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Abstract

It remains unknown how complex animal behaviour emerges from the electric
pulses exchanged between neurons in the brain. In contrast, very simplified mathe-
matical models of neurons used in artificial intelligence (AI) are capable of playing
chess and video games better than humans. For this to be possible the models of
neural networks have diverged from what neurobiologists have been observing.
In this thesis, we ask whether alternative neuron models that match more closely
what is observed in the brain can use the learning theories developed in AI to
produce intelligent behaviours. To do so, we first have to solve the technical and
mathematical problems that were making learning difficult with neuron models
which: (1) communicate solely via punctual electric pulses (spikes), (2) form loops
of recurrent connections between each other, and (3) constantly rewire their con-
nectivity structure to maintain a reduced number of active connections throughout
learning. Quantitatively, our method reaches unpreceded computing capabilities
with biological network models and approaches the performance standard AI
models on benchmark tasks. Qualitatively, it can simulate animal-like behaviours
requiring working memory and motor control. The second major contribution of
this thesis is to suggest a new theory of learning in recurrent neural networks
called eligibility propagation. When applied to brain models, it brings together
how the connection between neurons are changing in experimental data and the
learning theories of artificial network models. Altogether, we hope that our models
will provide mathematical insights to inspire the progress of neuroscience in future
years. More certainly, our algorithms are directly applicable to neuromorphic com-
puters that substitute to usual computers by taking inspiration from the brain. We
can already report today that our theories have contributed to the implementation
of functional neural networks on such dedicated hardware and reduced the energy
consumption of such models by two to three orders of magnitudes.
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Zusammenfassung

Das aktuelle Verständnis unseres Gehirns kann noch nicht erklären, wie komplexe
Verhaltensmuster aufgrund der elektrischen Impulse, die für die Kommunikation
zwischen Nervenzellen im Gehirn verantwortlich sind, entstehen. Ganz im Gegen-
satz dazu können sehr simple mathematische Modelle von Nervenzellen, wie sie
etwa im Gebiet der künstlichen Intelligenz (KI) verwendet werden, Schach und
Videospiele besser spielen als ein Mensch. Um dies zu ermöglichen, musste man
auf Modelle zurückgreifen, die den Beobachtungen von Neurobiologen eigentlich
widersprechen. In dieser Doktorarbeit werden realistische Modelle von Nervenzel-
len verwendet, die besser mit den Beobachtungen im Gehirn übereinstimmen und
mit Lerntheorien aus der KI ausgestattet, um intelligentes Verhalten hervorzubrin-
gen. Dies erfordert eine Lösung einer Reihe von technischen und mathematischen
Problemen, weil Nervenzellen in solchen Modellen (1) nur vermöge punktierter
elektrischer Impulse, “Spikes", miteinander kommunizieren, (2) Schleifen von rekur-
renten Verbindungen ausbilden, und (3) kontinuierlich ihre Verbindungsstruktur
neu verdrahten, um eine reduzierte Anzahl aktiver Verbindungen einzuhalten.
Quantitativ wird aufgrund der hier entwickelten Methoden erstmals eine Lern-
fähigkeit erreicht, die bisher nur von abstrakten künstlichen Modellen erreicht
wurde. Qualitativ können erstmals tierähnliche Fähigkeiten demonstriert werden,
wie etwa Arbeitsgedächtnis oder motorische Fertigkeiten. Der zweite Beitrag dieser
Doktorarbeit ist eine neue Theorie für das Lernen in rekurrenten Netzwerken von
Nervenzellen: Die Ëignungspropagierung"(eligibility propagation). Für realistische
Modelle von Nervenzellen im Gehirn kann erstmals eine Verbindung zwischen
experimentellen Daten und Lernmethoden aus der KI hergestellt werden. Einerseits
könnten die hier vorgestellten Modelle und Theorien den Fortschritt im Bereich
der Neurowissenschaften in den kommenden Jahren vorantreiben und inspirie-
ren, andererseits sind die hier vorgestellten Methoden direkt auf neuromorphen
Computern anwendbar, die auf den Prinzipien der Informationsverarbeitung im
Gehirn basieren. Bereits jetzt haben die hier vorgestellten Theorien zur Umsetzung
von funktionalen neuronalen Netzen auf solcher Spezialhardware beigetragen,
welche den Energieverbrauch von funktionellen Netzwerken um zwei bis drei
Größenordnungen reduziert.
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Résumé

Il n’est pas encore compris comment l’intelligence animale émerge à partir des
courants électriques que s’échangent entre les neurones du cerveau. Pourtant en
intelligence artificielle, des modèles mathématiques simplifiés de réseaux de neu-
rones peuvent apprendre à jouer à des jeux vidéo ou conduire des voitures. Pour en
arriver là, les modèles mathématiques se sont éloignés de la réalité observée par les
neurobiologistes. Dans ce mémoire, nous nous demandons si des modèles de neu-
rones plus réalistes peuvent être compatible avec les théories de l’apprentissage qui
ont démontré leur succès en intelligence artificielle. Pour cela nous devons d’abord
résoudre des problèmes techniques et mathématiques qui rendent l’apprentissage
difficile pour des réseaux de neurones biologiques. C’est à dire, des neurones
(1) qui communiquent de l’information uniquement via des courants électriques
ponctuels (spikes), (2) dont les connexions forment des boucles récurrentes et (3)
dont les connexions sont rares et se rebranchent continuellement. Quantitativement,
notre nouvelle méthode atteint des capacités de calcul encore jamais observées
pour des réseaux de neurones de ce type, ils deviennent pour la première fois
compétitifs avec des modèles utilisés de façon canonique en intelligence artificielle.
Qualitativement, nous arrivons à simuler des comportements qui ressemblent à
celui de l’Animal et qui requièrent de la mémoire du travail et un contrôle moteur.
Nous espérons que nos modèles mathématiques vont inspirer des progrès futurs
en neurosciences. À plus court terme, nos modèles sont d’ores et déjà implémentés
dans des prototypes d’ordinateur neuromorphique qui proposent une alternative
aux ordinateurs traditionnels. Nous avons déjà observé que l’implementation de
nos algorithmes sur des ordinateurs neuromorphiques permet de résoudre des
problèmes d’intelligence artificielle en consommant 100 à 1000 fois moins d’énergie
électrique qu’un ordinateur traditionnel.
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Chapter 1
Introduction

Contents

1.1 Artificial neural network models . . . . . . . . . . . . . . . . . . . 2

1.2 A simplified view of neural circuits in the brain . . . . . . . . . . 3

1.3 Modelling brain circuits with mathematical models of neural
networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Training recurrent networks of spiking neurons . . . . . . . . . . 6

1.5 Modeling learning in the brain with gradient descent . . . . . . . 7

1.6 Perspectives for neuroscience . . . . . . . . . . . . . . . . . . . . . 9

1.7 Persectives for machine learning and neuromorphic hardware . . 10

It is clear that the brain largely contributes to the “intelligence” of an animal.
However, it remains a mystery how cognitive functions emerge from the neural
circuits in the brain. Even simple functions like holding information in working
memory for a few seconds are not well understood. Witnessing the recent success
(LeCun et al., 2015) of simple mathematical models of network models (“artificial
neural networks“) which can learn to drive cars and play video games, it is tempting
to believe that this mathematical framework can provide an understanding of the
relationship between neurons and intelligence. Yet, there are many features of
the brain that artificial neural networks do not model accurately. To model more
closely the neurons in the brain we refine the realism of artificial network models
and consider spiking neural networks that are sparsely and recurrently connected.
Training such networks for solving a particular task was notoriously difficult. In
this thesis, we have solve this technical challenge by extending the learning theories
developed for artificial neural networks to this class of neural network models. It
allows building networks that demonstrate cognitive capabilities on concrete tasks
that were previously out of reach for such models. After defining what is meant
by artificial models in Section 1.1 we summarize some of the experimental results
supporting the refinement of our mathematical model in Sections 1.2 and 1.3. When
then introduce in Section 1.4, an efficient training algorithm for these recurrent and
spiking neural networks.

Beyond understanding how brain circuits compute, there is a gap between the
learning theories in the artificial setting and the experimental data that accounts
for learning mechanisms in the brain. This is partly because the experimental data
about learning is very hard to collect as it requires to record brains activity across
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1 Introduction

minutes, days, or years to capture physiological changes of the biological substrate
while the learnt behaviour emerges. Despite this difficulty, some experimental
paradigm has identified patterns in which connections between neurons strengthen,
weaken or rewire. This phenomenon is known as synaptic plasticity and has been
thought to underly learning capabilities. The other major contribution of this thesis
introduced in Section 1.5 is to build an explicit link between learning theories from
artificial intelligence and experimental data on synaptic plasticity.

1.1 Artificial neural network models

Most artificial neural network models can be defined as variants of the neural
network as described below. The output zj of an artificial neuron j combines a
simple non-linear function σ with a linear combination of its inputs x weighted
by the synaptic weights wj such that zj = σ(wj · x) (biases are omitted here
for simplicity). In feedforward networks, artificial neurons are combined into
consecutive layers, where the inputs onto each neuron are the neuron outputs of
the preceding layer. The full computation of the deep neural network then defines
one large mathematical function mainly parametrized by the weight matrices
connecting each layer to the next.

One successful variant of a deep neural network is referred to as a convolutional
network, there, one replaces the matrix-vector product by a product of convolution.
This can be viewed as a replacement of the weight matrix by another one having
much fewer parameters and exploiting invariant properties in the input structure.
Even though successful in practice, it does not seem to hold a straightforward
relationship with the connectivity structure observed in the brain. Hence we do
not use a convolutional neural network to model biological neural networks in this
thesis.

While a feedforward convolutional neural network is particularly useful to pro-
cess static inputs without temporal dependencies such as images (LeCun et al.,
2015), recurrent neural networks are often used to process time series. Unlike
feedforward networks, the temporal dynamics of recurrent neural networks are
modelled explicitly. Typically, the recurrent units send to each other their activity
through a recurrent weight matrix to update the states of the same units at the next
time step. A popular network model called “Long-short term memory” (LSTM)
model (Hochreiter and Schmidhuber, 1997) also includes a hidden state in each
network unit called a memory cell. Memory cells can hold information steadily over
many consecutive time steps even in the absence of inputs. In the model, the com-
mands for reading, forgetting or writing the memory cell content are formalized
as sigmoidal gates that are part of the network model and trained simultaneously.
Overall, recurrent neural networks are the natural choice for modelling neural
circuits in this thesis for at least two reasons. Firstly, many interesting cognitive
functions performed by the brain require temporal processing (e.g. evidence accu-
mulation, decision making, language processing, speech recognition); secondly, it
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is an explicit model of the physical connections in the brain which are prominently
recurrent (see Chapter 4 for a short review).

1.2 A simplified view of neural circuits in the brain

In contrast, a neuron in the brain consists of a cell body (soma), dendrites, and a
single axon. The axon and dendrites are filaments that extrude from it. Dendrites
typically branch profusely and extend a few hundred micrometres from the soma.
The axon leaves the soma at a swelling and travels for as far as 1 meter in humans
or more in other species. At the farthest tip of the axon, a signal can be transmitted
to the dendrite of another cell (description adapted from the Wikipedia page about
“neurons”). The connection between the axon and the dendrite of the subsequent
neuron is called a synapse.

Spiking neuron models hold a central role in this thesis, but what is the electro-
physiological reality that supports this modelling choice? A neuron at rest holds a
differential of tens of millivolts between the inside and the outside of its membrane.
In general, small depolarizations of this membrane potential do not propagate until
the axon terminals and cannot communicate information to a subsequent neuron.
Yet, if the voltage depolarization reaches a specific threshold level, voltage-gated ion
channels open and provoke an action potential: a strong depolarization followed by
a rapid hyperpolarization of the membrane potential (Hodgkin, 1958). This leads to
a cascade of openings of neighbouring ion channels, and the action potential effec-
tively travels all along the axon until it provokes the release of neurotransmitters at
all the synapses formed with the subsequent neurons (Purves et al., 2008). This is
often modeled as an all-or-none process and, as action potentials are rare (about 1 to
10Hz on average for human cortical neurons), neurons are thought to communicate
in an event-based fashion. This simplified description summarizes what is thought
as the most prominent mean of communication between neurons in many species
including insects, humans and many more, even though other mechanisms have
also been identified (Purves et al., 2008). To model spiking neurons in this thesis,
we consider that the output of a spiking neuron model is binary: one when an
action potential occurs and zero otherwise.

The brain is structured in different areas that have different functions and speci-
ficities. For instance, the connections across brain areas and within an area display
stereotypical patterns shared across individuals of the same species. The role of this
structure optimized through evolution is an important research question but we
do not tackle this question in this present thesis. Here, we model biological neural
networks as recurrently connected circuits formed by a few hundreds to a few
thousands of neurons, with statistically homogenous wiring properties. In this very
simplified network model, we attempt to understand some general properties of
biological neural networks that remain poorly understood: recurrences, event-based
computations and sparse connectivities. We typically think of such network model
as a tiny portion of a brain area, but we remain unspecific and aim at a model
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capturing basic circuit properties that generalize across brain areas and across
species.

Artificial neuron models are often connected in an all-to-all fashion, in contrast,
neurons in the brain are more sparsely connected and many of their connections ap-
pear and disappear at the time scales of days (Trachtenberg et al., 2002). Moreover,
brain circuits contain many neuron types with different morphologies, electrophys-
iological properties and connectivity patterns that are numerous even within a tiny
volume of the cortex or the retina (Seung and Sümbül, 2014; Purves et al., 2008;
Markram et al., 2015). We model this structure in a goal-driven optimization of the
connectivity using the DEEP R algorithm described in Chapter 2. This rewiring
algorithm optimizes the connectivity of sparsely connected neural networks to
improve the network function. We show in particular that is can be used to model
a network where neurons are split into two cell types: excitatory and inhibitory
neurons (see Chapter 3). In this simplified model, spikes from excitatory and in-
hibitory neurons respectively depolarize or hyperpolarize the membrane of other
neurons.

1.3 Modelling brain circuits with mathematical models of
neural networks

By modelling the neural dynamics at different levels of details, different research
questions can be tackled. At a macroscopic level, there are similarities between
the representation of images in cortical areas and population of artificial neurons
(Yamins and DiCarlo, 2016), but this type of artificial neuron model does not
produce an accurate neuron-to-neuron mapping and it does not model the temporal
processing of neuron at a precise temporal resolution. At another extreme, it is
possible to model the activity of a single cell by describing the dynamics of ions
flowing inside and outside a neuron (Hodgkin, 1958), and 3D model reconstruction
of the cell morphology can capture the neural dynamics in more detail (Markram
et al., 2015).

One intermediate approach is to aim at a simple mathematical neuron model
which can still model accurately the neural dynamics with a resolution of a few
milliseconds. The mathematical components of these models are rather simple:
a spike generation process and linear temporal filters optimized for fitting the
recorded data. Many popular spiking neuron models fall into this category, to list a
few: the generalized linear model (GLM) (Pillow et al., 2008), the spike response
model (SRM) (Gerstner et al., 2014) or variants of the leaky integrate and fire
(LIF) neuron models (AllenInstitute, 2017). Due to the mathematical simplicity of
these models, numerical optimization can be performed efficiently when fitting
the model parameters to the data. This yields models which accurately predict the
spike times of individual neurons (and sometimes the dynamics of the membrane
voltage) without explicitly modelling their underlying molecular mechanisms nor
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the neuron morphology (Pillow et al., 2008; Brette and Gerstner, 2005; Pozzorini
et al., 2015; Pozzorini et al., 2013; AllenInstitute, 2017).

In the present thesis, we choose a similarly simplified neuron model even though
our goal is very different: we do not want to fit the model to experimental data
but we want to optimize the model to serve a specific network function. Both
problems require an optimization process that is prone to heavy computational
loads and benefit from the simplicity of the neural model. The neuron model used
in Chapters 3 and 4 typically integrates its inputs as a linear combination (like an
artificial neuron), and it does not model the complexity of the dendritic tree. The
temporal dynamics of the neuron model are then summarized with simple linear
filters similarly as in the models listed above. We show in Chapter 3 that recurrent
networks of such spiking neuron models can be trained and become competitive
in comparison to the most popular artificial recurrent neural network models on
machine learning benchmarks. It suggests that this neuron model is at the crossing
between a model that can fit accurately recorded neural dynamics (Pillow et al.,
2008; Pozzorini et al., 2015; Pozzorini et al., 2013; AllenInstitute, 2017), as well as
a model that can support the optimization of the connection matrix to perform a
function at the network level (see Chapter 3).

These models that we consider are variations of the LIF model with realistic time
constants, but we did not aim at capturing the full complexity of the linear temporal
filters that were previously used to predict experimental data. In our models, the
slower dynamics of the membrane voltage is modelled with an exponential filter
with decay time constants of about 20 ms of milliseconds (as captured with LIF
models) and we include a model of adaptation to summarize the neural dynamics
on the time scales of hundreds of milliseconds to a few seconds. Adaptation is a
phenomenon characterized by a dampening of the firing rate of a neuron when
stimulated with a constant current. This feature is widely spread in mammalian
cortices, where about one-third of the neurons are substantially adaptive (Allen
Institute: Cell Types Database, 2018). One simple model of adaptation is to consider
that the firing threshold increases after each spike and slowly decays back to
its resting value. This model of adaptation is indeed an essential component of
the neuron model that can fit spike times accurately but adaptation can also
be modelled in other ways (Pozzorini et al., 2015; AllenInstitute, 2017). When
fitted to real neurons, the resulting adaptation time constants are of the order of
hundreds of milliseconds which is much slower than the dynamics of the membrane
potentials. Some data (Pozzorini et al., 2013; Pozzorini et al., 2015) even suggests
that adaptation can hold significant effects after many seconds.

In Chapters 3 and 4 we use adaptation in our model to introduce slower dynamics
and find that it supports working memory. Hence we refer to a recurrent network
having a realistic proportion of adaptive neurons as a Long-short term memory
Spiking Neural Network (LSNN), and this architecture serves as the backbone of the
results achieved in Chapters 3 and 4. Other brain-inspired mechanisms like short-
term dynamics of synapses (Tsodyks et al., 1998) have also been used to model short-
term memory in previous models of recurrent networks of spiking neurons (Maass
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et al., 2002; Sussillo et al., 2007; Mongillo et al., 2008; Legenstein and Maass, 2007).
Yet in these models, the recurrent connections are not optimized through learning.
Neural dynamics like adaptation are cheaper in terms of computational load than
simulating synaptic dynamics. This practical concern becomes particularly relevant
when tackling learning problems which require to simulate the network for a large
number of training trials.

1.4 Training recurrent networks of spiking neurons

To solve a pratical problem with any of the artificial neural network listed in Section
1.1 (e.g. image recognition, accumulating reward in a video game) one formalizes
the learning problem by the minimization of a loss function E. For instance, it
represents in supervised learning the mismatch between the output of the network
for a given data sample and its target ouput. With artificial neural networks the
error E is a differentiable function of the parameters of the neural networks and the
parameters can be optimized by gradient descent. By adjusting the parameters by a
small amount proportional to the gradient, the loss function reduces which reflects
that the accuracy of the neural network increases. The optimization of the neural
network is often referred to as “training” or “learning”. In this thesis, we specificaly
used “training” to refer to the optimization of neural networks with variants of
gradient descent, whereas “learning” refers more generally to the capability of
acquiring skills or knowledge. Gradient descent has shown to work well for training
artificial network models, and backpropagation is the most common algorithm to
compute the error gradients in artificial neural networks.

While artificial neural networks made a significant jump of performance in 2012

(Krizhevsky et al., 2012; LeCun et al., 2015), training spiking neurons with com-
parable efficiency have only been reported in the last couple of years (Esser et al.,
2016; Bellec et al., 2019). This also reflects that there has been a technological barrier
for building functional brain models that spike. One reason is that the typical
formalism of spiking neural networks seems to be incompatible with gradient
descent. Even though our choice of spiking network model remains simple, the
notion of gradients in spiking neurons is problematic from a mathematical point
of view. The generation of a spike is typically modelled as the binary event that
happens when the membrane voltage crosses a threshold voltage. This threshold
crossing condition results in a discountinuous mathematical model: a tiny change
a network parameter might change the voltage history and generate or delete
spikes and trigger cascades of events with large consequences. Due to these dis-
countinuities, derivatives and gradients cannot be defined properly. Inspired by
heuristics designed for artificial feedforward networks with binarized or discretized
activations (Bengio et al., 2013; Raiko et al., 2014; Esser et al., 2016; Gu et al., 2015),
we introduce a pseudo deriviative in Chapter 3 that allows the computation of gra-
dients with back-propagtion through time (BPTT) in recurrent networks of spiking
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neurons. Remarkably this approximation works robustly in recurrent networks
where gradient propagation is known to be much less stable (Bengio et al., 1994).

It seems that this training method improves upon the previous algorithms for train-
ing spiking neurons. In a recent publication (Bellec et al., 2019) we reproduced the
hardest task solved with a recurrent spiking neural network and with FORCE learn-
ing (Sussillo and L. F. Abbott, 2009; Nicola and Clopath, 2017). We also reproduced
the delayed XOR task solved with a contemporary formulation of BPTT for spiking
neurons (Huh and Sejnowski, 2017). However, to compare more quantitatively these
algorithms there is a need to report the performance on published benchmarks with
well defined success measures. We report in Chapter 3 and 4 the performance of
spiking neural networks on machine learning benchmarks, and we are not aware of
another paper which reported a competitive performance with recurrent networks
of spiking neurons on these problems. In comparison to artificial network models
which are commonly benchmarked on temporal processing tasks such as speech
recognition, it seems that LSNNs are the first recurrent spiking networks that
achieve a competitive performance (see Chapters 3 and 4 and Bellec et al., 2019).

1.5 Modeling learning in the brain with gradient descent

Learning is a high-level cognitive function that relies on a combination of physio-
logical mechanisms. One hypothesis is that many learning scenarios rely on the
remapping on the connectivity in neural circuits or the strengthening of existing
connections. This hypothesis was already formalulated by the neuroanatomist
Cajal at the end of the 19th century. Later, Hebb conjectured in 1949 the existence
of a simple rule describing how the connection strength changes, this is often
summarized by the infamous sentence “cells that fire together wire together”. Since
then, series of experimental data have then shown that this conjecture happened to
be suprisingly accurate, and the models of synaptic plasticity became more precise
and quantitative.

One of the first experimental evidence of an activity dependent plasticity rule was
found twenty years later (Bliss and Lomo, 1973). It was found that, when stimulating
strongly a pre-synaptic neuron in the rabbit hippocampus, the transmission efficacy
of the synapse increases and remains potentiated for hours. More recently, it was
shown that when forcing repeatedly an action potential in the pre-synaptic neuron
and in the post-synaptic neuron a few milliseconds later, one may induce a change
of synaptic efficacy for which the precise spike timing matters (Gerstner et al.,
1996; Bi and Poo, 1998). This experimental protocol alone leads in some cases
to long-term changes of synaptic efficacy but, it can also be conditioned on the
presence of neuromodulators such as dopamine (Schultz, 2002; Yagishita et al.,
2014). This suggests that synaptic plasticity changes can be driven by pre-, post-
synaptic and a third factor. Even if this third factor is most often thought to be a
neuromodulator, other mechanisms such as plateau potentials can hold a similar
function (see Frémaux and Gerstner, 2016 and Gerstner et al., 2018 for reviews).
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Looking more closely on the relative timing of the third factor and the local activity
(Yagishita et al., 2014), it was found that weight changes are still substantial when
the dopamine arrives a few seconds after the activity induction. Along with other
experiments reviewed in Gerstner et al., 2018, it suggests the presence of local
mechanisms that retain traces of the recent activity during this temporal gap, there
are often referred to as eligibility traces (Gerstner et al., 2018).

Simultaneously in computational neuroscience researchers have modelled how
these mechanisms could support the emergence of complex learnt behaviours
(Izhikevich, 2007; Legenstein et al., 2008; Kappel et al., 2018; Zenke and Ganguli,
2018; Frémaux et al., 2013). In consistence with the data suggesting the neurons
releasing dopamine (dopaminergic neurons) are strongly correlated with reward
prediction error (Schultz et al., 1997; Schultz, 2002; Engelhard et al., 2019). In models,
the reward is used in models to formalize the task to be learnt and define the
third factor. This was successful at solving goal-driven learning tasks of moderate
difficulty. Yet, in comparison with machine learning algorithms relying on richer
signals such as error back-propagation, it seems that data-inspired learning rules
do not reach the performance of efficient learning algorithms used in artificial
intelligence (see Lillicrap et al., 2016 and Chapter 4 for numerical quantitative
comparisons). This seems to suggest that the current understanding of synaptic
plasticity is not yet sufficient to explain the astounding learning capabilities of the
brain, but Chapter 4 leads to a more optimistic conclusion.

Considering the recent success of gradient descent in artificial intelligence, some
modellers have been looking for inspiration in artificial mathematical models. In
artificial neural networks, the gradients are computed with error back-propagation,
but it has been argued to be implausible that the brain implements this algorithm.
Even in feedforward network models, back-propagation requires to propagate
information backwards, mirroring the natural stream of information in the neu-
ral network, but such symmetric information pathways has not been observed
in the brain. The search for a more plausible alternative to backpropagation in
feedforward neural network is an active field of research, it was shown for instance
that similar performance can be obtained when using: a fixed random network
to propagate information backward (Lillicrap et al., 2016), or local plasticity rules
with a forcing of the correct network output (Scellier and Bengio, 2017; Scellier and
Bengio, 2019). Yet, none of these methods apply to recurrent neural networks. For
recurrent network back-propagation is known as back-propagation through time
(BPTT) and additionally requires to propagate information backwards in time. In
Chapter 4 we suggest a plausible alternative to BPTT. On top of approaching the
performance of BPTT on machine learning benchmarks, it results in weight updates
that are compatible with the framework of three-factor learning rules modelling
experimental data on synaptic plasticity.

The algorithm presented in Chapter 4 is called eligibility propagation (e-prop)
because it relies on eligibility traces which capture the local traces of pre- and post-
synpatic neural activities (Bellec et al., 2019). E-prop also considers a third factor
called the learning signal which quantifies how the activity of the post-synaptic
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neuron influences the network error. This algorithm is proven in Chapter 4 to be
mathematically equivalent to BPTT for a general class of recurrent neural networks
including spiking (LSNNs) and artificial models (LSTM networks). For spiking
models, the form of eligibility traces derived from the theory is multiplicative in
the recent pre and postsynaptic activity which was also found to fit experimental
data of synaptic plasticity accurately (Clopath et al., 2010). Empirically we show
in simulations that it reduces substantially the performance gap between data-
inspired learning algorithms and BPTT. Furthermore as a general theory of gradient
descent, it applies to any type of learning tasks avoiding the design of learning
rule hand crafted for a single learning task. In Chapter 4 and Bellec et al., 2019 we
applied e-prop to supervised classification, regression, audio speech transcription
and reward-based learning.

1.6 Perspectives for neuroscience

Solving the temporal credit assignment with predictive error signals and slow eli-
gibility traces Using the e-prop theory, we derive in Chapter 4 eligibility traces for
complex artificial and spiking model with enhanced working memory capabilities
and apply them to tasks that require working memory. In particular for spiking
neurons as illustrated in Chapter 4 and Bellec et al., 2019, the consideration of
adaptation in the network model is decisive to solve evidence accumulation tasks
where the sensory cues and the decisions are separated by a delay. Besides training
efficient models with working memory, this models yields testable experimental
predictions about the synaptic plasticity of adaptive neurons. Our theory predicts
that the eligibility traces of adaptive neurons decay slower than for regular spiking
neurons. A second prediction for adaptive neurons which is more quantitative is
that the sign of the weight changes can flip between late and early arrivals of the
learning signal.

The second class of problems where the temporal credit assignment is difficult are
tasks where there is not only a delay between sensory cues and the decisions but
also between actions reporting the decision and the rewards. This is modeled in a
reinforcement learning task considered in (Bellec et al., 2019) where a sequence of
motor actions leads potentially to a reward at the end of the trial. We found that
e-prop can be combined with a policy gradient algorithm to solve this task (Bellec
et al., 2019). There, the resulting learning signals combine reward prediction errors
and neuron-specific feedbacks telling whether the recent actions are conservative
or explorative.

The richness of learning signals These learning rules derived with e-prop are
working well in simulatoins suggesting that third factors more complex than those
considered in previous learning models can improve the learning performance
significantly. First, the diversity or learning signals is important, second, even in the
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reinforcement learning context, better learning signals include information richer
than a global reward prediction error. Going further, we illustrate in Chapter 4 that
an external recurrent spiking neural network can emit structured learning signals
optimized for learning a specific task rapidly.

From the side of experimental data, recent findings in neuroscience also support
the existence of rich dopaminergic learning signals. It was found that the activity
of VTA (ventral tegmental area) neurons encode not only the reward prediction
error, but also other behaviourally relevant variables such as the subject’s position
or velocity inside a maze (Engelhard et al., 2019). Beyond these dopaminergic
neurons, there seem to be more candidate mechanisms that can provide rich
learning signals. There are for instance other neuromodulators and mechanisms that
modulate synaptic plasticity (Gerstner et al., 2018), and performance monitoring
neurons are also found prominently in the cortices (Sajad et al., 2019). Altogether,
these neuroscience experiments and our mathematical models converge to the
idea that further investigations on the learning signals are likely to advance the
understanding of neuroscience and artificial intelligence.

1.7 Persectives for machine learning and neuromorphic
hardware

Recurrent neural networks Even in standard recurrent neural networks BPTT
costs a large amount of memory. BPTT is particularly problematic when processing
long time-series. There, if the entire time horizon does not fit in memory or
if it is better to implement intermediate weight updates, BPTT is replaced by
truncated-BPTT. This algorithm suffers in particular from the truncation of the
temporal context used to compute the gradients. The theory of e-prop suggests an
alternative for computing gradients in recurrent neural networks, and it seems to
be competitive with other alternatives to BPTT (for an exhaustive comparison, we
refer to Bellec et al., 2019). We believe that the most promising extension of e-prop
for machine learning as it combines the best features of truncated-BPTT with the
eligibility traces defined by e-prop. This algorithm is described in Chapter 4 under
the name of e-prop 3, and it substitutes to truncated-BPTT for training recurrent
neural networks. We demonstrate there that it is particularly efficient when the
temporal context considered in BPTT does not contain sufficient information about
the network history. As of now, Chapter 4 provides a proof of concept but more
simulations are required to demonstrate the competitivity of this algorithm on hard
machine learning problems.

Energy efficient computing with neuromorphic hardware The brain-inspired tech-
niques developed through out this thesis provide a different paradigm for imple-
menting neural networks. Currently, neural networks are often simulated on GPUs
and CPUs with low-level software interfaces optimized for the multiplication of
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large dense matrices. It means in particular that the current hardware hardly bene-
fits from the introduction of structured connectivities through sparse matrices in the
network architecture. On the other hand, brain-inspired hardware with a dedicated
implementation of sparse matrices can benefit from a sparse and structured con-
nectivity. In fact, we provided a proof of concept of this statement in Liu et al., 2018

by implementing the algorithm DEEP R from Chapter 2 for training deep sparse
feedforward neural networks on a prototype of the SpiNNaker 2 neuromorphic
chip. This implementation of hardware and software, led to a neural network for
hand-written digit recognition that is trained with two order of magnitude fewer
energy consumption in comparison with a conventional CPU.

Besides the usage of sparse connectivities, the nature of spiking neurons is also
beneficial for energy efficiency on dedicated hardware. To demonstrate this we
ported a trained recurrent neural network of spiking neurons onto the Loihi
neuromorphic chip developed by Intel (Davies et al., 2018). When training the
network with precautions, the performance of the neural network is not degraded
when porting it from a digital computer to the neuromorphic chip. This allows to
pre-train the network model off-line, and use the trained model with an energy-
efficient neuromorphic chip. A publication summarizing these results is currently
in preparation.

A neuromorphic hardware that spikes and learns via e-prop The rapid devel-
opment of neuromorphic computers leave the hope that the spiking network
technology will reach another level of computational performance when switching
from conventional computers to dedicated hardware. It is already clear that spiking
hardware consumes much less energy, this might make it possible to scale up the
network size and reach computational compatibilities in-approachable with artifi-
cial neural network due to the high energetical cost of conventional hardware.

A singular feature of the recent Loihi chip (Davies et al., 2018) is to enable on-chip
learning in a way that is inspired by the brain. Following the tradition of three-factor
learning rules, it is already possible to implement reward gated synaptic plasticity
rule on this chip (Davies et al., 2018). This means that most of the requirement for
implementing e-prop in dedicated hardware is already available. It promises that
upcoming neuromorphic chips will be able to implement e-prop efficiently, which
offers an algorithm that competes with BPTT without requiring its demanding
memory management. Altogether, it makes neuromorphic hardware a technology
that might open new horizons that cannot be forseen with to the current learning
paradigm used in artificial intelligence.
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Chapter 2
Deep Rewiring: Training very sparse deep
networks
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Neuromorphic hardware tends to pose limits on the connectivity of deep networks
that one can run on them. But also generic hardware and software implementa-
tions of deep learning run more efficiently for sparse networks. Several methods
exist for pruning connections of a neural network after it was trained without
connectivity constraints. We present an algorithm, DEEP R, that enables us to train
directly a sparsely connected neural network. DEEP R automatically rewires the
network during supervised training so that connections are there where they are
most needed for the task, while its total number is all the time strictly bounded.
We demonstrate that DEEP R can be used to train very sparse feedforward and
recurrent neural networks on standard benchmark tasks with just a minor loss
in performance. DEEP R is based on a rigorous theoretical foundation that views
rewiring as stochastic sampling of network configurations from a posterior.

Acknowledgments and author contributions. This chapter is based on the ma-
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stein (2018). “Deep Rewiring: Training very sparse deep networks.” Inter-
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manuscript (sections 1 to 5) was mainly written by RL but all authors contributed
to the writing.
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2 Deep Rewiring: Training very sparse deep networks

2.1 Introduction

Network connectivity is one of the main determinants for whether a neural network
can be efficiently implemented in hardware or simulated in software. For example,
it is mentioned in Jouppi et al., 2017 that in Google’s tensor processing units (TPUs),
weights do not normally fit in on-chip memory for neural network applications
despite the small 8 bit weight precision on TPUs. Memory is also the bottleneck
in terms of energy consumption in TPUs and FPGAs (Han et al., 2017; Iandola
et al., 2016). For example, for an implementation of a long short term memory
network (LSTM), memory reference consumes more than two orders of magnitude
more energy than ALU operations (Han et al., 2017). The situation is even more
critical in neuromorphic hardware, where either hard upper bounds on network
connectivity are unavoidable (Schemmel et al., 2010; Merolla et al., 2014) or fast
on-chip memory of local processing cores is severely limited, for example the 96
MByte local memory of cores in the SpiNNaker system (Furber et al., 2014). This
implementation bottleneck will become even more severe in future applications
of deep learning when the number of neurons in layers will increase, causing a
quadratic growth in the number of connections between them.

Evolution has apparently faced a similar problem when evolving large neuronal
systems such as the human brain, given that the brain volume is dominated by
white matter, i.e., by connections between neurons. The solution found by evolution
is convincing. Synaptic connectivity in the brain is highly dynamic in the sense
that new synapses are constantly rewired, especially during learning (Holtmaat
et al., 2005; Stettler et al., 2006; Attardo et al., 2015; Chambers and Rumpel, 2017).
In other words, rewiring is an integral part of the learning algorithms in the brain,
rather than a separate process.

We are not aware of previous methods for simultaneous training and rewiring
in artificial neural networks, so that they are able to stay within a strict bound
on the total number of connections throughout the learning process. There are
however several heuristic methods for pruning a larger network (Han et al., 2015b;
Han et al., 2015a; Collins and Kohli, 2014; Z. Yang et al., 2015; Srinivas and Babu,
2015), that is, the network is first trained to convergence, and network connections
and / or neurons are pruned only subsequently. These methods are useful for
downloading a trained network on neuromorphic hardware, but not for on-chip
training. A number of methods have been proposed that are capable of reducing
connectivity during training (Collins and Kohli, 2014; Jin et al., 2016; Narang
et al., 2017). However, these algorithms usually start out with full connectivity.
Hence, besides reducing computational demands only partially, they cannot be
applied when computational resources (such as memory) is bounded throughout
training.

Inspired by experimental findings on rewiring in the brain, we propose in this article
deep rewiring (DEEP R), an algorithm that makes it possible to train deep neural
networks under strict connectivity constraints. In contrast to many previous pruning
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approaches that were based on heuristic arguments, DEEP R is embedded in a
thorough theoretical framework. DEEP R is conceptually different from standard
gradient descent algorithms in two respects. First, each connection has a predefined
sign. Specifically, we assign to each connection k a connection parameter θk and a
constant sign sk ∈ {−1, 1}. For non-negative θk, the corresponding network weight
is given by wk = skθk. In standard backprop, when the absolute value of a weight
is moved through 0, it becomes a weight with the opposite sign. In contrast, in
DEEP R a connection vanishes in this case (wk = 0), and a randomly drawn other
connection is tried out by the algorithm. Second, in DEEP R, gradient descent is
combined with a random walk in parameter space (Freitas et al., 2000; Welling and
Teh, 2011). This modification leads to important functional differences. In fact, our
theoretical analysis shows that DEEP R jointly samples network weights and the
network architecture (i.e., network connectivity) from the posterior distribution,
that is, the distribution that combines the data likelihood and a specific connectivity
prior in a Bayes optimal manner. As a result, the algorithm continues to rewire
connections even when the performance has converged. We show that this feature
enables DEEP R to adapt the network connectivity structure online when the task
demands are drifting.

We show on several benchmark tasks that with DEEP R, the connectivity of several
deep architectures — fully connected deep networks, convolutional nets, and recur-
rent networks (LSTMs) — can be constrained to be extremely sparse throughout
training with a marginal drop in performance. In one example, a standard feed
forward network trained on the MNIST dataset, we achieved good performance
with 2 % of the connectivity of the fully connected counterpart. We show that DEEP
R reaches a similar performance level as state-of-the-art pruning algorithms where
training starts with the full connectivity matrix. If the target connectivity is very
sparse (a few percent of the full connectivity), DEEP R outperformed these pruning
algorithms.

2.2 Rewiring in deep neural networks

Stochastic gradient descent (SGD) and its modern variants (Kingma and Ba, 2014;
Tieleman and Hinton, 2012) implemented through the Error Backpropagation
algorithm is the dominant learning paradigm of contemporary deep learning
applications. For a given list of network inputs X and target network outputs
Y∗, gradient descent iteratively moves the parameter vector θ in the direction of
the negative gradient of an error function EX,Y∗(θ) such that a local minimum of
EX,Y∗(θ) is eventually reached.

A more general view on neural network training is provided by a probabilistic
interpretation of the learning problem (Bishop, 2006; Neal, 1992). In this prob-
abilistic learning framework, the deterministic network output is interpreted as
defining a probability distribution pN (Y |X,θ) over outputs Y for the given input

15



2 Deep Rewiring: Training very sparse deep networks

X and the given network parameters θ. The goal of training is then to find parame-
ters that maximize the likelihood pN (Y∗ |X,θ) of the training targets under this
model (maximum likelihood learning). Training can again be performed by gradi-
ent descent on an equivalent error function that is usually given by the negative
log-likelihood EX,Y∗(θ) = − log pN (Y∗ |X,θ).

Going one step further in this reasoning, a full Bayesian treatment adds prior
beliefs about the network parameters through a prior distribution pS (θ) (we term
this distribution the structural prior for reasons that will become clear below)
over parameter values θ and the training goal is formulated via the posterior
distribution over parameters θ. The training goal that we consider in this article
is to produce sample parameter vectors which have a high probability under the
posterior distribution p∗(θ |X, Y∗) ∝ pS (θ) · pN (Y∗ |X,θ). More generally, we are
interested in a target distribution p∗(θ) ∝ p∗(θ |X, Y∗)

1
T that is a tempered version

of the posterior where T is a temperature parameter. For T = 1 we recover the
posterior distribution, for T > 1 the peaks of the posterior are flattened, and for
T < 1 the distribution is sharpened, leading to higher probabilities for parameter
settings with better performance.

This training goal was explored by Welling and Teh, 2011, C. Chen et al., 2016,
and Kappel et al., 2015 where it was shown that gradient descent in combination
with stochastic weight updates performs Markov Chain Monte Carlo (MCMC)
sampling from the posterior distribution. In this paper we extend these results by
(a) allowing the algorithm also to sample the network structure, and (b) including
a hard posterior constraint on the total number of connections during the sampling
process. We define the training goal as follows:

produce samples θ with high probability in p∗(θ) =

{
0 if θ violates the constraint
1
Z p∗(θ |X, Y∗)

1
T otherwise,

(2.1)

where Z is a normalizing constant. The emerging learning dynamics jointly samples
from a posterior distribution over network parameters θ and constrained network
architectures. In the next section we introduce the algorithm and in Section 2.4 we
discuss the theoretical guarantees.

The DEEP R algorithm: In many situations, network connectivity is strictly
limited during training, for instance because of hardware memory limitations.
Then the limiting factor for a training algorithm is the maximal connectivity ever
needed during training. DEEP R guarantees such a hard limit. DEEP R achieves
the learning goal (2.1) on network configurations, that is, it not only samples the
network weights and biases, but also the connectivity under the given constraints.
This is achieved by introducing the following mapping from network parameters θ
to network weights w:
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2.2 Rewiring in deep neural networks

A connection parameter θk and a constant sign sk ∈ {−1, 1} are assigned to each
connection k. If θk is negative, we say that the connection k is dormant, and the
corresponding weight is wk = 0. Otherwise, the connection is considered active,
and the corresponding weight is wk = skθk. Hence, each θk encodes (a) whether
the connection is active in the network, and (b) the weight of the connection if it is
active. Note that we use here a single index k for each connection / weight instead
of the more usual double index that defines the sending and receiving neuron.
This connection-centric indexing is more natural for our rewiring algorithms where
the connections are in the focus rather than the neurons. Using this mapping,
sampling from the posterior over θ is equivalent to sampling from the posterior
over network configurations, that is, the network connectivity structure and the
network weights.

1 for i in [1, Niterations] do
2 for all active connections k (θk ≥ 0) do
3 θk ← θk − η ∂

∂θk
EX,Y∗(θ)− ηα +

√
2ηT νk;

4 if θk < 0 then set connection k dormant ;
5 end
6 while number of active connections lower than K do
7 select a dormant connection k′ with uniform probability and activate

it;
8 θk′ ← 0
9 end

10 end
Algorithm 1: Pseudo code of the DEEP R algorithm. νk is sampled from a zero-
mean Gaussian of unit variance independently for each active and each update
step. Note that the gradient of the error EX,Y∗(θ) is computed by backpropagation
over a mini-batch in practice.

DEEP R is defined in Algorithm 1. Gradient updates are performed only on param-
eters of active connections (line 3). The derivatives of the error function ∂

∂θk
EX,Y∗(θ)

can be computed in the usual way, most commonly with the backpropagation
algorithm. Since we consider only classification problems in this article, we used
the cross-entropy error for the experiments in this article. The third term in line 3

(−ηα) is an `1 regularization term, but other regularizers could be used as well.

A conceptual difference to gradient descent is introduced via the last term in line 3.
Here, noise

√
2ηT νk is added to the update, where the temperature parameter T

controls the amount of noise and νk is sampled from a zero-mean Gaussian of unit
variance independently for each parameter and each update step. The last term
alone would implement a random walk in parameter space. Hence, the whole line 3

of the algorithm implements a combination of gradient descent on the regularized
error function with a random walk. Our theoretical analysis shows that this random
walk behavior has an important functional consequence, see the paragraph after
the next for a discussion on the theoretical properties of DEEP R.
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Fig. 2.1: Visual pattern recognition with sparse networks during training. Sample training im-
ages (top), test classification accuracy after training for various connectivity levels (middle)
and example test accuracy evolution during training (bottom) for a standard feed forward net-
work trained on MNIST (A) and a CNN trained on CIFAR-10 (B). Accuracies are shown for
various algorithms. Green: DEEP R; red: soft-DEEP R; blue: SGD with initially fixed sparse
connectivity; dashed gray: SGD, fully connected. Since soft-DEEP R does not guarantee
a strict upper bound on the connectivity, accuracies are plotted against the highest con-
nectivity ever met during training (middle panels). Iteration number refers to the number of
parameter updates during training.

The rewiring aspect of the algorithm is captured in lines 4 and 6–9 in Algorithm (1).
Whenever a parameter θk becomes smaller than 0, the connection is set dormant,
i.e., it is deleted from the network and no longer considered for updates (line
4). For each connection that was set to the dormant state, a new connection k′ is
chosen randomly from the uniform distribution over dormant connections, k′ is
activated and its parameter is initialized to 0. This rewiring strategy (a) ensures
that exactly K connections are active at any time during training (one initializes the
network with K active connections), and (b) that dormant connections do not need
any computational demands except for drawing connections to be activated. Note
that for sparse networks, it is efficient to keep only a list of active connections and
none for the dormant connections. Then, one can efficiently draw connections from
the whole set of possible connections and reject those that are already active.
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2.3 Experiments

2.3 Experiments

Rewiring in fully connected and in convolutional networks: We first tested the
performance of DEEP R on MNIST and CIFAR-10. For MNIST, we considered a fully
connected feed-forward network used in Han et al., 2015b to benchmark pruning
algorithms. It has two hidden layers of 300 and 100 neurons respectively and a
10-fold softmax output layer. On the CIFAR-10 dataset, we used a convolutional
neural network (CNN) with two convolutional followed by two fully connected
layers. For reproducibility purposes the network architecture and all parameters
of this CNN were taken from the official tutorial of Tensorflow. On CIFAR-10, we
used a decreasing learning rate and a cooling schedule to reduce the temperature
parameter T over iterations (see Appendix B.1 for details on all experiments).

For each task, we performed four training sessions. First, we trained a network
with DEEP R. In the CNN, the first convolutional layer was kept fully connected
while we allowed rewiring of the second convolutional layer. Second, we tested
another algorithm, soft-DEEP R, which is a simplified version of DEEP R that
does however not guarantee a strict connectivity constraint (see Section 2.4 for
a description). Third, we trained a network in the standard manner without any
rewiring or pruning to obtain a baseline performance. Finally, we trained a network
with a connectivity that was randomly chosen before training and kept fixed during
the optimization. The connectivity was however not completely random. Rather
each layer received a number of connections that was the same as the number
found by soft-DEEP R. The performance of this network is expected to be much
better than a network where all layers are treated equally.

Fig. 2.1 shows the performance of these algorithms on MNIST (panel A) and
on CIFAR-10 (panel B). DEEP R reaches a classification accuracy of 96.2 % when
constrained to 1.3 % connectivity. To evaluate precisely the accuracy that is reachable
with 1.0 % connectivity, we did an additional experiment where we doubled the
number of training epochs. DEEP R reached a classification accuracy of 96.3% (less
than 2 % drop in comparison to the fully connected baseline). Training on fixed
random connectivity performed surprisingly well for connectivities around 10 %,
possibly due to the large redundancy in the MNIST images. Soft-DEEP R does not
guarantee a strict upper bound on the network connectivity. When considering
the maximum connectivity ever seen during training, soft-DEEP R performed
consistently worse than DEEP R for networks where this maximum connectivity
was low. On CIFAR-10, the classification accuracy of DEEP R was 84.1 % at a
connectivity level of 5 %. The performance of DEEP R at 20 % connectivity was
close to the performance of the fully connected network.

To study the rewiring properties of DEEP R, we monitored the number of newly
activated connections per iteration (i.e., connections that changed their status from
dormant to active in that iteration). We found that after an initial transient, the
number of newly activated connections converged to a stable value and remained
stable even after network performance has converged, see Appendix B.2.
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Fig. 2.2: Rewiring in recurrent neural networks. Network performance for one example run (A) and
at various connectivity levels (B) as in Fig. 2.1 for an LSTM network trained on the TIMIT
dataset with DEEP R (green), soft-DEEP R (red) and a network with fixed random connec-
tivity (blue). Dotted line: fully connected LSTM trained without regularization as reported in
Greff et al., 2017. Thick dotted line: fully connected LSTM with `2 regularization.

Rewiring in recurrent neural networks: In order to test the generality of our
rewiring approach, we also considered the training of recurrent neural networks
with backpropagation through time (BPTT). Recurrent networks are quite different
from their feed forward counterparts in terms of their dynamics. In particular,
they are potentially unstable due to recurrent loops in inference and training
signals. As a test bed, we considered an LSTM network trained on the TIMIT
data set. In our rewiring algorithms, all connections were potentially available
for rewiring, including connections to gating units. From the TIMIT audio data,
MFCC coefficients and their temporal derivatives were computed and fed into a
bi-directional LSTMs with a single recurrent layer of 200 cells followed by a softmax
to generate the phoneme likelihood (Graves and Schmidhuber, 2005), see Appendix
B.1.

We considered as first baseline a fully connected LSTM with standard BPTT without
regularization as the training algorithm. This algorithm performed similarly as the
one described in Greff et al., 2017. It turned out however that performance could
be significantly improved by including a regularizer in the training objective. We
therefore considered the same setup with `2 regularization (cross-validated). This
setup achieved a phoneme error rate of 28.3 %. We note that better results have been
reported in the literature using the CTC cost function and deeper networks (Graves
et al., 2013). For the sake of easy comparison however, we sticked here to the much
simpler setup with a medium-sized network and the standard cross-entropy error
function.

We found that connectivity can be reduced significantly in this setup with our
algorithms, see Fig. 2.2. Both algorithms, DEEP R and soft-DEEP R, performed
even slightly better than the fully connected baseline at connectivities around 10
%, probably due to generalization issues. DEEP R outperformed soft-DEEP R at
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Fig. 2.3: Efficient network solutions under strict sparsity constraints. Accuracy and connectivity
obtained by DEEP R and soft-DEEP R in comparison to those achieved by pruning (Han
et al., 2015b) and `1-shrinkage (Tibshirani, 1996; Collins and Kohli, 2014). A, B) Accuracy
against the connectivity for MNIST (A) and CIFAR-10 (B). For each algorithm, one network
with a decent compromise between accuracy and sparsity is chosen (small gray boxes)
and its connectivity across training iterations is shown below. C) Performance on the TIMIT
dataset. D) Phoneme error rates and connectivities across iteration number for representa-
tive training sessions.

very low connectivities and it outperformed BPTT with fixed random connectivity
consistently at any connectivity level considered.

Comparison to algorithms that cannot be run on very sparse networks: We
wondered how much performance is lost when a strict connectivity constraint
has to be taken into account during training as compared to pruning algorithms
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Fig. 2.4: Transfer learning with DEEP R. The target labels of the MNIST data set were shuffled after
every epoch. A) Network accuracy vs. training epoch. The increase of network performance
across tasks (epochs) indicates a transfer of knowledge between tasks. B) Correlation be-
tween weight matrices of subsequent epochs for each network layer. C) Correlation between
neural activity vectors of subsequent epochs for each network layer. The transfer is most
visible in the first hidden layer, since weights and outputs of this layer are correlated across
tasks. Shaded areas in B) and C) represent standard deviation across 5 random seeds,
influencing network initialization, noisy parameter updates, and shuffling of the outputs.

that only achieve sparse networks after training. To this end, we compared the
performance of DEEP R and soft-DEEP R to recently proposed pruning algorithms:
`1-shrinkage (Tibshirani, 1996; Collins and Kohli, 2014) and the pruning algorithm
proposed by Han et al., 2015b. `1-shrinkage uses simple `1-norm regularization and
finds network solutions with a connectivity that is comparable to the state of the art
(Collins and Kohli, 2014; Yu et al., 2012). We chose this one since it is relatively close
to DEEP R with the difference that it does not implement rewiring. The pruning
algorithm from Han et al., 2015b is more complex and uses a projection of network
weights on a `0 constraint. Both algorithms prune connections starting from the
fully connected network. The hyper-parameters such as learning rate, layer size,
and weight decay coefficients were kept the same in all experiments. We validated
by an extensive parameter search that these settings were good settings for the
comparison algorithms, see Appendix B.1.

Results for the same setups as considered above (MNIST, CIFAR-10, TIMIT) are
shown in Fig. 2.3. Despite the strict connectivity constraints, DEEP R and soft-
DEEP R performed slightly better than the unconstrained pruning algorithms on
CIFAR-10 and TIMIT at all connectivity levels considered. On MNIST, pruning
was slightly better for larger connectivities. On MNIST and TIMIT, pruning and
`1-shrinkage failed completely for very low connectivities while rewiring with
DEEP R or soft-DEEP R still produced reasonable networks in this case.

One interesting observation can be made for the error rate evolution of the LSTM
on TIMIT (Fig. 2.3D). Here, both `1-shrinkage and pruning induced large sudden
increases of the error rate, possibly due to instabilities induced by parameter
changes in the recurrent network. In contrast, we observed only small glitches of
this type in DEEP R. This indicates that sparsification of network connectivity is
harder in recurrent networks due to potential instabilities, and that DEEP R is
better suited to avoid such instabilities. The reason for this advantage of DEEP R is
however not clear.
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2.4 Convergence properties of DEEP R and soft-DEEP R

Transfer learning is supported by DEEP R: If the temperature parameter T is
kept constant during training, the proposed rewiring algorithms do not converge
to a static solution but explore continuously the posterior distribution of network
configurations. As a consequence, rewiring is expected to adapt to changes in the
task in an on line manner. If the task demands change in an online learning setup,
one may hope that a transfer of invariant aspects of the tasks occurs such that these
aspects can be utilized for faster convergence on later tasks (transfer learning).
To verify this hypothesis, we performed one experiment on the MNIST dataset
where the class to which each output neuron should respond to was changed after
each training epoch (class-shuffled MNIST task). Fig. 2.4A shows the performance
of a network trained with DEEP R in the class-shuffled MNIST task. One can
observe that performance recovered after each shuffling of the target classes. More
importantly, we found a clear trend of increasing classification accuracy even
across shuffles. This indicates a form of transfer learning in the network such that
information about the previous tasks (i.e., the previous target-shuffled MNIST
instances) was preserved in the network and utilized in the following instances.
We hypothesized for the reason of this transfer that early layers developed features
that were invariant to the target shuffling and did not need to be re-learned in later
task instances. To verify this hypothesis, we computed the following two quantities.
First, in order to quantify the speed of parameter dynamics in different layers, we
computed the correlation between the layer weight matrices of two subsequent
training epoch (Fig. 2.4B). Second, in order to quantify the speed of change of
network dynamics in different layers, we computed the correlation between the
neuron outputs of a layer in subsequent epochs (Fig. 2.4C). We found that the
correlation between weights and layer outputs increased across training epochs
and were significantly larger in early layers. This supports the hypothesis that early
network layers learned features invariant to the shuffled coding convention of the
output layer.

2.4 Convergence properties of DEEP R and soft-DEEP R

The theoretical analysis of DEEP R is somewhat involved due to the implemented
hard constraints. We therefore first introduce and discuss here another algorithm,
soft-DEEP R where the theoretical treatment of convergence is more straight
forward. In contrast to standard gradient-based algorithms, this convergence is
not a convergence to a particular parameter vector, but a convergence to the target
distribution over network configurations.

Convergence properties of soft-DEEP R: The soft-DEEP R algorithm is given in
Algorithm 2. Note that the updates for active connections are the same as for DEEP
R (line 3). Also the mapping from parameters θk to weights wk is the same as in
DEEP R. The main conceptual difference to DEEP R is that connection parameters
continue their random walk when dormant (line 7). Due to this random walk,
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2 Deep Rewiring: Training very sparse deep networks

1 for i in [1, Niterations] do
2 for all active connections k (θk ≥ 0) do
3 θk ← θk − η ∂

∂θk
EX,Y∗(θ)− ηα +

√
2ηT νk;

4 if θk < 0 then set connection k dormant ;
5 end
6 for all dormant connections k (θk < 0) do
7 θk ← θk +

√
2ηT νk;

8 θk ← max{θk, θmin};
9 if θk ≥ 0 then set connection k active ;

10 end
11 end
Algorithm 2: Pseudo code of the soft-DEEP R algorithm. θmin < 0 is a constant
that defines a lower boundary for negative θks.

connections will be re-activated at random times when they cross zero. Therefore,
soft-DEEP R does not impose a hard constraint on network connectivity but rather
uses the `1 norm regularization to impose a soft-constraint.

Since dormant connections have to be simulated, this algorithm is computationally
inefficient for sparse networks. An approximation could be used where silent
connections are re-activated at a constant rate, leading to an algorithm very similar
to DEEP R. DEEP R adds to that the additional feature of a strict connectivity
constraint.

The central result for soft-DEEP R has been proven in the context of spiking neural
networks in (Kappel et al., 2015) in order to understand rewiring in the brain from
a functional perspective. The same theory however also applies to standard deep
neural networks. To be able to apply standard mathematical tools, we consider
parameter dynamics in continuous time. In particular, consider the following
stochastic differential equation (SDE)

dθk = β
∂

∂θk
log p∗(θ|X, Y∗)

∣∣∣∣
θt

dt +
√

2βT dWk , (2.2)

where β is the equivalent to the learning rate and ∂
∂θk

log p∗(θ|X, Y∗)
∣∣∣
θt

denotes the

gradient of the log parameter posterior evaluated at the parameter vector θt at time
t. The term dWk denotes the infinitesimal updates of a standard Wiener process.
This SDE describes gradient ascent on the log posterior combined with a random
walk in parameter space. We show in Appendix B.3 that the unique stationary
distribution of this parameter dynamics is given by

p∗(θ) =
1
Z p∗(θ |X, Y∗)

1
T . (2.3)

Since we considered classification tasks in this article, we interpret the network
output as a multinomial distribution over class labels. Then, the derivative of the
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log likelihood is equivalent to the derivative of the negative cross-entropy error.
Together with an `1 regularization term for the prior, and after discretization of
time, we obtain the update of line 3 in Algorithm 2 for non-negative parameters. For
negative parameters, the first term in Eq. (2.2) vanishes since the network weight is
constant zero there. This leads to the update in line 7. Note that we introduced a
reflecting boundary at θmin < 0 in the practical algorithm to avoid divergence of
parameters (line 8).

Convergence properties of DEEP R: A detailed analysis of the stochastic process
that underlies the algorithm is provided in Appendix B.4. Here we summarize the
main findings. Each iteration of DEEP R in Algorithm 1 consists of two parts: In
the first part (lines 2-5) all connections that are currently active are advanced, while
keeping the other parameters at 0. In the second part (lines 6-9) the connections
that became dormant during the first step are randomly replenished.

To describe the connectivity constraint over connections we introduce the binary
constraint vector c which represents the set of active connections, i.e., element
ck of c is 1 if connection k is allowed to be active and zero else. In Theorem 2

of Appendix B.4, we link DEEP R to a compound Markov chain operator that
simultaneously updates the parameters θ according to the soft-DEEP R dynamics
under the constraint c and the constraint vector c itself. The stationary distribution
of this Markov chain is given by the joint probability

p∗(θ, c) ∝ p∗(θ) C(θ, c) pC(c) , (2.4)

where C(θ, c) is a binary function that indicates compatibility of θ with the con-
straint c and p∗(θ) is the tempered posterior of Eq. (2.3) which is left stationary
by soft-DEEP R in the absence of constraints. pC(c) in Eq. (2.4) is a uniform prior
over all connectivity constraints with exactly K synapses that are allowed to be
active. By marginalizing over c, we obtain that the posterior distribution of DEEP R
is identical to that of soft-DEEP R if the constraint on the connectivity is fulfilled.
By marginalizing over θ, we obtain that the probability of sampling a network
architecture (i.e. a connectivity constraint c) with DEEP R and soft-DEEP R are
proportional to one another. The only difference is that DEEP R exclusively visits
architectures with K active connections (see equation (B.35) in Appendix B.4 for
details).

In other words, DEEP R solves a constraint optimization problem by sampling
parameter vectors θ with high performance within the space of constrained connec-
tivities. The algorithm will therefore spend most time in network configurations
where the connectivity supports the desired network function, such that, connec-
tions with large support under the objective function (2.1) will be maintained active
with high probability, while other connections are randomly tested and discarded
if found not useful.
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2.5 Discussion

Related Work: Freitas et al., 2000 considered sequential Monte Carlo sampling
to train neural networks by combining stochastic weight updates with gradient
updates. Stochastic gradient updates in mini-batch learning was considered in
Welling and Teh, 2011, where also a link to the true posterior distribution was
established. C. Chen et al., 2016 proposed a momentum scheme and temperature
annealing (for the temperature T in our notation) for stochastic gradient updates,
leading to a stochastic optimization method. DEEP R extends this approach by
using stochastic gradient Monte Carlo sampling not only for parameter updates
but also to sample the connectivity of the network. In addition, the posterior in
DEEP R is subject to a hard constraint on the network architecture. In this sense,
DEEP R performs constrained sampling, or constrained stochastic optimization if
the temperature is annealed. S. Patterson and Teh, 2013 considered the problem of
stochastic gradient dynamics constrained to the probability simplex. The methods
considered there are however not readily applicable to the problem of constraints
on the connection matrix considered here. Additionally, we show that a correct
sampler can be constructed that does not simulate dormant connections. This
sampler is efficient for sparse connection matrices. Thus, we developed a novel
method, random reintroduction of connections, and analyzed its convergence
properties (see Theorem 2 in Appendix B.4).

Conclusions: We have presented a method for modifying backprop and backprop-
through-time so that not only the weights of connections, but also the connectivity
graph is simultaneously optimized during training. This can be achieved while
staying always within a given bound on the total number of connections. When the
absolute value of a weight is moved by backprop through 0, it becomes a weight
with the opposite sign. In contrast, in DEEP R a connection vanishes in this case
(more precisely: becomes dormant), and a randomly drawn other connection is
tried out by the algorithm. This setup requires that, like in neurobiology, the sign
of a weight does not change during learning. Another essential ingredient of DEEP
R is that it superimposes the gradient-driven dynamics of each weight with a
random walk. This feature can be viewed as another inspiration from neurobiol-
ogy (Mongillo et al., 2017). An important property of DEEP R is that — in spite
of its stochastic ingredient — its overall learning dynamics remains theoretically
tractable: Not as gradient descent in the usual sense, but as convergence to a
stationary distribution of network configurations which assigns the largest proba-
bilities to the best-performing network configurations. An automatic benefit of this
ongoing stochastic parameter dynamics is that the training process immediately
adjusts to changes in the task, while simultaneously transferring previously gained
competences of the network (see Fig. 2.4).
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Recurrent networks of spiking neurons (RSNNs) underlie the astounding comput-
ing and learning capabilities of the brain. But computing and learning capabilities
of RSNN models have remained poor, at least in comparison with artificial neural
networks (ANNs). We address two possible reasons for that. One is that RSNNs in
the brain are not randomly connected or designed according to simple rules, and
they do not start learning as a tabula rasa network. Rather, RSNNs in the brain were
optimized for their tasks through evolution, development, and prior experience.
Details of these optimization processes are largely unknown. But their functional
contribution can be approximated through powerful optimization methods, such
as backpropagation through time (BPTT).

A second major mismatch between RSNNs in the brain and models is that the latter
only show a small fraction of the dynamics of neurons and synapses in the brain.
We include neurons in our RSNN model that reproduce one prominent dynamical
process of biological neurons that takes place at the behaviourally relevant time
scale of seconds: neuronal adaptation. We denote these networks as LSNNs because
of their Long short-term memory. The inclusion of adapting neurons drastically
increases the computing and learning capability of RSNNs if they are trained
and configured by deep learning (BPTT combined with a rewiring algorithm that
optimizes the network architecture). In fact, the computational performance of
these RSNNs approaches for the first time that of LSTM networks. In addition
RSNNs with adapting neurons can acquire abstract knowledge from prior learning
in a Learning-to-Learn (L2L) scheme, and transfer that knowledge in order to learn
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3 Long short-term memory and learning-to-learn in networks of spiking neurons

new but related tasks from very few examples. We demonstrate this for supervised
learning and reinforcement learning.

Acknowledgments and author contributions. This chapter is based on the ma-
nuscript

Guillaume Bellec, Darjan Salaj, Anand Subramoney, Robert Legenstein,
Wolfgang Maass (2018). “Long short-term memory and learning-to-learn
in networks of spiking neurons.” Advances in Neural Information Processing
Systems.

To this study, GB, DS and AS contributed as first authors. All authors contributed to
the conception of the study and the design of the experiments. The implementation
of back-propagation through time for spiking recurrent networks was implemented
by GB, and the code was used in all other experiments. The sequential MNIST
and TIMIT experiments were implemented by GB and DS. The supervised LTL
experiments were implemented by AS. The Meta-RL experiment was implemented
by GB. The core of the manuscript (sections 1 to 7) was mainly written by WM but
all authors contributed to the writing.

3.1 Introduction

Recurrent networks of spiking neurons (RSNNs) are frequently studied as models
for networks of neurons in the brain. In principle, they should be especially well-
suited for computations in the temporal domain, such as speech processing, as
their computations are carried out via spikes, i.e., events in time and space. But
the performance of RSNN models has remained suboptimal also for temporal
processing tasks. One difference between RSNNs in the brain and RSNN models
is that RSNNs in the brain have been optimized for their function through long
evolutionary processes, complemented by a sophisticated learning curriculum
during development. Since most details of these biological processes are currently
still unknown, we asked whether deep learning is able to mimic these complex
optimization processes on a functional level for RSNN models. We used BPTT as the
deep learning method for network optimization. Backpropagation has been adapted
previously for feed forward networks with binary activations in (Courbariaux et al.,
2016; Esser et al., 2016), and we adapted BPTT to work in a similar manner for
RSNNs. In order to also optimize the connectivity of RSNNs, we augmented BPTT
with DEEP R, a biologically inspired heuristic for synaptic rewiring (Kappel et al.,
2018; Bellec et al., 2018a). Compared to LSTM networks, RSNNs tend to have
inferior short-term memory capabilities. Since neurons in the brain are equipped
with a host of dynamics processes on time scales larger than a few dozen ms
(Hasson et al., 2015), we enriched the inherent dynamics of neurons in our model
by a standard neural adaptation process.
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3.2 LSNN model

We first show (section 3.4) that this approach produces new computational perfor-
mance levels of RSNNs for two common benchmark tasks: Sequential MNIST and
TIMIT (a speech processing task). We then show that it makes L2L applicable to
RSNNs (section 3.5), similarly as for LSTM networks. In particular, we show that
meta-RL (J. X. Wang et al., 2016; Duan et al., 2016) produces new motor control
capabilities of RSNNs (section 3.6). This result links a recent abstract model for
reward-based learning in the brain J. X. Wang et al., 2018 to spiking activity. In
addition, we show that RSNNs with sparse connectivity and sparse firing activity
of 10-20 Hz (see Fig. 1D, 2D, S1C) can solve these and other tasks. Hence these
RSNNs compute with spikes, rather than firing rates.

The superior computing and learning capabilities of LSNNs suggest that they are
also of interest for implementation in spike-based neuromorphic chips such as
Brainscales (Schemmel et al., 2010), SpiNNaker (Furber et al., 2013), True North
(Esser et al., 2016), chips from ETH Zürich (Qiao et al., 2015), and Loihi (Davies
et al., 2018). In particular, nonlocal learning rules such as backprop are challenges
for some of these neuromorphic devices (and for many brain models). Hence
alternative methods for RSNN learning of nonlinear functions are needed. We show
in sections 3.5 and 3.6 that L2L can be used to generate RSNNs that learn very
efficiently even in the absence of synaptic plasticity.

Relation to prior work: We refer to (Eliasmith, 2013; DePasquale et al., 2016; Huh
and Sejnowski, 2017; Nicola and Clopath, 2017) for summaries of preceding results
on computational capabilities of RSNNs. The focus there was typically on the
generation of dynamic patterns. Such tasks are not addressed in this article, but it
will be shown in (Bellec et al., 2018b) that LSNNs provide an alternative model to
Nicola and Clopath, 2017 for the generation of complex temporal patterns. Huh et
al. (Huh and Sejnowski, 2017) applied gradient descent to recurrent networks of
spiking neurons. There, neurons without a leak were used. Hence, the voltage of a
neuron could used in that approach to store information over an unlimited length
of time.

We are not aware of previous attempts to bring the performance of RSNNs for time
series classification into the performance range of LSTM networks. We are also not
aware of any previous literature on applications of L2L to SNNs.

3.2 LSNN model

Neurons and synapses in common RSNN models are missing many of the dynamic
processes found in their biological counterparts, especially those on larger time
scales. We integrate one of them into our RSNN model: neuronal adaptation. It
is well known that a substantial fraction of excitatory neurons in the brain are
adapting, with diverse time constants, see e.g. the Allen Brain Atlas for data from
the neocortex of mouse and humans. We refer to the resulting type of RSNNs as
Long short-term memory Spiking Neural Networks (LSNNs). LSNNs consist of a
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3 Long short-term memory and learning-to-learn in networks of spiking neurons

population R of integrate-and-fire (LIF) neurons (excitatory and inhibitory), and a
second population A of LIF excitatory neurons whose excitability is temporarily
reduced through preceding firing activity, i.e., these neurons are adapting (see
Fig. 3.1C and Suppl.). Both populations R and A receive spike trains from a
population X of external input neurons. Results of computations are read out by a
population Y of external linear readout neurons, see Fig. 3.1C.

Common ways for fitting models for adapting neurons to data are described in
(Gerstner et al., 2014; Pozzorini et al., 2015; N. W. Gouwens et al., 2018; Teeter et al.,
2018). We are using here the arguably simplest model: We assume that the firing
threshold Bj(t) of neuron j increases by some fixed amount β/τa,j for each spike
of this neuron j, and then decays exponentially back to a baseline value b0

j with a
time constant τa,j. Thus the threshold dynamics for a discrete time step of δt = 1
ms reads as follows

Bj(t) = b0
j + βbj(t), (3.1)

bj(t + δt) = ρjbj(t) + (1− ρj)zj(t), (3.2)

where ρj = exp(− δt
τa,j

) and zj(t) is the spike train of neuron j assuming values in

{0, 1
δt}. Note that this dynamics of thresholds of adaptive spiking neurons is similar

to the dynamics of the state of context neurons in (Mikolov et al., 2014). It generally
suffices to place the time constant of adapting neurons into the desired range for
short-term memory (see Suppl. for specific values used in each experiment).

3.3 Applying BPTT with DEEP R to RSNNs and LSNNs

We optimize the synaptic weights, and in some cases also the connectivity matrix
of an LSNN for specific ranges of tasks. The optimization algorithm that we use,
backpropagation through time (BPTT), is not claimed to be biologically realistic. But
like evolutionary and developmental processes, BPTT can optimize LSNNs for spe-
cific task ranges. Backpropagation (BP) had already been applied in (Courbariaux
et al., 2016) and (Esser et al., 2016) to feedforward networks of spiking neurons.
In these approaches, the gradient is backpropagated through spikes by replacing
the non-existent derivative of the membrane potential at the time of a spike by a
pseudo-derivative that smoothly increases from 0 to 1, and then decays back to 0.
We reduced (“dampened”) the amplitude of the pseudo-derivative by a factor < 1
(see Suppl. for details). This enhances the performance of BPTT for RSNNs that
compute during larger time spans, that require backpropagation through several
1000 layers of an unrolled feedforward network of spiking neurons. A similar
implementation of BPTT for RSNNs was proposed in (Huh and Sejnowski, 2017).
It is not yet clear which of these two versions of BPTT work best for a given task
and a given network.

In order to optimize not only the synaptic weights of a RSNN but also its con-
nectivity matrix, we integrated BPTT with the biologically inspired (Kappel et al.,
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2018) rewiring method DEEP R (Bellec et al., 2018a) (see Suppl. for details). DEEP
R converges theoretically to an optimal network configuration by continuously
updating the set of active connections (Kappel et al., 2015; Kappel et al., 2018; Bellec
et al., 2018a).

3.4 Computational performance of LSNNs

Sequential MNIST: We tested the performance of LSNNs on a standard benchmark
task that requires continuous updates of short term memory over a long time span:
sequential MNIST (Le et al., 2015; Costa et al., 2017). We compare the performance
of LSNNs with that of LSTM networks. The size of the LSNN, in the case of full
connectivity, was chosen to match the number of parameters of the LSTM network.
This led to 120 regular spiking and 100 adaptive neurons (with adaptation time
constant τa of 700 ms) in comparison to 128 LSTM units. Actually it turned out
that the sparsely connected LSNN shown in Fig. 3.1C, which was generated by
including DEEP R in BPTT, had only 12% of the synaptic connections but performed
better than the fully connected LSNN (see “DEEP R LSNN” versus “LSNN” in
Fig. 3.1B).

The task is to classify the handwritten digits of the MNIST dataset when the pixels
of each handwritten digit are presented sequentially, one after the other in 784
steps, see Fig. 3.1A. After each presentation of a handwritten digit, the network is
required to output the corresponding class. The grey values of pixels were given
directly to artificial neural networks (ANNs), and encoded by spikes for RSNNs.
We considered both the case of step size 1 ms (requiring 784 ms for presenting
the input image) and 2 ms (requiring 1568 ms for each image, the adaptation
time constant τa was set to 1400 ms in this case, see Fig. 3.1B.). The top row of
Fig. 3.1D shows a version where the grey value of the currently presented pixel
is encoded by population coding through the firing probability of the 80 input
neurons. Somewhat better performance was achieved when each of the 80 input
neurons is associated with a particular threshold for the grey value, and this input
neuron fires whenever the grey value crosses its threshold in the transition from the
previous to the current pixel (this input convention is chosen for the SNN results
of Fig. 3.1B). In either case, an additional input neuron becomes active when the
presentation of the 784 pixel values is finished, in order to prompt an output from
the network. The firing of this additional input neuron is shown at the top right
of the top panel of Fig. 3.1D. The softmax of 10 linear output neurons Y is trained
through BPTT to produce, during this time segment, the label of the sequentially
presented handwritten digit. We refer to the yellow shading around 800 ms of the
output neuron for label 3 in the plot of the dynamics of the output neurons Y in
Fig. 3.1D. This output was correct.

A performance comparison is given in Fig. 3.1B. LSNNs achieve 94.7% and 96.4%
classification accuracy on the test set when every pixel is presented for 1 and 2ms
respectively. An LSTM network achieves 98.5% and 98.0% accuracy on the same task
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3 Long short-term memory and learning-to-learn in networks of spiking neurons

Fig. 3.1: Sequential MNIST. A The task is to classify images of handwritten digits when the pixels
are shown sequentially pixel by pixel, in a fixed order row by row. B The performance of
RSNNs is tested for three different setups: without adapting neurons (LIF), a fully connected
LSNN, and an LSNN with randomly initialized connectivity that was rewired during training
(DEEP R LSNN). For comparison, the performance of two ANNs, a fully connected RNN
and an LSTM network are also shown. C Connectivity (in terms of connection probabilities
between and within the 3 subpopulations) of the LSNN after applying DEEP R in conjunction
with BPTT. The input population X consisted of 60 excitatory and 20 inhibitory neurons. Per-
centages on the arrows from X indicate the average connection probabilities from excitatory
and inhibitory neurons. D Dynamics of the LSNN after training when the input image from A
was sequentially presented. From top to bottom: spike rasters from input neurons (X), and
random subsets of excitatory (E) and inhibitory (I) regularly spiking neurons, and adaptive
neurons (A), dynamics of the firing thresholds of a random sample of adaptive neurons;
activation of softmax readout neurons.
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3.5 LSNNs learn-to-learn from a teacher

setups. The LIF and RNN bars in Fig. 3.1B show that this accuracy is out of reach
for BPTT applied to spiking or nonspiking neural networks without enhanced short
term memory capabilities. We observe that in the sparse architecture discovered by
DEEP R, the connectivity onto the readout neurons Y is denser than in the rest of
the network (see Fig. 3.1C). Detailed results are given in the supplement.

Speech recognition (TIMIT): We also tested the performance of LSNNs for a
real-world speech recognition task, the TIMIT dataset. A thorough study of the
performance of many variations of LSTM networks on TIMIT has recently been
carried out in (Greff et al., 2017). We used exactly the same setup which was used
there (framewise classification) in order to facilitate comparison. We found that a
standard LSNN consisting of 300 regularly firing (200 excitatory and 100 inhibitory)
and 100 excitatory adapting neurons with an adaptation time constant of 200 ms,
and with 20% connection probability in the network, achieved a classification error
of 33.2%. This error is below the mean error around 40% from 200 trials with
different hyperparameters for the best performing (and most complex) version of
LSTMs according to Fig. 3 of (Greff et al., 2017), but above the mean of 29.7% of the
20 best performing choices of hyperparameters for these LSTMs. The performance
of the LSNN was however somewhat better than the error rates achieved in (Greff
et al., 2017) for a less complex version of LSTMs without forget gates (mean of the
best 20 trials: 34.2%).

We could not perform a similarly rigorous search over LSNN architectures and
meta-parameters as was carried out in (Greff et al., 2017) for LSTMs. But if all
adapting neurons are replaced by regularly firing excitatory neurons one gets a
substantially higher error rate than the LSNN with adapting neurons: 37%. Details
are given in the supplement.

3.5 LSNNs learn-to-learn from a teacher

One likely reason why learning capabilities of RSNN models have remained rather
poor is that one usually requires a tabula rasa RSNN model to learn. In contrast,
RSNNs in the brain have been optimized through a host of preceding processes,
from evolution to prior learning of related tasks, for their learning performance.
We emulate a similar training paradigm for RSNNs using the L2L setup. We
explore here only the application of L2L to LSNNs, but L2L can also be applied
to RSNNs without adapting neurons (Subramoney et al., 2018). An application
of L2L to LSNNs is tempting, since L2L is most commonly applied in machine
learning to their ANN counterparts: LSTM networks see e.g. (J. X. Wang et al., 2016;
Duan et al., 2016). LSTM networks are especially suited for L2L since they can
accommodate two levels of learning and representation of learned insight: Synaptic
connections and weights can encode, on a higher level, a learning algorithm and
prior knowledge on a large time-scale. The short-term memory of an LSTM network
can accumulate, on a lower level of learning, knowledge during the current learning
task. It has recently been argued J. X. Wang et al., 2018 that the pre-frontal cortex
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(PFC) similarly accumulates knowledge during fast reward-based learning in its
short-term memory, without using dopamine-gated synaptic plasticity, see the text
to Suppl. Fig. 3 in (J. X. Wang et al., 2018). The experimental results of Perich et al.,
2018 suggest also a prominent role of short-term memory for fast learning in the
motor cortex.

The standard setup of L2L involves a large, in fact in general infinitely large, family
F of learning tasks C. Learning is carried out simultaneously in two loops (see
Fig. 3.2A). The inner loop learning involves the learning of a single task C by a
neural network N , in our case by an LSNN. Some parameters of N (termed hyper-
parameters) are optimized in an outer loop optimization to support fast learning
of a randomly drawn task C from F . The outer loop training – implemented here
through BPTT – proceeds on a much larger time scale than the inner loop, integrat-
ing performance evaluations from many different tasks C of the family F . One can
interpret this outer loop as a process that mimics the impact of evolutionary and
developmental optimization processes, as well as prior learning, on the learning
capability of brain networks. We use the terms training and optimization inter-
changeably, but the term training is less descriptive of the longer-term evolutionary
processes we mimic. Like in (Hochreiter et al., 2001; J. X. Wang et al., 2016; Duan
et al., 2016) we let all synaptic weights of N belong to the set of hyper-parameters
that are optimized through the outer loop. Hence the network is forced to encode
all results from learning the current task C in its internal state, in particular in its
firing activity and the thresholds of adapting neurons. Thus the synaptic weights of
the neural network N are free to encode an efficient algorithm for learning arbitrary
tasks C from F .

When the brain learns to predict sensory inputs, or state changes that result from an
action, this can be formalized as learning from a teacher (i.e., supervised learning).
The teacher is in this case the environment, which provides – often with some
delay – the target output of a network. The L2L results of (Hochreiter et al., 2001)
show that LSTM networks can learn nonlinear functions from a teacher without
modifying their synaptic weights, using their short-term memory instead. We asked
whether this form of learning can also be attained by LSNNs.

Task: We considered the task of learning complex non-linear functions from a
teacher. Specifically, we chose as family F of tasks a class of continuous functions
of two real-valued variables (x1, x2). This class was defined as the family of all
functions that can be computed by a 2-layer artificial neural network of sigmoidal
neurons with 10 neurons in the hidden layer, and weights and biases from [-1, 1],
see Fig. 3.2B. Thus overall, each such target network (TN) from F was defined
through 40 parameters in the range [-1, 1]: 30 weights and 10 biases. We gave the
teacher input to the LSNN for learning a particular TN C from F in a delayed
manner as in (Hochreiter et al., 2001): The target output value was given after N
had provided its guessed output value for the preceding input.

This delay of the feedback is consistent with biologically plausible scenarios. Simul-
taneously, having a delay for the feedback prevents N from passing on the teacher
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value as output without first producing a prediction on its own.

Implementation: We considered a LSNN N consisting of 180 regularly firing
neurons (population R) and 120 adapting neurons (population A) with a spread
of adaptation time constants sampled uniformly between 1 and 1000 ms and with
full connectivity. Sparse connectivity in conjunction with rewiring did not improve
performance in this case. All neurons in the LSNN received input from a population
X of 300 external input neurons. A linear readout received inputs from all neurons
in R and A. The LSNN received a stream of 3 types of external inputs (see top
row of Fig. 3.2D): the values of x1, x2, and of the output C(x′1, x′2) of the TN for
the preceding input pair x′1, x′2 (set to 0 at the first trial), all represented through
population coding in an external population of 100 spiking neurons. It produced
outputs in the form of weighted spike counts during 20 ms windows from all
neurons in the network (see bottom row of Fig. 3.2D), where the weights for this
linear readout were trained, like all weights inside the LSNN, in the outer loop,
and remained fixed during learning of a particular TN.

The training procedure in the outer loop of L2L was as follows: Network training
was divided into training episodes. At the start of each training episode, a new
target network TN was randomly chosen and used to generate target values
C(x1, x2) ∈ [0, 1] for randomly chosen input pairs (x1, x2). 500 of these input pairs
and targets were used as training data, and presented one per step to the LSNN
during the episode, where each step lasted 20 ms. LSNN parameters were updated
using BPTT to minimize the mean squared error between the LSNN output and
the target in the training set, using gradients computed over batches of 10 such
episodes, which formed one iteration of the outer loop. In other words, each weight
update included gradients calculated on the input/target pairs from 10 different
TNs. This training procedure forced the LSNN to adapt its parameters in a way that
supported learning of many different TNs, rather than specializing on predicting
the output of single TN. After training, the weights of the LSNN remained fixed,
and it was required to learn the input/output behaviour of TNs from F that it had
never seen before in an online manner by just using its short-term memory and
dynamics. See the suppl. for further details.

Results: Most of the functions that are computed by TNs from the class F are
nonlinear, as illustrated in Fig. 3.2G for the case of inputs (x1, x2) with x1 = x2.
Hence learning the input/output behaviour of any such TN with biologically
realistic local plasticity mechanisms presents a daunting challenge for a SNN.
Fig. 3.2C shows that after a few thousand training iterations in the outer loop, the
LSNN achieves low MSE for learning new TNs from the family F , significantly
surpassing the performance of an optimal linear approximator (linear regression)
that was trained on all 500 pairs of inputs and target outputs, see orange curve in
Fig. 3.2C,E. In view of the fact that each TN is defined by 40 parameters, it comes
at some surprise that the resulting network learning algorithm of the LSNN for
learning the input/output behaviour of a new TN produces in general a good
approximation of the TN after just 5 to 20 trials, where in each trial one randomly
drawn labelled example is presented. One sample of a generic learning process is
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Fig. 3.2: LSNNs learn to learn from a teacher. A L2L scheme for an SNN N . B Architecture of the
two-layer feed-forward target networks (TNs) used to generate nonlinear functions for the
LSNN to learn; weights and biases were randomly drawn from [-1,1]. C Performance of the
LSNN in learning a new TN during (left) and after (right) training in the outer loop of L2L.
Performance is compared to that of an optimal linear predictor fitted to the batch of all 500
experiments for a TN. D Network input (top row, only 100 of 300 neurons shown), internal
spike-based processing with low firing rates in the populations R and A (middle rows), and
network output (bottom row) for 25 trials of 20 ms each. E Learning performance of the
LSNN for 10 new TNs. Performance for a single TN is shown as insert, a red cross marks
step 7 after which output predictions became very good for this TN. The spike raster for this
learning process is the one depicted in C. Performance is compared to that of an optimal
linear predictor, which, for each example, is fitted to the batch of all preceding examples. F
Learning performance of BP for the same 10 TNs as in D, working directly on the ANN from
A, with a prior for small weights. G Sample input/output curves of TNs on a 1D subset of the
2D input space, for different weight and bias values. H These curves are all fairly smooth, like
the internal models produced by the LSNN while learning a particular TN. I Illustration of the
prior knowledge acquired by the LSNN through L2L for another family F (sinus functions).
Even adversarially chosen examples (Step 4) do not induce the LSNN to forget its prior.38
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shown in Fig. 3.2D. Each sequence of examples evokes an internal model that is
stored in the short-term memory of the LSNN. Fig. 3.2H shows the fast evolution
of internal models of the LSNN for the TN during the first trials (visualized for a
1D subset of the 2D input space). We make the current internal model of the LSNN
visible by probing its prediction C(x1, x2) for hypothetical new inputs for evenly
spaced points (x1, x2) in the domain (without allowing it to modify its short-term
memory; all other inputs advance the network state according to the dynamics of
the LSNN). One sees that the internal model of the LSNN is from the beginning a
smooth function, of the same type as the ones defined by the TNs in F . Within a
few trials this smooth function approximated the TN quite well. Hence the LSNN
had acquired during the training in the outer loop of L2L a prior for the types of
functions that are to be learnt, that was encoded in its synaptic weights. This prior
was in fact quite efficient, since Fig. 3.2E and F show that the LSNN was able to
learn a TN with substantially fewer trials than a generic learning algorithm for
learning the TN directly in an artificial neural network as in Fig. 2A: BP with a
prior that favored small weights and biases (see end of Sec. 3 in suppl.). These
results suggest that L2L is able to install some form of prior knowledge about the
task in the LSNN. We conjectured that the LSNN fits internal models for smooth
functions to the examples it received.

We tested this conjecture in a second, much simpler, L2L scenario. Here the family
F consisted of all sinus functions with arbitrary phase and amplitudes between
0.1 and 5. Fig. 3.2I shows that the LSNN also acquired an internal model for sinus
functions (made visible analogously as in Fig. 3.2H) in this setup from training in
the outer loop. Even when we selected examples in an adversarial manner, which
happened to be in a straight line, this did not disturb the prior knowledge of the
LSNN.

Altogether the network learning that was induced through L2L in the LSNNs is of
particular interest from the perspective of the design of learning algorithms, since
we are not aware of previously documented methods for installing structural priors
for online learning of a recurrent network of spiking neurons.

3.6 LSNNs learn-to-learn from reward

We now turn to an application of meta reinforcement learning (meta-RL) to LSNNs.
In meta-RL, the LSNN receives rewards instead of teacher inputs. Meta-RL has
led to a number of remarkable results for LSTM networks, see e.g. (J. X. Wang
et al., 2016; Duan et al., 2016). In addition, J. X. Wang et al., 2018 demonstrates that
meta-RL provides a very interesting perspective of reward-based learning in the
brain. We focused on one of the more challenging demos of J. X. Wang et al., 2016

and Duan et al., 2016, where an agent had to learn to find a target in a 2D arena,
and to navigate subsequently to this target from random positions in the arena.
This task is related to the well-known biological learning paradigm of the Morris
water maze task (Morris, 1984; Vasilaki et al., 2009). We study here the capability
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Fig. 3.3: Meta-RL results for an LSNN. A, B Performance improvement during training in the outer
loop. C, D Samples of navigation paths produced by the LSNN before and after this training.
Before training, the agent performs a random walk (C). In this example it does not find
the goal within the limited episode duration. After training (D), the LSNN had acquired an
efficient exploration strategy that uses two pieces of abstract knowledge: that the goal always
lies on the border, and that the goal position is the same throughout an episode. Note that
all synaptic weights of the LSNNs remained fixed after training.

of an agent to discover two pieces of abstract knowledge from the concrete setup
of the task: the distribution of goal positions, and the fact that the goal position is
constant within each episode. We asked whether the agent would be able to exploit
the pieces of abstract knowledge from learning for many concrete episodes, and
use it to navigate more efficiently.

Task: An LSNN-based agent was trained on a family of navigation tasks with
continuous state and action spaces in a circular arena. The task is structured as
a sequence of episodes, each lasting 2 seconds. The goal was placed randomly
for each episode on the border of the arena. When the agent reached the goal, it
received a reward of 1, and was placed back randomly in the arena. When the
agent hit a wall, it received a negative reward of -0.02 and the velocity vector was
truncated to remain inside the arena. The objective was to maximize the number of
goals reached within the episode. This family F of tasks is defined by the infinite
set of possible goal positions. For each episode, an optimal agent is expected to
explore until it finds the goal position, memorize it and exploits this knowledge
until the end of the episode by taking the shortest path to the goal. We trained an
LSNN so that the network could control the agent’s behaviour in all tasks, without
changing its network weights.

Implementation: Since LSNNs with just a few hundred neurons are not able to
process visual input, we provided the current position of the agent within the arena
through a place-cell like Gaussian population rate encoding of the current position.
The lack of visual input made it already challenging to move along a smooth path,
or to stay within a safe distance from the wall. The agent received information
about positive and negative rewards in the form of spikes from external neurons.
For training in the outer loop, we used BPTT together with DEEP R applied to the
surrogate objective of the Proximal Policy Optimization (PPO) algorithm Schulman
et al., 2017. In this task the LSNN had 400 recurrent units (200 excitatory, 80
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inhibitory and 120 adaptive neurons with adaptation time constant τa of 1200 ms),
the network was rewired with a fixed connectivity of 20%. The resulting network
diagram and spike raster is shown in Suppl. Fig. 1.

Results: The network behaviour before, during, and after L2L optimization is
shown in Fig. 3.3. Fig. 3.3A shows that a large number of training episodes finally
provides significant improvements. With a close look at Fig. 3.3B, one sees that
before 52k training episodes, the intermediate path planning strategies did not
seem to use the discovered goal position to make subsequent paths shorter. Hence
the agents had not yet discovered that the goal position does not change during
an episode. After training for 300k episodes, one sees from the sample paths in
Fig. 3.3D that both pieces of abstract knowledge had been discovered by the agent.
The first path in Fig. 3.3D shows that the agent exploits that the goal is located
on the border of the maze. The second and last paths show that the agent knows
that the position is fixed throughout an episode. Altogether this demo shows that
meta-RL can be applied to RSNNs, and produces previously not seen capabilities
of sparsely firing RSNNs to extract abstract knowledge from experimentation, and
to use it in clever ways for controlling behaviour.

3.7 Discussion

We have demonstrated that deep learning provides a useful new tool for the
investigation of networks of spiking neurons: It allows us to create architectures and
learning algorithms for RSNNs with enhanced computing and learning capabilities.
In order to demonstrate this, we adapted BPTT so that it works efficiently for
RSNNs, and can be combined with a biologically inspired synaptic rewiring method
(DEEP R). We have shown in section 3.4 that this method allows us to create
sparsely connected RSNNs that approach the performance of LSTM networks
on common benchmark tasks for the classification of spatio-temporal patterns
(sequential MNIST and TIMIT). This qualitative jump in the computational power
of RSNNs was supported by the introduction of adapting neurons into the model.
Adapting neurons introduce a spread of longer time constants into RSNNs, as
they do in the neocortex according to Allen Institute: Cell Types Database, 2018.
We refer to the resulting variation of the RSNN model as LSNNs, because of the
resulting longer short-term memory capability. This form of short-term memory is
of particular interest from the perspective of energy efficiency of SNNs, because it
stores and transmits stored information through non-firing of neurons: A neuron
that holds information in its increased firing threshold tends to fire less often.

We have shown in Fig. 3.2 that an application of deep learning (BPTT and DEEP
R) in the outer loop of L2L provides a new paradigm for learning of nonlinear
input/output mappings by a RSNN. This learning task was thought to require
an implementation of BP in the RSNN. We have shown that it requires no BP, not
even changes of synaptic weights. Furthermore we have shown that this new form
of network learning enables RSNNs, after suitable training with similar learning
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tasks in the outer loop of L2L, to learn a new task from the same class substantially
faster. The reason is that the prior deep learning has installed abstract knowledge
(priors) about common properties of these learning tasks in the RSNN. To the best
of our knowledge, transfer learning capabilities and the use of prior knowledge
(see Fig. 3.2I) have previously not been demonstrated for SNNs. Fig 3.3 shows that
L2L also embraces the capability of RSNNs to learn from rewards (meta-RL). For
example, it enables a RSNN – without any additional outer control or clock – to
embody an agent that first searches an arena for a goal, and subsequently exploits
the learnt knowledge in order to navigate fast from random initial positions to this
goal. Here, for the sake of simplicity, we considered only the more common case
when all synaptic weights are determined by the outer loop of L2L. But similar
results arise when only some of the synaptic weights are learnt in the outer loop,
while other synapses employ local synaptic plasticity rules to learn the current task
Subramoney et al., 2018.

Altogether we expect that the new methods and ideas that we have introduced
will advance our understanding and reverse engineering of RSNNs in the brain.
For example, the RSNNs that emerged in Fig. 3.1-3.3 all compute and learn with
a brain-like sparse firing activity, quite different from a SNN that operates with
rate-codes. In addition, these RSNNs present new functional uses of short-term
memory that go far beyond remembering a preceding input as in (Mongillo et al.,
2008), and suggest new forms of activity-silent memory (Stokes, 2015).

Apart from these implications for computational neuroscience, our finding that
RSNNs can acquire powerful computing and learning capabilities with very energy-
efficient sparse firing activity provides new application paradigms for spike-based
computing hardware through non-firing.
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Chapter 4
Biologically inspired alternatives to backpropagation
through time for learning in recurrent neural nets
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The way how recurrently connected networks of spiking neurons in the brain ac-
quire powerful information processing capabilities through learning has remained
a mystery. This lack of understanding is linked to a lack of learning algorithms
for recurrent networks of spiking neurons (RSNNs) that are both functionally
powerful and can be implemented by known biological mechanisms. Since RSNNs
are simultaneously a primary target for implementations of brain-inspired circuits
in neuromorphic hardware, this lack of algorithmic insight also hinders techno-
logical progress in that area. The gold standard for learning in recurrent neural
networks in machine learning is back-propagation through time (BPTT), which
implements stochastic gradient descent with regard to a given loss function. But
BPTT is unrealistic from a biological perspective, since it requires a transmission
of error signals backwards in time and in space, i.e., from post- to presynaptic
neurons. We show that an online merging of locally available information during a
computation with suitable top-down learning signals in real-time provides highly
capable approximations to BPTT. For tasks where information on errors arises only
late during a network computation, we enrich locally available information through
feedforward eligibility traces of synapses that can easily be computed in an online
manner. The resulting new generation of learning algorithms for recurrent neural
networks provides a new understanding of network learning in the brain that can
be tested experimentally. In addition, these algorithms provide efficient methods
for on-chip training of RSNNs in neuromorphic hardware.
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4.1 Introduction

A characteristic property of networks of neurons in the brain is that they are
recurrently connected: „the brain is essentially a multitude of superimposed and
ever-growing loops between the input from the environment and the brain’s
outputs“ (Buzsaki, 2006). In fact, already (Lorente de Nó, 1938) had proposed that
synaptic loops were the basic circuits of the central nervous system, and a large
body of experimental work supports this view (Kandel et al., 2000). Recurrent loops
of synaptic connections occur both locally within a lamina of a cortical microcircuit,
between their laminae, between patches of neural tissue within the same brain area,
and between different brain areas. Hence the architecture of neural networks in
the brain is fundamentally different from that of feedforward deep neural network
models that have gained high attention because of their astounding capability in
machine learning (LeCun et al., 2015).

Recurrently connected neural networks tend to provide functionally superior neural
network architectures for tasks that involve a temporal dimension, such as video
prediction, gesture recognition, speech recognition, or motor control. Since the
brain has to solve similar tasks, and even transforms image recognition into a
temporal task via eye-movements, there is a clear functional reason why the brain
employs recurrently connected neural networks. In addition, recurrent networks
enable the brain to engage memory on several temporal scales, and to represent
and continuously update internal states as well as goals. Furthermore the brain
is a powerful prediction machine that learns through self-supervised learning to
predict the consequences of its actions and of external events. In fact, predictions
provide the brain with a powerful strategy for compensating the relative slowness
of its sensory feedback.
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The computational function of recurrently connected neural networks in the brain
arises from a combination of nature and nurture that has remained opaque. In
particular, it has remained a mystery how recurrent networks of spiking neurons
(RSNNs) can learn. Recurrent networks of artificial neurons are commonly trained
in machine learning through BPTT. BPTT can not only be used to implement
supervised learning, but – with a suitably defined loss function E – self-supervised,
unsupervised and reward based learning. Unfortunately BPTT requires a physically
unrealistic propagation of error signals backwards in time. This feature also thwarts
an efficient implementation in neuromorphic hardware. It even hinders an efficient
implementation of BP or BPTT on GPUs and other standard computing hardware:
„backpropagation results in locking – the weights of a network module can only be
updated after a full forward propagation of data, followed by loss evaluation, and
then finally after waiting for the backpropagation of error gradients“ (Czarnecki
et al., 2017). Locking is an issue of particular relevance for applications of BPTT to
recurrent neural networks, since this amounts to applications of backpropagation to
the unrolled recurrent network, which easily becomes several thousands of layers
deep.

We show that BPTT can be represented by a sum of products based on a new
factorization or errors gradients with regards to the synaptic weights θji. The error
gradient is represented here as a sum over t of an eligibility trace et

ji until time t
- which is independent from error signals - and a learning signal Lt

j that reaches
this synapse at time t, see equation (4.1). This can be interpreted as on online
merging for every time step t of eligibility traces and learning signals. Because
of the prominent role which forward propagation of eligibility traces play in the
resulting approximations to BPTT we refer to these new algorithms as e-prop.

The key problem for achieving good learning results with eligibility traces is the
online production of suitable learning signals that gate the update of the synaptic
weight at time t. In order to achieve the full learning power of BPTT, this learning
signal would still have to be complex and questionable from a biological perspective.
But several biologically plausible approximations of such online learning signals
turn out to work surprisingly well, especially for tasks that recurrent networks of
neurons in the brain need to solve.

There exists an abundance of experimental data on learning- or error signals in
the brain. A rich literature documents the error-related negativity (ERN) that is
recorded by EEG-electrodes from the human brain. The ERN has the form of a
sharp negative-going deflection that accompanies behavioral errors, for example
in motor control. Remarkable is that the ERN appears very fast, even before
direct evidence of a behavioral error becomes accessible through sensory feedback
(see e.g. Fig. 4 in (MacLean et al., 2015)), suggesting that it employs an internal
error prediction network. Furthermore the amplitude of the ERN correlates with
improved performance on subsequent trials ((Gehring et al., 1993), see also the
review in (Buzzell et al., 2017)). These results suggest that the ERN is in fact a
signal that gates learning. The data of (Buzzell et al., 2017) also shows that the ERN
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is generated by a distributed system of brain areas, in which posterior cingulate
cortex, dorsal anterior cingulate, and parietal cortex assume dominant roles from
early stages of development on. Furthermore, error-related activity from additional
brain areas – insula, orbitofrontal cortex, and inferior frontal gyrus – increases with
age. These experimental data suggest that error signals in the human brain are
partially innate, but are complemented and refined during development.

The precise way how these error signals gate synaptic plasticity in the brain is
unknown. One conjectured mechanism involves top-down disinhibition of den-
drites and neurons, e.g. by activating VIP-interneurons in layer 1, which inhibit
somatostatin-positive (SOM+) inhibitory neurons. Hence the activation of VIP neu-
rons temporarily removes the inhibitory lock which SOM+ neurons hold on activity
and plasticity in distal dendrites of pyramidal cells (Pi et al., 2013). Another path-
way for top-down regulation of synaptic plasticity involves cholinergic activation
of astrocytes (Sugihara et al., 2016). Furthermore the cerebellum is known to play a
prominent role in the processing of error signals and gating plasticity (D’Angelo
et al., 2016) Most importantly, the neuromodulator dopamine plays an essential role
in the control of learning, in particular also for learning of motor skills (Hosp et al.,
2011). Experimental data verify that neuromodulators interact with local eligibility
traces in gating synaptic plasticity, see (Gerstner et al., 2018) for a review. Of interest
for the context of this paper is also the recent discovery that dopaminergic neurons
in the mid-brain do not emit a uniform global signal, but rather a multitude of
spatially organized signals for different populations of neurons (Engelhard et al.,
2019). This distributed architecture of the error-monitoring system in the brain is
consistent with the assumption that local populations of neurons receive different
learning signals that have been shaped during evolution and development.

Error signals in the brain are from the functional perspective reminiscent of error
signals that have turned out to alleviate the need for backprogation of error signals
in feedforward neural networks. A particularly interesting version of such signals
is called broadcast alignment (BA) in (Samadi et al., 2017) and direct feedback
alignment in (Nøkland, 2016). These error signals are sent directly from the output
stage of the network to each layer of the feedforward network. If one applies
this broadcast alignment idea to the unrolled feedforward version of a recurrent
network, one still runs into the problem that an error broadcast to an earlier time-
slice or layer would have to go backwards in time. We present a simple method
where this can be avoided, which we call e-prop 1.

Besides BA we explore in this paper two other methods for generating learning
signals that provide – in combination with eligibility traces – powerful alternatives
to BPTT. In e-prop 2 we apply the Learning-to-Learn (L2L) framework to train
separate neural networks – called error modules – to produce suitable learning
signals for large families of learning tasks. But in contrast to the L2L approach
of (J. X. Wang et al., 2016) and (Duan et al., 2016) we allow the recurrent neural
network to modify its synaptic weights for learning a particular task. Only the
synaptic weights within the error module are determined on the larger time scale
of the outer loop of L2L (see the scheme in Figure 4.3). We show that this approach
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opens new doors for learning in recurrent networks of spiking neurons, enabling
for example one-shot learning of pattern generation. Our third method, e-prop 3,
employs the synthetic gradient approach of (Jaderberg et al., 2016) and (Czarnecki
et al., 2017). We show that eligibility traces substantially enhance the power of
synthetic gradients, surpassing in some cases even the performance of full BPTT
for artificial neural networks. Altogether the e-prop approach suggests that a rich
reservoir of algorithmic improvements of network learning waits to be discovered,
where one employs dedicated modules and processes for generating learning
signals that enable learning without backpropagated error signals. In addition this
research is likely to throw light on the functional role of the complex distributed
architecture of brain areas that are involved in the generation of learning signals in
the brain.

These e-prop algorithms have an attractive feature from the theoretical perspective:
They can be viewed – and analyzed – as approximations to a theoretically ideal:
stochastic gradient descent, or BPTT. E-prop algorithms are also of particular interest
from the perspective of understanding learning in RSNNs of the brain. They tend
to provide better learning performance for RSNNs than previously known methods.
In addition, in contrast to most of the previously used methods, they do not require
biologically unrealistic ingredients. In fact, it turns out that network learning with
e-prop provides a novel understanding of refined STDP rules (Clopath et al., 2010)
from a network learning perspective, that had been proposed in order to fit detailed
experimental data on local synaptic plasticity mechanisms (Ngezahayo et al., 2000;
Sjöström et al., 2001; Nevian and Sakmann, 2006).

In addition, e-prop provides a promising new approach for implementing on-chip
learning in RSNNs that are implemented in neuromorphic hardware, such as
Brainscales (Schemmel et al., 2010), SpiNNaker (Furber et al., 2014) and Loihi
(Davies et al., 2018). Backpropagation of error signals in time as well as locking are
formidable obstacles for an efficient implementation of BPTT on a neuromorphic
chip. These obstacles are alleviated by the e-prop method.

Synaptic plasticity algorithms involving eligibility traces and gating factors have
been reviewed for reinforcement learning in (Frémaux and Gerstner, 2016), see
(Gerstner et al., 2018) for their relationships to data. We re-define eligibility traces
for the different context of gradient descent learning. Eligibility traces are used in
classical reinforcement learning theory (Sutton and Barto, 1998) to relate the (recent)
history of network activity to later rewards. This reinforcement learning theory
inspired our approach on a conceptual level, but the details of the mathematical
analysis become quite different, since we address a different problem: how to
approximate error gradients in recurrent neural networks.

We will derive in the first section of Results the basic factorization equation (4.1)
that underlies our e-prop approach. We then discuss applications of e-prop 1 to
RSNNs with a simple BA-like learning signal. In the subsequent section we will
show how an application of L2L in e-prop 2 can improve the learning capability of
RSNNs. Finally, we show in the last subsection on e-prop 3 that adding eligibility
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traces to the synthetic gradient approach of (Jaderberg et al., 2016) and (Czarnecki
et al., 2017) improves learning also for recurrent networks of artificial neurons.

4.2 Results

Network models The learning rules that we describe can be applied to a variety
of recurrent neural network models: Standard RSNNs consisting of leaky integrate-
and-fire (LIF) neurons, LSNNs (Long short term memory Spiking Neural Networks)
that also contain adaptive spiking neurons (Bellec et al., 2018c), and networks of
LSTM (long short-term memory) units (Hochreiter and Schmidhuber, 1997). LSNN
were introduced to capture parts of the function of LSTM network in biologically
motivated neural network models. In order to elucidate the link to biology, we
focus in the first two variants of e-prop on the LIF neuron model (see Figures
4.1, 4.2 and 4.3). The LIF model is a simplified model of biological neurons: each
neuron integrates incoming currents into its membrane potential, and as soon as
the membrane potential crosses a threshold from below, the neuron “spikes” and a
current is sent to subsequent neurons. Mathematically, the membrane potential is a
leaky integrator of a weighted sum of the input currents, and the spike is a binary
variable that becomes non-zero when a spike occurs (see equation (D.10) and (D.11)
in Methods). To enrich the temporal processing capability of the network (see
Figure 4.2), a portion of the neurons in an LSNN have adaptive firing thresholds.
The dynamics of the adaptive thresholds is defined in equation (D.16) in Methods.
We also applied a third variant of e-prop 3 to LSTM networks to show that e-prop
algorithms can be competitive on machine learning benchmarks (see Figure 4.4).

To describe the common core of these e-prop algorithms, all network models are
subsumed under a general formalism. We assume that each neuron j is at time t in
an internal state st

j ∈ Rd and emits an observable state zt
j. We also assume that st

j

depends on the other neurons only through the vector zt−1 of observable states of
all neurons in the network. Then, the network dynamics takes for some functions
M and f the form: st

j = M(st−1
j , zt−1,xt,θ) and zt

j = f (st
j), where θ is the vector of

model parameters (in the models considered here, synaptic weights). For instance
for LIF neurons with adaptive thresholds, the internal state st

j of neuron j is a vector
of size d = 2 formed by the membrane voltage and the adaptive firing threshold,
and the observable state zt

j ∈ {0, 1} indicates whether the neuron spikes at time
t. The definition of the functions M and f defining the neuron dynamics for this
model are given by equations (D.10),(D.11) and (D.16) in Methods and illustrated
in Figure D.1.

Mathematical framework for e-prop algorithms The fundamental mathematical
law that enables the e-prop approach is that the gradients of BPTT can be factorized
as a sum of products between learning signals Lt

j and eligibility traces et
ji. We

subsume here under the term eligibility trace that information which is locally
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Fig. 4.1: Scheme and performance of e-prop 1 a) Learning architecture for e-prop 1. The error
module at the top sends online error signals with random weights to the network that learns.
b) Temporal dynamics of information flows in BPTT and e-prop algorithms. The propagation
of error signals backwards in time of BPTT is replaced in e-prop algorithms by an additional
computation that runs forward in time: the computation of eligibility traces. c) Evaluation of e-
prop 1 for a classical benchmark task for learning in recurrent SNNs: Learning to generate a
target pattern, extended here to the challenge to simultaneously learn to generate 3 different
patterns, which makes credit assignment for errors more difficult. d) Mean squared error
of several learning algorithms for this task. “Clopath rule” denotes a replacement of the
resulting synaptic plasticity rule of e-prop 1 by the rule proposed in (Clopath et al., 2010)
based on experimental data. e) Evolution of the mean squared error during learning.
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available at a synapse and does not depend on network performance. The online
learning signals Lt

j are provided externally and could for example quantify how
spiking at the current time influences current and future errors. The general goal is
to approximate the gradients of the network error function E with respect to the
model parameters θji. If the error function E depends exclusively on the network
spikes E(z1, . . . , zT), the fundamental observation for e-prop is that the gradient
with respect to the weights can be factorized as follows (see Methods for a proof):

dE
dθji

= ∑
t

Lt
j et

ji . (4.1)

We refer to Lt
j and et

ji as the learning signals and eligibility traces respectively, see
below for a definition. Note that we use distinct notation for the partial derivative
∂E(z1,...,zT)

∂z1
, which is the derivative of the mathematical function E with respect to

its first variable z1, and the total derivative dE(z1,...,zT)
dz1

which also takes into account
how E depends on z1 indirectly through the other variables z1, . . . , zT. The essential
term for gradient descent learning is the total derivative dE

dθji
. It has usually been

computed with BPTT (Werbos, 1990) or RTRL (Williams and Zipser, 1989).

Eligibility traces The intuition for eligibility traces is that a synapse remembers
some of its activation history while ignoring inter neuron dependencies. Since the
network dynamics is formalized through the equation st

j = M(st−1
j , zt−1,xt,θ),

the internal neuron dynamics isolated from the rest of the network is described
by Dt−1

j = ∂M
∂st−1

j
(st−1

j , zt−1,xt,θ) ∈ Rd×d (recall that d, is the dimension of internal

state of a single neuron; d = 1 or 2 in this paper). Considering the partial derivative
of the state with respect to the synaptic weight ∂M

∂θji
(st−1

j , zt−1,xt,θ) ∈ Rd (written
∂st

j
∂θji

for simplicity), we formalize the mechanism that retains information about the

previous activity at the synapse i→ j by the eligibility vector εt
ji ∈ Rd defined with

the following iterative formula:

εt
ji = Dt−1

j · εt−1
ji +

∂st
j

∂θji
, (4.2)

where · is the dot product. Finally, this lead to the eligibility trace which is the scalar

product between this vector and the derivative ∂ f
∂st

j
(st

j) (denoted
∂zt

j

∂st
j

for simplicity)

which captures how the existence of a spike zt
j depends on the neuron state st

j:

et
ji =

∂zt
j

∂st
j
· εt

ji . (4.3)

In practice for LIF neurons the derivative
∂zt

j

∂st
j

is ill-defined due to the discontinuous

nature of spiking neurons. As done in (Bellec et al., 2018c) for BPTT, this derivative
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is replaced in simulations by a simple nonlinear function of the membrane voltage
ht

j that we call the pseudo-derivative (see Methods for details). The resulting
eligibility traces et

ji for LIF neurons are the product of a the post synaptic pseudo
derivative ht

j with the trace ẑt
i of the presynpatic spikes (see equation (D.12) in

Methods). For adaptive neurons in LSNNs and for LSTM units the computation
of eligibility traces becomes less trivial, see equations (D.17) and (D.18). But they
can still be computed in an online manner forward in time, along with the network
computation. We show later that the additional term arising for LSNNs in the
presence of threshold adaptation holds a crucial role when working memory has to
be engaged in the tasks to be learnt.

Note that in RTRL for networks of rate-based (sigmoidal) neurons (Williams
and Zipser, 1989), the error gradients are computed forward in time by mul-

tiplying the full Jacobian J of the network dynamics with the tensor dst
k

dθji
that

computes the dependency of the state variables with respect to the parameters:
dst

k
dθji

= ∑k′ J
t
kk′ ·

dst−1
k′

dθji
+

∂st
k

∂θji
(see equation (12) in (Williams and Zipser, 1989)).

Denoting with n the number of neurons, this requires O(n4) multiplications, which
is computationally prohibitive in simulations, whereas BPTT or network simula-
tion requires only O(n2) multiplications. In e-prop, the eligibility traces are n× n

matrices which is one order smaller than the tensor dst
k

dθji
, also Dt

j are d× d matrices
which are restrictions of the full Jacobian J to the neuron specific dynamics. As a
consequence, only O(n2) multiplications are required in the forward propagation
of eligibility traces, their computation is not more costly than BPTT or simply
simulating the network.

Theoretically ideal learning signals To satisfy equation (4.1), the learning signals
Lt

j ∈ Rd can be defined by the following formula:

Lt
j

def
=

dE
dzt

j
. (4.4)

Recall that dE
dzt

j
is a total derivative and quantifies how much a current change of

spiking activity might influence future errors. As a consequence, a direct computa-
tion of the term Lt

j needs to back-propagate gradients from the future as in BPTT.
However we show that e-prop tends to work well if the ideal term Lt

j is replaced

by an online approximation L̂t
j. In the following three sections we consider three

concrete approximation methods, that define three variants of e-prop. If not clearly
stated otherwise, all the resulting gradient estimations described below can be
computed online and depend only on quantities accessible within the neuron j or
the synapse i→ j at the current time t.
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Synaptic plasticity rules that emerge from this approach The learning algorithms
e-prop 1 and e-prop 2 that will be discussed in the following are for networks of
spiking neurons. Resulting local learning rules are very similar to previously
proposed and experimentally supported synaptic plasticity rules. They have the
general form (learning signal) × (postsynaptic term) × (presynaptic term) as
previously proposed 3-factor learning rules (Frémaux and Gerstner, 2016; Gerstner
et al., 2018). The general form is given in equation (D.13), where ht

j denotes a

postsynaptic term and the last factor ẑt−1
i denotes the presynaptic term (D.12).

These last two terms are similar to the corresponding terms in the plasticity rule of
(Clopath et al., 2010). It is shown in Figure 4.1d that one gets very similar results if
one replaces the rule (D.14) that emerges from our approach by the Clopath rule.

The version (4.5) of this plasticity rule for e-prop 1 contains the specific learning
signal that arises in broadcast alignment as first factor. For synaptic plasticity of
adapting neurons in LSNNs the last term, the eligibility trace, becomes a bit more
complex because it accumulates information over a longer time span, see equation
(D.18). The resulting synaptic plasticity rules for LSTM networks are given by
equation (D.28).

4.2.1 E-prop 1 : Learning signals that arise from broadcast alignment

A breakthrough result for learning in feedforward deep neural networks was the
discovery that a substantial portion of the learning power of backprop can be
captured if the backpropagation of error signals through chains of layers is replaced
by layer specific direct error broadcasts, that consists of a random weighted sum
of the errors that are caused by the network outputs; typically in the last layer of
the network (Samadi et al., 2017; Nøkland, 2016). This heuristic can in principle
also be applied to the unrolled version of a recurrent neural network, yielding a
different error broadcast for each layer of the unrolled network, or equivalently, for
each time-slice of the computation in the recurrent network. This heuristic would
suggest to send to each time slice error broadcasts that employ different random
weight matrices. We found that the best results can be achieved if one chooses the
same random projection of output errors for each time slice (see Figure 4.1d and
e).

Definition of e-prop 1: E-prop 1 defines a learning signal that only considers the
instantaneous error of network outputs and ignores the influence of the current
activity on future errors. As justified in Methods, this means that the approximation
of the learning signal L̂t

j is defined by replacing the total error derivative dE
dzt

j
with

the partial derivative ∂E
∂zt

j
. Crucially, this replacement makes it possible to compute

the learning signal in real-time, whereas the total derivative needs information
about future errors which should be back-propagated through time for an exact
computation.
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4.2 Results

To exhibit an equation that summarizes the resulting weight update, we consider a
network of LIF neurons and output neurons formalized by k leaky readout neurons
yt

k with decay constant κ. If E is defined as the squared error between the readouts
yt

k and their targets y∗,tk , and the weight updates are implemented with gradient
descent and learning rate η, this yields (the proof and more general formula (D.35)
are given in Methods):

∆θrec
ji = η ∑

t

(
∑

k
θout

kj (y∗,tk − yt
k)
)

∑
t′≤t

κt−t′ht′
j ẑt′−1

i , (4.5)

where ht′
j is a function of the post-synaptic membrane voltage (the pseudo-derivative,

see Methods) and ẑt′
i is a trace of preceding pre-synaptic spikes with a decay con-

stant α. This is a three-factor learning rule of a type that is commonly used to model
experimental data (Gerstner et al., 2018). However a less common feature is that,
instead of a single global error signal, learning signals are neuron-specific weighted
sums of different signed error signals arising from different output neurons k. For
a more complex neuron model such as LIF with adaptive thresholds, which are
decisive for tasks involving working memory (Bellec et al., 2018c), the eligibility
traces are given in equation (D.18) and the learning rule in equation (D.35).

To model biology, a natural assumption is that synaptic connections to and from
readout neurons are realized through different neurons. Therefore it is hard to
conceive that the feedback weights are exactly symmetric to the readout weights,
as required for gradient descent according to equation (4.5) that follows from the
theory. Broadcast alignment (Lillicrap et al., 2016) suggests the replacement of
θout

kj by a random feedback matrix. We make the same choice to define a learning
rule (D.39) with mild assumptions: the learning signal is a neuron-specific random
projection of signed error signals y∗,tk − yt

k. Hence we replaced the weights θout
kj with

random feedback weights denoted Brandom
jk . Other authors (Zenke and Ganguli, 2018;

Kaiser et al., 2018) have derived learning rules similar to (D.39) for feedforward
networks of spiking neurons but not for recurrent ones. We test the learning
performance of e-prop 1 for two generic computational tasks for recurrent neural
networks: generation of a temporal pattern, and storing selected information in
working memory.

Pattern generation task 1.1 Pattern generation is an important component of
motor systems. We asked whether the simple learning setup of e-prop 1 endows
RSNNs with the capability to learn to generate patterns in a supervised manner.

Task: To this end, we considered a pattern generation task which is an extension
of the task used in (Nicola and Clopath, 2017). In this task, the network should
autonomously generate a three-dimensional target signal for 1 s. Each dimension
of the target signal is given by the sum of four sinusoids with random phases and
amplitudes. Similar to (Nicola and Clopath, 2017), the network received a clock
input that indicates the current phase of the pattern (see Methods).
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4 Biologically inspired alternatives to backpropagation through time for learning in recurrent neural nets

Implementation: The network consisted of 600 recurrently connected LIF neurons.
All neurons in this RSNN projected to three linear readout neurons. All input,
recurrent and output weights were plastic, see Figure 4.1a. A single learning trial,
consisted of a 1 s simulation where the network produced a three-dimensional
output pattern and gradients were computed using e-prop 1. Network weights were
updated after each learning trial (see Methods for details).

Performance: Figure 4.1c shows the spiking activity of a randomly chosen subset
of 20 of 600 neurons in the RSNN along with the output of the three readout
neurons after application of e-prop 1 for 1, 100 and 500 seconds, respectively. In this
representative example, the network achieved a very good fit to the target signal
(normalized mean squared error 0.01). Panel d shows the averaged mean squared
errors (mse) for several variants of e-prop 1 and a few other learning methods.

As an attempt to bridge a gap between phenomenological measurements of synaptic
plasticity and functional learning models, we addressed the question whether a
synaptic plasticity rule that was fitted to data in (Clopath et al., 2010) could
reproduce the function of the second and third factors in equation (4.5). These
two terms (ẑt−1

i and ht
j) couple the presynaptic and postsynaptic activity in a

multiplicative manner. In the model of long term potentiation fitted to data by
(Clopath et al., 2010), the presynaptic term is identical but the postsynaptic term
includes an additional non-linear factor depending on a filtered version of the
membrane voltage. We found that a replacement of the plasticity rule of e-prop 1 by
the Clopath rule had little impact on the result, as shown in Figure 4.1d under the
name “Clopath rule” (see equation (D.47) in Methods for a precise definition of this
learning rule). We also asked whether these pre- and postsynaptic factors could be
simplified further. When replacing the trace ẑt−1

i and ht
j by the binary variable zt−1

i ,
this just caused an increase of the mse from 0.011 to 0.026. In comparison, when the
network has no recurrent connections or when the learning signal is replaced by a
uniform global learning signal (Bjk =

1√
n with n the number of neurons) the mse

increased by one order of magnitude to 0.259 and 0.485, respectively. This indicated
the importance of diverse learning signals and recurrent connections in this task.

Panel e shows that a straightforward application of BA to the unrolled RSNNs,
with new random matrices for error broadcast at every ms, or every 20 ms, worked
less well or converged slower. Finally, while e-prop 1 managed to solve the task very
well (Figure 4.1d), BPTT achieved an even lower mean squared error (black line in
Figure 4.1e).

Store-recall task 1.2 Many learning tasks for brains involve some form of working
memory. We therefore took a simple working memory task and asked whether
e-prop 1 enables an LSNN to learn this task, in spite of a substantial delay between
the network decision to store information and the time when the network output
makes an error.
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4.2 Results

Fig. 4.2: Testing e-prop 1 on the store-recall and speech recognition tasks. a) The store-recall
task requires to store the value 0 or 1 that is currently provided by other input neurons when
a STORE command is given, and to recall it when a RECALL command is given. It is solved
with e-prop 1 for an LSNN. b) Information content of eligibility traces (estimated via a linear
classifier) about the bit that was to be stored during store-recall task. c) Training LSNNs with
e-prop 1 to solve the speech reccognition task on TIMIT dataset. e-prop 1s indicates the
case when the feedback weights are exactly symmetric to the readout weights.
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4 Biologically inspired alternatives to backpropagation through time for learning in recurrent neural nets

Task: The network received a sequence of binary values encoded by alternating
activity of two groups of input neurons (“Value 0” and “Value 1” in Figure 4.2a,
top). In addition, it received command inputs, STORE and RECALL, encoded
likewise by dedicated groups of input neurons. The task for the network was to
output upon a RECALL command the value that was present in the input at the
time of the most recent STORE command. In other words, the network had to
store a bit (at a STORE command) and recall it at a RECALL command. After a
STORE, a RECALL instructions was given during each subsequent time period of
length D = 200 ms with probability pcommand = 1

6 . This resulted in an expected
delay of D

pcommand
= 1.2 s between STORE and RECALL instruction. The next STORE

appeared in each subsequent period of length D with probability pcommand. We
considered the task as solved when the misclassification rate on the validation set
reached a value below 5%.

Implementation: We used a recurrent LSNN network consisting of 10 standard LIF
neurons and 10 LIF neurons with adaptive thresholds. The input neurons marked
in blue and red at the top of Figure 4.2a produced Poisson spike trains with time
varying rates. An input bit to the network was encoded by spiking activity at 50
Hz in the corresponding input channels for a time period of D = 200 ms. STORE
and RECALL instructions were analogously encoded through firing of populations
of other Poisson input neurons at 50 Hz. Otherwise input neurons were silent. The
four groups of input channels consisted of 25 neurons each. During a recall cue,
two readouts are competing to report the network output. The readout with highest
mean activation yt

k during the recall period determines which bit value is reported.
To train the network, the error function E is defined as the cross entropy between
the target bit values and the softmax of the readout activations (see Methods for
details). Importantly, an error signal is provided only during the duration of a
RECALL command and informs about the desired change of output in that delayed
time period. The network was trained with e-prop 1. Parameters were updated every
2.4 s during training.

Performance: Figure 4.2a shows a network trained with e-prop 1 that stores and
recalls a bit accurately. This network reached a misclassification rate on separate
validation runs below 5% in 50 iterations on average with e-prop 1. For comparison,
the same accuracy was reached within 28 iterations on average with full BPTT. We
found that adaptive neurons are essential for these learning procedures to succeed:
A network of 20 non-adapting LIF neurons could not solve this task, even if it was
trained with BPTT.

It might appear surprising that e-prop 1 is able to train an LSNN for this task, since
the learning signal is only non-zero during a RECALL command. This appears
to be problematic, because in order to reduce errors the network has to learn to
handle information from the input stream in a suitable manner during a much
earlier time window: during a STORE command, that appeared on average 1200 ms
earlier. We hypothesized that this was made possible because eligibility traces can
hold information during this delay. In this way a learning signal could contribute
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to the modification of the weight of a synapse that had been activated much
earlier, for example during a STORE command. According to the theory (equation
(D.18) in the methods), eligibility traces of adapting neurons decay with a time
constant comparable to that of the threshold adaptation. To verify experimentally
that this mechanism makes it possible to hold the relevant information, we first
verified that the same LSNN network failed at learning the task when eligibility
traces are truncated by setting εt

ji = ∂st

∂θji
. Second, we quantified the amount of

information about the bit to be stored that is contained in the true eligibility traces.
This information was estimated via the decoding accuracy of linear classifiers, and
the results are reported in Figure 4.2b. While the neuron adaptation time constants
were set to 1.2 s, we found that the decoding accuracy quickly rises above chance
even for much longer delays. After 200 training iterations, the relevant bit can be
decoded up to 4 s after the store signal arrived with high accuracy (> 90% of the
trials).

Altogether the results in Figure 4.1 and 4.2 suggest that e-prop 1 enables RSNNs to
learn the most fundamental tasks which RSNNs have to carry out in the brain: to
generate desired temporal patterns and to carry out computations that involve a
working memory. Pattern generation tasks were also used for testing the perfor-
mance of FORCE training for RSNNs in (Nicola and Clopath, 2017). While FORCE
training has not been argued to be biologically plausible because of the use of a
non-local plasticity rule and the restriction of plasticity to readout neurons, e-prop
1 only engages mechanisms that are viewed to be biologically plausible. Hence it
provides a concrete hypothesis how recurrent networks of neurons in the brain can
learn to solve the most fundamental tasks which such networks are conjectured to
carry out. More generally, we conjecture that e-prop 1 can solve all learning tasks
that have been demonstrated to be solvable by FORCE training. However we do not
want to claim that e-prop 1 can solve all learning tasks for RSNNs that can be solved
by BPTT according to (Bellec et al., 2018c). But the power of e-prop algorithms can
be substantially enhanced by using more sophisticated learning signals than just
random linear combinations of signed errors as in broadcast alignment. Several
neural systems in the brain receive raw error signals from the periphery and out-
put highly processed learning cues for individual brain areas and populations of
neurons. We propose that such neural systems have been refined by evolution and
development to produce learning signals that enable more powerful versions of
e-prop algorithms, such as the ones that we will discuss in the following.

For implementations of e-prop algorithms in neuromorphic hardware – in order to
enable efficient on-chip learning of practically relevant tasks – another reservoir
of mechanisms becomes of interest that also can make use of concrete aspects
of specific neuromorphic hardware. For example, in order to approximate the
performance of BPTT for training LSNNs for speech recognition, a test on the
popular benchmark dataset TIMIT suggests that the accuracy of e-prop 1 (0.629)
can be brought closer to that achieved by BPTT (0.671; see (Bellec et al., 2018c)) by
simply using the current values of readout weights, rather than random weights,
for broadcasting current error signals (we label this e-prop 1 version e-prop 1s). This
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4 Biologically inspired alternatives to backpropagation through time for learning in recurrent neural nets

yields an accuracy of 0.651. As a baseline for recurrent spiking neural networks we
include a result for randomly initialized LSNN where only the readout weights are
optimized (see Figure 4.2c readout plasticity only, accuracy 0.529). For comparison,
the best result achieved by recurrent artificial neural networks (consisting of the
most complex form of LSTM units) after extensive hyperparameter search was
0.704 (Greff et al., 2017).

4.2.2 E-prop 2 : Refined learning signals that emerge from L2L

The construction and proper distribution of learning signals appears to be highly
sophisticated in the brain. Numerous areas in the human brain appear to be
involved in the production of the error-related negativity and the emission of
neuromodulatory signals (see the references given in the Introduction). A closer
experimental analysis suggests diversity and target-specificity even for a single
neuromodulator (Engelhard et al., 2019). Hence it is fair to assume that the con-
struction and distribution of error signals in the brain has been optimized through
evolutionary processes, through development, and prior learning. A simple ap-
proach for capturing possible consequences of such an optimization in a model is
to apply L2L to a suitable family of learning tasks. The outer loop of L2L models
opaque optimization processes that shape the distribution of error signals in the
brain on the functional level. We implement this optimization by an application of
BPTT to a separate error module in the outer loop of L2L. Since this outer loop is
not meant to model an online learning process, we are not concerned here by the
backpropagation through time that is required in the outer loop. In fact, one can
expect that similar results can be achieved through an application of gradient-free
optimization methods in the outer loop, but at a higher computational cost for the
implementation.

It is argued in (Brea and Gerstner, 2016) that one-shot learning is one of two
really important learning capabilities of the brain that are not yet satisfactorily
explained by current models in computational neuroscience. We show here that
e-prop 2 explains how RSNNs can learn a new movement trajectory in a single trial.
Simultaneously we show that given movement trajectories of an end-effector of
an arm model can be learnt without requiring an explicitly learnt or constructed
inverse model. Instead, a suitably trained error module can acquire the capability
to produce learning signals for the RSNN so that the RSNN learns via e-prop to
minimize deviations of the end-effector from the target trajectory in Euclidean
space, rather than errors in “muscle space", i.e., in terms of the joint angles that are
controlled by the RSNN.

Definition of e-prop 2: The main characteristic of e-prop 2 is that the learning
signals L̂t

j are produced by a trained error module, which is modeled as a recurrent
network of spiking neurons with synaptic weights Ψ. It receives the input xt, the
spiking activity in the network zt and target signals y∗,t. Note that the target signal
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Fig. 4.3: Scheme and performance of e-prop 2 a) Learning-to-Learn (LTL) scheme. b) Learning
architecture for e-prop 2. In this demo the angular velocities of the joints were controlled by
a recurrent network of spiking neurons (RSNN). A separate error module was optimized in
the outer loop of L2L to produce suitable learning signals. c) Randomly generated target
movements y∗,t (example shown) had to be reproduced by the tip of an arm with two joints.
d) Demonstration of one-shot learning for a randomly sampled target movement. During the
training trial the error module sends learning signals (bottom row) to the network. After a sin-
gle weight update the target movement can be reproduced in a test trial with high precision.
e) One-shot learning performance improved during the course of outer loop optimization.
Two error module implementations were compared.
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4 Biologically inspired alternatives to backpropagation through time for learning in recurrent neural nets

is not necessarily the target output of the network, but can be more generally a
target state vector of some controlled system.

We employ the concept of Learning-to-Learn (L2L) to enable the network with
its adjacent error module to solve a family F of one-shot learning tasks, i.e. each
task C of the family F requires the network to learn a movement from a single
demonstration. The L2L setup introduces a nested optimization procedure that
consists of two loops: An inner loop and an outer loop as illustrated in Figure 4.3a.
In the inner loop we consider a particular task C, entailing a training trial and a
testing trial. During the training trial, the network has synaptic weights θinit, it
receives an input it has never seen and generates a tentative output. After a single
weight update using e-prop 2, the network starts the testing trial with new weights
θtest,C. It receives the same input for a second time and its performance is evaluated
using the cost function LC(θtest,C). In the outer loop we optimize θinit and the error
module parameters Ψ in order to minimize the cost LC over many task instances C
from the family F . Formally, the optimization problem solved by the outer loop is
written as:

min
Ψ,θinit

EC∼F [LC(θtest,C)] (4.6)

s.t.: (θtest,C)ji = (θinit)ji − η ∑t L̂t
j et

ji (4.7)

(L̂t
j and et

ji are obtained during the training

trial for task C using Ψ and θinit),

where η represents a fixed learning rate.

One-shot learning task 2.1 It is likely that prior optimization processes on much
slower time scales, such as evolution and development, have prepared many
species of animals to learn new motor skills much faster than shown in Figure 4.1d.
Humans and other species can learn a new movement by observing just one or a
few examples. Therefore we restricted the learning process here to a single trial
(one-shot learning, or imitation learning).

Another challenge for motor learning arises from the fact that motor commands Φ̇t

have to be given in “muscle space" (joint angle movements), whereas the observed
resulting movement yt is given in Euclidean space. Hence an inverse model is
usually assumed to be needed to infer joint angle movements that can reduce the
observed error. We show here that an explicit inverse model is not needed, since its
function can be integrated into the learning signals from the error module of e-prop
2.

Task: Each task C in the family F consisted of learning a randomly generated
target movement y∗,t of the tip of a two joint arm as shown in Figure 4.3c. The
task was divided into a training and a testing trial, with a single weight update in
between according to equation (4.7).
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Implementation: An RSNN, consisting of 400 recurrently connected LIF neurons,
learnt to generate the required motor commands, represented as the angular
velocities of the joints Φ̇t = (φ̇t

1, φ̇t
2), in order to produce the target movement. The

full architecture of the learning system is displayed in Figure 4.3b. The error module
consisted of 300 LIF neurons, which were also recurrently connected. The input xt

to the network was the same across all trials and was given by a clock-like signal.
The input to the error module contained a copy of xt, the spiking activity zt of the
main network, as well as the target movement y∗,t in Euclidean space. Importantly,
the error module had no access to actual errors of the produced motor commands.
For outer loop optimization we viewed the learning process as a dynamical system
for which we applied BPTT. Gradients were computed using batches of different
tasks to approximate the expectation in the outer loop objective.

Performance: After sufficiently long training in the outer loop of L2L, we tested
the learning capabilities of e-prop 2 on a random target movement, and show in
Figure 4.3d training and testing trial in the left and right column respectively. In fact,
after the error module had sent learning signals to the network during the training
trial, it was usually more silent during testing, since the reproduced movement
was already accurate. Therefore, the network was endowed with one-shot learning
capabilities by e-prop 2, after initial weights θinit and the error module parameters
Ψ had been optimized in the outer loop.

Figure 4.3e summarizes the mean squared error between the target y∗,t and actual
movement yt in the testing trial (blue curve). The red curve reports the same for
a linear error module. The error is reported for different stages of the outer loop
optimization.

We considered also the case when one uses instead of the eligibility trace as defined
in equation (D.13) just a truncated one, given by et

ji = ht
jz

t−1
i , and found this

variation to exhibit similar performance on this task (not shown). The learning
performance converged to a mean squared error of 0.005 on testing trials averaged
over different tasks.

Altogether we have shown that e-prop 2 enables one-shot learning of pattern
generation by an RSNN. This is apparently the first time that one-shot learning
of pattern generation has been demonstrated for an RSNN. In addition, we have
shown that the learning architecture for e-prop 2 supports a novel solution to
motor learning, where no separate construction or learning of an inverse model
is required. More precisely, the error module can be trained to produce learning
signals that enable motor learning without the presence of an inverse model.
It will be interesting to see whether there are biological data that support this
simplified architecture. Another interesting feature of the resulting paradigm for
motor learning is that the considered tasks can be accomplished without sensory
feedback about the actual trajectory of the arm movement. Instead the error module
just receives efferent copies of the spiking activity of the main network, and hence
implicitly also of its motor commands.
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Fig. 4.4: Scheme and performance of e-prop 3 a) Learning architecture for e-prop 3. The error
module is implemented through synthetic gradients. b) Scheme of learning rules used in
panels e-h. ∆t is the number of time steps through which the gradients are allowed to flow
for truncated BPTT or for the computation of synthetic gradients. c,e,g) Copy-repeat task: (c)
example trial, (e) performance of different algorithms for the copy-repeat task, (g) Learning
progress for 3 different algorithms. This task was used as a benchmark in (Jaderberg et
al., 2016) and (Graves et al., 2014). d,f,h) Word prediction task: (d) example of sequence,
(f) performance summary for different learning rules, (h) learning progression. An epoch
denotes a single pass through the complete dataset.
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4.2.3 E-prop 3 : Producing learning signals through synthetic gradients

We show here that the use of biologically inspired eligibility traces also improves
some state-of-the-art algorithms in machine learning, specifically the synthetic
gradient approach for learning in feedforward and recurrent (artificial) neural
networks (Jaderberg et al., 2016) and (Czarnecki et al., 2017). Synthetic gradients
provide variants of backprop and BPTT that tend to run more efficiently because
they avoid that synaptic weights can only be updated after a full network simulation
followed by a full backpropagation of error gradients („locking“). We show here
that the performance of synthetic gradient methods for recurrent neural networks
significantly increases when they are combined with eligibility traces. The combi-
nation of these two approaches is in a sense quite natural, since synthetic gradients
can be seen as online learning signals for e-prop. In comparison with e-prop 2, one
does not need to consider here a whole family of learning tasks for L2L and a
computationally intensive outer loop. Hence the production of learning signals via
synthetic gradient approaches tends to be computationally more efficient. So far
it also yields better results in applications to difficult tasks for recurrent artificial
neural networks. In principle it is conceivable that biological learning systems
also follow a strategy whereby learning signals for different temporal phases of
a learning process are aligned among each other through some separate process.
This is the idea of synthetic gradients.

Definition of e-prop 3: When BPTT is used for tasks that involve long time series,
the algorithm is often truncated to shorter intervals of length ∆t, and the parameters
are updated after the processing of each interval. This variant of BPTT is called
truncated BPTT. We show a schematic of the computation performed on the interval
{t−∆t, . . . , t} in the first panel of Figure 4.4b. Reducing the length ∆t of the interval
has two benefits: firstly, the parameter updates are more frequent; and secondly,
it requires less memory storage because all inputs xt′ and network states st′

j for
t′ ∈ {t− ∆t, . . . , t} need to be stored temporarily for back-propagating gradients.
The drawback is that the error gradients become more approximative, in particular,
the relationship between error and network computation happening outside of this
interval cannot be captured by the truncated error gradients. As illustrated in the
last panel of Figure 4.4b, e-prop 3 uses the same truncation scheme but alleviates
the drawback of truncated BPTT in two ways: it uses eligibility traces to include
information about the network history before t− ∆t, and an error module that
predicts errors after t. Thanks to eligibility traces, all input and recurrent activity
patterns that happened before t− ∆t have left a footprint that can be combined
with the learning signals Lt′

j with t′ ∈ {t− ∆t, . . . , t}. Each of these learning signals
summarizes the neuron influence on the next errors, but due to the truncation,
errors performed outside of the current interval cannot trivially be taken into
account. In e-prop 3, the error module computes learning signals Lt′

j that anticipate
the predictable components of the future errors.

E-prop 3 combines eligibility traces and learning signals to compute error gradients
according to equation (4.1), rather than equation (D.3) that is canonically used to
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compute gradients for BPTT. To compute these gradients when processing the
interval {t − ∆t, . . . , t}, the eligibility traces and learning signals are computed
solely from data available within that interval, without requiring the rest of the data.
The eligibility traces are computed in the forward direction according to equations
(4.2) and (4.3). For the learning signals Lt′

j , the difficulty is to estimate the gradients
dE
dzt′

j
for t′ between t− ∆t and t. These gradients are computed by back-propagation

from t′ = t back to t′ = t− ∆t + 1 with the two recursive formulas:

dE
dst′

j
=

dE
dzt′

j

∂zt′
j

∂st′
j
+

dE
dst′+1

j

∂st′+1
j

∂st′
j

(4.8)

dE
dzt′

j
=

∂E
∂zt′

j
+ ∑

i

dE
dst′+1

i

∂st′+1
i

∂zt′
j

, (4.9)

which are derived by application of the chain rule at the nodes st
j and zt

j of

the computational graph represented in Figures D.1 ( ∂st+1
i

∂zt
j

is a notation short-cut

for ∂M
∂zt

j
(st

i , z
t,xt,θ), and i range over all neurons to which neuron j is synaptically

connected). This leaves open the choice of the boundary condition dE
dst+1

j
that initiates

the back-propagation of these gradients at the end of the interval {t− ∆t, . . . , t}.
In most implementations of truncated BPTT, one chooses dE

dst+1
j

= 0, as if the

simulation would terminate after time t. We use instead a feed-forward neural
network SG parametrized by Ψ that outputs a boundary condition SGj associated
with each neuron j: dE

dst+1
j

= SGj(z
t, Ψ). This strategy was proposed by (Jaderberg

et al., 2016) under the name “synthetic gradients”. The synthetic gradients are
combined with the error gradients computed within the interval {t− ∆t, . . . , t} to
define the learning signals. Hence, we also see SG as a key component of the an
error module in analogy with those of e-prop 1 and 2.

To train SG, back-ups of the gradients dE
dst+1

j
are estimated from the boundary

conditions at the end of the next interval {t, . . . , t + ∆t}. In a similar way as
value functions are approximated in reinforcement learning, these more informed
gradient estimates are used as targets to improve the synthetic gradients SG(zt, Ψ).
This is done in e-prop 3 by computing simultaneously the gradients dE′

dθ and dE′
dΨ of an

error function E′ that combines the error function E, the boundary condition, and
the mean squared error between the synthetic gradient and its targeted back-up
(see Algorithm 4 in Methods for details). These gradients are approximated to
update the network parameters with any variant of stochastic gradient descent.

It was already discussed that the factorization (4.1) used in e-prop is equivalent to
BPTT, and that both compute the error gradients dE

dθji
. In the subsection dedicated to

e-prop 3 of Methods, we formalize the algorithm when the simulation is truncated
into intervals of length ∆t. We then show under the assumption that the synthetic
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gradients are optimal, i.e. SGj(z
t, Ψ) = dE

dst+1
j

, that both truncated BPTT and e-prop 3

compute the correct error gradients dE
dθji

. However, this assumption is rarely satisfied
in simulations, firstly because the parameters Ψ may not converge instantaneously
to some optimum; and even then, there could be unpredictable components of the
future errors that cannot be estimated correctly. Hence, a more accurate model is to
assume that the synthetic gradients SGj(z

t, Ψ) are noisy estimators of dE
dst+1

j
. Under

this weaker assumption it turns out that e-prop 3 produces estimators of the error

gradients d̂E
dθji

eprop
that are better than those produced with truncated BPTT with

synthetic gradients d̂E
dθji

SG
. Formally, this result can be summarized as:

E

( dE
dθji
− d̂E

dθji

eprop)2
 ≤ E


 dE

dθji
− d̂E

dθji

SG
2
 , (4.10)

where the E is the stochastic expectation. The proof of this result will be published
in a later version of the paper. To summarize the proof, we compare in detail
the terms computed with e-prop 3 and BPTT. The derivation reveals that both
algorithms compute a common term that combines partial derivatives ∂st

∂θji
with

errors, E(zt′) with t and t′ being accessible within the interval {t− ∆t, . . . , t}. The
difference between the two algorithms is that truncated BPTT combines all the
partial derivatives ∂st

∂θji
with synthetic gradients that predict future errors. Instead,

the e-prop algorithm holds these partial derivatives in eligibility traces to combine
them later with a better informed learning signals that do not suffer from the noisy
approximations of the synthetic gradients.

Copy-repeat task 3.1 The copy-repeat task was introduced in (Graves et al., 2014)
to measure how well artificial neural networks can learn to memorize and process
complex patterns. It was also used in (Jaderberg et al., 2016) to compare learning
algorithms for recurrent neural networks with truncated error propagation.

Task: The task is illustrated in Figure 4.4c. It requires to read a sequence of 8-bit
characters followed by a “stop” character and a character that encodes the requested
number of repetitions. In the subsequent time steps the network is trained to repeat
the given pattern as many times as requested, followed by a final “stop” character.
We used the same curriculum of increased task complexity as defined in (Jaderberg
et al., 2016), where the authors benchmarked variants of truncated BPTT and
synthetic gradients: the pattern length and the number of repetitions increase
alternatively each time the network solves the task (the task is considered solved
when the average error is below 0.15 bits per sequence). The performance of the
learning algorithms are therefore measured by the length of the largest sequence
for which the network could solve the task.
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Implementation: The recurrent network consisted of 256 LSTM units. The com-
ponent SG of the error module was a feedfoward network with one hidden layer
of 512 rectified linear units (the output layer of the synthetic gradient did not
have non-linear activation functions). The network states were reset to zero at
the beginning of each sequence and the mean error and the error gradients were
averaged over a batch of 256 independent sequences. Importantly, we used for all
training algorithms a fixed truncation length ∆t = 4, with the exception of a strong
baseline BPTT for which the gradients were not truncated.

Results: The activity and output of a trained LSTM solving the task is displayed
in Figure 4.4c. The performance of various learning algorithms is summarized
in Figure 4.4e and g. Truncated BPTT alone solves the task for sequences of 15
characters, and 19 characters when enhanced with synthetic gradients. With a
different implementation of the task and algorithm, (Jaderberg et al., 2016) reported
that sequences of 39 characters could be handled with synthetic gradients. When
BPTT is replaced by e-prop and uses eligibility traces, the network learnt to solve
the task for sequences of length 41 when the synthetic gradients were set to zero
(this algorithm is referred as “truncated BPTT + eligibility traces” in Figure 4.4e
and f). The full e-prop 3 algorithm that includes eligibility traces and synthetic
gradients solved the task for sequences of 74 characters. This is an improvement
over e-prop 1 that handles sequences of 28 characters, even if the readout weights
are not replaced by random error broadcasts. All these results were achieved with a
truncation length ∆t = 4. In contrast when applying full back-propagation through
the whole sequence, we reached only 39 characters.

Word prediction task 3.2 We also considered a word-level prediction task in
a corpus of articles extracted from the Wall Street Journal, provided by the so-
called Penn Treebank dataset. As opposed to the previous copy-repeat task, this
is a practically relevant task. It has been standardized to provide a reproducible
benchmark task. Here, we used the same implementation and baseline performance
as provided freely by the Tensorflow tutorial on recurrent neural networks1.

Task: As indicated in Figure 4.4d, the network reads the whole corpus word after
word. At each time step, the network has to read a word and predict the following
one. The training, validation and test sets consist of texts of 929k, 73k, and 82k
words. The sentences are kept in a logical order such that the context of dozens
of words matters to accurately predict the following ones. The vocabulary of the
dataset is restricted to the 10k most frequent words, and the words outside of this
vocabulary are replaced with a special unknown word token.

Implementation: For all algorithms, the parameters were kept identical to those
defined in the Tensorflow tutorial, with two exceptions: firstly, the networks had a
single layer of 200 LSTM units instead of two to simplify the implementation, and
because the second did not seem to improve performance with this configuration;

1https://www.tensorflow.org/tutorials/sequences/recurrent

66



4.3 Discussion

secondly, the truncation length was reduced from ∆t = 20 to ∆t = 4 for synthetic
gradients and e-prop 3 to measure how our algorithms compensate for it. The
synthetic gradients are computed by a one hidden layer of 400 rectified linear
units. For a detailed description of model and a list of parameters we refer to the
methods.

Results: The error is measured for this task by the word-level perplexity, which
is the exponential of the mean cross-entropy loss. Figure 4.4e and f summarize
our results. After reduction to a single layer, the baseline perplexity of the model
provided in the Tensorflow tutorial for BPTT was 113 with a truncation length
∆t = 20. Full BPTT is not practical in this case because the data consists of one
extremely long sequence of words. In contrast, in a perplexity increased to 121
when the same model was also trained with BPTT, but a shorter truncation length
∆t = 4. The model performance improved back to 118 with synthetic gradients, and
to 116 with eligibility traces. Applying the e-prop 1 algorithm with the true readout
weights as error broadcasts resulted in a perplexity of 115. When combining both
eligibility traces and synthetic gradients in e-prop 3, the performance improved
further and we achieved a perplexity of 113.

To further investigate the relevance of eligibility traces for e-prop 3 we considered
the case where the eligibility trace were truncated. Instead of using the eligibility

trace vectors as defined in equation (D.27) we used εt
ji =

∂st
j

∂θji
. This variation of

e-prop 3 lead to significantly degraded performance and resulted in test perplexity
of 122.67 (not shown).

All together Figure 4.4e and f show that eligibility traces improve truncated BPTT
more than synthetic gradients. Furthermore, if eligibility traces are combined with
synthetic gradients in e-prop 3, one arrives at an algorithm that outperforms full
BPTT for the copy-repeat task, and matches the performance of BPTT (∆t = 20) for
the Penn Treebank word prediction task.

4.3 Discussion

The functionally most powerful learning method for recurrent neural nets, an
approximation of gradient descent for a loss function via BPTT, requires propaga-
tion of error signals backwards in time. Hence this method does not reveal how
recurrent networks of neurons in the brain learn. In addition, propagation of error
signals backwards in time requires costly work-arounds in software implementa-
tions, and it does not provide an attractive blueprint for the design of learning
algorithms in neuromorphic hardware. We have shown that a replacement of the
propagation of error signals backwards in time in favor of a propagation of the
local activation histories of synapses – called eligibility traces – forward in time
allows us to capture with physically and biologically realistic mechanisms a large
portion of the functional benefits of BPTT. We are referring to to this new approach
to gradient descent learning in recurrent neural networks as e-prop. In contrast to
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many other approaches for learning in recurrent networks of spiking neurons it
can be based on a rigorous mathematical theory.

We have presented a few variations of e-prop where eligibility traces are combined
with different types of top-down learning signals that are generated and transmitted
in real-time. In e-prop 1 we combine eligibility traces with a variation of broadcast
alignment (Samadi et al., 2017) or direct feedback alignment (Nøkland, 2016). We
first evaluated the performance of e-prop 1 on a task that has become a standard for
the evaluation of the FORCE learning method for recurrent networks of spiking
neurons (Nicola and Clopath, 2017) and related earlier work on artificial neural
networks: supervised learning of generating a temporal pattern. In order to make
the task more interesting we considered a task where 3 independent temporal
patterns have to be generated simultaneously by the same RSNN. Here it is not
enough to transmit a single error variable to the network, so that broadcasting of
errors for different dimensions of the network output to the network becomes less
trivial. We found (see Figure 4.1) that a random weight matrix for the distribution
of error signals works well, as in the case of feedforward networks (Samadi et al.,
2017), (Nøkland, 2016). But surprisingly, the results were best when this matrix was
fixed, or rarely changed, whereas a direct application of broadcast alignment to
an unrolled recurrent network suggests that a different random matrix should be
used for every time slice.

In order to challenge the capability of e-prop 1 to deal also with cases where error
signals arise only at the very end of a computation in a recurrent network, we
considered a store-recall task, where the network has to learn what information it
should store –and maintain until it is needed later. We found (see Figure 4.2) that
this task can also be learnt with e-prop 1, and verified that the eligibility traces of
the network were able to bridge the delay. We used here an LSNN (Bellec et al.,
2018c) that includes a model of a slower process in biological neurons: neuronal
adaptation. We also compared the performance of e-prop 1 with BPTT for a more
demanding task: the speech recognition benchmark task TIMIT. We found that
e-prop 1 approximates also here the performance of BPTT quite well.

Altogether we have the impression that e-prop 1 can solve all learning tasks for
RSNNs that the FORCE method can solve, and many more demanding tasks.
Since the FORCE method is not argued to be biologically realistic, whereas e-
prop 1 only relies on biologically realistic mechanisms, this throws new light on
the understanding of learning in recurrent networks of neurons in the brain. An
additional new twist is that e-prop 1 engages also plasticity of synaptic connections
within a recurrent network, rather than only synaptic connections to a postulated
readout neuron as in the FORCE method. Hence we can now analyze how network
configurations and motifs that emerge in recurrent neural network models through
learning (possibly including in e-prop biologically inspired rewiring mechanisms
as in (Bellec et al., 2018a)) relate to experimental data.

In the analysis of e-prop 2 we moved to a minimal model that captures salient
aspects of the organization of learning in the brain, where dedicated brain areas
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process error signals and generate suitably modified gating signals for plasticity
in different populations of neurons. We considered in this minimal model just a
single RSNN (termed error module) for generating learning signals. But obviously
this minimal model opens the door to the analysis of more complex learning
architectures –as they are found in the brain– from a functional perspective. We
found that a straightforward application of the Learning-to-Learn (L2L) paradigm,
where the error module is optimized on a slower time scale for its task, significantly
boosts the learning capability of an RSNN. Concretely, we found that it endows the
RSNN with one-shot learning capability (see Figure 4.3), hence with a characteristic
advantage of learning in the human brain (Brea and Gerstner, 2016), (Lake et al.,
2017). In addition the model of Figure 4.3 suggests a new way of thinking about
motor learning. It is shown that no separate inverse model is needed to learn motor
control. Furthermore in the case that we considered, not even sensory feedback
from the environment is needed.

Finally we arrived at an example where biologically inspired ideas and mechanisms,
in this case eligibility traces, can enhance state-of-the-art methods in machine
learning. Concretely, we have shown in Figure 4.4 that adding eligibility traces
to the synthetic gradient methods of (Jaderberg et al., 2016) and (Czarnecki et al.,
2017) for training artificial recurrent neural networks significantly enhances the
performance of synthetic gradient algorithms. In fact, the resulting algorithm e-prop
3 was found to supercede the performance of full BPTT in one case and rival BPTT
with ∆t = 20 in another.

A remarkable feature of e-prop is that the resulting local learning rules (D.14) are
very similar to previously proposed rules for synaptic plasticity that were fitted to
experimental data (Clopath et al., 2010). In fact, we have shown in Figure 4.1d that
the theory-derived local plasticity rule for e-prop 1 can be replaced by the Clopath
rule with little loss in performance. On a more general level, the importance of
eligibility traces for network learning that our results suggest provides concrete
hypotheses for the functional role of a multitude of processes on the molecular
level in neurons and synapses, including metabotropic receptors. Many of these
processes are known to store information about multiple aspects of the recent
history. The e-prop approach suggests that these processes, in combination with
a sufficiently sophisticated production of learning signals by dedicated brain
structures, can practically replace the physically impossible backpropagation of
error signals backwards in time of theoretically optimal BPTT.

An essential prediction of e-prop for synaptic plasticity rules is that learning signals
can switch the sign of synaptic plasticity, i.e., between LTP and LTD or between
STDP and anti-STDP. Such switching of the sign of plasticity via disinhibition
had been found in synapses from the cortex to the striatum (Paille et al., 2013),
see (Perrin and Venance, 2019) for a recent review. Further brain mechanisms for
switching the sign of plasticity through 3rd factors had been reported in (C. H.
Chen et al., 2014; Cui et al., 2016; Foncelle et al., 2018).

A key challenge for neuromorphic engineering is to design a new generation of
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computing hardware that enables energy efficient implementations of major types
of networks and learning algorithms that have driven recent progress in machine
learning and learning-driven AI (see e.g. (Barrett et al., 2018)). Recurrent neural net-
works are an essential component of many of these networks, and hence learning
algorithms are needed for this type of networks that can be efficiently implemented
in neuromorphic hardware. In addition, neuromorphic implementations of recur-
rent neural networks – rather than deep feedforward networks—promise larger
efficiency gains because hardware neurons can be re-used during a computation.
Recently developed diffusive memristors (Z. Wang et al., 2018) would facilitate
an efficient local computation of eligibility traces with new materials. In addition,
new 3-terminal memristive synapses (Y. Yang et al., 2017) are likely to support an
efficient combination of local eligibility traces with top-down error signals in the
hardware. Thus e-prop provides attractive functional goals for novel materials in
neuromorphic hardware.
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Appendix B
Appendix to “Deep Rewiring: Training very sparse
deep networks”

B.1 Methods

Implementations of DEEP R are freely available at github.com/guillaumeBellec/deep_rewiring.

Choosing hyper-parameters for DEEP R: The learning rate η is defined for each
task independently (see task descriptions below). Considering that the number of
active connections is given as a constraint, the remaining hyper parameters are the
regularization coefficient α and the temperature T. We found that the performance
of DEEP R does not depend strongly on the temperature T. Yet, the choice of α has
to be done more carefully. For each dataset there was an ideal value of α: one order
of magnitude higher or lower typically lead to a substantial loss of accuracy.

In MNIST, 96.3% accuracy under the constraint of 1% connectivity was achieved
with α = 10−4 and T chosen so that T = η

2 10−12. In TIMIT, α = 0.03 and T = 0
(higher values of T could improve the performance slightly but it did not seem very
significant). In CIFAR-10 a different α was assigned to each connectivity matrix. To
reach 84.1% accuracy with 5% connectivity we used in each layer from input to
output α = [0, 10−7, 10−6, 10−9, 0]. The temperature is initialized with T = η α2

18 and
decays with the learning rate (see paragraph of the methods about CIFAR-10).

Choosing hyper-parameters for soft-DEEP R: The main difference between soft-
DEEP R and DEEP R is that the connectivity is not given as a global constraint. This
is a considerable drawback if one has strict constraint due to hardware limitation
but it is also an advantage if one simply wants to generate very sparse network
solutions without having a clear idea on the connectivities that are reachable for
the task and architecture considered.

In any cases, the performance depends on the choice of hyper-parameters α, T and
θmin, but also - unlike in DEEP R - these hyper parameters have inter-dependent
relationships that one cannot ignore (as for DEEP R, the learning rate η is defined
for each task independently). The reason why soft-DEEP R depends more on
the temperature is that the rate of re-activation of connections is driven by the
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amplitude of the noise whereas they are decoupled in DEEP R. To summarize the
results of an exhaustive parameter search, we found that

√
2Tη should ideally be

slightly below α. In general high θmin leads to high performance but it also defines
an approximate lower bound on the smallest reachable connectivity. This lower
bound can be estimated by computing analytically the stationary distribution under
rough approximations and the assumption that the gradient of the likelihood is zero.
If pmin is the targeted lower connectivity bound, one needs θmin ≈ − T(1−pmin)

αpmin
.

For MNIST we used α = 10−5 and T = η α2

18 for all data points in Fig. 2.1 panel A
and a range of values of θmin to scope across different ranges of connectivity lower
bounds. In TIMIT and CIFAR-10 we used a simpler strategy which lead to a similar

outcome, we fixed the relationships: α = 3
√

2 T
η = −1

3 θmin and we varied only α to
produce the solutions shown in Fig. 2.1 panel B and Fig. 2.2.

Re-implementing pruning and `1-shrinkage: To implement `1-shrinkage (Tib-
shirani, 1996; Collins and Kohli, 2014), we applied the `1-shrinkage operator
θ ← relu (|θ| − ηα) sign(θ) after each gradient descent iteration. The performance
of the algorithm is evaluated for different α varying on a logarithmic scale to
privilege a sparse connectivity or a high accuracy. For instance for MNIST in Figure
2.3.A we used α of the form 10−

n
2 with n going from 4 to 12. The optimal parameter

was n = 9.

We implemented the pruning described in Han et al., 2015b. This algorithm uses
several phases: training - pruning - training, or one can also add another pruning
iteration: training - pruning - training - pruning - training. We went for the latter
because it increased performance. Each "training" phase is a complete training of
the neural network with `2-regularization1. At each "pruning" phase, the standard
deviation of weights within a weight matrix wstd is computed and all active weights
with absolute values smaller than qwstd are pruned (q is called the quality parame-
ter). Grid search is used to optimize the `2-regularization coefficient and quality
parameter. The results for MNIST are reported in Figure B.1.

MNIST: We used a standard feed forward network architecture with two hidden
layers with 200 neurons each and rectified linear activation functions followed by a
10-fold softmax output. For all algorithms we used a learning rate of 0.05 and a
batch size of 10 with standard stochastic gradient descent. Learning stopped after
10 epochs. All reported performances in this article are based on the classification
error on the MNIST test set.

1To be fair with other algorithms, we did not allocate three times more training time to pruning,
each "training" phase was performed for a third of the total number of epochs which was chosen
much larger than necessary.
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Fig. B.1: Hyper-parameter search for the pruning algorithm according to Han et al., 2015b. Each
point of the grid represents a weight decay coefficient – quality factor pair. The number and
the color indicate the performance in terms of accuracy (left) or connectivity (right). The red
rectangle indicates the data points that were used in Fig. 2.3A.

CIFAR-10: The official tutorial for convolutional networks of tensorflow2 is
used as a reference implementation. Its performance out-of-the-box provides
the fully connected baseline. We used the values given in the tutorial for the
hyper-parameters in all algorithms. In particular the layer-specific weight decay
coefficients that interact with our algorithms were chosen from the tutorial for
DEEP R, soft-DEEP R, pruning, and `1-shrinkage.

In the fully connected baseline implementation, standard stochastic gradient de-
scent was used with a decreasing learning rate initialized to 1 and decayed by a
factor 0.1 every 350 epochs. Training was performed for one million iterations for
all algorithms. For soft-DEEP R, which includes a temperature parameter, keeping
a high temperature as the weight decays was increasing the rate of re-activation
of connections. Even if intermediate solutions were rather sparse and efficient the
solutions after convergence were always dense. Therefore, the weight decay was
accompanied by annealing of the temperature T. This was done by setting the
temperature to be proportional to the decaying η. This annealing was used for
DEEP R and soft-DEEP R.

TIMIT: The TIMIT dataset was preprocessed and the LSTM architecture was
chosen to reproduce the results from Greff et al., 2017. Input time series were
formed by 12 MFCC coefficients and the log energy computed over each time frame.
The inputs were then expanded with their first and second temporal derivatives.
There are 61 different phonemes annotated in the TIMIT dataset, to report an error
rate that is comparable to the literature we performed a standard grouping of the
phonemes to generate 39 output classes (Lee and Hon, 1989; Graves et al., 2013;
Greff et al., 2017). As usual, the dialect specific sentences were excluded (SA files).
The phoneme error rate was computed as the proportion of misclassified frames.

2TensorFlow version 1.3: www.tensorflow.org/tutorials/deep_cnn
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A validation set and early stopping were necessary to train a network with dense
connectivity matrix on TIMIT because the performance was sometimes unstable
and it suddenly dropped during training as seen in Fig. 2.3D for `1-shrinkage.
Therefore a validation set was defined by randomly selecting 5% of the training
utterances. All algorithms were trained for 40 epochs and the reported test error
rate is the one at minimal validation error.

To accelerate the training in comparison the reference from Greff et al., 2017 we
used mini-batches of size 32 and the ADAM optimizer (Kingma and Ba, 2014). This
was also an opportunity to test the performance of DEEP R and soft-DEEP R with
such a variant of gradient descent. The learning rate was set to 0.01 and we kept
the default momentum parameters of ADAM, yet we found that changing the ε
parameter (as defined in Kingma and Ba, 2014) from 10−8 to 10−4 improved the
stability of fully connected networks during training in this recurrent setup. As
we could not find a reference that implemented `1-shrinkage in combination with
ADAM, we simply applied the shrinkage operator after each iteration of ADAM
which might not be the ideal choice in theory. It worked well in practice as the
minimal error rate was reached with this setup. The same type of `1 regularization
in combination with ADAM was used for DEEP R and soft-DEEP R which lead to
very sparse and efficient network solutions.

Initialization of connectivity matrices: We found that the performance of the
networks depended strongly on the initial connectivity. Therefore, we followed the
following heuristics to generate initial connectivity for DEEP R, soft-DEEP R and
the control setup with fixed connectivity.

First, for the connectivity matrix of each individual layer, the zero entries were
chosen with uniform probability. Second, for a given connectivity constraint we
found that the learning time increased and the performance dropped if the initial
connectivity matrices were not chosen carefully. Typically the performance dropped
drastically if the output layer was initialized to be very sparse. Yet in most networks
the number of parameters is dominated by large connectivity matrices to hidden
layers. A basic rule of thumb that worked in our cases was to give an equal number
of active connections to the large and intermediate weight matrices, whereas smaller
ones - typically output layers - should be densely connected.

We suggest two approaches to refine this guess: One can either look at the statistics
of the connectivity matrices after convergence of DEEP R or soft-DEEP R, or, if
possible, the second alternative is to initialize once soft-DEEP R with a dense matrix
and observe the connectivity matrix after convergence. In our experiments the
connectivities after convergence were coherent with the rule of thumb described
above and we did not need to pursue intensive search for ideal initial connectivity
matrices.

For MNIST, the number of parameters in each layer was 235k, 30k and 1k from
input to output. Using our rule of thumb, for a given global connectivity p0, the
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layers were respectively initialized with connectivity 0.75p0, 2.3p0 and 22.8p0.

For CIFAR-10, the baseline network had two convolutional layers with filters of
shapes 5× 5× 3× 64 and 5× 5× 64× 64 respectively, followed by two fully con-
nected layer with weight matrices of shape 2304× 384 and 384× 192. The last
layer was then projected into a softmax over 10 output classes. The numbers of
parameters per connectivity matrices were therefore 5k, 102k, 885k, 74k and 2k
from input to output. The connectivity matrices were initialized with connectivity
1, 4p0, 0.4p0, 4p0, and 1 where p0 is approximately the resulting global connectiv-
ity.

For TIMIT, the connection matrix from the input to the hidden layer was of size
39× 800, the recurrent matrix had size 200× 800 and the size of the output matrix
was 200× 39. Each of these three connectivity matrices were respectively initialized
with a connectivity of 1.8p0, 0.6p0, and 6p0 where p0 is approximately the resulting
global connectivity.

Initialization of weight matrices: For CIFAR-10 the initialization of matrix coef-
ficients was given by the reference implementation. For MNIST and TIMIT, the
weight matrices were initialized with θ = 1√

nin
N (0, 1)c where nin is the number of

afferent neurons, N (0, 1) samples from a centered gaussian with unit variance and
c is a binary connectivity matrix.

It would not be good to initialize the parameters of all dormant connections to zero
in soft-DEEP R. After a single noisy iteration, half of them would become active
which would fail to initialize the network with a sparse connectivity matrix. To
balance out this problem we initialized the parameters of dormant connections
uniformly between the clipping value θmin and zero in soft-DEEP R.

Parameters for Figure 2.4 The experiment provided in Figure 2.4 is a variant of
our MNIST experiment where the target labels were shuffled after every training
epoch. To make the generalization capability of DEEP R over a small number of
epochs visible, we enhanced the noise exploration by setting a batch to 1 so that
the connectivity matrices were updated at every time step. Also we used a larger
network with 400 neurons in each hidden layer. The remaining parameters were
similar to those used previously: the connectivity was constrained to 1% and the
connectivity matrices were initialized with respective connectivities: 0.01, 0.01, and
0.1. The parameters of DEEP R were set to η = 0.05, α = 10−5 and T = η α2

2 .

B.2 Rewiring during training on MNIST

Fig. B.2 shows the rewiring behavior of DEEP R per network layer for the feed-
forward neural network trained on MNIST and the training run indicated by the
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Fig. B.2: Rewiring behavior of DEEP R. A) Network performance versus training iteration (same as
green line in Fig. 2.1A bottom, but for a network constrained to 1% connectivity). B) Absolute
number of newly activated connections K(l)

new to layer l = 1 (brown), l = 2 (orange), and the
output layer (l = 3, gray) per iteration. Note that these layers have quite different numbers
of potential connections K(l). C) Same as panel B but the number of newly activated con-
nections are shown relative to the number of potential connections in the layer (values in
panel C are smoothed with a boxcar filter over X iterations).

small gray box around the green dot in Fig. 2.1A. Since it takes some iterations until
the weights of connections that do not contribute to a reduction of the error are
driven to 0, the number of newly established connections K(l)

new in layer l is small
for all layers initially. After this initial transient, the number of newly activated
connections stabilized to a value that is proportional to the total number of potential
connections in the layer (Fig. 2.1B). DEEP R continued to rewire connections even
late in the training process.

B.3 Details to: Convergence properties of soft-DEEP R

Here we provide additional details on the convergence properties of the soft-
DEEP R parameter update provided in Algorithm 2. We reiterate here Eq. (2.2):

dθk = β
∂

∂θk
log p∗(θ|X, Y∗)

∣∣∣∣
θt

dt +
√

2βT dWk . (B.1)

Discrete time updates can be recovered from the set of SDEs (B.1) by integration
over a short time period ∆t

∆θk = η
∂

∂θk
log p∗(θ|X, Y∗) +

√
2ηT νk, (B.2)

where the learning rate η is given by η = β ∆t.

We prove that the stochastic parameter dynamics Eq. (B.1) converges to the target
distribution p∗(θ) given in Eq. (2.3). The proof is analogous to the derivation given
in Kappel et al., 2015; Kappel et al., 2018. We reiterate the proof here for the special
case of supervised learning. The fundamental property of the synaptic sampling
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dynamics Eq. (B.1) is formalized in Theorem 1 and proven below. Before we state
the theorem, we briefly discuss its statement in simple terms. Consider some initial
parameter setting θ0. Over time, the parameters change according to the dynamics
(B.1). Since the dynamics include a noise term, the exact value of the parameters
θ(t) at some time t > 0 cannot be determined. However, it is possible to describe
the exact distribution of parameters for each time t. We denote this distribution by
pFP(θ, t), where the “FP” subscript stands for “Fokker-Planck” since the evolution
of this distribution is described by the Fokker-Planck equation (B.3) given below.
Note that we make the dependence of this distribution on time explicit in this
notation. It can be shown that for the dynamics (B.3), pFP(θ, t) converges to a
well-defined and unique stationary distribution in the limit of large t. To prove the
convergence to the stationary distribution we show that it is kept invariant by the
set of SDEs Eq. (B.1) and that it can be reached from any initial condition.

We now state Theorem 1 formally. To simplify notation we drop in the following
the explicit time dependence of the parameters θ.

Theorem 1. Let p∗(θ |X, Y∗) be a strictly positive, continuous probability distribution
over parameters θ, twice continuously differentiable with respect to θ, and let β > 0.
Then the set of stochastic differential equations Eq. (B.1) leaves the distribution p∗(θ)
(2.3) invariant. Furthermore, p∗(θ) is the unique stationary distribution of the sampling
dynamics.

Proof. The stochastic differential equation Eq. (B.1) translates into a Fokker-Planck
equation (Gardiner, n.d.) that describes the evolution of the distribution over
parameters θ

∂

∂t
pFP(θ, t) = ∑

k
− ∂

∂θk

(
β

∂

∂θk
log p∗(θ |X, Y∗)

)
pFP(θ, t) +

∂2

∂θ2
k
(β T pFP(θ, t)) ,

(B.3)
where pFP(θ, t) denotes the distribution over network parameters at time t. To show
that p∗(θ) leaves the distribution invariant, we have to show that ∂

∂t pFP(θ, t) = 0
(i.e., pFP(θ, t) does not change) if we set pFP(θ, t) to p∗(θ). Plugging in the presumed
stationary distribution p∗(θ) for pFP(θ, t) on the right hand side of Eq. (B.3), one
obtains

∂

∂t
pFP(θ, t) = ∑

k
− ∂

∂θk

(
β

∂

∂θk
log p∗(θ |X, Y∗) p∗(θ)

)
+

∂2

∂θ2
k
(β T p∗(θ))

= ∑
k
− ∂

∂θk

(
β p∗(θ)

∂

∂θk
log p∗(θ |X, Y∗)

)
+

∂

∂θk

(
β T

∂

∂θk
p∗(θ)

)
= ∑

k
− ∂

∂θk

(
β p∗(θ)

∂

∂θk
log p∗(θ |X, Y∗)

)
+

∂

∂θk

(
β T p∗(θ)

∂

∂θk
log p∗(θ)

)
,

which by inserting p∗(θ) = 1
Z p∗(θ |X, Y∗)

1
T , with normalizing constant Z , be-
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comes

∂

∂t
pFP(θ, t) =

1
Z ∑

k
− ∂

∂θk

(
β p∗(θ)

∂

∂θk
log p∗(θ |X, Y∗)

)
+

∂

∂θk

(
β T p∗(θ)

1
T

∂

∂θk
log p∗(θ |X, Y∗)

)
= ∑

k
0 = 0 .

This proves that p∗(θ) is a stationary distribution of the parameter sampling
dynamics Eq. (B.1). Since β is positive by construction, the Markov process of the
SDEs (B.1) is ergodic and the stationary distribution is unique (see Section 5.3.3.
and 3.7.2 in Gardiner, n.d.).

The unique stationary distribution of Eq. (B.3) is given by p∗(θ) = 1
Z p∗(θ|X, Y∗)

1
T ,

i.e., p∗(θ) is the only solution for which ∂
∂t pFP(θ, t) becomes 0, which completes

the proof.

The updates of the soft-DEEP R algorithm (Algorithm 2) can be written as

∆θk =

{√
2Tη νk if θk < 0 (dormant connection)
−η ∂

∂θk
EX,Y∗(θ)− ηα +

√
2Tη νk otherwise.

(B.4)

Eq. (B.4) is a special case of the general discrete parameter dynamics (B.2). To see
this we apply Bayes’ rule to expand the derivative of the log posterior into the sum
of the derivatives of the prior and the likelihood:

∂

∂θk
log p∗(θ|X, Y∗) =

∂

∂θk
log pS (θ) +

∂

∂θk
log pN (Y∗ |X,θ) ,

such that we can rewrite Eq. (B.2)

∆θk = η

(
∂

∂θk
log pS (θ) +

∂

∂θk
log pN (Y∗ |X,θ)

)
+
√

2ηT νk, (B.5)

To include automatic network rewiring in our deep learning model we adopt the
approach described in Kappel et al., 2015. Instead of using the network parameters
θ directly to determine the synaptic weights of network N , we apply a nonlinear
transformation wk = f (θk) to each connection k, given by the function

wk = f (θk) = sk
1
γ

log (1 + exp(γ sk θk)) , (B.6)

where sk ∈ {1,−1} is a parameter that determines the sign of the connection weight
and γ > 0 is a constant parameter that determines the smoothness of the mapping.
In the limit of large γ Eq. (B.6) converges to the rectified linear function

wk = f (θk) =

{
0 if θk < 0 (dormant connection)
sk θk else (active connection)

, (B.7)
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such that all connections with θk < 0 are not functional.

Using this, the gradient of the log-likelihood function ∂
∂θk

log pN (Y∗ |X,θ) in
Eq. (B.5) can be written as ∂

∂θk
log pN (Y∗ |X,θ) = − ∂

∂θk
f (θk)

∂
∂θk

EX,Y∗(θ) which
for our choice of f (θk), Eqs. (B.6), becomes

∂

∂θk
log pN (Y∗ |X,θ) = −σ(γ sk θk) sk

∂

∂θk
EX,Y∗(θ) , (B.8)

where σ(x) = 1
1+e−x denotes the sigmoid function. The error gradient ∂

∂θk
EX,Y∗(θ)

can be computed using standard Error Backpropagation Neal, 1992; Rumelhart
et al., 1985.

Theorem 1 requires that Eq. (B.8) is twice differentiable, which is true for any
finite value for γ. In our simulations we used the limiting case of large γ such
that dormant connections are actually mapped to zero weight. In this limit, one
approaches the simple expression

∂

∂θk
log pN (Y∗ |X,θ) =

{
0 if θk ≤ 0
−sk

∂
∂θk

EX,Y∗(θ) else
. (B.9)

Thus, the gradient (B.9) vanishes for dormant connections (θk < 0). Therefore
changes of dormant connections are independent of the error gradient.

This leads to the parameter updates of the soft-DEEP R algorithm given by Eq. (B.4).
The term

√
2Tη νk results from the diffusion termWk integrated over ∆t, where νk

is a Gaussian random variable with zero mean and unit variance. The term −ηα
results from the exponential prior distribution pS (θ) (the `1-regularization). Note
that this prior is not differentiable at 0. In (B.4) we approximate the gradient by
assuming it to be zero at θk = 0 and below. Thus, parameters on the negative axis
are only driven by a random walk and parameter values might therefore diverge to
−∞. To fix this problem we introduced a reflecting boundary at θmin (parameters
were clipped at this value). Another potential solution would be to use a different
prior distribution that also effects the negative axis, however we found that Eq. (B.4)
produces very good results in practice.

B.4 Analysis of convergence of the DEEP R algorithm

Here we provide additional details to the convergence properties of the DEEP R
algorithm. To do so we formulate the algorithm in terms of a Markov chain that
evolves the parameters θ and the connectivity constraints (listed in Algorithm 3).
Each application of the Markov transition operators corresponds to one iteration of
the DEEP R algorithm. We show that the distribution of parameters and network
connectivities over the iterations of DEEP R converges to the stationary distribution
Eq. (2.4) that jointly realizes parameter vectors θ and admissible connectivity
constraints.
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1 given: initial values θ′, c′ with |c′| = M ;
2 for i in [1, Niterations] do
3 θ ∼ Tθ(θ|θ′, c′) ;
4 c ∼ Tc(c|θ) ;
5 θ′ ← θ, c′ ← c ;
6 end
Algorithm 3: A reformulation of Algorithm 1 that is used for the proof in
Theorem 2. Markov transition operators Tθ(θ|θ′, c′) and Tc(c|θ) are applied for
parameter updates in each iteration. The transition operator Tθ(θ|θ′, c′) updates
θ and corresponds to line 3, Tc(c|θ) updates the connectivity constraint vector c
and corresponds to lines 4,7 and 8 of Algorithm 1. θ′ and c′ denote the parameter
vector and connectivity constraint of the previous time step, respectively.

Each iteration of DEEP R corresponds to two update steps, which we formally
describe in Algorithm 3 using the Markov transition operators Tθ and Tc and the
binary constraint vector c ∈ {0, 1}M over all M connections of the network with
elements ck, where ck = 1 represents an active connection k. c is a constraint on
the dynamics, i.e., all connections k for which ck = 0 have to be dormant in the
evolution of the parameters. The transition operators are conditional probability
distributions from which in each iteration new samples for θ and c are drawn for
given previous values θ′ and c′.

1. Parameter update: The transition operator Tθ(θ|θ′, c′) updates all parameters
θk for which ck = 1 (active connections) and leaves the parameters θk at
their current value for ck = 0 (dormant connections). The update of active
connections is realized by advancing the SDE (2.2) for an arbitrary time step
∆t (line 3 of Algorithm 3).

2. Connectivity update: for all parameters θk that are dormant, set ck = 0 and
randomly select an element cl which is currently 0 and set it to 1. This
corresponds to line 3 of Algorithm 3 and is realized by drawing a new c from
Tc(c|θ).

The constraint imposed by c on θ is formalized through the deterministic binary
function C(θ, c) ∈ {0, 1} which is 1 if the parameters θ are compatible with the
constraint vector c and 0 otherwise. This is expressed as (with ⇒ denoting the
Boolean implication):

C(θ, c) =

{
1 if for all k, 1 ≤ k ≤ K : ck = 0 ⇒ θk < 0
0 else

. (B.10)

The constraint C(θ, c) is fulfilled if all connections k with ck = 0 are dormant
(θk < 0).

Note that the transition operator Tc(c|θ) depends only on the parameter vector θ.
It samples a new c with uniform probability among the constraint vectors that are
compatible with the current set of parameters θ. We write the number of possible
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vectors c that are compatible with θ as µ(θ), given by the binomial coefficient (the
number of possible selections that fulfill the constraint of new active connections)

µ(θ) = ∑
c∈χ
C(θ, c) =

(
M− |θ ≥ 0|
K− |θ ≥ 0|

)
, with χ =

{
ξ ∈ {0, 1}M

∣∣∣ |ξ| = K
}

,

(B.11)
where |c| denotes the number of non-zero elements in c and χ is the set of all
binary vectors with exactly K elements of value 1. Using this we can define the
operator Tc(c|θ) as:

Tc(c|θ) =
1

µ(θ) ∑
ξ∈χ

δ(c− ξ) C(θ, c) (B.12)

where δ denotes the vectorized Kronecker delta function, with δ(0) = 1 and 0 else.
Note that Eq. (B.12) assigns non-zero probability only to vectors c that are zero
for elements k for which θk < 0 is true (assured by the second term). In addition
vectors c have to fulfill |c| = K. Therefore, sampling from this operator introduces
randomly new connection for the number of missing ones in θ. This process models
the connectivity update of Algorithm 3.

The transition operator Tθ(θ|θ′, c′) in Eq. (B.30) evolves the parameter vector θ
under the constraint c, i.e., it produces parameters confined to the connectivity
constraint. By construction this operator has a stationary distribution that is given
by the following Lemma.

Lemma 1. Let Tθ(θ|θ′, c) be the transition operator of the Markov chain over θ which is
defined, as the integration of the SDE written in Eq. (2.2) over an interval ∆t for active
connections (ck = 1), and as the identity for the remaining dormant connections (ck = 0).
Then it leaves the following distribution p∗(θ|c) invariant

p∗(θ|c) = 1
p∗(θ/∈c < 0)

p∗(θ)C(θ, c) , (B.13)

where θ∈c denotes the truncation of the vector θ to the active connections (ck = 1), thus
p∗(θ/∈c < 0) is the probability that all connections outside of c are dormant according to
the posterior, and p∗(θ) is the posterior (see Theorem 1).

The proof is divided into two sub proofs. First we show that the distribution defined
as p∗(θ|c) = 1

L(c) p∗(θ)C(θ, c) with L(c) a normalization constant, is left invariant
by Tθ(θ|θ′, c), second we will show that this normalization constant has to be equal
to p∗(θ/∈c < 0). In coherence with the notation θ∈c we will use verbally that θk is
an element of c if ck = 1.

Proof. To show that the distribution defined as p∗(θ|c) = 1
L(c) p∗(θ)C(θ, c) is left

invariant, we will show directly that
∫
θ′ Tθ(θ|θ

′, c)p∗(θ′|c)dθ′ = p∗(θ|c). To do so
we will show that both p∗(θ′|c) and T factorizes in terms that depend only on θ′∈c
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or on θ′/∈c and thus we will be able to separate the integral over θ′ as the product of
two simpler integrals.

We first study the distribution p∗(θ′∈c|c). Before factorizing, one has to notice a
strong property of this distribution. Let’s partition the tempered posterior distribu-
tion p∗(θ′) over the cases when the constraint is satisfied or not

p∗(θ′|c) =
1
L(c) p∗(θ′)C(c,θ) (B.14)

=
1
L(c)

[
p∗(θ′, C(c,θ) = 1) + p∗(θ′, C(c,θ) = 0)

]
C(c,θ) (B.15)

when we multiply individually the first and the second term with C(c,θ), C(c,θ)
can be replaced by its binary value and the second term is always null. It remains
that

p∗(θ′|c) =
1
L(c) p∗(θ′, C(c,θ) = 1) (B.16)

seeing that one can rewrite the condition C(c,θ) = 1 as the condition on the sign
of the random variable θ/∈c < 0 (note that in this inequality c is a deterministic
constant and θ′/∈c is a random variable)

p∗(θ′|c) =
1
L(c) p∗(θ′,θ′/∈c < 0) (B.17)

We can factorize the conditioned posterior as p∗(θ,θ/∈c < 0) = p∗(θ∈c|θ/∈c,θ/∈c <
0)p∗(θ/∈c,θ/∈c < 0). But when the dormant parameters are negative θ/∈c < 0, the
active parameters θ∈c do not depend on the actual value of the dormant parameters
θ/∈c, so we can simplify the conditions of the first factor further to obtain

p∗(θ′|c) =
1
L(c) p∗(θ′∈c|θ′/∈c < 0)p∗(θ′/∈c,θ′/∈c < 0) (B.18)

We now study the operator Tθ. It factorizes similarly because it is built out of two
independent operations: one that integrates the SDE over the active connections
and one that applies identity to the dormant ones. Moreover all the terms in the
SDE which evolve the active parameters θ/∈c are independent of the dormant ones
θ/∈c as long as we know they are dormant. Thus, the operator Tθ splits in two

Tθ(θ|θ′, c) = Tθ(θ∈c|θ′∈c, c)Tθ(θ/∈c|θ′/∈c, c) (B.19)

To finally separate the integration over θ as a product of two integrals we need to
make sure that all the factor depend only on the variable θ′∈c or only on θ′/∈c. This
might not seem obvious but even the conditioned probability p∗(θ′∈c|θ′/∈c < 0) is
a function of θ′∈c because in the conditioning θ′/∈c < 0, θ′/∈c refers to the random
variable and not to a specific value over which we integrate. As a result the double
integral is equal to the product of the two integrals∫

θ′
Tθ(θ|θ′, c)p∗(θ′|c)dθ′ =

1
L(c)

∫
θ′∈c

Tθ(θ∈c|θ′∈c, c)p∗(θ′∈c|θ′/∈c < 0)dθ′∈c(B.20)∫
θ′/∈c

Tθ(θ/∈c|θ′/∈c, c)p∗(θ′/∈c,θ′/∈c < 0)dθ′/∈c (B.21)
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We can now study the two integrals separately. The second integral over the
parameters θ/∈c is simpler because by construction the operator Tθ is the identity∫

θ′/∈c

Tθ(θ/∈c|θ′/∈c, c)p∗(θ′/∈c,θ′/∈c < 0)dθ′/∈c = p∗(θ/∈c,θ/∈c < 0) (B.22)

There is more to say about the first integral over the active connections θ∈c. The
operator Tθ(θ∈c|θ′/∈c, c) integrates over the active parameters θ∈c the same SDE as
before with the difference that the network is reduced to a sparse architecture where
only the parameters θ∈c are active. We want to find the relationship between the
stationary distribution of this new operator and p∗(θ) that is written in the integral
which is defined in equation (2.3) as the tempered posterior of the dense network.
In fact, the tempered posterior of the dense network marginalized and conditioned
over the dormant connections p∗(θ′∈c|θ′/∈c < 0) is equal to the stationary distribution
of Tθ(θ∈c|θ′/∈c, c) (i.e. of the SDE in the sparse network). To prove this, we detail in
the following paragraph that the drift in the SDE evolving the sparse network is
given by the log-posterior of the dense network condition on θ/∈c < 0 and using
Theorem 1, we will conclude that p∗(θ′∈c|θ′/∈c < 0) is the stationary distribution of
Tθ(θ∈c|θ′/∈c, c).

We write the prior and the likelihood of the sparse network as function of the prior
and the likelihood pS with pN of the dense network. The likelihood in the sparse
network is defined as previously with the exception that the dormant connections
are given zero-weight wk = 0 so it is equal to pN (X, Y∗|θ∈c,θ/∈c < 0). The difference
between the prior that defines soft-DEEP R and the prior of DEEP R remains in the
presence of the constraint. When considering the sparse network defined by c the
constraint is satisfied and the prior of soft-DEEP R marginalized over the dormant
connections pS (θ∈c) is the prior of the sparse network with pS defined as before.
As this prior is connection-specific (pS (θi) independent of θj), this implies that
pS (θ∈c) is independent of the dormant connection, and the prior pS (θ∈c) is equal
to pS (θ∈c|θ/∈c < 0). Thus, we can write the posterior of the sparse network which
is by definition proportional to the product pN (X, Y∗|θ∈c,θ/∈c < 0)pS (θ∈c|θ/∈c < 0).
Looking back to the definition of the posterior of the dense network this product
is actually proportional to posterior of the dense network conditioned on the
negativity of dormant connections p∗(θ∈c|θ/∈c < 0, X, Y∗). The posterior of the
sparse network is therefore proportional to the conditioned posterior of the dense
network but as they both normalize to 1 they are actually equal. Writing down the
new SDE, the diffusion term

√
2TβdWk remains unchanged, and the drift term

is given by the gradient of the log-posterior log p∗(θ∈c|θ/∈c < 0, X, Y∗). Applying
Theorem 1 to this new SDE, we now confirm that the tempered and conditioned
posterior of the dense network p∗(θ∈c|θ/∈c < 0) is left invariant by the SDE evolving
the sparse network. As Tθ(θ∈c|θ′/∈c, c) is the integration for a given ∆t of this SDE,
it also leaves p∗(θ∈c|θ/∈c < 0) invariant. This yields∫

θ′∈c

Tθ(θ∈c|θ′∈c, c)p∗(θ′∈c|θ′/∈c < 0)dθ′∈c = p∗(θ∈c|θ/∈c < 0) (B.23)
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As we simplified both integrals we arrived at∫
θ′
Tθ(θ|θ′, c)p∗(θ′|c)dθ′ =

1
L(c) p∗(θ∈c|θ/∈c < 0)p∗(θ/∈c,θ/∈c < 0) (B.24)

Replacing the right-end side with equation (B.18) we conclude∫
θ′
Tθ(θ|θ′, c)p∗(θ′|c)dθ′ = p∗(θ|c) (B.25)

We now show that the normalization constant L(c) is equal to p∗(θ/∈c < 0).

Proof. Using equation (B.18), as p∗(θ|c) normalizes to 1 the normalization constant
is equal to

L(c) =
∫
θ

p∗(θ∈c|θ/∈c < 0)p∗(θ/∈c,θ/∈c < 0)dθ (B.26)

By factorizing the last factor in the integral we have that

p∗(θ,θ/∈c < 0) = p∗(θ∈c|θ/∈c < 0)p∗(θ/∈c|θ/∈c < 0)p∗(θ/∈c < 0) (B.27)

The last term does not depend on the value θ because θ/∈c refers here to the random
variable and the first two term depend either on θ∈c or θ/∈c. Plugging the previous
equation into the computation of L(c) and separating the integrals we have

L(c) = p∗(θ/∈c < 0)
∫
θ∈c

p∗(θ∈c|θ/∈c < 0)dθ∈c︸ ︷︷ ︸
=1

∫
θ/∈c

p∗(θ/∈c|θ/∈c < 0)dθ/∈c︸ ︷︷ ︸
=1

(B.28)

Due to Lemma 1, there exists a distribution π(θ | c) of the following form which is
left invariant by the operator Tθ

π(θ | c) =
1
L(c)π(θ) C(θ, c) , (B.29)

where L(c) is a normalizer and where π(θ) is some distribution over θ that may
not obey the constraint C(θ, c). This will imply a very strong property on the
compound operator which evolves both θ and c. To form T the operators Tθ and
Tc are performed one after the other so that the total update can be written in terms
of the compound operator

T (θ, c|θ′, c′) = Tc(c|θ)Tθ(θ|θ′, c′) . (B.30)

Applying the compound operator T given by Eq. (B.30) corresponds to advancing
the parameters for a single iteration of Algorithm 3.
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Using these definitions a general theorem can be enunciated for arbitrary distribu-
tions π(θ | c) of the form (B.29). The following theorem states that the distribution
of variable pairs c and θ that is left stationary by the operator T is the product
of Eq. (B.29) and a uniform prior pC(c) over the constraint vectors which have K
active connections. This prior is formally defined as

pC(c) =
1
|χ| ∑

ξ∈χ
δ(c− ξ) , (B.31)

with χ as defined in (B.11). The theorem to analyze the dynamics of Algorithm 3

can now be written as

Theorem 2. Let Tθ(θ|θ′, c) be the transition operator of a Markov chain over θ and let
Tc(c|θ) be defined by Eq. (B.12). Under the assumption that Tθ(θ|θ′, c) has a unique
stationary distribution π(θ|c), that verifies Eq. (B.29), then the Markov chain over θ and
c with transition operator

T (θ, c|θ′, c′) = Tc(c|θ)Tθ(θ|θ′, c′) (B.32)

leaves the stationary distribution

p∗(θ, c) =
L(c)

∑c′∈X L(c′)
π(θ|c)pC(c) (B.33)

invariant. If the Markov chain of the transition operator Tθ(θ|θ′, c′) is ergodic, then the
stationary distribution is also unique.

Proof. Theorem 2 holds for Tc in combination with any operator Tθ that updates θ
that can be written in the form (B.29). We prove Theorem 2 by proving the following
equality to show that T leaves (B.33) invariant:

∑
c′

∫
T (θ, c|θ′, c′) p∗(θ′, c′)dθ′ = p∗(θ, c) . (B.34)

We expand the left-hand term using Eq. (B.32) and Eq. (B.33)

∑
c′

∫
T (θ, c|θ′, c′) p∗(θ′, c′)dθ′ =

∑
c′

∫
Tc(c|θ)Tθ(θ|θ′, c′)

L(c′)
∑c′′∈X L(c′′)

π(θ′|c′)pC(c′)dθ′ . (B.35)

Since Tc does not depend on θ′ and c′, one can pull it out of the sum and integral
and then marginalize over θ′ by observing that π(θ|c′) is by definition the stationary
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distribution of Tθ(θ|θ′, c′):

∑
c′

∫
T (θ, c|θ′, c′) p∗(θ′, c′)dθ′ = (B.36)

= Tc(c|θ)∑
c′

∫
Tθ(θ|θ′, c′)

L(c′)
∑c′′∈X L(c′′)

π(θ′|c′)pC(c′)dθ′

(B.37)

= Tc(c|θ) ∑
c′

L(c′)
∑c′′∈X L(c′′)

π(θ|c′)pC(c′) . (B.38)

What remains to be done is to marginalize over c′ and to relate the result to the
stationary distribution p∗(θ, c) = L(c)

∑c′∈X L(c′)
π(θ|c)pC(c). First we replace Tc with

its definition Eq. (B.12):

∑
c′

∫
T (θ, c|θ′, c′) p∗(θ′, c′)dθ′ =

=

(
1

µ(θ) ∑
ξ∈χ

δ(c− ξ)
)
C(θ, c) ∑

c′

L(c′)
∑c′′∈X L(c′′)

π(θ|c′)pC(c′)

As the operator Tc samples uniform across admissible configurations it has a close
relationship with the uniform probability distribution pC and we can now replace
the sum over ξ using Eq. (B.31)

∑
c′

∫
T (θ, c|θ′, c′) p∗(θ′, c′)dθ′ =

|χ|
µ(θ)

pC(c) C(θ, c) ∑
c′

L(c′)
∑c′′∈X L(c′′)

π(θ|c′)pC(c′) .

From Eq. (B.11), Eq. (B.29) and Eq. (B.31) we find the equalities ∑c′ L(c′)π(θ|c′)pC(c′) =
π(θ)∑c′ C(θ, c′)pC(c′) =

µ(θ)
|χ| π(θ). Using this we get

∑
c′

∫
T (θ, c|θ′, c′) p∗(θ′, c′)dθ′ =

|χ|
µ(θ)

pC(c) C(θ, c)
1

∑c′∈X L(c′)
µ(θ)

|χ| π(θ)

Finally using again Eq. (B.29), i.e. π(θ) C(θ, c) = L(c)π(θ|c)

∑
c′

∫
T (θ, c|θ′, c′) p∗(θ′, c′)dθ′ =

L(c)
∑c′∈X L(c′)

π(θ|c) pC(c) = p∗(θ, c) .

This shows that the stationary distribution Eq. (B.33) is invariant under the com-
pound operator (B.32). Under the assumption that Tθ(θ|θ′, c′) is ergodic it allows
each parameter θk to become negative with non-zero probability and the stationary
distribution is also unique. This can be seen by noting that under this assumption
each connection will become dormant sooner or later and thus each state in c can
be reached from any other state c′. The Markov chain is therefore irreducible and
the stationary distribution is unique.
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Lemma 1 provides for the case of algorithm 3 the existence of an invariant distribu-
tion that is needed to apply Theorem 2. We conclude that the distribution p∗(θ, c)
defined by plugging the result of Lemma 1 Eq. (B.13) into the result of Theorem 2

Eq. (B.33), is left invariant by algorithm 3 and it is written

p∗(θ, c) =
p∗(θ/∈c < 0)

∑c′∈X p∗(θ/∈c′ < 0)
p∗(θ|c)pC(c) (B.39)

Where p∗(θ) is defined as previously as the tempered posterior of the dense
network which is left invariant by soft-DEEP R according to Theorem 1. The prior
pC(c) in Eq. (B.39) assures that only constraints c with exactly K active connections
are selected. By Theorem 2 the stationary distribution (B.39) is also unique. By
inserting the result of Lemma 1, Eq. (B.13) we recover Eq. 2.4 of the main text.

Interestingly, by marginalizing over θ, we can show that the network architecture
identified by c is sampled by algorithm 3 from the probability distribution

p∗(c) =
p∗(θ/∈c < 0)

∑c′∈X p∗(θ/∈c′ < 0)
pC(c) (B.40)

The difference between the formal algorithm 3 and the actual implementation of
DEEP R are that Tc keeps the dormant connection parameters constant, whereas in
DEEP R we implement this by setting connections to 0 as they become negative.
We found the process used in DEEP R works very well in practice. The reason why
we did not implement algorithm 3 in practice is that we did not want to consume
memory by storing any parameter for dormant connections. This difference is
obsolete from the view point of the network function for a given (θ, c) pair because
nor negative neither strictly zero θ have any influence on the network function.

This difference might seem problematic to consider that the properties of conver-
gence to a specific stationary distribution as proven for algorithm 3 extends to
DEEP R. However, both the theorem and the implementation are rather unspecific
regarding the choice of the prior on the negative sides θ < 0. We believe that,
with good choices of priors on the negative side, the conceptual and quantitative
difference between the distribution explored by 3 and DEEP R are minor, and in
general, algorithm 3 is a decent mathematical formalization of DEEP R for the
purpose of this paper.
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Appendix C
Methods for “Long short-term memory and
learning-to-learn in networks of spiking neurons”

C.1 LSNN model

Neuron model: In continuous time the spike trains xi(t) and zj(t) are formalized
as sums of Dirac pulses. Neurons are modeled according to a standard adaptive
leaky integrate-and-fire model. A neuron j spikes as soon at its membrane potential
Vj(t) is above its threshold Bj(t). At each spike time t, the membrane potential
Vj(t) is reset by subtracting the current threshold value Bj(t) and the neuron enters
a strict refractory period where it cannot spike again. Importantly at each spike the
threshold Bj(t) of an adaptive neuron is increased by a constant β/τa,j. Then the
threshold decays back to a baseline value b0

j . Between spikes the membrane voltage
Vj(t) and the threshold Bj(t) are following the dynamics

τmV̇j(t) = −Vj(t) + Rm Ij(t) (C.1)

τa,jḂj(t) = b0
j − Bj(t), (C.2)

where τm is the membrane time constant, τa,j is the adaptation time constant and
Rm is the membrane resistance. The input current Ij(t) is defined as the weighted
sum of spikes from external inputs and other neurons in the network:

Ij(t) = ∑
i

W in
ji xi(t− din

ji ) + ∑
i

Wrec
ji zi(t− drec

ji ), (C.3)

where W in
ji and Wrec

ji denote respectively the input and the recurrent synaptic
weights and din

ji and drec
ji the corresponding synaptic delays. All network neurons are

connected to a population of readout neurons with weights Wout
kj . When network

neuron j spikes, the output synaptic strength Wout
kj is added to the membrane

voltage yk(t) of all readout neurons k. yk(t) also follows the dynamics of a leaky
integrator τmẏk(t) = −yk(t).

Implementation in discrete time: Our simulations were performed in discrete
time with a time step δt = 1 ms. In discrete time, the spike trains are modeled as
binary sequences xi(t), zj(t) ∈ {0, 1

δt}, so that they converge to sums of Dirac pulses

93



C Methods for “Long short-term memory and learning-to-learn in networks of spiking neurons”

in the limit of small time steps. Neuron j emits a spike at time t if it is currently not
in a refractory period, and its membrane potential Vj(t) is above its threshold Bj(t).
During the refractory period following a spike, zj(t) is fixed to 0. The dynamics of
the threshold is defined by Bj(t) = b0

j + βbj(t) where β is a constant which scales
the deviation bj(t) from the baseline b0

j . The neural dynamics in discrete time reads
as follows

Vj(t + δt) = αVj(t) + (1− α)Rm Ij(t)− Bj(t)zj(t)δt (C.4)
bj(t + δt) = ρjbj(t) + (1− ρj)zj(t), (C.5)

where α = exp(− δt
τm
) and ρj = exp(− δt

τa,j
). The term Bj(t)zj(t)δt implements the

reset of the membrane voltage after each spike. The current Ij(t) is the weighted
sum of the incoming spikes. The definition of the input current in equation (C.3)
holds also for discrete time, with the difference that spike trains now assume values
in {0, 1

δt}.

C.2 Applying BPTT with DEEP R to RSNNs and LSNNs

Propagation of gradients in recurrent networks of LIF neurons: In artificial re-
current neural networks such as LSTMs, gradients can be computed with backprop-
agation through time (BPTT). For BPTT in spiking neural networks, complications
arise from the non-differentiability of the output of spiking neurons, and from
the fact that gradients need to be propagated either through continuous time or
through many time steps if time is discretized. Therefore, in (Courbariaux et al.,
2016; Esser et al., 2016) it was proposed to use a pseudo-derivative.

dzj(t)
dvj(t)

:= max{0, 1− |vj(t)|}, (C.6)

where vj(t) denotes the normalized membrane potential vj(t) =
Vj(t)−Bj(t)

Bj(t)
. This

made it possible to train deep feed-forward networks of deterministic binary neu-
rons (Courbariaux et al., 2016; Esser et al., 2016). We observed that this convention
tends to be unstable for very deep (unrolled) recurrent networks of spiking neu-
rons. To achieve stable performance we dampened the increase of back propagated
errors through spikes by using a pseudo-derivative of amplitude γ < 1 (typically
γ = 0.3):

dzj(t)
dvj(t)

:= γ max{0, 1− |vj(t)|}. (C.7)

Note that in adaptive neurons, gradients can propagate through many time steps
in the dynamic threshold. This propagation is not affected by the dampening.
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Rewiring and weight initialization of excitatory and inhibitory neurons: In all
experiments except those reported in Fig. 2, the neurons were either excitatory
or inhibitory. When the neuron sign were not constrained, the initial network
weights were drawn from a Gaussian distribution Wji ∼ w0√

nin
N (0, 1), where nin is

the number of afferent neurons in the considered weight matrix (i.e., the number of
columns of the matrix), N (0, 1) is the zero-mean unit-variance Gaussian distribu-
tion and w0 is a weightscaling factor chosen to be w0 = 1Volt

Rm
δt. With this choice of

w0 the resistance Rm becomes obsolete but the vanishing-exploding gradient theory
(Bengio et al., 1994; Sussillo and L. Abbott, 2014) can be used to avoid tuning by
hand the scaling of Wji. In particular the scaling 1√

nin
used above was sufficient to

initialize networks with realistic firing rates and that can be trained efficiently.

When the neuron sign were constrained, all outgoing weights Wrec
ji or Wout

ji of a
neuron i had the same sign. In those cases, DEEP R Bellec et al., 2018a was used as
it maintains the sign of each synapse during training. The sign is thus inherited
from the initialization of the network weights. This raises the need of an efficient
initialization of weight matrices for given fractions of inhibitory and excitatory
neurons. To do so, a sign κi ∈ {−1, 1} is generated randomly for each neuron i by
sampling from a Bernoulli distribution. The weight matrix entries are then sampled
from Wji ∼ κi|N (0, 1)| and post-processed to avoid exploding gradients. Firstly,
a constant is added to each weight so that the sum of excitatory and inhibitory
weights onto each neuron j (∑i Wji) is zero Rajan and L. F. Abbott, 2006 (if j has
no inhibitory or no excitatory incoming connections this step is omitted). To avoid
exploding gradients it is important to scale the weight so that the largest eigenvalue
is lower of equal to 1 (Bengio et al., 1994). Thus, we divided Wji by the absolute
value of its largest eigenvalue. When the matrix is not square, eigenvalues are
ill-defined. Therefore, we first generated a large enough square matrix and selected
the required number of rows or columns with uniform probabilities. The final
weight matrix is scaled by w0 for the same reasons as before.

To initialize matrices with a sparse connectivity, dense matrices were generated
as described above and multiplied with a binary mask. The binary mask was
generated by sampling uniformly the neuron coordinates that were non-zero at
initialization. DEEP R maintains the initial connectivity level throughout training
by dynamically disconnecting synapses and reconnecting others elsewhere. The
L1-norm regularization parameter of DEEP R was set to 0.01 and the temperature
parameter of DEEP R was left at 0.

C.3 Computational performance of LSNNs

MNIST setup: The pixels of an MNIST image were presented sequentially to the
LSNN in 784 time steps. Two input encodings were considered. First, we used a
population coding where the grey scale value (which is in the range [0, 1]) of the
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currently presented pixel was directly used as the firing probability of each of the
80 input neurons in that time step.

In a second type of input encoding – that is closer to the way how spiking vision
sensors encode their input – each of the 80 input neurons was associated with a
particular threshold for the grey value, and this input neuron fired whenever the
grey value of the currently presented pixel crossed its threshold. Here, we used
two input neurons per threshold, one spiked at threshold crossings from below,
and one at the crossings from above. This input convention was chosen for the
LSNN results of Fig. 1.B.

The output of the network was determined by averaging the readout output over
the 56 time steps following the presentation of the digit. The network was trained
by minimizing the cross entropy error between the softmax of the averaged readout
and the label distributions. The best performing models use rewiring with a global
connectivity level of 12% was used during training to optimize a sparse network
connectivity structure (i.e., when randomly picking two neurons in the network, the
probability that they would be connected is 0.12). This implies that only a fraction
of the parameters were finally used as compared to a similarly performing LSTM
network.

Tables C.1 and C.2 contain the results and details of training runs where each time
step lasted for 1 ms and 2 ms respectively.

Model # neurons conn. # params # runs mean std. max.
LSTM 128 100% 67850 12 79.8% 26.6% 98.5%
RNN 128 100% 17930 10 71.3% 24.5% 89%

LSNN 100(A), 120(R) 12% 8185 (full 68210) 12 94.2% 0.3% 94.7%
LSNN 100(A), 200(R) 12% 14041 (full 117010) 1 - - 95.7%
LSNN 350(A), 350(R) 12% 66360 (full 553000) 1 - - 96.1%
LSNN 100(A), 120(R) 100% 68210 10 92.0% 0.7% 93.3%

LIF 220 100% 68210 10 60.9% 2.7% 63.3%

Table C.1: Results on 1 ms per pixel sequential MNIST task.

Model # neurons conn. # params # runs mean std. max.
LSTM 128 100% 67850 12 48.2% 39.9% 98.0%
RNN 128 100% 17930 12 30% 23.6% 67.9%

LSNN 100(A), 120(R) 12% 8185 (full 68210) 12 93.8% 5.8% 96.4%
LSNN 350(A), 350(R) 12% 66360 (full 553000) 1 - - 97.1%
LSNN 100(A), 120(R) 100% 68210 10 90.5% 1.4% 93.7%

LIF 220 100% 68210 11 34.6% 8.8% 51.8%

Table C.2: Results on 2 ms per pixel sequential MNIST task.

TIMIT setup: To investigate if the performance of LSNNs can scale to real world
problems, we considered the TIMIT speech recognition task. We focused on the
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frame-wise classification where the LSNN has to classify each audio-frame to one
of the 61 phoneme classes.

We followed the convention of Halberstadt (Glass et al., 1999) for grouping of
training, validation, and testing sets (3696, 400, and 192 sequences respectively).
The performance was evaluated on the core test set for consistency with the literature.
Raw audio is preprocessed into 13 Mel Frequency Cepstral Coefficients (MFCCs)
with frame size 10 ms and on input window of 25 ms. We computed the first and
the second order derivatives of MFCCs and combined them, resulting in 39 input
channels. These 39 input channels were mapped to 39 input neurons which unlike
in MNIST emit continuous values xi(t) instead of spikes, and these values were
directly used in equation C.3 for the currents of the postsynaptic neurons.

Since we simulated the LSNN network in 1 ms time steps, every input frame which
represents 10 ms of the input audio signal was fed to the LSNN network for 10
consecutive 1 ms steps. The softmax output of the LSNN was averaged over every
10 steps to produce the prediction of the phone in the current input frame. The
LSNN was rewired with global connectivity level of 20%.

Parameter values: For adaptive neurons, we used β j = 1.8, and for regular
spiking neurons we used β j = 0 (i.e. Bj is constant). The baseline threshold voltage
was b0

j = 0.01 and the membrane time constant τm = 20 ms. Networks were trained
using the default Adam optimizer, and a learning rate initialized at 0.01. The
dampening factor for training was γ = 0.3.

For sequential MNIST, all networks were trained for 36000 iterations with a batch
size of 256. Learning rate was decayed by a factor 0.8 every 2500 iterations. The
adaptive neurons in the LSNN had an adaptation time constant τa = 700 ms (1400
ms) for 1 ms (2 ms) per pixel setup. The baseline artificial RNN contained 128
hidden units with the hyperbolic tangent activation function. The LIF network was
formed by a fully connected population of 220 regular spiking neurons.

For TIMIT, the LSNN network consisted of 300 regular neurons and 100 adaptive
neurons which resulted in approximately 400000 parameters. Network was trained
for 80 epochs with batches of 32 sequences. Adaptation time constant of adaptive
neurons was set to τa = 200 ms. Refractory period of the neurons was set to 2 ms,
the membrane time constant of the output Y neurons to 3 ms, and the synaptic
delay was randomly picked from {1, 2} ms.

We note that due to the rewiring of the LSNN using DEEP R Bellec et al., 2018a
method, only a small fraction of the weights had non-zero values (8185 in MNIST,
∼ 80000 in TIMIT).
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C.4 LSNNs learn-to-learn from a teacher

Experimental setup:

Function families: The LSNN was trained to implement a regression algorithm
on a family of functions F . Two specific families were considered: In the first
function family, the functions were defined by feed-forward neural networks with
2 inputs, 1 hidden layer consisting of 10 hidden neurons, and 1 output, where all
the parameters (weights and biases) were chosen uniformly randomly between
[−1, 1]. The inputs were between [−1, 1] and the outputs were scaled to be between
[0, 1]. We call these networks Target Networks (TNs). In the second function family,
the targets were defined by sinusoidal functions y = A sin(φ + x) over the domain
x ∈ [−5, 5]. The specific function to be learned was defined then by the phase φ
and the amplitude A, which were chosen uniformly random between [0, π] and
[0.1, 5] respectively.

Input encoding: Analog values were transformed into spiking trains to serve as
inputs to the LSNN as follows: For each input component, 100 input neurons
are assigned values m1, . . . m100 evenly distributed between the minimum and
maximum possible value of the input. Each input neuron has a Gaussian response
field with a particular mean and standard deviation, where the means are uniformly
distributed between the minimum and maximum values to be encoded, and with a
constant standard deviation. More precisely, the firing rate ri (in Hz) of each input
neuron i is given by ri = rmax exp

(
− (mi−zi)

2

2 σ2

)
, where rmax = 200 Hz, mi is the value

assigned to that neuron, zi is the analog value to be encoded, and σ = (mmax−mmin)
1000 ,

mmin with mmax being the minimum and maximum values to be encoded.

LSNN setup and training schedule: The standard LSNN model was used, with 300
hidden neurons for the TN family of learning tasks, and 100 for the sinusoidal fam-
ily. Of these, 40% were adaptive in all simulations. We used all-to-all connectivity
between all neurons (regular and adaptive). The output of the LSNN was a linear
readout that received as input the mean firing rate of each of the neurons per step
i.e the number of spikes divided by 20 for the 20 ms time window that the step
consists of.

The network training proceeded as follows: A new target function was randomly
chosen for each episode of training, i.e., the parameters of the target function are
chosen uniformly randomly from within the ranges above (depending on whether
its a TN or sinusoidal). Each episode consisted of a sequence of 500 steps, each
lasting for 20 ms. In each step, one training example from the current function to
be learned was presented to the LSNN. In such a step, the inputs to the LSNN
consisted of a randomly chosen vector x with its dimensionality d and range
determined by the target function being used (d = 2 for TNs, d = 1 for sinusoidal
target function). In addition, at each step, the LSNN also got the target value C(x′)
from the previous step, i.e., the value of the target calculated using the target
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function for the inputs given at the previous step (in the first step, C(x′) is set to
0).

All the weights of the LSNN were updated using our variant of BPTT, once per
iteration, where an iteration consists of a batch of 10 episodes, and the weight
updates are accumulated across episodes in an iteration. The Adam Kingma and
Ba, 2014 variant of BP was used with standard parameters and a learning rate of
0.001. The loss function for training was the mean squared error (MSE) of the LSNN
predictions over an iteration (i.e. over all the steps in an episode, and over the entire
batch of episodes in an iteration). In addition, a regularization term was used to
maintain a firing rate of 20 Hz. Specifically, the regularization term R is defined as
the mean squared difference between the average neuron firing rate in the LSNN
and a target of 20 Hz. The total loss L was then given by L = MSE + 30 R. In
this way, we induce the LSNN to use sparse firing. We trained the LSNN for 5000
iterations in all cases.

Parameter values: The LSNN parameters were as follows: 5 ms neuronal refrac-
tory period, delays spread uniformly between 0− 5 ms, adaptation time constants
of the adaptive neurons spread uniformly between 1− 1000 ms, β = 1.6 for adap-
tive neurons (0 for regular neurons), membrane time constant τ = 20 ms, 0.03 mV
baseline threshold voltage. The dampening factor for training was γ = 0.4.

Analysis and comparison: The linear baseline was calculated using linear regres-
sion with L2 regularization with a regularization factor of 100 (determined using
grid search), using the mean spiking trace of all the neurons. The mean spiking
trace was calculated as follows: First the neuron traces were calculated using an
exponential kernel with 20 ms width and a time constant of 20 ms. Then, for every
step, the mean value of this trace was calculated to obtain the mean spiking trace.
In Fig. 2C, for each episode consisting of 500 steps, the mean spiking trace from a
random subset of 450 steps was used to train the linear regressor, and the mean
spiking trace from remaining 50 steps was used to calculate the test error. The
reported baseline is the mean of the test error over one batch of 10 episodes with
error bars of one standard deviation. In Fig. 2E, for each episode, after every step
k, the mean spiking traces from the first k− 1 steps were used to train the linear
regressor, and the test error was calculated using the mean spiking trace for the kth
step. The reported baseline is a mean of the test error over one batch of 10 episodes
with error bars of one standard deviation.

For the case where neural networks defined the function family, the total test MSE
was 0.0056± 0.0039 (linear baseline MSE was 0.0217± 0.0046). For the sinusoidal
function family, the total test MSE was 0.3134± 0.2293 (linear baseline MSE was
1.4592± 1.2958).

Comparison with backprop: The comparison was done for the case where the LSNN
is trained on the function family defined by target networks. A feed-forward (FF)
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Fig. C.1: Meta-RL results for an LSNN. A Samples of paths after training. B Connectivity between
sub-populations of the network after training. The global connectivity in the network was
constrained to 20%. C The network dynamics that produced the behavior shown in A. Raster
plots and thresholds are displayed as in Fig. 1.D, only 1 second and 100 neurons are shown
in each raster plots.

network with 10 hidden neurons and 1 output was constructed. The input to this
FF network were the analog values that were used to generate the spiking input
and targets for the LSNN. Therefore the FF had 2 inputs, one for each of x1 and x2.
The error reported in Fig 2F is the mean training error over 10 batches with error
bars of one standard deviation.

The FF network was initialized with Xavier normal initialization Glorot and Bengio,
2010 (which had the best performance, compared to Xavier uniform and plain
uniform between [−1, 1]). Adam Kingma and Ba, 2014 with AMSGrad Reddi et al.,
2018 was used with parameters η = 10−1, β1 = 0.7, β2 = 0.9, C = 10−5. These were
the optimal parameters as determined by a grid search. Together with the Xavier
normal initialization and the weight regularization parameter C, the training of the
FF favoured small weights and biases.

C.5 LSNNs learn-to-learn from reward

Experimental setup:

Task family: An LSNN-based agent was trained on a family of navigation tasks in
a two dimensional circular arena. For all tasks, the arena is a circle with radius 1
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and goals are smaller circles of radius 0.3 with centres uniformly distributed on
the circle of radius 0.85. At the beginning of an episode and after the agent reaches
a goal, the agent’s position is set randomly with uniform probability within the
arena. At every timestep, the agent chooses an action by generating a small velocity
vector of Euclidean norm smaller or equal to ascale = 0.02. When the agent reaches
the goal, it receives a reward of 1. If the agent attempts to move outside the arena,
the new position is given by the intersection of the velocity vector with the border
and the agent receives a negative reward of −0.02.

Input encoding: Information of the current environmental state s(t) and the reward
r(t) were provided to the LSNN at each time step t as follows: The state s(t) is
given by the x and y coordinate of the agent’s position (see top of Fig. C.1C). Each
position coordinate ξ(t) ∈ [−1, 1] is encoded by 40 neurons which spike according
to a Gaussian population rate code defined as follows: a preferred coordinate value
ξi, is assigned to each of the 40 neurons, where ξi’s are evenly spaced between −1
and 1. The firing rate of neuron i is then given by rmax exp(−100(ξi − ξ)2) where
rmax is 500 Hz. The instantaneous reward r(t) is encoded by two groups of 40
neurons (see green row at the top of Fig. C.1C). All neuron in the first group spike
in synchrony each time a reward of 1 is received (i.e., the goal was reached), and
the second group spikes when a reward of −0.02 is received (i.e., the agent moved
into a wall).

Output decoding: The output of the LSNN is provided by five readout neurons.
Their membrane potentials yi(t) define the outputs of the LSNN. The action vector
a(t) = (ax(t), ay(t))T is sampled from the distribution πθ which depends on
the network parameters θ through the readouts yi(t) as follows: The coordinate
ax(t) (ay(t)) is sampled from a Gaussian distribution with mean µx = tanh(y1(t))
(µy = tanh(y2(t))) and variance φx = σ(y3(t)) (φy = σ(y4(t))). The velocity vector
that updates the agent’s position is then defined as ascale a(t). If this velocity has a
norm larger than ascale, it is clipped to a norm of ascale.

The last readout output y5(t) is used to predict the value function Vθ(t). It estimates
the expected discounted sum of future rewards R(t) = ∑t′>t ηt′−tr(t′), where
η = 0.99 is the discount factor and r(t′) denotes the reward at time t′. To enable
the network to learn complex forms of exploration we introduced current noise in
the neuron model in this task. At each time step, we added a small Gaussian noise
with mean 0 and standard deviation 1

Rm
νj to the current Ij into neuron j. Here, νj

is a network parameter initialized at 0.03 and optimized by BPTT alongside the
network weights.

Network training: To train the network we used the Proximal Policy Optimization
algorithm (PPO) Schulman et al., 2017. For each training iteration, K full episodes of
T timesteps were generated with fixed parameters θold (here K = 10 and T = 2000).
We write the clipped surrogate objective of PPO as OPPO(θold,θ, t, k) (this is defined
under the notation LCLIP in Schulman et al., 2017). The loss with respect to θ is
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then defined as follows:

L(θ) = − 1
KT ∑

k<K
∑
t<T

OPPO(θold,θ, t, k) + µv (R(t, k)−Vθ(t, k))2 (C.8)

−µeH(πθ(k, t)) + µ f iring
1
n ∑

j
|| 1

KT ∑
k,t

zj(t, k)− f 0||2, (C.9)

where H(πθ) is the entropy of the distribution πθ, f 0 is a target firing rate of 10
Hz, and µv, µe, µ f iring are regularization hyper-parameters. Importantly probability
distributions used in the definition of the loss L (i.e. the trajectories) are conditioned
on the current noises, so that for the same noise and infinitely small parameter
change from θold to θ the trajectories and the spike trains are the same. At each
iteration this loss function L is then minimized with one step of the ADAM
optimizer.

Parameter values: In this task the LSNN had 400 hidden units (200 excitatory
neurons, 80 inhibitory neurons and 120 adaptive neurons with adaptation time con-
stants τa = 1200 ms) and the network was rewired with a fixed global connectivity
of 20% Bellec et al., 2018a. The membrane time constants were similarly sampled
between 15 and 30 ms. The adaptation amplitude β was set to 1.7. The refractory
period was set to 3 ms and delays were sampled uniformly between 1 and 10 ms.
The regularization parameters µv, µe and µ f iring were respectively 1, 0.001, and
100. The parameter ε of the PPO algorithm was set to 0.2. The learning rate was
initialized to 0.01 and decayed by a factor 0.5 every 5000 iterations. We used the
default parameters for ADAM, except for the parameter ε which we set to 10−5.
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Appendix D
Methods for “Biologically inspired alternatives to
BPTT for learning in recurrent neural nets”

D.1 Model definition and mathematical basis for e-prop

D.1.1 General network model

Our proposed learning algorithms for recurrent neural networks can be applied
to a large class of spiking and non-spiking neural network models. We assume
that the state at time t of each neuron j in the network can be described by an
internal state vector st

j ∈ Rd and an observable state zt
j. The internal state includes

internal variables of the neuron such as its activation or membrane potential. The
observable state is given by the output of the neuron (analog output for ANNs and
spiking output for SNNs). The dynamics of a neuron’s discrete-time state evolution
is described by two functions M(s, z,x,θ) and f (s), where s is an internal state
vector, z is a vector of the observable network state (i.e., outputs of all neurons in
the network), x is the vector of inputs to the network, and θ denotes the vector
of network parameters (i.e., synaptic weights). In particular, for each neuron j the
function M maps from the current network state observable to that neuron to its
next internal state, and f maps from its internal state to its observable state (neuron
output):

st
j = M(st−1

j , zt−1,xt,θ), (D.1)

zt
j = f (st

j), (D.2)

where zt (xt) denotes the vector of observable states of all network (input) neurons
at time t. A third function E defines the error of the network within some time inter-
val 0, . . . , T. It is assumed to depend only on the observable states E(z1, . . . ,zT).

We explicitly distinguish betweens partial derivative and total derivatives in our no-
tation. We write ∂M

∂s (s
∗, z∗,x∗,θ) to denote the partial derivative of the function M

with respect to s, applied to particular arguments s∗, z∗,x∗,θ. To simplify notation,

we define the shortcuts
∂st

j

∂st−1
j

def
= ∂M

∂s (s
t−1
j , zt−1,xt,θ),

∂st
j

∂θji

def
= ∂M

∂θji
(st−1

j , zt−1,xt,θ),

and
∂zt

j

∂st
j

def
= ∂ f

∂s (s
t
j).
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Fig. D.1: Computational graph a) Assumed mathematical dependencies between neuron states st
j,

neuron outputs zt, network inputs xt, and the network error E through the mathematical
functions f (·), M(·) and E(·) represented by coloured arrows. b) The dependencies in-
volved in the computation of the eligibility traces et

ji are shown in blue. c) The dependencies

involved in the computation of the learning signal Lt
j are shown in green.

To emphasize that
∂st

j

∂st−1
j

is a matrix of shape d× d, and because it has an important

role in the following derivation and in definition of eligibility traces, we also use

the further notation Dt
j =

∂st+1
j

∂st
j

. Note that we write gradients as row vectors and

states as column vectors.

D.1.2 Proof of factorization (equation (4.1))

We provide here the proof for equation (4.1), i.e., we show that the total derivative
of the error function E with respect to the parameters θ can be written as a product
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of learning signals Lt
j and eligibility traces et

ji. First, recall that in BPTT the error
gradient is decomposed as (see equation (12) in Werbos, 1990):

dE
dθji

= ∑
t

dE
dst

j
·

∂st
j

∂θji
, (D.3)

where dE
dst

j
is the total derivative of the error E with respect to the neuron states

st
j at time step t. dE

dst
j

can be expressed recursively as a function of the same

derivative at the next time step dE
dst+1

j
by applying the chain rule at the node

st
j of the computational graph shown in Figure D.1c:

dE
dst

j
=

dE
dzt

j

∂zt
j

∂st
j
+

dE
dst+1

j

∂st+1
j

∂st
j

(D.4)

= Lt
j

∂zt
j

∂st
j
+

dE
dst+1

j

Dt
j , (D.5)

where we defined the learning signal for neuron j at time t as Lt
j

def
= dE

dzt
j
. The resulting

recursive expansion ends at the last time step T, i.e., dE
dsT+1

j
= 0. If one substitutes the

recursive formula (D.5) into the definition of the error gradients (D.3), one gets:

dE
dθji

= ∑
t

(
Lt

j

∂zt
j

∂st
j
+

dE
dst+1

j

Dt
j

)
·

∂st
j

∂θji
(D.6)

= ∑
t

(
Lt

j

∂zt
j

∂st
j
+
(

Lt+1
j

∂zt+1
j

∂st+1
j

+ (· · · )Dt+1
j

)
Dt

j

)
·

∂st
j

∂θji
. (D.7)

The following equation is the main equation for understanding the transformation
from BPTT into e-prop. The key idea is to collect all terms which are multiplied with
the learning signal Lt′

j at a given time t′. These are only terms that concern events
in the computation of neuron j at time t′, and these do not depend on future errors
or variables. Hence one can collect them conceptually into an internal eligibility
trace et

ji for neuron j which can be computed autonomously within neuron j in an
online manner.

To this end, we write the term in parentheses in equation (D.7) into a second sum
indexed by t′ and exchange the summation indices to pull out the learning signal
Lt

j. This expresses the error gradient as a sum of learning signals Lt
j multiplied by

some factor indexed by ji, which implicitly defines what we call eligibility traces
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and eligibility vectors:

dE
dθji

= ∑
t

∑
t′≥t

Lt′
j

∂zt′
j

∂st′
j

Dt′−1
j · · ·Dt

j ·
∂st

j

∂θji
(D.8)

= ∑
t′

Lt′
j

∂zt′
j

∂st′
j

∑
t≤t′

Dt′−1
j · · ·Dt

j ·
∂st

j

∂θji︸ ︷︷ ︸
def
=εt′

ji

. (D.9)

Here, we use the identity matrix for the Dt−1
j · · ·Dt

j where t′− 1 < t . Finally, seeing

that the eligibility vectors εt′
ji can also be computed recursively as in equation (4.2),

it proves the equation (4.1), given the definition of eligibility traces and learning
signals in (4.3) and (4.4).

D.1.3 Leaky integrate-and-fire neuron model

We define here the leaky integrate-and-fire (LIF) spiking neuron model, and exhibit
the update rules that result from e-prop for this model. We consider LIF neurons
simulated in discrete time. In this case the internal state st

j is one dimensional and
contains only the membrane voltage vt

j. The observable state zt
j ∈ {0, 1} is binary,

indicating a spike (zt
j = 1) or no spike (zt

j = 0) at time t. The dynamics of the LIF
model is defined by the equations:

vt+1
j = αvt

j + ∑
i 6=j

θrec
ji zt

i + ∑
i

θin
ji xt

i − zt
jvth (D.10)

zt
j = H

(vt
j − vth

vth

)
, (D.11)

where xt
i = 1 indicates a spike from the input neuron i at time step t (xt

i = 0
otherwise), θrec

ji (θin
ji ) is the synaptic weight from network (input) neuron i to neuron

j, and H denotes the Heaviside step function. The decay factor α is given by e−δt/τm ,
where δt is the discrete time step (1 ms in our simulations) and τm is the membrane
time constant. Due to the term −zt

jvth in equation (D.10), the neurons membrane
voltage is reset to a lower value after an output spike.

Eligibility traces and error gradients: Considering the LIF model defined above,
we derive the resulting eligibility traces and error gradients. By definition of the

model in equation (D.10), we have Dt
j =

∂vt+1
j

∂vt
j
= α and

∂vt
j

∂θji
= zt−1

i . Therefore, using

the definition of eligibility vectors in equation (4.2), one obtains a simple geometric
series and one can write:

εt+1
ji = ∑

t′≤t
αt−t′zt′

i
def
= ẑt

i , (D.12)
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and the eligibility traces are written:

et+1
ji = ht

j ẑ
t
i . (D.13)

In other words, the eligibility vector is one dimensional and depends only on the
presynaptic neuron i and in fact, corresponds to the filtered presynaptic spike train.
To exhibit resulting the eligibility trace defined by equation (4.3), this requires to

compute the derivative
∂zt

j

∂vt
j
, which is ill-defined in the case of LIF neurons because

it requires the derivative of the discontinuous function H. As shown in (Bellec et al.,

2018c), we can alleviate this by using a pseudo-derivative ht
j in place of

∂zt
j

∂vt
j
, given by

ht
j = γ max

(
0, 1− | v

t
j−vth

vth
|
)

where γ = 0.3 is a constant called dampening factor.

The gradient of the error with respect to a recurrent weight θrec
ji thus takes on the

following form, reminiscent of spike-timing dependent plasticity:

dE
dθrec

ji
= ∑

t

dE
dzt

j
ht

j ẑ
t−1
i . (D.14)

A similar derivation leads to the gradient of the input weights. In fact, one just
needs to substitute recurrent spikes zt

i by input spikes xt
i . The gradient with respect

to the output weights does not depend on the neuron model and is therefore
detailed another paragraph (see equation (D.38)).

Until now refractory periods were not modeled to simplify the derivation. To
introduce a simple model of refractory periods that is compliant with the theory,
one can further assume that zt

j and ∂zj
∂sj

are fixed to 0 for a short refractory period
after each spike of neuron j. Outside of the refractory period the neuron dynamics
are otherwise unchanged.

D.1.4 Leaky integrate-and-fire neurons with threshold adaptation

We derive the learning rule defined by e-prop for a LIF neuron model with an
adaptive threshold. For this model, the internal state is given by a two-dimensional
vector st

j := (vt
j, at

j)
T, where vt

j denotes the membrane voltage as in the LIF model,
and at

j is a threshold adaptation variable. As for the LIF model above, the voltage
dynamics is defined by equation (D.10). The spiking threshold At

j at time t is given
by

At
j = vth + βat

j , (D.15)

where vth denotes the baseline-threshold. Output spikes are generated when the

membrane voltage crosses the adaptive threshold zt
j = H

(
vt

j−At
j

vth

)
, and the threshold
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adaptation evolves according to

at+1
j = ρat

j + H
(vt

j − At
j

vth

)
. (D.16)

The decay factor ρ is given by e−δt/τa , where δt is the discrete time step (1 ms in our
simulations) and τa is the adaptation time constant. In other words, the neuron’s
threshold is increased with every output spike and decreases exponentially back to
the baseline threshold.

Eligibility traces: Because of the extended state, we obtain one two-dimensional
eligibility vector per synaptic weight: εt

ji := (εt
ji,v, εt

ji,a)
T and the matrix Dt

j is a 2× 2

matrix. On its diagonal one finds the terms
∂vt+1

j

∂vt
j
= α and

∂at+1
j

∂at
j
= ρ− ht

jβ.

Above and below the diagonal, one finds respectively
∂vt+1

j

∂at
j

= 0,
∂at+1

j

∂vt
j

= ht
j. One

can finally compute the eligibility traces using its definition in equation (4.3). The
component of the eligibility vector associated with the voltage remains the same as
in the LIF case and only depends on the presynaptic neuron: εt

ji,v = ẑt−1
i . For the

component associated with the adaptive threshold we find the following recursive
update:

εt+1
ji,a = ht

j ẑ
t−1
i + (ρ− ht

jβ)ε
t
ji,a , (D.17)

and this results in an eligibility trace of the form:

et+1
ji = ht

j

(
ẑt−1

i − βεt
ji,a

)
. (D.18)

This results in the following equation for the gradient of recurrent weights:

dE
dθrec

ji
= ∑

t

dE
dzt

j
ht

j

(
ẑt−1

i − βεt
ji,a

)
. (D.19)

The eligibility trace for input weights is again obtained by replacing recurrent
spikes zt

i with input spikes xt
i .

D.1.5 Artificial neuron models

The dynamics of recurrent artificial neural networks is usually given by st
j =

αst−1
j + ∑i θrec

ji zt−1
i + ∑i θin

ji xt
j with zt

j = σ(st
j), where σ : R→ R is some activation

function (often a sigmoidal function in RNNs). We call the first term the leak
term in analogy with LIF models. For α = 0 this term disappears, leading to the
arguably most basic RNN model. If α = 1, it models a recurrent version of residual
networks.
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Eligibility traces: For such model, one finds that Dt
j = α and the eligibility traces

are equal to et
ji = ht

j ẑ
t−1
i with ẑt

i
def
= ∑t′≤t zt′

i αt−t′ . The resulting e-prop update is
written as follows (with σ′ the derivative of the activation function):

dE
dθrec

ji
= ∑

t

dE
dzt

j
σ′(st

j)ẑ
t−1
i . (D.20)

Although simple, this derivation provides insight in the relation between BPTT
and e-prop. If the neuron model does not have neuron specific dynamics α = 0,
the factorization of e-prop is obsolete in the sense that the eligibility trace does not
propagate any information from a time step to the next Dt

j = 0. Thus, one sees that
e-prop is most beneficial for models with rich internal neural dynamics.

D.1.6 LSTM

For LSTM units, (Hochreiter and Schmidhuber, 1997) the internal state of the unit is
the content of the memory cell and is denoted by ct

j, the observable state is denoted
by ht

j. One defines the network dynamics that involves the usual input, forget and
output gates (denoted by it

j , f
t
j , and ℴt

j) and the cell state candidate c̃t
j as follows

(we ignore biases for simplicity):

it
j = σ

(
∑

i
θrec,i

ji ht−1
i + ∑

i
θin,i

ji xt
i
)

(D.21)

ft
j = σ

(
∑

i
θrec,f

ji ht−1
i + ∑

i
θin,f

ji xt
i
)

(D.22)

ℴt
j = σ

(
∑

i
θrec,ℴ

ji ht−1
i + ∑

i
θin,ℴ

ji xt
i
)

(D.23)

c̃t
j = tanh

(
∑

i
θrec,c

ji ht−1
i + ∑

i
θin,c

ji xt
i
)
. (D.24)

Using those intermediate variables as notation short-cuts, one can now write the
update of the states of LSTM units in a form that we can relate to e-prop:

ct
j = M(ct−1

j ,ht−1,θ) = ft
j c

t−1
j + it

j c̃
t
j (D.25)

ht
j = f (ct

j,h
t−1,θ) = ℴt

jc
t
j. (D.26)

Eligibility traces: There is one difference between LSTMs and the previous neuron
models used for e-prop: the function f depends now on the previous observable
state ht and the parameters through the output gate ℴt

j. However the derivation of

the gradients dE
dθji

in the paragraph “Proof of factorization” is still valid for deriving
the gradients with respect to the parameters of the input gate, forget gate and cell
state candidate. For these parameters we apply the general theory as follows. We

compute Dt
j =

∂ct+1
j

∂ct
j

= ft
j and for each variable θA,B

ji with A being either “in” or
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“rec” and B being i,f, or c, we compute a set of eligibility traces. If we take the
example the recurrent weights for the input gate θrec,i

ji , the eligibility vectors are
updated according to:

εrec,i,t
ji = ft−1

j εrec,i,t−1
ji + c̃t

ji
t
j (1− it

j )h
t
i , (D.27)

the eligibility traces are then written:

erec,i,t
ji = ℴt

jε
rec,i,t
ji , (D.28)

and the gradients are of the form

dE
dθrec,i

ji

= ∑
t

dE
dht

j
ℴt

jε
rec,i,t
ji . (D.29)

For the parameters θrec,ℴ
ji of the output gate which take part in the function f ,

we need to derive the gradients in a different manner. As we still assume that
E(h1, . . . ,hT) depends on the observable state only, we can follow the derivation
of BPTT with a formula analogous to (D.3). This results in a gradient expression
involving local terms and the same learning signal as used for other parameters.

Writing ∂ f
∂θrec,ℴ

ji
as

∂ht
j

∂θrec,ℴ
ji

the gradient update for the output gate takes the form:

dE
dθrec,ℴ

ji
= ∑

t

dE
dht

j

∂ht
j

∂θrec,ℴ
ji

= ∑
t

dE
dht

j
ct

jℴ
t
j(1−ℴt

j)h
t−1
i . (D.30)

D.2 E-prop 1

D.2.1 Formalization of E-prop 1

E-prop 1 follows the general e-prop framework and applies to all the models above.
Its specificity is the choice of learning signal. In this first variant, we make two
approximations: future errors are ignored so that one can compute the learning
signal in real-time, and learning signals are fed back with random connections. The
specific realizations of the two approximations are discussed independently in the
following and implementation details are provided.

Ignoring future errors: The first approximation is to focus on the error at the
present time t and ignore dependencies on future errors in the computation of
the total derivative dE

dzt
j
. Using the chain rule, this total derivative expands as

dE
dzt

j
= ∂E

∂zt
j
+ dE

dst+1
j

∂st+1
j

∂zt
j

, and neglecting future errors means that we ignore the second

term of this sum. As a result the total derivative dE
dzt

j
is replaced by the partial

derivative ∂E
∂zt

j
in equation (4.4).
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Synaptic weight updates under e-prop 1: Usually, the output of an RNN is given
by the output of a set of readout neurons which receive input from network neurons,
weighted by synaptic weights θout

kj . In the case of an RSNN, in order to be able to
generate non-spiking outputs, readouts are modeled as leaky artificial neurons.
More precisely, the output of readout k at time t is given by

yt
k = κyt−1

k + ∑
j

θout
kj zt

j + bout
k , (D.31)

where κ ∈ [0, 1] defines the leak and bout
k denotes the readout bias. The leak factor

κ is given by e−δt/τout , where δt is the discrete time step and τout is the membrane
time constant). In the following derivation of weight updates under e-prop 1, we
assume such readout neurons. Additionally, we assume that the error function is
given by the mean squared error E = 1

2 ∑t,k(yt
k − y∗,tk )2 with y∗,tk being the target

output at time t (see the following paragraph on “classification” when the cross
entropy error is considered).

In this case, the partial derivative ∂E
∂zt

i
has the form:

∂E
∂zt

j
= θout

kj ∑
t′≥t

(yt′
k − y∗,t

′

k )κt′−t. (D.32)

This seemingly poses a problem for a biologically plausible learning rule, because
the partial derivative is a weighted sum over the future. This issue can however
easily be solved as we show below. Using equation (4.1) for the particular case of
e-prop 1, we insert ∂E

∂zt
j

in-place of the total derivative dE
dzt

j
which leads to an estimation

d̂E
dθji

of the true gradient given by:

d̂E
dθji

= ∑
t

∂E
∂zt

j
et

ji (D.33)

= ∑
k,t

θout
kj ∑

t′≥t
(yt

k − y∗,tk )κt′−tet
ji (D.34)

= ∑
k,t′

θout
kj (yt′

k − y∗,t
′

k ) ∑
t≤t′

κt′−tet
ji , (D.35)

where we inverted sum indices in the last line. The second sum indexed by t is
now over previous events that can be computed in real time, it computes a filtered
copy of the eligibility trace et

ji. With this additional filtering of the eligibility trace
with a time constant equal to that of the temporal averaging of the readout neuron,
we see that e-prop 1 takes into account the latency between an event at time t′

and its impact of later errors at time t within the averaging time window of the
readout. However, note that this time constant is a few tens of milliseconds in our
experiments which is negligible in comparison to the decay of the eligibility traces
of adaptive neurons which are one to two orders of magnitude larger (see Figure
4.2).
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Equation (D.35) holds for any neuron model. In the case of LIF neurons, the
eligibility traces are given by equation (D.13), and one obtains the final expression
of the error gradients after substituting these expressions in (D.35). Implementing
weight updates with gradient descent and learning rate η, the updates of the
recurrent weights are given by

∆θrec
ji = η ∑

t

(
∑

k
θout

kj (y∗,tk − yt
k)
)

∑
t′≤t

κt−t′ht′
j ẑt′−1

i . (D.36)

When the neurons are equipped with adaptive thresholds as in LSNNs, one re-
places the eligibility traces with their corresponding definitions. It results that
an additional term εt

ji,a as defined in equation (D.17) is introduced in the weight
update:

∆θrec
ji = η ∑

t

(
∑

k
θout

kj (y∗,tk − yt
k)
)

∑
t′≤t

κt−t′ht′
j

(
ẑt′−1

i − βεt′
ji,a

)
. (D.37)

Both equations (D.36) and (D.37) can be derived similarly for the input weights
θin

ji , and it results in the same learning rule with the only difference that ẑt′−1
i is

replaced by a trace of the spikes xt
i of input neuron i. For the output connections

the gradient dE
dθout

kj
can be derived as for isolated linear readout neurons and it does

not need to rely on the theory of e-prop. The resulting weight update is:

∆θout
kj = η ∑

t
(y∗,tk − yt

k) ∑
t′≤t

κt−t′zt′
j . (D.38)

Random feed-back matrices: According to equations (D.36) and (D.37), the
signed error signal from readout k communicated to neuron j has to be weighted
with θout

kj . That is, the synaptic efficacies of the feedback synapses have to equal
those of the feed-forward synapses. This general property of backpropagation-
based algorithms is a problematic assumption for biological circuits. It has been
shown however in (Samadi et al., 2017; Nøkland, 2016) that for many tasks, an
approximation where the feedback weights are chosen randomly works well. We
adopt this approximation in e-prop 1. Therefore we replace in equations (D.36)
and (D.37) the weights θout

kj by fixed random values Brandom
jk . For a LIF neuron the

learning rule (D.36) becomes with random feedback weights:

∆θrec
ji = η ∑

t

(
∑

k
Brandom

jk (y∗,tk − yt
k)
)

∑
t′≤t

κt−t′ht′
j ẑt′−1

i . (D.39)

For an adaptive LIF neuron the learning rule (D.37) becomes with random feed-back
weights:

∆θrec
ji = η ∑

t

(
∑

k
Brandom

jk (y∗,tk − yt
k)
)

∑
t′≤t

κt−t′ht′
j

(
ẑt′−1

i − βεt′
ji,a

)
. (D.40)

Synaptic weight updates under e-prop 1 for classification: For the classifica-
tion tasks solved with e-prop 1, we consider one readout neuron yt

k per output
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class, and the network output at time t corresponds to the readout with high-
est voltage. To train the recurrent networks in this setup, we replace the mean
squared error by the the cross entropy error E = −∑t,k π∗,tk log πt

k where the tar-
get categories are provided in the form of a one-hot-encoded vector π∗,tk . On the
other hand, the output class distribution predicted by the network is given as
πt

k = softmax(yt
k) = exp(yt

k)/ ∑k′ exp(yt
k′). To derive the modified learning rule

that results from this error function E, we replace ∂E
∂zi

of equation (D.32) with the
corresponding gradient:

∂E
∂zt

j
= θout

kj ∑
t′≥t

(πt′
k − π∗,t

′

k )κt′−t. (D.41)

Following otherwise the same derivation as previously it results that the weight
update of e-prop 1 previously written in equation (D.39) becomes for a LIF neuron:

∆θrec
ji = η ∑

t

(
∑

k
Brandom

jk (π∗,tk − πt
k)
)

∑
t′≤t

κt−t′ht′
j ẑt′−1

i . (D.42)

Similarly, for the weight update of the output connections, the only difference
between the update rules for regression and classification is that the output yt

k and
the target y∗,tk are respectively replaced by πt

k and π∗,tk :

∆θout
kj = η ∑

t
(π∗,tk − πt

k) ∑
t′≤t

κt−t′zt′
j . (D.43)

Firing rate regularization: To ensure that the network computes with low firing
rates, we add a regularization term Ereg to the error function E. This regularization
term has the form:

Ereg = ∑
j

(
f av
j − f target

)2
, (D.44)

where f target is a target firing rate and f av
j = δt

ntrialsT ∑t,k zt
j is the firing rate of neuron

j averaged over the T time steps and the ntrials trials separating each weight update.
To compute the weight update that implements this regularization, we follow a
similar derivation as detailed previously for the mean square error. Instead of
equation (D.32), the partial derivative has now the form:

∂Ereg

∂zt
j

=
δt

ntrialsT

(
f av
j − f target

)
. (D.45)

Inserting this expression into the equation (D.33), and choosing the special case of
a LIF neurons, it results that the weight update that implements the regularization
is written:

∆θrec
ji = η ∑

t

δt
ntrialsT

(
f target − f av

j

)
ht

j ẑ
t−1
i . (D.46)

The same learning rule is also applied to the input weights ∆θin
ji . This weight

update is performed simultaneously with the weight update exhibited in equation
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(D.39) which optimizes the main error function E. For other neuron models such
as adaptive LIF neurons, the equation (D.46) has to be updated accordingly to the
appropriate definition of the eligibility traces.

D.2.2 Details to simulations for E-prop 1

General simulation and neuron parameters: In all simulations of this article,
networks were simulated in discrete time with a simulation time step of 1 ms.
Synapses had a uniform transmission delay of 1 ms. Synaptic weights of spiking
neural networks were initialized as in (Bellec et al., 2018c).

Implementation of the optimization algorithm: A dampening factor of γ = 0.3
for the pseudo-derivative of the spiking function was used in all simulations of
this article. The weights were kept constant for nbatch independent trials (specified
for individual simulations below), and the gradients were cumulated additively.
After collecting the gradients, the weights were updated using the Adam algorithm
(Kingma and Ba, 2014). For all simulations of e-prop 1, the gradients were computed
according to equation (D.35).

Integration of the “Clopath rule” in e-prop 1 : We replaced the presynpatic and
postsynaptic factors of equation (D.13) with the model of long term potentiation
defined in Clopath et al., 2010 and fitted to data in the same paper. The learning
rule referred as “Clopath rule” in our experiments differ from e-prop 1 by the
replacement of the pseudo derivative ht

j by another non linear function of the post
synpatic voltage. In comparison to equation (D.14) the computation of the error
gradient becomes:

dE
dθrec

ji
= ∑

t

dE
dzt

j
[vt

j − v+th]
+[v̂t

j − v−th]
+ ẑt−1

i , (D.47)

where v̂t
j is an exponential trace of the post synaptic membrane potential with

time constant 10 ms and [·]+ is the rectified linear function. The time constant
of v̂t

j was chosen to match their data. The thresholds v−th and v+th were vth
4 and

0 respectively. All other implementation details remained otherwise unchanged
between the default implementation of eprop 1 and this variant of the algorithm.

Pattern generation task 1.1: The three target sequences had a duration of 1000
ms and were given by the sum of four sinusoids for each sequence with fixed
frequencies of 1 Hz, 2 Hz, 3 Hz, and 5 Hz. The amplitude of each sinusoidal
component was drawn from a uniform distribution over the interval [0.5, 2]. Each
component was also randomly phase-shifted with a phase sampled uniformly in
the interval [0, 2π).
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The network consisted of 600 all-to-all recurrently connected LIF neurons (no
adaptive thresholds). The neurons had a membrane time constant of τm = 20
ms and a refractory period of 5 ms. The firing threshold was set to vth = 0.61.
The network outputs were provided by the membrane potential of three readout
neurons with a time constant τout = 20 ms. The network received input from 20

input neurons, divided into 5 groups, which indicated the current phase of the
target sequence similar to (Nicola and Clopath, 2017). Neurons in group i ∈ {0, 4}
produced 100 Hz regular spike trains during the time interval [200 · i, 200 · i + 200)
ms and were silent at other times.

A single learning trial consisted of a simulation of the network for 1000 ms, i.e., the
time to produce the target pattern at the output. The input, recurrent, and output
weights of the network were trained for 1000 iterations with the Adam algorithm,
a learning rate of 0.003 and the default hyperparameters (Kingma and Ba, 2014).
After every 100 iterations, the learning rate was decayed with a multiplicative factor
of 0.7. A batch size of a single trial was used for training. To avoid an implausibly
high firing rate, a regularization term was added to the loss function, that keeps
the neurons closer to a target firing rate of 10 Hz. The regularization loss was given
by the mean squared error (mse) between the mean firing rate of all neurons over a
batch and the target rate. This loss was multiplied with the factor 0.5 and added
with the target-mse to obtain the total loss to be optimized.

The comparison algorithms in Figure 4.1d,e were implemented as follows. When
training with e-prop 1, the random feedback weights Brandom were generated from
a Gaussian distribution with mean 0 and variance 1

n , where n is the number of
network neurons. For the performance of the global error signal, e-prop 1 was used,
but the random feedback matrix was replaced by a matrix where all entries had
the value 1√

n . As a second baseline a network without recurrent connections was
trained with e-prop 1 (“No rec. conn.” in panel d). We further considered variants
of e-prop 1 where we sampled independent feedback matrices for every 1 or 20 ms
window (“1 ms” and “20 ms” in panels d and e). Note that the same sequence of
feedback matrices had to be used in every learning trials. We also compared to
BPTT, where the Adam algorithm was used with the same meta-parameters as
used for e-prop 1.

Store-recall task 1.2: The store-recall task is described in Results. Each learning
trial consisted of a 2400 ms network simulation. We used a recurrent LSNN network
consisting of 10 standard LIF neurons and 10 LIF neurons with adaptive thresholds.
All neurons had a membrane time constant of τm = 20 ms and a baseline threshold
of vth = 0.5. Adaptive neurons had a threshold increase constant of β = 0.03 and a
threshold adaptation time constant of τa = 1200 ms. A refractory period of 5 ms
was used. The input, recurrent and output weights of the network were trained
with a learning rate of 0.01 and the Adam algorithm the default hyperparameters
(Kingma and Ba, 2014). Training was stopped when a misclassification rate below
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0.05 was reached. After 100 iterations, the learning rate was decayed with a mul-
tiplicative factor of 0.3. The distribution of the random feedback weights Brandom

was generated from normal distribution with mean 0 and variance 1
n , where n is

the number of recurrent neurons. A batch size of 128 trials was used.

In Figure 4.2b, we quantified the information content of eligibility traces at training
iteration 25, 75, and 200 in this task. After the predefined number of training
iterations, we performed test simulations where we provided only a store command
to the network and simulated the network up to 6000 ms after this store. A linear
classifier (one for a time window of 100 ms, at every multiple of 50 ms) was then
trained to predict the stored bit from the value of the eligibility traces at that time.
For this purpose we used logistic regression with a squared regularizer on the
weights. We used 150 different simulations to train the classifiers and evaluated the
decoding accuracy, as shown in Figure 4.2b, on 50 separate simulations.

Speech recognition task 1.3: We followed the same task setup as in (Greff et al.,
2017; Graves and Schmidhuber, 2005). The TIMIT dataset was split according to
Halberstadt (Glass et al., 1999) into a training, validation, and test set with 3696, 400,
and 192 sequences respectively. The networks received preprocessed audio at the
input. Preprocessing of audio input consisted of the following steps: computation
of 13 Mel Frequency Cepstral Coefficients (MFCCs) with frame size 10 ms on input
window of 25 ms, computation of the first and the second derivatives of MFCCs,
concatenation of all computed factors to 39 input channels. Input channels were
mapped to the range [0, 1] according to the minumum/maximum values in the
training set. These continuous values were used directly as inputs xt

i in equation
(D.10).

To tackle this rather demanding benchmark task, we used a bi-directional network
architecture (Graves and Schmidhuber, 2005), that is, the standard LSNN network
was appended by a second network which recieved the input sequence in reverse
order. A bi-directional LSNN (300 LIF neurons and 100 adaptive LIF neurons per
direction) was trained with different training algorithms. Unlike in task 1.1, the
random feedback weights Brandom were generated with a variance of 1 instead of 1

n
as we observed that it resulted in better performances for this task.

With LSNNs we first ran a simple 8 point grid search over the firing threshold
hyperparameter vth. The best performing value for threshold was then used to
produce the LSNN results (see Figure 4.2c). For the strong baseline we include the
result of LSTMs applied to the same task (Greff et al., 2017), where the hyperpa-
rameters were optimized using random search for 200 trials over the following
hyperparameters: number of LSTM blocks per hidden layer, learning rate, mo-
mentum, momentum type, gradient clipping, and standard deviation of Gaussian
input noise. In (Greff et al., 2017) the mean test accuracy of 10% best performing
hyperparameter settings (out of 200) is 0.704.
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Every input step which represents the 10 ms preprocessed audio frame is fed to
the LSNN network for 5 consecutive 1 ms steps. All neurons had a membrane
time constant of τm = 20 ms and a refractory period of 2 ms. Adaptive neurons
had β = 1.8 and an adaptation time constant of τa = 200 ms. We used 61 readout
neurons, one for each class of the TIMIT dataset. A softmax was applied to their
output, which was used to compute the cross entropy error against the target label.
Networks were trained using Adam with the default hyperparameters (Kingma
and Ba, 2014) except εAdam = 10−5. The learning rate was fixed to 0.01 during
training. We used a batch size of 32 and the membrane time constant of the output
neurons was 3 ms. Regularizaion of the network firing activity was applied as in
Task 1.1.

D.3 E-prop 2

D.3.1 Formalization and implementation of E-prop 2

In e-prop 2, the learning signals are computed in a separate error module. In order to
distinguish the error module from the main network, we define a separate internal
state vector for each neuron j in the error module σt

j and network dynamics

σt
j = Me(σ

t−1
j , ζt−1, ξt, Ψ) for it. Here, ζt−1 is the vector of neuron outputs in the

error module at time t, and synaptic weights are denoted by Ψ. The inputs to the
error module are written as: ξt = (xt, zt,y∗,t) with y∗,t denoting the target signal
for the network at time t. Note that the target signal is not necessarily the target
output of the network, but can be more generally a target state vector of some
controlled system. For example, the target signal in task 2.1 is the target position
of the tip of an arm at time t, while the outputs of the network define the angular
velocities of arm joints.

The error module produces at each time t a learning signal L̂t
j for each neuron j of

the network, which were computed according to:

L̂t
j = αe L̂t−1

j + ∑
i

Ψjioutζt
i , (D.48)

where the constant αe defines the decay of the resulting learning signal, e.g. the
concentration of a neuromodulator.

Synaptic weight updates under e-prop 2: The task of the error module is to com-
pute approximations to the true learning in equation (4.4). Therefore, in comparison
to equation (D.13), we obtain an estimation of the true error gradients dE

dθrec
ji

given as

d̂E
dθrec

ji
= ∑t L̂t

jh
t
j ẑ

t−1
i , which in turn leads to an update rule for the synaptic weights

using a fixed learning rate η:

∆θrec
ji = −η ∑

t
L̂t

jh
t
j ẑ

t−1
i (D.49)
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Similarly, the update rule for input weights is obtained by replacing ẑt−1
i in favor

of x̂t−1
i .

In the experiments regarding e-prop 2, input and recurrent weights were updated a
single time in the inner loop of L2L according to θtest = θinit + ∆θ, whereas output
weights were kept constant.

Target movement task 2.1: In this task, the two network outputs are interpreted
as angular velocities φ̇1 and φ̇2 and are applied to the joints of a simple arm model.
The configuration of the arm model at time t is described by the angles φt

1 and
φt

2 of the two joints measured against the horizontal and the first leg of the arm
respectively, see Figure 4.3c. For given angles, the position yt = (xt, yt) of the
tip of the arm in Euclidean space is given by xt = l cos(φt

1) + l cos(φt
1 + φt

2) and
yt = l sin(φt

1) + l sin(φt
1 + φt

2). Angles were computed by discrete integration over
time: φt

i = ∑t′≤t φ̇t′
i δt + φ0

i using a δt = 1 ms. The initial values were set to φ0
1 = 0

and φ0
2 = π

2 .

Feasible target movements y∗,t of duration 500 ms were generated randomly by
sampling the generating angular velocities Φ̇∗,t = (φ̇∗,t1 , φ̇∗,t2 ). Each of the target
angular velocities exhibitted a common form

φ̇∗,ti = ∑
m

Sim sin
(

2πωim
t
T
+ δim

)
def
= ∑

m
qt

im , (D.50)

where the number of components m was set to 5, Sim was sampled uniformly in
[0, 30], ωim was sampled uniformly in [0.3, 1] and δim was sampled uniformly in
[0, 2π]. After this sampling, every component qt

2,m in φ̇∗,t2 was rescaled to satisfy
maxt(qt

2,m)−mint(qt
2,m) = 20. In addition, we considered constraints on the an-

gles of the joints: φ1 ∈ [−π
2 , π

2 ] and φ2 ∈ [0, π]. If violated, the respective motor
commands φ̇∗,ti were rescaled to match the constraints.

A clock-like input signal was implemented as in task 1.1 by 20 input neurons, that
fired in groups in 5 successive time steps with a length of 100 ms at a rate of 100

Hz.

Outer loop optimization: The procedure described above defines an infinitely large
familiy of tasks, each task of the family being one particular target movement. We
optimized the parameters of the error module as well as the initial parameters of
the learning network in an outer-loop optimization procedure. The learning cost
LC for tasks C in the above defined family of tasks was defined as

LC(θtest,C) = ∑
t

((
yt(θtest,C)− y∗,t

)2
+
(
Φ̇t(θtest,C)− Φ̇∗,t

)2
)
+ λEreg (D.51)

to measure how well the target movement was reproduced. We then optimized the
expected cost over the family of learning task using BPTT. In addition, a regulariza-
tion term for firing rates as defined in equation (D.44) was introduced with λ = 0.25.
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Gradients were computed over batches of 200 different tasks to empirically estimate
the learning cost across the family of tasks: EC∼F [LC(θtest,C)] ≈ 1

200 ∑200
i=1 LCi(θtest,Ci).

We used the Adam algorithm (Kingma and Ba, 2014) with a learning rate of 0.0015.
The learning rate decayed after every 300 steps by a factor of 0.95.

Model parameters: The learning network consisted of 400 LIF neurons according to
the model stated in equation (D.10) and (D.11), with a membrane time constant of 20
ms and a threshold of vth = 0.4. The motor commands φ̇t

j predicted by the network
were given by the output of readout neurons with a membrane time constant of 20
ms. The target firing rate in the regularizer was set to f target = 20 Hz.

The error module was implemented as a recurrently connected network of 300

LIF neurons, which had the same membrane decay as the learning network. The
neurons in the error module were set to have a threshold of vth = 0.4. Readout
neurons of the error module had a membrane time constant of 20 ms. Finally,
the weight update with e-prop according to equation (4.7) used a learning rate of
η = 10−4. The target firing rate in the regularizer was set to f target = 10 Hz.

Both the learning network as well as the error module used a refractory period of
5 ms.

Linear error module: The alternative implementation of a linear error module
was implemented as a linear mapping of inputs formerly received by the spiking
implementation of the error module. Prior to the linear mapping, we applied a
filter to the spiking quantities xt, zt such that x̂t = ∑t′≤t αt−t′

e xt and similarly for
ẑt. Then, the learning signal from the linear error module was given as: L̂t

j =

∑i Φx
ji x̂

t
i + ∑i Φz

ji ẑ
t
i + ∑i Φy

jiy
∗,t
i

D.4 E-prop 3

D.4.1 Formalization and implementation of E-prop 3

We first describe e-prop 3 in theoretical terms when the simulation duration is split
into intervals of length ∆t and show two mathematical properties of the algorithm:
first, it computes the correct error gradients if the synthetic gradients are ideal;
and second, when the synthetic gradients are imperfect, the estimated gradients
are a better approximation of the true error gradient in comparison to BPTT. In
subsequent paragraphs we discuss details of the implementation of e-prop 3, the
computation of the synthetic gradients and hyperparameters used in tasks 3.1 and
3.2.
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Notation and review of truncated BPTT: We consider the true error gradient
dE
dθji

to be the error gradient computed over the full simulation ranging from time
t = 1 to time T. Truncated BPTT computes an approximation of this gradient. In
this paragraph, we identify the approximations induced by truncated BPTT.

In truncated BPTT, the network simulation is divided into K successive intervals
of length ∆t each. For simplicity we assume that T is a multiple of ∆t, such that
K = T/∆t is an integer. Using the shorthand notation tm = m∆t, the simulation
intervals are thus {1, . . . , t1}, {t1 + 1, . . . , t2}, . . . , {tK−1 + 1, . . . , tK}. To simplify the
theory we assume that updates are implemented after the processing of all these
intervals (i.e., after time T).

For each interval {tm−1 + 1, . . . , tm}, the simulation is initialized with the network
state stm−1 . Then, the observable states zt′ and hidden states st′ are computed for
t′ ∈ {tm−1 + 1, . . . , tm}. It is common to use for the overall error E(z1, . . . ,zT) an
error function that is given by the sum of errors in each individual time step. Hence
the error can be written as a sum of errors Em(ztm−1+1, . . . ,ztm) in the intervals:

E(z1, . . . ,zT) =
K

∑
m=1

Em(z
tm−1+1, . . . ,ztm) . (D.52)

For each such interval, after network simulation until tm (the forward pass), the
gradients dEm

dst′
j

are propagated backward from t′ = tm to t′ = tm−1 + 1 (the backward

pass). The contribution to the error gradient for some paramter θji in the interval is
then given by (compare to equation (D.3))

gtrunc
m,ji =

tm

∑
t′=tm−1+1

dEm

dst′
j
·

∂st′
j

∂θji
. (D.53)

The overall gradient dE
dθji

is then approximated by the sum of the gradients in the

intervals: gtrunc
1,ji + gtrunc

2,ji + · · ·+ gtrunc
K,ji .

This approximation is in general not equal to the true error gradient dE
dθji

, as it
disregards the contributions of network outputs within one interval on errors that
occur in a later interval.

Synthetic gradients: To correct for the truncated gradient, one can provide a
suitable boundary condition at the end of each interval that supplements the
missing gradient. The optimal boundary condition cannot be computed in an
online manner since it depends on future activities and future errors that are
not yet available. In truncated BPTT, one chooses dE

dstm+1
j

= 0 at the end of an

interval {tm−1 + 1, . . . , tm}, which is exact only if the simulation terminates at time
tm or if future errors do not depend on network states of this interval. The role
of synthetic gradients is to correct this approximation by providing a black box
boundary condition SGj(z

tm , Ψ), where SGj is a parameterized function of the
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network output with parameters Ψ. SGj should approximate the optimal boundary
condition, i.e., SGj(z

tm , Ψ) ≈ dE
dstm+1

j
.

We denote the approximate gradient that includes the boundary condition given
by synthetic gradients by dE

dst
j
. This gradient is given by

dEm

dst
j
=

dEm

dst
j
+ ηSG ∑

l
SGl(z

tm , Ψ)
dstm+1

l
dst

j
. (D.54)

We will continue our theoretical analysis with a factor ηSG = 1 (as suggested in
Jaderberg et al., 2016, we set ηSG to 0.1 in simulations to stabilize learning). We
define gSG

m,ji as the corrected version of gtrunc
m,ji that incorporates the new boundary

condition. We finally define the estimator of the error gradient with synthetic
gradients as:

d̂E
dθji

SG

= gSG
1,ji + gSG

2.ji + · · ·+ gSG
K,ji. (D.55)

The synthetic gradient approximation is refined by minimizing the mean squared
error between the synthetic gradient approximation SGj(z

tm , Ψ) and the gradient
dEm+1

dstm+1
j

, which is computed in the interval tm + 1 to tm+1 and includes the next

boundary condition SGl(z
tm+1):

ESG

(
ztm ,

dEm+1

dstm+1
j

, Ψ

)
= ∑

j

1
2

∥∥∥∥∥SGj(z
tm , Ψ)− dEm+1

dstm+1
j

∥∥∥∥∥
2

. (D.56)

Correctness of synthetic gradients: We consider Ψ∗ to be optimal synthetic gra-
dient parameters if the synthetic gradient loss in equation (D.56) is always zero.
In this case, all synthetic gradients SG(ztm , Ψ∗) exactly match dE

dstm+1
j

, and the com-

puted approximation exactly matches the true gradient. This analysis assumes the
existence of the optimal parameters Ψ∗ and the convergence of the optimization
algorithm to the optimal parameters. This is not necessarily true in practice. For an
analysis of the convergence of the optimization of the synthetic gradient loss we
refer to (Czarnecki et al., 2017).

Proof of correctness of e-prop 3 with truncated time intervals: Similarly to the
justification above for synthetic gradients, we show now that the error gradients
dE
dθji

can be estimated with e-prop 3 when the gradients are computed over truncated
intervals.

Instead of using the factorization of the error gradients as in BPTT (equation (D.3)),
e-prop 3 uses equation (4.1). The approximate gradient that is computed by e-prop 3
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with respect to neuron outputs is given analogously to equation (D.54)

dEm

dzt
j
=

dEm

dzt
j
+ ∑

l
SGl(z

tm , Ψ)
dstm+1

l
dzt

j
. (D.57)

We are defining the learning signal as in equation (4.4), but now using the enhanced
estimate of the derivative of the interval error:

L
t
m,j =

dEm

dzt
j

dzt
j

dst
j
. (D.58)

This learning signal is computed recursively using equation (D.4) within an interval.
At the upper boundaries tm of the intervals, the boundary condition is computed
via synthetic gradients.

Analogous to gSG
m,ji, we define the gradient approximation of e-prop 3 ge−prop

m,ji as the
corrected version of gtrunc

m,ji that incorporates the boundary condition for interval
{tm−1 + 1, . . . , tm} via synthetic gradients. This gradient approximation is given
by

ge−prop
m,ji =

tm

∑
t=tm−1+1

Lt
m,j · εt

ji . (D.59)

Considering the sum of terms ge−prop
m,ji associated with each interval, we write the

estimator of the true error gradient computed with e-prop 3 as:

d̂E
dθji

e−prop

= ge−prop
1,ji + ge−prop

2,ji + · · ·+ ge−prop
K,ji . (D.60)

Assuming now that this boundary condition is provided by an error module com-
puting the synthetic gradients SG with optimal parameters Ψ∗. As explained above,
it follows that all SGl(z

tm , Ψ∗) computes exactly dE
dstm+1

l
which is true independently

of the usage of BPTT or e-prop 3. In the later case, it follows that dEm
dzt

j
is correctly

computing dE
dzt

j
and hence, Lt

m,j is equal to the true learning signal Lt
j. Looking back

at equation (4.1), it follows that the estimator defined at equation (D.60) is equal to
the true gradient if the parameters of the error module are optimal.

Optimization of the synthetic gradient parameters Ψ: We define here the algo-
rithm used to optimize the synthetic gradients parameters Ψ and the network
parameters θ. Using the same truncation scheme as described previously, we recall
that the loss function Em formalizes the loss function on interval m denoted Em
with the modification that it takes into account the boundary condition defined
by the synthetic gradients. We then consider the loss E′ as the sum of the term
Em and the synthetic gradient loss ESG. The final algorithm is summarized by the
pseudo-code given in Algorithm 4. Note that this algorithm is slightly different
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D.4 E-prop 3

from the one used originally by Jaderberg et al., 2016. Our version requires one
extra pair of forward and backward passes on each truncated interval but we found
it easier to implement.

1 for m ∈ {1, . . . , K} do
2 Simulate the network over the interval {tm−1 + 1, . . . , tm} to compute the

network states st
j

3 Backpropagate gradients on the interval {tm−1 + 1, . . . , tm} to compute
dEm
dθ using the boundary condition provided by SGl(z

tm , Ψ). Store stm
j

and εtm
ji to be used as initial states in the next interval.

4 Simulate the network over the interval {tm + 1, . . . , tm+1} to compute the
network states st

j

5 Backpropagate gradients on the interval {tm + 1, . . . , tm+1} to obtain
dEm+1

dstm+1
j

and compute dESG
dθ , dESG

dΨ ,

6 Update the parameters Ψ and θ using d(Em+ESG)
dθ and dESG

dΨ with any
variant of stochastic gradient descent

7 end
Algorithm 4: Pseudo code to describe the algorithm used to trained simultane-
ously the network parameters θ and the synthetic gradients Ψ in both e-prop 3
and BPTT with synthetic gradients.

Copy-repeat task 3.1: Each sequence of the input of the copy repeat task consists
of the “8-bit” pattern of length npattern encoded by 8 binary inputs, a stop character
encoded by a 9th binary input channel, and a number of repetitions nrepetitions
encoded using a one hot encoding over the 9 input channels. While the input is
provided, no output target is defined. After that the input becomes silent and
the output target is defined by the nrepetitions copies of the input followed by a
stop character. As for the input, the output pattern is encoded with the first 8
output channels and the 9-th channel is used for the stop character. Denoting
the target output b∗,tk of the channel k at time t and defining σ(yt

k) as the output
of the network with yt

k a weighted sum of the observable states zt
j and σ the

sigmoid function, the loss function is defined by the binary cross-entropy loss:
E = −∑t,k(1− b∗,tk ) log2 σ(yt

k) + b∗,tk log2

(
1− σ(yt

j)
)

. The sum is running over the
time steps where the output is specified.

We follow the curriculum of Jaderberg et al., 2016 to increase gradually the complex-
ity of the task: when the error E averaged over a batch of 256 sequences is below
0.15 bits per sequences, npattern or nrepetitions are incremented by one. When the
experiments begins, we initialize npattern and nrepetitions to one. After the first thresh-
old crossing npattern is incremented, then the increments are alternating between
npattern and nrepetitions.
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For each batch of 256 sequences, the parameters are updated every ∆t = 4 time
steps when the simulation duration in truncated as in BPTT. The parameter updates
are applied with Adam, using learning rate 0.0001 and the default hyperparameters
suggested by Kingma and Ba, 2014.

Word prediction task 3.2: Training was performed for 20 epochs, where one
epoch denotes a single pass through the complete dataset. All learning rules used
gradient descent to minimize loss with initial learning rate of 1 which was decayed
after every epoch with factor 0.5, starting with epoch 5. Mini-batch consisted of
20 sequences of length ∆t. Sequence of sentences in Penn Treebank dataset are
connected and coherent, so the network state was reset only after every epoch.
Equally the eligibility traces are set to zero at the beginning of every epoch.
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