
Miloš Pokrievka, BSc

Platform Independent Hardware Tests
with Behaviour Driven Development

Master’s Thesis
to achieve the university degree of

Master of Science
Master’s degree programme: Computer Science

submitted to

Graz University of Technology

Supervisor
Dipl.-Ing. Dr.techn. Christian Schindler

Institute for Softwaretechnology
Head: Univ.-Prof. Dipl.-Ing. Dr.techn. Wolfgang Slany

Graz, July 2019

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present master‘s thesis.

Date Signature

iii

Abstract

Catrobat is a visual programming language designed to create programs
solely using mobile devices. It is developed for multiple platforms. In
addition to other features, it allows users to use device sensor values when
writing programs.

This thesis deals with creating a system for automatically testing these
hardware features independently of the platform. Measurements of several
mobile device sensors are directly dependent on its position and inclination.
Therefore a robot arm was constructed to enable moving and rotating the
mobile device during automated tests. As platform independent tests serve
feature files of the behavior driven development tool called Cucumber.
For this purpose Cucumber was integrated into the Catrobat integrated
development environment for Android called Pocket Code.

The robot arm is capable of partially rotating on all three axes. This
enables to change positions and inclinations and manipulate acceleration
of the mobile device enough to achieve a sufficient change of mobile de-
vice sensor measurements for practical testing. Cucumber feature files are
written in the plain text language Gherkin, which was used to abstract the
tests into a platform independent form. When using Cucumber with the
testing framework currently used in Pocket Code several problems with
compatibility emerged. The results of using Cucumber did not completely
meet all of the expectations. However, the created robot arm with its sim-
ple control mechanism is an invaluable tool which enables developers to
incorporate automated hardware tests in the test suites. In that way any app
functionality relying on sensor values in relation to location and movement
of the mobile device in space can now be easily tested.

v

Contents

List of Figures ix

List of Listings xi

1. Introduction 1

2. Visual Programming Language Catrobat 3
2.1. Block-Based Programming . 3

2.2. Scratch, an Example of a Visual Language 5

2.3. Project Catrobat . 7

2.4. Catrobat Language Syntax . 9

3. Behavior Driven Development 13
3.1. Agile Software Development 13

3.2. Test Driven Development . 16

3.3. Acceptance Test Driven Development 18

3.4. Behavior Driven Development 20

3.5. User Story . 23

3.6. Cucumber . 24

4. Problem Statement 31
4.1. Sensor Tests . 31

4.2. Platform Independent Testing 32

5. Robot Arm 33
5.1. Movement With Steady-Velocity 37

5.2. Smooth Movements . 38

5.3. Design . 39

5.4. Installing Maestro Servo Controller Software 45

vii

Contents

6. Implementation 47
6.1. Introduction of BDD into Pocket Code 47

6.2. Pocket Code Robot Arm Interface 53

6.2.1. Client Side . 53

6.2.2. Parameter Limitations 57

6.2.3. Server Side . 57

7. Results and Evaluation 61
7.1. Inclination Sensor Feature . 61

7.2. Evaluation of Using Cucumber 65

7.3. Discussion . 66

8. Summary 69

A. RaspServer Program 73

Bibliography 79

viii

List of Figures

2.1. Scratch Desktop (Version 3.0). 6

2.2. Six types of Scratch blocks (adapted from Scratch Wiki 2019). . 7

2.3. Pocket Code main menu. 9

2.4. Catrobat script. 10

2.5. The formula editor of Pocket Code. 11

2.6. Device specific variables. 12

3.1. The life cycle in waterfall model and agile. 16

3.2. ATDD Cycle . 20

5.1. Kinematic equations describe the tool frame relative to the
base frame as a function of the joint variables. Adapted from
Craig (2004). 35

5.2. Cartesian manipulator with 2 degrees of freedom may achieve
a cubic workspace in the 3 dimensional space. Adapted from
Craig (2004). 36

5.3. An articulated manipulator with SCARA configuration. Adapted
from Craig (2004). 37

5.4. Initial 2D design for the robot arm using AutoCAD. 39

5.5. Initial 3D design for the robot arm using AutoCAD. 40

5.6. Wiring of the servomotors to the servo controller. The ser-
vomotors are connected to the first four PINS of the servo
controller. 41

5.7. The diagram of the full test setup required when using the
robot arm. 41

5.8. Laser cut drawings for the robot arm on 2d plane, to be later
on laser-cut on a 3mm aluminum plate and to be bent along
the specified lines using a press and bending machine. 42

5.9. Final 3D design of the robot arm joints using AutoCAD. . . . 43

ix

List of Figures

5.10. The robot arm, with a Raspberry Pi acting as a server com-
municating with the actual servo controller controlling the
robot arm’s servomotors. 44

6.1. Structure of Cucumber files in Pocket Code. 51

6.2. The torque affecting the robot arm when in default position
is 0, minimizing the load on the servomotors. 55

6.3. The Robot Arm in default position pointing upwards to min-
imize the strain on the servomotors that hold it in position. . 56

6.4. Movement of the joints of the robot arm. The lower joint can
move only in one of three positions while the position of the
upper joint achieves the desired angle. 59

7.1. Program ran on Pocket Code during the inclination test. . . . 63

x

List of Listings

3.1. User Story template (adapted from North (2019)) 24

3.2. A sample Cucumber feature file with one scenario 26

3.3. A sample Cucumber feature file using universal keyword . . 26

3.4. Step definitions file for the feature in listing 3.2 28

3.5. A sample scenario outline . 29

6.1. Step Instrumentation class for Cucumber 50

6.2. The CucumberTest.feature feature file 51

6.3. The step definitions in FormulaEditorSteps 52

6.4. Manual finishing of activities in Rules class 53

7.1. InclinationSensors feature file 62

7.2. Step definitions for the InclinationSensors feature file 64

A.1. The RaspServer program . 73

xi

1. Introduction

The high demand for high quality and fast software projects drives the
constant changing and upgrading of modern software development prac-
tices. A lot of software development approaches have emerged over the
past 70 years: from structured programming in the 1950s and the waterfall
model in the 1960s to agile methods including test-driven development. The
goal of all these methods is to create a product that will bring value to the
customer. Agile methods developed in recent decades have become very
popular in software development. Automatic tests covering program code
guarantee software quality in agile methodologies. One of the newer agile
methods is behavior driven development. Behavior driven development,
like its predecessor, test driven development, is a software design method
that when properly applied also guarantees coverage of all written code by
executable specifications that can be used to test this code.

Catrobat is a visual programming language inspired by Scratch. In a
block-based environment called Pocket Code, developed for mobile devices,
Catrobat programs can be created by properly arranging visual elements,
called blocks, instead of writing program code. Designed for use on mobile
devices, Catrobat also includes the use of features unique to mobile devices,
such as various sensors and built-in cameras.

Pocket Code is developed by agile methods with an emphasis on test
driven development, leading to the need for full program test coverage.
This also includes the program code used to communicate with the sensors
of the device on which Pocket Code is running. However, sensor values
depend on external factors such as the device position.

The goal of this thesis is to create a system to allow testing of Pocket
Code parts that work with external factors, measured by device sensors and
introducing behavior driven development into Pocket Code to make these
tests platform independent. The following chapters present the concept of
block-based programming, the Catrobat language, and offer a description
of basic behavior driven development concepts. In the next section, a robot

1

1. Introduction

arm is introduced, designed to enable the execution of sensor tests. Finally,
the control and communication between the robot arm and the Pocket Code
are described along with new sensor tests created as a proof of concept.

2

2. Visual Programming Language
Catrobat

The idea of visual programming is based on using visual elements with
certain colors and shapes, each of which represents a different functionality
and category a block belongs to. Covering the program code with graphical
elements eliminates the need to learn the syntax of the underlying program-
ming language. It is sufficient to understand how to connect and organize
the building blocks to achieve the desired program functionality. It is sim-
ilar to combining Lego R© bricks where their shapes indicate whether the
blocks fit together. In this way visual languages obtain their simplicity and
intuitiveness. This gain comes along with the cost of losing some versatility,
since there is a limited amount of blocks and categories to choose from.
Nevertheless, this visual approach makes them a very good tool for teaching
programming to beginners, especially children (Slany, 2012b).

One such visual programming language is Catrobat, it is inspired by
Scratch and developed to be used to directly program on mobile devices.
By using building blocks called bricks which are combined to scripts, games,
interactive animations, and other programs that can be created easily on
the mobile device and can be executed on Android and iOS. This chapter
describes the Catrobat project and its interpreted programming language,
which is used in later chapters.

2.1. Block-Based Programming

Wah (2007) defines visual programming languages (VPL) as languages
where a significant part of the program structure is represented in pictorial
notation (for example, as icons, connecting lines representing relationships,
or colors). While text may appear in such a notation, it has a secondary role,
such as naming program entities. Burnett et al. (1995) list four properties of

3

2. Visual Programming Language Catrobat

VPLs:

• Fewer concepts needed in the program (like pointers, declarations,
scope, or storage allocation).
• Concrete programming process.
• Explicit depiction of relationships.
• Immediate visual feedback.

These features make VPL often more beginner friendly than textual pro-
gramming languages which in turn is interesting for educational purposes.
One of the oldest educational programming languages is Logo, offering
turtle graphics, visual representation of output from user commands. Even
with its friendliness to novices, the use of textual code led to difficulties for
some learners such as the difficulty to understand pointers. This has led to
the creation of a new variety of VPL called block-based programming that
takes on a number of characteristics from the Logo such as using onscreen
avatars and the egocentric commands they perform (Kurihara et al., 2015).

In block-based programming environments, programs are divided into
blocks representing small sets of instructions that can be combined into full
programs. The color and shape of blocks, or other visual cues, are used to
indicate valid connections and explain their individual functions.

Repenning (2017) specifies the minimum set of affordances that VPL must
provide to be considered block-based:

• The end-user must be able to compose blocks into programs via simple
manipulation like drag-and-drop. A mechanism must be present to
ensure the composition is syntactically correct. (For example context
aware menus or block shape/color).
• Blocks as interactive objects, contain end-user editable information.
• Blocks can be nested to represent tree structures (For example loop

blocks containing more blocks).
• Blocks are arranged geometrically to define syntax(block geometry)

without the use of additional explicit graphical connectors (block
topology).

Weintrop and Wilensky (2015) point out that block-based programming
combines two branches of research on how to scaffold novice program-
mers: directly manipulatable interfaces that visualize concepts and objects,

4

2.2. Scratch, an Example of a Visual Language

and structured editors. For textual languages, structured editors provide
help by using information on programming language grammar to offer
code-complete suggestions, syntax highlighting, and real-time compilation
checking. In block-based programming environments, grammar is built into
individual blocks through their properties and appearance (such as shape
or color).

Bau et al. (2017) link the learnability of block-based programming lan-
guages with six learning barriers identified by Ko, Myers, and Aung (2004).
They believe that this learnability is the result of how these languages ad-
dress usability challenges based on three of these barriers resulting from
the difficulty of compiling the program:

• Blocks are based on recognition and thus circumvent the problem of
learning programming vocabulary.
• Blocks reduce cognitive load to new programmer by chunking code

into fewer elements.
• Blocks prevent basic errors by providing constrained direct manipula-

tion of the structure.

In recent years, the global increase in interest in computer science has
led to the development of many block-based programming environments
such as Alice and Scratch on personal computers or MIT App Inventor and
Pocket Code on mobile devices.

2.2. Scratch, an Example of a Visual Language

Scratch is a project developed by the Lifelong Kindergarten Group at the
Massachusetts Institute of Technology (MIT) Media Lab under Mitchel
Resnick. It is a graphical environment and a visual programming language
based on the constructionist ideas of Seymour Papert, the co-inventor of
the Logo programming language. The primary goal of Scratch is teaching
younger users in programming. That is why it was designed with the
emphasis on simplicity and intuitiveness. It was released in 2007.

It allows users to easily create programs and animations ”by snapping”
together command blocks that control 2D graphical objects called sprites.
These sprites move on a background called stage (See figure 2.1).

5

2. Visual Programming Language Catrobat

Figure 2.1.: Scratch Desktop (Version 3.0).

Sprites encapsulate state and behavior, but they cannot communicate
directly with each other. Scripts of one sprite can’t directly call a command
on another sprite. Inter-sprite communication and synchronization takes
place using a broadcast mechanism where the sprite broadcasts user defined
string message that activates all scripts starting with block When I receive
〈msg〉.

Each sprite can have more than one script running concurrently, allowing
multithreading. As Resnick et al. (2009) explain, in this way Scratch tries to
make parallel execution more intuitive. Most of the common race conditions
that would result from multithreading are eliminated by the thread switch
being able to occur only at the end of a loop or by an explicit wait command.

The shape of the individual blocks, limit the way they can be combined,
i.e., they can only be connected in executable combinations, ensuring syntac-
tic correctness. They have a bump on top or a notch on the bottom indicating
the possibility of connecting to another block, or a slot for another block in
the block body. Maloney et al. (2010) point out that in this way the visual
grammar prevents syntax errors from being introduced to the program.

The blocks are divided by their shape, into 6 categories as shown on the
figure 2.2:

6

2.3. Project Catrobat

• Hat blocks indicating the beginning of a script and contain a trigger
that starts the script,
• Stack blocks, category with the most blocks, performing main com-

mands,
• Boolean blocks that contain conditions,
• Reporter blocks that contain values,
• C blocks, also called Wrap blocks that control program flow by execut-

ing conditions and loops,
• and Cap blocks, used to terminate scripts or programs.

Figure 2.2.: Six types of Scratch blocks (adapted from Scratch Wiki 2019).

In addition to the distinction by shape, the blocks are divided by type
into 9 categories (plus 10th category for custom blocks). Each category has
its own color.

2.3. Project Catrobat

The Catrobat project is a visual programming language and a set of creativity
tools inspired by Scratch and developed by the Catrobat team under Wolf-
gang Slany. It was published as a public beta in spring 2010. The project aims

7

2. Visual Programming Language Catrobat

at creating applications on various mobile platforms for the main purpose
of helping beginners and younger users to acquire coding skills (Luhana,
Schindler, and Slany, 2018).

The Catrobat visual programming language was heavily inspired by
Scratch. However, while Scratch is an application for personal computers,
Catrobat is specifically designed for mobile devices (Slany, 2012a). An
HTML5 version was also in development which made it also available for
HTML5-capable browsers on any platform.

On Android an integrated development environment (IDE) and inter-
preter called Pocket Code, developed from a previous version, called Catroid,
is available for the Catrobat language. Other tools integrated into the Pocket
Code application include Pocket Code webshare, allowing users to upload
their creations to the community website as well as to download projects
from other users from that sharing platform. A Scratch2Catrobat converter
is available and can be accessed from within Pocket Code. It enables ac-
cess and conversion of all Scratch projects into the Catrobat language. It is
still in development therefore some of the converted projects are not 100%
functional since Catrobat is not yet 100% Scratch compatible - there are still
some missing bricks in Catrobat.

In addition to the Pocket Code application, a sophisticated graphical
editing software called Pocket Paint is available, allowing users to draw and
edit all graphic objects in Catrobat projects within Pocket Code (Slany et al.,
2018). It is available either as a standalone application or as a part of the
Pocket Code app.

Similarly to Scratch, the Pocket Code IDE conceals the underlying code
behind the simple functional bricks that can be snapped together to create
programs. The necessary Catrobat bricks can be selected from a list of bricks
and connected via drag and drop into scripts that can run concurrently.They
can communicate with each other using broadcast messages. Since Catrobat
is specifically designed on mobile devices, it offers the ability to use mobile
device sensors, for example, to determine device inclination.

8

2.4. Catrobat Language Syntax

Figure 2.3.: Pocket Code main menu.

2.4. Catrobat Language Syntax

Catrobat programs consist of scripts, virtual containers for blocks of code
called bricks. Each script belongs to one object or to the background of the
application and refers to it. Each object (or the background) can contain
multiple scripts which can be designed to run concurrently. Each Catrobat
project contains at least one background and can contain multiple objects
in addition to it. Each script consists of an event brick (a starting point)
that determines when the script should run in the program which can be
followed by one or more bricks with program logic. The individual Catrobat
bricks fall into one of the following categories:

• Event - bricks used as entry points for the execution of scripts or to
broadcast messages.
• Control - bricks to control the program’s flow such as conditionals,

loops and waits.
• Motion - bricks concerned with the movement of objects, determining

their position, speed and direction of their movement along with some
physical properties.
• Sound - bricks adding sound files to the programs.

9

2. Visual Programming Language Catrobat

• Looks - bricks used to change the appearance of an object and to control
the camera.
• Pen - bricks enabling drawing by letting the object leave a trace behind

as it moves.
• Data - bricks used to create, store and change variables and lists in

programs.

Beside these categories, Catrobat extensions can be unlocked to add cate-
gories of bricks to control various devices such as Lego Mindstorms Robots,
Arduino or Raspberry Pi Boards.

Figure 2.4.: Catrobat script.

Catrobat uses a different approach to working with formulas than Scratch.
Instead of using bricks specifically for equations, there is a formula editor
in Pocket Code to create mathematical and logical equations that can then
be used directly as parameters of individual bricks. This hybrid system has
been shown to be faster and less error-prone among users than Scratch brick
equations or text equations in common programming languages (Slany
et al., 2018; Harzl et al., 2013) .

The formula editor (figure 2.5) offers functionality similar to a basic cal-
culator along with providing access to more advanced possibilities divided
into five categories. The Object category provides access to the object or

10

2.4. Catrobat Language Syntax

Figure 2.5.: The formula editor of Pocket Code.

background specific variables defining its look or movement properties.
More advanced functions are grouped into the Functions category, providing
mostly mathematical functions such as exponentiation and trigonometric
functions. The Logic category extends the operator list by adding boolean
and comparison operators. Variables in the Device category (as shown on
the figure 2.6) include time values, screen touch and face detection data,
and sensor values recorded by the device such as inclination.

11

2. Visual Programming Language Catrobat

Figure 2.6.: Device specific variables.

12

3. Behavior Driven Development

Testing is a critical factor in determining software quality. Patton (2000)
defines its goal as find out the existing bugs and making sure the get fixed.
Dijkstra et al. (1970) says:

Program testing can be used to show the presence of bugs, but
never to show their absence!

Patton (2000) also points out that the cost of repairing an unrecognized bug
in the system increases logarithmically with the time it is not found. A large
number of errors occur before the start of writing program code as a result
of misunderstanding between the customer and the development team, so
it is important to find them as soon as possible.

Therefore, a technique is needed that will ensure not only the validation
(checking if the product meets the needs of the customer to see if the
right product is being built), but also the verification of the software in
development (checking against the specification to see whether the product
is being built right). It must ensure that these two conditions are met
throughout the development and that each member of the team, including
the customer, is involved.

One such technique is behavior driven development that, as Wynne
and Hellesøy (2012) say, brings a ubiquitous language understood by the
whole team to facilitate communication between customers, developers, and
testers.

3.1. Agile Software Development

The Catrobat project is developed according to agile principles. Agile soft-
ware development is a set of frameworks and practices that was created
in the early 2000’s by a group of software developers calling themselves
Agile Alliance. These practices are based on the values expressed by the agile

13

3. Behavior Driven Development

manifesto and 12 principles behind it. The four values of agile manifesto
are:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan1

All agile methodologies apply these four values, although the way they are
applied varies between methodologies.

Individuals and interactions over processes and tools - A functional team
with good communication is more important to the project than a good
process, because it is the people who drive development and team skills
increase the chances of success more than individual programming skills
or the right development environment or compiler, though even these can
have a big impact on success.

Working software over comprehensive documentation - Although code
documentation is important, Martin (2003) says that too much documenta-
tion is more damaging to the project than too little. This leads to a new set
of problems, where much time is spent on creating software documents and
even more time is being lost while keeping this oversized documentation in
sync with the code that is being developed. Martin (2003) further points out
that the best way to transfer information to new team members is the code
itself and other team members anyway.

Customer collaboration over contract negotiation - The requirements of
the customer at the beginning of a project are almost never exactly identical
to the requirements at the end. The requirements evolve organically as the
project progresses and the customer should therefore work closely with the
development team to deliver regular and frequent feedback.

Responding to change over following a plan - The fourth point is closely
linked to the third, as the requirements and other factors change and adapt
over the lifetime of the project, the ability to respond to these changes is
very often one of the most important factors determining the success or
failure of the project.

1https://agilemanifesto.org/

14

3.1. Agile Software Development

Larman and Basili (2003) explain that agile development models differ
from the traditional waterfall model (as shown on figure 3.1), in them
being based on an incremental and iterative approach. The traditional
waterfall model uses a sequential approach where each phase of the software
development process contains one fundamental activity and the individual
phases follow linearly.

In contrast, Stoica, Mircea, and Ghilic-Micu (2013) say that incremental
models divide software development into smaller units and add new func-
tionality over small increments. By doing so, they offer greater flexibility in
development as the introduction of change into the system during develop-
ment is cheaper. Each ”increment” represents a piece of functionality that is
required by the customer, so it is possible after each increment to introduce
the given feature to the customer for feedback, with feedback only affecting
the work done during the last increment. This way:

• The cost of changing requirements is reduced.
• The customer can see a functional feature and give a more accurate

feedback.
• The development can focus on important functionality first and less

critical parts of the software can be added in later increments, making
software delivery faster.

Iterative development aims to develop the system in small parts with the
rapid fulfillment of the initial scope for fast release and feedback. The scope
is then increased with each iteration.

15

3. Behavior Driven Development

Figure 3.1.: The life cycle in waterfall model and agile.

These two processes (iterative and incremental development) combine
in the agile in a model where the development cycle is iteratively repeated
with incremental addition of new functionality in small chunks and each
iteration produces deliverable software (Alshamran and Bahattab, 2015).

The Catrobat project uses several agile practices to develop, with test
driven development having the strongest influence on the development
process.

3.2. Test Driven Development

Test driven development (TDD) is one of the essential methods of agile
programming. In spite of the name, it is not a testing technique, but a
process of agile design and software development, the basic idea of which
is to write unit tests before the program code. Since the code is written after
the tests, using TDD automatically implies that all code written is testable.

The primary purpose of writing tests in TDD is their function as a tool for

16

3.2. Test Driven Development

creating the resulting system. Freeman and Pryce (2009) explain that it adds
executable description of what the code does and a complete regression
suite. Writing tests before the development of a feature forces the developer
to first thoroughly think about what needs to be done and how the feature
will be used and only then to start writing its code. Freeman and Pryce
(2009) describe this phenomenon as a separation of logical design from
physical.

Subsequent running of these tests at the end of each phase of the TDD
cycle results in error detection soon after they are introduced. The developer
still has fresh knowledge of the code segment that led to the bug and can
more easily pinpoint the source of the problem using the tests that already
exist. In this way the development cost is reduced because the cost of error
correction during the testing phase of a conventional non-TDD methodology
is according to Koskela (2007) usually two magnitudes higher than if they
were found as soon as they originated.

David Astels (2003) explains that TDD is based on repeating of a short
cycle that turns the traditional methodology around - firstly, automated
unit tests are written, then comes the production code development and
finally the code is refactored – which is changing the code without altering
its external behavior.

The TDD cycle is also called Red-Green-Refactor. Red represents the state
of the program when a new feature is to be added. According to Koskela
(2007) this is the part of the cycle where the design decisions are made. First
a test is written, defining the behavior of said feature (its logical design).
This test understandably fails as the feature does not exist yet – thus the
name Red. Green phase of the cycle covers writing the production code
until all original and newly added tests run successfully. The Refactor phase
serves to simplify the code, without breaking the tests. During Refactor
phase duplications are removed from the code, its structure is simplified
and other changes are performed to obtain better and more readable code.

The goal of TDD is, as Beck (2002) describes it, to create clean code that
works by driving the development with automated tests: the new code is
written only when a test fails and no more code is written than is needed to
pass the test. With this approach, all code is testable and tested by definition.

Koskela (2007) talks about the three great benefits that are brought by the
use of TDD. The first is fewer bugs in the code, because the development
is split into small steps, so that the developers can focus on the problem at

17

3. Behavior Driven Development

hand and because the new code is covered by tests before it is even written.
The second benefit of TDD is saving time which is based on the fewer bugs
present and because the development stops when all tests run successfully,
so no additional and unimportant functionality is introduced in the code.
Third, the test coverage enables the developers to see that at the end of
the cycle new code did not break old functionality, which increases their
self-confidence.

As a summary, according to David Astels (2003), the TDD can be described
as a development style, where:

• An exhaustive suite of Programmer Tests is maintained. This builds
up a test harness which allows regression testing and checks whether
the refactoring did not change functionality.
• No code goes into production unless it has associated tests. This

implies a higher production code quality.
• Tests are written first. The code is per se designed to be testable since

one or more tests are written before the production code.
• The tests determine which code is needed to be written. The tests are

an executable specification and better describe the requirements than
any comments.

3.3. Acceptance Test Driven Development

Unit tests, on which the TDD approach is based on, test only small isolated
pieces of code that somehow affect the behavior of the system and are
therefore not suitable to be the only tests in the systems. Unit tests and TDD
can test whether the ”code was written correctly”, but it is not possible to
evaluate the correctness of the problem solution. Therefore, acceptance tests
are used to indicate whether the ”correct code” has been written. Koskela
(2007) defines acceptance tests such as:

• Owned by customers. Since their purpose is defining the acceptance
criteria of a feature, the customer knows best what they want from
that feature.
• Written together with the customer, developer, and testers. A customer

in the role of the domain expert and a developer as a technical expert
write the acceptance tests together to encourage communication.

18

3.3. Acceptance Test Driven Development

• About what and not about how. Acceptance tests describe the source
of value for the customer, not how the value is delivered.
• Expressed in the language of the problem domain. Acceptance tests

are written in a language that the customer can understand.
• Concise, precise and unambiguous. An acceptance test verifies a single

aspect or scenario relevant to a feature.

Managing development by defining acceptance tests before writing code
is similar to writing unit tests before implementing a new program logic
in TDD. This methodology is called the acceptance TDD (ATDD) and
complements the TDD. Freeman and Pryce (2009) note, that while TDD
assists with internal code quality, ATDD ensures its external quality – that
is how well the system meets the needs of customers and users.

The ATDD cycle (shown on figure 3.2) is very similar to the TDD cycle -
when the implementation of a new feature starts, first an acceptance test is
written. It fails, as the feature does not yet exist. Then the code is written
until all acceptance tests are successful. This also serves as information that
the feature is done. During one ATDD code development phase, usually
several TDD cycles (at least one) take place.

As the ATDD deals with the customer’s needs, unlike the TDD, it is a
whole-team technique. Larman and Vodde (2010) even claim that if the
whole team is not involved, including the product owner or representative,
the development process is not a ATDD process. In contrast to TDD in
ATDD the stakeholders themselves should participate in the definition of ac-
ceptance tests, even create a part of the test suite themselves. Koskela (2007)
defines the main objective of ATDD in supporting this close collaboration
between customer, developer and tester parties.

19

3. Behavior Driven Development

Figure 3.2.: ATDD Cycle

3.4. Behavior Driven Development

Despite the advantages of TDD, this methodology has some problems. Dave
Astels (2006) sees the largest of them in the language used by TDD. Because
of the common use of terms like test and unit, many developers see TDD
just as writing tests before the code itself, while they should be looking at
how to write a test in a concise, unambiguous and executable form. He
bases this statement on Sapir-Whorf’s hypothesis, stating that the way an
individual thinks is shaped by the language they use. Therefore to change
the way people think about TDD, the language used to explain TDD must

20

3.4. Behavior Driven Development

be adjusted first. In addition, the idea of testing often encounters negative
responses from developers and project managers, therefore a change of
terminology is also useful in this regard.

Similarly North (2017) saw problems with the effective adoption of TDD.
Developers often did not know where to begin writing tests, which tests to
write next, or focused too much on details, losing in the process a wider
view of the original business goals. North has therefore developed behavior
driven development (BDD) as an attempt to better understand and explain
TDD. It is an evolution of TDD and ATDD, that takes the ATDD process
and replaces the terms like unit and test with behavior and specification.
BDD focuses on properly translating the requirements of stakeholders
into features. From TDD it takes the emphasis on automated software
testing. This gives immediate feedback on the state of the application.
ATDD respectively can be seen in the orientation of testing at the acceptance
testing level.

Smart (2014) explains that BDD combines the test driven development
with a domain-driven design, from which it takes the concept of a common
dictionary, also known as the ubiquitous language. In BDD this dictionary
is based on simple structured sentences in English, or in another language
understood by all stakeholders. It is developed by the whole team and is
designed to create a communication bridge between development and busi-
ness and helps meet the most important BDD principle that says business
and technology people should talk about the same system in the same way.

The common language then allows the customer to specify requirements
from a business perspective, the business analyst to add concrete examples
to specify the behavior of the system, and the developer to subsequently
implement the required system behavior in the TDD way. Lazăr, Motogna,
and Pârv (2010) say BDD is often described as ”TDD done correctly”.

There are three principles in the BDD activity framework, according to
North (2014). First of all, the system should be defined in the concepts of
its behavior so that both development and the business side of the team
can use the same language independently of the granularity level. In short
everything is behavior. Second principle is where is the business value meaning
that if something is to be added to the system, it must bring business value
to the stakeholders or be a prerequisite of some other feature that does.
Behavior that has no current business value for the project is unlikely to be
added to the system. Lastly enough is enough says that the usual processes

21

3. Behavior Driven Development

that take place at the beginning of a project, like planning, analyzing and
designing of the system should only be done to such an extent that the
development can be started. The reason is if the requirements change, all
work above that would have to be repeated and therefore can be regarded
as superfluous.

Solis and Wang (2011) extracted 5 basic BDD properties:

• A ubiquitous language is used.
• An iterative decomposition process - analysis begins with the need of

a customer, divided in stories and specific examples; this approach is
also referred to as an outside-in.
• Plain text descriptions with user stories and scenario templates are

used. User stories and scenarios use a language and a structure which
is understood by the whole team.
• Automated acceptance testing with mapping rules. The specification

of behavior in BDD plays the role of executable acceptance tests.
• Readable behaviour oriented specification code. The code is part of

the system documentation.

From a mechanical point of view, BDD is almost the same as ATDD -
tests are written before the code, the Red-Green-Refactor cycle is used, and
during one iteration of “Green” there are likely to be several TDD cycles
involved. Unlike ATDD, however, it does not start with a test but with a
set of requirements that the new feature should meet. The requirements
are defined by the entire team, including users and other stakeholders
in conversations. The result of this process are user stories and scenarios
describing user requirements for the feature in the form of concrete examples
using the common language offered in the BDD. This concept of using
specific examples, called specification by example, comes from Parnas (1972)
who specifies the rules for such specification:

• The specification should contain all the necessary information for the
user to use the program and nothing more.
• The specification should contain all the necessary information for the

implementer about the intended purpose that is needed to complete
the program and nothing more.
• The specification should be formal enough to be machine testable.

22

3.5. User Story

• The specification must use a language understood by both the user
and the implementer.

Specification by example also creates living documentation. Adzic (2011)
describes it as an authoritative source of information about system function-
ality that everyone has access to and which is as reliable as the code but
more comprehensible. It serves as documentation of requirements as well as
technical documentation. It is made up of the requirements themselves. They
are executable, so there is always an overview of all the requirements that
are already implemented. Living documentation can not become obsolete
and outdated like standard documentation.

3.5. User Story

BDD offers a specific way of communication between stakeholders and
developers by using ubiquitous language: In this language it is defined
when the program is finished and functional. The basic element of this
communication is a user story that acts as a basic unit of functionality and
delivery in BDD. It describes one discrete piece of functionality and its main
task is to describe the requirement in such a way that all interested parties
(management, analysts, testers, developers) understand it. North (2019) lists
the basic elements of a user story as the title, narrative and acceptance
criteria in the form of scenarios.

The title is a short and concise description of the behavior that the story
implementation will bring. The narrative of a user story shows who requests
what functionality and what benefits it will have. North (2019) specifies the
template for writing a user story narrative:

As [role]

I want [feature]

So that [benefit]

North also provides a template to serve as minimum requirements of a user
story.

23

3. Behavior Driven Development

T i t l e (one l i n e descr ib ing the s to ry)

Narrat ive :
As a [r o l e]
I want [f e a t u r e]
So t h a t [b e n e f i t]

Acceptance C r i t e r i a : (presented as s c e n a r i o s)

Scenar io 1 : T i t l e
Given [contex t]
And [some more contex t] . . .
When [event]
Then [outcome]
And [another outcome] . . .

Scenar io 2 : . . .

Listing 3.1: User Story template (adapted from North (2019))

Acceptance criteria are presented based on specific examples of behavior
described by the user story. Each of these scenarios has its own title and
a description. The title describes what differs from other scenarios. The
description is divided into the context in which events take place, events
that happen during the scenario and the consequences of these events.
According to North (2017) the acceptance criteria form the body of a user
story, because they define the extent of the behavior and show when the
story is finished. Their individual components are small enough for them
to be represented directly in the code, making the scenarios executable
specification.

The scenarios interact directly with the code, but are also written in a
language that business stakeholders understand. They create a place where
both sides of the linguistic division, as it is called by Evans (2003), meet.

3.6. Cucumber

Cucumber is a BDD framework, originally created for Ruby and subse-
quently ported in many languages. Dees, Hellesøy, and Wynne (2013) de-
scribe its goal as automation of evaluating whether an application behaves

24

3.6. Cucumber

according to specified behavior using automated tests that are understood
by both the developer team members and all other stakeholders, which it
shares with JBehave.

Chelimsky et al. (2010) explain its origin as originally a part of RSpec.
When Dan North came up with the BDD concept, he created the JBehave
tool in 2003 as probably the first tool to deploy the BDD in development.
Later in 2005, when Steven Baker began developing the BDD framework
for Ruby called RSpec, JBehave was ported to Ruby as RBehave, refactored
under the new name ”Story Runner” to use plain text and merged with
RSpec. In 2008, Aslak Hellesøy rewrote Story Runner with real grammar
and created the tool Cucumber. The idea was for BDD to have a cycle similar
to ATDD, with Cucumber being the outer circle and RSpec forming the
inner circle, but Cucumber was ported into many other languages and can
also be used as a stand-alone tool.

As mentioned above, BDD user stories have title, a narrative and scenarios.
Cucumber focuses only on the scenarios, as they make up the executable
specification. Instead of stories, in Cucumber the scenarios that relate to one
feature are grouped into a feature file. Feature files contain a description
of the behavior written in Gherkin, which is very similar to the common
language. They have a well-defined structure, based on which Cucumber
builds automated tests. At the beginning of a feature file, there may be
optional language declaration in the form ”# [language]”, where [language]
is replaced by the language in which the feature file will be written. If this
declaration is omitted, Cucumber defaults to English. After that follows
the feature name in form ”Feature: [name]”, usually followed by a brief
plain text description that may or may not contain the narrative described
in the BDD subchapter. The title is then followed by one or more scenarios
associated with the feature.

Each scenario begins with a name in the form of ”Scenario: [name]”,
which describes the scenario. Then comes the description divided into steps
consisting of short phrases, starting with keywords. These keywords are
Given, When, Then, And and But, or their equivalents in the language in which
the script is written. A step with the Given keyword describes the context
of the scenario and the initial state of the application. When represents the
action that is taking place, and Then the expected result. The keywords And
and But are used to expand one of these three types of steps. This keyword
breakdown is for the benefit of the reader, as Cucumber does not distinguish

25

3. Behavior Driven Development

between them and even offers ”*” as a universal keyword to mark a scenario
step. Comment lines are distinguished by # at the beginning.

Listing 3.2 shows part of a sample Cucumber feature file for the Pocket
Code with just one scenario for the Pocket Code Formula Editor and in
listing 3.3 the same scenario is written using the universal keyword ”*”.

Feature: Formula Edi tor

In order to use formulas as part of the c a t r o b a t
b r i c s , the formula e d i t o r o f f e r s a way f o r the users
to c r e a t e and modify them

Scenario: Changing a formula with Formula Edi tor
Given I have a Program with a Wait b r i c k
And I am in the s c r i p t s e c t i o n
When I open Formula Edi tor via b r i c k
And I change the formula to 5

And I press ok in Formula Edi tor
Then I should see 5 in the b r i c k

Listing 3.2: A sample Cucumber feature file with one scenario

Feature: Formula Edi tor

In order to use formulas as part of the Catrobat
b r i c s , the formula e d i t o r o f f e r s a way f o r the users
to c r e a t e and modify them

Scenario: Changing a formula with Formula Edi tor
* I have a Program with a Wait b r i c k
* I am in the s c r i p t s e c t i o n
* I open Formula Edi tor via b r i c k
* I change the formula to 5

* I press ok in Formula Edi tor
* I should see 5 in the b r i c k

Listing 3.3: A sample Cucumber feature file using universal keyword

To automatically test app behavior, Cucumber, in addition to the feature
file, also needs a set of step definitions describing what to do when it
goes through the steps described in scenarios. This step definitions file,
written in one of Cucumber’s supported programming languages, maps

26

3.6. Cucumber

the steps of scripts written in plain text to the corresponding code program
methods. Each of these methods begins with annotation of one of the
keywords @Given, @When, @Then, @And or @But followed by the parameter.
This parameter is a regular expression containing one of the steps in the
scenarios. It is surrounded with the ”ˆ” and ”$” symbols indicating the
beginning of the string and the end of the line. A sample step definition
file for a feature described in listing 3.2 is shown in listing 3.4. The same
step definition file works also with the scenario description in listing 3.3.
While there is no code implemented yet, Cucumber uses a PendingException
to indicate so when running the tests.

When performing the step, Cucumber searches with a regular expression
for a method with an annotation corresponding to the step. Since there
may often be scenarios with similar steps that differ only in some values,
a regular expression in brackets can be added to the annotation instead of
this value. It serves as a capture group that will be given to the annotated
method as a parameter. For multiple capture groups, the parameters are
added in the same order as the capture groups are in the annotation.

27

3. Behavior Driven Development

@Given (” ˆ I have a Program with a Wait br i ck$ ”)
public void i have a Program with a Wai t br ick () throws

Exception {
/ / Wri te c o d e h e r e t h a t t u r n s t h e p h r a s e a b o v e i n t o c o n c r e t e
/ / a c t i o n s
throw new PendingException () ;

}
@Given (” ˆ I am in the s c r i p t s e c t i o n $ ”)
public void i a m i n t h e s c r i p t s s e c t i o n () throws Exception {

/ / Wri te c o d e h e r e t h a t t u r n s t h e p h r a s e a b o v e i n t o c o n c r e t e
/ / a c t i o n s
throw new PendingException () ;

}
@When(” ˆ I open Formula Edi tor via br i ck$ ”)
public void i o p e n F o r m u l a E d i t o r v i a b r i c k () throws Exception {

/ / Wri te c o d e h e r e t h a t t u r n s t h e p h r a s e a b o v e i n t o c o n c r e t e
/ / a c t i o n s
throw new PendingException () ;

}
@When(” ˆ I change the formula to 5$”)
public void i c h a n g e t h e f o r m u l a t o 5 () throws Exception {

/ / Wri te c o d e h e r e t h a t t u r n s t h e p h r a s e a b o v e i n t o c o n c r e t e
/ / a c t i o n s
throw new PendingException () ;

}
@When(” ˆ I press ok in Formula Edi tor$ ”)
public void i p r e s s o k i n F o r m u l a E d i t o r () throws Exception {

/ / Wri te c o d e h e r e t h a t t u r n s t h e p h r a s e a b o v e i n t o c o n c r e t e
/ / a c t i o n s
throw new PendingException () ;

}
@When(” ˆ I should see 5 in the br i ck$ ”)
public void i s h o u l d s e e 5 i n t h e b r i c k () throws Exception {

/ / Wri te c o d e h e r e t h a t t u r n s t h e p h r a s e a b o v e i n t o c o n c r e t e
/ / a c t i o n s
throw new PendingException () ;

}

Listing 3.4: Step definitions file for the feature in listing 3.2

Other methods for removing duplicates in Cucumber are applied in
feature files by using Background and Scenario Outline.A background is used
when all scenarios of one feature file begin with the same steps. It groups

28

3.6. Cucumber

these steps before the scenario definitions under the keyword Background:
followed by those steps in the same form as they were in the scenarios from
which they were removed. When running a scenario of a feature file with
background, the background-steps are always executed before the scenario
itself begins.

The Scenario Outline key phrase is used in scenarios where the group of
scenarios differ only in the input values. It replaces the Scenario keyword and
substitutes the variable input in each step by the variable name in chevrons
as a placeholder. Then a table is put below the list of steps containing sets
of variables that run each test. It starts with the Examples: keyword under
which the table itself is located. In the first row of the table are all variable
names, and each row below is a single test set. Each row of a table is marked
by surrounding it with the ”|” symbol, which also serves as the divisor of
the individual variables in the row. Taking the listing 3.2 instead of writing
several scenarios that would use different values, a scenario outline can be
used to compress them into just one as shown in listing 3.5.

Feature: Formula Edi tor

In order to use formulas in the Catrobat br icks , the formula
e d i t o r o f f e r s a way f o r the users to c r e a t e and modify them

Background:
Given I have a Program with a Wait b r i c k

Scenario Outline: Changing a formula with Formula Edi tor
Given I am in the s c r i p t s e c t i o n
When I open Formula Edi tor via Wait b r i c k
And I change the formula to <input value>
And I press ok in Formula Edi tor
Then I should see the value <expected value> in the Wait

b r i c k

Examples:
input value	expected value
5	5
2+2	2+2
35 . 35	35 . 35

Listing 3.5: A sample scenario outline

29

4. Problem Statement

This thesis addresses two main problems. The first one is allowing to
perform tests on mobile devices for features, where different physical pa-
rameters play a role, such as the position in which the device is. The second
problem is introducing BDD to Pocket Code to create platform independent
tests to unify test suites for each platform on which Catrobat features are
being developed.

4.1. Sensor Tests

Since the Catrobat project is being developed in a strict TDD way, it is a
prerequisite that for each existing piece of code there will be one or more
tests serving to confirm its functionality and as a form of documentation
for that code. However, in Pocket Code, there are parts of the system where
these tests do not exist. One group of such features is the capability to read
the sensor data of the device on which Pocket Code runs. The only way to
test such features at the current time is manual testing.

However, in his book Succeeding with Agile: Software Development Using
Scrum, Cohn (2009) says manual tests should only be used for exploratory
testing. Even some later versions of the testing pyramid introduced by Cohn
that have evolved from it, put manual tests at the top of the pyramid as
the smallest group of tests used to test the entire system. The ability to
use the device’s sensor data requires updating these data during runtime.
Automated versions of such tests must be implemented as UI tests, since the
device’s sensor data are accessed via stage activity of Pocket Code. Along
with the need to move the device to change certain sensor readings the tests
will be relatively slow and thus better be part of an extended test suite,
which is not executed at every test run.

To change sensor readings for sensors reacting to the mobile device’s
location/direction or movement in space, the device needs to be moved. For

31

4. Problem Statement

this automated movement, a robot arm will be built. This robot arm must be
robust enough to handle a mobile device with a weight of up to 300 grams
stably and safely. In addition, its range of motion must allow the movements
necessary to perform all tests for sensors reacting to location/direction or
movement in space, therefore the following minimum movements must be
possible:

• Rotation of the device into horizontal and vertical position: A mini-
mum of 90 degrees rotation on the y-z axis of the robot arm.
• Rotation and movement of the device allowing the transition from a ly-

ing position to standing position: A minimum of 90 degrees movement
on the x-y axis of the robot arm.

4.2. Platform Independent Testing

In the Catrobat project Catrobat IDEs are developed for Android, iOS,
and HTML-5 , with a distinct team working on each of these platforms.
Since all teams work on the same project, just for different platforms, each
feature should work the same. Catrobat is developed according to the TDD
methodology, therefore the functionality of each of the features should be
explained by tests written before these features are implemented and added
to the project.

Thus, if it were possible to abstract the tests to a platform-independent
form, it would be possible to create a unified test suite for all platforms and
ensure that there is no different implementation of the same functionality by
individual teams. This is where BDD comes in. BDD creates another layer of
code in the form of tests written in Gherkin language that are part of user
stories. Using the executable specification from BDD as an abstraction layer
for new tests will create a platform-independent description of each feature.

To do this, a suitable BDD tool must be integrated into the Catrobat IDE
Pocket Code and the new tests must be created using this tool.

32

5. Robot Arm

To control a robot arm in a meaningful way, it is very important to know
the position and the orientation of the robot arm in space. The information
of the position and orientation may be used to calculate the position and
the orientation of the end effector (gripper or holder in this case). An end
effector is the part of a robot arm that is designed to interact with the
environment such as a screwdriver, painting gun, welding gun or a gripper.
A robot arm consists of joints. The angles occurring on these joints serve
with the position and the orientation information for further calculations. In
different manipulators (robots) different joints might be present realizing
angular or sliding movements. The part of the robot where it is stabilized
to a base, is called base frame, whereas the part of the robot containing the
end effector is called tool frame.

The robot arm which is used in the Catrobat project for this thesis consists
of 3 arm joints, allowing 3 degrees of freedom. The number of degrees of
freedom that the robot arm has, can be considered as the number of inde-
pendent position variables that would have to be specified in order to locate
the position and the orientation of the gripper. Robot arm joints may have
different terms of movement depending on how they have been constructed.
For instance, joints may be rotary or revolute. The displacements of these
joints are called joint angles. Some robots may contain sliding (or prismatic)
joints, on which the relative displacement between links is a translation,
sometimes called the joint offset (Craig, 2004). For the chosen design of the
robot arm, rotary joints have been used, making use of servomotors.

Servomotors are rotary actuators that unlike conventional motors, can set
the exact position of the axis rotation. Connection of all the joints together
in a robot arm, often end up with an end effector according to Craig (2004).
In the case of the robot used in the Catrobat project for this thesis, the end
effector was chosen to be a gripper (robotic claw, using a servomotor for
gripping movement). Later on, it was seen that the gripper is not stable
enough for tshe purpose of this project, where it is aimed to make automated

33

5. Robot Arm

tests on a mobile phone, which can weigh up to 300g. Therefore, the gripper
later on, is changed with another end-effector, basically a mobile phone
holder.

The collection of the robot arm joints are considered as independent posi-
tion variables. Their function depends on the type of the joint itself (angular
movements, linear movements, etc.). In order to make calculations to allow
proper movement of the robot arm, kinematic equations are used. Most
often, two coordinate systems are defined in order to use with the kinematic
equations. In many cases, one of the coordinate systems are positioned
on the base joint of the robot arm with an orientation (angulation of the
x,y,z coordinates in the three-dimensional space). This is called base-frame
according to Craig (2004). The other coordinate system is positioned on
the gripper (or end effector as called by Craig (2004)) with a desired de-
fault orientation. This coordinate frame is called tool frame in Craig’s book.
Kinematic equations can mainly be classified in two: forward kinematics,
and inverse kinematics. Forward kinematics is a very basic problem in the
study of mechanical manipulation according to Craig (2004). It is a static
geometrical problem of computing the position and the orientation of the
gripper of the robot arm. Given a set of joint angles, the forward kinematic
problem for our case is to compute the position and orientation of the tool
frame relative to the base frame. On the other hand, given the position and
orientation of the gripper of the robot arm, inverse kinematics equations
calculate all possible sets of joint angles that could be used to achieve this
position and orientation of the gripper. In many cases, inverse kinematics
equations are more suitable for robot arms as mechanical manipulators. See
figure 5.1.

34

[t]

Figure 5.1.: Kinematic equations describe the tool frame relative to the base frame as a
function of the joint variables. Adapted from Craig (2004).

35

5. Robot Arm

Once the desired degrees of freedom (DOF) are decided for a robot arm, a
kinematic configuration shall be used to design and connect the robot joints
in order to realize the desired DOF. Different kinematic configurations may
help achieving certain geometrical reach for the gripper of the robot arm.
For instance, if a Cartesian manipulator is used with 2 DOF, the following
cubic-workspace may be achieved in a 3 dimensional space as shown in the
figure 5.2.

Figure 5.2.: Cartesian manipulator with 2 degrees of freedom may achieve a cubic
workspace in the 3 dimensional space. Adapted from Craig (2004).

For the purpose of this project, a kinematic configuration similar to
SCARA (selectively compliant assembly robot arm) configuration given in
Craig (2004) has been used with some modifications, where all the joints are
limited to 90 degrees of movement for safety purposes. In addition to the
SCARA configuration given in the following figure 5.3, an additional base
joint is used to allow 90 degrees of movement on the x-y plane (consider
having the same orientation of the base frame axes as figure 5.1). Further-
more, the joint for the end effector has been set orthogonal to the other 2

joints following the base joint, allowing 90 degrees of rotation at the mobile
phone holder (end-effector). Workspace created using this configuration

36

5.1. Movement With Steady-Velocity

would be very similar to the workspace given in the figure 5.3. Of course
there are other kinematic configurations given or may be designed such as
spherical, cylindrical, cubic, etc. depending of the target application of the
robot arm (or mechanical manipulator). It is possible to create a universal
manipulator (robot) with 5-6 degrees of freedom.

Figure 5.3.: An articulated manipulator with SCARA configuration. Adapted from Craig
(2004).

5.1. Movement With Steady-Velocity

Without continuously modulated movement control in a feedback loop,
which guarantees nearly-steady velocity, the observed velocity of servo-
motors would change over time due to external disturbances (for example

37

5. Robot Arm

environmental disturbances or production flaws for the motors). When
using two servomotors with same specs, using the same input for both
servomotors does not guarantee same velocity of the motors. Control loop
feedback mechanisms like proportional-integral-derivative (PID) control,
calculate the error that emerged due to these disturbances and continuously
adapt the input control signal to keep the output velocity steady. For the
robot arm used for this thesis the nearly-steady velocity is handled by the
Maestro servo controller from Pololu by its design. It allows controlling up to
6 servomotors, with speed and acceleration control along with the position
control.

Normally, in order to achieve a steady velocity movement of the end
effector, dynamics equations are used. With the help of dynamics equations,
each joint must then be applied with a different torque. Since the move-
ments of the robot arm are executed sequentially, dynamics equations for
each servomotor movement are calculated separately. This is automatically
handled by the servo controller, allowing to achieve nearly-steady velocity
movement of the end effector of the robot arm.

5.2. Smooth Movements

It is important to have smooth movements of the end effector in applications
which require high sensitivity operations such as painting. Even though
for Pocket Code tests such a high sensitivity operations are not currently
needed, a basic level of stability is still required in order to get stable
sensor measurements and prevent shaking of end effector due to the weight
of the mobile device when resting or moving. Smooth movements are
achieved by movement of the joints with a function of time, where the time
needed to start and finish the movement for each joint to achieve a certain
position and orientation in 3d space is the same. The servo controller has
the capability of controlling different servomotors with constant duration
of time in order to achieve different angular positions and configuring the
speed and acceleration for each motor separately. This made it possible to
achieve smooth movements without so many calculations.

38

5.3. Design

5.3. Design

A robot arm was initially designed as a 3d object using AutoCAD, but later
on it was decided to make a change in the design in order to achieve joint
movement using singular servomotors instead of double servomotors for
each joint, since servomotors with enough torque was available. The initial
design can be seen in the following figures5.4 and 5.5. For the mechanics of
the robot arm, the following books have been used as a reference and source:
Craig (2004), Iovine (2004). The AutoCAD tool is used to make technical
drawings for the robot arm, specifically the robot arm joints to be cut from
a 3mm aluminum plate. The aluminum is later laser cut as can be seen in
the following figure 5.8 and bent to form joint as shown on figure 5.9.

Figure 5.4.: Initial 2D design for the robot arm using AutoCAD.

39

5. Robot Arm

Figure 5.5.: Initial 3D design for the robot arm using AutoCAD.

The robot arm uses 4 servomotors, three of them being Power HD Ultra-
High-Torque, High-Voltage Digital Giant Servo HD-1235MG models from
Pololu with stall torque of 40 kg.cm at highest voltage strong enough to
move the arm with a mobile device attached and one smaller servomotor
holding the mobile phone holder with stall torque of 4 kg.cm. All four
servomotors are connected to the Micro Maestro 6-Channel USB Servo
Controller. The servo controller was initially powered by a Turnigy LiPo
Battery, that was later substituted with an adapter to enable using the robot
arm uninterrupted. A Raspberry Pi 2 was used as the control unit for the
robot arm. The Raspberry Pi 2 was chosen because it was available, but
another single board computer or personal computer could serve the same
purpose.

The complete test setup consists of the Raspberry Pi, the servo controller,
the robot arm, a mobile device with Pocket Code, where the tests are run
and a computer, that installs the tests, initiates their execution and gathers
the test results as shown on figure 5.7. The computer is connected to the
mobile device via USB. The mobile device is held in the test bed of the
robot arm and communicates with Raspberry Pi via WLAN. Raspberry Pi is
connected to the servo controller via USB. The servomotors and their power

40

5.3. Design

supply are connected to the servo controller as shown on the figure 5.6.
Both Raspberry Pi and the servo controller require their own power supply.
The final version of the robot arm is shown on figure 5.10.

Figure 5.6.: Wiring of the servomotors to the servo controller. The servomotors are con-
nected to the first four PINS of the servo controller.

Figure 5.7.: The diagram of the full test setup required when using the robot arm.

41

5. Robot Arm

Figure 5.8.: Laser cut drawings for the robot arm on 2d plane, to be later on laser-cut on
a 3mm aluminum plate and to be bent along the specified lines using a press
and bending machine.

42

5.3. Design

Figure 5.9.: Final 3D design of the robot arm joints using AutoCAD.

43

5. Robot Arm

Figure 5.10.: The robot arm, with a Raspberry Pi acting as a server communicating with
the actual servo controller controlling the robot arm’s servomotors.

44

5.4. Installing Maestro Servo Controller Software

5.4. Installing Maestro Servo Controller Software

To use the Micro Maestro 6-Channel USB Servo Controller additional soft-
ware from Pololu is required to be installed on the Raspberry Pi unit. The
mentioned software is openly available on the webpages of Pololu. However,
additional packages must be installed beforehand on the Raspberry Pi:

• libusb-1.0-0-dev
• mono-runtime
• libmono-winforms2.0-cil

After that the 99-pololu.rules file contained in the installation software must
be copied to /etc/udev/rules.d/ in order to grant permission to use the
Pololu USB devices. Finally the remaining files from the Maestro Servo
Controller Linux Software archive are copied into a folder that will later
contain all software for controlling the robot arm. With this setup the robot
arm can be manually controlled from the Raspberry Pi using the UscCmd
program (one of the files copied). The UscCmd program is used to give
commands to the servo controller and through it to control the servomotors
connected to the servo controller.

45

6. Implementation

The software in Catrobat is being developed in a Test-Driven way. Test
driven development as well as behavior driven development place great
emphasis on code coverage by tests or executable specifications in case of
BDD. Therefore, it is important to be able to run and test all implemented
features in the test environment. However, this does not currently apply to
the features that work with the sensor data of the device on which Catrobat
software is running.

Tests that require changing the values in sensors measuring, for example,
the inclination or acceleration of the device (later just physical tests) could be
only done manually before using the robot arm. In practice, this means that
these tests are only performed if one of the features that directly handles
the device sensors is changed. Thus, physical tests are never performed as
part of regression testing. As a result, the correctness and persistent code
quality of these features cannot be guaranteed and the most likely way of
discovering regression of this code is based on negative customer feedback.

By introducing automated physical tests, they could be included in regres-
sion testing and by regularly testing used to discover potential problems as
soon as they are introduced into the system, reducing the cost of finding
the problem and repairing the bug as mentioned in the previous chapter.

6.1. Introduction of BDD into Pocket Code

Pocket Code for Android is being developed in Java. The user interface
tests are performed using the Espresso framework developed by Google1.
Therefore, a tool compatible with Espresso is needed to implement the BDD
into an Android project that meets the following two requirements: i.) easy
implementation and incorporation into an existing Android project; ii.) the

1https://developer.android.com/reference/android/support/test/espresso/Espresso

47

6. Implementation

use of the Gherkin language for compatibility in case of a later tool change.
BDD tools for Java include:

• JBehave
• JDave
• Easyb
• Concordion
• FitNesse
• Cucumber-JVM

All of these tools use an open license. The drawback of Easyb is that
it does not offer reporting. Another disadvantage is that Easyb and also
Concordion do not support IDE integration. FitNesse, Concordion, and
JDave also favor their own way of defining requirements instead of using
Gherkin.

Considering these requirements the most suitable tools are JBehave and
Cucumber-JVM. Cucumber-JVM has an easy setup and thus integration
into the project and offers an easier learning curve. Compared to JBehave,
Cucumber offers more versatile reporting capabilities, helping to create
a living self-sustaining product documentation. Based on these factors,
Cucumber was chosen as thetool to implement BDD into Pocket Code.

During the inclusion of Cucumber into Pocket Code two problems were
encountered. They were caused by external factors. The original set of
Cucumber libraries added to Pocket Code, contained the following library
versions:

• Cucumber-Android (ver 1.2.0),
• Cucumber-picocontainer (ver 1.2.0),
• Cucumber-java (ver 1.2.0),
• Cucumber-jvm-deps (ver 1.0.3) and
• Gherkin (ver 2.12.2).

The first problem was that the chosen set of Cucumber libraries seemed
to be incompatible and led to system crashes at the beginning of the execu-
tion of any Cucumber tests. Other configurations, like libraries Cucumber-
java, Cucumber-junit, and Cucumber-picocontainer or Cucumber-android,
Cucumber-picocontainer, and Cucumber-junit libraries, have also shown
similar behavior. Also the use of newer or older versions of these libraries

48

6.1. Introduction of BDD into Pocket Code

did not solve the crashes. The update of Pocket Code to version 0.9.41

revealed that these issues were caused by the ongoing changes in Pocket
Code that preceded the update.

The version of the Android Studio IDE used to develop Pocket Code in
the time of including of Cucumber to Pocket Code was the cause of the
second problem. It manifested as Cucumber crashes after changing the test
instrumentation class in Gradle, without making any other changes in the
system since the last test run. Android Studio did not recognize this change
as relevant enough to update the testing environment on the mobile device
used for testing. This led to incompatibility resulting in crash of Cucumber
at the beginning of every test. These two problems led to a decision to only
include the minimum functionality required to run Cucumber to minimize
potential causes for crashes as the source of the Android Studio problem
was found only in late stages of this project.

As a minimum to include Cucumber into an Android project, it is nec-
essary to add dependencies to two of Cucumber’s libraries: Cucumber-
Android and the Cucumber-Picocontainer, which handles the dependency
injection allowing the sharing of state information between steps in scenar-
ios. After adding these libraries, a custom instrumentation runner for the
instrumented tests is needed.

49

6. Implementation

@CucumberOptions (f e a t u r e s = ” f e a t u r e s ” ,
glue = {” org . c a t r o b a t . c a t r o i d . t e s t . cucumber

. s t e p d e f i n i t i o n s ”}
)
public c l a s s Instrumentat ion extends MonitoringInstrumentat ion {

private f i n a l CucumberInstrumentationCore
instrumentat ionCore =

new CucumberInstrumentationCore (t h i s) ;
@Override
public void onCreate (Bundle arguments) {

super . onCreate (arguments) ;
instrumentat ionCore . c r e a t e (arguments) ;
s t a r t () ;

}
@Override
public void onStar t () {

super . onStar t () ;
waitForIdleSync () ;
instrumentat ionCore . s t a r t () ;

}
}

Listing 6.1: Step Instrumentation class for Cucumber

This new instrumentation runner combines feature files located in the
features folder in the androidTest assets with step definitions, allowing
the Cucumber to compile scenario and glue code tests, making features
executable specifications. The resulting file structure is displayed on figure
6.1 with the instrumentation class being one step higher than all cucumber
java files.

With Cucumber included in the system scenarios can be implemented
to test if Cucumber is working correctly. A simple scenario and a scenario
outline with basic tasks in the Pocket Code formula editor is implemented
in the CucumberTest.feature in the features package. The implementation is
shown in listing 6.2.

50

6.1. Introduction of BDD into Pocket Code

Figure 6.1.: Structure of Cucumber files in Pocket Code.

Feature: Temporary t e s t s
Scenario: Creat ing a v a r i a b l e in formula e d i t o r

Given I have an s p r i t e a c t i v i t y in formula e d i t o r
And I am in the data fragment
When I c r e a t e a v a r i a b l e

Then I see t h a t v a r i a b l e in the l i s t
Scenario Outline: Using C a l c u l a t o r buttons in formula e d i t o r

Given I have an s p r i t e a c t i v i t y in formula e d i t o r
When I press button <button>

Then value <value> should show up in the e d i t t e x t
Examples:
button	value
0	”0”
1	”1”
2	”2”
3	”3”

Listing 6.2: The CucumberTest.feature feature file 51

6. Implementation

The scenario describes creating a variable in the formula editor while the
scenario outline describes one of the basic functions of the calculator that is
part of the formula editor as shown in listing 6.3. This is then implemented
in the glue code in FormulaEditorSteps step definition file using Espresso
encapsulated in the Cucumber framework.

@Given (” ˆ I have an s p r i t e a c t i v i t y in formula e d i t o r $ ”)
public void I h a v e a n s p r i t e a c t i v i t y () {

Rules . r u l e = s p r i t e A c t i v i t y T e s t R u l e ;
S c r i p t s c r i p t = B r i c k T e s t U t i l s

. c r e a t e P r o j e c t A n d G e t S t a r t S c r i p t (” FormulaEditorAddVariableTest ”)
;
s c r i p t . addBrick (new ChangeSizeByNBrick (0)) ;
Rules . r u l e . launchAct iv i ty (null) ;
onView (withId (R . id . b r i c k c h a n g e s i z e b y e d i t t e x t))

. perform (c l i c k ()) ;
}
@Given (” ˆ I am in the data fragment$ ”)
public void I am in the data f ragment () {

onFormulaEditor ()
. performOpenDataFragment () ;

}
@When(” ˆ I c r e a t e a v a r i a b l e $ ”)
public void I c r e a t e a n v a r i a b l e () {

onDataList ()
. performAdd (varName) ;

}
@When(” ˆ I press button (\\d+) $”)
public void I p r e s s b u t t o n (i n t arg1) {

onFormulaEditor () . performEnterNumber (arg1) ;
}
@Then (” ˆ value \ ” ([ˆ \ ”] ∗) \” should show up in the e d i t t e x t $ ”)
public void v a l u e s h o u l d s h o w u p i n t h e e d i t t e x t (S t r i n g arg1)
{
onFormulaEditor () . checkShows (arg1 + ” ”) ;

}
@Then (” ˆ I see t h a t v a r i a b l e in the l i s t $ ”)
public void I s e e t h a t v a r i a b l e () {

onDataList () . onVar iableAtPosi t ion (0)
. checkHasName (varName) ;

}

Listing 6.3: The step definitions in FormulaEditorSteps

52

6.2. Pocket Code Robot Arm Interface

The last file shown in the figure 6.1 is the Rules.java file, that currently
serves only to solve the following problem with the interworking between
Espresso and Cucumber. When using Cucumber at the end of a scenario
the currently running activity must be ended manually to properly start
another scenario. Therefore the Rules class holds the Espresso rule of the
current activity to call the finish() method.

@After
public void tearDown () throws Exception {

i f (isRobotArmtest) {
RobotArmControl . resetRobotArm () ;
isRobotArmtest = f a l s e ;

}
r u l e . g e t A c t i v i t y () . f i n i s h () ;

}

Listing 6.4: Manual finishing of activities in Rules class

6.2. Pocket Code Robot Arm Interface

The last step required to perform robot arm tests is the establishment of
connection and communication between the system performing the Pocket
Code tests and the robot arm. The connection is established via WLAN
using a two-tier client-server model. Client-server model is an architecture
in which processing is divided into 2 or more processes. One or more clients
require services and/or resources and the server supplies them. For this
project, the Raspberry Pi acts as a server and allows the client (mobile device
with Pocket Code where the tests are run) to send commands to the servo
controller of the robot arm.

6.2.1. Client Side

Since the Raspberry Pi and the mobile device used for physical tests are
connected to a private WLAN, there is no need to implement any specific
web services. A primitive socket connection over TCP/IP is enough to
establish communication between the mobile device and Raspberry Pi. Four
methods were added to simplify the use of the robot arm when writing

53

6. Implementation

BDD tests on client side. A method opens and a method closes a connection
to the Python program acting as a server on the Raspberry Pi. Two more
methods are available that allow to use this connection and to send requests:

• public boolean resetRobotArm()
• public boolean sendRobotArmCommand(RobotArmCommands com-

mand, int value)

Both methods return a boolean value based on whether they have received
confirmation from the server that the command has been processed and
sent to the servo controller. Calling the resetRobotArm method sends a reset
command to run a subroutine on the server that returns the robot arm to
the default state with a series of commands. The sendRobotArmCommand
method has two parameters. The first parameter is one of the five robot arm
commands defined in the enum RobotArmCommands:

• SET ACCELERATION
• SET SPEED
• MOVE ARM
• MOVE BASE
• MOVE HEAD

The second parameter is an integer value for the robot arm command,
for instance the angle at which the specified part of the robot arm is to be
rotated. The SET ACCELERATION and SET SPEED commands change the
acceleration and speed parameter on each servomotor. The default value for
these parameters is 10.

The MOVE ARM, MOVE BASE and MOVE HEAD commands change the
rotation of specific servomotors. For these commands the second parameter
represents desired position in degrees with a rotation-resolution of 1 degree.
This parameter is then transformed on the server side into a value in the
movement range of the servomotors. MOVE BASE allows rotation of the
robot arm on the x-y-axis in 90 degree range. The MOVE ARM command
controls two servomotors that determine the angle between the joints of
the robot arm, each of which can rotate one joint in a 90 degree range,
creating a combined 180 degree range on the x-z-axis. The last command,
MOVE HEAD, changes the rotation of the servomotor holding the mobile
phone holder in a 90 degree range on the y-z-axis.

54

6.2. Pocket Code Robot Arm Interface

As the default/resting state of the robot arm, a state was chosen in which
all joints are in a vertical position so that the forces acting on the axes and
the servomotor bearings are best distributed as shown in figure 6.3. In this
way, the load on the servomotors by the weight of the robot arm parts they
carry is minimized, which increases their lifetime as shown in figure 6.2.
This position of the servomotors is referred to as position 0, and thus any
MOVE command with parameter 0 returns the respective part of the robot
arm to the default position. All other positions are counted as a deviation
from the default position given in degrees. Therefore, the range parameter of
the MOVE BASE command is between -45 and 45, and for the MOVE ARM
command it is -90 to 90. The MOVE Head command works differently as it
allows to move the mobile device between horizontal and vertical positions.
As such the default position 0 is the vertical position of the mobile device
and the range is shifted to 0 to 90, with 90 representing horizontal position
of the mobile device.

Figure 6.2.: The torque affecting the robot arm when in default position is 0, minimizing
the load on the servomotors.

55

6. Implementation

Figure 6.3.: The Robot Arm in default position pointing upwards to minimize the strain on
the servomotors that hold it in position.

56

6.2. Pocket Code Robot Arm Interface

6.2.2. Parameter Limitations

To ensure the safety of the robot arm, when entering an invalid parameter
in the sendRobotArmCommand method, this parameter is overwritten
to the nearest valid parameter. For MOVE commands, this means that
if the maximum or minimum angle has been exceeded, the servomotors
will be commanded to move to the maximum or minimum valid value
respectively (-45 or 45 for MOVE BASE and MOVE HEAD, and -90 or 90

for MOVE ARM). Setting the SET ACCELERATION and SET SPEED to 0

is understood by the servo controller as setting it to the highest achievable
value, which, depending on the power supply, can lead to dangerous velocity,
therefore when the acceleration or speed is set to less than 0, the value
parameter is overwritten with 1 instead, setting the servomotor to lowest
acceleration or speed. The maximum values for acceleration and speed
are not explicitly set, as the power supply limits the performance of the
servomotors already.

6.2.3. Server Side

The server side is controlled by the RaspServer, a Python program. Full code
of the program can be found in the Appendix A in listing A.1. It is a simple
single-thread program created to receive plaintext commands from a mobile
device via WLAN and to translate them into a form understood by the servo
controller. The program is waiting for the client’s socket connection on port
12000. When it receives a message from the client with up to two parameters
(one parameter in case of reset command, two parameters otherwise), it
uses the first parameter to recognise the requested action and translates the
second parameter accordingly. RaspServer then calls the UscCmd program
(part of the Servo Controller software) using the second parameter as
TARGET parameter for UscCmd. Three servo controller commands are
relevant for controlling the robot arm:

• –servo NUM,TARGET
• –speed NUM,TARGET
• –accel NUM,TARGET

These commands set angle, speed, and acceleration respectively, for a
servomotor on one of the six channels of the servo controller according to

57

6. Implementation

the NUM parameter (0 to 5) to the value specified by the TARGET parameter.
The servomotor position variable is an integer value in the movement range
of the servomotor, which may vary depending on the servomotor brand and
is obtained at the initial calibration of that servomotor. The movement range
of the servomotors in the robot arm used in this project is between 3968 and
7932 representing 90 degree of movement. The resolution of 0.023 degrees
resulting from the 3964 different positions is not required for the hardware
tests. A resolution of 1 degree is used instead. The servomotor holding
the test bed is an exception as it is a different model and its movement
range representing 90 degree is 4700 to 7932. Its maximum resolution 0.027

degrees is also substituted with a resolution of 1 degree.
The RaspServer program accepts one of the six commands with the correct

amount of parameters that it can receive from the test system, otherwise
it returns a negative response indicating that the execution of the sent
command has been interrupted. Before the received command is processed,
RaspServer first checks it and modifies it as mentioned concerning the safety
parameter limitations. Subsequently, in the case of SET ACCELERATION
and SET SPEED, RaspServer calls the UscCmd with the required value for
each of the servomotors.

In the case of a MOVE command, the parameter with the angle must
be translated into a value in the above mentioned servomotor range. The
adjusted value is then used as the TARGET in the UscCmd call (–servo
NUM,TARGET) for all servomotors that must be moved to achieve the
particular position. For MOVE BASE and MOVE HEAD, this is only one
servomotor, but in MOVE ARM, two servomotors that control the robot
arm’s joints move at the same time. The servomotor closer to the base moves
only between 3 positions: default position and both edge positions it can
reach. The servomotor closer to the head (test bed where the mobile is
mounted) then ensures that the robot arm reaches the desired angle. In
this way, the servomotor carrying the greater load spends more time in the
default position where this load is best distributed. When their combined
movement range is represented in an interval of -90 degree to 90 degree
with 0 being the default position, all possible combinations of their positions
can be divided into three groups as shown in figure 6.4:

1. The angle of robot arm to its default position is between 90 and 45

degree. The joint servomotor closer to the base is in its edge position

58

6.2. Pocket Code Robot Arm Interface

of 45 degrees while the joint servomotor closer to the head is in a
position between 0 to 45 degree to reach the desired angle.

2. The angle of the robot arm to its default position is between 45 and
-45 degree. The joint servomotor closer to the base rests in the default
position while the servomotor closer to the head moves the upper joint
to required angle.

3. The angle of robot arm to its default position is between -45 and -90

degree. The joint servomotor closer to the base is in its edge position
of -45 degrees while the joint servomotor closer to the head is in a
position between 0 to -45 degree to reach the desired angle.

Figure 6.4.: Movement of the joints of the robot arm. The lower joint can move only in one
of three positions while the position of the upper joint achieves the desired
angle.

When the resetRobotArm method is called, a couple of UscCmd commands
are run in the following sequence:

1. The acceleration and speed values of all servomotors are set to the
value of 10.

2. A command is sent to all servomotors to return to the default position.

a) The default position of the servomotor at the base of the robot
arm and the servomotors at the robot arm joints is in the middle
of their movement range at the value 5950.

b) The default position of the servomotor holding the test bed is
at the lowest value in its movement range (4700) representing
vertical position of the mobile device held by the test bed.

59

6. Implementation

The UscCmd program also contains the –status command for reporting
the state of all connected servomotors, but this command only reports
the position values estimated by the Servo Controller based on previous
commands, and thus does not offer credible information about the true
position of the servomotors. Therefore, the status command cannot be used
to check that the servomotors have actually moved to the desired position
and thus the positive response from the RaspServer that the client receives
means that the commands have been successfully received and sent to the
servo controller, not that the servomotors have successfully performed the
required task.

60

7. Results and Evaluation

With a functional robot arm and the ability to control the robot arm directly
from the test environment, tests that rely on the robot arm’s capabilities can
be performed using the Cucumber framework. In this chapter, an example
feature is shown, describing the use of the mobile device’s inclination sensor
readings. Therefore Pocket Code is also implicitly tested if it correctly
obtains and handles these sensor readings. The following sections are an
evaluation of the use of Cucumber and BDD for such tests in the Catrobat
project.

7.1. Inclination Sensor Feature

Using the robot arm control methods described in the Implementation
chapter, it is possible to test the inclination sensor measurements if it
behaves as expected. Listing 7.1 shows a simple Cucumber file containing
one scenario outline describing an example of using the inclination sensors
in Pocket Code.

61

7. Results and Evaluation

Feature: I n c l i n a t i o n Sensors values are readable from Formula
Edi tor .

The i n c l i n a t i o n x and i n c l i n a t i o n y values a c c e s s i b l e from
device s p e c i f i c v a r i a b l e s s e c t i o n in formula e d i t o r should
conta in measured values of the i n c l i n a t i o n sensors . These
values should update cont inuously while the s tage
a c t i v i t y i s a c t i v e .

Scenario Outline: Pocket code c o r r e c t l y reads i n c l i n a t i o n values
of the device .

Given I have a s tage a c t i v i t y f o r i n c l i n a t i o n t e s t s
When I r o t a t e the phone <x angle> degree on the x−a x i s
And I r o t a t e the phone <y angle> degree on the y−a x i s
Then I should see i n c l i n a t i o n values approximately <x angle>

and <y angle>

Examples:
x angle	y angle
0	0
90	0
−45	0
0	45
0	−20
60	30
30	−45

Listing 7.1: InclinationSensors feature file

Since the measured inclination values may not be completely accurate,
either due to inaccuracy of the inclination sensors or to environmental
influences (workspace unevenness, slight shaking of the device or other
reasons), the tests performed on the robot arm do not compare exact values,
but check whether the values correspond to approximate intervals around
the expected value and whether the value changes are proportional to the
changes in the position and inclination of the device held in the mobile
phone holder of the robot arm. The test is run within the following Pocket
Code program on a mobile phone shown in figure 7.1. It uses two variables,
xInclinationVar and yInclinationVar, which are used to store the measured
values of the inclination sensors.

62

7.1. Inclination Sensor Feature

Figure 7.1.: Program ran on Pocket Code during the inclination test.

The robot arm is initially in the default position from which it moves
to the position specified by x angle and y angle variables given in the
InclinationSensors feature file. The arm movement is performed using the
MOVE ARM and MOVE HEAD commands respectively, described in more
detail in section 6.2.1. The program then waits one second for the inclination
sensors to stabilize and then compares the measurements with the expected
values, with a tolerance of 15 degree.

63

7. Results and Evaluation

@Given (” ˆ I have a s tage a c t i v i t y f o r i n c l i n a t i o n t e s t s $ ”)
public void I h a v e a s t a g e a c t i v i t y () {

Rules . r u l e = s t a g e A c t i v i t y T e s t R u l e ;
Rules . isRobotArmtest = t rue ;
c r e a t e P r o j e c t (”\” BroadcastForClonesRegress ionTest \””) ;
Rules . r u l e . launchAct iv i ty (null) ;

}

@When(” ˆ I r o t a t e the phone (\\d+) degree on the x−a x i s $ ”)
public void I r o t a t e t h e p h o n e o n t h e x a x i s (i n t x angle) throws

IOException , InterruptedExcept ion {
i f (! sendRobotArmCommand (RobotArmControl . RobotArmCommands .

MOVE ARM, x angle)) {
f a i l () ;

}
}

@When(” ˆ I r o t a t e the phone (\\d+) degree on the y−a x i s $ ”)
public void I r o t a t e t h e p h o n e o n t h e y a x i s (i n t y angle) throws

IOException , InterruptedExcept ion {
i f (! sendRobotArmCommand (RobotArmControl . RobotArmCommands .

MOVE HEAD, y angle)) {
f a i l () ;

}
}

@Then (” ˆ the i n c l i n a t i o n values should be approximately (\\d+)
and (\\d+) $”)

public void t h e i n c l i n a t i o n v a l u e s s h o u l d b e (i n t x angle , i n t
y angle) throws InterruptedExcept ion {
TimeUnit .SECONDS. s leep (1) ;
double x value = (double) x I n c l i n a t i o n V a r . getValue () ;
asser tTrue (x value < (x angle + 15) && x value > (x angle
−15)) ;

double y value = (double) y I n c l i n a t i o n V a r . getValue () ;
asser tTrue (y value < (y angle + 15) && y value > (y angle +

15)) ;
}

Listing 7.2: Step definitions for the InclinationSensors feature file

64

7.2. Evaluation of Using Cucumber

7.2. Evaluation of Using Cucumber

Working with Cucumber has shown several compatibility issues with the
original system. Since Cucumber requires overwriting the instrumentation
runner used with a Cucumber instrumentation runner, it is not possible to
include current ”pure Espresso” instrumented tests and executable features
from BDD that are implemented via Cucumber and Espresso together in
one test suite. In addition, if both systems were to be used at the same time,
a Gradle sync would have to be run between running the Espresso tests and
the Cucumber tests for the system to use the second instrumentation runner.
But here the first severe problem shows up: Android Studio does not reinstall
Pocket Code on the test device (mobile OR emulator) when changing
the instrumentation runner, which means that the wrong instrumentation
runner is used for the tests and therefore the whole testrun crashes. To
fix this problem, the Pocket Code application must be manually removed
from the device (or the emulator instance) before running the tests so that
Android Studio will install the correct version of the testrunner. Therefore,
if Cucumber were used, old tests would become unusable until rewritten as
executable specification or a workaround would have to be found.

The second problem with using Cucumber compared to the current
test system is the way Cucumber handles syntactically wrongly written
tests. Cucumber feature files and their connection to the glue code are
not controlled during the build and the occurrence of a bug often leads
to a complete crash of the entire test suite, not just the test where the
error occurred. In this case, the test run is interrupted and the system only
provides a not very informative message Test run failed: Instrumentation run
failed due to ”Process crashed.“

Another remark to Cucumber is that Espresso and Cucumber were not
developed to be compatible. As a result, some Espresso features that are
automated when using ”pure” Espresso must be manually re-added to
the tests when also using Cucumber. An example of such a feature is the
automatic teardown of an activity at the end of an Espresso test. When
using Cucumber, the teardown must be manually initiated at the end of the
test or the next test in the test suite will start to run on the activity that was
not manually ended.

A large part of the Catrobat team is made up of students, often joining or
leaving the team and the use of another layer of methods and tools makes it

65

7. Results and Evaluation

harder to enter the system. But what BDD brings for these new members
of the development team is a clearer documentation in form of Cucumber
feature files, allowing a faster understanding of underlying code.

In summary, BDD meets the original goal of platform independent testing,
but the use of Cucumber in this form provides a potentially lower stability
of the test system and requires solving of new problems that occur during
writing tests and otherwise would not.

7.3. Discussion

The biggest weak point of the presented approach for implementing plat-
form independent tests is the fragility that stems from combining Cucumber
with Espresso. During the integration of Cucumber into the current system,
many variants were rejected as nonfunctional for what later turned out to
be caused by ongoing changes of Pocket Code and Android Studio. Looking
back, several of those variants should be reevaluated, as they might solve the
fragility, particularly the open source library Green Coffee, specifically cre-
ated to combine Cucumber with Espresso. Because of the problems caused
by Android Studio, many optional Cucumber features were omitted, that
could be added to the system if the platform independent testing is to be
done in presented way.

To continue the use of Cucumber would mean that either the whole test
suite of Catrobat would have to be rewritten using the tool with feature
files in Gherkin language and tests split into glue code, or that two different
testing environments would be required, one for Cucumber tests and an-
other for pure Espresso tests. Therefore to implement platform independent
tests it would be better to find another tool that would be used insted of
Cucumber.

Regarding the robot arm, the servomotors are currently handled by the
servo controller from Pololu. Although it can show the servomotor status in-
formation including the position values of each servomotor connected, these
values are not always correct. The status information stored in the servo
controller is based on the previous commands issued to the servo controller
regardless whether they were actually executed. Therefore probably the
most interesting improvement of the robot arm would be the development
of a different way to control the servomotors, which could reliably return

66

7.3. Discussion

the true current position of the servomotors.
With the use of the robot arm further additional tests can be implemented.

In addition to testing the functionality of the inclination or acceleration
sensors it is easily possible to add tests for the mobile device’s camera,
and advanced Pocket Code functionality such as the face recognition. For
testing the face recognition a picture or a photo with a face can be placed
in front of the robot arm, and the mobile device is then moved so that
the camera captures the image and then it is checked whether the face
recognition system works properly. Similar simple would be the testing of
the compass sensor. The robot arm would have to be adjusted to face in a
certain cardinal direction and then be moved to another cardinal direction
while checking the sensor readings for these directions. These kind of tests
and the application of using the robot arm for so called hardware tests are
completely independent of the inclusion of the BDD framework.

67

8. Summary

This thesis addresses two related problems. The first challenge was to
create a system that allows testing the Catrobat Android app Pocket Code
by manipulating the mobile device in a way that the hardware sensor
readings change. Although the changing of the readings could be mocked a
manipulation of the mobile device in space makes sense to manipulate the
hardware sensor readings for real to ensure correct functionality. Therefore
a controllable robot arm is needed which manipulates the mobile device
where the tests are running on.

The second challenge was to ensure platform independence of such
hardware sensor tests. Pocket Code is also developed for the iOS platform
and the idea was to create such hardware tests only once and reuse them
to a.) ensure that the same test code does not have to be developed for the
other platform from scratch a second time, and b.) that the same tests are
executed on both platforms ensuring that both systems behave the same
in regard to the change of the sensor readings due to the mobile device
movement in space.

Regarding the first challenge, to generally implement sensor tests, a
robot arm capable of partially rotating on all three axes was needed and
constructed. As an end effector, a mobile phone holder is used to securely
mount a mobile device. In this way the changing of the sensor value readings
can be achieved during automated testing by controlling the robot arm.

The robot arm is controlled using four servomotors. Two servomotors
connect three joints of the robot arm, one servomotor is used to move the
base of the robot arm, and one servomotor is mounted at the robot arm’s
end with a mobile phone holder attached to it. The servomotors of the robot
arm are directly wired to and controlled by a servo controller that itself is
connected to a Raspberry Pi computer. On the Raspberry Pi a simple python
server program is running - the RaspServer. It handles the abstract movement
commands which it receives via socket communication in plaintext from
the tests which run on the mobile device. The RaspServer translates these

69

8. Summary

abstract commands into ”servo controller understandable” commands. The
translated commands are then forwarded to the servo controller which
in turn controls the servos on the robot arm. The test running on the
mobile device can now check the changed sensor readings for plausibility
and determine if the physical movement of the mobile device initiated by
sending a command to the robot arm leads to the expected change in the
hardware sensor readings and furthermore, if these sensor readings are
correctly interpreted by the Pocket Code system. Due to its simple design
and permanent power supply it is possible to use this robot arm for any
tests which intend to react to changing hardware sensor readings. It is also
easily possible to use this robot arm in combination with a continuous
integration system like Jenkins for running such a hardware test suite on a
regular basis.

Regarding the second challenge the goal was to achieve platform inde-
pendence of such hardware tests especially for the Catrobat Pocket Code
application for Android and iOS. The idea was to write hardware tests in
an abstract reusable meta-language and use these tests on both platforms to
have a common testbase. Since once in the history of the development of
Pocket Code BDD using Cucumber already was successfully implemented
it was the idea to try to do it again and integrate the BDD tool Cucumber.
The reason why the early BDD tests vanished again from the codebase was
a lack of maintenance and unsuccessful porting to other platforms. During
the work of this thesis it was again pursued to integrate BDD again. Due
to compatibility reasons and to keep the learning curve low tools were
evaluated using the Gherkin language and finally Cucumber was chosen.
Cucumber feature files serve as platform independent tests as well as docu-
mentation for each Pocket Code feature which is to be tested, but the use of
Cucumber has led to many problems beside the very unstable behavior in
combination with the Android Studio as well as the Espresso testing frame-
work. Nevertheless a proof of concept was worked out which showed that a
combination is possible but would make it necessary to rewrite the whole
Espresso testing suite to be able to execute Espresso and Cucumber tests in
one go. These experienced problems with the integration of Cucumber and
the current test base are very valuable so now it can be focussed on finding
other tools which are better suitable to be integrated in a more transparent
way.

70

Appendix

71

Appendix A.

RaspServer Program

import os
import socket
from subprocess import Popen

cwd = os . getcwd ()
uscLocat ion = cwd + ”/UscCmd”

def in i t cmd () :
Popen ([uscLocation , ’−−a c c e l ’ , ’ 0 ,10 ’])
Popen ([uscLocation , ’−−speed ’ , ’ 0 ,10 ’])
Popen ([uscLocation , ’−−a c c e l ’ , ’ 1 ,10 ’])
Popen ([uscLocation , ’−−speed ’ , ’ 1 ,10 ’])
Popen ([uscLocation , ’−−a c c e l ’ , ’ 2 ,10 ’])
Popen ([uscLocation , ’−−speed ’ , ’ 2 ,10 ’])
Popen ([uscLocation , ’−−a c c e l ’ , ’ 3 ,10 ’])
Popen ([uscLocation , ’−−speed ’ , ’ 3 ,10 ’])

Popen ([uscLocation , ’−−servo ’ , ’ 0 ,5950 ’])
Popen ([uscLocation , ’−−servo ’ , ’ 1 ,5950 ’])
Popen ([uscLocation , ’−−servo ’ , ’ 2 ,5950 ’])
Popen ([uscLocation , ’−−servo ’ , ’ 3 ,4700 ’])

def accel cmd (arg1) :
i f arg1 < 1 :

arg1 = 1

Popen ([uscLocation , ’−−a c c e l ’ , ’ 0 , ’ + arg1])
Popen ([uscLocation , ’−−a c c e l ’ , ’ 1 , ’ + arg1])
Popen ([uscLocation , ’−−a c c e l ’ , ’ 2 , ’ + arg1])

73

Appendix A. RaspServer Program

Popen ([uscLocation , ’−−a c c e l ’ , ’ 3 , ’ + arg1])

def speed cmd (arg1) :
i f arg1 < 1 :

arg1 = 1

Popen ([uscLocation , ’−−speed ’ , ’ 0 , ’ + arg1])
Popen ([uscLocation , ’−−speed ’ , ’ 1 , ’ + arg1])
Popen ([uscLocation , ’−−speed ’ , ’ 2 , ’ + arg1])
Popen ([uscLocation , ’−−speed ’ , ’ 3 , ’ + arg1])

def rotate cmd (arg1) :
arg1 = i n t (arg1)
i f arg1 < −45:

arg1 = −45

i f arg1 > 4 5 :
arg1 = 45

arg1 = change sca le (arg1)
Popen ([uscLocation , ’−−servo ’ , ’ 0 , ’ + s t r (i n t (arg1))])

def rotate head cmd (arg1) :
arg1 = i n t (arg1)
i f arg1 < 0 :

arg1 = 0

i f arg1 > 9 0 :
arg1 = 90

arg1 = change scale head (arg1)
Popen ([uscLocation , ’−−servo ’ , ’ 3 , ’ + s t r (i n t (arg1))])

def t i l t c m d (arg1) :
arg1 = i n t (arg1)
i f arg1 < −90:

arg1 = −90

i f arg1 > 9 0 :
arg1 = 90

74

i f arg1 < −45:
Popen ([uscLocation , ’−−servo ’ , ’ 1 ,3968 ’])
arg1 += 45

e l i f arg1 > 4 5 :
Popen ([uscLocation , ’−−servo ’ , ’ 1 ,7932 ’])
arg1 −= 45

e lse :
Popen ([uscLocation , ’−−servo ’ , ’ 1 ,5950 ’])

arg1 = change sca le (arg1)
Popen ([uscLocation , ’−−servo ’ , ’ 2 , ’ + s t r (i n t (arg1))])

change s c a l e from (−45)−(45) t o 3968−7932
def change sca le (arg1) :

arg1 += 45

arg1 ∗= 3964

arg1 /= 90

arg1 += 3968

return arg1

change s c a l e from 0−90 t o 4700−7932
def change scale head (arg1) :

arg1 ∗= 3232

arg1 /= 90

arg1 += 4700

return arg1

host = ’ ’
port = 12000

s = socket . socket ()

t r y :
s . bind ((host , port))

except socket . e r r o r as e :
print (s t r (e))
print (’ socket bind f a i l e d ’)

s . l i s t e n (1)
in i t cmd ()

75

Appendix A. RaspServer Program

print (’Arm ready ’)

while True :
conn , addr = s . accept ()
print (’ connected to : ’ + addr [0] + ’ : ’ + s t r (addr [1]))
t r y :

data = conn . recv (1 0 2 4) . decode (’UTF−8 ’)
cmd args = data . s p l i t ()
print (cmd args)

i f len (cmd args) == 1 :
i f cmd args [0] == ’ r e s e t ’ :

in i t cmd ()
conn . send (”done\n” . encode (’UTF−8 ’))

e lse :
conn . send (” e r r o r \n” . encode (’UTF−8 ’))

e l i f len (cmd args) == 2 :
t r y :

val1 = i n t (cmd args [1])
except ValueError :

conn . send (” e r r o r \n” . encode (’UTF−8 ’))
continue

i f cmd args [0] == ’ speed ’ :
speed cmd (cmd args [1])
conn . send (”done\n” . encode (’UTF−8 ’))

e l i f cmd args [0] == ’ a c c e l ’ :
accel cmd (cmd args [1])
conn . send (”done\n” . encode (’UTF−8 ’))

e l i f cmd args [0] == ’ move base ’ :
rotate cmd (cmd args [1])
conn . send (”done\n” . encode (’UTF−8 ’))

e l i f cmd args [0] == ’ move head ’ :
rotate head cmd (cmd args [1])
conn . send (”done\n” . encode (’UTF−8 ’))

e l i f cmd args [0] == ’ move arm ’ :
t i l t c m d (cmd args [1])
conn . send (”done\n” . encode (’UTF−8 ’))

76

e lse :
conn . send (” e r r o r \n” . encode (’UTF−8 ’))

e lse :
conn . send (” e r r o r \n” . encode (’UTF−8 ’))

f i n a l l y :
conn . c l o s e ()
print (’ c losed ’)

Listing A.1: The RaspServer program

77

Bibliography

Adzic, Gojko (2011). Specification by Example: How Successful Teams Deliver
the Right Software. 1st. Greenwich, CT, USA: Manning Publications Co.
isbn: 1617290084, 9781617290084 (cit. on p. 23).

Alshamran, Adel and Abdullah Bahattab (2015). “A Comparison Between
Three SDLC Models Waterfall Model, Spiral Model, and Incremental/It-
erative Model.” In: International Journal of Computer Science Issues 12.1,
pp. 106–111 (cit. on p. 16).

Astels, Dave (2006). A new look at test-driven development. accessed 3rd April,
2019. url: https://web.archive.org/web/20061206004208/http:
//blog.daveastels.com/files/BDD_Intro.pdf (cit. on p. 20).

Astels, David (2003). Test Driven Development: A Practical Guide. Prentice Hall
Professional Technical Reference. isbn: 0131016490 (cit. on pp. 17, 18).

Bau, David et al. (May 2017). “Learnable Programming: Blocks and Beyond.”
In: Communications of the ACM 60.6, pp. 72–80. issn: 0001-0782. doi:
10.1145/3015455 (cit. on p. 5).

Beck, Kent (2002). Test Driven Development: By Example. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc. isbn: 0321146530 (cit. on
p. 17).

Burnett, Margaret M. et al. (Mar. 1995). “Scaling up visual programming
languages.” In: Computer 28.3, pp. 45–54. issn: 0018-9162. doi: 10.1109/
2.366157 (cit. on p. 3).

Chelimsky, David et al. (2010). The RSpec Book: Behaviour Driven Develop-
ment with Rspec, Cucumber, and Friends. 1st. Pragmatic Bookshelf. isbn:
1934356379, 9781934356371 (cit. on p. 25).

Cohn, Mike (2009). Succeeding with Agile: Software Development Using Scrum.
1st. Addison-Wesley Professional. isbn: 0321579364, 9780321579362 (cit.
on p. 31).

Craig, John J. (2004). Introduction to Robotics: Mechanics and Control. 3rd.
Pearson Education International. isbn: 0201543613, 9780201543612 (cit.
on pp. 33–37, 39).

79

https://web.archive.org/web/20061206004208/http://blog.daveastels.com/files/BDD_Intro.pdf
https://web.archive.org/web/20061206004208/http://blog.daveastels.com/files/BDD_Intro.pdf
https://doi.org/10.1145/3015455
https://doi.org/10.1109/2.366157
https://doi.org/10.1109/2.366157

Bibliography

Dees, Ian, Aslak Hellesøy, and Matt Wynne (2013). Cucumber Recipes: Auto-
mate Anything with BDD Tools and Techniques. The pragmatic program-
mers. Pragmatic Bookshelf. isbn: 9781937785017 (cit. on p. 24).

Dijkstra, Edsger Wybe et al. (1970). Notes on structured programming (cit. on
p. 13).

Evans, Eric (2003). Domain-driven design: tackling complexity in the heart of
software. Addison-Wesley. isbn: 0321125215 (cit. on p. 24).

Freeman, Steve and Nat Pryce (2009). Growing Object-Oriented Software,
Guided by Tests. 1st. Addison-Wesley Professional. isbn: 0321503627,
9780321503626 (cit. on pp. 17, 19).

Harzl, Annemarie et al. (2013). “Comparing Purely Visual with Hybrid
Visual/Textual Manipulation of Complex Formula on Smartphones.”
English. In: DMS 2013. ., pp. 0–0 (cit. on p. 10).

Iovine, John (2004). PIC Robotics: A Beginner’s Guide to Robotics Projects Using
the PIC Micro. McGraw-Hill Education. isbn: 0071373241, 9780071373241

(cit. on p. 39).
Ko, Andrew J., Brad A. Myers, and Htet H. Aung (Sept. 2004). “Six Learning

Barriers in End-User Programming Systems.” In: 2004 IEEE Symposium
on Visual Languages - Human Centric Computing, pp. 199–206. doi: 10.
1109/VLHCC.2004.47 (cit. on p. 5).

Koskela, Lasse (2007). Test Driven: Practical Tdd and Acceptance Tdd for
Java Developers. Greenwich, CT, USA: Manning Publications Co. isbn:
9781932394856 (cit. on pp. 17–19).

Kurihara, Azusa et al. (2015). “A Programming Environment for Visual
Block-Based Domain-Specific Languages.” In: Procedia Computer Science
62, pp. 287–296. doi: 10.1016/j.procs.2015.08.452 (cit. on p. 4).

Larman, Craig and Victor Robert Basili (June 2003). “Iterative and incre-
mental developments. a brief history.” In: Computer 36.6, pp. 47–56. issn:
0018-9162. doi: 10.1109/MC.2003.1204375 (cit. on p. 15).

Larman, Craig and Bas Vodde (2010). Practices for scaling lean and agile
development: large, multisite, and offshore product development with large-
scale Scrum. Addison-Wesley. isbn: 0321636406 (cit. on p. 19).

Lazăr, Ioan, Simona Motogna, and Bazil Pârv (Aug. 2010). “Behaviour-
Driven Development of Foundational UML Components.” In: Electronic
Notes in Theoretical Computer Science 264.1, pp. 91–105. doi: 10.1016/j.
entcs.2010.07.007 (cit. on p. 21).

80

https://doi.org/10.1109/VLHCC.2004.47
https://doi.org/10.1109/VLHCC.2004.47
https://doi.org/10.1016/j.procs.2015.08.452
https://doi.org/10.1109/MC.2003.1204375
https://doi.org/10.1016/j.entcs.2010.07.007
https://doi.org/10.1016/j.entcs.2010.07.007

Bibliography

Luhana, Kirshan Kumar, Christian Schindler, and Wolfgang Slany (June
2018). “Streamlining mobile app deployment with Jenkins and Fastlane
in the case of Catrobat’s Pocket Code.” English. In: 2018 IEEE Interna-
tional Conference on Innovative Research and Development (ICIRD). IEEE
Xplore, pp. 1–6. doi: 10.1109/ICIRD.2018.8376296 (cit. on p. 8).

Maloney, John et al. (Nov. 2010). “The Scratch Programming Language and
Environment.” In: Trans. Comput. Educ. 10.4, 16:1–16:15. issn: 1946-6226.
doi: 10.1145/1868358.1868363. url: http://doi.acm.org/10.1145/
1868358.1868363 (cit. on p. 6).

Martin, Robert Cecil (2003). Agile Software Development: Principles, Patterns,
and Practices. Upper Saddle River, NJ, USA: Prentice Hall PTR. isbn:
0135974445 (cit. on p. 14).

North, Dan (2014). BDDWiki: BehaviourDrivenDevelopment. accessed 4th
April, 2019. url: https://behaviourdriven.org/ (cit. on p. 21).

North, Dan (2017). Introducing BDD. accessed 3rd April, 2019. url: https:
//dannorth.net/introducing-bdd/ (cit. on pp. 21, 24).

North, Dan (Apr. 2019). What’s in a Story? accessed 18th May, 2019. url:
https://dannorth.net/whats-in-a-story/ (cit. on pp. xi, 23, 24).

Parnas, David Lorge (May 1972). “A Technique for Software Module Specifi-
cation with Examples.” In: Communications of the ACM 15.5, pp. 330–336.
issn: 0001-0782. doi: 10.1145/355602.361309 (cit. on p. 22).

Patton, Ron (2000). Software testing. Indianapolis, IN, USA: Sams. isbn:
0672319837 (cit. on p. 13).

Repenning, Alexander (July 2017). “Moving Beyond Syntax: Lessons from
20 Years of Blocks Programing in AgentSheets.” In: Journal of Visual
Languages and Sentient Systems 3.1, pp. 68–91. doi: 10.18293/vlss2017-
010 (cit. on p. 4).

Resnick, Mitchel et al. (Nov. 2009). Scratch: Programming for All. doi: 10.
1145/1592761.1592779 (cit. on p. 6).

Scratch Wiki (2019). accessed 17th May, 2019. url: https://en.scratch-
wiki.info/ (cit. on p. 7).

Slany, Wolfgang (2012a). “A mobile visual programming system for An-
droid smartphones and tablets.” English. In: IEEE Symposium on Visual
Languages and Human-Centric Computing, VL/HCC 2012. ., pp. 265–266

(cit. on p. 8).

81

https://doi.org/10.1109/ICIRD.2018.8376296
https://doi.org/10.1145/1868358.1868363
http://doi.acm.org/10.1145/1868358.1868363
http://doi.acm.org/10.1145/1868358.1868363
https://behaviourdriven.org/
https://dannorth.net/introducing-bdd/
https://dannorth.net/introducing-bdd/
https://dannorth.net/whats-in-a-story/
https://doi.org/10.1145/355602.361309
https://doi.org/10.18293/vlss2017-010
https://doi.org/10.18293/vlss2017-010
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/1592761.1592779
https://en.scratch-wiki.info/
https://en.scratch-wiki.info/

Bibliography

Slany, Wolfgang (2012b). “Catroid: a mobile visual programming system for
children.” English. In: 11th International Conference on Interaction Design
and Children, IDC ’12. ., pp. 300–303 (cit. on p. 3).

Slany, Wolfgang et al. (Aug. 2018). “Rock Bottom, the World, the Sky:
Catrobat, an Extremely Large-scale and Long-term Visual Coding Project
Relying Purely on Smartphones.” English. In: Constructionism 2018,
Vilnius. Ed. by Valentina Dagienè and Eglè Jasutè, pp. 104–119 (cit. on
pp. 8, 10).

Smart, John Ferguson (2014). BDD in Action: Behavior-Driven Development for
the Whole Software Lifecycle. Manning Publications. isbn: 9781617291654

(cit. on p. 21).
Solis, Carlos and Xiaofeng Wang (Aug. 2011). “A Study of the Character-

istics of Behaviour Driven Development.” In: 2011 37th EUROMICRO
Conference on Software Engineering and Advanced Applications, pp. 383–387.
doi: 10.1109/SEAA.2011.76 (cit. on p. 22).

Stoica, Marian, Marinela Mircea, and Bogdan Ghilic-Micu (Dec. 2013). “Soft-
ware Development: Agile vs. Traditional.” In: Informatica Economica 17,
pp. 64–76. doi: 10.12948/issn14531305/17.4.2013.06 (cit. on p. 15).

Wah, Benjamin Wan-Sang (2007). Wiley Encyclopedia of Computer Science and
Engineering. New York, NY, USA: Wiley-Interscience. isbn: 0470107928

(cit. on p. 3).
Weintrop, David and Uri Wilensky (2015). “To Block or Not to Block, That

is the Question: Students’ Perceptions of Blocks-based Programming.”
In: Proceedings of the 14th International Conference on Interaction Design
and Children. IDC ’15. Boston, Massachusetts: ACM, pp. 199–208. isbn:
978-1-4503-3590-4. doi: 10.1145/2771839.2771860 (cit. on p. 4).

Wynne, Matt and Aslak Hellesøy (2012). The cucumber book: behaviour-
driven development for testers and developers. Pragmatic Bookshelf. isbn:
9781934356807 (cit. on p. 13).

82

https://doi.org/10.1109/SEAA.2011.76
https://doi.org/10.12948/issn14531305/17.4.2013.06
https://doi.org/10.1145/2771839.2771860

	List of Figures
	List of Listings
	Introduction
	Visual Programming Language Catrobat
	Block-Based Programming
	Scratch, an Example of a Visual Language
	Project Catrobat
	Catrobat Language Syntax

	Behavior Driven Development
	Agile Software Development
	Test Driven Development
	Acceptance Test Driven Development
	Behavior Driven Development
	User Story
	Cucumber

	Problem Statement
	Sensor Tests
	Platform Independent Testing

	Robot Arm
	Movement With Steady-Velocity
	Smooth Movements
	Design
	Installing Maestro Servo Controller Software

	Implementation
	Introduction of BDD into Pocket Code
	Pocket Code Robot Arm Interface
	Client Side
	Parameter Limitations
	Server Side

	Results and Evaluation
	Inclination Sensor Feature
	Evaluation of Using Cucumber
	Discussion

	Summary
	RaspServer Program
	Bibliography

