
Martin Zöhrer, BSc.

Design and Implementation of an Efficient and
Secured Transport Layer Protocol for NFC

Master’s Thesis
to achieve the university degree of

Diplom-Ingenieur
Master’s degree programme: Computer Science

submitted to

Graz University of Technology

Advisors
Ass.-Prof. Dipl-Ing. Dr.techn. Christian Steger

Dipl-Ing. Dipl-Ing. Thomas Ulz, Bsc

Institute for Technical Informatics
Head: Univ.-Prof. Dipl.-Inform. Dr.sc.ETH Kay Uwe Roemer

Graz, May 2019

Abstract

Due to the rapidly growing usage of Near Field Communication (NFC) throughout many
different fields of application, the security of data being sent via NFC becomes more
and more crucial. This includes payment transactions, social and health related data
or information related to access controls, hence there is a strong need for the usage of
efficient data protection mechanisms to ensure confidentiality, authenticity and integrity in
an NFC-session. However, many mechanisms presented in existing research do not satisfy
these requirements. Thus, this master’s thesis presents a versatile cryptographic protocol,
which provides the required level of security while still being efficient. Authentication is
ensured by the usage of standard SSL certificates and authenticated encryption algorithms
are used to protect the confidentiality and integrity of information. Even though this
protocol was designed for NFC, it is also applicable for other wireless communication
standards.

Within the scope of this thesis, a threat and performance analysis of an existing cryp-
tographic protocol is conducted. Based on that analysis, modifications are presented to
enhance the security level and the performance. Furthermore, application use cases are
identified and the implementation processes of the proposed protocol and corresponding
demo applications are presented within this work.

1

Kurzfassung

Aufgrund der rasanten Verbreitung von NFC in verschiedensten Anwendungsbereichen
spielt die Sicherheit der übertragenen Daten eine immer größere Rolle. Unter anderem
wird NFC für die Übertragung von Finanztransaktionen sowie für die Übermittlung von
Gesundheitsdaten und für Zugriffskontrollmechanismen verwendet. Daher besteht die
Notwendigkeit für einen effizienten Mechanismus zur Sicherung der übertragenen Daten,
um Vertraulichkeit, Authentizität und Integrität jener Daten gewährleisten zu können.
Jedoch unterstützen viele aktuelle forschungsrelevante Lösungen nur teilweise diese Kri-
terien, daher wird in dieser Arbeit ein sicheres und effizientes Protokoll zur Übertragung
von vertraulichen Daten mit Hilfe von NFC vorgestellt. Dieses Protokoll erfüllt die bereits
genannten Kriterien und ist dabei performanter als andere Lösungen. Auch wenn dieses
Protokoll ursprünglich für NFC entwickelt wurde, so ist es doch auch für andere draht-
lose Übertragungsmedien geeignet. Die Authentifizierung basiert auf standardmäßigen
SSL-Zertifikaten, und die Verwendung von authentifizierten Verschlüsselungsalgorithmen
garantiert die Vertraulichkeit und Integrität der übermittelten Daten. Im Zuge dieser
Masterarbeit wird eine Sicherheits- und Gefahrenanalyse von existierenden kryptografis-
chen Protokollen für NFC durchgeführt. Zusätzlich werden diese Protokolle auf Effizienz
überprüft. Basierend auf den Resultaten dieser Analyse wird ein bestehendes Protokoll
erweitert, um die Sicherheit und Effizienz zu verbessern. Außerdem werden in dieser Ar-
beit konkrete Anwendungsfälle definiert, und dementsprechend das beschriebene Protokoll
und die dazugehörigen Anwendungen implementiert.

2

Affidavit

I declare that I have authored this thesis independently, that I have not used other than
the declared sources/resources, and that I have explicitly indicated all material which
has been quoted either literally or by content from the sources used. The text document
uploaded to TUGRAZonline is identical to the present master’s thesis.

Date Signature

3

Acknowledgements

This master’s thesis has been conducted within the context of the IoSense-project1 at Graz
University of Technology at the Institute of Technical Informatics. Therefore, I would like
to thank Ass.-Prof. Dipl-Ing.Dr.techn. Christian Steger for his guidance, patience and
valuable input during this time. Especially, I want to thank Dipl-Ing. Dipl-Ing. Thomas
Ulz, Bsc for time he spent on supporting me during countless meetings and delightful
discussions from the day I decided to work on this thesis to the day I write these lines of
text.

Studying and pursuing my goals wouldn’t have been possible without the help of
my beloved family and friends. Therefore, I would like to thank my parents Anita and
Reinhard and my grandparents Renate, Ernestine, Franz and Vinzenz for their endless
love, infinite patience and for their never-ending encouragement, which eventually helped
me getting to the point where I am right now. I am so grateful for having such a lovely
and supportive family and I will never take this for granted. During the time of my studies
I also got to know my girlfriend Manuela, who supported me in every single aspect of my
life ever since, for which I am infinitely grateful. Finally, I would also like to thank my
study colleagues and friends Bernhard, Markus, Martin and Philipp for raising my interest
in research and for their continuous support and understanding during this challenging
but also rewarding time.

Graz, May 2019 Martin Zöhrer

1http://www.iosense.eu/

4

Contents

1 Introduction 10
1.1 Motivation . 10
1.2 Introduction . 11

1.2.1 Objectives . 12
1.3 Structure of this thesis . 13

2 Prerequisites & Related Work 14
2.1 Prerequisites . 14

2.1.1 General terms . 14
2.1.2 NFC . 14
2.1.3 Cryptographic primitives . 16
2.1.4 Threat analysis of protocols . 21
2.1.5 Operating systems . 23

2.2 Related work . 24
2.2.1 Threats on NFC . 24
2.2.2 Securing NFC . 26

2.3 Conclusion . 32

3 Design 34
3.1 Application use cases . 34

3.1.1 NFC-based configuration . 34
3.1.2 Other use cases . 35

3.2 Security and threat analysis of QSNFC . 35
3.2.1 MITM-Attack . 36
3.2.2 Replay-Attack . 41

3.3 Performance analysis towards a modified QSNFC 43
3.3.1 Certificate chain and compression . 43
3.3.2 Available encryption algorithms . 43
3.3.3 Abort handshakes . 43

3.4 Modified QSNFC . 44
3.4.1 Supported encryption algorithms and cryptographic primitives . . . 44
3.4.2 Prerequisites . 46
3.4.3 Initial handshake . 47
3.4.4 Subsequent handshake . 50
3.4.5 SD-messages . 54

5

3.4.6 Connection tear down . 54
3.4.7 Message types . 56

4 Implementation 60
4.1 Requirements & Consequences . 60

4.1.1 Requirements . 60
4.1.2 Consequences . 61

4.2 Implementation environment and external libraries 62
4.2.1 IDE . 62
4.2.2 Unit Test-framework . 62
4.2.3 External libraries and tools . 63

4.3 libQSNFC . 65
4.3.1 Interface . 66
4.3.2 OpenSSL-API usage . 69

4.4 Two NFC-enabled IoT-devices . 71
4.4.1 Setup . 72
4.4.2 Development environment . 72
4.4.3 Implementation . 74

4.5 An NFC-enabled IoT-device and an NFC-enabled smart phone 75
4.5.1 Simple APDU Exchange Protocol 75
4.5.2 APDU-commands . 76
4.5.3 Development environment . 76
4.5.4 Implementation-Android . 77
4.5.5 Implementation-RaspberryPi . 81

5 Evaluation 82
5.1 Protocol evaluation . 82
5.2 Demo evaluation . 83

5.2.1 Test scenarios . 84
5.2.2 Overhead and timings . 84

6 Conclusion and Future Work 87
6.1 Conclusion . 87
6.2 Known limitations . 88

6

List of Figures

1.1 Four-layer model comprising QSNFC . 11
1.2 Handshake types . 12

2.1 Man-in-the-Middle . 23
2.2 Android architecture simplified . 24
2.3 NFC-Relay attack . 26
2.4 Connection establishment (initial handshake) 30
2.5 Subsequent handshake . 32

3.1 Major use cases . 36
3.2 MitM attack 1 . 38
3.3 MitM attack 2 . 40
3.4 Replay attack . 42
3.5 Simplified flow diagram . 45
3.6 Initial handshake of the modified QSNFC 49
3.7 Subsequent handshake of the modified QSNFC 51
3.8 Abort initial handshake . 53
3.9 SD-messages of the modified QSNFC . 55

4.1 Library implementation overview . 61
4.2 Data flow diagram . 68
4.3 Two NFC-enabled IoT-devices . 72
4.4 Secure communication from a server to an IoT-device 79
4.5 Android app . 80

5.1 Message overhead for libQSNFC . 85
5.2 Execution time for libQSNFC . 86

7

List of Tables

2.1 NFC-Tag types defined by NFC-Forum . 15
2.2 Key lengths of RSA and ECC compared to the security level 20
2.3 Protocol feature comparison . 33

3.1 Supported authenticated encryption algorithms 46
3.2 Supported elliptic curves . 46
3.3 Abort reasons . 49
3.4 Message types . 56
3.5 Inchoate CH-message . 57
3.6 RJ-message . 57
3.7 Uncompressed certificate chain . 57
3.8 Compressed certificate chain . 58
3.9 Complete CH-message . 58
3.10 SH-message . 58
3.11 SD-message . 58
3.12 AB-message . 59

4.1 Status byte for SAEP . 76

5.1 Performance evaluation for different encryption modes 86

8

List of Listings

4.1 Key-pair generation . 63
4.2 Issuing an entity-certificate . 64
4.3 Issuing an intermediate CA . 64
4.4 Verification of a certificate chain . 65
4.5 Revocation of a certificate . 65
4.6 Usage of compress and decompress functions 65
4.7 QSNFC-Interface . 67
4.8 QSNFC-Callbacks . 69
4.9 OpenSSL-Generation of an EC-key . 70
4.10 OpenSSL-Shared secret computation . 71
4.11 OpenSSL-Certificate chain verification . 71
4.12 Starting GDB-server on RaspberryPi . 73
4.13 Starting remote debug session . 73
4.14 Interaction with NXP’s Reader library . 74
4.15 Build OpenSSL for Android’s ABI armeabi-v7a 78
4.16 Usage of Android’s JNI . 78
4.17 Accessing Java from JavaScript . 79

9

Chapter 1

Introduction

This first introductory chapter consists of several sections. The first section gives a short
motivation to emphasize the importance of the proposed solution, followed by a brief
introduction to the related work, which acts as the basis for the work presented in this
thesis. The subsequent section comprises a concise overview of the main objectives and a
structural overview of this thesis concludes this chapter.

1.1 Motivation

Today’s world is full of secure data being transmitted over the web. Financial transactions,
company confidential data and even personal social and health related data is just the tip of
the iceberg. The necessity of securing confidential data is obvious and hence, Secure Socket
Layer (SSL) / Transport Layer Security (TLS) evolved as the major security standard for
modern web communication over the last decades, placed in the transport layer of the OSI-
Model, which makes it flexible and applicable for many applications. Hence, applications
located on top of the transport layer can rely on SSL/TLS and do not need to take care
of communication security.

However, in the last couple of years a new technology called Near Field Communication
(NFC) arose, which provides mobile phones and smart devices the tools to communicate
without the need of the web or the necessity of a pairing routine, as required by Bluetooth.
In a world full of connected devices, aka the Internet of Things (IoT), NFC plays an
important role due to its simplicity and connectivity while still being powerful and energy
efficient. Fields of application for NFC-enabled devices and things vary from simple URL
stickers over information retrieval in the industrial environment to the transmission of
confidential data such as bank transactions using mobile payment, initial configuration of
electronic devices such as routers, mobile ticketing or access controls.

In contrary to modern web communication standards though, NFC does not support
similar cryptographic protocols compared to SSL/TLS. Therefore, application developers
are condemned to implement their own security protocols to secure confidential data,
which is being transmitted via NFC. This results from the fact that eavesdropping and
data manipulation are major security concerns for NFC. Therefore, Hameed et. al. [HJS16]

10

CHAPTER 1. INTRODUCTION 11

noted, that the lack of standardized security protocols limits the spread of NFC-usage for
applications where confidential data must be transmitted.

Given the wide variety of sensitive data, which is being sent over NFC, makes it
inherently vulnerable to attackers. Thus, current research tries to counteract those attack
vectors. However, existing solutions provide either inefficient protocols or partial security
only, thus an efficient protocol providing confidentiality, authenticity and integrity suited
for NFC is desirable. Furthermore, having the data transfer rate as the limiting factor,
reducing communication overhead needs to be considered with special care when designing
a security protocol for NFC.

Hence, the work within this thesis focuses on the design, implementation and evaluation
of an efficient and secure cryptographic protocol suited for NFC-enabled devices. In fact,
the proposed solution, which resides in the transport layer of the communication standard,
is not only applicable for NFC, but also for other wireless communication protocols, which
provide a unidirectional or bidirectional way of communication. Figure 1.1 illustrates a
four-layer model with respect to NFC, comprising the proposed solution in the transport
layer.

Figure 1.1: Four-layer model comprising QSNFC

1.2 Introduction

The protocol, which will be presented in this thesis is based on the work of Ulz et al.
[UPS+18]. Therefore, the authors introducedQuick and Secure Near Field Communication
(QSNFC), a protocol developed to secure NFC-sessions while keeping the data overhead
as low as possible. To achieve overall security, QSNFC aims to ensure confidentiality and
integrity by using authenticated encryption and authenticity by using SSL-certificates in
a typical client-server model. In terms of NFC, the client is the active part, who initiates
the NFC connection by approaching the passive NFC component, also referred to as the
server. Even though the naming suggests multiple concurrent sessions, only one client
communicates with one server at a time due to the nature of NFC.

CHAPTER 1. INTRODUCTION 12

(a) Full QSNFC-Handshake (b) Subsequent QSNFC-Handshake

Figure 1.2: Handshake types

QSNFC also applies a recent property of modern web browsers, the so called Zero
Round Trip Time (0-RTT) property, which is for example supported by TLS 1.3 [KW16]
for TCP connections and by QUIC [CLL+17] for UDP connections. The 0-RTT property
entails the requirement to send confidential data in a secure manner, but without having
to negotiate cryptographic primitives in an immediately prior handshake, which causes a
significant speed up and less data overhead.

QSNFC fulfills the 0-RTT property in such a way, that, if client and server have never
had a QSNFC-session before, they first need to establish trust and agree on a shared
secret by applying an initial handshake. Within this initial handshake cryptographic
primitives and certificates are exchanged, as shown in Figure 1.2a. After a successful initial
handshake, the client is now in possession of a shared secret and therefore he can use this
shared secret to secure the data for the remaining communication session. However, if
client and server have already performed a QSNFC session successfully in the past, the
client can start immediately sending secure data by using the stored shared secret from a
previous session and thus, fulfilling the 0-RTT property, as depicted in Figure 1.2b.

Eventually, cache replacement strategies need to be considered for NFC-enabled de-
vices, especially for those with memory constraints. This is because client and server
must store cryptographic primitives. Therefore, the inventors of QSNFC identified sev-
eral applicable ways to replace cached data. However, the appropriate cache replacement
strategy depends on the actual field of application and therefore needs to be examined
individually.

1.2.1 Objectives

The overall objectives of this thesis are to design, implement and evaluate a secure, efficient
and easy applicable cryptographic protocol for a wireless communication. In particular,
these main objectives are described in a more precise way in the following:

Design

In the design process, an efficient and secure wireless communication protocol needs to
be defined, which provides confidentiality, integrity and authenticity. Hence, a security

CHAPTER 1. INTRODUCTION 13

analysis needs to be performed including common protocol attack scenarios. Moreover,
as NFC is constrained by the data transfer rate, protocol overhead must be taken into
account with special care.

Implementation

This objective comprises the implementation requirements. Therefore, a versatile and easy
applicable library should be implemented, which contains the protocol related logic. This
includes the protocol handshakes, cryptographic related operations and a comprehensive
interface for applications, which are going to use this library.

Evaluation

The evaluating part should comprise the implementation of demo applications using the
previously mentioned protocol library to cover the following use cases:

� An NFC-enabled mobile device and an IoT-Device communicate via NFC

� Two IoT devices communicate with each other via NFC

In addition to that, an evaluation of timings and protocol data overhead is needed.

1.3 Structure of this thesis

The subsequent content of this thesis is organized as follows: In Chapter 2, all necessary
prerequisites are explained and selected related work is presented. This includes a brief
introduction to NFC and corresponding modes of operation, cryptographic primitives
and common threats on security protocols. In addition to that, selected topics from
current research are going to be discussed, which cover security-related work on NFC.
Chapter 3 comprises the design process of the proposed protocol. Therefore, an existing
protocol is going be analyzed and subsequently, a detailed protocol description based on
that analysis is presented. This includes flow charts, message types and computational
details. The subsequent Chapter 4 illustrates the implementation processes of the protocol
library and the demo applications. Therefore, the utilized development platforms and used
programming languages are stated. The following Chapter 5 recaps the security properties
of the proposed protocol. Additionally, timings and overhead of the demo applications are
evaluated. Finally, in Chapter 6 the thesis is concluded by discussing limitations and
outlining possible future work.

Chapter 2

Prerequisites & Related Work

First, this chapter discusses necessary prerequisites, starting with general terms such as
NFC, but also cryptographic primitives such as encryption modes, key exchanges and
freshness. In addition to that, different threat scenarios are presented which conclude
the first section of this chapter. In the second half of this chapter, related work will be
discussed. Among others, existing protocol solutions will be compared against each other
with respect to the provided security features. Finally, a concise summary of the presented
related work will complete this chapter.

2.1 Prerequisites

This section consists of high-level descriptions of selected prerequisites, which will be used
throughout this thesis and are mandatory to understand.

2.1.1 General terms

Internet of Things

Huening [Hün19] describes the term IoT as the Internet of Things, where not only robots
and expensive machines but also small sensors and other things are interconnected and
equipped with computational power. This results from the constant miniaturization of
electronic components.

Data compression

Salomon [SM10] defines data compression as follows:

Data is compressed by removing redundancies in its original representation,
and these redundancies depend on the type of data. Text, images, video, and
audio all have different types of redundancies and are best compressed by dif-
ferent algorithms which in turn are based on different approaches.

2.1.2 NFC

NFC is a family of wireless communication standards based on RFID [TT10], which op-
erate at 13.56 MHz at a maximum data rate of 424 Kbit per second [ISO07]. The active

14

CHAPTER 2. PREREQUISITES & RELATED WORK 15

Tag-type Standards Maximum memory size

Type 1 ISO/IEC 14443-3 Type A 2KB

Type 2 ISO/IEC 14443-3 Type A 2KB

Type 3 JIS-X-6319-43 1 MB

Type 4 ISO/IEC 14443-3 Type A and ISO/IEC 7816-4 64KB

Table 2.1: NFC-Tag types defined by NFC-Forum

part generates an RF-field and powers the passive part, whereby this field is used for com-
munication by modulation. NFC can operate in three different modes, as noted in [NFC],
[Rol15], [JIC14]:

Reader-Writer Mode

The active device reads from a or writes to a passive device, while the passive device
itself behaves as a tag. NFC-Tags can store small amounts of data in a simple memory
structure. Table 2.1 illustrates the four distinct NFC-Tag types defined by NFC-Forum1,
the standards they are based on and their maximum memory size, as mentioned in [Rol15].
However, there exists also a fifth proprietary (to NXP Semiconductors2) NFC-Tag type.
The Reader-Writer mode is compliant with the ISO-14443 standard [ISO08].

Peer-to-Peer Mode

In Peer-to-Peer mode, often abbreviated as P2P-mode, both entities can send data, which
is compliant with the communication protocol presented in the ISO/IEC-18092 standard
[ISO07]. Therefore, the Logical Link Control Protocol (LLCP) [LR10], which is located on
top of the P2P-layer, provides a bidirectional communication between two NFC-enabled
devices.

Card Emulation Mode

In Card emulation mode, a device emulates a passive component, for example a tag or
a smart card. This way, an NFC-enabled device can communicate with another device
which operates in NFC’s Reader-Writer mode.

Application Protocol Data Unit (APDU):

Each NFC-chip provides a standardized set of commands (APDUs) for communication.
These APDU-commands vary based on the implemented standards. Hence, an APDU
command represents the lowest level of interaction with an NFC-device within this thesis.

1https://nfc-forum.org/
2www.nxp.com
3https://standards.globalspec.com/std/10070623/jsa-jis-x-6319-4

CHAPTER 2. PREREQUISITES & RELATED WORK 16

NFC Data Exchange Format

NFC-Forum defines within the NFC Data Exchange Format (NDEF) a standardized way
how data, which is being sent over NFC, should be formatted. Jepson et. al. [JIC14]
consider this as a major enhancement compared to the RFID-Technology. Furthermore
it is noted, that NFC-sessions compliant with NDEF include so called NDEF-Messages,
whereby an NDEF-Message can consist of one or more NDEF-Records. Each of these
records come with a specific record type including a semantic meaning. This defines how
an NFC-enabled device is supposed to handle the data contained in that record. Several
defined record types do exist for NDEF-Records, as listed in the following:

� Simple Text Records: This type of record can contain arbitrarily text data,
which does not trigger any particular behaviour at the receiving device.

� URI Records: These records represent URLs, which cause an NFC-enabled mobile
device to open the browser, for example.

� Smart Poster Records: Smart posters may trigger the NFC-enabled device to
send messages or add calendar entries, which however depends on the context.

� Signature Records: These records are supposed to contain a signature providing
authenticity, however this record type is prone to attacks, as discussed later within
this chapter.

Simple NDEF Exchange Protocol (SNEP)

Jepson et. al. [JIC14] consider SNEP [NFC11a] in their work as a possible implementation,
how two NFC-enabled devices can communicate in a P2P manner.

In particular, SNEP defines a protocol which obeys a request-response scheme, similar
to HTTP-requests. Thus, an initiator issues a request and the other communication party
answers with a response. Hereby utilizes SNEP the underlying LLCP. Additionally, SNEP
provides a set of defined request types and among others, also the Get-Request type, which
is used within this thesis. While the initiating communication party requests data in the
Get-Request Message, it can also send an NDEF message along with this request. The
receiving party responds then with a Success-Response code, which includes an NDEF
message as well. However, as stated in [NFC11a], the default SNEP-Server shall not
accept Get-Requests and thus it must be implemented separately. In contrary to that, a
Put-Request Message does not return an NDEF message.

2.1.3 Cryptographic primitives

This subsection illustrates selected cryptographic primitives. The first half of this subsec-
tion covers security fundamentals such as symmetric and asymmetric encryption, followed
by encryption modes, message authentication codes and key exchange protocols. The
other half discusses common attack scenarios on cryptographic protocols such as Man-
in-the-Middle, Replay-or Relay attacks. To illustrate complex matters, the paragraphs
within this subsection obey the following common definition: Two communication par-
ties, historically referred to as 𝐴𝑙𝑖𝑐𝑒 and 𝐵𝑜𝑏, want to exchange messages via an insecure
channel without any further assumptions.

CHAPTER 2. PREREQUISITES & RELATED WORK 17

General terms

The following properties are desired within a secure communication, which involves mul-
tiple entities:

� Confidentiality: A message is confidential if only sender and receiver can read the
content of the message, but any other outside party cannot.

� Integrity: Integrity of a message is given if the receiver can be assured that the
message has not been altered.

� Authenticity: An authentic message guarantees, that a receiver can be assured that
both the sender has sent the message and the message itself has not been altered.

� Freshness: A message is considered to be fresh, if it does not stem from a prior
communication but is new (fresh).

Symmetric/Asymmetric Encryption

In general, confidential messages between two parties 𝐴𝑙𝑖𝑐𝑒 and 𝐵𝑜𝑏, in the following
abbreviated with 𝐴 and 𝐵, can be encrypted in two different ways. In a symmetric
encryption scheme, two parties encrypt and decrypt messages by using the same key,
often referred to as common shared secret. A popular symmetric encryption scheme is the
Advanced Encryption Standard (AES) [AES01]. In contrary, an asymmetric encryption
scheme requires both communication parties to possess a private/public key pair. A
message can be encrypted by party 𝐴 using 𝐵’s public key and subsequently only 𝐵 can
decrypt it using his own private key and vice versa. Asymmetric encryption evolved from
a fundamental concept of cryptography, namely Public Key Cryptography, which will be
described in a later paragraph. Among others, RSA [RSA78] includes a representative of
a popular asymmetric encryption schema.

Message Authentication Codes

Message Authentication Codes (MAC) provide a way to verify the integrity of a message. A
Message Authentication Code is typically computed by a one-way function ℎ, often referred
to as hash function, which must fulfill the following three requirements, as Rogaway and
Shrimpton [RS04] noted:

� Preimage-resistance: It must be infeasible for any given hash value ℎ(𝑦) to find
an input 𝑥 such that ℎ(𝑥) = ℎ(𝑦), whereby 𝑦 is unknown.

� 2nd-preimage resistance: Given a message 𝑥 and its hash value ℎ(𝑥), it must be
infeasible to find a second message 𝑥′, where 𝑥 ̸= 𝑥′ such that ℎ(𝑥) = ℎ(𝑥′)

� Collision resistance: It must be infeasible to find messages 𝑥 and 𝑥′, where 𝑥 ̸= 𝑥′,
such that ℎ(𝑥) = ℎ(𝑥′)

CHAPTER 2. PREREQUISITES & RELATED WORK 18

Authenticated Encryption

Bellare and Namprempre [BN00] introduced the term Authenticated Encryption, which
carries out the idea of combining encryption with authentication. The authors identified
three distinct modes of operation, as described briefly in the following:

� Encrypt-and-MAC: The plaintext is encrypted, and the MAC is computed sepa-
rately and both outputs get stringed together.

� MAC-than-Encrypt: The MAC is computed first and then it gets added to the
plaintext. Afterwards the bundle is going to be encrypted together.

� Encrypt-then-MAC: The plaintext gets encrypted first to a cipher text, which
will then be used to compute a MAC. Both Ciphertext and MAC are transmitted.

The authors additionally recommend the use of Encrypt-then-MAC, as it provides the
best level of security among those. Furthermore, Black [Bla11] mentions an extension
to authenticated encryption, a so-called Authenticated Encryption with Associated Data
(AEAD). Therefore, a message gets encrypted in an authenticated manner, but additional
content may also be added to the MAC, which need not be encrypted but authentic. Hence,
to ensure both confidentiality and integrity, the output of an authenticated encryption
algorithm does not only consist of a cipher, but also contains an authentication tag.

Block Ciphers

Block Ciphers mark a crucial building block in the design of modern encryption algorithms,
therefore Knudsen [Knu11] defines Block Ciphers as follows:

A block cipher with n-bit blocks and a 𝑘-bit key is a selection of 2𝑘 permutations
(bijective mappings) of n bits. For any given key 𝑘, the block cipher specifies
an encryption algorithm for computing the n-bit ciphertext for a given n-bit
plaintext, together with a decryption algorithm for computing the n-bit plaintext
corresponding to a given n-bit ciphertext
...
Most block ciphers are so-called iterated ciphers where the output is computed
by applying in an iterative fashion a fixed key-dependent function r times to
the input. We say that such a cipher is an r-round iterated (block) cipher. A
key-schedule algorithm takes as input the user-selected 𝑘-bit key and produces
a set of subkeys

AES

In 1997, the National Institute for Standards and Technology (NIST) conducted a compe-
tition seeking for a new Advanced Encryption Standard. The winner of this competition
is Rijndael [DR02], which is generally referred to as AES. AES represents a symmetric
encryption algorithm for block ciphers of an arbitrary length, but under the condition
that it’s a multiple of 32 bits. However, NIST restricts the input block length sizes of
AES to 128, 196 and 256 bits, whereas the key is fixed to 128 bits. Blazhevski et. al.
[BBSP13] noted that AES can be operated in different modes. Among others, there exist

CHAPTER 2. PREREQUISITES & RELATED WORK 19

also modes of operation for AES which do provide AEAD, as stated in [ZMH07], [Wät18]
and [WHF03]:

� Galois-Counter Mode (GCM): Operates on a Finite Field (2128). A Finite
Field is a mathematical body which contains a finite number of elements, for which
standard mathematical operations such as addition and multiplication are defined.

� Counter-with CBC-MAC (CCM): Combines AES-Counter Mode [LRW01] with
CBC-MAC [Pre11].

Public Key Cryptography

The term PKC was mentioned first in Paragraph 2.1.3 on Symmetric/Asymmetric En-
cryption within this chapter. Hence, it will be discussed in greater detail in the following.
As already noted previously, an entity must possess a private/public key pair to work with
PKC. In particular, PKC is the basis of several fields of application:

� Digital Signatures: A party 𝐴 can prove the authenticity of a message by gener-
ating a signature with its private key. Any other outside party can then verify the
authenticity of the message by applying 𝐴’s public key on the received message and
comparing it to the received signature. Kaliski [Kal11] presents a Digital Signature
Scheme.

� Key Exchanges: In [BPPT17] the authors describe a Key Exchange Protocol as a
cryptographic primitive for two parties 𝐴 and 𝐵 to agree on a shared secret over an
insecure channel. In 1976, Diffie and Hellman [DH76] proposed the Diffie Hellman
Key Exchange Protocol.

� Asymmetric Encryption: Asymmetric encryption has already been described
in a previous paragraph and is added to this list only for completeness.

Certificates:

The term Certificate is related to PKC. Carlisle Adams [Ada11a] defines it as follows:

A certificate is a data structure signed by an entity that is considered (by
some other collection of entities) to be authoritative for its contents. The
signature on the data structure binds the contained information together in
such a way that this information cannot be altered without detection. Entities
that retrieve and use certificates (often called relying parties) can choose to
rely upon the contained information because they can determine whether the
signing authority is a source they trust and because they can ensure that the
information has not been modified since it was certified by that authority.

Furthermore, the author notes that certificates primarily contain information about
the public part of a private/public key pair along with other metadata, but also relevant
validity information, usage of cryptographic protocols and any other constraints. Certifi-
cates are involved in the process of authentication among (partial) untrusted parties.

CHAPTER 2. PREREQUISITES & RELATED WORK 20

Security level (bits) RSA-Key length (bits) ECC-Key length (bits)

80 1024 160-223

112 2048 224-255

128 3072 256-283

192 7680 384-511

256 15360 512-571

Table 2.2: Key lengths of RSA and ECC compared to the security level

Certificate Authority:

A Certificate Authority (CA) is a privileged entity with given trust of a group of unprivi-
leged entities. CAs are in charge of creating and distributing certificates and provide ways
to verify the content of a certificate. Moreover, CAs may grant other entities a certificate
or the privilege to create and distribute certificates themselves. Consequently, this creates
a so-called chain of trust, which starts from a Root-CA over possible Intermediate-CAs to
a certificate of an untrusted entity. In an authentication process, an untrusted entity can
be verified by starting from its certificate until a trusted CA is found, which comprises the
traversal of a certificate chain. If no trusted CA is found, the entity remains untrusted.

X.509

According to De Cock [De11], X.509 certificates are based on the ASN.1 syntax. These cer-
tificates contain different types of records, whereby some of them are mandatory and some
are optional. All certificates mentioned within this thesis are based on X.509 certificates.

Elliptic Curve Cryptography

Koblitz [Kob87] proposes a cryptographic system based on elliptic curves, which can be
used for PKC. Hence, this system is called Elliptic Curve Cryptography (ECC), whereby
ECC can be applied for encryption, signatures and key exchange algorithms. Thus, John-
son et. al. [JMV01] present a Signature-protocol in their work called Elliptic Curve Digital
Signature Algorithm, in short ECDSA, which is based on ECC. Compared to RSA-DSA,
ECDSA requires significantly fewer key bits to achieve the same level of security, as noted
in [MHS10]. Therefore, the authors compare the security level in bits and key sizes in
bits for RSA and ECDSA, which is depicted in Table 2.2. Additionally, the authors in
[RMF+15] present Elliptic Curve Diffie Hellman (ECDH), a way how the Diffie Hellman
Key Exchange Protocol can be implemented using ECC.

Key Derivation Function

A Key Derivation Function (KDF) derives one or more keys from a shared secret, typically
obtained from a prior key exchange protocol, as described previously. Additionally, human
defined passwords can also be used as input for key derivation functions. In either way, it is
generally recommended to use a separate key derivation function to obtain keys which can
then be used for encryption. Krawczyk [Kra10] describes an HMAC-based key derivation

CHAPTER 2. PREREQUISITES & RELATED WORK 21

function (HKDF). Furthermore, Password-Based Key Derivation Function (PBKDF) are
described in [MKR17].

Challenge-Response protocols

According to Just [Jus11], a challenge-response protocol can be used in an identification
process, which typically involves two entities, a challenger and a verifier. Therefore the
challenging entity generates a challenge and transmits it to the proving entity, which
solves the challenge and sends it back to the challenger. Subsequently, the response can
be verified by the challenging entity. Another application of challenge-response protocols
is to ensure freshness, which is done by sending a new challenge each time the protocol is
going to be applied.

Nonces

The above described challenge-response protocols use challenges, which are only used once
to ensure freshness. Within this context, a so called Nonce is a number which should only
be used once. In challenge-response protocols, the challenging entity typically transmits
a nonce, which is guarded by a security mechanism, to its communication partner. On
receipt of that nonce, the communication partner is going to apply a function on that
nonce and responds the result. After verification, the challenger can be assured that the
received message is fresh and does not stem from a prior session.

Pseudo Random Number Generator

According to Koeune [Koe11], many cryptographic primitives require random numbers.
These random numbers are going to be used for encryption algorithms, challenge-response
schemes, unique identifiers or key derivation algorithms. However, it is difficult to gen-
erate a real random number on a PC, therefore the concept of Pseudo Random Number
Generators (PRNG) was introduced. A PRNG is seeded with a secret random value and
produces a randomly-looking sequence of values, which is deterministic though. OpenSSL4

states that a so called strong pseudo-random number can be used for cryptographic prim-
itives whereas a weak pseudo-random number should only be used for non-cryptographic
purposes.

Initialization Vectors

An initialization vector (IV) is used to seed an encryption algorithm. Some encryption
modes require that an IV in conjunction with a key must not be used twice to avoid leakage
of information. Furthermore, IVs are used in key generation and derivation functions.

2.1.4 Threat analysis of protocols

This subsection discusses common threat scenarios for cryptographic protocols. First,
the concept of Man-in-the-Middle (MITM) is described in detail and furthermore, several

4https://www.openssl.org

CHAPTER 2. PREREQUISITES & RELATED WORK 22

attacks based on MITM are presented. Finally, a brief introduction to Denial-of-Service
attacks concludes this subsection.

Man-in-the-Middle

Schneier [Sch95] mentioned the concept of Man-in-the-Middle in his work on Applied
Cryptography, in which two honest and trustworthy parties 𝐴𝑙𝑖𝑐𝑒 and 𝐵𝑜𝑏 want to com-
municate by sending messages over an insecure channel. An insecure channel implies that
none of the two parties is neither in control of what happens along the communication
line, nor able to detect any passive or active malicious adversaries. That is, 𝐴𝑙𝑖𝑐𝑒 and
𝐵𝑜𝑏 may send and receive messages, however these messages are unprotected during the
transmission. Hence, both do not have any knowledge of whether the message has been
eavesdropped or altered, neither each of the parties can be assured to whom he or she is
talking to. Thus, Schneier introduced 𝐸𝑣𝑒, an evil third party who desires to eavesdrop
as much information as possible, as depicted in Figure 2.1a. Even worse, a malicious
𝑀𝑎𝑙𝑙𝑜𝑟𝑦 is not only able to read messages, but also may forge any sent message without
the knowledge of 𝐴𝑙𝑖𝑐𝑒 and 𝐵𝑜𝑏. Figure 2.1b illustrates 𝑀𝑎𝑙𝑙𝑜𝑟𝑦, who is intercepting mes-
sages between 𝐴𝑙𝑖𝑐𝑒 and 𝐵𝑜𝑏. Based on the concept of MITM, several attacks scenarios
can be formulated, as given in the following list:

� Relay-Attack: In a Relay-Attack, an evil adversary delays the transmission of a
message. As a practical example, 𝐴𝑙𝑖𝑐𝑒 uses a wireless key to receive a permission en-
trance to her car 𝐶ℎ𝑎𝑟𝑙𝑖𝑒. Suppose 𝐴𝑙𝑖𝑐𝑒 is physically far away from 𝐶ℎ𝑎𝑟𝑙𝑖𝑒. Then
𝐸𝑣𝑒, who is in the proximity of 𝐴𝑙𝑖𝑐𝑒, receives the signal from the wireless key and
transmits it to 𝐸𝑣𝑒𝑙𝑦𝑛, who is standing right in front of 𝐶ℎ𝑎𝑟𝑙𝑖𝑒 and subsequently
gets access by re-transmitting the received signal. Hence, the evil parties 𝐸𝑣𝑒 and
𝐸𝑣𝑒𝑙𝑦𝑛 successfully mounted a Relay-Attack. Another example of a Relay-Attack
is given in [Des11].

� Replay-Attack: Adams [Ada11b] defines Replay-Attacks as a two-step procedure.
First, an evil party 𝐸𝑣𝑒 is going to eavesdrop and record (parts of) a communication
by 𝐴𝑙𝑖𝑐𝑒 and 𝐵𝑜𝑏. In the next step, 𝐸𝑣𝑒 replays (parts of) the previously recorded
message to 𝐴𝑙𝑖𝑐𝑒 or 𝐵𝑜𝑏 or both.

� Interleaving-Attack: In this attack, an evil adversary uses interleaving sessions
with 𝐴𝑙𝑖𝑐𝑒 (and 𝐵𝑜𝑏) to inject malicious data.

� Reflection-Attack: In a Reflection-Attack an evil adversary tries to fool a com-
munication partner by sending messages back to the originator, for example in a
challenge-response scenario.

� Downgrade-Attack: Downgrade-Attacks try to weaken a communication by
’downgrading’ the negotiated level of security. Therefore, an evil 𝐸𝑣𝑒 would try to
inject/alter a message in a communication between 𝐴𝑙𝑖𝑐𝑒 and 𝐵𝑜𝑏, where these two
honest parties agree on the level of security.

CHAPTER 2. PREREQUISITES & RELATED WORK 23

(a) MITM with eavesdropping Eve (b) MITM with malicious Mallory

Figure 2.1: Man-in-the-Middle

Denial of Service

Eric Cronin [Cro11] defines the term Denial of Service, abbreviated as DoS, as the un-
availability of a service to a legitimate entity. However, in practice this term is only used
if the unavailability is the result of an intended attack, which forces the system to be-
have differently as it is supposed to. DoS can be achieved, among others, by applying
MITM-based attacks.

2.1.5 Operating systems

This subsection lists all used operating systems and describes each of them briefly. Fur-
thermore, an outline of the usage of each operating system within the context of this thesis
is given.

Raspbian

Raspbian5 is a free operating system based on Debian, which includes pre-built libraries
for the RaspberryPi-Platform6. A RaspberryPi is a small hand-sized computer providing
several interfaces such as USB, Ethernet, WLAN and HDMI. In addition to that it contains
numerous General-Purpose-Input-Output (GPIO) pins to extend the functionality with
an NFC-Shield, for instance. Within this thesis, RaspberryPis running Raspbian with an
attached NFC-Shield are used as NFC-enabled IoT-devices.

Android

Android7 is a mobile operation system developed by Google. It is based on a Linux
kernel and runs each application in its own sandbox. Peripherals such as NFC, Camera
and Storage can be accessed by using defined interfaces in code. A detailed reference on
programming Android apps can be found on the Android-Developer website8, moreover
Figure 2.2 illustrates Android’s architecture. An NFC-enabled, Android-based mobile
phone is used within this thesis.

5https://www.raspbian.org/
6https://www.raspberrypi.org/
7https://www.android.com/
8https://developer.android.com/

CHAPTER 2. PREREQUISITES & RELATED WORK 24

Figure 2.2: Android architecture simplified

2.2 Related work

This section discusses related research publications, whereby relevant papers for both the
design process and for the implementation will be presented and analyzed. The first part
of this section primarily focuses on theoretical attack vectors for NFC, while the second
part presents practical attacks and the third part is dedicated to work about securing
NFC connections. Finally, the subsection Conclusion summarizes the crucial points of the
related work and furthermore, the implications of the individual results on this thesis will
be highlighted.

2.2.1 Threats on NFC

This subsection discusses threats on NFC. The first part comprises attacks based on simple
RF-signal transmission, while the second part describes several other types of attacks.

Attacks based on RF-transmission

Haselsteiner and Breitfuss [HB06] identify the following threat scenarios in their work on
Security in NFC :

� Eavesdropping: Due to the wireless way of communication entailed with NFC,
it is implicitly vulnerable to eavesdropping. That is, in an NFC-session, two par-
ties communicate via RF waves, thus an attacker could simply receive those waves
via an antenna. However, such an NFC-session is usually conducted within a range
of centimeters, therefore the attack scenario highly depends on how close the at-
tacker is to the transmitting part. Moreover, the used equipment of both sender
and receiver plays an important role in such a scenario, which includes quality of
antennas, RF-signal decoders and the overall location (buildings, walls or other im-
pacting obstacles). Hence, it is not possible to give an exact distance without further
assumptions on the environment.

CHAPTER 2. PREREQUISITES & RELATED WORK 25

Another important factor, which must be considered when applying such an attack
is whether the sender’s device operates in active or in passive mode. According to
the authors, it is much harder to eavesdrop a communication if the sending device
does not generate its own RF-field for communication (passive-mode) in contrary to
if the sender generates its own RF-field (active-mode). For active mode, the authors
estimate the possible eavesdropping distance at about 10 meters, whereas the passive
mode is only applicable within a range of 1 meter.

� Data corruption: In contrary to passive eavesdropping, attackers could also
corrupt data within a communication by emitting a noise signal at the right time.
Therefore, the attacker must be aware of the available frequency spectrum for the
communication. This would imply that the originally intended receiver would just
receive invalid data.

� Data modification: While the goal from the previous attack is to just interrupt a
communication with invalid data, this attack aims to modify transmitted data. The
authors state that this attack highly depends on how the signal is modulated and
which encoding is used. However, if the right modulation and the proper encoding
is chosen, an attack as feasible.

� Data insertion: Instead of just modifying existing data, the authors also mention
a data insertion attack scenario. In this scenario, the attacker tries to insert data in
an existing communication. However, this is only feasible under certain conditions
according to the authors:

This means that the attacker inserts messages into the data exchange be-
tween two devices. But this is only possible, in case the answering device
needs a very long time to answer. The attacker could then send his data
earlier than the valid receiver. The insertion will be successful, only, if the
inserted data can be transmitted, before the original device starts with the
answer. If both data streams overlap, the data will be corrupted.

� Man-In-The-Middle: The basic concept of a MITM-attack has already been
described in the previous section, however this paragraph examines the applicability
of a MITM-attack based on the context used above, that is two communication par-
ties want to communicate via NFC and an attacker equipped with RF-transmission
and receiving devices. Therefore, the above-mentioned authors investigated this
scenario, however they concluded that it is practically impossible to mount such a
MITM-attack, which is based on RF-Signal transmission and interception, due to
nature of NFC.

Attacks based on relaying communication

In the work of Maass et al. [MMS+15], the authors present a Relay-Attack on top of NFC.
Therefore, two Android based mobile devices were used to delay a communication between
an NFC-Tag and an NFC-Reader, as depicted in Figure 2.3. In the presented attack, data
from an NFC-Tag was captured by an NFC-enabled mobile device. Subsequently this
data was transmitted via a web protocol to another, physically far located NFC-enabled

CHAPTER 2. PREREQUISITES & RELATED WORK 26

Figure 2.3: NFC-Relay attack

mobile device, which in turn transmits the received data to an NFC-Reader. Hence, the
authors were able to use this attack scenario in conjunction with a popular contactless
card payment system and an electronic passport document. Roland et. al. [RLS13] used
a similar attack setup, where they conducted a Relay-Attack on Google-Wallet.

Using the presented attack scenarios, an attacker is not only able to successfully per-
form a passive MITM-attack and eavesdrop the communication, but also actively modify,
insert or delete data, which opens the doors for all sorts of attacks related to MITM, as
described in the previous preliminary section.

Conclusion

Within this subsection, multiple threat scenarios for NFC were presented. First, attacks
based on RF-Signal transmission were discussed, yielding multiple attack scenarios where
an attacker with the proper equipment can easily eavesdrop data, which depends on the
actual setting though. Moreover, the attacker may flip certain bits or interrupt an NFC
session by sending noise on a proper frequency. In the second part, a MITM-attack based
on NFC was presented, which enables an attacker to arbitrarily forge messages.

2.2.2 Securing NFC

This subsection covers related work, which aims to secure an NFC connection. Within
this subsection several approaches are discussed. First, an NDEF record type definition
providing authenticity and integrity is given, followed by a scheme which aims to provide
confidentiality. Subsequently, several other schemes providing confidentiality, authenticity
and integrity are presented and analyzed. Finally, a concise comparison of all the presented
schemes concludes this chapter.

NDEF-Signature record type

As already stated in the preliminary section of this thesis, NDEF contains a definition for
a Signature Record Type9. A Signature Record Type Definition (Signature RTD) aims
the ensure integrity and authenticity of an NDEF message, whereby multiple successive
NDEF-records can be included in one Signature-record. However, Roland et. al. [RLS11]
pointed out several security vulnerabilities in their work on the NDEF Signature RTD
from 2011. First, the authors introduced the term Record Composition Attack, which is a
two step attack:

9https://nfc-forum.org/purpose-nfc-ndef-signature-records/

CHAPTER 2. PREREQUISITES & RELATED WORK 27

1. At first, (possible unrelated) NDEF-records, which were signed by the same entity,
are selected.

2. Subsequently, all records from different contexts are combined into a single con-
text, which yields the content of a new message, for which the previously generated
signature is valid.

According to the authors, such an attack could lead to a DoS or fraud, which in turn
destroys the trust relationship between a consumer and a service provider.

In that same paper, the authors describe another attack scenario based on the NDEF
Signature RTD. Thereby, the feature of remote signatures and certificates by URIs is
identified as potential weakness, because it could lead to security vulnerabilities and could
cause privacy issues. Remote signatures and certificates within an NDEF-Signature RTD
are supposed to provide authenticity and integrity by referencing to a remote URI, which
provides the actual signature/certificate of the included data. Hereby, the crucial point is
that the URI itself is not protected by any kind of security measure. Therefore attackers
could exploit this issue by triggering maloperation, for example:

� Access services by using cookies in URIs, which are normally only available to a
certain user.

� Usage of services, which are only available on the receiving device.

� Execution of malware via buffer overflows.

However, according to Saeed and Walter [SW11], the presented record composition
attack described above needs further changes to be carried out, such that a valid sig-
nature can be obtained. The authors conclude that the easiest way to counteract such
attack scenarios is to sign all header fields within an NDEF message, which is practically
not possible though. Thus, a signature scheme is proposed, which may contain multiple
record chunks and hence, making it more difficult to exploit vulnerabilities in the NDEF-
Signature RTD. In addition to that, NFC-Forum released in 2015 a new version of the
NDEF-Signature RTD (version 2.0), addressing the above-mentioned issues in [NFC14].
Furthermore, Thomas Korak and Lukas Wilfinger [KW12] discuss the implementation re-
lated details on using the NFC-Signature RTD with respect to the record creation and
validation.

Protected NFC data exchange

Hammed et. al. [HJS16] propose to extend the existing range of NDEF record type defi-
nitions by a so-called Encryption Record Type Definition (ERTD). The authors carry out
the idea to design such an ERTD like the above described Signature RTD. Additionally,
several encryption algorithms are supported within this definition. Furthermore, the au-
thors anticipate the usage of both ERTD and Signature RTD in conjunction in future to
provide authenticity, integrity and confidentiality.

CHAPTER 2. PREREQUISITES & RELATED WORK 28

ECMA-Standards

ECMA10 is a standardization organization in the field of information and communication
systems, which distributes, among others, the NFC-SEC standard [Ecm15a] for secure
channels and shared secret services for NFC. This standard describes a protocol comprising
several cryptographic mechanisms such as key agreement, key confirmation and Protocol
Data Unit (PDU)-security. [Ecm15b] and [Ecm15c] describe how NFC-SEC can be used
together with ECDH and AES/AES-GCM to ensure confidentiality while [Ecm17a] and
[Ecm17b] describe how entity authentication could be performed, either symmetric or
asymmetric. These standards state though, that the presented security protocol does
not address security mechanisms for particular applications including NFC tags, as they
usually do not provide any computational power. Another limiting factor which comes with
the use of NFC-SEC is that according to [Uri14] only a few NFC-chips have implemented
these features and moreover modern smart phones are not supported. Furthermore, as the
last two named references involve patent rights, this thesis does not cover them in greater
detail nor use them in any of the following chapters, but those are solely listed here for
completeness.

NFC in health care

Dunnebeil et. al. [DKK+11] propose the use of NFC tags for emergency cases to store
medical data. As this information might be confidential the authors introduce the so called
Encrypted NFC emergency tags, where personal medical data can be stored on NFC tags
in an encrypted way. In addition to that, Sethia et. al. [SGM+14]. present an NFC-based
health care system. This proposal involves the transmission of confidential data by using
the three different NFC-modes.

Transport Layer Security

According to Heinrich [Hei11], the TLS-standard contains a set of protocols for securing
modern web communication, which is used in mobile banking, E-Commerce and in con-
fidential transactions. All modern browsers do support TLS, which is the successor of
SSL. TLS defines a set of protocols and cryptographic primitives to secure session-based
communications in a client-server fashion. In the OSI-Model, it is based on top of the
transport layer.

TLS over QSNFC

Pascal Urien [Uri14] proposes the idea to port TLS to NFC and include it in the LLCP
layer, which acts as the basis for the Peer-2-Peer communication mode. However, TLS,
which was originally designed for modern web communication, entails a significant over-
head for NFC connections. Thus, the author reports that a full TLS session opens in 2
seconds in a test scenario with two NFC-devices.

10https://www.ecma-international.org/

CHAPTER 2. PREREQUISITES & RELATED WORK 29

Quick and Secure NFC

As already stated in the introductory part of this thesis, QSNFC [UPS+18] acts as the
fundamental basis of this thesis, hence this paragraph describes it in greater detail, as
it is mandatory to understand the concepts for the threat analysis and the design part
presented in the next chapter. First, the protocol is described in detail, which includes
a concise textual description and an illustrative flow diagram. Subsequently, message
types and included fields are given and an overall summary of the findings by the authors
concludes this section.

QSNFC is a Transport Layer protocol suited for NFC-based communications, which is
similar to TLS for modern web communications. QSNFC aims to ensure confidentiality,
integrity and authenticity, therefore confidentiality and integrity are ensured by the usage
of authenticated encryption algorithms and authenticity is guaranteed by using certificates.
In the presented model, a client wants to establish a secure connection with a server via
QSNFC. In terms of NFC, the client is the active part, who initiates the NFC session by
approaching the passive NFC component, also referred to as the server.

In a typical web communication protocol, a client authenticates a server by using
certificates and certificate authorities. Hence, also QSNFC relies on this kind of authen-
tication mechanism. Therefore, the protocol contains corresponding fields for certificates,
however due to the significant data overhead entailed with the usage of certificates, the
next chapter of this thesis elaborates the data overhead in greater detail.

Additionally, QSNFC provides a 0-RTT property, which reduces the limiting factor of
data overhead. In particular, the 0-RTT property requires, that for a handshake between
two parties, which takes place again, no re-occurring key agreement should be needed
to agree on a new shared secret. In QSNFC, client and server agree on cryptographic
primitives in a so-called initial handshake. In all successive sessions, client and server only
need to perform a subsequent handshake. Hence, they re-use these cryptographic primitives
to establish a secure communication without the need of another initial handshake, thus
fulfilling the 0-RTT. However, in the first connection attempt, when client and server
do not share any common cryptographic primitives or secrets, the 0-RTT property is
not fulfilled. The next two paragraphs describe the concept of initial and subsequent
handshakes in detail:

Initial Handshake: In a typical communication scenario, where client and server have
never met before, a handshake is needed to perform a key agreement procedure and to
enable the 0-RTT property for successive round trips. Thus, QSNFC defines the Initial
Handshake, which is used in the first connection attempt, that is, client and server do not
share any common cryptographic primitives. A client can initiate a QSNFC session by
sending an inchoate Client-Hello (CH) message containing the client’s id to the server.
Subsequently, a server can respond with a Reject (RJ) message, which contains the fol-
lowing fields:

CHAPTER 2. PREREQUISITES & RELATED WORK 30

QSNFC Connection Establishment (initial handshake)

Client Server

inchoate CH: 𝑖𝑑𝑐

(𝑝𝑘𝑙, 𝑠𝑘𝑙)←$𝐾𝐺𝑒𝑛(1𝑛)

𝑡← 𝐸𝑛𝑐𝑠𝑘𝑙
(𝑖𝑑𝑠, 𝑡𝑖𝑚𝑒)

RJ: 𝑖𝑑𝑠,𝑝𝑘𝑙,𝑆𝐼𝐺(𝑝𝑘𝑙),𝑐𝑒𝑟𝑡𝑠,𝑡

Figure 2.4: Connection establishment (initial handshake)

� The server’s long-term public key, which is utilized in all subsequent handshakes
to derive a new shared secret. This shared secret is then used for authenticated
encryption.

� The server’s certificate and the corresponding certificate chain, which must be ver-
ified by the client. By verifying this chain, the client can be assured that he or she
is talking to the server.

� A signature of the server’s long-term public key signed with the private part of the
server’s certificate key.

� A so-called source address token, that contains the server’s id and a nonce chosen by
the server. The client transmits this token in every subsequent handshake to prove
knowledge of the server’s identity.

Subsequently, when the client receives the RJ-message from the server, the authenticity
of the message must be verified first. To do so, the client tries to build a certificate chain,
starting with the server’s certificate and the certificate chain and hence, yielding the result
whether the server is trustworthy or not. If the client is able to build the certificate chain
and trusts the server, the client must also verify, that the server is in possession of the
private key corresponding to the public key within the received certificate. Therefore, the
client verifies the integrity of the received long term public key by computing the signature
of it and compares it with the received signature within the RJ-message. Figure 2.4
illustrates the initial handshake by using the fields described above.

Subsequent handshake: While the initial handshake was used by the client to authen-
ticate the server by verifying the certificate chain, the subsequent handshake is designed to
provide a secure way of communication. Within the initial handshake, the client received
the server’s long-term public key, which is subsequently used to derive shared secrets. To
do so, the client generates his own ephemeral private/public key pair and derives in con-
junction with the received long-term public key a temporary shared secret. This temporary
shared secret is going to be used to secure data within that subsequent handshake. There-
fore the client transmits the complete Client-Hello (CH)-message to the server, containing
the following fields:

CHAPTER 2. PREREQUISITES & RELATED WORK 31

� The client’s id to identify the client by the server.

� The client’s ephemeral public key. This key is needed by the server to compute the
shared secret.

� The source address token to prove the client’s ownership of the server’s identity.

� Confidential data secured by an authenticated encryption algorithm using the initial
shared secret.

Upon receipt of the complete CH-message, the server computes the shared secret using
the private part of his own long-term key and the received ephemeral public key from
the client. Afterwards, the server decrypts the received message and verifies the integrity.
Subsequently, the server generates his own ephemeral key pair, which is intended to be
used for any further message within the current communication, but after the subsequent
handshake. As a response to the client, the server composes the Server-Hello (SH)-message,
which contains the following fields:

� The server’s id used by the client to identify the server.

� The server’s ephemeral public key used to create a shared secret for the successive
messages within this communication session.

� Confidential data, which is secured with an authenticated encryption algorithm by
using the initial shared secret.

Once the client has received the SH-message, both entities can compute the final shared
secret by using the own private part and the opponent’s public part of the ephemeral keys
which were exchanged in the prior subsequent handshake. This final shared secret can
then be used to secure data in successive Standard-Data (SD) messages within the com-
munication session. These SD-messages are going to be sent in a request-response manner.
Figure 2.5 illustrates both the subsequent handshake and the exchange of SD-messages
in a request-response manner. Hereby, the messages above the dotted line represent the
subsequent handshake. The messages underneath the dotted line represent SD messages,
which can be sent in arbitrary order and direction. The function Enck(data) denotes an
authenticated encryption function using key k. The parameters for the subsequent hand-
shake are: the client’s and server’s ephemeral public key (pk𝑐 | 𝑠, sk𝑐 | 𝑠) and additionally,
the client has to transmit the source address token.

Security: The authors state, that the key agreement process is based on QUIC [CLL+17].
Thus, the security properties do not differ. However, as it will be shown in the next chapter
of this thesis, QSNFC consists of several security vulnerabilities.

Protocol overhead: In a resource constrained scheme, protocol overhead needs to be
considered with special care. Thus, the inventors of QSNFC consider the certificate chain
as the major impacting factor for data overhead, stating that a standard certificate is
approximately 1kB in size. However, as the certificate chain may include more than one
certificates in the chain, this must be treated as an important aspect in the design phase.
Thus, the 0-RTT was applied to reduce the number of necessary handshakes and hence,
the number of certificates which have to be transmitted over NFC.

CHAPTER 2. PREREQUISITES & RELATED WORK 32

QSNFC Connection Establishment (subsequent handshake)

Client Server

(𝑝𝑘𝑐, 𝑠𝑘𝑐)←$𝐾𝐺𝑒𝑛(1𝑛)

𝑠𝑘𝑖 ← (𝑠𝑘𝑐, 𝑝𝑘𝑙)

complete CH: 𝑖𝑑𝑐,𝑝𝑘𝑐, 𝐸𝑛𝑐𝑠𝑘𝑖
(𝑑𝑎𝑡𝑎),𝑡

𝑠𝑘𝑖 ← (𝑠𝑘𝑙, 𝑝𝑘𝑐)

(𝑝𝑘𝑠, 𝑠𝑘𝑠)←$𝐾𝐺𝑒𝑛(1𝑛)

SH: 𝑖𝑑𝑠,𝑝𝑘𝑠,𝐸𝑛𝑐𝑠𝑘𝑖
(𝑑𝑎𝑡𝑎)

𝑠𝑘 ← (𝑠𝑘𝑐, 𝑝𝑘𝑠) 𝑠𝑘 ← (𝑠𝑘𝑠, 𝑝𝑘𝑐)

. .

SD: 𝑖𝑑𝑐,𝐸𝑛𝑐𝑠𝑘(𝑑𝑎𝑡𝑎)

SD: 𝑖𝑑𝑠,𝐸𝑛𝑐𝑠𝑘(𝑑𝑎𝑡𝑎)

Figure 2.5: Subsequent handshake

2.3 Conclusion

This section summarizes the presented related work, compares the identified properties
of each solution and gives an outline of desired features for the proposed protocol within
this thesis. The Section 2.2.1 Threats on NFC depicts several vulnerabilities for NFC ses-
sions. In particular, not only eavesdropping is a potential threat but also malicious attacks
based on an active MitM. Hence, NFC sessions must be secured to ensure authenticity,
integrity and confidentiality and moreover, the solution must be efficient while still being
flexible and adaptable. Clearly, such a protocol requires computational power from both
communication partners, hence this work focuses NFC-enabled devices, but not on simple
NFC-tags. However, none of the presented security countermeasures does fulfill these re-
quirements. NDEF itself is shipped with a Signature RTD as mentioned in Section 2.2.2,
but at least an earlier version is prone to attacks and it does only provide authenticity.
Subsequently, an Encryption Record Type Definition was introduced, which defines multi-
ple encryption algorithms but does not consider authenticity nor integrity. ECMA defines
several standards for NFC-SEC, but due to the involved patents and missing implemen-
tation on many modern devices, this is not an option. Furthermore, practical examples
for confidential data transmission via NFC were illustrated within the context of health
care, however the presented solutions are bound to certain fields of application and are
not applicable for other use cases. Hence, the concept of TLS over QSNFC introduced
the idea to use an existing standardized protocol, which has been used in modern web
communication for decades. However, the significant overhead entailed with TLS is not

CHAPTER 2. PREREQUISITES & RELATED WORK 33

Solution Authenticity Integrity Confidentiality Efficient Free

Signature-RTD X - - - X
Encryption-RTD - - X - X
TLS over NFC X X X - X

ECMA X X X X -

QSNFC X X X X X

Table 2.3: Protocol feature comparison

applicable for NFC in an efficient way. Finally, QSNFC was introduced, a versatile trans-
port layer protocol for wireless communication, providing authenticity by using certificates
in the same fashion as TLS does. Moreover, integrity and confidentiality are ensured by
authenticated encryption, while still being lightweight enough to provide an efficient way
of communication. Table 2.3 compares the presented solutions.

Even though QSNFC sounds promising, there are several security vulnerabilities, which
are going to be shown in the next chapter. Thus, modifications are necessary to eliminate
the identified security vulnerabilities, which are also going to be discussed in the next
chapter.

Chapter 3

Design

Based on the results of the previously discussed related work, this chapter focuses on
the design of a secure protocol, which provides authenticity, integrity and confidentiality.
First of all, application use cases are given, for which the proposed protocol should be
applied. After that, a comprehensive security analysis of an existing protocol is going to be
conducted. The outcoming results will then be used to strengthen the security properties
of this protocol and furthermore, several mechanisms to reduce the data overhead will be
discussed and applied. This leads to a detailed protocol definition including flow diagrams,
low level descriptions of computational operations and message types.

3.1 Application use cases

This thesis is conducted within the context of the IoSense-project (Flexible FE/BE Sensor
Pilot Line for the Internet of Everything). Therefore, application scenarios based on smart
sensor solutions are listed in the following. However, this proposed solution is by no means
bound to an industrial field of application, hence other application scenarios are highlighted
as well.

3.1.1 NFC-based configuration

In the context of the IoSense project, the TrustWorSys - Towards Trustworthiness for
IoT Sensors1 is mentioned, whereby smart sensors equipped with NFC-enabled devices
are used for configuration in an industrial environment. Ulz et. al. [UPH+17] mentioned
configuration of smart sensor systems via NFC.

Smart sensor - mutual configuration

In a Machine-to-Machine scenario, two smart sensors with an NFC-enabled device can con-
figure each other in an uncontrolled environment. Hence, to secure the configuration and
to prevent any eavesdropping or malicious configuration modification, a secure protocol is
needed.

1http://www.iosense.eu/index.php/project/demonstrator/

34

CHAPTER 3. DESIGN 35

Human configures smart sensor

Not only machines can configure machines but also humans with a corresponding NFC-
enabled mobile devices, for example due to a configuration update. Hence, also the com-
munication between a smart phone and a machine must be secured.

3.1.2 Other use cases

The protocol presented within this thesis is not only applicable in the context of NFC-based
configuration, but also in several other fields of application, where confidential messages
are being transmitted. Especially, in a context with a mobile smart phone as initiating
part and an IoT-device as passive part, the following use cases can be defined:

� Mobile banking: A human with an NFC-enabled smart phone pays at a banking
terminal, which is also equipped with NFC.

� Identification (Access control): In order to get access to a certain entity such
as a building or a car, a human with an NFC-enabled smart phone communicates
with an NFC-equipped receiver terminal.

Clearly, more application scenarios can be formulated, however the above described use
cases can be grouped into two major use case settings:

� IoT-device to IoT-device: In the first major use case setting, two IoT-devices
equipped with NFC communicate in an unsecured environment. Hereby, one IoT-
device acts as an active NFC-entity, also referred to as the client. This client initiates
an NFC session with the second NFC-enabled IoT-device, which acts as the server.
In a successive NFC session however, the roles may change. That is, the prior client
acts now as the server and vice versa. Figure 3.1a illustrates such a major use case
setting.

� Smart phone and IoT-device: The second major use case setting comprises an
NFC-enabled smart phone and an NFC-enabled IoT-device. Here, the smart phone
acts as the client and initiates a communication with the IoT-device, also referred
to as the server. This second use case setting is depicted in Figure 3.1b.

There is also a third major use case, which involves a simple physical NFC-tag and
another NFC-enabled device. However, due to the fact, that a simple NFC-Tag does not
provide any computational power, which is needed by the proposed protocol, this use case
is not considered and demands special treatment.

3.2 Security and threat analysis of QSNFC

This section investigates the existing protocol definition of QSNFC with respect to security.
It will be shown that the existing QSNFC consists of several security vulnerabilities. First,
a MITM-attack will be performed to show an attack vector, where an active adversary
exploits unprotected public keys to inject its own keys and messages and subsequently is
capable of gathering confidential information. The second attack presented in this section

CHAPTER 3. DESIGN 36

(a) IoT-device to IoT-device (b) Smart phone and IoT-device

Figure 3.1: Major use cases

makes use of the fact, that QSNFC does not use any kind of challenge-response mechanisms
to ensure freshness during multiple sessions. Hence, a Replay-Attack can be conducted to
trigger unintended behaviour. In both presented attack scenarios, the participants of the
QSNFC session, 𝐶𝑙𝑖𝑒𝑛𝑡 (𝐶) and 𝑆𝑒𝑟𝑣𝑒𝑟(𝑆), are not able to detect the evil interference by
an attacker on the protocol level.

3.2.1 MITM-Attack

Within this subsection, a Man-in-the-Middle attack is performed on the subsequent hand-
shake. Therefore, an evil adversary 𝐸𝑣𝑒, subsequently denoted as 𝐸, tries to gather as
much information or inject as much (malicious) content as possible without getting caught.
That is, without the detection of the interference by the two original communication part-
ners.

The subsequent handshake, which was already presented in the previous chapter, is
used by the attacker to mount the MITM-Attack. In the following, the necessary prereq-
uisites for a successful attack are listed. Afterwards, the attack itself, which in fact can
be mounted in two different ways, will be explained in detail including a flow diagram.
Finally, consequences and limitations of these attacks are highlighted:

Prerequisites

Within this attack scenario, the attacker must be able to eavesdrop and forge any message
of the communication parties 𝐶 and 𝑆, hence an active MitM. In the description of QSNFC,
the source address token is used to demonstrate ownership of the server’s identity, but
since this token can be eavesdropped within the initial handshake, it is assumed that 𝐸
is already in possession of such a valid source address token. Furthermore, for the first
variant of the MITM-attack, it is assumed that messages can be sent without encrypted
content. This assumption is legit, as QSNFC does not prohibit encrypted messages of
length zero. However, even with such a restriction, there is still a severe vulnerability, as
shown in the second variant. Other than that, no prerequisites or assumptions are needed
to mount these attacks successfully.

CHAPTER 3. DESIGN 37

Attack description - Variant 1

The first variant of this attack works as follows: At first, 𝐶 and 𝑆 perform the initial
handshake without any interference by 𝐸. After that, the client is already in possession of
the server’s long-term public key 𝑝𝑘𝑙 contained in the received RJ-message and furthermore
𝐶 has already created his own ephemeral key pair (𝑝𝑘𝑐 and 𝑠𝑘𝑐). Based on that, the
client can already compute the shared secret 𝑠𝑘𝑖 for securing data within the subsequent
handshake. Subsequently, the client initiates the subsequent handshake by sending the
complete CH-message, including the public part of his ephemeral key pair and encrypted
data, which is secured by an authenticated encryption algorithm. However, this message
gets intercepted by 𝐸, who generates two distinct key pairs to mount the attack. That is,
(𝑝𝑘𝑒𝑠 , 𝑠𝑘𝑒𝑠) is intended to be used for the communication with the server and (𝑝𝑘𝑒𝑐 , 𝑠𝑘𝑒𝑐)
is going to be used for the communication with the client. After that, 𝐸 truncates the
received complete CH-message by the encrypted payload. That is, 𝐸 sets the length of
the encrypted payload to zero and replaces the 𝑝𝑘𝑐 with her own key 𝑝𝑘𝑒𝑠 and sends the
modified message to 𝑆. The server 𝑆 generates his own ephemeral key pair (𝑝𝑘𝑠, 𝑠𝑘𝑠) and
computes in good faith the shared secret 𝑠𝑘𝑒1 with his long-term private key 𝑠𝑘𝑙 and the
received public key 𝑝𝑘𝑒𝑠 . Furthermore, to encrypt data within SD messages, 𝑆 computes
the final shared secret 𝑠𝑘𝑒3 by using the same public key 𝑝𝑘𝑒𝑠 and his own ephemeral
private key 𝑠𝑘𝑠. The shared secret 𝑠𝑘𝑒1 is used by 𝑆 to encrypt data in the subsequent
handshake, whereby this encrypted data is sent along with the public part of the server’s
ephemeral key pair within the SH-message. This message gets again intercepted by 𝐸, who
is now able to decrypt the received encrypted payload. This can be done by computing
the shared secret 𝑠𝑘𝑒1 by using 𝑠𝑘𝑒𝑠 and 𝑝𝑘𝑙. Hence, 𝐸 is now able to read the server’s
response.

Furthermore, if 𝐸 wants to continue the attack, she computes the shared secret 𝑠𝑘𝑒3
by using 𝑠𝑘𝑒𝑠 and 𝑝𝑘𝑠 in order to encrypt and decrypt SD-messages to and from the server.
Additionally, she has to truncate the received SH-message in the same manner as before.
That is, 𝐸 sets the length of the encrypted payload to zero and additionally, she replaces
the server’s ephemeral key with her own public key 𝑝𝑘𝑒𝑐 . 𝐸 then sends the modified
message to the client, who generates in good belief the shared secret 𝑠𝑘𝑒2 by using his
private key 𝑠𝑘𝑐 and the received public key 𝑝𝑘𝑒𝑐 . In all following SD messages, 𝐸 can
impersonate both the client and the server. Moreover, she can read and modify messages
from the client by using 𝑠𝑘𝑒2, and using 𝑠𝑘𝑒1 for messages from the server respectively,
without the knowledge of the two original communication partners. Even worse, 𝐸 can
send as many SD-messages as desired to both of the communication partners without the
need of an existing SD message from 𝐶 or 𝑆.

Figure 3.2 illustrates the above described attack, where 𝐶 and 𝑆 perform an initial
handshake without any interception. However, after the initial handshake, 𝐸 mounts the
attack and is therefore able to read confidential data or inject malicious data without the
knowledge of the communication partners. Within that figure, all malicious or manipu-
lated entities (messages, shared secrets and keys) are marked in red.

CHAPTER 3. DESIGN 38

QSNFC Man-in-the-Middle (Variant 1)

Client Server

inchoate CH
−−−→

(𝑝𝑘𝑙, 𝑠𝑘𝑙)←$

RJ: 𝑖𝑑𝑠,𝑝𝑘𝑙,𝑆𝐼𝐺(𝑝𝑘𝑙),𝑐𝑒𝑟𝑡𝑠,𝑡
←−−−

(𝑝𝑘𝑐, 𝑠𝑘𝑐)←$

𝑠𝑘𝑖 ← (𝑠𝑘𝑐, 𝑝𝑘𝑙)

. .After initial handshake .

Eve

𝑝𝑘𝑐, 𝐸𝑛𝑐𝑠𝑘𝑖(𝑑)

(𝑝𝑘𝑒𝑠 , 𝑠𝑘𝑒𝑠)←$

(𝑝𝑘𝑒𝑐 , 𝑠𝑘𝑒𝑐)←$

𝑝𝑘𝑒𝑠 , 𝐸𝑛𝑐𝑠𝑘𝑖
()

(𝑝𝑘𝑠, 𝑠𝑘𝑠)←$

𝑠𝑘𝑒1 ← (𝑠𝑘𝑙, 𝑝𝑘𝑒𝑠)

𝑠𝑘𝑒3 ← (𝑠𝑘𝑠, 𝑝𝑘𝑒𝑠)

𝑝𝑘𝑠, 𝐸𝑛𝑐𝑠𝑘𝑒1
(𝑑)

𝑠𝑘𝑒1 ← (𝑠𝑘𝑒𝑠 , 𝑝𝑘𝑙)

𝑠𝑘𝑒2 ← (𝑠𝑘𝑒𝑐 , 𝑝𝑘𝑐)

𝑠𝑘𝑒3 ← (𝑠𝑘𝑒𝑠 , 𝑝𝑘𝑠)

𝑝𝑘𝑒𝑐 , 𝐸𝑛𝑐𝑠𝑘𝑒2
()

𝑠𝑘𝑒2 ← (𝑝𝑘𝑒𝑐 , 𝑠𝑘𝑐)

. Eve is now able to read and forge messages arbitrarily

𝐸𝑛𝑐𝑠𝑘𝑒2(𝑑) 𝐸𝑛𝑐𝑠𝑘𝑒3(𝑑)

𝐸𝑛𝑐𝑠𝑘𝑒2
(𝑑) 𝐸𝑛𝑐𝑠𝑘𝑒3

(𝑑)

Figure 3.2: MitM attack 1

CHAPTER 3. DESIGN 39

Attack description - Variant 2

If QSNFC would prohibit messages with no encrypted payload in the subsequent hand-
shake though, there is still a severe vulnerability. That is, the unprotected public key in
the SH-message (𝑝𝑘𝑠). To mount such an attack, 𝐸 is not going to intercept but only
eavesdrop the initial handshake and the first part of the subsequent handshake. There-
fore, 𝐸 stores the client’s ephemeral public key 𝑝𝑘𝐶 , which is sent within the complete
CH-message. In turn, the server 𝑆 generates his ephemeral key pair (𝑝𝑘𝑠,𝑠𝑘𝑠) and com-
putes the shared secret 𝑠𝑘𝑖 by using its long-term private key 𝑠𝑘𝑙 and the client’s public
key 𝑝𝑘𝑐. Subsequently, the server responds with the SH message containing his ephemeral
public key 𝑝𝑘𝑠 and data encrypted with the common shared secret 𝑠𝑘𝑖. However, this
message gets intercepted by 𝐸, who replaces the public key with her own public key 𝑝𝑘𝑒
and forwards the message to the client. In addition to that, 𝐸 computes the shared secret
𝑠𝑘′ by using her own private key 𝑠𝑘𝑒 and the client’s public key 𝑝𝑘𝑐. In turn, the client
computes in good belief the same shared secret 𝑠𝑘′ by using his private ephemeral key 𝑠𝑘𝑐
and Eve’s 𝑝𝑘𝑒.

From now on, 𝐸 can impersonate the server and exchange arbitrary SD-messages with
the client. Moreover, the server is also not aware of the fact, that the session has been
intercepted. Figure 3.3 illustrates this second variant of the MitM-attack and similarly,
the malicious forged content is depicted in red text color.

Consequences and limitations

The two previously shown variants of the MitM-attack on QSNFC imply severe security
vulnerabilities, as in both cases an evil adversary is able to impersonate the server and
send messages with arbitrary content to the client. Furthermore, in the first variant, it
also possible of impersonating the client within a QSNFC session.

Within the first variant, the encrypted payload of the complete CH-message and the
SH-message is set to zero, because an authenticated encryption algorithm would detect a
forged message. Therefore, 𝐸 needs to truncate the encrypted payload. Otherwise, the
receiving part would detect the malicious forgery due to the fact, that the public keys are
inherently correlated with the shared secret. Hence, decryption of the encrypted payload
within the two above mentioned messages would fail. Therefore, the adversary is not able
to decrypt the first message of each communication party. However, this attack is the more
severe attack compared to the second variant, as it gives an adversary the opportunity to
forge SD-messages arbitrarily to both client and server without their knowledge.

In contrary to the above described variant, the second variant does not require Eve to
truncate the encrypted payload of the complete CH-message and the SH-message. Hence,
such an adversary is not able to decrypt the encrypted payload of the complete CH-
message and the SH-message, neither is he able to suppress the receiving entity from
receiving the message. However, an adversary can subsequently impersonate the server
and can continue the session with the client and send arbitrary SD-messages.

The fundamental issue, which causes this attack to work, is twofold. First, unprotected
public keys open the door for Man-in-the-middle attacks. Second, the missing constraint

CHAPTER 3. DESIGN 40

QSNFC Man-in-the-Middle (Variant 2)

Client Server

inchoate CH
−−−→

(𝑝𝑘𝑙, 𝑠𝑘𝑙)←$

RJ: 𝑖𝑑𝑠,𝑝𝑘𝑙,𝑆𝐼𝐺(𝑝𝑘𝑙),𝑐𝑒𝑟𝑡𝑠,𝑡
←−−−

(𝑝𝑘𝑐, 𝑠𝑘𝑐)←$

𝑠𝑘𝑖 ← (𝑠𝑘𝑐, 𝑝𝑘𝑙)

. .After initial handshake .

Eve

𝑝𝑘𝑐, 𝐸𝑛𝑐𝑠𝑘𝑖
(𝑑)

−−−→

𝑝𝑘𝑐 ←
(𝑝𝑘𝑠, 𝑠𝑘𝑠)←$

𝑠𝑘𝑖 ← (𝑠𝑘𝑙, 𝑝𝑘𝑐)

𝑠𝑘 ← (𝑠𝑘𝑠, 𝑝𝑘𝑐)

𝑝𝑘𝑠, 𝐸𝑛𝑐𝑠𝑘𝑖
(𝑑)

(𝑝𝑘𝑒, 𝑠𝑘𝑒)←$

𝑠𝑘′ ← (𝑠𝑘𝑒, 𝑝𝑘𝑐)

𝑝𝑘𝑒, 𝐸𝑛𝑐𝑠𝑘𝑖
(𝑑)

𝑠𝑘′ ← (𝑝𝑘𝑒, 𝑠𝑘𝑐)

. Eve is now able to impersonate the server .

𝐸𝑛𝑐𝑠𝑘′(𝑑)

𝐸𝑛𝑐𝑠𝑘′(𝑑)

Figure 3.3: MitM attack 2

CHAPTER 3. DESIGN 41

that the encrypted payload of a message must not be empty enables even more attack
vectors. Fortunately, these issues can be fixed rather easily by adding the keys as additional
authenticated content to the authenticated encryption algorithm and by ensuring that the
encrypted payload length is never zero.

3.2.2 Replay-Attack

In the last subsection different variants of the MitM-attack were presented. These variants
are applicable under the condition that an evil adversary is able to alter any given message
within a QSNFC session between a client and a server. However, if such an adversary is
not able to intercept one or more messages and alter the contents, there is still a severe
vulnerability in the QSNFC-protocol. Therefore, an adversary is going to eavesdrop an
existing QSNFC-session, and at a later point in time, he impersonates the client by re-
sending the recorded message again to the server. This way, the adversary can force the
server to perform unintended actions.

The following paragraphs describe such a Replay-Attack on QSNFC. At first, prereq-
uisites and assumptions are stated, followed by a detailed attack description and including
a flow diagram. Finally, a short paragraph on limitations and consequences concludes this
attack.

Prerequisites

To conduct this attack, an evil adversary 𝐸 must be able to eavesdrop a QSNFC-session
between a client 𝐶 and a server 𝑆, however it is not necessary to intercept and alter
messages within the current session. Furthermore, 𝐸 must be able to send messages to 𝑆.
Other than that, no assumptions are needed to successfully apply this attack.

Attack description

At first, 𝐸 eavesdrops a communication between 𝐶 and 𝑆, whereby it is sufficient to record
all the messages starting from the subsequent handshake. At a later point in time, 𝐸 re-
transmits the eavesdropped messages to 𝑆 to trigger unintended behaviour. To make this
attack applicable, it is important that 𝐸 sends the exact same messages, including the
encrypted content, the public key and source address token. Figure 3.4 illustrates this
Replay-Attack.

Consequences and limitations

Within the above described Replay-Attack, an evil adversary is able to re-transmit eaves-
dropped messages from a prior QSNFC-session between two communication parties. Thus,
by re-transmitting these messages to the server, an adversary may trigger unintended be-
haviour at the server. This could be exploited if the client uses QSNFC to get access to
an entity. An adversary could eavesdrop the sent messages in order to get access to that
entity and replay it at a later point in time, thus getting access to an originally prohibited
area. However, an adversary cannot read encrypted data within the scope of this attack.
As already discussed in 2.1.4, Replay-Attacks can be applied on protocols without any

CHAPTER 3. DESIGN 42

QSNFC Replay attack

Client Eve Server

complete CH
−−−→

SH
←−−−

SD
−−−→

SD
←−−−

...

. After eavesdropped QSNFC session, at a later point in time

complete CH

SH

SD

SD

...

Figure 3.4: Replay attack

CHAPTER 3. DESIGN 43

involving freshness properties, which is exactly the case for QSNFC. Hence, the commu-
nication partners are not able to verify the freshness of messages. However, this problem
can be eliminated by adding nonces as additional authenticated data to the messages.

3.3 Performance analysis towards a modified QSNFC

This section analyses the existing QSNFC protocol with respect to performance and flex-
ibility. First, the certificate chain handling is going to be evaluated and after that, some
considerations on the use of different encryption algorithms are given and finally the con-
cept of the Abort (AB)-message is introduced.

3.3.1 Certificate chain and compression

The authors in [UPS+18] state, that the certificate chain causes the major data overhead
in a QSNFC-session. Therefore, the 0-RTT property is introduced as a countermeasure to
reduce the number of bytes being sent via NFC. Nevertheless, the certificate chain must
still be sent during the initial handshake. However, if the client is already in possession
of a (partial) certificate chain prior to an initial QSNFC handshake, the server would still
send the complete certificate chain. QUIC [CLL+17] solves this problem by introducing
the so-called cached certificates. The idea behind cached certificates is, that the client pro-
actively sends suitable information about trusted certificates to the server. In particular,
QUIC defines this information to be a 64-bit FNV-1a hash. This way, the client sends
hashes of suitable trusted certificates to the server in advance, then the server processes
the received certificate hashes and matches them with the certificates in his certificate
chain. Any certificate from the certificate chain, which was already received as a hash by
the server is replaced with the corresponding hash. Taken into account that one certificate
is roughly 1000 Byte in size, a significant drop of data overhead can be achieved by using
cached certificates. Following up with the definition of QUIC, the certificate chain, which
is sent by the server, is also going to be data compressed to reduce the data overhead even
further. Consequently, due to the significant drop of data overhead, these features are also
included in the modified QSNFC protocol, which is proposed within this thesis.

3.3.2 Available encryption algorithms

In contrary to other cryptographic protocols such as TLS, QSNFC does not support the
usage of different encryption algorithms. Clearly, this could be useful for future versions
of this protocol, especially if the client or the server is not capable of certain encryption
algorithms, the protocol can still be continued with a different algorithm. In such a case,
however, Downgrade-Attacks need to be considered as special threat. QUIC defines the
use of two distinct encryption algorithms, and moreover Hameed et. al. [HJS16] proposed
the use of other encryption algorithms in their work. Hence, this feature will also be
included in the protocol version proposed within this work.

3.3.3 Abort handshakes

In the previous subsection, the usage of different encryption algorithms was explained.
Therefore, if the server decides that a proposed encryption algorithm by the client does

CHAPTER 3. DESIGN 44

not provide the desired security level, the server should return an AB-message, which
contains information why the handshake was aborted. Thus, such an AB-message could
also be used to contain information about the certificate chain, similar to the cached
certificates described earlier. That is, a client may initiate a QSNFC session with a server
by sending a complete CH-message using cryptographic primitives from a previous session.
However, if the server is not in possession of the corresponding cryptographic primitives
anymore due to cache replacement strategies, such an AB-message can be used to inform
the client that a new initial handshake is needed. Hence, such an AB-message will be
presented in the next section within this work.

3.4 Modified QSNFC

This section proposes a modified version of the QSNFC-protocol presented by Ulz et.
al [UPS+18], whereby these modifications are based on the previously discussed find-
ings. The names of the contained messages are based on the original version, however
the content is different. Furthermore, several additional cryptographic computations are
necessary to ensure the desired security properties, which entail confidentiality, integrity,
authenticity and freshness. The modified version of the QSNFC protocol is presented
in the following, starting with a simplified flow protocol of the modified version, which
is depicted in Figure 3.5. Furthermore, supported encryption algorithms and primitives
such as the definition of curves used for ECC are given. Subsequently, the initial and the
subsequent handshakes will be explained in detail, including the AB-message, all involv-
ing cryptographic operations and the handling of certificates. After that, the handling
of SD-messages is described in detail, whereby these SD-messages represent the succes-
sive messages in each subsequent handshake. Finally, the message types itself are listed,
including a concise description of the message fields and lengths.

3.4.1 Supported encryption algorithms and cryptographic primitives

The following paragraph discusses the available encryption algorithms and furthermore,
several cryptographic primitives such as the applied elliptic curves or hash functions are
listed. As already stated in the original QSNFC version, an authenticated encryption
algorithm is used to ensure confidentiality and authenticity. Hence, Table 3.1 depicts the
available encryption algorithms. Within this work, AES is used in two different modes
of operation and with three different input block sizes. Furthermore, the values for the
certain encryption algorithms are selected in a way that allows the combination of several
encryption algorithms by a simple XOR-operation, as it will be shown later in the protocol
definition.

CHAPTER 3. DESIGN 45

Figure 3.5: Simplified flow diagram

CHAPTER 3. DESIGN 46

Hex-Value Encryption algorithm

0x01 AES128-GCM

0x02 AES192-GCM

0x04 AES256-GCM

0x08 AES128-CCM

0x10 AES192-CCM

0x20 AES256-CCM

Others Reserved for future use

Table 3.1: Supported authenticated encryption algorithms

Input block length (in bits) Elliptic curve [SEC00]

128 Secp128r1

192 Secp192k1

256 Secp256k1

Table 3.2: Supported elliptic curves

Additionally, three distinct elliptic curves are used for PKC, depending on which au-
thenticated encryption algorithm is chosen. In particular, the chosen authenticated en-
cryption algorithm determines the elliptic curve needed for signatures and shared key
generation, as illustrated in Table 3.2. Furthermore, the following enumeration describes
all used cryptographic primitives briefly:

� Signatures: Within this work, an Elliptic Curve Digital Signature Algorithm is used
to generate and verify signatures. The curve used for the computation is determined
by the chosen encryption algorithm, is already noted above.

� Key generation: Elliptic Curve Diffie Hellman is used to agree on a shared secret,
whereby the underlying curve results from the chosen encryption scheme, as already
noted previously.

� Key derivation: The modified QSNFC uses a HKDF to generate keys from a
previously negotiated shared secret.

� Hash function: SHA-256 is used for all hashing operations, as well as for the key
derivation function.

The following subsections illustrate the modified QSNFC protocol, which is based
on the original QSNFC. At first, prerequisites are given, then both the initial and the
subsequent handshake is described and finally SD-messages are discussed. These SD-
messages can be used to continue a QSNFC session after the subsequent handshake.

3.4.2 Prerequisites

It must be feasible for both the client and the server to perform cryptographic computa-
tions such as en- and decryption, signature creation and validation, key agreements, key

CHAPTER 3. DESIGN 47

derivation and hashing values using the above described cryptographic primitives. Fur-
thermore, both parties must be in possession of a unique id, subsequently referred to as
𝑖𝑑𝐶 for the client id and 𝑖𝑑𝑆 for the server id, respectively. Moreover, the server must be
in possession of a valid certificate 𝑐𝑒𝑟𝑡𝑆 including an associated key pair (𝑠𝑘𝑐𝑒𝑟𝑡, 𝑝𝑘𝑐𝑒𝑟𝑡).
Therefore, a certificate chain can be constructed starting from the server’s certificate via
optional intermediate certificate authorities to a root CA. Additionally, as already shown
in the previous chapter, the truncation of encrypted payload can cause severe security vul-
nerabilities. Therefore, this protocol prohibits messages with an empty encrypted payload
field. If such an empty payload is detected, the communication must be aborted.

3.4.3 Initial handshake

Within the initial handshake, a client 𝐶 and a server 𝑆 agree on the cryptographic prim-
itives, which are going to be used in the following sessions. Furthermore, the client uses
the information from the initial handshake to establish trust in the server by authenticat-
ing him using a certificate chain. Additionally, the client also authenticates the server’s
long-term public key, which is going to be used in every subsequent handshake until a new
initial handshake takes place.

Inchoate CH-message

At first, the client sets the 𝑝𝑟𝑖𝑚 field, which corresponds to the supported encryption
algorithms, as already mentioned previously in this section. The client may choose one
or more algorithms by combining the corresponding hex value using a XOR-operation.
Additionally, the client may compose a list of cached certificates in order to send informa-
tion of already cached and trusted certificates to the server to reduce the data overhead
implied with the certificate chain. Therefore, the client computes for each suitable and
trusted certificate a hash value and after that he concatenates these hash values and stores
the result in 𝑐𝑎𝑐ℎ𝑒𝑑𝐶 . Furthermore, he generates a nonce 𝑛𝑖𝐶𝐻 and sends this data along
with his id 𝑖𝑑𝐶 within the inchoate CH-message to the server.

RJ-message

After receiving the inchoate CH-message from the client, the server validates the proposed
cryptographic primitives in the 𝑝𝑟𝑖𝑚 field of the received message. If a suitable encryption
algorithm can be found based on the proposed value, the server selects the correspond-
ing encryption algorithm value and stores this value in the 𝑠𝑝𝑟𝑖𝑚 field. This encryption
algorithm is going to be used throughout the following subsequent handshakes.

Additionally, the server creates a nonce 𝑛𝑅𝐽 , which will be used to ensure freshness
of the communication. Next, the server generates a long-term key pair (𝑝𝑘𝑙,𝑠𝑘𝑙), which
will be used for all sessions with that client until a new initial handshake takes place.
Moreover, the server computes the signature of the previously created long-term public
key 𝑝𝑘𝑙 using the key associated within his certificate (𝑠𝑘𝑐𝑒𝑟𝑡). This way, the client can
later verify the authenticity of the long-term public key 𝑝𝑘𝑙. The yielding signature of the
long-term key is stored in the 𝑠𝑘 field. Subsequently, the server concatenates the received
nonce 𝑛𝑖𝐶𝐻 , his own nonce 𝑛𝑅𝐽 and the value of the selected encryption algorithm 𝑠𝑝𝑟𝑖𝑚
together. If the client has also sent cached certificates within the 𝑐𝑎𝑐ℎ𝑒𝑑𝐶 field of the

CHAPTER 3. DESIGN 48

inchoate CH-message, the content of this field is also added to the concatenated data
bytes. Subsequently, to prove the ownership the private part of the long-term key, these
concatenated data bytes get signed by the server with the corresponding private key 𝑠𝑘𝑙.
This yields a signature, which is stored in the 𝑠𝑝 field to ensure freshness of the initial
handshake.

Next, the server builds the certificate chain. Therefore, he first checks whether the
client has included any cached certificates within the inchoate CH-message. Subsequently,
the server concatenates the certificates from the chain starting with his certificate, followed
by potential intermediate certificates up to but not including the certificate of the root
CA. This concatenated certificate chain is then stored in the 𝑐ℎ𝑎𝑖𝑛𝑆 field. However, if
the client has included cached certificates within the 𝑐𝑎𝑐ℎ𝑒𝑑𝐶 field of the inchoate CH-
message, the server compares the hash-values with the ones in his certificate chain and if
there is a match, he substitutes the certificate with the corresponding hash value within
the 𝑐ℎ𝑎𝑖𝑛𝑆 field.

Finally, the server sends all these fields along with his id 𝑖𝑑𝑆 within the RJ-message
back to the client.

Verification of the RJ-message

Immediately upon receipt of the RJ-message, the client is going to verify the content of
this message. At first, the client tries to build and verify the certificate chain using the
received certificate chain from the server and potential cached certificates. Moreover, the
client has to verify the integrity of the server’s long-term public key 𝑝𝑘𝑙 by computing the
signature using the public key from the server’s certificate. The yielding signature must
then be compared with the received signature 𝑠𝑘. After that, the client concatenates his
own nonce 𝑛𝑖𝐶𝐻 , the server’s nonce 𝑛𝑅𝐽 , the received value of the selected encryption
algorithm by the server, and potential cached certificates, which were transmitted by the
client in the inchoate CH-message. Subsequently, the client computes the signature of the
concatenated data by using the server’s long-term public key 𝑝𝑘𝑙 and compares it with the
received value 𝑠𝑝.

IV generation

After the successful verification of the negotiated parameters and the authentication pro-
cess, both client and server compute the IVs for the shared secret generation. Each
communication party computes the same two IVs, 𝑖𝑣𝑖𝐶 and 𝑖𝑣𝑖𝑆 . 𝑖𝑣𝑖𝐶 can be computed
by concatenating the client’s initial nonce 𝑛𝑖𝐶𝐻 and the server’s initial nonce 𝑛𝑅𝐽 and
computing the hash value of it. 𝑖𝑣𝑖𝑆 is computed in the same manner, however the order
of the concatenated nonces is reversed.

Figure 3.6 illustrates the initial handshake in a more representative way, containing the
inchoate CH and the RJ-message, the necessary verification steps and the IV-generation.
𝑅𝐴𝑁𝐷 denotes a function which generates a strong pseudo random number of length 𝑛
and 𝐾𝐺𝐸𝑁 generates a new private-public key pair. The function 𝑆𝑖𝑔𝑛𝑘(𝑑𝑎𝑡𝑎) computes
the signature of 𝑑𝑎𝑡𝑎 using the key 𝑘 and 𝑉 𝑒𝑟𝑖𝑓𝑦𝑆𝑖𝑔𝑘(𝑠𝑖𝑔) verifies a signature 𝑠𝑖𝑔 by using
the key 𝑘. Finally, 𝑉 𝑒𝑟𝑖𝑓𝑦𝐶𝑒𝑟𝑡𝐶ℎ𝑎𝑖𝑛(𝑐ℎ𝑎𝑖𝑛) checks, whether a certificate is trustworthy
or not.

CHAPTER 3. DESIGN 49

QSNFC Connection Establishment (initial handshake)

Client Server

𝑛𝑖𝐶𝐻 ←$𝑅𝐴𝑁𝐷(1𝑛)

inchoate CH: 𝑖𝑑𝐶 , 𝑛𝑖𝐶𝐻 ,𝑝𝑟𝑖𝑚, 𝑐𝑎𝑐ℎ𝑒𝑑𝐶

(𝑝𝑘𝑙, 𝑠𝑘𝑙)←$𝐾𝐺𝑒𝑛(1𝑛)

𝑛𝑅𝐽 ←$𝑅𝐴𝑁𝐷(1𝑛)

𝑠𝑘 ← 𝑆𝑖𝑔𝑛𝑠𝑘𝑐𝑒𝑟𝑡
(𝑝𝑘𝑙)

𝑠𝑝 ← 𝑆𝑖𝑔𝑛𝑠𝑘𝑙
(𝑛𝑖𝐶𝐻‖𝑛𝑅𝐽‖

𝑠𝑝𝑟𝑖𝑚‖𝑐𝑒𝑟𝑡𝑐)

RJ: 𝑖𝑑𝑆 ,𝑝𝑘𝑙,𝑐ℎ𝑎𝑖𝑛𝑆 ,𝑠𝑝,𝑠𝑘,𝑠𝑝𝑟𝑖𝑚,𝑛𝑅𝐽

𝑉 𝑒𝑟𝑖𝑓𝑦𝐶𝑒𝑟𝑡𝐶ℎ𝑎𝑖𝑛(𝑐ℎ𝑎𝑖𝑛𝑆)

𝑉 𝑒𝑟𝑖𝑓𝑦𝑆𝑖𝑔(𝑠𝑘)

𝑉 𝑒𝑟𝑖𝑓𝑦𝑆𝑖𝑔(𝑠𝑝)

. .Calculate IVs .

𝑖𝑣𝑖𝐶 ← ℎ(𝑛𝑖𝐶𝐻‖𝑛𝑅𝐽) 𝑖𝑣𝑖𝐶 ← ℎ(𝑛𝑖𝐶𝐻‖𝑛𝑅𝐽)

𝑖𝑣𝑖𝑆 ← ℎ(𝑛𝑅𝐽‖𝑛𝑖𝐶𝐻) 𝑖𝑣𝑖𝑆 ← ℎ(𝑛𝑅𝐽‖𝑛𝑖𝐶𝐻)

Figure 3.6: Initial handshake of the modified QSNFC

Hex-Value Abort reason

0x01 Insufficient cryptographic primitives

0x02 Previous session keys missing

0x03 Forged message detected

Others Reserved for future use

Table 3.3: Abort reasons

CHAPTER 3. DESIGN 50

Aborting the initial handshake

In the initial handshake, the client proposes a set of supported cryptographic primitives
to the server and if the server is satisfied with the proposal, he responds with the RJ-
message. If, however, the proposed cryptographic primitives within the 𝑠𝑝𝑟𝑖𝑚 field of the
inchoate CH-message are not sufficient for the server, he will respond with an AB-message.
Anyhow, there are multiple situations in which such an AB-message can be send, as il-
lustrated in Table 3.3, the following description does only apply for AB-messages within
initial handshakes though. Instead of just letting the client know, that he proposed insuf-
ficient cryptographic primitives, the server can already use this AB-message to transfer
the certificate chain. Hence, the server stores the abort reason in the 𝑎𝑏 field of the AB-
message, and generates a long-term public key pair (𝑝𝑘𝑙,𝑠𝑘𝑙) in the same way as if he
would respond with an RJ-message. Additionally, the server computes a signature 𝑠𝑘 of
𝑝𝑘𝑙 by using the private part of the certificate key pair (𝑠𝑘𝑐𝑒𝑟𝑡, 𝑝𝑘𝑐𝑒𝑟𝑡). In contrary to the
RJ-message though, the server creates an abort nonce 𝑛𝐴𝐵, concatenates it to the received
client nonce 𝑛𝑖𝐶𝐻 , the received 𝑝𝑟𝑖𝑚 and the abort reason 𝑎𝑏. Subsequently, the server
generates a signature 𝑠𝑝 of those concatenated parameters using his long-term private key
𝑠𝑘𝑙, which ensures freshness of the communication. All these parameters are sent along
with the server’s id 𝑖𝑑𝑆 within the AB-message back to the client.

AB-message verification

On receival of the AB message, the client first verifies the certificate chain in the same
fashion as described above in the RJ-verification paragraph. Next, the integrity of the
received public key 𝑝𝑘𝑙 must be checked by verifying the received signature 𝑠𝑘 and addi-
tionally, the signature 𝑠𝑝 must also be verified. After the verification, the client is already
in possession of the certificate chain. Thus, if he considers the chain as trustworthy, he
can use this information within the next initial handshake by sending cached certificates
to reduce the amount of data overhead.

3.4.4 Subsequent handshake

In the initial handshake, client and server negotiated and agreed on cryptographic primi-
tives, which are going to be used for subsequent QSNFC-sessions. Moreover, the client has
established trust in the server by authenticating him using a certificate chain. Within the
subsequent handshake, the client can already exchange secured data with the server by
using the complete CH-message and the SH-message, as depicted in Figure 3.7. Hereby,
the function 𝐴𝐸𝑖𝑣

𝑘 (𝑑𝑎𝑡𝑎, 𝑎𝑎𝑑) denotes an authenticated encryption function with the sym-
metric key 𝑘 and initialized with the IV 𝑖𝑣. Furthermore, the first parameter of this
function 𝑑𝑎𝑡𝑎 represents the plaintext, which is going to be encrypted in an authenticated
manner. Moreover, the optional parameter 𝑎𝑎𝑑 symbolizes additional authenticated data,
which gets also added to the authenticated encryption algorithm. This encryption algo-
rithm yields the cipher and an authentication tag, which is needed to verify the integrity.
Consequently, the function 𝐴𝐷𝑖𝑣

𝑘 (𝑐𝑖𝑝ℎ𝑒𝑟, 𝑎𝑎𝑑, 𝑡𝑎𝑔) acts as the corresponding authenticated
decryption function with the symmetric key 𝑘 and the IV 𝑖𝑣, whereby the first parameter
𝑐𝑖𝑝ℎ𝑒𝑟 is the data to decrypt and the parameter 𝑎𝑎𝑑 represents the additional authenti-
cated data, which needs to be verified using the authentication tag 𝑡𝑎𝑔.

CHAPTER 3. DESIGN 51

QSNFC Connection Establishment (subsequent handshake)

Client Server

(𝑝𝑘𝑐, 𝑠𝑘𝑐)←$𝐾𝐺𝑒𝑛(1𝑛)

𝑠𝑘𝑖 ← (𝑠𝑘𝑐, 𝑝𝑘𝑙)

𝑘𝑖 ← 𝐾𝐷𝐹 (𝑠𝑘𝑖)

𝑛𝑐𝐶𝐻 ←$𝑅𝐴𝑁𝐷(1𝑛)

(𝑐𝐶 , 𝑡𝐶)← 𝐴𝐸𝑖𝑣𝑖𝐶

𝑘𝑖
(𝑑𝐶 ,

𝑛𝑐𝐶𝐻‖𝑝𝑘𝑐)

complete CH: 𝑖𝑑𝐶 ,𝑝𝑘𝑐, 𝑛𝑐𝐶𝐻 ,𝑐𝐶 ,𝑡𝐶

𝑠𝑘𝑖 ← (𝑠𝑘𝑙, 𝑝𝑘𝑐)

𝑘𝑖 ← 𝐾𝐷𝐹 (𝑠𝑘𝑖, 𝑖𝑣)

𝑑𝐶 ← 𝐴𝐷𝑖𝑣𝑖𝐶

𝑘𝑖
(𝑐𝐶 ,

𝑛𝑐𝐶𝐻‖𝑝𝑘𝑐, 𝑡𝐶)
(𝑝𝑘𝑠, 𝑠𝑘𝑠)←$𝐾𝐺𝑒𝑛(1𝑛)

𝑛𝑠ℎ←$𝑅𝐴𝑁𝐷(1𝑛)

(𝑐𝑆 , 𝑡𝑆)← 𝐴𝐸𝑖𝑣𝑖𝑆

𝑘𝑖
(𝑑𝑆 ,

𝑛𝑆𝐻‖𝑝𝑘𝑠)

SH: 𝑖𝑑𝑆 ,𝑝𝑘𝑠,𝑛𝑆𝐻 ,𝑐𝑆 , 𝑡𝑆

𝑑𝑆 ← 𝐴𝐷𝑖𝑣𝑖𝑆

𝑘𝑖
(𝑐𝑆 ,

𝑛𝑆𝐻‖𝑝𝑘𝑠, 𝑡𝑆)

. Key generation and derivation for SD-messages .

𝑠𝑘 ← (𝑠𝑘𝑐, 𝑝𝑘𝑠) 𝑠𝑘 ← (𝑠𝑘𝑠, 𝑝𝑘𝑐)

𝑘 ← 𝐾𝐷𝐹 (𝑠𝑘) 𝑘 ← 𝐾𝐷𝐹 (𝑠𝑘)

. .Message count initialization for SD-messages. .

#𝑆𝐷𝐶 ← 0 #𝑆𝐷𝐶 ← 0

#𝑆𝐷𝑆 ← 0 #𝑆𝐷𝑆 ← 0

Figure 3.7: Subsequent handshake of the modified QSNFC

CHAPTER 3. DESIGN 52

The following paragraph comprises a detailed description of the complete CH-message
and the SH-message. Additionally, the abort of the subsequent handshake is highlighted
and the key generation for SD-messages is explained.

Complete CH-message

To send the complete CH-message, the client has to generate an ephemeral key pair
(𝑝𝑘𝑐,𝑠𝑘𝑐) at first, which will then be used to compute the intermediate shared secret
𝑠𝑘𝑖 by using the client’s own private key 𝑠𝑘𝑐 and the server’s long-term public key 𝑝𝑘𝑙.
Based on that shared secret, a symmetric encryption key 𝑘𝑖 can be derived using a key
derivation function. To ensure freshness of the subsequent handshake, the client further-
more has to generate a nonce 𝑛𝑐𝐶𝐻 . Afterwards, the client is able to encrypt data 𝑑𝐶
using an authenticated encryption algorithm with the key 𝑘𝑖 and the IV 𝑖𝑣𝑖𝐶 . This IV was
either computed in the initial handshake or stored from a prior subsequent handshake, as
shown in one of the next sections within this chapter. To guarantee the integrity of these
parameters, which are going to be transmitted within the complete CH-message, the nonce
𝑛𝑐𝐶𝐻 and the public key 𝑝𝑘𝑐 are concatenated and added to the authenticated encryption
algorithm as additional authenticated data. This yields the cipher 𝑐𝐶 and the correspond-
ing authentication tag 𝑡𝐶 . Subsequently, the client sends his id 𝑖𝑑𝐶 , his ephemeral public
key 𝑝𝑘𝑐, the nonce 𝑛𝑐𝐶𝐻 , the cipher 𝑐𝐶 and the authentication tag 𝑡𝐶 within the complete
CH-message to the server. In turn, the server is now also able to generate the same shared
secret 𝑠𝑘𝑖, which is then used to derive the intermediate symmetric key 𝑘𝑖. This key is
used along with the IV 𝑖𝑣𝑖𝐶 to decrypt the received cipher 𝑐𝐶 , which yields the plain text
𝑑𝐶 from the client. Additionally, the received authentication tag 𝑡𝐶 is used to verify the
integrity of the received cipher text.

SH-message

In response to the previously received complete CH-message, the server has to respond
with the SH-message. To do so, he first generates an ephemeral key pair (𝑝𝑘𝑠,𝑠𝑘𝑠) and
the nonce 𝑛𝑆𝐻 , which ensures freshness of the following SH-message. Subsequently, the
server encrypts the message 𝑑𝑆 using an authenticated encryption algorithm with the
previously derived intermediate key 𝑘𝑖 and the IV 𝑖𝑣𝑖𝑆 . This IV was computed either in
the initial handshake or in a prior subsequent handshake. Additionally, the nonce 𝑛𝑆𝐻

gets concatenated with the public key 𝑝𝑘𝑠. This concatenated data is going to be added as
additional authenticated data to ensure integrity and authenticity. Hence, the encryption
algorithm yields the corresponding cipher 𝑐𝑆 and the authentication tag 𝑡𝑆 . After that,
the server sends the cipher and the authentication tag along with his id 𝑖𝑑𝑆 , the fresh
nonce 𝑛𝑆𝐻 and his ephemeral public key 𝑝𝑘𝑠 within the SH message to the client. In turn,
the client decrypts the received cipher 𝑐𝑆 and verifies its integrity by using the received
authentication tag 𝑡𝑆 . Additionally, the client has to verify the additional authenticated
data provided within that SH-message. This additional authenticated data consists of the
nonce 𝑛𝑆𝐻 and the ephemeral public key 𝑝𝑘𝑠.

CHAPTER 3. DESIGN 53

QSNFC Connection Establishment (Abort)

Client Server

𝑛𝑖𝐶𝐻 ←$𝑅𝐴𝑁𝐷(1𝑛)

inchoate CH: 𝑖𝑑𝐶 , 𝑛𝑖𝐶𝐻 ,𝑝𝑟𝑖𝑚, 𝑐𝑎𝑐ℎ𝑒𝑑𝐶

(𝑝𝑘𝑙, 𝑠𝑘𝑙)←$𝐾𝐺𝑒𝑛(1𝑛)

𝑛𝐴𝐵 ←$𝑅𝐴𝑁𝐷(1𝑛)

𝑠𝑘 ← 𝑆𝑖𝑔𝑛𝑠𝑘𝑐𝑒𝑟𝑡(𝑝𝑘𝑙)

𝑠𝑝 ← 𝑆𝑖𝑔𝑛𝑠𝑘𝑙
(𝑛𝑖𝐶𝐻‖𝑛𝐴𝐵‖

𝑝𝑟𝑖𝑚‖𝑎𝑏)

AB: 𝑖𝑑𝑆 ,𝑝𝑘𝑙,𝑐ℎ𝑎𝑖𝑛𝑆 ,𝑠𝑝,𝑠𝑘,𝑎𝑏,𝑛𝐴𝐵

𝑉 𝑒𝑟𝑖𝑓𝑦𝐶𝑒𝑟𝑡𝐶ℎ𝑎𝑖𝑛(𝑐ℎ𝑎𝑖𝑛𝑆)

𝑉 𝑒𝑟𝑖𝑓𝑦𝑆𝑖𝑔(𝑠𝑘)

𝑉 𝑒𝑟𝑖𝑓𝑦𝑆𝑖𝑔(𝑠𝑝)

Figure 3.8: Abort initial handshake

Parameters for SD-messages

After a successful subsequent handshake, both client and server are now in possession
of mutual ephemeral public keys. Therefore, both communication parties compute the
final shared secret 𝑠𝑘 by using their own ephemeral private key 𝑠𝑘𝑐|𝑠 and the opponents
ephemeral public key 𝑝𝑘𝑐|𝑠. By using this shared secret, client and server can now derive
a symmetric key 𝑘, which is going to be used for the following SD-messages within the
current QSNFC-session. Furthermore, the SD-messages make use of message counters
to ensure freshness and proper message ordering within the remaining QSNFC session.
Therefore, those message counters of both communication parties must be set to 0 in the
subsequent handshake.

Abort of subsequent handshakes

In the initial handshake, the concept of an AB-message was introduced, where such an
initial handshake is aborted due to insufficient cryptographic primitives. However, as
already stated in Table 3.3, several reasons can lead to the cancellation of a QSNFC-
session. Hence the server can also send the AB-message with the proper abort reason 𝑎𝑏
instead of the SH-message. Such an AB-message comprises the same content as described
in the initial handshake and shown in Figure 3.8, but neglecting the certificate chain
𝑐ℎ𝑎𝑖𝑛𝑆 .

CHAPTER 3. DESIGN 54

3.4.5 SD-messages

Within the initial and the subsequent handshake QSNFC follows a request-response model,
where the client sends requests (inchoate/complete CH-message) and the server answers
with the corresponding response (RJ/SH-message). However, after the subsequent hand-
shake, client and server may continue the communication by using so called SD-messages.
SD messages can be sent in arbitrary order. Therefore, it is up to the actual implementa-
tion of the protocol how to handle the message flow. To send an SD-message, the client
concatenates the previously received nonces 𝑛𝑐𝐶𝐻 and 𝑛𝑆𝐻 together with the message
count #𝑆𝐷𝐶 , which represents all sent SD-messages by the client within this QSNFC ses-
sion. The hash of this concatenated data yields the IV 𝑖𝑣𝑠𝐶 , which is then used to encrypt
a plaintext 𝑑𝐶 using the key 𝑘. The resulting cipher 𝑐𝐶 and the authentication tag 𝑡𝐶 is
sent along with the client’s id 𝑖𝑑𝐶 to the server. Upon receival, the server generates the IV
in the same way as the client, which is subsequently used to decrypt the received cipher
𝑐𝐶 using the key 𝑘 and the tag 𝑡𝐶 . Finally, both communication partners increase the
#𝑆𝐷𝐶 by one. The other direction, where the server sends an SD-message to the client,
works similar, however this time the following IV 𝑖𝑣𝑠𝑆 is used for en- and decryption. This
IV can be computed by hashing the concatenated values of 𝑛𝑆𝐻 , 𝑛𝑐𝐶𝐻 and #𝑆𝐷𝑆 . #𝑆𝐷𝑆

denotes the number of previously sent SD-messages by the server. Figure 3.9 illustrates
the exchange of SD-messages between client and server.

Abort of SD-messages

Within the subsections on the initial and subsequent handshake multiple ways to cancel
a QSNFC handshake were discussed. This is due to the fact, that the client expects a
response to a request, however as SD-messages can be sent in arbitrary order and direction,
there is not necessarily a need for an AB-message. Hence, this work does not propose an
abort mechanism for SD-messages.

3.4.6 Connection tear down

QSNFC does not support a connection teardown, however certain steps are necessary
once a QSNFC-session between a client and a server is finished. To enable the 0-RTT
property for subsequent sessions, both communication parties need to store session-specific
information. In particular, client and server have the store the following properties for a
future communication:

� 𝑝𝑘𝑙: The server’s long-term public key, which is used by the client for the next
subsequent handshake to compute a shared secret and to derive a new symmetric
encryption key.

� 𝑠𝑘𝑙: The server’s long-term private key, which is used by the server for the next
subsequent handshake to compute a shared secret and to derive a new symmetric
encryption key. This value is only known to the server and therefore only the server
needs to store this private key.

� 𝑠𝑝𝑟𝑖𝑚: The value of the negotiated encryption algorithms. This value is used
to encrypt data with the corresponding authenticated encryption algorithm and to
apply the correct key size.

CHAPTER 3. DESIGN 55

QSNFC - Exchange of SD-messages

Client Server

. SD-message to server .

𝑖𝑣𝑠𝐶 ← ℎ(𝑛𝑐𝐶𝐻‖𝑛𝑆𝐻

‖#𝑆𝐷𝐶)

(𝑐𝐶 , 𝑡𝐶)← 𝐴𝐸𝑖𝑣𝑠𝐶

𝑘 (𝑑𝐶)

SD: 𝑖𝑑𝐶 ,𝑐𝐶 ,𝑡𝐶

𝑖𝑣𝑠𝐶 ← ℎ(𝑛𝑐𝐶𝐻‖𝑛𝑆𝐻

‖#𝑆𝐷𝐶)

𝑑𝐶 ← 𝐴𝐷𝑖𝑣𝑠𝐶

𝑘 (𝑐𝐶 , 𝑡𝐶)

#𝑆𝐷𝐶 ← #𝑆𝐷𝐶 + 1 #𝑆𝐷𝐶 ← #𝑆𝐷𝐶 + 1

. SD-message to client .

𝑖𝑣𝑠𝑆 ← ℎ(𝑛𝑆𝐻‖𝑛𝑐𝐶𝐻

‖#𝑆𝐷𝑆)

(𝑐𝑆 , 𝑡𝑆)← 𝐴𝐸𝑖𝑣𝑠𝑆

𝑘 (𝑑𝑆)

SD: 𝑖𝑑𝑆 ,𝑐𝑆 ,𝑡𝑆

𝑖𝑣𝑠𝑆 ← ℎ(𝑛𝑆𝐻‖𝑛𝑐𝐶𝐻

‖#𝑆𝐷𝑆)

𝑑𝑆 ← 𝐴𝐷𝑖𝑣𝑠𝑆

𝑘 (𝑐𝑆 , 𝑡𝑆)

#𝑆𝐷𝑆 ← #𝑆𝐷𝑆 + 1 #𝑆𝐷𝑆 ← #𝑆𝐷𝑆 + 1

Figure 3.9: SD-messages of the modified QSNFC

CHAPTER 3. DESIGN 56

Type Value (in Hex)

Inchoate CH 0x0

RJ 0x1

Complete CH 0x2

SH 0x3

SD 0x4

AB 0xFF

Table 3.4: Message types

� 𝑖𝑣𝑖𝐶 : The client’s new initial IV for the next QSNFC session, which can be computed
by hashing the current subsequent IV, that is 𝑖𝑣𝑖𝐶 = ℎ𝑎𝑠ℎ(𝑖𝑣𝑠𝐶).

� 𝑖𝑣𝑖𝑆: The server’s new initial IV for the next QSNFC session, which can be com-
puted by hashing the current subsequent IV, that is 𝑖𝑣𝑖𝑆 = ℎ𝑎𝑠ℎ(𝑖𝑣𝑠𝑆).

� 𝑖𝑑𝐶|𝑆: The client’s/server’s id, respectively. This id is used to identify the commu-
nication partner in the next session.

3.4.7 Message types

Within the last subsections, the modified QSNFC protocol was presented in great detail,
however, the actual message formats were neglected. Hence, the corresponding message
formats including all relevant fields and possible variants are shown in this subsection.
Additionally, the lengths of the certain fields are given in total bytes whenever possible
and if not, for example when the length of a field depends on a cryptographic primitive,
a relative length is stated instead. The basic structure of all QSNFC-messages is taken
from the original QSNFC [UPS+18] proposal, however some fields are adapted to suit the
modified QSNFC protocol.

General structure

All presented messages of the modified QSNFC follow the message structure of the original
QSNFC. Thus, all messages start with a message type field, followed by a length-field of
the non-encrypted part. After that, all corresponding non-encrypted fields are placed
within the message. Subsequently, the length of the encrypted part is given and finally
the encrypted content concludes the message. Table 3.4 illustrates all available message
types.

Inchoate CH-message

The inchoate CH-message is sent by the client in the initial handshake to start a QSNFC-
session. Table 3.5 depicts the message format for such an inchoate CH-message. The field
𝑐𝑎𝑐ℎ𝑒𝑑𝐶 is optional, however if the client wants to send cached certificates, he concatenates
the hashes of these cached certificates and puts the resulting concatenated data into the
𝑐𝑎𝑐ℎ𝑒𝑑𝐶 field. Finally, the encrypted content remains empty, hence 𝐿𝑒𝑛𝐸 is set to zero.

CHAPTER 3. DESIGN 57

Type LenP Client ID (𝑖𝑑𝐶) Nonce (𝑛𝑖𝐶𝐻) Crypto primitives (𝑝𝑟𝑖𝑚)

1 Byte 2 Byte 8 Byte 8 Byte 1 Byte

Cached certificates(𝑐𝑎𝑐ℎ𝑒𝑑𝐶) LenE

LenP-Bytes - 20 2 Byte

Table 3.5: Inchoate CH-message

RJ-message

The RJ-message is sent as a response to the inchoate CH-message by the server, if the
proposed cryptographic primitives are sufficient. Table 3.6 illustrates the composition
of such an RJ-message. The length of the public key (KeyLen) and the length of the
signatures (SigLen) vary depending on the chosen cryptographic primitives given in the
𝑠𝑝𝑟𝑖𝑚 field. Hence parsing the value of this field at first will yield the corresponding lengths.
Moreover, the certificate chain length can be computed by using LenP, the keyLen and
SigLen.

Type LenP Server ID (𝑖𝑑𝑆) Selected primitives (𝑠𝑝𝑟𝑖𝑚) Long-term key (𝑝𝑘𝑙)

1 Byte 2 Byte 8 Byte 1 Byte KeyLen Byte

Nonce(𝑛𝑅𝐽) Signature Parameters (𝑠𝑝) Certificate chain (𝑐ℎ𝑎𝑖𝑛𝑠) LenE

8 Byte SigLen Byte CertChainLen Byte 2 Byte

Signature key(𝑠𝑘)

SigLen Byte

Table 3.6: RJ-message

This certificate chain follows the structure described in Table 3.7, whereby the first
byte is used to indicate an uncompressed certificate chain. After that, the length of a
certificate (using 2 bytes) is given, followed by that serialized certificate. This pattern is
repeated for all successive certificates.

0x0 LenC1 Cert1 LenC2 Cert2 ... LenCN CertN

1 Byte 2 Byte LenC1 Byte 2 Byte LenC2 Byte ... 2 Byte LenCN Byte

Table 3.7: Uncompressed certificate chain

However, as the certificate chain can be data-compressed as well, a special serialization
format is used, as presented in Table 3.8 for a compressed certificate chain. The first byte
indicates that data compression is used, followed by the length of the uncompressed cer-
tificate chain. These fields are used to decompress the compressed data. The compressed
data itself consists of certificate tuples, where the first part indicates the length of the
certificate (takes 2 bytes) and the second part represents the serialized certificate itself.

Complete CH-message

The complete CH-message is sent by the client to initiate the subsequent handshake.
Therefore, the message format depicted in Table 3.9 is used, whereby the length of the

CHAPTER 3. DESIGN 58

0x1 DataLen
Compressed data

LenC1 Cert1 LenC2 Cert2 ... LenCN CertN

1 Byte 2 Byte 2 Byte LenC1 Byte 2 Byte LenC2 Byte ... 2 Byte LenCN Byte

Table 3.8: Compressed certificate chain

serialized key KeyLen depends on the selected encryption algorithm.

Type LenP Client ID (𝑖𝑑𝐶) Public key (𝑝𝑘𝑐) Nonce (𝑛𝑐𝐶𝐻) LenE

1 Byte 2 Byte 8 Byte KeyLen Byte 8 Byte 2 Byte

Tag(𝑡𝐶) Cipher (𝑐𝐶)

16 Byte LenE - 16 Byte

Table 3.9: Complete CH-message

SH-message

The SH-message is sent by the server as a response to a client’s complete CH-message.
Table 3.10 illustrates the composition of such an SH-message.

Type LenP Server ID (𝑖𝑑𝑆) Public key (𝑝𝑘𝑠) Nonce (𝑛𝑆𝐻) LenE

1 Byte 2 Byte 8 Byte KeyLen Byte 8 Byte 2 Byte

Tag(𝑡) Cipher (𝑐)

16 Byte LenE - 16 Byte

Table 3.10: SH-message

SD-message

After a successful subsequent handshake, both client and server exchange data using SD-
messages, which are structured similarly to the complete CH and the SH message, but
without a public key and a nonce, as depicted in Table 3.11.

Type LenP ID (𝑖𝑑𝐶|𝑆) LenE Tag(𝑡𝑆) Cipher (𝑐𝑆)

1 Byte 2 Byte 8 Byte 2 Byte 16 Byte LenE - 16 Byte

Table 3.11: SD-message

AB-message

If the server wants to abort either the initial or a subsequent handshake, he sends the
AB-message, which is structured as illustrated in Table 3.12. The 𝑐ℎ𝑎𝑖𝑛𝑠 parameter how-
ever should only be sent when aborting the initial handshake, but not within subsequent
handshakes.

CHAPTER 3. DESIGN 59

Type LenP Server ID (𝑖𝑑𝑆) Selected primitives (𝑠𝑝𝑟𝑖𝑚) Long-term key (𝑝𝑘𝐿)

1 Byte 2 Byte 8 Byte 1 Byte KeyLen Byte

Nonce(𝑛𝐴𝐵) Abort reason (𝑎𝑏) Signature Parameters (𝑠𝑝) Certificate chain (𝑐ℎ𝑎𝑖𝑛𝑠)

8 Byte 1 Byte SigLen Byte CertChainLen Byte

LenE Signature key(𝑠𝑘)

2 Byte SigLen Byte

Table 3.12: AB-message

Chapter 4

Implementation

Within this chapter, the implementation processes of both the protocol library and two
demo applications are given. Therefore, the first part of this chapter elaborates the re-
quirements for a software component which implements the previously described protocol
definition. After that, the implementation environment is stated, the used external li-
braries are listed and finally, the actual implementation and important code snippets are
shown. After that, the second part of this chapter comprises two demo applications, which
are going to use the previously implemented protocol implementation. These demo appli-
cations cover the two required use cases from the Design Chapter by including the protocol
implementation libQSNFC. Subsequently, the development processes of these two demo
applications are going to be presented. Furthermore, the development environment and
all necessary steps to build and run these applications in conjunction with libQSNFC are
illustrated.

4.1 Requirements & Consequences

In the previous chapter, the modified QSNFC-protocol was presented in a formal way, this
section however comprises the implementation relevant details. Thus, requirements are
identified at first and subsequently consequences for the actual implementation are listed.

4.1.1 Requirements

The following list contains the requirements for the protocol library implementation.

� Consistency: The implementation should be compliant to the protocol definition
given in the previous chapter, including all listed message types. Furthermore, the
implementation should store negotiated primitives for subsequent sessions in the
future.

� Flexibility: The implementation should be flexible, that is, not bound to NFC as
communication layer.

� Configurability: Both communication parties should be able to configure the
protocol implementation according to their needs. That is, defining available cryp-
tographic primitives (encryption algorithms). Furthermore, the client should be able

60

CHAPTER 4. IMPLEMENTATION 61

to set the certificates in which he has already established trust, and which certificates
he intends to send as cached certificates to reduce the data overhead.

� Availability: The resulting library should be versatile and applicable. Therefore,
a programming language should be chosen which is supported by many different
architectures.

� Usability: The protocol library implementation should be easy to use and easy to
integrate in existing applications.

4.1.2 Consequences

Within this subsection, consequences are listed which result from the requirements de-
scribed above.

Flexibility

One possible way to approach the implementation of the modified QSNFC is to tightly
couple the communication layer, in this case NFC, with the implementation of the cryp-
tographic protocol. This however implies the drawback that the protocol implementation
is not applicable for other communication layers, such as Bluetooth, without modifying
the actual protocol implementation. Therefore, this implementation should be designed
in such a way that the protocol implementation and communication layer are not coupled
at all to provide the flexibility for application to exchange each of them easily. Figure 4.1
illustrates the process between a client and a server, which want to communicate in se-
cure fashion using QSNFC and a communication layer (COM). As can be seen in this
figure, the communication layer and protocol implementation are not connected at all,
thus, providing the flexibility to exchange the transportation layer. Another advantage of
keeping the communication layer and the protocol implementation loosely coupled is the
fact, that the implementation itself can be tested easily without the existence of a wireless
communication protocol, as will be shown within this chapter.

Figure 4.1: Library implementation overview

CHAPTER 4. IMPLEMENTATION 62

Availability

In the previous chapter, two major use cases for the modified QSNFC were identified.
The first one comprises two NFC-enabled IoT-devices communicating with each other,
while the second use case consists of a smart phone and an IoT-device which communicate
via NFC. Hence, the programming language C will be chosen for the implementation, as
many IoT-devices are capable of running programs written in C. Moreover, modern mobile
phone operating systems such as Android or iOS provide integration for C-code as well.

4.2 Implementation environment and external libraries

This section describes the implementation environment, which comprises the used Inte-
grated Development Environment (IDE) and test frameworks. In addition to that, all used
external libraries are explained briefly and their usage in the protocol implementation is
highlighted.

4.2.1 IDE

An Integrated Development Environment consists of multiple tools needed for the devel-
opment of a piece of software. Depending on the used technology stack, these tools may
vary. Additionally, many IDEs provide a way to extend the functionality by offering sev-
eral installable additional plugins.
During the development of the modified QSNFC protocol implementation the free and
open-source IDE Apache NetBeans was used. It comes with a build-in support for JavaEE
and Web-programming (HTML5, PHP, JavaScript & CSS), however NetBeans does also
support C/C++. The C-support includes also the possibility to build a piece of software
for different platforms. That is, tools such as compiler, assembler and linker can be set
independently for each platform configuration. This beneficial feature is used to build the
library for all needed platforms such as AMD and ARM. Additionally, NetBeans provides
a suitable graphical user interface to run unit tests and evaluate the results, as shown and
described below.

4.2.2 Unit Test-framework

In modern professional software engineering, unit testing is a method to ensure quality
of a piece of software during the entire development process. Hereby, the term quality
implies correctness and completeness of the software functionality. In a unit test, only a
single functionality (a unit) of a (large) piece of software is tested.
Therefore, within the protocol implementation, the Unit Test-framework CUnit was used
to write and run unit tests. CUnit is a lightweight C-framework to debug and run unit-
tests for programs written in C. It provides several useful assertion-functions and a built-in
NetBeans plugin, which includes a rich graphical user interface to interact with the written
unit-tests.
During the development of the protocol implementation, unit-tests were used to test cer-
tain functionality, whereby a simple buffer-based transport layer was used to simulate a
communication between two entities.

CHAPTER 4. IMPLEMENTATION 63

4.2.3 External libraries and tools

A library extends the functionality of a piece of software, thus many operating systems
ship with a default set of libraries, which can be included in a program. However, these
internal libraries may not be sufficient for a special functionality. Hence, in need of a special
functionality, tons of external libraries are available. This section lists the used external
libraries and tools, explains them briefly and gives a short outline on their purposes within
the proposed protocol implementation. Additionally, important code samples using those
external libraries are shown.

OpenSSL

OpenSSL is the standard tool set for TLS and SSL protocols. Additionally, it provides
a wide range of cryptographic primitives, starting from symmetric and asymmetric en-
cryption algorithms, key derivation functions, hash functions and support for certificate
operations. Moreover, it supports elliptic curve cryptography and authenticated encryp-
tion schemes, hence the OpenSSL-library is used within the scope of this thesis for all
cryptographic operations. However, OpenSSL does not only offer a C-library which can
be used in programs to access cryptographic functionality in a programmatic way, but it
also provides a set of command line tools for Linux-based operating systems. The following
enumeration lists and explains several useful tool commands and library functions, which
were used during the development of the protocol implementation.

Create a Root-CA (Certificate Authority): Modern web communication protocols
establish trust in a server by verifying its certificate chain and typically, each browser
has its own set of trusted Root-CAs. While such a Root-CA is immediately trusted, a
certificate must be checked whether there exists a certificate chain which ends in a trusted
Root-CA. Therefore, a certificate can be issued by an intermediate or root CA. For the
purpose of the development of the modified QSNFC protocol, a self-signed Root-CA was
created. Therefore, a new private/public key pair 𝑟𝑜𝑜𝑡𝑐𝑎.𝑘𝑒𝑦 has to be generated, in this
case an elliptic curve key based on the Secp521 random curve. After that, a self-signed
certificate 𝑟𝑜𝑜𝑡𝑐𝑎.𝑐𝑒𝑟𝑡 can be created by using the previously generated key 𝑟𝑜𝑜𝑡𝑐𝑎.𝑘𝑒𝑦, as
shown in Listing 4.1.

$> openssl ecparam -name secp521r1 -genkey -out rootca.key

$> openssl req -new -x509 -days 365 -key rootca.key

-out rootca.crt

Listing 4.1: Key-pair generation

Issue a Server-certificate: Typically, an entity, which wants to obtain a valid certifi-
cate, first generates its own private/public key pair. Using this key pair, the entity issues
a certificate signing request to a certificate authority. Based on that signing request, the
certificate authority signs this certificate with its own private key, adds the resulting sig-
nature to the entity’s certificate and returns this certificate. Thus, the certificate chain

CHAPTER 4. IMPLEMENTATION 64

can be verified by any outside party. The following commands in Listing 4.2 illustrate the
above described process using the previously created Root-CA.

$> openssl ecparam -name secp128r1 -genkey -out ../client.key

$> openssl req -new -key ../client.key -out ../client.csr

$> openssl ca -batch -config ../configs/rootca.conf -notext -in .

./client.csr -out ../client.crt

Listing 4.2: Issuing an entity-certificate
Hereby, the file 𝑟𝑜𝑜𝑡𝑐𝑎.𝑐𝑜𝑛𝑓 contains parameters which define how to certificate is

going to be created. Among others, the following parameters are set within this file:

� Key: The file path to the Root-CA’s key pair, which is used to sign the certificate.

� Validity: Determines how long the yielding certificate is going to be valid.

� Key usage: This field states for which kind of applications the certificate can be
used to prove trust.

� CRL and OSCP distribution points: These fields are used to determine
whether the certificate is still trustworthy or has already been revoked or invali-
dated.

Intermediate certificate authorities: In practice however, the above described pro-
cess, where the Root-CA directly signs a certificate for an entity, comes with a certain risk.
That is, if the key from the Root-CA ever gets compromised during the signature creation,
the Root-CA’s certificate would be invalidated and therefore it would lose its invaluable
status of unlimited trustworthiness. Hence, typically an Intermediate-CA is issued by a
Root-CA, which then subsequently issues new certificates or new Intermediate CAs. The
following Listing 4.3 shows how to create an Intermediate-CA using OpenSSL:

$> openssl ecparam -name secp521r1 -genkey

-out intermediate_ca.key

$> openssl req -new -sha256 -key intermediate_ca.key

-out intermediate_ca.csr

$> openssl ca -batch -config ../configs/rootca.conf -notext

-in intermediate_ca.csr -out intermediate.crt

Listing 4.3: Issuing an intermediate CA

Certificate chain validation: To verify the validity of a certificate chain, an entity has
to traverse that certificate chain and verify each certificate in that chain separately, until
a trusted Root-CA is reached, or an invalid certificate is found. The following Listing 4.4
depicts the verification of an untrusted 𝑒𝑛𝑡𝑖𝑡𝑦.𝑐𝑟𝑡 by using a certificate chain 𝑐ℎ𝑎𝑖𝑛.𝑝𝑒𝑚,
whereby the Root-CA 𝑟𝑜𝑜𝑡.𝑐𝑟𝑡 is trustworthy.

CHAPTER 4. IMPLEMENTATION 65

$> openssl verify -CAfile "root.crt" -untrusted chain.pem entity.crt

Listing 4.4: Verification of a certificate chain

Revoking certificates: In the previous paragraph, valid certificates were issued by
either a Root-CA or an Intermediate-CA, however for the purpose of testing, it is also
necessary to revoke such a certificate. This can be done using Certificate Revocation Lists
(CRL) or using the Online Certificate Status Protocol (OSCP). While OCSP is not within
the scope of this thesis, CRLs can be created with the following commands, where a
Root-CA first revokes the certificate of an entity (𝑒𝑛𝑡𝑖𝑡𝑦.𝑐𝑟𝑡). Subsequently, the Root-CA
generates the CRL in PEM-format (Ascii) and finally the CRL is converted into the binary
DER-format, as depicted in the following Listing 4.5:

$> openssl ca -config in.conf -revoke ../entity.crt

$> openssl ca -config ca.conf -gencrl -out ../root.crl.pem

$> openssl crl -inform PEM -in ../root.crl.pem -outform DER

-out ../root.crl

Listing 4.5: Revocation of a certificate

zlib

As already mentioned in the Design Chapter of this work, data compression can be used
to reduce the data overhead which comes along with the transmission of the certificate
chain. Therefore, the implementation of the modified QSNFC uses the zlib1-library. This
library was written in C and is a free, general purpose data compression library which
uses gzip format for file operations but can also operate on data-stream formats. The
following Listing 4.6 shows the usage of compress and decompress functions within the
implementation of the modified QSNFC:

//compress

int retval = compress2(*zipped_bytes, &zipped_byte_len,

bytes_to_zip, bytes_to_zip_len,

Z_BEST_COMPRESSION);

//decompress

int retval = uncompress(unzipped_bytes, &unzipped_byte_len,

bytes_to_unzip, zipped_bytes_len);

Listing 4.6: Usage of compress and decompress functions

4.3 libQSNFC

This section describes the implementation of the modified QSNFC-protocol. Therefore,
for the remaining part of this thesis, this implementation is denoted as libQSNFC. As

1https://www.zlib.net

CHAPTER 4. IMPLEMENTATION 66

already mentioned in the first section of this chapter, the used programming language is
C, therefore the output is a shared object file (libQSNFC.so), which can be linked during
runtime. Within this section, the corresponding interface of this library is given, including
important code snippets and concise descriptions.

4.3.1 Interface

The protocol implementation libQSNFC is intended to be used by a wide variety of ap-
plications, therefore, a comprehensive interface is defined within the work of this thesis.
It acts as the main entry point for applications and provides the functionality to success-
fully run a QSNFC session. Hence, carrying forward the client-server pattern, which was
introduced in the Design Chapter, both entities use this interface to interact with this
library.

Setting QSNFC-related parameters (configuration)

At first, both client and server configure the QSNFC library according to their needs.
Within the interface of the libQSNFC, several functions are provided to configure the
library, as shown in the following Listing 4.7. This includes for the client, among others,
the path to the trusted certificate store and the path to the cached certificates. Moreover,
the server can set the path to its own certificate key, to the long-term key and the path
to the certificate chain.

/*init client methods*/

void QSNFC_init_client();

void QSNFC_init_client_set_id(

const QSNFC_byte id[]);

void QSNFC_init_client_set_expected_server_id(

const QSNFC_byte expected_server_id[]);

int QSNFC_init_client_set_trusted_store(

const unsigned char path_to_trusted_certs_folder[]);

int QSNFC_init_client_add_cached_certificate(

const unsigned char path_to_cached_cert[]);

void QSNFC_init_client_Set_crp(

const unsigned char crp);

/*init server methods*/

void QSNFC_init_server();

void QSNFC_init_server_set_id(const QSNFC_byte id[]);

int QSNFC_init_server_set_path_to_certificate(

const unsigned char path_to_servers_certificate[]);

int QSNFC_init_server_set_path_to_cert_chain(

const unsigned char path_to_chain_file[]);

int QSNFC_init_server_set_path_to_long_term_key(

const unsigned char path_to_long_term_key[]);

int QSNFC_init_server_set_supported_crs(

const unsigned char crs);

CHAPTER 4. IMPLEMENTATION 67

int QSNFC_init_server_set_compression(

const unsigned char compression);

Listing 4.7: QSNFC-Interface

Data and message callbacks

In the Requirements-section of this chapter, the need of flexibility was explained, that
is, the loose coupling between the communication layer and the protocol implementation.
Hence, libQSNFC defines four callback functions to ensure the required flexibility, as shown
in Listing 4.8. Additionally, these four callbacks are described in the following:

� SendMessageCallback: This callback is used by both entities to send a secure
message. The libQSNFC subsequently handles the encryption-mechanism.

� ReceiveMessageCallback: Using this callback, the communicating entities can
receive a secure message, which is already decrypted by the library.

� SendBytesCallback In order to send data via the communication channel, libQS-
NFC provides this callback, which is called by the library whenever data must be
transmitted via that communication channel. That is, whenever one of the QSNFC-
messages needs be sent.

� ReceiveBytesCallback: This callback is used, when data was received via the
communication channel and is intended for the libQSNFC. Therefore, the library
eventually parses the received data bytes (which consists of a QSNFC-message) and
triggers the proper actions.

Additionally, Figure 4.2 contains a flow diagram where the usage of these callbacks is
illustrated. At first, both client and server initialize the library (with the certificate paths,
supported cryptographic primitives and so on) and after that, the callbacks are set. Now,
both communication parties start the QSNFC-session.

Hence, if the client wants to start a secure communication, he sends a confidential mes-
sage 𝑚𝑠𝑔1 to the library using the 𝑠𝑒𝑛𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒()-callback. Next, libQSNFC internally
starts the initial and subsequent handshake using the provided callbacks 𝑠𝑒𝑛𝑑𝐵𝑦𝑡𝑒𝑠 and
𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝐵𝑦𝑡𝑒𝑠. Upon receival of the SH-message, which contains a confidential message
𝑚𝑠𝑔2 from the server, libQSNFC decrypts and authenticates this confidential message.
Finally, the corresponding callback 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑀𝑒𝑠𝑠𝑎𝑔𝑒() gets called to provide the client the
decrypted confidential message.

In turn, the server waits until he receives the inchoate CH-message using the pro-
vided callback 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝐵𝑦𝑡𝑒𝑠. Upon receival, the library internally performs the initial
handshake. After the complete-CH message is received, the callback 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑀𝑒𝑠𝑠𝑎𝑔𝑒() is
used to inform the server about the received confidential message 𝑚𝑠𝑔1. Subsequently,
the server responds with a confidential message 𝑚𝑠𝑔2, which is forwarded to the library
by using the callback 𝑠𝑒𝑛𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒(). Finally, libQSNFC wraps the encrypted message
𝑚𝑠𝑔2 within the SH-message and sends it to the client via the 𝑠𝑒𝑛𝑑𝐵𝑦𝑡𝑒𝑠 callback.

CHAPTER 4. IMPLEMENTATION 68

QSNFC-Data flow diagram

Application libQSNFC COM

Configure QSNFC
−−−−−−−−−−−−−−−−−−−−→

Set callbacks
−−−−−−−−−−−−−−−−−−−−→

Message-callbacks

sendMessage−−−−−−−−→
receiveMessage←−−−−−−−−−

ByteStream-callbacks

sendBytes−−−−−−→
receiveBytes←−−−−−−−−

Start QSNFC-session
−−−−−−−−−−−−−−−−−−−−→

. QSNFC-protocol (Client) .

𝑚𝑠𝑔1←$
𝑠𝑒𝑛𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑚𝑠𝑔)

−−−−−−−−−−−−−−−−−−−−→

𝑠𝑒𝑛𝑑𝐵𝑦𝑡𝑒𝑠(𝑖𝑛𝑐ℎ𝑜𝑎𝑡𝑒𝐶𝐻)
−−−−−−−−−−−−−−−−−−−−→

𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝐵𝑦𝑡𝑒𝑠(𝑅𝐽))
←−−−−−−−−−−−−−−−−−−−−

𝑠𝑒𝑛𝑑𝐵𝑦𝑡𝑒𝑠(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝐶𝐻)
−−−−−−−−−−−−−−−−−−−−→

𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝐵𝑦𝑡𝑒𝑠(𝑆𝐻))
←−−−−−−−−−−−−−−−−−−−−

𝑚𝑠𝑔2
𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑀𝑒𝑠𝑠𝑎𝑔𝑒()

←−−−−−−−−−−−−−−−−−−−−

. QSNFC-protocol (Server) .

𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝐵𝑦𝑡𝑒𝑠(𝑖𝑛𝑐ℎ𝑜𝑎𝑡𝑒𝐶𝐻)
←−−−−−−−−−−−−−−−−−−−−

𝑠𝑒𝑛𝑑𝐵𝑦𝑡𝑒𝑠(𝑅𝐽))
−−−−−−−−−−−−−−−−−−−−→

𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝐵𝑦𝑡𝑒𝑠(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝐶𝐻)
←−−−−−−−−−−−−−−−−−−−−

𝑚𝑠𝑔1
𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑚𝑠𝑔)

←−−−−−−−−−−−−−−−−−−−−

𝑚𝑠𝑔2←$
𝑠𝑒𝑛𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑚𝑠𝑔2)

−−−−−−−−−−−−−−−−−−−−→

𝑠𝑒𝑛𝑑𝐵𝑦𝑡𝑒𝑠(𝑆𝐻))
−−−−−−−−−−−−−−−−−−−−→

Figure 4.2: Data flow diagram

CHAPTER 4. IMPLEMENTATION 69

//define function pointer

typedef int (*QSNFC_sendBytes)(const unsigned char*, size_t);

typedef int (*QSNFC_readBytes)(unsigned char**, size_t*);

/*callback methods*/

int QSNFC_init_Set_SendMessage_Callback(

QSNFC_readBytes callback);

int QSNFC_init_Set_ReceiveMessage_Callback(

QSNFC_sendBytes callback);

int QSNFC_init_Set_SendBytes_Callback(

QSNFC_sendBytes callback);

int QSNFC_init_Set_ReceiveBytes_Callback(

QSNFC_readBytes callback);

Listing 4.8: QSNFC-Callbacks

4.3.2 OpenSSL-API usage

As already mentioned previously, OpenSSL is the library used within the protocol im-
plementation for all cryptographic-related operations. Therefore, the most important
concepts and code snippets are listed and explained in the following:

EVP PKEY

Whenever PKC is involved, OpenSSL uses the struct EVP PKEY, which contains the
key related parameters based on the specified key type. In the case of this thesis, an
Elliptic-Curve key is used, however that same struct can also be used for RSA keys, for
example. Such a key can then be used to compute a shared secret, to sign data or to verify
a signature or a certificate chain. Listing 4.9 illustrates the generation of an elliptic curve
key, whereby sanity checks are omitted for better readability:

int generate_new_key(EVP_PKEY** pkey, int curve) {

EVP_PKEY_CTX *pctx, *kctx;

EVP_PKEY *params = NULL;

/* Create OpenSSL context for params */

pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_EC, NULL);

/* Initialise params-context */

EVP_PKEY_paramgen_init(pctx);

EVP_PKEY_CTX_set_ec_paramgen_curve_nid(pctx, curve);

/* Create parameters */

EVP_PKEY_paramgen(pctx, ¶ms);

CHAPTER 4. IMPLEMENTATION 70

/* Kontext for key generation */

kctx = EVP_PKEY_CTX_new(params, NULL);

/* Generate key */

EVP_PKEY_keygen_init(kctx);

EVP_PKEY_keygen(kctx, pkey);

return 0;

}

Listing 4.9: OpenSSL-Generation of an EC-key

Compute a shared secret

Using the above generated key and another key received from the communication partner,
a shared secret can be computed, as depicted in Listing 4.10, whereby sanity checks are
omitted. The information, which key agreement protocol is used, is stored within the
keys, and depending on this information the proper scheme is chosen by OpenSSL. The
computed secret can then be used directly as an encryption key, or as input for a key
derivation function.

QSNFC_byte calculate_secret(EVP_PKEY* private,

EVP_PKEY* peer_public_key, size_t* secret_len) {

EVP_PKEY_CTX *ctx = NULL;

QSNFC_byte* secret = NULL;

/* context for shared secrets */

ctx = EVP_PKEY_CTX_new(private, NULL)

/* Initialization */

EVP_PKEY_derive_init(ctx);

/* Provide the oponent's public key */

EVP_PKEY_derive_set_peer(ctx, peer_public_key);

/* buffer size for shared secret */

EVP_PKEY_derive(ctx, NULL, secret_len);

/* Allocacte buffer */

secret = OPENSSL_malloc(*secret_len);

/* Compute the shared secret */

EVP_PKEY_derive(ctx, secret, secret_len);

EVP_PKEY_CTX_free(ctx);

CHAPTER 4. IMPLEMENTATION 71

return secret;

}

Listing 4.10: OpenSSL-Shared secret computation

X509

The X509 struct is used by OpenSSL for all certificate-related operations. This struct
contains information about the corresponding key, issuer name, validity period and much
more. OpenSSL has a built-in mechanism to verify the certificate chain, as shown in
Listing 4.11 below:

//init store and context

X509_STORE* store = X509_STORE_new();

X509_STORE_CTX* ctx = X509_STORE_CTX_new();

//load trusted certificates

X509_STORE_load_locations(store, NULL, "path_to_trusted_certs");

//init context for verification with server's certificate

//and corresponding certificate chain

X509_STORE_CTX_init(ctx, store, server_cert, cert_chain);

//verify certificate chain

int retval = X509_verify_cert(ctx);

if (ret != 1) {

printf("Verification failed\n");

return;

}

printf("Verified\n");

Listing 4.11: OpenSSL-Certificate chain verification

4.4 Two NFC-enabled IoT-devices

As previously mentioned, the demo applications are based on the use cases presented
in the Design-Chapter of this thesis. Thus, the first use case, which is going to be im-
plemented, comprises two NFC-enabled IoT-devices. In the following, the general setup
is illustrated and subsequently, the development environment is going to be explained.
Finally, important use-case related build steps are highlighted.

CHAPTER 4. IMPLEMENTATION 72

4.4.1 Setup

The setup for this demo application consists of two RaspberryPis Model 3B, both with
an attached Explore-NFC shield. Both RaspberryPis use Raspbian as operating system
whereby Figure 4.3 illustrates the corresponding setup.

Figure 4.3: Two NFC-enabled IoT-devices

4.4.2 Development environment

This subsection describes the used development tools, moreover it gives short overview of
the compilation process including the used toolchain and the used libraries. Moreover, the
process of remote debugging is presented.

IDE

During the development of the RaspberryPi-to-RaspberryPi demo application, the free and
open source cross-platform IDE KDevelop2 was used, which provides support for C/C++,
Python, JavaScript and PHP. KDevelop is based on the KDE platform and on the QT-
Framework, and runs on Linux, macOS and on Windows. Moreover, it also supports the
use of CMake-projects out of the box and comes bundled with GDB-integration.

CMake

CMake3 is an open source tool to build and package software. It is used within this thesis
to automate the build process of the demo application within KDevelop. Furthermore,
cross compiler directives are set within CMake to build for another platform, in this case
for the RaspberryPi.

2https://www.kdevelop.org/
3https://cmake.org/

CHAPTER 4. IMPLEMENTATION 73

GDB

The GNU Project Debugger4 is a versatile debugging tool for applications written in C
and C++. Many IDEs provide built-in support, however the GDB is also accessible via
the command line. Additionally, it supports remote debugging, as presented later within
this section.

NXP-Reader library

To communicate with the attached NFC-Shield, NXP’s Reader-library is used. This C-
library abstracts the hardware interaction with the NFC-controller, and it supports NFC’s
P2P and Card-Emulation mode.

Cross-compilation

The development of this demo application requires a cross compilation tool chain, because
the programming tasks are performed on an PC using an AMD64 architecture, however the
RaspberryPi is based on an ARMv8-architecture. Hence, the Linux ARM cross compiler
toolchain5 was used to build both the libQSNFC and the actual demo application. This
toolchain can be found for many Linux-based operating systems in the corresponding
package archives. Other used libraries such as OpenSSL or lzip need not be cross-compiled
as there exist prebuilt-artifacts in the Raspbian package archives.

Remote-Debugging

As already mentioned previously, GDB supports remote-debugging. Therefore, the fol-
lowing listings illustrate the process how to setup such a remote debugging session, under
the assumption that the RaspberryPi and the development machine are connected in the
same network. Listing 4.12 depicts the startup command for the gdbserver:

$rpi> gdbserver localhost:2000 qsnfcDemo

Listing 4.12: Starting GDB-server on RaspberryPi

To debug an executable, which was built for a different platform, a special debugger
(arm-linux-gnueabihf-gdb) for ARM-executables was used. This debugger is provided by
Linaro Toolchain Binaries6. The following Listing 4.13 illustrates the process how to
connect to the remote gdbserver, which was mentioned above.

$host> arm-linux-gnueabihf-gdb qsnfcDemo

$(gdb)> target remote <ip_of_raspberry_pi>:2000

Listing 4.13: Starting remote debug session

4https://www.gnu.org/software/gdb/
5https://packages.debian.org/sid/gcc-arm-linux-gnueabihf
6https://launchpad.net/linaro-toolchain-binaries/

CHAPTER 4. IMPLEMENTATION 74

4.4.3 Implementation

This subsection covers implementation-relevant topics. At first, a concise overview of
the SNEP protocol is given, which is used within this demo application as transport
layer protocol. After that, the interaction with NXP’s Reader-library is highlighted and
important code snippets are shown.

SNEP-Simple NDEF Exchange protocol

As already noted in the Prerequisites Chapter, SNEP is based on NFC’s P2P mode. There-
fore, SNEP will be used within this demo application as transport layer protocol. Both
SNEP and libQSNFC follow a client/server-pattern, therefore the term client refers to
both the client within SNEP as well as the client within libQSNFC, and consistently the
same applies for the server. Within this demo application, SNEP-Get requests are used for
communication. Hence, the client wraps the data he wants to send in a SNEP-Get request,
whereby this request contains the serialized QSNFC-message (inchoate-CH, complete-CH
or SD-message). Subsequently, this request is sent to the server. In turn, the server an-
swers with an NDEF message, whereby this response contains a wrapped QSNFC-message
(AB, RJ, SH or SD).

Interaction with NXP’s Reader library

The following code snippet in Listing 4.14 illustrates the combined usage of the libQSNFC
callbacks and NFC’s Reader library, in particular the SNEP-Get request. The function
𝑠𝑒𝑛𝑑𝐵𝑦𝑡𝑒𝑠() gets called whenever libQSNFC needs to send data bytes to a communication
partner, whereby 𝑐𝑙𝑖𝑒𝑛𝑡𝑏𝑢𝑓 is going to contain the responded NDEF-message from the
SNEP-Get request.

/* SNEP component holder */

phnpSnep_Sw_DataParams_t snpSnepClient;

/* buffer for NDEF-response */

uint8_t clientbuf[10000];

uint32_t clientlen;

int sendBytes(uint8_t* data, size_t len)

{

phStatus_t ret_status = phnpSnep_Get(&snpSnepClient,

data, len,clientbuf, &clientlen, 10000);

if(ret_status != PH_ERR_SUCCESS)

{

printf("Error in send bytes \n");

return -1;

}

return 0;

}

Listing 4.14: Interaction with NXP’s Reader library

CHAPTER 4. IMPLEMENTATION 75

4.5 An NFC-enabled IoT-device and an NFC-enabled smart
phone

This section describes the second developed demo application within the context of this
thesis. The application covers the second use case, which was highlighted at the beginning
of the Design-Chapter. Hence, this application comprises an NFC-enabled IoT-device
and an NFC-enabled smart phone communicating in a secure manner via NFC. As the
development of this demo application requires a new communication protocol, SAEP will
be introduced. After that, the development environment and all used tools will be listed,
including some remarks on the cross-compilation.

4.5.1 Simple APDU Exchange Protocol

As presented in the previous section of this chapter, the first demo application uses two
RaspberryPis with an attached NFC-Shield. Hence, full access to the underlying com-
munication layer is provided by the corresponding NFC-Hardware Abstraction Layer, in
this case NXP’s NFC-Reader library. However, Android restricts the access to its NFC-
implementation. That is, even though an NFC-P2P communication is possible via Android
Beam7, it requires a user interaction for each message round trip. While this is sufficient
for simple applications, it is not suitable for a general-purpose communication protocol
with multiple round trips. Hence, the Simple APDU Exchange Protocol (SAEP) was de-
signed within the scope of this thesis to counteract this issue. The following description
highlights the main ideas of SAEP:

Objective

The objective of this protocol is to provide a request-response like protocol using a non-
rooted Android phone with limited access to its NFC-interface, whereby the other com-
munication partner is either an NFC-enabled IoT-device (which is the case within this
demo application) or another Android phone with limited NFC-access.

Setup

Following up the client/server model, a client issues requests and a server answers with
responses, therefore the client has to be set into NFC’s Reader/Writer-Mode and the
server has to emulate an NFC-tag by using NFC’s Card Emulation mode. Hence, this
demo application comprises a RaspberryPi with an attached NFC-Shield representing the
server, and an NFC-enabled Android phone, which represents the client.

Protocol

To establish such a request-response protocol, the client writes into the data storage of
the tag and sets a status byte. This status byte is located within the first byte of the
NFC-memory container. The second and third byte represent the length of the following
data, which starts at the fourth byte. Furthermore, the status gets polled by the server
periodically and indicates whether the write-procedure is completed or not. If this is not

7https://developer.android.com/guide/topics/connectivity/nfc/nfc#p2p

CHAPTER 4. IMPLEMENTATION 76

the case, then the provided tag memory size is too small for the amount of data being
sent via NFC. Therefore, the data transfer has to be chunked. Hence, the server must
cache this information somewhere else as long as the status byte indicates that the write-
procedure is completed. Subsequently, the server processes the cached information and
writes the response into his own NFC-memory container. Meanwhile, the client polls the
status byte in the same fashion as described before, and depending on whether the server’s
response is chunked or not, the client waits until the write-process is finished. Table 4.1
list all implemented status bytes, whereby x1 is set when a new chunk has been written
to the NFC-container. That is, one or more subsequent chunks are going to follow. A
subsequent chunk is identified by the value x2 in the status byte. Once the write process
is finished, the value x3 is written in the status byte. Finally, the value 00 indicates, that
the device is ready to be written.

Value (in Hex) Meaning

0x00 Ready to be written

0x01 New chunk (Client)

0x02 Subsequent chunk write (Client)

0x03 Write finished (Client)

0x11 New chunk (Server)

0x12 Subsequent chunk (Server)

0x13 Write finished (Server)

Table 4.1: Status byte for SAEP

4.5.2 APDU-commands

Within this demo application, an NFC-Tag 4 type was used for the implementation. There-
fore, this subsection lists the used APDU commands, which are needed to read and write
data and for querying the capability container. A more detailed description of these com-
mands can be found in [NFC11b].

� Select (Instruction-byte 0x4A): This command is used to select both the ca-
pability container and the NDEF container, which comprises the actual data.

� Read (Instruction-byte 0xB0): The Read-command is used to retrieve data
from the capability container and to read data from the NDEF-container.

� Write (Instruction-byte 0xD6): This command is used to write data in the
NDEF-container.

4.5.3 Development environment

Within this subsection, the development environment for the Android part of this demo
application is going to be explained. This includes the used IDE, build systems and
interfaces. The development for the RaspberryPi part of this application is similar to the
one described within the previous section of this chapter.

CHAPTER 4. IMPLEMENTATION 77

Android-Studio

Android-Studio8 is used within the work of this thesis to develop the Android-app for this
demo application. This IDE is based on the IntelliJ-platform and is available free of charge.
It runs on Linux, Windows and macOS, and it requires an installed Java-Development-Kit.
Android-Studio is designed to support the development of Android-applications written
both in Java and Kotlin, and additionally it provides a powerful GUI-Designer. The
Android Software-Development-Kit comes bundled within Android-Studio, which is the
responsible tool for compiling and packaging Android applications.

JNI

JNI is an abbreviation for the Java-Native-Interface. The purpose of JNI is to enable Java-
Code to call native C functionality. The JNI interface is used within this demo application
to call C-functions from the libQSNFC.

Android-NDK

The Android Native-Development-Kit (NDK) is a set of tools to compile native C Code
for the Android platform. This toolset can be downloaded and installed within Android-
Studio using the included SDK-Manager. Once installed, C code can be edited and built
within Android-Studio, and subsequently functions from this C-code can be called within
Java via JNI.

Gradle

Gradle is a build system to maintain library dependencies, manage the build order of
Java/Kotlin Code, change run configurations and set version codes. Gradle comes included
with Android-Studio, however it is not bound to Android/Java applications but can also
be integrated in the development of C++ or Python -based applications.

Hardware

For the development of this application, a Sony Xperia Z5 Compact was used, running
Android version 7.1.1 (non-rooted).

4.5.4 Implementation-Android

This subsection describes implementation-relevant details of the second demo application,
in particular the Android part. Furthermore, important code snippets are shown and
complex build steps are explained.

Building native C-code for Android

Instead of re-writing the libQSNFC in Java, this paragraph presents a way to utilize an
existing C-library for Android. Therefore, Java-Code within an Android application calls
native C functions provided by the protocol implementation libQSNFC.

8https://developer.android.com/studio

CHAPTER 4. IMPLEMENTATION 78

Building dependencies: As already presented in the Implementation Chapter, libQS-
NFC uses two external libraries, which comprises zlib for data compression and OpenSSL
for cryptographic computations. Whereas zlib is included within the Android NDK, and
thus, doesn’t have to be compiled manually, OpenSSL is not. Hence, due to missing of-
ficial distributions for Android, OpenSSL must be compiled for Android manually. Due
to Android’s support of different CPUs and thus, different Application Binary Interfaces
(ABI)9 with their own instruction set, it is required to build a native C-library for all
supported ABIs to ensure functionality for all supported Android phones. Within this
work, the instruction set armeabi from ABI armeabi-v7a was chosen because the Android
phone, which was used during development, is based on that architecture. Subsequently,
Android’s NDK is used to build OpenSSL for this platform using the commands presented
in Listing 4.15.

$> tar xvfz openssl-1.1.0f.tar.gz

$> cd openssl-1.1.0f/

$> ./Configure android-armeabi -L<ANDROID_SDK_PATH>/ndk-bundle/

toolchains/arm-linux-androideabi-4.9/prebuilt/linux-x86_64/

lib/gcc/arm-linux-androideabi/4.9.x/armv7-a

-L<ANDROID_SDK_PATH>/ndk-bundle/toolchains/

arm-linux-androideabi-4.9/prebuilt/linux-x86_64/

arm-linux-androideabi/lib/armv7-a -latomic

Listing 4.15: Build OpenSSL for Android’s ABI armeabi-v7a

Build libQSNFC: After the successful build of OpenSSL, libQSNFC can be compiled
by adding this new OpenSSL build as a link-asset to the Android-Studio project. In
particular, libQSNFC is added as a CMake project reference. Hence, by using JNI, the
original libQSNFC can be accessed via the Android app. Listing 4.16 depicts the usage of
JNI to access functionality from the protocol implementation.

public class JNI_Interface {

//load libQSNFC

static {

System.loadLibrary("libqsnfc");

}

/* native QSNFC methods */

public native void QSNFC_init_client();

public native void QSNFC_init_server();

...

}

Listing 4.16: Usage of Android’s JNI

9https://developer.android.com/ndk/guides/abis.html

CHAPTER 4. IMPLEMENTATION 79

WebNFC

The WebNFC-API10 is a currently unstable specification of an NFC-API, which enables
the access of the NFC-interface on a smart phone using JavaScript. This API is sup-
ported only by a few experimental browser versions. However, within the context of this
demo application, the idea of WebNFC-API is used to increase the practical applicability of
libQSNFC. Due to the fact that QSNFC is neither an official protocol specification nor the
corresponding implementation, libQSNFC, is anywhere available in modern cryptographic
tool suites, WebNFC clearly does not support QSNFC. Thus, the Android application is
designed in such a way that it emulates a browser with rudimentary access to libQSNFC
via JavaScript. The confidential information can then be sent from JavaScript via libQS-
NFC to the communication partner. Consequently, a web server sends confidential data
protected by TLS to the mobile phone, and then the data gets sent to the NFC com-
munication partner via QSNFC. Hence, this provides a secure end-to-end encryption, as
depicted in Figure 4.4. Therefore, presuming that libQSNFC is included in future versions
of browsers, no additional app is needed to communicate via QSNFC on a smart phone. In
addition to that, libQSNFC could use the browser’s certificate store for its configuration
with trusted certificates.

Figure 4.4: Secure communication from a server to an IoT-device

Android’s JavaScript Interface

In order to expose Java-functionality to JavaScript, methods can be marked with the
@𝐽𝑎𝑣𝑎𝑠𝑐𝑟𝑖𝑝𝑡𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒-Annotation, as depicted in Listing 4.17.

//This function can be called from Javascript

//e.g. window.JSInterface.SetSecuredDate('Confidential',callback);

@JavascriptInterface

public void SetSecuredDate(String data, String callbackFunction)

{

//process data

}

Listing 4.17: Accessing Java from JavaScript

10https://w3c.github.io/web-nfc/

CHAPTER 4. IMPLEMENTATION 80

Backend-Server

Within the scope of this demo application, a rudimentary servlet was developed to act
as endpoint for the Android-application, which establishes an HTTPS connection with
that server. Subsequently, an HTML-page with JavaScript-Code is received by the app.
Using this JavaScript in the emulated Browser, the app-user can initiate a QSNFC-session.
The already described IDE NetBeans was used to implement and host that code on an
Embedded-Web-Server.

Android-App

Figure 4.5 illustrates the final Android-app, where the App acts as QSNFC-client and
communicates with a RaspberryPi, which acts as a server.

Figure 4.5: Android app

CHAPTER 4. IMPLEMENTATION 81

4.5.5 Implementation-RaspberryPi

The other part of this demo application is implemented on the RaspberryPi-platform
by using the same IDE, tools and libraries from the first demo application, where two
RaspberryPis were communicating via P2P. This time however, the RaspberryPi acts as
the server within the QSNFC-session. Therefore, it has to operate in NFC’s Host-Card
emulation mode to run the previously defined SAEP, as P2P is not supported by the
Android implementation. Within this demo application, NXP’s Reader Library is used
for the emulation of an NFC-Tag 4 type.

Chapter 5

Evaluation

This chapter covers a comprehensive evaluation of the modified QSNFC-protocol, both for
the design and the implementation of libQSNFC. At first, the presented security threats
of the existing QSNFC are considered again with respect to the chosen protocol design of
the modified QSNFC protocol. After that, a message overhead and timing comparison for
different modes of operation of the demo applications concludes this chapter.

5.1 Protocol evaluation

This section recaps the threats identified within the Related Work Chapter of this the-
sis and analyzes the corresponding security countermeasures. Furthermore, it evaluates
the countermeasures of the security vulnerabilities of the original QSNFC, which were
presented within this thesis.

Eavesdropping

Due to the usage of authenticated encryption algorithms, confidential messages are pro-
tected against eavesdropping, however eavesdropping itself cannot be avoided. Even
though the modified QSNFC contains unprotected fields in the QSNFC-messages, an at-
tacker cannot use this information to mount an attack.

Data corruption/modification/insertion

Any data corruption/modification/insertion of confidential or authenticated data is going
to be noticed by the receiver due to the usage of authenticated encryption algorithms,
however, the altering of data cannot be avoided.

Man-in-the-Middle

There is no way to prevent a MitM-attack, but due to the above described reasons, a
MitM is neither able to gather confidential data nor is he able to alter messages without
the notice of the receiving communication party. Furthermore, a MitM-attack is not able
to impersonate the server due to the use of certificates.

82

CHAPTER 5. EVALUATION 83

Denial-of-Service

It is not feasible to protect a communication on protocol level against DoS-attacks, as a
possible interference by an attacker can be detected but not avoided.

Downgrade-Attack

An attacker cannot downgrade the chosen encryption algorithm without the detection of
the client, as the prior chosen value is compared with the one comprised in the received
signature by the server.

MITM on the original QSNFC

In the Design Chapter, two variants of a MitM-attack on the original QSNFC were shown.
The presented countermeasures involve the constraint, that confidential payloads must
not be empty. Additionally, the public keys are now protected, as these keys are included
as additional authenticated data to the authenticated encryption algorithm. Hence, such
a MITM is no longer possible.

Freshness

As presented in the Design Chapter, the original QSNFC is vulnerable against Replay-
Attacks due to missing nonces. Therefore, the modified QSNFC includes nonces, which
are protected either by signatures (in the initial handshake), or added as additional au-
thenticated data to the authenticated encryption algorithm in the subsequent handshakes
and for SD messages. Thus, such a Replay-Attack is no longer possible.

5.2 Demo evaluation

This section covers the evaluation of the previously implemented demo applications. There-
fore, these implementations are going to be tested using multiple test scenarios and thus,
evaluating the performance with respect to message overhead and timing. At first, the
proposed requirements within the protocol implementation are revised. After that, test
scenarios for the software implementations are stated, and subsequently, the test results
according to these test scenarios are presented for the two demo applications.

� Flexibility: The implementation is not bound to NFC at all, in fact there is not
a single line within the code related to NFC. As already highlighted in the Imple-
mentation Chapter, during the development a simple buffer was used to simulate a
communication between two entities.

� Configurability: The library provides an interface to set the desired options and
flags for subsequent QSNFC-sessions.

� Availability: The libQSNFC was implemented in C, therefore it is applicable
for many fields of application. The presented demo applications utilize the protocol
implementation libQSNFC by using it from C and Java programs.

CHAPTER 5. EVALUATION 84

5.2.1 Test scenarios

This subsection lists test-scenarios for both demo applications, whereby these applica-
tions are going to be evaluated with respect to the message overhead and execution time.
Hence, libQSNFC is going to be tested with different message sizes, while using all sup-
ported encryption algorithms and all performance-improving mechanisms such as cached-
certificates, data compression and the usage of subsequent handshakes, as stated in the
list below:

� Demo application: Within the evaluation, both demo applications should be
tested. That is, the first demo application use case where two RaspberryPis with
attached NFC-Shield communicate via NFC’s P2P mode. Furthermore, the sec-
ond demo application, where a mobile phone based on Android and a RaspberryPi
communicate with the SAEP, is also going to be evaluated.

� Encryption algorithms: This evaluation of the libQSNFC should comprise all
available authenticated encryption algorithms for QSNFC, that is AES-128, AES-192
and AES-256 in CCM and GCM mode.

� Data compression: The usage of data compression for the certificate chain was
introduced within the Design Chapter, therefore the impact on the data overhead
by using data compression should be evaluated.

� Cached certificates: The concept of cached certificates was presented in the
Design-Chapter of this thesis. Hence, the proposed performance improvement should
be shown within this evaluation.

� Subsequent handshake: Without the significant data overhead from the initial
handshake, the benefit of the 0-RTT-property will be verified in this evaluation by
using subsequent handshakes only.

� Different message inputs: The demo applications are going to be evaluated using
different message inputs and multiple round trips. Therefore, not only subsequent
handshakes but also the exchange of SD messages are involved.

5.2.2 Overhead and timings

This subsection presents selected results based on the previously defined test scenarios.
At first, the message overhead will be shown. After that, the execution time is going to
be evaluated, and finally, the time and message overheads with respect to the available
encryption algorithms are presented.

Message data overhead

The first evaluation comprises the message data overhead for QSNFC-sessions. The data
overhead is computed according to Equation 5.1:

𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 = #𝑡𝑜𝑡𝑎𝑙𝐵𝑦𝑡𝑒𝑠− #𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝐵𝑦𝑡𝑒𝑠 (5.1)

CHAPTER 5. EVALUATION 85

Therefore, Figure 5.1 compares the data overhead in bytes, for 100 payload bytes
(confidential data) per message, using one and two round trips, respectively. Additionally,
the corresponding overhead for a QSNFC-session using uncompressed and compressed
certificate chains is shown. Furthermore, the significant decrease of data overhead is
depicted by using cached certificates and subsequent handshake only. For this evaluation,
the first demo application (2 NFC-enabled IoT-devices) was used together with AES128-
CCM as encryption algorithm. As can be seen clearly within this figure, the usage of
cached certificates and subsequent handshakes decreases the overall message overhead
significantly. Furthermore, the introduced data compression almost halves the message
overhead compared to a QSNFC-session using uncompressed certificate chains.

Figure 5.1: Message overhead for libQSNFC

Execution time

Figure 5.2 depicts the execution time of libQSNFC to successfully perform a QSNFC ses-
sion between an Android phone and a RaspberryPi including one data round trip with 10
and 100 bytes, respectively. The categorization within that figure follows the categoriza-
tion in the last figure. Similarly, the execution time evaluation depicted within the current
figure also emphasizes the significant performance speed up by using data compression,
cached certificates and subsequent handshakes (0-RTT).

Usage of different encryption algorithms

Table 5.1 illustrates the evaluation of QSNFC-sessions for all available block sizes and
authenticated encryption modes. Therefore, within a subsequent-handshake only session,
a confidential payload with 100 data bytes per message is used at first, yielding a total

CHAPTER 5. EVALUATION 86

Figure 5.2: Execution time for libQSNFC

amount of 400 data message bytes for the subsequent handshake and one SD message
round trip. Secondly, 10 data bytes per message are send, which results in a total of 20
data message bytes for the subsequent handshake. Within the above-mentioned Table,
execution time and data message overhead are shown. Hence, it can be seen that the
usage of different encryption modes using the same payload has only a slightly impact on
the message overhead and on the execution time.

400 data bytes 20 data bytes
Overhead Execution time Overhead Execution time
(in Bytes) (in ms) (in bytes) (in ms)

AES128-CCM 209 306 141 149

AES196-CCM 225 308 157 159

AES256-CCM 241 321 173 185

AES128-GCM 209 306 141 147

AES196-GGM 225 312 157 156

AES256-GCM 241 322 173 171

Table 5.1: Performance evaluation for different encryption modes

Chapter 6

Conclusion and Future Work

The following chapter concludes this thesis, therefore a compact summary of the presented
work is given at first. Afterwards, limitations of the proposed protocol and its implemen-
tation are stated and based on that limitations, an outline for possible future work is
given.

6.1 Conclusion

Within the scope of this master’s thesis, a secure and efficient protocol for wireless com-
munication was presented. In the Chapter Prerequisites and Related work, all necessary
primitives were described and after that, the current state of the art was analyzed. There-
fore, all threats for an NFC-session were examined. Subsequently, already existing security
countermeasures were listed and described, and among others, the original version of QS-
NFC was presented.

In the Design Chapter of this thesis, application use cases for the proposed protocol
were identified at first. After that, a security and threat analysis of the original version of
QSNFC was conducted, which yielded several severe vulnerabilities in the protocol flow.
Furthermore, this original version of QSNFC was analyzed with respect to performance.
Based on the security and performance analysis, a modified QSNFC-protocol was pre-
sented, which is no longer vulnerable to the identified security threats and includes several
performance improvements.

The subsequent chapter covers the implementation related topics of the modified
QSNFC-protocol and the demo applications. Therefore, the requirements of such an im-
plementation are identified and furthermore, the development process of the corresponding
C-library libQSNFC is highlighted. Additionally, the development processes of two demo
applications are shown.

Finally, an Evaluation Chapter concludes the work of this thesis. Therefore, the fulfill-
ment of the given requirements is analyzed. Furthermore within this chapter, two demo
implementations for the identified use cases are evaluated with respect to overhead and
performance.

87

CHAPTER 6. CONCLUSION AND FUTURE WORK 88

6.2 Known limitations

This section discusses several limitations, which are implied by both the design and the
implementation of the proposed modified QSNFC protocol. The following list enumerates
and describes each of the design-related limitations briefly and gives a short outline on
how to overcome those issues within future work, whenever possible:

1. Caching: Both client and server need to cache cryptographic primitives for a
subsequent session to fulfill the 0-RTT property. While this is not limiting factor
in a small setting, it may require cache replacement strategies for large settings, as
already discussed in the original QSNFC protocol description. However, the proper
strategy depends on the field of application.

2. Server’s long-term key: If the server’s long-term key for a specific client ever
gets compromised, an attacker can impersonate the server and thus, the server’s
certificate must be revoked. Hence, even if this long-term key gets compromised, the
certificate should not need to be revoked.

3. Computational power: Clearly, the proposed design is not suitable for simple
NFC tags, as QSNFC requires computational power for encryption and authenti-
cation. Therefore, another protocol scheme has to be developed or the existing
QSNFC-protocol has to be extended, which is out of the scope of this thesis and
thus, subject for future work.

While the list above highlights the limitations on protocol level, the following lists
enumerates the implementation relevant limitations with respect to the library implemen-
tation of QSNFC, libQSNFC:

1. Secure Storage: Currently, all the cryptographic primitives which are used in
subsequent handshakes are stored in memory. However, in a future development
step it is advisable to store those credentials in a Secure Element.

2. Caching: The current software implementation does not provide a cache replace-
ment strategy, so an application which uses the library needs to take care of the
strategy implementation. Therefore, future version of the libQSNFC should provide
an interface, where the application can decide how the credentials are stored and
which cache replacement strategy is used.

3. OCSP: At the moment, the protocol implementation does not support OCSP for
certificate chain validation. Thus, a future version of the library implementation
should provide support for OCSP validation.

4. Crypto-implementation: Currently, OpenSSL is used for all cryptographic com-
putations within the library. As the imposed code overhead by using this library is
not an issue for mobile phones and IoT-devices such as the RaspberryPi, it is desir-
able to substitute OpenSSL with another cryptographic library, which provides only
a minimal coding footprint, such as mbed TLS 1. Therefore, an interface for the usage
of different cryptographic libraries has to be defined in a future libQSNFC-version.

1https://tls.mbed.org/

CHAPTER 6. CONCLUSION AND FUTURE WORK 89

5. Android: As already mentioned in the last chapter, Android supports all NFC-
modes, however the applicability of P2P is limited though due to the required user
interaction within each round trip. Hence, a simple protocol was presented to over-
come this limitation on a stock Android phone. However, if Android weakens the
restrictions on the use of its P2P-mode, a more concise implementation would be
possible without having to deal with APDU-commands.

6. iOS: In contrary to Android, iOS does only provide support for reading proper
encoded NFC-tags, but not for writing. This is caused by a software-based access
restriction to the built-in NFC-chip on iOS devices. Hence, libQSNFC is not appli-
cable for iOS devices.

7. WebNFC: The specification of WebNFC is still in an early and unstable state,
therefore only a rudimentary interface was implemented within this thesis. Thus,
once the specification becomes more precise, a more advanced approach could be
used.

8. Communication Layer: The demo applications use NFC as communication layer,
however due to the flexibility of libQSNFC, it also possible to apply QSNFC for other
wireless communication protocols such as Bluetooth, which could be implemented
and evaluated in another demo application.

Bibliography

[Ada11a] Carlisle Adams. Certificate, pages 188–189. Springer US, Boston, MA, 2011.

[Ada11b] Carlisle Adams. Replay Attack, pages 1042–1042. Springer US, Boston, MA,
2011.

[AES01] Advanced encryption standard (AES). Technical report, nov 2001.

[BBSP13] Dobre Blazhevski, Adrijan Bozhinovski, Biljana Stojcevska, and Veno Pa-
chovski. MODES OF OPERATION OF THE AES ALGORITHM. 04 2013.

[Bla11] J. Black. Authenticated Encryption, pages 52–61. Springer US, Boston, MA,
2011.

[BN00] Mihir Bellare and Chanathip Namprempre. Authenticated Encryption: Re-
lations among Notions and Analysis of the Generic Composition Paradigm.
In Tatsuaki Okamoto, editor, Advances in Cryptology — ASIACRYPT 2000,
pages 531–545, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

[BPPT17] Mugurel Barcau, VicenŢiu Paşol, Cezar Pleşca, and Mihai Togan. On a Key
Exchange Protocol. In Pooya Farshim and Emil Simion, editors, Innovative
Security Solutions for Information Technology and Communications, pages 187–
199, Cham, 2017. Springer International Publishing.

[CLL+17] Y. Cui, T. Li, C. Liu, X. Wang, and M. Khlewind. Innovating Transport with
QUIC: Design Approaches and Research Challenges. IEEE Internet Computing,
21(2):72–76, Mar 2017.

[Cro11] E. Cronin. Denial of service, pages 143–144. Springer US, Boston, MA, 2011.

[Des11] Yvo Desmedt. Relay Attack, pages 1042–1042. Springer US, Boston, MA, 2011.

[De11] Danny DeCock. X.509, pages 1395–1395. Springer US, Boston, MA, 2011.

[DH76] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22(6):644–654, November 1976.

[DKK+11] S. Dunnebeil, F. Kobler, P. Koene, J. M. Leimeister, and H. Krcmar. En-
crypted NFC Emergency Tags Based on the German Telematics Infrastructure.
In 2011 Third International Workshop on Near Field Communication, pages
50–55, Feb 2011.

90

BIBLIOGRAPHY 91

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael. 01 2002.

[Ecm15a] Ecma international. ECMA-385 NFC-SEC: NFCIP-1 Security Services and
Protocol, 6 2015. 4th Edition.

[Ecm15b] Ecma international. ECMA-386 NFC-SEC-01: NFC-SEC Cryptography Stan-
dard using ECDH and AES, 6 2015. 3rd Edition.

[Ecm15c] Ecma international. ECMA-409 NFC-SEC-02: NFC-SEC Cryptography Stan-
dard using ECDH-256 and AES-GCM, 6 2015. 2nd Edition.

[Ecm17a] Ecma international. ECMA-410 NFC-SEC-03: NFC-SEC Entity Authentica-
tion and Key Agreement using Asymmetric Cryptography, 6 2017. 3rd Edition.

[Ecm17b] Ecma international. ECMA-412 NFC-SEC-03: NFC-SEC Entity Authentica-
tion and Key Agreement using Symmetric Cryptography, 6 2017. 3rd Edition.

[HB06] Ernst Haselsteiner and Klemens Breitfuss. Security in Near Field Communica-
tion (NFC) Strengths and Weaknesses. 2006.

[Hei11] Clemens Heinrich. Transport Layer Security (TLS), pages 1316–1317. Springer
US, Boston, MA, 2011.

[HJS16] S. Hameed, U. M. Jamali, and A. Samad. Protecting NFC data exchange
against eavesdropping with encryption record type definition. In NOMS 2016
- 2016 IEEE/IFIP Network Operations and Management Symposium, pages
577–583, April 2016.

[Hün19] Felix Hüning. Internet of Things und Industrie 4.0, pages 1–10. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2019.

[ISO07] Near Field Communication - Interface and Protocol(NFCIP -1. Standard, In-
ternatial Organization for Standardization, 2007.

[ISO08] Identification cards - Contactless integrated circuit cards. Standard, Internatial
Organization for Standardization, 2008.

[JIC14] Brian Jepson, Tom Igoe, and Don Coleman. Beginning NFC. O’Reilly Media,
2014.

[JMV01] Don Johnson, Alfred Menezes, and Scott Vanstone. The Elliptic Curve Digital
Signature Algorithm (ECDSA). International Journal of Information Security,
1(1):36–63, Aug 2001.

[Jus11] Mike Just. Schnorr Identification Protocol, pages 1083–1083. Springer US,
Boston, MA, 2011.

[Kal11] Burt Kaliski. RSA Digital Signature Scheme, pages 1061–1064. Springer US,
Boston, MA, 2011.

[Knu11] Lars R. Knudsen. Block Ciphers, pages 152–157. Springer US, Boston, MA,
2011.

BIBLIOGRAPHY 92

[Kob87] Neal Koblitz. Elliptic Curve Cryptosystems. Mathematics of Computation,
48(177):203–209, January 1987.

[Koe11] François Koeune. Pseudorandom Number Generator, pages 995–996. Springer
US, Boston, MA, 2011.

[Kra10] Hugo Krawczyk. Cryptographic Extraction and Key Derivation: The HKDF
Scheme. In Tal Rabin, editor, Advances in Cryptology – CRYPTO 2010, pages
631–648, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[KW12] Thomas Korak and Lukas Wilfinger. Handling the NDEF signature record type
in a secure manner. pages 107–112, 11 2012.

[KW16] H. Krawczyk and H. Wee. The OPTLS Protocol and TLS 1.3. In 2016 IEEE
European Symposium on Security and Privacy (EuroS P), pages 81–96, March
2016.

[LR10] Josef Langer and Michael Roland. Anwendungen und Technik von Near Field
Communication (NFC). Springer Berlin Heidelberg, 2010.

[LRW01] Helger Lipmaa, Phillip Rogaway, and David Wagner. CTR-Mode Encryption.
05 2001.

[MHS10] Vctor Martinez, Luis Hernandez, and Carmen Snchez. A Survey of the Ellip-
tic Curve Integrated Encryption Scheme. Journal of Computer Science and
Engineering, 2:7–13, 01 2010.

[MKR17] Kathleen Moriarty, Burt Kaliski, and Andreas Rusch. PKCS #5: Password-
Based Cryptography Specification Version 2.1. RFC 8018, January 2017.

[MMS+15] Max Jakob Maaß, Uwe Müller, Tom Schons, Daniel Wegemer, and Matthias
Schulz. NFCGate - An NFC Relay Application for Android. In Proceedings
of the 8th ACM Conference on Security ∖& Privacy in Wireless and Mobile
Networks, WiSec, June 2015.

[NFC] NFC-Forum. What are the operating modes of
NFC devices. https://nfc-forum.org/resources/

what-are-the-operating-modes-of-nfc-devices/. [NFC-Forum. Ac-
cessed February 23, 2019].

[NFC11a] NFC-Forum. Simple NDEF Exchange Protocol. https://nfc-forum.org/

resources/what-are-the-operating-modes-of-nfc-devices/, 2011.

[NFC11b] NFC-Forum. Type 4 Tag Operation Specification, 6 2011. NFCForum-TS-Type-
4-Tag2.0.

[NFC14] NFC-Forum. What is the Purpose of NFC NDEF Signature Records? https:

//nfc-forum.org/purpose-nfc-ndef-signature-records/, 2014. [NFC-
Forum. Accessed February 23, 2019].

https://nfc-forum.org/resources/what-are-the-operating-modes-of-nfc-devices/
https://nfc-forum.org/resources/what-are-the-operating-modes-of-nfc-devices/
https://nfc-forum.org/resources/what-are-the-operating-modes-of-nfc-devices/
https://nfc-forum.org/resources/what-are-the-operating-modes-of-nfc-devices/
https://nfc-forum.org/purpose-nfc-ndef-signature-records/
https://nfc-forum.org/purpose-nfc-ndef-signature-records/

BIBLIOGRAPHY 93

[Pre11] Bart Preneel. CBC-MAC and Variants, pages 184–188. Springer US, Boston,
MA, 2011.

[RLS11] M. Roland, J. Langer, and J. Scharinger. Security Vulnerabilities of the NDEF
Signature Record Type. In 2011 Third International Workshop on Near Field
Communication, pages 65–70, Feb 2011.

[RLS13] M. Roland, J. Langer, and J. Scharinger. Applying relay attacks to Google
Wallet. In 2013 5th International Workshop on Near Field Communication
(NFC), pages 1–6, Feb 2013.

[RMF+15] O. Raso, P. Mlynek, R. Fujdiak, L. Pospichal, and P. Kubicek. Implementation
of Elliptic Curve Diffie Hellman in ultra-low power microcontroller. In 2015 38th
International Conference on Telecommunications and Signal Processing (TSP),
pages 662–666, July 2015.

[Rol15] Michael Roland. Security Issues in Mobile NFC Devices. Springer International
Publishing, 2015.

[RS04] Phillip Rogaway and Thomas Shrimpton. Cryptographic Hash-Function Basics:
Definitions, Implications, and Separations for Preimage Resistance, Second-
Preimage Resistance, and Collision Resistance. In Bimal Roy and Willi Meier,
editors, Fast Software Encryption, pages 371–388, Berlin, Heidelberg, 2004.
Springer Berlin Heidelberg.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signa-
tures and public-key cryptosystems. Communications of the ACM, 21(2):120–
126, feb 1978.

[Sch95] Bruce Schneier. Applied Cryptography (2Nd Ed.): Protocols, Algorithms, and
Source Code in C. John Wiley & Sons, Inc., New York, NY, USA, 1995.

[SEC00] Recommended Elliptic Curve Domain Parameters. Standard, STANDARDS
FOR EFFICIENT CRYPTOGRAPHY - Certicom Research, 2000.

[SGM+14] D. Sethia, D. Gupta, T. Mittal, U. Arora, and H. Saran. NFC based secure
mobile healthcare system. In 2014 Sixth International Conference on Commu-
nication Systems and Networks (COMSNETS), pages 1–6, Jan 2014.

[SM10] David Salomon and Giovanni Motta. Handbook of Data Compression. Springer
London, 2010.

[SW11] M. Q. Saeed and C. D. Walter. A Record Composition/Decomposition attack on
the NDEF Signature Record Type Definition. In 2011 International Conference
for Internet Technology and Secured Transactions, pages 283–287, Dec 2011.

[TT10] Gerrit Tamm and Christoph Tribowski. RFID-Technologie, pages 9–53.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

BIBLIOGRAPHY 94

[UPH+17] T. Ulz, T. Pieber, A. Hller, S. Haas, and C. Steger. Secured and Easy-to-Use
NFC-Based Device Configuration for the Internet of Things. IEEE Journal of
Radio Frequency Identification, 1(1):75–84, March 2017.

[UPS+18] T. Ulz, T. Pieber, C. Steger, S. Haas, and R. Matischek. QSNFC: Quick and
secured near field communication for the Internet of Things. In 2018 IEEE
International Conference on RFID (RFID), pages 1–8, April 2018.

[Uri14] P. Urien. LLCPS: A new secure model for Internet of Things services based
on the NFC P2P model. In 2014 IEEE Ninth International Conference on
Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP),
pages 1–6, April 2014.

[Wät18] Dietmar Wätjen. Der Galois-Counter-Modus (GCM), pages 255–262. Springer
Fachmedien Wiesbaden, Wiesbaden, 2018.

[WHF03] D. Whiting, R. Housley, and N. Ferguson. Counter with CBC-MAC (CCM).
Technical report, sep 2003.

[ZMH07] G. Zhou, H. Michalik, and L. Hinsenkamp. Efficient and High-Throughput
Implementations of AES-GCM on FPGAs. In 2007 International Conference
on Field-Programmable Technology, pages 185–192, Dec 2007.

	Introduction
	Motivation
	Introduction
	Objectives

	Structure of this thesis

	Prerequisites & Related Work
	Prerequisites
	General terms
	NFC
	Cryptographic primitives
	Threat analysis of protocols
	Operating systems

	Related work
	Threats on NFC
	Securing NFC

	Conclusion

	Design
	Application use cases
	NFC-based configuration
	Other use cases

	Security and threat analysis of QSNFC
	MITM-Attack
	Replay-Attack

	Performance analysis towards a modified QSNFC
	Certificate chain and compression
	Available encryption algorithms
	Abort handshakes

	Modified QSNFC
	Supported encryption algorithms and cryptographic primitives
	Prerequisites
	Initial handshake
	Subsequent handshake
	SD-messages
	Connection tear down
	Message types

	Implementation
	Requirements & Consequences
	Requirements
	Consequences

	Implementation environment and external libraries
	IDE
	Unit Test-framework
	External libraries and tools

	libQSNFC
	Interface
	OpenSSL-API usage

	Two NFC-enabled IoT-devices
	Setup
	Development environment
	Implementation

	An NFC-enabled IoT-device and an NFC-enabled smart phone
	Simple APDU Exchange Protocol
	APDU-commands
	Development environment
	Implementation-Android
	Implementation-RaspberryPi

	Evaluation
	Protocol evaluation
	Demo evaluation
	Test scenarios
	Overhead and timings

	Conclusion and Future Work
	Conclusion
	Known limitations

