ten letters will be

encoded for this user study. But, for encoding the entire alphabet, a layout with

more vibromotors as proposed in Sections 4.2 and 3.4 would be a better choice.

6.2.2 Vibrotactile Patterns and Encoding

Each letter is encoded with one or two vibromotors using an OST (overlapped

spatiotemporal) stimulation pattern described in Chapter 3. Moreover, the order

of activation is prioritised by the sensitivity of the finger, since it yields a higher

accuracy in identification of locus as revealed by Study 3 in Section 3.3. Sensitivity

order is assumed according to studies suggesting that sensitivity decreases from the
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index finger towards the little finger: the index finger is more sensitive than the

middle, ring, and pinky finger [Duncan and Boynton, 2007, Vega-Bermudez and

Johnson, 2001, Hoggan et al., 2007]. The thumb is the lowest sensitive [Sterr et al.,

2003]. For instance, for a letter encoded in index and pinky finger, the vibromotor

on index finger would be activated first, and then after a gap, the vibromotor placed

on the pinky finger.

Figure 6.3: The encoding scheme of each character used during the study.

Figure 6.3 illustrates which vibromotors are used to encode each of the charac-

ters used in the study. In addition, Figure 6.4 illustrates the technical details of the

stimulation process of characters, words and sentences. Character encoding uses a

base duration (d) of 200 ms and a 10 ms gap (g) between the activation of vibromo-

tors. This means that the duration of a character (ld) is 200 ms for one vibromotor

and 210 ms for two-vibromotor letters. When constructing words, a between let-

ter gap (bl) of 200 ms is used to separate sequential letters. With such encoding,

a word containing four characters can be transmitted within 1400-1440 ms. Note

that, users can be trained to recognise letters and words with shorter duration when

exposed to longer training periods (see Section 4.2). However, this study aimed at

having training and testing in a single session. Hence, a longer durations was used.

Additionally, sentence encoding uses a between word gap of 600 ms.

6.2.3 Characters

To keep the study in a manageable time, this study use only ten characters: A, E,

I, O, T, N, S, H, D and Y. A small alphabet ensures a shorter period of training

for characters and still enables us to create words and sentences for investigating

interactions.
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Figure 6.4: Stimulation process of characters, words and sentences. Base duration
(d) represents the activation time of a vibromotor. Words in a sentence are trans-
mitted in series separated by a gap (bw = 600 ms). Within words, characters are
transmitted in series with a gap in between (bl = 200 ms). The characters are en-
coded using OST patterns where vibromotors are activated in sequence with a gap
in between (g = 10ms). Note that this figure is included for sake of completeness as
the same concept has already been introduced in the Chapter 4.

Length 2-char 3-char 4-char 5-char

Words
is tea easy shiny
he say does stand
it hot this notes

Table 6.1: The list of words that are used during the user study.

6.2.4 Words

With the chosen characters, a list of 12 words words is composed, containing two to

five characters. The words have been selected from the list of basic English words1

and they will be used to train the user with words.

6.2.5 Sentences

In addition a list of 29 sentences (see Table 6.2) is composed. But only 15 of them

were stimulated during testing, whereas the rest are there just to create more choices.

The goal of the sentences testing was to observe how participants interact with the

system while reading a sentence and how well they perform.

1https://simple.wikipedia.org/wiki/Wikipedia:List_of_1000_basic_words

https://simple.wikipedia.org/wiki/Wikipedia:List_of_1000_basic_words
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He is the one, She is the one, The tea is hot, The sea is hot, It is hot, He
is hot, She is hot, Today is hot, He says no, She says no, I say yes, I say no,
He says yes, She says yes, I say yes, This is easy, It was easy, It is easy, I hate
this, He hates this, Hide this idea, It does stand, This does stand, It is done,
This is done, This is shiny, It is shiny, It is noisy, This is noisy.

Table 6.2: Sentences used during the user study. All sentences (29) were presented
to the user in a list to select from. Only the bold marked ones (15) are used to test
the user. The rest of the sentences (14) are used as decoys to make the process more
challenging.

Figure 6.5: A participant performing a round of sentence reinforcement.

6.2.6 Procedure

The entire study was organised in several blocks which will be referred as rounds,

each serving different purposes:

• Character Training trained users to associate a symbol with a vibrotactile

pattern. During this process, participants were stimulated with patterns rep-

resenting a character, the character was displayed on the screen, and an audio

spelling of the character is simultaneously played as shown in Figure 6.6. Such

a simultaneous technique of tactile, auditory and visual stimulation has been

demonstrated to be efficient [Luzhnica et al., 2016b].



6.2. INVESTIGATING INTERACTIONS FOR SKIN READING 167

• Character Reinforcement. Participants were stimulated with a pattern and

asked to input the character associated with it. After entering the answer, they

were notified whether their input was correct and saw the correct answer (see

Figure 6.6). This way they would learn from their mistakes. Participants were

allowed to repeat the stimuli before answering.

• Word Training exposed users to simultaneous stimulation of vibrotactile,

auditory and visual stimuli all representing a word. The process was similar

to character training, but instead of characters words were used. Words were

transmitted as a series of characters (see Figure 6.4).

• Word Reinforcement. This is similar to character reinforcement, but words

are used instead. Participants are allowed repeat the stimuli. After stimula-

tion, they were asked to select the answer from a list constructed with all the

words shown in Table 6.1, plus 21 other words words including ”No idea!”.

Participants were instructed to choose ”No idea!” if they do not know what

is stimulated. It was also pointed out to them that for every stimulated word

there are other similar words in the list and thus they should avoid guessing

based on few characters. Upon entering the answer, participants were informed

on the display what would have been the correct answer.

• Words Testing: was similar to word reinforcement, but participants were

not allowed to repeat the stimuli, and they were not notified the correct answer.

• Sentence Reinforcement. The process was similar to the word reinforce-

ment but used sentences instead of words.

Participants were stimulated with a sentence and asked to select an answer from a

list of sentences. As shown in Table 6.2, the list of choices contained 29 sentences

plus the ”No idea” option. However, users were tested only in 15 sentences and

the rest of them were used to make the process more challenging. Each sentence

was composed of three to four words (see Table 6.2). The main purpose of sentence

reinforcement was to study interactions during skin reading.

Participants went through five rounds of character training and reinforcement as

shown in Figure 6.6. The first round was split into two short rounds, where only

half of the characters are used in each (A-T and N-Y). This way participants were
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Figure 6.6: Character training and reinforcement process. Initially only five char-
acters were introduced (A-T) then the next five letters (N-Y). For the the rest of
letter training, all ten characters were used (A-Y). Colour coding: - train round,

- reinforcement round.

introduced first to five characters and then to the next five. The following four

rounds used all ten characters. In every training round, a character was displayed

three times whereas in the reinforcement rounds each character was tested twice.

Thereafter, participants went through a round of word testing followed by a

round of reinforcement using words from Table 6.1. Then, users went through four

rounds of word training each followed by a round of word reinforcement. Finally,

users were subject to one round of word testing followed by one round of word

reinforcement where they were exposed to a combination of words they trained on

(from Table 6.1) and an equal number (balanced by word length) of words they

did not trained on. To finish the study, participants were subject of one round of

sentence reinforcement where each of 15 sentences (see Table 6.2) was tested once.

6.2.7 Interaction

During the sentence reinforcement rounds, participants could use the interaction

concept presented in Figure 6.1. They, could repeat the current word by using the

keyboard space key, navigate words using left and right arrow keys, change trans-

mission speed by using up and down arrow keys. They could choose to re-stimulate

only a particular letter by pressing a number from 1-9, which would re-stimulate the
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n-th letter of the current word. Additionally, participants were able to repeat the

entire sentence by pressing S. During word reinforcement rounds, participants were

also able to repeat the entire word or particular characters of it. Similarly, during

the character reinforcement, participants could repeat the character.

6.2.8 Data Collection

First, all user responses and interactions during testing and reinforcement rounds

were logged. Additionally, at the end of the session, users filled a questionnaire

asking questions about how they would use such a wearable device on a daily basis.

Initially, they were asked to rate whether they find the interactions for skin reading

as: (i) Necessary, (ii) Optional or (iii) Not useful. Also, for each available interaction,

users were asked to rate how often they think they would use it by selecting one of

the available choices:

• Continuously - every couple of seconds or minutes,

• Often - every couple of hours,

• Not very often - every couple of days or weeks,

• Rarely - few times only, and

• Never.

Furthermore, three modes of interaction were proposed:

• Gesture-based: the user uses hand gestures to interact,

• Smartphone-based: an application in the user’s smartphone is used to interact,

• Physical buttons based: physical buttons would be added to the vibrotactile

glove for interaction.

Participants were asked to rate (0-10) how suitable each of the proposed modality

would be for interactions with the wearable display. Furthermore, they were asked

to choose one modality they would use for interactions/commands that they would

use more often and one for the interactions they would use rarely.
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6.2.9 Apparatus

Our device consisted of an Arduino Due board which controls 3.4mm vibrotactile

motors of type ROB-08449 (Voltage range: 2.3V ∼ 3.6V ; Amplitude vibration:

0.8G).

6.2.10 Participants

Twenty-two (22) individuals (12 male and 10 female) aged between 17 and 38

(M=26.7, STD=5.5) years old participated in this study. The overall study took

approximately 90 minutes. Only one of them was left-handed. All of them used the

left hand for stimulation and the right to interact with the computer as depicted

in Figure 6.5. One participant, for personal time constraint reasons, completed the

character and word rounds but did not continue with sentence reinforcement round.

6.2.11 Results

Let us define four common variables: accuracy, repetition, total duration. Accuracy

will be defined as a binary variable set to be one if the user’s answer is correct.

Repetition describes how many times a user repeated the stimulation (character,

word or sentence) within a reinforcement round. The total duration represents the

entire duration from the time stimulation was first initiated by the system until the

user responded, including repetitions. Additionally, let us define an interaction to be

a repetition of any kind. E.g. during sentence reinforcement round, each repetition

such as: current word, previous word, next word, a particular letter of the current

word or the entire sentence is considered to be an interaction. Although, this section

will provide a brief overview of performance to give an impression of users training

level prior to sentence reading, it will mostly focus on interactions during sentence

reinforcement round as the reading performance is out of the scope of this section.

Performance

Each character reinforcement round collected 20 probes (2 × 10 characters) for each

user. Table 6.3 presents the results of character recognition, including the average

accuracy, repetition, duration and total duration. By the third round, participants

could already recall characters with a high accuracy (M=95%). While on the next
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Round Accuracy Total Duration (s) Repetitions
1a 0.98 (0.15) 3.29 (4.03) 0.22 (0.60)
1b 0.82 (0.38) 5.06 (8.41) 0.57 (1.28)
2 0.86 (0.25) 5.57 (9.58) 0.72 (1.52)
3 0.95 (0.23) 5.58 (23.8) 0.72 (1.81)
4 0.95 (0.22) 4.39 (6.56) 0.63 (1.37)
5 0.95 (0.22) 3.33 (5.58) 0.39 (0.90)

Table 6.3: [
Results of character reinforcement rounds. Note that we consider the first two

rounds (1a and 1b) as two parts of round one as each of them contained only half
the characters. This table shows the correct recognition rate (accuracy), average

total duration, average duration and average repetition rate.

Round Type Accuracy Total Duration (s) Repetitions
With Repetition 0.81 (0.39) 12.41 (12.27) 2.32 (4.28)

No Repetition 0.55 (0.50) 9.34 (8.45) 0.0 (0.0)

Table 6.4: Results of word recognition in the last reinforcement (with repetitions)
and testing (no repetitions) rounds.

two rounds the accuracy does not improve, there is an improvement in repetition

and duration which could be interpreted as them being more confident.

For the word recognition, let us focus on the last round of reinforcement and

testing as they are considered to be the end result of the word training process. Note

that, in the reinforcement round users are allowed to repeat word or letters whereas

in the testing repetitions are not allowed. In each of the two rounds, 24 probes were

collected for each user. The recognition accuracy, total duration and repetition rate

are presented in Table 6.4. Additionally, the user recognition accuracy (averaged

per user) is shown in the Figure 6.7. Both Table 6.4 and Figure 6.7 reveal that when

repetitions are allowed, participants achieve a higher accuracy. Furthermore, a chi

squared test reveals that participants achieve a significant higher accuracy (M =

0.81, STD = 0.39) in the round where they can perform repetitions compared to the

round where they are not allowed to repeat (M = 0.55, STD = 0.5); χ2(2, 1056) =

81.67, p = 0.0.

The sentence recognition round collected 15 probes for each user. The average

accuracy, number of interactions, duration and total duration for sentence recogni-
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Figure 6.7: Averaged user accuracy for the last reinforcement (with repetitions) and
testing rounds (without repetitions).

tion are presented in Table 6.5. On average, users needed 37.29 seconds to recognise

sentences with an accuracy of 82%. Figure 6.8 shows histograms of recognition

accuracy, the number of interactions and total duration averaged per user. While

total duration is somehow evenly distributed, that is not the case for the recognition

accuracy. The vast majority of users achieved a good accuracy (see histograms in

Figure 6.8).

Figure 6.8: Histograms showing the distribution of the accuracy and the number of
interaction during sentence recognition.

Interactions

First, let us analyse the interactions in the last round of word reinforcement. On

average participants performed 2.32 (SD=4.28) interactions for each word. From the
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Accuracy Interactions Total Duration (s)

0.82 (0.38) 7.14 (7.59) 37.29 (27.04)

Table 6.5: Averaged sentence recognition results (M, STD).

interactions, participants repeated 67% of words completely (at least once) whereas

they repeated one or more single characters only in 6.8% of the words. Table 6.5

shows that participants needed on average 7.14 interactions to recognise sentences.

Moreover, the histogram in Figure 6.10 shows that the vast majority of users needed

a relatively low number of interactions. Eleven users needed on average five or

fewer interactions per sentence but some users performed even over 20 interactions

per sentence. Generally, word repetition was used (at least once) in 82.8% of the

sentences, character repetition in 6.3% of them and sentences were repeated entirely

in 21.2% cases. Within word interactions, 62.8% of them were repetition of current

word, 25.6% of them were repetition of the previous word and only 11.6% were a

repetition of next word in the sentence.

Figure 6.9 shows the overall state transitions probabilities between interactions

during sentence reading. The chart is constructed from the interaction data of the

sentence reinforcement rounds. The transition plot in Figure 6.11 shows the state

transitions probabilities for the first ten iterations of interactions. The start state

represents the time point when the sentence is fully transmitted the first time. The

finish state represents the user providing the answer for sentence recognition.

The most likely interaction at the start is repeating the current word (probability

= 0.57). Participants were also likely to start with previous word interaction (0.23)

which could be interpreted as they already understood the current word. Precip-

itants were also likely to start with repeating the entire sentence (0.17). After a

current word repetition, participants were most likely to continue with another cur-

rent word repetition (0.6), meaning that they did not understand the word from the

last repetition. They were also fairly likely to continue with previous word (0.16)

or next word repetitions (0.1). They were quite likely to provide the answer (0.10).

After a previous word repetition, participants were most likely to continue with an-

other previous word repetition (0.38), meaning that they understood the word that

was repeated and they were scanning the sentence backwards. They were also highly

likely to continue with current word repetition (0.36), in cases where they did not
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Figure 6.9: State transitions probabilities between interactions for sentence reading
constructed from the sentence reinforcement round. Interaction states: S -start, CW
- current word, PW -previous word, NW - next word, C - character, SE - sentence,
F- finish.

understand the repeated word. On the other hand, they were relatively less likely to

continue with a next word interaction (0.1). They were quite likely to provide the

answer (0.16), meaning that they finished backwards scanning. After the next word

repetition, participants were most likely to use a current word repetition (0.48) in

the case where they did not understand the repeated word. They were also likely

to use the next word interaction (0.18) again; scanning forward the sentence, or use

the previous word interaction (0.1). They were quite likely to provide the answer

(0.22), meaning that they finished forward scanning.

After the entire sentence repetition, users were most likely to continue with

another sentence repetition (0.47), which could be interpreted as some users were

simply repeating the sentence over and over until they were able to understand

it completely. Such an interaction was relatively less but still likely followed by

current word repetition (0.13) or previous word repetition (0.09). Users also were

likely (0.3) to provide an answer. A similar behaviour pattern occurs after character

repetition. Users were most likely (0.9) to repeat character again as users who used

this interaction were repeating different letters of the current word.

Only five users adjusted the transmission speed during sentence recognition. Two
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of them set it to a higher than the default speed whereas three did slow it down.

Figure 6.10: The relation between average sentence recognition accuracy and av-
erage number of interactions. The bar plots on the top and on the side represent
histograms of the variable in the given axis. The contours represent the multivariate
distribution of both variables. The straight line and the shades around it represent
the fitted regression and its confidence. The Pearson correlation index and the
confidence value are annotated as r and p.

Additionally, let us explore the relationship between sentence recognition accu-

racy and the number of interactions. Figure 6.10 shows that there is a positive Pear-

son correlation between the average recognition accuracy and the average number

of interactions, meaning that users that interacted more, also recognised sentences

more accurately; r = 0.47, p = 0.03.
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Figure 6.11: State transitions diagram between interactions for the first ten interaction durin g the sentence reading.
Interaction states: S -start, CW - current word, PW -previous word, NW - next word, C - character, SE - sentence, F-
finish. The size of the bar represents the probability of being in that state for the given interaction whereas the width
of the arrow represents the probability of the state transition.
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Questionnaire

On the question of how useful they found the interaction concept when performing

sentence reading, 76% (16) of users rated it as ”Necessary”, 24% (5) of them rated it

as ”Optional” and no user rated it as ”Not useful”. When asked why users thought

such an interaction was optional, they all argued that with a proper amount of

training they would get proficient and there would not be a need for such interaction.

User ratings on how frequent they think each of the commands/interactions they

would use are presented in Figure 6.12. For all word repetition interactions: repeat

the current word, previous word, and next word, the vast majority of participants

thought that they would use them continuously (every couple of seconds or minutes).

Quite contrary, for adjusting the speed the majority if users think that they would

rarely use. For repeating the n-th character of the current word, there is some

divergence. While most of the users think that they would never use it, two users

think they would use it continuously, and another four think they would use it often.

User ratings on how suitable the proposed modalities of interaction would be for

skin reading application are presented in Figure 6.13. Gesture interaction received

the highest rating (M = 7.9, STD = 1.7). But, a paired t-test reveals that the

difference with physical buttons interaction (M = 6.57, STD = 2.99) is not signif-

icant ; t(42) = 1.72, p = 0.101. On the other hand users rated gesture interaction

(M = 7.9, STD = 1.7) significantly higher than interaction using a smart phone

(M = 4.76, STD = 2.64); t(42) = 4.1, p = 0.0012. Additionally, when users were

asked to choose one preferred modality of interaction for commands they would

regularly and for ones they would rarely use, users mainly prefer gesture-based in-

teraction for regular interactions and smartphone-based interaction for rarely used

interactions (see Figure 6.13).

6.2.12 Discussion

This study was designed to investigate and identify useful interactions for skin read-

ing with a wearable vibrotactile display. The evidence from all sources such as

user performance, interaction behaviour and questionnaire point out that when per-

forming skin reading, users benefit from means of interactions with the vibrotactile

2The significance level is considered α = 0.025 according to Bonferroni correction for two com-
parisons
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Figure 6.12: User ratings on how frequent they think they would use each of the
interactions for text reading through a vibrotactile display.

display. First, the majority (76%) of the users explicitly expressed in the question-

naire that they think having interactions similar to the aforementioned experiment

is necessary for skin reading. While some users (24%) expressed that when profi-

cient, they would not need interactions, none of the believed that such interactions

were not useful at all.

The necessity for interactions is also expressed in users’ performance during

sentence and words recognition. Interactions had a positive effect on the recognition

accuracy. Participants performed significantly better (see Figure 6.7) in the word

recognition rounds where repetition was allowed. Additionally, participants who

on average performed more interactions in sentence recognition, achieved a better

accuracy (see Figure 6.10).

Interaction usage also demonstrates that the interactions were necessary. Par-

ticipants, on the last round of word recognition with repetition, on average needed

2.32 (SD=4.28) interactions for each word. Furthermore, they used on average 7.14

interactions for each sentence during sentence recognition.

As participants had no prior experience in skin reading, this study shows that at

least for novice users, interactions are crucial. Users with minimal training can start

perceiving words and phrases and would be able to understand them if the navigation

interactions are at their disposal. Thereby, users do not need to become proficient
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Figure 6.13: The box plot on the left visualises user ratings (0-10) on how suitable
different modalities would be for interactions with a vibrotactile display during skin
reading. The bar plot on the right visualises user preferences choices on which
modality would be more useful for interactions/commands that they would use very
often (at least every couple of hours) versus the interactions they would use rarely.

before they can start using such a wearable device. On the other hand, as users’

skin reading skills increase, they would presumably need fewer interactions. They

might learn to recognise entire words as units similar to visual reading [Woodworth,

1937, Smith, 1969, Fisher, 1975, Reicher, 1969, Cattel, 1886]. Nevertheless, that

does not invalidate the need for interactions. First, users might need to repeat

certain words from time to time as result of attention breaks or simply due to

misperception. In both visual and Braille reading such interactions occur very often

even if readers are not aware of it as it occurs unconsciously and naturally. Readers

jump backwards to revisit already visited letters and words [Larson, 2004, Rayner,

1998, Rayner et al., 2001, Rayner et al., 2010]. This phenomenon is known as back

regression, and skilled readers make regressions back in 10 − 15% of the reading

time [Rayner, 1998, Rayner et al., 2001, Rayner et al., 2010]. Such regression is

common practice also in Braille reading [Millar, 2003, Hughes et al., 2011].

Besides emphasising the importance of interactions in skin reading, this study can

be used to derive details of which interactions are most important. Both behaviour

analysis and questionnaire analysis confirm that word repetition, and navigation

interactions are critical. Participants used word interaction in 82% of sentences and

the vast majority of users were convinced that such interactions would constantly
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be used. Repeating the n-th character of a word was rated as unnecessary by users

and was mostly irrelevant to sentence recognition. A closer look at the usage of this

interaction reveals that it was only used by seven participants. One participant used

it in every sentence; one user used it only in two sentences whereas five users used

it only in one sentence. Thus, only one user used character repetitions regularly in

sentence recognition, whereas the rest did try to use them in one or two sentences

to explore how well that would work but did not continue afterwards with the rest

of the sentences. Adjusting the speed seems not to be frequently used. It was used

only by five participants. Participants set the speed they were comfortable with

and used it for the rest of the sentence recognition. This was also mirrored in the

questionnaire where most of the participants expressed that they would only use it

a few times during the lifetime of such device. Most of the participants pointed out

that they would use it in accordance with the progress of their skin reading skill.

Interestingly and contrary to expectations, the repetition of the entire sentence

was used by some users. Although, they were a small number, yet it was not

expected for any user to rely on it. The prior expectation was that at first, users

might be tempted to try it, but they would realise that it is challenging with their

level of training to perceive the entire sentence at once. Such a scenario did occur

with five users, where they used it only in four sentences or less. As shown in the

Figure 6.11, at the first, second or third interactions some users switch to word-based

interactions. Initially, they were curious and tried it for one or two iterations (see

Figure 6.11), but then realised it was difficult and switched to other interactions.

However, there were users who persisted using sentence repeats. Three users relied

on this interaction almost entirely (used in more than 12 sentences), and two others

used it moderately (in 7-9 sentences). Figure 6.11 shows that some participants

repeatedly used this interaction until they provided an answer. Although it was

interesting to provide such interaction within the frame of this study and explore

user behaviour, only a small number of users used them. Moreover, in a real-world

scenario, where text contains multiple sentences, and they are much longer, repeating

the entire text might not very be useful as it does not scale.

The questionnaire reveals that the preferred modality for constantly used inter-

action would be gesture-based, whereas participants would prefer a settings smart-

phone application for rarely used interactions (adjusting the speed). For the con-

stantly used interaction, one would need to provide a gesture-based system that
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would support the basic interactions: repeat the current word, go to previous word

(and transmit it) and go to next word. Such a system would be a simplified version

of the interaction system initially designed (see Figure 6.1). Stopping and resuming

to transmit the rest of the text could be automatically achieved using the current

word and next word interaction as explained in Section Interaction Concept.

6.3 Gesture Based Interaction

. One conclusion of the above described user study is that word navigation and rep-

etition interaction are necessary for vibrotactile skin reading and that the preferred

modality of such interactions is gesture based. Besides user preferences, from the

engineering, designing and manufacturing perspective, a gesture-based interaction

would be a perfect fit for a glove-based vibrotactile wearable display as the same

glove could be equipped with sensing capabilities to enable gesture recognition. In

this section, the interactions that resulted from the previous user study are mapped

to hand gesture interactions and it is explored what sensors would be required to

recognise them.

6.3.1 Gesture Mapping

The previous study concluded that only the interactions related to word navigation

are essential for skin reading. In this section each of them is mapped to a hand-based

gesture. The used gestures should be easy to remember, fast to perform, and contain

simple movements so that they can be recognised with a minimal set of sensors.

Thus, let us map the previous word interaction to swiping left gesture and next word

interaction to swiping right. The mapping is natural, as it corresponds to movement

of focus point within the sentence. Additionally, the interactions are easy to perform

and considered in the research community as natural hand gestures [Romaszewski

et al., 2014, Glomb et al., 2012, Luzhnica et al., 2016a] meaning that most users

would be familiar with them. As for current word interaction, let us map it to swipe

up gesture as it shares the simplicity and popularity with the other selected gestures.
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6.3.2 Gesture Recognition

Gesture recognition has been a subject of many researchers. At a core abstract level,

the main approaches for gesture recognition has been based on either environmental

sensors such as: camera [Dardas and Georganas, 2011, Chen et al., 2007, Garg

et al., 2009, Dardas and Georganas, 2011, Birk et al., 1997, Hasan and Mishra,

2012], radar signals [Fan et al., 2016, Lien et al., 2016] wifi [Li et al., 2016, Pu

et al., 2013], etc... or hand/body-worn sensors such as : motion sensors, flexion

and pressure sensors [Luzhnica et al., 2016a, Murakami and Taguchi, 1991, Xu,

2006, Neto et al., 2013, Zhang et al., 2009]. Even though each of them has its

advantages and disadvantages, for the skin reading, wearable based sensors approach

is a more suitable solution. First, it is not bound to the location (where sensors are

placed) and second, adding the sensors to the same wearable glove, makes the setup

much more convenient.

Many gesture recognition systems using wearable sensor have been proposed

over the years, most of them rely on either hand worn sensors [Luzhnica et al.,

2016a, Murakami and Taguchi, 1991, Xu, 2006, Neto et al., 2013, Zhang et al., 2009]

or wrist-based sensors [Han et al., 2015, Van Vlaenderen et al., 2015, Xu et al.,

2015, Zhao et al., 2015]. For recognizing gestures, typically statistical and machine

learning approaches such as neural networks [Murakami and Taguchi, 1991, Xu,

2006], support vector machines [Luzhnica et al., 2016a], linear discriminant analysis

(LDA) [Luzhnica et al., 2016a, Glomb et al., 2012], logistic regression [Luzhnica

et al., 2016a, Zhao et al., 2015], decision trees [Zhao et al., 2015], etc.. have been

employed.

The gesture recognition system used in this work utilises an existing framework

and dataset from a previous work (Luzhnica et al. [Luzhnica et al., 2016a]). There

the authors, collected data from 18 participants performing 31 gestures using a

custom made data glove, where each participant performed each gesture 5-10 times.

The data were annotated manually. Their data glove was equipped with seven

inertial measurement units (IMU), one on each finger, one on the back of the palm

and one on the wrist. Additionally, the glove was equipped with 13 bend sensors to

cover main finger joint and wrist movement; and also five pressure sensors on each

fingertip. The recording frequency of data glove was 85Hz (85 frames per second).

For their recognition system, the authors used a sliding window approach upon which
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they extracted time domain features such as minimum, maximum, range, average,

standard deviation and signal energy and time domain features such as Fast Fourier

Transform for every sliding window. The authors evaluated different parameters

for sliding window and different machine learning algorithms. They concluded that

using LDA for dimensional reduction and then logistic regression for classification

yielded the best results, where they achieved a f1 score accuracy of 98.5%.

The apraoch of data processing, algorithm, training and evaluation procedure

will be compleatly borrowed from the previous work [Luzhnica et al., 2016a]) and

thus some of the extensive details (c.f., [Luzhnica et al., 2016a]) will be skiped in

this section. From the dataset provided by the authors [Luzhnica et al., 2016a], only

three (swipe left, right and up) gestures are utilised. Thus this work also explores

what sensors are required to correctly identify the given gestures. More precisely,

two particular sensors from the orginial set are explored: IMU on the back of the

and the IMU on the wrist. Such motion sensors should be sufficient to capture

motion characteristics of the intended gestures.

Considering that the number of gesture classes is reduced to three, the number

of windows with rest class is very imbalanced. The rest class represents the data

where the user is not performing any gesture such as: not moving or performing

arbitrary movements. Thus he number of windows with rest class is reduced by

randomly sampling a portion (5%) of them. In total, the entire resulting dataset

(both training and test) contains 2959 windows. Similarly to LDA orginal work

on building a gesture recognition [Luzhnica et al., 2016a] system, for dimensional

reduction and logistic regression for classification trained on the training set which

represents the 80% the data. The test set (the rest 20% the data) will be used to

report on performance.

With only the IMU on back of the hand, the resulting classifier achieves a f1

score accuracy of 98.4% on the test set. Using only the IMU on the wrist results in

an accuracy of 96.5%.

6.3.3 Lessons Learnt

Overall using a single motion sensor (IMU) one would be able to recognise the

necessary gesture-based interactions with a very high accuracy. The gestures can be

better recognised by placing the sensor on the back of the hand (98.4%) as opposed



6.3. GESTURE BASED INTERACTION 184

Wrist Palm

I L R U I L R U

I 385 4 2 2 386 3 1 2
L 5 61 2 0 1 68 0 0
R 2 3 54 0 2 0 57 0
U 0 0 0 60 0 0 0 60

Table 6.6: Confusion matrix for classification in the test set using IMU on the wrist
(left) and IMU on back of the hand (right). Classes: I - rest, L - swipe left, R -
swipe right, U - swipe up.

to placing on the wrist (96.5%). The confusion matrix presented on Table 6.6 reveals

that when using only the IMU on the wrist, there are some more misclassifications

for classes left, right and the rest. Such misclassifications are less evident when

using the IMU on the back of the hand. This could be explained by the fact that

such gestures involve physical flexion and extension of the wrist which can easily be

captured by the sensor on the hand but not on the wrist.

However, besides the accuracy, there are design and practical implications that

might influence the decision of sensor location. First, there is a vibromotor located

on the back of the hand of the used vibrotactile wearable glove (see Table 6.2),

which is approximately located nearby the IMU on the data glove used to record

the data [Luzhnica et al., 2016a]. Having both IMU and a vibromotor nearby might

introduce noise in measurements when the vibromotor is active. A possible overcome

could be achieved by shifting in opposite direction (left and right) to maximise the

space in between. Alternatively, one could move the IMU on the palm side of

the hand. On the other hand, a wrist-worn device makes it impossible to wear it

along watches or wristbands. However, considering that a lot of users might already

possess smart watches or wristbands equipped with a motion sensor, the motion

data from their existing watch or wristband could be used to classify the required

hand gestures. This would reduce both costs and power consumption of the wearable

vibrotactile display.
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6.4 Limitations and Future Work

One limitation of the proposed interaction system is that it deals only with text

reading and not text comprehension, and thus it does not offer means of navigation

beyond neighbouring words. For instance, while reading, users might want to revisit

text 3-4 sentences backwards to better comprehend the text. Although, jumping

larger portions of the text such as sentences could be provided analogously to the

current proposed interactions. Such interaction could be mapped to rotation-based

gestures like hand pronation and supination which could be easily be recognised

using the motion sensors that proposed in this work. For that, we would need to train

users for longer periods so that they would be able to perceive and understand larger

messages in the first place. Furthermore, this work does not evaluate whether hand

motion while performing the gesture could affect the ability of the user to perceive

information during skin reading. Such effects need to be studied. If that were the

case, a less convenient solution would be to use one hand for skin reading and the

other one for interaction. Both limitations mentioned above will be considered for

conducting additional studies in the future which is outside of the scope of this

thesis.

6.5 Summary

This chapter investigates interactions for skin reading using a wearable vibrotactile

display. Initially, an interaction concept for skin reading is proposed. In addition, a

formative study with 22 users is conducted to evaluate the proposed concept during

word and sentence reading with a six-channel wearable vibrotactile display. Partici-

pants were trained to recognise ten characters, trained on words and then tested on

word and sentence recognition, during which they used the designed interactions.

Furthermore, participants filled a questionnaire expressing their opinion about the

interaction concept in general, different interactions within it and their preferred

modality of interaction.

The results of the conducted user study and analysis of questionnaire indicated

that interactions are beneficial for skin reading. Furthermore, this study shaped the

proposed interaction concept by characterising interactions like character repetition

as not necessary and transmission speed adjustment as less important. As a result,
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the end concept contains three main interactions, all of them providing word rep-

etition and navigation within the sentence. For interaction modality, participants

preferred gesture-based interactions. Following such a preference, the interaction

concept was mapped to swipe-based hand gestures. Furthermore, motion sensors

on the back of the hand and wrist are used to examine how well such gesture-based

interactions would be recognisable using machine learning algorithms. The results

of the study showed that a single motion sensor either on the wrist or hand is suf-

ficient to recognise the gesture-based interactions with a high accuracy. Also, hand

(98.4%) is a better choice for locating the sensor compared to wrist (96.5%) in terms

of gesture recognition accuracy. Such a sensor could be incorporated into the same

wearable glove providing one single solution for both skin reading and interaction.

Thus, this work could serve as a guideline for designers and manufactures of such

wearable vibrotactile displays.



Chapter 7

Summary and Conclusion

Conveying rich content through wearable vibrotactile displays presents opportuni-

ties for applications in various use cases involving general purpose usage or sensory

substitution for users with visual or auditory impairment. When conveying such in-

formation, systems typically suffer from slow speed of transmission, comprehension

inaccuracy (from users) or extensive training. The relationship between those three

dimensions is inverse as improving one aspect degrades other aspects. This the-

sis investigates and proposes methods for conveying textual information as well as

continuous numbers through wearable vibrotactile displays. In both cases, it starts

from the ground up, by constructing stimulation methods, information encoding and

wearable layouts to convey the information. When encoding information, it lever-

ages the sensitivity of the stimulated locations and uses data-driven approaches to

optimise the encoding in order to increase the information comprehension accuracy.

In the case of textual information, the process should optimise for both trans-

mission speed and comprehension as for the vast majority of use cases; users should

be able to perceive the text fast enough and also understand in precisely. Thus ini-

tially, in Chapter 3, this thesis proposes vibrotactile patterns that are discriminable

when stimulated within relatively short durations (∼100ms). Results of three user

studies (in sections 3.1, 3.2 and 3.3) make a convincing case that the proposed

sensitivity prioritised overlapping spatiotemporal (OST) patterns indeed provide a

suitable mechanism for accurate perception when stimulated in short durations. In

addition, Chapter 3 also takes the task of designing wearable display layouts that

are suitable for stimulating such OST patterns. Initially, it uses hand based (on the

back of the hand) and forearms based layouts with six vibromotors (see Section 3.1).

187
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After evaluating the applicability of such layouts for skin reading in Chapter 4, it

proposes a hand based layout with 8 vibromotors (see Section 3.4) which provides

enough OST patterns to encode up to 36 discrete symbols (e.g. numbers, letters,

phonemes, etc..).

Chapter 4 utilises the proposed layouts and OST patterns for skin reading. First,

a letter encoding is introduced based on the frequency of letters, which maps more

frequent letters to OST patterns that are composed of fewer vibromotors. Second,

the methods to combine a series of patterns into words and sentences are intro-

ducted. Additionally, a training program was developed to teach users to associate

OST patterns with the represented letters. A study (in Section 4.1) puts participants

through the training program and evaluates their comprehension level of vibrotactile

encoded letters and also words represented as a series of letters. Despite demon-

strating that when using the proposed methods (patterns, stimulation, layouts and

encoding) users can comprehend the encoded information with relatively high accu-

racy, the user study also reveals some limitations of wearable designs, OST patterns

and encoding which are responsible for misinterpretation of encoded information by

users. To account for such limitations, this thesis proposes a two-step optimisation

process which extends the wearable layout and also optimises the encoding of sym-

bols using a data-driven approach that leverages the bigram probability distribution

for a given language. A second user study (in Section 4.2) evaluates such optimisa-

tions and reveals that they drastically improve the comprehension accuracy of both

letters and words where participants were able to recognise them (both letters and

words) with an accuracy of 97%.

Chapter 4 also presents two other user studies investigating the interactions of

skin reading with other activities. The first of one (user study 7 in Section 4.3)

evidences that vibrotactile encoded symbols can be perceived very accurately also

while performing other tasks without affecting the performance of the other con-

current tasks. Such results emphasise the potential of skin reading in multimodal

interactions and multitasking scenarios. Whereas the later user study (user study 8

in Section 4.4) evidences that passive haptic learning (PHL) could be an alternative

for training users for skin reading. Although the learning effect seems to be not at

the same level as the active learning where users focus actively on the training, PHL

allows users to be trained while performing other activities such as playing video

games which might make the training process more appealing for some users.
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Chapter 5 deals with encoding of continuous numerical values for inaccuracy

tolerant applications. It provides progressive bar inspired layouts and intuitive in-

formation encoding which require no training and have a small number of actuators

as a tradeoff for a level of inaccuracy in the comprehension of encoded information.

It proposes four vibrotactile wearable layouts in a straight form or a circular one

and also a phantom based encoding of information to encode continuous numerical

values. Furthermore, it proposes to extend the existing phantom based perceptual

models by incorporating the sensitivity of the stimulated location into the model.

To infer the relative sensitivity of locations, it proposes a data-driven optimisation

method which requires a short calibration. The entire process of calibration and

optimisation results in personalised user sensitivity adjusted models able to predict

users’ perception more accurately. Thus such sensitivity adjusted perceptual models

are able to encode information more precisely than the other generic existing mod-

els. Overall, Chapter 5 shows that the designed layouts, the proposed stimulation

method and the sensitivity adjusted models could be used to encode continuous nu-

merical values that can be decoded with a relatively tolerable inaccuracy (5%−7%)

for many applications.

Lastly, Chapter 6 addresses the interaction aspect with a vibrotactile wearable

display. It proposes to incorporate interactions into the skin reading process to

allow the user to control the flow of information. Initially, an interaction concept is

introduced and evaluated using a user study. The results of the study show that only

higher level unit interactions such as word base interactions are necessary whereas

the interactions with letters are neither utilised nor desired by users. In addition,

the user study reveals, that users prefer hand gesture interactions as an interaction

modality. As a result, Chapter 6 also proposes hand gestures for such interactions

and a wearable sensor-based solution for recognising such gestures.

Overall this thesis uses two main approaches to increase the performance of com-

prehension when conveying information and such approaches are leading contribu-

tors to the success of conveying the textual information as well as in the conveying

of continuous numerical information. The first approach is to leverage the sensi-

tivity of the location when stimulating patterns. In the case of conveying discrete

symbols (for textual information in skin reading), the OST patterns are used where

the stimulation is prioritised based on the sensitivity of the location. In the case

of continuous numerical values, again, the sensitivity of the location is leveraged to
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build sensitivity adjusted perceptual models which can be used to predict user’s per-

ception better and therefore more accurately encode the information. The second

approach is the use of data-driven optimisation methods to optimise and refine the

encoding of information. For encoding discrete symbols, the encoding is optimised

by using the bigram probability distribution for a given language in order to min-

imise the occurrences of two subsequent letters (in a word) that share a vibromotor.

This is achieved by defining a cost function which measures such sharing of vibro-

motors for any given encoding in a language and then constructing an algorithm

which minimises such a cost function. Similarly, when encoding continuous numer-

ical values, a data-driven optimisation is proposed, that minimises a defined cost

function to drive the relative sensitivities of the stimulated locations. In both cases,

such data-driven optimisations significantly improve the comprehension accuracy of

the encoded information.

7.1 Research Questions

At the beginning of this thesis (see Section 1.1), four main research questions were

defined, which then were addressed using ten user studies and described in four

chapters of this thesis. Note that as for the first research question, four user stud-

ies were conducted (see Chapter 3), there were several research sub-questions that

those studies answered. However, they were all related and centred around the

first research question of this thesis as they all investigated different details and

granularities of vibrotactile patterns and layouts of wearable vibrotactile displays.

Similarly, for the second research question of this thesis, four user studies were

conducted which answered other sub-questions centred around the second research

question of this thesis. This section will discuss those four main research questions

and elaborate on how they were addressed and answered but without focusing on

the sub-questions of each study. Note, for the sake of completeness and readability,

some of the clarifications included in this section overlap with a description of the

research questions in the Introduction (in Section 1.1) of this thesis.
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7.1.1 RQ1: Constructing vibrotactile Patterns Optimised

for Throughput and Perception

Do the overlapping spatiotemporal patterns result in better identification accuracy

than the baseline spatial patterns on the hands and forearms?

This research question takes the challenge of finding vibrotactile patterns which

are optimised to be short so that they can allow high throughput when combined in

complex messages and at the same time are highly distinguishable so that they can

be identified correctly. This problem is addressed in Chapter 3 where it proposes

the overlapping spatiotemporal (OST) patterns as a good option for maximising

throughput and accuracy. Four user studies investigate the accuracy of such vi-

brotactile patterns compared to spatial patterns and also investigate suitable body

positions for such vibrotactile patterns.

The first user study (in Section 3.1) proposes and evaluates overlapping spa-

tiotemporal (OST) in comparison with spatial patterns. In addition, it proposes

and investigates three wearable vibrotactile layouts for perceiving such patterns.

The study is able to identify two of the proposed wearable layouts as being suitable

for the perception of such patterns and also revealed that OST patterns are per-

ceived more accurretely than spatial patterns. The third user study (in Section 3.3)

reveals that prioritising the activation of vibromotors based on the sensitivity of

locus increases the identification accuracy of OST patterns significantly. Moreover,

the fourth study (in Section 3.3) extends the hand based layout by adding more

actuators and then investigates the perception of OST patterns in the proposed new

layout. The end result of this user study is a layout with eight suitable locations of

actuators which are suitable for perceiving OST patterns accurately.

To directly approach the research question, overall the studies presented in Chap-

ter 3 provide evidence that indeed overlapping spatiotemporal patterns result in a

better identification accuracy than the baseline spatial patterns on the hands and

forearms and the identification is further improved by prioritising the activation of

vibromotors based on the sensitivity of locus.

7.1.2 RQ2: SkinReading - Conveying Natural Messages

Are overlapping spatiotemporal patterns suitable for vibrotactile skin reading on the

hands and forearms? More specifically, what performance on the recognition of let-
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ters and words can participants achieve with few hours of training?

The second research question investigates the feasibility of using such OST vi-

brotactile pattern first to encode discrete symbols representing the letters of English

Alphabet and then to investigate whether the combination of such vibrotactile sym-

bols can be used to form more complex messages such as words and phrases. This

thesis first proposes an encoding of the English Alphabet to OST vibrotactile pat-

terns. In four user studies presented in Chapter 4, users are trained to recognise

the vibrotactile alphabet. Then, the studies investigate how well users can recognise

symbols encoded by OST patterns, and also how well users can read words when

such symbols are combined into words. Moreover, they identify problems related to

the encoding of the symbols and construction of patterns and reiterate the entire

process in order to maximise the recognition accuracy.

The first user study (in Section 4.1) proposes an encoding for all the letters of

English Alphabet which maps every letter to an OST pattern. The encoding uses the

frequency letters in the English language to provide an efficient encoding scheme. In

addition, the study proposes a training program which is used to teach participants

the proposed encoding. The study evaluates the performance of participants on the

recognition of letters and words after training using wearable vibrotactile displays on

the hands and forearms. Results show that participants are able to comprehend the

information with relatively high accuracy but also it reveals that there are potential

improvements related to layout and encoding. Thus, the second user study (in

Section 4.2) proposes a two-step optimisation process which optimises the layout and

encoding. Furthermore, an evaluation of the impact of such optimisations shows a

drastic improvement in the comprehension of letters and words. Moreover, this study

investigates the knowledge decay of encoding over time as well as the transferability

of encoding knowledge on the untrained body location.

The aforementioned user studies clearly answer the research question. The first

user study (in Section 4.1) shows that indeed OST patterns are suitable for vibro-

tactile skin reading on the hands and forearms using wearable vibrotactile displays

with six vibromotors. Although, the results are very promising and the achieved

comprehension accuracies (of letters and words) stand out compared to the state of

the art (see Figure 2.5 and Table 2.2), this study showed that the layout needs to be

extended with at least one more vibromotor to encode the entire English Alphabet

as the OST patterns should not use more the two vibromotors. It also pointed out
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that the encoding needs to be optimised when conveying words as a series of letters.

Using the extended layout and the optimised encoding in the next user study (in

Section 4.2), participants achieved an astonishing 97% accuracy in both letter and

word recognition.

7.1.3 RQ3: Conveying Inaccuracy Tolerant Quantitative Val-

ues through Wearable Vibrotactile Displays

For scenarios where high precision is not required, can we encode continuous values

using a discrete number of actuators using phantom sensation? More precisely, how

well (with what accuracy) can users decode such encoded values and does sensitivity

adjustment increase such encoding/decoding accuracy?

The third research question moves away from the discrete symbols and focuses

on use cases where continuous numerical values need to be presented to the user.

Unlike in discrete tactons where mistaking of two neighbouring values (e.g. A for B)

is considered to be a high error when dealing with numerical values the magnitude

of error is very important. For instance, mistaking the value of 67% for 65% or

70% might not be a drastic problem, but mistaking it for 15%, might be. Thus this

research question targets use cases which are tolerant to a degree of inaccuracy.

In Chapter 5 a concept is proposed where phantom sensation is used to convey

such continuous numerical values using progress-bar inspired wearable vibrotactile

displays organised in chains of vibromotors. In addition, novel sensitivity adjusted

perceptual models are proposed to better predict users’ perception. To provide an

answer to our research question, a user study (see Section 5.3) investigates whether

such method can be used to convey continuous numerical values and the impact

of the sensitivity adjusted perceptual models. The results show that not only the

phantom sensation could be used for encoding continuous numerical values, but

the proposed sensitivity adjusted models can significantly increase the accuracy of

comprehension. Using circular displays with four vibromotors, participants were

able to decode values with an average of error of 4.4% using wrist layout and 5.1%

using upper arm layout. When using straight displays with three vibromotors,

participants decoded values with an average error of 6.4% on the dorsal (back) part

and 6.8% on the ventral (front) part of the forearm.
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7.1.4 RQ4: Interactions for Skin Reading

What interactions are necessary for skin reading? What is the preferred modality

for such interactions?

When perceiving information, there is a need for repeating or navigating parts

of it by controlling its flow. Users might need to repeat certain words from time to

time as a result of attention breaks or simply due to misperception. In both visual

and Braille reading such interactions occur very often even if readers are not aware

of them as they occur unconsciously and naturally. However, in vibrotactile skin

reading, the user does not control what information is currently being conveyed, and

thus interactions need to be provided to enable such control.

Chapter 6 investigates what interactions are necessary and what is the preferred

modality of such interactions. A study reveals that only higher unit interactions such

as word interactions (previous, next and repeating the current word) are necessary

and users would prefer hand-based gesture interaction for such interactions.

7.2 Contributions

Overall, this thesis provides several contributions relevant to several communities in-

cluding human-computer interaction, wearable computing, and psychophysics. The

contributions lie in the creation of wearable haptic prototypes, stimulation methods,

information encoding, user training and methods for interacting with such wearable

devices, which have been described in details in chapters 3 to 6. This section high-

lights the contributions and elaborates their relevance.

7.2.1 Vibrotactile Patterns

This thesis (see Chapter 3) proposes overlapping spatiotemporal patterns which are

shorter than sequential temporal patterns and can be identified more accurately

than spatial patterns. Moreover, it proposes to prioritise the activation of vibromo-

tors based on spatial acuity to maximise the perception and identification accuracy.

Such patterns are crucial building blocks of the skin reading and one of the ma-

jor contributors to its success using the proposed methods in this thesis. Having

patterns the are discriminable in a very short duration, makes it possible to have
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complex messages conveyed in a short duration, which is very often the major pre-

condition for potential applications of skin reading as the information needs to be

delivered precisely and as fast as possible to be applicable.

Although OST patterns are created with skin reading in mind, they do not

necessarily have to be combined to form more complex messages. They could be

used as stand-alone where they would represent complete messages such as states,

warnings, errors, numbers, etc...

7.2.2 Wearable Vibrotactile Display Designs

While throughout the thesis, several layouts have been investigated for skin reading

on the back of the hands and forearms, it was revealed that at least seven vibro-

motors are necessary to encode the entire English Alphabet. So a wearable hand

based layout with eight vibromotors on the back of the hand was proposed in Sec-

tion 3.4, where its locations have been tested to be suitable in terms of perceiving

OST patterns. The wearable layout has been designed to be packed as a wearable

glove where the fingertips could be left uncovered not to hinder the interaction with

everyday objects. A subset with seven vibromotors is tested in Section 4.2 and it

evidenced that it is very adequate for skin reading. Although in Section 4.2 only

seven out of eight vibromotors have been used as they were enough to encode the

English Alphabet, the layout of eight vibromotors could be used to encode up to 36

symbols, which could be used either to encode the alphabet and other symbols (e.g.

digits) or to encode larger alphabets of other languages.

Additionally, four other layouts on the forearm and upper arm are proposed

for using them to encode continuous numerical values using phantom sensation (in

Section 5.3). Such layouts are able to encode continuous values of directional or

circular nature. The circular layouts have been designed to be packed in the form

of vibrotactile bracelet on the wrist or upper arms whereas the directional ones can

be packed inside a wearable forearms sleeve.
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7.2.3 Methods for Conveying and Encoding Letters of En-

glish Alphabet and Textual Information

When conveying information through means of vibrotactile displays, besides having

perceivable patterns, it is required to have an encoding which maps the vibrotac-

tile patterns to the encoded information. Initially, Section 3.1 proposes a frequency

based encoding of the English Alphabet which follows a simple principle: the more

frequent a letter appears in a language, the fewer vibromotors are used to encode it.

In principle, this is a very appropriate encoding when considering only symbols/let-

ters as the OST patterns with more vibromotors take longer to stimulate and also

the more vibromotors are used (specifically if more than 2), the higher is the chance

of masking one location. Thus such an encoding contributes to faster transmission

of information in general and also fewer comprehension errors on average.

However, as the Section 4.1 reveals, such an encoding is not ideal for combin-

ing symbols in series as when subsequent letters share a vibromotor their patterns

are more prone to masking. Thus Section 4.1.6 proposes an optimised encoding

which delivers outstanding accuracy in terms of its information (encoded letters

and words) being comprehended by users. In addition, this thesis proposes methods

for combining letters into words to form textual information.

7.2.4 Methods for Optimising the Encoding for a given Lan-

guage

In order to avoid systematic errors when conveying words as a series of letters,

Section 4.1.6 proposes a method and an algorithm to optimise the encoding of a

language based on the bigram frequency in the given language. Moreover, it provides

clear steps on how to apply this encoding where it defines a cost function and then

it provides an algorithm for minimising it, which in turn results in an optimised

encoding. The user study conducted in Section 4.1.6 reveals that such an optimised

encoding delivers outstanding accuracy in terms of being comprehended by users.

Even though in Section 4.1.6, the optimisation is applied to encoding of letters

of English Alphabet, it has broader applicability. The same methodology can be

applied to other forms of encodings where the basic unit is not a letter. For instance,

the same methodology can be applied when the basic encoding unit is a phoneme.
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Equations 4.3 and 4.4 could be used almost one to one where only one modification is

required. The bigram probability distribution (BF (l1, l2) in the original equations)

would need to be replaced with the probability distribution of bi-phonemes which

would represent the probability of two subsequent phonemes appearing after each

other in a text. Apart from such minor change, the rest remains the same, including

the definition of minimisation function provided by Equation 4.5 and the Algorithm 1

that solves it.

7.2.5 Training Methods for Learning Skin Reading

This thesis investigates and proposes several methods for training skin reading which

are a subject of Chapter 4. It first (in Section 4.1) proposes an active training which

combines simultaneous visual, auditory and vibrotactile stimulations in order to

train participants to associate the vibrotactile patterns with the encoded informa-

tion. As sections 4.1 and 4.2 show, such a method is very efficient. Then (in

Section 4.4) it also investigates using passive haptic learning as a training method

for skin reading. It demonstrates that indeed passive haptic training could be used

to train users while they perform other activities (e.g. playing games) which might

make the whole process of training less tedious. However, the results of the user

study presented in Section 4.4 also show that such passive training is less effective

compared to active training, especially for some users.

Additionally, Section 4.1 proposes a training program for teaching participants

the skin reading. The program is composed of five sessions and uses the first three

sessions to teach participants the alphabet where letters are introduced gradually.

Whereas the last two sessions serve the purpose of familiarising the participants with

faster transmission of information. The program uses repetitive rounds of training

and reinforcement testing both of which teach users the encoding. Sections 4.1

and 4.2 demonstrate that such a program is very effective. Although it might be a

bit extensive and then perhaps it could be shortened. It remains up to future work

to investigate whether the same results could be achieved using a less extensive

training program.



7.2. CONTRIBUTIONS 198

7.2.6 Background Perception of Vibrotactile Symbols

Section 4.3 demonstrates that the vibrotactile symbols (encoded by the proposed

methods) can be comprehended in the background while performing other primary

tasks. Moreover, their performance is not affected by the absence of presence a

primary task and vice versa. The performance of the primary task is not affected by

the presence or absence of stimuli of background vibrotactile encoded symbols. Such

a revelation gives a tremendous perspective to conveying of vibrotactile information

in multitasking scenarios.

One limitation of the study presented in Section 4.3 is that it does not evaluate

the comprehension of more complex messages such as words and sentences in the

background. The comprehension of complex messages would undoubtedly be of the

most interest and will be considered in the future work.

7.2.7 Knowledge Transferability of the Encoding in Untrained

Body Parts

Section 4.2 investigates and evidences that the knowledge of encoding acquired dur-

ing the training can be transferred to an untrained body part without any training.

In other words, participants can be trained on one hand, and the use the wearable

vibrotactile device on the other hand and still be able to recognise the encoded

letters without any additional training.

7.2.8 Methods for Conveying Continuous Numerical Values

Chapter 5 proposes a method of using phantom sensation to encode continuous

numerical values via wearable vibrotactile displays on the forearms, wrist and upper

arm. It proposes to combine a chain of vibromotors and also the phantom sensation

to stimulate the perception between two vibromotors to provide an encoding for

continuous numerical values.

Such wearable vibrotactile displays target use cases where high precision is not

required as clearly the phantom sensation can be controlled only up to a degree.

Use cases might include progress or states in games, progress during sports activities

(e.g. running, jogging, etc..), grasp force on an object for individuals who lack the

sensation (with prosthesis or hand amputee), etc...
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7.2.9 Extending Perceptual Models for Phantom Sensation

Chapter 5 extends the existing state of the art perceptual models by proposing

sensitivity adjusted perceptual models which are better at estimating the perceived

stimuli when applying the phantom effect. The contribution goes beyond proposing

models that include sensation as Chapter 5 also provides a data-driven approach

for inferring the sensitivities of locations. In turn, this increases the accuracy of

comprehension for the encoded value using the phantom sensation.

This approach uses a short calibration process to collect user data which then

are used to minimise a defined cost function that in turn reveals the sensitivities

of locations for which the models can predict the user perception at best. Such

method makes also the encoding personalised to the user and thus promotes the

personalisations of vibrotactile wearable devices.

While such models are used to improve the encoding/decoding accuracy, given

that they can more accurately (compared to existing models) predict user’s percep-

tion, they can be utilised for other purposes such as vibrotactile animations which

are a typical application of phantom sensation [Israr et al., 2012].

7.2.10 Interaction Techniques for Skin Reading and Gesture

Recognition

Wearable vibrotactile displays are unidirectional in the sense that they convey infor-

mation, and usually, there is no way to control the flow of information. By studying

the reading process in visual and Braille reading this thesis realises the need for bidi-

rectional interaction with vibrotactile wearable displays. Thus, Chapter 6 proposes

to incorporate interactions for skin reading which would allow the user to control

the flow of information and navigate through the text. In addition to proposing

and evaluating an interaction model, it proposes a mapping of such interaction to

intuitive gestures which then can be recognised using wearable sensors.

One limitation of this interaction technique is that it does not go beyond word

based interactions in the sense that it does not provide any means of navigating

through more extensive portions of text (e.g. jumping one or more sentences forward

or backwards). Although Chapter 6 hints on its benefits and it suggest technical

ways to implement such functionality using gesture recognition which is very anal-

ogous with the already implemented functionality, the user study does not evaluate
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its usability aspect. Such an evaluation should be considered in future work.

7.2.11 Wearable Sensory Substitution using Mobile Devices

and Skin Reading

This thesis proposes a novel technique for using mobile phones to provide a solu-

tion for sensory substitution in combination with wearable vibrotactile devices (see

Section 4.5). The solution uses mobile devices to capture the environment which

then is processed, and its content is recognised using machine learning models. The

recognise content is represented in a textual form and then transmitted to the user

through a wearable vibrotactile display. Besides the conceptual work, such concepts

are also implemented in the form of mobile applications. Future work needs to ad-

dress the evaluation of usability with the targeted user groups, which is omitted in

this work.

7.2.12 Hand Gesture Recognition System

Given that hand gestures are used for interacting with wearable vibrotactile displays

this thesis, the author developed a mechanism for hang gesture recognition based on

hand worn sensors. However, the contribution goes beyond recognising a set of small

gestures. Throughout the course of this thesis, a generic mechanism and methodol-

ogy was developed for recognising hand-based gestures using wearable sensors. The

methodology is not an essential part of this thesis, and thus its details are not in-

cluded. However, such work was already published in a peer-reviewed conference

paper, and for the details, the reader is referred to the published paper [Luzhnica

et al., 2016a].

In summary, the method uses a sliding window to extract features in time and

frequency domain which then are used as input to linear discriminative analysis and

logistic regression for classifying the gestures. The work used that methodology to

successfully classify 31 gestures with very high accuracy (98.5%). The contribution

here lies on methodology and mainly on data processing and the pipeline of used

algorithms to build the gesture recognition system.
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7.3 Reflection and Future Opportunities

The work in this thesis was driven by several user studies from which it was able

to design and evaluate methods for skin reading as well as various phenomena re-

lated to it. Its findings and revelations present major contributions in vibrotactile

communication. However, reflections upon the findings of the presented work and

its limitations lead to discussions as well as open up promising directions for future

work, which are explored in this section.

7.3.1 Longitudinal Studies

Chapters 3 and 4 propose patterns that deliver high recognition accuracy when stim-

ulated in relatively short duration which then are very suitable for encoding symbols

and combine them in words. The user study in Section 4.1 shows that participants

achieve an outstanding accuracy of letter and word recognition. Nevertheless, the

user studies that evaluate skin reading are limited to a few hours (≈ 5) of training

and testing. It would be certainly of most interest to conduct longitudinal stud-

ies that observe user’s progress through a more extended period of time as several

interesting observations would be made.

First, it would be interesting to observe how long users need to be trained to

be able to become proficient on reading larger portions of text such as a full story.

The ability to read long stories would be very applicable in some particular applica-

tions such as in sensory substitution for users with visual or adulatory impairments.

Additionally, with more training and more experience, perhaps one could further

increase the transmission speed and the messages would still be comprehensible.

Perhaps one could find the limit to the shortest duration that OST patterns could

encode symbols.

Having proficient participants in reading textual information, would allow us

to investigate cognitive processes being reading or more specific word recognition

models for skin reading. For instance, in visual reading, users recognise words

as units instead of reading them serially letter per letter [Larson, 2004], which is

assumed to be a major factor for reading speed that can be achieved [Millar, 2004].

On the other hand, in Braille reading words seem not to be read as units as several

investigations suggest [Millar, 2004]. Interestingly, words in vibrotactile Morse Code

reading seem to be read as units as indicates [Tan et al., 1997]. It is surprising
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that such reading process in Morse Code is more similar to visual reading than

Braille reading in terms of unit recognition. As for vibrotactile skin reading, one

would expect to be similar to vibrotactile Morse Code reading, given the shared

similarities. However, a longitudinal user study would make it possible to investigate

such a phenomena.

Moreover, having proficient users in text reading who presumably recognise

words as units, it would make it possible to investigate the background perception

of more complex messages such as words and sentences while performing another

primary task as the user study in Section 4.3 was limited to symbols only. Addi-

tionally, it would enable to extend and evaluate the interaction model proposed in

Chapter 6 by including interaction that navigates larger portions of text as already

hinted in Chapter 6.

In addition, longer studies would provide enough time with participants to eval-

uate the comprehension of information outdoors and in different conditions such as

running, talking, driving. For such scenarios, there would be many potential use

cases, especially considering the wearable nature of proposed layouts in this thesis.

7.3.2 Sensory Substitution

Section 4.5 proposes a novel technique of sensory substitution using vibrotactile

wearable displays and the proposed conveying techniques by combining with speech

and object recognition. Such application target users with visual or auditory im-

pairments.

One limitation of this work is that it does not evaluate the usability aspect of

such applications with target users and such an evaluation should be considered

in the future work. Moreover, future work should also elicit requirements of what

information are necessary to convey. For instance, a picture may contain several

objects but the target visual impaired users would be perhaps interested only in

some particular subset of them (e.g. street names, persons, vehicles, shops, etc..).

Similarly, it would not make sense to convey the speech to vibrotactile when the

speaking person is far away as it might not be of interest to the target users. Thus

filtering uninteresting information would improve the usability of such application.

What exactly is to be filtered should be carefully elicited using target users groups.

Moreover, especially in the case of visually impaired users, it might be useful to
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convey data not form images only but also other materials such as books, text doc-

uments, web pages etc... Such documents might contain more complex information

such charts, math formulas, reference links etc.. Text also contains punctuations

and numbers. All of the aforementioned information should be carefully considered

to extend the methods of conveying that is proposed in this thesis and especially

the vocabulary of encoded symbols.

7.3.3 Extending the Dictionary

As the previous section hinted, in order to extend the application opportunities

of skin reading, it might be necessary to extend the vocabulary of encoded sym-

bols. The hand-based layout proposed in Section 3.4 contains eight vibromotors

which are sufficient to encode 36 symbols with OST patterns composed one or two

vibromotors. That is enough to encode all letters of English Alphabet and also

digits (0-9). However, several alphabets of other languages contain more than 26

letters. The text also contains punctuations. Additionally, for sensory substitution

other meta-symbols might be necessary to encode which would indicate the nature

of information (e.g. e hyperlink, image, etc...). Thus for more symbols, additional

vibromotors need to be added to existing proposed layouts.

One possibility would be to combine the back of the hand with the forearm which

would provide enough space to add additional vibromotors. Another possibility

would be to use two hands, each with 8 vibromotors. Such two hands layout would

be able to encode up to 132 symbols, which would be more sufficient for encoding

letters, numerical digits, punctuations, meta-symbols and perhaps some of the most

common words, for most of the alphabets.

7.4 Summary

This chapter summarised the contributions of this thesis and emphasised the findings

revealed through its chapters. It also discussed further research ideas that have

been crystallised while working on the contributions of this thesis with the goal of

providing research directions for future work. I humbly thank the reader for reaching

the end of this thesis.





Appendix A

Gesture Recognition System

In the following the paper [Luzhnica et al., 2016a] on methodology of gesture recog-

nition based on wearable sensors will be included. Note that as this was considered

out of the scope of this thesis, its material was not included in the thesis. How-

ever for references, it will be included in here. Note that the paper is included in

the original version that is published and thus the font, formatting will be different

of that used in this thesis. Additionally, the paper also contains the original page

numbers from the original proceedings [Luzhnica et al., 2016a].
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ABSTRACT

This paper explores the recognition of hand gestures based on a data
glove equipped with motion, bending and pressure sensors. We se-
lected 31 natural and interaction-oriented hand gestures that can
be adopted for general-purpose control of and communication with
computing systems. The data glove is custom-built, and contains
13 bend sensors, 7 motion sensors, 5 pressure sensors and a magne-
tometer. We present the data collection experiment, as well as the
design, selection and evaluation of a classification algorithm. As we
use a sliding window approach to data processing, our algorithm is
suitable for stream data processing. Algorithm selection and feature
engineering resulted in a combination of linear discriminant anal-
ysis and logistic regression with which we achieve an accuracy of
over 98.5% on a continuous data stream scenario. When removing
the computationally expensive FFT-based features, we still achieve
an accuracy of 98.2%.

Index Terms: C.3 [Special-Purpose and Application-Based Sys-
tems]: Signal processing systems I.5.2 [Design Methodology]:
Classifier design and evaluation I.5.2 [Design Methodology]: Fea-
ture evaluation and selection I.5.2 [Design Methodology]: Pattern
analysis I.5.4 [Applications]: Signal processing H.5.2 [User Inter-
faces]: Input devices and strategies H.5.2 [User Interfaces]: Inter-
action styles

1 INTRODUCTION

Gesture recognition has been an active field of research for more
than two decades in human computer interaction. Initially, the mo-
tivation was to detect and recognise sign language [1, 14, 33, 41].
The goal mostly was to develop computing systems that could
understand and translate sign language. More recently, gesture
recognition has gained interest as basis for gesture based interac-
tion in a wide range of use cases, such as crisis management [45],
TV remote controlling [34], interacting with computer [18, 24],
gaming interfaces [23, 26, 45, 52], augmented reality applica-
tions [17, 43, 48, 50], hands-free interaction in car driving [27],
providing virtual training for car driving [50] or detecting a driver’s
fatigue [25]. In the medical area, robot nurses are envisioned to
detect surgeon’s hand gestures and to assist with necessary surgi-
cal instrument [45]. In another type of use case, computer systems
detect gestures in order to understand user activities. For instance,
robots have been envisioned to analyse gestures in order to track
which tasks are already completed in order to be able to seamlessly
take over with the next steps [6, 35]. Sometimes, it is useful to
only observe and document the gestures, as in the case of assem-

∗e-mail:gluzhnica@know-center.at
†e-mail:jsimon@kow-center.at
‡e-mail: elex@know-center.at
§e-mail: viktoria.pammer@tugraz.at

bly lines to document the work for quality assurance [40]. More in
general, the goal to detect assembly line tasks is an area of active re-
search [20, 32, 46, 51]. Gesture recognition has also been explored
in the context of logging activities of daily life: In [38], the authors
explore the possibility to detect eating habits via recognising the
gestures for eating and drinking (bringing the hand to the mouth).
In [39], activity logging based on both smartwatch and smartphone
sensing is used to detect drinking too much coffee or not eating.

With this work we contribute to the field of gesture recogni-
tion by exploring the recognition of natural and interaction-oriented
hand gestures based on sensors worn on users’ hands. To that end,
we designed a custom data glove equipped with sensors that cap-
ture both motion and state of the hand and fingers. We concen-
trated on gestures that are widely known and that can reasonably
be adopted to control and communicate with computing systems.
Our envisioned use case is that of mapping out a general-purpose
gesture alphabet. It should be easy to learn for users, and should
be able to replace some of the interactions with computing systems
(selecting, browsing, etc.) that are currently performed via mouse
or smartphone gestures.

We approached this goal by conducting a data collection experi-
ment in which multiple users performed such gestures. In parallel to
sensing, the gestures were manually annotated with gesture names.
This resulted in a labelled set of hand gestures, which we used to
extract representative features and to train a supervised learning al-
gorithm. Then, we evaluated the performance of our algorithm “on-
line”, i.e. on a continuous sensor data stream. The contributions of
this work are three-fold:

• A data set of natural hand gestures, which were gathered in a
data collection experiment with 18 adults, and are manually
annotated with gesture names.

• Features selection - We identified characteristic features for
gestures and investigated similarities between gestures.

• Algorithm selection - We identified a performant algorithm
for classifying gestures in a continuous sensor data stream.

2 RELATED WORK

We identified two strands of research that are relevant for our work:
firstly, research that deals with vision based systems for gesture
recognition and secondly research that deals with wearable sen-
sors for gesture recognition. In the first case, the gesture recog-
nition relies on an infrastructure built into the environment (e.g.,
using Kinect or webcam) whereas in the second case, the gesture
recognition relies on wearable sensor technologies like data gloves,
armbands or smartwatches.

Vision based systems for gesture recognition. Typically a cam-
era that is mounted in the environment records human hands and the
system extracts features from the individual frames of the record-
ing. Sometimes there is a filtering process involved which removes
unwanted objects like e.g heads from the image or video [7]. Typ-
ically, postures are predicted [5, 7] and then a grammar is con-
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structed to recognise gestures, where a gesture is defined as a se-
quence of postures [9]. For instance, in [7], the authors first de-
tect and track hands and then recognise ten postures with an ac-
curacy of 96% in camera images with a multi-class SVM. Simi-
larly, in [5] a single web cam is used as source, from which the au-
thors extract Haar-like features and use AdaBoost to discriminate
between four postures: two finger, palm, fist, little finger. The au-
thors achieve an accuracy of over 90%. In [1], the authors achieve
an accuracy of 99% by using PCA and a Euclidian distance based
classifier to recognise 25 international hand alphabet postures from
images of the gestures. An alternative vision based approach is to
use coloured gloves in which different parts of the hand are marked
with different colours, making it much easier to track gestures [12].

Wearable sensor based systems for gesture recognition. The
majority of wearable sensor systems for gesture detection are
gloves equipped with sensors. In most research endeavours, gloves
are custom-built. In [29], a recurrent neural network (RNN) is
used to recognise the following Japanese sign language gestures:
father, mother, brother, sister, memorise, forget, like, hate, skilled
and unskilled. The gestures are constructed using 42 previously
recognised postures representing Japanese letter alphabet with an
accuracy of 96%. The data were generated using VPLDataGlove.
In [50], the authors use a feed-forward neural network capable of
distinguishing between 15 gestures with an accuracy of 98%. Data
were recorded with a CyberGlove with 18 sensors. More recently,
a feed-forward neural network was used to construct a hand gesture
recognition system for interacting with robots [30] . Using data
from CyberGlove II (providing 22 joint-angle measurements), the
authors were able to recognise 10 different artificial gestures with
an accuracy of 99.8% and 30 gestures with an accuracy of 96.3%.
In this work, the authors initially performed segmentation by identi-
fying whether each of the data readings belongs to a gesture. These
segments were used as input to the machine learning algorithm.
In [52], data from EMG and a wrist-worn accelerometer were used
to build a system that recognises 18 gestures with an accuracy of
91.7%. The defined gestures were used to play a virtual rubic’s
cube game. In [36], authors used a list of 22 natural hand gestures.
The gestures originally stem from [10]. While analysing the data,
the authors first resampled and interpolated the data. They then
used LDA to discriminate between the resampled segments with an
accuracy of 92.8%. This shows that there is a clear separability be-
tween those gestures. However, in a live recognition system, such
resampling and interpolation is not possible unless the start and end
time of the gesture that needs to be recognised can be detected.

Recently, there has been a growing research interest in gesture
recognition based on consumer good technology like smart watches
(e.g., [11, 44, 49, 53]). In [49], the authors report the classification
of 37 interaction oriented gestures, i.e. gestures that are intended to
be used for controlling other devices (turning the arm, simulating
a click, pinch to zoom, etc..). The gestures are detected based on
smartwatch sensor data only, and with an accuracy of 98% by using
Naive Bayes algorithm. The authors report different numbers in
a subsequent demo paper, namely 27 gestures with 96% accuracy
using Logistic Regression or Decision Trees [53]. However, the
data in the latter paper were collected only by a single participant;
and the participant performed gestures from a fixed arm position.

When comparing two approaches, vision based systems are more
sensitive to the environment. Lighting conditions, scene and back-
ground details are issues that affect such systems [45]. In the case
of cameras, there might be also privacy issues; and different coun-
tries have different regulations concerning video recordings in non-
private environments. Wearable sensor based systems, especially
glove based ones, can be uncommfortable [45] or even pose a hy-
gienic problem [19]. On the other hand, wearable technologies
provide in principle the possibility for higher privacy as the data
are a priori more anonymous than pictures or videos. When it

comes to accuracy, many authors report very high accuracies (in
the higher 90s) for the selected set of gestures using either tech-
nique [1, 7, 30, 50].

In this paper, we take the wearable sensors approach. In con-
trast to some other works, we emphasise capturing the dynamics of
the gestures, and present gesture recognition using a custom data
glove. Our work also differs from previous work since we take
a sliding window approach in combination with dual labelling in
the test set. Sliding window is a technique for data preprocessing
in which information is extracted (statistics, aggregates, features,
etc...) over a “sliding window” that contains a fixed number of sam-
ples. This enables us to use representative features that aggregate
sensor data over time. Interestingly, the sliding window approach,
to the best of our knowledge, has not been used in gesture recogni-
tion system even though it very common approach in activity recog-
nition [21, 22, 31].

3 GESTURE DETECTION SYSTEM

In this section, we describe the design of the overall gesture detec-
tion system: What kind of gestures should our system detect, and
what kind of information/sensors are required for this purpose?

3.1 Interaction-Oriented and Natural Hand Gestures
As described in the introduction, we are interested in a general-
purpose gesture alphabet with which to control computers and com-
municate with them. Essentially, it would be possible to develop a
completely novel gesture language for such a purpose. A study
looking at inventing custom gestures [15] showed however, that a
user can only remember a very limited number (about two) of such
artificial gestures. Therefore, we are looking at gestures that are
widely known, even though there may be cultural differences re-
garding their popularity and meaning. Additionally, there should
be a plausible relationship between the gesture and an interaction
between human and computer.

These criteria resulted in the following 31 hand gestures (see
Table 1). Our gesture set was initially based on the list of 22 natural
gestures described in [10]. We added the following: The numbers
one to five, as they would be useful to select items; popular touch-
based swipe gestures such as swipe left, right and down (up was
already on the original list), as these would be useful for navigation.
Finally, we added lateral grasp (Grasp 2) and palmar grasp (Grasp
1) gestures, as we think that grasping objects would be useful in
interaction with 3D virtual objects. After the first trial, the gesture
walk was discarded as it was difficult to perform due the IMU chips
on the fingers.

3.2 Custom Data Glove
The above gestures vary a lot in their dynamics: Some gestures
contain a lot of complex motions (e.g continue) whereas some are
very close to a posture (e.g. numbers one, two, ...).

We planned a data glove that emphasises motion detection of the
fingers (which implies that we would have motion sensors on the
fingers); as well as hand postures (which implies that we would use
bend sensors). The glove is depicted in Figure 1.

We placed two bend sensors on each finger. The upper sensor
measures the bending (which translates to angle) of the finger rel-
ative to the hand, whereas the lower sensor measures the bending
between middle segment and base segment of the finger. Another
bend sensor is placed between the thumb and index finger in order
to measure the distance/angle between them. Two more bend sen-
sors (in opposite direction) are placed on the wrist in order to be
able to measure wrist flexion/extension. Overall, this gives 13 bend
sensors. Additionally, each finger tip is equipped with a pressure
sensor (5 pressure sensors). Furthermore, 7 IMUs1 are placed, one

1IMU (inertial measurement unit) chip contains a gyroscope and an ac-
celerometer
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Gesture Description
(1) One Number one by extending index finger
(2) Two Number two by extending index and middle finger
(3) Three Number three by extending index, middle and ring finger
(4) Four Number four by extending all fingers except thumb
(5) Five Number five by extending all fingers
Thumbs up Thump stretched pointing up, other fingers form fist
Thumbs down Thump stretched pointing down, other fingers form fist
Point to self Pointing at self with thumb
Shoot Hand in form of a gun and then vibrate
Scissor Stimulating scissors with two fingers
Cutthroat Using index finger
Continue Waving like circular motion with the flat hand
Knocking Forming a fist and moving the fist up and down
Waving Shaking the flat hand left and right
Come here Flat hand with palm upwards: Simultaneous flexing the all

fingers but the thumb
Go away Hand with palm downwards, all fingers but thumb flexed. Si-

multaneous stretching them
Push away Flat hand with palm pointing fore wards, then moving the

whole hand forward
Never mind Flat hand with palm pointing left above the head, then moving

the whole hand left
Talking Thumb and 4 fingers pointing forward. Then moving 4 fin-

gers up and down
Calling Hand is a fist, but thumb and small finger are extended
Walking Hand is a fist, but making a walking motion with the index

and middle finger
Shoulder pat patting with the open hand on a virtual shoulder
Point Pointing in front with index finger
Swipe left Stretched hand with palm pointing left, flexing it completely

to the right first, then flexing it to the left, in a circular motion
Swipe right swiping with palm pointing right, and left to right motion
Swipe up swiping with palm pointing up, and bottom to top motion
Down swiping with palm pointing down, and top to bottom motion
Turn Hand rotation
Zoom Reverse pinch using index finger and thumb
Grasp 1 Palmar grasp (in the experiment we used a glass)
Grasp 2 Lateral grasp (in the experiment we used a pen)

Table 1: List of 31 interaction-oriented hand gestures.

at the top of each finger, one on the back of the hand and one on
the wrist. The wrist IMU is placed exactly at the position where a
watch would be. This allows the data recorded with the glove to
also be treated as if it came from a smartwatch by simply ignoring
the input from other sensors. Finally, a magnetometer is placed on
the back of the hand.

At the beginning of our study, various data gloves had already
been available commercially. All of them emphasise bend sensors
in fingers, and thus focus on hand postures. In contrast, our glove
contains both bend and motions sensors (gyroscope + accelerom-
eter) on each finger, thus focussing more on hand motion, i.e. the
dynamic aspects of gestures. The MiMu Glove2 is used to produce
music by some means of gesture detection. It employs one IMU at
the wrist, 4 bend sensors at the fingers, and vibrators at the under-
arm to provide haptic feedback. Fifth Dimensional Technologies3

offers two gloves that are equipped with bend sensors and abduction
sensors between fingers. CyberGlove Systems 4 offers CyberGlove
II equipped with two bend sensors on each finger, four abduction
sensors, sensors measuring thumb crossover, palm arch, wrist flex-
ion and wrist abduction. Virtual Labs5 offers a range of data glove
products (VMG Lite, VMG 10, VMG30, VMG 30 Plus), all of them
equipped with bend sensors on the fingers, 9-DOF orientation sen-
sors for hand and wrist, as well as tactile feedback vibrators.

2http://mimugloves.com
3http://www.5dt.com/
4http://www.cyberglovesystems.com
5http://www.virtualmotionlabs.com/

Figure 1: Custom data glove, and scheme of sensor positions. 1:
An IMU and a pressure sensor are placed on each finger tip. 2:
Two bend sensors cover the two main joints of each finger. 3: The
thumb is special as it has 3 bend sensors. 4: An IMU and a Magne-
tometer is on the top of the hand. Here also an analog multiplexer is
mounted to combine all the bend sensors. 5: An IMU is placed on
the wrist. Additionally, one bend sensor at the top of the wrist and
one at the bottom of the wrist give the angle of the hand to the fore-
arm. 6: All sensors are connected to an Arduino board to collect
the data and send it to a computer.

Our custom data glove is a hardware prototype and as such it has
some limitations, mainly regarding usability: For long-term wear-
ing, the glove should for instance be made of more comfortable
material, be made of smaller and not visible electronic components,
should be available in different sizes, and be wirelessly connected
to the computing unit.

4 DATA COLLECTION EXPERIMENT

We collected sensory data annotated with gesture names in the sub-
sequently described data collection experiment.

4.1 Participants

We collected data from 18 healthy adults: 11 males and 7 females.
Participants were aged between 24 and 40 years.

4.2 Procedure

Before starting with the data recording, the purpose and procedure
of the experiment were explained. Participants were asked to re-
main seated during the experiment in an office chair. In front of
them (on the desk), a monitor was placed. The monitor was used
to display the instructions of the experiment. The overall setup is
shown in Figure 2.

For each gesture, the following steps were performed in the given
sequence:

1. Name of the gesture was shown on the screen (2s)

2. A video was displayed; it showed an actor performing the ges-
ture (without glove; 6s-7s)

3. A counter was shown on the screen alarming the participants
that the recording was about to start (3s)
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Figure 2: Participant performs ”One (1)” gesture while the progress
bar is on the screen

4. The participant was asked (audio and text on screen) to start
performing the gesture. A progress bar was displayed on
screen, indicating the time the participant had to finish the
gesture (3s). The appearance of the progress bar started the
time window called “automatic labelling” (4) in Figure 3.

5. When the participant actually started the gesture, the experi-
ment observer pressed a button on the keyboard. This indi-
cated the start point of the time window called “manual la-
belling” (5) in Figure 3.

6. When the participant ended the gesture, the experiment ob-
server released the button. This was the end point of the time
window called “manual labelling” (6) in Figure 3.

7. When the progress bar ended, the time window called “auto-
matic labelling” (7) in Figure 3 was ended.

The timeline of one gesture is illustrated in Figure 3. Every ges-
ture was performed several times by every participant (5 or 10 times
depending on willingness of participant) in a row. The gesture name
and the video of the actor performing the gesture (steps 1 and 2)
were shown only for the first repetition of the gesture, whereas the
counter, progress bar and labelling (steps 3-7) were the same in ev-
ery repetition.

4.3 Data Annotation
Figure 3 illustrates how the data collection experiment procedure
relates to the continuous sensor signals that we recorded. Here we
comment on two things regarding data annotation: Firstly, we used
manual labels as the ground truth, i.e. the labels we refer to in train-
ing and testing. Automatic labels are used to perform sanity check
on manual labels e.g. sometimes it happened that the experimenter
forgot to label a gesture. We discarded such data. Secondly, when
sliding windows are moved over the continuous sensor signals, then
there are windows with no gesture in it (window 1 in Figure 3), with
partial gestures in it (windows 1 and 5 in Figure 3), and windows
with full gestures in it (windows 2 and 3 in Figure 3). For algorithm
design (Section 5) only windows with no or full gestures were used,
while for evaluation of the selected algorithm in realistic settings,
the algorithm was also evaluated on windows that contain a partial
gesture (Section 6).

5 ALGORITHM DESIGN

In this section, we describe the process of selecting the best per-
forming supervised learning algorithm, and the optimum configu-
ration. By configuration we mean selecting parameters for win-
dow slicing and parameters for spectral components of the win-
dow. Overall, we prepared a list of all possible configurations and

Figure 3: Experiment timeline for a single repetition and sliding
windows construction

cross-validated each of them against the set of all chosen learning
algorithms. Finally, in order to choose the best configuration, we
averaged the cross validation results over all algorithms and con-
sidered configurations with the highest average scores. The details
of each step are given below.

5.1 Data Pre-processing

Since in the accelerometer readings the gravity component is
present and we only need to know the real acceleration value, we
first removed the gravity component from the data readings. The
gravity component was removed using a complementary filter [13],
which typically gives satisfying results and is computationally less
expensive than a Kalman Filter [16]. In addition, in order to get
independent axis accelerator and gyroscope values, we computed
the norm (norm =

√
x2 + y2 + z2) of accelerometer and gyroscope

vector for each of our IMUs. Magnetometer values were discarded
as their values provide information related to the absolute location
of the hand whereas gesture recognition should work regardless of
the hand location. Furthermore, all data dimensions are normalised
with zero mean and a standard deviation of 1.

5.2 Window Length and Step-size

As basic unit for classification we use sliding windows, i.e. data
windows of fixed sample size that constitute snapshots of the con-
tinuous data stream. Features are computed per window. Sliding
windows are a well-established method of feature extraction used in
many domains (speech to text [37], activity recognition [21, 22, 31],
etc..). Their advantage is that the extracted features can be used
with almost any algorithm [8]. They typically have two configura-
tion parameters: size and step. For parameter selection, we cross
validated the data with several window sizes (140, 160, 180, 200
samples, where 1 second contains 85-87 samples).

As for the labels, we consider one window to have a gesture label
only if the window contains the whole gesture. Otherwise we label
it as idle class. We used steps of 20, 30, 40 and 50 samples and
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again used cross validation to select a value for this parameter. The
details of cross validation are given in Section 5.4.

5.3 Feature Engineering
The recorded data set contains the following dimensions: (x, y, z,
norm) values of gyroscope, (x, y, z, norm) values of accelerome-
ter, values of pressure sensors, values of bending sensors. For each
data dimension we used the following descriptive statistic as fea-
tures: minimum, maximum, range, average, standard deviation and
signal energy from the sliding windows. Minimum and maximum
values of the bend sensors should contribute to capturing the static
part (posture) of the gesture. On the other hand, the derived values
from the norm value of the gyroscope and the accelerometer should
capture orientation independent motions aspects, as the norm is just
the intensity of the accelerometer or gyroscope in any direction.

For the gyroscope and accelerometer values, we also used the
spectrum features, namely the amplitude of Fast Fourier Trans-
form (FFT) coefficients for the signal in the given window. For
FFT, one has to decide which and how many coefficients are used.
Typically, either the n first or the n largest (by amplitude) coeffi-
cients are used [28]. Figure 4 shows that in our case, on average,
the amplitudes of FFT coefficients decrease monotonically. This
means that the first coefficients are the largest ones, which in turn
means that the lower frequencies are dominant. Therefore, using
the amplitudes of the first n coefficients is a good way to proceed.
For selecting a suitable number of first FFT coefficients, we use
again cross-validation to choose amongst the following options:
n ∈ {5,6,10,15}.

In total we extract 78 statistical features from bending sensors,
30 statistical features from pressure sensors, 336 statistical features
and n× 56 FFT features for IMUs, where n is the number of first
FFF components used for the window. It is worth pointing out that
the majority of the features come from motion sensors (IMUs).

Figure 4: Average amplitudes (over all signals) of the first FFT
coefficients (excluding the zeroth) for all 200 frame windows

To avoid correlated features, we calculated correlations between
features and automatically removed the features that highly corre-
late with each other (with absolute Pearson correlation index more
or equal to 0.99). Finally, extracted features are normalised with
zero mean and a standard deviation of 1.

5.4 Procedure for Algorithm and Parameter Selection
In this section, we describe our procedure to select the best per-
forming algorithm and parameters such as length and step-size for
sliding windows, and the number of FFT coefficients to be used
as features. We evaluated window sizes of 140,160,180,200, and

window step-sizes of 20,30,40,50, as well as a number of FFT co-
efficients of 5,6,10,15. The choice of these options is discussed in
Sections 5.2 and 5.3.

As previously mentioned, similar to activity recognition solu-
tions, we emphasise the motion sensors and follow an approach
(sliding windows) that is frequently used in activity detection.
Therefore, we chose classification algorithms that have proven to
provide robust performance on activity recognition using wearable
sensors [21, 22, 46, 47], namely:

• K Nearest Neighbours (KNN)

• Linear Discriminant Analysis Classifier (LDAC)

• Support Vector Machines (SVM) with a linear kernel

• Logistic Regression (LR)

According to the survey presented in [3], discriminative clas-
sification algorithms are very effective in identifying features that
mostly contribute to discriminations between activities using wear-
able sensors. Therefore, our discriminative classification algo-
rithms (in our case SVM and LR) should work very well in case the
gesture is well captured by extracted features of windows. LDAC
is suitable when a linear transformation (LDA) of the data yields in
linearly separable classes (in the transformed space). On the other
hand, KNN uses the notion of distance in feature space and it can
perform good even when linear separability is not possible.

Considering the large number of features we have (724 when
using 5 FFT components, 1284 when using 15 of them), we were
concerned about overfitting. Therefore, we employed dimensional-
ity reduction techniques prior to training. We used Principal Com-
ponent Analysis (PCA) which applies an orthogonal linear trans-
formation of the data, in an unsupervised manner, resulting in a
maximised variance of data in the transformed space. On the other
hand, we also used the supervised linear transformations, namely
Linear Discriminant Analysis (LDA) and also it’s state-of-the-art
alternative Spectral Regression Discriminant Analysis (SRDA) [4].
The latter methods utilise class labels for minimising the within-
class variance and maximising between-class variance (in the trans-
formed space). An extensive analysis on how the used algorithms
and dimensionality reduction work, including the mathematics be-
hind it can be found in [2]. In our cross-validation process, the clas-
sifiers have been trained in both ways: without any dimensionality
reduction and with prior dimensionality reduction transformations.

For each window and step-size, we prepared the dataset as fol-
lows: We selected only those windows from the complete dataset
that are “unambiguous windows”, i.e. windows that contain either
no gesture, or a full gesture (see Figure 3, where window 1 contains
no gesture, windows 2 and 5 contain a partial gesture and are not
part of the training data set, and windows 3 and 4 contain a full ges-
ture). The rationale was that the classifier should only learn the full
gestures, not parts of gestures.

Moreover, the classes in our data are unbalanced as the majority
of the windows are labeled as “idle class” (no gesture). Balancing
was achieved by the following procedure: First we calculate the
average number of windows per gesture which we will denote by k.
Then we removed, before splitting to train and test set, all idle class
windows except k random number of idle class windows from the
data set. It is worth mentioning that, the balancing was used only
during the algorithm and parameter selection process but not during
the algorithm evaluation process (Section 6).

The respective training data set was then 80% randomly chosen
windows, and the test data set the remaining 20%. We used the fol-
lowing procedure to select the winner combination of configuration
(parameters) and algorithm:
First, we compute the performance of each combination “configura-
tion/algorithm” by 5-fold cross validation over the training data set.
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Then, for each configuration we compute the average performance
over all algorithms to select the winner configuration. The win-
ner algorithm would then be the best-performing algorithm for this
configuration. The rationale for this procedure was that we wanted
to have the configuration to be as robust as possible in relationship
to an algorithm in order to avoid overfitting, i.e. we did not want to
select a configuration that only works for a single algorithm.

5.5 Algorithm and Parameter Selection Results
The procedure of selecting and parametrising a classification algo-
rithm that we described above in Section 5.4 yielded the follow-
ing: The best configuration is the one with a window length of 200
frames, step-size of 20 and 15 FFT coefficients with an average
cross-validation (across all compared algorithms) score of 95.6%.
Another configuration with less computationally intensive param-
eters, namely window length of 200 frames, window steps for the
sliding windows of 50 and only 5 FFT coefficients had an average
cross validation score of 95.3%. Considering that the score differ-
ence is minimal whereas the computation efficiency is higher, we
selected the latter configuration. For this configuration, the best per-
forming algorithm was LDA+LR with an cross-validation f1 score
of 99.8%. Here, initially LDA was used to perform dimensionality
reduction to 32 components and then a logistic regression algorithm
was trained and tested on the dimensionally reduced data.

6 ALGORITHM EVALUATION

In this section, we report on accuracies on the full dataset for the
selected algorithm and configuration, which constitutes a realistic
scenario of continuous data stream analysis.

6.1 Algorithm Performance on Continuous Sensor Data
As realistic algorithm performance, we consider its performance
on the following dataset: All windows are used in the test data set,
which includes those with a partial gesture windows. A partial ges-
ture window is the one that contains only a portion of a gesture
(see window 2 and 3 in Figure 3). Moreover, there is no balancing
(neither in the training nor test data set) but class weighting is used
when training in order to prevent bias towards the larger classes.
This corresponds to the data that would be available in a real world
continuous sensor data stream. For windows that contain a partial
gesture, we assume the algorithm prediction is correct when the
classification outcome is either the idle class or the correct gesture
class that is partially in the window. We refer to this strategy as dual
labelling in the test set.

On this test set, the LDA+LR algorithm with a window size of
200, a step size of 50, and with only the 5 first FFT gestures in the
feature set, performs with an 98.5% f1 score. The confusion matrix
is given in Table 2 and the receiver operating characteristic (ROC)
curve is visualised in Figure 5. Here, from 9581 windows, 9440
were classified correctly. From the correctly classified windows,
1618 contained full gestures, 2802 partial gestures and 5020 con-
tained no gesture at all (belonged to the idle class). On the other
hand, 141 windows were misclassified from which 6 contained full
gestures, 106 partial gestures and 29 came from the idle class.

6.2 Algorithm Performance without FFT Components
Removing FFT calculations during the gesture extraction can speed
up the processing the data stream. The rationale details for such
an optimisation is discussed in Section 7.2 below. Removing the
FFT components from all accelerometer and gyroscope dimensions
results in a recognition f1 score (when considering dual labelling
of the ambiguous windows in test set) of 98.2%.

7 DISCUSSION

As our results reveal, we achieve a high classification accuracy in
general. As presented in Figure 5, the prediction confidence is also

high. It is important to stress that our results were achieved by in-
cluding in the test set the windows that contain partial gestures. In a
live gesture recognition system, there is no way of excluding them.
More specifically, in a live scenario, we need to get a sliding win-
dow over a stream of data, as visualised in Figure 3, and since we
don’t know when a gesture starts and when it ends, we can’t know
beforehand whether a partial gesture is in a window. In the test set,
we used the dual labelling strategy which delivers an accuracy of
98.5% (see Table2 and Figure 5). We argue that dual labelling is
acceptable for a live system: In the end, it is just a matter of how
fast the recognition system realises that the gesture is being per-
formed. In case it predicts the correct gesture class (the one that is
partially contained in window), then we can recognise the gesture
even before it is completed. Otherwise, if the classifier predicts it
to be a idle class window, then the next window (or previous one)
will be a window with the full gesture in it and will be classified
correctly.

Figure 5: ROC curve for weighted average of all classes

7.1 Analysis of Confusions between Classes
Although overall performance is really good, it is not perfect: some
windows are misclassified. In this section, we analyse the confu-
sions between classes. As presented in Section 6, there are 141
misclassifications out of 9440 windows, of which 106 misclassified
windows contain partial gestures. We have only 6 misclassifications
from windows that contained full gestures. In the following dis-
cussion, we focus on windows that contain only partial gestures on
them. Several such windows are being misclassified as another ges-
ture and this phenomenon affects mainly the following 10 classes:
Down, Swipe Left, Push Away, Swipe Left, Grasp 2, Point at Self,
Swipe Left, Go Away, Grasp 1 and Zoom.

A further investigation shows that, there are some systematic
misclassification for such windows. For the ”Down” gesture,
nine misclassifications come from windows that partially contain
the “Shoulder pat” gesture, five from ones that partially contain
the “Continue” gesture and six from windows that contain partial
“Swipe left” gestures. When looking on how the gestures move-
ments are performed, the “Shoulder pat” starts and ends very sim-
ilarly to the “Down” gesture. So, in case the start or the end of
the gesture is missing in a window, it seems quite logical that such
a confusion can happen. “Continue” could either start as “Down”
or as a “Swipe Left” gesture (depending from person to person).
Looking into each of those windows reveals that seven out of nine
confusions with “Shoulder pat”contain the beginning (on average
40%) of the of the “Shoulder pat” gesture whereas only two out of
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Nothing 6024 2 1 5 4 3 1 7 1 1 4 2 1 6 12 2 2 3 5 15 3 4 28 2 7 6 8
(1) One 107
(2) Two 113
(3) Three 110 1
(4) Four 116
(5) Five 97
Thumbs up 108
Thumbs
down

116

Point to self 117
Shoot 89
Scissor 126
Cutthroat 110
Continue 96 1
Knocking 123
Waving 133
Come here 111
Go away 93
Push away 111
Never mind 80
Talking 107
Calling 1 128
Walking 110
Shoulder
pat

113

Point 112
Swipe left 103
Swipe right 95
Swipe up 108
Down 1 1 107
Turn 127
Zoom 95
Grasp 1 138 1
Grasp 2 117

Table 2: Confusion matrix of classification using dual labelling in test set. Note that zero values (no misclassification) have been removed
from the table for better readability

nine contain the end (on average 66%) of the gesture. However for
both cases, the prediction confidence is not particularly high: 66%
respectively 46%. Confusions of the “Down” gesture with the ges-
ture “Continue” are predicted with an average confidence is 73%
and all of them happen in windows that contain only the beginning
(on average 30%) of the “Continue” gesture. Similarly, all five win-
dows that are confused with the “Swipe left” gesture contain only
the beginning of the “Swipe left” gesture (on average 29%) and the
prediction confidence is 55%. Only one window that contains the
end of the gesture (51%) is confused with “Down”, with a confi-
dence of 73%.

”Swipe Left” class has nine confusions with windows that par-
tially contain ”Continue”, all of them containing only the end (35%)
of the gesture. Two more confusions happen with windows that par-
tially contain ”Never Mind” gesture and all of them contain only
the last part of the gesture (70%). Interestingly, those confusions
have a relative high prediction confidence (average: 90%). Three
more confusions happen with windows that contain only the last
part (32%) of the “Waving” gesture with a relatively quite low av-
erage prediction confidence (58%).

For the ”Push away”, four misclassifications come from win-
dows with partial ”Continue” gesture. Three of them contain the
beginning (44%) of the gesture and are misclassified with an av-
erage confidence of 44%, whereas the other one contains the last

Classified Full/Partial Gesture Confidence
Correctly Full 98%
Correctly Partial 89%

Incorrectly Full 67%
Incorrectly Partial 57%

Table 3: Average classification confidence depending on whether
the window contains the whole gesture

(73%) part of the gesture is predicted with a confidence of 26%.
Two other confusions happen with partial “Never mind” gestures.
The both contain only the last part (39%) of the gesture and are
predicted with average confidence of 46%.

It therefore seems that the gestures: “Down”, “Push away”,
“Continue” and “Shoulder pat” are very similar either at the begin-
ning or at the end of the gesture. For the other gestures there does
not seem to be a systematic misclassification as the confusions are
distributed among most of the other classes.

To address the partial window misclassification problem, we in-
vestigate whether there is a difference in prediction confidence for
such misclassification in comparison to other windows. From Ta-
ble 3 we can see that the misclassified windows that contain only
partial gestures have quite a low average prediction confidence
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(57%). One way to minimise the number of misclassifications
would therefore be to accept only predictions with higher confi-
dence. According to Table 3, such a setting would mainly affect
misclassified windows and especially those with partial gestures
on them. This would be acceptable in a live recognition system
as when a gesture is performed, there will be window(s) with the
whole gesture on it where prediction confidence would be higher.
Therefore, the practical classification performance would not be af-
fected since the gesture would still be detected either before or af-
terwards. The only practical implication is how early a gesture can
be recognised.

7.2 Computing efficiency
There are several performance indicators to consider when provid-
ing a gesture recognition system for human computer interaction.
Besides the accuracy, which is the most important, recognition
speed (delays hurt the user experience [45]) and power consump-
tion important. Recognition speed and power consumption directly
relate to computational cost. Both are of particular relevance if the
gesture recognition is planned to be carried out in a mobile or em-
bedded device, which seems very practical especially for wearable
sensor based systems for gesture recognition. the Section 5.4, we
mentioned that we chose the sliding window step of 50 and the
number of FFT coefficients to be 5, even though the configuration
was not the best one in terms of cross-validation score. The ra-
tionale behind reducing the number of FFT coefficients was that
it reduces the number of features and therefore the computational
costs and therefore power consumption. Choosing a step-size of 50
frames instead of 20, enables us to perform predictions less often
(only after each 50 frames). On the other hand of course, a larger
window step means a larger delay: In our case, 50 frames window
size means a delay of 0.625 seconds, which we deemed acceptable
for the time being. In the end, this is a trade-off in system design of
course.

Removing all FFT components (as described in Section 6.2), on
the other hand, results in a more significant reduction of compu-
tational costs. During the feature extraction process, descriptive
statistical calculations like min, max, average, energy and standard
deviation can be calculated with a time complexity of O(n), where
n is the number of points (window size). On the contrary, the com-
putation of FFT has a time complexity of O(nlogn) and it is per-
formed for every data dimension d that contains accelerometer or
gyroscope values (d = 56). In addition, for every such calcula-
tion the amplitudes of the first k coefficients need to be extracted
with a time complexity of O(k). By having only descriptive statical
features that are calculated in O(n), the feature extraction process
results in a total complexity of O( f n), where f is the number of
features. It is worth mentioning that removing FFT components
also results in 280 less features. Moreover, descriptive statistic can
easily be computed incrementally for a sliding window in a data
stream [42] (see the online algorithm6). To our knowledge, there is
no way of calculating FFT incrementally in a sliding window.

Removing FFT also reduces the complexity in the classification
process, though only by a constant factor. First, LDA performs a
matrix multiplication (of dimensions f × c) to transform data into
the new space. For a single window (of dimensions 1× f ), this
transformation has a time complexity of O( f c), where c is the di-
mension of the new space, which in our case equals the number of
classes. Note that c≤ f . After this transformation, the multinomial
logistic regression is applied for classification. Given the reduced
dimensions of the window (1×c), it has a time complexity of O(c2)
(where c is the number of classes), making the whole classification
complexity of O( f c). By removing FFT components we reduce f
by 280 which impacts the computational complexity of classifica-
tion. Note that we do not discuss the time complexity of training

6https://en.wikipedia.org/wiki/Algorithms for calculating variance

process as the training can be done offline and therefore it does not
play a role in the live system performance.

8 CONCLUSION

In this paper, we presented a gesture recognition system built for
recognising 31 natural and interaction-oriented hand gestures. Our
feature extraction is based on statistics and spectral properties of
a sliding window over the data stream. We show that our features
are highly discriminative for natural hand gestures and we achieve
an accuracy of 98.5% with our gesture recognition system, which
relies on linear discriminant analysis for dimensionality reduction
and logistic regression for classification. Moreover, accuracy does
not significantly suffer (98.2%) when the computationally expen-
sive FFT features are removed. The main contribution of this paper
lies in showing that all selected gestures can be recognised very
well, given the sensors on the custom data glove and selected fea-
tures extracted using sliding window approach.

This result is relevant for gesture-based interfaces, as it means
that continuous gesture detection based on continuous sensing is
accurate enough; and can be implemented in a computationally ef-
ficient manner. Computational efficiency is particularly important
in wearable systems, considering the mobile nature of such sys-
tems. One direction of future work following up this line of argu-
mentation will be an implementation of the recognition system on
smartphone (wirelessly connected to the glove), making it a com-
plete mobile solution. Further directions of future work on com-
puting efficiency will include an exploration of which sensors are
irrelevant and could be completely removed without degrading the
recognition accuracy. Less sensors means less features, and hence
more computational efficiency, but also fewer sensors to supply
with power. Spreading out from the core of gesture recognition,
it will of course be interesting to design interactions with computer
systems using such natural and interaction-oriented gestures that
can be recognised well.
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Watchme: A novel input method combining a smartwatch and biman-
ual interaction. In Proceedings of the 33rd Annual ACM Conference
Extended Abstracts on Human Factors in Computing Systems, CHI
EA ’15, pages 2091–2095, New York, NY, USA, 2015. ACM.
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[González and Mark, 2004] González, V. M. and Mark, G. (2004). ”constant, con-

stant, multi-tasking craziness”: Managing multiple working spheres. In Proceed-

ings of the SIGCHI Conference on Human Factors in Computing Systems, CHI

’04, pages 113–120, New York, NY, USA. ACM.

[Gunther, 2001] Gunther, E. (2001). Skinscape: A tool for composition in the tactile

modality. PhD thesis, Massachusetts Institute of Technology.

[Gunther et al., 2002] Gunther, E., Davenport, G., and O’Modhrain, S. (2002). Cu-

taneous grooves: Composing for the sense of touch. In Proceedings of the 2002

Conference on New Interfaces for Musical Expression, NIME ’02, pages 1–6. Na-

tional University of Singapore.

[Guyton, 1991] Guyton, A. C. (1991). Sensory receptors: Neuronal circuits for

processing information. Basic Neuroscience: Anatomy & Physiology.

[Han et al., 2015] Han, J., Ahn, S., and Lee, G. (2015). Transture: Continuing a

touch gesture on a small screen into the air. In Proceedings of the 33rd Annual

ACM Conference Extended Abstracts on Human Factors in Computing Systems,

CHI EA ’15, pages 1295–1300, New York, NY, USA. ACM.

[Hasan and Mishra, 2012] Hasan, M. M. and Mishra, P. K. (2012). Hand gesture

modeling and recognition using geometric features: a review. Canadian Journal

on Image Processing and Computer Vision, 3(1):12–26.



BIBLIOGRAPHY 223

[Heller and Schiff, 2013] Heller, M. A. and Schiff, W. (2013). The psychology of

touch. Psychology Press.

[Hellmich, 2004] Hellmich, N. (2004). Most people multitask, so most people don’t

sit down to eat. USA Today.

[Hodzic et al., 2004] Hodzic, A., Veit, R., Karim, A. A., Erb, M., and Godde, B.

(2004). Improvement and decline in tactile discrimination behavior after corti-

cal plasticity induced by passive tactile coactivation. Journal of Neuroscience,

24(2):442–446.

[Hoggan et al., 2007] Hoggan, E. E., Anwar, S., and Brewster, S. A. (2007). Mobile

Multi-actuator Tactile Displays. Springer Berlin Heidelberg, Berlin, Heidelberg.

[Hughes et al., 2011] Hughes, B., Gemmert, A. W. V., and Stelmach, G. E. (2011).

Linguistic and perceptual-motor contributions to the kinematic properties of the

braille reading finger. Human Movement Science, 30(4):711 – 730. Special Issue:

Progress in Graphonomics: A Perceptual Motor Skill Perspective.

[Israr et al., 2012] Israr, A., Kim, S.-C., Stec, J., and Poupyrev, I. (2012). Surround

haptics: Tactile feedback for immersive gaming experiences. In CHI ’12 Extended

Abstracts on Human Factors in Computing Systems, CHI EA ’12, New York, NY,

USA. ACM.

[Israr and Poupyrev, 2011] Israr, A. and Poupyrev, I. (2011). Control space of ap-

parent haptic motion. In 2011 IEEE World Haptics Conference, pages 457–462.

[Jiao et al., 2018] Jiao, Y., M. Severgnini, F., Martinez, J. S., Jung, J., Tan, H. Z.,

Reed, C. M., Wilson, E. C., Lau, F., Israr, A., Turcott, R., Klumb, K., and

Abnousi, F. (2018). A comparative study of phoneme- and word-based learning

of english words presented to the skin. In Prattichizzo, D., Shinoda, H., Tan,

H. Z., Ruffaldi, E., and Frisoli, A., editors, Haptics: Science, Technology, and

Applications, pages 623–635, Cham. Springer International Publishing.

[Kaczmarek et al., 1991] Kaczmarek, K., Webster, J., Bach-y Rita, P., and Tomp-

kins, W. J. (1991). Electrotactile and vibrotactile displays for sensory substitution

systems. Biomedical Engineering, IEEE Transactions on, 38(1):1–16.



BIBLIOGRAPHY 224

[Kaul and Rohs, 2017] Kaul, O. B. and Rohs, M. (2017). Haptichead: A spherical

vibrotactile grid around the head for 3d guidance in virtual and augmented reality.

In Proceedings of the 2017 CHI Conference on Human Factors in Computing

Systems, CHI ’17, pages 3729–3740, New York, NY, USA. ACM.

[Kirman, 1974a] Kirman, J. H. (1974a). Tactile apparent movement: The effects of

interstimulus onset interval and stimulus duration. Perception & Psychophysics,

15(1):1–6.

[Kirman, 1974b] Kirman, J. H. (1974b). Tactile perception of computer-derived

formant patterns from voiced speech. The Journal of the Acoustical Society of

America, 55(1):163–169.

[Kirman, 1983] Kirman, J. H. (1983). Tactile apparent movement: The effects of

shape and type of motion. Perception & Psychophysics, 34(1):96–102.

[Lamel et al., 1989] Lamel, L. F., Kassel, R. H., and Seneff, S. (1989). Speech

database development: Design and analysis of the acoustic-phonetic corpus. In

Speech Input/Output Assessment and Speech Databases.

[Larson, 2004] Larson, K. (2004). The science of word recognition. Advanced Read-

ing Technology, Microsoft Corporation.

[LEDERMAN, 1991] LEDERMAN, S. J. (1991). Skin and touch. Encyclopedia of

Human Biology, 7:51–63.

[Lederman and Klatzky, 1993] Lederman, S. J. and Klatzky, R. L. (1993). Extract-

ing object properties through haptic exploration. Acta Psychologica, 84(1):29 –

40. Tactile Pattern Recognition.

[Lee and Starner, 2010] Lee, S. C. and Starner, T. (2010). Buzzwear: Alert per-

ception in wearable tactile displays on the wrist. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, CHI ’10. ACM.

[Levenshtein, 1966] Levenshtein, V. (1966). Binary codes capable of correcting dele-

tions, insertions and reversals. Soviet Physics Doklady, 10:707.

[Li et al., 2016] Li, H., Yang, W., Wang, J., Xu, Y., and Huang, L. (2016). Wifinger:

Talk to your smart devices with finger-grained gesture. In Proceedings of the 2016



BIBLIOGRAPHY 225

ACM International Joint Conference on Pervasive and Ubiquitous Computing,

UbiComp ’16, pages 250–261, New York, NY, USA. ACM.

[Liao et al., 2016] Liao, Y.-C., Chen, Y.-L., Lo, J.-Y., Liang, R.-H., Chan, L., and

Chen, B.-Y. (2016). Edgevib: Effective alphanumeric character output using a

wrist-worn tactile display. In Proceedings of the 29th Annual Symposium on User

Interface Software and Technology, UIST ’16, pages 595–601, New York, NY,

USA. ACM.

[Lien et al., 2016] Lien, J., Gillian, N., Karagozler, M. E., Amihood, P., Schwesig,

C., Olson, E., Raja, H., and Poupyrev, I. (2016). Soli: Ubiquitous gesture sensing

with millimeter wave radar. ACM Trans. Graph., 35(4):142:1–142:19.

[Lofvenberg and Johansson, 1984] Lofvenberg, J. and Johansson, R. (1984). Re-

gional differences and interindividual variability in sensitivity to vibration in the

glabrous skin of the human hand. Brain Research, 301(1):65 – 72.

[Luzhnica et al., 2016a] Luzhnica, G., Simon, J., Lex, E., and Pammer, V. (2016a).

A sliding window approach to natural hand gesture recognition using a custom

data glove. In 2016 IEEE Symposium on 3D User Interfaces (3DUI), pages 81–90.

[Luzhnica et al., 2017] Luzhnica, G., Stein, S., Veas, E., Pammer, V., Williamson,

J., and Smith, R. M. (2017). Personalising vibrotactile displays through per-

ceptual sensitivity adjustment. In Proceedings of the 2017 ACM International

Symposium on Wearable Computers, ISWC ’17, pages 66–73, New York, NY,

USA. ACM.

[Luzhnica and Veas, 2017] Luzhnica, G. and Veas, E. (2017). Vibrotactile patterns

using sensitivity prioritisation. In Proceedings of the 2017 ACM International

Symposium on Wearable Computers, ISWC ’17, pages 148–155, New York, NY,

USA. ACM.

[Luzhnica and Veas, 2018a] Luzhnica, G. and Veas, E. (2018a). Investigating inter-

actions for text recognition using a vibrotactile wearable display. In 23rd Inter-

national Conference on Intelligent User Interfaces, IUI ’18, pages 453–465.

[Luzhnica and Veas, 2018b] Luzhnica, G. and Veas, E. (2018b). Skin reading meets

speech recognition and object recognition for sensory substitution. In Proceedings



BIBLIOGRAPHY 226

of the 2018 ACM International Joint Conference on Pervasive and Ubiquitous

Computing and Proceedings of the 2018 ACM International Symposium on Wear-

able Computers, UbiComp ’18, New York, NY, USA. ACM.

[Luzhnica and Veas, 2019a] Luzhnica, G. and Veas, E. (2019a). Background per-

ception and comprehension of symbols conveyed through vibrotactile wearable

displays. In 24rd International Conference on Intelligent User Interfaces, IUI ’19,

New York, NY, USA. ACM.

[Luzhnica and Veas, 2019b] Luzhnica, G. and Veas, E. (2019b). Optimising the en-

coding for vibrotactile skin reading. In ACM CHI Conference on Human Factors

in Computing Systems, CHI ’19, New York, NY, USA. ACM.

[Luzhnica et al., 2016b] Luzhnica, G., Veas, E., and Pammer, V. (2016b). Skin

reading: Encoding text in a 6-channel haptic display. In Proceedings of the 2016

ACM International Symposium on Wearable Computers, ISWC ’16, pages 148–

155, New York, NY, USA. ACM.

[Luzhnica et al., 2018] Luzhnica, G., Veas, E., and Seim, C. (2018). Passive haptic

learning for vibrotactile skin reading. In Proceedings of the 2018 ACM Interna-

tional Symposium on Wearable Computers, ISWC ’18. ACM.

[Makous et al., 1995] Makous, J. C., Friedman, R. M., and Vierck, C. J. (1995). A

critical band filter in touch. The Journal of neuroscience : the official journal of

the Society for Neuroscience, 15 4:2808–18.

[Michel et al., 2011] Michel, J.-B., Shen, Y. K., Aiden, A. P., Veres, A., Gray, M. K.,

, Pickett, J. P., Hoiberg, D., Clancy, D., Norvig, P., Orwant, J., Pinker, S., Nowak,

M. A., and Aiden, E. L. (2011). Quantitative analysis of culture using millions of

digitized books. Science, 331(6014):176–182.

[Millar, 2003] Millar, S. (2003). Reading by touch. Routledge.

[Millar, 2004] Millar, S. (2004). Reading by Touch in Blind Children and Adults,

pages 437–457. Springer Netherlands, Dordrecht.

[Milnes et al., 1996] Milnes, P., Stevens, J. C., Brown, B. H., Summers, I. R., and

Cooper, P. G. (1996). Use of micro-controller in a tactile aid for the hearing



BIBLIOGRAPHY 227

impaired. In Proceedings of 18th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society, volume 1, pages 413–414 vol.1.

[Murakami and Taguchi, 1991] Murakami, K. and Taguchi, H. (1991). Gesture

recognition using recurrent neural networks. In Proceedings of the SIGCHI Con-

ference on Human Factors in Computing Systems, CHI ’91, pages 237–242, New

York, NY, USA. ACM.

[Neto et al., 2013] Neto, P., Pereira, D., Norberto Pires, J., and Moreira, A. (2013).

Real-time and continuous hand gesture spotting: An approach based on artificial

neural networks. In Robotics and Automation (ICRA), 2013 IEEE International

Conference on, pages 178–183.

[News, 2017] News, F. (2017). Florida woman, 19, dies in car crash after sending

text to her boyfriend. GIZMO.

[Nicolau et al., 2013] Nicolau, H., Guerreiro, J. a., Guerreiro, T., and Carriço, L.

(2013). Ubibraille: Designing and evaluating a vibrotactile braille-reading de-

vice. In Proceedings of the 15th International ACM SIGACCESS Conference on

Computers and Accessibility, ASSETS ’13, pages 23:1–23:8, New York, NY, USA.

ACM.

[Nicolau et al., 2015] Nicolau, H., Montague, K., Guerreiro, T., Rodrigues, A., and

Hanson, V. L. (2015). Holibraille: Multipoint vibrotactile feedback on mobile

devices. In Proceedings of the 12th Web for All Conference, W4A ’15, pages

30:1–30:4, New York, NY, USA. ACM.

[Novich, 2015] Novich, S. D. (2015). Sound-to-Touch Sensory Substitution and Be-

yond. PhD thesis, Rice University.

[Novich and Eagleman, 2015] Novich, S. D. and Eagleman, D. M. (2015). Using

space and time to encode vibrotactile information: toward an estimate of the

skin’s achievable throughput. Experimental Brain Research, (10).

[Osman and Potts, 1989] Osman, I. and Potts, C. (1989). Simulated annealing for

permutation flow-shop scheduling. Omega, 17(6):551 – 557.



BIBLIOGRAPHY 228

[Park et al., 2016] Park, J., Kim, J., Oh, Y., and Tan, H. Z. (2016). Rendering

moving tactile stroke on the palm using a sparse 2d array. In Haptics: Perception,

Devices, Control, and Applications:International Conference, EuroHaptics 2016,

Cham. Springer International Publishing.

[Phillips et al., 1994] Phillips, A. J., Thornton, A. R. D., Worsfold, S., Downie,

A., and Milligan, J. (1994). Experience of using vibrotactile aids with the pro-

foundly deafened. International Journal of Language and Communication Disor-

ders, 29(1):17–26.

[Pleger et al., 2001] Pleger, B., Dinse, H. R., Ragert, P., Schwenkreis, P., Malin,

J. P., and Tegenthoff, M. (2001). Shifts in cortical representations predict human

discrimination improvement. Proceedings of the National Academy of Sciences,

98(21):12255–12260.

[Pleger et al., 2003] Pleger, B., Foerster, A.-F., Ragert, P., Dinse, H. R.,

Schwenkreis, P., Malin, J.-P., Nicolas, V., and Tegenthoff, M. (2003). Functional

imaging of perceptual learning in human primary and secondary somatosensory

cortex. Neuron, 40(3):643–653.

[Prescott et al., 2011] Prescott, T. J., Diamond, M. E., and Wing, A. M. (2011).

Active touch sensing.

[Pu et al., 2013] Pu, Q., Gupta, S., Gollakota, S., and Patel, S. (2013). Whole-

home gesture recognition using wireless signals. In Proceedings of the 19th Annual

International Conference on Mobile Computing &#38; Networking, MobiCom ’13,

pages 27–38, New York, NY, USA. ACM.

[Purves et al., 2008] Purves, D., Augustine, G. J., Fitzpatrick, D., Hall, W. C.,

LaMantia, A.-S., McNamara, J. O., and White, L. E. (2008). Neuroscience. 4th.

Sunderland, Mass.: Sinauer. xvii, 857:944.

[Rahal et al., 2009] Rahal, L., Cha, J., and Saddik, A. E. (2009). Continuous tactile

perception for vibrotactile displays. In 2009 IEEE International Workshop on

Robotic and Sensors Environments, pages 86–91.



BIBLIOGRAPHY 229

[Ranjbar, 2008] Ranjbar, P. (2008). Vibrotactile identification of signal-processed

sounds from environmental events presented by a portable vibrator: A laboratory

study. Iranian Rehabilitation Journal, 6.

[Rayner, 1998] Rayner, K. (1998). Eye movements in reading and information pro-

cessing: 20 years of research. Psychological bulletin, 124:372–422.

[Rayner et al., 2001] Rayner, K., Foorman, B. R., Perfetti, C. A., Pesetsky, D.,

and Seidenberg, M. S. (2001). How psychological science informs the teaching of

reading. Psychological Science in the Public Interest, 2(2):31–74. PMID: 26151366.

[Rayner et al., 2010] Rayner, K., Slattery, T. J., and Bélanger, N. N. (2010). Eye

movements, the perceptual span, and reading speed. Psychonomic Bulletin &

Review, 17(6):834–839.

[Reed and Delhorne, 2003] Reed, C. M. and Delhorne, L. A. (2003). The recep-

tion of environmental sounds through wearable tactual aids. Ear and hearing,

24(6):528–538.

[Reed et al., 2018] Reed, C. M., Tan, H. Z., Perez, Z. D., Wilson, E. C., Severgnini,

F. M., Jung, J., Martinez, J. S., Jiao, Y., Israr, A., Lau, F., Klumb, K., Tur-

cott, R., and Abnousi, F. (2018). A phonemic-based tactile display for speech

communication. IEEE Transactions on Haptics, pages 1–1.

[Reeves, 1995] Reeves, C. R. (1995). A genetic algorithm for flowshop sequencing.

Computers & Operations Research, 22(1):5 – 13. Genetic Algorithms.

[Reicher, 1969] Reicher, G. M. (1969). Perceptual recognition as a function of mean-

ingfulness of stimulus material. Journal of Experimental Psychology, 81(2):275.

[Reuter et al., 2014] Reuter, E.-M., Voelcker-Rehage, C., Vieluf, S., and Godde, B.

(2014). Effects of age and expertise on tactile learning in humans. European

Journal of Neuroscience, 40(3):2589–2599.

[Robles-De-La-Torre and Hayward, 2001] Robles-De-La-Torre, G. and Hayward, V.

(2001). Force can overcome object geometry in the perception of shape through

active touch. Nature, 412:445 EP –.



BIBLIOGRAPHY 230

[Romaszewski et al., 2014] Romaszewski, M., Glomb, P., and Gawron, P. (2014).

Natural hand gestures for human identification in a human-computer interface. In

Image Processing Theory, Tools and Applications (IPTA), 2014 4th International

Conference on, pages 1–6.
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