
submitted to

Graz University of Technology

DOCTORAL THESIS

Stefan Lendl, DI

Generalizations of
Classic Combinatorial Optimization Problems

on Graphs and Matroidal Structures:
Algorithms and Complexity

Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Bettina Klinz

Institute of Discrete Mathematics

to achieve the university degree of

 Doktor der technischen Wissenschaften

Supervisor

Graz, June 2019

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other

than the declared sources/resources, and that I have explicitly indicated all material

which has been quoted either literally or by content from the sources used. The text

document uploaded to TUGRAZonline is identical to the present doctoral thesis.

Date Signature

Contents

Acknowledgements iii

1 Introduction and Preliminaries 1
1.1 Preliminaries . 1

1.1.1 Sets, Matrices, Vectors and Polyhedra 1

1.1.2 Graphs . 2

1.1.3 Matroids and Polymatroids . 3

1.1.4 Computational Complexity and Algorithms 5

1.1.5 Robust Optimization . 5

1.2 Key Problems in this Thesis . 6

1.3 Connections and the Common Thread Among the Studied Problems . . . 8

1.3.1 Generalized Classes of Feasible Solutions 9

1.3.2 Generalized Cost Structures . 9

1.3.3 Robust Optimization . 10

1.3.4 Influencing Factors on the Computational Complexity 10

1.4 Outlook on Main Results . 11

2 Dispersing Obnoxious Facilities on a Graph 15
2.1 Introduction . 15

2.2 Notation and Technical Preliminaries . 16

2.3 NP-Completeness Results . 18

2.3.1 NP-Hard Cases with Odd Numerator 18

2.3.2 NP-Hard Cases With Even Numerator 21

2.3.3 Containment in NP . 22

2.4 The Polynomial Time Result for 𝛿 = 2 . 23

2.5 The Polynomially Solvable Cases . 26

2.6 Integer Edge Lengths . 28

2.7 Special Graph Classes . 30

3 Steiner Problems on Interval Graphs 33
3.1 Introduction . 33

3.2 Definitions and Preliminary Results . 34

3.3 The Steiner Path Cover Problem . 35

3.4 The Steiner Cycle Problem . 38

3.5 Streaming Algorithms – The Problem of Limited Screen Size 40

3.6 Conclusion . 42

i

Contents

4 Combinatorial Optimization with Interaction Costs 43
4.1 Introduction . 43
4.2 General Complexity . 45
4.3 The Interaction Matrix with Fixed Rank 46

4.3.1 One-Sided Unconstrained Fixed Rank COPIC 47
4.3.2 General Fixed Rank COPIC via Multi-Parametric Optimization . 50

4.4 Diagonal Interaction Matrix . 51
4.4.1 Unconstrained Feasible Sets . 52
4.4.2 Uniform and Partition Matroids 53
4.4.3 Matroid Bases as Feasible Sets . 54
4.4.4 Pairs of Paths . 55

4.5 Linearizable Instances . 57
4.6 Conclusion . 62

5 Matrix Completion Problems 65
5.1 Introduction . 65
5.2 Large matrices . 66
5.3 Permuted Matrices with Non-Decreasing Rows and Columns 68
5.4 Bottleneck Monge Matrices . 70
5.5 Monge Matrices . 71
5.6 Open Questions . 75

6 Recoverable Robust Discrete Optimization 77
6.1 Efficient Algorithms for the Recoverable (Robust) Selection Problem . . . 77

6.1.1 Introduction . 77
6.1.2 A Greedy Algorithm for the Recoverable Selection Problem 78
6.1.3 A Linear Time Algorithm for the Recoverable Selection Problem . 82

6.2 Min Cost Matroid Basis with Cardinality Constraints on the Intersection 95
6.2.1 Introduction . 95
6.2.2 Reduction of (𝑃≤𝑘) and (𝑃≥𝑘) to Weighted Matroid Intersection . 96
6.2.3 A Strongly Polynomial Primal-Dual Algorithm for (𝑃=𝑘) 97
6.2.4 Recoverable Polymatroid Base Problem 104
6.2.5 The Recoverable Robust Matroid Base Problem under Uncertainty

Degrees . 109
6.3 Conclusion and Open Problems . 111

Bibliography 113

ii

Acknowledgements

I would like to thank my advisor Bettina Klinz for her guidance, support and being
available to help in any kind of situation throughout my doctoral studies. Being always
able to just knock on her door whenever necessary was just one of many things that made
doing a PhD under her supervision a great experience. Specifically, I also want to thank
her for her trust, allowing me to freely work on problems I liked, while always giving
guidance when needed. I am also very grateful for the research ideas she shared with me
and the opportunity for joint work. Beyond my doctoral studies, I thank Bettina Klinz
for the exciting advanced lectures she taught during my master studies, which were an
important reason and motivation for my wish to pursue a further eduction and research
in combinatorial optimization.

Special thanks go to Abraham Punnen for hosting me at SFU Vancouver and Ante
Ćustić for initiating the contact and taking care of everything I needed during my stay
in Vancouver. I am thankful to both of them for sharing their research ideas and inviting
me to do joint work. Furthermore, I am also thankful to all the other colleagues at SFU
with whom I had many fruitful discussions during regular research seminars and joint
coffees at SFU.

Special thanks also go to Gerhard Woeginger for his hospitality during my two visits
at RWTH Aachen and for sharing his time and ideas with me. I am grateful that I have
had the opportunity to work with him on multiple projects, on which part of this thesis
is based on. His inputs during my stays in Aachen and his visits in Graz not only led
to joint work, but also sparked new research collaborations and motivated me to study
new tools and techniques. I am very thankful to Britta Peis who also invited me to her
research group at RWTH Aachen during my first stay and for hosting me during my
second stay in Aachen. I am grateful for all the research ideas she has shared with me,
and for being able to do joint work with her. At this point, I also want to thank the
groups of Gerhard Woeginger and Britta Peis for making my stays in Aachen a great
experience. Special thanks go to Tim Hartmann and Veerle Tan-Timmermans for being
great co-authors, with whom collaborations started because of my visits to Aachen.

I also thank Vladimir Deineko for sharing many ideas whenever visiting TU Graz
during the summer. His enthusiasm when talking about new research ideas is always a
joy and very motivating. I am grateful for the opportunity to do joint work with him.

I am lucky and thankful that Eranda Dragoti-Çela is part of our Combinatorial Op-
timization Group at TU Graz and also one of my mentors in the DK project. I am also
grateful for the opportunity to do joint work with her. Her door was always open to me
for any kind of questions and our chats made my PhD studies more enjoyable. Beyond
my doctoral studies, I want to thank Eranda Dragoti-Çela for the inspiring optimization
lectures she taught during my bachelor and master studies, which sparked and further

iii

Acknowledgements

kindled my interest in combinatorial optimization.
Special thanks also go to Thomas Lachmann for many inspiring discussions about

diverse topics in mathematics and being a great co-author.
I would also like to thank all other colleagues with whom I had the opportunity to do

joint work going beyond the scope of this thesis. It is always a joy and I am grateful to
do research with all of you, on a diverse range of subjects.

Beyond my doctoral studies, I would also like to thank Johannes Hatzl, my master
thesis supervisor, for his motivation to pursue doctoral studies and for his continuing
support and advise, also during this period.

I also want to thank the other members of our institute. In addition to many inter-
esting scientific discussions we shared a lot of good time during lunches, joint coffees
and other activities. Thanks also goes to our secretaries, especially Sandra Wissler, for
knowing everything I ever needed to know on administrative matters and being always
helpful and a joy to talk to.

I thank all the members of the DK Discrete Mathematics for making my time as part
of the project a joyful experience. In particular, I thank my mentors Rainer Burkard
and Oswin Aichholzer for their support throughout my doctoral studies and our speaker
Wolfgang Woess.

At this point I want to acknowledge the support of the Austrian Science Fund (FWF):
W1230, which made this thesis possible.

Special thanks go to Franz Rendl and Frits C.R. Spieksma for the time they invested
into refereeing this thesis.

And last but not least, I thank my family and friends for their constant support and
help during the whole period of writing this thesis and beyond.

iv

1 Introduction and Preliminaries

All problems studied in this PhD thesis fit into the general framework of combinatorial
optimization problems and combinatorial decision problems. Let 𝐸 be the ground set
and ℱ ⊆ 2𝐸 be a set of feasible solutions. The problem to decide about the existence of

𝑆 ∈ ℱ

is referred to as a combinatorial decision problem. If, in addition, there is given an
objective function (or cost function) 𝑓 : 2𝐸 → R the problem

min 𝑓(𝑆)

s.t. 𝑆 ∈ ℱ

is referred to as combinatorial optimization problem. In case of linearity of the cost
function 𝑓 , i.e. there exist 𝑐(𝑒) ∈ R for each 𝑒 ∈ 𝐸 and 𝑓(𝑆) =

∑︀
𝑒∈𝑆 𝑐(𝑒), the given

problem is a linear combinatorial optimization problem (LCOP). We denote an instance
of LCOP by (ℱ , 𝑐). A central aspect in combinatorial optimization is to find efficient
solution algorithms or to understand why such algorithms most likely cannot exist. For
a general introduction into the subject we refer the reader to the books by Korte and
Vygen [88] and Schrijver [111].

In the remaining part of the introduction we will briefly introduce some general con-
cepts used in the upcoming chapters of the thesis. These concepts are also the main
focus points of this thesis:

∙ combinatorial structures based on graphs and submodular functions,

∙ different ways to generalize classic combinatorial optimization problems,

∙ understanding the computational complexity of combinatorial optimization prob-
lems depending on diverse influencing factors.

Moreover, we will give an overview of the problems studied in this thesis together with
the main results obtained.

1.1 Preliminaries

1.1.1 Sets, Matrices, Vectors and Polyhedra

Let 𝐸 be a set, the ground set, and 𝐴,𝐵 ⊆ 𝐸 subsets, then we denote by |𝐴| the
cardinality of 𝐴, by 𝐴∩𝐵,𝐴∪𝐵,𝐴 ∖𝐵 the intersection, union and difference of 𝐴 and

1

1 Introduction and Preliminaries

𝐵. We write 𝐴𝐶 = 𝐴 = 𝐸 ∖𝐴 for the complement of 𝐴 in 𝐸. The symmetric difference
of 𝐴 and 𝐵 is denoted by 𝐴Δ𝐵 = (𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴). The power set 2𝐸 = {𝑆 : 𝑆 ⊆ 𝐸}
of 𝐸 is the set of all subsets of 𝐸.

Let K be an arbitrary set (for example K = R or K = {0, 1}) and 𝑚,𝑛 ∈ N, then we
write K𝑛 for the set of all vectors with 𝑛 entries and K𝑚×𝑛 for the set of all (𝑚 × 𝑛)-
matrices with entries from K. If 𝑀,𝑁 are sets with |𝑀 | = 𝑚 and |𝑁 | = 𝑛, we also
write K𝑁 and K𝑀×𝑁 to denote vectors and matrices where the entries are identified
with elements and pairs of elements of the given sets. In case of K being a field and
𝐴 ∈ K𝑚×𝑛 a given matrix over K we say that a set of columns 𝑐1, . . . 𝑐𝑙 of 𝐴 is linearly
independent, if the only solution to the equation

∑︀𝑙
𝑖=1 𝜆𝑖𝑐𝑖 = 0 is 𝜆 = 0.

Given a matrix 𝐴 ∈ R𝑚×𝑛 and a vector 𝑏 ∈ R𝑚 then the set 𝑃 = {𝑥 ∈ R𝑛 : 𝐴𝑥 ≤ 𝑏}
is called a polyhedron. For 𝑐 ∈ R𝑛 being a given cost vector, the optimization problem

min

𝑛∑︁
𝑖=1

𝑐𝑖𝑥𝑖

s.t. 𝑥 ∈ 𝑃

is referred to as linear programming problem. If in addition one adds the constraint
that 𝑥 ∈ Z𝑛 one arrives at the integer (linear) programming problem, and if instead
𝑥 ∈ {0, 1} the binary programming problem results. Lastly, we call the problem
mixed integer/binary programming problem, if the binary or integer constraints
only appear for a subset of the variables.

1.1.2 Graphs

Let 𝑉 be an arbitrary set, the set of vertices, and 𝐸 a set of pairs {𝑢, 𝑣} of vertices
𝑢, 𝑣 ∈ 𝑉 , the set of edges. Then we call 𝐺 = (𝑉,𝐸) an (undirected) graph. If not
otherwise specified, we always denote by 𝐺 a graph, by 𝑉 the vertex set of 𝐺 and by
𝐸 the edge set of 𝐺. For 𝑣 ∈ 𝑉 we denote by 𝑑(𝑣) the degree of 𝑣. We call 𝐺 = (𝑉,𝐴)
a directed graph (digraph) if the set 𝐴 is a set of tuples (𝑢, 𝑣) of vertices 𝑢, 𝑣 ∈ 𝑉 .
We call (𝑢, 𝑣) an arc of 𝐺 from 𝑢 to 𝑣. In some cases we use more general definitions
of graphs/digraphs, where multiple edges/arcs connecting the same vertices (so called
multiedges/multiarcs) or edges/arcs from one vertex to itself (loops) are allowed. If this
distinction is of relevance for the arguments and results we clarify this in the text.

In (algorithmic) graph theory the study of structures and properties of graphs plays
a central role. In the following we will only list a few basic concepts which play a role
in this thesis. We will concentrate on the case of undirected graphs. For many concepts
directed variants exist as well.

A list of vertices 𝑃 = (𝑣1, 𝑣2, . . . , 𝑣𝑙) is a (simple) path if those vertices are pairwise
distinct and for each 𝑗 = 1, 2, . . . , 𝑙 − 1 it holds that {𝑣𝑗 , 𝑣𝑗+1} ∈ 𝐸. The start of 𝑃 is
denoted by start(𝑃) = 𝑣1 and the end of 𝑃 is denoted by end(𝑃) = 𝑣𝑙. We define rev(𝑃)
as the reverse path (𝑣𝑙, 𝑣𝑙−1, . . . , 𝑣1) of 𝑃 . If in addition {𝑣𝑙, 𝑣1} ∈ 𝐸 we call 𝑃 a (simple)
cycle. We also call a graph consisting only of a unique path/cycle a path/cycle. For two
vertices 𝑠, 𝑡 ∈ 𝑉 we say that 𝑠 and 𝑡 are connected if there exists a path 𝑃 in 𝐺 such

2

1.1 Preliminaries

that 𝑠 = start(𝑃) and 𝑡 = end(𝑃). The set of all paths from 𝑠 to 𝑡 (𝑠-𝑡-paths) in 𝐺 is
denoted by 𝒫𝑠,𝑡(𝐺). A graph 𝐺 is connected if every pair 𝑠, 𝑡 ∈ 𝑉 is connected. A graph
is called a tree if it is connected and does not contain a cycle.

A subgraph 𝑇 = (𝑉𝑇 , 𝐸𝑇) of a connected graph 𝐺 is a spanning tree of 𝐺 if 𝑉𝑇 = 𝑉 ,
and 𝑇 is a tree. For a general graph 𝐺 a spanning forest is a subgraph that consists of
a union of spanning trees, one for every connected component of 𝐺.

Furthermore, we refer to a subgraph 𝐶 = (𝑉𝐶 , 𝐸𝐶) with 𝑉𝐶 = 𝑉 that is a cycle/path
is as a Hamiltonian cycle/path. A graph containing a Hamiltonian cycle is called Hamil-
tonian.

A set of vertices 𝐼 ⊆ 𝑉 for which for all 𝑢, 𝑣 ∈ 𝐼 it holds that {𝑢, 𝑣} /∈ 𝐸, is called an
independent set of 𝐺

A subset 𝑀 ⊆ 𝐸 of edges of a graph is called a matching if the edges in 𝑀 are pairwise
non-adjacent, meaning they have no common vertices. A matching 𝑀 of maximum
cardinality is called a maximum matching and we denote by 𝜈(𝐺) the cardinality of a
maximum matching in 𝐺, which is called the matching number. If 𝜈(𝐺) = |𝑉 |/2 we say
that 𝐺 contains a perfect matching. The set of all perfect matchings in 𝐺 is denoted by
𝒫ℳ(𝐺).

Given a subset 𝑆 ⊆ 𝑉 the set 𝛿(𝑆) = {{𝑢, 𝑣} ∈ 𝐸 : 𝑢 ∈ 𝑆, 𝑣 /∈ 𝑆} is called the cut of
𝐺 induced by 𝑆.

Directed variants of those structures exist and are introduced when needed in the
following chapters.

The question if structures of the types mentioned above exist in a graph gives rise
to many classic combinatorial decision problems. Given a linear cost function on the
vertices or edges of the graph, finding such structures of minimum cost or maximum
cardinality are classic combinatorial optimization problems.

In many cases, it is important to study (these problems on) graphs/digraphs with
special properties. In the following we introduce some special graph classes which are
relevant in this thesis. Given a partition of the set of vertices 𝑉 = 𝑈 ∪̇ 𝑊 we call a
graph 𝐺 = (𝑉,𝐸) bipartite, if for all edges {𝑢,𝑤} ∈ 𝐸 it holds that 𝑢 ∈ 𝑈 and 𝑤 ∈ 𝑊 .
We also denote such a bipartite graph by 𝐺 = (𝑈,𝑊,𝐸). Let 𝐼 = (𝑖1, 𝑖2, . . . , 𝑖𝑛) be a
list or set of intervals on the real line. We denote by 𝐺(𝐼) the interval graph induced by
𝐼. The vertices of this graph correspond to the intervals in 𝐼. Two intervals 𝑖, 𝑖′ ∈ 𝐼 are
connected by an edge in 𝐺(𝐼) if 𝑖 ∩ 𝑖′ ̸= ∅.

1.1.3 Matroids and Polymatroids

Given a ground set 𝐸 and ℐ ⊆ 2𝐸 we call (𝐸, ℐ) an independence system, if

(M1) ∅ ∈ ℐ,

(M2) 𝐴 ⊆ 𝐵 and 𝐵 ∈ ℐ then 𝐴 ∈ ℐ

hold. If in addition the exchange property,

3

1 Introduction and Preliminaries

(M3) 𝐴,𝐵 ∈ ℐ and |𝐴| > |𝐵|, then there is an 𝑎 ∈ 𝐴 ∖𝐵 such that 𝐵 ∪ {𝑎} ∈ ℐ
holds, we call (𝐸, ℐ) a matroid. Note that matroids are a common generalization of sets
of linearly independent columns of matrices and subforests in graphs as the following
examples show.

∙ Let 𝐺 = (𝑉,𝐸) be a graph and ℐ be the set of all subsets of edges 𝐹 ⊆ 𝐸 such
that 𝐺[𝐹] is acyclic. Then ℳ(𝐺) := (𝐸, ℐ) fulfills (M1)–(M3) and is called graphic
matroid.

∙ Let 𝐸 be the set of columns of the matrix 𝐴 over a field F and ℐ be the set of all
subsets 𝐹 ⊆ 𝐸 such that the columns in 𝐹 are linearly independent over the field
F. Then (𝐸, ℐ) is called a linear matroid or vector matroid, and we say that (𝐸, ℐ)
is representable over F.

∙ Let 𝐸 be an arbitrary set of elements, 𝑘 ∈ N and ℐ := {𝑆 ⊆ 𝐸 : |𝑆| ≤ 𝑘}. Then
we call (𝐸, ℐ) a uniform matroid.

Given a matroid ℳ = (𝐸, ℐ) the function rk: 2𝐸 → R defined by

rk(𝑋) := max{|𝑆| : 𝑆 ⊆ 𝑋,𝑆 ∈ ℐ},
for each 𝑋 ⊆ 𝐸, is called the rank function of ℳ and rk(𝑋) is called the rank of 𝑋. The
maximal independent sets of a matroid, i.e. the sets 𝐵 ⊆ 𝐸 such that rk(𝐵) = rk(𝐸),
are called bases of ℳ. Usually, we denote the set of all bases of a matroid by ℬ. It is
important to note that a matroid ℳ = (𝐸, ℐ) can be equivalently defined via its set of
bases or its rank function, hence we also write ℳ = (𝐸, ℐ) = (𝐸,ℬ) = (𝐸, rk).

A set function 𝑓 : 2𝐸 → R is called submodular, if for all 𝑋,𝑌 ⊆ 𝐸

𝑓(𝑋 ∪ 𝑌) + 𝑓(𝑋 ∩ 𝑌) ≤ 𝑓(𝑋) + 𝑓(𝑌).

A set function 𝑓 : 2𝐸 → R is called monotone, if

𝑓(𝑋) ≤ 𝑓(𝑌)

for all 𝑋 ⊆ 𝑌 ⊆ 𝐸. An important example of monotone and submodular functions are
the rank functions of a matroid.

We call (𝐸, 𝑓) a polymatroid if 𝑓 is a monotone, submodular function and 𝑓(∅) = 0.
The base polytope of the polymatroid is defined as

ℬ(𝑓) = {𝑥 ∈ R𝐸
+ : 𝑥(𝑆) :=

∑︁
𝑒∈𝑆

𝑥𝑒 ≤ 𝑓(𝑆), 𝑆 ⊆ 𝐸}.

If 𝑓 is a rank function of a matroid, the vertices of ℬ(𝑓) are exactly the set of incidence
vectors of the bases of the matroid.

Matroids are exactly characterized as the independence systems for which the greedy
algorithm solves the minimum cost basis problem. This result was proven by Korte and
Monma [87] and can be directly generalized to polymatroids.

For an in-depth treatment of matroids we refer the reader to the book of Oxley [103].
For an introduction to submodular functions and polymatroids see the book of Fu-
jishige [55].

4

1.1 Preliminaries

1.1.4 Computational Complexity and Algorithms

The key tools for understanding the computational complexity of problems are algo-
rithms and hardness proofs. An algorithm with a certain running time gives an upper
bound on the time complexity of the problem it solves. A commonly used terminology
in the theoretical computer science and optimization literature is that problems which
admit algorithms with a running time bounded by a polynomial are called “efficiently
solvable”. This also matches with the definition of the complexity class P (for decision
problems). However, in some cases we are interested in a more detailed analysis of the
running time and aim for fast algorithms (e.g. linear). Chapter 3 and Section 6.1 are
examples where we follow this line of research.

On the negative side we mainly lack a set of tools to show good lower bounds for the
running time of algorithms that solve a given problem. What we can do is showing that
an efficient algorithm for one problem implies also the existence of an efficient algorithm
for other problems. The complexity class NP contains many natural problems for which
no polynomial time algorithms are known, although numerous attempts were made over
the last decades. We call a problem NP-hard if a polynomial time algorithm that solves
this problem would imply polynomial time algorithms for all problems in NP. Under the
usual assumption that P ̸= NP, proving NP-hardness is our main tool for showing that
no polynomial time algorithm exists for a problem.

For a formal and more detailed introduction to the concepts of computational com-
plexity theory, we refer the reader to the books of Papadimitriou [104] and Arora and
Barak [7].

1.1.5 Robust Optimization

The central idea of robust optimization is introducing so called uncertainty sets. Instead
of a fixed cost function 𝑐 : 2𝐸 → R we are given a scenario set 𝒰 . The elements of this
set are cost functions 𝑐𝑠 : 2𝐸 → R ∈ 𝒰 . Usually, we assume that the cost functions are
linear, i.e. 𝑐𝑠(𝑆) =

∑︀
𝑒∈𝑆 𝑐𝑠(𝑒), where 𝑐𝑠(𝑒) ∈ R for each 𝑒 ∈ 𝐸. Common examples for

uncertainty sets from the literature are:

Discrete Uncertainties
𝒰𝐷 = {𝑐𝑠1 , 𝑐𝑠2 , . . . , 𝑐𝑠𝐾}

for given 𝑐𝑠1 , . . . , 𝑐𝑠𝐾 : 𝐸 → R.

Interval Uncertainties
𝒰𝐼 = {𝑐𝑠 : 𝑐𝑠(𝑒) ∈ [c(𝑒), 𝑐(𝑒)], 𝑒 ∈ 𝐸}

for given c, 𝑐 : 𝐸 → R.

Budgeted Interval Uncertainties

𝒰𝐼
1 (Γ) =

{︃
𝑐𝑠 : 𝑐𝑠(𝑒) ∈ [𝑐(𝑒), 𝑐(𝑒) + 𝛿𝑒𝑑(𝑒)], 𝛿𝑒 ∈ {0, 1}, 𝑒 ∈ 𝐸,

∑︁
𝑒∈𝐸

𝛿𝑒 ≤ Γ

}︃
,

5

1 Introduction and Preliminaries

𝒰𝐼
2 (Γ) =

{︃
𝑐𝑠 : 𝑐𝑠(𝑒) = 𝑐(𝑒) + 𝛿𝑒, 𝛿𝑒 ∈ [0, 𝑑(𝑒)], 𝑒 ∈ 𝐸,

∑︁
𝑒∈𝐸

𝛿𝑒 ≤ Γ

}︃
for given 𝑐, 𝑑 : 𝐸 → R and Γ ∈ R+ a given budget.

The classic assumption in robust optimization is as follows. One does not know which
of the possible scenarios occur and one tries to find a good solution by hedging for the
worst case. This leads to the following two classic robust optimization models.

Min-Max Robust Optimization
Input: Uncertainty set 𝒰 , feasible solutions ℱ ⊆ 2𝐸

Question: Find an optimal solution for

min
𝑆∈ℱ

max
𝑐𝑠∈𝒰

𝑐𝑠(𝑆).

Min-Max Regret Robust Optimization
Input: Uncertainty set 𝒰 , feasible solutions ℱ ⊆ 2𝐸

Question: Find an optimal solution for

min
𝑆∈ℱ

max
𝑐𝑠∈𝒰

(𝑐𝑠(𝑆) − 𝑐𝑠,*),

where 𝑐𝑠,* = min𝑆∈ℱ 𝑐𝑠(𝑆).

For a more detailed introduction to the field of discrete robust optimization we refer
the reader to the book of Kouvelis [89].

1.2 Key Problems in this Thesis

In the following we briefly introduce the key problems studied in this thesis. For more
details we refer to the respective chapters.

The main topic of Chapter 2 is the 𝛿-dispersion problem on graphs. Formally, let
𝐺 = (𝑉,𝐸) be an undirected connected graph, where every edge is rectifiable and has
unit length. Let 𝑃 (𝐺) denote the continuum set of points on all the edges in 𝐸 together
with all the vertices in 𝑉 . For two points 𝑝, 𝑞 ∈ 𝑃 (𝐺), we denote by 𝑑(𝑝, 𝑞) the length
of a shortest path connecting 𝑝 and 𝑞 in the graph. A subset 𝑆 ⊆ 𝑃 (𝐺) is said to be
𝛿-dispersed for some positive real number 𝛿, if any two points 𝑝, 𝑞 ∈ 𝑆 with 𝑝 ̸= 𝑞 are at
distance 𝑑(𝑝, 𝑞) ≥ 𝛿 from each other.

6

1.2 Key Problems in this Thesis

𝛿-Dispersion
Input: Graph 𝐺 = (𝑉,𝐸), 𝛿 > 0
Question: Find a maximum cardinality subset 𝑆 ⊆ 𝑃 (𝐺) that is 𝛿-dispersed.

In Chapter 3 we focus on obtaining fast algorithms for the Steiner cycle problem
restricted to interval graphs. Given a graph 𝐺 = (𝑉,𝐸) and a Steiner set 𝑆 ⊆ 𝑉 a cycle
𝐶 is a Steiner cycle, if 𝑆 ⊆ 𝐶.

Steiner Cycle
Input: Graph 𝐺 = (𝑉,𝐸), Steiner points 𝑆 ⊆ 𝑉
Question: Does there exist a Steiner cycle with respect to 𝑆 in 𝐺?

In Chapter 4 we study combinatorial optimization problems in the presence of so-
called interaction costs, which are defined for two solution sets 𝑆1, 𝑆2 over ground sets
𝐸1, 𝐸2 by a matrix 𝑄 = (𝑞𝑖,𝑗) ∈ R𝐸1×𝐸2 as

𝑐(𝑆1, 𝑆2) :=
∑︁
𝑖∈𝑆1

∑︁
𝑗∈𝑆2

𝑞𝑖,𝑗 .

Combinatorial Optimization with Interaction Costs (COPIC)
Input: Element sets 𝐸1, 𝐸2, feasible sets ℱ1 ⊆ 2𝐸1 ,ℱ2 ⊆ 2𝐸2

interaction costs 𝑄 = (𝑞𝑖,𝑗) ∈ R𝐸1×𝐸2 ,
linear costs 𝑐 ∈ R𝐸1 , 𝑑 ∈ R𝐸2

Question: Find 𝑆1 ∈ ℱ1, 𝑆2 ∈ ℱ2 such that

𝑐(𝑆1, 𝑆2) :=
∑︁
𝑖∈𝑆1

∑︁
𝑗∈𝑆2

𝑞𝑖,𝑗 +
∑︁
𝑖∈𝑆1

𝑐𝑖 +
∑︁
𝑗∈𝑆2

𝑑𝑗

is minimized.
We denote such an instance of COPIC by (ℱ1,ℱ2, 𝑄, 𝑐, 𝑑).

We study COPIC for feasible sets ℱ which are unconstrained (ℱ = 2[𝑛]), bases of a
matroid (ℱ = ℬ(ℳ)), maximum matchings in graphs (ℱ = 𝒫ℳ(𝐺)) and 𝑠-𝑡-paths in
graphs (ℱ = 𝒫𝑠,𝑡(𝐺)). For the interaction costs we focus on the two special cases where
𝑄 is a matrix with fixed rank and 𝑄 is a diagonal matrix.

In Chapter 5 we study different types of matrix completion problems.

7

1 Introduction and Preliminaries

Matrix Completion
Input: Matrix class ℱ , partially filled matrix 𝐴 = (𝑎𝑖,𝑗) ∈ (K ∪ {*})𝑚×𝑛

Question: Exist values �̃�𝑖,𝑗 ∈ K for all 𝑖, 𝑗 with 𝑎𝑖,𝑗 = * such that the matrix
𝐴 = (�̃�𝑖,𝑗) ∈ ℱ , where �̃�𝑖,𝑗 = 𝑎𝑖,𝑗 , if 𝑎𝑖,𝑗 ̸= *?

Our main focus is on the following matrix classes:

∙ Large matrices ℱ𝐿,

∙ Monge matrices ℱ𝑀 ,

∙ bottleneck Monge matrices ℱ𝐵𝑀 ,

∙ matrices with monotonicity properties in their rows and columns ℱ≥,≥,

∙ permuted variants of the classes mentioned above (denoted by ℱ𝜋,𝜎).

The aim of Chapter 6 is to obtain new results for recoverable robust discrete opti-
mization. To that end, recoverable optimization problems are studied.

Recoverable Optimization
Input: Costs 𝑐1, 𝑐2 : 2𝐸 → R, parameter 𝑘 ∈ N,

feasible solutions ℱ1,ℱ2 ⊆ 2𝐸

Question: Find an optimal solution for

min
𝑋∈ℱ1,𝑌 ∈ℱ2

𝑐1(𝑋) + 𝑐2(𝑌),

such that
|𝑋 ∩ 𝑌 | ≥ 𝑘.

More specifically, in Section 6.1 we focus on the recoverable selection problem, where
ℱ1 = ℱ2 = {𝑆 ⊆ 𝐸 : |𝑆| = 𝑞} and in Section 6.2 we study the recoverable matroid basis
problem, i.e. ℱ1,ℱ2 are the sets of bases of two matroids.

1.3 Connections and the Common Thread Among the Studied
Problems

All of the problems studied in this thesis have in common that they generalize some
aspect of classic problems in combinatorial optimization. These generalizations can be
categorized into three types: the structure of feasible solutions, cost structures and
robustness.

In this section we will categorize the problems tackled in this thesis according to their
type, while giving some examples where these types of generalizations have been dealt
with before in the literature.

8

1.3 Connections and the Common Thread Among the Studied Problems

1.3.1 Generalized Classes of Feasible Solutions

For many types of feasible solutions which are treated in combinatorial optimization
there are various ways of generalizations. Several such generalizations play a role in this
thesis.

Our first example are matroids which are a common generalization of spanning trees
and linear independence, and polymatroids, which are a generalization of matroids. By
now, the study of matroids and polymatroids has gained so much importance that they
have become classic combinatorial objects on their own. They play a major role as
sets of feasible solutions both in Chapter 4 and Chapter 6. Using polymatroids allows
the selection of integer multiples (or if the submodular function is non-integral also real
multiples) of elements instead of just 0-1 vectors of elements. Hence, in the integral case,
the motivation is to look at multisets instead of sets of elements.

Furthermore, in Chapter 2 we study a common generalization of independent sets and
matchings in graphs. In the model called obnoxious facility location or 𝛿-dispersion on
a graph, one is not only allowed to select vertices or edges, but also arbitrary points
selected on edges of the graph.

Also, our work on matrix completion problems in Chapter 5 fits into the framework
of generalized sets of feasible solutions. Our results in this regard can be seen as a
generalization of some results from the graph completion literature [66]. More precisely,
we allow general real or integer entries in the matrix, instead of just 0/1 entries, which
are in one-to-one correspondence to edges in a graph via its adjacency matrix.

Finally, also the notion of Steiner cycles (see Chapter 3) can be seen as a generalization
of the concept of a Hamiltonian cycle in a graph.

1.3.2 Generalized Cost Structures

A well studied generalization of the classic linear cost functions

𝑐(𝑆) :=
∑︁
𝑒∈𝑆

𝑐𝑒

are quadratic cost functions. There, instead of a vector 𝑐 we are given a cost matrix
𝑄 = (𝑞𝑖,𝑗) ∈ R𝐸×𝐸 and we set

𝑐(𝑆) :=
∑︁
𝑖,𝑗∈𝑆

𝑞𝑖,𝑗 .

There is a vast literature about combinatorial optimization problems with quadratic cost
functions of this type (see for instance [8, 9, 43,75]).

In Chapter 4 we study a generalization of quadratic cost functions, namely interaction
costs, which are defined for two solution sets 𝑆1, 𝑆2 over ground sets 𝐸1, 𝐸2 by a matrix
𝑄 = (𝑞𝑖,𝑗) ∈ R𝐸1×𝐸2 as

𝑐(𝑆1, 𝑆2) :=
∑︁
𝑖∈𝑆1

∑︁
𝑗∈𝑆2

𝑞𝑖,𝑗 .

9

1 Introduction and Preliminaries

The study of this type of cost function for different sets of feasible solutions was mo-
tivated by existing work for the unconstrained case (bipartite unconstrained quadratic
programming problem [44,63,77,107]) and the assignment problem (bilinear assignment
problem [40]).

1.3.3 Robust Optimization

Robust optimization can be seen as a generalization of the feasible sets or cost structures
of any (combinatorial) optimization problems. Because of its huge impact in terms of
practical applications and developed theory, we highlight the robust optimization models
studied in this thesis separately.

Min-max and min-max regret robust optimization are already well studied, also from
a theoretical point of view (see Kouvelis [89] and Kasperski and Zielinski [79]). One
of their major downsides is that they model a very pessimistic decision maker. This is
why robust optimization models that allow for less risk-averse decisions were introduced
in the applied optimization literature. One of those models is the recoverable robust
optimization model introduced by Liebchen et al. [94].

Recoverable Robust Optimization
Input: Preparation costs 𝐶 : 2𝐸 → R, uncertainty set 𝒰 ,

feasible solutions ℱ ⊆ 2𝐸 , recoverability parameter 𝑘 ∈ N
Question: Find an optimal solution for

min
𝑋∈ℱ

(︂
𝐶(𝑋) + max

𝑐𝑠∈𝒰
min

𝑌 ∈ℱ : |𝑌 ∖𝑋|≤𝑘
(𝑐𝑠(𝑆)

)︂
.

The main idea of this model is giving the decision maker some limited power to
intervene after the scenario (cost function) is revealed.

In Chapter 6 we obtain results for recoverable optimization problems (optimization
problems with intersection constraints), to which the Recoverable Robust Opti-
mization problem with interval uncertainties can be reduced to.

1.3.4 Influencing Factors on the Computational Complexity

Another common characteristic of the problems studied in this thesis is that they are
computationally hard (NP-hard) in their general version. We want to obtain a better
theoretical understanding of which properties of these problems lead to their hardness.
To that end our goal is to identify conditions which turn hard problems into easier ones.
In this manner we obtain a better understanding of the frontier between efficiently solv-
able cases and cases that remain hard. Imposing additional conditions on the problem
structure gives rise to special cases. We mainly deal with the following two types of
special cases:

∙ special cases which result by restricting the combinatorial structure,

10

1.4 Outlook on Main Results

∙ special cases which result by restricting to special cost structures.

One very common line of study for problems which are hard on general graphs is
restricting the problem to special types of graph classes. The ISGCI [41] is an online
encyclopaedia of graph classes summarizing a vast amount of results along these lines.
Chapter 3 is an example of this kind of results where we show that the Steiner Cycle
problem can be solved in linear time on interval graphs. Also, in Chapter 2 several
results of this type are obtained for the 𝛿-Dispersion problem.

Additionally, a very classic approach of this kind is the study of matroidal structures,
which by definition are special cases of independence systems. We follow this approach
both in Chapter 4 and Chapter 6.

Another way to restrict the combinatorial structure is restricting different parameters
that define the set of feasible solutions. The special cases studied in Chapter 5 fall into
this category. A natural restriction for problems where matrices show up is to restrict
the feasible matrix entries to the set [𝑘], where 𝑘 is a restricted parameter. Also, the
main results in Chapter 2 are about the complexity of 𝛿-Dispersion for different fixed
values of 𝛿.

Specializing the cost structure to obtain efficiently solvable special cases is another
common approach in the combinatorial optimization literature (see [23] for examples).
In Chapter 4 this is our main tool to gain a better understanding of the complexity of
COPIC. Our focus there lies on restricting the interaction cost matrix to the special
cases of matrices with bounded rank, and diagonal matrices.

1.4 Outlook on Main Results

In Chapter 2 we study the computational complexity of the 𝛿-Dispersion problem. The
main results obtained can be summarized as follows.

Theorem.

(a) If 𝛿 = 1/𝑏 for some integer 𝑏, then the 𝛿-dispersion number of 𝐺 can be determined
in the following way: If 𝐺 is a tree then 𝛿-Disp(𝐺) = 𝑏|𝐸|+ 1, and if 𝐺 is not a tree
then 𝛿-Disp(𝐺) = 𝑏|𝐸|.

(b) If 𝛿 = 2/𝑏 for some integer 𝑏, then 𝛿-Disp(𝐺) can be computed in polynomial time.

(c) If 𝛿 = 𝑎/𝑏 for integers 𝑎 and 𝑏 with 𝑎 ≥ 3 and gcd(𝑎, 𝑏) = 1, then the computation
of 𝛿-Disp(𝐺) is an NP-hard problem.

Point (b) of the theorem is based on proving a deep connection between 2-dispersion
and the Edmonds-Gallai decomposition of 𝐺 and reformulating the problem as a sub-
modular optimization problem. In addition, we also obtain results for a generalization
to integer edge lengths and special graph classes.

11

1 Introduction and Preliminaries

In Chapter 3 we study the Steiner Cycle and Steiner Path Cover problem
on interval graphs. The main results of this chapter are summarized in the following
theorem.

Theorem. The Steiner Path Cover and Steiner Cycle problem on interval graphs
given in endpoint sorted order can be solved in 𝑂(𝑛) time, where 𝑛 is the number of
intervals.

Chapter 4 introduces COPIC. In the first part of the chapter we study interaction
costs given by low rank matrices. For a formal definition of the parametric problem
MPLCOP and parametric complexity, used in part (b) of the following theorem, we
refer the reader to Section 4.3.2

Theorem.

(a) If rk(𝑄) = 𝑟 and there is a T(ℱ2)-time algorithm for LCOP instances (ℱ2, 𝑓)
for every 𝑓 ∈ R𝑛, then the COPIC instance (2[𝑚],ℱ2, 𝑄, 𝑐, 𝑑) can be solved in
𝑂(

(︀
𝑚
𝑟

)︀
2𝑟 max{𝑟𝑚, 𝑟𝑛,T(ℱ2)}) time.

(b) Let 𝑙1, 𝑙2 be the parametric complexity of MPLCOP instances (ℱ ′
1, 𝑎, 𝑐) and (ℱ ′

2, 𝑏, 𝑑)
respectively, and rk(𝑄) = 𝑟 is a constant. If both LCOP instances (ℱ1, ℎ) and
(ℱ2, ℎ) can be solved in polynomial time for arbitrary linear cost vectors ℎ, then
COPIC instances (ℱ1,ℱ2, 𝑄, 𝑐, 𝑑) can be solved in 𝑂(poly(𝑛,𝑚, 𝑙𝑟1, 𝑙

𝑟
2)) time.

For the special case of diagonal interaction cost matrices, studied in a second part of
Chapter 4. Table 1.1 gives an overview of the obtained results.

ℱ1 ∖ ℱ2 2[𝑛] ℬ(𝒰𝑘2
𝑛) ℬ(ℳ2) 𝒫ℳ(𝐺) 𝒫𝑠2,𝑡2(𝐺)

2[𝑛] 𝑂(𝑛) P P P P
ℬ(𝒰𝑘1

𝑛) P P (𝑐 = 𝑑 = 0) open open
ℬ(ℳ1) P (𝑐 = 𝑑 = 0) open NP-hard
𝒫ℳ(𝐺) NP-hard open
𝒫𝑠1,𝑡1(𝐺) Table 4.3

Table 1.1: Summary of complexity results for COPIC with a diagonal matrix. Bold
entries correspond to new results obtained in Section 4.4.

Moreover, we are also able to characterize when COPIC instances are linearizable in
the final part of Chapter 4.

In Chapter 5 we obtain new results about the computational complexity of matrix
completion problems. We focus mainly on matrix classes which are studied in con-
nection with the special cases literature for combinatorial optimization problems, like
Large matrices ℱ𝐿, Monge matrices ℱ𝑀 , bottleneck Monge matrices ℱ𝐵𝑀 , matrices
with monotonicity properties in their rows and columns ℱ≥,≥, and permuted variants of
the aforementioned classes (denoted by ℱ𝜋,𝜎). The following theorem summarizes the
results from Chapter 5.

12

1.4 Outlook on Main Results

Theorem.

(a) Matrix Completion is NP-complete for ℱ𝜋,𝜎
𝑀 ,ℱ𝜋,𝜎

𝐵𝑀 ,ℱ𝜋,𝜎
≥,≥.

(b) Matrix Completion can be solved in polynomial time for ℱ𝜋,𝜎
𝐿 .

(c) Matrix Completion can be solved in polynomial time for ℱ𝜋,𝜎
𝑀 , restricted to {0, 1}-

matrices.

In Chapter 6 we study the Recoverable Robust Optimization problem for dif-
ferent sets of feasible solutions. This leads to the study of combinatorial optimization
problems with intersection constraints, for which we suggest several new algorithms. As
a consequence the following new results about recoverable robustness are obtained.

Theorem.

(a) The Recoverable Selection problem (ℱ1 = ℱ2 is the set of all sets of cardinality
𝑞) can be solved by a greedy algorithm (easy to implement) in 𝑂(𝑛 log 𝑛) time.

(b) The Recoverable Selection problem is solvable in 𝑂(𝑛) time.

(c) The Recoverable Matroid Basis problem (ℱ1,ℱ2 are sets of bases of two, pos-
sibly different, matroids) can be solved in strongly polynomial time.

(d) The Recoverable Polymatroid Basis problem (for a definition of the general-
ization to polymatroids see Section 6.2.4) can be solved in strongly polynomial time.

From the point of view of matroid theory, the following generalization of the Recov-
erable Matroid Basis problem, which we denote by (𝑃=𝑘) is of special interest:

min 𝑐1(𝑋) + 𝑐2(𝑌)

s.t. 𝑋 ∈ ℬ1

𝑌 ∈ ℬ2

|𝑋 ∩ 𝑌 | = 𝑘.

The following result is our main result in Section 6.2 and is obtained via a primal-dual
algorithm.

Theorem. (𝑃=𝑘) can be solved using at most 𝑘 × |𝐸| primal or dual augmentations in
strongly polynomial time.

To finish the introductory part, we provide some information on the collaborations
and papers that form a major backbone of this thesis.

Chapter 2: The results in this chapter are based on joint work with Alexander Grigoriev,
Tim A. Hartmann and Gerhard J. Woeginger; see [68].

13

1 Introduction and Preliminaries

Chapter 3: The results in this chapter are based on joint work with Ante Ćustić; see [37].

Chapter 4: The results in this chapter are based on joint work with Ante Ćustić and
Abraham Punnen; see [92].

Chapter 5: The results in this chapter are based on joint work with Vladimir Deineko,
Eranda Dragoti-Çela, Bettina Klinz and Gerhard J. Woeginger. This is ongoing
work; see [42].

Chapter 6: Parts of the investigations reported about in this chapter are ongoing work.

The results in Section 6.1 are based on joint work with Thomas Lachmann and
Gerhard J. Woeginger; see [91]. A partial account of the work can be found in the
extended abstract [90].

The results in Section 6.2 are based on joint work with Andras Frank, Britta Peis
and Veerle Timmermans; see [52]. A partial account of the work can be found in
the extended abstract [93].

14

2 Dispersing Obnoxious Facilities on a
Graph

2.1 Introduction

A large part of the facility location literature deals with desirable facilities that people like
to have nearby, such as service centers, police departments, fire stations, and warehouses.
However, there also do exist facilities that are undesirable and obnoxious, such as nuclear
reactors, garbage dumps, chemical plants, military installations, and high security penal
institutions. A standard goal in location theory is to spread out such obnoxious facilities
and to avoid their accumulation and concentration in a small region; see for instance
Erkut & Neuman [47] and Cappanera [28] for comprehensive surveys on this topic.

In this chapter, we investigate the location of obnoxious facilities in a metric space
whose topology is determined by a graph. Formally, let 𝐺 = (𝑉,𝐸) be an undirected
connected graph, where every edge is rectifiable and has unit length. Let 𝑃 (𝐺) denote
the continuum set of points on all the edges in 𝐸 together with all the vertices in 𝑉 . For
two points 𝑝, 𝑞 ∈ 𝑃 (𝐺), we denote by 𝑑(𝑝, 𝑞) the length of a shortest path connecting 𝑝
and 𝑞 in the graph. A subset 𝑆 ⊆ 𝑃 (𝐺) is said to be 𝛿-dispersed for some positive real
number 𝛿, if any two points 𝑝, 𝑞 ∈ 𝑆 with 𝑝 ̸= 𝑞 are at distance 𝑑(𝑝, 𝑞) ≥ 𝛿 from each
other. Our goal is to compute for a given graph 𝐺 = (𝑉,𝐸) and a given positive real
number 𝛿 a maximum cardinality subset 𝑆 ⊆ 𝑃 (𝐺) that is 𝛿-dispersed. Such a set 𝑆 is
called an optimal 𝛿-dispersed set, and |𝑆| is called the 𝛿-dispersion number 𝛿-Disp(𝐺)
of the graph 𝐺.

Known and related results.

Obnoxious facility location goes back to the seminal articles of Goldman & Dearing [64]
from 1975 and Church & Garfinkel [32] from 1978. The area actually covers a wide
variety of problem variants and models; some models specify a geometric setting, while
other models use a graph-theoretic setting.

For example, Abravaya & Segal [1] consider a purely geometric variant of obnoxious
facility location, where a maximum cardinality set of obnoxious facilities has to be placed
in a rectangular region, such that their pairwise distance as well as the distance to a
fixed set of demand sites is above a given threshold. As another example we mention the
graph-theoretic model of Tamir [115], where every edge 𝑒 ∈ 𝐸 of the underlying graph
𝐺 = (𝑉,𝐸) is rectifiable and has a given edge-dependent length ℓ(𝑒). Tamir discusses the
complexity and approximability of various optimization problems with various objective
functions. One consequence of [115] is that if the graph 𝐺 is a tree, then the value

15

2 Dispersing Obnoxious Facilities on a Graph

𝛿-Disp(𝐺) can be computed in polynomial time. Segal [112] locates a single obnoxious
facility on a network under various objective functions, such as maximizing the smallest
distance from the facility to the clients on the network or maximizing the total sum of
the distances between facility and clients.

Megiddo & Tamir [98] consider the covering problem that is dual to the 𝛿-dispersion
packing problem: Given a graph 𝐺 = (𝑉,𝐸) with rectifiable unit-length edges, find a
minimum cardinality subset 𝑆 ⊆ 𝑃 (𝐺) such that every point in 𝑃 (𝐺) is at distance at
most 𝛿 from one of the facilities in 𝑆. Among many other results [98] shows that this
covering problem is NP-hard for 𝛿 = 2.

Finally, we mention the work of Gawrychowski, Krasnopolsky, Mozes & Weimann [62]
who study the problem variant where the points in the dispersed set 𝑆 must be vertices
of the graph 𝐺. They show that for a given tree 𝐺 and a given integer 𝑘, one can
compute in linear time the largest possible value 𝛿 for which there exists a 𝛿-dispersed
set 𝑆 of size |𝑆| = 𝑘.

Our results.

We provide a complete picture of the complexity of computing the 𝛿-dispersion number
for connected graphs 𝐺 = (𝑉,𝐸) and positive rational numbers 𝛿.

∙ If 𝛿 = 1/𝑏 for some integer 𝑏, then the 𝛿-dispersion number of 𝐺 can be written
down without really looking at the structure of the graph: If 𝐺 is a tree then
𝛿-Disp(𝐺) = 𝑏|𝐸| + 1, and if 𝐺 is not a tree then 𝛿-Disp(𝐺) = 𝑏|𝐸|.

∙ If 𝛿 = 2/𝑏 for some integer 𝑏, then 𝛿-Disp(𝐺) can be computed in polynomial time.
The algorithm uses the Edmonds-Gallai decomposition of 𝐺 and reformulates the
problem as a submodular optimization problem.

∙ If 𝛿 = 𝑎/𝑏 for integers 𝑎 and 𝑏 with 𝑎 ≥ 3 and gcd(𝑎, 𝑏) = 1, then the computation
of 𝛿-Disp(𝐺) is an NP-hard problem.

The rest of the chapter is organized as follows. Section 2.2 summarizes the basic no-
tations and states several technical observations. Section 2.3 presents the NP-hardness
results. The reductions are essentially based on routine methods, but need to resolve
certain number-theoretic issues. Our technical main contribution is the polynomial time
algorithm for the case 𝛿 = 2 as developed in Section 2.4; this result is heavily based on
tools from matching theory. Section 2.5 summarizes the polynomially solvable special
cases and provides additional structural insights.

2.2 Notation and Technical Preliminaries

All graphs in this chapter are undirected and connected, and all edges have unit length.
Throughout the chapter we use the word vertex in the graph-theoretic sense, and we
use the word point to denote the elements of the geometric structure 𝑃 (𝐺). For a graph
𝐺 = (𝑉,𝐸) and a subset 𝑉 ′ ⊆ 𝑉 , we denote by 𝐺[𝑉 ′] the subgraph induced by 𝑉 ′. For

16

2.2 Notation and Technical Preliminaries

an integer 𝑐 ≥ 1, the 𝑐-subdivision of 𝐺 is the graph that results from 𝐺 by subdividing
every edge in 𝐸 by 𝑐− 1 new vertices into 𝑐 new edges.

For an edge 𝑒 = {𝑢, 𝑣} and a real number 𝜆 with 0 ≤ 𝜆 ≤ 1, we denote by 𝑝(𝑢, 𝑣, 𝜆) the
point on 𝑒 that has distance 𝜆 from vertex 𝑢. Note that 𝑝(𝑢, 𝑣, 0) = 𝑢 and 𝑝(𝑢, 𝑣, 1) = 𝑣,
and note that point 𝑝(𝑢, 𝑣, 𝜆) coincides with point 𝑝(𝑣, 𝑢, 1−𝜆); hence we will sometimes
assume without loss of generality that 𝜆 ≤ 1/2.

Lemma 2.1. Let 𝐺 be a graph, let 𝑐 ≥ 1 be an integer, and let 𝐺′ be the 𝑐-subdivision
of 𝐺. Then for every 𝛿 > 0, the 𝛿-dispersed sets in 𝐺 are in one-to-one correspondence
with the (𝑐 · 𝛿)-dispersed sets in 𝐺′. In particular, 𝛿-Disp(𝐺) = (𝑐 · 𝛿)-Disp(𝐺′).

Proof. Every point 𝑝(𝑢, 𝑣, 𝜆) in 𝑃 (𝐺) translates into a corresponding point in 𝑃 (𝐺′) that
lies on the subdivided edge between 𝑢 and 𝑣 and is at distance 𝑐 · 𝜆 from vertex 𝑢.

Lemma 2.1 has many useful consequences, as for instance the following:

Lemma 2.2. Let 𝛿 > 0 and let 𝑐 ≥ 1 be an integer.

∙ If the problem of computing the 𝛿-dispersion number is NP-hard, then also the
problem of computing the (𝑐 · 𝛿)-dispersion number is NP-hard.

∙ If the problem of computing the (𝑐 · 𝛿)-dispersion number is polynomially solvable,
then also the problem of computing the 𝛿-dispersion number is polynomially solv-
able.

Proof. By Lemma 2.1 the 𝑐-subdivision of a graph yields a polynomial time reduction
from computing 𝛿-dispersions to computing (𝑐 · 𝛿)-dispersions.

For integers ℓ and 𝑘, the rational number ℓ/𝑘 is called 𝑘-simple. A set 𝑆 ⊆ 𝑃 (𝐺) is
𝑘-simple, if for every point 𝑝(𝑢, 𝑣, 𝜆) in 𝑆 the number 𝜆 is 𝑘-simple.

Lemma 2.3. Let 𝛿 = 𝑎/𝑏 with integers 𝑎 and 𝑏, and let 𝐺 = (𝑉,𝐸) be a graph. Then
there exists an optimal 𝛿-dispersed set 𝑆* that is 2𝑏-simple.

Proof. We first handle the cases with 𝑏 = 1, so that 𝛿 is integer. Consider an optimal
𝛿-dispersed set 𝑆 for graph 𝐺. Note that for every vertex 𝑢, at most one point 𝑝(𝑢, 𝑣, 𝜆)
with 𝑣 ∈ 𝑉 and 0 ≤ 𝜆 < 1/2 is in 𝑆. For every point 𝑝 = 𝑝(𝑢, 𝑣, 𝜆) with 0 ≤ 𝜆 ≤ 1/2 in
𝑆, we put a corresponding point 𝑝* into set 𝑆*: If 0 ≤ 𝜆 < 1/2 then 𝑝* = 𝑝(𝑢, 𝑣, 0), and
if 𝜆 = 1/2 then 𝑝* = 𝑝(𝑢, 𝑣, 1/2). As all points in the resulting set 𝑆* are either vertices
or midpoints of edges, we get that 𝑆* is 2-simple. We claim that 𝑆* is still 𝛿-dispersed:
Consider two distinct points 𝑝* and 𝑞* in 𝑆*. Note that 𝑑(𝑝, 𝑝*) < 1/2 and 𝑑(𝑞, 𝑞*) < 1/2
by construction.

∙ If 𝑝* and 𝑞* both are vertices in 𝑉 , then the distance 𝑑(𝑝*, 𝑞*) is integer. By the
triangle inequality 𝑑(𝑝, 𝑞) ≤ 𝑑(𝑝, 𝑝*) + 𝑑(𝑝*, 𝑞*) + 𝑑(𝑞*, 𝑞). As the left hand side in
this inequality is at least the integer 𝛿 and as its right hand side is strictly smaller
than the integer 𝑑(𝑝*, 𝑞*) + 1, we conclude 𝑑(𝑝*, 𝑞*) ≥ 𝛿.

17

2 Dispersing Obnoxious Facilities on a Graph

∙ If 𝑝* and 𝑞* both are midpoints of edges, then 𝑝 = 𝑝* and 𝑞 = 𝑞* yields 𝑑(𝑝*, 𝑞*) ≥ 𝛿.

∙ If 𝑝* is a vertex and 𝑞* is the midpoint of some edge, then 𝑑(𝑝*, 𝑞*) = 𝐷 + 1/2
for some integer 𝐷. The triangle inequality together with 𝑝 = 𝑝* yields that
𝛿 ≤ 𝑑(𝑝, 𝑞) = 𝑑(𝑝*, 𝑞) ≤ 𝑑(𝑝*, 𝑞*) + 𝑑(𝑞*, 𝑞) < 𝐷 + 1. This implies 𝐷 ≥ 𝛿, so that
𝑑(𝑝*, 𝑞*) ≥ 𝛿 + 1/2.

Since 𝑆 and 𝑆* have the same cardinality, we conclude that 𝑆* is an optimal 𝛿-dispersed
set that is 2-simple, exactly as desired.

In the cases where 𝛿 = 𝑎/𝑏 for some integer 𝑏 ≥ 2, we consider the 𝑏-subdivision
𝐺′ of 𝐺. By the above discussion, 𝐺′ possesses an optimal 𝑎-dispersed set 𝑆′ that is
2-simple. Then Lemma 2.1 translates 𝑆′ into an optimal 𝛿-dispersed set 𝑆 for 𝐺 that is
2𝑏-simple.

2.3 NP-Completeness Results

In this section we present our NP-hardness proofs for computing the 𝛿-dispersion number.
All proofs are done through polynomial time reductions from the following NP-hard
variant of the independent set problem; see Garey & Johnson [61].

Problem: Independent Set in Cubic Graphs (Cubic-Ind-Set)

Instance: An undirected, connected graph 𝐻 = (𝑉𝐻 , 𝐸𝐻) in which every
vertex is adjacent to exactly three other vertices; an integer bound 𝑘.

Question: Does 𝐻 contain an independent set 𝐼 with |𝐼| ≥ 𝑘 vertices?

Throughout this section we consider a fixed rational number 𝛿 = 𝑎/𝑏, where 𝑎 and 𝑏
are positive integers that satisfy gcd(𝑎, 𝑏) = 1 and 𝑎 ≥ 3. Section 2.3.1 the cases with
odd numerators 𝑎 ≥ 3, and Section 2.3.2 the cases with even numerators 𝑎 ≥ 4. It is
instructive to verify that our arguments do not work for the cases with 𝑎 = 1 and 𝑎 = 2,
as our gadgets and our arguments break down at various places.

2.3.1 NP-Hard Cases with Odd Numerator

Throughout this section we consider a fixed rational number 𝛿 = 𝑎/𝑏 where gcd(𝑎, 𝑏) = 1
and where 𝑎 ≥ 3 is an odd integer. For the NP-hardness proof, we first determine four
positive integers 𝑥1, 𝑦1, 𝑥2, 𝑦2 that satisfy the following equations (2.1) and (2.2).

2𝑏 · 𝑥1 − 2𝑎 · 𝑦1 = 𝑎− 1 (2.1)

𝑏 · 𝑥2 − 𝑎 · 𝑦2 = 1 (2.2)

Note that the value 𝑎 − 1 on the right hand side of equation (2.1) is even, and hence
is divisible by the greatest common divisor gcd(2𝑏, 2𝑎) = 2 of the coefficients in the left
hand side. With this, Bézout’s lemma yields the existence of positive integers 𝑥1 and 𝑦1
that satisfy (2.1). Bézout’s lemma also yields the existence of positive integers 𝑥2 and
𝑦2 in equation (2.2), as the coefficients in the left hand are relatively prime.

18

2.3 NP-Completeness Results

𝑢* 𝑣*

𝑒*⏟ ⏞
path on 𝑥1 edges

⏟ ⏞
path on 𝑥1 edges

cycle 𝐶(𝑒) on 𝑥2 edges

Figure 2.1: The edge 𝑒 = {𝑢, 𝑣} in the instance of Cubic-Ind-Set translates into three
vertices 𝑢*, 𝑒*, 𝑣* in the dispersion instance, together with two paths and
one cycle.

Our reduction now starts from an arbitrary instance 𝐻 = (𝑉𝐻 , 𝐸𝐻) and 𝑘 of Cubic-
Ind-Set, and constructs a corresponding dispersion instance 𝐺 = (𝑉𝐺, 𝐸𝐺) from it.

∙ For every vertex 𝑣 ∈ 𝑉𝐻 , we create a corresponding vertex 𝑣* in 𝑉𝐺.

∙ For every edge 𝑒 = {𝑢, 𝑣} ∈ 𝐸𝐻 , we create a corresponding vertex 𝑒* in 𝑉𝐺.

∙ For every edge 𝑒 = {𝑢, 𝑣} ∈ 𝐸𝐻 , we create (i) a path with 𝑥1 edges that connects
vertex 𝑢* to vertex 𝑒*, (ii) another path with 𝑥1 edges that connects 𝑣* to 𝑒*, and
(iii) a cycle 𝐶(𝑒) with 𝑥2 edges that runs through vertex 𝑒*.

This completes the description of the graph 𝐺 = (𝑉𝐺, 𝐸𝐺); see Figure 2.1 for an illus-
tration. We claim that graph 𝐻 contains an independent set of size 𝑘, if and only if
(𝑎/𝑏)-Disp(𝐺) ≥ 𝑘 + (2𝑦1 + 𝑦2)|𝐸𝐻 |.

Lemma 2.4. If graph 𝐻 contains an independent set of size 𝑘, then the (𝑎/𝑏)-dispersion
number of graph 𝐺 is at least 𝑘 + (2𝑦1 + 𝑦2)|𝐸𝐻 |.

Proof. Let 𝐼 be an independent set of size 𝑘 in graph 𝐻 = (𝑉𝐻 , 𝐸𝐻). We construct from
𝐼 a 𝛿-dispersed set 𝑆 ⊆ 𝑃 (𝐺) as follows. Let 𝑢 ∈ 𝑉𝐻 be a vertex, and let 𝑒1, 𝑒2, 𝑒3 be
the three edges in 𝐸𝐻 that are incident to 𝑢.

∙ If 𝑢 ∈ 𝐼, then we put point 𝑢* into 𝑆. On each of the three paths that connect
vertex 𝑢* respectively to vertex 𝑒*𝑖 (𝑖 = 1, 2, 3), we select 𝑦1 further points for 𝑆.
The first selected point is at distance 𝛿 from 𝑢*, and every further selected point is
at distance 𝛿 = 𝑎/𝑏 from the preceding selected point. By equation (2.1), on each
of the three paths the distance from the final selected point to point 𝑒*𝑖 (𝑖 = 1, 2, 3)
then equals (𝑎− 1)/(2𝑏).

19

2 Dispersing Obnoxious Facilities on a Graph

∙ If 𝑢 /∈ 𝐼, then on each of the three paths between 𝑢* and 𝑒*𝑖 (𝑖 = 1, 2, 3) we select
𝑦1 points for 𝑆. The first selected point is at distance 𝛿/2 = 𝑎/(2𝑏) from 𝑢*, and
every further selected point is at distance 𝛿 from the preceding selected point. By
equation (2.1), the distance from the final selected point to point 𝑒* then equals
(2𝑎− 1)/(2𝑏).

Furthermore, for every edge 𝑒 ∈ 𝐸𝐻 we select 𝑦2 points from the cycle 𝐶(𝑒) for 𝑆:

∙ We start in point 𝑒* and traverse 𝐶(𝑒) in clockwise direction. The first selected
point is at distance (𝑎 + 1)/(2𝑏) from point 𝑒*, and every further selected point is
at distance 𝛿 from the preceding selected point. By equation (2.2), the distance
from the final selected point to point 𝑒* then equals (𝑎 + 1)/(2𝑏).

This completes the construction of set 𝑆. Now let us count the points in 𝑆. First, there
are the 𝑘 points 𝑢* ∈ 𝑆 for which 𝑢 ∈ 𝐼. Furthermore, for every edge 𝑒 = {𝑢, 𝑣} ∈ 𝐸𝐻

there are 2𝑦1 points in 𝑆 that lie on the two paths from 𝑢* to 𝑒* and from 𝑒* to 𝑣*.
Finally, for every edge 𝑒 ∈ 𝐸𝐻 there are 𝑦2 points that lie on the cycle 𝐶(𝑒). Altogether,
this yields the desired size 𝑘 + (2𝑦1 + 𝑦2)|𝐸𝐻 | for 𝑆.

It remains to verify that the point set 𝑆 is 𝛿-dispersed. By construction, the points
selected from each path are at distance at least 𝛿 from each other, and the same holds
for the points selected from each cycle. If vertex 𝑢* is in 𝑆, then all selected points on
the three incident paths are at distance at least 𝛿 from 𝑢*. If vertex 𝑢* is not in 𝑆, then
the first selected point on every path is at distance 𝛿/2 from 𝑢*, so that these points are
pairwise at distance at least 𝛿 from each other. Hence the only potential trouble could
arise in the neighborhood of point 𝑒*, where paths and cycles are glued together. Every
selected point on 𝐶(𝑒) is at distance at least (𝑎 + 1)/(2𝑏) from point 𝑒*. Every selected
point on some path from 𝑢* to 𝑒* is at distance at least (𝑎−1)/(2𝑏) from 𝑒* if 𝑢 ∈ 𝐼 and
is at distance at least (2𝑎− 1)/(2𝑏) if 𝑢 /∈ 𝐼. Since for any edge 𝑒 = {𝑢, 𝑣} ∈ 𝐸𝐻 at most
one of the end vertices 𝑢 and 𝑣 is in 𝐼, at most one selected point can be at distance
(𝑎 − 1)/(2𝑏) from 𝑒*, and all other points are at distance at least (𝑎 + 1)/(2𝑏) from 𝑒*.
Hence 𝑆 is indeed 𝛿-dispersed.

Lemma 2.5. If the (𝑎/𝑏)-dispersion number of graph 𝐺 is at least 𝑘 + (2𝑦1 + 𝑦2)|𝐸𝐻 |,
then graph 𝐻 contains an independent set of size 𝑘.

Proof. Let 𝑆 be an (𝑎/𝑏)-dispersed set of size 𝑘 + (2𝑦1 + 𝑦2)|𝐸𝐻 |. By Lemma 2.3 we
assume that for every point 𝑝(𝑢, 𝑣, 𝜆) in 𝑆, the denominator of the rational number 𝜆 is
2𝑏.

For an edge 𝑒 = {𝑢, 𝑣} ∈ 𝐸𝐻 , let us consider its corresponding path 𝜋 on 𝑥1 edges
that connects vertex 𝑢* to vertex 𝑒*. Suppose that there is some point 𝑝 in 𝑆 ∩ 𝜋 with
𝑑(𝑝, 𝑒*) ≤ (𝑎− 2)/(2𝑏). Then by Equation (2.2), set 𝑆 will contain at most 𝑦2− 1 points
from the cycle 𝐶(𝑒). In this case we restructure 𝑆 as follows: We remove point 𝑝 together
with the at most 𝑦2 − 1 points on cycle 𝐶(𝑒) from 𝑆, and instead insert 𝑦2 points into
𝑆 that are 𝛿-dispersed on 𝐶(𝑒) and that all are at distance at least (𝑎 + 1)/(2𝑏) from
𝑒*. As this restructuring does not decrease the size of 𝑆, we will from now on assume
without loss of generality that 𝑑(𝑝, 𝑒*) ≥ (𝑎− 1)/(2𝑏) holds for every point 𝑝 ∈ 𝑆 ∩ 𝜋.

20

2.3 NP-Completeness Results

Now let us take a closer look at the points in 𝑆 ∩ 𝜋. Equation (2.1) can be rewritten
into 𝑥1 = 𝑦1𝛿 + (𝑎− 1)/(2𝑏), which yields |𝑆 ∩ 𝜋| ≤ 𝑦1 + 1.

∙ In the equality case |𝑆 ∩ 𝜋| = 𝑦1 + 1, we must have 𝑢* ∈ 𝑆 and also the point on
𝜋 at distance (𝑎− 1)/(2𝑏) from 𝑒* must be in 𝑆.

∙ In case |𝑆 ∩ 𝜋| ≤ 𝑦1, there is ample space for picking 𝑦1 points from 𝜋 that are
𝛿-dispersed and that are at distance at least 𝛿/2 from 𝑢* and at distance at least
𝛿/2 from 𝑒*. Hence we will from now on assume |𝑆 ∩ 𝜋| = 𝑦1 in these cases.

Now let us count: Set 𝑆 contains exactly 𝑦1 interior points from every path 𝜋, and
altogether there are 2|𝐸𝐻 | such paths. Set 𝑆 contains exactly 𝑦2 points from every cycle
𝐶(𝑒), and altogether there are |𝐸𝐻 | such cycles. Since |𝑆| ≥ 𝑘 + (2𝑦1 + 𝑦2)|𝐸𝐻 |, this
means that 𝑆 must contain at least 𝑘 further points on vertices 𝑢* with 𝑢 ∈ 𝑉𝐻 . The
corresponding subset of 𝑉𝐻 is called 𝐼.

Finally, we claim that this set 𝐼 with |𝐼| ≥ 𝑘 forms an independent set in graph 𝐻.
Suppose for the sake of contradiction that there is an edge 𝑒 = {𝑢, 𝑣} ∈ 𝐸𝐻 with 𝑢* ∈ 𝐼
and 𝑣* ∈ 𝐼. Consider the two paths that connect 𝑢* to 𝑒* and 𝑣* to 𝐸*. By the above
discussion, 𝑆 then contains two points at distance (𝑎 − 1)/(2𝑏) from 𝑒*. As these two
points are then at distance at most (𝑎 − 1)/𝑏 < 𝛿 from each other, we arrive at the
desired contradiction.

The statements in Lemma 2.4 and in 2.5 yield the following theorem.

Theorem 2.6. Let 𝑎 and 𝑏 be positive integers with gcd(𝑎, 𝑏) = 1 and odd 𝑎 ≥ 3. Then
it is NP-hard to compute the (𝑎/𝑏)-dispersion number of a graph 𝐺.

2.3.2 NP-Hard Cases With Even Numerator

In this section we consider a fixed rational number 𝛿 = 𝑎/𝑏 where gcd(𝑎, 𝑏) = 1 and where
𝑎 ≥ 4 is an even integer. The NP-hardness argument is essentially a minor variation
of the argument in Section 2.3.1 for the cases with odd numerators. Therefore, we will
only explain the modifications, and leave all further details to the reader.

The NP-hardness proof in Section 2.3.1 is centered around the four positive integers
𝑥1, 𝑦1, 𝑥2, 𝑦2 introduced in equations (2.1) and (2.2). We perform the same reduction
from Cubic-Ind-Set as in Section 2.3.1 but with positive integers 𝑥1, 𝑦1, 𝑥2, 𝑦2 that
satisfy the following equations (2.3) and (2.4).

2𝑏 · 𝑥1 − 2𝑎 · 𝑦1 = 𝑎− 2 (2.3)

𝑏 · 𝑥2 − 𝑎 · 𝑦2 = 2 (2.4)

In (2.3), the right hand side 𝑎− 2 is even and divisible by the greatest common divisor
of the coefficients in the left hand side. In (2.4), the coefficients in the left hand are
relatively prime. Therefore Bézout’s lemma can be applied to both equations.

The graph 𝐺 = (𝑉𝐺, 𝐸𝐺) is defined as before, with a vertex 𝑣* for every 𝑣 ∈ 𝑉𝐻 and
a vertex 𝑒* for every 𝑒 ∈ 𝐸𝐻 , with paths on 𝑥1 edges and cycles 𝐶(𝑒) on 𝑥2 edges. The
arguments in Lemma 2.4 and 2.5 can easily be adapted and yield the following theorem.

21

2 Dispersing Obnoxious Facilities on a Graph

Theorem 2.7. Let 𝑎 and 𝑏 be positive integers with gcd(𝑎, 𝑏) = 1 and even 𝑎 ≥ 4. Then
it is NP-hard to compute the (𝑎/𝑏)-dispersion number of a graph 𝐺.

2.3.3 Containment in NP

In this section we consider the decision version of 𝛿-dispersion: “For a given graph
𝐺 = (𝑉,𝐸), a positive real 𝛿, and a bound 𝑘, decide whether 𝛿-Disp(𝐺) ≤ 𝑘.” Our NP-
certificate specifies the following partial information on a 𝛿-dispersed set 𝑆 in a graph
𝐺 = (𝑉,𝐸):

∙ The certificate specifies the set 𝑊 := 𝑉 ∩ 𝑆*.

∙ For every edge 𝑒 ∈ 𝐸, the certificate specifies the number 𝑛𝑒 of facilities that are
located in the interior of 𝑒.

As every edge accommodates at most 1/𝛿 points from 𝑆, the encoding length of our
certificate is polynomially bounded in the instance size. For verifying the certificate, we
introduce for every vertex 𝑢 and for every incident edge 𝑒 = {𝑢, 𝑣} ∈ 𝐸 with 𝑛𝑒 > 0 a
corresponding real variable 𝑥(𝑢, 𝑒), which models the distance between vertex 𝑢 and the
closest point from 𝑆 in the interior of edge 𝑒. Finally, we introduce the following linear
constraints:

∙ The non-negativity constraints 𝑥(𝑢, 𝑒) ≥ 0.

∙ For every edge 𝑒 = {𝑢, 𝑣} ∈ 𝐸, the inequality

𝑥(𝑢, 𝑒) + (𝑛𝑒 − 1)𝛿 + 𝑥(𝑣, 𝑒) ≤ 1.

∙ For all 𝑢, 𝑣 ∈ 𝑊 with 𝑢 ̸= 𝑣, the inequality 𝑑(𝑢, 𝑣) ≥ 𝛿.

∙ For all 𝑤 ∈ 𝑊 and 𝑒 = {𝑢, 𝑣} ∈ 𝐸, the inequality 𝑥(𝑢, 𝑒) + 𝑑(𝑢,𝑤) ≥ 𝛿.

∙ For all 𝑒 = {𝑢, 𝑣} ∈ 𝐸 and 𝑒′ = {𝑢′, 𝑣′} ∈ 𝐸, the inequality

𝑥(𝑢, 𝑒) + 𝑑(𝑢, 𝑢′) + 𝑥(𝑢′, 𝑒′) ≥ 𝛿.

These inequalities enforce that on every edge the variables properly work together, and
that the underlying point set indeed is 𝛿-dispersed. For verifying the certificate, we
simply check in polynomial time whether the resulting linear program has a feasible
solution, and whether |𝑊 | +

∑︀
𝑒∈𝐸 𝑛𝑒 ≥ 𝑘 holds.

Theorem 2.8. The decision version of 𝛿-dispersion lies in NP, even if the value 𝛿 is
given as part of the input.

22

2.4 The Polynomial Time Result for 𝛿 = 2

2.4 The Polynomial Time Result for 𝛿 = 2

This section derives a polynomial time algorithm for computing the 2-dispersion number
of a graph. This algorithm is heavily based on tools from matching theory, as for instance
developed in the book by Lovász & Plummer [95]. As usual, the size of a maximum
cardinality matching in graph 𝐺 is denoted by 𝜈(𝐺).

Lemma 2.9. Every graph 𝐺 = (𝑉,𝐸) satisfies 2-Disp(𝐺) ≥ 𝜈(𝐺).

Proof. The midpoints of the edges in every matching form a 2-dispersed set.

A 2-dispersed set is in canonical form, if it entirely consists of vertices and of midpoints
of edges. Recall that by Lemma 2.3 every graph 𝐺 = (𝑉,𝐸) possesses an optimal 2-
dispersed set in canonical form. Throughout this section, we will consider 2-dispersed
(but not necessarily optimal) sets 𝑆* in canonical form; we always let 𝑉 * denote the
set of vertices in 𝑆*, and we let 𝐸* denote the set of edges whose midpoints are in 𝑆*.
Finally, 𝑁* ⊆ 𝑉 denotes the set of vertices in 𝑉 − 𝑉 * that have a neighbor in 𝑉 *. As
𝑆* is 2-dispersed, the vertex set 𝑉 * forms an independent set in 𝐺, and the edge set
𝐸* forms a matching in 𝐺. Furthermore, the vertex set 𝑁* separates the vertices in 𝑉 *

from the edges in 𝐸*; in particular, no edge in 𝐸* covers any vertex in 𝑁*. We start
with two technical lemmas that will be useful in later arguments.

Lemma 2.10. Let 𝐺 = (𝑉,𝐸) be a graph with a perfect matching, and let 𝑆* be some
2-dispersed set in canonical form in 𝐺. Then |𝑆*| ≤ 𝜈(𝐺).

Proof. Let 𝑀 ⊆ 𝐸 denote a perfect matching in 𝐺, and for every vertex 𝑣 ∈ 𝑉 let 𝑒(𝑣)
denote its incident edge in matching 𝑀 . Consider the vertex set 𝑉 * and the edge set
𝐸* that correspond to set 𝑆*. Then 𝐸* together with the edges 𝑒(𝑣) with 𝑣 ∈ 𝑉 * forms
another matching 𝑀 ′ of cardinality |𝐸*| + |𝑉 *| = |𝑆*| in 𝐺. Now |𝑆*| = |𝑀 ′| ≤ 𝜈(𝐺)
yields the desired inequality.

A graph 𝐺 is factor-critical [95], if for every vertex 𝑥 ∈ 𝑉 there exists a matching
that covers all vertices except 𝑥. A near-perfect matching in a graph covers all vertices
in 𝑉 except one. Note that the statement in the following lemma cannot be extended
to graphs that consist of a single vertex.

Lemma 2.11. Every 2-dispersed set 𝑆* in a graph 𝐺 = (𝑉,𝐸) with |𝑉 | ≥ 3 that is
factor-critical satisfies |𝑆*| ≤ 𝜈(𝐺).

Proof. Without loss of generality we assume that 𝑆* is in canonical form, and we let 𝑉 *

and 𝐸* denote the underlying vertex set and edge set, respectively. If 𝑉 * is empty, we
have |𝑆*| = |𝐸*| ≤ 𝜈(𝐺) since 𝐸* is a matching. If 𝑉 * is non-empty, then also 𝑁* is
non-empty (here we use the condition |𝑉 | ≥ 3) and we pick some vertex 𝑥 ∈ 𝑁*. We
consider a near-perfect matching 𝑀 that covers all vertices except 𝑥, and we let 𝑒(𝑣)
denote the edge incident to 𝑣 ∈ 𝑉 in matching 𝑀 . Then 𝐸* together with the edges
𝑒(𝑣) with 𝑣 ∈ 𝑉 * forms another matching 𝑀 ′ of cardinality |𝐸*|+ |𝑉 *| = |𝑆*| in 𝐺. The
claim follows from |𝑆*| = |𝑀 ′| ≤ 𝜈(𝐺).

23

2 Dispersing Obnoxious Facilities on a Graph

X

Y

Z

Figure 2.2: An illustration for the Edmonds-Gallai structure theorem. A maximum
matching is shown with fat edges, and the non-matching edges are dashed.

The following theorem goes back to Edmonds [45] and Gallai [58,59]; see also Lovász
& Plummer [95]. Figure 2.2 gives an illustration.

Theorem 2.12. (Edmonds-Gallai structure theorem) Let 𝐺 = (𝑉,𝐸) be a graph. The
following decomposition of 𝑉 into three sets 𝑋,𝑌, 𝑍 can be computed in polynomial time.

𝑋 = {𝑣 ∈ 𝑉 | there exists a maximum matching that misses 𝑣}
𝑌 = {𝑣 ∈ 𝑉 | 𝑣 /∈ 𝑋 and 𝑣 is adjacent to some vertex in 𝑋}
𝑍 = 𝑉 − (𝑋 ∪ 𝑌)

The Edmonds-Gallai decomposition has the following properties:

∙ Set 𝑋 is the union of the odd-sized components of 𝐺 − 𝑌 ; every such odd-sized
component is factor-critical. Set 𝑍 is the union of the even-sized components of
𝐺− 𝑌 .

∙ Every maximum matching in 𝐺 induces a perfect matching on every (even-sized)
component of 𝑍 and a near-perfect matching on every (odd-sized) component of
𝑋. Furthermore, the matching matches the vertices in 𝑌 to vertices that belong to
|𝑌 | different components of 𝑋.

We further subdivide the set 𝑋 in the Edmonds-Gallai decomposition into two parts:
Set 𝑋1 contains the vertices of 𝑋 that belong to components of size 1, and set 𝑋≥3

contains the vertices that belong to (odd-sized) components of size at least 3. The

24

2.4 The Polynomial Time Result for 𝛿 = 2

vicinity vic(𝑣) of a vertex 𝑣 ∈ 𝑉 consists of vertex 𝑣 itself and of the midpoints of all
edges incident to 𝑣.

Lemma 2.13. There exists an optimal 2-dispersed set 𝑆* in canonical form (with un-
derlying edge set 𝐸*) that additionally satisfies the following three properties.

P1. In every component of 𝑋≥3, the set 𝐸* induces a near-perfect matching.

P2. For every vertex 𝑦 ∈ 𝑌 , the set vic(𝑦) ∩ 𝑆* is either empty or consists
of the midpoint of some edge between 𝑋 and 𝑌 .

P3. In every component of 𝑍, the set 𝐸* induces a perfect matching.

Proof. We start from an arbitrary optimal 2-dispersed set 𝑆* (in canonical form, with
corresponding sets 𝑉 * and 𝐸*) and transform it in two steps into an optimal 2-dispersed
set of the desired form.

In the first transformation step, we exploit a matching 𝑀 between sets 𝑌 and 𝑋 that
matches every vertex 𝑦 ∈ 𝑌 to some vertex 𝑀(𝑦), so that for 𝑦1 ̸= 𝑦2 the vertices 𝑀(𝑦1)
and 𝑀(𝑦2) belong to different components of 𝑋; see Theorem 2.12. A vertex 𝑦 ∈ 𝑌 is
called blocked, if it is adjacent to some 𝑥 ∈ 𝑋1 ∩ 𝑆*. As for a blocked vertex the set
vic(𝑦)∩𝑆* is already empty (and hence already satisfies property P2), we will not touch
it at the moment. We transform 𝑆* in the following way.

∙ For every non-blocked vertex 𝑦 ∈ 𝑌 , the set vic(𝑦)∩𝑆* contains at most one point.
We remove this point from 𝑆*, and we insert instead the midpoint of the edge
between 𝑦 and 𝑀(𝑦) into 𝑆*. These operations cannot decrease the size of 𝑆*.

∙ Every (odd-sized) component 𝐶 of 𝑋≥3 contains at most one point 𝑀(𝑦) with
𝑦 ∈ 𝑌 . We compute a near-perfect matching 𝑀𝐶 for 𝐶 that misses this vertex
𝑀(𝑦) (and if no such vertex is in 𝐶, matching 𝑀𝐶 misses an arbitrary vertex of
𝐶). We remove all points in 𝐶 from 𝑆*, and we insert instead the midpoints of the
edges in 𝑀𝐶 . As by Lemma 2.11 we remove at most 𝜈(𝐶) points and as we insert
exactly 𝜈(𝐶) points, these operations will not decrease the size of 𝑆*.

The resulting set 𝑆* is of course again in canonical form, and it is also easy to see that
𝑆* is still 2-dispersed. Furthermore, 𝑆* now satisfies properties P1 and P2.

In the second transformation step, we note that the current 𝑆* does neither contain
vertices from 𝑌 nor midpoints of edges between 𝑌 and 𝑍. For every (even-sized) com-
ponent 𝐶 of 𝑍, we compute a perfect matching 𝑀𝐶 . We remove all points in 𝐶 from
𝑆*, and we insert instead the midpoints of the edges in 𝑀𝐶 . As by Lemma 2.11 we
remove at most 𝜈(𝐶) points and as we insert exactly 𝜈(𝐶) points, these operations will
not decrease the size of 𝑆*. The resulting set 𝑆* is 2-dispersed and satisfies properties
P1, P2, and P3.

The optimal 2-dispersed sets in Lemma 2.13 are strongly structured and fairly easy
to understand: The perfect matchings in set 𝑍 contribute exactly |𝑍|/2 points to 𝑆*.
Every (odd-sized) component 𝐶 in 𝑋≥3 contributes exactly (|𝐶|−1)/2 points to 𝑆*. The

25

2 Dispersing Obnoxious Facilities on a Graph

only remaining open decisions concern the points in 𝑋1 and the midpoints of the edges
{𝑦,𝑀(𝑦)} for 𝑦 ∈ 𝑌 . So let us consider the set 𝑇 := 𝑆* ∩𝑋1, and let Γ(𝑇) ⊆ 𝑌 denote
the vertices in 𝑌 that are adjacent to some vertex in 𝑇 . Then every vertex 𝑦 in 𝑌 −Γ(𝑇)
contributes the midpoint of {𝑦,𝑀(𝑦)} to 𝑆*, and every vertex 𝑥 ∈ 𝑇 contributes itself
to 𝑆*.

Hence the remaining optimization problem boils down to finding a subset 𝑇 ⊆ 𝑋1 that
maximizes the function value 𝑓(𝑇) := |𝑌 −Γ(𝑇)|+ |𝑇 |, which is equivalent to minimizing
the function value

𝑔(𝑇) := |Γ(𝑇)| − |𝑇 |. (2.5)

The set function 𝑔(𝑇) in (2.5) is a submodular function, as it satisfies

𝑔(𝐴) + 𝑔(𝐵) ≥ 𝑔(𝐴 ∪𝐵) + 𝑔(𝐴 ∩𝐵)

for all 𝐴,𝐵 ⊆ 𝑋1; see for instance Grötschel, Lovász & Schrijver [69]. Therefore, the
minimum value of 𝑔(𝑇) can be determined in polynomial time by the ellipsoid method
[69], or by Cunningham’s combinatorial algorithm [35].

We also describe another way of minimizing the function 𝑔(𝑇) in polynomial time,
that avoids the heavy machinery of submodular optimization and that formulates the
problem as a minimum 𝑠-𝑡-cut computation in a weighted directed auxiliary graph. The
auxiliary graph is defined as follows.

∙ Its vertex set contains a source 𝑠 and a sink 𝑡, together with all the vertices in 𝑋1

and all the vertices in 𝑌 .

∙ For every 𝑥 ∈ 𝑋1, there is an arc (𝑠, 𝑥) of weight 𝑤(𝑠, 𝑥) = 1 from the source to
𝑥. For every 𝑦 ∈ 𝑌 , there is an arc (𝑦, 𝑡) of weight 𝑤(𝑦, 𝑡) = 1 from 𝑦 to the sink.
Whenever the vertices 𝑥 ∈ 𝑋1 and 𝑦 ∈ 𝑌 are adjacent in the original graph 𝐺, the
auxiliary graph contains the arc (𝑥, 𝑦) of weight 𝑤(𝑥, 𝑦) = +∞.

Now let us consider some 𝑠-𝑡-cut of finite weight, which is induced by some vertex set
𝑈 in the auxiliary graph with 𝑠 ∈ 𝑈 and 𝑡 /∈ 𝑈 . As all arcs from set 𝑋1 to set 𝑌 have
infinite weights, whenever 𝑈 contains some vertex 𝑥 ∈ 𝑋1 then 𝑈 must also contain all
the neighbors of 𝑥 in 𝑌 . By setting 𝑇 := 𝑋1 ∩𝑈 , we get that the value of the cut equals
|𝑋1 − 𝑇 | + |Γ(𝑇)|; hence the minimizer for (2.5) can be read off the minimizing cut in
the auxiliary graph.

We finally summarize all our insights and formulate the main result of this section.

Theorem 2.14. The 2-dispersion number of a graph 𝐺 can be computed in polynomial
time.

2.5 The Polynomially Solvable Cases

Theorem 2.14 and Lemma 2.2 together imply that for every rational number 𝛿 = 𝑎/𝑏 with
numerator 𝑎 ≤ 2, the 𝛿-dispersion number of a graph can be computed in polynomial
time. We now present some results that provide additional structural insights into these

26

2.5 The Polynomially Solvable Cases

cases. The cases where the numerator is 𝑎 = 1 are structurally trivial, and the value of
the corresponding 𝛿-dispersion number can be written down with the sole knowledge of
|𝑉 | and |𝐸|.

Lemma 2.15. Let 𝛿 = 1/𝑏 for some integer 𝑏, and let 𝐺 = (𝑉,𝐸) be a connected graph.

∙ If 𝐺 is a tree then 𝛿-Disp(𝐺) = 𝑏|𝐸| + 1.

∙ If 𝐺 is not a tree then 𝛿-Disp(𝐺) = 𝑏|𝐸|.

Proof. If 𝐺 is a tree, we use a 𝛿-dispersed set 𝑆 that contains all vertices in 𝑉 and that
for every edge 𝑒 = {𝑢, 𝑣} contains all points 𝑝(𝑢, 𝑣, 𝑖/𝑏) with 𝑖 = 1, . . . , 𝑏 − 1. Clearly
|𝑆| = 𝑏|𝐸| + 1. If 𝐺 is not a tree, set 𝑆 contains for every edge 𝑒 = {𝑢, 𝑣} all the points
𝑝(𝑢, 𝑣, (2𝑖− 1)/(2𝑏)) with 𝑖 = 1, . . . , 𝑏. Clearly |𝑆| = 𝑏|𝐸|.

It remains to show that there are no 𝛿-dispersed sets of larger cardinality. If 𝐺 is a
tree, we root it at an arbitrary vertex so that it becomes an out-tree. We partition 𝑃 (𝐺)
into |𝐸|+ 1 regions: One region consists of the root, and all other regions consist of the
interior points on some edge together with the source vertex of that edge. A 𝛿-dispersed
set contains at most 𝑏 points from every edge-region and at most one point from the
root region. If 𝐺 is not a tree, we similarly partition 𝑃 (𝐺) into |𝐸| regions: Every region
either consists of the interior points of some edge, or of the interior points of an edge
together with one of its incident vertices. A 𝛿-dispersed set contains at most 𝑏 points
from every such region.

The following lemma derives an explicit (and very simple) connection between the
2-dispersion number and the (2/𝑏)-dispersion number (with odd denominator 𝑏) of a
graph. The lemma also implies directly that for every odd 𝑏, the computation of (2/𝑏)-
dispersion numbers is polynomial time equivalent to the computation of 2-dispersion
numbers.

Lemma 2.16. Let 𝐺 = (𝑉,𝐸) be a graph, let 𝑧 ≥ 1 be an integer, and let 𝛿 = 2/(2𝑧+1).
Then the dispersion numbers satisfy 𝛿-Disp(𝐺) = 2-Disp(𝐺) + 𝑧|𝐸|.

Proof. We first show that 𝛿-Disp(𝐺) ≥ 2-Disp(𝐺) + 𝑧|𝐸|. Indeed, let 𝑆2 denote an
optimal 2-dispersed set for 𝐺. By Lemma 2.3 we assume that 𝑆2 is in canonical form
and hence entirely consists of vertices and of midpoints of edges. We partition the edge
set 𝐸 into three parts: Part 𝐸1 contains the edges, for which one end vertex is in 𝑆2.
Part 𝐸1/2 contains the edges whose midpoint lies in 𝑆2. Part 𝐸0 contains the remaining
edges (which hence are disjoint from 𝑆2). We construct a point set 𝑆𝛿 ⊆ 𝑃 (𝐺) as follows:

∙ For every edge {𝑢, 𝑣} ∈ 𝐸1 with 𝑢 ∈ 𝑆2, we put point 𝑢 together with the 𝑧 points
𝑝(𝑢, 𝑣, 𝑖𝛿) with 𝑖 = 1, . . . , 𝑧 into 𝑆𝛿.

∙ For every edge {𝑢, 𝑣} ∈ 𝐸1/2, we put the 𝑧 + 1 points 𝑝(𝑢, 𝑣, (4𝑖 − 3)𝛿/4) with
𝑖 = 1, . . . , 𝑧 + 1 into 𝑆𝛿.

27

2 Dispersing Obnoxious Facilities on a Graph

∙ For every {𝑢, 𝑣} ∈ 𝐸0, we put the 𝑧 points 𝑝(𝑢, 𝑣, (4𝑖 − 1)𝛿/4) with 𝑖 = 1, . . . , 𝑧
into 𝑆𝛿.

It is easily verified that the resulting set 𝑆𝛿 is 𝛿-dispersed and contains |𝑆2|+𝑧|𝐸| points.

Next, we show that 𝛿-Disp(𝐺) ≤ 2-Disp(𝐺) + 𝑧|𝐸|. Let 𝑆𝛿 denote an optimal 𝛿-
dispersed set for 𝐺. By Lemma 2.3 we assume that for every point 𝑝(𝑢, 𝑣, 𝜆) in 𝑆𝛿, the
denominator of the rational number 𝜆 is 2(2𝑧 + 1). Our first goal is to bring the points
in 𝑆𝛿 into a particularly simple constellation.

∙ As long as there exist edges 𝑒 = {𝑢, 𝑣} ∈ 𝐸 with 𝑢, 𝑣 ∈ 𝑆𝛿, we remove all points on 𝑒
from 𝑆𝛿 and replace them by the 𝑧+1 points 𝑝(𝑢, 𝑣, (4𝑖−3)𝛿/4) with 𝑖 = 1, . . . , 𝑧+1.

∙ Next, for every edge 𝑒 = {𝑢, 𝑣} ∈ 𝐸 with 𝑢 ∈ 𝑆𝛿 and 𝑣 /∈ 𝑆𝛿, we remove all points
on 𝑒 from 𝑆𝛿 and replace them by the 𝑧 + 1 points 𝑝(𝑢, 𝑣, 𝑖𝛿) with 𝑖 = 1, . . . , 𝑧.

∙ Finally, for every edge 𝑒 = {𝑢, 𝑣} ∈ 𝐸 with 𝑢, 𝑣 /∈ 𝑆𝛿 we remove all points on 𝑒
from 𝑆𝛿 and replace them by the 𝑧 points 𝑝(𝑢, 𝑣, (4𝑖− 1)𝛿/4) with 𝑖 = 1, . . . , 𝑧.

It can be seen that these transformations do not decrease the cardinality of 𝑆𝛿, and that
the resulting set is still 𝛿-dispersed. Finally, we construct the following set 𝑆2 from 𝑆𝛿:
First, 𝑆2 contains all points in 𝑉 ∩𝑆𝛿, Secondly, whenever 𝑆𝛿 contains 𝑧 + 1 points from
the interior of some edge 𝑒 ∈ 𝐸, then we put the midpoint of 𝑒 into 𝑆2. It can be shown
that the resulting set 𝑆2 is 2-dispersed and has the desired cardinality.

2.6 Integer Edge Lengths

In this section we show that the results of Lemma 2.15 and Lemma 2.16 can be gener-
alized to graphs with integer edge lengths 𝑙𝑒 for 𝑒 ∈ 𝐸. The main observation is that an
instance of 𝛿-dispersion in a graph 𝐺 = (𝑉,𝐸) with edge lengths 𝑙 is equivalent to an
instance of 𝛿-dispersion in the graph sub(𝐺, 𝑙) with unit-length edges, where sub(𝐺, 𝑙)
is obtained from 𝐺 by subdividing each edge 𝑒 of 𝐺 into a path with exactly 𝑙𝑒 edges.
This directly proves that if 𝑙𝑒 is polynomially bounded our problem can be solved in
polynomial time for 𝛿 with numerator 1 and 2. We will now show this holds also with
no restriction on 𝑙𝑒, except for being integer.

Lemma 2.17. Let 𝛿 = 1/𝑏 for some integer 𝑏, and let 𝐺 = (𝑉,𝐸) be a connected graph
with edge lengths 𝑙𝑒.

∙ If 𝐺 is a tree then 𝛿-Disp((𝐺, 𝑙)) = 𝑏
∑︀

𝑒∈𝐸 𝑙𝑒 + 1.

∙ If 𝐺 is not a tree then 𝛿-Disp((𝐺, 𝑙)) = 𝑏
∑︀

𝑒∈𝐸 𝑙𝑒.

Proof. This result follows directly from the observation about sub(𝐺, 𝑙) and Lemma 2.15,
since subdivision of edges has no influence on the property whether 𝐺 is a tree.

28

2.6 Integer Edge Lengths

To obtain a polynomial time result for 𝛿 = 2
𝑏 we need to show that a maximum

cardinality matching in sub(𝐺, 𝑙) can be obtained in polynomial time and analyze the
structure of the Edmonds-Gallai decomposition of sub(𝐺, 𝑙).

We first transform the instance (𝐺, 𝑙) into an equivalent instance (𝐺′ = (𝑉 ′, 𝐸′), 𝑙′)
such that for each 𝑒 ∈ 𝐸′ it holds that 𝑙′𝑒 is odd. This can be easily achieved by
subdividing every edge 𝑒 ∈ 𝐸 with 𝑙𝑒 even exactly once into edges 𝑒′ and 𝑒′′. We then set
𝑙′𝑒′ := 𝑙′𝑒 − 1 and 𝑙′𝑒′′ := 1. For all other edges 𝑒 we set 𝑙′𝑒 := 𝑙𝑒. By the same arguments
as used for the equivalence of sub(𝐺, 𝑙) to the instance (𝐺, 𝑙) the new instance (𝐺′, 𝑙′) is
equivalent to solving the instance (𝐺, 𝑙) for arbitrary 𝛿.

Lemma 2.18. If 𝑙𝑒 is odd for each 𝑒 ∈ 𝐸 a maximum cardinality matching 𝑀 ′ of
sub(𝐺, 𝑙) is characterized by a maximum cardinality matching of 𝐺 and it holds that
𝜈(sub(𝐺, 𝑙)) = 𝜈(𝐺) +

∑︀
𝑒∈𝐸

𝑙𝑒−1
2 .

We have that 𝑀 ′ contains exactly 𝜈(𝐺) subdivided edges 𝑒 of 𝐺 in which there are
exactly 𝑙𝑒+1

2 edges of 𝑀 ′ and these edges are a maximum matching in 𝐺. The subdivision

of every other edge 𝑒 of 𝐺 contains exactly 𝑙𝑒−1
2 edges of 𝑀 ′.

Proof. We make the following two observations about the induced paths of odd length
in sub(𝐺, 𝑙).

∙ A path of odd length 𝑙𝑒 has exactly one perfect matching of cardinality 𝑙𝑒+1
2 . In

this matching obviously both end-vertices are matched.

∙ A path of odd length 𝑙𝑒 has a matching of cardinality 𝑙𝑒−1
2 that leaves both end-

vertices unmatched.

These two observations imply that a maximum matching in sub(𝐺, 𝑙) always con-
tains at least 𝑙𝑒−1

2 edges in each path. Without loss of generality one can assume that
the matching of this kind leaving both end-vertices unmatched is chosen, since this is
the matching of this cardinality interfering the least with the rest of the graph. One
additional matching-edge in a path can only be chosen by matching both end-vertices
with matching-edges of the path. Choosing for which paths to do this corresponds to
calculating a maximum cardinality matching in 𝐺.

Lemma 2.19. If 𝑙𝑒 is odd for each 𝑒 ∈ 𝐸 the Edmonds-Gallai decomposition (𝑋 ′, 𝑌 ′, 𝑍 ′)
of sub(𝐺, 𝑙) has the following properties, based on the Edmonds-Gallai decomposition
(𝑋,𝑌, 𝑍) of 𝐺:

∙ The vertices of subdivisions of a component 𝐶 of 𝑋 (both the original vertices and
the subdivision ones) are in 𝑋 ′.

∙ The vertices of subdivisions of a component 𝐶 of 𝑍 (both the original vertices and
the subdivision ones) are in 𝑍 ′.

∙ Let {𝑦, 𝑥} be an edge between 𝑦 ∈ 𝑌 and 𝑥 ∈ 𝑋 in 𝐺. It holds that 𝑦 ∈ 𝑌 ′, 𝑥 ∈ 𝑋 ′

and the subdivision vertices of the edge alternate to be in 𝑋 ′
1 and 𝑌 ′.

29

2 Dispersing Obnoxious Facilities on a Graph

∙ The subdivision vertices of edges {𝑦, 𝑧} for 𝑦 ∈ 𝑌 and 𝑧 ∈ 𝑍 are in 𝑍 ′ and become
part of the components 𝐶 of 𝑍 they are connected to.

Proof. The statement about vertices of subdivisions of a component 𝐶 of 𝑋 follows
easily since to make a subdivision vertex unmatched one considers a matching in 𝐺 that
does not match one of the endpoints of the edge corresponding to the subdivision vertex.
Then one can use a matching of cardinality 𝑙𝑒−1

2 inside the subdivision that matches the
endpoint but does not match the designated subdivision vertex.

For the subdivision vertices corresponding to edges in a component 𝐶 of 𝑍, we know
that all the original vertices are matched according to some perfect matching of 𝐶 in 𝐺,
and hence one can complete each other edge by the unique perfect matching of the other
subdivision vertices. In a maximum matching one must do this, hence all such vertices
are also in 𝑍 ′.

Since for edges {𝑦, 𝑧} for 𝑦 ∈ 𝑌, 𝑧 ∈ 𝑍 it also holds after subdivision that both end-
points 𝑦 and 𝑧 are matched in every maximum matching we have that the unique perfect
matching of the subdivision points of the edge is part of every maximum matching. Hence
those subdivision points merge with the component of 𝑧 in 𝑍 ′.

The most relevant change in 𝑋 ′, 𝑌 ′, 𝑍 ′ happens for the subdivision of edges {𝑦, 𝑥} for
𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋. By the fact that 𝑥 ∈ 𝑋 there is a maximum matching in 𝐺 that does
not contain the edge 𝑒 = {𝑦, 𝑥}. Since in the factor-critical component connected to
𝑥 we can select a maximum matching that keeps 𝑥 free, we can easily check that all
ways to select the 𝑙𝑒−1

2 edges along the subdivision of 𝑒 is such that 𝑦 and every second
subdivision vertex after 𝑦 is always matched and for every other subdivision vertex and
also 𝑥 there exists exactly one such a matching that keeps it unmatched. Hence the
claim follows.

Based on this it is easy to see that actually also minimizing 𝑔(𝑇) for the graph 𝐺 gives
the optimal solution for sub(𝐺, 𝑙), assuming 𝑙 is odd. The set of singletons 𝑋 ′

1 = 𝑋1∪𝑆1,
where 𝑆1 are the subdivision points of edges {𝑦, 𝑥} for 𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 with odd distance
from 𝑦. Observe that the only way in which taking the subdivision points 𝑆1 in a solution
can increase the size (compared to taking a matching) is when the end-vertex 𝑥 of the
path is also a singleton in 𝑋1 and is taken. In this case we can and have to take all the
singletons and this has the same effect on 𝑦 as as in 𝐺, since then along no subdivided
edge 𝑒′ incident to 𝑦 the matching of size

𝑙𝑒′+1
2 can be taken. Hence by solving the

minimization of 𝑔(𝑇) for the Edmonds-Gallai decomposition of 𝐺 one obtains also the
optimal solution for sub(𝐺, 𝑙). In summary we obtain the following theorem.

Theorem 2.20. The 2-dispersion number of a graph 𝐺 with integer edge lengths 𝑙 can
be computed in polynomial time.

2.7 Special Graph Classes

In the following we summarize some results about the 𝛿-Disp(𝐺) for graphs 𝐺 with
special structure.

30

2.7 Special Graph Classes

Theorem 2.21. If 𝐺 has treewidth 𝑡 we can compute 𝛿-Disp(𝐺) in time 𝑓(𝑡)𝑛 for fixed
𝛿, where 𝑓 is some computable function.

Proof. This follows directly from the optimization variant of Courcelle’s theorem [6].
We first reduce the given instance to 𝛿 ∈ N using Lemma 2.2. Then based on

Lemma 2.3 we can formulate the fact that a set 𝑆 ⊆ 𝑉 and a set 𝑀 ⊆ 𝐸 in com-
bination form a 𝛿-dispersed set using the following MSO2 formula:

(∀𝑠1, 𝑠2 ∈ 𝑆 : 𝑠1 ̸= 𝑠2 ∧ distv(>)(𝑠1, 𝑠2, 1) ∧ · · · ∧ distv(>)(𝑠1, 𝑠2, 𝛿 − 1)) ∧
(∀𝑒1, 𝑒2 ∈ 𝑀 : 𝑒1 ̸= 𝑒2 ∧ diste(>)(𝑒1, 𝑒2, 1) ∧ · · · ∧ diste(>)(𝑒1, 𝑒2, 𝛿 − 1)) ∧
(∀𝑠 ∈ 𝑆, 𝑒 ∈ 𝑀 : distve(>)(𝑠, 𝑒, 1) ∧ · · · ∧ distve(>)(𝑠, 𝑒, 𝛿 − 1)),

where for all 𝑘 ∈ N

distv(>)(𝑠1, 𝑠2, 𝑘) :=

@𝑣1, . . . , 𝑣𝑘+1 ∈ 𝑉 : 𝑠1 = 𝑣1 ∧ 𝑠2 = 𝑣𝑘+1 ∧ adj(𝑣1, 𝑣2) ∧ · · · ∧ adj(𝑣𝑘, 𝑣𝑘+1)),

diste(>)(𝑒1, 𝑒2, 𝑘) :=

@𝑣1, . . . , 𝑣𝑘 ∈ 𝑉 : inc(𝑣1, 𝑒1) ∧ inc(𝑣𝑘, 𝑒2) ∧ adj(𝑣1, 𝑣2) ∧ · · · ∧ adj(𝑣𝑘−1, 𝑣𝑘)),

distve(>)(𝑠, 𝑒, 𝑘) :=

@𝑣1, . . . , 𝑣𝑘+1 ∈ 𝑉 : 𝑣1 = 𝑠 ∧ inc(𝑣𝑘+1, 𝑒) ∧ adj(𝑣1, 𝑣2) ∧ · · · ∧ adj(𝑣𝑘, 𝑣𝑘+1)).

It is an intersting open problem whether this problem is W[1]-hard on graphs with
bounded clique-width. Also, the computational complexity of 𝛿-dispersion on graphs
with bounded treewith for arbitrary 𝛿 is an open problem.

31

3 Steiner Problems on Interval Graphs

3.1 Introduction

In this chapter we investigate the Steiner cycle and Steiner path problem in interval
graphs. Our investigation was motivated by 2D platform games which is a common
game mechanism to include platforms that fall or break after the player visits them
once. Additionally, it is often the case that the player has to collect certain items (coins,
stars, . . .) that are placed on some of these platforms and afterwards get back to the
start or reach the exit of the level. Popular examples of video games that are (partially)
based on these principles include Super Mario Bros.1 (see Figure 3.1), Donkey Kong
Country and Super Mario Land. We study solvability of levels based on these principles
by introducing a toy model of such video games, in which all platforms (except for the
target/starting point) have this falling property. The reachability between two platforms
is modeled via an interval graph, which in many cases is a reasonable simplification.
Then, the solvability of a level boils down to either finding a Steiner cycle or a Steiner
path in the corresponding interval graph. To our knowledge, these problems have not
been studied for this specific graph class. The Hamiltonian cycle and Hamiltonian path
problem, which are special cases of the Steiner variants, are extensively studied for
interval graphs and can be solved in linear time, if the intervals are given as a right
endpoint sorted list [5, 73,82,97].

Figure 3.1: Super Mario Bros. (1985, NES)

In this work we generalize the algorithms of Manacher et al. [97] to the Steiner setting
and obtain first linear time algorithms for the Steiner path cover and Steiner cycle
problem on interval graphs. A second important aspect when considering 2D game

1Super Mario Bros. is a trademark of Nintendo. Sprites are used here under Fair Use for educational
purposes.

33

3 Steiner Problems on Interval Graphs

levels is the fact that the screen size is limited, so the whole level is not visible to the
player at once. By studying our algorithms as single pass streaming algorithms we state
precisely which parts of a level have to be visible to the player to deterministically decide
how to play at each time. Alternatively, this can be interpreted as a memory bound for
the streaming algorithms in terms of a natural graph parameter for interval graphs. To
obtain our results we extend the tools introduced in [73].

These problems in a more general model for platform game levels based on intersection
graphs of two dimensional boxes are hard. Such graphs are generalizations of grid graphs
for which already the Hamiltonian path problem is known to be NP-hard [74].

3.2 Definitions and Preliminary Results

Given an interval 𝑖 = [𝑥, 𝑦] we denote the left endpoint 𝑥 by l(𝑖) = 𝑥 and the right
endpoint 𝑦 by r(𝑖) = 𝑦. Let 𝐼 = (𝑖1, 𝑖2, . . . , 𝑖𝑛) be a list or set of intervals. We denote by
𝐺(𝐼) the interval graph of 𝐼. The vertices of 𝐺(𝐼) correspond to the intervals of 𝐼. Two
intervals 𝑖, 𝑖′ ∈ 𝐼 are connected by an edge in 𝐺(𝐼) if 𝑖 ∩ 𝑖′ ̸= ∅.

For an arbitrary graph 𝐺 = (𝑉,𝐸) a list of vertices 𝑃 = (𝑣1, 𝑣2, . . . , 𝑣𝑙) is a (simple)
path if those vertices are pairwise distinct and for each 𝑗 = 1, 2, . . . , 𝑙 − 1 it holds that
{𝑣𝑗 , 𝑣𝑗+1} ∈ 𝐸. The start of 𝑃 is denoted by start(𝑃) = 𝑣1 and the end of 𝑃 is denoted by
end(𝑃) = 𝑣𝑙. We define rev(𝑃) as the reverse path (𝑣𝑙, 𝑣𝑙−1, . . . , 𝑣1) of 𝑃 . If in addition
{𝑣𝑙, 𝑣1} ∈ 𝐸 then we call 𝑃 a (simple) cycle. For ease of writing we sometimes abuse
notation and consider 𝑃 as a set instead of a list, to allow for the use of set operations.
Given two paths 𝑃 and 𝑄 and a vertex 𝑣 we also write (𝑃,𝑄) for the concatenation of
𝑃 and 𝑄, and (𝑃, 𝑣) for the concatenation of 𝑃 and 𝑣.

Given a set 𝑆 ⊆ 𝑉 , a Steiner cycle is a cycle 𝐶 in 𝐺 such that 𝑆 ⊆ 𝐶. A Steiner path
cover of 𝐺 is a set {𝑃1, 𝑃2, . . . , 𝑃𝑘} of pairwise disjoint paths in 𝐺 such that 𝑆 ⊆ ⋃︀𝑘

𝑗=1 𝑃𝑗 .
The Steiner path cover number 𝜋𝑆(𝐺) is the minimum cardinality of a Steiner path cover
of 𝐺. If 𝜋𝑆(𝐺) = 1 we say that 𝐺 has a Steiner path.

A set 𝐶 ⊆ 𝑉 is called a cutset of 𝐺 if 𝐺−𝐶 is disconnected. A set of vertices 𝑇 ⊆ 𝑉
is called an island with respect to 𝐶, if 𝑇 is not adjacent to any vertex in 𝑉 ∖ (𝐶 ∪𝑇). 𝑇
is called an 𝑆-island with respect to 𝐶, if 𝑇 is an island with respect to 𝐶 and 𝑆∩𝑇 ̸= ∅.

The following two results for general simple graphs are generalizations of two obser-
vations by Hung and Chung [73].

Proposition 3.1. Let 𝐶 be a cutset of 𝐺 and 𝑔𝑆 the number of connected components
𝐾 in 𝐺− 𝐶 such that 𝐾 ∩ 𝑆 ̸= ∅. Then, 𝜋𝑆(𝐺) ≥ 𝑔𝑆 − |𝐶|.

Proof. Let (𝑃1, 𝑃2, . . . , 𝑃𝑘) be a Steiner path cover of 𝐺. For every 𝑃𝑗 let 𝑔𝑗 be the
number of components 𝐾 of 𝐺−𝐶 with 𝐾 ∩𝑆 ̸= ∅ and 𝐾 ∩𝑃𝑗 ̸= ∅. The 𝑃𝑗 must use at
least 𝑔𝑗 − 1 distinct vertices from 𝐶 to reconnect itself from those different components
of 𝐺 − 𝐶, i.e., |𝑃𝑗 ∩ 𝐶| ≥ 𝑔𝑗 − 1. Now, since paths of a path cover are vertex disjoint,

we have that |𝐶| ≥ ∑︀𝑘
𝑗=1(𝑔𝑗 − 1). Finally, from the fact that

∑︀𝑘
𝑗=1 𝑔𝑗 ≥ 𝑔𝑆 , we get

𝑘 ≥ 𝑔𝑆 − |𝐶|, which proves our claim.

34

3.3 The Steiner Path Cover Problem

Proposition 3.2. Let 𝐶 be a cutset of 𝐺 and 𝑔𝑆 the number of connected components
𝐾 in 𝐺− 𝐶 such that 𝐾 ∩ 𝑆 ̸= ∅. If 𝑔𝑆 > |𝐶|, then 𝐺 has no Steiner cycle.

Proof. A Steiner cycle needs to connect all components 𝐾 of 𝐺 − 𝐶 with 𝐾 ∩ 𝑆 ̸= ∅.
For each such connection a distinct vertex from 𝐶 has to be used. Since it is a cycle, it
has to be closed, hence 𝑔𝑆 such connections are necessary. This implies that if 𝑔𝑆 > |𝐶|
no Steiner cycle can exist.

We use these results to solve the Steiner path cover problem (see Section 3.3) and
the Steiner cycle problem (see Section 3.4) on interval graphs efficiently. Throughout
the chapter we assume that |𝑆| is known to the algorithms and queries 𝑖 ∈ 𝑆 can be
performed in 𝑂(1) time.

3.3 The Steiner Path Cover Problem

We show that the basic greedy principle, that is at the core of efficient algorithms for
the path cover problem on interval graphs, can be generalized by the introduction of ne-
glectable intervals. But first we explain the basic greedy principle to find paths in interval
graphs that was introduced independently by Manacher et al. [97] and Arikati et al. [5].

Given a endpoint sorted list of intervals we number those intervals as 𝑖1, 𝑖2, . . . , 𝑖𝑛
in increasing order with respect to their right endpoint, hence 𝑟(𝑖𝑗) < 𝑟(𝑖𝑗+1) for all
𝑗 = 1, 2, . . . , 𝑛 − 1. (Such a numbering can be easily obtained in 𝑂(𝑛) time using the
endpoint sorted list and is assumed for the rest of this chapter. W.l.o.g. we can assume
that 𝑟(𝑖𝑗) ̸= 𝑟(𝑖𝑘) for 𝑖 ̸= 𝑘.) The algorithm iteratively constructs a path 𝑃 . It starts
with the path 𝑃 := (𝑖1) containing only the first interval. Then it repetitively extends 𝑃
by the neighbor of end(𝑃) not in 𝑃 with minimum right endpoint. If no such extension
is possible the algorithm terminates with the current path 𝑃 as an output. We denote
this algorithm by GP and the path 𝑃 obtained by this algorithm by GP(𝐼).

For a path 𝑃 = GP(𝐼) = (𝑣1, 𝑣2, . . . , 𝑣𝑙) obtained by executing the algorithm on an
interval graph 𝐺(𝐼), we define 𝐿(𝑃) as the set of intervals of 𝑃 that exceed beyond
the right endpoint of end(𝑃), i.e. 𝐿(𝑃) = {𝑣 ∈ 𝑃 : r(𝑣) > r(end(𝑃))}. Now we can
recursively define 𝐶(𝑃), the set of covers of the path 𝑃 , as follows. If 𝐿(𝑃) = ∅, we
set 𝐶(𝑃) = ∅. Otherwise, let 𝑗 be the maximum index such that 𝑣𝑗 ∈ 𝐿(𝑃). We set
𝐶(𝑃) = {𝑣𝑗} ∪ 𝐶(𝑃 ′) for 𝑃 ′ = (𝑣1, 𝑣2, . . . , 𝑣𝑗−1).

For 𝐶(𝑃) = {𝑐1, 𝑐2, . . . , 𝑐𝑘} and 𝑃 = (𝑃0, 𝑐1, 𝑃1, 𝑐2, . . . , 𝑐𝑘, 𝑃𝑘), Manacher et al. [97]
proved that for each 𝑗 = 0, 1, . . . , 𝑘 it holds that 𝑃𝑗 is an island with respect to 𝐶(𝑃)
and if 𝐼 ∖ 𝑃 ̸= ∅ also 𝐼 ∖ 𝑃 is an island with respect to 𝐶(𝑃). Such a representation of
𝑃 we call a decomposition into covers and islands.

Manacher et al. [97] also observed the following important properties of a decomposi-
tion into covers and islands.

Proposition 3.3. Let 𝑃 = GP(𝐼) = (𝑣1, 𝑣2, . . . , 𝑣𝑙).

1. If 𝑣𝑗 ∈ 𝐶(𝑃) it holds that r(𝑣𝑗) > r(𝑣𝑗+1).

35

3 Steiner Problems on Interval Graphs

2. If 𝑃 = (𝑃0, 𝑐1, 𝑃1, 𝑐2, . . . , 𝑐𝑘, 𝑃𝑘) is a decomposition into covers and islands, then
it holds that 𝐿(𝑃𝑗) = ∅ for each 𝑗 = 0, 1, . . . , 𝑘.

To illustrate the notions introduced above, consider the intervals in Figure 3.2 given
as a right endpoint-sorted list 𝐼 = (𝑖1, 𝑖2, . . . , 𝑖12). Algorithm GP starts by setting

𝑖1

𝑖2

𝑖3

𝑖4

𝑖5

𝑖6 𝑖7

𝑖8

𝑖9

𝑖10

𝑖11

𝑖12

Figure 3.2: An interval model 𝐼 of twelve endpoint-sorted intervals [73].

𝑃 = (𝑖1). Neighbors of 𝑖1 are {𝑖2, 𝑖4, 𝑖6}, and since r(𝑖2) < min{r(𝑖4), r(𝑖6)} we extend
𝑃 by 𝑖2, i.e. 𝑃 = (𝑖1, 𝑖2). Among neighbors of 𝑖2 that are not already in 𝑃 , 𝑖3 has
the smallest right endpoint, so 𝑃 is extended to 𝑃 = (𝑖1, 𝑖2, 𝑖3). Next candidates for
the extension are {𝑖4, 𝑖6} among which we chose 𝑖4, i.e. 𝑃 = (𝑖1, 𝑖2, 𝑖3, 𝑖4). Next, the
only possible extension is by 𝑖6, hence 𝑃 = (𝑖1, 𝑖2, 𝑖3, 𝑖4, 𝑖6). Among the next candidates
for extension {𝑖5, 𝑖10}, interval 𝑖5 is chosen. At this point the algorithm terminates and
outputs 𝑃 = (𝑖1, 𝑖2, 𝑖3, 𝑖4, 𝑖6, 𝑖5), since there is no neighbor of 𝑖5 that is not already in 𝑃 .

Now we find a decomposition into covers and islands of 𝑃 . Since r(𝑖6) > r(end(𝑃) =
𝑖5), we have that 𝐿(𝑃) = {𝑖6}, and 𝐶(𝑃) = {𝑖6} ∪ 𝐶(𝑃 ′ = (𝑖1, 𝑖2, 𝑖3, 𝑖4)). 𝐿(𝑃 ′) is the
empty set, so the decomposition process is over and we have that the decomposition
into covers and islands of 𝑃 is given by 𝐶(𝑃) = {𝑖6} and 𝑃 = (𝑃0, 𝑖6, 𝑃1), where
𝑃0 = (𝑖1, 𝑖2, 𝑖3, 𝑖4) and 𝑃1 = (𝑖5). Note that 𝑃0, 𝑃1 and 𝐼 ∖ 𝑃 are islands with respect
to 𝐶(𝑃) = {𝑖6}. Furthermore, note that our decomposition satisfies the properties in
Proposition 3.3.

Given the fact that in the Steiner variant of the problem only the intervals in 𝑆 have
to be visited, we introduce neglectable intervals. Let 𝑃 be the current path at any point
of the greedy algorithm and 𝑣′ be the next extension. We call 𝑣′ neglectable with respect
to end(𝑃), if 𝑣′ /∈ 𝑆 and r(𝑣′) < r(end(𝑃)), i.e. end(𝑃) ∈ 𝐿((𝑃, 𝑣′)). We modify the
algorithm GP, such that it skips neglectable intervals with respect to the end of the
current path. Analogously to GP this modification is denoted by GP𝑆 . Additional two
distinctions of GP𝑆 are that it starts with the interval (with the smallest r(𝑣)) that is in
𝑆, and it terminates as soon as there are no more uncovered intervals in 𝑆. We denote
by 𝑁𝑣 the set of intervals that are not contained in GP𝑆(𝐼) because they are neglectable
with respect to 𝑣 for some path 𝑃 during the execution of GP𝑆 , where 𝑣 = end(𝑃). Let
𝑁 be the set of all such neglectable intervals obtained during the entire run of GP𝑆 .

Now we present a lemma which is our main tool for elegantly proving our main results.

Lemma 3.4. Let 𝑃 = GP𝑆(𝐼) be the path obtained by GP𝑆 for a given list of intervals
𝐼, let 𝑃 = (𝑃0, 𝑐1, 𝑃1, 𝑐2, . . . , 𝑃𝑘−1, 𝑐𝑘, 𝑃𝑘) be its decomposition into covers and islands
in 𝐺(𝐼 ∖ 𝑁), and let 𝐶(𝑃) = {𝑐1, 𝑐2, . . . , 𝑐𝑘}. Then it holds for all 𝑗 = 0, 1, . . . , 𝑘 that

36

3.3 The Steiner Path Cover Problem

𝑃𝑗 ∩ 𝑆 ̸= ∅, i.e. 𝑃𝑗 is an 𝑆-island with respect to 𝐶(𝑃) in 𝐺(𝐼 ∖𝑁). It even holds that
𝑃𝑗 ∪𝑁𝑐𝑗 contains at least one 𝑆-island with respect to 𝐶(𝑃) in 𝐺(𝐼).

Proof. It is easy to see that this decomposition into covers and islands exists, since if
𝑃 = GP𝑆(𝐼) it follows by construction that 𝑃 = GP(𝐼 ∖𝑁).

The fact that 𝑃𝑗 is an 𝑆-island with respect to 𝐶(𝑃) in 𝐺(𝐼∖𝑁) is a trivial consequence
of the decomposition into covers and islands and the definition of GP𝑆 . Since 𝑐𝑗 is used
before every interval in 𝑁𝑐𝑗 we have that the left endpoint of every interval in 𝑁𝑐𝑗 is
larger than the left endpoint of 𝑐𝑗 . The right endpoints of each of the intervals in 𝑁𝑐𝑗

is smaller than the right endpoint of 𝑐𝑗 by definition of neglected intervals. But this
directly implies that 𝐶(𝑃) separates also 𝑁𝑐𝑗 from the rest of 𝐺(𝐼), except for possibly
𝑃𝑗 .

Now we can obtain an easy procedure to solve the Steiner path cover problem on
interval graphs. We start with 𝒫 = ∅ and apply the algorithm GP𝑆 . After termination
let 𝑃 = GP𝑆(𝐼). We add 𝑃 to our partial solution 𝒫 and find the smallest index 𝑗 such
that 𝑖𝑗 ∈ 𝑆 and 𝑖𝑗 is not in any path currently contained in 𝒫. Then we apply GP𝑆

again to the list of intervals 𝑖𝑗 , 𝑖𝑗+1, . . . , 𝑖𝑛. We iterate like this until all intervals in 𝑆
are covered by one of the paths in 𝒫. The algorithm terminates with the Steiner path
cover 𝒫 as its output.

Theorem 3.5. The Steiner path cover obtained by iterated application of GP𝑆 is opti-
mal.

Proof. Let 𝑃1, 𝑃2, . . . , 𝑃𝑙 be the paths obtained by the iterated application of GP𝑆 and
𝐶 ′ =

⋃︀𝑙
𝑗=1𝐶(𝑃𝑗) be the union of all the covers in the decomposition into covers and

islands of each path. Then, by repeated application of Lemma 3.4 we obtain that there
are 𝑙 + |𝐶 ′| 𝑆-islands with respect to 𝐶 ′ in 𝐺(𝐼). By Proposition 3.1 we then know that
𝜋𝑆(𝐺(𝐼)) ≥ 𝑙, so our solution is an optimal Steiner path cover.

To illustrate our algorithm for the Steiner path cover problem we again consider the
example in Figure 3.2. In the case when 𝑆 = 𝐼, i.e., all intervals need to be covered, our
algorithm runs GP𝑆(𝐼) which outputs 𝑃 ′ = (𝑖1, 𝑖2, 𝑖3, 𝑖6, 𝑖5), and then it runs GP𝑆(𝐼∖𝑃 ′)
which outputs 𝑃 ′′ = (𝑖7, 𝑖8, 𝑖9, 𝑖10, 𝑖12, 𝑖11), and the algorithm terminates. Therefore, for
𝑆 = 𝐼 we have that 𝜋𝑆(𝐼) = 2. Now lets say that 𝑆 = {𝑖2, 𝑖4, 𝑖6, 𝑖8, 𝑖10, 𝑖12}. GP𝑆(𝐼)
starts with the element of 𝑆 with the smallest right endpoint which is 𝑖2. Then it extends
the path with 𝑖3, 𝑖4 and then 𝑖6. After that, the algorithm neglects 𝑖5 since r(𝑖5) < r(𝑖6)
and 𝑖5 /∈ 𝑆. Next, the path is extended by 𝑖10, then 𝑖7 is neglected, but 𝑖8 is added to
the path (since 𝑖8 ∈ 𝑆). Then the path is extended by 𝑖9 and finally by 𝑖12. Interval 𝑖11
is neglected. The output of the algorithm is the path 𝑃 = (𝑖2, 𝑖3, 𝑖4, 𝑖6, 𝑖10, 𝑖8, 𝑖9, 𝑖12), so
𝜋𝑆(𝐼) = 1. Note that the key factor that allowed us to cover the set 𝑆 with only one
path is the fact that we could neglect 𝑖5.

By using the deferred-query approach by Chang et al. [31] this algorithm can be
implemented in 𝑂(𝑛) time.

37

3 Steiner Problems on Interval Graphs

Theorem 3.6. The iterated application of GP𝑆 can be implemented in 𝑂(𝑛) time, using
the deferred-query approach.

Proof. Firstly, we give a high-level explainantion of how to implement GP𝑆 using the
deferred-query technique. Afterwards we argue how the modifictions can still be imple-
mented in linear time.

In the deferred-query approach the algorithm handles the intervals in the given right
endpoint sorted order one after another. For each 𝑗 where 𝑖𝑗−1 ∩ 𝑖𝑗 ̸= ∅ the algorithm
can be executed as stated above, since in this case we have that end(𝑃) = 𝑖𝑗−1 and we
extend 𝑃 with 𝑖𝑗 . The main difference is, that when 𝑖𝑗−1∩ 𝑖𝑗 = ∅ we still have to process
𝑖𝑗 instantly.

This is handled in the following way: The algorithm keeps at each time a collection of
paths 𝑃1, . . . , 𝑃𝑙 and a flag that indicates whether 𝑃𝑙 already contains an interval from
𝑆. (For all other paths it is an invariant of the algorithm that they always contain an
interval from 𝑆). In the beginning we have that 𝑙 = 1 and 𝑃1 = (𝑖1), where we assume
that 𝑖1 ∈ 𝑆. When handling 𝑖𝑗 we have the following case distinction.

(a) end(𝑃𝑙) ∩ 𝑖𝑗 ̸= ∅ and end(𝑃𝑘) ∩ 𝑖𝑗 = ∅ for all 𝑘 < 𝑙: in this case, if 𝑃𝑙 contains an
interval from 𝑆 we extend 𝑃𝑙 by 𝑖𝑗 , hence 𝑃𝑙 := (𝑃𝑙, 𝑖𝑗). Otherwise we set 𝑃𝑙 := (𝑖𝑗).

(b) There is a 𝑘 < 𝑙 such that end(𝑃𝑘) ∩ 𝑖𝑗 ̸= ∅: let 𝑘 be minimum with this property.
Then also start(𝑃𝑘+1) ∩ 𝑖𝑗 ̸= ∅ and hence we can connect 𝑃𝑘 and 𝑃𝑘+1 using 𝑖𝑗 ,
hence the new collection of paths is 𝑃1, . . . , (𝑃𝑘, 𝑖𝑗 , 𝑃𝑘+1), . . . , 𝑃𝑙. if 𝑘 + 1 = 𝑙 and
𝑃𝑙 does not contain an interval from 𝑆 we instead set the new collection of paths to
𝑃1, . . . , (𝑃𝑙−1, 𝑖𝑗).

(c) end(𝑃𝑙) ∩ 𝑖𝑗 = ∅: In this case if 𝑃𝑙 contains an interval from 𝑆 we add a new path
𝑃𝑙+1 := (𝑖𝑗), hence the new collection of paths is 𝑃1, 𝑃2, . . . , 𝑃𝑙, 𝑃𝑙+1. Otherwise we
replace 𝑃𝑙 := (𝑖𝑗).

It is now easy to see that after termination this algorithm obtains exactly the set
(𝑃1, . . . , 𝑃𝑙) that is the output of iterating algorithm GP𝑆 . The main observation is
that the intervals that are removed by the procedure above are either neglectable or are
intervals not in 𝑆 that are are strictly between r(end(𝑃𝑘)) and l(start(𝑃𝑘+1)) for some
𝑘 = 1, . . . , 𝑙 − 1.

It remains to show that interval 𝑖𝑗 can be handled in 𝑂(1) time. This follows directly
by the implementation based on static tree set union shown in by Chang et al. [31], since
the only difference is that in each step we have to do a case distinction for whether the
current 𝑃𝑙 contains an interval from 𝑆. The operations performed then correspond to
operations already performed by the original algorithm, and removing the current last
path 𝑃𝑙. This remove operation can obviously also be handled in constant time.

3.4 The Steiner Cycle Problem

Next we generalize the algorithm of Manacher et al. [97] to solve the Steiner cycle problem
on interval graphs. We first run our algorithm for the Steiner path cover problem (see

38

3.4 The Steiner Cycle Problem

Section 3.3). If 𝜋𝑆 > 1 we know that there cannot exist a Steiner cycle. Otherwise, let
𝑃 = (𝑣1, 𝑣2, . . . , 𝑣𝑙) be the obtained Steiner path in 𝐺(𝐼).

Based on 𝑃 we construct two paths 𝑄 and 𝑅. We start by setting 𝑅 = (𝑣1) and
𝑄 = (𝑣2). Then, we iteratively process the intervals 𝑣3 to 𝑣𝑙. If in the step of processing
interval 𝑣𝑗 we have that end(𝑄) = 𝑣𝑗−1, we consider the following two cases. Firstly,
if 𝑣𝑗 ∩ end(𝑅) ̸= ∅, we extend 𝑅 by 𝑣𝑗 , i.e. 𝑅 = (𝑅, 𝑣𝑗). Otherwise, we extend 𝑄 by
𝑣𝑗 , i.e. 𝑄 = (𝑄, 𝑣𝑗). If on the other hand in this step we have that end(𝑅) = 𝑣𝑗−1 we
analogously check if 𝑣𝑗 ∩ end(𝑄) ̸= ∅. If this is the case we extend 𝑄 by 𝑣𝑗 and if not we
extend 𝑅 by 𝑣𝑗 .

In the end of this process we try to connect 𝑅 and rev(𝑄) to a Steiner cycle. To achieve
this we check if end(𝑄) and end(𝑅) are directly connected, i.e. end(𝑄)∩end(𝑅) ̸= ∅, or if
there is an interval 𝑣′ among the intervals 𝐼 ′ ⊆ 𝐼 ∖𝑃 , whose right endpoints r(𝑣′) > r(𝑣𝑙)
such that both end(𝑄) ∩ 𝑣′ ̸= ∅ and end(𝑅) ∩ 𝑣′ ̸= ∅. In any of those two cases we
can connect 𝑄 and rev(𝑅) to a Steiner cycle. Otherwise, the algorithm returns that no
Steiner cycle exists.

Theorem 3.7. The given algorithm correctly decides the existence of a Steiner cycle in
𝐺(𝐼) and obtains such a cycle if possible.

Proof. If the algorithm finds a Steiner cycle this is obviously true. Also, by correctness
of the algorithm for the Steiner path cover (Theorem 3.5), if no Steiner path is found
we correctly determine that no Steiner cycle can exist.

Otherwise, let us assume that the algorithm did not find a Steiner cycle. Without loss
of generality, let end(𝑅) = 𝑣ℎ with ℎ < 𝑙 − 1 and consider the path 𝑃 ′ = (𝑣1, 𝑣2, . . . , 𝑣ℎ)
and its decomposition into covers and islands. Since 𝑅 was not extended by any of the
intervals 𝑣ℎ+2, 𝑣ℎ+3 . . . , 𝑣𝑙, we have that 𝐶(𝑃 ′)∪{𝑣ℎ+1} separates the islands of 𝑃 ′ from
{𝑣ℎ+2, 𝑣ℎ+3, . . . , 𝑣𝑙}. In addition, since end(𝑅) and end(𝑄) could not be connected with
any interval in 𝐼 ′, for all intervals 𝑣′ ∈ 𝐼 ′ it holds that l(𝑣′) > r(𝑣ℎ). Combining this with
point 2 of Proposition 3.3 we observe that {𝑣ℎ+2, 𝑣ℎ+3, . . . , 𝑣𝑙} ∪ 𝐼 ′ is non-empty and an
𝑆-island with respect to 𝐶(𝑃 ′) ∪ {𝑣ℎ+1}.

By Lemma 3.4 there are at least |𝐶(𝑃 ′)|+ 1 𝑆-islands with respect to 𝐶 ∪{𝑣ℎ+1}. So,
by Proposition 3.2 there does not exist a Steiner cycle in 𝐺(𝐼).

Given a Steiner path 𝑃 , the paths 𝑄 and 𝑅 can be easily constructed in 𝑂(𝑛) time.
This gives a linear time algorithm for the Steiner cycle problem in interval graphs.

Now we illustrate our algorithm for the Steiner cycle problem on interval graphs with
the example given in Figure 3.3. The given instance has 10 intervals 𝐼 = {𝑖1, 𝑖2, . . . , 𝑖10}
and 𝑆 = {𝑖2, 𝑖5, 𝑖8}. Intervals in 𝑆 are represented with the red color. First we run
GP𝑆(𝐼). It starts the path with 𝑖2 and then extends it with 𝑖3 and 𝑖5 before neglecting
𝑖4. Then it proceeds by extending the path with 𝑖6, 𝑖7, finishing with 𝑖8. Hence it
obtains the Steiner path 𝑃 = (𝑖2, 𝑖3, 𝑖5, 𝑖6, 𝑖7, 𝑖8). In an attempt to create a Steiner cycle,
we partition 𝑃 into two paths 𝑅 and 𝑄. We initialize them with the first two intervals
in 𝑃 , that is, 𝑅 = (𝑖2) and 𝑄 = (𝑖3). Now we consider 𝑄 to be the current path, and 𝑅
to be the previous path. In each step we consider the next interval of 𝑃 , and in the case

39

3 Steiner Problems on Interval Graphs

𝑖1

𝑖2

𝑖3

𝑖4

𝑖5

𝑖6

𝑖7

𝑖8

𝑖9

𝑖10

Figure 3.3: An instance of the Steiner cycle problem on an interval graph with 𝑆 =
{𝑖2, 𝑖5, 𝑖8}.

that it intersect the end of the previous path, we extend the previous path and make it
the current path. Otherwise we add the interval to the current path. So, interval 𝑖5 is the
next interval in 𝑃 , and it does not intersect end(𝑅) = 𝑖2, hence we add it to 𝑄, making it
𝑄 = (𝑖3, 𝑖5). The next interval is 𝑖6, and it intersects end(𝑅) = 𝑖2, hence we extend 𝑅 and
make it the current path, so 𝑅 = (𝑖2, 𝑖6). Next interval 𝑖7 does not intersect end(𝑄) = 𝑖5
so we extend 𝑅 again, making it 𝑅 = (𝑖2, 𝑖6, 𝑖7). Finally, interval 𝑖8 does not intersect
end(𝑄) = 𝑖5 so we extend 𝑅, making it 𝑅 = (𝑖2, 𝑖6, 𝑖7, 𝑖8). This ends our partition of 𝑃
with the resulting subpaths 𝑅 = (𝑖2, 𝑖6, 𝑖7, 𝑖8) and 𝑄 = (𝑖3, 𝑖5). Since end(𝑅) = 𝑖8 and
end(𝑄) = 𝑖5 do not intersect, we cannot connect them into a cycle. The only remaining
chance to do so is using an interval from 𝐼 ′ = {𝑖 ∈ 𝐼 ∖ 𝑃 : r(𝑖) > r(end(𝑃))} = {𝑖9, 𝑖10}.
Luckily, 𝑖9 intersect both end(𝑅) = 𝑖8 and end(𝑄) = 𝑖5, and can be used to connect 𝑅 and
𝑄 into a cycle. The Steiner cycle is then given by (𝑅, 𝑖9, rev(𝑄)) = (𝑖2, 𝑖6, 𝑖7, 𝑖8, 𝑖9, 𝑖5, 𝑖3).

Now let us consider a modified instance of Figure 3.3, where 𝑖4 is also an element of
𝑆. Then GP𝑆(𝐼) would output the path 𝑃 = (𝑖2, 𝑖3, 𝑖5, 𝑖4, 𝑖6, 𝑖7, 𝑖8), and the subsequent
partition of 𝑃 would give 𝑅 = (𝑖2, 𝑖6, 𝑖7, 𝑖8) and 𝑄 = (𝑖3, 𝑖5, 𝑖4). But now there is no
interval in 𝐼 ′ that connects end(𝑅) = 𝑖8 and end(𝑄) = 𝑖4, so our algorithm outputs that
there is no Steiner cycle. In order to verify that there is no Steiner cycle we can follow
the arguments in the proof of Theorem 3.7, which gives us a cutset 𝐶 = {𝑖5, 𝑖6} that
separates 𝐼 into three 𝑆-islands, and hence, by Proposition 3.2, guarantees that there is
no Steiner cycle.

3.5 Streaming Algorithms – The Problem of Limited Screen
Size

An important question when considering solvability of game levels is which parts of a
level have to be visible to the user at any time for them to deterministically know how
to play correctly. To answer this question for our toy model, we study the algorithms
from Section 3.3 and 3.4 as streaming algorithms. We assume that the input stream is
presented as a sequence of right endpoint sorted intervals which can only be examined in
one pass. As its output the streaming algorithm has to write the list of intervals giving
the paths or cycle.

First, consider the algorithm GP𝑆 . In each step this algorithm needs access to the
next interval on the stream that is connected with the current path end(𝑃). If the next

40

3.5 Streaming Algorithms – The Problem of Limited Screen Size

interval 𝑖 on the stream is not connected to end(𝑃) there can be two reasons. This
interval could either be in a new different connected component than 𝑃 , or it could be
connected to 𝑃 via another interval 𝑖′ with r(𝑖′) > r(𝑖). Intervals of this kind are all
completely contained in 𝑖′. After processing and storing all such intervals we clearly know
whether the graph is disconnected or the path 𝑃 can be extended and we can further
process the stored intervals. This motivates the introduction of the parameter 𝜅(𝐼), the
maximum number of intervals contained in another interval. Based on this parameter
we observe that GP𝑆 can be implemented as a single pass streaming algorithm with
𝑂(𝜅(𝐼)) additional storage. Based on this we obtain the following result.

Theorem 3.8. Given 𝜅(𝐼) the Steiner path cover problem on interval graphs can be
solved by a single pass streaming algorithm in 𝑂(𝑛) time with 𝑂(𝜅(𝐼)) additional storage.

Remark. If 𝜅(𝐼) is not known to the algorithm the same result only holds assuming
𝐺(𝐼) is connected. Otherwise in the case of a disconnected interval graph the algorithm
can not decide after 𝑂(𝜅(𝐼)) steps that the graph is disconnected. It has to continue to
store the intervals from the stream till the end, because there is no way of knowing if a
future interval will be connected to end(𝑃) for the current path 𝑃 .

On the other hand if 𝜅(𝐼) is known we can stop this process after storing 𝜅(𝐼) intervals
since we know that no more of them can be contained in another interval and terminate
with the current path 𝑃 .

To solve the Steiner cycle problem, a single pass streaming algorithm can no longer
first run GP𝑆 and then construct the two paths 𝑄 and 𝑅, since this would need two
passes. Also the output of the cycle is only possible in a single pass, without a large
amount of additional memory, if the two paths 𝑄 and 𝑅 are accepted as an output
instead of the list for the Steiner cycle. In the application to platform games this is not
a problem since here a player actually is doing first a pass from the left to the right and
then another pass from the right to the left. So correct construction of 𝑄 during the
first pass is enough to guarantee the possibility of getting back to the exit later. This
path for the way back can then be easily found doing a simple greedy approach (see the
description in the end of the current section).

The construction of 𝑄 and 𝑅 can be incorporated into the streaming variant of GP𝑆

described above without the need for additional memory. In addition to end(𝑃) we also
store end(𝑄) and end(𝑅). This way in each step of the algorithm we can decide whether
the next interval extending 𝑃 should be appended to 𝑄 or 𝑅, by the same method as
explained in Section 3.4. This only needs additional memory for storing both end(𝑄)
and end(𝑅) compared to just executing GP𝑆 .

Theorem 3.9. Given 𝜅(𝐼) the Steiner cycle problem on interval graphs can be decided
by a single pass streaming algorithm in 𝑂(𝑛) time with 𝑂(𝜅(𝐼)) additional storage.

It is important to note that from the view of a player the additional storage in the
streaming algorithms does not correspond to storage needed to decide the next step of
the game but to the range of the level that has to be visible to the player. It covers the
fact that the player has to be able to see at least the next two intervals reachable from

41

3 Steiner Problems on Interval Graphs

its current position and all the intervals before that in a right endpoint sorted order.
The two things a player needs to remember at each point of the game are end(𝑄), the
platform it is currently on, and end(𝑅). The algorithm can also be simplified in the
following way.

Assume the player is currently located on the interval end(𝑄). There are two possible
cases. In the first case the last step was jumping onto end(𝑄). Let 𝑖 be the interval
reachable from end(𝑄) with r(𝑖) minimum, such that 𝑖 is not neglectable with respect
to end(𝑄). If 𝑖 ∩ end(𝑅) ̸= ∅ we extend 𝑅, so the player remembers end(𝑅) = 𝑖.
Otherwise the player jumps to 𝑖, so end(𝑄) = 𝑖. If neither is possible the current level
is unsolvable. In the second case the last step was an extension of 𝑅, so end(𝑅) was
updated. Let 𝑖 be the interval reachable from end(𝑅) with r(𝑖) minimum, such that
𝑖 is not neglectable with respect to end(𝑅). If 𝑖 ∩ end(𝑄) ̸= ∅ the player jumps to 𝑖,
so end(𝑄) = 𝑖. Otherwise we extend 𝑅 so the player remembers that end(𝑅) = 𝑖. If
neither is possible the current level is also unsolvable. If the last interval in 𝑆 is either
visited by the player, i.e. is equal to end(𝑄) or reached by 𝑅, i.e. is equal to end(𝑅) the
player tries to reach end(𝑅) from end(𝑄) by jumping there directly or using an interval
𝑖′ with r(𝑖′) > max{r(end(𝑄)), r(end(𝑅)}. If this is not possible the player determines
that the current level is unsolvable. Otherwise it can easily get back to the exit visiting
all the unvisited intervals in 𝑆 by reconstructing a maybe permuted version of the path
rev(𝑅). Let 𝑖 be the interval the player is currently on. In each step it can greedily
jump to the reachable interval 𝑖′ with maximum left endpoint l(𝑖′), such that 𝑖′ is not
neglectable with respect to 𝑖 in the reverse sense. This means we can neglect jumping
to 𝑖′ if l(𝑖) < l(𝑖′) and 𝑖′ /∈ 𝑆. This is just an application of GP𝑆 in reverse direction.
Since the path 𝑅 exists, by the optimality of GP𝑆 for the path cover problem, using
this strategy the player finds a path 𝑅′ covering all intervals in 𝑆 and returning to the
start of the level.

3.6 Conclusion

We obtained linear time algorithms for both the Steiner path cover problem and the
Steiner cycle problem, assuming the intervals are given as a right endpoint sorted list. We
also analyzed those algorithms as single pass streaming algorithms to study solvability
of a simplified model for platform game levels.

Our simplification reduced those levels to a one-dimensional interval graph model.
The hamiltonian cycle and path problems for two-dimensional generalizations of inter-
val graphs are known to be NP-hard. It would be of interest to study special cases of
these problems inspired from game levels. Furthermore the analysis of streaming algo-
rithms for interval graphs is a natural extension to classic algorithms for interval graphs.
Understanding other efficient algorithms for different problems on interval graphs in this
model is a very interesting area for further research.

42

4 Combinatorial Optimization with
Interaction Costs

4.1 Introduction

Let a family ℱ1 of subset of [𝑚] = {1, 2, . . . ,𝑚}, and a family ℱ2 of subsets of [𝑛] =
{1, 2, . . . , 𝑛} represent feasible solutions. For each element 𝑖 ∈ [𝑚] a linear cost 𝑐𝑖 is
given. Also, for each element 𝑗 ∈ [𝑛] a linear cost 𝑑𝑗 is given. In addition, for any
(𝑖, 𝑗) ∈ [𝑚]× [𝑛] their interaction cost 𝑞𝑖𝑗 is given. Then the combinatorial optimization
problem with interaction costs (COPIC) is the problem of finding 𝑆1 ∈ ℱ1 and 𝑆2 ∈ ℱ2

such that
𝑓(𝑆1, 𝑆2) =

∑︁
𝑖∈𝑆1

∑︁
𝑗∈𝑆2

𝑞𝑖𝑗 +
∑︁
𝑖∈𝑆1

𝑐𝑖 +
∑︁
𝑗∈𝑆2

𝑑𝑗 (4.1)

is minimized. We denote an instance of COPIC by (ℱ1,ℱ2, 𝑄, 𝑐, 𝑑), where 𝑄 = (𝑞𝑖𝑗) is
the interaction cost matrix and 𝑐 = (𝑐𝑖), 𝑑 = (𝑑𝑗) are linear cost vectors of the instance.
This generalizes the classical linear cost combinatorial optimization problem, where for
a given family ℱ of subsets of [𝑛], and cost vector 𝑤 ∈ R𝑛 one tries to find a set 𝑆 ∈ ℱ
minimizing

∑︀
𝑖∈𝑆 𝑤𝑖. We denote an instance of LCOP by (ℱ , 𝑤).

COPIC generalizes many well studied combinatorial optimization problems. For ex-
ample, when ℱ1 and ℱ2 are respectively the family of perfect matchings in bipartite
graphs 𝐺1 and 𝐺2 with respective edge sets [𝑚] and [𝑛], then COPIC reduces to the
bilinear assignment problem (BAP) [40]. BAP is a generalization of the well studied
quadratic assignment problem [43] and the three-dimensional assignment problem [113]
and hence COPIC generalizes these problems as well. When ℱ1 and ℱ2 contain all sub-
sets of [𝑚] and [𝑛] respectively, COPIC reduces to the bipartite unconstrained quadratic
programming problem [44, 63, 77, 107] studied in the literature by various authors and
under different names. Also, when ℱ1 and ℱ2 are feasible solutions of assignment con-
straints, where [𝑚] and [𝑛] correspond to edges of the complete bipartite graph 𝐾𝑛,𝑛 and
𝐾𝑚,𝑚, respectively, COPIC reduces to the bipartite quadratic assignment problem and
its variations [38,108]. Most quadratic combinatorial optimization problems can also be
viewed as special cases of COPIC, including the quadratic minimum spanning tree prob-
lem [8], quadratic set covering problem [9], quadratic travelling salesman problem [75],
etc. Thus all the applications studied in the context of these special cases are applica-
tions of COPIC as well. COPIC is a special case of bilinear integer programs [3, 53, 86]
when ℱ1 and ℱ2 can be represented by polyhedral sets.

In this chapter we investigate various theoretical properties of COPIC. To understand
the impact of interaction costs in combinatorial optimization we will analyze special
cases of the interaction cost matrix 𝑄 for representative well-studied sets of feasible

43

4 Combinatorial Optimization with Interaction Costs

solutions. Among others, the classes of interaction cost matrices 𝑄 that we will be
focused on in this chapter include matrices of fixed rank, and diagonal matrices. In
the literature many quadratic-like optimization problems have been investigated in the
context of fixed rank or low rank cost matrices, for example see [4,17,107,118]. Further,
the importance of investigating COPIC with diagonal matrices is illustrated by its direct
connections to problems of disjointness of combinatorial structures [50, 56, 110, 116],
packing, covering and partitioning problems [11], as well as to problems of congestion
games [2,117]. In this chapter we also pose the problem of identifying cost structures of
COPIC instances that can be reduced to an instance with no interaction costs. These
instances are called linearizable instances [30, 39, 40, 76, 106]. We suggest an approach
of identifying such instances for COPIC with specific feasible solution structures along
with a characterization of linearizable instances.

The aforementioned topics are investigated on COPIC’s with representative well-
studied sets of feasible solutions ℱ1, ℱ2. To make easy future references to different sets
of feasible solutions we introduce shorthand notations. We denote by 2[𝑛] = {𝑆 : 𝑆 ⊆ [𝑛]}
the unconstrained solution set. Given a matroid ℳ we denote by ℬ(ℳ) the set of bases
of ℳ. We denote by 𝒰𝑘

𝑛 the uniform matroid, whose base set ℬ(𝒰𝑘
𝑛) is the set of all 𝑘-sets

of [𝑛]. Given a graph 𝐺, ℳ(𝐺) is the graphic matroid of 𝐺, whose base set ℬ(ℳ(𝐺)) is
the set of all spanning trees of 𝐺 (or spanning forests if 𝐺 is not connected). The set of
all maximum matchings of 𝐺 is denoted by 𝒫ℳ(𝐺). Given two terminals 𝑠, 𝑡 ∈ 𝑉 (𝐺)
the set of all 𝑠-𝑡-paths in 𝐺 is denoted by 𝒫𝑠,𝑡(𝐺). If 𝐺 is a directed graph 𝒫𝑠,𝑡(𝐺) is the
set of all directed 𝑠-𝑡-paths in 𝐺. The set of all cuts in 𝐺 is denoted by 𝒞𝒰𝒯 (𝐺) and
𝒞𝒰𝒯 𝑠,𝑡(𝐺) is the set of all 𝑠-𝑡-cuts in 𝐺.

Using these definitions, the bipartite unconstrained quadratic programming prob-
lem [107] is equivalent to the instance (2[𝑚], 2[𝑛], 𝑄, 𝑐, 𝑑) of COPIC.

The structure of this chapter is as follows. We begin by discussing the complexity of
COPIC with no significant constraints on the cost structure in Section 4.2. Section 4.3
investigates the case when the interaction cost matrix 𝑄 is of fixed rank. Using methods
from parametric optimization we show that in the case when one of the solution sets
is unconstrained, i.e. ℱ1 = 2[𝑛] or ℱ2 = 2[𝑚], and linear cost optimization over the
other solution set can be done in polynomial time, the problem becomes polynomially
solvable. Further, we show that approximability may be achieved in the case of 𝑄 with
fixed rank. We also show that if the number of breakpoints of multi-parametric linear
optimization over both sets of feasible solutions is polynomially bounded and if 𝑄 has
fixed rank, then COPIC can be solved in polynomial time. Section 4.4 investigates
COPIC’s where interaction cost matrix 𝑄 is diagonal. That is, there is a one-to-one
relation between ground elements of ℱ1 and ℱ2 and the interaction costs appear only
between the pairs of the relation. The complexity of COPIC with various well-knows
feasible structures (matroids, paths, matchings, cuts, etc.) in the context of diagonal
matrix 𝑄 are considered, and their relationship to some existing results in the literature
is presented. Characterization of linearizable instances is investigated in Section 4.5.
The chapter is concluded with Section 4.6, where we summarize the results and suggest
some problems for future work.

44

4.2 General Complexity

4.2 General Complexity

Being a generalization of many hard combinatorial optimization problems, the general
COPIC is NP-hard. Moreover, even for the “simple” case with no constraints on the
feasible solutions it results in the bipartite unconstrained quadratic programming prob-
lem which is NP-hard [107]. A COPIC instance (2[𝑚], 2[𝑛], 𝑄, 𝑐, 𝑑) can easily reduced
to a COPIC instance for most other sets of feasible solutions ℱ1 and ℱ2, which implies
again NP-hardness for COPIC with those feasible solutions. However, COPIC instances
(2[𝑚], 2[𝑛], 𝑄, 𝑐, 𝑑) are known to be solvable in polynomial time if 𝑄 ≤ 0 and if 𝑄, 𝑐, 𝑑 ≥ 0
(see Punnen et al. [107]). This is not true anymore if ℱ1,ℱ2 are bases of a uniform
matroid, for which we obtain the following hardness result.

Theorem 4.1. COPIC is strongly NP-hard, even if instances are restricted to the form
(ℬ(𝒰𝑘1

𝑚),ℬ(𝒰𝑘2
𝑛), 𝑄, 0, 0) and 𝑄 ≥ 0.

Proof. We give a reduction from a strongly NP-hard version of the cardinality con-
strained directed minimum cut problem.

Let �⃗�𝑚,𝑛 be a digraph with vertex sets [𝑚] and [𝑛] and arcs (𝑖, 𝑗) for each 𝑖 ∈ [𝑚]
and 𝑗 ∈ [𝑛]. The k-card min directed cut problem asks for a minimum cost directed
cut 𝛿+(𝑆) = {(𝑖, 𝑗) : 𝑖 ∈ 𝑆, 𝑗 /∈ 𝑆} such that |𝛿+(𝑆)| = 𝑘. Using similar arguments as
in [21] one can show that this directed version of the minimum cut problem is strongly
NP-hard. Now we show how this problem can be solved in polynomial time, assuming
a polynomial time algorithm for COPIC instances (ℬ(𝒰𝑘1

𝑚),ℬ(𝒰𝑘2
𝑛), 𝑄, 0, 0) exists.

For each 𝑘1 = 1, 2, . . . ,𝑚 check if 𝑘
𝑘1

is an integer. If so set 𝑘2 = 𝑘
𝑘1

and solve

the COPIC instance (ℬ(𝒰𝑘1
𝑚),ℬ(𝒰𝑘2

𝑛), 𝑄, 0, 0), obtaining solution sets 𝑆1, 𝑆2. Note that
|𝑆1||𝑆2| = 𝑘, i.e. it corresponds to exactly 𝑘 edges. We can define an equivalent directed
cut 𝛿+(𝑆) by setting 𝑆 = 𝑆1 ∪ ([𝑛] ∖ 𝑆2). This way the directed cuts 𝛿+(𝑆) are in
one to one correspondence with solutions of COPIC. Doing this for all possible pairs
(𝑘1, 𝑘2), we can obtain all possible 𝑘-cuts as feasible solutions of COPIC instances
(ℬ(𝒰𝑘1

𝑚),ℬ(𝒰𝑘2
𝑛), 𝑄, 0, 0). Taking the minimum found via all such COPIC problems solves

the 𝑘-card directed min cut problem in the given bipartite digraph.

Theorem 4.1 can be used to show that COPIC instances restricted to the form
(ℱ1,ℱ2, 𝑄, 0, 0) is NP-hard already for 𝑄 ≥ 0 for most sets of feasible solutions ℱ1,ℱ2.
The reason is that cardinality constraints can be often reduced to other more complicated
sets of feasible solutions.

On the positive side, if we fix one of the two solutions, e.g. 𝑆1 ∈ ℱ1, then finding the
corresponding optimal solution 𝑆2 ∈ ℱ2 reduces to solving the LCOP instance (ℱ2, ℎ),
where

ℎ𝑗 =
∑︁
𝑖∈𝑆1

𝑞𝑖𝑗 + 𝑑𝑗 for 𝑗 ∈ [𝑛]. (4.2)

This implies that if the cardinality of one set of feasible solutions, say ℱ1, is polynomially
bounded in the size of the input, then we can solve COPIC by solving linear LCOP
instances (ℱ2, ℎ) (where ℎ is defined by (4.2)) for all 𝑆1 ∈ ℱ1.

45

4 Combinatorial Optimization with Interaction Costs

Theorem 4.2. If 𝑚 = 𝑂(log 𝑛) and the LCOP instance (ℱ2, ℎ) can be solved in poly-
nomial time for any cost vector ℎ ∈ R𝑛, then the COPIC instance (ℱ1,ℱ2, 𝑄, 𝑐, 𝑑) can
be solved in polynomial time.

4.3 The Interaction Matrix with Fixed Rank

In this section we investigate the behavior of COPIC in terms of complexity and ap-
proximability when the rank of the interaction costs matrix 𝑄 is fixed. In the literature,
many optimization problems have been investigated in the context of fixed rank or low
rank cost matrices. This also includes problems with quadratic-like objective functions.
For example, the Koopmans-Beckmann QAP [17], the unconstrained zero-one quadratic
maximization problem [4], bilinear programming problems [118], non-convex quadratic
programming [67], the bipartite unconstrained quadratic programming problem [107],
among others.

Let rk(𝑄) denotes the rank of a matrix 𝑄. Then rk(𝑄) is at most 𝑟, if and only if

there exist vectors 𝑎𝑝 = (𝑎
(𝑝)
1 , 𝑎

(𝑝)
2 , . . . , 𝑎

(𝑝)
𝑚) ∈ R𝑚 and 𝑏𝑝 = (𝑏

(𝑝)
1 , 𝑏

(𝑝)
2 , . . . , 𝑏

(𝑝)
𝑛) ∈ R𝑛 for

𝑝 = 1, 2, . . . , 𝑟, such that

𝑄 =

𝑟∑︁
𝑝=1

𝑎𝑝𝑏
𝑇
𝑝 . (4.3)

We say that (4.3) is a factored form of 𝑄. Then the instance (ℱ1,ℱ2, 𝑄, 𝑐, 𝑑) of COPIC,
where 𝑄 is of fixed rank 𝑟, becomes minimizing

𝑓(𝑆1, 𝑆2) =
𝑟∑︁

𝑝=1

⎛⎝∑︁
𝑖∈𝑆1

𝑎
(𝑝)
𝑖

∑︁
𝑗∈𝑆2

𝑏
(𝑝)
𝑗

⎞⎠ +
∑︁
𝑖∈𝑆1

𝑐𝑖 +
∑︁
𝑗∈𝑆2

𝑑𝑗 , (4.4)

such that 𝑆1 ∈ ℱ1, 𝑆2 ∈ ℱ2.

In the following, we show that if ℱ1(= 2[𝑚]) is unrestricted, i.e. the set of all subsets
of [𝑚], then we can generalize the results of Punnen et al. [107] to solve the problem.
Using methods of multi-parametric optimization we also demonstrate how to tackle
more-general problems where both sets of feasible solutions are constrained, if their
parametric complexity is bounded.

These results are obtained using methods from binary and linear optimization. To
apply these techniques we will formulate our problem in terms of binary variables. We
achieve this in a straightforward way, by introducing variables 𝑥 ∈ {0, 1}𝑚, 𝑦 ∈ {0, 1}𝑛
in one to one correspondence with a solution 𝑆1, 𝑆2, such that 𝑥𝑖 = 1 iff 𝑖 ∈ 𝑆1, and
𝑦𝑗 = 1 iff 𝑗 ∈ 𝑆2. The vector 𝑥 and 𝑦 are respectively called the incidence vectors
of 𝑆1 and 𝑆2. Thus the family of feasible solutions can be represented in terms of
the incidence vectors, i.e. ℱ ′

1 = {𝑥 ∈ {0, 1}𝑚 : 𝑆1 ∈ ℱ1 and (𝑥𝑗 = 1 ⇔ 𝑗 ∈ 𝑆1)} and
ℱ ′
2 = {𝑦 ∈ {0, 1}𝑛 : 𝑆2 ∈ ℱ2 and (𝑦𝑗 = 1 ⇔ 𝑗 ∈ 𝑆2)}. Now, rank 𝑟 COPIC can be

46

4.3 The Interaction Matrix with Fixed Rank

formulated as the binary optimization problem:

min
𝑟∑︁

𝑝=1

(𝑎𝑇𝑝 𝑥)(𝑏𝑇𝑝 𝑦) + 𝑐𝑇𝑥 + 𝑑𝑇 𝑦

s.t. 𝑥 ∈ ℱ ′
1, 𝑦 ∈ ℱ ′

2

4.3.1 One-Sided Unconstrained Fixed Rank COPIC

In this section we consider the case where ℱ ′
1 = {0, 1}𝑚. Observe that COPIC is

equivalent to the following linear relaxation of the binary constraint 𝑥 ∈ {0, 1}𝑚.

min
𝑟∑︁

𝑝=1

(𝑎𝑇𝑝 𝑥)(𝑏𝑇𝑝 𝑦) + 𝑐𝑇𝑥 + 𝑑𝑇 𝑦

s.t. 𝑥 ∈ [0, 1]𝑚, 𝑦 ∈ ℱ ′
2

To solve this problem, consider the multi-parametric linear program (MLP)

ℎ1(𝜆) := min 𝑐𝑇𝑥

s.t. 𝑎𝑇𝑝 𝑥 = 𝜆𝑝 for 𝑝 = 1, 2, . . . , 𝑟

𝑥 ∈ [0, 1]𝑚,

where 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑟) ∈ R𝑟. Then ℎ1(𝜆) is a piecewise linear convex function [57]. A
basis structure for MLP is a partition (ℬ,ℒ,𝒰) of [𝑚], such that |ℬ| = 𝑟. With each basic
feasible solution of MLP we associate a basis structure (ℬ,ℒ,𝒰), where ℒ is the index
set of nonbasic variables at the lower bound 0, 𝒰 is the index set of nonbasic variables at
the upper bound 1 and ℬ is the index set of basic variables. Given a dual feasible basis
structure (ℬ,ℒ,𝒰), the set of values 𝜆 ∈ R𝑟 for which the corresponding basic solution
is optimal is called the characteristic region of (ℬ,ℒ,𝒰). Since ℎ1(𝜆) is piecewise linear
convex, ℎ1(𝜆) is linear if 𝜆 is restricted to a characteristic region associated with a
dual feasible basic structure (ℬ,ℒ,𝒰). We call the extreme points of the characteristic
regions of (ℬ,ℒ,𝒰) breakpoints and denote the set of these breakpoints by 𝐵1 and define
𝑥(𝜆) as the optimal basic feasible solution of ℎ1(𝜆) at each 𝜆 ∈ 𝐵1. By the results of
Punnen et al. [107, Theorem 3] we know that 𝑥(𝜆) ∈ {0, 1}𝑚. Let 𝑦(𝜆) ∈ ℱ2 be an
optimal solution to our instance of COPIC when 𝑥 is fixed at 𝑥(𝜆). In this case COPIC
reduces to

min

⎧⎨⎩
⎛⎝ 𝑟∑︁

𝑝=1

(𝑎𝑇𝑝 𝑥(𝜆))𝑏𝑇𝑝 + 𝑑𝑇

⎞⎠ 𝑦 : 𝑦 ∈ ℱ2

⎫⎬⎭
which is an LCOP instance (ℱ2, 𝑓), with 𝑓 =

∑︀𝑟
𝑝=1(𝑎

𝑇
𝑝 𝑥(𝜆))𝑏𝑝 + 𝑑. The running time

needed to calculate the cost vector 𝑓 is bounded by 𝑂(max{𝑟𝑚, 𝑟𝑛}). This allows us to
calculate 𝑦(𝜆) in 𝑂(max{𝑟𝑚, 𝑟𝑛, 𝑇 (ℱ2)}) time, using an 𝑇 (ℱ2)-time algorithm for the
LCOP instance (ℱ2, 𝑓), for each 𝜆 ∈ 𝐵1.

47

4 Combinatorial Optimization with Interaction Costs

Theorem 4.3. There is an optimal solution to the instance (2[𝑚],ℱ2, 𝑄, 𝑐, 𝑑) of COPIC
with rk(𝑄) = 𝑟 amongst the solutions {(𝑥(𝜆), 𝑦(𝜆)) : 𝜆 ∈ 𝐵1}.

Proof. Rank 𝑟 COPIC is equivalent to solving the bilinear program

min
𝑟∑︁

𝑝=1

𝜆𝑝(𝑏
𝑇
𝑝 𝑦) + 𝑐𝑇𝑥 + 𝑑𝑇 𝑦

s.t. 𝑎𝑇𝑝 𝑥 = 𝜆𝑝 𝑝 = 1, 2, . . . , 𝑟

𝑥 ∈ [0, 1]𝑚, 𝑦 ∈ ℱ2, 𝜆 ∈ R𝑟.

Let ℎ(𝜆) be the optimal value if 𝜆 is fixed, then we can decompose ℎ(𝜆) into ℎ(𝜆) =
ℎ1(𝜆) + ℎ2(𝜆), where

ℎ2(𝜆) = min

⎧⎨⎩
𝑟∑︁

𝑝=1

𝜆𝑝(𝑏
𝑇
𝑝 𝑦) + 𝑑𝑇 𝑦 : 𝑦 ∈ ℱ2

⎫⎬⎭ .

So rank 𝑟 COPIC can be reduced to solving min𝜆∈R𝑟 ℎ(𝜆).
We already argued above that ℎ1(𝜆) is a piecewise linear convex function in 𝜆. Using

the fact that ℎ2(𝜆) is the pointwise minimum of linear functions, we obtain that ℎ2(𝜆)
is a piecewise linear concave function in 𝜆 [18]. This implies that ℎ1(𝜆) is linear, if 𝜆 is
restricted to any characteristic region of ℎ1(𝜆) and thus ℎ(𝜆) is concave on each of these
regions. This implies that the minimum of ℎ(𝜆) is attained at a breakpoint of ℎ1(𝜆),
which implies the result since 𝐵1 is defined as the set of these breakpoints.

Analogously to Punnen et al. [107], we can solve rank 𝑟 COPIC based on Theorem 4.3
by generating the set of breakpoints 𝐵1 and then computing the set {𝑥(𝜆), 𝑦(𝜆)) : 𝜆 ∈ 𝐵1}
and selecting the best solution from there. Note, that it is not necessary to explicitly
calculate 𝐵1, since the set {𝑥(𝜆) : 𝜆 ∈ 𝐵1} can be obtained without computing the
corresponding values of 𝜆 in advance. For each dual-feasible and dual non-degenerate
basis structure (ℬ,ℒ,𝒰) we can generate 2𝑟 basic feasible solutions corresponding to
its extreme points by varying 𝜏 ∈ {0, 1}𝑟, giving the values of the basic variables, and
setting the non-basic variables in accordance with ℒ and 𝒰 (for details see the proof
of [107, Theorem 3]). For each of these basic feasible solutions 𝑥 we can compute the
corresponding 𝑦 by solving an instance of LCOP. Below we give a high-level summary
of our algorithm.

1. Let Γ be the set of all dual feasible basis structures (ℬ,ℒ,𝒰) for the corresponding
MLP.

2. Compute the set 𝑆 of all optimal basic feasible solutions corresponding to the ex-
treme points of the characteristic region of a dual feasible basis structure (ℬ,ℒ,𝒰)
in Γ.

3. For each 𝑥 ∈ 𝑆 compute the best 𝑦 ∈ ℱ2 by solving the LCOP instance (ℱ2, 𝑓),
with 𝑓 =

∑︀𝑟
𝑝=1(𝑎

𝑇
𝑝 𝑥)𝑏𝑝 + 𝑑.

48

4.3 The Interaction Matrix with Fixed Rank

4. Output the best pair (𝑥, 𝑦) with minimum total cost found in the last step.

By the arguments above it follows that this algorithm always finds an optimal solution.
There are

(︀
𝑚
𝑟

)︀
choices for ℬ and each of them gives a unique allocation of non-basic

variables to ℒ and 𝒰 (uniqueness following from non-degeneracy which can be achieved
by appropriate perturbation of the cost vector). The basis inverse can be obtained in
𝑂(𝑟3) time and given this inverse ℒ and 𝒰 can be identified in 𝑂(𝑚𝑟3) time, such that
(ℬ,ℒ,𝒰) is dual feasible. This implies that the set of dual feasible basis structures is
bounded by

(︀
𝑚
𝑟

)︀
and can be calculated in 𝑂(

(︀
𝑚
𝑟

)︀
(𝑟3 + 𝑚𝑟2)) time. By [107, Theorem

3], we know that the number of extreme points associated with (ℬ,ℒ,𝒰) is bounded
by 2𝑟 and we argued above how they can be generated. This allows us to compute 𝑆
in 𝑂(

(︀
𝑚
𝑟

)︀
2𝑟𝑚) time (step 1 and 2). Fixing 𝑥 ∈ 𝑆, the best corresponding solution 𝑦

can be computed in 𝑂(max{𝑟𝑚, 𝑟𝑛,T(ℱ2)}) time (step 2). Summarizing this gives the
following result.

Theorem 4.4. If rk(𝑄) = 𝑟 and there is a T(ℱ2)-time algorithm for LCOP instances
(ℱ2, 𝑓) for every 𝑓 ∈ R𝑛, then the COPIC instance (2[𝑚],ℱ2, 𝑄, 𝑐, 𝑑) can be solved in
𝑂(

(︀
𝑚
𝑟

)︀
2𝑟 max{𝑟𝑚, 𝑟𝑛,T(ℱ2)}) time.

Remark. An identical approach works for sets of feasible solutions ℱ1, for which we
can solve the linear cost minimization problem, extended by a constant number of side
constraints of the form 𝑎𝑇𝑝 𝑥 = 𝜆𝑝 and the number of breakpoints (in 𝜆) is polynomially
bounded. But, this does not help for most non-continuous problems, because already for
the bases of a uniform matroid this corresponds to a partition problem.

We can now use Theorem 4.3 to obtain approximation algorithms for rank 𝑟 COPIC
based on approximation algorithms for the linear problem with feasible solutions in ℱ2.

Theorem 4.5. COPIC with instances restricted to the form (2[𝑚],ℱ2, 𝑄, 𝑐, 𝑑), such
that the LCOP instance (ℱ2, 𝑓) admits a T(ℱ2) time 𝛼-approximation algorithm for
arbitrary 𝑓 ∈ R𝑛, has a 𝑂(

(︀
𝑚
𝑟

)︀
2𝑟 max{𝑟𝑚, 𝑟𝑛,T(ℱ2)}) time 𝛼-approximation algorithm.

Proof. By Theorem 4.3 there exists an optimal solution

(𝑥*, 𝑦*) = (𝑥(𝜆*), 𝑦(𝜆*)) ∈ {(𝑥(𝜆), 𝑦(𝜆)) : 𝜆 ∈ 𝐵1}.

By the method above we will in some iteration find 𝑥* as one of the extreme points
of a characteristic region of ℎ1(𝜆). Then calculating 𝑦* is equivalent to solving the
LCOP instance (ℱ2, 𝑓) with 𝑓 =

∑︀𝑟
𝑝=1(𝑎

𝑇
𝑝 𝑥

*)𝑏𝑝 + 𝑑. Instead of solving this problem to
optimality we can use our 𝛼-approximation algorithm and obtain a solution 𝑦 ∈ ℱ2 such
that

ℎ̃2 :=

𝑟∑︁
𝑝=1

(𝑎𝑇𝑝 𝑥
*)(𝑏𝑇𝑝 𝑦) + 𝑑𝑇 𝑦 ≤ 𝛼ℎ2(𝜆

*).

Altogether for our found solution (𝑥*, 𝑦) we obtain a bound on the objective value given
by

ℎ1(𝜆
*) + ℎ̃2 ≤ ℎ1(𝜆

*) + 𝛼ℎ2(𝜆
) ≤ 𝛼ℎ(𝜆).

49

4 Combinatorial Optimization with Interaction Costs

4.3.2 General Fixed Rank COPIC via Multi-Parametric Optimization

To solve fixed rank COPIC when both sets of feasible solutions ℱ1 and ℱ2 are con-
strained, we apply different methods from parametric optimization. Since in many cases
additional linear constraints of the form 𝑎𝑇𝑝 𝑥 = 𝜆𝑝 imply NP-hardness, we cannot fol-
low an identical approach as above. Instead, we analyze and solve multi-parametric
objective versions for both sets of feasible solutions directly. Given linear cost vectors
𝑎1, 𝑎2, . . . 𝑎𝑟 ∈ R𝑛 and 𝑐 ∈ R𝑛 in addition to a set of feasible solutions ℱ ⊆ {0, 1}𝑛, the
problem of finding optimal solutions to

min

⎧⎨⎩
𝑟∑︁

𝑝=1

𝜇𝑝(𝑎
𝑇
𝑝 𝑥) + 𝑐𝑇𝑥 : 𝑥 ∈ ℱ

⎫⎬⎭
for all possible values of 𝜇 ∈ R𝑟 is called multi-parametric linear optimization over ℱ .
In this section the number of vectors 𝑎 will always be fixed to 𝑟. For every fixed 𝜇 ∈ R𝑟

this is equivalent to solving an LCOP instance of (ℱ , ℎ) for ℎ =
∑︀𝑟

𝑝=1 𝜇𝑝𝑎𝑝 + 𝑐. We
denote this problem by MPLCOP instance (ℱ , 𝑎, 𝑐)(𝜇).

It is well known that the optimal value of the instance (ℱ , 𝑎, 𝑐)(𝜇) of MPLCOP is a
piecewise-linear concave function in 𝜇 on R𝑟. For such a function the parameter space
R𝑟 can be partitioned into regions 𝑀1,𝑀2, . . . ,𝑀𝑙, such that in each of these regions
the optimal objective value is linear in 𝜇 and for each 𝑖 = 1, 2, . . . , 𝑙 there exists a
solution 𝑥𝑖 ∈ ℱ that achieves this value on the whole region 𝑀𝑖. The smallest needed
number 𝑙 of such regions is called the parametric complexity of the MPLCOP instances
(ℱ , 𝑎, 𝑐). Bökler and Mutzel [15] showed that there is an output-sensitive algorithm for
MPLCOP instances (ℱ , 𝑎, 𝑐)(𝜆) to obtain all the solutions 𝑥1, 𝑥2, . . . , 𝑥𝑙 with running
time 𝑂(poly(𝑛,𝑚, 𝑙𝑟)), if the LCOP instance (ℱ , ℎ) can be solved in polynomial time.

Given an instance of fixed rank COPIC

min

𝑟∑︁
𝑝=1

(𝑎𝑇𝑝 𝑥)(𝑏𝑇𝑝 𝑦) + 𝑐𝑇𝑥 + 𝑑𝑇 𝑦

s.t. 𝑥 ∈ ℱ ′
1, 𝑦 ∈ ℱ ′

2

and its optimal solution (𝑥*, 𝑦*) ∈ ℱ ′
1 × ℱ ′

2, we observe that 𝑥* is an optimal solution
to the MPLCOP instance (ℱ ′

1, 𝑎, 𝑐)(𝜇
) for 𝜇

𝑝 = 𝑏𝑇𝑝 𝑦
* and 𝑦* is an optimal solution to

MPLCOP instance (ℱ ′
2, 𝑏, 𝑑)(𝜆*) for 𝜆*

𝑝 = 𝑎𝑇𝑝 𝑥
*. This yields the following approach for

solving such instances of COPIC:

1. Obtain optimal solutions 𝑥1, 𝑥2, . . . , 𝑥𝑙1 for all possible parameter values 𝜇 of
MPLCOP instances (ℱ ′

1, 𝑎, 𝑐)(𝜇) and 𝑦1, 𝑦2, . . . , 𝑦𝑙2 for all possible parameter val-
ues 𝜆 of MPLCOP instances (ℱ ′

2, 𝑏, 𝑑)(𝜆).

2. Calculate the corresponding parameter values 𝜇(1), 𝜇(2), . . . , 𝜇(𝑙1) for (ℱ ′
1, 𝑎, 𝑐)(𝜇)

and 𝜆(1), 𝜆(2), . . . , 𝜆(𝑙1) for (ℱ ′
2, 𝑏, 𝑑)(𝜆) as 𝜆

(𝑖)
𝑝 = 𝑎𝑇𝑝 𝑥𝑖 and 𝜇

(𝑗)
𝑝 = 𝑏𝑇𝑝 𝑦𝑗 .

50

4.4 Diagonal Interaction Matrix

3. For each pair (𝑥𝑖, 𝑦𝑗) check if 𝑥𝑖 is optimal for the LCOP instance (ℱ ′
1, 𝑎, 𝑐)(𝜇

(𝑗))
and 𝑦𝑗 is optimal for LCOP instance (ℱ ′

2, 𝑏, 𝑑)(𝜆(𝑖)).

4. Among all the pairs that fulfill conditions in step 3, take the one with minimum
objective value for our instance of COPIC.

To guarantee that this method finds the optimal solution (𝑥*, 𝑦*) the two given instances
of MPLCOP must be non-degenerate. This can be guaranteed by appropriate pertur-
bations of the cost vectors. Based on the algorithm of Bökler and Mutzel [15] we obtain
the following result.

Theorem 4.6. Let 𝑙1, 𝑙2 be the parametric complexity of MPLCOP instances (ℱ ′
1, 𝑎, 𝑐)

and (ℱ ′
2, 𝑏, 𝑑) respectively, and rk(𝑄) = 𝑟 is a constant. If both LCOP instances (ℱ1, ℎ)

and (ℱ2, ℎ) can be solved in polynomial time for arbitrary linear cost vectors ℎ, then
COPIC instances (ℱ1,ℱ2, 𝑄, 𝑐, 𝑑) can be solved in 𝑂(poly(𝑛,𝑚, 𝑙𝑟1, 𝑙

𝑟
2)) time.

Table 4.1 summarizes known results about the parametric complexity of MPLCOP
for different sets of feasible solutions.

feasible solutions ℱ paramteric compl. 𝑙 references

ℬ(ℳ1) 𝑂(𝑛2𝑟−2) [60]
𝒞𝒰𝒯 (𝐺) 𝑂(𝑛𝑟+1) [78]
𝒫𝑠,𝑡(𝐺) subexp. lower bound [29,70]
𝒫ℳ(𝐺) subexp. lower bound [29,70]
arbitrary 𝑂(𝑛2𝑟𝜑𝑟), 𝜑 ≥ 1 (smoothed) [22]

Table 4.1: Summary of known results about the parametric complexity of MPLCOP for
different sets of feasible solutions with instance size 𝑛 and rank 𝑟.

In addition to the exact results above we can obtain a FPTAS based on the results of
Mittal and Schulz [100], for a restricted class of objective functions.

Theorem 4.7 (Mittal and Schulz [100]). COPIC instances (ℱ1,ℱ2, 𝑄, 𝑐, 𝑑) admit a
FPTAS, if rk(𝑄) = 𝑟 is fixed, the sets ℱ1,ℱ2 can be represented as polytopes of polyno-
mial size or polytopes with a polynomial time separation oracle and 𝑐𝑇𝑥 > 0, 𝑑𝑇 𝑦 > 0
and 𝑎𝑇𝑝 𝑥 > 0, 𝑏𝑇𝑝 𝑦 > 0 for 𝑝 = 1, 2, . . . , 𝑟.

4.4 Diagonal Interaction Matrix

In this section we analyze the special case of COPIC, referred to as diagonal COPIC,
where for a given vector 𝑎 ∈ R𝑛 the matrix 𝑄 = (𝑞𝑖𝑗) is given as the diagonal 𝑛×𝑛 matrix
𝑞𝑖𝑖 = 𝑎𝑖. This results in finding solutions 𝑆1 ∈ ℱ1 ⊆ {0, 1}𝑛 and 𝑆2 ∈ ℱ2 ⊆ {0, 1}𝑛 that
minimize the objective function

𝑓(𝑆1, 𝑆2) =
∑︁

𝑖∈𝑆1∩𝑆2

𝑎𝑖 +
∑︁
𝑖∈𝑆1

𝑐𝑖 +
∑︁
𝑗∈𝑆2

𝑑𝑗 .

51

4 Combinatorial Optimization with Interaction Costs

Such COPIC instances are denoted by (ℱ1,ℱ2,diag(𝑎), 𝑐, 𝑑).
Already this very restricted version of COPIC includes many well-studied problems

of combinatorial optimization. For example, problems that ask for two disjoint com-
binatorial structures among an element set can all be handled by solving COPIC with
identity interaction matrix 𝑄 = 𝐼 and 𝑐 = 𝑑 = 0. This includes the disjoint spanning
tree problem [110], disjoint matroid base problem [56], disjoint path problems [50, 116],
disjoint matchings problem [54] and many others. Bernáth and Király [11] analyzed the
computational complexity of many combinations of different packing, covering and par-
titioning problems on graphs and matroids. It is easy to model all of these problems as
instances of diagonal COPIC. The hardness results for packing problems in this chapter
directly imply NP-hardness results for diagonal COPIC with 𝑄 = 𝐼 and 𝑐 = 𝑑 = 0 for
several classes of problems. In this section we further investigate complexity of diagonal
COPIC. Some results investigated in this section are summarized in Table 4.2.

ℱ1 ∖ ℱ2 2[𝑛] ℬ(𝒰𝑘2
𝑛) ℬ(ℳ2) 𝒫ℳ(𝐺) 𝒫𝑠2,𝑡2(𝐺)

2[𝑛] 𝑂(𝑛) P P P P
ℬ(𝒰𝑘1

𝑛) P P (𝑐 = 𝑑 = 0) open open
ℬ(ℳ1) P (𝑐 = 𝑑 = 0) open NP-hard
𝒫ℳ(𝐺) NP-hard open
𝒫𝑠1,𝑡1(𝐺) Table 4.3

Table 4.2: Summary of complexity results for COPIC with a diagonal matrix. Bold
entries correspond to new reductions obtained in Section 4.4.

4.4.1 Unconstrained Feasible Sets

We start by considering diagonal COPIC with one unconstrained feasibility set.

Theorem 4.8. The COPIC instance (ℱ , 2[𝑛], diag(𝑎), 𝑐, 𝑑) can be solved by solving the
LCOP instance (ℱ , 𝑓), where 𝑓𝑖 = min{𝑐𝑖 + 𝑑𝑖 + 𝑎𝑖, 𝑐𝑖} − min{𝑑𝑖, 0} for each 𝑖 ∈ [𝑛].

Proof. For any 𝑆1 ∈ ℱ1 fixed we can obtain 𝑆2 ∈ argmin𝑆⊆[𝑛] 𝑓(𝑆1, 𝑆2) by the following
case distincition for every 𝑖 ∈ [𝑛]. If 𝑖 ∈ 𝑆1 then 𝑖 ∈ 𝑆2 if 𝑐𝑖 + 𝑑𝑖 + 𝑎𝑖 ≤ 𝑐𝑖. If 𝑖 /∈ 𝑆1,
then 𝑖 ∈ 𝑆2 if 𝑑𝑖 ≤ 0.

By setting 𝑓1(𝑖) = min{𝑐𝑖 + 𝑑𝑖 + 𝑎𝑖, 𝑐𝑖} and 𝑓2(𝑖) = min{𝑑𝑖, 0}, we have that

min
𝑆2⊆[𝑛]

𝑓(𝑆1, 𝑆2) = 𝑓1(𝑆1) + 𝑓2(𝐸 ∖ 𝑆1) = 𝑓1(𝑆1) + 𝑓2(𝐸) − 𝑓2(𝑆1).

By observing that 𝑓2(𝐸) is constant, we obtain an optimal 𝑆1 four our instance of
COPIC by solving min𝑆1⊆[𝑚](𝑓1 − 𝑓2)(𝑆1). The corresponding optimal 𝑆2 can be ob-
tained by the case distinction given above.

This directly implies the following corollary for unconstrained diagonal COPIC.

Corollary 4.9. The COPIC instance (2[𝑛], 2[𝑛],diag(𝑎), 𝑐, 𝑑) can be solved in linear
time.

52

4.4 Diagonal Interaction Matrix

𝑘1 𝑘2

1 1

{0, 1}

1 1

{0, 1}

...

𝑐1 +
𝑎1
2

𝑐𝑛 + 𝑎𝑛
2

𝑑1 +
𝑎1
2

𝑑𝑛 + 𝑎𝑛
2

− 𝑎1
2

− 𝑎1
2

− 𝑎𝑛
2

− 𝑎𝑛
2

Figure 4.1: Illustration for the proof of Theorem 4.10.

In the PhD thesis of Sripratak a generalization of Corollary 4.9 to matrices of band-
width 𝑂(log 𝑛) is shown. [114, Theorem 2.11]

4.4.2 Uniform and Partition Matroids

In the following two subsections we investigate diagonal COPIC where ℱ1 and ℱ2 cor-
respond to bases of different types of matroids. For bases of uniform and partition
matroids the main insight is that we can solve our problem in polynomial time using
matching algorithms.

Given a graph 𝐺 = (𝑉,𝐸) and a function 𝑏 : 𝑉 → 2N an edge set 𝑀 ⊆ 𝐸 is a 𝑏-factor,
if |𝑀 ∩ 𝛿(𝑣)| ∈ 𝑏(𝑣) for each 𝑣 ∈ 𝑉 , where 𝛿(𝑣) is the set of all edges incident with 𝑣.
If 𝑏(𝑣) = {𝑘} for some integer 𝑘 ∈ N we simply write 𝑏(𝑣) = 𝑘. Given an additional
cost function 𝑐 : 𝐸 → R a minimum cost 𝑏-factor can be found in polynomial time, if
all the 𝑏-values 𝑏(𝑣) are sequences of consecutive integers [𝑏1; 𝑏2] = {𝑏1, 𝑏1 + 1, . . . , 𝑏2}
(see [96, Section 10.2]).

Theorem 4.10. COPIC can be solved in polynomial time, if instances are restricted to
the form (ℬ(𝒰𝑘1

𝑛),ℬ(𝒰𝑘2
𝑛), diag(𝑎), 𝑐, 𝑑).

Proof. We reduce to an instance of the minimum cost 𝑏-factor problem on a graph 𝐺 (see
Figure 4.1). To achieve this, we introduce two special vertices 𝑥 and 𝑦 with 𝑏(𝑥) = 𝑘1 and
𝑏(𝑦) = 𝑘2 and another 3𝑛 vertices 𝑖𝑥, 𝑖𝑦 and 𝑖𝑚 for 𝑖 = 1, 2, . . . , 𝑛, i.e., for each element
of the ground set of the two matroids. We set 𝑏(𝑖𝑥) = 𝑏(𝑖𝑦) = 1 and 𝑏(𝑖𝑚) = {0, 1}. The
𝑘1 vertices matched with 𝑥 and 𝑘2 vertices matched with 𝑦 correspond to the sets 𝑆1

and 𝑆2, respectively.
We introduce edges {𝑥, 𝑖𝑥} with cost 𝑐𝑖 + 𝑎𝑖

2 and {𝑦, 𝑖𝑦} with cost 𝑑𝑖 + 𝑎𝑖
2 . We also

connect {𝑖𝑥, 𝑖𝑦} with edges of cost 0 and {𝑖𝑥, 𝑖𝑚} and {𝑖𝑥, 𝑖𝑚} both with cost −𝑎𝑖
2 .

It is easy to see that there is a one-to-one mapping between feasible solutions of the
given diagonal COPIC and this instance of the 𝑏-factor problem, and moreover, the
corresponding costs are the same.

This reduction technique can be used in a straightforward way to also obtain a polyno-
mial time algorithm also for the more general cases of partition matroids and generalized

53

4 Combinatorial Optimization with Interaction Costs

partition matroids (see [51] for a definition).

4.4.3 Matroid Bases as Feasible Sets

Another problem of great interest is the case when ℱ1,ℱ2 are sets of spanning trees
of a graph, especially if the underlying graphs are isomorphic. A generalization of this
problem is the case when ℱ𝑖 = ℬ(ℳ𝑖) are the sets of bases of (not necessarily isomorphic)
matroids ℳ1,ℳ2. In this section we assume familiarity with matroids and refer the
reader to Oxley [103] for further definitions, results and notations. We assume in thit
sections that there exist efficient oracles to solve the static-base circuit problem. This
means that for both matroids ℳ𝑖, 𝑖 = 1, 2, independent set 𝑆 and element 𝑒 /∈ 𝑆, we
can efficiently decide if 𝑆 ∪ {𝑒} is independent in ℳ𝑖, and if not, output all elements in
𝐶(𝑒, 𝑆), the unique cycle contained in 𝑆 ∪ {𝑒} of the matroid ℳ𝑖.

We focus on the case without linear costs, i.e. 𝑐 ≡ 𝑑 ≡ 0. So the problem we are
interested in is, given a ground set 𝐸 = [𝑛] and a cost vector 𝑎 ∈ R𝑛, to minimize the
objective function

𝑓(𝐵1, 𝐵2) =
∑︁

𝑖∈𝐵1∩𝐵2

𝑎𝑖

under the restrictions that 𝐵1 ∈ ℬ(ℳ1), 𝐵2 ∈ ℬ(ℳ2) for two given matroids ℳ1,ℳ2

over the ground set 𝐸.

The case where for each element 𝑖 ∈ 𝐵1 ∩ 𝐵2 we pay a non-negative cost 𝑎𝑖 ≥ 0 was
already studied in the algorithmic game theory literature. It is equivalent to computing
the socially optimal state of a two player matroid congestion game. Ackermann et al. [2]
show that this problem can be solved in polynomial time, by an reduction to the min-
imum cost disjoint matroid base problem, which can be solved with the algorithm of
Gabow and Westermann [56].

The case of arbitrary real costs 𝑎𝑒 ∈ R can also be handled. This is not included
in the algorithmic game theory literature, since in that context a positive impact of
congestion (i.e. 𝑎𝑖 < 0) does not make sense. First, we find a set 𝐵 ∈ ℐ(ℳ1) ∩ ℐ(ℳ2)
of minimum cost and we contract this set. For all edges 𝑒 ∈ 𝐸 ∖ 𝐵 with 𝑎𝑒 < 0 it holds
that 𝐵 + 𝑒 /∈ ℐ(ℳ1) ∩ ℐ(ℳ2), or we could improve the solution, so these elements can
never be in the intersection of a feasible solution together with 𝐵. Hence we can run the
algorithm for 𝑎 ≥ 0 on the remaining instance. The optimality of this approach follows
from the following lemma.

Lemma 4.11. Let 𝐵 be an element of ℐ(ℳ1) ∩ ℐ(ℳ2) with minimum cost 𝑎(𝐵) :=∑︀
𝑖∈𝐵 𝑎𝑖, and 𝐵1, 𝐵2 be two bases. Then 𝐵1, 𝐵2 can be transformed into two new bases

�̃�1, �̃�2 such that 𝐵 ⊆ �̃�1 ∩ �̃�2 and

𝑎(�̃�1 ∩ �̃�2) ≤ 𝑎(𝐵1 ∩𝐵2).

Proof. Since 𝐵𝑖 is a basis there exist sets 𝑄𝑖 ⊆ 𝐵𝑖 with |𝑄𝑖| = |𝐵| such that �̃�𝑖 = (𝐵𝑖 ∖
𝑄𝑖)∪𝐵 is a basis for both 𝑖 = 1, 2. It now holds that �̃�1∩�̃�2 = 𝐵∪((𝐵1 ∖𝑄1) ∩ (𝐵2 ∖𝑄2))
and the union above is disjoint because if 𝑒 ∈ 𝐵∩𝐵𝑖 it follows that 𝑒 ∈ 𝑄𝑖, else �̃�𝑖 could

54

4.4 Diagonal Interaction Matrix

not be a basis for both 𝑖 = 1, 2. This implies that 𝑎(�̃�1 ∩ �̃�2) = 𝑎(𝐵) + 𝑎(((𝐵1 ∖𝑄1) ∩
(𝐵2 ∖𝑄2))).

Now also 𝐵1 ∩ 𝐵2 can be written as the disjoint union of 𝐵1 and 𝐵2, 𝐵1 ∩ 𝐵2 =
((𝐵1 ∖ 𝑄2) ∩ (𝐵2 ∖ 𝑄2)) ∪ (𝑄1 ∩ (𝐵2 ∖ 𝑄2)) ∪ (𝐵1 ∩ 𝑄2), and we obtain 𝑎(𝐵1 ∩ 𝐵2) =
𝑎(((𝐵1 ∖𝑄2)∩ (𝐵2 ∖𝑄2))) + 𝑎((𝑄1 ∩ (𝐵2 ∖𝑄2))∪ (𝐵1 ∩𝑄2)). We know that (𝑄1 ∩ (𝐵2 ∖
𝑄2)) ∪ (𝐵1 ∩ 𝑄2) ∈ ℐ(ℳ1) ∩ ℐ(ℳ2), since it is a subset of 𝐵1 ∩ 𝐵2, which implies
𝑎(𝐵) ≤ 𝑎((𝑄1 ∩ (𝐵2 ∖𝑄2)) ∪ (𝐵1 ∩𝑄2)). Using this our claim follows.

By the approach above we obtain the following result.

Theorem 4.12. A COPIC instance (ℬ(ℳ1),ℬ(ℳ2),diag(𝑎), 0, 0) is solvable in poly-
nomial time, for any two matroids ℳ1,ℳ2 and cost vector 𝑎 ∈ R𝑛.

4.4.4 Pairs of Paths

In this section we summarize the special case when ℱ1 and ℱ2 correspond to the set
of 𝑠1-𝑡1- and 𝑠2-𝑡2-paths in a graph or digraph. We will again look at the case where
the graphs corresponding to ℱ1 and ℱ2 are identical. One must also make sure that
there do not exist negative circles in the graph, else already optimizing over a linear cost
function without interaction costs is NP-hard. To simplify the exposition we will focus
on 𝑄, 𝑐, 𝑑 ≥ 0.

We observe that this special case of COPIC is a generalization of different variants
of edge-disjoint path problems and the computational complexity results from the edge-
disjoint paths literature can be directly transfered using standard reduction techniques.
Table 4.3 summarizes those results and the methods to obtain them.

It is important to differentiate between directed and undirected graphs, which is clear
in the light of Proposition 4.13 and the known complexity results for the edge-disjoint
paths problem.

Proposition 4.13. Given a graph 𝐺 and 𝑎 > 0, an COPIC instance restricted to the
form (𝒫𝑠1,𝑡1(𝐺),𝒫𝑠2,𝑡2(𝐺),diag(𝑎), 0, 0) has a solution with objective value 0, if and only
if there exist two edge-disjoint paths 𝑠𝑖-𝑡𝑖-paths in 𝐺.

It is well known that the edge-disjoint paths problem is polynomial time solvable for
every constant number of paths in undirected graphs [109], but NP-hard already for 2
paths in directed graphs [49]. This imediatly yields the following result.

Corollary 4.14. Given a directed graph 𝐺, COPIC with instances restricted to the
form (𝒫𝑠1,𝑡1(𝐺),𝒫𝑠2,𝑡2(𝐺),diag(𝑎), 0, 0) is NP-hard, even for 𝑎 ≡ 1.

We use the following results obtained by Eilam-Tzoreff [46] to further classify the
complexity of our problem.

Theorem 4.15 (Eilam-Tzoreff [46]). The undirected edge-disjoint two shortest paths
problem is polynomial time solvable, even in the weighted case. On the other hand, the
undirected two edge-disjoint one shortest paths problem is NP-hard.

55

4 Combinatorial Optimization with Interaction Costs

directedness terminals cost restrictions complexity method

directed arbitrary 𝑄 = 𝐼, 𝑐 = 𝑑 = 0 NP-hard dEDP
directed common 𝑄 = diag(∞) NP-hard dEDP
undirected arbitrary 𝑄 = diag(∞), 𝑑 = 0 NP-hard uED2SP
undirected arbitrary 𝑐 = 𝑑 = 0 open
undirected common 𝑄 = diag(∞) NP-hard uED2SP
both common 𝑐 = 𝑑 P MCF

Table 4.3: Summary of the results for diagonal COPIC with paths as feasible so-
lutions. The column method contains the problem we reduce from/to:
dEDP. . . directed edge disjoint paths, uEDP2SP. . . undirected edge disjoint
two shortest paths [46], MCF. . . minimum cost flow.

It is important to note that in the results of Eilam-Tzoreff, a shortest path always
means a shortest path in the original graph, not a shortest path after removing the edges
of the other disjoint path. This is the reason why using Theorem 4.15, we cannot conclude
that COPIC with instances restricted to the form (𝒫𝑠1,𝑡1(𝐺),𝒫𝑠2,𝑡2(𝐺),diag(∞), 𝑐, 𝑐) is
polynomial time solvable, since in our model we cannot enforce two shortest paths of
the original graph. If 𝑐 = 𝑑 = 1 and 𝑄 = diag(∞) Björklund and Husfeldt [13] showed
in 2014 how to solve the problem using a polynomial time Monte Carlo algorithm. The
existence of a deterministic polynomial time algorithm is still unknown and a long-
standing open problem.

Nevertheless, it is possible to use the hardness results of Eilam-Tzoreff [46] to show
that for general costs 𝑐, 𝑑 ≥ 0 the problem is NP-hard.

Corollary 4.16. Given an undirected graph 𝐺, COPIC with instances restricted to the
form (𝒫𝑠1,𝑡1(𝐺),𝒫𝑠2,𝑡2(𝐺), diag(∞), 𝑐, 0) is NP-hard for 𝑐 ≥ 0.

Proof. Using a polynomial time algorithm for COPIC we can determine, if the two edge-
disjoint one shortest paths problem has a solution. Just run the algorithm and check if
the objective value equals the length of a shortest 𝑠1-𝑡1-path in the given graph.

This covers the case if 𝑠1 ̸= 𝑠2 and 𝑡1 ̸= 𝑡2. From the edge-disjoint path literature we
know that the problem becomes easier, if one assumes a common source 𝑠 and a common
sink 𝑡 for all the paths. We can classify the complexity of this case for our problem,
using the following results.

Theorem 4.17. Given a graph or digraph 𝐺, a COPIC instance restricted to the form
(𝒫𝑠,𝑡(𝐺),𝒫𝑠,𝑡(𝐺),diag(𝑎), 𝑐, 𝑐) is solvable in polynomial time, for cost vectors 𝑎, 𝑐 ≥ 0.

Proof. We reduce to a minimum cost flow problem. Set 𝑏(𝑠) = 2 and 𝑏(𝑡) = −2 and
double each edge/arc 𝑒 ∈ 𝐸 to two versions 𝑒1, 𝑒2 with 𝑐𝑒1 = 𝑐𝑒 and 𝑐𝑒2 = 𝑎𝑒 + 𝑐𝑒. Now
a minimum cost flow in this network will be integral and can be decomposed into two
path flows, each sending one unit from 𝑠 to 𝑡. The cost of the flow corresponds to the
cost of these two paths in our problem.

56

4.5 Linearizable Instances

Theorem 4.18. Given a graph or digraph 𝐺, COPIC with instances restricted to the
form (𝒫𝑠,𝑡(𝐺),𝒫𝑠,𝑡(𝐺),diag(∞), 𝑐, 𝑑) is NP-hard.

Proof. For digraphs the statement follows from a reduction from directed two disjoint
paths. Given such an instance we introduce the new terminals 𝑠 and 𝑡 and add arcs
(𝑠, 𝑠1), (𝑠, 𝑠2), (𝑡1, 𝑡), (𝑡2, 𝑡). We use 𝑄 = diag(∞) and as linear costs 𝑐(𝑠,𝑠1) = 𝑐(𝑡1,𝑡) =
𝑑(𝑠,𝑠2) = 𝑑(𝑡2,𝑡) = 0 and 𝑐(𝑠,𝑠2) = 𝑐(𝑡2,𝑡) = 𝑑(𝑠,𝑠1) = 𝑑(𝑡1,𝑡) = ∞ and 𝑐𝑒 = 𝑑𝑒 = 0 for all
other edges. This enforces that paths 𝑆𝑖 are 𝑠𝑖-𝑡𝑖-paths and the diagonal matrix with
infinite entries ensures disjointness.

In the undirected case we apply the same construction as above but using the undi-
rected two edge-disjoint one shortest paths problem. To solve the decision problem
analyzed by Eilam-Tzoreff [46], we create COPIC with 𝑐𝑒 = 1 and 𝑑𝑒 = 0 for all the
edges in the original network to enforce that 𝑆1 is a shortest path. After finding a finite
cost solution to this problem we check if the length of 𝑆1 is equal to the length of a
shortest 𝑠1-𝑡1-path in 𝐺.

4.5 Linearizable Instances

In this section we explore for which cost matrices COPIC leads to an equivalent problem
where there is essentially no interaction between two structures of COPIC.

More precisely, we say that an interaction cost matrix 𝑄 of a COPIC is linearizable,
if there exist vectors 𝑎 = (𝑎𝑖) and 𝑏 = (𝑏𝑖) such that for all 𝑆1 ∈ ℱ1 and 𝑆2 ∈ ℱ2∑︁

𝑖∈𝑆1

∑︁
𝑗∈𝑆2

𝑞𝑖𝑗 =
∑︁
𝑖∈𝑆1

𝑎𝑖 +
∑︁
𝑗∈𝑆2

𝑏𝑗

holds. In that case we say that the pair of vectors 𝑎 and 𝑏 together is a linearization of
𝑄.

Note that for a COPIC instance (ℱ1,ℱ2, 𝑄, 𝑐, 𝑑), 𝑓(𝑆1, 𝑆2) =
∑︀

𝑖∈𝑆1
�̄�𝑖 +

∑︀
𝑗∈𝑆2

�̄�𝑗 for

some �̄� = (�̄�𝑖), �̄� = (�̄�𝑖) and all 𝑆1 ∈ ℱ1, 𝑆2 ∈ ℱ2, if and only if 𝑄 is linearizable. Hence,
we extend our notion of linearizability and say that a COPIC instance (ℱ1,ℱ2, 𝑄, 𝑐, 𝑑)
is linearizable if and only if 𝑄 is linearizable. Our aim is to characterize all linearizable
instances of COPIC, with respect to given solution sets ℱ1 and ℱ2.

Linearizable instances have been studied by various authors for the case of quadratic
assignment problem [30, 76, 106], quadratic spanning tree problem [39] and bilinear as-
signment problem [40]. Here we generalize the ideas from [40] and suggest an approach
for finding a characterization of linearizable instances of COPIC’s.

An interaction cost matrix 𝑄 of a COPIC has constant objective property with respect

to ℱ1 if for every 𝑗 ∈ [𝑛] there exist a constant 𝐾
(1)
𝑗 , so that∑︁

𝑖∈𝑆1

𝑞𝑖𝑗 = 𝐾
(1)
𝑗 for all 𝑆1 ∈ ℱ1.

Similarly, 𝑄 has constant objective property with respect to ℱ2 if for every 𝑖 ∈ [𝑚] there

57

4 Combinatorial Optimization with Interaction Costs

exist a constant 𝐾
(2)
𝑖 , so that∑︁

𝑗∈𝑆2

𝑞𝑖𝑗 = 𝐾
(2)
𝑖 for all 𝑆2 ∈ ℱ2.

For ℱ𝑖, 𝑖 = 1, 2, let CVP𝑖(ℱ𝑖) be the vector space of all matrices with constant objective
property with respect to ℱ𝑖.

Combinatorial optimization problems with constant objective property have been
studied by various authors [10,24,36,81].

Let CVP1(ℱ1) + CVP2(ℱ2) be the vector space of all interaction matrices 𝑄 = (𝑞𝑖𝑗)
of COPIC, such that 𝑞𝑖𝑗 = 𝑎𝑖𝑗 + 𝑏𝑖𝑗 for all 𝑖, 𝑗 and for some 𝐴 = (𝑎𝑖𝑗) ∈ CVP1(ℱ1) and
𝐵 = (𝑏𝑖𝑗) ∈ CVP2(ℱ2).

Lemma 4.19 (Sufficient conditions). If the interaction cost matrix 𝑄 of a COPIC
instance (ℱ1,ℱ2, 𝑄, 𝑐, 𝑑) is an element of CVP1(ℱ1)+CVP2(ℱ2), then 𝑄 is linearizable.

Proof. Let 𝑄 be of the form 𝑄 = 𝐸 + 𝐹 , where 𝐸 = (𝑒𝑖𝑗) ∈ CVP1(ℱ1) and 𝐹 = (𝑓𝑖𝑗) ∈
CVP2(ℱ2). Then∑︁

𝑖∈𝑆1

∑︁
𝑗∈𝑆2

𝑞𝑖𝑗 =
∑︁
𝑖∈𝑆1

∑︁
𝑗∈𝑆2

(𝑒𝑖𝑗 + 𝑓𝑖𝑗) =

∑︁
𝑗∈𝑆2

⎛⎝∑︁
𝑖∈𝑆1

𝑒𝑖𝑗

⎞⎠ +
∑︁
𝑖∈𝑆1

⎛⎝∑︁
𝑗∈𝑆2

𝑓𝑖𝑗

⎞⎠ =
∑︁
𝑗∈𝑆2

𝐾
(1)
𝑗 +

∑︁
𝑖∈𝑆1

𝐾
(2)
𝑖 .

Hence 𝑄 is linearizable, and 𝑎 = (𝑎𝑖), 𝑏 = (𝑏𝑗) with 𝑎𝑖 = 𝐾
(2)
𝑖 , 𝑏𝑗 = 𝐾

(1)
𝑗 is a linearization

of 𝑄.

Now we show that the opposite direction is also true, provided some additional condi-
tions are satisfied. In fact, these additional conditions are satisfied for many well studied
combinatorial optimization problems.

Lemma 4.20 (Necessary conditions). Let ℱ1 ⊆ 2[𝑚] and ℱ2 ⊆ 2[𝑛] be such that:

(i) There exist an 𝑚 vector 𝑎 = (𝑎𝑖), an 𝑛 vector 𝑏 = (𝑏𝑗) and two non-zero constants
𝐾𝑎,𝐾𝑏, such that∑︁

𝑖∈𝑆1

𝑎𝑖 = 𝐾𝑎 ∀𝑆1 ∈ ℱ1 and
∑︁
𝑗∈𝑆2

𝑏𝑗 = 𝐾𝑏 ∀𝑆2 ∈ ℱ2.

(ii) If an 𝑚 × 𝑛 matrix �̄� = (𝑞𝑖𝑗) is such that
∑︀

𝑖∈𝑆1

∑︀
𝑗∈𝑆2

𝑞𝑖𝑗 = 0 for all 𝑆1 ∈ ℱ1,

𝑆2 ∈ ℱ2, then �̄� ∈ CVP1(ℱ1) + CVP2(ℱ2).

If an instance (ℱ1,ℱ2, 𝑄, 𝑐, 𝑑) of COPIC is linearizable, then it holds that 𝑄 ∈ CVP1(ℱ1)+
CVP2(ℱ2).

58

4.5 Linearizable Instances

Proof. Assume that the conditions (𝑖) and (𝑖𝑖) of Lemma 4.20 are satisfied, and that
𝑄 is linearizable. We will show that 𝑄 ∈ CVP1(ℱ1) + CVP2(ℱ2) by reconstructing the
proof of Lemma 4.19 in reverse direction.

Since 𝑄 is linearizable, there exist 𝑎 = (𝑎𝑖) and 𝑏 = (𝑏𝑗) such that∑︁
𝑖∈𝑆1

∑︁
𝑗∈𝑆2

𝑞𝑖𝑗 =
∑︁
𝑖∈𝑆1

𝑎𝑖 +
∑︁
𝑗∈𝑆2

𝑏𝑗 ∀𝑆1 ∈ ℱ𝑖, 𝑆2 ∈ ℱ2. (4.5)

Note that from (𝑖) it follows that there exist matrices �̂� = (𝑒𝑖𝑗) ∈ CVP1(ℱ1) and

𝐹 = (𝑓𝑖𝑗) ∈ CVP2(ℱ2) such that∑︁
𝑗∈𝑆2

𝑓𝑖𝑗 = 𝑎𝑖 ∀𝑆2 ∈ ℱ2, 𝑖 ∈ 𝑀, (4.6)

∑︁
𝑖∈𝑆𝑖

𝑒𝑖𝑗 = 𝑏𝑗 ∀𝑆1 ∈ ℱ1, 𝑗 ∈ 𝑁. (4.7)

Using (4.6) and (4.7), we can rewrite (4.5) as

∑︁
𝑖∈𝑆1

∑︁
𝑗∈𝑆2

𝑞𝑖𝑗 =
∑︁
𝑖∈𝑆1

⎛⎝∑︁
𝑗∈𝑆2

𝑓𝑖𝑗

⎞⎠ +
∑︁
𝑗∈𝑆2

⎛⎝∑︁
𝑖∈𝑆1

𝑒𝑖𝑗

⎞⎠ =
∑︁
𝑖∈𝑆1

∑︁
𝑗∈𝑆2

(︁
𝑒𝑖𝑗 + 𝑓𝑖𝑗

)︁
(4.8)

for all 𝑆1 ∈ ℱ1, 𝑆2 ∈ ℱ2. Hence it follows that∑︁
𝑖∈𝑆1

∑︁
𝑗∈𝑆2

(︁
𝑞𝑖𝑗 − (𝑒𝑖𝑗 + 𝑓𝑖𝑗)

)︁
= 0 ∀𝑆1 ∈ ℱ𝑖, 𝑆2 ∈ ℱ2. (4.9)

Now, from (𝑖𝑖) it follows that 𝑄 − (�̂� + 𝐹) = 𝐸 + 𝐹 for some 𝐸 ∈ CVP1(ℱ1), 𝐹 ∈
CVP2(ℱ2), and hence, 𝑄 = (𝐸 + �̂�) + (𝐹 + 𝐹) ∈ CVP1(ℱ1) + CVP2(ℱ2).

From Lemma 4.19 and Lemma 4.20 it follows that CVP1(ℱ1) + CVP2(ℱ2) is the set
of all linearizable matrices, provided that the corresponding COPIC satisfies properties
(𝑖) and (𝑖𝑖) of Lemma 4.20.

In most cases, property (𝑖) is straightforward to check. For example, it is true for all
COPIC’s for which elements of ℱ1 and ℱ2 are of fixed cardinality. If ℱ1 and ℱ2 are 𝑠-𝑡
paths in a graph, then again property (𝑖) is satisfied, although feasible solutions are of
different cardinality. Condition (𝑖) is not satisfied for unconstrained solution sets, i.e.,
when ℱ1 (ℱ2) is 2[𝑚] (2[𝑛]).

Now we show how Lemma 4.19 and Lemma 4.20 can be used to characterize lin-
earizable instances for some specific COPIC’s. Note that, to simplifying notation, in
the case of ℱ = 𝒫ℳ(𝐾𝑚,𝑚) we denote an element 𝑒 ∈ ℱ corresponding to an edge
{𝑖, 𝑗} ∈ [𝑚] × [𝑚] by 𝑖𝑗, and denote the interaction cost of two such elements 𝑖𝑗 and 𝑘𝑙
by 𝑞𝑖𝑗𝑘𝑙.

59

4 Combinatorial Optimization with Interaction Costs

Theorem 4.21.

(i) A COPIC instance (𝒫ℳ(𝐾𝑚,𝑚),𝒫ℳ(𝐾𝑛,𝑛), 𝑄, 𝑐, 𝑑) is linearizable if and only if
there are some arrays 𝐴, 𝐵, 𝐶, 𝐷 such that 𝑞𝑖𝑗𝑘ℓ = 𝑎𝑖𝑗𝑘 + 𝑏𝑖𝑗ℓ + 𝑐𝑖𝑘ℓ + 𝑑𝑗𝑘ℓ.

(ii) A COPIC instance (ℬ(ℳ(𝐾𝑚)),ℬ(ℳ(𝐾𝑛)), 𝑄, 𝑐, 𝑑) is linearizable if and only if
there are some vectors 𝑎, 𝑏 such that 𝑞𝑖𝑗 = 𝑎𝑖 + 𝑏𝑗.

(iii) A COPIC instance (ℬ(𝒰𝑘1
𝑚),ℬ(𝒰𝑘2

𝑛), 𝑄, 𝑐, 𝑑) is linearizable if and only if there are
some vectors 𝑎, 𝑏 such that 𝑞𝑖𝑗 = 𝑎𝑖 + 𝑏𝑗.

(iv) A COPIC instance (𝒫ℳ(𝐾𝑚,𝑚),ℬ(ℳ(𝐾𝑛)), 𝑄, 𝑐, 𝑑) is linearizable if and only if
there are some arrays 𝐴, 𝐵, 𝐶 such that 𝑞𝑖𝑗𝑘 = 𝑎𝑖𝑗 + 𝑏𝑖𝑘 + 𝑐𝑗𝑘.

(v) A COPIC instance (ℬ(ℳ(𝐾𝑚)),ℬ(𝒰𝑘
𝑛), 𝑄, 𝑐, 𝑑) is linearizable if and only if there

are some vectors 𝑎, 𝑏 such that 𝑞𝑖𝑗 = 𝑎𝑖 + 𝑏𝑗.

(vi) A COPIC instance (𝒫ℳ(𝐾𝑚,𝑚),ℬ(𝒰𝑠
𝑛), 𝑄, 𝑐, 𝑑) is linearizable if and only if there

are some arrays 𝐴, 𝐵, 𝐶 such that 𝑞𝑖𝑗𝑘 = 𝑎𝑖𝑗 + 𝑏𝑖𝑘 + 𝑐𝑗𝑘.

Proof. We present a complete proof for (𝑖𝑣), and indicate how other statements can be
shown analogously.

In the case of COPIC instances (𝒫ℳ(𝐾𝑚,𝑚),ℬ(ℳ(𝐾𝑛)), 𝑄, 𝑐, 𝑑), the interaction
costs are represented in a three-dimensional array 𝑄, since for convenience we repre-
sent the cost vector of ℱ1 = 𝒫ℳ(𝐾𝑚,𝑚) in two indices. It is well known that a linear
assignment problem instance 𝑅 = (𝑟𝑖𝑗) has the constant objective property if and only if
𝑟𝑖𝑗 = 𝑠𝑖 + 𝑡𝑗 , for some vectors 𝑠 and 𝑡. Hence CVP1(𝒫ℳ(𝐾𝑚,𝑚)) = {𝐴 = (𝑎𝑖𝑗𝑘) : 𝑎𝑖𝑗𝑘 =
𝑏𝑖𝑘 + 𝑐𝑗𝑘 for some 𝐵 = (𝑏𝑖𝑗), 𝐶 = (𝑐𝑖𝑗)}. A spanning tree problem on a complete graph
has the constant objective property if and only if the cost vector is constant, therefore
CVP2(ℬ(ℳ(𝐾𝑛))) = {𝐴 = (𝑎𝑖𝑗𝑘) : 𝑎𝑖𝑗𝑘 = 𝑏𝑖𝑗 for some 𝐵 = (𝑏𝑖𝑗)}. Hence, 𝑄 is an ele-
ment of CVP1(𝒫ℳ(𝐾𝑚,𝑚)) + CVP2(ℬ(ℳ(𝐾𝑛))) if and only if there are some 𝐴, 𝐵 and
𝐶 such that

𝑞𝑖𝑗𝑘 = 𝑎𝑖𝑗 + 𝑏𝑖𝑘 + 𝑐𝑗𝑘. (4.10)

Lemma 4.19 tells us that (4.10) is a sufficient condition for 𝑄 to be linearizable. To
show that it is also a necessary condition, we just need to show that properties (𝑖) and
(𝑖𝑖) of Lemma 4.20 are true for COPIC instances (𝒫ℳ(𝐾𝑚,𝑚),ℬ(ℳ(𝐾𝑛)), 𝑄, 𝑐, 𝑑). (𝑖)
is obviously true, hence it remains to show that if 𝑄 is such that∑︁

(𝑖,𝑗)∈𝑆1

∑︁
𝑘∈𝑆2

𝑞𝑖𝑗𝑘 = 0 for all 𝑆1 ∈ 𝒫ℳ(𝐾𝑚,𝑚), 𝑆2 ∈ ℬ(ℳ(𝐾𝑛)),

then 𝑄 ∈ CVP1(𝒫ℳ(𝐾𝑚,𝑚)) + CVP2(ℬ(ℳ(𝐾𝑛))).
Let 𝑖, 𝑗 ∈ {2, 3, . . . ,𝑚} be fixed, and let 𝑆′

𝑃𝑀 , 𝑆′′
𝑃𝑀 ∈ 𝒫ℳ(𝐾𝑚,𝑚) be such that 𝑆′

𝑃𝑀 ∖
𝑆′′
𝑃𝑀 = {(1, 1), (𝑖, 𝑗)} and 𝑆′′

𝑃𝑀 ∖ 𝑆′
𝑃𝑀 = {(1, 𝑗), (𝑖, 1)}. Further, let 𝑘 ∈ {2, 3, . . . , 𝑛} be

fixed, and let 𝑆′
𝑆𝑇 , 𝑆

′′
𝑆𝑇 ∈ ℬ(ℳ(𝐾𝑛)) be such that 𝑆′

𝑆𝑇 ∖𝑆′′
𝑆𝑇 = {1} and 𝑆′′

𝑆𝑇 ∖𝑆′
𝑆𝑇 = {𝑘}.

Note that such 𝑆′
𝑃𝑀 , 𝑆′′

𝑃𝑀 , 𝑆′
𝑆𝑇 , 𝑆

′′
𝑆𝑇 exist for all 𝑖, 𝑗 ∈ {2, 3, . . . ,𝑚}, 𝑘 ∈ {2, 3, . . . , 𝑛}.

60

4.5 Linearizable Instances

Let us assume that 𝑄 is of the form such that∑︁
(𝑖,𝑗)∈𝑆1

∑︁
𝑘∈𝑆2

𝑞𝑖𝑗𝑘 = 0for all 𝑆1 ∈ 𝒫ℳ(𝐾𝑚,𝑚), 𝑆2 ∈ ℬ(ℳ(𝐾𝑛)).

Then, in particular, we have that∑︁
(𝑖,𝑗)∈𝑆′

𝑃𝑀

∑︁
𝑘∈𝑆′

𝑆𝑇

𝑞𝑖𝑗𝑘 +
∑︁

(𝑖,𝑗)∈𝑆′′
𝑃𝑀

∑︁
𝑘∈𝑆′′

𝑆𝑇

𝑞𝑖𝑗𝑘 =
∑︁

(𝑖,𝑗)∈𝑆′
𝑃𝑀

∑︁
𝑘∈𝑆′′

𝑆𝑇

𝑞𝑖𝑗𝑘 +
∑︁

(𝑖,𝑗)∈𝑆′′
𝑃𝑀

∑︁
𝑘∈𝑆′

𝑆𝑇

𝑞𝑖𝑗𝑘,

(4.11)
which, after cancellations, gives us

𝑞111 + 𝑞𝑖𝑗1 + 𝑞1𝑗𝑘 + 𝑞𝑖1𝑘 = 𝑞11𝑘 + 𝑞𝑖𝑗𝑘 + 𝑞1𝑗1 + 𝑞𝑖11 (4.12)

for all 𝑖, 𝑗 ∈ {2, 3, . . . ,𝑚}, 𝑘 ∈ {2, 3, . . . , 𝑛}. Note that (4.12) holds true even if 𝑖, 𝑗 or 𝑘
is equal to 1, since in that case everything chancels out. Therefore, 𝑞𝑖𝑗𝑘 can be expressed
as

𝑞𝑖𝑗𝑘 = 𝑎𝑖𝑗 + 𝑏𝑖𝑘 + 𝑐𝑗𝑘 ∀𝑖, 𝑗 ∈ [𝑚], ∀𝑘 ∈ [𝑛], (4.13)

where

𝑎𝑖𝑗 = 𝑞𝑖𝑗1 −
1

2
𝑞1𝑗1 −

1

2
𝑞𝑖11 +

1

3
𝑞111, 𝑏𝑖𝑘 = 𝑞𝑖1𝑘 −

1

2
𝑞11𝑘 −

1

2
𝑞𝑖11 +

1

3
𝑞111,

𝑐𝑗𝑘 = 𝑞1𝑗𝑘 −
1

2
𝑞11𝑘 −

1

2
𝑞1𝑗1 +

1

3
𝑞111,

i.e., 𝑄 ∈ CVP1(𝒫ℳ(𝐾𝑚,𝑚))+CVP2(ℬ(ℳ(𝐾𝑛))), hence also (𝑖𝑖) of Lemma 4.20 is true.
That proves statement (𝑖𝑣) of the theorem.

Statements (𝑖) and (𝑖𝑖) of the theorem can be proved by considering equation (4.11)
with two pairs of 𝑆′

𝑃𝑀 , 𝑆′′
𝑃𝑀 for COPIC instances (𝒫ℳ(𝐾𝑚,𝑚),𝒫ℳ(𝐾𝑛,𝑛), 𝑄, 𝑐, 𝑑), and

two pairs of 𝑆′
𝑆𝑇 , 𝑆

′′
𝑆𝑇 for the case of COPIC instances (ℬ(ℳ(𝐾𝑚)),ℬ(ℳ(𝐾𝑛)), 𝑄, 𝑐, 𝑑).

Using analogous approach, the remaining statements of the theorem can be shown.

As we mentioned before, property (𝑖) of Lemma 4.20 does not hold for unconstrained
solution set 2[𝑚] (2[𝑛]), nevertheless, it is not hard to show that CVP1(ℱ1) + CVP2(ℱ2)
characterizes all linearizable matrices even if ℱ1 = 2[𝑚] or ℱ2 = 2[𝑛].

Theorem 4.22. A COPIC instance (ℱ1,ℱ2, 𝑄, 𝑐, 𝑑) with ℱ1 = 2[𝑚] (ℱ2 = 2[𝑛]) is
linearizable if and only if 𝑄 ∈ CVP2(ℱ2) (𝑄 ∈ CVP1(ℱ1)).

Proof. Assume that ℱ1 = 2[𝑚]. Note that CVP1(2
[𝑚]) contains only the 𝑚 × 𝑛 zero

matrix, hence Lemma 4.19 implies that elements of CVP2(ℱ2) are linearizable.
Now let us assume that 𝑄 is linearizable and not an element of CVP2(ℱ2). Then there

must exist some 𝑖′ ∈ [𝑚] and 𝑆2, 𝑆
′
2 ∈ ℱ2 such that

∑︀
𝑗∈𝑆2

𝑞𝑖′𝑗 ̸=
∑︀

𝑗∈𝑆′
2
𝑞𝑖′𝑗 . Let 𝑎 = (𝑎𝑖)

and 𝑏 = (𝑏𝑖) be a linearization of 𝑄. Since {𝑖′} ∈ 2[𝑚], we have that∑︁
𝑗∈𝑆2

𝑞𝑖′𝑗 =
∑︁
𝑖∈{𝑖′}

∑︁
𝑗∈𝑆2

𝑞𝑖𝑗 = 𝑎𝑖′ +
∑︁
𝑗∈𝑆2

𝑏𝑗

61

4 Combinatorial Optimization with Interaction Costs

and ∑︁
𝑗∈𝑆′

2

𝑞𝑖′𝑗 =
∑︁
𝑖∈{𝑖′}

∑︁
𝑗∈𝑆′

2

𝑞𝑖𝑗 = 𝑎𝑖′ +
∑︁
𝑗∈𝑆′

2

𝑏𝑗 .

Hence,
∑︀

𝑗∈𝑆2
𝑏𝑗 ̸=

∑︀
𝑗∈𝑆′

2
𝑏𝑗 . However, since ∅ ∈ 2[𝑚] we have

0 =
∑︁
𝑖∈∅

∑︁
𝑗∈𝑆2

𝑞𝑖𝑗 =
∑︁
𝑗∈𝑆2

𝑏𝑗 and 0 =
∑︁
𝑖∈∅

∑︁
𝑗∈𝑆′

2

𝑞𝑖𝑗 =
∑︁
𝑗∈𝑆′

2

𝑏𝑗

which implies that
∑︀

𝑗∈𝑆2
𝑏𝑗 =

∑︀
𝑗∈𝑆′

2
𝑏𝑗 , a contradiction.

4.6 Conclusion

We introduced a general model to study combinatorial optimization problems with inter-
action costs and showed that many classical hard combinatorial optimization problems
are special cases. In many cases, interaction costs can be identified as the origin of the
hardness of these problems. Therefore we considered special structures of interaction
costs, and their impact on the computational complexity of the underlying combinato-
rial optimization problems. We presented a general approach based on multi-parametric
programming to solve instances parametrized with the rank of the interaction cost ma-
trix 𝑄. Complementary to that, we analyzed problems with diagonal interaction cost
matrix 𝑄, which can be used to enforce disjointness constraints. Even for this special
type of interaction costs, we can show that for many common sets of feasible solutions,
that have no matroid structure, COPIC becomes NP-hard. We also identified conditions
on the interaction costs so that COPIC can be reduced to an equivalent instance with
no interaction costs.

To further characterize how interaction costs impact the computational complexity
of different combinatorial optimization problems, the following questions could be ad-
dressed.

∙ Are the polynomially solvable cases of COPIC where matrix 𝑄 has fixed rank 𝑟
W[1]-hard?

∙ For cases of COPIC with diagonal matrix that can be efficiently solved, analyze
the parameterized complexity with respect to the bandwith of 𝑄.

∙ Can a COPIC instance (ℬ(𝒰𝑘
𝑚),𝒫𝑠,𝑡(𝐺),diag(𝑎), 𝑐, 𝑑) be solved in polynomial time,

if 𝑎 ≥ 0, 𝑐 ≥ 0 and 𝑑 ≥ 0?

∙ Is there a polynomial time algorithm for COPIC with instances restricted to the
form (ℬ(ℳ1),ℬ(ℳ2),diag(𝑎), 𝑐, 𝑑), without any restrictions on ℳ1,ℳ2, 𝑎, 𝑐 and
𝑑?

For the case of diagonal COPIC it would be interesting to study further types of sets
of feasible solutions. For example the matching-cut problem analyzed by Bonsma [16]

62

4.6 Conclusion

can be also formulated as a special case of diagonal COPIC, so analyzing graph cuts as
feasible sets in diagonal COPIC is an interesting candidate for further research.

Additionally, understanding the influence of interaction costs with other special matrix
structures, besides fixed rank and diagonal matrices, to the computational complexity
of combinatorial optimization problems would be of interest.

63

5 Matrix Completion Problems

5.1 Introduction

Restricted classes of matrices are common objects of study in mathematics and com-
binatorics [19, 20], with strong connections to combinatorial optimization. Examples
include, but are not limited to, low rank matrices, Monge matrices, bottleneck Monge
matrices, matrices with restrictions on the row and column sums (magic squares), Latin
squares and their generalizations (Sudoku variants) and adjacency matrices of graphs
with certain properties. Since in many applications, the order of rows and columns of
a matrix is not important also permuted versions of those classes are studied. Here,
for square matrices, we differentiate between the case where the rows and columns have
to be permuted by the same or two independent permutations. Formally, for a matrix
𝐴 = (𝑎𝑖,𝑗) and permutations 𝜋, 𝜎 we denote by 𝐴𝜋,𝜎 = (𝑎𝜋(𝑖),𝜎(𝑗)) the matrix where all
rows are permuted by 𝜋 and all columns are permuted by 𝜎. If 𝐴 is a square matrix, we
write 𝐴𝜋 := 𝐴𝜋,𝜋 for the matrix where rows and columns are permuted using the same
permutation. Given a matrix class ℱ we denote by ℱ𝜋 the set of all square matrices
𝐴 such that there exists a permutation 𝜋 with 𝐴𝜋 ∈ ℱ . The class ℱ𝜋,𝜎 is the set of
matrices such that there exist permutations 𝜋, 𝜎 such that 𝐴𝜋,𝜎 ∈ ℱ .

For different classes of matrices, there is a vast literature on the computational
complexity of the resulting recognition problem. For a given matrix class ℱ the ℱ-
Recognition problem is the problem to decide for any given matrix 𝐴, if 𝐴 ∈ ℱ .
Especially for permuted matrix classes ℱ𝜋,𝜎 this problem is of great relevance in combi-
natorial optimization [25].

In this chapter we focus on another problem variant, namely matrix completion prob-
lems. Given a matrix 𝐴 ∈ (K ∪ {*})𝑚×𝑛 and a matrix class ℱ , the ℱ-Completion
problem asks whether there exist values �̃�𝑖,𝑗 ∈ K for all 𝑖, 𝑗 with 𝑎𝑖,𝑗 = * such that the
matrix 𝐴 = (�̃�𝑖,𝑗) ∈ ℱ , where �̃�𝑖,𝑗 = 𝑎𝑖,𝑗 , if 𝑎𝑖,𝑗 ̸= *.

For some matrix classes, the matrix completion problem is already well-studied in the
literature. One major example, with a huge amount of applications, is matrix completion
of low rank matrices [27]. Peeters [105] shows that the problem is already NP-hard for
rank 3 matrices. But the case of rank 1 matrices is efficiently solvable, even for noisy
input data [34]. Another well-studied example is the Latin square completion problem,
which is also NP-hard [33]. There also exist many kinds of casual games based on the
idea of matrix completion. The most famous example is Sudoku, which is also known to
be NP-complete [119].

In this thesis we obtain new results about the computational complexity of matrix
completion problems. We focus mainly on matrices which play an important role in
connection with efficiently solvable cases of hard combinatorial optimization problems

65

5 Matrix Completion Problems

such as Large matrices, Monge matrices, bottleneck Monge matrices and matrices with
monotonicity properties in their rows and columns, as well as permuted variants of those
classes.

In the following we call a matrix 𝐴 ∈ R𝑚×𝑛 a completed matrix and a matrix which
contains *-entries, i.e. 𝐴 ∈ (R ∪ {*})𝑚×𝑛 which is not completed, a partial matrix.

For the hardness results we use reductions from the following well-known NP-complete
problems 3SAT and Betweenness [102].

Problem: 3-Satisfiability (3SAT)

Instance: Variables 𝑥1, 𝑥2, . . . , 𝑥𝑛 and length 3 clauses 𝑐1, 𝑐2, . . . , 𝑐𝑚 of the

form 𝑐𝑗 = (𝑙
(𝑗)
1 ∨ 𝑙

(𝑗)
2 ∨ 𝑙

(𝑗)
3), where 𝑙

(𝑗)
𝑖 are literals of the given variables.

Question: Does there exist a truth assignment to the variables 𝑥1, 𝑥2, . . . , 𝑥𝑛
such that 𝑐1 ∧ 𝑐2 ∧ · · · ∧ 𝑐𝑚 is true?

Problem: Betweenness

Instance: Set of 𝑛 integers 𝑆 and a set of triples 𝑇 ⊆ 𝑆3.

Question: Does there exist a total order < of the elements in 𝑆 with the
property that for each triple (𝑡1, 𝑡2, 𝑡3) ∈ 𝑇 it holds that 𝑡1 < 𝑡2 < 𝑡3 or
𝑡3 < 𝑡2 < 𝑡1?

5.2 Large matrices

A matrix 𝐴 = (𝑎𝑖,𝑗) ∈ R𝑚×𝑛 is called large, if there exist vectors 𝛼 ∈ R𝑚 and 𝛽 ∈ R𝑛

such that 𝑎𝑖,𝑗 = max{𝛼𝑖, 𝛽𝑗}. We denote the set of all large matrices by ℱ𝐿. The Large
Matrix Completion (ℱ𝐿-Completion) problem asks for a given partial matrix 𝐴
such that 𝐴 = (𝑎𝑖,𝑗) ∈ (R ∪ {*})𝑚×𝑛, if it can be completed to a large matrix. Let Ω =
{(𝑖, 𝑗) : 𝑎𝑖,𝑗 ̸= *}, then we want to check if there exist vectors 𝛼 ∈ R𝑚, 𝛽 ∈ R𝑛 such that
𝑎𝑖,𝑗 = max{𝛼𝑖, 𝛽𝑗} for all (𝑖, 𝑗) ∈ Ω. First, it is important to note that permutations of
the rows and/or columns do not influence the problem, so ℱ𝐿-Completion is equivalent
to ℱ𝜋,𝜎

𝐿 -Completion.

We show below that the following algorithm (Algorithm 5.1) solves the ℱ𝐿-Completion
problem. The main idea is to iteratively increase the 𝛼 and 𝛽 values, as they are im-
plied by the 𝑎𝑖,𝑗 values in non-decreasing order. This process either leads to vectors 𝛼, 𝛽
that match the current partial matrix (Lemma 5.1) or proves infeasibility of the current
instance (Lemma 5.2).

66

5.2 Large matrices

Algorithm 5.1: Algorithm for the Large Matrix Completion problem.

Sort the given data entries 𝑎𝑖,𝑗 for (𝑖, 𝑗) ∈ Ω to obtain an ordering such that
𝑎𝑖1,𝑗1 ≤ 𝑎𝑖2,𝑗2 ≤ · · · ≤ 𝑎𝑖|Ω|,𝑗|Ω| .
Initialize 𝛼𝑖 = −∞, 𝛽𝑗 = −∞ for all 𝑖 = 1, 2, . . . ,𝑚 and 𝑗 = 1, 2, . . . , 𝑛.
for 𝑘 := 1, . . . , |Ω| do

(𝑖, 𝑗) := (𝑖𝑘, 𝑗𝑘)
if 𝛼𝑖 = 𝛽𝑗 = −∞ then

1 𝛼𝑖 := 𝑎𝑖,𝑗
𝛽𝑗 := 𝑎𝑖,𝑗

else if 𝛼𝑖 = −∞∧ 𝛽𝑗 > −∞ then
2 𝛼𝑖 := 𝑎𝑖,𝑗

else if 𝛼𝑖 > −∞∧ 𝛽𝑗 = −∞ then
3 𝛽𝑗 := 𝑎𝑖,𝑗

else if −∞ < 𝛼𝑖 < 𝑎𝑖,𝑗 ∧ −∞ < 𝛽𝑗 < 𝑎𝑖,𝑗 then
4 return ‘no feasible solution’

Set all 𝛼𝑖, 𝛽𝑗 that still have value −∞ arbitrarily.
return (𝛼, 𝛽)

Lemma 5.1. If Algorithm 5.1 terminates with a solution (𝛼, 𝛽) then 𝐴 = (�̄�𝑖,𝑗) with
�̄�𝑖,𝑗 = max{𝛼𝑖, 𝛽𝑗} is a feasible solution to the Large Matrix Completion problem.

Proof. By construction 𝐴 is a large matrix. Let (𝑖, 𝑗) ∈ Ω. Then there is a 𝑘 such that
(𝑖𝑘, 𝑗𝑘) = (𝑖, 𝑗). First observe, that after step 𝑘 we have max{𝛼𝑖, 𝛽𝑗} = 𝑎𝑖,𝑗 . Before step
𝑘 it holds that 𝛼𝑖′ ≤ 𝑎𝑖,𝑗 and 𝛽𝑗′ ≤ 𝑎𝑖,𝑗 for all 𝑖′, 𝑗′. If in step 𝑘 we are in one of the
Cases 1-3 of the algorithm, we set at least one of the two values 𝛼𝑖, 𝛽𝑗 to 𝑎𝑖,𝑗 from which
the claim follows, since all values set earlier are less or equal to 𝑎𝑖,𝑗 . Case 4 does not
apply, since we assume that the algorithm terminates with the solution (𝛼, 𝛽). If none
of the Cases 1-4 apply we have that both −∞ < 𝛼𝑖, −∞ < 𝛽𝑗 and either 𝛼𝑖 = 𝑎𝑖,𝑗 or
𝛽𝑗 = 𝑎𝑖,𝑗 , so again max{𝛼𝑖, 𝛽𝑗} = 𝑎𝑖,𝑗 .

In all future steps, if the algorithm handles an element 𝑎𝑖,𝑗′ or 𝑎𝑖′,𝑗 we do not set 𝛼𝑖 and
𝛽𝑗 to a new value. So at the end of the algorithm it holds that max{𝛼𝑖, 𝛽𝑗} = 𝑎𝑖,𝑗 .

Lemma 5.2. If Algorithm 5.1 returns ‘no feasible solution’, there exists no feasible
solution to the Large Matrix Completion problem.

Proof. Since the algorithm terminated with ‘no feasible solution’ there exists a step 𝑘
in which it terminates in Case 4. Let (𝑖, 𝑗) = (𝑖𝑘, 𝑗𝑘). If there would be a feasible
completion (𝛼′, 𝛽′), then either 𝛼′

𝑖 = 𝑎𝑖,𝑗 or 𝛽′
𝑗 = 𝑎𝑖,𝑗 .

But in step 𝑘 of the algorithm for the current vectors 𝛼, 𝛽 it holds that both −∞ <
𝛼𝑖 < 𝑎𝑖,𝑗 and −∞ < 𝛽𝑖 < 𝑎𝑖,𝑗 . This implies that there exist 𝑖′, 𝑗′, such that both
𝑎𝑖,𝑗′ < 𝑎𝑖,𝑗 and 𝑎𝑖′,𝑗 < 𝑎𝑖,𝑗 , else the algorithm would not have set 𝛼𝑖 and 𝛽𝑗 to these
values.

67

5 Matrix Completion Problems

Since in (𝛼′, 𝛽′) either 𝛼′
𝑖 = 𝑎𝑖,𝑗 or 𝛽′

𝑗 = 𝑎𝑖,𝑗 , we have either max{𝛼′
𝑖, 𝛽

′
𝑗′} ≥ 𝑎𝑖,𝑗 > 𝑎𝑖,𝑗′

or max{𝛼′
𝑖′ , 𝛽

′
𝑗} ≥ 𝑎𝑖,𝑗 > 𝑎𝑖′,𝑗 both, contradicting the assumption that (𝛼′, 𝛽′) is a feasible

completion.

Combining both Lemma 5.1 and Lemma 5.2 we obtain the following theorem.

Theorem 5.3. Algorithm 5.1 solves the Large Matrix Completion problem and
runs in 𝑂(|Ω|2 log |Ω| + 𝑛2) time.

Proof. Correctness follows directly from the two preceding lemmas. The running time
bound is obtained from the time needed for sorting and the time to check each matrix
element.

5.3 Permuted Matrices with Non-Decreasing Rows and
Columns

A matrix 𝐴 = (𝑎𝑖,𝑗) ∈ R𝑚×𝑛 has the non-decreasing rows and columns (NDRC) property,
if for all 1 ≤ 𝑖 ≤ 𝑘 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑙 ≤ 𝑛 it holds that 𝑎𝑖,𝑗 ≤ 𝑎𝑘,𝑗 and 𝑎𝑖,𝑗 ≤ 𝑎𝑖,𝑙. We
call such a matrix NDRC matrix, and denote the set of such matrices by ℱ≤,≤.

Theorem 5.4. The ℱ≤,≤-Completion problem can be solved in polynomial time.

Proof. This problem can be reduced to the feasibility problem for linear programming.
One simply introduces variables 𝑥𝑖,𝑗 for each 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑛]. If 𝑎𝑖,𝑗 ̸= * we add the
constraint 𝑥𝑖,𝑗 = 𝑎𝑖,𝑗 . In addition we add constraints 𝑥𝑖,𝑗 ≤ 𝑥𝑘,𝑗 and 𝑥𝑖,𝑗 ≤ 𝑥𝑖,𝑙 for all
1 ≤ 𝑖 ≤ 𝑘 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑙 ≤ 𝑛. This set of linear constraints clearly has a feasible
solution if and only if the given matrix can be completed to a matrix with the NDRC
property.

A matrix 𝐴, where 𝐴 = (𝑎𝑖,𝑗), is called permuted with non-decreasing rows and
columns (PNDRC), if there exist permutations 𝜋 ∈ 𝑆𝑚, 𝜎 ∈ 𝑆𝑛 such that 𝐴(𝜋,𝜎) =
(𝑎𝜋(𝑖),𝜎(𝑗)) has the NDRC property. The set of such matrices is denoted by ℱ𝜋,𝜎

≤,≤. The

PNDRC Matrix Completion (ℱ𝜋,𝜎
≤,≤-Completion) problem asks for a given partial

matrix 𝐴 = (𝑎𝑖,𝑗) ∈ (R∪ {*})𝑚×𝑛, if we can complete it to a PNDRC matrix. Let again
Ω = {(𝑖, 𝑗) : 𝑎𝑖,𝑗 ̸= *}, then we want to check if there exist values 𝑣𝑖,𝑗 for all (𝑖, 𝑗) ∈ Ω
such that 𝐴 = (�̄�𝑖,𝑗) with �̄�𝑖,𝑗 = 𝑣𝑖,𝑗 for all (𝑖, 𝑗) ∈ Ω and �̄�𝑖,𝑗 = 𝑎𝑖,𝑗 for all (𝑖, 𝑗) /∈ Ω
is a PNDRC matrix. In this case, in contrast to large matrices, the problem itself and
its computational complexity completely change as soon as we allow the permutation of
rows and columns.

Theorem 5.5. The ℱ𝜋,𝜎
≤,≤-Completion problem is NP-complete.

Proof. We prove this by reduction from the 3SAT problem.

Given a 3SAT-instance we create a matrix 𝐴 = (𝑎𝑖,𝑗) of size (2𝑛+ 1)× (3𝑚+ 1). This
matrix contains a special row/column which we fix to be the topmost/leftmost by setting

68

5.3 Permuted Matrices with Non-Decreasing Rows and Columns

𝑎0,0 := 0 (the only 0 entry of the matrix) and by setting 𝑎0,3𝑗−1 = 𝑎0,3𝑗−2 = 𝑎0,3𝑗−3 = 𝑗
for 𝑗 = 1, 2, . . . ,𝑚, and 𝑎2𝑖−1,0 = 𝑎2𝑖−2,0 = 𝑖 for 𝑖 = 1, 2, . . . , 𝑛.

The two rows with entries set to 𝑖 correspond to the variable 𝑥𝑖 and the three columns
with entries set to 𝑗 correspond to the clause 𝑐𝑗 . Now we describe how the remaining
matrix entries are set. For the 2 × 3 submatrix corresponding to variable 𝑥𝑖 and clause
𝑐𝑗 four out of the six entries are set to * and the remaining ones are assigned the values

𝑏𝑖,𝑗 = 2(𝑖 + 𝑗 − 1) − 1 and �̂�𝑖,𝑗 = 2(𝑖 + 𝑗 − 1). Note that 𝑏𝑖,𝑗 ≤ �̂�𝑖,𝑗 and that �̂�𝑖,𝑗 < 𝑏𝑖′,𝑗
holds for 𝑖 < 𝑖′ and 𝑏𝑖,𝑗 < 𝑏𝑖,𝑗′ holds for 𝑗 < 𝑗′. We still need to specify where the four *
are placed and where 𝑏𝑖,𝑗 and where �̂�𝑖,𝑗 . That depends on the clause 𝑐𝑗 .

We assume that the literals of 𝑐𝑗 are sorted according to the index of their variables.
Then, we use the following patterns for the 2×3 submatrices corresponding to the literals
of 𝑐𝑗 .

If 𝑙
(𝑗)
1 = 𝑥𝑖, respectively 𝑙

(𝑗)
1 = ¬𝑥𝑖 we use the submatrices(︂

𝑏𝑖,𝑗 * *
* �̂�𝑖,𝑗 *

)︂
, respectively

(︂
* �̂�𝑖,𝑗 *
𝑏𝑖,𝑗 * *

)︂
.

Analogously for the literals 𝑙
(𝑗)
2 and 𝑙

(𝑗)
3 we use the submatrices(︂* 𝑏𝑖,𝑗 *

* * �̂�𝑖,𝑗

)︂
, respectively

(︂
* * �̂�𝑖,𝑗
* 𝑏𝑖,𝑗 *

)︂
and (︂ * * 𝑏𝑖,𝑗

�̂�𝑖,𝑗 * *

)︂
, respectively

(︂
�̂�𝑖,𝑗 * *
* * 𝑏𝑖,𝑗

)︂
.

All other matrix entries are set to *.

With respect to choosing the permutation for the rows, the only freedom is to select
the order of the two rows corresponding to variable 𝑥𝑖 for each 𝑖. Changing the order
corresponds to setting 𝑥𝑖 to false and leaving it as is corresponds to setting 𝑥𝑖 to true.

Observe, that when the rows corresponding to the variables of a clause 𝑗 are set in such
a way that all literals are false, every permutation of the columns leads to an infeasible
row or column as we end up with a cycle of strict inequalities among the columns. This
follows by the fact that in this case after permutation the matrices(︂

* �̂�𝑖,𝑗 *
𝑏𝑖,𝑗 * *

)︂
,

(︂
* * �̂�𝑖,𝑗
* 𝑏𝑖,𝑗 *

)︂
,

(︂
�̂�𝑖,𝑗 * *
* * 𝑏𝑖,𝑗

)︂
all appear in the 𝑐𝑗 columns, which imply the following order on the three columns:
1 < 2, 2 < 3 and 3 < 1, which is a contradiction.

Otherwise, i.e. as soon as one of those orders among the columns does not need to
hold, it is easy to resolve any infeasibility by just permuting the columns.

The ℱ𝜋,𝜎
≤,≤-Completion problem for {0, 1}-matrices can be solved in polynomial time,

as was shown by Golumbic [65, Section 2].

69

5 Matrix Completion Problems

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 2 2 2 . . . 𝑚 𝑚 𝑚

1 * 2 *
1 1 * *
2 * * 4
2 * 3 *
3 6 * *
3 * * 5
...

𝑛 * * *
𝑛 * * *

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Figure 5.1: Structure of the matrix in the 3SAT reduction in Theorem 5.5. The entries

for clause 𝑐1 correspond to 𝑐1 = ¬𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥3.

5.4 Bottleneck Monge Matrices

Bottleneck Monge matrices are another type of matrices which play a prominent role in
the combinatorial optimization literature. They fulfill the property that for every 𝑖 < 𝑖′

and 𝑗 < 𝑗′ it holds that

max{𝑎𝑖,𝑗 , 𝑎𝑖′,𝑗′} ≤ max{𝑎𝑖,𝑗′ , 𝑎𝑖′,𝑗}.

The set of all bottleneck Monge matrices is denoted by ℱ𝐵𝑀 . The ℱ𝐵𝑀 -Completion
problem can be solved in polynomial time, by an LP-approach similar to the one in
Theorem 5.4. For the permuted case we are able to show NP-hardness already for the
{0, 1}-matrix case.

Theorem 5.6. The ℱ𝜋,𝜎
𝐵𝑀 -Completion problem is NP-complete, even if restricted to

{0, 1}-matrices.

Proof. This follows again via reduction from the Betweenness problem. Let 𝑆 be a
set of 𝑛 integers and 𝑇 ⊆ 𝑆3, be a given instance of the Betweenness problem.

We create the following partial matrix as an instance of the Permuted Bottleneck
Monge Completion problem. The columns correspond to the 𝑛 elements of 𝑆. For
each triple (𝑠1, 𝑠2, 𝑠3) ∈ 𝑇 we create two rows of the following form.

𝑠1 𝑠2 𝑠3
↓ ↓ ↓

* . . . * 0 * . . . * 0 * . . . * 1 * . . . *
* . . . * 1 * . . . * 0 * . . . * 0 * . . . *

It is easy to see that if 𝑠2 is not between 𝑠1 and 𝑠3 in the column order, the matrix
cannot be completed to a Bottleneck Monge matrix, since no matter which order the
two rows have, the 𝑠2 column contradicts the bottleneck Monge property with one of 𝑠1
or 𝑠2.

70

5.5 Monge Matrices

On the other hand, if 𝑠2 is between 𝑠1 and 𝑠3 in the column order, the 6 fixed entries in
the two rows fulfill the Monge property directly if the order is 𝑠1, 𝑠2, 𝑠3 and by swapping
the two rows, if the order is 𝑠3, 𝑠2, 𝑠1. It is important to notice that for the arguments
above only the relative order of the two rows associated with a triple is important and
not their exact position relative to other rows. What remains to be shown is that in the
case in which a feasible total ordering exists the *-entries can be completed such that
the full matrix is bottleneck Monge.

This can be achieved by setting every entry left of the leftmost 1 (in the second row)
to 1 and everything right of the rightmost 1 (in the first row) also to 1. All other entries
in the two rows are set to 0. For example for the feasible ordering above one would fill
the * entries in the following way.

𝑠1 𝑠2 𝑠3
↓ ↓ ↓

0 . . . 0 0 0 . . . 0 0 0 . . . 0 1 1 . . . 1
1 . . . 1 1 0 . . . 0 0 0 . . . 0 0 0 . . . 0

First observe that locally in these two rows the bottleneck Monge property is fulfilled.

Now we move all first rows of each triple to the top and all second rows to the bottom.
It is important to notice that we order these rows with respect to the order of their
rightmost element (i.e. the beginning of the block of 1’s, starting with the longest block.

Analogously we move all the second rows of each triple to the bottom, again sorting
them with respect to the length of their blocks of 1’s, in this case starting with the
shortest block. This order of rows then leads to a bottleneck Monge property, because
it is a double staircase matrix [83] as can easily be checked.

5.5 Monge Matrices

Analogously to bottleneck Monge matrices, we call a matrix 𝐴 = (𝑎𝑖,𝑗) a Monge matrix
if for every 𝑖 < 𝑖′ and 𝑗 < 𝑗′ it holds that

𝑎𝑖,𝑗 + 𝑎𝑖′,𝑗′ ≤ 𝑎𝑖,𝑗′ + 𝑎𝑖′,𝑗 .

The set of all Monge matrices is denoted by ℱ𝑀 . Again the ℱ𝑀 -Completion problem
can be solved in polynomial time using an LP-approach.

Similarly to Theorem 5.6, the permuted case turns out to be NP-complete.

Theorem 5.7. ℱ𝜋,𝜎
𝑀 -Completion is NP-complete.

Proof. This follows via reduction form the Betweenness problem. Let 𝑆 be a set of 𝑛
integers and 𝑇 ⊆ 𝑆3 be a given instance of the Betweenness problem.

We create the following partial matrix as an instance of the Permuted Monge
Completion problem. The columns correspond to the 𝑛 elements of 𝑆. For the 𝑖-th

71

5 Matrix Completion Problems

triple (𝑠1, 𝑠2, 𝑠3) ∈ 𝑇 we create two rows of the following form.

𝑠1 𝑠2 𝑠3
↓ ↓ ↓

* . . . * 1 * . . . * 3 * . . . * 5 * . . . *
* . . . * 6 * . . . * 7 * . . . * 8 * . . . *

These two rows are in addition multiplied by 𝑛𝑀 𝑖 for a properly chosen large 𝑀 specified
below. We call 𝑖 the triple-index of these rows.

It is easy to verify that the given row-order and the Monge property enforces the
columns to be in order 𝑠1, 𝑠2, 𝑠3 (increasing order) and the swapped row-order enforces
the columns to be in order 𝑠3, 𝑠2, 𝑠1 (decreasing order). Depending on these cases we say
that a row is in increasing/decreasing order accordingly. This directly implies that any
feasible Monge matrix completion together with the column permutation corresponds to
a feasible solution of the betweenness problem.

Given a solution to the betweenness problem we permute all rows and columns ac-
cording to this solution. In addition, all rows which are in increasing order are moved
to the top of the matrix and all rows which are in decreasing order are moved to the
bottom. In the increasing part the rows are sorted in increasing order according to their
triple-index and in the decreasing part in decreasing order according to their triple-
index. The *-entries in these rows are filled in decreasing/increasing order, such that
two consecutive values differ by at least 𝑀 𝑖 for rows with triple-index 𝑖.

For a 2×2 submatrix
(︀
𝑎 𝑏
𝑐 𝑑

)︀
corresponding to an increasing and a decreasing row (𝑎 < 𝑏

and 𝑐 > 𝑑) the Monge property holds trivially. Otherwise let
(︀
𝑎 𝑏
𝑐 𝑑

)︀
be a 2× 2 submatrix

inside the decreasing part of the matrix and let the row containing 𝑎, 𝑏 correspond to the
𝑖-th triple and the row containing 𝑐, 𝑑 correspond to the 𝑗-th triple. It still holds that
𝑐 − 𝑑 ≥ 𝑀 𝑗 ≥ 𝑀 𝑖+1. By setting 𝑀 := 10𝑛 it holds that 𝑀 𝑖+1 ≥ 10𝑛𝑀 𝑖 > 𝑎 ≥ 𝑎 − 𝑏.
An analogous argument holds for the increasing a submatrix within the increasing part
of the matrix. We have that 𝑏− 𝑎 ≥ 𝑀 𝑖 ≥ 𝑀 𝑗+1 ≥ 10𝑛𝑀 𝑗 > 𝑑 ≥ 𝑑− 𝑐.

In contrast to matrices with the NDRC property, the case of permuted {0, 1}-matrices
has not been solved for the Monge property. We resolve the complexity status of this
special case by using the following characterization of {0, 1}-Monge matrices in terms of
block matrices obtained by Klinz et al. [84].

Corollary 5.8 (of Theorem 4.5 in Klinz et al. [84]). A {0, 1}-matrix 𝐴 is a permuted
Monge matrix if and only if its rows and columns can be permuted such that it or its
transpose has the block structure⎛⎝0 0 1 1

0 0 0 1

0 1 0 1

⎞⎠ or

⎛⎝0 0 1 1

0 1 1 1

0 1 0 1

⎞⎠ ,

where 0 and 1 correspond to blocks of only 0’s and 1’s.

72

5.5 Monge Matrices

Proof. This follows directly from Theorem 4.5 shown in [84]. We observe that if two
rows are identical after the removal of an identical column, they have also been identical
before. This observation is true since the removed columns entries in the two rows are
identical to the entries of the other identical column that was not removed.

Because of symmetry it is enough to consider the problem of completing a matrix into
a permuted block matrix of the following form.⎛⎝0 0 1 1

0 0 0 1

0 1 0 1

⎞⎠ (5.1)

Lemma 5.9. Consider the columns containing both fixed 0- and 1-entries and possibly
some *-entries. The matrix can only be completed and permuted into form (5.1), if these
columns can be completed and permuted into one of the following block forms:⎛⎝0 1

0 0

1 0

⎞⎠ ,

⎛⎝0

0

1

⎞⎠ ,

⎛⎝1

0

0

⎞⎠ .

Proof. If the entire matrix is completable and permutable into form (5.1), then these
columns mentioned in the statement of the lemma must belong to the two center block
columns of (5.1), since only those contain both 0- and 1-entries. So removing any other
columns from the final completed and permuted matrix gives a block matrix of one of
the three forms provided in the statement of the lemma.

Based on the observation above we state the following reduction procedure.

1. Check if there are columns with only 0- or *-entries and columns with only 1- or
*-entries. If so, complete the *-entries to generate all 0 columns and all 1 columns
respectively and remove them.

2. Next we have to check if the rest of the matrix can be permuted and completed
into the block form ⎛⎝0 1

0 0

1 0

⎞⎠ .

We check if there are rows with only 0- and *-entries. If so, we set all entries in
these rows to 0 and remove them.

3. For the remaining part of the matrix it holds that in every row and in every
column there is at least one 0 and at least one 1 entry. Hence we reduced the
original problem to the new problem to check if the matrix can be permuted and
completed into the block form (︂

0 1

1 0

)︂
. (5.2)

73

5 Matrix Completion Problems

In the sequel we describe a reduction of the new problem mentioned in step 3 of the
proof above to a problem in graphs. Given a {0, 1}-matrix we obtain a bipartite graph
𝐺 = (𝑅 ∪̇ 𝐶,𝐸0 ∪̇ 𝐸1). The vertex set 𝑅 corresponds to the rows of 𝐴 and the vertex
set 𝐶 corresponds to the columns of 𝐴. Vertices 𝑟 ∈ 𝑅, 𝑐 ∈ 𝐶 form an edge {𝑟, 𝑐} ∈ 𝐸𝑖,
if the entry 𝑎𝑟,𝑐 = 𝑖.

Observation 5.10. A {0, 1}-matrix is in permuted block form (5.2) if and only if the
graph 𝐺 = (𝑅 ∪̇ 𝐶,𝐸1) is the disjoint union of two complete bipartite graphs.

Since 𝐸1 and 𝐸0 are disjoint we have to find a partition of the vertices 𝑅 and 𝐶 into
two groups such that the edges in 𝐸1 only occur within the groups and no edge in 𝐸0 is
contained within any of the two groups. Such a partition is called feasible.

We achieve such a labeling of the vertices into two groups I and II using the following
breadth first search procedure for each connected component of 𝐺.

We start by labeling an arbitrary vertex 𝑣0 with label I. Then we process the vertices
in breadth first search order starting with 𝑣0. When processing a vertex 𝑣, if 𝑣 has label
I we check if all its labeled 𝐸1 neighbors have label I and all its labeled 𝐸0 neighbors
have label II. If not, the procedure terminates with a contradiction. Otherwise, we label
all its unlabeled 𝐸1 neighbors with group I and all its unlabeled 𝐸0 neighbors with label
II. If 𝑣 has label II, we perform the same steps interchanging I and II in the description
above. If the breath first search terminates with no contradiction and not all vertices
are yet labeled, we start another run of the same procedure using an arbitrary vertex
that has not yet been labeled instead of 𝑣0.

Lemma 5.11. If the procedure above terminates with all vertices labeled, the partition
of the graph 𝐺 = (𝑅 ∪̇ 𝐶,𝐸1) into groups I and II can be completed into two complete
bipartite graphs formed by the vertices in group I and II. All edges in 𝐸0 connect vertices
from two different groups, hence the partition is feasible.
Otherwise, if the procedure terminates with a contradiction, there exists no feasible

partition of the vertices.

Proof. The positive case follows directly from Observation 5.10
For the validity of termination with a contradiction, observe that the assignment of

class I for the first vertex is arbitrary. Afterwards, every new label set by the procedure is
forced by the definition of a feasible partition. So as soon as the procedure finds a vertex
it would label differently than with its current label we obtain a connected component in
𝐸1 containing an edge in 𝐸0 or vice versa, a contradiction to the existence of a feasible
partition.

Lemma 5.12. If a graph 𝐺 = (𝑅 ∪̇ 𝐶,𝐸0 ∪̇ 𝐸1) has a feasible partition, the procedure
above terminates with all vertices labeled according to a feasible partition.

Proof. Given a feasible partition, let the vertex set of 𝐺 be labeled accordingly. Now
without loss of generality, assume that the first vertex is labeled accordingly by the
procedure. Then by construction and definition all its neighbors are labeled correctly.
So by induction the whole connected component is labeled correctly.

74

5.6 Open Questions

Combining the lemmas above, we obtain the following result.

Theorem 5.13. The ℱ𝜋,𝜎
𝑀 -Completion problem for {0, 1} matrices can be solved in

polynomial time.

5.6 Open Questions

Our research on matrix completion problems leads to the following open questions in
this area.

1. Can the ℱ𝜋,𝜎
≤,≤-Completion problem for {0, 1, 2}-matrices be solved in polynomial

time?

2. Is matrix completion for permuted {0, 1}-block-matrices of fixed structure solvable
in polynomial time? What about general permuted block matrices?

Question 1 is a natural next step to gain a more-detailed understanding about the
complexity of ℱ𝜋,𝜎

≤,≤-Completion. Question 2 is an interesting research direction on
its own, since block matrix completion is a natural problem which does not yet have
received attention in the literature.

75

6 Recoverable Robust Discrete
Optimization

In this chapter we study recoverable robust optimization with interval uncertainties for
different sets of feasible solutions. In Section 6.1 we focus on the case where the set of
feasible solutions is the set of all subsets of cardinality 𝑞, and 𝑞 ∈ N is a given input
parameter. This is a robust version of the classic Selection problem. Section 6.2
studies the recoverable robust optimization problem with interval uncertainties, and
variants of it, for the case where the set of feasible solutions are bases of a matroid.
Also, variants of the problem are studied which lead to a result of independent interest
in the intersection of combinatorial optimization and matroid theory. In addition, we
generalize the recoverable robustness model to polymatroids.

6.1 Efficient Algorithms for the Recoverable (Robust)
Selection Problem

6.1.1 Introduction

The Selection problem is widely studied in the computer science and optimization
literature. Let 𝐸 = [𝑛] be the set of base elements, with associated non-negative costs
𝛼𝑖 for each 𝑖 ∈ 𝐸. Given an integer 𝑝 ∈ [𝑛] we want to choose a subset 𝐴 ⊆ 𝐸 of size
𝑝 that minimizes the cost

∑︀
𝑖∈𝑋 𝛼𝑖. The problem can be solved in 𝑂(𝑛) time using a

linear time algorithm for finding the 𝑝-th largest element [14, 48, 85]. The Selection
problem can also be viewed as a polynomially solvable special case of the knapsack
problem, setting all element weights to 1. We denote by 𝒮𝛼

𝑝 (𝐸) an arbitrary instance of
this problem and write 𝐴 = 𝒮𝛼

𝑝 (𝐸) if 𝐴 is an optimal solution to the given instance of
the selection problem.

In this section we investigate a natural generalization of the Selection problem. For
the element set 𝐸 = [𝑛] we are given two cost vectors 𝛼, 𝛽 ∈ R𝑛 and parameters 𝑝, 𝑞 ∈ N.
We have to select 𝐴,𝐵 ⊆ 𝐸 both of size 𝑝 that minimize the cost

∑︀
𝑖∈𝐴 𝛼𝑖 +

∑︀
𝑗∈𝐵 𝛽𝑗

subject to the constraint |𝐴 ∩ 𝐵| ≥ 𝑞 for the intersection of 𝐴 and 𝐵. We denote an
instance of this problem, the Recoverable Selection problem, by ℛ𝒮𝛼,𝛽

𝑝,𝑞 (𝐸) and if

(𝐴*, 𝐵*) is an optimal solution of this problem we write (𝐴*, 𝐵*) = ℛ𝒮𝛼,𝛽
𝑝,𝑞 (𝐸).

Kasperski and Zieliński [80] studied this problem as part of their fundamental work
on (recoverable) robust discrete optimization (see [79] for a recent review) and obtained
an 𝑂(𝑞𝑛2) time algorithm based on a reduction to a minimum cost flow problem.

We show in Section 6.1.2 that the Recoverable Selection problem can be solved
using a simple greedy algorithm. This is of special interest since for this problem no

77

6 Recoverable Robust Discrete Optimization

matroidal structure is known that would directly imply such a result. In Section 6.1.3
we study the structure of optimal solutions with respect to two parameters and obtain
discrete-convexity and unimodality results. Based on this detailed mathematical analysis
we are able to obtain a linear time algorithm using prune and search [99].

Recoverable Robust Optimization – An Application The concept of recoverable ro-
bust optimization was introduced by Liebchen et al. [94]. The Recoverable Selec-
tion problem can be used to solve the recoverable robust version of the classic Selec-
tion problem with interval uncertainties [80]. In this case, instead of fixed costs for each
element, we are given a scenario set 𝒰 and for each scenario 𝑠 ∈ 𝒰 the costs of element
𝑖 ∈ 𝐸 are denoted by 𝑐𝑠𝑖 ≥ 0 and setup costs 𝐶𝑖. In the robust optimization literature
the interval uncertainty representation is a popular choice for defining scenario sets [89],
which we denote by 𝒰𝐼 . For each 𝑖 ∈ 𝐸 we are given an interval [𝑐𝑖, 𝑐𝑖] of possible cost
realizations. The scenario set with interval uncertainties is given by 𝒰𝐼 =

∏︀
𝑖∈𝐸 [𝑐𝑖, 𝑐𝑖].

Then the Recoverable Robust Selection problem to be solved is

min
𝑋⊆𝐸 : |𝑋|=𝑝

max
𝑠∈𝒰𝐼

∑︁
𝑖∈𝑋

𝐶𝑖 + min
𝑌⊆𝐸,|𝑌 |=𝑝
|𝑌 ∖𝑋|≤𝑘

∑︁
𝑖∈𝑌

𝑐𝑠𝑖 .

Kasperski and Zieliński [80] observed that this is equivalent to solving ℛ𝒮𝐶,𝑐
𝑝,𝑝−𝑘(𝐸).

6.1.2 A Greedy Algorithm for the Recoverable Selection Problem

Algorithm 6.1 is a simple to implement greedy algorithm that solves the Recoverable
Selection problem to optimality.

Algorithm 6.1: Greedy algorithm with growing selection parameter.

1 𝐴 := ∅, 𝐵 := ∅
2 for 𝑙 := 1, . . . , 𝑝 do
3 (𝑎, 𝑏) := argmin{𝛼𝑖 + 𝛽𝑗 : (𝑖, 𝑗) ∈ 𝐸2, 𝑖 ∈ 𝐸 ∖𝐴, 𝑗 ∈ 𝐸 ∖𝐵,

|(𝐴 + 𝑖) ∩ (𝐵 + 𝑗)| ≥ 𝑞 − (𝑝− 𝑙)}
4 𝐴 := 𝐴 ∪ {𝑎}

𝐵 := 𝐵 ∪ {𝑏}
5 return (𝐴,𝐵)

To obtain an efficient implementation and prove correctness, it is necessary to have a
closer look at the different cases in which the minimum in line 3 in each iteration of the
for loop can occur. We distinguish the following cases.

𝛼-greedy and 𝛽-greedy This is the case if we select 𝑎 = argmin{𝛼𝑖 : 𝑖 ∈ 𝐸 ∖ 𝐴} and
𝑏 = argmin{𝛽𝑗 : 𝑗 ∈ 𝐸 ∖𝐵}.

𝛼-greedy and 𝛽-filling In this case we select 𝑎 = argmin{𝛼𝑖 : 𝑖 ∈ 𝐸 ∖𝐴}, and dependent
on 𝑎 then 𝑏 = argmin{𝛽𝑖 : 𝑖 ∈ 𝐸 ∖𝐵, 𝑖 ∈ 𝐴 ∪ {𝑎}}. We call 𝑏 the filling element of
the step.

78

6.1 Efficient Algorithms for the Recoverable (Robust) Selection Problem

𝛽-greedy and 𝛼-filling The symmetric case, i.e. 𝑏 = argmin{𝛽𝑗 : 𝑗 ∈ 𝐸 ∖ 𝐵}, and de-
pendent on 𝑏 then 𝑎 = argmin{𝛼𝑖 : 𝑖 ∈ 𝐸 ∖ 𝐴, 𝑖 ∈ 𝐵 ∪ {𝑏}}. We call 𝑎 the filling
element.

(𝛼 + 𝛽)-greedy The case where 𝑎 = 𝑏 = argmin{𝛼𝑖 + 𝛽𝑖 : 𝑖 ∈ 𝐸 ∖ (𝐴 ∪𝐵)}.

It is easy to see that each selection step of (𝑎, 𝑏) in line 3 of Algorithm 6.1 belongs to at
least one of the four types, but it can also happen that a step fits multiple of these types.
Based on the case distinction above we can implement Algorithm 6.1 in 𝑂(𝑛 log 𝑛) time
using sorting and priority queues. The proof of correctness is given in Section 6.1.2.1.
In summary we obtain the following result.

Theorem 6.1. The greedy algorithm (Algorithm 6.1) solves the Recoverable Selec-
tion problem in 𝑂(𝑛 log 𝑛) time.

6.1.2.1 Proof of Correctness of Algorithm 6.1

The following lemmas summarize some properties of the algorithm that will be useful in
the proof of its correctness. We introduce the following notation for subsets of selected
elements 𝐴 and 𝐵 throughout the algorithm: 𝑍 = 𝐴 ∩ 𝐵, 𝐴 = 𝐴 ∖ 𝑍, �̃� = 𝐵 ∖ 𝑍,
𝐹 = 𝐸 ∖ (𝐴 ∪𝐵).

Lemma 6.2. If (𝐴,𝐵) is the solution of Algorithm 6.1 after iteration 𝑙 and |𝑋 ∩ 𝑌 | >
𝑞 − (𝑝− 𝑙), then the 𝑙-th step is 𝑋-greedy and 𝑌 -greedy.
If in addition (𝐴−, 𝐵−) is the solution after the (𝑙 − 1)-th step and |𝐴− ∩ 𝐵−| =

𝑞− (𝑝− (𝑙− 1)), then the 𝑞-th step is also 𝛼-greedy and 𝛽-filling as well as 𝛽-greedy and
𝛼-filling.

Proof. If at the (𝑙 − 1)-th step |𝐴− ∩ 𝐵−| > 𝑞 − (𝑝− (𝑙 − 1)), then the 𝑙-th step is a 𝛼-
and 𝛽-greedy step by the greedy nature of Algorithm 6.1.

If |𝐴−∩𝐵−| = 𝑞−(𝑝−(𝑙−1)) after step 𝑙−1, the only way to get |𝐴∩𝐵| < 𝑞−(𝑝−𝑙) after
step 𝑙 is by performing a step that is both 𝛼- and 𝛽-filling with 𝑎 ̸= 𝑏 (see Figure 6.1).
But since the algorithm is greedy by construction it only chooses such a step if it is an
𝛼-greedy and 𝛽-filling step and a 𝛽-greedy and 𝛼-filling stepat the same time, implying
that this step is also an 𝛼- and 𝛽-greedy step.

𝑋

𝑌

Figure 6.1: A 𝛼- and 𝛽-filling step.

Lemma 6.3. The following necessary conditions for optimality are invariants of Algo-
rithm 6.1.

1. If step 𝑙 of Algorithm 6.1 is 𝛼- and 𝛽-greedy and (𝐴,𝐵) is the solution after step
𝑙, then for all 𝑥 ∈ 𝐴, 𝑥′ /∈ 𝐴 and 𝑦 ∈ 𝐵, 𝑦′ /∈ 𝐵 it holds that

79

6 Recoverable Robust Discrete Optimization

a) 𝛼𝑥 ≤ 𝛼𝑥′,

b) 𝛽𝑦 ≤ 𝛽𝑦′.

This implies 𝐴 and 𝐵 are also optimal solutions to the Selection problem for 𝑙
elements with costs 𝛼 and 𝛽.

2. For 𝑥 ∈ 𝐴, 𝑦 ∈ �̃�, 𝑧 ∈ 𝑍 it holds that

a) 𝛼𝑧 ≤ 𝛼𝑦,

b) 𝛽𝑧 ≤ 𝛽𝑥.

Proof. We only prove claims (1a) and (2a) since the claims (1b) and (2b) can be shown
by analogous arguments. We again assume that (𝐴−, 𝐵−) is the solution obtained by
Algorithm 6.1 after step 𝑙− 1. The results are shown by induction over the steps of the
algorithm. The inductive base 𝑙 = 0 is trivial.

We start by proving that (1) holds after step 𝑙 by assuming both (1) and (2) hold for
all steps before the current 𝑙-th step (𝑎, 𝑏). If the 𝑙-th step is not 𝛼- and 𝛽-greedy there is
nothing to show, so let the 𝑙-th step (𝑎, 𝑏) be 𝛼- and 𝛽-greedy. If also the (𝑙− 1)-th step
is 𝛼- and 𝛽-greedy the claim follows directly. Else, we know that 𝛼𝑎 ≤ 𝛽𝑥′ because the
step is 𝛼-greedy. By Lemma 6.2 we know that (𝑎, 𝑏) is also a 𝛽-greedy and 𝛼-filling step
so 𝑎 ∈ �̃�−. By the induction hypothesis we hence obtain via (2a) that 𝛼𝑧 ≤ 𝛼𝑎 ≤ 𝛼𝑥′

for all 𝑧 ∈ 𝑍−. For elements 𝑥 ∈ 𝐴 the claim 𝛼𝑥 ≤ 𝛼𝑥′ holds, because such an element
𝑥 has been chosen 𝛼-greedy in a previous step.

To prove claim (2a) we distinguish between the different possible types of the 𝑙-th step
where (𝑎, 𝑏) gets selected.

𝛼- and 𝛽-greedy In this case we have already shown that (1a) holds which implies (2a).

𝛼-greedy and 𝛽-filling Since 𝑏 is a 𝛽-filling step we know that 𝑏 ∈ 𝐴−, and becomes
part of 𝑍. It is the only new element of 𝑍 after step 𝑙 and �̃� stays the same. For
all other 𝑧 ∈ 𝑍 ∖ {𝑏} it follows by induction that 𝛼𝑧 ≤ 𝛼𝑦. Since 𝑏 ∈ 𝐴−, we know
that it is selected in an earlier 𝛼-greedy step. So obviously, 𝛼𝑏 ≤ 𝛼𝑦.

𝛼-filling and 𝛽-greedy If 𝑎 ̸= 𝑏 we know that 𝛼𝑧 ≤ 𝛼𝑎, since 𝑎 ∈ �̃�−. So 𝑎 is now the
element in 𝑍 with largest 𝛼 value. By the choice of 𝑎 we know that 𝛼𝑎 ≤ 𝛼𝑦,
since it is chosen as the smallest 𝛼-filling element. Also 𝛼𝑎 ≤ 𝛼𝑏, since 𝑏 is also a
possible choice instead of 𝑎.

In the case that 𝑎 = 𝑏 we know that 𝛼𝑎 ≤ 𝛼𝑦, since 𝑎 is the best choice for a
𝑋-filling step. The rest follows by induction.

(𝛼 + 𝛽)-greedy We know that 𝛼𝑎 + 𝛽𝑎 ≤ 𝛼𝑦 + 𝛽𝑎, else the algorithm does not execute
the row-greedy step (𝑎, 𝑎), since a 𝛽-greedy and 𝛼-filling step with smaller cost
exists. This implies 𝛼𝑎 ≤ 𝛼𝑦. Since 𝑎 is the only new element in 𝑍, and �̃� = �̃�−

the claim follows by induction.

80

6.1 Efficient Algorithms for the Recoverable (Robust) Selection Problem

Using this result we obtain that (𝐴,𝐵) is an optimal solution if |𝑍| > 𝑞 or 𝐹 = ∅.
Using this we show that Algorithm 6.1 always finds an optimal solution.

Lemma 6.4. Let 𝐸′ ⊆ 𝐸 and (𝐴,𝐵), (𝐴′, 𝐵′) be the solution obtained by running Algo-
rithm 6.1 on 𝐸 and 𝐸′ for the same parameters 𝑝 and 𝑞. Then∑︁

𝑥∈𝐴
𝛼𝑥 +

∑︁
𝑦∈𝐵

𝛽𝑦 ≤
∑︁
𝑥′∈𝐴′

𝛼𝑥′ +
∑︁
𝑦′∈𝐵′

𝛽𝑦′

Proof. Let (𝐴,𝐵) be the solution obtained by Algorithm 6.1 on 𝐸 and (𝐴′, 𝐵′) a solution
obtained by Algorithm 6.1 on a subset 𝐸′ ⊆ 𝐸. We assume that |𝑍| = 𝑞, else the claim
follows from optimality of (𝐴,𝐵) shown above. We define an assignment of elements
in (𝐴,𝐵) to elements in (𝐴′, 𝐵′). Elements in 𝐴 are always assigned to elements in 𝐴′

and elements in 𝐵 are assigned to elements in 𝐵′. We only decide to assign a single
element 𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵) to a single element 𝑥′ ∈ 𝐴′ (𝑦′ ∈ 𝐵′) if it holds that 𝛼𝑥 ≤ 𝛼𝑥′

(𝛽𝑦 ≤ 𝛽𝑦′). We decide to assign a pair of elements (𝑥, 𝑦) ∈ 𝐴 × 𝐵 to another pair of
elements (𝑥′, 𝑦′) ∈ 𝐴′ ×𝐵′, if 𝛼𝑥 + 𝛽𝑦 ≤ 𝛼𝑥′ + 𝛽𝑦′ . The existence of such an assignment
implies that

∑︀
𝑥∈𝐴 𝛼𝑥 +

∑︀
𝑦∈𝐵 𝛽𝑦 ≤ ∑︀

𝑥′∈𝐴′ 𝛼𝑥′ +
∑︀

𝑦′∈𝐵′ 𝛽𝑦′ . Before we construct such

an assignment, we observe that 𝑍 ∩ 𝐸′ ⊆ 𝑍 ′ because of Lemma 6.3 (2).
All the elements in 𝐴 ∩𝐴′ and 𝐵 ∩𝐵′ are assigned to themselves.
For elements 𝑧 ∈ 𝑍 ∖ 𝐸′, we need both an element from 𝐴′ ∖ 𝐴 and 𝐵′ ∖ 𝐵. First

observe that 𝑧 is added to 𝑍 in a row-greedy or a filling step (𝑎, 𝑏). Since in a filling
step the filling element is selected in an earlier greedy step for the other cost function
we have that 𝛼𝑧 + 𝛽𝑧 ≤ 𝛼𝑎 + 𝛽𝑏.

Since we know that |𝑍| = 𝑞 ≤ |𝑍 ′| we have that |𝑍∖𝐸′| ≤ |𝑍 ′∖𝑍|. So for each 𝑧 ∈ 𝑍∖𝐸′

there is a 𝑧′ ∈ 𝑍 ′ ∖ 𝑍, which we select arbitrarily for each 𝑧. (If |𝑍 ∖ 𝐸′| < |𝑍 ′ ∖ 𝑍| we
ensure that the not selected elements 𝑧′ were added to 𝑍 ′ via a 𝛼- or 𝛽-greedy step.) If
𝑧′ /∈ 𝐴 ∪ 𝐵 we know that 𝛼𝑧 + 𝛽𝑧 ≤ 𝛼𝑎 + 𝛽𝑏 ≤ 𝛼𝑧′ + 𝛽𝑧′ , since (𝑧′, 𝑧′) is a feasible step
at the time step (𝑎, 𝑏) is chosen. So we assign (𝑧, 𝑧) to (𝑧′, 𝑧′).

Else assume 𝑧′ ∈ 𝐴 (𝑧′ ∈ 𝐵 analogously). If at the time of step (𝑎, 𝑏) we have that
𝑧′ /∈ 𝐴 (𝑧′ could even be 𝑎) we know that 𝛼𝑧 + 𝛽𝑧 ≤ 𝛼𝑎 + 𝛽𝑏 ≤ 𝛼𝑧′ + 𝛽𝑧′ ≤ 𝛼𝑥′ + 𝛽𝑧′ ,
where 𝑥′ ∈ 𝐴′ ∖ 𝐴, since (𝑧′, 𝑧′) is again a feasible step instead of (𝑎, 𝑏). Also 𝑧′ is a
greedy-chosen element in 𝐴, so 𝛼𝑧′ ≤ 𝛼𝑥′ for all 𝑥′ ∈ 𝐴′ ∖𝐴. Also an unassigned element
𝑥′ must still be available, using 𝑧′ ∈ 𝐴 and elementary counting arguments. So we assign
(𝑧, 𝑧) to (𝑥′, 𝑧′). If to the contrary at the time of step (𝑎, 𝑏) we have 𝑧′ ∈ 𝐴 we have that
𝛼𝑧 + 𝛽𝑧 ≤ 𝛼𝑎 + 𝛽𝑏 ≤ 𝛼𝑥′ + 𝛽𝑧′ , for a 𝑥′ ∈ 𝐴′ ∖ 𝐴, since here (𝑥′, 𝑧′) would have been a
feasible step instead of (𝑎, 𝑏). We again assign (𝑧, 𝑧) to (𝑥′, 𝑧′).

Left for assignment are only elements in 𝐴 ∖𝐸′ and �̃� ∖𝐸′. These are all chosen 𝛼- or
𝛽-greedy and by easy counting arguments there are exactly |𝐴∖𝐸′| unassigned elements
left in 𝐴′ ∖𝐴 and |�̃� ∖𝐸′| elements in 𝐵′ ∖𝐵. Since all unassigned elements are feasible
candidates for the greedy steps performed on 𝐸, we can assign them arbitrarily.

By this assignment the claimed inequality follows.

Theorem 6.5. The solution (𝐴,𝐵) obtained by Algorithm 6.1 is an optimal solution for
the recoverable selection problem.

81

6 Recoverable Robust Discrete Optimization

Proof. Let (𝐴*, 𝐵*) be an optimal solution to the given instance of the problem and
(𝐴,𝐵) the solution obtained by the greedy algorithm. We set 𝐸′ = 𝐴* ∪ 𝐵* and let
(𝐴′, 𝐵′) be the solution obtained by running Algorithm 6.1 on 𝐸′. Since 𝐸′ = |𝐴*∩𝐵*|+
2|𝐴*∖𝐵*| ≤ 2𝑝−𝑞 we know that either 𝐴′∪𝐵′ = 𝐸′ or |𝐴′∩𝐵′| > |𝐴*∩𝐵*| ≥ 𝑞, so in both
cases (𝐴′, 𝐵′) is an optimal solution, i.e.

∑︀
𝑥∈𝐴′ 𝛼𝑥 +

∑︀
𝑦∈𝐵′ 𝛽𝑦 =

∑︀
𝑥∈𝐴* 𝛼𝑥 +

∑︀
𝑦∈𝐵* 𝛽𝑦.

By Lemma 6.4 it follows that
∑︀

𝑥∈𝐴 𝛼𝑥 +
∑︀

𝑦∈𝐵 𝛽𝑦 =
∑︀

𝑥∈𝐴* 𝛼𝑥 +
∑︀

𝑦∈𝐵* 𝛽𝑦.

Theorem 6.5 proves correctness of Algorithm 6.1, hence Theorem 6.1 directly follows.

6.1.3 A Linear Time Algorithm for the Recoverable Selection Problem

While the greedy algorithm is easy to understand and implement, its drawback is that
it does not run in linear time. The question whether the Recoverable Selection
problem can be solved in linear time suggests itself. In the following we provide an
affirmative answer to this question. The reader is warned beforehand that both the
description and the analysis of the linear time algorithm are much more involved than
what we experienced for the greedy algorithm.

To achieve a linear running time we repeatedly use the fact that 𝒮𝛼
𝑝 (𝐸) can be cal-

culated in 𝑂(𝑛) time. The main idea is to introduce parameters for different structural
properties of solutions and then perform prune and search for the optimal values of these
parameters in a two stage approach. To obtain fast algorithms we analyze the objective
function with respect to the chosen parameters in detail and prove important properties
of these functions. We start with a simple preprocessing step which removes trivial to
select pairs of elements.

6.1.3.1 Preprocessing

In this section we describe a preprocessing procedure (Algorithm 6.2) that given an
arbitrary instance (𝐸, 𝑝, 𝑞, 𝛼, 𝛽) obtains an instance (𝐸′, 𝑝′, 𝑞′, 𝛼, 𝛽) with the properties

∙ 𝑝′ ≤ 𝑝 ≤ 𝑝,

∙ 𝑋 ′ = 𝒮𝛼
𝑝 (𝐸′),

∙ 𝑌 ′ = 𝒮𝛽
𝑝 (𝐸′),

∙ 𝐸′ = 𝑋 ′ ∪ 𝑌 ′,

∙ 𝑋 ′ ∩ 𝑌 ′ = ∅.

Algorithm 6.2: Preprocessing algorithm.

1 Find sets 𝑋 = 𝒮𝛼
𝑝 (𝐸), 𝑌 = 𝒮𝛽

𝑝 (𝐸), 𝑍 = 𝒮𝛼+𝛽
𝑞 (𝐸).

2 Define 𝑆 := (𝑋 ∩ 𝑌) ∪ (𝑍 ∖ (𝑋 ∪ 𝑌)).
3 Return the reduced instance ((𝑋 ∪ 𝑌) ∖ (𝑋 ∩ 𝑌), 𝑝− |𝑆|, 𝑞− |𝑆|, 𝛼, 𝛽) and the set
𝑆.

82

6.1 Efficient Algorithms for the Recoverable (Robust) Selection Problem

X

Y

S

Z

↓
X

Y

Figure 6.2: Visualization of the preprocessing step. The shaded gray area corresponds
to the set 𝑆.

The following lemma shows that this preprocessing step is valid and allows us to obtain
an instance (𝐸′, 𝑝′, 𝑞′, 𝛼, 𝛽) with the claimed properties. In addition we show that by
using 𝑆, given an optimal solution for (𝐸′, 𝑝′, 𝑞′, 𝛼, 𝛽) we can obtain an optimal solution
for the original instance.

Lemma 6.6. Given an instance (𝐸, 𝑝, 𝑞, 𝛼, 𝛽) of the Recoverable Selection problem
and let (𝐴*, 𝐵*) be an optimal solution to the reduced instance (𝐸′, 𝑝′, 𝑞′, 𝛼, 𝛽) produced
by the preprocessing algorithm above together with the set 𝑆. Then (𝐴* ∪ 𝑆,𝐵* ∪ 𝑆) is
an optimal solution to the original instance.

Proof. We show that there exists an optimal solution (𝐴′, 𝐵′) such that 𝑆 ⊆ 𝐴′, 𝐵′. For
the elements in 𝑋∩𝑌 it is obvious that they can always be added to an arbitrary optimal
solution. Let 𝑧 ∈ (𝑍 ∖ (𝑋 ∪ 𝑌)). If 𝑧 /∈ 𝐴′ ∩ 𝐵′ then it follows that 𝑧 /∈ 𝐴′ ∪ 𝐵′, since
𝑧 /∈ 𝑋 ∪ 𝑌 . Since |𝐴′ ∩ 𝐵′| ≥ 𝑞 it follows that there exists some 𝑧′ ∈ (𝐴′ ∩ 𝐵′) ∖ 𝑍. It
holds that 𝛼𝑧 + 𝛽𝑧 ≤ 𝛼𝑧′ + 𝛽𝑧′ so we can swap 𝑧 and 𝑧′.

Since our preprocessing only needs to solve the selection problem three times for a set
of cardinality 𝑛 and afterwards builds intersections and unions of these sets it can be
implemented in 𝑂(𝑛) time.

In the following, we assume that the given instance (𝐸, 𝑝, 𝑞, 𝛼, 𝛽) is an instance ob-
tained by running the preprocessing algorithm and we assume that the sets 𝑋 and 𝑌
are given as part of the input and 𝐸 = 𝑋 ∪̇ 𝑌 .

6.1.3.2 Prune and Search for the Intersection Size 𝑠 in 𝑋

The main idea to solve the Recoverable Selection problem is to introduce a pa-
rameter 𝑠 ∈ {0, 1, . . . , 𝑞} counting the number of elements of 𝐴 ∩ 𝐵 that lie in 𝑋, i.e.
𝑠 = |𝑋 ∩𝐴 ∩𝐵| (symmetrically 𝑞 − 𝑠 elements of 𝐴 ∩𝐵 then lie in 𝑌).

83

6 Recoverable Robust Discrete Optimization

X
Y

As
1 As

2

Bs
2Bs

1

Figure 6.3: Illustration of the sets involved in the search for 𝑠*.

For every 𝑠 ∈ {0, 1, . . . , 𝑞} let 𝐴𝑠
1, 𝐵

𝑠
1 ⊆ 𝑋 be an optimal solution to the problem

min
∑︁
𝑖∈𝐴1

𝛼𝑖 +
∑︁
𝑗∈𝐵1

𝛽𝑗

s.t. |𝐴1| = 𝑝− (𝑞 − 𝑠)

|𝐵1| = 𝑠

𝐴1 ∩𝐵1 = 𝐵1

𝐴1, 𝐵1 ⊆ 𝑋

which we denote by ℛ𝒮𝛼,𝛽,1
𝑝,𝑞,𝑠 (𝑋) and 𝐴𝑠

2, 𝐵
𝑠
2 ⊆ 𝑌 optimal solutions to the problem

min
∑︁
𝑖∈𝐴2

𝛼𝑖 +
∑︁
𝑗∈𝐵2

𝛽𝑗

s.t. |𝐵2| = 𝑝− 𝑠

|𝐴2| = 𝑞 − 𝑠

𝐵2 ∩𝐴2 = 𝐴2

𝐴2, 𝐵2 ⊆ 𝑌

which we denote by ℛ𝒮𝛼,𝛽,2
𝑝,𝑞,𝑠 (𝑌).

This directly implies that (𝐴,𝐵) = (𝐴𝑠
1∪𝐴𝑠

2, 𝐵
𝑠
1∪𝐵𝑠

2) is a feasible solution to ℛ𝒮𝛼,𝛽
𝑝,𝑞 (𝐸)

with exactly 𝑠 elements of the intersection in 𝑋 and 𝑞 − 𝑠 in 𝑌 . In addition we observe
that this approach also leads to an optimal solution.

Lemma 6.7. There exist solutions such that for every 𝑠 ∈ {0, 1, . . . , 𝑞− 1} it holds that
𝐴𝑠

1 ⊆ 𝐴𝑠+1
1 and 𝐵𝑠

1 ⊆ 𝐵𝑠+1
1 .

Symmetrically there also exist solutions such that 𝐵𝑠
2 ⊆ 𝐵𝑠−1

2 and 𝐴𝑠
2 ⊆ 𝐴𝑠−1

2 for
𝑠 ∈ {1, 2, . . . , 𝑞}.

Proof. Let 𝑧 ∈ 𝐵𝑠
1, hence 𝑧 ∈ 𝐴𝑠

1. Assume 𝑧 /∈ 𝐴𝑠+1
1 , hence 𝑧 /∈ 𝐵𝑠+1

1 . If there exists an
𝑟 ∈ 𝑋 ∖ 𝐴𝑠

1 such that 𝑟 ∈ 𝐵𝑠+1
1 we can swap 𝑧 into 𝐴𝑠+1

1 and 𝐵𝑠+1
1 instead of 𝑟 since

𝛼𝑧 + 𝛽𝑧 ≤ 𝛼𝑟 + 𝛽𝑟 by optimality of (𝐴𝑠
1, 𝐵

𝑠
1). Otherwise 𝐵𝑠+1

1 ⊆ 𝐴𝑠
1, which implies there

exists an 𝑥𝑓 ∈ 𝐴𝑠
1 ∖ 𝐵𝑠

1 and an 𝑥𝑔 ∈ 𝑋 ∖ 𝐴𝑠
1 such that 𝑥𝑓 ∈ 𝐵𝑠+1

1 and 𝑥𝑔 ∈ 𝐴𝑠+1
1 . But

again by optimality of (𝐴𝑠
1, 𝐵

𝑠
1) we have 𝛼𝑧 + 𝛽𝑧 ≤ 𝛼𝑥𝑔 + 𝛽𝑥𝑓

.

Let 𝑧 /∈ 𝐵𝑠+1
1 but 𝑧 ∈ 𝐴𝑠+1

1 . If there is some 𝑦 ∈ (𝐴𝑠
1 ∖ 𝐵𝑠

1) ∩ 𝐵𝑠+1
1 we have 𝛽𝑧 ≤ 𝛽𝑦,

so we can swap 𝑦 and 𝑧. Otherwise there exist at least two distinct 𝑧1, 𝑧2 ∈ 𝐵𝑠+1
2 ∖ 𝐴𝑠

1.
This implies there is also an 𝑥 ∈ (𝐴𝑠

1 ∖𝐵𝑠
1) such that 𝑥 /∈ 𝐴𝑠+1

1 . But now again 𝛼𝑥 +𝛽𝑧 ≤
𝛼𝑧1 + 𝛽𝑧1 so we can swap.

84

6.1 Efficient Algorithms for the Recoverable (Robust) Selection Problem

X
Y

As
1 As

2

Bs
2Bs

1

x′
gxg

xf x′
f yg y′g

y′fyf

Figure 6.4: Solution changes when increasing/decreasing 𝑠.

Combining these two cases we know that 𝐵𝑠
1 ⊆ 𝐵𝑠+1

1 . Let 𝑥 ∈ (𝐴𝑠
1 ∖𝐵𝑠

1). This implies
that 𝐵𝑠

1 ⊆ 𝐴𝑠+1
1 , so all elements in 𝑋 ∖(𝐴𝑠

1∖𝐵𝑠
1) with cost 𝛼 smaller than 𝑥 are contained

in 𝐴𝑠+1
1 . This directly implies that 𝐴𝑠

1 ⊆ 𝐴𝑠+1
1 since |(𝐴𝑠

1 ∖𝐵𝑠
1)| = |(𝐴𝑠+1

1 ∖𝐵𝑠+1
1)|.

The claim for (𝐴2, 𝐵2) follows by symmetry.

Lemma 6.8. There exists an 𝑠 ∈ {0, 1, . . . , 𝑞} such that for 𝐴 = 𝐴𝑠
1∪𝐴𝑠

2 and 𝐵 = 𝐵𝑠
1∪𝐵𝑠

2

it holds that (𝐴,𝐵) = ℛ𝒮𝛼,𝛽
𝑝,𝑞 (𝐸).

Proof. Let (𝐴*, 𝐵*) = ℛ𝒮𝛼,𝛽
𝑝,𝑞 (𝐸) be an optimal solution to the given instance. Define

𝑠 := |𝑋 ∩𝐵*|, 𝐴1 := 𝐴* ∩𝑋, 𝐵1 := 𝐵* ∩𝑋, 𝐴2 := 𝐴* ∩ 𝑌 and 𝐵2 := 𝐵* ∩ 𝑌 .
𝐴1, 𝐵1, 𝐴2, 𝐵2 are feasible solutions to the problems for which 𝐴𝑠

1, 𝐵
𝑠
1, 𝐴

𝑠
2, 𝐵

𝑠
2 are op-

timal solutions. But 𝐴1, 𝐵1, 𝐴2, 𝐵2 are also optimal for these problems, since otherwise
(𝐴*, 𝐵*) could be improved.

Let us denote by 𝑠* a value of 𝑠 for which an optimal solution (𝐴*, 𝐵*) results in the
way described above.

Note that a trivial algorithm to determine 𝑠* would not lead to a linear time algorithm.
To obtain a fast algorithm overall we need a fast algorithm to find 𝑠*. To that end, we
analyze the cost function with respect to the parameter 𝑠. For this purpose let

𝑓(𝑠) =
∑︁

𝑖∈𝐴𝑠
1∪𝐴𝑠

2

𝛼𝑖 +
∑︁

𝑗∈𝐵𝑠
1∪𝐵𝑠

2

𝛽𝑗 .

In the following lemma we show that 𝑓(𝑠) is a discrete-convex function.

Lemma 6.9. For every 𝑠 ∈ {1, 2, . . . , 𝑞 − 1} it holds that 2𝑓(𝑠) ≤ 𝑓(𝑠 − 1) + 𝑓(𝑠 + 1),
hence 𝑓(𝑠) is discrete-convex.

Proof. By Lemma 6.7 it holds that both 𝑓(𝑠 + 1) − 𝑓(𝑠) = 𝛼𝑥𝑔 + 𝛽𝑥𝑓
− 𝛼𝑦𝑓 − 𝛽𝑦𝑔 and

𝑓(𝑠 − 1) − 𝑓(𝑠) = 𝛼𝑦′𝑓
+ 𝛽𝑦′𝑔 − 𝛼𝑥′

𝑔
− 𝛽𝑥′

𝑓
. See Figure 6.4 for a visualization. For the

corresponding costs we have that 𝛼𝑥′
𝑔

+ 𝛽𝑥′
𝑓
≤ 𝛼𝑥𝑔 + 𝛽𝑥𝑓

and 𝛼𝑦𝑓 + 𝛽𝑦𝑔 ≤ 𝛼𝑦′𝑓
+ 𝛽𝑦′𝑔 .

As a consequence we arrive at

𝑓(𝑠 + 1) − 𝑓(𝑠) = 𝛼𝑥𝑔 + 𝛽𝑥𝑓
− 𝛼𝑦𝑓 − 𝛽𝑦𝑔 ≥ 𝛼𝑥′

𝑔
+ 𝛽𝑥′

𝑓
− 𝛼𝑦′𝑓

− 𝛽𝑦′𝑔 = 𝑓(𝑠) − 𝑓(𝑠− 1).

A discrete function 𝑓 is called unimodal if there is some 𝑠′ such that for all 𝑠 ≤ 𝑠′ it
holds that 𝑓(𝑠) is monotonically decreasing in 𝑠 and for all 𝑠 ≥ 𝑠′ it holds that 𝑓(𝑠) is

85

6 Recoverable Robust Discrete Optimization

monotonically increasing in 𝑠. A plateau of 𝑓 is a sequence 𝑠1, 𝑠2, . . . , 𝑠𝑙 with 𝑙 > 1 such
that 𝑓(𝑠1) = 𝑓(𝑠2) = · · · = 𝑓(𝑠𝑙).

Using discrete-convexity the following is a well-known consequence.

Corollary 6.10. It holds that 𝑓(𝑠) is unimodal in 𝑠 for 𝑠 ∈ [𝑞], and 𝑓 has at most one
plateau at its minimum.

Based on Corollary 6.10 it is possible to efficiently check if 𝑠 = 𝑠*, 𝑠* > 𝑠 or 𝑠* < 𝑠
for any given 𝑠 by determining 𝑓(𝑠 + 1) and 𝑓(𝑠− 1), which results in a fast prune and
search for 𝑠* (see Algorithm 6.3), because determining 𝑓(𝑠 − 1) and 𝑓(𝑠 + 1) can be
done in the same time as determining 𝑓(𝑠) (for details see Section 6.1.3.3). To simplify
notation let mid(𝑎, 𝑏) = ⌊𝑎+𝑏

2 ⌋.

Algorithm 6.3: Prune and search for 𝑠*.

1 s := 0, 𝑠 := 𝑞
2 while 𝑠− s > 3 do
3 Let 𝑠 := mid(s, 𝑠)

4 Calculate 𝐴𝑠−1
1 , 𝐵𝑠−1

1 , 𝐴𝑠−1
2 , 𝐵𝑠−1

2 , 𝑓(𝑠− 1);
𝐴𝑠

1, 𝐵
𝑠
1, 𝐴

𝑠
2, 𝐵

𝑠
2, 𝑓(𝑠);

𝐴𝑠+1
1 , 𝐵𝑠+1

1 , 𝐴𝑠+1
2 , 𝐵𝑠+1

2 , 𝑓(𝑠 + 1)
using the subprocedure stated in Section 6.1.3.3.

5 if 𝑓(𝑠− 1) = 𝑓(𝑠) or 𝑓(𝑠) = 𝑓(𝑠 + 1) or 𝑓(𝑠− 1) > 𝑓(𝑠) < 𝑓(𝑠 + 1) then
𝑠* := 𝑠
return 𝑠*, (𝐴𝑠

1 ∪𝐴𝑠
2, 𝐵

𝑠
1 ∪𝐵𝑠

2)

6 else if 𝑓(𝑠− 1) < 𝑓(𝑠) < 𝑓(𝑠 + 1) then
𝑠 := 𝑠− 1

7 else if 𝑓(𝑠− 1) > 𝑓(𝑠) > 𝑓(𝑠 + 1) then
s := 𝑠 + 1

8 return 𝑠 minimizing 𝑓(𝑠) for 𝑠 ∈ {s, . . . , 𝑠} with corresponding solution sets

To end up with an overall linear running time it is important that in each iteration of
this procedure we determine the sets 𝐴𝑠

1, 𝐵
𝑠
1, 𝐴

𝑠
2, 𝐵

𝑠
2 in time 𝑂(Δ𝑠), where Δ𝑠 := 𝑠 − s

is the current size of the search region. In addition we need to make sure that Δ𝑠2 ≤
Δ𝑠1
2 , where Δ𝑠1,Δ𝑠2 are the sizes of the search region for two consecutive iterations.

An overview of the approach to calculate the sets 𝐴𝑠
1, 𝐵

𝑠
1, 𝐴

𝑠
2, 𝐵

𝑠
2 efficiently is given in

Section 6.1.3.3.
A running time bound of 𝑂(Δ𝑠) is possible only by providing the next iteration of

Algorithm 6.3 with preprocessed sets of possible choices, which have to be obtained in
addition to calculating 𝐴𝑠

1, 𝐵
𝑠
1, 𝐴

𝑠
2, 𝐵

𝑠
2. Details about these preprocessed sets that have to

be calculated in addition to 𝐴𝑠
1, 𝐵

𝑠
1, 𝐴

𝑠
2, 𝐵

𝑠
2 in each iteration are given in Section 6.1.3.4.

6.1.3.3 Prune and Search for the Number of (𝛼 + 𝛽)-Greedy Steps

In this section we explain how to find sets 𝐴𝑠
1, 𝐵

𝑠
1 ⊆ 𝑋 in the 𝑡-th iteration of Algo-

rithm 6.3 in 𝑂(Δ𝑠) time. The case of finding 𝐴𝑠
2, 𝐵

𝑠
2 can be handled symmetrically.

86

6.1 Efficient Algorithms for the Recoverable (Robust) Selection Problem

Figure 6.5: Visualization of the functions 𝑓 (left) and ℎ (right). Note the multiple
plateaus in ℎ that complicate the prune and search for 𝑟*.

Again, the main idea of this subprocedure is to introduce a parameter 𝑟 ∈ {0, 1, . . . , 𝑠},
that can be loosely interpreted as the number of (𝛼+ 𝛽)-greedy steps performed. Based
on 𝑟 we define the sets

∙ 𝐺𝑟 = 𝒮𝑝−𝑞+𝑠−𝑟
𝛼 (𝑋),

∙ 𝐹 𝑟 = 𝒮𝑠−𝑟
𝛽 (𝐺𝑟),

∙ 𝑅𝑟 = 𝒮𝑟
𝛼+𝛽(𝑋 ∖𝐺𝑟), where in the case of ties we agree on the following convention.

If there are multiple elements 𝑒, 𝑓 with 𝛼𝑒 + 𝛽𝑒 = 𝛼𝑒′ + 𝛽𝑒′ we select the one with
𝛼𝑒 < 𝛼𝑒′ . If also 𝛼𝑒 = 𝛼𝑒′ , then we break ties in the same way as ties are broken
for the calculation of 𝐺𝑟.

Observe that (𝐺𝑟∪𝑅𝑟, 𝐹 𝑟∪𝑅𝑟) is a feasible solution for the problem ℛ𝒮𝛼,𝛽,1
𝑝,𝑞,𝑠 (𝑋). We

denote the cost of this solution by

ℎ(𝑟) =
∑︁

𝑖∈𝐺𝑟∪𝑅𝑟

𝛼𝑖 +
∑︁

𝑗∈𝐹 𝑟∪𝑅𝑟

𝛽𝑗 .

It is easy to see that there is always an optimal solution of the problem ℛ𝒮𝛼,𝛽,1
𝑝,𝑞,𝑠 (𝑋)

of the form (𝐺𝑟 ∪𝑅𝑟, 𝐹 𝑟 ∪𝑅𝑟) for some appropriately chosen 𝑟, which we denote by 𝑟*.
A visualization of the decomposition of feasible solutions to ℛ𝒮𝛼,𝛽,1

𝑝,𝑞,𝑠 (𝑋) in terms of the
parameter 𝑟 into subsets 𝐺𝑟, 𝐹 𝑟, 𝑅𝑟 is shown in Figure 6.6.

To find such a solution efficiently we first analyze properties of the function ℎ(𝑟) in
terms of 𝑟, similarly as we did for 𝑓(𝑠). Below we will show that ℎ(𝑟) is unimodal.
Observe however that ℎ(𝑟) in contrast to 𝑓(𝑠) is not discrete-convex (see Figure 6.5 for
a comparison of the structure of 𝑓(𝑠) and ℎ(𝑟)). Since in a unimodal function multiple
plateaus can appear an efficient algorithm has to use some additional properties. The
key result in this direction for ℎ(𝑟) is, that all plateaus happen by the fact that the
solutions of the form (𝐺𝑟 ∪ 𝑅𝑟, 𝐹 𝑟 ∪ 𝑅𝑟) stay the same for a sequence of values for 𝑟
(the plateau), except for a single possible exception which is then an optimal solution
for ℛ𝒮𝛼,𝛽,1

𝑝,𝑞,𝑠 (𝑋). This result is formally stated and proved in Lemma 6.15.
The following sequence of lemmas contains formal proves these claims about ℎ(𝑟).

Based on those we then state an Algorithm to solve the problem ℛ𝒮𝛼,𝛽,1
𝑝,𝑞,𝑠 (𝑋).

Proposition 6.11. It holds for all 𝑟 that 𝐺𝑟+1 ⊆ 𝐺𝑟, 𝐹 𝑟+1 ⊆ 𝐹 𝑟 and 𝑅𝑟 ⊆ 𝑅𝑟+1.

87

6 Recoverable Robust Discrete Optimization

X

Gr

F rRr

Figure 6.6: Visualization of sets involved in the definition of ℎ(𝑟).

z z′

x′ x

y′ y

Figure 6.7: The case 𝑧 ̸= 𝑥 and 𝑥′ ̸= 𝑦′

Lemma 6.12. The function ℎ(𝑟) is unimodal in 𝑟, i.e. there is an 𝑚 ∈ N such that for
all 𝑟 ≤ 𝑚 it holds that 𝑓(𝑟 − 1) ≥ 𝑓(𝑟) and for all 𝑟 ≥ 𝑚 it holds that 𝑓(𝑟) ≤ 𝑓(𝑟 + 1).

Proof. Given 𝐺𝑟, 𝐹 𝑟 and 𝑅𝑟 let

∙ 𝑅𝑟−1 = 𝑅𝑟 ∖ {𝑧′}, 𝑅𝑟+𝑖 = 𝑅𝑟+𝑖−1 ∪ {𝑧𝑖},

∙ 𝐺𝑟−1 = 𝐺𝑟 ∪ {𝑥′}, 𝐺𝑟+𝑖 = 𝐺𝑟+𝑖−1 ∖ {𝑥𝑖},

∙ 𝐹 𝑟−1 = 𝐹 𝑟 ∪ {𝑦′}, 𝐹 𝑟+𝑖 = 𝐹 𝑟+𝑖−1 ∖ {𝑦𝑖},

for any 𝑖 ∈ N. To simplify notation let 𝑥 = 𝑥1, 𝑦 = 𝑦1 and 𝑧 = 𝑧1. Using this we have
that

∙ ℎ(𝑟) − ℎ(𝑟 − 1) = 𝛼𝑧′ + 𝛽𝑧′ − (𝛼𝑥′ + 𝛽𝑦′)

∙ ℎ(𝑟 + 1) − ℎ(𝑟) = 𝛼𝑧 + 𝛽𝑧 − (𝛼𝑥 + 𝛽𝑦)

∙ ℎ(𝑟 + 𝑖) − ℎ(𝑟 + 𝑖− 1) = 𝛼𝑧𝑖 + 𝛽𝑧𝑖 − (𝛼𝑥𝑖 + 𝛽𝑦𝑖).

First observe that if 𝑧 ̸= 𝑥 it holds that 𝛼𝑧 + 𝛽𝑧 ≥ 𝛼𝑧′ + 𝛽𝑧′ and if 𝑥′ ̸= 𝑦′ we have
𝛽𝑦 ≤ 𝛽𝑦′ (see Figure 6.7). This implies that

ℎ(𝑟) − ℎ(𝑟 − 1) ≤ ℎ(𝑟 + 1) − ℎ(𝑟) ⇐⇒ 2ℎ(𝑟) ≤ ℎ(𝑟 − 1) + ℎ(𝑟 + 1),

i.e. ℎ is locally discrete-convex at 𝑟.
Based on this observation we prove the following two claims.

1. If ℎ(𝑟 − 1) < ℎ(𝑟) it follows that ℎ(𝑟 + 1) ≥ ℎ(𝑟).

2. If ℎ(𝑟− 1) < ℎ(𝑟) and ℎ(𝑟) = · · · = ℎ(𝑟 + 𝑑) it follows that ℎ(𝑟 + 𝑑) ≤ ℎ(𝑟 + 𝑑+ 1)

Claim 1 and Claim 2 combined then imply that ℎ(𝑟) is unimodal.
If local convexity holds at 𝑟 it follows directly from ℎ(𝑟−1) < ℎ(𝑟) that ℎ(𝑟) < ℎ(𝑟+1),

hence Claim 1 and Claim 2 are fulfilled. So assume 𝑥 = 𝑧 (see Figure 6.8). It holds

88

6.1 Efficient Algorithms for the Recoverable (Robust) Selection Problem

zz′

x′ x

y′ y

Figure 6.8: The case 𝑧 = 𝑥

z z′

x′ x

y′ y

Figure 6.9: The case 𝑥′ = 𝑦′

that 𝛽𝑥 ≥ 𝛽𝑦 so 𝛼𝑥 + 𝛽𝑥 ≥ 𝛼𝑥 + 𝛽𝑦. But this implies directly that ℎ(𝑟 + 1) ≥ ℎ(𝑟).
The only other case in which discrete-convexity cannot hold locally in 𝑟 is if 𝑥′ = 𝑦′ (see
Figure 6.9). In this case we have 𝛼𝑧′ +𝛽𝑧′ ≤ 𝛼𝑥′ +𝛽𝑥′ = 𝛼𝑥′ +𝛽𝑦′ , which is equivalent to
ℎ(𝑟 − 1) ≥ ℎ(𝑟) contradicting our assumption. So we have shown that ℎ(𝑟) ≤ ℎ(𝑟 + 1),
i.e. Claim 1 is proved.

For the Claim 2 first observe that 𝛼𝑥𝑖 ≤ 𝛼𝑥′ and 𝛽𝑦𝑖 ≤ 𝛽𝑦′ (since 𝑦′ ̸= 𝑥′) for all 𝑖. If
𝑧𝑖 ̸= 𝑥𝑖 it also holds that 𝛼𝑧𝑖 + 𝛽𝑧𝑖 ≥ 𝛼𝑧′ + 𝛽𝑧′ , since the only possible new choices for 𝑧𝑖
that were no possible choices for 𝑧′ are 𝑥𝑗 for 𝑗 = 1, 2, . . . , 𝑖 − 1. But for these it holds
that they are either no possible choices for 𝑧𝑖, since 𝑧𝑗 = 𝑥𝑗 , or by 𝑧𝑗 ̸= 𝑥𝑗 it follows that
𝛼𝑥𝑗 + 𝛽𝑥𝑗 ≥ 𝛼𝑧′ + 𝛽𝑧′ .

If 𝑧𝑑+1 ̸= 𝑥𝑑+1, we have that

ℎ(𝑟 + 𝑑 + 1) − ℎ(𝑟 + 𝑑) = 𝛼𝑧𝑑+1
+ 𝛽𝑧𝑑+1

− (𝛼𝑥𝑑+1
+ 𝛽𝑦𝑑+1

)

≥ 𝛼𝑧′ + 𝛽𝑧′ − (𝛼𝑥′ + 𝛽𝑦′) = ℎ(𝑟) − ℎ(𝑟 − 1) > 0,

implying ℎ(𝑟 + 𝑑) < ℎ(𝑟 + 𝑑 + 1). On the other hand if 𝑧𝑑+1 = 𝑥𝑑+1 we have that

𝛼𝑧𝑑+1
+ 𝛽𝑧𝑑+1

= 𝛼𝑥𝑑+1
+ 𝛽𝑥𝑑+1

≥ 𝛼𝑥𝑑+1
+ 𝛽𝑦𝑑+1

,

directly implying ℎ(𝑟 + 𝑑) ≤ ℎ(𝑟 + 𝑑 + 1), hence Claim 2.

This concludes the proof of the lemma.

Lemma 6.13. Let 𝑟1 < 𝑟2 and 𝑅𝑟𝑖+1 = 𝑅𝑟𝑖∪{𝑧𝑖}, 𝐺𝑟𝑖+1 = 𝐺𝑟𝑖 ∖{𝑥𝑖}, 𝐹 𝑟𝑖+1 = 𝐹 𝑟𝑖 ∖{𝑦𝑖}
for 𝑖 = 1, 2. If 𝑥1 ̸= 𝑦1 and 𝑥2 ̸= 𝑧2 it holds that

ℎ(𝑟1 + 1) − ℎ(𝑟1) ≤ ℎ(𝑟2 + 1) − ℎ(𝑟2).

Proof. We have that ℎ(𝑟𝑖+1)−ℎ(𝑟𝑖) = 𝛼𝑧𝑖 +𝛽𝑧𝑖−(𝛼𝑥𝑖 +𝛽𝑦𝑖). By the fact that 𝑅𝑟1 ⊆ 𝑅𝑟2

and all 𝑧 that become available for an 𝑟 ∈ {𝑟1 + 1, . . . , 𝑟2 − 1}, it instantly is added to
𝑅𝑟+1, we have that 𝛼𝑧1 + 𝛽𝑧1 ≤ 𝛼𝑧2 + 𝛽𝑧2 .

89

6 Recoverable Robust Discrete Optimization

z′

x′

y′

Figure 6.10: The case 𝑥′ = 𝑧′

Since 𝐺𝑟2 ⊆ 𝐺𝑟1 and 𝐹 𝑟2 ⊆ 𝐹 𝑟1 we also have that 𝛼𝑥1 ≥ 𝛼𝑥2 and also 𝛽𝑦1 ≥ 𝛽𝑦2 , since
𝑦1 is the largest element in 𝐹 𝑟1 by the fact that 𝑥1 ̸= 𝑦1. Combining these facts the
result follows.

Lemma 6.14. If it holds that ℎ(𝑟1) = ℎ(𝑟2) and the optimal solutions at both 𝑟1 and 𝑟2
are the same, then for each 𝑟 ∈ {𝑟1, 𝑟1 + 1, . . . , 𝑟2} the optimal solution is also the same
and hence ℎ(𝑟) = ℎ(𝑟1) = ℎ(𝑟2).

Proof. This follows directly by the fact that 𝑅𝑟 ⊆ 𝑅𝑟+1, since by this fact real changes
can never be undone.

Lemma 6.15. Given 𝐺𝑟, 𝐹 𝑟 and 𝑅𝑟 let 𝑅𝑟+1 = 𝑅𝑟 ∪{𝑧}, 𝐺𝑟+1 = 𝐺𝑟 ∖ {𝑥} and 𝐹 𝑟+1 =
𝐹 𝑟 ∖ {𝑦}. If 𝑥 ̸= 𝑧 and ℎ(𝑟) = ℎ(𝑟 + 1) we have that 𝑟 = 𝑟*.

Proof. If 𝑥 = 𝑦 the fact that ℎ(𝑟) = ℎ(𝑟 + 1) implies 𝑥 = 𝑧, since we resolve ties for
pairs with respect to the order in which they are chosen by 𝐺𝑟. This is in contrast to
our assumption.

We show by induction that for 𝑟′ > 𝑟 it holds that ℎ(𝑟′) ≥ ℎ(𝑟). Let (𝑥′, 𝑦′, 𝑧′) be the
step from 𝑟′−1 to 𝑟′. If at step 𝑟′−1 we have that 𝑥′ ̸= 𝑧′, thus, by Lemma 6.13 we have
that ℎ(𝑟′ − 1) ≤ ℎ(𝑟′) and hence ℎ(𝑟) ≤ ℎ(𝑟′) by induction. Otherwise if 𝑥′ = 𝑧′ (see
Figure 6.10) it directly follows that ℎ(𝑟′−1) ≤ ℎ(𝑟′) since 𝛼𝑥′ +𝛽𝑦′ ≤ 𝛼𝑥′ +𝛽𝑥′ ≤ 𝛼𝑧′ +𝛽𝑧′ .
Again by induction we have that ℎ(𝑟) ≤ ℎ(𝑟′).

Similarly we also show that for 𝑟′ < 𝑟 it holds that ℎ(𝑟′) ≥ ℎ(𝑟) by induction. Again
by Lemma 6.13 we have that ℎ(𝑟′ + 1) ≤ ℎ(𝑟′) if 𝑥′ ̸= 𝑦′. Also again if 𝑥′ = 𝑦′ we have
that ℎ(𝑟′ + 1) ≤ ℎ(𝑟′). Hence, by induction it follows that ℎ(𝑟) ≤ ℎ(𝑟′).

In the following, we explain how to use the unimodality of ℎ in combination with
Lemma 6.15 to obtain an algorithm for ℛ𝒮𝛼,𝛽,1

𝑝,𝑞,𝑠 (𝑋) based on a prune and search for 𝑟*

and the corresponding optimal solutions 𝐴𝑠
1, 𝐵

𝑠
1. To simplify the exposition let ℋ(𝑟) :=

(𝐺𝑟 ∪ 𝑅𝑟, 𝐹 𝑟 ∪ 𝑅𝑟). The basic idea is again similar as in Section 6.1.3.2. The major
difference in this case is that long plateaus can appear in ℎ(𝑟). This is why it does not
suffice to just calculate the values ℎ(𝑟−1), ℎ(𝑟), ℎ(𝑟+1), since if they are equal we cannot
efficiently decide whether 𝑟* < 𝑟, 𝑟* > 𝑟 or 𝑟* = 𝑟. This is why instead of evaluating at
𝑟− 1 and 𝑟 + 1 in addition to the center point 𝑟 = mid(r, 𝑟) the evaluation is performed
at the quarter points 𝑟▷ = mid(r, 𝑟), 𝑟◁ = mid(𝑟, 𝑟) to the left and right. Algorithm 6.4
is a formal description of this approach. Observe that only cases given in steps 2.1–
2.8 of Algorithm 6.4 can occur for the evaluation points, since ℎ(𝑟▷) < ℎ(𝑟) > ℎ(𝑟◁)

90

6.1 Efficient Algorithms for the Recoverable (Robust) Selection Problem

is a contradiction to unimodality of ℎ. The major complication in this binary search
are the cases where we have equality among the evaluation points (steps 2.6–2.8 of
Algorithm 6.4). Here, we can prune the search space only due to the fact that when the
solution ℋ at the chosen evaluation points is the same we know that the whole range
in between forms a plateau and otherwise by Lemma 6.15 the optimum 𝑟* lies between
these evaluation points. The way we handle this algorithmically is by setting 𝑟 to the
left endpoint of the plateau, 𝑟′ to the right endpoint of the plateau and the points 𝑟▷, 𝑟◁

are then moved further to the left and right, i.e. 𝑟▷ = mid(r, 𝑟) and 𝑟◁ = mid(𝑟′, 𝑟). This
way we can either conclude optimality by Lemma 6.15 or prune half of the search region,
which has size Δ𝑟 := 𝑟 − r − (𝑟′ − 𝑟). Pruning either happens because we know that all
the elements in between two evaluation points build a plateau or since the properties of
unimodality imply that the minimum cannot lie in some regions.

It is now easy to see that the following holds for Algorithm 6.4.

Lemma 6.16. ∙ Let Δ𝑟1,Δ𝑟2 be the sizes of the search region in two consecutive
iterations of the loop in step 2 of Algorithm 6.4. Then it holds that Δ𝑟2 ≤ Δ𝑟1

2 .

∙ Algorithm 6.4 correctly calculates the sets 𝐴𝑠
1, 𝐵

𝑠
1.

To achieve the claimed running time of 𝑂(Δ𝑠), it is not possible to run an algorithm
for the Selection problem on the whole sets 𝑋, 𝐺𝑟 and 𝑋 ∖ 𝐺𝑟 during the execution
of Algorithm 6.4. In section 6.1.3.4 we explain how to circumvent this issue by showing
that certain sets of elements can be fixed and the selection can be performed on smaller
sets of candidate elements.

6.1.3.4 Linear Time Implementation: Element Fixing and Candidate Sets

The main objective of this section is to prove that each iteration of the loop in step 2
of Algorithm 6.4 can be executed in 𝑂(Δ𝑟) time. To achieve this already Algorithm 6.3
needs to maintain subsets �̄�, 𝐹 , �̄� with |�̄�|, |𝐹 |, |�̄�| ≤ Δ𝑠 and additional sets �̂�, 𝐹 , �̂�
containing already fixed elements in the iterations before the current iteration. These
are then given to Algorithm 6.4 such that it can run the classic selection algorithm only
on subsets of �̄�, 𝐹 , �̄� when determining 𝐺𝑟, 𝐹 𝑟, 𝑅𝑟. These sets can be obtained in the
following way. Algorithm 6.4 is extended to obtain in addition to 𝐺𝑟* , 𝐹 𝑟* , 𝑅𝑟* also sets
�̄�, 𝐹 , �̄� containing the Δ𝑠 next best elements, respectively, if those are still available in
the current sets �̄�, 𝐹 , �̄�.

Then, if the decision for the next iteration is to decrease 𝑠 (step 6 of Algorithm 6.3),
we can keep the fixed elements the same and set �̄� := 𝐺𝑟* ∖ �̂�. Based on that we can
calculate 𝐹 := 𝒮Δ𝑠

𝛽 (𝐹𝑡) and �̄� := 𝒮Δ𝑠
𝛼+𝛽(�̄�).

Otherwise, if 𝑠 is increased (step 7 of Algorithm 6.3) we can set �̂� := 𝐺𝑟* , 𝐹 := 𝐹 𝑟*

and �̂� := 𝑅𝑟* . In addition we can obtain �̄� := 𝒮Δ𝑠
𝛼 (�̄� ∖ �̂�), 𝐹 := 𝒮Δ𝑠

𝛽 (𝐹 ∖ 𝐹) and

�̄� := 𝒮Δ𝑠
𝛼+𝛽(�̄� ∖ �̂�).

These choices of candidate sets give the following result.

91

6 Recoverable Robust Discrete Optimization

Algorithm 6.4: Prune and search for 𝑟*.

1 r := 0; 𝑟 := 𝑠; 𝑟 := mid(r, 𝑟); 𝑟′ := mid(r, 𝑟)
2 while 𝑟 − r > 3 do

𝑟▷ := mid(r, 𝑟); 𝑟◁ := mid(𝑟′, 𝑟)
2.0 Evaluate ℎ(𝑟▷), ℎ(𝑟), ℎ(𝑟◁)
2.1 if ℎ(𝑟▷) > ℎ(𝑟) < ℎ(𝑟◁) then

r := 𝑟▷; 𝑟 := 𝑟◁

2.2 else if ℎ(𝑟▷) > ℎ(𝑟) > ℎ(𝑟◁) then
r := 𝑟; 𝑟 := 𝑟; 𝑟 := mid(r, 𝑟); 𝑟′ := mid(r, 𝑟)

2.3 else if ℎ(𝑟▷) < ℎ(𝑟) < ℎ(𝑟◁) then
r := r; 𝑟 := 𝑟; 𝑟 := mid(r, 𝑟); 𝑟′ := mid(r, 𝑟)

2.4 else if ℎ(𝑟▷) = ℎ(𝑟) > ℎ(𝑟◁) then // Same as 2.2
r := 𝑟; 𝑟 := 𝑟; 𝑟 := mid(r, 𝑟); 𝑟′ := mid(r, 𝑟)

2.5 else if ℎ(𝑟▷) < ℎ(𝑟) = ℎ(𝑟◁) then // Same as 2.3
r := r; 𝑟 := 𝑟; 𝑟 := mid(r, 𝑟); 𝑟′ := mid(r, 𝑟)

2.6 else if ℎ(𝑟▷) > ℎ(𝑟) = ℎ(𝑟◁) then
2.6 (a) if ℋ(𝑟) = ℋ(𝑟◁) then

r := 𝑟▷; 𝑟 := 𝑟; 𝑟′ := 𝑟◁; 𝑟 := 𝑟 // Plateau from 𝑟 to 𝑟◁

2.6 (b) else if ℋ(𝑟) ̸= ℋ(𝑟◁) then
r := 𝑟 // We could also set 𝑟 := 𝑟◁

𝑟 := mid(r, 𝑟); 𝑟′ := mid(r, 𝑟)

2.7 else if ℎ(𝑟▷) = ℎ(𝑟) < ℎ(𝑟◁) then
2.7 (a) if ℋ(𝑟▷) = ℋ(𝑟) then

r := r; 𝑟′ := 𝑟; 𝑟 := 𝑟▷; 𝑟 := 𝑟◁ // Plateau from 𝑟▷ to 𝑟

2.7 (b) else if ℋ(𝑟▷) ̸= ℋ(𝑟) then
𝑟 := 𝑟 // We could also set r := 𝑟▷

𝑟 := mid(r, 𝑟); 𝑟′ := mid(r, 𝑟)

2.8 else if ℎ(𝑟▷) = ℎ(𝑟) = ℎ(𝑟◁) then
2.8 (a) if ℋ(𝑟▷) = ℋ(𝑟) = ℋ(𝑟◁) then

𝑟 := 𝑟▷; 𝑟′ := 𝑟◁ // Plateau from 𝑟▷ to 𝑟◁

2.8 (b) else if ℋ(𝑟▷) = ℋ(𝑟) ̸= ℋ(𝑟◁) then
r = 𝑟; 𝑟 := mid(r, 𝑟); 𝑟′ := mid(r, 𝑟)
// 𝑟▷ to 𝑟 is a plateau; we could also set 𝑟 := 𝑟◁

2.8 (c) else if ℋ(𝑟▷) ̸= ℋ(𝑟) = ℋ(𝑟◁) then
𝑟 := 𝑟; 𝑟 := mid(r, 𝑟); 𝑟′ := mid(r, 𝑟)
// 𝑟 to 𝑟◁ is a plateau; we could also set r := 𝑟▷

2.8 (d) else if ℋ(𝑟▷) ̸= ℋ(𝑟) ̸= ℋ(𝑟◁) then
// 𝑟▷ to 𝑟◁ is a plateau and optimal

return 𝑟 and ℋ(𝑟)

3 return 𝑟 and ℋ(𝑟) minimizing ℎ(𝑟) for 𝑟 ∈ {r, . . . , 𝑟}

92

6.1 Efficient Algorithms for the Recoverable (Robust) Selection Problem

Lemma 6.17. After each iteration of Algorithm 6.3 it holds that |�̄�|, |𝐹 |, |�̄�| ≤ Δ𝑠. It
also holds that there is an optimal solution containing all the fixed elements and only
elements from the candidate sets.

In the following, we show how these sets can be used to initialize additional sets of
candidates and fixed elements that are then used to achieve the claimed running time
during the prune and search in Algorithm 6.4. Since the search for 𝑟* always uses
search points to the left and right of the center point that are not directly next to it
we introduce sets of fixed elements and search sets to the left and right denoted by
�̂�▷, 𝐹 ▷, �̂�▷, �̄�▷, 𝐹 ▷, �̄�▷ and �̂�◁, 𝐹 ◁, �̂�◁, �̄�◁, 𝐹 ◁, �̄�◁, that are used for the evaluation at 𝑟▷

and 𝑟◁. The sets �̂�▷, 𝐹 ▷, �̂�▷, �̄�▷, 𝐹 ▷, �̄�▷ are valid fixed elements and candidate sets for
the whole range from r to 𝑟 and the sets �̂�◁, 𝐹 ◁, �̂�◁, �̄�◁, 𝐹 ◁, �̄�◁ are valid for the whole
range from 𝑟′ to 𝑟. The evaluation at 𝑟 is only necessary in the first iteration, since in
each further iteration of the algorithm 𝑟 was already an evaluation point in the iteration
before. The split in left and right sets helps to handle the possible plateau in the center
efficiently.

For the initial evaluation, we have that the search sets �̄�, 𝐹 , �̄� are of size ≤ Δ𝑠 =
Δ𝑟, hence the function values can be obtained in the corresponding time at positions
r, 𝑟, 𝑟▷, 𝑟◁, 𝑟. At the beginning of each execution of Algorithm 6.4, we initialize �̂�▷ := 𝐺𝑟,
𝐹 ▷ := 𝐹 𝑟, �̂�▷ := �̂� and �̄�▷ := �̄� ∖ �̂�▷, 𝐹 ▷ := 𝐹 ∖𝐹 ▷, �̄�▷ := 𝑅𝑟 ∖ �̂�▷. Analogously we set
�̂�◁ := �̂�, 𝐹 ◁ := 𝐹 , �̂�◁ := 𝑅𝑟 and �̄�◁ := 𝐺𝑟 ∖ �̂�◁, 𝐹 ◁ := 𝐹 𝑟 ∖ 𝐹 ▷, �̄�◁ := �̄� ∖ �̂�▷.

Based on these sets we can calculate 𝐺𝑟▷ , 𝐹 𝑟▷ , 𝑅𝑟▷ ; 𝐺𝑟◁ , 𝐹 𝑟◁ , 𝑅𝑟◁ and their costs in
step 2.0 of Algorithm 6.4 in 𝑂(Δ𝑟) time in the following way.

∙ �̃�𝑟▷ := 𝒮𝛼
𝑝−𝑞+𝑠−𝑟▷−|�̂�▷|(�̄�

▷) ⇒ 𝐺𝑟▷ = �̂�▷ ∪ �̃�▷

∙ 𝐹 𝑟▷ := 𝒮𝛽

𝑠−𝑟▷−|𝐹 ▷|(𝐹
▷ ∪ �̃�𝑟▷) ⇒ 𝐹 𝑟▷ = 𝐹 ▷ ∪ 𝐹 ▷

∙ �̃�𝑟▷ := 𝒮𝛼+𝛽

𝑟▷−|�̂�▷|(�̄�
▷ ∖ �̃�▷) ⇒ 𝑅𝑟▷ = �̂�▷ ∪ �̃�▷

∙ �̃�𝑟◁ := 𝒮𝛼
𝑝−𝑞+𝑠−𝑟◁−|�̂�◁|(�̄�

◁) ⇒ 𝐺𝑟◁ = �̂�◁ ∪ �̃�◁

∙ 𝐹 𝑟◁ := 𝒮𝛽

𝑠−𝑟◁−|𝐹 ◁|(𝐹
◁ ∪ �̃�𝑟◁) ⇒ 𝐹 𝑟◁ = 𝐹 ◁ ∪ 𝐹 ◁

∙ �̃�𝑟◁ := 𝒮𝛼+𝛽

𝑟◁−|�̂�◁|(�̄�
◁ ∖ �̃�𝑟◁) ⇒ 𝑅𝑟◁ = �̂�◁ ∪ �̃�◁

Then, after Algorithm 6.4 executes one of the if statements stated in the steps 2.1–2.8,
Δ𝑟 is halved. Hence we have to update the candidate sets to half of their current size.
The following list shows the operations to be performed in the end of each of the steps
2.1–2.8 of Algorithm 6.4 to achieve this.

2.1 �̂�▷ := 𝑅𝑟▷ ; �̄�▷ := 𝐺𝑟▷ ∖ �̂�▷; 𝐹 ▷ := 𝐹 𝑟▷ ∖ 𝐹 ▷; �̄�▷ := �̄�▷ ∖ �̂�▷.

�̂�◁ := 𝐺𝑟◁ ; 𝐹 ◁ := 𝐹 𝑟◁ ; �̄�◁ := �̄�◁ ∖ �̂�◁; 𝐹 ◁ := 𝐹 ◁ ∖ 𝐹 ◁; �̄�◁ := 𝑅𝑟◁ ∖ �̂�◁.

93

6 Recoverable Robust Discrete Optimization

2.2 �̂�▷ := 𝑅𝑟; �̄�▷ := 𝐺𝑟 ∖ �̂�▷; 𝐹 ▷ := 𝐹 𝑟 ∖ 𝐹 ▷; �̄�▷ := 𝑅𝑟◁ ∖ �̂�▷.

�̂�◁ := 𝑅𝑟◁ ; �̄�◁ := 𝐺𝑟𝑟 ∖ �̂�◁; 𝐹 ◁ := 𝐹 𝑟◁ ∖ 𝐹 ◁; �̄�◁ := �̄�◁ ∖ �̂�◁.

2.3 �̂�▷ := 𝐺𝑟▷ ; 𝐹 ▷ := 𝐹 𝑟▷ ; �̄�▷ := �̄�▷ ∖ �̂�▷; 𝐹 ▷ := 𝐹 ▷ ∖ 𝐹 ▷; �̄�▷ := 𝑅𝑟▷ ∖ �̂�▷.

�̂�◁ := 𝐺𝑟; 𝐹 ◁ := 𝐹 𝑟; �̂�◁ := 𝑅𝑟▷ ; �̄�◁ := 𝐺𝑟▷ ∖ �̂�◁; 𝐹 ◁ := 𝐹 𝑟▷ ∖ 𝐹 ◁; �̄�◁ := 𝑅𝑟 ∖ �̂�◁.

2.4 Same as 2.2

2.5 Same as 2.3

2.6 (a) �̂�▷ := 𝑅𝑟▷ ; �̄�▷ := 𝐺𝑟▷ ∖ �̂�▷; 𝐹 ▷ := 𝐹 𝑟▷ ∖ 𝐹 ▷; �̄�▷ := �̄�▷ ∖ �̂�▷.

�̂�◁ := 𝑅𝑟◁ ; �̄�◁ := 𝐺𝑟𝑟 ∖ �̂�◁; 𝐹 ◁ := 𝐹 𝑟◁ ∖ 𝐹 ◁; �̄�◁ := �̄�◁ ∖ �̂�◁.

(b) Same as 2.2

2.7 (a) �̂�▷ := 𝐺𝑟▷ ; 𝐹 ▷ := 𝐹 𝑟▷ ; �̄�▷ := �̄�▷ ∖ �̂�▷; 𝐹 ▷ := 𝐹 ▷ ∖ 𝐹 ▷; �̄�▷ := 𝑅𝑟▷ ∖ �̂�▷.

�̂�◁ := 𝐺𝑟◁ ; 𝐹 ◁ := 𝐹 𝑟◁ ; �̄�◁ := �̄�◁ ∖ �̂�◁; 𝐹 ◁ := 𝐹 ◁ ∖ 𝐹 ◁; �̄�◁ := 𝑅𝑟◁ ∖ �̂�◁.

(b) Same as 2.3

2.8 (a) �̂�▷ := 𝐺𝑟▷ ; 𝐹 ▷ := 𝐹 𝑟▷ ; �̄�▷ := �̄�▷ ∖ �̂�▷; 𝐹 ▷ := 𝐹 ▷ ∖ 𝐹 ▷; �̄�▷ := 𝑅𝑟▷ ∖ �̂�▷.

�̂�◁ := 𝑅𝑟◁ ; �̄�◁ := 𝐺𝑟𝑟 ∖ �̂�◁; 𝐹 ◁ := 𝐹 𝑟◁ ∖ 𝐹 ◁; �̄�◁ := �̄�◁ ∖ �̂�◁.

(b) Same as 2.2

(c) Same as 2.3

(d) We can already terminate with the optimal solution.

Since after that the candidate sets can still contain more elements than necessary (and
are too large for our claim), we reduce them by executing

∙ �̄�▷ := 𝒮𝛼
Δ𝑟(�̄�

▷); 𝐹 ▷ := 𝒮𝛽
Δ𝑟(𝐹

▷); �̄�▷ := 𝒮𝛼+𝛽
Δ𝑟 (�̄�▷);

∙ �̄�◁ := 𝒮𝛼
Δ𝑟(�̄�

◁); 𝐹 ◁ := 𝒮𝛽
Δ𝑟(𝐹

◁); �̄�◁ := 𝒮𝛼+𝛽
Δ𝑟 (�̄�◁).

Lemma 6.18. This choice of sets of fixed elements and candidate sets is correct.

Proof. For the fixed elements this follows by the monotonicity with respect to 𝑟 given
by Proposition 6.11.

The correctness of �̄�▷, �̄�◁ follows also from this monotonicity, since only the “next”
Δ𝑟 best elements have to be considered. The sets 𝐹 ▷, 𝐹 ◁ the same holds, since when
calculating 𝐹 𝑟 consider in addition also the currently added greedy elements �̃�𝑟. The
only additional crux with respect to �̄�▷, �̄�◁ is that some of the elements in those sets
could be chosen by �̃�𝑟. But if |�̃�𝑟| elements are selected greedy the same amount of less
rows are to be selected, so this is not a problem.

Combining Lemma 6.17, Lemma 6.18 and the convergence of the geometric series to
a constant, we obtain our main result.

Theorem 6.19. The Recoverable Selection problem can be solved in 𝑂(𝑛) time.

94

6.2 Min Cost Matroid Basis with Cardinality Constraints on the Intersection

6.2 Min Cost Matroid Basis with Cardinality Constraints on
the Intersection

6.2.1 Introduction

The Model Given two matroids ℳ1 = (𝐸,ℬ1) and ℳ2 = (𝐸,ℬ2) on a common
ground set 𝐸 with base sets ℬ1 and ℬ2, some integer 𝑘 ∈ N, and two cost functions
𝑐1, 𝑐2 : 𝐸 → R, we consider the optimization problem to find a base 𝑋 ∈ ℬ1 and a base
𝑌 ∈ ℬ2 minimizing 𝑐1(𝑋)+𝑐2(𝑌) subject to either a lower bound constraint |𝑋∩𝑌 | ≤ 𝑘,
an upper bound constraint |𝑋∩𝑌 | ≥ 𝑘, or an equality constraint |𝑋∩𝑌 | = 𝑘 on the size of
the intersection of the two bases 𝑋 and 𝑌 . Here, as usual, we write 𝑐1(𝑋) =

∑︀
𝑒∈𝑋 𝑐1(𝑒)

and 𝑐2(𝑌) =
∑︀

𝑒∈𝑌 𝑐2(𝑒) to shorten notation. Let us denote the following problem by
(𝑃=𝑘).

min 𝑐1(𝑋) + 𝑐2(𝑌)

s.t. 𝑋 ∈ ℬ1

𝑌 ∈ ℬ2

|𝑋 ∩ 𝑌 | = 𝑘

Accordingly, if constraint |𝑋∩𝑌 | = 𝑘 is replaced by upper bound constraint |𝑋∩𝑌 | ≤
𝑘, the problem is called (𝑃≤𝑘), and finally, if constraint |𝑋 ∩ 𝑌 | = 𝑘 is replaced by the
lower bound constraint |𝑋∩𝑌 | ≥ 𝑘, the problem is called (𝑃≥𝑘). Certainly, it only makes
sense to consider integers 𝑘 in the range between 0 and 𝐾 := min{rk(ℳ1), rk(ℳ2)},
where rk(ℳ𝑖) for 𝑖 ∈ {1, 2} is the rank of matroid ℳ𝑖, i.e., the cardinality of each basis
in ℳ𝑖 which is unique. For details on matroids, we refer to [103].

The recoverable robust matroid basis problem – an application of (𝑃≥). The special
case of problem (𝑃≥) in which ℬ1 = ℬ2 is known under the name ”recoverable robust
matroid basis problem (RecRobMatroid)”, see e.g. the PhD thesis of Christina Büsing
[26]. Büsing presented an algorithm for RecRobMatroid which is exponential in 𝑘. In
2017, Hradovich, Kaperski, and Zielinski [72] proved that RecRobMatroid can be solved
in polynomial time via some iterative relaxation algorithm and asked for a strongly
polynomial time algorithm. Shortly thereafter, the same authors presented in [71] a
strongly polynomial time primal dual algorithm for the special case of RecRobMatroid
on a graphical matroid. The question whether a strongly polynomial time algorithm for
RecRobMatroid on general matroids exists was posed as an open question.

More on RecRobMatroid can be found in Section 6.2.5.

Our contribution. In Section 6.2.2 we show that the problems (𝑃≤𝑘) and (𝑃≥𝑘) can
be polynomially reduced to weighted matroid intersection. Since weighted matroid in-
tersection can be solved in strongly polynomial time by some very elegant primal-dual
algorithm (cf. Lawler 1970), this answers the open question raised in [72] affirmatively.
As we can find min cost matroid basis with lower or upper bound constraints on the car-
dinality of the intersection of the bases in strongly polynomial time, the question arises

95

6 Recoverable Robust Discrete Optimization

whether or not the problem with equality constraint (𝑃=𝑘) can be solved in strongly
polynomial time. We manage to provide an affirmative answer for this question too. In
Section 6.2.3 we suggest a strongly polynomial time algorithm that constructs an optimal
solution for (𝑃=𝑘). Finally, in Section 6.2.4, we study the generalizations which result
when turning from matroids to polymatroids with lower and upper bound constraints
on the size of the meet |𝑥 ∧ 𝑦| :=

∑︀
𝑒∈𝐸 min{𝑥𝑒, 𝑦𝑒}. Interestingly, as it turns out, the

generalization of (𝑃≥𝑘) can be solved in strongly polynomial time via a reduction to
some polymatroidal flow problem, while the generalizations of (𝑃≤𝑘) and (𝑃=𝑘) can be
shown to be weakly NP-hard, already for uniform polymatroids. The question whether
the latter two problems are even strongly NP-hard remains open.

6.2.2 Reduction of (𝑃≤𝑘) and (𝑃≥𝑘) to Weighted Matroid Intersection

We first note that (𝑃≤𝑘) and (𝑃≥𝑘) are computationally equivalent. To see this, consider
any instance (ℳ1,ℳ2, 𝑘, 𝑐1, 𝑐2) of (𝑃≥𝑘), where ℳ1 = (𝐸,ℬ1), and ℳ2 = (𝐸,ℬ2) are
two matroids on the same ground set 𝐸 with base sets ℬ1 and ℬ2, respectively. Define
𝑐*2 = −𝑐2, 𝑘

* = rk(ℳ1) − 𝑘, and let ℳ*
2 = (𝐸,ℬ*

2) with ℬ*
2 = {𝐸 ∖ 𝑌 | 𝑌 ∈ ℬ2} be the

dual matroid of ℳ2. Since for 𝑋 ∈ ℬ1, 𝑌 ∈ ℬ2 it holds that

(i) |𝑋 ∩ 𝑌 | ≤ 𝑘 ⇐⇒ |𝑋 ∩ (𝐸 ∖ 𝑌)| = |𝑋| − |𝑋 ∩ 𝑌 | ≥ rk(ℳ1) − 𝑘 = 𝑘*, and

(ii) 𝑐1(𝑋) + 𝑐2(𝑌) = 𝑐1(𝑋) + 𝑐2(𝐸) − 𝑐2(𝐸 ∖ 𝑌) = 𝑐1(𝑋) + 𝑐*2(𝐸 ∖ 𝑌) + 𝑐2(𝐸),

where 𝑐2(𝐸) is a constant, it follows that (𝑋,𝑌) is a minimizer of (𝑃≥𝑘) if and only if
(𝑋,𝐸 ∖𝑌) is a minimizer of (𝑃≤𝑘*) for the instance (ℳ1,ℳ*

2, 𝑘
*, 𝑐1, 𝑐*2), and vice versa.

Similarly, it can be shown that any problem of type (𝑃≤𝑘) polynomially reduces to an
instance of type (𝑃≥𝑘*).

Theorem 6.20. (𝑃≤𝑘) and (𝑃≥𝑘) can be reduced to weighted matroid intersection.

Proof. By our observation above, it suffices to show that (𝑃≤𝑘) can be reduced to
weighted matroid intersection. Let �̃� := 𝐸1 ∪̇ 𝐸2, where 𝐸1, 𝐸2 are two copies of our
original ground set 𝐸. We consider 𝒩1 = (�̃�, ℐ̃1) and 𝒩2 = (�̃�, ℐ̃2), two special types of
matroids on this new ground set �̃�, where ℐ1, ℐ2, ℐ̃1, ℐ̃2 are the sets of independent sets
of ℳ1,ℳ2,𝒩1,𝒩2 respectively. First, let 𝒩1 = (�̃�, ℐ̃1) be the direct sum of ℳ1 on 𝐸1

and ℳ2 on 𝐸2. That is, for 𝐴 ⊆ �̃� it holds that 𝐴 ∈ ℐ̃1 if and only if 𝐴 ∩ 𝐸1 ∈ ℐ1 and
𝐴 ∩ 𝐸2 ∈ ℐ2.

The second matroid 𝒩2 = (�̃�, ℐ̃2) is defined as follows: we call 𝑒1 ∈ 𝐸1 and 𝑒2 ∈ 𝐸2 a
pair, if 𝑒1 and 𝑒2 are copies of the same element in 𝐸. If 𝑒1, 𝑒2 are a pair, then we call
𝑒2 the sibling of 𝑒1 and vice versa. Then

ℐ̃2 := {𝐴 ⊆ �̃� : 𝐴 contains at most 𝑘 pairs}.

For any 𝐴 ⊆ �̃�, 𝑋 = 𝐴 ∩ 𝐸1 and 𝑌 = 𝐴 ∩ 𝐸2 forms a feasible solution for (𝑃≤𝑘) if
and only if 𝐴 is a basis in matroid 𝒩1 and independent in matroid 𝒩2. Thus, (𝑃≤𝑘) is
equivalent to the weighted matroid intersection problem

max{𝑤(𝐴) : 𝐴 ∈ ℐ̃1 ∩ ℐ̃2}

96

6.2 Min Cost Matroid Basis with Cardinality Constraints on the Intersection

with weight function

𝑤(𝑒) =

{︃
𝐶 − 𝑐1(𝑒) if 𝑒 ∈ 𝐸1,

𝐶 − 𝑐2(𝑒) if 𝑒 ∈ 𝐸2

for some constant 𝐶 > 0 chosen large enough to ensure that 𝐴 is a basis in 𝒩1. To see that
𝒩2 is indeed a matroid, we first observe that ℐ̃2 is non-empty and downward-closed (i.e.,
𝐴 ∈ ℐ̃2, and 𝐵 ⊂ 𝐴 implies 𝐵 ∈ ℐ̃2). To see that ℐ̃2 satisfies the matroid-characterizing
augmentation property

𝐴,𝐵 ∈ ℐ̃2 with |𝐴| ≤ |𝐵| implies ∃𝑒 ∈ 𝐵 ∖𝐴 with 𝐴 + 𝑒 ∈ ℐ̃2,

take any two independent sets 𝐴,𝐵 ∈ ℐ̃2. If 𝐴 cannot be augmented from 𝐵, i.e., if
𝐴 + 𝑒 ̸∈ ℐ̃2 for every 𝑒 ∈ 𝐵 ∖ 𝐴, then 𝐴 must contain exactly 𝑘 pairs, and for each
𝑒 ∈ 𝐵 ∖ 𝐴, the sibling of 𝑒 must be contained in 𝐴. This implies |𝐵| ≤ |𝐴|, i.e., 𝒩2 is a
matroid.

6.2.3 A Strongly Polynomial Primal-Dual Algorithm for (𝑃=𝑘)

We saw in the previous section that both problems, (𝑃≤𝑘) and (𝑃≥𝑘), can be solved
in strongly polynomial time via a weighted matroid intersection algorithm. This leads
to the question whether we can solve the problem (𝑃=𝑘) with equality constraint on
the size of the intersection efficiently as well. At first sight it seems that we could use
the same construction we used above to show that (𝑃≤𝑘) can be reduced to matroid
intersection, and simply ask whether there exists a solution 𝐴 ⊆ �̃� which is a basis in
both, 𝒩1 and 𝒩2. Note, however, that a feasible solution to (𝑃=𝑘) corresponds to a set
𝐴 which is a basis in 𝒩1 and an independent set in 𝒩2 with exactly 𝑘 elements, which is
not necessarily a basis in 𝒩2. Furthermore, observe that it is not a priori clear whether
the problem (𝑃=𝑘) can be solved in polynomial time.

In this section, we describe a primal-dual strongly polynomial algorithm for (𝑃=𝑘).
Our algorithm can be seen as a generalization of the algorithm presented by Hradovich
et al. in [72]. However, the analysis of our algorithm turns out to be much simpler than
the analysis in [72].

A relaxation of (𝑃=𝑘). Let us consider the following piecewise linear concave function

val(𝜆) = min
𝑋∈ℬ1,𝑌 ∈ℬ2

𝑐1(𝑋) + 𝑐2(𝑌) − 𝜆|𝑋 ∩ 𝑌 |

which depends on the parameter 𝜆 ≥ 0.

97

6 Recoverable Robust Discrete Optimization

𝜆0 𝜆1 𝜆2 𝜆3

Note that val(𝜆) + 𝑘𝜆 is the Lagrangian relaxation of problem (𝑃=𝑘). Observe that
any base pair (𝑋,𝑌) ∈ ℬ1 × ℬ2 determines a line 𝐿(𝑋,𝑌)(𝜆) that hits the 𝑦-axis at
𝑐1(𝑋) + 𝑐2(𝑌) and has negative slope |𝑋 ∩ 𝑌 |. Thus, val(𝜆) is the lower envelope of all
such lines. It follows that every base pair (𝑋,𝑌) ∈ ℬ1 ×ℬ2 which intersects with val(𝜆)
in either a segment or a breakpoint, and fulfills |𝑋 ∩ 𝑌 | = 𝑘, is a minimizer of (𝑃=𝑘).

Sketch of our algorithm. We first solve

min{𝑐1(𝑋) + 𝑐2(𝑌) | 𝑋 ∈ ℬ1, 𝑌 ∈ ℬ2}

without any constraint on the intersection, by solving the two independent minimum cost
matroid base problems. These problems can be solved with a matroid greedy algorithm
in 𝒪(𝑚 log𝑚+𝑚𝑇) time, where 𝑚 = |𝐸| and 𝑇 is the time needed to evaluate one call
to the independence oracle. Let (�̄�, 𝑌) be an optimal solution of this problem.

1. If |�̄� ∩ 𝑌 | = 𝑘, we are done as (�̄�, 𝑌) is optimal for (𝑃=𝑘).

2. If |�̄� ∩ 𝑌 | = 𝑘′ < 𝑘, our algorithm starts with the optimal solution (�̄�, 𝑌) for
(𝑃=𝑘′), and iteratively increases 𝑘′ by one until 𝑘′ = 𝑘. Our algorithm maintains
as invariant an optimal solution (�̄�, 𝑌) for the current problem (𝑃=𝑘′), together
with some dual optimal solution (�̄�, 𝛽) satisfying the optimality conditions, stated
in Theorem 6.21 below, for the current breakpoint �̄�. Details of the algorithm are
described below.

3. If |�̄�∩𝑌 | > 𝑘, we instead consider an instance of (𝑃=𝑘*) for 𝑘* = rk(ℳ1)−𝑘, costs
𝑐1 and 𝑐*2 = −𝑐2, and the two matroids ℳ1 = (𝐸,ℬ1) and ℳ*

2 = (𝐸,ℬ*
2). As seen

above, an optimal solution (𝑋,𝐸 ∖𝑌) of problem (𝑃=𝑘*) corresponds to an optimal
solution (𝑋,𝑌) of our original problem (𝑃=𝑘), and vice versa. Moreover, |�̄�∩𝑌 | >
𝑘 for the initial base pair (�̄�, 𝑌) implies that |�̄� ∩ (𝐸 ∖ 𝑌)| = |�̄�| − |�̄� ∩ 𝑌 | < 𝑘*.
Thus, starting with the initial feasible solution (�̄�, 𝐸 ∖ 𝑌) for (𝑃=𝑘*), we can
iteratively increase |�̄� ∩ (𝐸 ∖ 𝑌)| until |�̄� ∩ (𝐸 ∖ 𝑌)| = 𝑘*, as described in step 2.

An optimality condition. The following optimality condition turns out to be crucial
for the design of our algorithm.

98

6.2 Min Cost Matroid Basis with Cardinality Constraints on the Intersection

Theorem 6.21 (Sufficient pair optimality conditions). For fixed 𝜆 ≥ 0, base pair

(𝑋,𝑌) ∈ ℬ1 × ℬ2 is a minimizer of val(𝜆) if there exist 𝛼, 𝛽 ∈ R|𝐸|
+ such that

(i) 𝑋 is a min cost basis for the cost vector 𝑐1 − 𝛼, and 𝑌 is a min cost basis for the
cost vector 𝑐2 − 𝛽;

(ii) 𝛼𝑒 = 0 for 𝑒 ∈ 𝑋 ∖ 𝑌 , and 𝛽𝑒 = 0 for 𝑒 ∈ 𝑌 ∖𝑋;

(iii) 𝛼𝑒 + 𝛽𝑒 = 𝜆 for each 𝑒 ∈ 𝐸.

Proof. Consider the following linear relaxation of an integer programming formulation of
the problem of computing val(𝜆). The letters in squared brackets indicate the associated
dual variables. We denote this problem by (𝑃𝜆).

min
∑︁
𝑒∈𝐸

𝑐1(𝑒)𝑥𝑒 +
∑︁
𝑒∈𝐸

𝑐2(𝑒)𝑦𝑒 − 𝜆
∑︁
𝑒∈𝐸

𝑧𝑒

s.t.
∑︁
𝑒∈𝐸

𝑥𝑒 = rk1(𝐸) [𝜇]∑︁
𝑒∈𝑈

𝑥𝑒 ≤ rk1(𝑈) ∀𝑈 ⊂ 𝐸 [𝑤𝑈]∑︁
𝑒∈𝐸

𝑦𝑒 = rk2(𝐸) [𝜈]∑︁
𝑒∈𝑈

𝑦𝑒 ≤ rk2(𝑈) ∀𝑈 ⊂ 𝐸 [𝑣𝑈]

𝑥𝑒 − 𝑧𝑒 ≥ 0 ∀𝑒 ∈ 𝐸 [𝛼𝑒]

𝑦𝑒 − 𝑧𝑒 ≥ 0 ∀𝑒 ∈ 𝐸 [𝛽𝑒]

𝑥𝑒, 𝑦𝑒, 𝑧𝑒 ≥ 0 ∀𝑒 ∈ 𝐸.

The dual program is then (𝐷𝜆):

max
∑︁
𝑈⊂𝐸

rk1(𝑈)𝑤𝑈 + rk1(𝐸)𝜇 +
∑︁
𝑈⊂𝐸

rk2(𝑈)𝑣𝑈 + rk2(𝐸)𝜈

s.t.
∑︁

𝑈⊂𝐸 : 𝑒∈𝑈
𝑤𝑈 + 𝜇 ≤ 𝑐1(𝑒) − 𝛼𝑒 ∀𝑒 ∈ 𝐸∑︁

𝑈⊂𝐸 : 𝑒∈𝑈
𝑣𝑈 + 𝜈 ≤ 𝑐2(𝑒) − 𝛽𝑒 ∀𝑒 ∈ 𝐸

𝛼𝑒 + 𝛽𝑒 ≥ 𝜆 ∀𝑒 ∈ 𝐸

𝑤𝑈 , 𝑣𝑈 ≤ 0. ∀𝑈 ⊂ 𝐸

𝛼𝑒, 𝛽𝑒 ≥ 0. ∀𝑒 ∈ 𝐸

Applying the strong LP-duality theory to the two inner problems which correspond
to the dual variables (𝑤, 𝜇) and (𝑣, 𝜈), respectively, yields

99

6 Recoverable Robust Discrete Optimization

max
𝛼≥0

{︁ ∑︁
𝑈⊂𝐸

rk1(𝑈)𝑤𝑈 + rk1(𝐸)𝜇 |
∑︁

𝑈⊂𝐸 : 𝑒∈𝑈
𝑤𝑈 + 𝜇 ≤ 𝑐1(𝑒) − 𝛼𝑒 ∀𝑒 ∈ 𝐸,

𝑤𝑈 ≤ 0 ∀𝑈 ⊂ 𝐸
}︁

= min
𝑋∈ℬ1

𝑐1(𝑋) − 𝛼(𝑋) (6.1)

max
𝛽≥0

{︁ ∑︁
𝑈⊂𝐸

rk2(𝑈)𝑣𝑈 + rk2(𝐸)𝜈 |
∑︁

𝑈⊂𝐸 : 𝑒∈𝑈
𝑣𝑈 + 𝜈 ≤ 𝑐2(𝑒) − 𝛽𝑒 ∀𝑒 ∈ 𝐸,

𝑣𝑈 ≤ 0 ∀𝑈 ⊂ 𝐸
}︁

= min
𝑌 ∈ℬ2

𝑐2(𝑌) − 𝛽(𝑌) (6.2)

Thus, replacing the two inner problems by their respective duals, we can rewrite (𝐷𝜆)
as follows:

max

(︂
min
𝑋∈ℬ1

(𝑐1(𝑋) − 𝛼(𝑋)) + min
𝑌 ∈ℬ2

(𝑐2(𝑌) − 𝛽(𝑌))

)︂
s.t. 𝛼𝑒 + 𝛽𝑒 ≥ 𝜆 ∀𝑒 ∈ 𝐸

𝛼𝑒, 𝛽𝑒 ≥ 0. ∀𝑒 ∈ 𝐸

Now, take any tuple (𝑋,𝑌, 𝛼, 𝛽) satisfying the optimality conditions (i),(ii) and (iii)
for 𝜆. Observe that the incidence vectors 𝑥 and 𝑦 of 𝑋 and 𝑌 , respectively, together
with the incidence vector 𝑧 of the intersection 𝑋 ∩ 𝑌 , constitutes a feasible solution of
the primal LP (𝑃𝜆), while 𝛼 and 𝛽 yield a feasible solution of the dual LP (𝐷𝜆). Since

𝑐1(𝑋)−𝛼(𝑋)+𝑐2(𝑌)−𝛽(𝑌) = 𝑐1(𝑋)+𝑐2(𝑌)−
∑︁

𝑒∈𝑋∩𝑌
(𝛼𝑒+𝛽𝑒) = 𝑐1(𝑋)+𝑐2(𝑌)−𝜆|𝑋∩𝑌 |,

the objective values of the primal and dual feasible solutions coincide. It follows that any
tuple (𝑋,𝑌, 𝛼, 𝛽, 𝜆) satisfying optimality conditions (i),(ii) and (iii) must be optimal for
(𝑃𝜆) and its dual 𝐷𝜆). Since 𝑋 ∈ ℬ1, 𝑌 ∈ ℬ2 it follows that (𝑋,𝑌) is also a minimizer
for val(𝜆).

Construction of the auxiliary digraph. Given a tuple (𝑋,𝑌, 𝛼, 𝛽, 𝜆) satisfying the op-
timality conditions stated in Theorem 6.21, we construct a digraph 𝐷 = 𝐷(𝑋,𝑌, 𝛼, 𝛽)
with red-blue colored arcs as follows:

∙ one vertex for each element in 𝐸;

∙ a red arc (𝑒, 𝑓) if 𝑒 ̸∈ 𝑋, 𝑋 − 𝑓 + 𝑒 ∈ ℬ1, and 𝑐1(𝑒) − 𝛼𝑒 = 𝑐1(𝑓) − 𝛼𝑓 ; and

∙ a blue arc (𝑓, 𝑔) if 𝑔 ̸∈ 𝑌 , 𝑌 − 𝑓 + 𝑔 ∈ ℬ2, and 𝑐2(𝑔) − 𝛽𝑔 = 𝑐2(𝑓) − 𝛽𝑓 .

100

6.2 Min Cost Matroid Basis with Cardinality Constraints on the Intersection

𝑌 ∖𝑋

𝐸 ∖ (𝑌 ∪𝑋)

𝑋 ∩ 𝑌

𝑋 ∖ 𝑌

Note: Although not depicted in the picture, there might well be blue arcs going from
𝑌 ∖𝑋 to either 𝐸 ∖ (𝑋 ∪ 𝑌) or 𝑋 ∖ 𝑌 , or blue arcs going from 𝑋 ∩ 𝑌 to 𝑋 ∖ 𝑌 , or red
arcs going from 𝑌 ∖𝑋 to 𝑋 ∖ 𝑌 .

Observe that any red arc (𝑒, 𝑓) represents a move from 𝑋, to the set 𝑋 ′ = 𝑋∪{𝑒}∖{𝑓}
which we denote by 𝑋 ′ := 𝑋⊕ (𝑒, 𝑓). Analogously, any blue arc (𝑒, 𝑓) represents a move
from 𝑌 , to the set 𝑌 ′ = 𝑌 ∪ {𝑓} ∖ {𝑒}, which we also denote by 𝑌 ′ := 𝑌 ⊕ (𝑒, 𝑓). Given
a red-blue alternating path 𝑃 in 𝐷 we denote by 𝑋 ′ = 𝑋 ⊕ 𝑃 the set obtained from 𝑋
by performing all moves corresponding to red arcs, and, accordingly, by 𝑌 ′ = 𝑌 ⊕𝑃 the
set obtained from 𝑌 by performing all moves corresponding to blue arcs.

Augmenting paths. We call any shortcut-free red-blue alternating path linking a vertex
in 𝑌 ∖𝑋 to a vertex in 𝑋 ∖ 𝑌 an augmenting path. For example, every shortest (w.r.t.
number of arcs) red-blue alternating path is shortcut-free.

Lemma 6.22. If 𝑃 is an augmenting path in 𝐷, then

∙ 𝑋 ′ = 𝑋 ⊕ 𝑃 is a min cost basis in ℬ1 w.r.t. the costs 𝑐1 − 𝛼,

∙ 𝑌 ′ = 𝑌 ⊕ 𝑃 is a min cost basis in ℬ2 w.r.t. the costs 𝑐2 − 𝛽, and

∙ |𝑋 ′ ∩ 𝑌 ′| = |𝑋 ∩ 𝑌 | + 1.

Proof. By a well-known Lemma of A. Frank used to prove the correctness of the weighted
matroid intersection algorithm [see Lemma 13.35 in Korte & Vygen, p. 373], we know
that 𝑋 ′ = 𝑋⊕𝑃 is a min cost basis in ℬ1 w.r.t. the costs 𝑐1−𝛼, and 𝑌 ′ = 𝑌 ⊕𝑃 is a min
cost basis in ℬ2 w.r.t. the costs 𝑐2 − 𝛽. The fact that the cardinality of the intersection
is increased by one follows directly from the construction of the digraph.

101

6 Recoverable Robust Discrete Optimization

Primal update: Given (𝑋,𝑌, 𝛼, 𝛽, 𝜆) satisfying the optimality conditions and the asso-
ciated digraph 𝐷, we update (𝑋,𝑌) to (𝑋 ′, 𝑌 ′) with 𝑋 ′ = 𝑋⊕𝑃 , and 𝑌 ′ = 𝑌 ⊕𝑃 , as long
as some augmenting path 𝑃 exists in 𝐷. It follows by construction and the Lemma above
that (𝑋 ′, 𝑌 ′, 𝛼, 𝛽, 𝜆) satisfies the optimality conditions and that |𝑋 ′ ∩𝑌 ′| = |𝑋 ∩𝑌 |+ 1.

Dual update: If 𝐷 admits no augmenting path, and |𝑋 ∩ 𝑌 | < 𝑘, let 𝑅 denote the set
of vertices/elements which are reachable from 𝑌 ∖𝑋 on some red-blue alternating path.
Note that 𝑌 ∖𝑋 ⊆ 𝑅 and (𝑋 ∖ 𝑌) ∩𝑅 = ∅. For each 𝑒 ∈ 𝐸 we define the residual costs

𝑐1(𝑒) := 𝑐1(𝑒) − 𝛼𝑒, and 𝑐2(𝑒) := 𝑐2(𝑒) − 𝛽𝑒.

Note that, by optimality of 𝑋 and 𝑌 w.r.t. 𝑐1 and 𝑐2, respectively, we have 𝑐1(𝑒) ≥ 𝑐1(𝑓)
whenever 𝑋 − 𝑓 + 𝑒 ∈ ℬ1, and 𝑐2(𝑒) ≥ 𝑐2(𝑓) whenever 𝑌 − 𝑓 + 𝑒 ∈ ℬ2.

We compute a “step length” 𝛿 > 0 as follows: Compute 𝛿1 and 𝛿2 via

𝛿1 := min{𝑐1(𝑒) − 𝑐1(𝑓) | 𝑒 ∈ 𝑅 ∖𝑋, 𝑓 ∈ 𝑋 ∖𝑅 : 𝑋 − 𝑓 + 𝑒 ∈ ℬ1},

𝛿2 := min{𝑐2(𝑔) − 𝑐2(𝑓) | 𝑔 ̸∈ 𝑌 ∪𝑅, 𝑓 ∈ 𝑌 ∩𝑅 : 𝑌 − 𝑔 + 𝑓 ∈ ℬ2}.

Note that it is possible that the sets over which the minima are calculated are empty.
In these cases we define the corresponding minimum to be ∞. Note that in the special
case where ℳ1 = ℳ2 this case cannot occur.

Since neither a red nor a blue arc goes from 𝑅 to 𝐸 ∖ 𝑅, we know that both, 𝛿1 and
𝛿2, are strictly positive, so that 𝛿 := min{𝛿1, 𝛿2} > 0. Now, update

𝛼′
𝑒 =

{︃
𝛼𝑒 + 𝛿 if 𝑒 ∈ 𝑅

𝛼𝑒 else.
and 𝛽′

𝑒 =

{︃
𝛽𝑒 if 𝑒 ∈ 𝑅

𝛽𝑒 + 𝛿 else.

If 𝛿 = ∞ in the min above, the claimed statements hold for arbitrary 𝛿 > 0.

Lemma 6.23. (𝑋,𝑌, 𝛼′, 𝛽′) satisfies the optimality conditions for 𝜆′ = 𝜆 + 𝛿.

Proof. By construction, we have for each 𝑒 ∈ 𝐸

∙ 𝛼′
𝑒 + 𝛽′

𝑒 = 𝛼𝑒 + 𝛽𝑒 + 𝛿 = 𝜆 + 𝛿 = 𝜆′.

∙ 𝛼′
𝑒 = 0 for 𝑒 ∈ 𝑋 ∖ 𝑌 , since 𝛼𝑒 = 0 and 𝑒 /∈ 𝑅 (as (𝑋 ∖ 𝑌) ∩𝑅 = ∅).

∙ 𝛽′
𝑒 = 0 for 𝑒 ∈ 𝑌 ∖𝑋, since 𝛽𝑒 = 0 and (𝑌 ∖𝑋) ⊆ 𝑅.

Moreover, by construction and choice of 𝛿, we observe that 𝑋 and 𝑌 are optimal for
𝑐1 − 𝛼′ and 𝑐2 − 𝛽′, since

1. 𝑐1(𝑒) − 𝛼′
𝑒 ≥ 𝑐1(𝑓) − 𝛼′

𝑓 whenever 𝑋 − 𝑓 + 𝑒 ∈ ℬ1,

2. 𝑐2(𝑔) − 𝛽′
𝑔 ≥ 𝑐2(𝑓) − 𝛽′

𝑓 whenever 𝑌 − 𝑓 + 𝑔 ∈ ℬ2.

102

6.2 Min Cost Matroid Basis with Cardinality Constraints on the Intersection

To see claims 1. and 2., suppose for the sake of contradiction that 𝑐1(𝑒)−𝛼′
𝑒 < 𝑐1(𝑓)−𝛼′

𝑓

for some pair {𝑒, 𝑓} with 𝑒 ̸∈ 𝑋, 𝑓 ∈ 𝑋 and 𝑋 − 𝑓 + 𝑒 ∈ ℬ1. Then 𝑒 ∈ 𝑅, 𝑓 ̸∈ 𝑅,
𝛼′
𝑒 = 𝛼𝑒 − 𝛿, and 𝛼′

𝑓 = 𝛼𝑓 , implying 𝛿 > 𝑐1(𝑒) − 𝛼𝑒 − 𝑐1(𝑓) + 𝛼𝑓 = 𝑐1(𝑒) − 𝑐1(𝑓), in
contradiction to our choice of 𝛿. Similarly, it can be shown that 𝑌 is optimal w.r.t.
𝑐2 − 𝛽′. Thus, (𝑋,𝑌, 𝛼′, 𝛽′) satisfies the optimality conditions for 𝜆′ = 𝜆 + 𝛿.

Lemma 6.24. If 𝛿 = ∞ and |𝑋 ∩ 𝑌 | < 𝑘 the given instance is infeasible.

Proof. This follows by the fact that 𝛿 = ∞ if and only if the set (𝑋 ∖ 𝑌) ∩ 𝑅 = ∅,
even if we construct the graph 𝐷′ without requiring the condition that for red edges
𝑐1(𝑒) − 𝛼𝑒 = 𝑐1(𝑓) − 𝛼𝑓 and for blue edges 𝑐2(𝑔) − 𝛽𝑔 = 𝑐2(𝑓) − 𝛽𝑓 holds.

The non existence of such a path implies infeasibility of the instance by the classic
feasibility conditions for non-weighted matroid intersection.

Lemma 6.25. If (𝑋,𝑌, 𝛼, 𝛽, 𝜆) satisfies the optimality conditions and 𝛿 < ∞, a primal
update can be performed after at most |𝐸| dual updates.

Proof. With each dual update, at least one more vertex enters the set 𝑅′ of reachable
elements in digraph 𝐷′ = 𝐷(𝑋,𝑌, 𝛼′, 𝛽′).

Algorithm 6.1. Summarizing, we obtain the following algorithm
Input: ℳ1 = (𝐸,ℬ1), ℳ2 = (𝐸,ℬ2), 𝑐1, 𝑐2 : 𝐸 → R, 𝑘 ∈ N
Output: Optimal solution (𝑋,𝑌) of (𝑃=𝑘)

1. Compute an optimal solution (𝑋,𝑌) of min{𝑐1(𝑋) + 𝑐2(𝑌) | 𝑋 ∈ ℬ1, 𝑌 ∈ ℬ2}

2. If |𝑋 ∩ 𝑌 | = 𝑘, return (𝑋,𝑌) as optimal solution of (𝑃=𝑘)

3. Else, if |𝑋 ∩ 𝑌 | > 𝑘, run Algorithm 6.1 on ℳ1, ℳ*
2, 𝑐1, 𝑐*2 := −𝑐2, and 𝑘* :=

rk(ℳ1) − 𝑘

4. Else, set 𝜆 = 0, 𝛼 = 0, 𝛽 = 0

5. While |𝑋 ∩ 𝑌 | < 𝑘, do

∙ Construct auxiliary digraph 𝐷 based on (𝑋,𝑌, 𝜆, 𝛼, 𝛽)

∙ If there exists an augmenting path 𝑃 in 𝐷, update primal

𝑋 = 𝑋 ⊕ 𝑃, 𝑌 = 𝑌 ⊕ 𝑃

∙ Else, compute step length 𝛿 > 0 as follows: Compute 𝛿1 and 𝛿2 via

𝛿1 := min{𝑐1(𝑒) − 𝑐1(𝑓) | 𝑒 ∈ 𝑅 ∖𝑋, 𝑓 ∈ 𝑋 ∖𝑅 : 𝑋 − 𝑓 + 𝑒 ∈ ℬ1},

𝛿2 := min{𝑐2(𝑔) − 𝑐2(𝑓) | 𝑔 ̸∈ 𝑌 ∪𝑅, 𝑓 ∈ 𝑌 ∩𝑅 : 𝑌 − 𝑔 + 𝑓 ∈ ℬ2}.
Note that it is possible that the sets over which the minima are calculated
are empty. In these cases we define the corresponding minimum to be ∞.

103

6 Recoverable Robust Discrete Optimization

𝛿 := min{𝛿1, 𝛿2}
If 𝛿 = ∞, terminate with the message ”infeasible instance”

Else, set 𝜆 = 𝜆 + 𝛿 and update dual:

𝛼𝑒 =

{︃
𝛼𝑒 + 𝛿 if 𝑒 reachable

𝛼𝑒 otherwise.
𝛽𝑒 =

{︃
𝛽𝑒 if 𝑒 reachable

𝛽𝑒 + 𝛿 otherwise.

∙ Iterate with (𝑋,𝑌, 𝜆, 𝛼, 𝛽)

6. Return (𝑋,𝑌)

As a consequence of our considerations, the following theorem follows.

Theorem 6.26. Algorithm 6.1 solves (𝑃=𝑘) using at most 𝑘 × |𝐸| primal and dual
augmentations.

6.2.4 Recoverable Polymatroid Base Problem

Recall that a function 𝑓 : 2𝐸 → R is called submodular if 𝑓(𝑈) + 𝑓(𝑉) ≥ 𝑓(𝑈 ∪ 𝑉) +
𝑓(𝑈 ∩𝑉) for all 𝑈, 𝑉 ⊆ 𝐸. Function 𝑓 is called monotone if 𝑓(𝑈) ≤ 𝑓(𝑉) for all 𝑈 ⊆ 𝑉 ,
and normalized if 𝑓(∅) = 0. Given a submodular, monotone and normalized function 𝑓 ,
the pair (𝐸, 𝑓) is called a polymatroid, and 𝑓 is called rank function of the polymatroid
(𝐸, 𝑓). The associated polymatroid base polytope is defined as:

ℬ(𝑓) :=
{︁
𝑥 ∈ R|𝐸|

+ | 𝑥(𝑈) ≤ 𝑓(𝑈) ∀𝑈 ⊆ 𝐸, 𝑥(𝐸) = 𝑓(𝐸)
}︁
,

where, as usual, 𝑥(𝑈) :=
∑︀

𝑒∈𝑈 𝑥𝑒 for all 𝑈 ⊆ 𝐸. We refer to the book ”Submodular
Functions and Optimization” by Fujishige [55] for details on polymatroids and polyma-
troidal flows as referred to below.

Remark. For the sake of simplicity the arguments below are presented for the case of
submodular functions defined on the Boolean lattice (2𝐸 ,⊆,∩,∪). But it can be seen that
the arguments presented work also for the more general setting of submodular systems
defined on arbitrary distributive lattices, as introduced in the book of Fujishige.

Polymatroids generalize matroids in the following sense: if the polymatroid rank func-
tion 𝑓 additionally satisfies the unit-increase property

𝑓(𝑆 ∪ {𝑒}) ≤ 𝑓(𝑆) + 1 ∀𝑆 ⊆ 𝐸, 𝑒 ∈ 𝐸,

then the vertices of the associated polymatroid base polytope ℬ(𝑓) are exactly the inci-
dence vectors of a matroid (𝐸,ℬ) with ℬ := {𝐵 ⊆ 𝐸 | 𝑓(𝐵) = 𝑓(𝐸)}. Conversely, the
rank function rk : 2𝐸 → R which assigns to every subset 𝑈 ⊆ 𝐸 the maximal cardinality
rk(𝑈) of an independent set within 𝑈 is a polymatroid rank function satisfying the unit-
increase property. In particular, bases of a polymatroid base polytope are not necessarily
{0, 1}-vectors anymore. Generalizing the set-theoretic intersection and union operations

104

6.2 Min Cost Matroid Basis with Cardinality Constraints on the Intersection

from sets (a.k.a. {0, 1}-vectors) to arbitrary vectors can be done via the following binary
operations, called meet and join: given two vectors 𝑥, 𝑦 ∈ R|𝐸| the meet of 𝑥 and 𝑦 is
𝑥∧ 𝑦 := (min{𝑥𝑒, 𝑦𝑒})𝑒∈𝐸 , and the join of 𝑥 and 𝑦 is 𝑥∨ 𝑦 := (max{𝑥𝑒, 𝑦𝑒})𝑒∈𝐸 . Instead
of the size of the intersection, we now talk about the size of the meet, abbreviated by

|𝑥 ∧ 𝑦| :=
∑︁
𝑒∈𝐸

min{𝑥𝑒, 𝑦𝑒}.

Similarly, the size of the join is |𝑥 ∨ 𝑦| :=
∑︀

𝑒∈𝐸 max{𝑥𝑒, 𝑦𝑒}. Note that |𝑥| + |𝑦| =
|𝑥 ∧ 𝑦| + |𝑥 ∨ 𝑦|. It follows that for any base pair (𝑥, 𝑦) ∈ ℬ(𝑓1) × ℬ(𝑓2), we have
|𝑥| = 𝑓1(𝐸) =

∑︀
𝑒∈𝐸 : 𝑥𝑒>𝑦𝑒

(𝑥𝑒 − 𝑦𝑒) − |𝑥 ∧ 𝑦| and |𝑦| = 𝑓2(𝐸) =
∑︀

𝑒∈𝐸 : 𝑦𝑒>𝑥𝑒
(𝑦𝑒 −

𝑥𝑒) − |𝑥 ∧ 𝑦|. Therefore, |𝑥 ∧ 𝑦| ≥ 𝑘 if and only if both,
∑︀

𝑒∈𝐸 : 𝑥𝑒>𝑦𝑒
(𝑥𝑒 − 𝑦𝑒) ≤

𝑓1(𝐸) − 𝑘 and
∑︀

𝑒∈𝐸 : 𝑥𝑒<𝑦𝑒
(𝑦𝑒 − 𝑥𝑒) ≤ 𝑓2(𝐸) − 𝑘. The following problem can be seen

as a direct generalization of problem (𝑃≥𝑘) when moving from matroid bases to more
general polymatroid base polytopes.

A generalization to polymatroid base polytopes. Let 𝑓1, 𝑓2 be two polymatroid rank
functions with associated polymatroid base polytopes ℬ(𝑓1) and ℬ(𝑓2), let 𝑐1, 𝑐2 : 𝐸 → R
be two cost functions on 𝐸, and let 𝑘 be some integer. The following problem, which we
denote by (𝑃≥𝑘), is a direct generalization of the matroid version (𝑃≥𝑘) to polymatroids.
We obtain

min
∑︁
𝑒∈𝐸

𝑐1(𝑒)𝑥(𝑒) +
∑︁
𝑒∈𝐸

𝑐2(𝑒)𝑦(𝑒)

s.t. 𝑥 ∈ ℬ(𝑓1)

𝑦 ∈ ℬ(𝑓2)

|𝑥 ∧ 𝑦| ≥ 𝑘.

In the following, we first show that (𝑃≥𝑘) can be reduced to an instance of the polyma-
troidal flow problem, which is known to be computationally equivalent to a submodular
flow problem and can thus be solved in strongly polynomial time. Afterwards, we show
that the two problems (𝑃≤𝑘) and (𝑃=𝑘), which can be obtained from (𝑃≥𝑘) by replacing
the constraint |𝑥 ∧ 𝑦| ≥ 𝑘 by either |𝑥 ∧ 𝑦| ≤ 𝑘, or |𝑥 ∧ 𝑦| = 𝑘, respectively, are weakly
NP-hard.

6.2.4.1 Reduction of Polymatroid Base Problem (𝑃≥𝑘) to the Polymatroidal Flow
Problem

The polymatroidal flow problem can be described as follows: we are given a digraph
𝐺 = (𝑉,𝐴), arc costs 𝛾 : 𝐴 → R, lower bounds 𝑙 : 𝐴 → R, and two submodular functions
𝑓+
𝑣 and 𝑓−

𝑣 for each vertex 𝑣 ∈ 𝑉. Function 𝑓+
𝑣 is defined on 2𝛿

+(𝑣), the set of subsets of
the set 𝛿+(𝑣) of 𝑣-leaving arcs, while 𝑓−

𝑣 is defined on 2𝛿
−(𝑣), the set of subsets of the

set 𝛿−(𝑣) of 𝑣-entering arcs. Given a flow 𝜙 : 𝐴 → R, the net-flow at 𝑣 is abbreviated

105

6 Recoverable Robust Discrete Optimization

by 𝜕𝜙(𝑣) :=
∑︀

𝑎∈𝛿−(𝑣) 𝜙(𝑎)−∑︀
𝑎∈𝛿+(𝑣) 𝜙(𝑎). The associated polymatroidal flow problem

can now be formulated as follows.

min
∑︁
𝑎∈𝐴

𝛾(𝑎)𝜙(𝑎)

s.t. 𝑙(𝑎) ≤ 𝜙(𝑎) (𝑎 ∈ 𝐴)

𝜕𝜙(𝑣) = 0 (𝑣 ∈ 𝑉)

𝜙|𝛿+(𝑣) ∈ 𝑃 (𝑓+
𝑣) (𝑣 ∈ 𝑉)

𝜙|𝛿−(𝑣) ∈ 𝑃 (𝑓−
𝑣) (𝑣 ∈ 𝑉)

Here, 𝑃 (𝑓) means the submodular polyhedron of 𝑓 defined as

𝑃 (𝑓) := {𝑥 ∈ R𝐸 : 𝑥(𝑈) ≤ 𝑓(𝑈) ∀𝑈 ⊆ 𝐸}.

As described in Fujishige’s book [55, page 127f], the polymatroidal flow problem is com-
putationally equivalent to submodular flow problem and can thus be solved in strongly
polynomial time.

Theorem 6.27. The Recoverable Polymatroid Base problem can be reduced to the Poly-
matroidal Flow Problem.

Proof. We create an instance of the Polymatroid Flow problem (see Figure 6.11 for a
visualization). The underlying digraph 𝐺 contains vertices 𝑠, 𝑢1, 𝑢2, 𝑣1, 𝑣2, 𝑡 and for three
copies 𝐸𝑋 , 𝐸𝑍 , 𝐸𝑌 of the element set 𝐸 one pair of vertices 𝑣1𝑒 , 𝑣

2
𝑒 for all 𝑒 ∈ 𝐸𝑋∪𝐸𝑍∪𝐸𝑌 .

The digraph contains an arc 𝑒 = (𝑣1𝑒 , 𝑣
2
𝑒) between every pair of those arcs and the cost

𝛾(𝑒) of those arcs is equal to 𝑐1(𝑒) if 𝑒 ∈ 𝐸𝑋 , equal to 𝑐2(𝑒) if 𝑒 ∈ 𝐸𝑌 and equal to
𝑐1(𝑒) + 𝑐2(𝑒) if 𝑒 ∈ 𝐸𝑍 , where we abuse notation and extend the cost functions on 𝐸
to the three copies of the elements. All the other arc costs are equal to 0. 𝐺 contains
arcs (𝑢1, 𝑣

1
𝑒) for all 𝑒 ∈ 𝐸𝑋 ∪ 𝐸𝑍 , which we call the “red arcs”, and arcs (𝑣2𝑒 , 𝑣2) for all

𝑒 ∈ 𝐸𝑍∪𝐸𝑌 , which we call the “green arcs”. In addition, there exist further arcs (𝑢2, 𝑣
1
𝑒)

for all 𝑒 ∈ 𝐸𝑌 and (𝑣2𝑒 , 𝑣1) for all 𝑒 ∈ 𝐸𝑋 . We connect the special vertices with the arcs
(𝑠, 𝑢1), (𝑠, 𝑢2), (𝑣1, 𝑡), (𝑣2, 𝑡), (𝑡, 𝑠). We set 𝑙((𝑠, 𝑢1)) = 𝑓1(𝐸) and 𝑙((𝑣2, 𝑡)) = 𝑓2(𝐸) and
for all other arcs 𝑒 we set 𝑙(𝑒) = 0. In addition we create an upper bound equal to
𝑓2(𝐸) − 𝑘 on the flow going into 𝑢2 and an upper bound equal to 𝑓1(𝐸) − 𝑘 on the
flow going out of 𝑣1 by introducing constant submodular functions 𝑓+

𝑢2
and 𝑓−

𝑣1 with the

corresponding values, accordingly. In addition the submodular function 𝑓𝑖 corresponds
to the polymatroid obtained by introducing two copies of 𝑒1, 𝑒2 for each element 𝑒 ∈ 𝐸
and defining

𝑓𝑖(𝑆) := 𝑓𝑖({𝑒 ∈ 𝐸 : 𝑒1 ∈ 𝑆 or 𝑒2 ∈ 𝑆}).

We assign 𝑓+
𝑢1

:= 𝑓1 and 𝑓−
𝑣2 := 𝑓2.

We now proof that a minimum cost polymatroidal flow corresponds to a solution to
(𝑃≥𝑘). Consider the two designated vertices 𝑢1 and 𝑣2 such that 𝛿+(𝑢1) are the red arcs,
and 𝛿−(𝑣2) are the green arcs in the figure. Take any feasible polymatroidal flow 𝜙 and

106

6.2 Min Cost Matroid Basis with Cardinality Constraints on the Intersection

...

...

...

c1

c1 + c2

c2

ϕ|δ−(u2) ≤ f2(E)− k

ϕ|δ+(v1) ≤ f1(E)− k

≥ f1(E)

≥ f2(E)

∈ P (f̃1)

∈ P (f̃2)

EX

EZ

EY

u1

u2

v1

v2

s t

Figure 6.11: The Polymatroid Flow instance used to solve the Recoverable Polymatroid
Base Problem.

107

6 Recoverable Robust Discrete Optimization

let �̃� denote the restriction of 𝜙 to the red arcs, and 𝑦 denote the restriction of 𝜙 to
the green arcs. Note that there is a unique arc entering 𝑢1 which we denote by (𝑠, 𝑢1).
Observe that the constraints 𝜙(𝑠, 𝑢1) ≥ 𝑓1(𝐸), the 0 lower bound on the arcs in 𝐸𝑋 , 𝐸𝑌

and 𝜙|𝛿+(𝑢1) ∈ 𝑃 (𝑓1) for the flow going into 𝐸𝑋 and 𝐸𝑍 imply that the flow vector �̃�

on the red arcs belongs to ℬ(𝑓1). Analogously, the flow vector 𝑦 satisfies 𝑦 ∈ ℬ(𝑓2). By
setting 𝑥(𝑒) :=

∑︀
𝑒∈𝑋 �̃�𝑒 +

∑︀
𝑒∈𝑍 �̃�𝑒 and 𝑦(𝑒) :=

∑︀
𝑒∈𝑌 𝑦𝑒 +

∑︀
𝑒∈𝑍 𝑦𝑒, we obtain that the

cost of the polymatroid flow is given by∑︁
𝑒∈𝐸

𝑐1(𝑒)𝑥(𝑒) +
∑︁
𝑒∈𝐸

𝑐2(𝑒)𝑦(𝑒).

From the constraint 𝜙|𝛿−(𝑢2) ≤ 𝑓2(𝐸) − 𝑘 on the inflow into 𝐸𝑌 , and the constraint
𝜙|𝛿+(𝑣1) ≤ 𝑓1(𝐸) − 𝑘 on the outflow out of 𝐸𝑋 or the inflow into 𝑣1, respectively, it
follows that |𝑥 ∧ 𝑦| ≥ 𝑘 holds.

Note that (𝑃≥𝑘) is computationally equivalent to

min
∑︁
𝑒∈𝐸

𝑐1(𝑒)𝑥(𝑒) +
∑︁
𝑒∈𝐸

𝑐2(𝑒)𝑦(𝑒)

s.t. 𝑥 ∈ ℬ(𝑓1)

𝑦 ∈ ℬ(𝑓2)

‖𝑥− 𝑦‖1 ≤ 𝑘′

which we denote by (𝑃‖·‖1). This holds true due to the connection |𝑥| + |𝑦| = 2|𝑥 ∧ 𝑦| +
‖𝑥− 𝑦‖1 between |𝑥 ∧ 𝑦|, the size of the meet of 𝑥 and 𝑦, and the 1-norm of 𝑥− 𝑦. It is
an interesting open question whether the problem (𝑃‖·‖1) is also tractable if one replaces
‖𝑥−𝑦‖1 ≤ 𝑘′ by arbitrary norms or specifically the 2-norm. We conjecture that methods
based on convex optimization could work in this case, likely leading to a polynomial,
but not strongly polynomial, running time.

6.2.4.2 Hardness of the Polymatroid Base Problems (𝑃≤𝑘) and (𝑃=𝑘)

Let us consider the decision problem associated to problem (𝑃≤𝑘) which can be formu-
lated as follows: given an instance (𝑓1, 𝑓2, 𝑐1, 𝑐2, 𝑘) of (𝑃≤𝑘) together with some target
value 𝑇 ∈ R, decide whether or not there exists a base pair (𝑥, 𝑦) ∈ ℬ(𝑓1) × ℬ(𝑓2)
with |𝑥 ∧ 𝑦| ≤ 𝑘 of cost 𝑐𝑇1 𝑥 + 𝑐𝑇2 𝑦 ≤ 𝑇. Clearly, this decision problem belongs to
the complexity class NP, since we can verify in polynomial time whether a given pair
(𝑥, 𝑦) of vectors satisfies the three conditions (i) |𝑥∧ 𝑦| ≤ 𝑘, (ii) 𝑐𝑇1 𝑥+ 𝑐𝑇2 𝑦 ≤ 𝑇 , and (iii)
(𝑥, 𝑦) ∈ ℬ(𝑓1)×ℬ(𝑓2). To verify (iii), we assume, as usual, the existence of an evaluation
oracle.

108

6.2 Min Cost Matroid Basis with Cardinality Constraints on the Intersection

Reduction from partition. To show that the problem (𝑃≤𝑘) is NP-hard, we show that
any instance of the NP-complete problem partition can be polynomially reduced to
an instance of (𝑃≤𝑘)-decision. Recall the problem partition: given a set 𝐸 of 𝑛 real
numbers 𝑎1, . . . , 𝑎𝑛, the task is to decide whether or not the 𝑛 numbers can be partitioned
into two sets 𝐼 and 𝐼 with 𝐸 = 𝐼 ∪ 𝐼 and 𝐼 ∩ 𝐼 = ∅ such that

∑︀
𝑗∈𝐼 𝑎𝑗 =

∑︀
𝑗∈𝐼 𝑎𝑗 .

Now, given an instance 𝑎1, . . . , 𝑎𝑛 of partition with 𝐵 :=
∑︀

𝑗∈𝐸 𝑎𝑗 , we construct the
following polymatroid rank function

𝑓(𝑈) = min{
∑︁
𝑗∈𝑈

𝑎𝑗 ,
𝐵

2
} ∀𝑈 ⊆ 𝐸.

It is not hard to see that 𝑓 is indeed a polymatroid rank function as it is normalized,
monotone, and submodular. Moreover, we observe that the answer to partition on
instance 𝑎1, . . . , 𝑎𝑛 is ”yes” if and only if there exists two bases 𝑥 and 𝑦 in polymatroid
base polytope ℬ(𝑓) satisfying |𝑥 ∧ 𝑦| ≤ 0.

Similarly, it can be shown that any instance of partition can be reduced to an
instance of the decision problem associated to (𝑃=𝑘), since the answer to partition is
”yes” if and only if for the polymatroid rank function 𝑓 as constructed above there exist
two bases 𝑥 and 𝑦 in the polymatroid base polytope ℬ(𝑓) satisfying |𝑥 ∧ 𝑦| = 0.

6.2.5 The Recoverable Robust Matroid Base Problem under Uncertainty
Degrees

There is a strong connection between the model described in this section and the recov-
erable robust matroid base problem (RecRobMatroid) mentioned in the introduction.
In RecRobMatroid, we are given a matroid ℳ = (𝐸,ℬ) on a ground set 𝐸 with base
set ℬ, some integer 𝑘 ∈ N, a first stage cost function 𝑐1 and an uncertainty set 𝒰 that
contains different scenarios 𝑆, where each scenario 𝑆 ∈ 𝒰 gives a possible second stage
cost 𝑆 = (𝑐𝑆(𝑒))𝑒∈𝐸 .

RecRobMatroid then consists of two stages. In the first stage one needs to pick a base
𝑋 ∈ ℬ. Then, the scenario 𝑆 ∈ 𝒰 is revealed and there is a recovery stage, where one
needs to pick a second basis 𝑌 that differs in at most 𝑘 elements from the original basis
𝑋, i.e., we require |𝑋 ∩ 𝑌 | ≥ 𝑟𝑘(ℳ) − 𝑘. The goal is to minimize the worst-case cost
𝑐1(𝑋) + 𝑐𝑆(𝑌). The recoverable robust matroid basis problem can be written as follows:

min
𝑋∈ℬ

⎛⎝𝑐1(𝑋) + max
𝑆∈𝒰

min
𝑌 ∈ℬ

|𝑋∩𝑌 |≥𝑟𝑘(ℳ)−𝑘

𝑐𝑆(𝑌)

⎞⎠ (6.3)

There are several ways in which the uncertainty set 𝒰 can be represented, and one
popular way is the interval uncertainty representation. In this representation, we are
given a function 𝑑 : 𝐸 → R and assume that the uncertainty set 𝒰 can be represented
by a set of |𝐸| intervals:

𝒰 =
{︀
𝑆 = (𝑐𝑆(𝑒))𝑒∈𝐸 | 𝑐𝑆 ∈ [𝑐′(𝑒), 𝑐′(𝑒) + 𝑑(𝑒)], 𝑒 ∈ 𝐸

}︀

109

6 Recoverable Robust Discrete Optimization

In the worst-case scenario 𝑆 we have that 𝑐𝑆(𝑒) = 𝑐′(𝑒) + 𝑑(𝑒) for all 𝑒 ∈ 𝐸. Setting
𝑐2(𝑒) := 𝑐𝑆(𝑒), it is easy to see that Problem (6.3) is a special case of (𝑃≥), where
ℬ1 = ℬ2.

In this section we focus on variations of the interval uncertainty representation. One
such popular variation was introduced by Bertsimans and Sim in [12]. This new scenario
set, denoted by 𝒰1(Γ), is a subset of 𝒰 in which there are at most Γ resources in which
𝑐𝑆(𝑒) > 𝑐′(𝑒). Formally:

𝒰1(Γ) =

{︃
𝑆 = (𝑐𝑆(𝑒))𝑒∈𝐸 | 𝑐𝑆 ∈ [𝑐′(𝑒), 𝑐′(𝑒) + 𝛿𝑒𝑑(𝑒)], 𝛿𝑒 ∈ {0, 1}, 𝑒 ∈ 𝐸,

∑︁
𝑒∈𝐸

𝛿𝑒 ≤ Γ

}︃
.

Here, Γ ∈ N represents the degree of uncertainty.
A second interesting way of defining the scenario set is to impose budget constraints

on the amount of uncertainty (See e.g., Nasrabadi and Orlin [101]). In this case, an
rational uncertainty parameter Γ ∈ R+ defines the following set of scenarios:

𝒰2(Γ) =

{︃
𝑆 = (𝑐𝑆(𝑒))𝑒∈𝐸 | 𝑐𝑆 ∈ [𝑐′(𝑒), 𝑐′(𝑒) + 𝛿𝑒𝑑(𝑒)], 𝛿𝑒 ∈ [0, 1], 𝑒 ∈ 𝐸,

∑︁
𝑒∈𝐸

𝛿𝑒 ≤ Γ

}︃
.

These alternative uncertainty sets lead to new variants of our original problem. For
𝑖 ∈ {1, 2} we define:

𝑃 𝑖
≤𝑘(Γ) := min

𝑋∈ℬ1

⎛⎝𝑐1(𝑋) + max
𝑆∈𝒰𝑖(Γ)

min
𝑌 ∈ℬ2

|𝑋∩𝑌 |≥𝑟𝑘(ℳ)−𝑘

𝑐𝑆(𝑌)

⎞⎠ (6.4)

Similarly, we define 𝑃 𝑖
≥𝑘(Γ) and 𝑃 𝑖

=𝑘(Γ) for 𝑖 ∈ {1, 2}. Hradovich, Kasperski and
Zieliński [72] show that for any problem for which the recoverable version is polynomially
solvable, an approximation algorithm under uncertainty sets 𝒰1(Γ) and 𝒰2(Γ) exists. Let

𝛼 := max{𝑎 ∈ (0, 1] | 𝑐(𝑒) ≥ 𝑎(𝑐(𝑒) + 𝑑(𝑒)) for all 𝑒 ∈ 𝐸}.

The following theorem follows directly from [72, Theorem 5].

Theorem 6.28. Problems 𝑃 1
≤𝑘(Γ), 𝑃 1

≥𝑘(Γ) and 𝑃 1
=𝑘(Γ) under scenario set 𝒰1(Γ) are

approximable within 1
𝛼 .

Moreover, for each instance of 𝑃 2
≤𝑘(Γ), 𝑃 2

≥𝑘(Γ) and 𝑃 2
=𝑘(Γ) we define

𝛽 := max{𝑏 ∈ (0, 1] | Γ ≥ 𝑏
∑︁
𝑒∈𝐸

𝑑(𝑒)} and 𝛾 := min{𝑐 ∈ [0, 1) | Γ ≤ 𝑐𝐹 (�̂�)},

where 𝐹 (�̂�) is the optimal value of the corresponding optimization problem under the
original uncertainty set 𝒰 . Then again, the following theorem follows directly from [72,
Theorem 5].

Theorem 6.29. Problems 𝑃 2
≤𝑘(Γ), 𝑃 2

≥𝑘(Γ) and 𝑃 2
=𝑘(Γ) under scenario set 𝒰2(Γ) are

approximable within min{ 1
𝛼 ,

1
𝛽 ,

1
1−𝛾 }.

110

6.3 Conclusion and Open Problems

6.3 Conclusion and Open Problems

In this chapter we have resolved the computational complexity of the Recoverable
Selection problem and obtained the first strongly polynomial time algorithm for the
Recoverable Matroid Basis problem. We also generalized the model of recoverable
robustness to polymatroids and obtained a strongly polynomial time algorithm for this
more general setting.

A major open problem in the are of recoverable robust optimization is whether the
recoverable robust spanning tree problem for the uncertainty set 𝒰2(Γ) can be solved in
polynomial time.

Besides the mentioned results, there are still many further classic combinatorial opti-
mization problems for which recoverable robust optimization has not yet been studied.

111

Bibliography

[1] S. Abravaya and M. Segal. Maximizing the number of obnoxious facilities to locate
within a bounded region. Computers and Operations Research, 37:163–171, 2010.

[2] Heiner Ackermann, Heiko Röglin, and Berthold Vöcking. On the impact of combi-
natorial structure on congestion games. Journal of the ACM (JACM), 55(6):25:1–
25:22, 2008.

[3] Warren P. Adams and Hanif D. Sherali. Mixed-integer bilinear programming prob-
lems. Mathematical Programming, 59(1):279–305, 1993.

[4] Kim Allemand, Komei Fukuda, Thomas M. Liebling, and Erich Steiner. A poly-
nomial case of unconstrained zero-one quadratic optimization. Mathematical Pro-
gramming, 91(1):49–52, 2001.

[5] Srinivasa Rao Arikati and C. Pandu Rangan. Linear algorithm for optimal path
cover problem on interval graphs. Information Processing Letters, 35(3):149–153,
1990.

[6] Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-
decomposable graphs. Journal of Algorithms, 12(2):308–340, 1991.

[7] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach.
Cambridge University Press, 2009.

[8] Arjang Assad and Wei Xuan Xu. The quadratic minimum spanning tree problem.
Naval Research Logistics, 39(3):399–417, 1992.

[9] Mokhtar S. Bazaraa and Jamie J. Goode. A cutting-plane algorithm for the
quadratic set-covering problem. Operations Res., 23(1):150–158, 1975.

[10] Xavier Berenguer. A characterization of linear admissible transformations for
the m-travelling salesmen problem. European Journal of Operational Research,
3(3):232–238, 1979.

[11] Attila Bernáth and Zoltán Király. On the tractability of some natural packing,
covering and partitioning problems. Discrete Applied Mathematics, 180:25–35,
2015.

[12] Dimitris Bertsimas and Melvyn Sim. Robust discrete optimization and network
flows. Mathematical Programming, 98(1):49–71, Sep 2003.

113

Bibliography

[13] Andreas Björklund and Thore Husfeldt. Shortest two disjoint paths in polynomial
time. In International Colloquium on Automata, Languages, and Programming,
pages 211–222. Springer, 2014.

[14] Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, and Robert E.
Tarjan. Time bounds for selection. Journal of computer and system sciences,
7(4):448–461, 1973.

[15] Fritz Bökler and Petra Mutzel. Output-sensitive algorithms for enumerating the
extreme nondominated points of multiobjective combinatorial optimization prob-
lems. In Algorithms-ESA 2015, pages 288–299. Springer, 2015.

[16] Paul Bonsma. The complexity of the matching-cut problem for planar graphs and
other graph classes. Journal of Graph Theory, 62(2):109–126, 2009.

[17] A. Bouras. Problème d’affectation quadratique de petit rang; modèles, compléxite,
et applications. PhD thesis, L’Université Joseph Fourier, Grenoble, France, 1996.

[18] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge uni-
versity press, 2004.

[19] Richard A. Brualdi. Combinatorial Matrix Classes. Encyclopedia of Mathematics
and its Applications. Cambridge University Press, 2006.

[20] Richard A. Brualdi and Herbert J. Ryser. Combinatorial Matrix Theory. Ency-
clopedia of Mathematics and its Applications. Cambridge University Press, 1991.

[21] Maurizio Bruglieri, Francesco Maffioli, and Matthias Ehrgott. Cardinality con-
strained minimum cut problems: complexity and algorithms. Discrete Applied
Mathematics, 137(3):311–341, 2004.

[22] Tobias Brunsch and Heiko Röglin. Improved smoothed analysis of multiobjective
optimization. Journal of the ACM (JACM), 62(1):4:1–4:58, 2015.

[23] Rainer E. Burkard. Efficiently solvable special cases of hard combinatorial opti-
mization problems. Mathematical programming, 79(1-3):55–69, 1997.

[24] Rainer E. Burkard. Admissible tranformations and assignment problems. Vietnam
Journal of Mathematics, 35(4):373–386, 2007.

[25] Rainer E. Burkard, Bettina Klinz, and Rüdiger Rudolf. Perspectives of monge
properties in optimization. Discrete Applied Mathematics, 70(2):95–161, 1996.

[26] Christina Büsing. Recoverable robustness in combinatorial optimization. Cuvillier
Verlag, 2011.

[27] Emmanuel J. Candès and Benjamin Recht. Exact matrix completion via convex
optimization. Foundations of Computational mathematics, 9(6):717, 2009.

114

[28] P. Cappanera. A survey on obnoxious facility location problems. Technical report,
Dipartimento di Informatica, Universitá di Pisa, Italy, 2010.

[29] P.J. Carstensen. Parametric cost shortest path problems. unpublished Bellcore
memo, 1984.

[30] E. Çela, V.G. Deineko, and G.J. Woeginger. Linearizable special cases of the QAP.
Journal of Combinatorial Optimization, 31:1269–1279, 2016.

[31] Maw-Shang Chang, Sheng-Lung Peng, and Jenn-Liang Liaw. Deferred-query: An
efficient approach for some problems on interval graphs. Networks, 34(1):1–10,
1999.

[32] R.L. Church and R.S. Garfinkel. Locating an obnoxious facility on a network.
Transportation Science, 12:107–118, 1978.

[33] Charles J. Colbourn. The complexity of completing partial latin squares. Discrete
Applied Mathematics, 8(1):25–30, 1984.

[34] Augustin Cosse and Laurent Demanet. Rank-one matrix completion is solved by
the sum-of-squares relaxation of order two. In Computational Advances in Multi-
Sensor Adaptive Processing (CAMSAP), 2015 IEEE 6th International Workshop
on, pages 9–12. IEEE, 2015.

[35] W.R. Cunningham. On submodular function minimization. Combinatorica, 5:185–
192, 1985.

[36] Ante Ćustić and Bettina Klinz. The constant objective value property for multi-
dimensional assignment problems. Discrete Optimization, 19:23–35, 2016.

[37] Ante Ćustić and Stefan Lendl. On streaming algorithms for the Steiner cycle and
path cover problem on interval graphs and falling platforms in video games, 2018.
submitted.

[38] Ante Ćustić and Abraham P. Punnen. Average value of solutions of the bipartite
quadratic assignment problem and linkages to domination analysis. Operations
Research Letters, 45(3):232–237, 2017.

[39] Ante Ćustić and Abraham P. Punnen. A characterization of linearizable instances
of the quadratic minimum spanning tree problem. Journal of Combinatorial Op-
timization, 35(2):436–453, 2018.

[40] Ante Ćustić, Vladyslav Sokol, Abraham P Punnen, and Binay Bhattacharya. The
bilinear assignment problem: complexity and polynomially solvable special cases.
Mathematical Programming, 166(1-2):185–205, 2017.

[41] H.N. De Ridder et al. Information system on graph classes and their inclusions
(isgci), 2016.

115

Bibliography

[42] Vladimir Deineko, Eranda Dragoti-Çela, Bettina Klinz, Stefan Lendl, and Ger-
hard J. Woeginger. Matrix completion problems, 2019. in preparation.

[43] Eranda Dragoti-Çela. The quadratic assignment problem. Kluwer Academic Pub-
lishers, Dordrecht, 1998.

[44] Abraham Duarte, Manuel Laguna, Rafael Mart́ı, and Jesús Sánchez-Oro. Opti-
mization procedures for the bipartite unconstrained 0-1 quadratic programming
problem. Computers & Operations Research, 51:123–129, 2014.

[45] J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–
467, 1965.

[46] Tali Eilam-Tzoreff. The disjoint shortest paths problem. Discrete Applied Mathe-
matics, 85(2):113–138, 1998.

[47] E. Erkut and S. Neuman. Analytical models for locating undesirable facilities.
European Journal of Operational Research, 40:275–291, 1989.

[48] Robert W. Floyd and Ronald L. Rivest. Expected time bounds for selection.
Communications of the ACM, 18(3):165–172, 1975.

[49] Steven Fortune, John Hopcroft, and James Wyllie. The directed subgraph home-
omorphism problem. Theoretical Computer Science, 10(2):111–121, 1980.

[50] András Frank. Packing paths, circuits and cuts: a survey. Forschungsinst. für
Diskrete Mathematik, 1988.

[51] András Frank. Connections in combinatorial optimization, volume 38. OUP Ox-
ford, 2011.

[52] Andras Frank, Stefan Lendl, Britta Peis, and Veerle Timmermans. Minimum cost
matroid bases with cardinality constraints on the intersection, 2019. preprint.

[53] Alexandre S. Freire, Eduardo Moreno, and Juan Pablo Vielma. An integer linear
programming approach for bilinear integer programming. Operations Research
Letters, 40:74–77, 2012.

[54] A. M. Frieze. Complexity of a 3-dimensional assignment problem. European Jour-
nal of Operational Research, 13(2):161–164, 1983.

[55] Satoru Fujishige. Submodular functions and optimization, volume 58. Elsevier,
2005.

[56] Harold N. Gabow and Herbert H. Westermann. Forests, frames, and games: algo-
rithms for matroid sums and applications. Algorithmica, 7(1-6):465–497, 1992.

[57] Tomas Gal. Postoptimal analyses, parametric programming and related topics.
Walter de Gruyter, 1995.

116

[58] T. Gallai. Kritische Graphen II. A Magyar Tudományos Akadémia Matematikai
Kutató Intézetének Közleményei, 8:373–395, 1963.

[59] T. Gallai. Maximale Systeme unabhängiger Kanten. A Magyar Tudományos
Akadémia Matematikai Kutató Intézetének Közleményei, 9:401–413, 1964.

[60] Joseph L. Ganley, Mordecai J. Golin, and Jeffrey S. Salowe. The multi-weighted
spanning tree problem. In International Computing and Combinatorics Confer-
ence, pages 141–150. Springer, 1995.

[61] M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

[62] Pawel Gawrychowski, Nadav Krasnopolsky, Shay Mozes, and Oren Weimann. Dis-
persion on trees. In 25th Annual European Symposium on Algorithms (ESA 2017),
pages 40:1–40:13, 2017.

[63] Fred Glover, Tao Ye, Abraham P. Punnen, and Gary Kochenberger. Integrating
tabu search and VLSN search to develop enhanced algorithms: A case study using
bipartite boolean quadratic programs. European Journal of Operational Research,
241(3):697–707, 2015.

[64] A.J. Goldman and P.M. Dearing. Concepts of optimal location for partially noxious
facilities. ORSA Bulletin, 23:B–31, 1975.

[65] Martin Charles Golumbic. Matrix sandwich problems. Linear algebra and its
applications, 277(1-3):239–251, 1998.

[66] Martin Charles Golumbic, Haim Kaplan, and Ron Shamir. Graph sandwich prob-
lems. Journal of Algorithms, 19(3):449–473, 1995.

[67] Vineet Goyal, Latife Genc-Kaya, and R Ravi. An fptas for minimizing the product
of two non-negative linear cost functions. Mathematical programming, 126(2):401–
405, 2011.

[68] Alexander Grigoriev, Tim A. Hartmann, Stefan Lendl, and Gerhard J. Woegin-
ger. Dispersing obnoxious facilities on a graph. In 36th International Symposium
on Theoretical Aspects of Computer Science, STACS 2019, March 13-16, 2019,
Berlin, Germany, pages 33:1–33:11, 2019.

[69] M. Grötschel, L. Lovász, and A. Schrijver. Geometric algorithms and combinatorial
optimization. Springer Verlag, 1988.

[70] Daniel Mier Gusfield. Sensitivity analysis for combinatorial optimization. PhD
thesis, University of California, Berkeley, 1980.

[71] Mikita Hradovich, Adam Kasperski, and Pawe l Zieliński. Recoverable robust span-
ning tree problem under interval uncertainty representations. Journal of Combi-
natorial Optimization, 34(2):554–573, 2017.

117

Bibliography

[72] Mikita Hradovich, Adam Kasperski, and Pawe l Zieliński. The recoverable robust
spanning tree problem with interval costs is polynomially solvable. Optimization
Letters, 11(1):17–30, 2017.

[73] Ruo-Wei Hung and Maw-Shang Chang. Linear-time certifying algorithms for the
path cover and hamiltonian cycle problems on interval graphs. Applied Mathemat-
ics Letters, 24(5):648–652, 2011.

[74] Alon Itai, Christos H Papadimitriou, and Jayme Luiz Szwarcfiter. Hamilton paths
in grid graphs. SIAM Journal on Computing, 11(4):676–686, 1982.

[75] Gerold Jäger and Paul Molitor. Algorithms and experimental study for the trav-
eling salesman problem of second order. In Combinatorial optimization and appli-
cations, volume 5165 of Lecture Notes in Comput. Sci., pages 211–224. Springer,
Berlin, 2008.

[76] S. Kabadi and A. Punnen. An 𝑂(𝑛4) algorithm for the QAP linearization problem.
Mathemathics of Operations Research, 36:754–761, 2011.

[77] Daniel Karapetyan, Abraham P. Punnen, and Andrew J. Parkes. Markov chain
methods for the bipartite boolean quadratic programming problem. European
Journal of Operational Research, 260(2):494–506, 2017.

[78] David R. Karger. Enumerating parametric global minimum cuts by random inter-
leaving. In STOC, pages 542–555, 2016.

[79] Adam Kasperski and Pawe l Zieliński. Robust discrete optimization under discrete
and interval uncertainty: A survey. In Robustness analysis in decision aiding,
optimization, and analytics, pages 113–143. Springer, 2016.

[80] Adam Kasperski and Pawe l Zieliński. Robust recoverable and two-stage selection
problems. Discrete Applied Mathematics, 233:52–64, 2017.

[81] Arman Kaveh. Algorithms and theoretical topics on selected combinatorial opti-
mization problems. Master’s thesis, Simon Fraser University, 2010.

[82] J. Mark Keil. Finding hamiltonian circuits in interval graphs. Information Pro-
cessing Letters, 20(4):201–206, 1985.

[83] Bettina Klinz, Rüdiger Rudolf, and Gerhard J. Woeginger. On the recognition of
permuted bottleneck monge matrices. Discrete applied mathematics, 63(1):43–74,
1995.

[84] Bettina Klinz, Rüdiger Rudolf, and Gerhard J. Woeginger. Permuting matrices
to avoid forbidden submatrices. Discrete applied mathematics, 60(1-3):223–248,
1995.

[85] Donald E. Knuth. The art of computer programming: Volume 3/sorting and
searching, 1973.

118

[86] Hiroshi Konno. An algorithm for solving bilinear knapsack problem. Journal of
the Operations Research Society of Japan, 24(4):360–374, 1981.

[87] Bernhard Korte and Clyde L. Monma. Some remarks on a classification of oracle-
type-algorithms. In Numerische Methoden bei graphentheoretischen und kombina-
torischen Problemen, pages 195–215. Springer, 1979.

[88] Bernhard Korte and Jens Vygen. Combinatorial optimization: theory and algo-
rithms. Springer, 2018.

[89] Panos Kouvelis and Gang Yu. Robust discrete optimization and its applications,
volume 14. Springer Science & Business Media, 2013.

[90] Thomas Lachmann and Stefan Lendl. Efficient algorithms for the recoverable
(robust) selection problem. 17th Cologne-Twente Workshop on Graphs & Combi-
natorial Optimization, 2019. accepted.

[91] Thomas Lachmann, Stefan Lendl, and Gerhard J. Woeginger. Efficient algorithms
for the recoverable (robust) selection problem, 2019. in preparation.

[92] Stefan Lendl, Ante Ćustić, and Abraham P. Punnen. Combinatorial optimization
problems with interaction costs: Complexity and solvable cases. Discrete Opti-
mization, 2019. to appear.

[93] Stefan Lendl, Britta Peis, and Veerle Timmermans. Matroid sum with cardinal-
ity constraints on the intersection. 17th Cologne-Twente Workshop on Graphs &
Combinatorial Optimization, 2019. accepted.

[94] Christian Liebchen, Marco Lübbecke, Rolf Möhring, and Sebastian Stiller. The
concept of recoverable robustness, linear programming recovery, and railway ap-
plications. In Robust and online large-scale optimization, pages 1–27. Springer,
2009.

[95] L. Lovász and M.D. Plummer. Matching Theory. Annals of Discrete Mathematics
29, North-Holland, Amsterdam, 1986.

[96] László Lovász and Michael D. Plummer. Matching theory, volume 367. American
Mathematical Soc., 2009.

[97] Glenn K. Manacher, Terrance A. Mankus, and Carol Joan Smith. An optimum
Θ(𝑛 log 𝑛) algorithm for finding a canonical hamiltonian path and a canonical
hamiltonian circuit in a set of intervals. Information Processing Letters, 35(4):205–
211, 1990.

[98] N. Megiddo and A. Tamir. New results on the complexity of 𝑝-center problems.
SIAM Journal on Computing, 12:751–758, 1983.

[99] Nimrod Megiddo. Linear-time algorithms for linear programming in R3 and related
problems. SIAM journal on computing, 12(4):759–776, 1983.

119

Bibliography

[100] Shashi Mittal and Andreas S. Schulz. An FPTAS for optimizing a class of low-rank
functions over a polytope. Mathematical Programming, pages 1–18, 2013.

[101] Ebrahim Nasrabadi and James B. Orlin. Recoverable robust shortest path prob-
lems. CoRR, 2013.

[102] Jaroslav Opatrny. Total ordering problem. SIAM Journal on Computing, 8(1):111–
114, 1979.

[103] James G. Oxley. Matroid theory, volume 3. Oxford University Press, USA, 2006.

[104] Christos H. Papadimitriou. Computational complexity. John Wiley and Sons Ltd.,
2003.

[105] René Peeters. Orthogonal representations over finite fields and the chromatic
number of graphs. Combinatorica, 16(3):417–431, 1996.

[106] A. Punnen and S. Kabadi. A linear time algorithm for the Koopmans-Beckmann
QAP linearization and related problems. Discrete Optimization, 10:200–209, 2013.

[107] Abraham P. Punnen, Piyashat Sripratak, and Daniel Karapetyan. The bipartite
unconstrained 0–1 quadratic programming problem: Polynomially solvable cases.
Discrete Applied Mathematics, 193:1–10, 2015.

[108] Abraham P. Punnen and Yang Wang. The bipartite quadratic assignment problem
and extensions. European Journal of Operational Research, 250(3):715–725, 2016.

[109] Neil Robertson and Paul D. Seymour. Graph minors. xiii. the disjoint paths prob-
lem. Journal of Combinatorial Theory, Series B, 63(1):65–110, 1995.

[110] James Roskind and Robert E. Tarjan. A note on finding minimum-cost edge-
disjoint spanning trees. Mathematics of Operations Research, 10(4):701–708, 1985.

[111] Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, vol-
ume 24. Springer Science & Business Media, 2003.

[112] M. Segal. Placing an obnoxious facility in geometric networks. Nordic Journal of
Computing, 10:224–237, 2003.

[113] Frits C. R. Spieksma. Multi index assignment problems: complexity, approxima-
tion, applications. In Nonlinear assignment problems, pages 1–12. Kluwer Aca-
demic Publishers, Dordrecht, 2000.

[114] Piyashat Sripratak. The Bipartite Boolean Quadratic Programming Problem. PhD
thesis, Simon Fraser University, 2014.

[115] A. Tamir. Obnoxious facility location on graphs. SIAM Journal on Discrete
Mathematics, 4:550–567, 1991.

120

[116] Jens Vygen. Disjoint paths. report no. 94816. Research Institute for Discrete
Mathematics, University of Bonn, 1994.

[117] Renato Werneck, Joao Setubal, and Arlindo da Conceicao. Finding minimum
congestion spanning trees. Journal of Experimental Algorithmics (JEA), 5:11,
2000.

[118] Yasutoshi Yajima and Hiroshi Konno. Outer approximation algorithms for lower
rank bilinear programming problems. Journal of the Operations Research Society
of Japan, 38(2):230–239, 1995.

[119] Takayuki Yato and Takahiro Seta. Complexity and completeness of finding another
solution and its application to puzzles. IEICE transactions on fundamentals of
electronics, communications and computer sciences, 86(5):1052–1060, 2003.

121

	Acknowledgements
	Introduction and Preliminaries
	Preliminaries
	Sets, Matrices, Vectors and Polyhedra
	Graphs
	Matroids and Polymatroids
	Computational Complexity and Algorithms
	Robust Optimization

	Key Problems in this Thesis
	Connections and the Common Thread Among the Studied Problems
	Generalized Classes of Feasible Solutions
	Generalized Cost Structures
	Robust Optimization
	Influencing Factors on the Computational Complexity

	Outlook on Main Results

	Dispersing Obnoxious Facilities on a Graph
	Introduction
	Notation and Technical Preliminaries
	NP-Completeness Results
	NP-Hard Cases with Odd Numerator
	NP-Hard Cases With Even Numerator
	Containment in NP

	The Polynomial Time Result for delta=2
	The Polynomially Solvable Cases
	Integer Edge Lengths
	Special Graph Classes

	Steiner Problems on Interval Graphs
	Introduction
	Definitions and Preliminary Results
	The Steiner Path Cover Problem
	The Steiner Cycle Problem
	Streaming Algorithms – The Problem of Limited Screen Size
	Conclusion

	Combinatorial Optimization with Interaction Costs
	Introduction
	General Complexity
	The Interaction Matrix with Fixed Rank
	One-Sided Unconstrained Fixed Rank COPIC
	General Fixed Rank COPIC via Multi-Parametric Optimization

	Diagonal Interaction Matrix
	Unconstrained Feasible Sets
	Uniform and Partition Matroids
	Matroid Bases as Feasible Sets
	Pairs of Paths

	Linearizable Instances
	Conclusion

	Matrix Completion Problems
	Introduction
	Large matrices
	Permuted Matrices with Non-Decreasing Rows and Columns
	Bottleneck Monge Matrices
	Monge Matrices
	Open Questions

	Recoverable Robust Discrete Optimization
	Efficient Algorithms for the Recoverable (Robust) Selection Problem
	Introduction
	A Greedy Algorithm for the Recoverable Selection Problem
	A Linear Time Algorithm for the Recoverable Selection Problem

	Min Cost Matroid Basis with Cardinality Constraints on the Intersection
	Introduction
	Reduction of (Pk) and (Pk) to Weighted Matroid Intersection
	A Strongly Polynomial Primal-Dual Algorithm for (P=k)
	Recoverable Polymatroid Base Problem
	The Recoverable Robust Matroid Base Problem under Uncertainty Degrees

	Conclusion and Open Problems

	Bibliography

