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Abstract

An end-to-end workflow for mapping with very high resolution satellite
data is the pre-requisite for any further semantic analysis. In specific, many
applications in remote sensing need the following 3D mapping products:
(1) digital surface model, (2) digital terrain model, (3) normalized digital
surface model, and (4) ortho-rectified image mosaic. This thesis describes all
underlying principles for satellite-based 3D mapping and proposes methods
that extract all those products from multi-view stereo satellite imagery in
the ground sampling distance of the input data. The study is based on,
but not limited to, the Pléiades satellite constellation. Beside an in-depth
review of related work, the methodological part proposes solutions for
each component of the end-to-end workflow. In particular, this includes
optimization of sensor models represented by rational polynomials, epipolar
rectification, image matching, spatial point intersection, data fusion, digital
terrain model derivation, ortho rectification, and ortho mosaicing. For each
step implementation details are proposed and discussed. Another aim of
this thesis is a detailed assessment of the resulting output products. Thus,
a variety of data sets showing different acquisition scenarios are gathered,
allover comprising 24 Pléiades images. First, the accuracies of the 2D and 3D
geo-location are analyzed. Second, surface and terrain models are evaluated,
including a critical look on the underlying error metrics, and discussing
the differences of single stereo, tri-stereo, and multi-view data sets. Overall,
3D accuracies in the range of 0.2 to 0.3 meters in planimetry and 0.2 to 0.4
meters in height are achieved w.r.t. ground control points. Retrieved surface
models show normalized median absolute deviations around 0.9 meters
in comparison to reference LiDAR data. Multi-view stereo outperforms
single stereo in terms of accuracy and completeness of the resulting surface
models.
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Zusammenfassung

Ein durchgängiger Workflow zur Kartierung mit Satellitendaten mit sehr
hoher Auflösung stellt die Voraussetzung für jede weitere semantische
Analyse dar. Viele Anwendungen in der Fernerkundung erfordern fol-
gende 3D-Kartenprodukte: (1) digitales Oberflächenmodell, (2) digitales
Geländemodell, (3) normalisiertes digitales Oberflächenmodell und (4) or-
thorektifiziertes Bildmosaik. Diese Arbeit beschreibt alle zugrundeliegenden
Prinzipien für die satellitenbasierte 3D-Kartierung und schlägt Methoden
vor, die die gewünschten Produkte aus (mehrfach) Stereo-Satellitenbildern
erzeugen. Diese Abhandlung basiert auf der Pléiades-Satellitenkonstellation,
ist jedoch nicht darauf beschränkt. Neben einer eingehenden Literatur-
studie werden im methodischen Teil Lösungen für jede Komponente des
Workflows vorgeschlagen. Dies umfasst u.a. die Optimierung von Sensor-
modellen, epipolare Rektifizierung, Bild-Matching, Vorwärtsschnitt, Da-
tenfusion, Geländemodellableitung und Orthomosaikierung. Für jeden
Schritt werden Implementierungsdetails vorgeschlagen und diskutiert. Ein
weiteres Ziel der Arbeit ist eine detaillierte Bewertung der Ergebnisse.
Hierfür werden 24 Pléiades Bilder, welche unterschiedliche Aufnahmesze-
narien beschreiben, verwendet. Zunächst werden die Genauigkeiten der
2D- und 3D-Geolokalisierung analysiert. Dann werden Oberflächen- und
Geländemodelle evaluiert, einschließlich eines kritischen Blicks auf die
zugrundeliegenden Fehlermetriken und der Erörterung der Unterschiede
zwischen einfachen und mehrfachen Stereo-Datensätzen. Im Vergleich zu
Passpunkten werden 3D-Genauigkeiten von 0.2 bis 0.3 Meter in der Pla-
nimetrie und 0.2 bis 0.4 Meter in der Höhe erreicht. Oberflächenmodelle
zeigen im Vergleich zu LiDAR-Referenzdaten normalisierte mittlere abso-
lute Abweichungen um 0.9 Meter. Die Verwendung mehrerer Stereopaare
erhöht die Genauigkeit und Vollständigkeit der Oberflächenmodelle.
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1 Introduction

For many applications highly accurate and up-to-date mapping information
gathered from very high resolution (VHR) satellite stereo images is needed.
Exemplary applications in the domain of remote sensing are, for instance,
city modeling (Duan and Lafarge, 2016; Steinnocher, Perko, and Hofer, 2014;
You et al., 2018; Bittner et al., 2018), forest assessment and biomass estimation
(Persson, Wallerman, et al., 2013; Persson and Perko, 2016; Persson, 2016;
Piermattei, Marty, Karel, et al., 2018; Kothencz et al., 2018; Stylianidis et al.,
2019; Piermattei, Marty, Ginzler, et al., 2019), change detection (Abduelmola,
2016; Bagnardi, González, and Hooper, 2016; Warth et al., 2019), land cover
and land use classification (Mora et al., 2014; Belgiu, Drǎguţ, and Strobl,
2014; Schardt et al., 2018), carbon reporting (Perko, Hirschmugl, Papst, et al.,
2016), farm land monitoring (Sofia et al., 2016), glacier observation (Rieg
et al., 2018; Belart et al., 2019), disaster damage mapping (Maxant et al., 2013;
Durić et al., 2017), landslide mapping (Leopold et al., 2017), and mapping
in general (Capaldo et al., 2012; Bernard et al., 2012; Bosch, Leichtman,
et al., 2017; Himmelreich, Ladner, and Heller, 2017; Ladner, Heller, and
Grillmayer, 2017; Vanderhoof and Burt, 2018). To allow semantic analysis
those applications need mapping products in form of digital surface models
(DSM), digital terrain models (DTM), their difference, i.e., normalized digital
surface models (nDSM), and the according multi-spectral ortho-rectified
image mosaics. All this information can be extracted from stereo or multi-
view satellite imagery. Therefore, this thesis focuses on the generation of
those 3D mapping products on the example of images gathered from the
Pléiades satellite constellation. Scientifically, this work is based upon our
previous publications (Perko, Raggam, Gutjahr, et al., 2014; Gutjahr et al.,
2014; Perko, Raggam, Gutjahr, et al., 2015; Perko, Raggam, Schardt, et al.,
2018; Perko, Hirschmugl, Deutscher, et al., 2019; Perko, Schardt, et al., 2019)
which are extended, refined, and completed.
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1 Introduction

The central contributions of this thesis can be summarized as follows:

• An end-to-end workflow for mapping with satellite data is defined,
especially tailored to the Pléiades sensors. Each component of this
workflow is reviewed in detail.
• The specific implementation is described, where many insights are

presented which often focus on efficient implementation yielding
speed-up.
• Many extensions of the classical stereo processing chain are explained,

including epipolar rectification, stereo matching details, fusion meth-
ods, and also assessment details.
• A novel, robust, and fast DSM to DTM conversion algorithm is pre-

sented that is very beneficial for various applications.
• For the first time in remote sensing a multiple view geometry data

set is processed comprising six Pléiades images that form 15 stereo
pairs in along and across track direction. Note, that other multiple
view combinations were already processed in, e.g., (D’Angelo and
Kuschk, 2012; Bosch, Kurtz, et al., 2016; Facciolo, De Franchis, and
Meinhardt-Llopis, 2017; Qin, 2017; Rupnik, Pierrot-Deseilligny, and
Delorme, 2018; Krauß, D’Angelo, and Wendt, 2018; Gong and Fritsch,
2019).
• A comprehensive assessment is performed based on 24 Pléiades im-

ages gathered with a variety of acquired scenarios and distributed
over the globe. In particular, assessments of the accuracy of 2D and
3D geo-location, such as DSMs and DTMs, are performed. Additional,
results on stereo, tri-stereo, and multi-view data sets are analyzed in
detail.
• Directions of future research are pointed out, such as finding optimized

matching cost functions or automatic ground control points (GCP)
transfer from synthetic aperture radar (SAR) data to optical images
which will then complement the whole workflow.

The special interest in using Pléiades data to generate those needed mapping
products comes from the fact that this sensor is able to acquire tri-stereo
panchromatic images in one single over flight (single pass along track stereo
capacity) in high spatial resolution. In addition, several works show that it
is possible to derive highly accurate DSMs from such stereo or tri-stereo
images (Stumpf et al., 2014; Perko, Raggam, Gutjahr, et al., 2014; Berthier
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et al., 2014; Qayyum, Malik, and Saad, 2015; Perko, Raggam, Schardt, et al.,
2018; Panagiotakis et al., 2018; Topan et al., 2019). Note, that all presented
and proposed methodologies in this thesis are not limited to this specific
Pléiades satellites but can be directly applied to any satellite imagery with
rational polynomial coefficient based sensor models. For instance, for Ikonos,
Spot-7, Spot-8, WorldView-3, WorldView-4, and also the upcoming Pléiades-
Neo constellation.

This thesis touches multiple core scientific disciplines, namely remote sens-
ing, photogrammetry, and computer vision, all of them embedded into
applied mathematics (cf. Figure 1.1).

Figure 1.1: The multi-disciplinary core research topics of this thesis: remote sensing, pho-
togrammetry, and computer vision (all embedded into applied mathematics).
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1 Introduction

1.1 The Pléiades Satellite System

The European Pléiades satellite system is a dual system comprising the two
identical satellites Pléiades-1A and Pléiades-1B. They have been launched
in December 2011 and in December 2012, respectively, both providing VHR
image data (where VHR is defined for resolutions or ground sampling
distances (GSD) below 1 m (Jacobsen, 2011)). The satellites operate in the
same orbit with an offset of 180 degrees to offer a daily revisit capacity.
They also share the same orbit as the satellites Spot-6 and Spot-7 but are
positioned 90 degrees phase shifted (cf. Figure 1.2). They are supplied with
a remarkable agility, as the pointing angles can be triggered in a range
of ±47 degrees (standard mode ±30 degrees). The sensors are capable of
acquiring a panchromatic band (470− 830 nm) with 0.7 m GSD at nadir
and four multi-spectral bands (blue: 430− 550 nm; green: 500− 620 nm;
red: 590− 710 nm; near infrared: 740− 940 nm) with 2.8 m GSD. Images
of the Pléiades sensor get delivered as a bundle of a panchromatic band
upsampled to 0.5 m GSD and multi-spectral bands at 2.0 m GSD in GeoTIFF
or JPEG format. The multi-spectral information can be pansharpenend
(Hirschmugl et al., 2005; Vivone et al., 2015) or, alternatively, a multi-spectral
pansharpend product can directly be ordered. The swath width of Pléiades
image data is 20 km on ground, that corresponds to 40000 pixels in across
track direction. Interestingly, the Pléiades open star cluster was the best
place to steer the eponymous satellite in the calibration phase (Fourest et al.,
2012). Three acquisition modes are shown in Figure 1.3 and for additional
information on the Pléiades sensors we refer to (Astrium, 2012; Poli et al.,
2013; Gleyzes, Perret, and Cazala-Houcade, 2013; Poli et al., 2015; Topan
et al., 2019).

The satellite agility is of importance with respect to 3D mapping from
Pléiades image data. Similar to the present VHR missions of Ikonos, Spot,
or WorldView, stereo data can be acquired during one over flight (single
pass) through appropriate forward and backward arrangement of the sensor.
A significant innovation and advantage of Pléiades, however, is provided
through the capability to acquire even three images for an area, taken from
the same orbit at along track forward-, nadir- and backward-view of the
sensor and through the possibility of an across track swipe. Such image
triplets are also denoted as tri-stereo data sets. An assessment of the benefit

4



1.1 The Pléiades Satellite System

(a) (b)

Figure 1.2: The Pléiades constellation: (a) artist view of the Pléiades satellite, and (b) orbital
position of the satellites. Both figures are taken from (Astrium, 2012).

(a) (b) (c)

Figure 1.3: Exemplary Pléiades single pass acquisition modes: (a) target collection, (b)
multiple acquisitions, and (c) stereo and tri-stereo. All figures are taken from
(Astrium, 2012).

of such arrangements was made, e.g., in (Raggam, 2006), with respect to
image triplets composed from multi-sensor and multi-temporal acquisitions,
respectively. In addition to that, the Pléiades sensors are also able to steer in
across track direction such that they can collect images over the same scene
on ground from different orbits yielding also across track stereo pairs. This
enables the collection of multiple view geometry data sets (term taken from
(Hartley and Zisserman, 2004)) as well known from computer vision and
photogrammerty. The sensor model is delivered as a rational polynomial
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1 Introduction

coefficient (RPC) model. The geo-location accuracy of this model is reported
to be in the order of 8.5 m CE90

1 (Astrium, 2012). Therefore, for accurate
mapping the geo-location accuracy has to be refined, i.e., optimized using
GCPs. Additionally, the launch of the Pléiades-Neo satellite constellation is
planned between 2020 and 2022 (Airbus Defence and Space, 2018). It consists
of four satellites with a panchromatic band at 0.3 m GSD, six spectral bands
(deep blue, blue, green, red, red edge, near-infrared) at 1.2 m GSD, a swath
width of 14 km, an envisaged geo-location accuracy of 5 m CE90, and a
mission lifetime of more than 10 years.

1.2 End-to-End 3D Mapping

This thesis presents the complete end-to-end workflow that is necessary to
allow 3D mapping. The main objective is to get from a set of input images
and according meta data to the mapping products in an automatic and
robust manner. As sketched in Figure 1.4 four core tasks are needed to
accomplish this goal. Those are sensor model adjustment, DSM generation,
DTM generation and ortho-rectification, summarized as follows:

1. Sensor model geo-location accuracy, i.e., assessment of a-priori accu-
racy as well as assessment of the need and feasibility for optimization,
typically by means of GCPs and least squares adjustment. For sev-
eral test sites and acquisition scenarios, an investigation regarding 2D
and 3D accuracy assessment is given. Optimization necessities and
potentials are demonstrated in this context.

2. Generation of digital surface models, exploiting the characteristics of
the underlying sensor system, like availability of image triplets in case
of Pléiades, and including high-level processing techniques for the
given input. The applicability of high level processing options, like the
semi-global matching (SGM) technique, is investigated, enhanced, and
resulting achievements are illustrated and validated.

1According to (Greenwalt and Shultz, 1962) CE90 is defined as the radial error which
90% of all errors in a circular distribution will not exceed, i.e., the 90th percentile of circular
error distribution.
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1.3 Software Environment

3. Extraction of a DTM as well as an nDSM from the pure DSM. This will
filter man-made structures and vegetation and allows to retrieve vege-
tation or building heights. While this is a well-established procedure
for airborne light detection and ranging (LiDAR) data, where first and
last pulse data can be utilized, much higher complexity is given when
terrain needs to be purely extracted from DSMs derived from satellite
stereo data. In this respect algorithmic developments have been made
to adapt and improve yet existing approaches in order to retrieve
reliable terrain from such input. Algorithms as well as results which
have been achieved with respect to urban mapping are discussed and
validated.

4. Generation of an ortho-rectified multi-spectral image mosaic based on
accurate sensor models and derived DSMs.

1.3 Software Environment

Most of the presented methods were first prototyped in Matlab. Then,
they were implemented within the commercial software package Remote
Sensing Software Graz2 (RSG) by JOANNEUM RESEARCH (cf. Figure 1.5).
This package is developed under C++, compute unified device architecture
(CUDA), Fortran, Python, and a process control system called PROX. The
modules proposed in this thesis are embedded within the Space Suite3.

1.4 Key Publications

To show the scientific impact of this work the publications developed during
the research on this thesis are listed in chronological order.

2http://www.remotesensing.at/en/remote-sensing-software.html
3https://www.remotesensing.at/fileadmin/user_upload/imported/DIGITAL/

Downloads/Remote_Sensing_Software_Graz_2018.pdf
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1 Introduction

Figure 1.4: Proposed end-to-end 3D mapping workflow for multi-view stereo Pléiades
images. The four core tasks are subdivided into according sub tasks.

• Roland Perko, Hannes Raggam, Mathias Schardt, and Peter M. Roth.
”Very high resolution mapping with the Pléiades satellite constella-
tion.” American Journal of Remote Sensing, 6.2, pp. 89–99, December
2018 (Perko, Raggam, Schardt, et al., 2018).
• Roland Perko, Manuela Hirschmugl, Janik Deutscher, Mathias Schardt,

Markus Hollaus, and Peter M. Roth. ”Using multiple along and across
track Pléiades stereo images for improved digital surface model gen-
eration.” In EARSeL Symposium, Vol. 39, Salzburg, Austria, July 2019
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1.4 Key Publications

Figure 1.5: Remote Sensing Software Graz: Selection of different suites. The topics of this
objective diploma thesis are embedded within the Space Suite.

(Perko, Hirschmugl, Deutscher, et al., 2019).
• Roland Perko, Mathias Schardt, Livia Piermattei, Stefan Auer, and

Peter M. Roth. ”Multiple view geometry in remote sensing: An em-
pirical study based on Pléiades satellite images.” In IEEE International
Geoscience and Remote Sensing Symposium, Yokohama, Japan, July 2019

(Perko, Schardt, et al., 2019).
• Roland Perko, Hannes Raggam, and Peter M. Roth. ”Mapping with

Pléiades: End-to-End Workflow.” Remote Sensing, under review, 2019

(Perko, Raggam, and Roth, 2019).

Closely related earlier publications are listed below.

• Karlheinz Gutjahr, Roland Perko, Hannes Raggam, and Mathias
Schardt. ”The epipolarity constraint in stereo-radargrammetric DEM
generation.” IEEE Transactions on Geoscience and Remote Sensing, 52.8,
pp. 5014–5022, 52(8):5014-5022, 2014 (Gutjahr et al., 2014).
• Roland Perko, Hannes Raggam, Karlheinz Gutjahr, and Mathias

Schardt. ”Assessment of the mapping potential of Pléiades stereo and
triplet data.” In ISPRS Annals of Photogrammetry, Remote Sensing and
Spatial Information Sciences, Vol. II-3, pp. 103-109, Zurich, Switzerland,
2014 (Perko, Raggam, Gutjahr, et al., 2014).
• Roland Perko, Hannes Raggam, Karlheinz Gutjahr, and Mathias

Schardt. ”Advanced DTM generation from very high resolution satel-
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lite stereo images.” In ISPRS Annals of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, Vol. II-3, pp. 165-172, Munich,
Germany, 2015 (Perko, Raggam, Gutjahr, et al., 2015).

1.5 Outline

This thesis is organized as follows: Related work is reviewed in detail in
Section 2. Then, the test sites and test data are described in Section 3. Next,
Section 4 reports on the methodologies proposed in this work, followed by
the results given in Section 5. All insights gained are discussed in Section 6.
Finally, conclusions are drawn in Section 7.
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2 Related Work

The proposed end-to-end workflow for 3D mapping with VHR Pléiades
satellite stereo imagery touches various scientific independent topics that are
reviewed in this section. Due to the end-to-end mapping goal those topics
are intertwined like pieces of a puzzle, together bringing the complete
processing chain into being. The presented topics are multidisciplinary
and touch the fields of remote sensing, photogrammetry, computer vision,
and applied mathematics. This section follows the structure as given in
Figure 1.4, thus touching the four core tasks of model adjustment, DSM
generation, DTM generation, and ortho-rectification, including all required
sub tasks.

2.1 Sensor Modeling and Parameter Optimization

For Pléiades images a set of rational polynomial coefficients (RPC) is given,
which define the rational polynomial sensor model and thus substitute
a physical sensor model. This generic solution dates back to (Dial and
Grodecki, 2002) and for some sensors replaced the physical model. Many
sensor models of optical VHR satellites are delivered with RPCs, such
as Cartosat-2, CBERS-2, Deomis-2, EROS B, GaoFen-2, GeoEye-1, Ikonos,
IRS-P5, Jilin-1, Kompsat-2, Kompsat-3, Kompsat-3A, QuickBird, Pléiades,
RapidEye, SkySat, Spot-6, Spot-7, Spot-8, SuperView-1, TeLEOS-1, Triple-
Sat, WorldView-3, or WorldView 4. Also some SAR sensor models, like
for instance ERS-1, are supplied with RPCs. The main advantage of using
the RPC model is that it presents a general solution for sensor modeling
such that novel sensors are automatically supported by a given implemen-
tation. The disadvantage is that the coefficients are not directly related to
physical properties like, for instance, sensor position or viewing direction.

11
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Therefore, in the adjustment procedure (cf. (Grodecki and Dial, 2003)) it
is hard to interpret which effect caused the change of coefficients. Math-
ematically, a non-linear equation system has to be solved to adjust the
sensor parameters. This can be accomplished with numerical methods,
such as Newton’s method, Gauss-Newton algorithm, gradient descent, or
Levenberg-Marquardt algorithm. Depending on the number of released
parameters and starting values the adjustment delivers robust solutions or
gets stuck in a local minimum.

There is also an ongoing discussion on which parameters to be optimized.
For instance, only a shift is considered in (Jacobsen and Topan, 2015; Fraser
and Hanley, 2003) while linear coefficients are also considered in (Dial and
Grodecki, 2002; Åstrand et al., 2012; M. Á. Aguilar, Mar Saldaña, and F. J.
Aguilar, 2014; Perko, Raggam, Schardt, et al., 2018).

The need to manually measure GCPs and their according image coordinates
represent the main bottleneck of mapping. Therefore, automatic methods
for GCP definition and transfer are of utterly importance. One idea is to
employ SAR images, like from the TerraSAR-X sensor. This sensor provides
extremely high geo-location accuracy (Eineder et al., 2010) and thus perspec-
tives to retrieve highly accurate 3D point information via radargrammetric
processing (Raggam, Perko, et al., 2010; Raggam, Gutjahr, et al., 2010; Perko,
Koppe, et al., 2018). Then such GCPs can be transferred into the optical
Pléiades image by means of multi-modal image matching as presented,
for instance, in (Perko, Raggam, Gutjahr, et al., 2011; Reinartz et al., 2011;
Merkle et al., 2017).

2.2 Digital Surface Model Generation

Accurate 3D reconstruction from stereo or multiple images is a well-known
and well-researched topic in computer vision, photogrammetry and remote
sensing. As depicted in Figure 1.4 the main steps are epipolar rectification,
stereo matching, spatial point intersection, DSM resampling, DSM fusion,
and according post-processing.
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2.2.1 Epipolar Rectification

Epipolar rectification for push-broom images can be seen as a solved prob-
lem (M. Wang, Hu, and Li, 2011; Gutjahr et al., 2014). However, in contrast
to perspective geometry, where analytic solutions exist for epipolar recti-
fication (cf. (Fusiello, Trucco, and Verri, 2000; Fusiello and Irsara, 2008)),
such rectification can only be approximated for push-broom images. The
epipolar curves can be estimated by using the modified collinearity equa-
tions (Orun, 1994) and are hyperbola-like non-linear curves (Kim, 2000).
Some authors ignore the specific mathematical formulation of the push
broom collinear equations and treat the images as being perspective. These
solutions work on a local level, i.e., rectifying small parts of the images
separately as shown in (De Franchis et al., 2014a; De Franchis et al., 2014b).
In reality it is sufficient if the location differences orthogonal to the epipolar
direction (e.g., the column direction of the epipolar images) are below half a
pixel (Perko, Raggam, Schardt, et al., 2018). Recently, it was also shown that
an epipolar rectification with small residual errors can be achieved for high
resolution SAR satellite images (Gutjahr et al., 2014). Alternatively, epipolar
rectification might be skipped if the subsequent stereo matching algorithm
searches along the (non-linear) epipolar curves such as in (Hirschmüller,
2008). The drawbacks of this approach are that the image matching algo-
rithm has to be general and has to consider the geometric constraints of
the underlying sensor model. Additionally, for each location in the search
space along the epipolar curve the local search window has to be resampled
during matching.

2.2.2 Stereo Matching

Within the standard processing chain the most challenging part is the corre-
spondence problem, where in the dense case for each pixel coordinate in the
first image the corresponding pixel coordinate in the second image which
holds the same object has to be determined. The process of finding those
parallaxes, shift vectors or disparities is called image matching. In principle
the matching problem determines the column and line shifts for each pixel
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and thus is based on a 2D search space. However, using the epipolar rectifi-
cation for each pixel in the first image the corresponding pixel in the second
image is located on a horizontal line. In this case the search space in image
matching becomes one-dimensional, thus enabling faster and more accurate
matching algorithms. A very good benchmark of 1D matching methods
can be found in (Scharstein and Szeliski, 2002). Having epipolar rectified
images a standard procedure in photogrammetry and remote sensing is to
apply the semi-global matching (SGM) introduced by (Hirschmüller, 2008).
This matching scheme is able to achieve very good results, comparable to
methods based on global optimization, e.g., graph cut (Kolmogorov and
Zabih, 2001) or total variation (Ranftl, Pock, and Bischof, 2013). Moreover, it
is computationally very efficient. Currently many commercial packages for
processing satellite data use epipolar rectification and SGM for DSM gener-
ation, e.g., Erdas Imagine1, PCI Geomatica2, Trimble Inpho with Match-T or
MATCH-3DX3, s2p4, SURE5 (only works with perspective images (Rother-
mel et al., 2012)), MicMac6 (Rupnik, Pierrot-Deseilligny, and Delorme, 2018),
RPC Stereo Processor7 (Qin, 2016), and also the Remote Sensing Software
Graz8. Recent research reports on different variants of SGM, such as (Rother-
mel et al., 2012) and extensions like (Facciolo, De Franchis, and Meinhardt,
2015; Drory et al., 2014; Seki and Pollefeys, 2017; Scharstein, Taniai, and
Sinha, 2017). As underlying cost function most algorithms apply the Ham-
ming distance of the Census transform (Zabih and Woodfill, 1994) due to its
robustness (Hirschmüller and Scharstein, 2007). Alternatively, the so-called
modified Census Transform (Shin, Caudillo, and Klette, 2015; Klopschitz
et al., 2017) is used. Also a weighting can be incorporated based on the radio-
metric or the geometric distance (similarity and proximity weighting) (Yoon
and Kweon, 2006; Klopschitz et al., 2017). Optimizing the stereo matching
technique is always an important research topic. In particular a combined
cost-function of Census transform and absolute difference measure is en-

1http://www.hexagongeospatial.com/products/remote-sensing/erdas-imagine
2http://www.pcigeomatics.com
3http://www.trimble.com/imaging/inpho.aspx
4http://dev.ipol.im/~carlo/s2p/
5http://nframes.com/
6http://micmac.ensg.eu
7http://u.osu.edu/qin.324/rsp/
8http://www.remotesensing.at/en/remote-sensing-software.html
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2.2 Digital Surface Model Generation

visaged but also the replacement of Census transform with generalized
Census transform (Fife and Archibald, 2013; Ahlberg et al., 2019) is an issue.
The most recent step is to train the cost-function via deep learning of a
convolutional neural network (Zbontar and LeCun, 2016; Mayer et al., 2016;
Zhu et al., 2017; Knöbelreiter, Vogel, and Pock, 2018).

2.2.3 Spatial Point Intersection

Using the sensor models and the disparities 3D points are extracted by
means of spatial forward point intersection. For each matching result there
are four equations (two per image) to determine the 3D ground coordinates.
The according non-linear equation system can be solved by linearization
of the sensor model followed by a least squares adjustment to find the
coordinate increments. The spatial forward intersection leads to a 3D point
cloud non-equally distributed in space (Perko, Raggam, Schardt, et al.,
2018).

2.2.4 DSM Resampling

There exist different paradigms, like storing the 3D information as point
clouds (Nex et al., 2015; Schönfelder et al., 2017) or as a DSM with given
spacing. The first option is state-of-the-art in aerial photogrammetry while
the second one is mostly used in satellite based remote sensing. Addition-
ally, in the second case, all information from a multi-stereo data set can
simultaneously be used in the spatial point intersection to achieve a higher
over-determination in the least squares approach (Raggam, 2006). Another
method is to extract DSMs from each stereo pair and then fuse those DSMs
to a final DSM (Pock, Zebedin, and Bischof, 2011; Rumpler, Wendel, and
Bischof, 2013; Perko and Zach, 2016). This method has the advantage that
multiple stereo pairs can be processed independently in parallel (e.g., on
multiple PCs), while only the fusion process has to access all data. There
are several methods for mapping the 3D point cloud onto a DSM, e.g.,
interpolation of a regular grid of height values and filling the remaining
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gaps by an appropriate interpolation mechanism (Perko, Raggam, Schardt,
et al., 2018) or by LiDAR based approaches like (Pfeifer et al., 2014).

2.2.5 DSM Fusion

As mentioned above multiple DSMs stemming from individual stereo pairs
(e.g., from a triple acquisition or from neighboring stereo acquisitions) have
to be fused into one final DSM. One option is to apply local approaches like
mean, median or probability mode based filtering (Rumpler, Wendel, and
Bischof, 2013). The other option is to state a global optimization problem to
be solved numerically via total variation (Pock, Zebedin, and Bischof, 2011)
or via gradient descent (Perko and Zach, 2016).

2.2.6 Post-Processing

Appropriate post-processing is always of interest, also at different stages of
the presented workflow. For instance, occluded regions may be filled with
an interpolation technique that filters towards the ground level. This avoids
blurring of 3D breaklines while still gathering a high spatial reconstruction
coverage. A post-processing option can also be seen in the so-called peak
filter that segments images into radiometrically connected regions (Davies,
2012; Hirschmüller, 2008). Small or isolated regions can then be discarded.

2.2.7 Additional Notes

Overall it can be stated that workflows exist that are able to extract DSMs
from Pléiades stereo or tri-stereo data. However, it is difficult to evaluate
various approaches and to find the best solution for different applications9.
The main challenge remains in finding the optimal parameters for image

9One good example is the Pléiades workshop held in Paris in November 2014 named
DEM computation from satellite images: Existing tools and developments where different solution
were benchmarked.
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matching (like a custom tailored cost function, appropriate occlusion de-
tection and handling principle), while being computationally efficient (this
includes memory optimizations, parallel processing on a multi-core central
processing unit (CPU) and exhaustive usage of a graphical processing unit
(GPU)).

2.3 Digital Terrain Model Generation

In the literature DTM generation approaches are described for different
kind of input data. Most of them are designated for airborne LiDAR data,
some for DSMs extracted from high-resolution airborne optical images and
from spaceborne optical imagery.

2.3.1 Airborne LiDAR Data

There are many publications on DTM generation from LiDAR data, where
first and last pulse data exist. Good review papers are (Sithole and Vos-
selman, 2004; Meng, Currit, and Zhao, 2010). In regions of vegetation the
first pulse measurement corresponds to the top height of the vegetation
while the last pulse is reflected from bare-earth, thus defining the terrain
height. Therefore, shrubs, trees, and whole forests can be easily filtered
based upon LiDAR full-pulse data. Man-made objects like buildings, how-
ever, are present in both LiDAR measurements and still have to be filtered
by appropriate algorithms (or even manually) to get a correct DTM. Since
LiDAR provides very accurate height measurements, 3D breaklines are in
general very well preserved in LiDAR DSMs. When moving along a 1D
profile from street level to a building a sharp steep height jump is observed,
which can be used as a distinct feature for the DTM generation process
(cf. (Axelsson, 2000)). One representative algorithm is described in (Meng,
L. Wang, et al., 2009), which will serve as the baseline for the algorithmic
evolution presented in this thesis. A method on hierarchical robust lin-
ear prediction employing LiDAR data is introduced in (Kraus and Pfeifer,
2001).
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2.3.2 Airborne Optical Data

For very high resolution airborne cameras the work (Wiechert and Gruber,
2010) reports on a method developed for UltraCam images (Leberl et al.,
2003). They perform a classification of the ortho images into 15 classes, both
using texture and height information. Then the classification is employed
within the DTM generation process. The main difference to spaceborne data
is that the underlying DSMs are of significantly higher resolution and of
higher accuracy such that image classification works very robust – which
would not be the case for spaceborne data. A variational approach which
uses a DSM as single input is presented in (Unger et al., 2009). The basic
concept is to extract a very smooth surface using a strong regularization
weight within a variational formulation. This over-smoothed surface is used
to determine potential points the on ground (called detection mask) which
are then used to interpolate a DTM by employing the same variational
formulation as before. However, problems occur on large buildings that are
detected as belonging to the ground. Thus, the authors proposed to add a
segmentation based on maximally stable extremal regions and a manual
interaction step.

2.3.3 Spaceborne Optical Data

For satellite based stereo DSMs three DTM generation approaches based
on morphology, geodesic dilation and steep edge detection on simulated
synthetic urban scenes are evaluated in (Krauß, Arefi, and Reinartz, 2011). A
standard method based on morphological opening was extended in (Krauß
and Reinartz, 2010). There, percentile filters rather than morphological
grayvalue erosion and dilation are employed to be more robust against DSM
outliers. Another approach is based on determining the normalized volume
above ground over several scanlines (Piltz, Bayer, and Poznanska, 2016).
An automated stratified object-based approach that also uses the spectral
information of an ortho image is presented in (Luethje, Tiede, and Eisank,
2017). An approach based on iterative geodesic reconstruction tested on
Cartosat-1 stereo images is presented in (Arefi et al., 2011). DTM generation
in forested regions based on Cartosat-1 stereo image is reported in (Tian,
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Krauss, and Reinartz, 2014). There, the panchromatic image is classified
into semantic classes, like buildings, low forest, high forest or ground, and
different filtering is applied on DSM regions according to the class.

2.4 Ortho-Rectification and Mosaicing

The process of ortho-rectification is well described in literature. The main
two different approaches are direct and indirect rectification. The first
projects every input pixel into the resulting map product by an image-to-
map transformation. The second starts from the map and projects every
point back into the input image by an map-to-image transformation. The
process of mosaicing, i.e., stitching multiple individual ortho images to
one product is understood as well. Design issues are the selection of pixels
for one map cell and the feathering option. For both processes we refer to
standard literature (Raggam, Almer, and Buchroithner, 1993; Toutin, 2011;
Kraus, 2011; Campbell and Wynne, 2011; Förstner and Wrobel, 2016).
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To allow sophisticated statements on Pléiades-based mapping several test
sites have been selected. They represent different acquisition dispositions
in terms of viewing angles, stereo, triplet, and multi-stereo constellations,
cover different types of terrain, and originate from both Pléiades-1A and 1B
sensors. The test sites are located in Austria, Italy, Slovenia, Singapore, and
China. For the core investigations, three test sites were used, for which rep-
resentative Pléiades acquisitions on the one hand, and appropriate reference
data sets on the other hand, are available. The data from Singapore must
not be published, thus no screenshots of this test site are presented in this
thesis. Overall, 24 Pléiades images are used in this study, with acquisition
dates and main acquisition parameters as listed in Table 3.1.

For assessment of the 2D and 3D geo-location accuracy reference GCPs are
needed. In the optimal case these points are measured with in-situ highly
accurate devices, such as differential GPS. This was done for the test site
Singapore. Alternatively, existing orthophotos with higher spatial resolution
can be used to manually define the GCPs where the height information is
taken from the LiDAR reference. This was done for the test site Ljubljana. In
the other cases, airborne LiDAR information is used to derive GCPs. There,
distinctive locations especially at 3D breaklines are manually measured (for
instance, a corner of a roof top or a water hydrant). Obviously, as the LiDAR
DSMs are available with 1 m GSD those manually measured objects will
never get the accuracy as the in-situ or orthophoto measurements. This has
to be kept in mind when comparing the accuracy values, as the accuracy of
the reference information is the lower bound for the resulting geo-location
accuracy.

Since the incidence angles of Pléiades images are given for across track
(roll, ω), for along track (pitch, φ), and for the combined overall angle, we
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derive equations to calculate the stereo intersection angle δ (also called
the convergence angle (Jacobsen and Topan, 2015)) between two Pléiades
scenes and accordingly an approximation of their base-to-height (B/H) ratio.
Thus, we first define the two vectors r1 and r2, and second they are used to
compute δ and B/H as

r1 =

 tan φ1
tan ω1

1

 , (3.1)

r2 =

 tan φ2
tan ω2

1

 , (3.2)

δ = arccos
(

r1 · r2

|r1| · |r2|

)
, (3.3)

and
B
H

= 2 · tan
δ

2
. (3.4)

3.1 Test Site Innsbruck (Austria)

This test site covers urban, rural and mountainous terrain, with ellipsoidal
heights ranging from 560 m to 2750 m and spans over an area of 1200 km2.
In July 2013, only one stereo pair was acquired from Pléiades-1A after the
launch of Pléiades-1B and thus after the recalibration of the Pléiades-1A
satellite. One year after, within two days in June 2014 three image triplets
were achieved, two of them acquired by Pléiades-1A and one by Pléiades-1B,
which show different geographic areas of this test site, i.e., eastern, center
and western part. The central part of the test site is shown in Figure 3.1.

For Innsbruck, an airborne LiDAR DSM is available as reference data set,
collected in 2006 at 2.0 points/m2. The temporal gap between Pléiades and
LiDAR data has to be taken in account in the evaluation since changes
occurred due to urban build-up and vegetation grow or clear-cut. The
LiDAR DSM is available as raster data in UTM 32 North map projection
and WGS 84 datum at 1 m GSD with ellipsoidal heights and could be used
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3.1 Test Site Innsbruck (Austria)

Table 3.1: Acquisition parameters for the Pléiades satellite images over the study areas.

Study Acq. Date ID Incidence Angle [◦] Model Angle
Area and Sensor along across overall [◦]

Innsbruck 2013-07-13 1 -11.72 8.96 14.60
1-2 26.9Stereo 1A 2 14.48 2.35 14.66

Innsbruck
2014-06-09

1A

1 -18.74 4.11 19.13 1-2 10.1
Triplet 2 -8.99 1.42 9.09 2-3 23.3

East 3 13.61 -4.63 14.32 1-3 33.4

Innsbruck
2014-06-08

1B

1 -17.82 -8.53 19.53 1-2 24.9
Triplet 2 6.54 -15.46 16.67 2-3 4.6
Center 3 11.15 -16.77 19.80 1-3 29.5

Innsbruck
2014-06-09

1A

1 -14.30 3.82 14.76 1-2 10.4
Triplet 2 -4.21 1.13 4.36 2-3 23.0
West 3 18.11 -4.89 18.67 1-3 33.4

Trento
Triplet

2012-09-11

1A

1 -16.86 14.68 21.83 1-2 5.5
2 -11.25 13.34 17.20 2-3 27.3
3 15.74 7.00 17.09 1-3 32.9

Ljubljana 2013-07-27 1 -12.12 -1.98 14.9
1-2 25.2Stereo 1 1A 2 12.36 -8.59 12.3

Ljubljana 2013-07-28 3 -7.39 9.36 15.3
3-4 22.7Stereo 2 1B 4 14.78 3.95 11.8

Ljubljana 2013-07-29 5 -10.20 22.31 24.1
5-6 26.2Stereo 3 1A 6 16.91 16.90 23.3

Singapore 2014-10-01 1 -0.31 8.64 8.64
1-2 15.2Stereo 1B 2 14.65 5.44 15.55

Tian Shui 2014-05-07 1 -10.54 0.75 10.56
1-2 22.8Stereo 1A 2 11.68 -4.54 12.48

further to measure GCPs. 3D discontinuities in the LiDAR data can be
used to define and manually measure ground coordinates. A fairly high
number of GCPs, homogeneously distributed in planimetry and height, is
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measured. Targets like road intersections, corners of houses, water bodies
or field boundaries, serve as control point candidates. Thus, 30 points were
acquired for Innsbruck.

(a) (b)

(c) (d)

Figure 3.1: The test site Innsbruck (Austria): (a) topographic map (opentopomap.org (CC-
BY-SA)), (b) RGB ortho-image, (c) relief shaded DSM, and (d) relief shaded
DTM. (b-d) were produced employing the proposed and implemented mapping
workflow.
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3.2 Test Site Trento (Italy)

This test site covers rural as well as mountainous terrain, the ellipsoidal
heights ranging from 175 m to 1550 m and spans over an area of 220 km2.
A Pléiades-1A triplet was acquired in September 2012, which however is
far from optimal for 3D reconstruction, since the first two images have a
very small intersection angle of only 5.5◦, while the second stereo pair has a
huge intersection angle of 27.3◦. The test site is shown in Figure 3.2.

Also for Trento an airborne LiDAR DSM is available as reference data set,
collected in 2007 at 1.3 points/m2, available as raster data in UTM 32 North
map projection and WGS 84 datum at 1 m GSD with ellipsoidal heights.
Again there is a huge temporal gap between Pléiades and LiDAR acquisition
to be taken into consideration. 21 GCPs were measured from LiDAR and
serve as reference points.

3.3 Test Site Ljubljana (Slovenia)

This data set consists of three Pléiades stereo acquisitions from adjacent
orbits over the region north to Ljubljana, Slovenia, first presented in (Pier-
mattei, Marty, Karel, et al., 2018). The stereo sets were acquired within three
days in July 2013, the first and third set with the Pléiades-1A platform and
the second with Pléiades-1B. The ellipsoidal terrain height of the region of
interest ranges from 390 m to 1950 m, and the scene covers about 400 km2

consisting of agricultural land, managed forest, villages, the airport Brnik,
and mountainous areas.

Reference data exists in terms of 18 GCPs and 12 ICPs measured in high
resolution orthophotos, LiDAR reference DSM, LiDAR reference DTM, and
image coordinate measurements of the GCPs and ICPs. LiDAR reference
data was taken in 2015 with a mean density of 14 points/m2 over a region of
345 km2. The LiDAR DSM and DTM with a GSD of 1 m were derived using
OPALS (Pfeifer et al., 2014). This data set holds a temporal gap between
LiDAR and Pléiades acquisitions of only two years. Thus, analysis can be
performed on large regions as the structural changes are smaller than for the
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3 Test Sites and Data Sets

(a) (b)

(c) (d)

Figure 3.2: The test site Trento (Italy): (a) topographic map (opentopomap.org (CC-BY-SA)),
(b) CIR ortho-image, (c) relief shaded DSM, and (d) relief shaded DTM. (b-d)
were produced employing the proposed and implemented mapping workflow.
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3.3 Test Site Ljubljana (Slovenia)

other data sets. For any other detail on the dataset we refer to (Piermattei,
Marty, Karel, et al., 2018).

The acquisition scenario is depicted in Figure 3.3 and is of particular interest.
In contrast to classical stereo or tri-stereo along track acquisitions, here also
across track stereo pairs can be employed for 3D mapping. Regarding the
multiple view geometry concept our data set holds more than the three
along tracks stereo pairs from descending orbit, namely 15 stereo pairs.
Table 3.2 lists the convergence angles of all possible pairs based on the
equations in Eq. (3.3). Four pairs have a small intersection angle of about
12.5◦ (1-3, 2-4, 3-5, 4-6), while all others have larger convergence angles from
23◦ to 38◦. The test site is shown in Figure 3.4.

Figure 3.3: Multiple view geometry Ljubljana data set, adapted from (Piermattei, Marty,
Karel, et al., 2018). The Google Earth visualization depicts the preview of the
footprints and the satellite’s position.
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3 Test Sites and Data Sets

Table 3.2: Convergence angles for all possible stereo pairs of the Ljubljana data set given in
degrees.

ID 2 3 4 5 6

1 25.2 12.2 27.5 24.0 33.9
2 26.4 12.5 37.6 25.0
3 22.7 13.0 24.7
4 30.3 12.6
5 26.2

3.4 Test Site Singapore (Singapore)

This test site covers a part of the island of Singapore, thus mainly consisting
of dense urban environment with very tall buildings. The height is ranging
from sea level to about 200 m, and the scene covers about 275 km2.

For Singapore terrestrially measured GCPs from Singapore Land Authority
and the Tropical Marine Science Institute are available, which are used for
sensor model validation and adjustment. However, due to restrictions the
GCP heights are rounded to integer values and thus degrade the advantage
of highly accurate in-situ measurements in this context. Of the whole set
of control points, 16 GCPs are located within the specific stereo scene.
Available LiDAR data is under restriction as well and cannot be used within
this study.

3.5 Test Site Tian Shui (China)

The study area is located in central China close to the city of Tian Shui. Due
to its location it shows a geomorphological position in the landscape since it
belongs to the Tibetan Plateau and also to the southern edge of Long-Zhong
loess hilly area (Leopold et al., 2017). The ellipsoidal heights are ranging
from 1200 m to 2100 m and the scene covers 395 km2. Since for this site no
reference data is available it more or less serves for visual interpretation
purposes only. To allow accurate relative orientation tie-points (TP) are

28



3.5 Test Site Tian Shui (China)

(a) (b)

(c) (d)

Figure 3.4: The test site Ljubljana (Slovenia): (a) topographic map (opentopomap.org (CC-
BY-SA)), (b) RGB ortho-image, (c) relief shaded DSM, and (d) relief shaded
DTM. (b-d) were produced employing the proposed and implemented mapping
workflow.

manually measured and applied within the sensor model adjustment. The
test site is shown in Figure 3.5.
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(a) (b)

(c) (d)

Figure 3.5: The test site Tian Shui (China): (a) topographic map (opentopomap.org (CC-
BY-SA)), (b) CIR ortho-image, (c) relief shaded DSM, and (d) relief shaded
DTM. (b-d) were produced employing the proposed and implemented mapping
workflow.
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The envisaged end-to-end mapping workflow comprises four core tasks
to be efficiently accomplished (cf. Figure 1.4). Thus, in this section we
discuss our algorithmic approaches with respect to (1) sensor modeling
and parameter optimization, (2) generation of DSMs multi-stereo Pléiades
images, (3) generation of DTMs using the extracted DSMs, and (4) ortho-
rectification of the multi-spectral image data. The structure of this section
follows Figure 1.4 and thus the related work presented in Section 2.

4.1 Sensor Modeling and Parameter Optimization

Since the Pléiades sensor model is delivered in form of RPCs, this model
is described first. Then, the parameter optimization methodology is stated.
Next, a protocol is defined that allows to assess the 2D and 3D geo-location
accuracy of the sensor model.

4.1.1 The RPC Sensor Model

The RPC sensor model, as defined in (Dial and Grodecki, 2002; Grodecki and
Dial, 2003), is briefly summarized here. We use the same variable names as
in (Grodecki and Dial, 2003) for easier comparison. The RPC sensor model
relates geographic coordinates (latitude φ, longitude λ, and height h) to
corresponding image coordinates (line, sample / column). The RPC model
itself is the ratio of two cubic polynomials of geographic (object-space) coor-
dinates. Two rational functions are used to define the mapping from object-
space to line, respectively, sample coordinates. Due to numerical reasons the
object-space and image coordinates are normalized to [−1,+1], by applying
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offsets (LAT OFF, LONG OFF, HEIGHT OFF, LINE OFF, SAMP OFF) and
scale factors (LAT SCALE, LONG SCALE, HEIGHT SCALE, LINE SCALE,
SAMP SCALE). The normalization of object-space coordinates yields P, L,
and H, and is calculated as follows:

P =
φ− LAT OFF
LAT SCALE

, (4.1)

L =
λ− LONG OFF
LONG SCALE

, (4.2)

H =
h− HEIGHT OFF
HEIGHT SCALE

. (4.3)

The normalized line and sample image coordinates (Y and X) are then
calculated via the rational polynomial functions

Y(P, L, H) =
NumL(P, L, H)

DenL(P, L, H)
=

cTu
dTu

(4.4)

and

X(P, L, H) =
NumS(P, L, H)

DenS(P, L, H)
=

eTu
f Tu

(4.5)

with

NumL(P, L, H) =
3

∑
i=0

3

∑
j=0

3

∑
k=0

cijkPiLjHk , (4.6)

DenL(P, L, H) =
3

∑
i=0

3

∑
j=0

3

∑
k=0

dijkPiLjHk , (4.7)

NumS(P, L, H) =
3

∑
i=0

3

∑
j=0

3

∑
k=0

eijkPiLjHk , (4.8)

and

DenS(P, L, H) =
3

∑
i=0

3

∑
j=0

3

∑
k=0

fijkPiLjHk . (4.9)
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4.1 Sensor Modeling and Parameter Optimization

Furthermore, the total power of all three ground coordinates it limited to 3,
i.e., the coefficients are zero whenever i + j + k > 3. Following this approach
the image coordinates (Y and X) can be written as fractions of vector dot
products (cf. Eq. (4.4) and Eq. (4.5)) as

u = [1, L, P, H, LP, LH, PH, L2, P2, H2, PLH, (4.10)
L3, LP2, LH2, L2P, P3, PH2, L2H, P2H, H3]T , (4.11)

c = [c1, c2, . . . , c20]
T , (4.12)

d = [1, d2, . . . , d20]
T , (4.13)

e = [e1, e2, . . . , e20]
T , (4.14)

and
f = [1, f2, . . . , f20]

T . (4.15)

Finally, the de-normalizing of image coordinates is determined as follows:

Line = Y · LINE SCALE + LINE OFF (4.16)

and
Sample = X · SAMP SCALE + SAMP OFF . (4.17)

Overall, the sensor RPC model consists of 80 coefficients (where d1 and
f1 are set to 1) plus the 10 offset and scale values and approximates the
physical sensor model in a standardized manner.

4.1.2 Parameter Optimization

For optimizing an RPC sensor model GCPs and their according image
coordinates are employed. The optimization can be formulated in object-
space or in image-space (Grodecki and Dial, 2003). We pursue an adjustment
in object-space since then the solution is also dependent on the height. This
would not be the case if, for instance, an affine transformation is adjusted in
image-space (Dial and Grodecki, 2002; Jacobsen and Topan, 2015). From the
mathematical perspective the parameter optimization can be formulated as
a non-linear equation system of the form

F(x) = 0 . (4.18)
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Actually our system consists of Y in Eq. (4.4) and X in Eq. (4.5). To solve
this system we use Newton’s method (described in Algorithm 4.1) with the
starting vector x0. Via linearization we get

F(x + ∆x) ≈ F(x) + JF(x)∆x (4.19)

with the Jacobian matrix

JF(a) :=
∂F
∂x

(a) =

(
∂Fi

∂xj
(a)

)
i,j

=


∂F1
∂x1

(a) ∂F1
∂x2

(a) · · · ∂F1
∂xn

(a)
...

... . . . ...
∂Fm
∂x1

(a) ∂Fm
∂x2

(a) · · · ∂Fm
∂xn

(a)

 . (4.20)

Algorithm 4.1: Solving non-linear equation systems with Newton’s
method.

Input:
1 non-linear equation system of form F(x) = 0
2 and its Jacobian matrix JF
3 starting vector x0
4 maximal iterations // E.g., set to 20.
5 tolerance // E.g., set to 1e−7.

Output:
6 solution vector xn+1

7 Function NewtonsMethod(F, JF, x0, iterations, tolerance):
8 for n = 0 : iterations do
9 JF(xn)∆xn + F(xn) = 0 // Solve for ∆xn via least squares.

10 xn+1 = xn + ∆xn // Get next approximation.

11 if (|∆xn| ≤ tolerance · |xn|) then
12 break // Solution found within given tolerance.

13 end
14 end
15 return xn+1 // Return solution vector.

The linearization for the RPC model can now be formalized starting with
the partial derivatives of u (cf. Eq. (4.11)) as

∂u
∂P

= [0, 0, 1, 0, L, 0, H, 0, 2P, 0, LH, 0, 2LP, 0, L2, 3P2, H2, 0, 2PH, 0]T (4.21)
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4.1 Sensor Modeling and Parameter Optimization

∂u
∂L

= [0, 1, 0, 0, P, H, 0, 2L, 0, 0, PH, 3L2, P2, H2, 2LP, 0, 0, 2LH, 0, 0]T (4.22)

∂u
∂H

= [0, 0, 0, 1, 0, L, P, 0, 0, 2H, PL, 0, 0, 2LH, 0, 0, 2PH, L2, P2, 3H2]T (4.23)

such that

∇u =

(
∂u
∂P

,
∂u
∂L

,
∂u
∂H

)
, (4.24)

which defines our partial derivatives of Y w.r.t. P, L, and H and thus the
first line of our Jacobian matrix (cf. Eq. (4.20)) as

∂Y
∂P

=
cT ∂u

∂P dTu− dT ∂u
∂P cTu

(dTu)2
, (4.25)

∂Y
∂L

=
cT ∂u

∂L dTu− dT ∂u
∂L cTu

(dTu)2
, (4.26)

and
∂Y
∂H

=
cT ∂u

∂H dTu− dT ∂u
∂H cTu

(dTu)2
. (4.27)

The linearization for the line coordinates Y (cf. Eq. (4.4) and Eq. (4.19)) can
now be written as

Y(P + ∆P, L + ∆L, H + ∆H) ≈ Y(P, L, H) +
∂Y
∂P

∆P +
∂Y
∂L

∆L +
∂Y
∂H

∆H .
(4.28)

The linearization for the sample coordinates X can be formalized accordingly
and they define the second line of our Jacobian matrix (cf. Eq. (4.20)). For
each GCP in one image we get two equations.

The goal in parameter optimization can be seen as to optimize as few
parameters as reasonable for two reasons: (1) to reduce the need for GCPs
and (2) to avoid drifting or even oscillating of the RPCs. Thus, two options
of optimizations are presented in this work. The first only models a shift,
i.e., releasing the parameters c1 and e1 of the RPC nominators. In theory
only one single GCP is needed for such an adjustment. The second releases
constant and linear terms of the RPC nominators, i.e., ci and ei with i ∈ [1, 4].
While a minimum of only four GCPs would be sufficient to optimized those
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eight parameters, over-determination is reasonable in order to mitigate the
impact of measurement errors. The decision to adjust the linear nominator
coefficients is based on previous experiments involving different adjustment
settings, which have shown that in this way sub-pixel accuracy can be
achieved. These findings are also confirmed by previous work (Dial and
Grodecki, 2002; Åstrand et al., 2012; M. Á. Aguilar, Mar Saldaña, and F. J.
Aguilar, 2014). Releasing higher order terms the RPC model usually gets
drawn towards the GCPs which results in overfitting. This is also the reason
why we use GCPs and ICPs in the evaluation. The GCPs are used to adjust
the sensor model, while the ICPs are used to evaluate the resulting model.
Therefore, a potential overfitting can be detected and thus avoided.

4.1.3 Geo-Location Accuracy Assessment

To assess the geo-location accuracies of the initial and optimized sensor
models, reference GCPs and also their 2D locations in the images serve as
input data. Then, the 3D GCPs are projected into the 2D image using the
RPC model and the deviations to the reference 2D image coordinates define
the model accuracy. Those differences are described as statistical values,
like mean, standard deviation (STD), or root mean square (RMS) errors in
pixels. We give those values for across and along track direction such as the
absolute length of the differences. Often those statistics are given for GCPs
and ICPs.

For stereo acquisitions also the 3D geo-location accuracy can be determined.
In this case a spatial forward point intersection is performed based on the
2D image coordinates and the sensor models yielding 3D points. Those
points are compared with the reference GCPs and ICPs resulting in statistics
on 3D locations in meters (assuming that the underlying map projection
is metric). Here the statistical values are given for East, North, and height
direction such as for the absolute Euclidean distance (also called length).
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4.2 Digital Surface Model Generation

4.2 Digital Surface Model Generation

As illustrated in Figure 1.4 the workflow for DSM generation comprises
several steps that have to be applied sequentially and are described in detail
in this section.

4.2.1 Epipolar Rectification

For epipolar rectification of the Pléiades push-broom images the approach
in (M. Wang, Hu, and Li, 2011) is applied. As described in (Gutjahr et al.,
2014) the main steps are as follows. First, both stereo images are projected
onto a common reference plane, which is defined via the mean height of
the mapped area. This step already ensures that the epipolar curves can be
assumed as parallel lines with deviations below the image resolution. In
a second step, a 2D Helmert transformation with a fixed scale is applied
to both projected images. The rotation angle of this transformation can
be calculated as described in (M. Wang, Hu, and Li, 2011), and thus, the
transformation ensures that the direction of the epipolar lines corresponds
to the column direction of the images. The shifts of this transformation
ensure zero parallaxes in the line direction and control the parallaxes in the
column direction. For the calculation of the shift parameters, we transform
the center point of the warped left scene to the warped right scene using
the mean height of the given scene. To avoid repetitive resampling, both
processing steps are combined, thus establishing the transformation from
a pixel in the epipolar image to the corresponding position in the original
image (i.e., indirect resampling). This can be done on a pixel-by-pixel basis
independently from the resampling which is done in a final step. As resam-
pling method the 6-point cubic convolution (Keys, 1981) is used, as it yields
highly accurate results while being computationally feasible (higher order
resampling methods or windowed Sinc approaches are computationally
more demanding (Meijering, Niessen, and Viergever, 2001; Perko, 2004)).

Since, the transformations are non-linear and also incorporate iterative
image-to-map transforms (Newton’s method and linearization), pixel-by-
pixel evaluation is computationally expensive. Especially, as the epipolar
Pléiades images are huge, with around 50000× 50000 pixels for a full scene,
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an approximation is desired. It can be observed that the transformation is a
locally slowly changing continuous function. Thus, an evaluation on grid
points only is sufficient. In between the grid cells bilinear interpolation can
be used. Empirical tests show that a grid step size of 100 pixels can be used
without losing accuracy, thus reducing the transformation effort by a factor
of 10000. To avoid recalculation of those grids they are also stored to be used
later in the spatial point intersection. Those grids are called forward and
backward addresses. Figure 4.1 depicts the relation between stereo input
images, their epipolar versions, forward and backward addresses, and both
disparity maps gathered in the matching step (cf. Section 4.2.2). Overall, the
proposed approximation results in a significant speedup.

Figure 4.1: Relation of stereo input images, their epipolar rectified versions, forward and
backward addresses, and both disparity maps.

4.2.2 Image Matching

As the image matching is employed on epipolar images, the disparities
have to be searched along one dimension only, i.e., the column direction.
The classical matching paradigm is depicted in Figure 4.2 and contains
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three main steps: disparity space image calculation (i.e., creation of the 3D
cost volume), cost aggregation (i.e., an optimization by incorporating the
neighborhood of a pixel), and disparity section (i.e., selection of the final
disparity per pixel from the aggregated cost volume).

Figure 4.2: Image matching principle with epipolar rectified input images. The main steps
are calculation of the disparity space image, cost aggregation, and disparity
selection. The final disparity map D holds the shifts in column directions for
each pixel such that they point from the reference image Xr to the search image
Xs.

The current state-of-the-art in cost volume calculation is the normalized
Hamming distance of the Census transform (Zabih and Woodfill, 1994), as
it is invariant to non-linear radiometric distortions and very efficient in its
calculation. The Census transform ξ(X, xc) is defined for an image patch X
with pixels xi and the central pixel value xc as

ξ(X, xc) =

{
0 xi ≤ xc

1 xi > xc
(4.29)

and the according cost-function Cξ(X, Y) that compares two patches X and
Y, where n is the number of pixels in X, and Hamming the Hamming
distance as

Cξ(X, Y) =
1
n

Hamming(ξ(X, xc), ξ(Y, yc)) ∈ [0, 1] . (4.30)
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As this definition compares all pixels within a patch X to the central pixel
value xc the transform becomes ambiguous when the patch holds homo-
geneous, i.e., textureless, values. Therefore, the modified Census can be
used that compares the pixels to the mean value of the patch (Hermann
and Klette, 2009; Klopschitz et al., 2017). Another option that works well for
satellite based images is to stabilize the Census transform by combination
with a sum of absolute differences (SAD) cost function Cε(X, Y), with

Cε(X, Y) =
1

n ·m ∑
i
|xi − yi| ∈ [0, 1] , (4.31)

where m denotes the scaling factor that depends on the pixel depth of the
current image. For 8 bit images, we use m = 28 and for 16 bit images, like it
is the case for Pléiades, we use m = 216. The combined cost-function is then
defined as

Cξ,ε(X, Y) =
1
2
(
Cξ(X, Y) + Cε(X, Y)

)
∈ [0, 1] . (4.32)

Normalized cross correlation yields more blurring at 3D breaklines than Cen-
sus transform such that it is not applied (cf. (Hirschmüller and Scharstein,
2007)). It is also important to note that within this work the matching only
uses the panchromatic band of the image. Obviously, the pansharpened
multi-spectral information could be used as well. In this case the combined
cost-function is defined as the weighted sum of the costs for each spectral
band. However, previous experiments showed that color information is
not helping much but slows down the calculation of the disparity image
significantly (Bleyer and Chambon, 2010).

After calculation of the cost volume the cost aggregation is performed with
semi-global matching (SGM) introduced in (Hirschmüller, 2008). It combines
the efficiency of a local method with an accuracy comparable to global meth-
ods. This is achieved by approximating a 2D Markov random field (MRF)
optimization with several 1D scanline optimizations (cf. (Scharstein, Taniai,
and Sinha, 2017)). Those scanline optimizations can be efficiently solved
via dynamic programming yielding low runtimes. It has been shown that
SGM is a special case of message passing algorithms like belief propagation
and tree-reweighted message passing (Drory et al., 2014). Overall, SGM
approximates the energy minimization of a 2D Markov random field

40



4.2 Digital Surface Model Generation

E(D) = ∑
p

Cp(dp) + ∑
p,q∈N

V(dp, dq) , (4.33)

with Cp(dp) being a unary data term that represents the matching cost
of a matching pixel p at disparity d ∈ D = [dmin, dmax], and V(d, d′) is
a pairwise smoothness term that penalizes disparity differences between
neighboring pixels in the neighborhood N . In SGM, V implements a first-
order smoothness constraint as

V(d, d′) =


0 if d = d′

P1 if |d− d′| = 1
P2 if |d− d′| ≥ 2 ,

(4.34)

with the penalty values P1 and P2. They penalize disparity jumps of 1 pixel
and of multiple pixels. Now instead of minimizing the MRF, which is NP-
hard, SGM minimizes a 1D version of Eq. (4.33) along 8 cardinal directions
r via dynamic programming (Hirschmüller, 2008). For each direction r an
aggregated matching cost Lr(p, d) is recursively calculated as

Lr(p, d) = Cp(d) + min
d′∈D

(Lr(p− r, d′) + V(d, d′)) . (4.35)

Then, the 8 aggregated costs are summed at each pixel, yielding the aggre-
gated cost volume

S(p, d) = ∑
r

Lr(p, d) , (4.36)

where the minimum at each pixel is chosen as the final disparity

dp = arg min
d

S(p, d) . (4.37)

Since, 3D breaklines are often visible in the input images as local changes of
the grayvalues, the penalty P2 can be adjusted w.r.t. these local changes of
the reference input image I in the current direction r (Hirschmüller, 2008).
As in the original paper no details on the adaptive penalty function are
given, we propose to define P2 as a function of I, r, and three parameters ε,
δ, and P

′
2 as

P2(I, ε, δ) = max

(
µI · P

′
2

|Ip − Iq|+ ε
, P1 + δ

)
(4.38)
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with µI the mean gradient in column and line direction of I, q the adjacent
pixel coordinate of p based on r, P

′
2 the initial penalty value, and some ε

to avoid a division by zero if Ip equals Iq. The parameter ε is set to ε ={
min(|Ip − Iq|) | ∀|Ip − Iq| 6= 0

}
, i.e., ε becomes 1 for most images of type

uint8 or uint16. The equation also ensures that P2 is always larger than P1 by
at least a predefined δ. We set δ in a pragmatic way to δ = P1 +(P

′
2− P1)/100

such that it automatically adapts to the input penalty values. This extension
results in twofold improvements: (1) in homogeneous regions the penalty
P2 becomes huge such that large (mostly incorrect) disparity jumps are
omitted and (2) at pixel locations with large local grayvalues changes P2
become smaller and thus 3D jumps are cheaper for the optimization. Since,
3D breaklines often correspond to grayvalue changes such jumps are better
modeled by the matching algorithm.

The resulting disparities dp are calculated at integer precision. To get sub-
pixel refinements the classical approach is to fit a polynomial of order 2, i.e.,
a parabola, into the three values surrounding the best estimated disparity.
The minimum of this polynomial, which can be extracted analytically, then
defines the subpixel disparity.

For outlier detection and interpolation the following options are imple-
mented. A classical left-right consistency check is performed by employing
backmatching. Disparities with a backmatching distance larger than a given
threshold are marked as outliers. The standard threshold value is just above√

2 such that a matching is correct if the backmatching hits within the
local 3× 3 window, so for instance 1.5 pixel. Then also a threshold on the
aggregated cost is performed. Lastly a peak filter detects connected regions
(cf. (Hirschmüller, 2008)), where small islands are discarded. In the next
step, discarded pixels are classified as blunder or as occlusions as described
in (Hirschmüller, 2008). Then, blunder locations are linearly interpolated
based on their neighbors, while occluded locations are interpolated toward
the ground level to avoid blurring at 3D breaklines.

We extend the algorithm mainly to gain a significant speed-up as follows.
While in (Hirschmüller, 2008) a hierarchical image pyramid based approach
is used to determine the disparity search range for the final level (i.e.,
the original image), we apply the paradigm first presented in (Paar and
Pölzleitner, 1992) to limit the search range for each pyramid level (visualized
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in Figure 4.3). This results in a significant speed-up, especially for scenes
with large height variation, since we only have to search for a given number
of disparities in the last level (e.g., 15 pixels instead of 1550 pixels, which is
the average disparity range of the Ljubljana data set). We call this method
truncated SGM. As depicted in Figure 4.3 it might be the case that for a
disparity d the adjacent disparity d′ is not calculated thus does not exist.
Therefore, the smoothness term is changed to

V(d, d′) =


if d′ exists


0 if d = d′

P1 if |d− d′| = 1
P2 if |d− d′| ≥ 2

else P2 .

(4.39)

Depending on the 3D structure of the scene maximal memory consumption
reduction between 65% to 95% is achieved while the runtime is reduced
by 30% to 90% (also cf. (Rothermel et al., 2012)). In, addition instead of
storing the cost volume and the aggregate cost volume as 32 bit float values,
we discretize them to 16 bit unsigned integers (uint16). This is done by
introducing a scaling factor and yields another 50% of memory reduction.
Next, we observe that due to the prior epipolar rectification a significant
region on the border of the input images consists of nodata values. In cases
where all disparities of investigation only contain such invalid regions the
SGM optimization could be skipped. Therefore, we introduce a specific
uint16 value for the disparity space image that indicates those regions. The
runtime of the SGM optimization can then by reduced by around 33% (mean
value over our test images).

To gain speedup and accuracy, we incorporate a coarse digital elevation
model (DEM) (e.g., SRTM DEM (Farr et al., 2007), ASTER GDEM (Tachikawa
et al., 2011), WorldDEM (Riegler, Hennig, and Weber, 2015)) on the top
pyramid level to calculate disparity predictions and thus to limit the search
space and reduce ambiguities. For a grid of pixels in the reference image
an image-to-map transformation is calculated using the coarse DSM. The
resulting map coordinates are then projected into the search image with
a map-to-image transformation. The couple of 2D image coordinates is
then transformed into the epipolar images using the forward addresses (cf.
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Figure 4.3: Cost volume Cp(d) of classical SGM versus our implementation is shown on a
toy example. While SGM evaluates the whole cost volume, we only check the
disparities visualized in light blue color around the disparity predictions from
the previous pyramid level depicted in dark blue color. In this toy example the
search space is reduced to 44%, however, the reduction is larger in real satellite
images.

Figure 4.1). The column difference of the epipolar pixel coordinates then
serves as prediction for image matching. With such disparity prediction the
search space can be significantly reduced at the top level.

As others, we found that the simple parabola subpixel interpolation yields
a bias in the distribution of fractional disparities (cf. (Haller and Nedevschi,
2012)). This bias causes incorrect reconstructions of tilted surfaces. To reverse
this effect we calculate a mapping between the current fractional distribution
and a uniform distribution. It is then applied efficiently via a lookup table.
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This effect is depicted in Figure 4.4.

(a) (b)

Figure 4.4: Subpixel distribution (a) based on the parabola interpolation (Hirschmüller,
2008) and (b) after our proposed normalization.

4.2.3 Spatial Point Intersection

From each valid matching result (i.e., disparity) a 3D point can be calculated
by spatial point intersection, finally yielding a 3D point cloud irregularly
distributed in space. In the first step, for each pixel in the disparity map the
locations in the reference and search input images have to be determined.
As indicated in Figure 4.1 the backward address of the reference image and
the backward address of the search image are employed in this step. Then,
the spatial point intersection can be performed via an iterative least squares
adjustment. The resulting point cloud can be stored in LAS or LAZ format
(Isenburg, 2013) or in a multi-band image. In this thesis the second option
is used, where a three band image of the size of the disparity map then
stores East, North, and height values (cf. Figure 4.5 (a) and (Schönfelder
et al., 2017)).
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4.2.4 DSM Resampling

Since, in remote sensing a classical data representation is still the 2.5D DSM
the 3D point cloud has to be mapped to a 2D image with equidistant spacing
(i.e., a regular grid). This process is also called resampling or regridding.
We present two simple approaches for doing so. First, the dimension and
spacing of the output DSM is defined. Then, we use either nearest neighbor
interpolation or areal interpolation in the regridding step. In the firmer case
each 3D point is projected into the DSM and put into the nearest integer
position. If this value was already assigned then the maximum between the
previous and the current value is chosen. In this way the height value closest
to the sensor is reconstructed. In areal interpolation four adjacent 3D points
are projected into the DSM. Then, all integer locations that are covered by
this quadrangle are linearly weighted interpolated. Double assigned pixels
are treated as described above. Overall, this procedure is a direct resampling
that potentially is not hitting all pixels of the DSM grid. However, as multiple
DSMs get fused in further processing, this simple strategy is sufficient and
in reality the nearest neighbor approach is usually used due to performance
benefit. The DSM resampling is depicted in Figure 4.5.

(a) (b)

Figure 4.5: DSM resampling: (a) representation of 3D point cloud as a multi-band image
and (b) regridding options.
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4.2.5 DSM Fusion

In the proposed processing chain the DSM fusion is applied for two main
reasons: (1) to combine the information of forward and backward matching
in cases when only a single stereo input set exists and (2) to combine
multiple forward and backward matchings in cases when multiple input
(stereo) sets exist. Thus, the fusion process gets multiple DSMs as input
and calculates one final DSM. For simplicity we stick to a local method
(Rumpler, Wendel, and Bischof, 2013) which takes all height measurements
within a 3× 3 pixel neighborhood and extracts the probability mode of this
probabilistic height distribution. The only required parameter is a threshold
value of how many input height values have to exist such that an output
is generated. To get high coverage this value is set to 1 by default. We
extent this method for arbitrary neighborhoods and also incorporate a step
size. This step size can be used to generate a lower resolution DSM by,
for instance, only extracting the probability mode at every second pixel in
column and line direction. In contrast to a straightforward median-based
approach, local height errors can better be eliminated using the probability
mode (Rumpler, Wendel, and Bischof, 2013). Alternative fusion methods
based on global optimizations like (Perko and Zach, 2016; Pock, Zebedin,
and Bischof, 2011) would be of interest as well but are neglected in this
study due to their high computational complexity.

4.2.6 DSM Assessment

In remote sensing it is common sense to compare two DSMs based on
their differences. This leads to a distribution defined as DSM∆ = DSMref −
DSMcurrent, where in our case the reference is a LiDAR DSM and the current
DSM the one retrieved from Pléiades image data. For judging the quality of
the differences the statistics values mean and standard deviation are used.
However, this only makes sense if the underlying distribution is a normal
distribution. As observed by researchers this is actually not the case (cf.
(Rousseeuw and Croux, 1993; J. Höhle and M. Höhle, 2009; Leys et al., 2013;
Jacobsen and Topan, 2015)). First, both DSMs include strong outliers such
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that the distribution of differences contains heavy tails. Second, the distri-
bution itself is often non-Gaussian as, for instance, gaps between buildings
are not reconstructed from satellite data causing a systematic bias next to
the main lobe. In addition, the mean and standard deviation measures are
non-robust estimates which suffer from both aspects. Therefore, in this case
robust estimates have to be used, in particular the median (MED) value for
the center of our normal distribution and the normalized median absolute
deviation (NMAD) for the standard deviation. The NMAD is defined as

NMAD(∆H) = 1.4826 ·median(|∆H −median ∆H|) . (4.40)

Figure 4.6 depicts two real examples of this study where only errors be-
tween −10 m and +10 m are plotted. Shown are the distributions of height
differences of a stereo DSM from test site Ljubljana (blue) with the classical
normal distribution fits based on mean and standard deviation (red), and
the robust fits based on median and NMAD (green). From both plots it is
clearly visible that the standard deviation of the classical fit is far too large
which is a result of the non-robust estimate due to outliers. The NMAD
based normal distribution is narrower and fits the input data better. In
both plots the estimated central value of the default fit is drawn to the
negative side. This obviously happens with the robust fit as well, however,
less distinctive. This aspect has to be kept in mind when interpreting height
differences and thus, will later be discussed in Section 5.

4.3 Digital Terrain Model Generation

To extract a terrain model from a surface model, man-made structures and
vegetation have to be removed from the given input DSM. As depicted in
Figure 1.4, the workflow for DTM generation comprises two main steps:
determination of bare-earth points and interpolation of all other points,
and according post-processing. As no state-of-the-art method was found
that delivered satisfying DTMs at fast runtimes, a novel method named
multi-directional slope dependent (MSD) DTM generation is presented in this
section.
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Figure 4.6: Two examples of fitting a normal distribution into non-normal distributed input
data (blue). Default fit based on mean and standard deviation estimates (red)
and robust fit based on median and NMAD estimates (green).

4.3.1 MSD DTM Generation Approach

The presented DTM extraction approach is especially suited for DSMs that
are generated by a state-of-the-art photogrammetric workflow from VHR
satellite stereo or tri-stereo images. One constraint of such DSMs is that
3D breaklines are not always clearly defined, which can be traced back
to occluded areas that cannot be reconstructed. Our idea is to extend the
algorithm of (Meng, L. Wang, et al., 2009), which is designed for LiDAR data,
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to be slope dependent and to be really multi-directional, i.e., 8-directional to
span the complete 2D image space. Nonetheless, focus is put onto simplicity,
robustness and computational efficiency to follow integration needs into
the automatic end-to-end workflow. Overall, the main concepts of DSM to
DTM filtering can be summarized as follows:

• Determine points in the DSM that are located on bare-earth regions.
• Apply some post-processing on the ground mask and remove all other

non-bare-earth regions.
• Fill the resulting holes by means of DTM interpolation.
• Apply some post-processing.

Obviously, the crucial and most difficult step is the first one. Based upon our
literature study the most promising algorithm to start with is the directional
filtering method by (Meng, L. Wang, et al., 2009; Meng, Currit, and Zhao,
2010). A short recap on directional filtering according to (Meng, L. Wang, et
al., 2009) can be given as follows: The basic idea is to process each line of the
given DSM separately, e.g., from left to right with a sliding window of given
extension. First, the minimal value in this window is determined, which is
considered to represent the bare-earth terrain at the minimal position. In
this step, it becomes obvious, that an object to be filtered has to be smaller
than the filter extent. Then, if the current pixel under examination has a
large difference to the minimal value w.r.t. a given height threshold, it is
considered as a non-ground point. If this is not the case and the slope
between the current pixel and the next one in scanline direction is larger
than a given slope threshold, the pixel is also considered as a non-ground
pixel. If the slope is positive and smaller than this threshold the pixel gets
the same label as the previous pixel. If the slope is negative, then the distance
to the closest ground point is used to decide whether the pixel is classified
as ground or as non-ground. This method suffers from two drawbacks:

1. A bottleneck is inherent to the negligence of the local slope of the
underlying terrain, such that no useful results can be expected on
tilted surfaces or in mountainous areas.

2. Since it works on 1D image profiles, hereby denoted as scanlines, it
yields fast runtimes. However, when applying single scanline process-
ing only, the complete 2D context into which an object is embedded is
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lost. In addition, the given DSM can have unsharp 3D edges in some
scanline directions.

Using these simple insights, two main extensions to the directional filtering
concept are proposed for development and implementation of our novel
MSD DTM generation method:

1. Incorporation of the local terrain slope.
2. Extension of the local horizontal scanline approach to multiple scan-

lines, which spans the full 2D image space.

The main reason for the simplicity of the MSD algorithm is the fact, that the
robust fitting is replaced by a smoothing done beforehand. Now the terrain
slope fit is directly gathered using the difference value of this smoothed
input DSM. After removing the non-ground points, the resulting holes are
filled employing a triangulation based linear interpolation method. The
algorithm uses three parameters, i.e., the filter extent in meters, the height
threshold in meters and the slope threshold in degrees.

4.3.2 Consideration of Local Slope

The main drawback in (Meng, L. Wang, et al., 2009; Meng, Currit, and Zhao,
2010) is that the local slope of the terrain is not considered in the processing.
If this algorithm is used to process regions which are not flat, incorrect
filtering occurs. This issue is sketched in Figure 4.7 where a 1D profile
of an artificial DSM to be filtered is given in (a). It shows a tilted surface
with some noise and a building. The potential filter extent is visualized as
the blue dashed line. The minimal height value within the filter extent is
marked as black dot. It is always dragged towards the terrain fall and thus
is incorrect (in the example a height of 95.8 m). If we apply a robust terrain
slope fitting, the green dashed line in (b) is received. Using that tilt, the
initial profile could be slope corrected (c) and the new minimal value can
now be correctly extracted (99.2 m in this example).

In addition to such an incorrect minimal value the slope estimate of two
adjacent DSM values should be corrected w.r.t. the local terrain slope as well.
The first algorithmic extension is very intuitive and sketched in Figure 4.7.
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Figure 4.7: DSM profiles for an artificial building on a tilted surface with added noise: (a)
Original DSM profile and the minimal height value (black) within the window
(blue). (b) Robust fit of the surface (green). (c) Slope corrected DSM profile and
the according minimal height value.

In the workflow a robust fit of the height values within the filter extent must
be performed. An obvious solution would be to use an iterative weighted
least squares method with bisquare (Tukey) or Huber weighting function
(cf. (Fox and Weisberg, 2018)). However, this robust fit has to be performed
for each pixel and for all scanline directions and thus would slow down the
process. Experiments have shown that a simple fit via smoothing with a
huge kernel size yields very similar and thus satisfactory results. Therefore,
a 2D Gaussian smoothing is implemented with a spatial sigma σ and a
kernel size of n× n m2. Per default those parameters are set to σ = 25 m
and n = 101 m. The (separable) 2D convolution is implemented as two 1D
convolutions for speedup. The pixel difference of the central (smoothed)
pixels then defines the local terrain slope value.

Figure 4.8 shows a real example for the downward scanline. Given are a
subset of the DSM and the local slope estimate as achieved by smoothing.
The plot in Figure 4.9 shows the original 1D DSM profile (black), the
robust fit of the terrain slope (green), the proposed simple fit of the terrain
slope (cyan), and the robust and simply corrected data (red and blue). It
is obvious that the simple and fast Gaussian-based approximation yields
very similar results in comparison to the iterative bisquare weighted least
squares solution. Actually, initial tests revealed that it is faster by a factor of
at least four magnitudes for a filter size of 91 pixels.
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(a) (b)

Figure 4.8: Proposed simple fit on the terrain slope: (a) shows a subset of a DSM and (b) its
Gaussian filtered variant, representing the slope of the profile.

4.3.3 Multi-Directional Filtering Approach

The second algorithmic extension concerns the data processing scheme
in terms of scanlines. As stated above, consideration of only one scanline
direction from left to right yields a local solution and the filtering result
could abruptly change within two adjacent pixels from two neighboring
scanlines. Instead we propose to use 8 scanlines and fuse the results for final
pixel classification. The principal concept to solve a problem in 2D by fusing
multiple 1D solutions is based on the work of (Hirschmüller, 2008). In the
presented case the fusion is simply based on majority voting. If more than 5

scanlines classify the current point as a ground point, this point is classified
as ground point, else as non-ground point. This aspect is very important for
satellite stereo DSMs, as some scanlines may classify a non-ground point
incorrectly (e.g., due to a smooth height transition) while the combination
of classifications achieved from 8 directions certainly helps to improve final
pixel classification accuracy.

The complete novel algorithm is described in Algorithm 4.2 and Algo-
rithm 4.3 resulting in a ground and a non-ground label image. Instead of
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Figure 4.9: Comparison of robust terrain slope fit to the proposed simple fit. Shown are the
profile of the DSM along the green arrow in Figure 4.8 together with the terrain
slope fits and the corrected profiles.

processing each scanline sequentially, the image can be scanned in two
passes, first from the upper-left to the lower-right corner and second from
the lower-right to the upper-left corner, processing four scanlines at each
pass (cf. Figure 4.10). Doing so, image data has to be read only once and
instead of storing eight label images, one label image can be used to sum up
all ground pixels, followed by a thresholding as stated above. This specific
processing reduces the memory consumption by a factor of 8 and results in
a minor speed-up, since the input data is only read once.

4.3.4 Extension

The following extensions could be easily performed, where currently only
the first one is supported by our implementation. The second and third
options are very generic and independent of the proposed MSD DTM
generation method, such that they are not evaluated here.
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(a) (b) (c)

Figure 4.10: Concept of splitting 8 scanlines spanning the 2D image space (a) into 2 passes
(b) down-right and (c) up-left.

• Apply a peak filter after the filtering step to get rid of small, mostly
incorrect, regions. This idea is similar to the filtering of disparity maps
in image matching.
• Since, taking the minimal value of a distribution is not robust to

outliers, the nth percentile could be taken instead. Then the algorithm
becomes robust toward outliers in the input DSM.
• Usage of more appropriate hole filling techniques by, for instance,

using Kringing (Stein, 2012), anisotropic diffusion (Weickert and Welk,
2006), total variation (Unger et al., 2009), or total generalized variation
(Bredies, Kunisch, and Pock, 2010).

4.4 Ortho-Rectification

Standard indirect ortho-rectification is performed for each image. In the
presented workflow the rectification is embedded in the DSM resampling
step during DSM generation. There, the multi-spectral images are available
as epipolar rectified products. In the step of spatial point intersection those
points get their 3D coordinates and their multi-spectral values. Thus, the
DSM resampling step is also applied to generate the ortho-images. For
mosaicing the ortho-images are sorted w.r.t. to their global incidence angles
such that the more nadir ones are prioritized. During fusion a radiometric
block adjustment is performed based on a least squares adjustment.
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Algorithm 4.2: Multi-directional slope dependent DTM generation
(part 1).

Input:
1 DSM // Digital surface model.

2 Spacing // Spacing of DSM in meters.

3 DSMsmooth // Smoothed DSM.

4 Dir // Scanline direction represented as two

// integer shifts ShiftX and ShiftY.

5 ExtendMetric // Filter extend in meters, converted to

// pixels using Spacing and yielding Ext.

6 Ext // Filter extend (odd) which also defines the local

// direction dependent neighborhood

// ExtX(Dir) and ExtY(Dir).

7 X // centered number line with

// X = [−(Ext− 1)/2 : +(Ext− 1)/2].
8 ThrHeightDiff // Height difference threshold in meters.

9 ThrSlope // Slope threshold in degrees.

Output:
10 Label ∈ [Ground,NonGround] // Ground or non-ground

// classification.
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Algorithm 4.3: Multi-directional slope dependent DTM generation
(part 2).

11 Function DSM2DTM(DSM, Spacing, DSMsmooth, Dir, ExtendMetric,
ThrHeightDiff, ThrSlope):

2 foreach ( scanline s ) do
// Loop over whole image in x and y direction.

3 DSMDiff = DSM(x,y) – DSM(x+ShiftX,y+ShiftY) // Local

// height difference.

4 DSMsmoothDiff = DSMsmooth(x,y) –
DSMsmooth(x+ShiftX,y+ShiftY) // Local terrain slope.

5 Neigh = DSM(x+ExtX(Dir),y+ExtY(Dir)) // Neighborhood.

6 NeighCorr = Neigh + X*DSMsmoothDiff(x,y) // Slope

// corrected height values.

7 MinNeigh = min(NeighCorr) // slope corrected minimal

// terrain value.

8 HeightDiff = DSM(x,y) – MinNeigh // Difference to minimum.

9 if ( HeightDiff > ThrHeightDiff ) then
10 Label(x,y,s) = NonGround // Pixel is non-ground.

11 else
12 Delta = DSMDiff – DSMsmoothDiff // Slope corrected

// height difference.

13 SignDelta = -sign(Delta) // Negated sign of Delta.

14 SlopeLocal = atan2(abs(Delta),Spacing))*180/pi // Local

// slope.

15 Slope = SlopeLocal*SignDelta // Corrected slope.

16 if ( Slope > ThrSlope ) then
17 Label(x,y,s) = NonGround // Pixel is non-ground.

18 else
19 Label(x,y,s) = Label(x-ShiftX,y-ShiftY) // Assign as

// last label.

20 end
21 if ( Slope < 0 ) then
22 Label(x,y,s) = Ground // Pixel is ground.

23 end
24 end
25 end
26 return Label // Return classification.
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5 Results

This section reports on a multitude of results based upon the previously
presented methodologies. In particular sensor modeling and optimization,
digital surface model generation, and digital terrain model derivation are
addressed. First, the 2D and 3D geo-location accuracy is assessed for all
images and stereo sets. This investigation includes a study on different
parameters that are adjusted in the sensor modeling step. Second, the
quality of the resulting DSMs are assessed. Here an investigation of the
epipolar geometry, qualitative and quantitative evaluation of DSM accuracy
w.r.t. reference LiDAR data, and stereo versus multi-view stereo experiments
are given and discussed. Third, DTM extraction is performed and results
are compared to LiDAR reference data.

5.1 Sensor Modeling and Parameter Optimization

As first task, the 2D geo-location accuracy of all sensor models is evaluated
and the resulting statistics are presented in Table 5.1. Statistics are given
in across and along track direction such as for the absolute 2D length.
Here, it can be observed that most of the images have mean circular errors
(represented as mean initial length) below 17 pixels, which corresponds to
the 8.5 m CE90 as reported in (Astrium, 2012). The Trento triplet holds the
largest geo-location errors even above the CE90 values.

As second task, all sensor models are adjusted by optimizing the constant
and linear RPC terms and the resulting RMS values are also reported in
Table 5.2. The across and along track residuals are all in the sub-pixel range
(0.3 to 0.9 pixels) and show a widely homogeneous behavior. According to
the nominal GSD of 0.5 m these pixel values correspond to geo-location
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errors in the range of 0.15 m to 0.45 m on ground. As discussed in Section 3

the lower bound of those errors is the accuracy of the reference data. As the
reference was manually measured for some test sites better results cannot
be expected. Note, that the accuracies are rather high when considering
the reference LiDAR data with 1 m GSD for some of the test sites. Since,
the discretization and manual measurement errors are assumed to be of
Gaussian distribution, the least squares adjustment may find solutions
which are better than the individual measurements.

As third task, a specific test is performed on the image 1 of the Innsbruck
stereo test data (cf. Table 3.1 and Figure 3.1). The 2D geo-location accuracy
of this selected sensor model is evaluated where the parameter optimization
is once based on releasing only the constant term of the RPC nominators
and once by releasing the constant and linear terms. For doing so the given
30 GCPs are divided into different sets of GCPs and ICPs. The results of this
analysis, including mean and STD of checkpoint residuals, are summarized
in Table 5.3. The table shows that utilization of the absolute minimum
number of GCPs (i.e., 1 for constant and 4 for constant and linear coefficient
optimization) yields systematic errors for both scenarios, as expressed by
the mean residual values. Appropriate over-determination, e.g., utilization
of 10 GCPs in this assessment, reduces such systematic errors significantly.
The numbers also show that removing the shift only might be sufficient
to achieve reliable accuracy, which is also confirmed in (Jacobsen and
Topan, 2015). Overall, we propose to perform the constant and linear-based
adjustment since smaller residuals are retrieved and potentially systematic
errors can be reduced.

As fourth task, another specific test is performed on all six images from
the Ljubljana test site. Here, the sensor models are adjusted based on
optimization of constant and linear terms with the given GCPs. Then those
models are also evaluated on the ICPs to assess if an over-fitting occurs.
Statistics are presented in Table 5.4. Here the mean standard deviations after
adjustment are 0.47 pixels for GCPs and 0.73 pixels for ICPs. As expected
the models adjust to the GCPs but also give decently small errors on ICPs.

Overall, all models show initial displacements and thus have to be corrected
before continuing with the mapping workflow.
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Table 5.1: 2D geo-location accuracy of Pléiades image data given in pixels. Shown are the
initial (a-priori) mean and RMS residual errors.

Study ID GCPs Mean initial [pxl] RMS initial [pxl]
Area across along length across along length

Innsbruck 1 30 -8.55 -5.91 10.43 8.61 5.96 10.47

Stereo 2 30 -8.55 -2.28 8.88 8.61 2.42 8.94

Innsbruck 1 21 -9.61 -8.55 12.88 9.63 8.60 12.91

Triplet 2 20 -10.21 -9.49 13.96 10.24 9.54 14.00

East 3 20 -10.14 -11.50 15.35 10.16 11.53 15.37

Innsbruck 1 16 -8.93 4.43 9.99 8.97 4.47 10.02

Triplet 2 16 -8.93 -0.18 8.97 8.95 0.91 8.99

Center 3 16 -9.10 4.18 10.03 9.13 4.22 10.06

Innsbruck 1 22 -9.62 -8.56 12.92 9.67 8.59 12.94

Triplet 2 22 -9.23 -11.46 14.73 9.27 11.49 14.76

West 3 22 -9.82 -9.53 13.70 9.85 9.55 13.72

Trento
Triplet

1 21 11.19 12.59 16.90 11.22 12.70 16.95

2 21 10.80 13.81 17.58 10.84 13.91 17.63

3 21 8.61 15.71 17.97 8.65 15.81 18.02

Ljubljana 1 28 1.63 -0.05 1.83 1.81 0.65 1.93

Stereo 1 2 28 2.70 2.51 3.79 2.89 2.60 3.89

Ljubljana 3 30 1.41 -0.63 1.74 1.61 0.85 1.82

Stereo 2 4 30 1.42 1.72 2.44 1.81 1.88 2.61

Ljubljana 5 30 -3.07 11.66 12.07 3.13 11.67 12.08

Stereo 3 6 30 -2.93 12.14 12.50 2.99 12.16 12.52

Singapore 1 14 4.42 1.03 4.64 4.43 1.41 4.65

Stereo 2 16 4.28 -3.68 5.72 4.34 3.80 5.77

Next, the 3D geo-location accuracy using the initial and optimized sensor
models is assessed. The RMS values of the 3D point residuals which were
achieved for East, North, Height, and their 3D length are summarized in
Table 5.5 and in Table 5.6. These values indicate the 3D mapping accu-
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Table 5.2: 2D geo-location accuracy of Pléiades image data given in pixels. Shown are the
RMS residual errors after parameter adjustment.

Study ID GCPs RMS adjusted [pxl]
Area across along length

Innsbruck 1 30 0.80 0.50 0.95

Stereo 2 30 0.78 0.61 1.00

Innsbruck 1 21 0.57 0.80 0.99

Triplet 2 20 0.76 0.82 1.12

East 3 20 0.53 0.79 0.96

Innsbruck 1 16 0.62 0.39 0.73

Triplet 2 16 0.44 0.65 0.78

Center 3 16 0.58 0.32 0.66

Innsbruck 1 22 0.46 0.60 0.75

Triplet 2 22 0.66 0.62 0.91

West 3 22 0.48 0.61 0.78

Trento
Triplet

1 21 0.75 0.76 1.07

2 21 0.67 0.71 0.98

3 21 0.81 0.88 1.20

Ljubljana 1 28 0.55 0.60 0.82

Stereo 1 2 28 0.65 0.58 0.87

Ljubljana 3 30 0.54 0.52 0.75

Stereo 2 4 30 0.66 0.71 0.97

Ljubljana 5 30 0.63 0.60 0.87

Stereo 3 6 30 0.54 0.73 0.91

Singapore 1 14 0.27 0.88 0.92

Stereo 2 16 0.67 0.60 0.90

racy that is feasible when employing the stereo or triplet models for 3D
reconstruction. First, it is obvious that the initial accuracy of the rational
polynomial models yields 3D displacements in the order of several meters,
which is clearly beyond the aspired precision. Next, the values given in
the table show that the stereo intersection angle δ, as an equivalent for the
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Table 5.3: 2D geo-location accuracy analysis using different adjustment settings for the
image 1 of the Innsbruck stereo test set. Given are mean and standard deviation
in pixels (†ICPs equal GCPs).

Type GCPs ICPs Mean [pxl] STD [pxl]
across along across along

constant
terms

1 29 1.23 0.32 0.97 0.78

10 20 -0.14 -0.23 1.04 0.80

30 30
†

0.00 0.00 0.98 0.77

constant 4 26 -1.90 -1.27 1.21 1.08

and linear 10 20 0.09 -0.46 1.04 0.79

terms 30 30
†

0.00 0.00 0.90 0.59

Table 5.4: 2D geo-location accuracy analysis for all six images of the Ljubljana test site
given in pixels. For each image the first row shows the residual errors based on
GCPs and the second row the residual errors for the ICPs. After adjustment the
mean STDs are 0.45 pixels for GCPs and 0.73 pixels for ICPs.

ID Type initial [pxl] adjusted [pxl]
Mean STD Mean STD

across along across along across along across along

1 GCP 1.68 -0.10 0.68 0.67 0.05 0.00 0.42 0.51

ICP 1.56 0.02 0.92 0.61 -0.23 0.09 0.68 0.72

2 GCP 2.85 2.38 0.85 0.54 0.08 0.07 0.40 0.46

ICP 2.49 2.68 1.22 0.77 -0.31 0.26 0.88 0.73

3 GCP 1.54 -0.64 0.69 0.51 0.04 -0.02 0.45 0.42

ICP 1.20 -0.63 0.87 0.63 -0.31 0.01 0.63 0.66

4 GCP 1.61 1.60 0.95 0.82 0.04 0.04 0.48 0.67

ICP 1.14 1.91 1.29 0.63 -0.42 0.31 0.87 0.74

5 GCP -2.87 11.72 0.49 0.42 -0.09 0.32 0.49 0.37

ICP -3.38 11.56 0.68 0.76 -0.60 0.18 0.68 0.68

6 GCP -2.82 12.13 0.47 0.56 -0.09 0.33 0.47 0.46

ICP -3.11 12.14 0.62 0.99 -0.37 0.27 0.59 0.94
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base-to-height ratio, has a predominant impact onto the 3D geo-location
accuracy. Higher accuracies are achieved for image pairs covering larger
stereo intersection angles and vice versa. This aspect is depicted in Figure 5.1
which shows the RMS values of the 3D length residuals plotted versus the
convergence angles. The red curves give the theoretical 3D errors that would
result from a given 2D measurement error in meters.
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Figure 5.1: The 3D error is plotted versus the convergence angle, which are in the range
from 4◦ to 35◦, assuming an 2D location measurement error of 1/8, 1/4, and
1/2 m. On top of that the RMS values of the adjusted lengths (cf. Table 5.6) are
shown in blue.

It is clearly visible that the two stereo pairs with small intersection angle
(i.e., Innsbruck triplet center 1-3 with 4.6◦ and Trento triplet 1-2 with 5.5◦)
yield significant worse 3D geo-locations than all other stereo (and tri-stereo)
constellations. For constellations involving larger stereo intersection angles
the RMS values in planimetry are in a range of 0.2 m to 0.5 m. The RMS
values in height are between 0.30 m and 1.5 m. The variations in height are
diverse for the given test sites, which can be traced back to the accuracy
of the reference data. Here, best results are achieved for the Ljubljana test
site where highly accurate reference data is available such that the RMS
in height also gets down to 0.3 m. In contrast, the Singpore test site holds
rounded height reference values and thus this test site shows the highest
RMS in height with 1.5 m. Overall, the sensor model adjustment results
in optimized models that can be used to derive 3D information with high
quality, that is, 0.3 m in planimetry and in height, if the reference GCPs are
also in this accuracy range.
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5.1 Sensor Modeling and Parameter Optimization

Table 5.5: 3D RMS residuals achieved from all initial sensor models given in meters. Values
are given for East (E), North (N), Height (H), and their 3D Length (L).

Study Model Conv. GCPs RMS initial [m]
Area Angle [◦] E N H L

Innsbruck
1-2 26.9 30 4.85 2.07 3.45 6.28Stereo

Innsbruck 1-2 10.1 20 5.26 4.78 1.46 7.26

Triplet 2-3 23.3 20 5.44 5.10 2.79 7.96

East Triplet 33.4 20 5.33 5.14 2.31 7.76

Innsbruck 1-2 24.9 16 3.48 1.68 6.09 7.21

Triplet 2-3 4.6 16 3.85 2.07 4.38 6.19

Center Triplet 29.5 16 3.41 1.64 5.83 6.95

Innsbruck 1-2 10.4 22 5.03 4.72 2.17 7.24

Triplet 2-3 23.0 22 5.17 4.88 3.45 7.90

West Triplet 33.4 22 5.09 -4.96 2.97 7.70

Trento
Triplet

1-2 5.5 21 4.75 8.14 6.40 11.39

2-3 27.3 21 4.52 7.66 3.88 9.70

1-3 32.9 21 4.60 7.60 4.16 9.81

Triplet 32.9 21 4.70 7.66 4.07 9.87

Ljubljana
1-2 25.2 28 0.99 0.71 2.72 2.98Stereo 1

Ljubljana
3-4 22.7 30 1.16 0.58 2.90 3.17Stereo 2

Ljubljana
5-6 26.2 30 1.54 6.58 1.02 6.83Stereo 3

Singapore
1-2 15.2 13 1.20 1.82 9.19 9.44Stereo

Analogue to the 2D accuracy assessment, the 3D mapping accuracy is
foremost analyzed for two test sites based on GCPs and ICPs. Then, it is
evaluated w.r.t. LiDAR reference data. First, the Innsbruck stereo set and
second the Ljubljana multi-view stereo set are analyzed. For the Innsbruck
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Table 5.6: 3D RMS residuals achieved from all adjusted sensor models given in meters.
Values are given for East (E), North (N), Height (H), and their 3D Length (L).

Study Model Conv. GCPs RMS adjusted [m]
Area Angle [◦] E N H L

Innsbruck
1-2 26.9 30 0.38 0.23 0.59 0.73Stereo

Innsbruck 1-2 10.1 20 0.33 0.46 1.18 1.31

Triplet 2-3 23.3 20 0.29 0.39 0.56 0.74

East Triplet 33.4 20 0.28 0.39 0.47 0.67

Innsbruck 1-2 24.9 16 0.36 0.19 0.76 0.86

Triplet 2-3 4.6 16 0.59 0.36 2.01 2.13

Center Triplet 29.5 16 0.33 0.17 0.73 0.82

Innsbruck 1-2 10.4 22 0.19 0.33 1.26 1.32

Triplet 2-3 23.0 22 0.26 0.27 0.98 1.04

West Triplet 33.4 22 0.21 0.25 0.67 0.75

Trento
Triplet

1-2 5.5 21 0.94 0.88 3.35 3.59

2-3 27.3 21 0.36 0.34 1.15 1.26

1-3 32.9 21 0.42 0.31 1.15 1.26

Triplet 32.9 21 0.38 0.31 1.11 1.21

Ljubljana
1-2 25.2 28 0.29 0.30 0.28 0.50Stereo 1

Ljubljana
3-4 22.7 30 0.30 0.32 0.48 0.65Stereo 2

Ljubljana
5-6 26.2 30 0.31 0.37 0.40 0.62Stereo 3

Singapore
1-2 15.2 13 0.31 0.29 1.47 1.53Stereo

test site, tests with a different number of GCPs and ICPs as well as a
comparison of constant versus constant and linear nominator coefficients
optimization are performed. The results of this analysis, including mean
and standard deviation values of checkpoint residuals, are summarized in
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5.1 Sensor Modeling and Parameter Optimization

Table 5.7. Again, the utilization of a minimum number of GCPs yields sys-
tematic geo-location errors in East, North, and height as manifested through
the corresponding mean residual values. Over-determination as exemplary
given, e.g., by utilizing 10 GCPs, reduces these systematic errors to a more
or less negligible order of magnitude and yields distinctly improved 3D
RMS accuracy values, widely adequate for both optimization scenarios.

Table 5.7: 3D geo-location accuracy analysis using different adjustment settings for the
Innsbruck stereo set (†ICPs equal GCPs). Values are given for East (E), North (N),
and Height (H).

Type GCPs ICPs Mean adjusted [m] RMS adjusted [m]
E N H E N H

constant
terms

1 29 -0.79 -0.07 -0.93 0.92 0.39 1.13

10 20 0.10 -0.20 -0.33 0.50 0.45 0.70

30 30
†

0.00 0.00 0.00 0.48 0.38 0.65

constant 4 26 1.25 -0.68 -0.16 1.41 0.88 0.72

and linear 10 20 -0.02 -0.30 -0.21 0.46 0.48 0.75

terms 30 30
†

0.00 0.00 0.00 0.40 0.30 0.61

The second test is based on the Ljubljana set where the 3D geo-location accu-
racy is evaluated using GCPs and ICPs with the results depicted in Table 5.8
and in Table 5.9. The initial RMS values reveal that the 2D geo-location resid-
uals directly propagate to the resulting 3D geo-location accuracies. Thus,
all stereo pairs containing the images 5 or 6 yield large displacements (also
cf. Table 5.4). After adjustment the majority of pairs yield high accuracies
for the GCPs in planimetry of 0.2 m to 0.3 m and also in height of 0.2 m to
0.4 m. Actually, an accuracy at this level was never achieved before and is
based on the highly accurate reference data. The statistics of ICPs are, as
expected, a bit worse but no overfitting is observed. Figure 5.2 shows the
3D errors for GCPs and ICPs sorted w.r.t. the ICPs. Interestingly, there are
four stereo pairs holding lower accuracy in height, namely the pairs 1-3,
2-4, 3-5, and 4-6. When compared to the acquisition disposition depicted in
Figure 3.3 all those pairs are pure across track images from two adjacent
orbits with small convergence angles of about 12.5◦, which is the reason for
the poor height estimates.
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Table 5.8: 3D RMS residuals using GCPs and ICPs for the Ljubljana test set given in meters
(part 1). The adjustment is based on GCPs and evaluated on GCPs and ICPs.
Values are given for East (E), North (N), Height (H), and their 3D Length (L).

Name Type RMS initial [m] RMS adjusted [m]
E N H L E N H L

1-2 GCP 1.01 0.65 2.61 2.87 0.18 0.24 0.22 0.38

ICP 0.96 0.77 2.87 3.12 0.34 0.38 0.28 0.62

1-3 GCP 0.89 0.34 1.17 1.51 0.21 0.25 0.62 0.70

ICP 0.82 0.40 1.41 1.68 0.36 0.50 1.00 1.17

1-4 GCP 0.96 0.56 1.59 1.94 0.21 0.28 0.33 0.48

ICP 0.90 0.65 1.95 2.24 0.41 0.41 0.63 0.85

1-5 GCP 0.43 3.80 3.24 5.01 0.20 0.23 0.48 0.57

ICP 0.62 3.92 3.73 5.45 0.40 0.41 0.62 0.85

1-6 GCP 0.68 3.44 8.78 9.45 0.20 0.24 0.36 0.47

ICP 0.68 3.51 8.93 9.62 0.38 0.45 0.33 0.68

2-3 GCP 1.24 0.62 3.39 3.66 0.20 0.23 0.23 0.38

ICP 1.15 0.71 3.79 4.02 0.42 0.35 0.46 0.72

2-4 GCP 1.43 0.60 3.46 3.79 0.19 0.32 0.65 0.75

ICP 1.33 0.62 3.89 4.16 0.49 0.36 0.69 0.92

2-5 GCP 0.65 3.60 4.47 5.78 0.22 0.21 0.22 0.38

ICP 0.90 3.66 4.00 5.50 0.47 0.37 0.41 0.72

2-6 GCP 1.12 2.75 5.51 6.26 0.20 0.24 0.43 0.53

ICP 1.07 2.88 5.57 6.36 0.48 0.43 0.42 0.77

3-4 GCP 1.19 0.55 2.74 3.04 0.22 0.29 0.51 0.62

ICP 1.11 0.62 3.12 3.36 0.41 0.39 0.43 0.71

3-5 GCP 0.85 4.83 7.02 8.56 0.24 0.27 0.71 0.80

ICP 0.79 4.91 7.47 8.97 0.32 0.38 0.87 1.00

3-6 GCP 2.53 3.77 12.79 13.57 0.21 0.22 0.38 0.49

ICP 2.40 3.80 12.82 13.58 0.38 0.44 0.41 0.71
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Table 5.9: 3D RMS residuals using GCPs and ICPs for the Ljubljana test set given in meters
(part 2). The adjustment is based on GCPs and evaluated on GCPs and ICPs.
Values are given for East (E), North (N), Height (H), and their 3D Length (L).

Name Type RMS initial [m] RMS adjusted [m]
E N H L E N H L

4-5 GCP 2.76 2.74 10.43 11.13 0.28 0.28 0.59 0.71

ICP 2.92 2.81 9.80 10.61 0.41 0.38 0.66 0.86

4-6 GCP 3.61 1.49 14.00 14.54 0.27 0.31 0.63 0.75

ICP 3.38 1.68 13.64 14.15 0.62 0.49 0.94 1.23

5-6 GCP 1.48 6.59 0.93 6.81 0.28 0.22 0.32 0.48

ICP 1.63 6.57 1.13 6.86 0.31 0.37 0.40 0.62

all GCP 0.60 2.58 3.13 4.10 0.21 0.24 0.24 0.40

ICP 0.62 2.52 3.35 4.24 0.41 0.40 0.31 0.57

both 0.61 2.55 3.22 4.16 0.29 0.30 0.23 0.48

1-2 5-6 1-6 3-4 3-6 2-3 2-5 2-6 1-4 1-5 4-5 2-4 3-5 1-3 4-6
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Figure 5.2: The 3D length discrepancies for the Ljubljana set sorted from lowest to highest
ICP error. ICP values are given in red and corresponding GCP values in blue.

5.2 Digital Surface Model Generation

Before explaining the resulting DSM quality a very interesting point about
epipolarity is discussed, which is neglected in other literature. As explained
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a high quality epipolar rectification is a pre-requisite for 1D image matching,
like the semi-global matching. However, some may think that a Pléiades
stereo pair is consistent even without sensor model adjustment. Thus, it
may be sufficient to extract a DSM before adjustment and later shift this
DSM to some reference system (cf. (Piermattei, Marty, Karel, et al., 2018)).
Therefore, a test is conducted to determine if the initial sensor models are
accurate enough to get epipolar images. A number of TPs is measured in
the original images and projected to the epipolar images. There, the distance
orthogonal to the epipolar direction (i.e., the column direction) is gathered,
which should be zero in the optimal case. Table 5.10 shows the statistics of
the deviation of tie-points orthogonal to the according epipolar direction
before and after sensor model adjustment for the Innsbruck East Triplet.
While the STD values only reduce a bit, a significant change in the mean
values is observed. Especially in the pair 2-3 the initial mean value is −0.66
pixel, thus more than a half pixel off. It is known that 1D matching degrades
drastically if the correct match is not located in the current 1D search space.
Overall, this is a proof that sensor models should be adjusted before further
3D processing. In cases where no GCPs are available the sensor model
adjustment should be performed with TPs (cf. (Piermattei, Marty, Karel,
et al., 2018)). Each TP between two images yield four additional equations
in our non-linear equation system (cf. Eq. (4.18) and Algorithm 4.1) but
also three additional unknowns (i.e., the 3D location of that point). TPs
can be automatically derived for such stereo images by, for instance, using
the scale invariant feature transform (SIFT) (Lowe, 2004), speeded up robust
features (SURF) (Bay, Tuytelaars, and Van Gool, 2006), or similar techniques
(Tuytelaars and Mikolajczyk, 2008). In this case, a block adjustment can be
performed for multiple images and thus for multiple RPC sensor models
simultaneously.

Table 5.10: Statistics on the deviation of tie-points orthogonal to the epipolar direction
given in pixels for the Innsbruck East Triplet.

Model TPs before adjustment [pxl] after adjustment [pxl]
Mean STD Mean STD

1-2 20 -0.29 0.58 -0.04 0.48

2-3 20 -0.66 1.05 0.03 0.74
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Next, for all test sites dense DSMs were extracted using the Pléiades data
and the presented workflow. The evaluation is limited to the three prime test
sites Innsbruck, Trento, and Ljubljana. For image matching the parameters
as given in Table 5.11 are used for all experiments. The two sets describe the
standard version and the more accurate version. The main differences are
the cost functions and the search sizes of intermediate and final pyramid
levels. Due to the search sizes the accurate version is significantly slower
and thus for some application the standard version is useful as well. In the
given evaluation the settings of the accurate version are used. The matching
and initial DSM generation is performed with the original resolution of 0.5
m. The downsampling to 1.0 m GSD is then performed in the fusion process
by using a kernel size of 3× 3 pixel and a step size of 2 in East and North
direction. This downsampling is done to allow a direct comparison to the
LiDAR data which is also given with 1.0 m GSD. For visual comparison and
analysis, subsets of those test sites are presented in this section.

Table 5.11: Main parameters used for stereo matching: Two sets are defined, namely the
standard version and the more accurate version. Differences in the parameters
are marked in bold face.

Parameter Standard version Accurate version

Matcher SGM SGM

Cost function Census 9× 9 pixel Census 9× 9 pixel
and SAD 3× 3 pixel

Prediction SRTM DEM SRTM DEM
Penalties P1 = 0.4, P

′
2 = 1.5 P1 = 0.4, P

′
2 = 1.5

Pyramid levels 4 4

Search size 41 / 15 / 15 41 / 31 / 31
Cost threshold 0.5 / 0.75 / 0.75 0.5 / 0.75 / 0.75

Backmatching threshold 1.5 1.5
Peak filter size 20 / 25 / 25 20 / 25 / 25

Figure 5.3 shows a subset of the Trento test site, which covers a hospital
and its surrounding area of 360 × 360 m2. A Pléiades ortho-image, the
corresponding LiDAR DSM, the stereo-derived DSMs as well as the triplet-
derived DSM are illustrated. The terrain heights of the DSMs are scaled
between 240 m (black) and 300 m (white). Infrastructural changes due to
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ongoing construction activities since the LiDAR acquisition can be seen. For
instance, there is a new helipad and a parking lot, which previously used
to be a park. The stereo-derived DSMs in general are affected by occlusion
areas, which use to increase with increasing stereo intersection angle, and
which almost vanish in the triplet-derived DSM. The DSM derived from
the 1-2 Pléiades stereo pair looks different in comparison to the others and
seems to be more similar w.r.t. the LiDAR model. This is due to the small
stereo intersection angle, which implies higher image similarity and thus a
higher performance of the stereo matching with reduced occlusion areas.
However, due to this weak geometric disposition the height accuracy of this
DSM is worse than for the other DSMs.

Exemplary quantitative analysis was made through comparison of LiDAR
to stereo and triplet-derived DSMs. Due to the large temporal gap between
LiDAR and Pléiades data acquisition only selected areas were analyzed
which are not affected by temporal change due to construction, vegetation
growth or cloud cover. The results are summarized in Table 5.12. The STDs
of the height differences confirm the interdependence of stereo intersection
angles and 3D mapping accuracy, with worst accuracy achieved for the
1-2 stereo pair, that was discussed above. The triplet-derived DSM shows
similar accuracy like the other stereo-derived DSMs. Nonetheless, it shows
best consistency in comparison to the LiDAR DSM when considering its
visual appearance. It shows a clearly reduced amount of occlusion areas,
and more reliable and improved structures of buildings.

Figure 5.4 shows a subset of the Innsbruck test site, which covers an urban
region of 1950× 1000 m2. It illustrates an ortho-image, a LiDAR DSM, a
stereo DSM generated by the commercial software Geomatica 2013 by PCI
Geomatics (denoted as 2D matching DSM), and the stereo-derived DSM as
generated by our workflow (proposed DSM). The comparison to this old PCI
version is just performed to emphasize the influence of the stereo matching
algorithm as in this version a 2D matcher was implemented. Newer versions
also use SGM and thus show similar results than ours. The DSM height
values are scaled within 620 m to 680 m. When comparing LiDAR and
Pléiades DSMs, temporal changes again occur, like a new residential area in
the upper-left image area. It is obvious that the proposed workflow preserves
3D breaklines better than the workflow based on 2D matching. For instance
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(a) Pléiades ortho-image (b) DSM model 1-2 (c) DSM model 2-3

(d) LiDAR DSM (e) DSM model 1-3 (f) Triplet DSM

Figure 5.3: Detail view of a hospital at the Trento test site.

large buildings are decently reconstructed while they are missing in the 2D
matching based DSM.

Table 5.12: Statistics of height differences between LiDAR and Pléiades DSMs on non-forest
regions.

Study Area Model Mean [m] STD [m] Area [km2]

Trento
Triplet

1-2 -0.62 4.53 10.8
2-3 -0.55 1.97 10.8
1-3 -0.53 2.25 10.8

Triplet -0.56 1.99 10.8

Innsbruck
1-2 0.25 1.68 26.5Stereo
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(a) Pléiades ortho-image (b) LiDAR DSM

(c) DSM based on 2D matching (d) DSM based on the
proposed workflow

Figure 5.4: Detail view of an urban area at the Innsbruck stereo test site.

For a partly forested region at test site Innsbruck with 550× 550 m2 Fig-
ure 5.5 shows a Pléiades ortho-image as well as a the height differences
between the LiDAR and the Pléiades DSM, scaled from −25 m to +25 m.
Thus, bright areas indicate forest clear cuts, while dark areas correspond to
forests growth between the LiDAR and the Pléiades acquisition dates.

Analogue to the Trento test site, a quantitative accuracy assessment was
made for a selected area, which could be supposed to be free of temporal
changes. The results are included in Table 5.12 and show a slightly better
accuracy than the Trento data sets. Overall, one very important outcome
is the fact that the final DSM accuracy is worse w.r.t. the maximal possi-
ble values gathered through the sensor model optimization (cf. Table 5.6).
Obviously, this decrease comes from the image matching step that on the
one hand cannot yield the same accuracy as a manual point measurement.
On the other hand in homogenous and repetitive image regions errors will
occur or incorrect matches will just be interpolated.
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(a) Pléiades ortho-image (b) LiDAR minus Pléiades DSM

Figure 5.5: Detail view of a partly forested area at the Innsbruck stereo test site.

The last test set Ljubljana is the most interesting one, due to its multiple
view geometry. The three along track stereo pairs can be used to form 15
along and across track stereo pairs as listed in Table 3.2. For all those 15
pairs DSMs are extracted and in addition for some selected combination of
pairs. To be able to compare the coverages of different DSMs the threshold
in fusion for populating an output DSM pixel is set to 1/3 of the input
pixels. For example, if we have four DSMs and the fusion uses a 3× 3 pixel
kernel, then at least 12 pixels out of the 36 have to be valid such that an
output is generated. This rather high threshold is chosen to allow a fair
comparison of resulting nodata pixels. Note, that all remaining gaps could
be filled by means of interpolation within matching or fusion. However,
filling is purposely omitted to be able to recognize if multi view images have
an impact on the reconstruction completeness. Table 5.13 lists a multitude
of statistical values, in particular minimal, maximal, mean, STD, MED,
NMAD, mean absolute error (MAE), percentage of nodata values (i.e.,
100%− completeness), and the convergence angles. Figure 5.6 complements
the statistics and depicts the distributions of differences from LiDAR and
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Pléiades DSMs (we took the whole area of the LiDAR acquisition with 345
km2 for the comparison as in (Perko, Schardt, et al., 2019)).

It can be observed that there are huge outliers both positive and negative.
They actually stem from the LiDAR reference data as there some height
values in rivers are completely incorrect. As discussed in Section 4.2.6 those
outliers lead to non-robust mean and STD estimates. The MAE measure
also suffers from outliers and cannot contribute to the interpretation. Next,
the plots reveal that four distributions are significantly worse (i.e., larger
STD and NMAD) than all others. Those pairs are 1-3, 2-4, 3-5, and 4-6.
Those pairs are exactly the four pure across track stereo pairs (cf. Figure 3.3)
with small convergence angles. Due to the outliers those pairs cannot be
detected reliably with the STD estimate, but with the NMAD. Two of these
distributions show a bias in their mean value, that is, pairs 1-3 and 3-5.
Again this behavior is not mapped to the mean values, but to the MED
values. This just emphasizes that non-robust fitting of a normal distribution
based on mean and STD values is not the best idea for our difference models
as they are non-Gaussian distributed.

As discussed above, it can be observed that small intersection angles lead
to large DSM completeness (i.e., low nodata percentage) where the 1-3
pair performs best. However, despite the completeness this pair is rather
inaccurate with one of the largest NMAD values. This behavior can be traced
back to the small intersection angle, such that the stereo images are more
similar and thus, image matching results in a more complete disparity map.
However, due to the small intersection angle the spatial forward intersection
yields a larger 3D error. Same holds, for instance, for the 2-4 pair.

We also plotted STD, NMAD, and nodata percentages versus the conver-
gence angles as depicted in Figure 5.7. On the left side the plots are given
using the complete error distribution including all gross outliers. On the
right side only errors with absolute values smaller than 6 m are used such
that gross outliers are removed. At first, it can be seen that the STD trends
change completely in these two experiments. While using all data the STD
is directly correlated to the convergence angle, it is indirectly correlated
when removing the gross outliers. In addition the value range of the STD
changes drastically. This behavior again shows that the STD estimate is
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indeed not robust by any means and should be avoided when interpret-
ing DSM differences. The NMAD plots on the other side yield the same
trend and comparable number ranges for both experiments. As expected
the NMAD decreases (and thus the accuracy of the DSMs increases) with
increasing convergence angles. The percentage of nodata values is directly
correlated with the convergence angle and, obviously, the number of nodata
values increases in the second experiments as outliers are removed.

Next, combinations of stereo pairs are processed. Groups with small in-
tersection angles in the range of 10◦ to 20◦ (i.e., pairs 1-3, 2-4, 3-5, and
4-6), medium angles in 20◦ to 30◦ (i.e., pairs 1-2, 1-4, 1-5, 2-3, 2-6, 3-4, 3-6,
and 5-6), and large angles in 30◦ to 40◦ (i.e., pairs 1-6, 2-5, and 4-5). Here,
the medium angles perform best, seen on the low NMAD and low nodata
values. Only smaller or only larger angles degrade the resulting DSM. When
using all 15 pairs, obviously, the nodata regions are lowest with only 1.1%
(i.e, a completeness of 98.9%). Note, that the reference LiDAR data holds
0.44% of nodata values, such that the real completeness is even higher than
reported. Also the NMAD of all pairs is decently small, however it is even
lower for, e.g., the pairs in medium angle range. Here, we conclude that
stereo pairs should be selected within a certain intersection angle range,
where 20◦ to 30◦ seem optimal (which correspond to a B/H ratio in the
range from 0.35 to 0.55). Two additional combinations are processed, namely
1-2 & 3-4 and 1-2 & 3-4 & 5-6, i.e., only along track stereo pairs. As all those
pairs have convergences angles around 25◦ the results are quite good, where
the NMAD of the triple along track pair is even the best.

Figure 5.8 visualizes the differences in various DSMs. Next to the reference
LiDAR DSM the Pléiades DSM is shown based on the fusion of all stereo
pairs with convergence angles in from 20◦ to 30◦. For comparison also the
DSM from the good stereo constellation 1-2 is depicted and from the worse
performing constellation 1-3. At first we see that the LiDAR model holds
information like the power lines that cannot be reconstructed from Pléiades
images (but nevertheless contributes to our error metric). From the Pléiades
DSMs the fused one is visually a lot better, since it contains less gross errors
(cf. the roof of the hall in the lower part of the image), it is more complete,
and it is also smoother. Comparing only the single stereo results the pair 1-2
yields a smoother surface than 1-3. Additionally, the roof structure of the
central large building is not reconstructed from the 1-3 pair. Overall, this
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visual comparison supports our assumption that using multi view Pléiades
sets allow higher accurate 3D modeling than single stereo sets.

Table 5.13: Accuracy analysis of the resulting DSMs in comparison to LiDAR reference
data. Best results are shown in bold face for single stereo and for multi stereo
sets.

Model Min Max Mean STD MED NMAD MAE nodata δ
[m] [m] [m] [m] [m] [m] [m] [%] [◦]

1-2 -895.1 769.2 -0.36 4.33 0.06 0.97 2.05 14.34 25.2
1-3 -895.5 627.5 -1.06 4.47 -0.49 1.46 2.33 6.60 12.2
1-4 -893.8 627.9 -0.39 4.51 0.07 0.94 2.03 18.77 27.5
1-5 -891.4 630.4 -0.53 4.48 0.03 1.20 2.22 18.07 24.0
1-6 -894.1 626.8 -0.47 5.48 -0.24 0.86 2.25 27.55 33.9
2-3 -895.7 628.8 -0.26 4.47 0.07 1.04 2.15 16.76 26.4
2-4 -896.2 632.4 -0.40 4.47 0.08 1.46 2.26 7.76 12.5
2-5 -893.5 628.4 0.09 5.39 0.28 0.87 2.36 28.00 37.6
2-6 -382.9 627.9 -0.17 4.90 0.03 1.14 2.38 22.77 25.0
3-4 -895.0 627.5 -0.06 4.49 0.22 1.01 2.13 14.82 22.7
3-5 -381.5 629.0 -0.09 4.56 0.43 1.58 2.44 10.72 13.0
3-6 -894.7 627.4 -0.61 4.53 -0.24 1.04 2.13 19.06 24.7
4-5 -894.4 628.1 0.19 4.90 0.37 0.93 2.30 25.05 30.3
4-6 -897.3 630.2 -0.66 4.75 -0.23 1.69 2.52 12.28 12.6
5-6 -893.1 766.0 -0.48 4.61 -0.08 0.92 2.09 21.22 26.2

1-2, 3-4 -895.1 628.3 -0.20 4.41 0.15 0.91 2.07 12.21 many
1-2, 3-4, 5-6 -894.6 627.6 -0.29 4.37 0.08 0.84 2.01 12.85 many
δ ∈ [0, 20] -896.4 626.7 -0.51 4.07 -0.01 1.14 1.98 11.07 many
δ ∈ [20, 30] -894.2 627.9 -0.37 4.56 0.05 0.93 2.16 7.30 many
δ ∈ [30, 40] -894.0 575.6 -0.05 2.68 0.16 0.41 1.00 55.19 many

all -894.6 765.4 -0.46 4.74 0.05 1.09 2.32 1.12 all

Just for visual purposes a subset of the Tian Shui test site is depicted in
Figure 5.9 with 1 m GSD. There the CIR ortho image is shown together with
the relief shaded DSM covering 2001× 1701 m2 with heights from 1380 m
to 1780 m. The agricultural use of the landscape is clearly visible due to the
nicely reconstructed rice terraces.
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Figure 5.6: Distribution of differences from LiDAR and Pléiades DSMs for all 15 stereo
pairs of the Ljubljana test site. The error range of −6 m to +6 m is shown.

5.3 Digital Terrain Model Generation

Tests are preformed on the Innsbruck East triplet data set where the DSM
is derived with 1 m GSD. For DSMs with lower or higher resolution the
processing parameters very likely have to be appropriately tuned to achieve
optimal filtering results. For all tests the values given in Table 5.14 have
been used.

Table 5.14: Parameters for terrain model extraction as used in all tests.

Parameter Value

Filter extent 91 meters
Height threshold 3 meters
Slope threshold 30 degrees
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Figure 5.7: Plots showing (a,b) STD, (c,d) NMAD, and (e,f) percentage of nodata values
plotted versus the convergence angle for the Ljubljana test site. (a,c,e) are
based on the complete error distribution, while (b,d,f) is based on a clipped
distribution, where all gross outliers with an absolute value larger than 6 m are
removed.
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(a) (b)

(c) (d)

Figure 5.8: Selected DSM subsets with 800× 800 m2 and 1 m GSD of the Ljubljana test
site. Height ranges from 410 m to 500 m. Shown are (a) LiDAR reference, (b)
Pléiades DSM based on all stereo pairs with convergence angles in the range
of 20◦ to 30◦, (c) Pléiades DSM based on stereo pair 1-2, and (d) Pléiades DSM
based on stereo pair 1-3. Dark blue pixel indicate non-reconstructed regions.

5.3.1 Qualitative Evaluation

For visual comparison the results of several ground pixel filtering methods
are given in Figure 5.10 for an area of 721× 361 m2, showing a residential
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(a) (b)

Figure 5.9: Ortho CIR image (a) and relief shaded DSM (b) are visualized for a subset of
the Tian Shui test site covering 3.4 km2.

area at a hillside. The figure shows (a) the pansharpened true-ortho image
(c) along with the input DSM. Further, it shows (b,d,e) the ground masks as
resulting from DSM filtering by (b) using only two directions (i.e., left and
right, which corresponds to the method in (Meng, L. Wang, et al., 2009)),
(d) using 8 directions, and (e) using 8 directions as well as slope dependent
processing. It is clearly visible that due to the hillside location the first two
methods filter too many points due to negligence of the local terrain slope,
whereas our advanced MSD method clearly yields a highly plausible and
reliable segmentation. Forest areas and houses are removed while many
ground points are correctly detected. Figure 5.11 shows a comparison of
(a) 3D views of the input DSM and (b) the resulting DTM, which makes
the removal of trees and houses very well visible. Figure 5.12 additionally
shows detailed views of an urban and a suburban region.

5.3.2 Quantitative Evaluation

First, the Pléiades tri-stereo based DSM is compared to the LiDAR DSM. Due
to the large temporal gap between LiDAR and Pléiades data acquisitions
only selected areas are analyzed, which are not affected by temporal changes
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(a) Ortho image (b) Ground mask, 2 directions

(c) DSM (d) Ground mask, 8 directions

(e) Ground mask, 8 directions,
slope dependent

Figure 5.10: Subset of (a) true-ortho image, (c) input DSM, and (b,d,e) together with ground
masks using different methods.

due to construction, vegetation growth or cloud cover. Mean values as well
as standard deviations of the height differences are summarized in Table 5.15

for an area of 25.4 km2. Here, the Pléiades based DSM has a bias of 0.64 m
and thus, is actually too high. However, this is within the height uncertainty
given for this sensor (Stumpf et al., 2014; Perko, Raggam, Gutjahr, et al.,
2014; Berthier et al., 2014). Consequently, the differences of LiDAR and
Pléiades based DTMs will have the same bias, which however is not a result
of the presented DTM generation algorithm.
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(a) (b)

Figure 5.11: 3D view of (a) the DSM as shown in Figure 5.10 and (b) the resulting DTM
after applying the proposed filtering method.

Second, the difference of the reference LiDAR DTM to the Pléiades DTM,
which has been extracted using the proposed algorithm, is analyzed. The
results are given in Table 5.15. The mean bias between both DTMs indeed
is very similar to the one achieved for the DSMs. Due to the fact, that
not all non-ground points are perfectly removed during the Pléiades DTM
generation, the achieved DTM is locally above the LiDAR DTM, resulting in
an additional mean height difference of 0.11 m. However, this bias is really
small and it is below the absolute accuracy of LiDAR height measurement
as well as Pléiades stereo height measurement.

Table 5.15: Statistics of height differences between LiDAR and Pléiades based DSM and
DTM for the Innsbruck stereo data set.

Model Mean [m] STD [m] Area [km2]

∆DSM -0.64 2.42 25.4
∆DTM -0.75 1.10 25.4

Figure 5.13 shows DSMs and DTMs as generated from LiDAR and Pléiades
data for two small areas of 100× 100 m2 each, as well as profiles for selected
objects, representing (a) a skyscraper and (b) a round building, respectively.
Analysis of the plotted profiles gives indication, that small structures, like
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.12: Urban subset (left) and suburban dataset (right). Shown are (a,b) ortho image,
(c,d) extracted DSM, (e,f) derived DTM, and (g,h) according nDSM in relief
view.

the buildup on the first skyscraper, or the hole in the center of the round
building, are not reconstructed using Pléiades data. The DTM generation
is able to remove buildings and in some places our DTM looks even better
than the LiDAR DTM, for instance, on the left border of the round building
where the LiDAR DTM is even below ground level.
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Figure 5.13: Profile comparisons of DSMs and DTMs from LiDAR and Pléiades for two
small scenes, representing (a) a skyscraper and (b) a round building.

Overall, the resulting DTMs are visually appealing, which is also confirmed
in the quantitative evaluation w.r.t. LiDAR reference data. Nonetheless, as
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long as the extraction of a DTM solely relies on the corresponding DSM,
dedicated problem features and areas are inherent to the filtering algorithm
being applied:

1. First, large non-ground objects may not be filtered. In particular if an
object is larger than the DTM filtering size in all eight directions, it
will remain in the DTM.

2. Second, this obviously holds for larger forests, where no ground point
is visible. Such forest stands will also remain in the DTM.

3. Third, the presented robust slope estimation will fail on mountain
peaks such that the minimal value will be determined incorrectly.
Then, the peaks will be cut off with the size of approximately half of
the filter kernel size.

4. Fourth, inaccurate input DSMs directly propagate failures to the re-
sulting DTMs. Especially local DSM outliers with low height values
are classified as ground points automatically.

In post-processing small patches in the ground mask are removed by apply-
ing a peak filter (cf. Figure 5.10), since, e.g., single pixels are more unreliable
than others. The resulting interpolated DTM is not modified, as we want
to compare the initial filtering results. A smoother surface could always be
gathered by, e.g., applying a Gaussian, a median, or a bilateral filter (Tomasi
and Manduchi, 1998).

87





6 Discussion

Researchers and operators require robust and automatic workflows that
yield highly accurate 3D mapping products from VHR multi-view stereo
satellite data. Thus, this thesis proposed an end-to-end workflow that yields
the desired 3D mapping on the example of the Pléiades satellite constellation.
The contributions w.r.t. the methodological development are as follows:

1. Introduction of the complete end-to-end 3D mapping workflow.
2. RPC-based sensor model adjustment in object-space, employing New-

ton’s method to solve the non-linear equation systems.
3. Epipolar rectification, where the method in (Gutjahr et al., 2014) was

the first time applied to optical satellite images.
4. Interpolative approach in the non-linear epipolar rectification for

speed-up.
5. Combined Census transform with SAD matching cost for increasing

the accuracy of image matching.
6. Explicit modeling of the function which is used to vary the penalty P2

in SGM.
7. Extension of classical SGM to a truncated SGM by limiting the lo-

cal disparity range, resulting in significant speed-up, while yielding
comparable accuracy.

8. Memory optimization in SGM by discretizing the disparity space
image to 16 bits.

9. Explicit modeling of nodata values in the epipolar images during
matching for speed-up.

10. Disparity prediction for increasing the robustness and efficiency in top
level image matching.

11. Subpixel normalization of the resulting disparity maps.
12. Extension of the local DSM fusion method to allow a downsampling

within the fusion step.
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13. Novel multi-directional slope dependent DTM generation method,
which extends the approach in (Meng, L. Wang, et al., 2009).

Additionally, all steps of the workflow were evaluated by in-depth accuracy
assessments based on a multitude of satellite and according meta data.
The assessment itself represents a main contribution of this thesis. Since
the presented methods were implemented within a commercially available
software interested audience can directly build upon the findings. Note, that
the presented workflow was already successfully applied by other research
groups, for instance, in (Deutscher et al., 2013; Persson, 2016; Persson and
Perko, 2016; Himmelreich, 2017; Leopold et al., 2017). Especially, the DTM
generation was applied in (Mousa, Helmholz, and Belton, 2017; Luethje,
Tiede, and Eisank, 2017; Auer, Schmitt, and Reinartz, 2017; Misra and
Takeuchi, 2017; Auer, Reinartz, and Schmitt, 2018; Panagiotakis et al., 2018;
Mousa, Helmholz, Belton, and Bulatov, 2019).

6.1 Main Findings

From the methodological point of view, we stated that the presented RPC
sensor model adjustment in object-space is simple and works well. In con-
trast to image-space based methods, no additional information like the
coefficients of the affine transformation has to be stored. Furthermore, a
height dependency is an intrinsic part of the adjustment. Epipolar rectifica-
tion is solved, the presented solution is very general and can also be used
for SAR geometries. Several extensions in image matching were presented,
mainly for speedup reasons. Details on the adaptive penalty paradigm
were presented together with an extension to use truncated disparity space
images (again for speedup). For better robustness the concept of top level
predictions was introduced, which are based on a coarse input DSM, if
existing. Subpixel refinement was discussed and a simple solution was
described that yields uniform distributed subpixel fraction distribution.
Storage concepts for 3D point clouds and their resampling to a regular grid
were discussed as well. For DSM fusion a simple method was enhanced to
also allow downsampling in the same step. Statistical measures, in partic-
ular the MED and NMAD, were discussed and insights were given why
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the mean and the STD should not be used to compare DSMs. Regarding
DTM generation a novel method was proposed and described in detail. In
comparison to its initial publication it was also extended. The method itself
sticks out with its simplicity while yielding good results.

Also the evaluation of all 24 Pléiades images revealed exciting insights. As
expected the initial 2D and thus also 3D geo-location accuracy is inadequate
for mapping. It also has been shown that even one along track stereo pair
may suffer from relative geometric distortions which was demonstrated as
deviation orthogonal to the epipolar direction. After adjustment the residual
errors dropped significantly. Here, we observed that the lower limit comes
mainly from the quality of the reference GCPs and the image measurements.
For the Ljubljana multi-view set where highly precise reference information
was available a 2D and 3D accuracy was achieved as never achieved before
(3D accuracies in the range of 0.2 m to 0.3 m in planimetry and 0.2 m
to 0.4 m in height w.r.t. GCPs). This can be seen as empirical proof that
the proposed sensor model adjustment and spatial forward intersection
procedure perform as desired. During the analysis we detected an accuracy
drop within the across track stereo pairs of the Ljubljana test site, which
can be traced back to the small convergence angles of those stereo pairs.
One specific outcome of the study on the multiple view data set was that
convergence angles in the range of 20◦ to 30◦, which correspond to a B/H
ratio of 0.35 to 0.55 yield best results. It seems that this convergence angle
range is the optimal tradeoff in quality between image matching and spatial
point intersection. Thus, in cases where many images exists only stereo
pairs with appropriate convergence angle should be used. The comparisons
of LiDAR to Pléiades based DSMs showed highly accurate reconstructions,
with a NMAD around 0.9 m. It also revealed, that robust estimates for
characterizing a Gaussian distribution have to be used in remote sensing
to avoid incorrect biases when comparing DSMs. Using multiple stereo
pairs for DSM generation increased the completeness and the accuracy.
Terrain model extraction worked well and introduced no additional errors
on the height values. Problems occur in large forest where no ground height
value is visible. This aspect may degrade DTMs especially in forested hilly
terrains.

Overall, the presented end-to-end workflow delivers mapping products of
similar quality than other commercial software packages.
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6.2 Future Research Goals

The most difficult blocks within the processing chain were identified as the
stereo matching, the fusion process, and DTM generation. The first two
methods directly contribute to the quality of the resulting DSM. In stereo
matching, we should try to increase the plausibility of the cost functions. A
realistic way will be to learn the cost function on huge ground truth data
sets based on deep learning of a convolution neural network. A second
option which seems to be promising is to deeply investigate the generalized
Census transform and combine it with a robust cost function that also yields
useful correspondences in texture-less regions.

The fusion process should somehow globally optimize the resulting surface,
while being computationally feasible. Like in SGM a RMF could be solved
in a heuristic manner. Anyhow, like in photogrammetry with increasing
resolutions the community will go from DSM as the desired output to a
fully 3D point cloud. Thus, the fusion of multiple stereo disparities has then
to be performed in 3D yielding a simplified triangulated textured point
cloud representation.

As in the fusion process, DTM generation could be solved globally, e.g.,
by a variational approach. In addition, the multi-spectral information, i.e.,
our ortho mosaic may serve as a input in processing. A classification on
the multi-spectral data would help to discriminate man-made objects and
vegetation from bare earth regions.

To reduce the manual effort in the whole process automatic methods for
transferring GCPs from SAR amplitude images to optical images are needed.
Actually, the underlying data exists (e.g., worldwide TerraSAR-X acquisition
that were used in the WorldDEM generation) and also methodologies for
multi-modal image matching. In the optimal case such a transfer work-
flow could be directly performed at the satellite data providers. Then end
users would get optical images and GCPs or optical images with already
optimized sensor models.
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An end-to-end workflow for mapping with very high resolution satellite
data form the basis for any further semantic analysis. In specific, many
applications in remote sensing rely on the following 3D mapping products:
(1) DSM, (2) DTM, (3) nDSM, and (4) ortho-rectified image mosaic. For
this reason, this work described all underlying principles for satellite-based
3D mapping and proposed methods that extract all those products from
multi-view stereo satellite imagery. The study was based on, but not limited
to, the Pléiades satellite constellation. Beside an in-depth review of related
work, the methodological part proposed solutions for each component
of the end-to-end workflow. In particular, this included optimization of
sensor models represented by rational polynomials, epipolar rectification,
image matching, spatial point intersection, data fusion, DTM generation,
and ortho mosaicing. For each step implementation details were proposed
and discussed. Another objective of the study was a detailed assessment
of the resulting output products. Hence, a variety of test sites were chosen
and data sets were gathered representing different acquisition scenarios.
The assessment was based on 24 Pléiades images. First, the accuracies of
the 2D and 3D geo-location were analyzed. Second, surface and terrain
models were evaluated, including a critical look on the underlying error
metrics. The differences between single stereo, tri-stereo, and multi-view
data sets were analyzed as well. Overall, 3D accuracies in the range of 0.2
m to 0.3 m in planimetry and 0.2 m to 0.4 m in height were achieved w.r.t.
ground control points. Retrieved DSMs showed normalized median absolute
deviations around 0.9 m in comparison to reference LiDAR data. Multi-view
stereo outperformed single stereo in terms of accuracy and completeness
of the resulting DSMs. Last but not least, the main scientific achievement
of this thesis are the three accepted publications (Perko, Raggam, Schardt,
et al., 2018; Perko, Hirschmugl, Deutscher, et al., 2019; Perko, Schardt, et al.,
2019) and the publication currently under review (Perko, Raggam, and Roth,
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2019). They show that the topic of this thesis is of interest for the scientific
community and demonstrate the scientific level of the proposed end-to-end
mapping workflow.
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ages.” In: In IEEE International Geoscience and Remote Sensing Symposium
(cit. on pp. 1, 9, 76, 93).

Perko, Roland and Christopher Zach (2016). “Globally Optimal Robust DSM
Fusion.” In: European Journal of Remote Sensing 49, pp. 489–511 (cit. on
pp. 15, 16, 47).

Persson, Henrik J. (2016). “Estimation of boreal forest attributes from very
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