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Abstract

Nowadays there are more and more devices that are being connected to the
internet, therefore it is important to provide a reliable bridge between them.
Gathering/Routing the data is the foundation for many different business
processes and is therefore highly important.

The goal of this thesis was to build a scalable infrastructure for sensor
data that only uses open source components and is easy to use for users
who provide sensor data. To make this system scalable, different container
orchestrators were evaluated.

As a basis, the container orchestration tool Kubernetes was chosen. Addi-
tional system components for system maintenance were selected to improve
the maintainability. Further components include a load-balancer, certificates
for secure communication and monitoring. For the persistence of data, a
solution was evaluated and included. The platform can be deployed to
different IaaS providers via a Terraform script.

The web UI for users and application management is written in Java and
based on the high performance web framework Vert.x. The performance was
evaluated using current web frameworks as a reference point. Applications
from categories such as data input, data output and data computation/pro-
cessing can be consumed by users. For every application category there is
at least one reference application configured.

On the data input category available MQTT servers were tested in regards
to performance and the best suitable server solution was selected. The
data output layer was evaluated and the best databases were used. For the
data computation layer a HSTM based computational intelligence library
was selected to showcase inter-connectivity between the components. The
framework is extensible to include new applications to provide additional
functionality to the users of the system.
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The system was tested in full action with two sensor types for input and out-
put. Additional hardware sensors can be included by providing a template
and base-values. Code can then be uploaded to these sensors, based on the
values the user provided. Thus the developed system allows and facilitates
the setup of a full-blown scalable sensor data framework on multiple cloud
provider.
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1 Background

1.1 Internet of Things

As the internet is growing exponentially more and more devices are being
connected. In June 2019 it was estimated that 57.3 percent (=4,4 Billion
people) of the world’s population are already connected [14]. To further
connect technologies like artificial intelligence with the physical world, more
and more sensor data devices are necessary. It is estimated that in 2020,
nearly 31 billion devices will be connected to the internet globally [14].

Unfortunately as of August 2019, many of these devices cannot be intercon-
nected and can only be accessed through their cloud provider. Examples
include the AWS IoT button 1, which can only connect to the AWS cloud,
Netatmo Smart Thermostat 2, which only works with Apple Cloud, Google
and Alexa. Further examples are The Honeywell thermostat 3, which uses a
proprietary cloud service and the smart cams from Xiaomi 4, which exclus-
ively communicates through their mobile app with their cloud service in
China.

Since all these sensors and actuators use different service management and
updates will become extremely complicated. That means it is impossible to
use a different data collector service nor interact directly in the data flow.
Some devices, like the Hunter Hydrawise 5 offer API access, but this further

1https://aws.amazon.com/de/iotbutton/ (Accessed on: 2018-09-30)
2https://www.netatmo.com/de-de/energy/thermostat/ (Accessed on: 2018-09-30)
3https://www.honeywellstore.com/store/category/thermostats.htm (Accessed

on: 2018-09-30)
4https://www.mi.com/us/index.html (Accessed on: 2018-09-30)
5https://www.hydrawise.com/ (Accessed on: 2018-09-30)
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1 Background

complicates IoT connectivity as data flow is not direct and every device uses
different API access methods.

The current world wide web was built upon open standards, which fueled
its growth and collaboration between different companies/services.

There will be over 75 billion devices connected in 2025 [18], these challenges
have to be solved. These devices will generate a massive amount of traffic
and it will be important, that the data collector scales well and is preferably
open source.

Despite these clustered environments, and since some devices may contain
sensitive private data they will have to comply with data regulations, like
the DSGVO from Europe [12]. However this does not affect all sensor data,
since only personalized data is subject to it. As it is likely that more and
more health-related data will be gathered, security of data transportation
has to be considered.

Even though most proprietary devices do not provide open communication,
there are promising communication protocols emerging. This leads to two
important concepts of how the device is managed and how the data is
transported.

1.1.1 Data Transportation

Data transportation is the means of how data passes from a source (sensor,..)
to the destination (usually a server). The transportation can be uni-directional
or bi-directional.

This means the TCP6 connection is closed and reopened again when the
new data is ready to be sent. (usually after a delay). This is not in real-time
and often more advanced protocols are necessary to enhance performance
and stability and keep the protocol overhead even smaller. Uni-directional
protocols are for example HTTP7 via a REST 8 request.

6https://tools.ietf.org/html/rfc793 (Accessed on: 2018-09-30)
7https://tools.ietf.org/html/rfc2616 (Accessed on: 2018-10-04)
8https://tools.ietf.org/html/rfc7231 (Accessed on: 2018-10-10)
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1 Background

There are more lightweight protocols which are meant to combat these
issues and can also provide bi-directional communication. The underlying
transportation layer is different and can be Bluetooth, TCP or any other
means of transmission. Protocols like Bluetooth provide some features, like
bluetooth Low Energy (BLE) while still needing a gateway on edge to act as
a broker for them. Still if sensor data does not need to be bi-directional it
can be very useful as it needs fewer memory and less energy consumption,
which can be critical for current embedded devices because they are usually
thin in both. Notable mentions, which provide the transportation on the
wireless layer include ZigBee and BLE. There are several protocols that are
based on TCP, such as Message Queue Telemetry Transport (MQTT)9 and
Constrained Application Protocol (CoAP)10. Several protocols are suitable
for IoT sensor data like MQTT, CoAP or more complete protocols like
IoT Bacnet 11. These protocols are based on the pub/sub model, where a
client/server can subscribe to various topics and clients can publish data
on these topics. These are more suitable protocols for IoT applications since
they additionally can guarantee data delivery through various service levels.
CoAP for example has two message types confirmable and non-confirmable,
while MQTT has several service levels according to QoS. But while CoAP
relies on a one-to-one communication between a server and a client, this is
in contrast to MQTT, as it can be used with many clients and servers.

1.1.2 MQTT

As MQTT relies on the pub/sub model, a client/server can subscribe to
various topics and clients can publish data on these topics. An example
of this pattern can be seen in Figure 1.1, where three clients connect to
a broker. In this example client one publishes sensor data and receives
commands whereas client two only subscribes and client three can actively
issue commands based on the topics. The message payload however has to
be negotiated upfront, whereas in CoAP they can be exchanged later.

9http://docs.oasis-open.org/mqtt/mqtt/v5.0/cs02/mqtt-v5.0-cs02.html (Ac-
cessed on: 2019-05-10)

10https://tools.ietf.org/html/rfc7252 (Accessed on: 2018-10-15)
11http://dingo-iot.io/iot-bacnet (Accessed on: 2019-05-10)
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For MQTT there are three service levels:

• QoS 0 (At most once) - best effort delivery is not guaranteed.
• QoS 1 (At least once) - messages are assured to arrive but could be

duplicated.
• QoS 2 (Exactly once) - messages arrive exactly once.

12

The latest version of MQTT 5.0 (Standard 02) was release on February 11,
2019 and has enhancement for scalability, and server disconnect notifica-
tions when there are problems regarding the connection. There is also an
addition to MQTT sensor devices called MQTT-sn, which is more suitable
for sensor devices. To also support devices, which do not rely on TCP for
transportation, there is an addition to the protocol called MQTT-sn, where
the sn stands for Sensor Network. This way it is possible to use UDP to do
the transportation. Not all MQTT based brokers support MQTT-sn, but if
devices such as Zigbee are needed inside the network, one must make sure
that it is supported.

Figure 1.1: MQTT publisher/subscriber model example with three connected clients

In 1.1, the MQTT publisher/subscriber model is visible, with three connected
clients.

12https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html (Accessed on:
2019-05-10)
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1.2 Orchestration

It was quite cumbersome to deploy an application to a production system,
as different libraries/dependencies have to be considered. Portability is
possible but takes a lot of space and often the entire Virtual machine (VM)
with all it’s additional services has to be exported. When making changes to
a running VM, changes can be hard to track because it involves the whole
operating system.

Often even a specific Linux distribution is necessary. Considering critical
tasks such as updates and high availability, addressing these issues can
get complicated to handle. To combat some of these issues mentioned
above, fully virtualized solutions where used to provide isolation on various
domains (data, storage, memory, CPU, network). Current major solutions
are VirtualBox, Hyper-V, KVM, Xen and VMware.

High Availability and Fault Tolerance could be taken care of but migration
from one system to another was still complex and costly as the running
state of the application would have to be replicated.

With integration of cgroups into the Linux kernel in version 2.6.24, resource
isolation for memory, CPU, disk and network were introduced. Further sep-
aration was achieved with Linux namespaces, which provide PID, network,
mount, UTS and user name space isolation. Isolated applications which
still can be run on the kernel are called containers. FreeBSD/chroot jails
provided many of the features but where not distribution independent.

This development lead to Orchestration, which is the process for applications
to run containers as an application packaging mechanism.

It should be a lightweight portable run-time, capable of developing, testing
and deploying applications to a large number of servers and the capability
to interconnect containers [25]. Furthermore It should be an abstracted pool
of resources and applications.

Containers should run autonomously, should be self-healing and should not
need any direction interaction. This is in contrast to previous applications,
where the state is not declarative but imperative.

5
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This is also the foundation of scalable software: Which Bondi, André B
defined as:

Scalability is the ability of a system to expand in a chosen di-
mension without major modifications to its architecture. Load
scalability is the ability of a system to perform gracefully as the
offered traffic increases. [7]

There are two types of scaling solutions vertical and horizontal. Whereas
vertical scaling is the approach of adding more capacity to a resource, like
CPU, memory, network. Horizontal Scaling is meant to add more physical
machines to expand the capacity of a cluster. But in contrast to vertical
scaling, orchestration has to be applied, since the load has to be managed
and balanced.

It was described by Byers, Charles Calvin and Salgueiro, Gonzalo and Clarke
and Joseph Michael[8] as:

Orchestration is the process whereby the resources of a complex
network are allocated, configured, and managed

In Orchestration systems, one declares how many containers should be
running and not where, nor do you need to specify any hardware specif-
ics. Constraints regarding CPU, network, memory can and should still be
declared but they are not manually assigned. Therefore vertical scaling is
more flexible as it expands beyond the capacity of a single machine.

It is in essence the pets vs cattle analogy, which was first mentioned by
Bill Baker in his presentation ”Scaling SQL Server” [5]. Pets are named
and should be nursed back when unhealthy, whereas cattle is counted in
numbers and can be shot when they become unhealthy.

In a presentation by Gavin McCance, named CERN Data Centre Evolution,
on slide 17 Gavin states

”future application architectures should use cattle but pets with
strong configuration management are viable and still needed.”
[23]

6



1 Background

Provider Searches News Stackoverflow issues stars

Kubernetes 10.800.000 197.000 10.744 2.202 44.506

OpenShift 3.700.000 41.900 5.321 311 6.311

AWS ECS 2.310.000 9.050 1.072 - -

Dcos+Mesos 1.860.000 6.590 1.474 - 6.027

Docker swarm 848.000 3.860 490 246 5.351

Nomad 53.100 297 46 397 4047

Table 1.1: Different Orchestration provider number of Google Searches13, Google.com/news
articles14, Stackoverflow.com questions15 and open Github.com issues16. This can
provide the popularity and maturity of the several orchestrators. The data was
collected on 14.9.2018.

Essentially this is one of the problems orchestration tries to solve, by main-
taining its servers where cattles can die anytime and scale-up/down easily
when necessary. VMs could be used to empathize this concept, but still
portability, performance and resource allocation is more practicable utilizing
containers. The popularity of current orchestration solutions can be seen in
Table 1.1. This clearly shows that Kubernetes is the most popular solution.
As this solution was used in building the open sensor data system, it will
be described in detail in the following pages, starting with the underlying
container solution, named Docker.

In Table 1.1 one can see different orchestration providers with their respect-
ive Google searches 13, number of Google news articles14, asked questions
on Stackoverflow 15, the number of open Github.com issues 16and times it
has been stared by developers on Github17. This gives a broad overview of
their popularity as well as how mature the provider is.

13https://www.google.com/search?q=keyword (Accessed on: 2018-09-30)
14https://www.google.com/search?q=keyword&tbm=nws (Accessed on: 2018-09-30)
15https://stackoverflow.com/questions/tagged/keyword (Accessed on: 2018-09-30)
16 https://github.com/reponame/issues (Accessed on: 2018-09-30)
17https://github.com/reponame (Accessed on: 2018-09-30)
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1 Background

1.2.1 Docker

Docker describes by saying it ”... powers millions of applications worldwide,
providing a standardized packaging format for diverse applications” [17].
It was first announced on March 21, 2013 at PyCon by Solomon Hykes
and it has captured more and more market share since. 18 Rated with over
51.k stars, Docker is by far the most popular Linux container runtime. The
second most popular interface in contrast, LXC has only 2.3k stars.

Listing 1.1 : Docker Instructions

FROM − s e t s the base f o r the image
RUN − executes a command
ENV − s e t s an environmental v a r i a b l e
LABEL − s e t s a l a b e l information f o r the image
EXPOSE − exposes ports form the c on ta in er
ADD/COPY − adds/copies a f i l e to the co nt a i ne r
CMD − run−time i n s t r u c t i o n f o r the program to execute
SHELL − overwri tes the d e f a u l t s h e l l
ENTRYPOINT − run−time i n s t r u c t i o n s f o r the binary to run
ONBUILD − build−time i n s t r u c t i o n s
ARG − build−time arguments
STOPSIGNAL − system c a l l when a c on ta in er e x i t s
HEALTHCHECK − heal th checks f o r the running co nt a i ne r
VOLUME − exposes a volume from outs ide the c on ta in er
WORKDIR − s e t s the working d i r e c t o r y of the c on ta in er
USER − UID and GID to be used f o r the running co nt a i ne r

Many solutions have been integrated with Docker to provide more special-
ized services on-top. The Docker application is used to create Docker images
to compress applications in a Dockerfile, which includes all the necessary
dependencies to run the application. In Listing 1.1 all available instructions
are briefly described. A base image can be used as a starting point for
an image, many major Linux distributions(Debian, Ubuntu, Fedora) have
their image hosted on Dockerhub 19 and are updated and maintained by

18https://www.youtube.com/watch?v=wW9CAH9nSLs (Accessed on: 2018-10-01)
19https://www.dockerhub.com (Accessed on:2018-10-01)
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1 Background

their creators. Even commercial Linux distributions like RHEL offer their
container images as a base image 20, but they need subscription.

Docker’s paradigm is similar to that of Java, write once run anywhere21, but
in contrast to Java, Docker containers can be used with many more Linux
based application and not only applications written in Java 22.

20https://access.redhat.com/containers (Accessed on:2019-03-15)
21https://tech-insider.org/java/research/1996/0123.html (Accessed on: 2018-09-

30)
22It is still possible to containerize Java applications though, and be independent of their

runtime environment or replace them depending on the need of license/performance/fea-
ture set of the JVM.
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Listing 1.2 : Sample Dockerfile

# b a s i c example for , which runs a python app
FROM python : a lp ine3 . 8 # a lp ine image f o r python
MAINTAINER C h r i s t i a n Noesterer vers ion : 1 . 0

COPY . /hostnameapp
WORKDIR /hostnameapp
RUN pip i n s t a l l −r requirements . t x t
EXPOSE 8000

CMD python ./ index . py

In Listing 1.2 we see a simple Dockerfile, which can be used to run a
Python application, after installing the relevant requirements from the
requirements.txt.

The generated image can be stored in a registry to be distributed. Many
applications provide maintained images, which are then pushed to Docker-
hub23. This is also the official registry where the Docker daemon searches
and retrieves images. Images can be either declared private or public. Every
image can also be given a tag which further identifies it. Common tags are
latest, which are often used as an identifier for the latest version release, and
the appropriate version numbers or names regarding that version. When
no tag is specified, the latest tag is used by default. Images can be further
identified by their Sha256 cryptography hash sum. A simple way to run a
multi tiered container application, is to utilize docker-compose 24). It uses
the YAML format to define the used images/ports developments and is an
easy way for testing, since multiple versions of the same application can be
used.

23https://hub.docker.com (Accessed on:2018-11-11)
24https://docs.docker.com/compose/ (Accessed on: 2018-01-11)
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1.2.2 Kubernetes

Kubernetes (from the Greek word kubernáō ”to steer” 25), also called k8s (8
characters), was first released on September 9, 2014 and most of the code
is written in GOlang. It is an open source container orchestration system,
which is currently being maintained by the Cloud Native Computing Found-
ation. The origin dates back to Google Borg [28]. Many core developers of
Kubernetes where working with Google Borg 26 and wanted to bring this
new concept to the open source community.

Though it is a complex system, every component has its purpose and is
needed. Initially it was hard to setup, but the ecosystem has evolved since
then and more and more resources are available. In the following pages, the
focus will be on the core components, which are absolutely necessary for
a Kubernetes cluster. Additional components that enhance the Kubernetes
even further (and are sometimes essential for stability and maintainability)
are then briefly described in 1.2.2.6.

The CNCF27 describes Kubernetes as:

”... as an open source system for managing containerized ap-
plications across multiple hosts, providing basic mechanisms for
deployment, maintenance, and scaling of applications. 28

These individual machines are called nodes (see Figure 1.2) and can host a
variety of different services. Depending on the role of the node it can either
be a master or a slave node.

25http://www.perseus.tufts.edu/hopper/text?doc=Perseus:text:1999.04.0057:

entry=kuberna/w (Accessed on: 2018-01-11)
26https://kubernetes.io/blog/2015/04/borg-predecessor-to-kubernetes (Ac-

cessed on: 2018-10-11)
27Cloud Native Computing Foundation https://www.cncf.io (Accessed on:2019-02-10)
28https://kubernetes.io/docs/home (Accessed on:2018-09-30)
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1 Background

1.2.2.1 Nodes

Figure 1.2: Kubernetes node [3]

Master nodes coordinate the state of the cluster. They include services such
as:

• Kube-apiserver

– exposes the Kubernetes API 29

• Controller-managers 30

– this includes the replication/endpoint/namespace controller.
– they update the current state to comply with the desired state.

• Kube-scheduler

– check nodes which meet criteria (healthy,..)

29https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.12/ (Ac-
cessed on: 2018-10-30)

30https://kubernetes.io/docs/concepts/overview/components/ (Accessed on:
2018-10-30)
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Worker nodes run the following services:

• Kubelet

– receives requests to run a container

• Etcd

– a highly available distributed key value store to store all the
configuration for the cluster

Additionally some services should run on all nodes. These include:

• Kube-proxy

– a network proxy, for networking services

• a OCI31 compliant container runtime

– The most popular is Docker but rkt, runc and OCI compliant
runtimes can be used too

1.2.2.2 Pods

Pods is an abstraction for a group of applications running inside a container.
32 As seen in Figure 1.2, pods run inside a node.

They are ephemeral and, if needed a persistent storage volume can be
attached to them in case, for example, the pod dies unexpectedly, is being
updated or is rescheduled somewhere else inside the cluster.

31OCI Image Format - https://github.com/opencontainers/image-spec (Accessed
on:2018-10-01)

32https://kubernetes.io/docs/tutorials/kubernetes-basics/explore/

explore-intro/ (Accessed on:2019-07-10)
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1.2.2.3 Objects

Kubernetes objects are the representation of the objects inside a Kubernetes
cluster. Available objects include pods, services, deployments, daemonsets,
namespaces and ingresses. They will also be defined in the following chapter
regarding the Kubernetes API (1.2.2.4).

These are declarative and written in either JSON or in the YAML33 format.

Listing 1.3 : Sample Service in YAML

kind : S e r v i c e
apiVersion : v1

metadata :
name : sample−s e r v i c e

spec :
s e l e c t o r :

app : sample−s e r v i c e
ports :
− protoco l : TCP

port : 80

t a r g e t P o r t : 8080

The following items can be declared:

• object specifications,metadata (can be used to query and select and
abstract further – for example via a service)
• abstractions for objects running on the system
• resource limitations
• policies (restart policies, upgrades, fault-tolerance)
• object specific definitions 34

33YAML Ain’t Markup Language - It is a human-readable format, often used for
configuration. http://yaml.org/ (Accessed on: 2018-10-10)

34https://kubernetes.io/docs/concepts/overview/working-with-objects/

kubernetes-objects/ (Accessed on: 2018-10-30)
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1.2.2.4 API

The Kubernetes API [2] provides full access in managing the cluster. It can
be accessed via kubectl, using any HTTP client or utilizing a frontend UI
in the Kubernetes-dashboard. It is a full REST endpoint to manipulate the
different types of objects in the cluster.

Supported authentication modes are client certificates, bearer tokens, an
authentication proxy, HTTP basic auth (Bearer Token) or simple password
authentication. Additional authentication modes can be used via a addi-
tional proxy such as LDAP, SAML, Kerberos or an alternate x509 schemes.

Services can also get access to the cluster via the api-server, first issuing a
CertificateSigningRequest, where service, namespace, groups and usages35

36 are defined.

Listing 1.4 : Rbac authorization object with list access to the namespace object

kind : Role
apiVersion : rbac . a u t h o r i z a t i o n . k8s . io/v1

metadata :
namespace : d e f a u l t
name : datasense−a c c e s s

r u l e s :
− apiGroups : [ ” ” ]

resources : [” namespaces ” ]
verbs : [” l i s t ” ]

All authenticated requests are authorized based on either a Role Based
Access Control37 or Attribute Based Access Control 38.

35https://tools.ietf.org/html/rfc5280#section-4.2.1.3 (Accessed on: 2018-10-
30)

36https://tools.ietf.org/html/rfc5280#section-4.2.1.12 (Accessed on: 2018-10-
30)

37https://kubernetes.io/docs/reference/access-authn-authz/rbac/ (Accessed
on: 2018-10-30)

38https://kubernetes.io/docs/reference/access-authn-authz/abac/ (Accessed
on: 2018-10-30)
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Requests from kubelets can be further restricted when utilizing the NodeRes-
triction plugin 39. Read/write/auth related operations can also be further
restricted 40.

In the resources section the resources are defined, while relevant access
methods for example ”get” and ”list” can be defined in the verbs field. An
example of this is shown in Listing 1.4.

There are APIs for:

• Workloads (Container, Cronjob, Daemonset, Deployment, Job, Pod,
Replicaset, Replicationcontroller and Statefulsets)
• Discovery and Load Balancing (Endpoints, Ingress, Service)
• Config and Storage (Configmap, Secret, PersistentVolumeClaim, Stor-

ageclass, Volume and Volumeattachment)
• Discovery Events, ClusterOperations (Node, Roles, Rolebinding, Bind-

ing, ApiService) 41

These can either be write operations (create, patch, replace and delete), read
operations (read, list, watch), status operations (patch, read, replace) or misc
operations (read, replace, patch) for each of these APIs. A comprehensive
list of all the endpoints can be found at the official documentation 41.

39https://kubernetes.io/docs/reference/access-authn-authz/node/ (Accessed
on: 2018-10-30)

40https://kubernetes.io/docs/reference/access-authn-authz/authorization/

(Accessed on: 2018-10-30)
41https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.15 (Ac-

cessed on:2019-06-20)
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1.2.2.5 Data Persistence

For data to persist, it is important to store it somewhere safe. Several things
have to be taken into consideration, like how many copies of the data are
kept, if the data has to be highly available, and which storage backend to use.
In Kubernetes, as mentioned before data is only ephemeral but persistence
can be reached utilizing a PersistentVolume. This is important since docker
containers, which are used as pods can be relocated anytime from one node
to another. This could be either in the case of not enough resources or a
node failure.

A pod can claim a volume by requesting a PersistentVolumeClaim.

There are several plugins that support different types of volume providers.
Some of them are Flocker, NFS, iSCSI,... 42.

As of Kubernetes Version Version 1.9, a Container Storage Interface was
defined 43, which makes integration for volume providers easier as well
as providing a full lifecycles implementation for these volumes (creation,
deletion,...) 44.

1.2.2.6 Applications

Optional but very useful services which should run on any Kubernetes
cluster are:

• fluentd 45

– a logging agent, which aggregates log files from services running
inside the cluster.

42AWSElasticBlockStore, AzureDisk, AzureFile, CephFS, Cinder (OpenStack block stor-
age), GCEPersistentDisk, Glusterfs, NFS, Quobyte Volumes, RBD (Ceph Block Device),
StorageOS, VsphereVolume, iSCSI [4]

43https://kubernetes.io/blog/2018/01/introducing-container-storage-interface/

(Accessed on: 2018-10-30)
44https://github.com/container-storage-interface/spec/blob/master/spec.md

(Accessed on: 2018-10-30)
45https://www.fluentd.org (Accessed on: 2018-10-30)
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– It is often used in combination with Elasticsearch 46

• nginx-ingress 47

– the ingress controller based on NGINX, which makes it easy to
deploy a load balancer and manage ingress resources

46Elasticsearch is a search engine based on Lucene - https://www.elastic.co/

products/elasticsearch (Accessed on: 2018-10-30)
47https://github.com/kubernetes/ingress-nginx (Accessed on: 2018-10-30)

18

https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch
https://github.com/kubernetes/ingress-nginx


1 Background

Figure 1.3: Kubernetes dashboard [3]

• Kubernetes-dashboard

– is a simple web UI to control and manage a Kubernetes cluster.
– it shows the workload (CPU/Memory usage) for individual

nodes, as well as specific services running inside the cluster.
– a screenshot of the latest version as of July 11, 2019 (v2.0.0-beta1)

can be seen in Figure 1.3

• Registry 48

– provides mechanism to store and retrieve container images.
– in some cloudproviders, like AWS,GKE,... this is often integrated

into their proprietary Kubernetes cloud system.

48https://hub.docker.com/_/registry/ (Accessed on: 2018-10-30)
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– two additional registry services are Quay49 and Dockerhub50.
– they provide supplementary options like: container vulnerabil-

ity scanning, auto-deployment and more extensive authentica-
tion/authorization options.

• Kube-dns 51

– provides DNS to be used inside the cluster for name resolution
of services.

• Heapster

– is a monitoring solution best used in combination with Grafana,
which visualizes the metrics and provides analytics & dashboards.

As Kubernetes has even been called the New Linux [19], a package manager
has to exist to maintain packaged software. This includes the full lifecycle of
a software in their production environment (install, update, delete). Besides
that a central repository should exist where all the packages are safely
stored, preferably in conjunction with a cryptographic signature to avoid
tampering. The current and only package manager, which satisfies these
constraints is called Helm 52. It has two components the client (helm) and
the server component (Tiller).

Packages are called charts. There is an official repository, where as of July
14, 2019, 278 packages are available. 53 Furthermore there is an incubator54

repository where as of July 14, 2019, additionally 60 charts are available.

1.2.2.7 Installation

Installation was cumbersome at the beginning when Kubernetes was still in
an early alpha version (pre version 1.4). Since the introduction of Kubeadm

49https://quay.io/ (Accessed on: 2018-10-30)
50https://dockerhub.com (Accessed on: 2018-10-30)
51https://kubernetes.io/docs/concepts/services-networking/

dns-pod-service/ (Accessed on: 2018-10-30)
52https://helm.sh (Accessed on: 2018-10-30)
53https://github.com/helm/charts/tree/master/stable (Accessed on: 2018-10-30)
54https://github.com/helm/charts/tree/master/incubator (Accessed on: 2018-10-

30)
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in version 1.4.0, Kubernetes provided an easier way in setting up clusters. It
was designed to provide a minimum viable platform to build upon.

Many optional applications described in 1.2.2.6 are not included but should
gradually build upon.

There are many more options to deploy Kubernetes ready cluster, like with
Kubespray a tool, which is used to deploy a production ready cluster to
major cloud platforms like GCE, AWS 55 56.

Other automated deployment tools for Kubernetes include: Kubespray56,
Kops57, hypercube 58, kube-aws59 and kubicorn60.

Listing 1.5 : Sample Terraform provider configuration

provider ”aws” {
access key = ” t e s t ”
s e c r e t k e y = ” t e s t ”
region = ”us−west−1”

}

One solution which is exceptionally useful in this context is Terraform 61.

As of 14.July 2019 over 106 cloud providers can be used to deploy an
Terraform configuration. A simple configuration can then be used to define
the authentication steps needed for that particular cloud provider, as seen
in Listing 1.5. It is a infrastructure as code utility to roll out new server
configurations. It can be used to create, update, destroy or modify the cluster
and can even provide tooling for generating a graphical representation of
the cluster.

Some automated deployment tools (Kops, Kubespray) can even generate
Terraform output.

55AWS, GCE, Azure, OpenStack, vSphere, Oracle Cloud Infrastructure or baremetal
56https://github.com/kubernetes-sigs/kubespray (Accessed on: 2018-10-10)
57https://github.com/kubernetes/kops (Accessed on: 2018-10-10)
58https://github.com/kubernetes/kubernetes/tree/master/cluster/images/

hyperkube (Accessed on: 2019-02-20)
59https://github.com/kubernetes-incubator/kube-aws (Accessed on: 2018-11-20)
60https://github.com/kubicorn/kubicorn (Accessed on: 2018-11-20)
61https://terraform.io (Accessed on: 2018-10-30)
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What is further in need is some kind of configuration management software
like (Ansible 62, Puppet63 or Chef64) to deal with the underlying OS and
keep the nodes updated. This can also depend on which Linux distribution
Kubernetes is deployed on.

62https://www.ansible.com/ (Accessed on: 2018-11-05)
63https://puppet.com/ (Accessed on: 2018-11-05)
64http://www.chef.io/ (Accessed on: 2018-11-05)

22

https://www.ansible.com/
https://puppet.com/
http://www.chef.io/


1 Background

1.2.2.8 Network

1.2.2.9 Security

CVE-2018-1002105 was one of the first major security flaws in Kubernetes.
It was possible to gain access to the cluster through the API server and
perform a privilege escalation. The cloud native foundation published a
security best practice on January 14, 2019 to enhance security to defend
against unauthorized data access.

These are the following advices:

• Upgrade to the Latest Version
• Enable Role-Based Access Control (RBAC)
• Use Namespaces to Establish Security Boundaries
• Separate Sensitive Workloads
• Secure Cloud Metadata Access
• Create and Define Cluster Network Policies
• Run a Cluster-wide Pod Security Policy
• Harden Node Security
• Turn on Audit Logging [10]

Furthermore the underlying container platform should also be secured
properly. In a recent hack on January 14, 2019

65, security researchers gained
access to the underlying host kernel of a popular platform named play-with-
docker.com, this was due to improper configuration the privileged container.
In [1] Brendan Michael Abbott described in chapter 4.1 more methods how
to properly secure Container Images.

65https://threatpost.com/hack-allows-escape-of-play-with-docker-containers/

140831 (Accessed on: 2019-01-20)
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1.3 Databases

When many sensors are utilized and they sent their values in a very short
time frame it is necessary to be able to aggregate this data or infer new
knowledge through artificial intelligence. Additionally, it has to be stored
somewhere, if the processing is not done in real-time. For intelligent al-
gorithms more data means more data process, which in turn can than be
used to improve the algorithms efficiency and predictive capabilities.

This poses many challenges such as clustering to gain high availability,
storage of data, searchability, processing capabilities and how to deal with
unknown data structures.

For structured data storage, first there were structured databases such as
SQL, which was first introduced by IBM in 1974 [9] provided an easy way
for data manipulation but still needed a database schema upfront to be able
to work with data. Problems arise if data is not known or unstructured,
which can be in the case of sensor data, when, for example multiple vendors
are used and therefore data cannot be manipulated.

To the rescue NoSQL solutions re-gained popularity in the last few years due
to the fact that it can deal with large amount of data and is also designed
to be schema-less, often at the cost of disk space (as data is often stored in
JSON). Furthermore NoSQL databases often provide features like sharding,
horizontal scalability, like with MongoDB for example.

Contrary to what one would believe NoSQL is even older than SQL, as it has
been around since the 1960s [22], but the difference is that disk space was
more precious back then. As consistency of NoSQL databases and partition
tollernace is not an issue with modern NOSQL solutions availability of data
at all the time is. These principle can be explained according to the Brewers
CAP Theorem, which holds true for all distributed systems currently known.
It states that it is not possible for a distributed system that it simultaneously
has two out of the three desired quantities, namely consistency, availability
and partition tolerance. This holds also true for any database and depending
on the need a trade off has to be made.
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1.3.1 NoSQL

NoSQL can have different features as there are different use cases and
business needs. On November 9, 2009, Steven Yen gave a presentation and
declared nine different types of taxonomy of databases [11].

These are the following:

• key-value-cache
• key-value-store
• eventually-consistent key-value-store
• ordered-key-value-store
• data-structures-server
• tuple-store
• object-databases
• document store
• wide column store

[11]

For sensor data the most popular ones are either wide column stores/key-
value stores or document stores, since they have the most features relevant
to storing and sensor data. More IoT Specific NoSQL solutions often incor-
porate features such as data compression/data cleanup features, connectors,
resampling, aggregators and much more.

Timestamped data is one of the things any of these systems has to deal
with in regards to sensor data. More optimized solution exist in this context
when dealing with time series data called time series databases.
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1.3.2 Time Series Databases

Time series databases (TSDB), are a wonderful way when dealing with
timestamped data, since they integrate many features that make it easier to
deal with this kind of data. Often data can be further aggregated with avg,
sum or rate functions.

Some offer compression for efficient storage and different kind of periodicity
for the granularity of data. Usually they offer additional visualization to
arrange the aggregated data. Downsampling of large amounts of data can
furthermore increase data storage efficiency and make it easier so that the
data can be used in calculations. In 3.8.3 different kinds of time series and
NoSQL databases were evaluated, which can fit in the context of this thesis.
Several different Query languages can also be used to consolidate and
aggregate data. While this is often somehow similar to SQL it still is very
unique to each time series database.

1.4 Microservices

For orchestration to work, an application has to be prepared to meet certain
components to be integrated. One document which describes some pro-
found steps in meeting these criteria is ”The twelve factor App” by Adam
Wiggins.

It is based on user experiences and observations on a wide variety of
software-as-a-service apps in the wild.

Adam Wiggins, who co-founded Heroku 66, developed a modern method-
ology which is independent of the programming language and describes
some core principles needed for any application to survive in the cloud area.
Many of these factors are essential for Kubernetes, as otherwise scaling
up and down can be impossible. Its twelve factors are described in the
Twelve-Factor App, which as of December 21, 2018, has been translated into
13 languages and is also found online 67.

66https://heroku.com (Accessed on: 2018-10-30)
67https://12factor.net (Accessed on: 2018-12-10)
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1. Codebase - one codebase with revision control and many deploys
(production, staging, etc.). Local and production should not differ.

2. Dependencies should be explicitly declared and dependencies isolated.
3. Config - should be stored in the environment - a strict separation of

code vs config is enforced.
4. Backing Services - backing services are treated as attached resources.
5. Build, release, run - separated build and run stages.
6. Processes - the process is stateless and persistent data is stored in a

backend.
7. Port binding - services are exported via portbinding.
8. Concurrency - scaling out via the process model.
9. Disposability - robustness and fast startup and handled graceful shut-

down.
10. Development /production parity - keep deployment and production

as similar as possible.
11. Logs - logs should be treated as streams, the collection/storage should

not be the concern of the application.
12. Admin processes - admin/management tasks are one one-off pro-

cesses.

[29]

The same local and production deployment environment can be achieved in
a Kubernetes system, utilizing a declarative installation/run routine using
Dockerfiles.

Dependencies can be declared in the Dockerfile using the specific package
manager for a particular programming language (npm for Node.js, pypi for
Python, CPAN for Perl, ...).

System-wide declaration would be possible if many dependencies are
needed (Xorg, QT,..) but is strongly discouraged. As applications lifecycle
are often integrated into a continuous integration system many different
versions of the same app with different configuration are needed. Persistent
data can be stored in a Kubernetes application using Persistent Volumes
68.

68https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.15/

#persistentvolume-v1-core (Accessed on: 2019-03-15)
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Ports are exposed in a Dockerfile using the EXPOSE command. Afterwards
this can be used in a Kubernetes service to either expose it internally or
outside of the cluster using a load balancer.

In a Kubernetes application this can be achieved using ConfigMaps 69 .
Concurrency in Kubernetes can be handled via a Deployment, ReplicaSet,
StatefulSets or Daemonset as processes are stateless and data is shared using
a backend.

Kubernetes deployments can be started quickly as their are not occupying
any additional resources and are not full blown VMs.

Many lifcycle methods can trigger events in the case of a container creation
or termination. 70. Graceful shutdown can be handled using the PreStop
hook, this command is called immediately after the container is terminated.
The command is blocking and should let the container cleanup any leftovers
before a graceful shutdown.

Sometimes a simple sleep command can be used, but this is not encouraged
as it is non-deterministic and often leads to more bugs. If the application
was started using a process manager like for example NGINX or Apache
their respective graceful shutdown periods should be used.

Containerized applications should use STDout/STDErr to communicate
their state as logs can be collected and aggregated in a Kubernetes system. A
logging driver, which is a set of applications can be used to enhance logging
in a Kubernetes cluster. In a live environment The EFK stack (Fluentd71,
Elasticsearch and Kibana 72) can be used to collect, search and visualize the
collected log data.

Admin/Management tasks can be run using Jobs 73, which can be run in

69https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.15/

#configmap-v1-core (Accessed on: 2019-03-15)
70https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/

(Accessed on: 2019-03-15)
71https://www.fluentd.org/ (Accessed on: 2019-03-15)
72https://www.elastic.co/products/elastic-stack (Accessed on: 2019-03-15)
73https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.15/

#job-v1-batch (Accessed on: 2019-03-15)
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1 Background

parallel if needed. A CronJob 74 can be used to reschedule recurring jobs.

In Kubernetes Deployment livenessProbe, readinessProbe and a lifecycle
method can be used to recreate services depending on their availability.

1.5 Web Frameworks

Since the first website was posted on August 6, 1991 by Tim Berners-Lee 75

the web changed in many different areas.

As of June 14, 2019, 201 different web frameworks are listed by 76, this is in
stark contrast to the web 1.0 where there was not even JavaScript around.
Since March 28, 2013, TechEmpower run 18 benchmark rounds in regards
to performance on these web frameworks.

Tests include:

1 JSON Serialization
2 Single Query
3 Multiple Queries
4 Fortunes
5 Data updates
6 Plaintext

What stands out is the fact that all of the top 10 frameworks are processing
requests in a reactive manner, which means they have a way of processing re-
quests in a non-blocking way. This is in essence the functional asynchronous
pattern.

74https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.15/

#cronjob-v1beta1-batch (Accessed on: 2019-03-15)
75https://www.w3.org/People/Berners-Lee/1991/08/art-6484.txt (Accessed on:

2019-03-15)
76https://www.techempower.com (Accessed on: 2019-07-23)
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2 State of the Art

To find related research, a search was carried out via the meta paper search
engine Google Scholar. The following keywords were used ”Kubernetes Iot”,
”container IoT”, ”internet of things container”, ”iot orchestration”, ”paas iot
container”, ”IoT orchestration” and ”blockchain IoT”.

Additionally a manual reverse reference searches from the initial research
was performed.

From the over 59560 results, the most recent from the year 2018 and 2019

(76960 results) were considered, to further restricting the results only the
first 50 search results per keyword were considered. The relevant/related
scientific papers were structured into Weakly related and papers with a
strong correlation to this thesis. Furthermore research was conducted to see,
what commercial solutions/open source are out there and how they are
related to Datawiz.

Weakly Related - Benchmarking:

Weakly related papers were [27], which is a study of Linux Containers and
their ability to quickly offer scalability for web services focuses on scaling
and benchmarking of web services. MLN(openstack) was benchmarked
against Kubernetes utilizing HTTP (Apache 2.4.7) and SQL (MySQL 5.5)
traffic. Benchmarking was done using a custom Python script. It showed
that Kubernetes is 2x faster than mln(openstack). It has however no strong
IoT context.

Weakly Related - Edge computing:

In [20] Asad Javed created a Container-based IoT Sensor Node based on
Raspberry Pi and the Kubernetes Cluster Framework,which focuses on
a container based IoT platform based on the Raspberry Pi. It used five
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2 State of the Art

Keyword Results total Results 2018 Results 2019
Kubernetes IoT 1260 802 343

container IoT 21200 8210 3280

“Internet of things” container 26200 11500 4400

Paas IoT container 3400 1510 568

IoT orchestration 10600 4780 1930

blockchain IoT 14300 9500 4560

Table 2.1: Different Orchestration provider number of Google scholar results.

Raspberry Pi 2 with a network switch, collecting temperature and camera
data and aggregating the data using Apache Kafka framework. A test
regarding fault-tolerance and high availability was performed in the end.
While Raspberry Pi is still one of the cheapest microcomputer available, it
still is way more expensive than cheaper microcontroller like ESP8266.

Another implementation using the Edge Computing Architecture was per-
formed by Kristiani Endah et al. [21] . They evaluated three layers, Cloud
side, Edge side, and Device side and created a Edge Gateway to increase
performance and reduce bandwidth.

Strongly Related - Iot platforms:

GENESIS is strongly related to the work as it provides a full platform [13]
for orchestration and deployment of IoT systems. It uses a code generator
and Node-RED containers to facilitate data flow management. As a storage
engine it uses CouchDB for storage but it is not cloud based as they deploy
their components microprocessors like the Raspberry Pi. FRED [6] is a
platform, hosting multiple Node-RED instances with a provided MQTT
service and storage utilizing InfluxDB. In the paper in [6] however, they do
not provide more detailed information regarding their orchestrator, as it
was only mentioned as an open research question for them. In his Master’s
Thesis, Mikko Yliniemi developed a Node.js based system for monitoring air
quality called Co2.io [30]. Docker Swarm was used to scale out the system
and in the end an evaluation of gathered air quality data was performed.
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2 State of the Art

Platform IoT Applications device generator open source IOT specific Intelligence

Datawiz 6 yes yes yes via Ludwig/Nupic

IBM Bluemix 11 no no no via Watson

Thingspeek 4 no no yes no

Fred 3 no no yes no

Tag.IO 6 yes no yes yes

Ubeac 4 yes no yes yes

Devicehive 7 yes yes yes audio/video analysis

Mainflux 9 yes yes yes -

Table 2.2: Different commercial IoT platforms features VS Datawiz

Strong related - Open Source/Commercial IoT platforms

The following commercial projects/open source projects were evaluated,
based on their feature set seen in Table 2.2 While commercial projects
like IBM Bluemix offers additional features that are not IoT specific, it is
proprietary and therefore not possible to use it on an existing cluster/server
infrastructure. Mainflux offers advanced features like multiple protocols,
and ACL and deployment via Docker/Kubernetes. It is also part of the
Linux Foundation and actively developed.
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3.1 Preliminary work

First I started to implement the web application using the Meteor framework,
this offers some nice features for real-time showcasing but does not scale
well. After upgrading the Meteor library1 it did not compile anymore
due to some screwed up dependencies and issues with the evolving react
framework emerged.

React2 needed a data store to make it extensible and since this took many
hours of working through but in the end this simply defied the case of
being offering a framework which is extensible. The persistence layer of
NoSQL on a storage level was moreover not ideal, as it posses risks to data
consistency and database design.

When the thesis began, CoreOS was completely open source and one of
the distributions which made it easy to use Kubernetes and although the
setup was quite complex, with not many ways to automate it got a full
one node cluster working. However since this was still partially a vendor
lock-in, unfortunately CoreOS was then acquired by RedHat Inc. on January
30, 2018

3 and documentation was not updated anymore.

This created additional problems since Kubernetes did not have the most
recent version, therefore many things did not work as expected. One of
them was the package manager helm, but also ingresses evolved in many
ways, which broke things.

1https://www.meteor.com/ (Accessed on: 2019-02-20)
2https://reactjs.org/ (Accessed on: 2019-02-20)
3https://redhat.com/en/blog/faq-red-hat-acquire-coreos (Accessed on: 2018-

03-30)
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Additionally since CoreOS was only ”Free for use” for up to 10 nodes this
was not acceptable as a requirement, since it is technically not open source
anymore and scaling beyond that limit simply does not work with the open
source version.

It was than decided to solve this vendor lock-in by utilizing Terraform, so
that it can be independently deployed and provide a more vendor neutral
approach.
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3.2 Overview

Figure 3.1: Datawiz - High level overview

Datawiz [combination of Data and Wizzard] is an approach to provide a
IoT based sensor data framework based on open source technologies. In the
core it is based on three different parts:

• Kubernetes with a chosen storage driver and several components to
enhance system maintainability
• The UI - a web application based on the Act framework to provide

sensor and application management
• Various selected evaluated user applications to help provide a full

data flow from the sensor input layer over to the data flow processing
layer, a data persistence layer and a data processing layer.

For each of the layers evaluated applications and reference hardware is
provided to fully show the integration into Datawiz.
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Datawiz is a framework especially for sensor data to provide the follow-
ing:

• a code generator for various sensors to be integrated into the data
Flow
• isolation for different users
• integrate open source applications for data flow integration and pro-

cessing
• provide a database backend to save aggregate data
• provide open source computing applications
• provide performance tested data transport layer integration (HTTP,

MQTT)

All basic parts will be scalable and failsafe, so that in an event of a server
failure data will not get lost. This is guaranteed with a storage layer which
provides high availability and failover.

Furthermore the included parts are: a load balancer, the WebUI, a database
and a MQTT server with exceptions of some user running applications (the
data is persistent though). It is easily scalable, as it will be built on top of
Kubernetes and use its features to harness this power.

In production environments deployment and operations are often separated.
This can get even more complicated if the production and development
environment is managed by different people.

To make Datawiz easily deployable the existing Terraform script from Stefan
Prodan was adopted. 4

4https://github.com/stefanprodan/k8s-scw-baremetal (Accessed on: 2019-02-20)
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3.3 Setup

3.3.1 Local development environment

For local development k3s5 was used, since it is rather lightweight and
facilitates testing/deployment and development on the local machine.

A Three Node Kubernetes cluster can be created with commands seen in
3.1.

Listing 3.1 : K3s creation of development cluster

kind c r e a t e c l u s t e r −−name datawiz −−conf ig conf ig

This setup still had some issues, like the multi server setup and for the
docker in docker approach the storage layer could not be tested well. This
ranged from permission issues to kernel module support on the host system
and many more. Furthermore whenever the host system was connected to
a new network, the clusters network configuration was messed up and at
least the multi-server approach did not work anymore.

That meant at least for evaluation purpose that more hardware or a cloud
based setup was needed to evaluate various scenarios and test the perform-
ance of the different components.

3.3.2 Remote Setup

The remote setup is done via Terraform on the Scaleway cloud6 . The
Terraform script from Stefan Prodans 4 served as a basis.

Four bare metal instances were create with one master and three worker
nodes. The nodes have the following hardware specifications:

• 4x nodes (One master node and three worker nodes) scaled up to nine
worker nodes

5https://k3s.io/ (Accessed on: 2019-04-30)
6https://cloud.scaleway.com (Accessed on: 2019-04-30)
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• CPU: 64bit Intel(R) Atom(TM) CPU C2550 @ 2.40GHZ
• Memory: 8GB DDR3 1600Mhz
• OS: Ubuntu 18.04.2 LTS 7

• 50 GB SSD (for OS/ephemeral Docker image storage)
• 300MBit network connection
• 25GB additional disk for storage for storage driver

The system was then used to load test the cluster under several scenarios.
This is further described in chapter 4.

After approximately five minutes the master node of the cluster was up and
ready with all the kernel modules loaded and ready to install Datawiz onto
it. The creation of additional node took five to six minutes and can be done
simultaneously.

If a node is not responding to the Kube API Server in a time frame of 5

minutes (which is the default value), the pods on this node are migrated to
another node. This threshold however can be configured to suit the needs
of the cluster. For example, if a quicker failover for user based applications
is needed the threshold should be set lower.

The following kernel modules are needed to be enabled for user file storage
and the persistent volume claims inside the cluster.

• target core mod
• tcm loop
• target core file
• configfs

To show detailed cluster utilization of memory/network and CPU and
many more metrics Grafana in combination with Prometheus was used.
Prometheus is a monitoring and alerting solution, which supports a wide
range of server metrics. Additionally, it supports more features, like alerting
and visualization as it is also a time series database but these features were
not used for server monitoring purposes. Grafana is a popular dashboarding
solution used in combination with Prometheus to show these metrics.

7http://releases.ubuntu.com/18.04 (Accessed on: 2019-04-30)
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There are official helm charts for both software 8 9. Grafana’s store provides
a wide range of dashboards submitted by their users. In the context of
Kubernetes it is a great way to give a good overview of cluster utilization of
all the various server metrics, as well as per Node utilization.

Besides it is possible to even get detailed data from a per Pod basis. Of
particular interest is the dashboard from mjsjinsu 10, which captures all
these metrics from Kubernetes. There is even an official Kubernetes addon
from Grafana, which captures even more metrics 11.

8https://github.com/helm/charts/tree/master/stable/grafana (Accessed on:
2019-04-30)

9https://github.com/helm/charts/tree/master/stable/prometheus (Accessed on:
2019-04-30)

10https://grafana.com/grafana/dashboards/6772 (Accessed on: 2019-04-30)
11https://github.com/grafana/kubernetes-app (Accessed on: 2019-04-30)
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3.4 Components

Datawiz is an approach to create a open sensor data framework, which is
solely built upon open source components. It is built upon various open
source components that let the user user choose from a range of applications
to integrate their sensors and provide a full dataflow from input to output.

This includes a reference hardware (ESP8266 (input, output)), a data flow
management solution (Node-RED), data transport mechanisms and a pro-
cessing application to generate implicit knowledge.
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name performance high availability package released

ceph 14.2 MB/s yes via rook.io 2012

longhorn 16.5 MB/s yes yes 23.3.2018

openebs 13.9 MB/s yes yes 7.4.2017

local (dd) 200.2 MB/s - -

remote (ssh dd) 33.4 MB/s - -

Table 3.1: Various data storage solutions for Kubernetes.

3.5 Storage Layer

Different storage layer solutions exist to provide persistent storage for
application run inside the cluster as well as for user based applications. This
includes applications which request storage via a Persistent Volume Claim
reclaim the space needs for any application data. Application data include
database storage from the NoSQL and SQL databases as well as the data
of user specific applications such as Node-RED or a CI application. Based
upon further investigation storage solutions, which can be seen in Table 3.1
were evaluated.

First Longhorn12 was further examined, since it showed promising perform-
ance but unfortunately for every volume there has to be a pod running and
because many user applications are running on the cluster this seemed not
the best solution for that use case.

Additionally after a loadtest, volumes became unhealthy and they could
not be fixed automatically and needed manual interventions. Since it is
one of the youngest projects evaluated, it looks promising in regards to
configuration needed, but it was not usable under these conditions. Ceph,
on the other hand, is quite mature in that regards and was used to scale to
16 exabyte and beyond according to Red Hat 13.

12https://github.com/longhorn/longhorn (Accessed on: 2019-04-30)
13https://docs.ceph.com/docs/master (Accessed on: 2019-04-30)
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Framework Single Query (tm) Single Query (cl) Multiple Queries Update Language Github *

Vert.x-web 656.272 12.219 1338 653 Java 608

Actix 572.115 17.744 1287 763 Rust 2916

swoole 461.819 8.208 671 186 PHP 13576

cpoll 409.617 11.219 - 197 C++ -

Jooby 357.775 7.915 780 634 Java 1056

undertow 349.116 9.097 779 623 Java 2421

Ulib 260.154 12.133 1036 1033 C++ 789

micronaut 54,850 7990 1076 407 Java 2426

See the items in S.1 S.2 S.3 S.4 S.5 S.6 in section 1.4 for a detailed explanation
of the performed test cases.

Table 3.2: Top web frameworks sorted by Single Query

3.6 User Layer - Use Cases & Requirements

The web application is written in Java based upon Vert.x-web14, which
itself is based upon Eclipse Vert.x15. JSON Web Token 16are used to provide
session information to be used across multiple instances. Authentication/au-
thorization of provided resources is further based upon the token. Vert.x
uses an event loop, to handle requests in a reactive way, meaning it can
handle incoming requests simultaneously without blocking each other.

The UI (main shown in Figure 3.4) is a screenshot of the main view of the
application. This test was performed on one machine with the hardware
specifications described in section 3.3.2. The benchmark was conducted on
May 18, 2019 and it took a total time of 84 hours 18 minutes and 36s for
benchmarking program by TechEmpower17 to complete. As seen in Table
3.2 the Vert.X framework performs quite well on all different performed
tests.

14https://vertx.io/docs/vertx-web/js/ (Accessed on: 2019-05-11)
15https://vertx.io/ (Accessed on: 2019-07-09)
16RFC7519 https://tools.ietf.org/html/rfc7519 (Accessed on: 2019-05-11)
17https://github.com/TechEmpower/FrameworkBenchmarks (Accessed on: 2019-07-09)
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For the database access it uses JDBC 18, which provides database-independent
configuration. As the database the MySQL drop-in MariaDB is used to
provide fault-tolerance and high-availability.

Figure 3.2: Main user interface overview

The database schema consists of three parts (the user schema,the sensor
schema, the application schema).

18JSR 221: JDBC 4.0 API Specification https://jcp.org/en/jsr/detail?id=221 (Ac-
cessed on: 2019-04-30)
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3.6.1 User schema

Figure 3.3: Datawiz - Database User Schema

The User database schema consists of:

• User Role - what is the role
• User class - what class of resources a user get
• User Group - to which group does they belong
• User Status - what is their status (pending, active, deleted,...)
• User Network(s) - which wireless networks did this user create
• User Application(s) - which applications did the user create

44



3 Method

3.6.2 Application schema

The application schemas consists of all the various parts necessary for the
applications a user has and their respective values.

The application database schema consists of:

• UserApplication - the user specific application data
• Application - the Application (Status, Category, Comments)
• ApplicationValues - the user entered values for an application
• ApplicationTemplateValues - the variables for an application
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Figure 3.4: Datawiz - Application Schema
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3.6.3 Sensor schema

Figure 3.5: Datawiz - Sensor Schema

The sensor schemas includes of all the various parts necessary for the
sensors a user can have and their respective values. The sensor database
schema consists of:

• SensorType - which Sensor
• SensorTypeCode - the codetemplates for the sensor
• SensorCodeVariables - the user entered values for a sensor
• UserSensorLocation - the location data of the sensor

3.6.4 Use Cases

The following pages will describe the components of the UI which consists
of the following:

• User Registration
• Group Creation/Management
• Sensor Registration
• Sensor Location
• Network configuration
• Sensor Configuration
• Application Configuration

All actions are CRUD19 based.
19create, read, update and delete
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3.6.5 User View

Figure 3.6: Datawiz - User

A user can perform basic actions, which consist of every login system.
These are Register, login and logout (3.6). After this basic flow is completed,
they can join a group. Furthermore he can start to add new sensors and
applications.

Figure 3.7: Datawiz - User

Users further can CRUD sensors. They can also CRUD userapplications
based on existing templates and add comments to an existing application
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template. Furthermore after submitting a new application/sensor template,
it can be reviewed by an administrator.

Figure 3.8: Datawiz User Sensor Location - outdoor (new view) and indoor (update view)

After adding the sensor it is possible to add location data to each of these
sensors. A user can pick GPS location data of these sensors or upload a
custom indoor map to pick the location.

The view can be seen in 3.8 and is based upon the open source library
Leafletjs20. A user can then assign the sensor type to that created sensor
and depending on the sensor template he can fill in the user chosen values.
The key/value pairs from the sensor includes Wireless ID and password
(created earlier) as well as some fixed constants like sensor sensitivity, re-try
rate and more, all depending on the the template chosen.

20https://leafletjs.com/ - a JavaScript library for interactive maps (Accessed on:
2019-04-30)
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3.6.6 Admin View

Figure 3.9: Datawiz - Admin

Administrators can perform regular user actions. Additionally they can
perform CRUD user management actions, add a new application template
and add new sensor types. They can also CRUD applications comments
and CRUD new user classes.
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3.7 Hardware

Datawiz integrates templates for two hardware sensors, which support
WLAN and the MQTT protocol.

Figure 3.10: ESP8266 with attached DHT11 temperature/humidity sensor

First the ESP8266 (as seen in 3.10) sensor by Espressif Systems21, is a low
cost22

32-Bit microcontroller that supports a wide range of sensors (all

21https://www.espressif.com/ (Accessed on: 2018-09-30)
22 prices as of July 15, 2019 were 5 euro/ESP8266 devloper mcu board - price information
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powered by 3.3V). Though WLAN is not strictly necessary to connect sensors
to MQTT, the ESP8266 is a good reference hardware since it does not need
any other bridge to act as an intermediate between the source of the sensor
and the destination, which is configured via Node-RED.

Figure 3.11: Sonoff Basic Switch

Second the Sonoff Basic WiFi Wireless Switch by Itead23, which is also based
upon the ESP8266 and allows switching 220V and can act as an output
device.

While in the initial setup of the Sonoff switch, it only connects to proprietary
cloud services, it is possible to utilize the alternative Tasmota Firmware24,

gathered from http://www.amazon.de
23https://www.itead.cc/sonoff-wifi-wireless-switch.html (Accessed on: 2018-

09-30)
24https://github.com/arendst/Sonoff-Tasmota (Accessed on: 2018-09-30)
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which allows it to connect to MQTT. These should be seen as a reference
implementation for the architecture and more sensors could be added by
the administrator.

According to Phonegg 25,as of May 18, 2019, there are 26 Android phones
which integrate environmental sensors like thermometer and hygrometer.
For Android smartphones there is also a sensor template available in
Datawiz. It can use any sensor gathering app, for example the Sensor
Node app 26. This simple application turns any Android phone into a fully
integrated sensor that can be used inside Datawiz.

In the wearables market the gadgetbridge27 is a great project which allows
many vendor locked smart wristbands to connect to these devices and
transmit data to an Android phone. Many of these wristbands provide data
such as: sleep tracking, and heart rate and blood pressure monitoring. At
the current state, MQTT is not integrated to the platform but its in one of
their open issues 28.

3.8 Applications

Through application templates, Datawiz integrates multiple different ap-
plication available to users. They are available through the applications tab
and offer different configurable options, depending on the application. All
application must provide all necessary Kubernetes configuration files to be
integrated into Datawiz. These include but are not limited to:

• the namespace (if it is intended to be separated)
• a deployment class
• the ingress route
• a service class

25https://www.phonegg.com/list/302-Cell-Phones-with-Humidity-Sensor (Ac-
cessed on: 2019-03-30)

26https://play.google.com/store/apps/details?id=com.mscino.sensornode&hl=

en (Accessed on: 2019-03-30)
27https://gadgetbridge.org
28Githubexportofhealthdataissue-https://github.com/Freeyourgadget/

Gadgetbridge/issues/553 (Accessed on: 2019-03-30)
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• optionally necessary secrets to run the service

Listing 3.2 : Node-RED application with secrets

image: r e g i s t r y . datawiz . host/nodered:v9

resources :
requests :

memory: "128Mi"

cpu: "250m"

env:
- name: USER

valueFrom:
secretKeyRef :

name: s e c r e t
key: USER

- name: PASSWORD
valueFrom:

secretKeyRef :

In Listing 3.2 you can see the Node-RED service application, it is configured
to get its Configuration file from a secret to provide authentication and
authorization to the service. For other programs which also need additional
services such as an SSH service to provide configurability for the users, it is
possible to include secrets via a path.

This would for example allow a service with a ssh service to included
authentication/authorization based upon a public key, which the user up-
loaded before in their profile.

Listing 3.3 : Scheduling priority for an applications

apiVersion : scheduling . k8s . io/v1beta1

descr ipt ion : low p r i o r i t y
kind: P r i o r i t y C l a s s
metadata:

name: low−p r i o r i t y
value : −1000000

Optionally deployment specific configuration could also be applied like a
PriorityClass, which can be seen in Listing 3.3. Depending on the separation
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needs of the service a namespace is way to further separate services and
it could be either user on the service level (clusterable applications) or for
user-based applications, which run separately like Node-RED. In Listing 3.4
you can see a the namespace applied to a userapplication.

Listing 3.4 : Namespace for an application

kind: Namespace
apiVersion : v1

metadata:
name: u s e r a p p l i c a t i o n
l ab el s :

name: u s e r a p p l i c a t i o n
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3.8.1 Data Transport

Data transport is one of the core components of Datawiz. As discussed in
chapter 1.1.1, MQTT is very suitable for that kind of communication, also
because of its different QoS levels. Different kinds of data can be submitted,
which can either be numerical sensor data, image/video/audio data (when
encoded for example in Base64), or simply plain text.

When data is transmitted it makes its journey through the data flow layer
(Node-RED), where it can be enhanced/modified and re-routed. The data
transport protocol MQTT, assures that according to the QoS level it reaches
its destination, which is either the data storage, in the form of a database or
further processing via CI based applications. In case of an output device it
can trigger for example an alarm when a threshold is reached or used in
conjunction with the reference hardware 3.11 to switch a 220 volts device.

There are many MQTT servers currently on the market, that are scalable
and highly available, however not all provide all the features necessary. As
a pre-requirements for the MQTT server component it should understand
MQTT, provide all the QOS levels and provide clustering possibilities to be
integrated into the Kubernetes cluster. Furthermore it should include au-
thorization and authentication possibilities utilizing a database like MySQL
or PostgreSQL. This is essential, since every user should only be allowed
to access their own MQTT endpoint and MySQL and PostgreSQL should
provide good clustering support on their own. Modeling sensor data can be
dependent on what sensor someone has and what information is needed.
Research has been conducted by Mehmood, Nadeem Qaisar et al.[24], which
shows an approach to have a flexible schema for NoSQL databases.

From these requirements the following applications were included to be
evaluated.

For setup the following projects were used:

• Kubernetes-vernemq for VerneMQ 32

• Ekka for EMQ X 33

32https://github.com/nmatsui/kubernetes-vernemq (Accessed on: 2019-03-30)
33https://github.com/emqx/ekka (Accessed on: 2019-03-30)
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Server stars 29 watches 30 fork 31 Clustering

RabbitMQ 5825.0 5,825 1,703 only via addon / (QoS2 downgraded)

Mongoose 5439.0 5,439 1,598 no

EMQ X 4597.0 4,597 868 yes

mosquitto 2604.0 2,604 922 clustering only via bridge

emitter 1825.0 1,825 179 wraps MQTT over TCP/SSL

VerneMQ 1738.0 1,738 187 yes

moquette 1241.0 1,241 564 not implemented yet

MQTT.js 221.0 221 809 no

Apache ActiveMQ(mirror) 211.0 211 1,040 unofficial chart/setup broken

mosca 192.0 192 498 no

Table 3.3: Open source MQTT server

• Activemq-kubernetes for ActiveMQ 34

• Emitter 35

• GCP click to deploy - RabbitMQ 36

EMQ X was chosen to be integrated since it offers many benefits is highly
scalable/clusterable and can be extended via additional plugins such as:

• emqx sn - provides MQTT-SN support
• emqx auth mysql - user authentication via MySQL
• emqx coap - CoAP support
• emqx retainer - retained messages

More plugins can be found on the Getting started page37.

34https://github.com/padmaragl/activemq-kubernetes (Accessed on: 2019-03-30)
35https://github.com/emitter-io/emitter/tree/master/deploy/k8s (Accessed on:

2019-03-30)
36https://github.com/GoogleCloudPlatform/click-to-deploy/tree/master/k8s/

rabbitmq (Accessed on: 2019-03-30)
37https://developer.emqx.io/docs/emq/v3/en/getstarted.html (Accessed on:

2019-07-20)
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3.8.2 Data Flow Management

The application for data flow management in Datawiz is Node-RED. Node-
RED is very slim, has a vast community, many addons and a lower memory
footprint.

Some other options are software like Apache Nifi38, which provide flow
based programming.

As of July 16, 2019 Node-RED39 has over 14.000 weekly downloads40. It is
written in NodeJS, which was developed by IBM and allows easy visual flow
based programming, which allow direct manipulation of the data flow.

With flow based programming, it is possible to connect different input/out-
put and processing nodes. A flow of five sensors connected to Datawiz,
can be seen in Figure 3.13. It allows users to easily manage the flow of
data between the source and the sink. Other applications like ludwig41 and
Tensorflow 42 can act on the data stream.

As of July 16, 2019, it currently offers over 3400 addons to be integrated into
the data flow via its official repository43.

There is an official Docker image that was adopted to include useful addons
required for integration with the other applications of Datawiz. At runtime,
via Linux environment variables, credentials like username and password
are injected to provide authentication and authorization for users of the
given application. To be accessible outside of the cluster, an ingress rule is
further applied giving the user a unique DNS name to access their Node-
RED instance. The default image built for Node-RED also includes a sample
flow file to start with. In the image there is the Node-RED-dashboard
included to provide a live dashboard to show which sensors are connected
to the system. It also provides historical sensor values in the form of a

38https://nifi.apache.org (Accessed on: 2019-03-30)
39https://nodered.org (Accessed on: 2019-03-30)
40Data gathered from https://www.npmjs.com/package/node-red (Accessed on: 2019-

03-30)
41https://uber.github.io/ludwig (Accessed on: 2019-03-30)
42https://github.com/tensorflow/tensorflow (Accessed on: 2019-03-30)
43https://flows.nodered.org/ (Accessed on: 2019-07-16)
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time series chart via its dashboard addon. To smoothen values further out
a widget is included in the data flow to take the median value of the last
ten values transmitted. Besides the median function, it is also possible to
aggregate/sum data, even to integrate an own function.

This is an easy way of pre-processing data but it can be further extended in
a later stage in a computational intelligence application (see 3.8.4).

Figure 3.12: Node-red Dataflow with 5 data input/output nodes
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3.8.3 Database

Received sensor data is best stored efficiently and flexible in regards to the
data format. Sometimes time specific functions can help to provide useful
functions to do calculations and compress the data. Yet since the data flow
is managed by Node-RED 44, it is possible to write functions in the process
which can perform functions like aggregation/median and filtering when
the data is arriving.

name k8s cluster authentication module 44

Influxdb no in OSE yes

akumali no no no

kairosdb yes (unofficial) via proxy no

blueflood no no no

khronus yes no no

netflix/atlas no no no

prometheus yes no no

voltaire no no no

btrdb-server no no no

MongoDB yes yes yes

RethinkDB yes yes yes

Table 3.4: Different Database solutions.

The following time series database (as seen in Table 3.4 were evaluated
to be included in the selection of a storage for sensor data. They should
allow easy inclusion into the Kubernetes cluster either in the form of a
HELM chart or as separate YAML scripts. In addition they should allow
authentication/authorization on a user/database level so that the storage
solution can be clustered and scaled.

44Node-Red modules - https://flows.nodered.org (Accessed on: 2019-06-30)
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MongoDB and RethinkDB, were selected to be used as a sensor data storage
layer.

Both of these have clustering functionality built-in and can store data,
without needing a schema upfront. Furthermore they also provide authen-
tication and authorization on a database level. Users then get a dedicated
login to these databases.

3.8.4 Analytics and New Knowledge

Using computational measures such as statistics and artificial intelligence
can be helpful in various scenarios to gain further knowledge from sensor
data. It can be used to gain knowledge of the data from the sensor itself, or
to detect anomalies or outliers either by incorporating them or by avoiding
them depending on the business use case. If the sensor data is coming
from connected physical machines it is possible to monitor and proactively
intervene in case of a machine failure.

To provide analytics and to generate implicit knowledge templates are
provided to plug into the data flow. Two methods were chosen, which are
particularly interesting for sensor values, namely forecasting and anomaly
detection. The connection is made via MQTT to provide input as well as
output of the scores generated. If a certain threshold is triggered, a MQTT
messages are sent and depending on the data flow another sensor could act
upon it. In the test setup the Sonoff device was used to switch a connected
220 volt device.

The first CI application included is NUPic 45. It uses a hierarchical temporal
memory, which is an approach for intelligence gathering based upon the
grid cells in the Neocortex [15]. Asides from other applications it can be
used to predict temporal anomalies in time series data.

The second CI application is ludwig46 by Uber, which is built on top of
Tensorflow, a popular machine learning framework. It was chosen ton
include two examples:namely one unsupervised learning algorithm and a

45https://github.com/numenta/nupic (Accessed on: 2019-03-30)
46 https://eng.uber.com/introducing-ludwig (Accessed on: 2019-07-02)
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supervised one. Ludwig in particular is very flexible since it supports many
different types of data and simplifies the model and development process
since it is rather abstract. It supports different types of input and output
encoders, which include: text, category, numerical, binary, set, sequence,
images and temporal time series features.

Figure 3.13: Ludwig scalar types 46

For sensor data, all of them can be applied in various ways The time series
feature is particularly interesting, as it allows the user to quickly make
predictions based on their time series data for future values.

Since model parameters need to be fine tuned the model should be tested
first locally. This should serve as a basis and should provide an idea of how
to integrate future applications. Also since the raw data can be accessed
directly via the NoSQL database further analysis could be done offline.
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Evaluation of the platform is important to show how well it can scale as
well as where the limitations lie. Several scenarios were executed.

This included tests on how long the system needs to setup, as well as
performance metrics and disaster recovery/failover scenarios. Horizontal
scalability was evaluated to show how the system performs and the load of
new users to scale up.

In case of reduced overload the scale down was also demonstrated. Up-
gradability of software to improve stability, provide features or to include
necessary security fixes are important for any running system. As Node-RED
instances are the building blocks for users to create their flows and it is the
most memory hungry in regards as a per-user application. The applications
on a per-user basis, needed the following memory requirements:

• Node-RED 122MB
• NupiC 188MB
• Ludwig 149MB

The other applications, which had user authentication already built-in had
a smaller memory footprint but needed, at least initially the following
requirements:

• RethinkDB 18MB initial empty database
• MongoDB 70MB initial empty database
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To validate that approach Grafana (See chapter 3.3.2) in combination with
Prometheus were used to show Used Memory, as well as CPU Usage along
the cluster under different scenarios. The evaluation was performed on the
cloud infrastructure described in section 3.3.2. First 3 nodes were included
but it was scaled up to nine nodes plus one master node to also show
scalability and failover of components.

Cluster creation time via the Terraform utility takes on average 5m29s1.
Deletion of nodes takes on average only thirty seconds, as it is simply an
API call to the cloud provider’s API. If though the failover of the storage is
calculated in it would take longer depending on how much data needs to
be recovered.

On average this would be the configured timeout time plus the new pod
creation time.

1average value on a 10x runs.
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4.1 Initial Setup

Figure 4.1: Scaling of 150 Node-RED instances CPU/Memory Usage

The scenario you can see in 4.1 demonstrates how the cluster performs after
starting 150 new Node-RED instances. It peaks after five minutes in CPU
usage with approximately sixty percent usage and memory shows an in-
crease by fourty percent. This is the whole cluster usage, not only one single
node. If this is reached in traditional system one could change the server
configuration to scale up horizontally by including more CPU/Memory to
the machine. Since Kubernetes is also capable of not only doing vertical
scaling (using up all the available hardware attached to a node) but also
doing horizontal scaling, this is a more scalable approach since one can
only put in a limited number of hardware upgrade into a server. The full
network usage and disk load and was included in the appendix. (5.2) Since
this setup still has time to grow the number of Node-RED instances was
increased to 200. This can be seen in Listing 4.2 and it increased to eighty
percent cpu usage. User applications, means applications based on a per-
user basis like Node-RED or CI-based ones like ludwig/NUPIC. They need
a single instances/pod per user and cannot be used by multiple users at
once. In contrast clustered applications, are able to internally use clustering
to scale and can provide their services to many users by utilizing authen-
tication to ensure that their is still a separation. The following paragraphs,
describe up/down and upgradeability for these types of applications inside
of Datawiz.
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Figure 4.2: Scaling to 200 Node-RED instances CPU/Memory Usage

Listing 4.1 : Terraform apply

terraform apply \
−var nodes=3 \

As seen in Listing 4.1, this simple Terraform command utilizes the cloud
providers API to increase the number of nodes to four.

Assuming other smaller running services, the limit of 110 pods per nodes
has to be considered - though this can be configured through the kube api
server.
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4.2 Scaling up

User Application:

As one can observe in Figure 4.6 and 4.8, at around 15:20 after the initial 150

new pods, the CPU/network stabilizes but memory still remains constant
at around 60%-65%. A new node was added, utilizing the Terraform apply
command with nodes=4, as seen in Listing 4.1. During the initialization
phase, the CPU/network usage is quite high, because despite of all the
services which are initialized like the core Kubernetes services, the disk is
also prepared to be included in the Ceph cluster. Memory usage however
stays first at zero percent and when adding 50 new Node-RED pods to the
cluster it quickly gets distributed to the new node.

Figure 4.3: Scaling up Test- CPU Usage across nodes

Clustered Applications:

Scaling up a a clustered application like EMQ X deployment can be achieved
by running the command seen in Listing 4.2. Based upon CPU utilization,
automatic scaling could also be achieved utilizing the horizontal pod auto-
scaler (see Listing 4.3 for an example). The same works for every other
application in the cluster.

Listing 4.2 : Scale deployment EMQ X

kubect l s c a l e deployment emqx−c ha r t −−r e p l i c a s =10
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Figure 4.4: Scaling up Test - Memory Usage across nodes

Figure 4.5: Scaling up Test - Network Usage across nodes

Listing 4.3 : Autoscale deployment EMQ X

kubect l s c a l e deployment emqx−c ha r t −−r e p l i c a s =10
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4.3 Scaling Down/Node Failure

Scaling down a cluster is as important as scaling up. Therefore if scaling
down is necessary this is possible as well, when for example the hardware
gets faulty or the node is not responding.

Another case could be if the userbase is shrinking and not that many services
are needed anymore.

User Application:

In this test four additional nodes were added to the cluster at around 15:40,
which can be observed in 4.6 as the CPU spikes initially for the new node
and after that at 15:50 when three additional nodes were added. After there
was enough memory available in the cluster to account for a node failure,
node four (4.7), which is the line in blue was killed with a hard shutdown.
After the node becomes unresponsive, which can also be observed via the
CLI utility, while running kubectl get nodes ( see Listing 4.4), pods get
redistributed to other healthy nodes.

Listing 4.4 : Node gets unresponsive

NAME STATUS ROLES AGE VERSION
datawiz−master−1 Ready master 150m v1 . 1 3 . 7

datawiz−node−1 Ready <none> 143m v1 . 1 3 . 7

. . .
datawiz−node−4 NotReady <none> 29m v1 . 1 3 . 7

datawiz−node−5 Ready <none> 11m v1 . 1 3 . 7

As seen in Listing 4.5 the pods get terminated and are at the same time
recreated on different nodes. In Listing 4.6 ceph also noticed the node failure
and depending on how much data is lost and how many copies should be
stored the data gets recovered.

Listing 4.5 : Pods get terminated

user101−nodered−6478d75579−28x5h 1/1 Terminating
0 10m 1 0 . 3 6 . 0 . 4 2 datawiz−node−4 <none>
<none>
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Figure 4.6: Scaling down Test- CPU Usage across nodes

user104−nodered−646dbd9475−zqmkv 1/1 Terminating
0 10m 1 0 . 3 6 . 0 . 4 3 datawiz−node−4 <none>
<none>
user11−nodered−775b4bfd59−v98zg 1/1 Terminating
0 12m 1 0 . 3 6 . 0 . 1 2 datawiz−node−4 <none>
<none>

Listing 4.6 : Ceph Health check

osd . 1 reported immediately f a i l e d by osd . 2

do prune osdmap f u l l prune enabled
Health check f a i l e d : 1 osds down (OSD DOWN)
Health check f a i l e d : 1 host (1 osds ) down (OSD HOST DOWN)
accept timeout , c a l l i n g f r e s h e l e c t i o n

If for some reason there is not enough space to house all containers on
one node according to the priorityClassName, pods get evicted. As seen
in Listing 4.7, the pods were evicted for user125, and simultaneously got
recreated on another node.

Listing 4.7 : Pods get evicted

node−red user121−nodered−c5965 f948−w j l f 2

0/1 Evicted 0 9m28s
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Figure 4.7: Scaling down Test - Memory Usage across nodes

node−red user122−nodered−67bdd557f6−45gnw
1/1 Running 0 9m26s
node−red user123−nodered−849bcf468−dcz6 f
1/1 Running 0 9m25s
node−red user124−nodered−ccd85f64−cgq98

1/1 Running 0 9m24s
node−red user125−nodered−86b8b65d84−j t r h 9

0/1 Evicted 0 9m23s
node−red user125−nodered−86b8b65d84−xc2qm
0/1 ContainerCreat ing 0 2m41s

Clustered Applications:

Scaling down the number of pods for clustered applications, like for example
the MQTT server the same command seen in Listing 4.2 can be used by
reducing the number of desired pods. If the horizontal pod autoscaler is
used, then this would also occur automatically. The pod is then removed
from the EMQ X cluster and messages are routed to different pods.
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Figure 4.8: Scaling down Test - Network Usage across nodes

4.4 Upgradeability

Upgradeability is important to ensure all components are up-to-date for
feature enhancement and get the latest security patches. For the helm based
charts, the CLI interface, provides a way to upgrade these charts via helm
upgrade.

For the user based applications, like Node-RED and the CI-based applic-
ations, a rollout of a new release can be performed in conjunction with a
strategy. In this way the maximum unavailable pods can be configured. In
this case, it is important to ensure that in the spec fields the replicas are set
to a number greater than one, so that at least one instance is reachable all
the time.

This process is currently not automated, but could be further improved
utilizing a CI/CD based solution like Jenkins to automatically update
the applications. A more simpler solution, Drone 2 could also be used,
depending on the number of applications included.

If Kubernetes itself needs an upgrade, where the components like API Server,
controller Manager, Scheduler, Kube Proxy, CoreDNS need to updated since
it has to be assured that at least two master nodes available.

2https://drone.io (Accessed on: 2019-06-20)
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When updating for a major version, detailed instructions are available from
the official documentation (see for example the upgrade instructions from
v1.12 to v1.13

3). These instructions often break things and manual tasks
have to be performed.

4.5 Data-aggregation

For evaluation purposes 5x ESP8266 sensors ( see chapter 3.7, Figure 3.10.)
with an attached DHT11 temperature/humidity sensor.

The code uploaded to the ESP8266 3.10 sensor, is based upon the example
found in 4 and is pretty straightforward. Some variables were added and as
the user utilizes the device code generator the variables are replaced with
their respective values.

It gathers temperature/humidity data and send it to the configured MQTT
server, that was set before. All variables in the template are replaced with
the values which the user has configured.

It connects to WIFI, gathers all the sensor information and sends it to the
MQTT server. MQTTs connection was not possible due to the limitation of
memory of the microcontroller. It is however possible to validate at least the
fingerprint of the MQTT server, but still this is not ideal.

Four sensors were placed indoors, while one sensor was located outdoors.
The payload used was encoded as a JSON string, and can be seen in Figure
4.8.

Listing 4.8 : ESP8266 sensor sample

{” temperature ” : 2 4 , ”humidity” : 1 9 , ”hostname” : ”ESP 145DD7” , ” recv date ” : ”2019−03−22T14 : 1 4 : 3 0 . 6 8 1 Z”}
{” temperature ” : 2 4 , ”humidity” : 1 9 , ”hostname” : ”ESP 145DD7” , ” recv date ” : ”2019−03−22T14 : 1 4 : 4 1 . 9 6 0 Z”}
{” temperature ” : 2 4 , ”humidity” : 1 9 , ”hostname” : ”ESP 145DD7” , ” recv date ” : ”2019−03−22T14 : 1 4 : 5 3 . 2 3 6 Z”}
{” temperature ” : 2 4 , ”humidity” : 1 9 , ”hostname” : ”ESP 145DD7” , ” recv date ” : ”2019−03−22T14 : 1 5 : 0 4 . 5 1 2 Z”}
{” temperature ” : 2 4 , ”humidity” : 1 9 , ”hostname” : ”ESP 145DD7” , ” recv date ” : ”2019−03−22T14 : 1 5 : 1 5 . 7 9 0 Z”}

3https://kubernetes.io/docs/tasks/administer-cluster/kubeadm/

kubeadm-upgrade-ha-1-13 (Accessed on: 2019-06-20)
4https://github.com/adafruit/DHT-sensor-library/blob/master/examples/

DHTtester/DHTtester.ino (Accessed on: 2019-06-20)
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The ESP8266 sensor were located in the following way:

• ESP D48324 (outdoor)
• ESP 17BBCB (indoor kitchen)
• ESP 145DD7 (indoor pre-room)
• ESP CC37E6 (indoor bath)
• ESP D3B0C4 (indoor main room)

They were located in Graz (Styria).

Humidity and temperature was captured in the time frame from 17.3.2019

until 30.3.2019, with the default setting of one measurement per second.

The temperature and humidity charts for raw, resampled data can be found
in Appendix (5.2). The attached DHT11 was not that reliable, which can be
seen in the raw chart of sensor CC37E6 (.15).

To mitigate this, a function was included in Node-RED to calculate the
median value over the last five minutes. In the end the outdoor sensor
delivered the most promising data, and was used in chapter 4.6.

Listing 4.9 : Hostname ESP8266 + mqtt connect via username/password

WiFi . hostname ( ) . toCharArray ( hostname , 5 0 ) ;
i f ( c l i e n t . connect ( hostname , ” user1 ” , ” user1password ” ) ) {
. . .

The names represent their internal hostnames and this function is included
in the template, as it is a good way to ensure uniqueness along the ESP8266

based sensors, without naming all of them beforehand. However they can
be named and should be situated when creating the sensor to not lose track
of them. As seen in figure 4.9 the client is then connected to the MQTT
server with username and password provided.
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Figure 4.9: ESP D48324 temperature graph raw

set loss mean squared error mean absolute error r2 error
train 0.471 0.1471 0.1309 0.0071 0.0098

validation 0.0093 0.0093 0.0488 0.0046 0.0047

test 0.0097 0.0097 0.0447 0.0056 0.0085

Table 4.1: Ludwig performance graph (trained on ESP D48324 temperature graph raw)

4.6 Forecasting & Anomaly Detection

The forecasting algorithm was tested on the temperature data of the outdoor
sensor (ESP D48324 - see Figure .2 and .4 in the Appendix).

The dataset was split into training, validation and testset. With the last ten
temperature values the algorithm was able to predict the next value with a
mean absolute error value of 0.0488 on the validation set.

After the validation set did not improve anymore and the algorithm stopped
after convergence, therefore the following performance was achieved.

Utilizing the default template included in Datawiz with an anomaly threshold
of 0.8 the following datapoints, which can be seen in Figure 4.11 were
gathered. Some of the datapoints does not some to have any correlation to
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Figure 4.10: Learning curve Ludwig

the underlying data (point1,2,3) but this maybe due to the limitation of the
dataset.

On March 24, 2019, a cold front appeared that was moving towards Graz,
and the temperature dropped significantly afterwards. On that day an
anomaly was detected. Parameter tuning could also be performed offline to
further enhance the performance regarding the desired outcome. However
since this is very specific in regards to which sensors and more data would
be needed in any case this test was not further improved.

In a factory, sensors could be attached to different machines to detect a hard-
ware failure early on and to prevent further damage by enabling/disabling
a process on another machine.

76



4 Evaluation

Figure 4.11: ESP D48324 Temperature graph with NUPIC anomaly data points (0.35

threshold)

4.7 Limitations

General limitations of, which Kubernetes can scaled to are : 5 No more than
5,000 nodes/150,000 total pods/300,000 total containers and the 100 pods
per node limit.

As of July 18.2019 there are over 2130 issues 6 open, many of which are still
critical and hinder cluster stability. Furthermore if storage is attached, since
it is a Read-Write-Once type of storage and the pod is still not terminated
on one node, a new pod cannot be created by Kubernetes. This is a known
limitation of all storage drivers, which use the Read-Write-Once type.

Regarding high availability an unstable node flapping state can occur, which
I did multiple in the load test, when under high CPU/memory usage. That
means a node is switching between Ready/NotReady state and failover
does not occur.

The handling of addition/deletion of nodes need to be added to the load
balancer, which is not handled automatically. This is due to the nature of

5https://kubernetes.io/docs/setup/best-practices/cluster-large (Accessed
on: 2019-06-20)

6https://github.com/kubernetes/kubernetes/issues (Accessed on: 2019-08-07)
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the setup, since the external load balancer is not connected via an API to
the internal one (NGINX). If multiple nodes are already added in the load
balancer still every NodePort forwards the port to the appropriate service.
Appropriate API communication however can be added, is is sometimes
already in place in multiple cloud provider solutions like GKE and AWS.

In regards to the storage layer the CAP theorem, holds true here too, as with
the chosen NoSQL databases (RethinkDB and MongoDB) consistency will
be the bottleneck. This is just a limitation to be aware of but, since writes
are as important as reads for the sensor data, and because for data in one
can always plug into the MQTT stream, this is only partially a problem.

Further described in the setup in 3.3, the network connection was a bottle-
neck.

Different sensors need different scenarios, like pre-filtering, data aggrega-
tion, dealing with null values and much more. Therefore with the Node-RED
interface, a user can adopt their use case to use the necessary functions
needed to ultimately get what they wanted out of their data. This can be
implicit knowledge, dashboarding/visualization features or prevention of
sensor failure via anomaly detection.

Time data of messages can be tricky, because of the sensors like the ESP8266

do not have an internal real-time clock.
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5 Conclusions and future work

5.1 Conclusions

There are many applications necessary to run a scalable sensor data frame-
work, and while it seemed trivial at first the whole ecosystem of possible
candidates is very complex. As shown in chapter 4.5 more quality sensors
are needed to gather data, otherwise afterwards processing is not possible
and therefore no knowledge can be inferred. This thesis showed the poten-
tial of combining various open source projects that, are currently out in the
market.

Maintainability is easier with this solution, but there are still many things
to consider when running this system on a larger user scale. As described
in chapter 4.4, upgradeability of the stack with a possible CI/CD would
give flexibility ensuring that the shipped software is also up to date and
security issues are handled. It was shown in section 4.2 and 4.3, that the
underlying orchestrator (Kubernetes) performs well in handling additional
nodes in the cluster to accommodate more users and applications in the
system. Application templates could also be further optimized to make use
of the horizontal AutoScaling feature based on CPU/memory consumption
1.

Although this was done with only one command, if the underlying cloud
provider supports it this could be further improved with solutions like
the cluster autoscaler 2. While in old legacy applications sensor data was
often transmitted via HTTP, it was shown in conjunction with the dataflow

1https://kubernetes.io/docs/tasks/run-application/

horizontal-pod-autoscale/ (Accessed on: 2019-08-07)
2https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler

(Accessed on: 2019-08-07)
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solution Node-RED, how a powerful pub/sub schema can be used with
modern IoT applications.

As the internet moves towards a more decentralized version of it, with
cryptocurrencies arising like IOTA (which provide MQTT support at their
core), an integration where one would connect Datawiz to one of this
solutions can also be considered.

In 2019 there is also research going on [26], as it is more cost-effective and
provides an even more scalable approach. As [16] pointed out, there are
still many limitations, like Shipping Data to Code, hardware limitations and
caching. They evaluated further in a case study that for model training AWS
lambda was 21x slower than simply using AWS EC2 instances. Also it is
not vendor neutral since most use their proprietary functions as a service
solution. Some open source solution already exist like OpenFaaS 3 and it
can for sure be leveraged in some regards.

3https://github.com/openfaas/faas (Accessed on: 2019-08-07)
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5.2 Future work

To ensure inter-connectivity more sensors could be included, which would
also mean to provide more templates for them and ensure more applications
which could be used in that context. Although more than numeric values
were tested in this thesis, image/audio/video data could also be transmitted
through MQTT and than stored and processed.

More specialized applications would be necessary to ensure that knowledge
can be inferred easily from these sources of data. While currently it is
convenient to just use the default CI application settings, more fine granular
optimizations are needed. This could possible be mitigated by allowing users
to submit their own applications, and while this means more challenges
like ensuring stability and security in a secured lab environment for a fixed
number of authorized personal this could be an option.

If a more commercial settings is desired it is important to ensure that also
users are billed accordingly to their usage data. Since system maintainability
is important, a solution for log data aggregation/analysis could be included
to ensure that all applications are running and working correctly.

With the system developed for this thesis is a broader distribution of it is
possible due to easier handling, reliability, maintainability and scalability. It
was shown and evaluated that it works with the ESP8266 sensor but more
platforms/templates are to be included to further enhance the coverage.

The next step for Datawiz is to publish its components as open source with
more potential use cases and user adoption.
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Figure .1: Database ER model Datawiz
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Server stars watches fork
RabbitMQ 5825 5825 1703

Mongoose 5439 5439 1598

EMQ X 4597 4597 868

Mosquitto 2604 2604 922

Emitter 1825 1825 179

VerneMQ 1738 1738 187

Moquette 1241 1241 564

MQTT.js 221 221 809

Apache ActiveMQ(mirror) 211 211 1040

Mosca 192 192 498

MqttWk 75 75 29

Jmqtt 69 69 35

Apache ActiveMQ Artemis 52 52 444

HBMQTT 36 36 131

RSMB 34 34 23

GnatMQ 29 29 76

Trafero Tstack 3 3 0

Table .1: Mqtt server
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Figure .2: ESP D48324 Temperature graph resampled

Figure .3: ESP D48324 Humidity graph raw
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Figure .4: ESP D48324 Humidity graph resampled

Figure .5: ESP 17BBCB Temperature graph raw
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Figure .6: ESP 17BBCB Temperature graph resampled

Figure .7: ESP 17BBCB Humidity graph raw
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Figure .8: ESP 17BBCB Humidity graph resampled

Figure .9: ESP 145DD7 Temperature graph raw
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Figure .10: ESP 145DD7 Temperature graph resampled

Figure .11: ESP 145DD7 Humidity graph raw
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Figure .12: ESP 145DD7 Humidity graph resampled

Figure .13: ESP CC37E6 Temperature graph raw
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Figure .14: ESP CC37E6 Temperature graph resampled

Figure .15: ESP CC37E6 Humidity graph raw
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Figure .16: ESP CC37E6 Humidity graph resampled

Figure .17: ESP D3B0C4 Temperature graph raw
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Figure .18: ESP D3B0C4 Temperature graph resampled

Figure .19: ESP D3B0C4 Humidity graph raw
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Figure .20: ESP D3B0C4 Humidity graph resampled
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