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Abstract

During the lifetime of complex, large-scale, long-term software systems
requirements change. Systems need to adapt to these changes. The scope
of their functionality typically changes as well and many design decisions
taken in the early stages do not age very well. A growing system needs
continuous refinement and an aging system needs maintenance. Growth
typically causes a system’s integrity to deteriorate. Prioritizing growth over
quality introduces what is known as technical debt. Continuous attention to
code quality is necessary to prevent deterioration.

This thesis examines the problems that can be caused by a decline in
code quality and describes the implications for developers and users. It
details and evaluates a dedicated effort to increase code quality and to
counteract a decline in system integrity. Catroid, a complex, large-scale
Android application, serves as a real-world example.

The implicit understanding of code quality is quantified by metrics that
evaluate the complexity, size and design of the system. An analysis on the
refactored classes and an overall assessment of code quality is presented. The
thesis shows that refactoring can be beneficial for large-scale systems and
provides an outlook on alternative approaches and follow-ups. It indicates
that in order to sustainably deliver working software it is necessary to
continuously invest in code quality.
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Kurzfassung

Die Anforderungen an komplexe, groß angelegte Softwaresysteme ändern
sich typischerweise im Lauf der Zeit. Systeme müssen sich and diese
Änderungen anpassen. Üblicherweise verändert sich auch der Funktio-
nalitätsumfang und viele Designentscheidungen, die in den frühen Ent-
wicklungsphasen getroffen werden, altern schlecht. Wachsende Systeme
brauchen kontinuierliche Verbesserungen und alternde Systeme Instandhal-
tung. Ein wachsendes System verliert oft an struktureller Integrität. Wenn
Erweiterung wichtiger ist als Softwarequalität, entstehen technische Schul-
den. Um Qualitätsverfall zu verhindern, ist es notwendig, sich andauernd
um die Softwarequalität zu kümmern.

Diese Arbeit untersucht die Probleme, die vom Qualitätsverfall verursacht
werden und beschreibt deren Auswirkungen auf Entwickler und Benutzer.
Die Arbeit analysiert und evaluiert die Implikationen eines dezidierten
Prozesses zur Verbesserung der Systemqualität. Catroid, eine komplexe,
groß angelegte Androidapplikation dient hierbei als reales Anwendungs-
beispiel. Des Weiteren werden alternative Lösungsansätze und mögliche
weiterführende Themen besprochen.

Das implizite Verständnis von Softwarequalität wird mit Metriken quantifi-
ziert, die die Komplexität, Größe und das Design des Systems evaluieren.
Eine Analyse der refaktorisierten Klassen und ein Gesamtanalyse der Qua-
lität werden präsentiert. Die Ergebnisse implizieren, dass Refaktorisierungen
positive Verbesserungen bringen und dass es notwendig ist andauernd in die
Erhaltung der Softwarequalität zu investieren, um nachhaltige Entwicklung
sicherzustellen.
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1 Introduction

Booch (1991) proposed that the complexity of large-scale software systems
exceeds the human intellectual capacity. A plethora of software design prin-
ciples, developed over the last few decades, has provided help in managing
complexity. Large-scale software is often long lived, and during its lifetime
requirements change. With the rise of agile development, continuous integra-
tion (CI) (Booch, 1991) has become common practice. Continuous delivery
and refinement have found wide acceptance in the software development
community. Automated testing and test driven development (TDD) (Beck,
2003) have helped to systematically assess software integrity and introduce
incremental development approaches.

Booch (1991) has mentioned the terms software evolution and software
preservation. He used them to describe the effort necessary to respond
to changing requirements and the effort to keep software from decaying.
Evolving software needs refinement. Agile development practices are de-
signed to promote sustainable development and encourage continuous
refinement (Google, 2018a). Spinellis (2006) has highlighted the importance
of software quality and proposed that quality is a crucial, non-functional
property of a system. While functional defects in a software impede user
experience, non-functional errors can be catastrophic. It stands to reason that
in the scope of long-term, large-scale software development maintaining
code quality is essential.

The cost of changing software is said to increase exponentially over time be-
cause design typically deteriorates. Researchers and developers have tried to
reduce the cost of change by refining development practices, environments
and tools. Refactoring (Fowler, 2018) is a means to counteract quality deteri-
oration and to improve the design of existing code. It has found widespread
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1 Introduction

acceptance in the software development community. Extreme Programming
(XP) (Beck and Gamma, 2000) suggests that refactoring should be incorpor-
ated into the day-to-day routine of all developers. However, in this thesis
we want to examine how a dedicated refactoring effort can help to improve
code quality and how code quality influences developers and users. All
considerations and actions described here are based on the experiences
gathered during an improvement process applied to the real world FOSS
project Catrobat1.

1.1 About Catrobat and Catroid

Catrobat is a Free Open Source Software (FOSS) project that develops a
visual programming language for teenagers. It allows them to design their
own applications, games and animations. The project encourages teenagers
to be creative and fosters computational thinking skills. The Catrobat project
is organized according to the principles of the Extreme Programming (XP)
development framework. Contributors are encouraged to apply agile devel-
opment methods such as test driven development (TDD) and continuous
integration (CI). A Jenkins CI server environment supports TDD and CI
by automating builds, tests and deployment (Luhana, Schindler and Slany,
2018).

Catrobat has a large base of local and international contributors including
developers, usability and user experience engineers, designers and translat-
ors. The project is organized into teams, each of which develops, adapts and
maintains a distinct part of the catrobat system. The Catroid2 team builds
and maintains an interpreter and integrated development environment
(IDE) for the Catrobat language on Android. Providing a mobile platform
allows teenagers to develop programs using their smartphones instead of
traditional personal computers (Harzl et al., 2013). Catroid is available freely
as the app Pocket Code. Ever since its first beta release in 2013 Pocket Code

1https://www.catrobat.org/
2https://github.com/Catrobat/Catroid
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1.1 About Catrobat and Catroid

was installed over 500,000 times3 through Google Play.

Aside from many international contributions, Catroid is mainly developed
by university students at Catrobat’s headquarters in Graz, who are given
the opportunity to voluntarily collaborate within the scope of their curricula.
Their experience with software development and XP practices varies Müller,
Schindler and Slany, 2019 significantly and their skill levels are just as
diverse.

Working on complex large-scale systems can require extensive training.
However, some contributors, especially students, do not spend a lot of
time with the project. Thus, providing an efficient onboarding process is
vital. Software quality plays a role in this process. A systematic analysis of
entrance barriers to FOSS projects by Steinmacher et al. (2015) has found
that architecture complexity for example constitutes a common obstacle
for newcomers. Hence, it stands to reason that reducing complexity can
effectively help to flatten the steep learning curve faced by newcomers.

3https://play.google.com/store/apps/details?id=org.catrobat.catroid
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2 Related Work and Background

2.1 Extreme Programming (XP)

Extreme Programming (XP) is a lightweight, agile software development
framework. Agile processes promote sustainable, continuous delivery of
working software to users (Google, 2018a). XP encourages continuous integ-
ration (CI) of contributions, close collaboration of developers and automated
testing (Beck and Gamma, 2000). XP is aimed at small to medium sized,
self-organizing development teams.

In agile development there is continuous attention to design quality. Good
design promotes agility. It allows developers to respond to changing require-
ments and to keep delivering valuable software. Especially in long-lived
software projects such as Catrobat it is necessary to respond to changing
requirements. As an Android application Catroid relies heavily on the An-
droid framework. Because of Google’s continuous development, frameworks
and policies change regularly. To keep delivering, the Catrobat organiza-
tion has to continuously respond to these changes and adapt the Catroid
codebase accordingly.

2.2 Technical Debt

The term technical debt was first mentioned in the context of software
development by Ward Cunningham. He says that code quality can be traded
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off for a short term gain, only as long as it is mitigated as soon a possible by
a rewrite (Cunningham, 1992). Cunningham compares this trade to going
into financial debt. While a little debt can actually help, too much can have
severe ramifications.

In Catroid it is very common that, in light of time constraints, code quality
is neglected. However, it is very unlikely that developers actually mitigate
quality deterioration by a rewrite, often because they have to meet some
other time constraint. This has lead to a significant buildup of technical debt
over the years and in many cases these short term solutions have grown
into the foundation for a lot of other important functionality.

2.3 Refactoring

In the scope of large-scale, long-term systems, software development is
an evolutionary process (Lehman, 1980). Requirements change during the
lifetime of a system, often because of the mere existence of the system
itself. Maintaining and adapting software is a central objective for any
developing organization. Booch (1991) proposed that software maintenance
only describes error correction and that maintenance alone is not sufficient to
keep a system running. He claims that evolution and preservation are more
suitable terms and concepts to consider when describing this process.

Preserving software can be tedious, especially when code quality deterior-
ates. Counteracting deterioration supports maintenance and keeps a soft-
ware system adaptable. Agile software development embraces changing
requirements. XP promotes flexible planning and feature development (Beck
and Gamma, 2000). Agility and XP practices are built on promoting tech-
nical excellence and good design. In XP design has a central role and XP
practices suggest integrating design concerns in the day-to-day business of
every contributor in the form of refactoring.

Refactoring can be understood as a means of improving the internal struc-
ture of a system without changing its external behavior (Fowler, 2018). It
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is tightly connected to the concept of technical debt. If done correctly, it
reduces complexity and (re-)introduces structure into existing code. It is an
effective measure to reduce technical debt and a necessary process in system
maintenance and evolution. Refactoring helps create a more expressive
architectural representation of the target domain. It aims at minimizing the
chance to introduce bugs while counteracting a decline in system integrity.
To do so it relies on solid automated tests that capture system behavior.

2.4 Automated Tests

In a software system testing can take place on three abstraction levels. i)
Unit testing; ii.) Integration testing and iii) System testing.

2.4.1 Test Levels

Unit tests verify correctness of a system on small abstraction levels and
pinpoints faults very precisely. Fowler (2012d) says that in an object oriented
software system, units are typically classes, but that cohesive class clusters
can be tested as units as well. Google’s testing blog mentions some confusion
between the exact distinction between unit and integration tests (Stewart,
2010). Unit tests are small and fast. They can be run frequently during the
development process and verify each incremental change. Unit testing is
only possible if the class hierarchy is independent enough to test classes in
isolation.

Integration tests verifies more complex interactions in a system and assures
that the independent components of a software interact correctly. Depend-
ing on their scope integration tests can more difficult to understand and
maintain. Fowler (2012a) proposes that there are different notions of integ-
ration tests: narrow integration tests and broad integration tests. This has
lead to some confusion in the software development community, which is
why broad integration tests are often called system tests instead. Narrow

7
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integration tests and unit tests are sometimes close in scope and typically
use the same test framework, while broad integration tests need a special
framework. Using narrow style integration test can significantly speed up
test runs and improve resiliency (Fowler, 2012a)

System tests can be used to verify end-to-end user interactions. Tests on
the user interface (UI) require a special setup and framework. In the case
of Catroid a Jenkins CI server is used to run tests built on the Espresso1

framework. End-to-end tests are brittle and prone to non-deterministic
failures (Fowler, 2012b).

2.4.2 Mocks and Stubs

During unit testing it can happen that a class under test depends on some
class method or function that should not be part of the test. Mocking and
Stubbing are a means of replacing production code with some implement-
ation that is defined within the test (Fowler, 2012c). There is a plethora of
mocking frameworks for Java and Android. In Catroid Mockito2 is used.
Mocks and stubs can be particularly useful when they replace functionality
outside the system such file operations or access to device sensors.

2.4.3 Testing on Android

Google splits testing into three categories(Google, 2018d): small, medium
and large. Android applications depend on Java classes from the Android
framework. This necessitates a classification into tests that can be run on a
developer’s local Java Virtual Machine (JVM) and tests that have to run on a
real or virtual (emulated) Android device.

Local unit or integration tests on the JVM are considered small.

1https://developer.android.com/training/testing/espresso
2https://site.mockito.org/
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2.5 Object Oriented Design (OOD)

Instrumented integration tests that rely on the Android framework but do not
test the user interface, constitute medium tests.

Large tests validate end-to-end interactions on the application’s user interface
and run on a (virtual) Android device. Automatically testing an Android
UI is inherently unreliable (Coppola, Morisio and Torchiano, 2018) and
resource-intensive. These tests are significantly slower and more complex
than all of the others. Android developer guidelines suggest using as few of
these large UI tests as possible.

Software architecture influences how a system can be tested. If classes
depend on each other it is difficult to test them in isolation. Sometimes
classes provide some common functionality so that testing them together
is reasonable, however, if classes that provide very different functionality
depend on each other even narrow integration testing is difficult. In Catroid
developers who have little experience in writing automated tests sometimes
found it easier to write large end-to-end system tests because of Catroid’s
dependent architecture.

2.5 Object Oriented Design (OOD)

Today there exists extensive research and literature on object oriented design
(OOD) methods. The most fundamental principle is abstracting the domain
underlying a software into objects. The concept of objects is tightly connected
to the concept of classes. Classes represent an abstraction of a cohesive
part of the software and an object is an actual instance of such a class.
An object thus has a concrete lifecycle and concrete characteristics. Booch
(1991) proposes that classes are a necessary but insufficient vehicle for
decomposition. In the scope of software design it is sometimes inadequate
to describe the system in terms of single classes. Instead it is often convenient
to consider groups of collaborating classes, which together provide some
specific functionality. Booch calls these class clusters class categories. They
consist of cohesive, tightly coupled classes that cannot be separated easily. If
categories are reused, they have to be reused as a whole. Classes in categories
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are highly dependent, so if any class within the category changes, the others
have to change too. Proper class design requires developers to be aware of
dependencies within these categories and between categories. In order to
build adaptable, robust and modular systems dependency management is
essential.

2.6 Dependencies

Martin (1994) highlighted three requirements for object oriented design.
Systems are supposed to be robust, maintainable and reusable. He proposed
that a system is rigid, fragile and hard to reuse if dependencies between
subsystems are not properly managed.

• In an interdependent system changes to one module are propagated
through to dependent subsystems. Developers cannot properly estim-
ate the extent and impact of a change. When the cost of change is hard
to estimate, project managers become reluctant to authorize them and
the design becomes rigid.

• In a fragile system, changing one part of the system is likely to cause
side effects in other parts. Fragile software is unpredictable and fixing
errors often breaks other functionality. Problems can spiral out of
control and maintenance becomes tedious. This problem is exacerbated
when automated tests are unreliable. However, interdependent and
fragile design is difficult to test properly; Hence, it is very likely that
there are there is no solid set of tests for a fragile system.

• Dependent designs are hard to reuse. It is often disproportionately
more difficult to sufficiently uncouple a reusable subsystem from the
existing design than to simply implement it again.

Dependency management is crucial in software evolution and preservation.
It is important to notice that not all dependencies are inherently bad. Col-
laborating class clusters or class categories are typically highly cohesive and
tightly coupled. Besides, systems remain robust, adaptable and reusable if
dependency targets are stable. Independent classes, which do not depend
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on others, are less likely to change because there is no external reason for
them to do so. Similarly, class categories with a large number of dependents
have a good reason not to change, i.e., that changing them would require
changing all dependents. Independent, responsible classes are stable and
unlikely to change. Consequently, they are very unlikely to cause changes
in their dependents. Thus, dependencies upon stable categories do not
cause adverse effects on system stability. However, because stable categories
discourage modification they limit adaptability and extensibility. Hence, to
keep a system adaptable, stable class categories have to be abstract because
only then it is possible to extend them without having to change them.

Martin (1994) introduced a set of metrics that can be used to assess depend-
ency management. The metrics can be used analyze subsystems in terms of
their stability, responsibility and independence. Afferent couplings (CA) are
the connections between classes within a category to dependent classes out-
side the category. They highlight dependencies on a category. The number
of CA to stable categories can be high, while it is necessary to reduce CA
to unstable ones. Besides, completely abstract categories necessarily have a
high number of CA because there have to be classes outside the category
that implement them.

Martin defines the connections between classes outside a category to de-
pendent classes within the category as efferent couplings (CE). A high number
of CE signals that classes within this category are highly dependent on
classes in other categories. Hence, these classes are susceptible to change.
The ratio of CE to the total number of couplings measures Instability. A
value of 0 denotes a maximally stable and 1 a maximally instable category.

Stable categories cannot change easily. However, it is necessary to keep a
system adaptable. It is important that stable categories can be extended
without modification. Hence, stable categories have to be abstract. Abstract-
ness is defined as the ratio of abstract classes to the total number of classes
in a category. An abstractness of 1 denotes a completely abstract category
and 0 a completely concrete one.

In theory two combinations of characteristics are desirable in categories:
maximally stable and completely abstract or maximally unstable and con-
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Figure 2.1: The main sequence between abstractness and instability

crete. However, in practice it is not always possible to design categories
with only either combination. Martin introduces the concept of a main
sequence (see the graph in Figure 2.1), which denotes all balanced combina-
tions between instability and abstractness. All categories along or close to
the main sequence are considered to have the proper proportions between
afferent (CA) and efferent couplings (CE), abstractness and instability. The
distance from the main sequence (D) is a metric that can be used to assess the
design quality of categories in terms of the other metrics and a system as a
whole. It is calculated as the perpendicular distance from the linear function
representing the main sequence, normalized into an interval between 0 and
1.

In this thesis dependency considerations are based on the propositions put
forward by Martin (1994). However, often single classes are considered in-
stead of categories, which means that single classes are treated as categories.
This is due to the fact that in Catroid’s architecture it is sometimes difficult
to identify which classes collaborate on a functional level and which ones
are simply coupled because of missing encapsulation. Besides, classes in
Catroid often have many responsibilities and hence behave like categories
anyway.
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2.7 Cyclomatic Complexity (CC)

System complexity typically depends on the number of entities and their
relationships. In a complex system there is a large number of relationships
and dependencies. It is difficult to change or test a complex system because it
is impossible to properly understand all its relationships and interactions.

There are various approaches to quantifying software complexity. The cyc-
lomatic complexity metric (CC) was proposed by McCabe (1976). It counts
linearly independent paths through the control flow graph of a program.
High complexity implies that it is difficult to understand all possible ways
in which the system can behave. A larger number of independent paths also
means that more tests are required in order to ensure proper coverage. This
metric can be calculated on the system as a whole or on any abstraction
level, such as modules, packages, classes or methods.

Complexity is influenced by class design. When new features were added
to Catroid, existing classes and methods were regularly extended to assume
additional responsibilities. This means that class behavior is often primarily
dictated by control structures. It becomes difficult to predict what happens
during runtime.

In proper object oriented design classes should have one responsibility. Cyc-
lomatic complexity typically increases when class design becomes complex
and classes assume too many responsibilities.

2.8 Chidamber and Kemerer Metrics (CKM)

In the mid 90s Chidamber and Kemerer responded to the demand for
metrics that can be used to assess software development processes. With
growing popularity of object oriented development (OOD) approaches they
devised a metrics suite specifically tailored to it (Chidamber and Kemerer,
1994). The metrics were developed upon the conceptualization of a software
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as a relational system and are thus based on mathematical theory. They are
designed to measure class design instead of implementation. Hence, the
metrics are technology-independent.

The measures are a formalization of the intuitive understanding developers
have about complexity. Thus they quantify implicit, empirical characteristics
of a system into relations and values, such as class complexity. Chidamber
and Kemerer propose that the metrics can be used for process improvement
and benchmarking. Today, with the advent of XP and agile development
methods the CKM find new applications, such as quantifying the implica-
tions of a refactoring process.

2.8.1 Weighted Methods Per Class (WMC)

Methods are considered properties of a class and properties define class
complexity. The weighted methods per class metric (WMC) is the cumulative cyc-
lomatic complexity of all methods in a class (Chidamber and Kemerer, 1994).
Methods inherited from a superclass do not count towards it. Conversely,
overridden methods are considered different implementations. Hence, they
contribute to the metric. If all methods have unit complexity the WMC is
simply the number of methods in a class.

WMC formalizes some intuitive notions that developers have: Classes with
a large number of methods are more difficult to understand, maintain and
test. The same is true for classes that have very complex methods. The more
methods a class has the more methods child classes inherit. Hence, method
complexity in a class does not only influence the class itself but also affects
child classes.

Application-specific classes often have a large number of methods, which
limits their reuse. Similarly, methods are often complex because they have
too many responsibilities or because they have to behave differently de-
pending on the context they were invoked in. In both cases the complexity
is likely caused by interdependent design and interdependent design is
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difficult to understand and test. Consequently it is typically difficult to
reuse, extend or adapt classes with a high WMC.

2.8.2 Coupling Between Objects (CBO)

Dependencies or couplings between classes or class categories significantly
influence design quality. Thus, while valuable, it is often insufficient to
consider the complexity of a system only in terms of class or method
complexity. Coupling between objects (CBO) can be used to evaluate class
interaction design.

Classes A and B are considered coupled if an object of class A uses methods
or instance variables of an object of class B. Chidamber and Kemerer (1994)
define CBO as the number classes to which one class is coupled. Multiple
couplings between the same two classes are counted only once. Access to
static constants, type-definitions or constructors as well as couplings because
of inheritance are not counted toward this metric.

While not all couplings necessarily affect code quality negatively, they limit
reuse. Dependent classes cannot easily be reused without the ones they
depend on. Coupled classes are sensitive to changes, i.e., changes in one
class likely require changes in dependent classes. Hence, couplings increase
maintenance effort.

Couplings influence testability because it is difficult to test coupled classes
in isolation. In tests it is consequently necessary to either provide dummy
implementations (stubs or mocks) for dependent classes or test the complete
coupled class cluster in an integration test. Both solutions are often less
than ideal. Implementing mocks, especially within the scope of a framework
such as the Android operating system can be difficult or even impossible,
depending on the characteristics of the class. Classes that depend on func-
tionality provided by the system for example, such as sensor values, cannot
be mocked easily. Testing complete clusters requires integration testing.
Integration tests are inherently more complex, hence it becomes harder to
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find the source of failures. Since maintaining complex tests is tedious, test
quality often deteriorates over time.

2.8.3 Response for a Class (RFC)

The response set consists of all methods that can potentially be invoked
when an object of a class receives a message. Response for a Class (RFC) is
defined as the cardinality of the response set (Chidamber and Kemerer,
1994). The metric is an upper bound on possible paths through program
flow in a class. A large response set contributes to class complexity.

Response set cardinality assesses class hierarchy design. RFC can be high
either because classes contain a large number of methods or because they
call a large number of methods. RFC can be used to increase test coverage
because it helps identify classes that require additional testing effort.

2.8.4 Lack of cohesion in methods (LOCM)

Modularity is closely related to dependency management. Cohesiveness
between the methods in a class is desirable because it promotes encapsu-
lation (Chidamber and Kemerer, 1994) and indicates proper class design.
However, cohesiveness is an abstract notion that developers may perceive
subjectively. Chidamber and Kemerer introduced a relational metric to
quantify cohesion by measuring the inverse. Lack of cohesion in methods
(LOCM) counts the number of method pairs that operate on disjoint sets of
instance variables. The metric helps to identify where class design can be
refined. Diverging method clusters in classes can be an indicator that they
should be split. Because of issues with the calculation of the measure, LOCM
was subject to a modification by Hitz and Montazeri (Hitz and Montazeri,
1996) which is based on graph theory and finds method clusters, instead of
pairs, that access disjoint sets.
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2.9 AntiPatterns and Code Smells

A common approach for a developer is to try to apply design patterns
wherever possible. Design patterns are formalized, abstract solutions to
recurrent problems Gamma et al., 1995. However, a design pattern might
be a suitable solution for one problem and a rather poor one in another
depending on the context. It is important for developers to understand
which problem a design pattern is supposed to solve, how the pattern
works and where it is applicable.

A design pattern that is used in the wrong context or any general recurring
pattern at all that causes negative consequences constitutes an AntiPat-
tern (Brown et al., 1998). Code smells are a similar concept to AntiPatterns
introduced by Fowler (2018). Code smells are well defined, recurring im-
plementations or patterns that are considered poor design choices. Like
Antipatterns they highlight structures in code that are known to negatively
influence system integrity.

Studies propose that code smells within classes indicate that they are more
likely to require changes (Khomh, Di Penta and Gueheneuc, 2009) and that
code smells affect maintainability (Sjøberg et al., 2012), (Fowler, 2018).

2.10 Android User Interface Basics

Google (2018b) uses activities as a metaphor for windows in the Android
user interface (UI). Activities control user interaction and navigation through
the application. Activities can host UI submodules called fragments. De-
velopers can use fragments to build flexible and adaptive user interfaces.
Fragments can be added and removed dynamically and reused in multiple
activities. Activities provide a stack where transactions between fragments
can be stored. These fragment transactions can occur when users navigate
through the activity. The stack can be used as a history, for example a
transaction can be pushed to the stack when users navigate to a certain
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screen within the activity and popped back when they press the back button.
The Android system maintains activities in a similar manner. When a new
activity starts, the currently running activity is paused and the new one
is placed on top of the system’s activity stack. When the user navigates
back the activity on top is removed and the one below resumed. Activities
and fragments have what Google (2018g) refers to as lifecycles. When users
navigate through the app they transition through states in these lifecycles.
The system provides callback methods for lifecycle events and Android
Developer Guides strongly recommend properly handling the transitions in
order to build stable and performant apps. It is important to understand
that the lifecycles of the components in the current window do not neces-
sarily coincide. In general, it is bad practice to retain object references to
components that have a lifecycle, because they are modified directly by the
operating system. For example, the system typically destroys activities on
configuration changes, such as switching orientation, or when the user puts
the application into the background. Dereferencing pointers to destroyed
activities or fragments results in NullPointerExceptions, and these runtime
exceptions cause the entire application to crash.

Views are atomic user interface components (Google, 2018h) in Android.
Each window in the UI is built from a view tree. Views can be added and
removed dynamically during runtime. A fragment, for example typically
consists of a view group. When a fragment is attached to its host activity
the fragment’s view group is added to the activity’s view tree. To obtain an
instance of a view, it has to be inflated from a layout specification using a
system service.

In Android datasets can be visualized as a collection of vertically ordered
views. Usually, these views are put into a scrollable container. Typically the
container knows about the content of the data and delegates data binding
to an adapter. From April 2015 onward Google (n.d.) recommend using the
RecyclerView model and its supplementary components to visualize datasets
because of superior flexibility, modularity and backwardcompatibility over
other, older frameworks such as ListView or ListFragment (Google, 2018e).

Google (2018f) proposes handling user interaction with lists through con-
textual actions. A contextual action mode displays a contextual action bar
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and allows users to select and deselect items from the list. The contextual
action bar contains actions users can perform on selected items. An action
mode has a distinct lifecycle. Action mode behavior can be defined by imple-
menting the ActionMode.Callback interface. The methods in the interface are
handles to events in the action mode’s lifecycle. The system invokes these
methods automatically when the action mode is created or displayed, when
an action item is clicked or when the mode is destroyed. An action mode
with a specific callback can be started from any activity and in response
to any user interaction. In Catroid for example, users can start the action
modes from the options menu in most activities. The action mode is usually
finished when the back button is pressed or when the user selects an option
item from the contextual action bar.
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Code quality is important because it affects developers. Complex code con-
stitutes an entrance barrier (Steinmacher et al., 2015) for newcomers and
in the case of Catroid some of them have been unsuccessful in overcoming
it. Dependent software architecture obfuscates the scope of tasks because
changes to one component typically require dependent components to be
changed as well. Seemingly trivial tasks can turn out to be disproportion-
ately complicated. If it is difficult to estimate the impact and extent of a
change developers can become reluctant to implement it. It can be difficult
for developers, especially for newcomers, to find tasks appropriate to their
skill level and experience. Being able to identify and understand the relev-
ant parts of a complex, interdependent system such as Catroid confronts
newcomers with a steep learning curve.

Dependent architecture cannot be changed easily. Extending a dependent
system is tedious because it is difficult to reuse existing functionality. Ex-
tracting a certain functionality from a dependent system can require more
effort than simply implementing it again.

Dependent design is not extensible because components know about each
other. If developers want to add new components to a dependent system
they either have to add the new dependency to all existing components or
completely redesign the system. Adding to dependent design exacerbates
the issue and increases technical debt. On the other hand, rewriting certain
subsystems is not always possible. Especially for less experienced developers
it can be difficult to completely redesign an entire subsystem to integrate a
change.

In other cases rewrites are impossible because of time constraints. Catrobat
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wants to promote continuous integration. However, every integration must
be buildable and pass all automated tests. Hence, it is typically impossible
to subdivide more extensive rewrites into multiple tasks and integrate each
change separately. This causes a bit of a predicament because on the one
hand integration should be fast and continuous but on the other hand
Catroid’s architecture often requires changes to be considerable.

Fixing errors in an interdependent system is difficult because changes to one
part of the system can have side effects in other, seemingly unrelated parts.
Hence, patches can break other important functionality and developers
often have to rewrite parts of the code that should have nothing to do with
the original fault. This slows down the development process and limits how
fast the Catrobat organization can respond to critical errors.

Symptoms of poor code quality often appear together. For example, de-
pendent design might be hard to understand. In some cases contributors
have left the project because of issues caused by poor code quality after
a short period of time. For those who stayed with the project beyond the
onboarding phase problems with code quality sometimes started a vicious
cycle. Frustration with code quality lead them to add more low quality code,
which frustrated others who in turn wrote low quality code and so on.

Features and patches have to be integrated into the codebase. In the case of
Catroid this is accomplished via pull requests (PRs). Before they are merged
however, PRs undergo a review process, which is usually lead by senior
developers and supported by automated tests. Code quality in the PR as
well as the quality of the codebase influence this process. If a PR is long
it can be difficult for reviewers to thoroughly verify all changes and the
chance of missing some crucial issue is higher.

The need for extensive changes, however, is often due to dependent design
in the codebase. Conversely, if the PR is short but adds to the problem
of deteriorating code quality it might also have to do with the codebase’s
rigidness. In either case the reviewer would reject the PR request the author
to change it. The author would then try to address the issues with the
PR and request another review once the necessary changes are implemen-
ted. However, this is not always straightforward. Sometimes PRs undergo
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multiple iterations of reviews and changes, which can be demotivating for
reviewers and developers alike.

It is important to consider the role the quality of the existing codebase plays
here. As a developing organization it is difficult to directly influence the code
quality of a PR. However, if the design of the codebase is modular, PRs can
be shorter and the review process more thorough and faster. It is less likely
that there will be multiple review iterations because the reviewer’s feedback
can be more concise. If dependencies are properly managed automated test
can provide more coverage and are more reliable.

Code quality is important because it affects users. How fast a developing
organization can respond to changing requirements is limited by the adapt-
ability of the system. An example: Catroid allows users to incorporate device
sensor readings, GPS coordinates, built-in face detection and text-to-speech
capability into their projects. Catroid can be used to control drones and
robots via bluetooth, write and read near field communication (NFC) and
supports ChromeCast features.

Many of these features require the use of restricted endpoints. Even read
and write access to the external file storage (Google, 2018c), where Catroid’s
home directory was located, were restricted from 2018 onward. Being able
to read and write files is a fundamental functionality for Catroid, because
this is how a user’s programs are saved and loaded.

In order for an application to use restricted endpoints, users must grant the
application the necessary permissions. Before 2018 all of the permissions an
application requires were listed during installation of the app and once a
user accepted them they were granted. Developers had to consider them only
as far as listing them in a file. However, in 2018, due to changes in Google’s
policies, permission handling became more complex. All permissions had to
be integrated and checked during application runtime. Besides, this runtime
permission handling allows users to revoke any permission at any time.
From November 2018 onward Google prohibited releasing any applications
to Google Play that do not conform to these requirements. This includes
updates for apps that are already available on Google Play.
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Because of Catroid’s rigid architecture adapting to these new requirements
was difficult. The process of accommodating the necessary changes effect-
ively took more than four months. During the adaptation process it was
impossible to release any of the new features or patches that had been
developed during that time. This was particularly frustrating for developers
and users alike.

3.1 Test Driven Development and Continuous
Integration

In August 2015 automated testing had effectively become unavailable for
two reasons: First, test results were inconsistent and second, full test execu-
tions, if they finished at all, took up to 16 hours. Test driven development
(TDD) (Beck, 2003) relies on a solid set of automated tests that can be ex-
ecuted quickly after each incremental change. Waiting for 16 hours after
each small change is clearly infeasible and discourages developers from
using a proper TDD approach. Hence, verification was typically postponed
until developers were ready to open a pull request (PR).

Although it was a reasonable approach in light of the situation, it meant that
was more difficult to trace back development steps if tests failed. Another
strategy for mitigating the runtime issue was to use only subsets of the
test suite as immediate verification and have the whole suite run nightly.
In any case, development was slowed down significantly and systematic
verification of the development steps impossible.

Empirical studies (Luo et al., 2014) show the consequences of flaky (non-
deterministic) test behavior. Inconsistent test results severely limit productiv-
ity because it is difficult to decide if a certain test fails because of problems
with the system or because of issues with the test framework or the test
itself. At first the test framework and testing environment were blamed
for the stability issues. However, after switching to a newer, more stable
framework and extensive updates and configuration optimizations to the
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continuous integration (CI) server it became apparent that the problems
were actually caused by fundamental quality issues with the existing tests
and the production codebase (Luhana, Schindler and Slany, 2018).
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Developers of all skill and experience levels are influenced by software
quality. Contributing to a software project that has evolved over more than
six years can be challenging, especially if code quality concerns have often
been neglected. The inherent complexity of such a large-scale software
project can overwhelm developers. Functional quality suffers and users are
affected directly. Catroid has suffered from the consequences of technical
debt regularly. Hence, counteracting a decline in code quality and system
integrity was a central objective in the improvement process described
here.

Extreme Programming (XP) practices suggest that refactoring should be
integrated into the day-to-day routine of all developers (Beck and Gamma,
2000) in order to mitigate quality deterioration and the buildup of technical
debt. However, if refactoring has merely had little priority in a software pro-
ject, it can be challenging to (re)introduce it. A bundled effort to mitigate the
most urgent design issues in Catroid was outlined via four main objectives:
i.) Improve stability, maintainability, and adaptiveness of the system; ii.)
Raise awareness about the necessity of refactoring and highlight its benefits
to developers; iii.) Streamline the workflow by reducing overall project and
PR size, and iv.) Support efficient and stable automated testing.

Refactoring was an integral step towards improvement. It constituted a
necessary foundation for other measures such as improving the code review
process, onboarding and test automation.

Modularized architecture simplifies integration and encourages developers
to reuse code. Clean code can be understood by newcomers more easily.
If the code is self-explaining they do not have to rely on seniors to guide
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their onboarding process. Functional separation allows newcomers to start
developing as soon as they are familiar with the subsystem they want to
work on, instead of having to learn the details of all dependent parts of the
code first. Especially for contributors not seeking a long term commitment
this is essential.

Lower complexity in class and method design helps developers to under-
stand program flow and allows them to design more reliable automated
tests. Looser coupling between classes reduces the necessary testing effort.
In general, fewer dependencies allow for proper integration and unit testing.
Moving the focus from system tests to integration and unit tests increases
performance and coverage. Besides, in simpler tests it is easier to pinpoint
the reasons for failures.

It was clearly infeasible to refactor the whole project immediately. Hence, it
was a key objective to divide the process and implement the most beneficial
refactorings first. It stood to reason to prioritize improvements based on
two criteria: i.) How likely are they to mitigate faulty behavior such as
application not responding errors (ANRs) and failures that cause persistent
damage, e.g., malformed project files or data loss; ii.) How much other,
potentially new, functionality can benefit from them.

4.1 Catrobat Language Specification

With Catroid users can develop and run programs written in the Catrobat
language. The programs can consist of multiple scenes. Scenes can be thought
of as chapters in a story or levels in a game. Scenes contain actors or objects.
These objects are called sprites in the Catroid codebase.

Users can define sprite behavior in event-based scripts. Sprites have visual
representations, so-called looks. Besides, users can include sounds into their
programs. These looks and sounds are a reference to files on the device’s
storage and represent these files in Catroid. Looks and sounds can be
included into the behavior definition in such a way that sprites may change
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their appearance or play sounds during runtime.

All projects are executed on the stage. The stage is a window in Catroid
where Catrobat programs run. There users can see and hear the sprites act
according to the behavior defined in their scripts.

4.2 Conceptual Catroid Architecture

On the most abstract level Catroid consists of two main components: An
interpreter for the Catrobat language and an integrated development envir-
onment (IDE). The interpreter contains the entire Catroid language specifica-
tion and executes programs on the stage. The IDE allows users to create and
modify Catrobat projects through a graphical user interface (UI). There are
supplementary components such as web interface where users can access
some web services such as a sharing platform or a tutorials pages.

Catrobat projects are developed by users, hence they may assume faulty
behavior during runtime is caused by errors in their programs. Thus, as long
as these faults are not too severe or occur determinately, users might not
think about them too much. In the case of faulty behavior in the IDE however,
blaming Catroid is more obvious. In order to improve user experience
prioritizing improvements to the IDE seemed preferable.

4.3 IDE windows for Projects, Scenes, Sprites,
Looks and Sounds

Projects, scenes, sprites, looks and sounds are visualized in lists. Because the
lists are self contained UI components they were implemented as fragments.
These fragments, seen in Figures 4.1 through 4.5 are very similar in appear-
ance and in terms of the functionality they offer. In all of these lists, except
for the project list, users can rearrange items via drag and drop. In the scene
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Figure 4.1: The project list in the IDE

list the order defines the sequence in project flow, a sprite’s position within
the sprite list determines its position on the stage’s z axis, i.e., sprites on top
will overlay the ones below them, if their x and y positions coincide, and
the first look in the list is the one that represents the sprite on the stage.

Catroid provides a copy-paste functionality called backpack, where users
can copy items into a persistent clipboard. The backpack can be used to copy
scenes, sprites, looks, or sounds between projects or to copy sprites between
scenes, or looks between sprites or any other combination. Users can also
store items in the backpack and use them at a later time because the contents
of the backpack are serialized into application storage. Scenes, looks and
sounds hold references to physical files in storage. When these items are
added to the backpack their files are copied into a backpack directory as
well. Users can view and manage the backpack from special fragments,
seen in Figures 4.6 and 4.7. These fragments are accessible from the IDE
fragments through the options menu.

Backpacking, copying, deleting and renaming items is handled by action
modes. Users can start the action modes from the respective entry in the
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Figure 4.2: The scene list in the IDE

Figure 4.3: The sprite list in the IDE
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Figure 4.4: The look list in the IDE

Figure 4.5: The sound list in the IDE
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Figure 4.6: The sprite backpack in the IDE

Figure 4.7: The script backpack in the IDE
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Figure 4.8: The options menu where users can start action modes to modify the look list.

options menu (see Figure 4.8). When the action mode is active, users can
select items via checkboxes, as seen in Figure 4.9. The action mode is closed
when a user selects the confirmatory button in the contextual action bar or
the device’s back button. Users can add items to the underlying dataset from
the left button in the bottom bar. This button typically starts a workflow that
involves selecting a source for the new item and naming it. The exact nature
of the workflow depends on the item type, i.e., adding a new project is
somewhat different from adding a new look. But in general the workflow is
complex and involves starting other activities or applications, or performing
storage operations.

4.3.1 Pre-refactoring Implementation and Issues

Each fragment was coupled to an adapter and a supplementary controller.
The controller classes did not actually have a specific responsibility, but
rather provided some utility methods to the fragments and adapters. It is
reasonable to assume that developers put code into the controller classes
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Figure 4.9: The checkboxes where users can select and deselect items they want to copy.

because they thought that the fragments were large enough already. This
shows that developers have an intuition about appropriate class size and
class design. However, it also shows that some developers apparently lack
knowledge about object oriented design principles and that once design
decisions are taken, class design is hardly ever re-evaluated.

Despite their similarity in appearance and functionality the implementations
for the different fragments and adapters hardly shared any code. Improper
dependency handling and insufficient modularization were clearly at fault.
Providing view inflation and data binding, checkbox handling and selection
management were not properly modularized and distributed between the
fragments, the adapters and the controllers. User interaction was handled
by event based message broadcasting. While this was a conceptually valid
approach, the message receivers or listener classes often held object refer-
ences to Android UI components. Because these components are handled by
the Android system, object references regularly become invalid during app
runtime, causing memory leaks. Receiver and listener implementations were
not shared between fragments hence properly registering and unregistering
listeners on Android lifecycle events had to be handled for each fragment
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Table 4.1: Class Size Metrics Details
LOC Non-comment lines of Java code
CA Class size in terms of attributes, not counting inherited attrib-

utes or static fields
OA Number of operations added, i.e., number of methods
Dpt Number of dependent classes
Dcy Number of classes that a class depends on

separately. Maintaining and adapting these broadcast receivers and listeners
was error prone. This lead to frequent and inconsistent crashes. Mitigating
the issues was challenging because the large number of methods in each
class and their complex interactions. In addition the implementation was
fragile, hence changing one method typically caused faults in other, seem-
ingly unrelated parts of the code, which significantly limited maintainers in
their efforts. Duplication caused inconsistencies, because behavior changes
or patches had to be implemented for each fragment separately to ensure
consistency. This process becomes increasingly difficult, the more compon-
ents are involved and it becomes more likely that a developer misses some
important detail. Especially in the scope of a long-lived system, such as
Catroid, duplications constitute a recurring problem limiting maintenance
and adaptation.

The statistics in tables 4.2 and 4.4 list size metrics for the classes that
constitute the backpack. As suggested by Martin (2009) physical lines of
code are often not sufficient to assess class size. Instead, it is preferable to
describe size in terms of responsibilities. However, it is difficult to quantify
the responsibilities of a class numerically. As an approximation a set of
metrics was used to assess class design which includes the number of
methods and the number of dependencies between the classes. These metrics
are described in table 4.1. The numbers were gathered from release 0.9.27

(October 2016
1).

Concerning the architecture there is very little complexity. There is virtually
no inheritance or composition. There is no base class for the adapters,

1https://github.com/Catrobat/Catroid/tree/96a24298d557f6305c1158bbf4f8abc43e516008
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thus there is no shared functionality between adapters holding different
data types. However, the backpack, look, and sound adapters share a base
class with their respective non-backpack adapters. The adapter classes are
relatively small because they do not actually implement dataset visualization.
Instead, view inflation and data binding was delegated to the relatively large
fragment classes. For example, the look adapter and the sound adapter only
provide one method. Conversely the sprite adapter has 14 methods. This
obviously points to some irregularities in class design because all adapters
actually provide the exact same functionality. In terms of physical class size
in lines of code (LOC) it is evident that the fragment and controller classes
are relatively large.

It stands to reason that class design can be improved by moving visualization
to the adapters and by providing base classes for shared functionality. It can
be seen that the fragment classes depend on a comparatively large number
of other classes. Hence, because changes in any of these classes are likely
going to require changes in the fragments as well, they are prone to change
regularly. The fragment’s efferent couplings (CE) or dependencies (Dcy)
significantly outnumber their afferent couplings (CA) or dependent classes
(Dpt), hence, as suggested by Martin (1994) they are highly unstable.

The Chidamber and Kemerer metrics in table 4.3 and 4.5 corroborate the
interpretations proposed before. The fragment classes have a high method
complexity (WMC) and response for class (RFC). Hence, besides their large
physical size, the classes are complex in terms of method complexity and
in terms of program flow. Because the large, complex classes are most
likely to change maintenance is tedious and changes are likely to cause side
effects or introduce faulty behavior. The coupling between objects (CBO)
and the lack of cohesion between methods (LOCM) metrics hint that class
design can be improved. Classes are tightly coupled to each other and
partly incohesive. It is reasonable to assume that some of the larger classes,
especially the controllers and fragments have too many responsibilities.
Hence functionality should be split and properly encapsulated.

The IDE supports rearranging items via drag and drop. Because no built
in solution existed within Android’s ListFragment model Catroid used its
own implementation that was extended from it. The dynamiclistview pack-
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Table 4.2: Class Size Metrics on Pre-refactoring Backpack Classes
Class LOC CA OA Dpt Dcy
BackPackListManager 318 4 64 35 18

.LoadBackpackAsynchronousTask 29 0 2 1 7

.SaveBackpackAsynchronousTask 7 0 1 1 2

BackPackSceneController 221 3 14 4 18

BackPackSpriteController 166 2 12 8 18

BackPackScriptController 186 2 11 5 32

LookController 565 13 35 19 24

SoundController 596 9 45 11 19

Table 4.3: CK Metrics on Pre-refactoring Backpack Classes
Class CBO LOCM RFC WMC
BackPackListManager 49 5 103 101

.LoadBackpackAsynchronousTask 7 1 13 8

.SaveBackpackAsynchronousTask 2 1 4 1

BackPackSceneController 21 2 76 43

.OnBackpackSceneCompleteListener 1

BackPackSpriteController 25 3 64 39

.OnBackpackSpriteCompleteListener 1

BackPackScriptController 36 3 89 45

LookController 41 4 174 107

.OnBackpackLookCompleteListener 1

SoundController 29 3 188 122

.OnBackpackSoundCompleteListener 1
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Table 4.4: Class Size Metrics on Pre-refactoring Backpack UI Classes
Class LOC CA OA Dpt Dcy
BackPackActivity 210 20 5 26 15

BackPackActivityFragment 20 2 3 11 0

BackPackSceneFragment 400 14 28 2 24

SceneAdapter 180 7 14 7 14

.ViewHolder 6 4 0 1 0

BackPackSpriteFragment 355 15 26 4 28

.SpriteDeletedReceiver 9 0 1 1 2

BackPackSpriteAdapter 185 7 14 2 13

.ViewHolder 13 11 0 1 0

BackPackScriptFragment 366 16 21 5 23

.ScriptGroupDeletedReceiver 9 0 1 1 2

BackPackGroupViewHolder 9 7 0 4 0

BackPackScriptAdapter 151 4 14 2 9

BackPackLookFragment 369 16 24 6 25

.LookDeletedReceiver 9 0 1 1 2

.LooksListInitReceiver 8 0 1 1 2

DeleteLookDialog 36 2 2 7 8

LookViewHolder 9 7 0 3 0

LookBaseAdapter 68 7 12 7 3

BackPackLookAdapter 29 8 1 2 8

BackPackSoundFragment 381 16 26 5 23

.SoundDeletedReceiver 9 0 1 1 2

DeleteSoundDialog 35 2 2 1 8

SoundViewHolder 10 8 0 3 0

SoundBaseAdapter 101 10 21 7 4

BackPackSoundAdapter 29 9 1 2 8

Average 115.62 7.38 8.42

Total 3,006 192 219
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Table 4.5: CK Metrics on Pre-refactoring Backpack UI Classes
Class CBO LOCM RFC WMC
BackPackActivity 34 5 73 45

BackPackActivityFragment 11 9 10 3

BackPackSceneFragment 25 8 138 80

SceneAdapter 20 5 63 41

.OnSceneEditListener 2

.ViewHolder 1 0 0 0

BackPackSpriteFragment 29 6 134 73

.SpriteDeletedReceiver 2 1 7 2

BackPackSpriteAdapter 14 1 59 34

.OnSpriteEditListener 2

.ViewHolder 1 0 0 0

BackPackScriptFragment 24 5 127 68

.ScriptGroupDeletedReceiver 2 1 7 2

BackPackGroupViewHolder 4 0 0 0

BackPackScriptAdapter 10 1 51 33

BackPackLookFragment 26 6 128 72

.LookDeletedReceiver 2 1 7 2

.LooksListInitReceiver 2 1 4 2

DeleteLookDialog 15 1 26 5

LookViewHolder 3 0 0 0

LookBaseAdapter 10 5 21 15

.OnLookEditListener 2

BackPackLookAdapter 9 1 15 7

BackPackSoundFragment 24 9 135 71

.SoundDeletedReceiver 2 1 7 2

DeleteSoundDialog 9 1 25 5

SoundViewHolder 3 0 0 0

SoundBaseAdapter 11 9 31 25

.OnSoundEditListener 3

BackPackSoundAdapter 9 1 15 7

Average 11.62 3.00 36.40 22.85

Total 594
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Table 4.6: Class Size Metrics on Pre-refactoring Drag And Drop Classes
Class LOC CA OA Dpt Dcy
DynamicExpandableListView 55 1 9 3 3

DynamicListView 50 1 5 7 1

UtilDynamicListView 617 29 34 3 10

Average 240.67 10.34 16.00

Total 722 31 48

Table 4.7: CK Metrics on Pre-refactoring Drag And Drop Classes
Class CBO LOCM RFC WMC
DynamicExpandableListView 4 4 31 15

DynamicListView 7 5 27 13

UtilDynamicListView 10 1 115 127

Average 7.00 3.33 57.67 51.67

Total 155.0

age constituted the class category that provided the desired functional-
ity. It consisted of two different derived list fragment, the DynamicListView

and the DynamicExpandableListView, and a complementary utility class, the
UtilDynamicListView. The two different fragment classes were necessary be-
cause of slightly different requirements in the sprite list and all other
fragments. The underlying dataset operations were handled by the util
class. While the implementation was relatively cohesive and encapsulated,
it was large and complex. The numbers in table 4.6 show that the utility
class has over 600 lines of code (LOC), 29 member fields and 34 methods.
The size of the response set (RFC) and the weighted method complexity
(WMC) with 115 and 127 are relatively high. Conversely lack of cohesion
(LOCM) and couplings (CBO, Dpt and Dcy) are within the desired range
(see table 4.7). The size and complexity of the util class limited maintenance
and adaptability because it was very hard to understand for developers.
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4.3.2 Refactoring Fragments Introduction

Fowler (2018) says solid automated tests are a prerequisite for refactoring.
Tests ensure that the system behaves exactly the same before and after
the refactoring process. However, because of dependent class design and
insufficient separation between backend logic and UI reliable tests were
unavailable. Dependencies impeded unit testing, thus any existing test were
integration or UI tests. Because maintaining complex integration or UI tests
is tedious, test quality and coverage was poor. Refactoring on the basis of
flaky, incomplete tests was difficult and implementing new, more reliable
test for the existing code was challenging. In any case the improvement
process had to include building more testable implementations and ideally
designing classes so that they can be either unit tested or at least tested
without having to run a UI on the test system. Strictly speaking, replicating
the exact same system behavior was not the objective anyway, because the
current behavior was inconsistent and failure prone. Hence, the objective
was to reimplement the fragments to meet the same requirements as the
ones defined for the previous implementation while providing a more
consistent and stable user experience.

The initial objective was to simply rewrite the fragments. However, be-
cause of the overwhelming complexity in the existing implementation the
first refactoring did not replace all fragments and became a two stage pro-
cess. The first part consisted of re-writing the fragments and adapters in
a way that program flow becomes more apparent and to reduce unused
or unnecessarily complicated code. Here the objective was to build upon
existing technologies, such as the ListFragment model and to mitigate prob-
lems with the drag and drop implementation and checkbox handling. It was
an attempt to generify the implementation and build a reusable solution.
However, for reasons described in more detail in the subsequent sections,
not all fragments were successfully reimplemented.

Because of changing requirements and lessons learned from the first refact-
oring iteration the second part was based on reimplementing the fragments
and supplementary components, such as adapters and controllers on the
basis of the RecyclerView model.
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Figure 4.10: An inflated version of the viewholder for projects with layout bounds and
subtexts.

Figure 4.11: An inflated version of the viewholder for projects with layout bounds and
subtexts and a visible checkbox.

4.3.3 First Iteration: Reimplementing as ListFragments

Because of recurring issues with the visualization and user interaction it
seemed reasonable to redesign checkbox handling. In a first refactoring PR2

an adapter was introduced that provides consistent view inflation and data
binding. The adapter uses a special viewholder class that wraps the layout
into a class. This class provides handles to a checkbox, an imageview where
any bitmap can be loaded, a title and four subtitles or details textviews. An
inflated version of the viewholder’s layout from the ProjectListFragment can
be seen in Figure 4.10 and a version with a visible checkbox in Figure 4.11.
The figures show the view tree’s layout bounds. The four subtitles or details
views are wrapped into a container, so that they can be hidden as a group.
The viewholder class was not a new idea, however, in the reimplementation
the viewholders that existed for some of the data items as separate classes
were replaced by one generic implementation.

To obtain visualizations for the data objects the Android system calls
the adapter’s getView(final int position, View convertView, ViewGroup parent

) method. In this method it provides the adapter with the view object that
exists at a specific position in the list. This view object is passed in through
the convertView parameter. If there is no current view object, such as when

2https://github.com/Catrobat/Catroid/pull/1999
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the list is initially built or the user scrolls to a part of the list for which
no view objects exist, the adapter sets up a new one. To do so it creates
a new viewholder object, inflates the layout and binds the data, i.e. the
title, the image and any number out of the four details texts. Providing a
viewholder class allowed to streamline list efficiency. In Android it is pos-
sible to reference objects in view tags. These tags are member variables of a
view object and hence have the same lifecycle. A view object’s lifecycle is
managed by the Android system, thus it is more efficient to have the system
handle the viewholder objects as well, instead of maintaining a list in the
adapter. Whenever a data binding operation is invoked on the adapter and
the convertView is created, the adapter puts the viewholder object into the
view object’s tag. This means that whenever, the adapter has to update the
view, for example when the checkbox visibility changes, it can simply obtain
the viewholder object from the tag and update the view state accordingly.
Here the adapter also handles details visibility and onclick behavior.

The adapter was built as a generic abstract class so it can be extended and
typed according to its intended usage. In the first iteration this abstract ad-
apter was extended for the project and scene list as well as for all backpack
fragments. While viewholder inflation and subview setup is handled in the
base class, actual data binding is delegated to the child classes. Because no
common base class for the items in the dataset existed, this seemed to be
the most reasonable approach. The adapter provides view objects to the
fragment and sets up listeners for user interactions. The adapter supports
three listener types: a ListItemClickHandler, a ListItemLongClickHandler and a
ListItemCheckHandler. These interfaces allow other classes to register them-
selves as listeners on the respective user interactions. The adapter invokes
the appropriate callback method on each user action. The interfaces are
generic as well, thus they can be typed according to the items in the dataset.
The classes that implement the interface can thus be passed the object that
was clicked as the correct data type. In the project list for example the
overridden on click method is passed an object of type ProjectData (see
Listing 4.1), while the base version of the adapter does not even have to
know about the existence of this class.
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Figure 4.12: The contextual action bar with select/deselect all button and a title that changes
with the number of currently selected items.

@Override

public void handleOnItemClick(int position , View view ,

ProjectData listItem) { ... }

Listing 4.1: The typed version of the onClick interface method.

Complementary to the generic adapter an abstract base class for the frag-
ment was implemented. It integrates with the adapter and provides some
functionality that is shared through all IDE fragments such as displaying a
contextual action bar with an adaptive title depending on the active action
mode. The class implements the adapter’s ListItemCheckHandler interface and
updates the title with the number of currently selected items. Besides it
provides public methods through which activities that host the fragment
can set details visibility on the dataset visualizations. This is used for ex-
ample when users toggle details visibility from the activity’s options menu.
Additionally the fragment provides a select/deselect all button in the con-
textual action bar and handles communication with the adapter when it is
clicked by the user. The contextual action bar and the button can be seen in
Figure 4.12.

The abstract base class CheckBoxListFragment is extended by two other abstract
classes: one for the fragments in the backpack and one that should have
been the base for all non-backpack fragments. The BackPackActivityFragment

provides two action modes that are shared among all fragments in the back-
pack: the unpack and the delete mode. The callbacks for the action modes
implemented in this class handle action mode setup, which includes calling
the adapter to display the dataset’s checkboxes, setting up the contextual
action bar title and clearing the selection on action mode destruction. The
operations on the dataset that occur when the action mode finishes are
delegated to the child classes via abstract methods. The ListActivityFragment

was intended to be the base class for all non-backpack fragments. It provides
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four action mode callback implementations for deleting, copying, renaming
and backpacking items. The callback capabilities are very similar to the
ones provided by the action mode callbacks in the BackPackActivityFragment.
Actual dataset manipulation is also delegated to the child classes. Upon
exiting the delete action mode users are asked if they really wish to proceed
through a dialog. Both base classes provide a method that generates and
displays this dialog. The ListActivityFragment however, was used as a base
class for the project and scene list only because refactoring the classes for
sprites, looks and sounds foundered on the complexity of these classes.

The drag and drop functionality was redesigned on the basis of the previous
implementation. This means that many of the methods that handle the actual
movement of the views on the screen and the responses to user gestures
were reused in the DragAndDropListView. However, the dataset manipulation,
i.e., reordering the items in the list was delegated to the adapter via the
DragAndDropAdapterInterface. This is advantageous because it is extensible
without modification, meaning that each adapter can override the int

swapItems(int position1, int position2), which is called by the drag and drop
view whenever items are moved over each other. The adapter then can
prevent dragging certain items over others for example, or update the
dataset in some special way. In the old version when the data manipulation
had to be different for any of the implementations, the utility class would
have had to know about it and handle it via some control structure. Thus
this improvement helps decouple the view and the dataset through inverting
the low level (adapter implementation) dependency on the high level (the
fragment) to a design where both the adapter and the fragment only depend
on the abstract interface.

4.3.4 First Iteration: Results and Insights

In the first iteration of rewrites it was possible to reimplement the entire
backpack UI. The tables 4.8 and 4.9 show the class sizes in terms of LOC, at-
tributes, operations and dependencies and the Chidamber Kemerer metrics
respectively. The tables contain both the cumulative and average metrics.
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Because the reimplementation consists of fewer classes the total numbers
give a better indication about how the two implementations compare to one
another in terms of overall complexity. Conversely, the average numbers
assess class design and describe the internal structure of the implementa-
tions. There are metrics however, where total or average numbers are not
meaningful. For example lack of cohesion in methods (LOCM) is a metric
that assesses class design. A value of one indicates a cohesive class and
larger numbers suggest that design can be improved. Summing over these
numbers for example has no significance whatsoever. Hence, the respective
cells in the tables were left blank intentionally.

The overall LOC was reduced by 50% from 3,006 distributed within 26

classes to 1,450 in 15 classes, which decreased the average class size from
approximately 116 to 97 lines of code. However, the improvement can be
seen even more clearly in the number of operations, or methods (OA) in the
classes. The total number of methods in all backpack UI classes was reduced
to approximately one third, from 219 methods to 77 methods. This decreased
the average number of non-inherited methods per class from approximately
8 to 5. Fewer methods can have either mean that complexity was removed
from the implementation altogether or that many simple methods were
replaced by fewer, more complex ones. Hence, to properly assess the changes
it is necessary to evaluate method complexity. While the LOC give a rough
upper bound on the size of the methods, cyclomatic complexity properly
describes method complexity. The cumulative cyclomatic complexity (WMC)
over all methods in the implementation was decreased by more than 50%
from 594 to 273 and the average WMC was reduced from 22 to 18. This
corroborates that class complexity was in fact reduced and not hidden
within more complex methods.

It can be seen that common functionality has moved from the concrete
implementations to the base classes because the number of methods (OA) in
the child classes was reduced by approximately 50%. The OA in the adapter
child classes were even reduced to zero. This means that the adapters
themselves only provide functionality by implementing methods from the
abstract base class. The adapter base class is stable because it mostly depends
on the abstract fragment base class. These two, with the view holder base
class, form a class category by providing one specific functionality. Hence
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dependencies between those classes are desirable. The abstract base classes
are very unlikely to change, thus having the child classes implement only
methods inherited from their parents constitutes a robust, yet adaptable
class hierarchy.

While the average number of attributes has increased, this is mainly due to
the fact that some very simple classes, such as duplicate listeners have been
removed. Looking at the cumulative number of attributes confirms this pro-
position. The total number of attributes was reduced from 192 to 173. More
interestingly however is how these changes affect the quality of class design.
Cohesive classes are desirable. The lack of cohesion in classes (LOCM) metric
is based on the number of methods that operate on disjunct sets of instance
variables or attributes. Here the tables show significant improvement in
certain classes such as the fragment base class, the BackPackActivityFragment.
Overall LOCM was reduced in the reimplementation.

The changes significantly improve readability and testability because pro-
gram flow is less complex and class design is more expressive. Couplings
on adapter and fragment classes have improved slightly, mainly because
dependencies have moved to the base classes and because fragment and
adapters now form a more cohesive class category. This can be seen in the
Dpt, Dcy and CBO metrics.

The metrics on the drag and drop classes can be seen in tables 4.10 and 4.11.
It can be seen that class size and complexity was significantly reduced while
class design remained cohesive.

While the metrics show improvements there were some unresolved issues
after the first iteration. It had been clear that the first step would leave out
refactoring the script and brick IDE because of its complex requirements and
dissimilarity to the other IDE fragments. However, during the improvement
process it became apparent that it was not possible to refactor all of the
other fragments within the first iteration. This corroborates the proposition
that the issues described in sections 3 and 4.3.1 limit software evolution.

It was difficult to estimate the scope of the rewrite beforehand because of
dependencies and code obfuscation. Missing separation between backend
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Table 4.8: Class Size Metrics on Refactored Backpack UI Classes
Class LOC CA OA Dpt Dcy
BackPackActivity 176 18 5 17 14

BackPackActivityFragment 125 9 6 6 10

CheckBoxListFragment 115 8 12 16 9

CheckBoxListAdapter 112 9 11 17 7

.ListItemViewHolder 11 9 0 7 0

BackPackSceneListFragment 176 15 10 2 19

SceneListAdapter 26 10 0 3 8

BackPackSpriteListFragment 179 15 9 2 23

SpriteListAdapter 30 9 0 2 7

BackPackScriptListFragment 136 15 7 3 17

BackPackScriptListAdapter 23 9 0 2 6

BackPackLookListFragment 142 14 8 3 17

LookListAdapter 24 9 0 2 6

BackPackSoundListFragment 140 15 8 3 16

SoundListAdapter 35 9 1 2 7

Average 96.67 11.53 5.13

Total 1,450 173 77.0
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Table 4.9: CK Metrics on Refactored Backpack UI Classes
Class CBO LOCM RFC WMC
BackPackActivity 29 5 64 38

CheckBoxListFragment 25 3 51 23

CheckBoxListAdapter 24 2 33 22

.ListItemCheckHandler 1

.ListItemClickHandler 1

.ListItemLongClickHandler 1

.ListItemViewHolder 7 0 0 0

BackPackActivityFragment 15 5 36 26

BackPackSceneListFragment 21 3 80 33

SceneListAdapter 11 1 15 4

BackPackSpriteListFragment 25 3 90 35

SpriteListAdapter 9 1 24 4

BackPackScriptListFragment 20 3 70 25

BackPackScriptListAdapter 8 1 19 3

BackPackLookListFragment 20 3 72 27

LookListAdapter 8 1 17 3

BackPackSoundListFragment 19 3 76 25

SoundListAdapter 9 1 22 5

Average 16.67 2.33 37.33 18.20

Total 273

Table 4.10: Class Size Metrics on Refactored Drag And Drop Classes
Class LOC CA OA Dpt Dcy
DragAndDropListView 122 11 9 1 2

Average 122 11 9 1 2

Total 122 11 9 1 2
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Table 4.11: CK Metrics on Refactored Drag And Drop Classes
Class CBO LOCM RFC WMC
DragAndDropAdapterInterface 1

DragAndDropListener 4

DragAndDropListView 3 1 47 25

Average 3.00 1.00 17.33 25.00

Total 25

logic and UI proved to be especially problematic. In the pre-refactoring
version data manipulation was distributed between fragments, adapters
and activities. Automated testing was difficult because it was impossible
to test single classes. In the first improvement iteration data manipulation,
including storage operations was moved to the fragment child classes.
However, this still impeded automated testing because all tests for data
manipulation required a UI and all UI tests had to be provided with a file
system for the storage operations. It was clear that in the second iteration
data manipulation should be removed from the fragment classes.

Before the first improvement iteration user interactions were modelled by
using singleton patterns and static classes. Instead of proper object oriented
design, certain functionality was implemented as a series of method calls
to various static classes or singleton objects. Instead of passing arguments,
parameters were often set at globally accessible locations, such as a public
field in a singleton. Sometimes class design and user interaction between
activities was handled via setting boolean flags in some global singleton.
Data manipulation for example, especially storage operations were handled
mainly through singletons. Throughout the system these singletons have
taken over an increasing number of responsibilities over the years. Especially
the ProjectManager and the StorageHandler classes have become what Fowler
(2018) identifies as god objects. A god object constitutes a class level code
smell. It describes a class that has too many responsibilities. Common
symptoms are a large number of LOC, large numbers of methods and
attributes. The numbers can be seen in table 4.12. Throughout Catroid there
are 347 classes that depend on the ProjectManager and 93 depending on the
StorageHandler. Both classes are extremely complex with around 50 methods
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Table 4.12: Class Size Metrics on God Object Classes
Class LOC CA OA Dpt Dcy
StorageHandler 953 11 49 93 188

ProjectManager 593 15 59 347 40

Table 4.13: CK Metrics on God Object Classes
Class CBO LOCM RFC WMC
StorageHandler 276 5 195 137

ProjectManager 376 8 173 144

(OA), a response set size (RFC, i.e., all methods that can be potentially
invoked) of close to 200 and a weighted method complexity (WMC, i.e.,
cumulated cyclomatic complexity of all methods in a class) of approximately
150. Because both classes have many responsibilities they depend on a large
number of classes. The StorageHandler for example knows about and depends
upon all Catrobat language objects, including all script and brick classes.
Consequently the coupling between objects CBO metrics are extremely high
with 267 for the StorageHandler and 367 for the ProjectManger.

These god objects are difficult to test and maintain and create a tightly
coupled architecture. Because a large number of classes depend on these
objects it is hard to change them without causing side effects. Hence they
promote rigidity by fragility. Consequently methods are hardly adapted
but rather copy-pasted. Because the non-backpack activities and fragments
relied heavily on these singletons it stood to reason that refactoring and
eventually splitting the god objects had to become part of the improvement
process.

Quality deterioration was more severe in the non-backpack fragments,
especially in the look, sprite and sound fragments. Scenes had only been
introduced into the Catrobat language shortly before the improvement
process described here. Because the scene fragment was relatively new, it
still had some structural integrity. Besides, user interactions on scenes and
projects are not as complicated as for the other language elements. For
example adding new projects or scenes is significantly less complex than
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adding sprites or looks. Copying or deleting projects or scenes is simpler
too, because it just involves storage operations on the respective directory
in storage, while sprites, looks or sounds can have additional dependencies.
Hence it was possible to rewrite the scene and project fragment within the
first iteration.

Setting up tightly connected yet encapsulated components proved to be a
feasible approach. Separating dataset manipulation, visualization and the
fragment helped reintroduce modular class design and promote adaptability
and reusability. However, because there are similar user interactions and
lifecycle events for all fragments it should be possible to move more of
the common functionality, such as starting action modes and displaying
various dialogs to the base classes. Conversely, using composition instead of
inheritance for the Catrobat language element specific functionality should
help build more adaptable classes.

4.3.5 Second Iteration: Separating Frontend and Backend

One objective was to remove operations on data from the fragment classes,
thus separating UI functionality and backend logic. This was realized
through applying composition rather than inheritance and setting up the
fragments to hold a controller object and delegating data operations to it.
Controller classes wrap operations necessary for the copying, moving or
deleting Catrobat language elements, such as storage operations. These
controller then take over one distinct functionality from the fragments. The
LookController for example calls the file operations necessary to copy, pack,
unpack or delete looks.

Advantages are: i.) Controllers can be tested in isolation without having
to run the UI on the test system; ii.) It is possible to test the fragments
without having to call storage operations by mocking the controllers. Thus
it is possible to test how the fragments react if storage operations fail, and
iii.) Controllers can be adapted or exchanged if requirements change, and
changes to the storage operations do not require changes in the fragments.
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Table 4.14: Class Size Metrics on Classes Built from StorageHandler
Class LOC CA OA Dpt Dcy
BackpackSerializer 57 3 3 2 6

StorageOperations 234 2 15 41 1

XstreamSerializer 434 5 12 58 191

Total 725 10 30

Table 4.15: CK Metrics on Classes Built from StorageHandler
Class CBO LOCM RFC WMC
BackpackSerializer 8 2 25 6

StorageOperations 42 4 64 56

XstreamSerializer 249 2 92 45

Total 107

4.3.6 Second Iteration: Splitting God Objects

The StorageHandler class with approximately 1,000 lines of code (LOC), 93 de-
pendent classes and dependencies on 188 classes was obviously one source
of Catroid’s tightly coupled design. It stood to reason that splitting the
class distributes dependencies and improves class design. Clean code prin-
ciples (Martin, 2009) suggest that classes should have only one responsibility.
Hence, it seemed reasonable to identify all responsibilities the StorageHandler

has, and construct new classes for each of these responsibilities.

The StorageHandler provided three main functionalities: i.) Serializing and
deserializing Catrobat programs; ii.) Performing storage operations, such
as copying or deleting files, and iii.) Serializing and deserializing the
backpack. Consequently, the class was split into the XstreamSerializer, the
StorageOperations and the BackpackSerializer classes. The process was rel-
atively straightforward because there was no change in functionality or
rewrites.

The metrics for the new classes are listed in tables 4.14 and 4.15. The total
number of lines of code (LOC) in all three classes is smaller than the number
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of LOC in the StorageHandler class by approximately 200 lines. Moreover, the
dependency metrics have improved significantly. The backpack-serializing
functionality for example, is only used by two other classes (Dpt value of
two) and depends on six other classes (Dcy value of six). The storage oper-
ations class is used by 41 other classes (Dpt value of 41). However, it only
depends on one other class (Dcy of one). The xstream serializer is used by 58

classes and depends on 191 classes. This is interesting because it shows how
class design influences dependency management. The storage-operation
functionality for example, is highly independent and reusable. It is very
unlikely to change and consequently a stable target for other classes to de-
pend on. Conversely, the xstream serializer part is highly dependent on the
Catrobat language specification, i.e., on all classes that constitute language
elements. This part was responsible for the StorageHandler’s large number
of dependencies. Consequently, it was not possible to reduce the number
of dependencies here. However, the backpack serializer has significantly
fewer dependencies than the xstream because the backpack only contains
language elements above brick level, i.e., scenes, sprites, scripts, looks and
sounds. In any case, splitting the class decoupled the three distinct function-
alities in the StorageHandler. This implies that any classes that use either of
the functionalities, no longer simultaneously depend on the other two.

The Chidamber and Kemerer metrics in table 4.15 show that splitting the
StorageHandler class has helped reduce complexity. The potential number
of method invocations (RFC) was decreased significantly, from 195 in the
StorageHandler to 25, 64 and 92 for the backpack serializer, the storage opera-
tions and the xstream serializer respectively. A lower number of potential
method invocations improves testability because there are fewer scenarios to
consider. Furthermore, lower RFC implies that is easier for developers to un-
derstand the control flow through the class. The same change can be seen in
the weighted method complexity (WMC). The new classes have significantly
lower WMC per class, and even the cumulative method complexity of all
three classes is lower by 30 paths through control flow (reduced from 137 to
107). The decision to split the StorageHandler is corroborated by reduced lack
of cohesion in methods (LOCM) measures. However, the values of two, four
and two for the backpack serializer, the storage operations and the x stream
serializer respectively, imply that the still have multiple responsibilities and
that they should be split into even more, smaller classes.
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The results imply that it is beneficial to split god objects even without
rewriting the methods in the class. Consequently, it is reasonable to assume
the splitting the ProjectManager can help to improve class design just as
significantly.

4.3.7 Second Iteration: Reimplementing as RecyclerView

Based on the developer guidelines provided by Google (2018e) it seemed
reasonable to reimplement the fragments based on the RecyclerView model.
Conceptually component design in the RecyclerView model is similar to the
architecture set up in the first refactoring iteration. The RecyclerView is used
as a container for data that is visualized in viewholders. Data binding is
handled by an adapter. The RecyclerView model is flexible because it is a
view instead of a fragment. Hence, it can be used within any view tree
and offers more customization options. RecyclerView handles view binding
and reuses viewholders to optimize app performance and reduce memory
requirements. It provides a consistent look and feel on devices running
different Android versions, because of its superior backward compatibility
and supports drag and drop out of the box.

Based on the experiences from the first iteration it stood to reason that
the class hierarchy for the RecyclerView model should be similar to the one
used for the ListFragment implementation. The rewrite introduced a generic
adapter class that is responsible for data visualization. It manages the
checkboxes that are used for item selection during the action modes and
keeps track of the items a user selects. In the first iteration selected items
were tracked in the adapter class directly. This functionality was moved to a
separate selection manager class in this iteration. This way multi-selection
can be tested in isolation, without the adapter. Conversely, the adapter does
not depend on the specifics of the multi-selection. It simply depends on
the public methods to set, remove and toggle item selection and a method
that provides the currently selected positions. This design is more adaptable
because if selection has to work differently for one child class of the adapter
the multi-selection manager can simply be overridden there and the base
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class does not have to change.

The adapter uses a viewholders to visualize the dataset. The ViewHolder class
is extended from the RecyclerView model’s viewholder class. It provides a
checkbox, an image view, a title and four details views. The adapter binds
the respective values from the dataset to the view elements. Changes to
the checkbox state are detected by the adapter. It uses the multi-selection
manager to keep track of the checked items in the dataset and allows other
classes to register themselves as listeners, so that they are notified when the
selection changes. Additionally, the adapter listens for click and long click
events on the items in the dataset. Other classes can register as listeners for
click events. The listener interfaces can be seen in Listing 4.2.

Two abstract base classes for the UI fragments were set up. These frag-
ments provide functionality to handle user interactions in the backpack and
non-backpack fragments. Both base classes support action modes. In the
backpack there are two action modes, one for deleting and one for unpack-
ing items. In the non-backpack fragments there are four action modes that
pack, copy, delete or rename items. The base classes start an action mode
when users click on the respective item in the options menu. They notify
their adapter to display the checkboxes and handle finishing the action
modes. Actual dataset manipulation, such as deleting or unpacking items is
different for each data type, meaning that deleting a look is different from
deleting a sprite. Hence, this functionality is delegated to the child classes
through abstract methods. This way the fragments are extensible. The base
class does not have to know about all different data types and depends only
on the abstract method and not on implementation details. In order to pass
the correct data type for manipulation, the base class is generic and can be
typed through a parameter. The class headers and the interfaces the base
fragments implement can be seen in Listings 4.3 and 4.4.

The fragments respond to Android lifecycle events. For example, they finish
any active action mode when they are put into the background. Dataset
setup depends on the data item type. For example, obtaining all sprites
from a scene works differently than obtaining scenes from a project. Hence,
initializing the adapter with the dataset is delegated to the child classes.
This keeps the UI independent from the specifics of the Catrobat language
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elements.

When the adapter initialization is finished the fragments register as listeners
for selection changes and click events on the dataset. How the fragments
respond to these events can be defined in the child classes by overriding
the respective methods. Both base classes handle long click events. The
backpack fragment displays a contextual action dialog where users can
unpack or delete items from the dataset (see Figure 4.13) and the non-
backpack fragment initiates drag and drop.

58



4.3 IDE windows for Projects, Scenes, Sprites, Looks and Sounds

public interface SelectionListener {

void onSelectionChanged(int selectedItemCnt);

}

public interface OnItemClickListener <T> {

void onItemClick(T item);

void onItemLongClick(T item , ViewHolder holder);

}

Listing 4.2: Recyclerview listener interfaces for user interactions with the dataset.

public abstract class RecyclerViewFragment <T> extends

Fragment implements

RecyclerViewAdapter.SelectionListener ,

RecyclerViewAdapter.OnItemClickListener <T>,

NewItemInterface <T>,

RenameItemDialog.RenameItemInterface { ... }

Listing 4.3: The generic recyclerview class and the interfaces it implements.

public abstract class BackpackRecyclerViewFragment <T> extends

Fragment implements

ActionMode.Callback ,

RVAdapter.SelectionListener ,

RVAdapter.OnItemClickListener <T> { ... }

Listing 4.4: The generic recyclerview class for backpack fragments and the interfaces it
implements.
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Figure 4.13: The contextual action dialog initiated by a long click on a data item.

4.3.8 Second Iteration: Results and Insights

In the second iteration of the IDE refactoring it was possible to reduce the
size of the codebase significantly. The pull request (PR) that introduced the
RecyclerView implementation3 removed 44,352 lines of code and replaced
them with 9,539. This is a reduction of 34,813 lines of code (including
comments and non-production code) or 78.5%. The scope of the PR with
changes to 573 files was far beyond what is usually acceptable in the project.
The review process took 7 days which clearly did not adhere to the principles
of continuous integration (CI) at all.

However, because of the tightly coupled architecture of the previous imple-
mentation it was difficult to split the changes and integrate them through

3https://github.com/Catrobat/Catroid/pull/2682
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Table 4.16: Class Size Metrics Before and After Reimplemenation
Before RV After RV

LOC (total) 89,132 77,773

LOC (average) 83.90 76.84

CA (total) 8,398 8,016

CA (average) 8.98 9.06

OA (total) 5,814 5,148

OA (average) 6.22 5.82

CBO (average) 17.18 16.57

LOCM (average) 1.92 1.85

RFC (average) 24.37 22.61

WMC (average) 16.48 14.91

multiple PRs. The fact that even after an effort to reduce the changes to the
absolute minimum the PR still changed 573 files highlights the impact of
dependent design on the development process.

Considering the scope of the changes it is clearly unreasonable to evalu-
ate the metrics on class level. Instead, the metrics in table 4.16 show the
numbers calculated on the entire project. The columns compare the metrics
calculated directly before and immediately after the PR that introduces the
RecyclerView model. The size metrics are the cumulative number of lines of
code, attributes and methods over all classes and the averages per class. For
the Chidamber and Kemerer metrics (CKM), which are calculated per class,
the table shows the averages over all classes.

The numbers show a significant reduction in the total number of lines of
production code from 89,132 to 77,773. The average class size was decreased
by around 10% from 84 to 77 lines of code. The class size in terms of
attributes and methods remained approximately the same. Couplings (CBO),
response set size (RFC) and method complexity (WMC) was reduced and
cohesion between methods (LOCM) improved.

The implications of the rewrite are not confined to changes in code met-
rics. It influenced the development process and how developers collaborate
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remotely. In 2019 remote contributors implemented a new contextual ac-
tion for the one of the non-backpack fragments: A merge functionality for
projects, where users can combine two projects into one. This comprised
two extensions to existing functionality: a new action mode definition with
a corresponding callback and a new selection mode that allows users to
select exactly two items in a list. The developers managed to implement
the changes to the user interaction handling in a PR4 with less than 300

lines of code (including comments, copyright headers, UI message texts and
automated tests). It is worth noting that these remote contributors neither
had any part in the refactorings described here nor were they briefed on the
details of the implementation. Hence, it is reasonable to assume that clean
code is in fact reused and that the fragment and adapter implementations
are sufficiently adaptable and independent to be changed easily.

Despite the improvements it is worth discussing some considerations and
improvement opportunities regarding the reimplementations:

• Class have too many responsibilities. While it was possible to separate
functionalities and add some modularization, many classes still do
too much. Especially the IDE fragments handle a majority of the user
interactions. They provide a very specific set of functionalities and
hence it might be difficult to reuse them in other contexts.

• Backpacking is still a mess. The dependencies between Catrobat lan-
guage elements makes it difficult to properly duplicate items and
correctly set all references. The controller classes are highly depend-
ent on the implementation details of the language specification. Here
it could be beneficial to encapsulate certain functionality into the
language elements themselves.

• Class design for Catrobat language elements could be improved. It is
an objective that Catrobat programs are backward compatible, mean-
ing that programs created with an old language version have to be
interpretable by newer versions of the interpreter and the IDE. Because
of this requirement changes to the language element implementation
meant that xstream serialization and deserialization had to be adapted
as well.

4https://github.com/Catrobat/Catroid/pull/3173/files
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• Class design for the UI relies on inheritance. However, in certain cases
using composition would have been preferable. Building UI classes
from composite elements could be used to remove more backend logic
from the UI components. Which implies that more of the functionality
would become testable in unit and medium-sized integration tests that
do not have to be run on the UI. This could help reduce test flakiness
and build more reliable tests. Additionally, composition would help
build more reusable UI components. Action modes and callbacks,
for example could be components, instead of having the fragments
implement action mode behavior. With inheritance any new fragments
that want to reuse action mode implementations always inherit all
action modes form the base class, regardless if they use all of them
or not. Conversely, adding a new action mode for only some of the
child fragment classes is difficult. If the action mode is added to the
base class, all other children inherit it as well, even if they do not need
it and if it is not added to a common base class sharing it between
to children becomes complicated, unless another common base class
for the fragments sharing this action mode is added. However, this
complicates the class hierarchy and promotes rigid design.

4.4 Bricks and Scripts

Bricks are atomic elements within the Catrobat language. Currently Catrobat
supports more than 120 different types of bricks. Each brick represents a
statement and each statement corresponds to an action. Actions are atomic
operations that can be performed during program runtime. They are the im-
plementation of Catrobat statements based on the game-engine framework
libgdx5. The statements in a Catrobat program are converted into actions
before it is started on the stage. The Catrobat language is event-based and
each statement is part of a thread. These threads are called scripts.

In Catroid’s integrated development environment (IDE) there is a fragment

5https://libgdx.badlogicgames.com/
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that displays all scripts and bricks that define the behavior of a sprite. Users
can add, copy, rearrange, delete and deactivate scripts and bricks. Scripts
have a header, subsequently called ScriptBrick, that visually marks the start
of a script. While rearranging bricks within a script plays a central role
in defining sprite behavior, rearranging whole scripts is purely cosmetic
and should support users in maintaining structure within their code. By
deactivating single bricks or whole scripts users can mark parts of their code
as non-executable, similar to commenting out lines of code in a text-based
programming language.

4.4.1 Brick Categories

Bricks are organized into color-coded categories. Besides bricks that can be
used to define the motion, sound and appearance of a sprite, there are event,
control and data bricks. Additionally there is the pen category that allows
users to draw paths onto the stage. The pen supports customizations such
as setting stroke width and color and the paths follow a sprites motion.

4.4.2 Event Bricks

The event category contains script bricks that act as script headers. While
all scripts invocations depend on events, some scripts allow users to specify
additional conditions. For example, there is a script type that allows users
to react to broadcast messages. Here users can specify to which message the
script should react. The event category also contains the bricks that send
these broadcast messages. Other scripts types are executed on program start,
when the user touches the screen, when some sensor value assumes some
value or when the sprite collides with some other sprite on the stage.
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4.4.3 Control Bricks

Users can control the program flow through the event threads with if-
then-constructs, if-then-else-constructs, conditional and unconditional loops.
Hence, the control flow graph of a script can contain branches. A simple
example can be seen in Figure 4.14. It shows the program flow of a thread
that is invoked when a scene starts.

In the IDE bricks are arranged below each other, similar to the statements in
a text-based programming language. To visualize the grouping of statements
in control structures there are else-, end-if- and loop-end-bricks. These bricks
serve a similar function to braces around statement blocks in languages
such as Java or C. The representation of an if-else construct can be seen in
Figure 4.15.

In 2018 Catrobat started developing a 2D visualization and manipulation
method for Catrobat programs based on Google’s Blockly language spe-
cification6. Development decisions in Catroid influenced the development
process for the Blockly extension. The Blockly-based extension interprets
Catrobat programs built with Catroid and Catroid’s modelling of the Ca-
trobat language had some issues that will be discussed in the subsequent
sections.

4.4.4 Script Interpretation

On the stage, the actions in a thread are executed sequentially. Branches in
program flow are modelled as conditional actions. A conditional action, such
as an if-then-else action, consists of a condition and two subsequences, an if-
sequence and an else-sequence. To execute a conditional action, the condition
is evaluated, and depending on the result, program execution continues
on either the if- or else-sequence. The subsequences are lists of actions and
that contain additional conditional actions. Repetitive actions or loops are

6https://developers.google.com/blockly/guides/overview
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Figure 4.14: Conceptual representation of a if-then-else sequence

Figure 4.15: IDE representation of a if-then-else sequence
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modelled similarly. They consist of a condition and a single subsequence of
actions that are executed as long as the condition is fulfilled.

4.4.5 Pre-refactoring Data Modelling and Issues

The Catrobat language implementation in Catroid modelled the program
flow of a script as a flat collection of bricks. When the statements in the
thread were interpreted the else-, end-if- and loop-end-bricks were used
to identify which bricks belong to which branch of the control flow and to
construct the corresponding actions for the stage. Hence the scripts had to
be parsed. The bricks in the collection had to be treated as tokens and the
sublists for conditional or repetitive actions were built from subsections of
this collection before the stage started.

For a script to be interpretable, there were requirements. The number and
sequence of syntactic bricks had to be correct. However, because the syntactic
bricks were part of the script’s brick list as separate elements it was actually
possible to create a sequence of bricks that is invalid. A missing syntactic
brick for example, causes Catrobat programs to behave incorrectly. The same
is true for the order of syntactic bricks: an if-end-brick before the else-brick
result in an invalid program.

It is common that programming languages require the users to ensure that
their programs to be correct in order to be executable. However, in Catroid
the IDE was supposed to prevent users from modifying control structures in
such a way that they would become invalid. If, for example a user selected
an else-brick for modification the entire if-then-else construct was selected.
This ensured that the user was only able to operate on these constructs as
a whole. Figure 4.16 shows that selecting an if-then-else structure disables
all checkboxes within the structure, so that parts of it cannot be modified
separately.

The IDE, however did not parse the script in order to know the scope of
a control structure. Instead all parts of a control structure, i.e., the control
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Figure 4.16: The IDE only allows control structures to be modified as a whole in order to
prevent invalid program structures.

structure’s header and its syntactic bricks were linked via object refer-
ences.

It was a reasonable requirement for the IDE to ensure that users would
only be allowed to build valid programs. However, there were some design
decisions that had considerable drawbacks:

• Links between the bricks in the control structure were not part of the
serialized version of the program. Hence the object references were not
persistent. Every time a program was read from its file, each script in
each sprite in each scene had to be parsed and the references between
the bricks of a control structure set.

• Copying a selection of bricks within a script that contained control
structures was complicated and did not work properly most of the
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time. The main issue was correctly setting the references between the
control structure headers and the corresponding syntactical bricks.
Because control structures can be nested into each other and because
there are many different possibilities for the sequence of bricks in a
script, there were cases where references were set up incorrectly. This
often resulted in null references, references to copied bricks that were
not added to the script’s brick list or references between copies and
the original bricks. These problems caused Catroid to crash. There
were patches for this behavior, however none of them actually fixed
the issue for all use cases. This was mainly due to the fact, that in
order to correctly address the problems large parts of the IDE would
have had to be reimplemented.

• Because the syntactic bricks were treated as separate bricks, it was
possible to serialize programs that contained incomplete or incorrectly
ordered control structures. If for example during the copy process
for a if-then-else structure the copied else- or if-end brick were not
correctly added to the script it was still possible to serialize this invalid
script because there was no other verification that ensured only correct
programs were serialized. This had some serious ramifications. It was
practically impossible for users to recover broken programs because
the IDE did not allow them to modify incomplete control structures.
Thus it was particularly frustrating for users if the programs were
corrupted because of errors in the IDE.

Most of these issues were difficult to mitigate via patches because script and
brick modification through the IDE because of the complex implementation.
All classes concerned with this part of the system were highly interdepend-
ent and responsibilities were distributed among them. Hence, it was difficult
to identify all classes that had to change in order to correct the behavior and
to ensure that all other functionality remained unaffected.

Errors and crashes caused by problems with control structures in scripts
were critical because they often resulted in persistent damage to a user’s
programs. Besides, it was difficult to convert the flat implementation to
the Blockly language specification. Hence, it seemed reasonable to remodel
script structure to provide a more resilient implementation.
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4.4.6 Changing Data Modelling

It stood to reason to change the implementation in such a way that the
data modelling does not allow invalid scripts. This means that the IDE does
not have validate script correctness, which is preferable because the IDE as
the user interface (UI) should not have to know about the specifics of the
Catrobat language.

In other visual programming languages such as Blockly or MIT’s Sratch7

event-based threads are modelled as trees. Control structure statements
have dedicated sublists with all statements that constitute their subtree. In
such a hierarchical implementation, syntactic bricks do not exist as separate
elements in the script’s token list. Hence, the correctness of the script does
not depend on the correct number and sequence of syntactic bricks.

Replicating this hierarchical data modelling for the bricks in Catroid seemed
reasonable. Remodelling the data structure accordingly was relatively straight-
forward. However, the rewrite provided the opportunity to change class
and dependency design.

The brick package has a large number of afferent couplings (CA). This
implies that there are many classes outside the package that invoke public
methods or directly operate on member variables of classes in the pack-
age. The rewrite provided the opportunity to change this. For the sake of
robustness and to prevent changes to one of the 120+ concrete brick im-
plementations from propagating to dependent classes all methods publicly
available on the brick classes were added to the Brick interface. So that all
classes outside the brick package depend on the interface rather than on the
concrete implementations. The Brick interface is extremely stable (instability
measure is 0.07), thus it is very unlikely to change and consequently it is
highly unlikely that any classes that depend on it have to change because of
it. Because the brick interface is abstract, it is possible to extend it without
modification. Thus, classes and dependencies are designed according to the
open-closed principle (Martin, 1996) which encourages extensibility (open

7https://scratch.mit.edu/
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Figure 4.17: While there is additional hierarchy and various subclasses, all bricks implement
the brick interface.

to extension) while discouraging modification (closed to modification). Fig-
ure 4.17 shows the brick class hierarchy. It can be seen that while there are
base implementations and various child classes, all bricks implement the
Brick interface.

By changing the data modelling to a tree, dataset operations had to be
moved to the tree’s children, i.e., the bricks. There are three operations that
the data structure needs to support: removing children from anywhere in
the tree, flattening the tree to a list and adding children to any level of the
tree. In order to adhere to the open-closed principle, all methods necessary
for these operations were added to the Brick interface. A representation of
the tree data model and how it should be flattened can be seen in Figure 4.18.
The tree’s root is the script itself and any non-empty script without control
structures has a height of one. The script brick is not part of the tree because
it is the visual representation of the script and cannot be removed or added
without adding or removing the script. Just like the syntactic bricks in
a control structure it serves no functional purpose in the program. All
children that have a depth of one, i.e., all subchildren of the root are in the
scripts object’s list of children. Any children with a depth of two have to be
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Figure 4.18: Representation of a script and its subtrees. The bricks in the leftmost column
are on the first child level of the hierarchy. Syntactic bricks, i.e., the else-, end-if-
and end-loop-brick are marked in dashed rectangles. They are only part of the
flattened representation, but not of the actual tree.

subchildren of a child in the script’s list. Any children with a depth larger
than two have to be subchildren of subchildren. In order to find a brick in
this structure the tree has to be traversed.

Removing Bricks from a Script

The method public boolean removeBrick(Brick brick) in the script class tra-
verses the tree implicitly. Hence, none of the classes that use this method
to remove bricks from a script have to know about the tree structure. If the
brick that should be removed is on the first child level it is removed from
the list. If the brick is not found the script invokes public boolean removeChild

(Brick brick) on each brick in the list, delegating removal to the bricks. All
bricks provide the method public boolean removeChild(Brick brick) through
the Brick interface. Bricks that do not have sublists simply do nothing and
return false. Bricks that hold sublists, remove the brick if it is held by them
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directly or otherwise delegate the call to the bricks in their sublists. The
method returns true once the respective brick is found, hence, worst-case,
i.e., if the brick to remove is not in the tree, the operation traverses the whole
tree once. An example implementation for the if-then-else control structure
can be seen in Listing 4.5.

This implementation has the advantage that it only relies on the public

boolean removeChild(Brick brick) from the Brick interface so that neither the
script nor a brick with sublists have to know the classes of the bricks in
their lists. Hence, if any new brick classes are added, that handle removing
children differently, the script class and all other brick classes do not have
to be changed.

@Override

public boolean removeChild(Brick brick) {

if (ifBranchBricks.remove(brick)) {

return true;

}

if (elseBranchBricks.remove(brick)) {

return true;

}

for (Brick childBrick : ifBranchBricks) {

if (childBrick.removeChild(brick)) {

return true;

}

}

for (Brick childBrick : elseBranchBricks) {

if (childBrick.removeChild(brick)) {

return true;

}

}

return false;

}

Listing 4.5: The method that removes a brick from an if-then-else control structure. It first
checks if the brick is in one of the sublists and otherwise delegates the remove
call to the child bricks recursively.
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Flattening a Script

In the IDE scripts and bricks are visualized in a flat list. How a flat represent-
ation is obtained from the hierarchical data structure depends on the brick
classes in the scripts. There are syntactic elements that are added to this
flat list which are not part of any subtree. Because of the same dependency
considerations that apply to removing elements from the tree, flattening is
delegated to the brick classes. For this purpose the Brick interface provides
the public void addToFlatList(List<Brick> bricks) method. The parameter is
a, potentially empty, list where the bricks add themselves, all syntactic
bricks that constitute their visual representation, and all bricks from their
sublists. This is preferable over having the method return a list with all the
bricks because multiple calls can simply reuse the same list and it is not
necessary to create a new list for each call.

In order to flatten a script into a list first the script brick is added and then
public void addToFlatList(List<Brick> bricks) is invoked on all bricks in the
script’s brick list, always passing the same list. Bricks with sublists add all
their sublists recursively so that sublists of bricks that are in sublists are
added as well. How a if-then-else control structure is flattened can be seen
in Listing 4.6.

The flattening operation is used in the IDE’s script fragment. Dataset visu-
alization is handled by the BrickAdapter class. This adapter constructs and
visualizes a list that was built from the flat representations of all scripts in a
sprite. The adapter flattens the scripts as described above. Because the public

void addToFlatList(List<Brick> bricks) method is part of the Brick interface
the adapter only depends on the interface. This means that i.) because of
the interface’s stability it is unlikely that the adapter has to change because
of changes to the bricks and ii.) if new brick classes are added, the adapter
does not have to change either.
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@Override

public void addToFlatList(List <Brick > bricks) {

super.addToFlatList(bricks);

for (Brick brick : ifBranchBricks) {

brick.addToFlatList(bricks);

}

bricks.add(elseBrick);

for (Brick brick : elseBranchBricks) {

brick.addToFlatList(bricks);

}

bricks.add(endBrick);

}

Listing 4.6: The flattening method implementation for an if-then-else control structure. It
adds the if brick via the super call, then all bricks in the if-branch then the
syntactic else-brick, all bricks from the else-branch and a syntactic end-if-brick.

Selecting Bricks and Scripts in the IDE

Bricks and scripts can be backpacked, copied, deleted, and commented out
through action modes in the IDE. However, there are some restrictions on
how bricks and scripts can be selected. In general it is true that whenever a
brick is modified, its children have to be modified as well. So if the users
select a control structure they always operate on the entire control structure.
Nevertheless, it is possible to select a child brick in a control structure and
modify it separately. Entire scripts can be selected through their script bricks.
Once the script is selected, all bricks in the script are visually highlighted
and their checkboxes disabled. What selecting a script looks like can be seen
in Figure 4.19.

Selecting one brick means selecting the entire subtree of the dataset that
starts at this brick. Hence, to obtain all bricks that are influenced by the selec-
tion of one brick the method public void addToFlatList(List<Brick> bricks)

can be used. The method recursively adds all children from the brick’s
subtree. If the UI detects that a user selects a brick in the list it can use
this method to construct a list of bricks that should be selected in response.
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Figure 4.19: When users select a script for modification, all children are selected as well
and their checkboxes disabled.
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Encapsulating the logic in the bricks prevents dependencies between the UI
and the dataset. As with the other operations any classes that use them only
depend on the Brick interface. So any changes to how the selection works
do not affect the UI.

Adding Bricks to Scripts

While adding a brick to any sublist is trivial, finding out to which sublist a
brick has to be added in order to appear at a certain position in the flattened
list is difficult. However, being able to do this is a prerequisite for reordering
bricks in scripts. Rearranging bricks via drag and drop is subject to the
same restrictions as the selection for modification, meaning that all child
bricks have to move with their parents. Obtaining all bricks that have to
be moved is trivial and simply works through the public void addToFlatList

(List<Brick> bricks) method in the Brick interface. Moving subtrees in the
data structure however, is more difficult. The main issue is to find the
hierarchical parent from the flat representation and to interpolate the target
position in the parent list. It stood to reason that the Brick interface should
provide methods to obtain the target list and target position, because then
the structure of the subtrees is encapsulated in the bricks and classes outside
do not have to change if the subtree structure changes.

The method public List<Brick> getDragAndDropTargetList() can be used to get
the list where a brick has to be added if it is dropped at the position of the
brick on which the method was invoked. So if the user moves a brick from
position one to position three, the UI calls the method on the brick that is
currently at position three and adds the moving subtree to this list.

The data structure was implemented with links up and down the hierarchy.
Parents have direct access to their children and children hold a reference to
their parents. Calling public List<Brick> getDragAndDropTargetList() on bricks
without sublists delegates the call to their parents. Script bricks return the
script’s brick list. Control structure bricks return their first sublist, and
syntactic bricks that mark the end of the control structure return the control
structure’s parent list. In the case of an if-then-else construct the else brick
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Figure 4.20: The Figure shows how the drop targets are obtained. The arrows indicate which
sublist is returned when the method getDragAndDropTargetList() is invoked on
each brick.

returns the control structure’s else-branch list. Figure 4.20 visualizes the
behavior in a diagram.
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5.1 Evaluation

The implications of the improvement process are clearly not sufficiently
described by only analyzing code metrics for the refactored parts of the code.
Instead, it might be interesting to see how the quality of the entire codebase
has changed over a longer period of time. It is clearly true that changes in
code quality can only be caused by code that was introduced during the
development of new features, patches or rewrites. Besides, it is reasonable
to assume that the knowledge, motivation and skills of the contributors are
not significantly different on average. Additionally, literature and empirical
data suggest that code quality typically decreases if there are no dedicated
measures counteracting the decline. Hence, it stands to reason that code
quality improvements are most likely caused by the developers who were
involved in the refactoring process or by developers who were influenced
positively by the process.

To capture changes in code quality it is interesting to look at metrics that
describe the codebase’s size, complexity and design. In addition to the
metrics used in the results presented above, Table 5.3 provides an analysis
of the code’s average cyclomatic complexity (CC) per class and per method,
as well as the cumulative CC of all methods in the project. Additionally,
Table 5.1 lists the number of code smells. Code smells are well-known,
recurrent patterns that are considered bad practice. Hence, occurrences of
such patterns in the codebase indicate problems with the design.

The numbers in Tables 5.2 through 5.4 were calculated on each version
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of Catroid that was released to Google Play. Hotfix releases (i.e., releases
that were specifically tagged as hotfixes) were not considered because
their scope was usually small and because they were typically released
shortly after full releases. The first major refactorings described here were
introduced in November 2016; between release v0.9.27 and v0.9.28. There
were some refactorings between v0.9.24 and v0.9.27. However, these were
not as extensive and dedicated as the rewrites that happened afterwards,
which is why they were not described in this thesis.

Table 5.1 shows that code quality, described by the number of code smells,
has improved over the last three years. The increase in the total number of
code smells from 2016 to 2017 (between versions v0.9.24 and v0.9.32) is due
to the large number of new features that were added to the codebase. Here,
it becomes apparent why the measures of issues per line of code (LOC) and
issues per file were chosen for this Table. When looking at the code size
development in Table 5.2 it can be seen that the development that happened
in parallel to the refactorings added approximately 250 files and 20,000

lines of code (LOC) to the codebase between August 2016 and November
2017 (between versions v0.9.24 and v0.9.32). The averages of code smells per
file and per line of code (LOC) show that despite and increase in the total
number of code smells, the relative number of code smells was reduced.
While the relative number gives a more accurate description of the quality
it is also interesting to look at the total numbers. Comparing the version
v0.9.24 from 2016 with version v0.9.58 from 2019, it can be seen that despite
both versions being roughly the same size in terms of LOC the number of
code smells is lower by around 500, which is approximately 25%.

It is important to notice that the same number of LOC does not mean
that both versions provide the same scope of functionality. In reality, the
difference is significant, and the 2019 version provides considerably more
bricks, scripts and additional features in the IDE and in auxiliary services.
Examples include, among many others, a converter for Scratch programs,
multiple new sensors values and functions that can be used in bricks and
import/export features for Catrobat projects. An approximate indication to
the scope of these features can be seen in the fact that v0.9.58 consists of 829

files, while v0.9.24 consists of 529 files.
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Table 5.1: Code Smells
Version Release

Date
Files Code

Smells
Affected

Files
Issues

per File
Issues

per
LOC

v0.9.58 22.04.2019 829 1,474 451 1.78 0.0219

v0.9.46 06.03.2019 833 1,439 450 1.73 0.0212

v0.9.44 01.11.2018 816 1,504 451 1.84 0.0220

v0.9.42 24.10.2018 816 1,504 451 1.84 0.0220

v0.9.34 12.08.2018 834 1,773 469 2.13 0.0240

v0.9.32 27.11.2017 826 2,202 489 2.67 0.0249

v0.9.31 02.11.2017 825 2,202 489 2.67 0.0249

v0.9.29 23.09.2017 795 2,093 464 2.63 0.0245

v0.9.28 01.03.2017 764 2,230 461 2.92 0.0268

v0.9.27 26.10.2016 725 2,246 442 3.10 0.0274

v0.9.24 15.08.2016 590 1,906 380 3.23 0.0274

Changes in codebase size are captured in Table 5.2. Besides an indication
as to how the scope of the codebase has changed, these numbers provide
information about system architecture. They show how average class and
method size has developed over time. Class size is affected by system design.
Keeping classes small is a primary objective in the development of clean
code (Martin, 2009). In clean code the number of physical lines of code
is not considered sufficient to describe class size, instead the number of
responsibilities is counted. However, in order for a class to be small in terms
of responsibilities, small physical size is still a necessary condition. Hence,
the number of lines of code (LOC) per class is an interesting measure to
consider.

The numbers show that despite a large increase in total LOC between 2016

and 2017 the average LOC per class have steadily decreased from 91 to 65

lines of code, which constitutes a reduction by approximately 30%. There
were four major jumps in average LOC reduction, one between v0.9.24

and v0.9.27, one between v0.9.27 and v0.9.28, one between v0.9.32 and
v0.9.34 and one between v0.9.44 and v0.9.46. Each of the reductions cut
about 6% of average class size and coincides with one concrete measure that
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Table 5.2: Codebase Size
Version Release

Date
LOC

(total)
Classes LOC (per

Class)
LOC (per
method)

v0.9.58 22.04.2019 67,383 1,320 64.76 8.32

v0.9.46 06.03.2019 67,736 1,326 64.94 8.30

v0.9.44 01.11.2018 68,273 1,293 67.01 8.44

v0.9.42 24.10.2018 68,262 1,293 67.00 8.44

v0.9.34 12.08.2018 73.999 1,315 71.24 8.43

v0.9.32 27.11.2017 88,559 1,590 83.40 8.90

v0.9.31 02.11.2017 88,405 1,584 83.35 8.88

v0.9.29 23.09.2017 85,523 1,512 83.66 8.87

v0.9.28 01.03.2017 83,129 1,464 84.53 8.88

v0.9.27 26.10.2016 82,029 1,473 87.52 8.91

v0.9.24 15.08.2016 69,663 1,254 91.00 9.29

was implemented. For example, the reduction between v0.9.27 and v0.9.28

occured in the same iteration as the list fragment refactorings described in
sections 4.3.3 and 4.3.4. The reduction between v0.9.32 and v0.9.34 coincides
with the introduction of the RecyclerView model described in sections 4.3.5
through 4.3.8.

Just like classes, functions should be short (Martin, 2009). The numbers in
Table 5.2 show the average physical size of the methods in the system. The
development is similar to the development in class size. There has been a
steady decline with some more pronounced jumps. These jumps happened
simultaneously to the jumps in average class size and hence coincided with
the refactoring efforts. Overall average method size was decreased from 9.29

lines of code (LOC) to 8.32 LOC, which amounts to a reduction of about
10%.

Clean code principles suggest that methods should be too small to hold
nested structures. Indentation levels beyond one or two are considered hard
to read (Martin, 2009). Table 5.3 provides the average cyclomatic complexity
(CC) measures for methods and classes. CC captures the degree of nesting by
counting all paths through the control flow. The numbers show that average
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method complexity has decreased steadily by approximately 5%, from 2.16

to 2.06. Hence, reducing average method size has also reduced average
method complexity. Here, the most significant jump can be seen between
v0.9.32 and v0.94, which is when the RecyclerView model was introduced.

A more drastic change can be seen in cumulative method complexity per
class. Average complexity per class has been reduced by almost 30%, from
17.74 in 2016 to 12.72 in 2019. This was caused by a reduction in method
complexity and a reduction in class size. A larger reduction in class com-
plexity than in method complexity implies that on average, classes have
fewer methods. This conclusion is corroborated by the response for a class
(RFC) measures in Table 5.4 which count the number of potential method
invocations that can happen on an object of a class.

The Chidamber and Kemerer metrics (CKM) in Table 5.4 assess code quality
in regard to object oriented programming principles. The weighted method
complexity (WMC) is the cumulative cyclomatic complexity of all methods
in a class and hence the same as the CC per class in Table 5.3. Lower WMC
and smaller RFC values imply simpler class design. Less complex classes
are easier to understand and test. These two metrics have improved by
approximately 30% and 28% respectively, which is significant.

Coupling between objects (CBO) and lack of cohesion between methods
(LOCM) show an overall improvement in class design. CBO has signific-
antly decreased between v0.9.32 and v0.9.34 which is when the refactoring
described in sections 4.3.5 through 4.3.8 happened. Coupling has decreased
only very slightly, remained stable or even increased between all other
releases. While the increases are small it is still interesting to see that, even
if other code metrics improve, coupling tends to increase if no specific meas-
ures are taken. CBO is an important measure to describe class hierarchies
and dependencies. While not all couplings are inherently bad, in a system
that is as tightly coupled as Catroid it is still desirable to reduce overall
coupling. Only when architecture improves, and the dependency measures
are lower, it becomes more important to distinguish between desirable
and undesirable couplings. In any case, this highlights the importance of
dependency management considerations in software evolution.
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Table 5.3: Codebase Complexity
Version Release

Date
CC (total) Methods CC (per

method)
CC (per

class)
v0.9.58 22.04.2019 12,204 6,261 2.06 12.72

v0.9.46 06.03.2019 12,285 6,323 2.05 12.79

v0.9.44 01.11.2018 12,442 6,321 2.08 13.13

v0.9.42 24.10.2018 12,438 6,321 2.08 13.13

v0.9.34 12.08.2018 13,337 6,899 2.03 13.84

v0.9.32 27.11.2017 16,285 8,040 2.14 16.40

v0.9.31 02.11.2017 16,272 8,037 2.14 16.40

v0.9.29 23.09.2017 15,838 7,800 2.15 16.52

v0.9.28 01.03.2017 15,585 7,593 2.15 16.81

v0.9.27 26.10.2016 15,255 7,498 2.15 17.43

v0.9.24 15.08.2016 12,646 6,142 2.16 17.74

Lack of cohesion between methods (LOCM) has not improved significantly,
but continuously. This shows that splitting and refining classes improves
overall design. However, with between 1,600 and 1,200 classes, it stands to
reason that changes to a small number of classes, compared to the entire
system, cannot be too significant. It is rather interesting that the refactoring
process has affected these metrics at all.

5.2 Meta-reflection

In the process described here design decisions were often taken intuitively;
not necessarily because of a lack of knowledge about software development
methodologies, but because of time constraints or because following proper
methods would have required even more extensive rewrites. So from a
certain perspective, some refactoring decisions introduced new technical
debt. However, as pointed out by Cunningham (1992) a deliberate decision to
accept technical debt can be beneficial as long as it is mitigated by a rewrite.
This rewrite, however, does not necessarily have to happen immediately.
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Table 5.4: Chidamber and Kemerer Metrics

Version Release
Date

CBO RFC LOCM

v0.9.58 22.04.2019 16.29 19.02 1.94

v0.9.46 06.03.2019 16.29 19.16 1.94

v0.9.44 01.11.2018 16.11 19.56 1.92

v0.9.42 24.10.2018 16.10 19.56 1.92

v0.9.34 12.08.2018 16.12 21.15 1.92

v0.9.32 27.11.2017 17.07 24.17 1.92

v0.9.31 02.11.2017 17.02 24.15 1.92

v0.9.29 23.09.2017 17.98 24.32 1.91

v0.9.28 01.03.2017 17.64 24.36 1.98

v0.9.27 26.10.2016 17.66 25.02 2.03

v0.9.24 15.08.2016 17.55 26.12 2.05

More reasonably, it has to happen before the code that introduces the debt
becomes a target for dependencies. This was a rationale in the refactoring
process: Accept new technical debt as long as overall quality improves and
remove newly introduced debt later.

This approach requires refactoring to be an ongoing process. Besides, it
shows that the impact of a refactoring is best described by how it influences
future development. In this regard, one challenging aspect was to know just
how elaborate a refactoring should be. What this means is that on the one
hand it is desirable to provide encapsulated components that can be reused
by other developers. On the other hand, refactored code does not have to be
a framework for other developers, meaning that it refactored code does not
have to be held to higher standards than other code.

Instead, it stands to reason that rewrites are in general subject to the same
considerations as other software development. Consequently, many ap-
proaches to software development could also be used to direct a refactoring.
In hindsight it is obvious that using this rationale could have helped to
optimize the rewrites. AntiPatterns for example, consist of a problem form-
alization and a systematic solution. Hence, AntiPatterns provide an effective
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alternative approach to code quality improvement.

It would be interesting to compare the refactoring approaches suggested by
literature to the ones that were implemented in the process described here.
The decisions that the rewrites were based on tried to take into account con-
flicting objectives such as increasing code quality while quickly delivering
new features without breaking existing functionality. Agile development
approaches encourage combining these objectives. However, experience has
shown that this is only possible to a certain degree. If a system has drowned
in technical dept for example, it is virtually impossible to mitigate quality
issues while simultaneously adding new features.

In Catroid the most difficult situations arose when the refactorings turned
out to require significantly more extensive rewrites than anticipated. This
was a problem because Catroid is actively used daily by people all around
the world who expect to receive regular improvements. It was often challen-
ging to combine refactorings with the day-to-day business of maintaining
and extending the application. This however, presents an opportunity for
follow-up research: Finding an effective way to combine the objectives, not
only in theory but in the specific case of Catroid.

Refactoring itself has its pitfalls. Preventing regressions can be challenging,
especially if the changes to the codebase are extensive. Automated tests are
supposed to help to prevent regressions,. However, if the production code
is difficult to test, tests cannot properly cover all potential faults. Writing
new tests for untestable code is impossible. On the other hand, rewriting
the code to be more testable without breaking functionality is impossible
without proper tests.

In Catroid functional components were often intertwined with user interface
components. For example, fragments and activities typically also handled
file operations or dataset manipulation. Properly testing classes that have
many different responsibilities is impossible and rewriting them without
thorough verification via automated tests is just as undoable. This is a di-
lemma and one of the reasons why refactoring Catroid was difficult. It is
also one of the reasons why many rewrites were not approached as system-
atically as described by Fowler (2018). This does by no means imply that
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refactoring is not valuable, it just means that refactoring approaches have
their limits and it is yet another argument for why effective refactoring has
to happen continuously. This is nothing new, since Extreme Programming
(XP) principles for example, suggest as much. However, this refactoring
process has shown just how difficult it is to mitigate code quality issues if
this advice is disregarded. Nonetheless, in hindsight it seems that putting
even more emphasis on testing and trying to add more tests before rewrit-
ing the production code could have been helpful. Or put into a different
perspective: testability is a prerequisite for successful refactorings. Hence,
future refactorings should shift the focus to testability.

Regarding testability it is important to notice that the quality of tests plays
a crucial role in the development process. Test quality is not confined to the
code quality in tests, it also includes test composition. This means that the
ratio between unit, integration and system tests is relevant. Most of the tests
that were available before the refactoring were system tests. System tests on
Android are inherently flaky (Coppola, Morisio and Torchiano, 2018). It is
difficult to find the reasons for failures if tests are complex and test coverage
was low. Hence, ensuring that the refactorings did not breaking anything
was challenging. This is one more argument why reliable unit, integration
and system tests are necessary and why it is a primary objective to write
testable code.

Code quality metrics were used to provide a qualitative assessment of
Catroid’s codebase. However, they might as well be used as directives
during development. For example, future refactorings could be planned in
such a manner that they systematically reduce the number of code smells or
the number of couplings or average method complexity. Considering code
smells there is yet another possible application: integrating a quality gate
into the automated testing process that prevent developers from adding
new code smells. The question of how to use the metrics presented in this
thesis during the development process provides an opportunity for further
research.

The metrics used in this thesis can be grouped into two categories: The
system-level analysis provides an abstract description of the overall system
quality. Conversely, metrics calculated on the class level analyze the system’s
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atomic components (cumulative averages of class metrics constitute system-
level abstraction). Atomic meaning that in terms of abstraction a class
should be the smallest cohesive unit of a system. This thesis provides no
explicit analysis on any levels in between. The reason can be found in
Catroid’s architecture. While it is typically convenient to describe a software
in terms of collaborating class clusters, it was impossible to properly identify
such groupings in Catroid. Because of the tight coupling between most
of the classes it was not possible to decide which couplings were due to
common functionality and which ones were just a result of poor dependency
management. To properly apply software package metrics (Martin, 2002)
it is first necessary to decouple classes throughout the entire system, until
class categories become visible. While the measures described in this thesis
are a step toward that development, there is still considerable potential.

Problems with modular design can be seen in the way classes are distributed
into packages. Classes in packages often do not belong into the same pack-
age from a design perspective. The consequence is that visibility modifiers
cannot be used properly and that classes are often more tightly coupled to
classes in other packages than they are to classes within the same package.

Cleaning up package classification could significantly improve dependency
management. While package metrics can be calculated regardless of the
design quality, using them is only beneficial if there is a basic understand-
ing of packaging and if packaging is used for its intended purpose. This
provides an opportunity for future improvements and research: Identify co-
hesive parts of the class hierarchy, group them into packages, compare how
this structure is different from the current packaging structure in Catroid
and use the results to improve dependency design.
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Catroid is a complex, large-scale, long-lived software system. During more
than six years of lifetime, many requirements and the scope of the system’s
functionality have changed significantly. Some of the design decisions that
were taken when the system was small have not aged very well. Besides, a
number of development decisions that introduced a considerable amount of
technical debt have effectively deteriorated system integrity. Dependencies
between Catroid’s subsystems have developed. Consequently, the scope
and impact of changes has become difficult to estimate. Adaptability and
extensibility has been limited severely.

This development has affected users and developers alike. A rigid system
prevents fast, continuous delivery. Catrobat was often unable to properly
respond to new requirements, such as changes to the Android framework
by Google. Because of this, rollout of new features or patches was often
impossible.

Developers have had problems with understanding the code and changes
often required extensive rewrites. Proper automated testing has become
unavailable because complex, interdependent code is hard to test. Without
proper automated testing it is difficult to prevent regressions and changes
to one part of the codebase regularly caused undetected side effects.

The work described in this thesis is a dedicated effort to counteract these
problems. Most of the measures were based on the practice of refactoring.
The overall objective was to reduce complexity and dependencies in order to
promote a proper, modularized architecture. The expected benefits were to
increase readability, allow for stable automated testing that provides proper
coverage and to promote reusability and adaptiveness.
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In order to quantify the results, metrics were introduced that capture code
quality. Metrics such as cyclomatic complexity and code size provide a
paradigm-independent evaluation. Metrics such as couplings between ob-
jects or weighted methods per class are part of a suite that was specifically
tailored toward object oriented designs.

A thorough analysis on the refactored classes and an overall quality assess-
ment of the codebase show that the measures have improved code quality.
The metrics calculated on various versions of Catroid over the last three
years have proven that refactoring can be used to counteract a deteriora-
tion of system integrity. Besides, the rewrites have promoted reusability by
introducing code that is both understandable and adaptable.

Experience in this project has shown that clean, readable code that is prop-
erly encapsulated is in fact reused by developers. The results indicate that it
is valuable to introduce refactoring as a common practice into the day-to-day
routine of developers. Additionally, the findings present ideas for alternative
approaches and present opportunities for future improvements.
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