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Abstract

In this master thesis we study simple drawings. Simple drawings are drawings of
graphs in the plane that fulfill some properties, which restrict their crossings.

We are interested in the information that rotation systems can offer about
crossings. Rotation systems of simple drawings give us the order in which edges
leave the vertices. It is known that rotation systems of simple drawings of complete
graphs determine which edges cross. We study what information we can gain
from rotation systems of other types of graphs. We show that rotation systems of
simple drawings of graphs with one edge less than the complete graph determine the
number of crossings. Moreover, we proof that rotation systems of simple drawings
of graphs with n ≥ 5 vertices and minimal degree of at least (n− 2) determine the
number of crossings. Furthermore, we show that rotation systems of simple drawings
of K2,3 determine the parity of the number of crossings. It is known that the number
of crossings in simple drawings of Km,n with m and n fixed and both odd always
have the same parity.

We also focus on the question of whether simple drawings of complete bipartite
graphs contain plane spanning trees. We show that simple drawings of K2,n and K3,n

as well as some special types of simple drawings of Km,n do. Those special types
are outer drawings, straight-line drawings, 2-page book drawings, and circular
drawings. We show that all those simple drawings contain a particular type of
plane spanning tree that we call shooting star. Shooting stars are plane spanning
trees that contain all edges incident to one vertex.



Zusammenfassung

In dieser Master-Arbeit untersuchen wir Simple Drawings. Simple Drawings sind
Zeichnungen von Graphen in der Ebene, die Eigenschaften erfüllen, welche ihre
Kreuzungen beschränken.

Wir interessieren uns für die Information, die Rotationssysteme liefern können.
Rotationssysteme von Simple Drawings geben die zyklische Reihenfolge an, in
welcher die Kanten die Knoten verlassen. Es ist bekannt, dass Rotationssysteme von
Simple Drawings von vollständigen Graphen vorgeben, welche Kanten sich schneiden.
Wir untersuchen, welche Information wir von Rotationssystemen für andere Graphen
gewinnen können. Wir zeigen, dass Rotationssysteme von Simple Drawings von
Graphen, die eine Kante weniger haben als der vollständige Graph, die Anzahl von
Kreuzungen vorgeben. Außerdem beweisen wir, dass auch Rotationssysteme von
Graphen mit n ≥ 5 Knoten und Minimalgrad (n− 2) die Anzahl von Kreuzungen
vorgeben. Darüber hinaus beweisen wir, dass Rotationssysteme von Simple Drawings
von K2,3 die Parität der Anzahl von Kreuzungen vorgeben. Es ist bekannt, dass
die Anzahl von Kreuzungen in Simple Drawings von Km,n, in denen sowohl n als
auch m gegeben und ungerade sind, dieselbe Parität haben.

Ein weiterer Fokus liegt auf der Frage, ob Simple Drawings von vollständig
bipartiten Graphen kreuzungsfreie Spannbäume enthalten. Wir zeigen, dass Simple
Drawings von K2,n und K3,n sowie einige spezielle Arten von Simple Drawings
von Km,n das tun. Diese speziellen Arten sind Outer Drawings, geradlinige Graphen,
2-Page Book Drawings und Circular Drawings. Wir beweisen, dass all diese Simple
Drawings eine spezielle Art von kreuzungsfreiem Spannbaum enthalten, die wir
Shooting Star nennen. Shooting Stars sind kreuzungsfreie Spannbäume, die alle
inzidenten Kanten eines Knotens enthalten.
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Chapter 1

Introduction

This chapter is dedicated to giving some motivation and background on the topic
of the thesis. Before we can do that, we need to define some terms.

In Section 1.1 we give some basic definitions that we need throughout the thesis.
Then we introduce the main points of the thesis, namely crossings (in Section 1.2),
simple drawings (in Section 1.3), rotation systems (in Section 1.4) and spanning
trees (in Section 1.5). Finally, we give an outline on how the thesis is structured.

1.1 Basic definitions

Let us first define some basic and essential terms. If not stated otherwise, the
following definitions are taken from [6].

Definition 1.1.1. A graph G = (V,E) is a pair of sets V and E. We call elements
of V vertices and elements of E edges. Each edge is associated to a set of one
or two vertices. We call those vertices its endpoints. We say the edge joins its
endpoints.

Definition 1.1.2. A vertex v and an edge e are incident to each other if and only
if v is an endpoint of e.

Two edges are adjacent if and only if they have a common endpoint. Two
vertices are adjacent if and only if they are joined by an edge.

Definition 1.1.3. The degree of a vertex is the number of edges it is incident to.
The minimal degree of a graph G is the minimum of the degrees of all vertices

in G.

Definition 1.1.4. We call an edge with a single endpoint a self-loop, that means
the edge joins an endpoint with itself. We call a collection of two or more edges
having identical endpoints multi-edges.

We call a graph that has neither self-loops nor multi-edges a simple graph.

1
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In this thesis we work exclusively with simple graphs. From now on we always
mean simple graphs, when we use the term “graph” without clarification.

Definition 1.1.5. A drawing of a graph on a surface is a representation of a graph
on that surface in the following way:

• The vertices of the graph are represented by distinct points.

• The edges of the graph are represented by continuous arcs that connect two
such points.

• The only points lying on an arc are its endpoints.

Definition 1.1.6. Two edges cross if the arcs intersect in their interior (meaning
they intersect somewhere else than their endpoints). We call the point in which
they cross a crossing.

A drawing without crossings is called plane.
A graph that has a plane drawing is called planar.

Definition 1.1.7. A graph in which every pair of vertices is joined by an edge is
called complete graph. We write Kn for the complete graph with n vertices.

Definition 1.1.8. A graph whose vertices can be partitioned into two sets such
that there are no edges joining a pair of vertices within the same set is called
bipartite graph. We say the two sets are its sides of the bipartition.

A complete bipartite graph is a bipartite graph where every vertex is joined by
edges to all vertices on the other side of the bipartition. We write Km,n for the
complete bipartite graph where one side of the bipartition contains m vertices and
the other side of the bipartition contains n vertices.

In our notation of Kn and Km,n the numbers n and m are always integers n,m ∈
N, because they are the numbers of vertices. We will not take extra notice of this
when speaking about Kn or Km,n.

Definition 1.1.9. Let G be a graph with vertices V and edges E. A walk is a
sequence of vertices (v1, v2, ..., vn) and edges (e1, e2, ..., en−1) such that ei is joining
the vertices vi and vi+1.

A walk in which edges are distinct and all interior vertices are distinct is called
a path.

A path in which the first vertex is the same as the last vertex is called a cycle.

Definition 1.1.10. A graph is called connected if and only if for all pairs of vertices
there is a path including both of them.
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Definition 1.1.11. Let G be a graph with vertices V and edges E. A graph H
with vertices V ′ and E ′ is a subgraph of G if V ′ ⊆ V and E ′ ⊆ E.

If V = V ′ then H is a spanning subgraph.

Definition 1.1.12. A graph is called a tree if and only if it is connected and does
not contain any cycles.

For drawings these terms are defined analogously. A subdrawing of a drawing
is a drawing that contains a subset of the vertices (represented as points) of that
drawing and a subset of its edges (represented as curves). It is spanning if all
vertices of the drawing are contained in the subdrawing. A drawing is a tree if the
graph it represents is a tree.

Definition 1.1.13. [8] The crossing number of a graph is the minimal number of
crossings that a drawing of that graph in the plane can have.

We will mainly talk about the number of crossings that a particular drawing
has. However, in this first chapter, we also talk about crossing numbers. It is
important to not confuse the terms.

1.2 About crossings

The problem of how to draw graphs in such a way that they contain as few crossings
as possible has been thoroughly studied. In fact, it is one of the most popular
problems in graph theory.

One of the first results that offered insight into when graphs can be drawn
with few (in this case no) crossings was Kuratowski’s theorem. In 1930 Kuratowski
proofed that a graph is planar if and only if it does not contain a subgraph that is a
subdivision of K5 or K3,3 [13]. (A subdivision of a graph is obtained by performing
edge subdivisions. An edge subdivision of G is obtained the following way: First
we delete an edge from G, say the edge joining u and v. Then we add a new vertex,
say w, to the vertex set of G. Finally, we add an edge joining u and w, and add an
edge joining w and v.)

The problem of finding the minimal crossing number was formalized by Turán
for complete bipartite graphs. He started thinking about this question while he
worked in a brick factory near Budapest during World War II. He and other workers
had to bring bricks from kilns to storage yards. They did so by loading them on
trucks and pushing the trucks along rails. The trucks were harder to push at points
where railes crossed each other. Turán wished to find a way to have less crossings
between the rails [22].

This problem became known as the brick factory problem. Mathematically, we
can see the kilns and storage yards as vertices, and the rails between kilns and
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storage yards as edges. This gives us a complete bipartite graph with kilns on one
side of the bipartition and storage yards on the other.

There is also much interest in the problem for the complete graph: What is
the crossing number for complete graphs? Despite much research in this topic
neither the crossing number of complete graphs nor the crossing number of complete
bipartite graphs has been determined yet.

Zarankiewicz claimed in the early 1950s that the minimum crossing number of
complete bipartite graphs is

⌊
n
2

⌋⌊
n−1
2

⌋⌊
m
2

⌋⌊
m−1
2

⌋
. His proof that this is the exact

number contained an error. However, he could show that this is an upper bound
for the crossing number. That the claim is true could so far only be proven for
small {m,n} [7].

For the complete graph a conjecture about the crossing number was made later.
Hill conjectured in [9] that it is 1

4

⌊
n
2

⌋⌊
n−1
2

⌋⌊
n−2
2

⌋⌊
n−3
2

⌋
. Like in the case of complete

bipartite graphs, this has been proven for small n and stays an open problem in
general [8].

1.3 About simple drawings

We are interested in drawings of graphs where the edges are drawn as curves.
There are infinite possibilities to draw a graph that way. We will make some
restrictions to how we can draw the edges. The drawings we will work with are
called simple drawings. We define them in this section. We also show that the
requirements of simple drawings make sense and are no true restriction when doing
research on the crossing number.

1.3.1 Definition of simple drawings

Definition 1.3.1. [16] A simple drawing is a drawing of a graph in the plane with
the following additional properties:

1. An edge may not cross itself and may not be tangential to itself. That means
it may not touch itself in any points.

2. Two edges may cross each other at most once and may not be tangential to
each other.

3. Two adjacent edges may not cross each other.

4. There cannot be more than two edges crossing at the same point.
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1.3.2 Why simple drawings are interesting

If a drawing is not a simple drawing it can easily be transformed into a simple draw-
ing as can be seen in Figure 1.1. This transformation never creates more crossings.
In fact, in most cases the transformation leads to fewer crossings. Drawings that
are not simple could be seen as drawings that add crossings where they could be
avoided very easily.

Consequently, studying simple drawings makes sense, when we are trying to
find drawings with few crossings. In the rest of this thesis, we will only talk about
simple drawings.

1.3.3 Some general results about simple drawings

The two following lemmas are well known facts about simple drawings. We will
use them throughout the thesis.

Lemma 1.3.2. Every simple drawing of a graph with at most three vertices is
plane.

Proof. A graph with at most 3 vertices cannot contain any edges that are not
adjacent. Thus, there cannot be any edges that cross each other.

Lemma 1.3.3. Every simple drawing of a graph with at most four vertices contains
at most one crossing.

Proof. Let D be a simple drawing of a graph with four vertices.

Claim 1.3.4. An edge in D can cross at most one other edge.

Proof of claim: Every edge is incident to two vertices. Let d be an arbitrary edge
in D. We call the vertices that are incident to d vertices u and v. We call the other
vertices in D vertices w and x. Then d is adjacent to all edges that are incident to
either u or v. There is only one edge that is incident to neither u nor v, namely
the edge joining w and x. It follows that every edge is adjacent to all but one other
edges. In a simple drawing adjacent edges may not cross. �

Let e and f be two edges that cross. We show that in this case there cannot be
any other crossings.

Let g be another edge. We call the vertices incident to g vertices v1 and v2,
where v1 is incident to e and v2 is incident to f . We call the vertices not incident
to g vertices v3 and v4, where v3 is incident to e and v4 is incident to f . By
Claim 1.3.4 the edge g can cross neither e nor f . The part of the edge e that goes
from v1 to the crossing, the part of f that goes from v2, and the edge g separates
the plane into two areas. The vertices v3 and v4 are in the same area. We call this
area A. It can be seen in Figure 1.2.
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(a) How an edge that crosses itself may be
transformed.

(b) How an edge that is tangential to itself
may be transformed.

(c) How two edges that cross twice may be
transformed.

(d) How two edges that are tangential may
be transformed.

(e) How two adjacent edges that cross may
be transformed.

(f) How three edges that cross in the same
point may be transformed.

Figure 1.1: Transforming drawings that are not simple into simple drawings.
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The only edge that can cross g is the edge joining v3 and v4. We call this
edge h. Since endpoints of h lie in A, the edge starts and ends in A. If h crosses
the boundary of A once, it will leave that area. It will have to cross the boundary
another time in order to enter the area again. Since h is incident to edges e and f ,
the only part of the boundary that it may cross is g. Thus, if h crosses g, it has to
cross g at least twice. This is not allowed in simple drawings.

v1 v4

v2 v3

Ag
e

f

v1 v4

v2 v3

A g
e

f

Figure 1.2: Edges e and f cross. The edge g crosses neither e nor f . The left and
right drawing show the two possible ways to draw g. The boundary of the area A
is drawn in red and the area itself is shaded pink.

1.4 About the rotation system

Even with the restrictions that simple drawings have, it is hard to tell where their
crossings are. In drawings of graphs where all edges have to be straight lines, the
position of the points determines exactly which edges cross. In simple drawing
this is no longer the case. In fact, the position of the points alone does not even
determine the number of crossings. An example for that can be seen in Figure 1.3.

Figure 1.3: Two simple drawings of K4 where the points have the same positions,
but the drawings have different crossings.

There is a tool that can solve this problem for simple drawings of the complete
graph, called rotation systems.

There are different ways to define rotation systems. The following definitions
are taken from [14].
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Definition 1.4.1. Let D be a simple drawing of a graph with vertex set V and
edge set E. The rotation around a vertex v ∈ V is the clockwise cyclical order in
which the edges incident to v leave the vertices. The rotation system of D is the
set of rotations around all its vertices.

By means of the rotation system, we define the term isomorphism for sim-
ple drawings.

Definition 1.4.2. [14] Two simple drawings D and D′ are weakly isomorphic if
and only if there exists an incidence preserving one-to-one correspondence between
the vertex set of D and the vertex set of D′ such that a pair of edges in D crosses
if and only if the corresponding pair of edges in D′ crosses.

Two simple drawings D and D′ are isomorphic if and only if

1. D and D′ are weakly isomorphic.

2. For each edge e of D the order of crossings with other edges is the same as
the order of crossings on the corresponding edge e′ of D′.

3. The rotation systems of D and D′ are the same or inverse.

Rotation systems were already introduced in 1891. They were used by Heffter
in his studies of the genus of graphs [10].

The usefulness of rotation systems in the study of crossings was shown in 2004.
Then Pach and Tòth showed that the rotation system of a simple drawing of the
complete graph determines which pairs of edges cross [17]. In 2005 Gioan showed
that the other direction is true as well. The crossings in a simple drawing of the
complete graph determine the rotation system [5].

For other graphs no such equivalences have been shown. But a tool that
carries information about crossings would be desirable for all graphs, especially
for complete bipartite graphs. After all, the brick factory problem is on complete
bipartite graphs and it is in fact the first of the crossing number problems and
possibly one of the most famous problems in graph theory. In Chapter 2, we study
how much information the rotation system holds for graphs that are not complete.

1.5 On plane spanning trees and shooting stars

When studying the crossings of graphs and drawing them, we found ourselves
wishing for some way to divide the graph into independent areas. That might
simplify the finding of crossings. Something that would come in especially handy
is knowing a plane spanning tree. We could start with drawing the tree and then
add the other edges and try to find out when crossings appear. That would require
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the drawings we work with to contain plane spanning trees. But it is not known
which simple drawings of graphs contain such substructures.

It is easy to see that simple drawings of the complete graph contain plane
spanning trees. One such spanning tree consists of all edges that are incident to
an arbitrary vertex. It is plane because the edges are adjacent and the drawing
is a simple drawing. It is spanning because every vertex of a complete graph is
adjacent to all other vertices in that graph.

However, we are interested in graphs beyond the complete graph and especially
in complete bipartite graphs. Thus the question arises:

Question 1.5.1. Do all simple drawings of complete bipartite graphs contain plane
spanning trees?

We are not the first who are interested in plane subdrawings of simple drawings.
There has already been interesting research on them. In 1988 Rafla conjectured
that every simple drawing of Kn contains a plane Hamiltonian cycle [19]. (A
Hamiltonian cycle is a spanning subgraph that is a cycle.) This conjecture has
been proven for some special types of simple drawings, but remains open for the
general case. In 2005 Pach and Tóth showed that a simple drawing with n vertices
and no k pairwise distjoint edges has at most O(n log4k−8 n) edges [18].

There is also very recent work on non-crossing substructures in simple drawings.
In 2015 Ruiz-Vargas showed that every simple drawing of the complete graph Kn

contains Ω(n1/2−ε) pairwise disjoint edges [20]. This is an improvement to the result
from Suk, who showed in 2013 that there are Ω(n1/3) pairwise disjoint edges [21].
In the same year Fulek and Ruiz-Vargas presented a new proof for this and showed
that a simple drawing of the complete graph Kn contains at least 2n/3 empty
triangles [4].

Most of the mentioned work deals with simple drawings of complete graphs.
None of them answer our question of whether complete bipartite graphs contain
plane spanning trees. It turned out that this is not an answer obtained trivially.
Indeed the question of whether all simple drawings of Km,n contain plane spanning
trees is still open. But we have shown that some simple drawings do. We present our
research on this in Chapter 3. More precisely, we show that some simple drawings
contain a particular kind of plane spanning tree that we call shooting star.

Definition 1.5.2 (Shooting star). Let D be a simple drawing of a graph and v be
a vertex of D. We call all the edges incident to v the star of v. A shooting star
rooted at v is a plane spanning tree of D that contains the star of v.

In a simple drawing of a bipartite graph the star of v connects v with all vertices
on the side of the bipartition that v is not part of. To obtain a spanning tree, there
must be one additional edge for every vertex on the same side of the bipartition
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as v (except v). We could see those additional edges as tails of a shooting star,
which motivates our term “shooting star”. Figures 1.4 and 1.5 display shooting
stars.

v

(a) A drawing of K5,8 containing a shooting
star rooted at v that is drawn in bold lines.

v

(b) The shooting star from the left
drawing without the edges that are
not contained in the shooting star.

Figure 1.4: A shooting star of a simple drawing of K5,8. It is rooted at v.

v

(a) A drawing of a K4,5

containing a shooting star
rooted at v that is drawn
in bold lines.

v

(b) The shooting star from
the left drawing without
the edges that are not con-
tained in the shooting star.

Figure 1.5: An example for a shooting star of a simple drawing of K4,4. It is rooted
at v.

1.6 Outline of the thesis

Chapter 2 is dedicated to rotation systems of simple drawings. We study how
much information about the number of crossings the rotation system contains.
First we consider simple drawings of the complete graph Kn and take a look at a
proof that the rotation system determines the pairs of crossing edges. Then we
study simple drawings of graphs with an edge less than the complete graph. We
show that the rotation system in this case determines the number of crossings.
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Next, we show that this is also true for graphs with n ≥ 5 vertices and a minimal
degree of at least (n − 2). Then we study complete bipartite graphs. We show
that for simple drawings of the complete bipartite graph K2,3 the parity of the
number of crossings is determined by the rotation system. We use our result for a
proof that K3,3 is not planar. It is already known that the parity of the number
of crossings of all simple drawings of Km,n with m,n fixed and odd is the same.
We briefly look at this result. Finally, we talk about graphs for which the rotation
system does not give any information.

Chapter 3 is dedicated to finding plane spanning trees in complete bipartite
graphs. We show that simple drawings of the complete bipartite graphs K2,n

and K3,n contain shooting stars. Next, we look at special types of drawings of
complete bipartite graphs that are called outer drawings. We define them and
show that they contain plane spanning trees. Then we look at other special kinds
of simple drawings of the complete bipartite graph Km,n that contain shooting
stars. Those drawings are straight line drawings, 2-page book drawings and circular
drawings. That all simple drawings of the complete bipartite graph Km,n contain
plane spanning trees remains a conjecture.

In the last chapter, Chapter 4, we summarize what we have done and recall
the results we have been able to prove. We also recall the problems which are still
open and might be interesting to do further research on.



Chapter 2

Rotation systems and number of
crossings

As mentioned in Section 1.4 the rotation system of drawings of complete graphs
determines which pairs of edges cross [17]. We show that it is sufficient to know the
rotation around all but one vertex. The observation that the rotation system carries
more information than necessary, made us carefully optimistic that it might still
bring results for non-complete graphs. Complete bipartite graphs are of particular
interest to us. They share some features with complete graphs, which makes them
promising candidates. Additionally, there has been much interest in crossings of
complete bipartite graphs for a long time. As explained in Section 1.2 the first
research on crossing numbers of complete bipartite graphs is older than that on
complete graphs.

First, in Section 2.1, we look at the (already known) proof that the rotation
system of simple drawings of the complete graph determines the crossings. Then,
in Section 2.2, we show that the rotation system of graphs that have one edge
less than the complete graph determines the number of crossings, but not exactly
which edges cross. In Section 2.3 we proof that in graphs with at least five vertices
where every vertex is adjacent to all but at most one other vertex the number of
crossings is fixed as well. We first consider graphs with only five vertices and then
generalize our result. We also notice that in general, the number of crossings is
not determined by the rotation system. In Section 2.4 we study complete bipartite
graphs in particular. We show that the parity of the number of crossings in the
complete bipartite graph K2,3 is determined by the rotation system. We also note
which rotation system leads to an odd number of crossings and which to an even
number. We use this to prove that the complete bipartite graph K3,3 is not planar.
Then we state that for two fixed, odd integers m and n, the parity of the number
of crossings of all simple drawings of Km,n is the same. Finally, we show that
the rotation system does not determine the parity in simple drawings of general

12
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graphs. Even graphs with five vertices that contain K2,3 as subgraph may have
simple drawings with the same rotation system, but different parities of their
number of crossings.

2.1 Rotation system and crossings

of simple drawings of Kn

In 2004 Pach and Tóth proved that the rotation systems of simple drawings
determine exactly which pairs of edges cross [17]. In this section, we take a closer
look at a proof for that. We then observe that not all information from the rotation
system is needed to determine the crossings.

Theorem 2.1.1. [17] The rotation system of a simple drawing of the complete
graph determines which pairs of edges cross.

Proof. We proof the theorem for K4. Since all crossings of simple drawings are
between pairs of edges with four distinct end vertices, the theorem then follows for
the complete graph Kn.

We construct our K4 by drawing a subgraph of it that is a simple drawing of K3.
By Lemma 1.3.2 every simple drawing of K3 is plane. The rotation system does
not restrict drawings of K3 as there are only two edges per vertex. So we can start
by drawing an arbitrary plane triangle. We call the edges of that triangle 4-edges
and the other edges new edges.

The rotation system then tells us at which place the new edge of each vertex is
drawn. For every vertex of the simple drawing of K3 there are two possibilities:
The new edge may start in the bounded face (as it does in Figure 2.1a) or in the
unbounded face (as it does in Figure 2.1b).

All the new edges are adjacent to each other, thus they cannot cross each other.
Every new edge is also adjacent to two of the 4-edges. That means for every new
edge there is only one edge it can cross. From Lemma 1.3.3 it follows further that
there can be at most one crossing in total.

Since there are three new edges and only two faces, two of the new edges have
to start in the same face. We say, without loss of generality, that they start inside
the bounded face. As there can be at most one crossing, it is not possible that both
edges cross a 4-edge. Both new edges end in the same new vertex. Hence, this
vertex has to lie inside. This means the new vertex has to lie in the bounded face.

If the third edge starts in the bounded face as well, it is separated from the
only edge it may cross by the other edges (as can be seen in Figure 2.2). Thus it
cannot cross the edge and the drawing is plane.
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(a) The beginning of the new edge is drawn in red. It starts in the bounded face.

(b) The beginning of the new edge is drawn in red. It starts in the unbounded face.

Figure 2.1: Drawings of the subgraph K3 with the two possibilities of where a
fourth edge incident to the top vertex can start.

Figure 2.2: The new edge cannot leave the pink area.

If the third new edge starts in the unbounded face, it has to cross the only
edge it may cross in order to be incident to the new vertex. That can be seen in
Figure 2.3.

Figure 2.3: The new (red) edge has to cross the only edge it may cross.

In both cases, the pairs of edges that cross are determined.

In our proof of Theorem 2.1.1 it can be seen that the rotation around all but
one vertex is sufficient to determine which pairs of edges cross. The last vertex is
determined by the orders of the other vertices.

Remark 2.1.2. The full rotation system of a simple drawing of the complete graph
contains more information than needed to determine which edges cross.
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Thus, the wish to still gain knowledge from the rotation system if we have less
information is reasonable.

2.2 Rotation system and crossings

of simple drawings with
(
n
2

)
− 1 edges

We are interested in graphs that are not complete. In this section we start with
studying the question of what happens in graphs with exactly one edge less than
complete graphs. This means we are interested in graphs with exactly two vertices
that are not adjacent to each other.

Theorem 2.2.1. The rotation system of a simple drawing of a graph with
(
n
2

)
− 1

edges determines the number of crossings of that drawing.

Proof. Let D be a simple drawing of a graph with n vertices and
(
n
2

)
− 1 edges.

As in the proof of Theorem 2.1.1, we look at the subdrawings of D that have four
vertices. Those subdrawings either contain both vertices that are not adjacent
or they do not contain both of them. If they do not contain both vertices that
are not adjacent, they are simple drawings of K4. It follows from the proof of
Theorem 2.1.1 that the rotation system determines the pairs of edges that cross.

Let D′ be a subdrawing of D where two of the vertices are not adjacent. The
drawing D′ without one of those two vertices is a drawing of K3 as all the other
vertices are adjacent. Thus, we can start by drawing a plane triangle as we did in
the proof of Theorem 2.1.1.

Like in the proof of Theorem 2.1.1 we call the edges not yet drawn new edges
and look at whether they start in the bounded face or in the unbounded face. In
the case that both start in the same face, we know from the proof of Theorem 2.1.1
that the fourth vertex has to lie in the same face and there are no crossings.

Let us consider the case that one new edge starts in the bounded face and the
other edge starts in the unbounded face. Then one of the new edges has to end in
a different face than it started. This means there is at least one crossing. Since
there cannot be more crossings there is exactly one crossing.

However, which edges cross and where the fourth vertex lies is not determined.
There are two possibilities:

1. The fourth vertex lies in the unbounded face. This means that the edge that
starts in the bounded face has to have a crossing with the only edge it is
allowed to cross. This can be seen in Figure 2.4a.

2. The fourth vertex lies in the bounded face. This means that the edge that
starts in the unbounded face has to have a crossing with the only edge it is
allowed to cross. This can be seen in Figure 2.4b.
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(a) The new edge that starts in the
bounded face (the blue edge) has to cross
an edge.

(b) The new edge that starts in the un-
bounded face (the green edge) has to
cross an edge.

Figure 2.4: The fourth vertex may lie in the bounded face or in the unbounded
face. Its position determines which two edges cross each other.

2.3 Graphs with n ≥ 5 vertices and a minimal

degree of (n− 2)

In the last section we have shown that the rotation system of a simple drawing
of a graph with one edge less than the complete graph determines the number of
crossings in that drawing. In this section we show that this statement holds for
graphs with n ≥ 5 vertices having a minimal degrees of at least (n− 2). In order to
do that, we prove the statement for graphs with five vertices. From that together
with Theorem 2.1.1 and Theorem 2.2.1, we derive the theorem for graphs with n
vertices.

2.3.1 Graphs with five vertices and a minimal degree of 3

We first consider graphs with only five vertices and a minimal degree of 3. We show
that rotation systems of simple drawings of such graphs determine the number of
crossings. To proof that we use the well known Handshaking lemma.

Lemma 2.3.1 (Handshaking lemma). Let G be a graph with vertices V and edges E.
We denote with |E| the size of set E. Then the sum of the degrees in G is 2|E|.

Proof. The degree of a vertex is the number of edges it is incident to. Every edge
is incident to exactly two vertices. Thus, every edge adds exactly 2 to the sum of
degrees.

Theorem 2.3.2. Let G be a graph with five vertices and a minimal degree of 3.
Then the rotation system of simple drawings of G determine their number of
crossings.
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Proof. Every vertex in G has degree 3 or 4. It follows from Lemma 2.3.1 that there
cannot be an odd number of vertices with odd degree. Thus, either no vertices,
two vertices, or four vertices have degree 3. If no vertex has degree 3, the theorem
follows from Theorem 2.1.1. If two vertices have degree 3, the theorem follows from
Theorem 2.2.1.

So let us assume that four vertices have degree 3. We call the vertices with
degree 3 vertices v1, v2, v3, and v4. The other vertex has to have the full degree
of 4. We call that vertex v5.

We proof the theorem by looking at all possible non-isomorphic simple drawings
of graphs with five vertices and a minimal degree of 3. Then we compare the
number of crossings of all drawings that have the same or equivalent rotation
systems. Two rotation systems are equivalent if they would be the same after
relabeling the vertices.

Basics for constructing all simple drawings

We create our simple drawings step by step. First we consider the subgraph H
that is obtained from G by deleting the vertex v5 and all edges incident to it.

Claim 2.3.3. The subgraph H is a 4-cycle, that means it is a cycle that contains
exactly four vertices.

Proof of claim: All vertices of H have degree 3 in G. The edges of H are the edges
of G without the edges incident to v5. As every vertex of H is adjacent to v5 in G,
every vertex of H has 1 degree less in H than it has in G. Thus, all vertices of H
have degree 2 in H. It follows, that all vertices have to be in cycles.

Any cycle has at least three vertices. Hence, there cannot be more than one
cycle. It follows that all vertices in H have to be in the same cycle in H. Hence, H
has to be a 4-cycle. �

Without loss of generality, we label the vertices so that they are in order v1, v2, v3, v4
if we go along the cycle. More formally, vi is adjacent to vi+1 and vi−1 for i in {2, 3}
and v1 is adjacent to v4.

There are two non-isomorphic ways to draw H.

1. There is no crossing. Then the drawings in which vertex v5 is drawn in the
bounded face and the drawings in which it is drawn in the unbounded face
are isomorphic. Thus, we only need to look at drawings where it lies in the
bounded face.

• Case 1: There is no crossing in H and the vertex v5 lies in the bounded
face. This can be seen in Figure 2.5.
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2. There is a crossing. Then there are two bounded faces. We call the bounded
face with v1 and v2 on its boundary F1. We call the bounded face with v3
and v4 on its boundary F2. We have to consider the different possibilities of
where vertex v5 may lie.

• Case 2 : The vertex v5 lies in the unbounded face. This can be seen in
Figure 2.6.

• Case 3: The vertex v5 lies in a bounded face. It does not matter in
which bounded face it lies because the two cases are isomorphic. We
draw it in F1. This can be seen in Figure 2.7.

v1 v2

v3v4

v5

Figure 2.5: Case 1.

v1 v2

v3 v4

v5

F1

F2

Figure 2.6: Case 2.

v1 v2

v4v3

v5

F1

F2

Figure 2.7: Case 3.

We call edges incident to v5 new edges (because we add them “newly” after
we drew H). We say a new edge incident to a vertex vi in H starts in vi and ends
in v5. As in the proofs of Theorem 2.1.1 and Theorem 2.2.1, we now distinguish
where the new edges start.

Case 1 (There is no crossing between edges in H)

Claim 2.3.4. It cannot happen that more than two new edges start in the unbounded
face.
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Proof of claim: Assume that there are at least three vertices whose new edges start
in the unbounded face. Then there exists a vertex that starts in the unbounded face
and is adjacent to at least two vertices whose new edges start in the unbounded
face. Without loss of generality, let that vertex be v3, and let v2 and v4 be the
other vertices whose new edges start in the unbounded face. That can be seen in
Figure 2.8.

We call the new edge that is incident to v3 edge e. The vertex v5 is an endpoint
of e and lies in the bounded face. As e does not lie in that face, it has to cross the
boundary to reach v5. It has to cross either the edge joining v1 and v2 or the edge
joining v1 and v4. This follows from the fact that e is adjacent to the other two
edges of the boundary.

If e crosses the edge joining v1 and v2, it prevents the new edge incident to v2
from starting in the unbounded face, as can be seen in Figure 2.8a. If e crosses the
edge joining v1 and v4, it prevents the new edge incident to v4 from starting in the
unbounded face, as can be seen in Figure 2.8b.

�
Thus there are four non-isomorphic possibilities how the edges of Case 1 start.

They are drawn in Figure 2.9.

Case 2 (There is a crossing between the edges in H and the vertex v5
lies in the unbounded face)

Claim 2.3.5. Two new edges cannot start inside the same bounded face.

Proof of claim: We assume, without loss of generality, that the new edge incident
to v4 and the new edge incident to v3 start inside F2. This can be seen in Figure 2.10.
We call the new edge incident to v4 edge e.

The vertex v5 is an endpoint of e and does not lie in F2. Since e starts inside F2,
it has to cross the boundary of F2 to reach v5. In particular, it has to cross the only
edge on the boundary of F2 that is not incident to v4. This is the edge joining v3
and v2. As can be seen in Figure 2.10, the edge e then prevents the new edge
incident to v2 from starting in the unbounded face.

�
There are four non-isomorphic possibilities how the new edges can start. They

are drawn in Figure 2.11.
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v5

v1 v2

v3v4

v5

v1 v2

v3v4

(a) There is no possibility to add the edge joining v2 and v5.

v5

v1 v2

v3v4

v1 v2

v3v4

v5

(b) There is no possibility to add the edge joining v4 and v5.

Figure 2.8: The purple lines show where the new edges have to start according to
the rotation system. There are two ways to draw the new edge joining v3 and v5.
In both drawings one of the other new edges cannot be drawn without violating
the rotation system.
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v5

v1 v2

v3v4

(a) Case 1A: All new edges start in the
bounded face.

v5

v1 v2

v3v4

(b) Case 1B: One new edge starts in the
unbounded face and all the others start in
the bounded face. Here the vertex that is
incident to the new edge starting in the
unbounded face is v3. All other ways to
draw this are isomorphic.

v5

v1 v2

v3v4

(c) Case 1C: There are two new edges that
start in the bounded face. The vertices
(other than v5) that are incident to those
edges are adjacent to each other. The
other new edges start in the unbounded
face. Here the vertices incident to any new
edges that start in the bounded face are
labeled v1 and v2. All other ways to draw
this are isomorphic.

v5

v1 v2

v3v4

(d) Case 1D: There are two new edges that
start in the bounded face. The vertices
(other than v5) that are incident to those
edges are not adjacent to each other. The
other new edges start in the unbounded
face. Here the vertices that start in the
unbounded face are labeled v2 and v4. All
other ways to draw this are isomorphic.

Figure 2.9: All possibilities for Case 1.

v1 v2

v4v3

v5

Figure 2.10: Two new edges cannot start in the same bounded face. The new edge
incident to v4 that is drawn in red traps the new edge incident to v3.
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v1 v2

v4v3

v5

(a) Case 2A: Two new edges start in the
unbounded face. They are adjacent to
each other. The other new edges start
inside two different bounded faces. Here
the new edges that start in the unbounded
face are incident to v2 and v3. The other
drawing is isomorphic.

v1 v2

v4v3

v5

(b) Case 2B : Two new edges start in the
unbounded face. They are not adjacent
to each other. The other new edges start
inside two different bounded faces. Here
the new edges that start in the unbounded
face are incident to v2 and v4. The other
drawing is isomorphic.

v1 v2

v3v4

v5

(c) Case 2C : Exactly three new edges start
in the unbounded face. Here the new edge
that starts in the unbounded face is inci-
dent to v1. The other drawings are iso-
morphic.

v1 v2

v3v4

v5

(d) Case 2D : All new edges start in the
unbounded face.

Figure 2.11: All possibilities for Case 2.
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Case 3 (There is a crossing between the edges in H and the vertex v5
lies in a bounded face)

The new edge incident to v3 and the new edge incident to v4 cannot both start
inside F2. This follows from the proof of Claim 2.3.5. In the proof it is only relevant
that v5 does not lie in the same face as the edges that start inside that face. The
information of whether it is in the unbounded face or in F2 is not necessary. A
drawing of how the edge incident to v4 would trap the edge incident to v3 can be
seen in Figure 2.12.

v1 v2

v4v3

v5

v1 v2

v4v3

v5

Figure 2.12: Two new edges incident to v3 and v4 cannot both start in F2. The
red edge incident to v4 would trap the edge incident to v3.

Claim 2.3.6. Either the edge joining v1 and v5 or the edge joining v2 and v5 has
to start inside F1.

Proof of claim: Assume that the edge joining v1 and v5, and the edge joining v2
and v5 do not start inside F1. We call the edge joining v1 and v5 edge e. Similar
to the proofs of the previous claims, the edge e has to cross the boundary of F1

in order to reach v5. In particular, it has to cross the one edge on the boundary
of F1 that e is not adjacent to. This is the edge joining v2 and v4. As can be seen
in Figure 2.13, the edge e then prevents the new edge incident to v2 from starting
in the unbounded face.

�

Claim 2.3.7. Either the edge joining v5 and v1, and the edge joining v5 and v2 both
start inside F1 or the edges joining v5 with v3, and v4 both start in the unbounded
face.

Proof of claim: Assume that the edge joining v4 and v5 starts in F2. We call that
edge e. The boundaries of faces F1 and F2 intersect in only one common point.
This point is a crossing of two edges and therefore cannot be intersected by any
other edges. As v1 lies in F1, it follows that e has to cross two edges. It has to
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v1 v2

v4v3

v5

v1 v2

v4v3

v5

Figure 2.13: The new edges incident to v1 and v2 cannot both start in the unbounded
face. The red edge incident to v1 would trap the edge incident to v2.

cross an edge on the boundary of F2 to leave the face it started inside of, and an
edge on the boundary of F1 to reach v5. There is only one edge on the boundary
of F2 that e is not adjacent to. This is the edge joining v1 and v4. There are two
edges on the boundary of F2 that e is not adjacent to. Those edges are the edge
joining v1 and v4, and the edge joining v1 and v2. As any two edges can cross at
most once, e cannot cross the edge joining v1 and v4 twice. It follows that e crosses
the edge joining v1 and v4 on the boundary of F2, and the edge joining v1 and v3
on the boundary of F1. As can be seen in Figure 2.14 the edge e then prevents the
new edge incident to v1 and the new edge incident to v2 from starting outside F2.

�

v1 v2

v4v3

v5

v1 v2

v4v3

v5

Figure 2.14: If a new edge incident to v3 starts in F2, neither the new edge incident
to v1 nor the edge incident to v2 can start in the unbounded face. The red edge
incident to v4 would trap the edges incident to v1 and v2.

There are three non-isomorphic possibilities of how the new edges can start.
They are drawn in Figure 2.15.
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v1 v2

v4v3

v5

(a) Case 3A: The two new edges incident
to v1 and v2 start inside a bounded face.
The two new edges incident to v3 and v4
start in the unbounded face.

v1 v2

v4v3

v5

(b) Case 3B : The only new edge that starts
inside a bounded face is the new edge
incident to v1. (The case where the only
edge that starts inside a bounded face is
the new edge incident to v2 is isomorphic.)

v1 v2

v4v3

v5

(c) Case 3C : The only new edge that starts
in the unbounded face is the new edge
incident to v4. (The case where the only
new edge starting in the unbounded face
is incident to v3 is isomorphic.

Figure 2.15: All possibilities for Case 3.
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The simple drawings

Using the unfinished drawings above, we create all possible drawings of graphs
with five vertices of which one has full degree 4 and the others have degree 3. The
drawings are listed in the table below. Each row represents a simple drawing. In
the first column we write which case the drawing came from. The actual drawing is
in the second column. We write the rotation system in the third column. Instead
of writing down the actual labels of the vertices, we represent them by just their
indices. This means we write i instead of vi. We write the number of crossings of
the drawing in the fourth column. In the header of the table we have used the
symbol # as an abbreviation for ”number of”. In the last column we give the
current rotation system a label.

To confirm that these are all the possible drawings, we have included drawings
that could not be finished in Figure 2.16. These are cases where an edge can be
added in another way that does not break the rules of edges in simple drawings.
However, it would be impossible to finish the drawing to a simple drawing.

Case simple drawing rotation

system

#crossings label

1A
v5

v1 v2

v3v4

1 : 2 5 4
2 : 1 3 5
3 : 2 4 5
4 : 1 5 3
5 : 1 2 3 4

0 R1

1B v5

v1 v2

v3v4

1 : 2 5 4
2 : 1 3 5
3 : 2 5 4
4 : 1 5 3
5 : 1 2 4 3

1 R2
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Case simple drawing rotation

system

#crossings label

1B
v5

v1 v2

v3v4

1 : 2 5 4
2 : 1 3 5
3 : 2 5 4
4 : 1 5 3
5 : 1 3 2 4

1 R3

1B v5

v1 v2

v3v4

1 : 2 5 4
2 : 1 3 5
3 : 2 5 4
4 : 1 5 3
5 : 1 3 4 2

3 R4

1B
v5

v1 v2

v3v4

1 : 2 5 4
2 : 1 3 5
3 : 2 5 4
4 : 1 5 3
5 : 1 4 2 3

3 R5

1C
v5

v1 v2

v3v4

1 : 2 5 4
2 : 1 3 5
3 : 2 5 4
4 : 1 3 5
5 : 1 4 3 2

2 R6
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Case simple drawing rotation

system

#crossings label

1D v5

v1 v2

v3v4

1 : 2 5 4
2 : 1 5 3
3 : 2 4 5
4 : 1 3 5
5 : 1 4 3 2

2 R7

1D v5

v1 v2

v3v4

1 : 2 5 4
2 : 1 5 3
3 : 2 4 5
4 : 1 3 5
5 : 1 4 3 2

2 R7b

2A

v1 v2

v4v3

v5

1 : 2 5 4
2 : 1 5 3
3 : 2 4 5
4 : 1 3 5
5 : 1 2 4 3

3 R8
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Case simple drawing rotation

system

#crossings label

2B

v1 v2

v4v3

v5
1 : 2 5 4
2 : 1 5 3
3 : 2 5 4
4 : 1 5 3
5 : 1 2 4 3

3 R9

2B

v1

v2

v4v3

v5

1 : 2 5 4
2 : 1 5 3
3 : 2 5 4
4 : 1 5 3
5 : 1 4 2 3

5 R10

2B

v1 v2

v4

v3

v5
1 : 2 5 4
2 : 1 5 3
3 : 2 5 4
4 : 1 5 3
5 : 1 4 2 3

5 R10b
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Case simple drawing rotation

system

#crossings label

2C

v1 v2

v3 v4

v5

1 : 2 5 4
2 : 1 5 3
3 : 2 4 5
4 : 1 5 3
5 : 1 2 3 4

2 R11

2D

v1 v2

v4v3

v5

1 : 2 4 5
2 : 1 5 3
3 : 2 4 5
4 : 1 5 3
5 : 1 3 4 2

1 R12

2D

v1 v2

v4v3

v5

1 : 2 4 5
2 : 1 5 3
3 : 2 4 5
4 : 1 5 3
5 : 1 4 2 3

3 R13

2D

v1 v2

v4v3

v5

1 : 2 4 5
2 : 1 5 3
3 : 2 4 5
4 : 1 5 3
5 : 1 3 2 4

3 R14
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Case simple drawing rotation

system

#crossings label

2D

v1 v2

v4v3

v5

1 : 2 4 5
2 : 1 5 3
3 : 2 4 5
4 : 1 5 3
5 : 1 3 2 4

3 R14b

2D

v1 v2

v4v3

v5

1 : 2 4 5
2 : 1 5 3
3 : 2 4 5
4 : 1 5 3
5 : 1 4 2 3

3 R13b

2D

v1 v2

v4v3

v5

1 : 2 4 5
2 : 1 5 3
3 : 2 4 5
4 : 1 5 3
5 : 1 2 4 3

5 R15

2D

v1 v2

v4v3

v5

1 : 2 4 5
2 : 1 5 3
3 : 2 4 5
4 : 1 5 3
5 : 1 2 4 3

5 R15b
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Case simple drawing rotation

system

#crossings label

2D

v1 v2

v4v3

v5

1 : 2 4 5
2 : 1 5 3
3 : 2 4 5
4 : 1 5 3
5 : 1 2 4 3

5 R15c

2D

v1 v2

v4v3

v5

1 : 2 4 5
2 : 1 5 3
3 : 2 4 5
4 : 1 5 3
5 : 1 2 4 3

5 R15d

3A

v1 v2

v4v3

v5 1 : 2 5 4
2 : 1 3 5
3 : 2 4 5
4 : 1 5 3
5 : 1 2 4 3

3 R16

3A

v1 v2

v4v3

v5
1 : 2 5 4
2 : 1 3 5
3 : 2 4 5
4 : 1 5 3
5 : 1 4 2 3

3 R17
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Case simple drawing rotation

system

#crossings label

3A

v1 v2

v4v3

v5

1 : 2 5 4
2 : 1 3 5
3 : 2 4 5
4 : 1 5 3
5 : 1 3 2 4

3 R18

3A

v1 v2

v4v3

v5
1 : 2 5 4
2 : 1 3 5
3 : 2 4 5
4 : 1 5 3
5 : 1 3 4 2

3 R19

3B

v1 v2

v4v3

v5
1 : 2 5 4
2 : 1 5 3
3 : 2 4 5
4 : 1 5 3
5 : 1 4 3 2

4 R20

3C

v1

v4v3

v5

v2 1 : 2 5 4
2 : 1 3 5
3 : 2 5 4
4 : 1 5 3
5 : 1 4 3 2

4 R21

Simple drawings with the same Rotation System

We now have to compare the number of crossings of simple drawings which have the
same rotation system. We have calculated which rotation systems are equivalent



34

v5

v1 v2

v3v4

v5

v1 v2

v3v4

v5

v1 v2

v3v4

v5

v1 v2

v3v4

v5

v1 v2

v3v4

v5

v1 v2

v3v4

v5

v1 v2

v3v4

v1 v2

v3v4

v5

Figure 2.16: If we add the red edge as we do in these drawings, then the drawings
cannot be finished.
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to each other by trying all permutations of labels via computer. We used python’s
numpy to do that. The code can be found in Appendix A. Here we present how
the program works.

The algorithm

We save all given rotation systems into matrices of the following standard form:
Every row of the matrix corresponds to one vertex. The rows are sorted such that
row i corresponds to vertex vi.

The first four rows are as we have written them in the table above. The first
entry we write is the index of the vertex it corresponds to. The following entries
are the rotation around that vertex. When writing down the rotation we start with
the smallest index (as second entry in the row).

In the last row we write only the rotation around v5 without writing 5 in any
of the entries. We again write down the rotation starting with the smallest entry,
meaning in this case that the first entry of the row is 1.

The program works by first creating all matrices that can be obtained by
permuting the labels. Then it brings the new matrices into standard form. It saves
them together with an id that tells us of which drawing the original matrix is the
rotation system. Finally, it looks for duplicates amongst the matrices. If there are
duplicates with different ids, then the matrices they originated from are equivalent
rotation systems.
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Algorithm 1 Finding all equivalent rotation systems

Require: The standard form matrices that represent the rotation systems
1: perms= All permutations within the set {1, 2, 3, 4}.

2: function all perms(a matrix M)
3: for p ∈ perms do

4: m= matrix created by performing permutation p on M;
5: m= repair(m) . The matrix m is brought into standard form using the

functions that are explained below.

6: return m, p

7: function repair row(row, skip) . The value skip is either 0 (if dealing with the
last row) or 1 (if dealing with one of the first four rows).

8: Leave the first skip entries as they are. . For the first four rows this ensures
that the first entry is not changed. It is the vertex the row corresponds to and
not part of the rotation.

9: For the other entries rotate the enumeration of the neighbours such that it
starts with the lowest one. . This sorts the rotation such that it starts with
the minimum index.

10: return row
11: function repair(m)
12: for the first 4 rows do

13: repair row(row,1); . The considered row will be brought into standard form.
Setting value skip to 1 is necessary to not change the first vertex and only fix
the rotation.

14: Sort rows such that their place is as in the standard form, meaning the first
row has first entry 1, the second row has first entry 2, and so on.

15: for the last row do
16: repair row(row,0); . The considered row will be brought into standard form.

Setting value skip to 0 is necessary to fix the whole rotation, which starts at
the first entry of the row.

17: return m
18: for all matrices do

19: Generate a global mapping of all matrices and the ids of the drawing they
represent. . The ids tell us which drawing the original matrix came from

20: Search for duplicates.
21: Return the duplicates and the permutation p that was used to create that

matrix.
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Results

• The rotation systems of R1 to R6, R8, R11, and R12 are unique.

• The rotation systems of R7 and R7b are obviously the same. Both drawings
have the same number of crossings.

• The rotation systems of R9, R13, R13b, R14 and R14b are equivalent. We
can get from R9 to R13 if we swap the labels of vertices v2 and v3. We can
get from R14 to R13 if we swap the labels of vertex v1 and v3 as well as
the labels of vertices v2 and v4. It is obvious that R13 and R13b as well as
R14 and R14b are the same. All of these drawings have the same number of
crossings.

• The rotation systems of R10, R10b, R15, R15b to R15d are equivalent. We
can get from R15 to R10 if we swap the labels from vertices v2 and v3. It is
obvious that the rotation systems of R10 and R10b as well as those of R15 to
R15d are the same. All of these drawings have the same number of crossings.

• The rotation systems of R16 to R19 are equivalent. We can get from R17 to
R16 if we change the labels from R17 in this way: We label the former v1
as v3, the former v2 as v1, the former v3 as v4, and the former v4 as v2. We
can get from R18 to R16 if we change the labels from R18 in the following
way: We label the former v1 as v2, the former v2 as v4, the former v3 as v1,
and the former v4 as v3. We can get from R19 to R16 if we swap the labels
of vertices v1 and v4 as well as the labels of v2 and v3. All of these drawings
have the same number of crossings.

• The rotation systems of R20 and R21 are equivalent. We can get from R21
to R20 if we change the labels from R21 in the following way: We label the
former v1 as v3, the former v2 as v1, the former v3 as v4, and the former v4 as
v2. Both drawings have the same number of crossings.

Conclusion

We have shown that all drawings with the same rotation system also have the same
number of crossings. Thus the rotation systems of simple drawings of graphs with
five vertices and a minimum degree 3 determine the number of crossings.
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2.3.2 Graphs with n ≥ 5 vertices and a minimal degree
of n− 2

We can generalize Theorem 2.3.2 to all graphs with n ≥ 5 vertices and a minimal
degree of at least n− 2.

Theorem 2.3.8. Let D be a simple drawing of a graph with at least five vertices
and a minimal degree of n − 2. Then the rotation system of D determines its
number of crossings.

Proof. Every crossing in D consists of two edges and thereby is determined by a
subdrawing of D with four vertices. Every such subdrawing of D is contained in
exactly (n − 4) bigger subdrawing of D with a vertex set of size 5. Those five
vertices are the four vertices of the crossing and one other vertex. Consequently
the number of crossings can be calculated directly from the number of crossings of
the subdrawings. We add the number of crossings of all subdrawings of D that
have five vertices and then divide it by (n− 4), since we have counted each crossing
exactly (n− 4) times. Thus, it is sufficient to show that for every subdrawing of D
with five vertices the number of crossings is determined.

Since D has minimal degree of n − 2 it follows that every vertex is adjacent
to all but at most one other vertices. That means that in a subdrawing with 5
vertices all vertices have to be adjacent with at least 3 other vertices. Consequently,
all such subdrawings fulfill the requirements of Theorem 2.3.2. It follows that the
rotation system of the subdrawings determine their number of crossings.

2.3.3 Rotation system and crossings of simple drawings of
graphs with less than

(
n
2

)
− 1 edges

It would be desirable for the rotation system to always determine how many
crossings there are for each drawing. Unfortunately, in general the rotation system
does not determine the exact number of crossings. If a graph contains a vertex
with degree < n− 3, the rotation system does not determine the crossings. As can
be seen in Figure 2.17, this holds even if the graph has only two edges less than
a complete graph. The rotation system of simple drawings of graphs with only
four vertices and two edges less than the complete graph does not determine the
number of crossings either. This is the case even if the graph has minimal degree
of n− 2 = 2, as can be seen in Figure 2.18. Both figures proof Proposition 2.3.9.
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Figure 2.17: Two simple drawings of the same graph with 6 vertices. The black
edges are drawn the same way in both drawings, the red edges are drawn differently.
Both drawings have the same rotation system, but they have different number of
crossings.

Figure 2.18: Two simple drawings of the same graph with 4 vertices. They have
the same rotation system, but different number of crossings.

Proposition 2.3.9. In general simple drawings, the rotation system alone does
not determine the number of crossings.

2.4 Complete bipartite graphs

As stated in Proposition 2.3.9, the rotation system does not determine the number
of crossings in general simple drawings. We are interested in still obtaining some
information from the rotation system for special kinds of graphs. As mentioned
before, complete bipartite graphs seem especially interesting in this context. We
study them in this section.

First we show that for simple drawings of the complete bipartite graph K2,3 the
rotation system does not determine the number of crossings, but it does determine
its parity. Once we have shown this we use the result for a proof that the complete
bipartite graph K3,n cannot be drawn plane. It is already known that the parity
of the number of crossings is the same for all drawings of the complete bipartite
graph Km,n with m and n even. We briefly discuss that result here.
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2.4.1 Simple drawings of K2,3

We show that the rotation system determines the parity of the number of crossings
of simple drawings of the complete bipartite graph K2,3. We do so by looking at
all non-isomorphic simple drawings of K2,3 and then comparing the number of
crossings of those with equivalent rotation systems.

Theorem 2.4.1. Let D be a simple drawing of K2,3. The rotation system of D
determines the parity of its number of crossing. The number is odd if the vertices
within one side of the bipartition have the same rotation and even otherwise.

Proof. We call the smaller side of the bipartition of K2,3 side U and the other side
of the bipartition V . We first make some general observations about the crossings
in simple drawings of K2,3.

Claim 2.4.2. Any simple drawing of K2,3 has at most 3 crossings.

Proof of claim: Each edge has an endpoint in U and one in V . If two edges cross,
they cannot be adjacent and thus all their vertices have to be different. If follows
that two edges can only cross if they are incident to two different vertices in U
and two different vertices in V . As U contains only two vertices, there is only one
possibility to choose two different vertices. There are

(
3
2

)
= 3 possibilities to choose

two different vertices in V . Each of those possibilities is a subdrawing with four
vertices and thus can have at most one crossing by Lemma 1.3.3. �

Claim 2.4.3. An edge of a simple drawing of K2,3 can cross at most 2 other edges.

Proof of claim: Each edge is adjacent to 3 other edges. (Its endpoint in U is incident
to 2 other edges. Its endpoint in V is incident to 1 other edge.) The complete
bipartite graph K2,3 has (3 · 2) = 6 edges. An edge may not cross itself or its 3
incident edges. Hence it may cross at most (6− 1− 3) = 2 edges. �

Let D be a simple drawing of K2,3. As stated in the proof of Claim 2.4.2, every
subdrawing of D that contains a crossing in G has to contain both vertices of U
and two vertices of V . If there is a crossing in D, let H be a subdrawing of D
that contains two crossing edges, exactly the four vertices they are incident to and
all edges in D that join two vertices in H. If D does not contain any crossings,
let H be a subdrawing of D that contains both vertices in U , exactly two vertices
in V , and all edges in D that join two vertices in H. The only vertex of D that is
not in H has to be in V . We call that vertex v. (We will relabel the vertex later.)
As H is complete bipartite and both sides of the bipartition contain exactly two
vertices, it has to be a 4-cycle. Similar to the proof of Theorem 2.3.2 we start with
that drawing H and then look at where v lies.

We part the possible drawings into three cases:
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1. Case 1 : There is no crossing in D. Then H is plane. The vertex v can lie
in the unbounded face or inside the area enclosed by H. Both cases are
isomorphic. We consider the case where it lies in the unbounded face. As
there are no crossings in the whole drawing, the edges incident to v cannot
cross anything. Hence, there is a unique (up to isomorphism) way to draw
them. Case 1 can be seen in Figure 2.19.

v

(a) Case 1 : There is no
crossing in H.

v

(b) Drawing 1 : The edges of H are
drawn in black. The edges incident
to v are drawn in red and blue.

Figure 2.19: There is a unique drawing resulting from Case 1.

2. If there exists at least one crossing, there are two non-isomorphic possible
drawings. Case 2: The vertex v lies in the unbounded face. Case 2 can be
seen in Figure 2.20.

v

Figure 2.20: Case 2 : There is a crossing in H. The vertex v lies in the unbounded
face.

3. Case 3 : The vertex v lies in a bounded face. Case 3 can be seen in Figure 2.21.

We then look at all the possibilities to add one new edge. This can be seen in
Figure 2.22.
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v

Figure 2.21: Case 3 : There is a crossing in H. The vertex v lies in a bounded face.

(a) Case 2A (b) Case 2B (c) Case 2C

(d) Case 2D (e) Case 3A (f) Case 3B

Figure 2.22: We add a new edge (drawn in red).

Then we draw the last edge. Without loss of generality, we only consider
those drawings where that edge has at most as many crossings as the one we
inserted before. By the symmetry of the drawings, the other drawings would be
isomorphic. The resulting simple drawings can be seen in Figure 2.23. None of
those drawings results from Case 3A because we cannot add the last edge without
crossing something. This would mean the last edge has more crossings than the
one we drew before, which we excluded.
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(a) Drawing 2A.1 ;
1 crossing.

(b) Drawing 2B.1 ;
3 crossings.

(c) Drawing 2B.2 ;
2 crossings.

(d) Drawing 2C.1 ;
3 crossings.

(e) Drawing 2D.1 ;
3 crossings.

(f) Drawing 3B.1 ;
3 crossings.

Figure 2.23: We add a new edge (drawn in blue). The only drawings we consider
are the drawings where the blue edge crosses at most as many edges as the red one.

We now label our vertices. We call the vertices of U vertices A and B, and the
vertices of V vertices 1,2, and 3. The vertices in V are adjacent to only two vertices
and therefore have the same rotation {A,B}. For the vertices in U there are two
possible rotations {1, 2, 3} or {1, 3, 2}. All different labelings of one drawing are
isomorphic. We label the vertices so that A has rotation {1, 2, 3}. There are two
possibilities for the complete rotation system:

1. B has the same rotation as A, namely {1, 2, 3}. These drawings can be seen
in Figure 2.24. Their number of crossings are 1 or 3 and therefore all odd.

2. B has a different rotation than A, in particular B has rotation {1, 3, 2}.
Those drawings can be seen in Figure 2.25. Their number of crossings are 0
or 2 and therefore all even.
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A B

1 23

(a) Drawing 2A.1 ;
1 crossing.

A B

1 2 3

(b) Drawing 2B.1 ;
3 crossings.

A B

1 23

(c) Drawing 2C.1 ;
3 crossings.

A

1 23

B

(d) Drawing 2D.1 ;
3 crossings.

BA

2

31

(e) Drawing 3B.1 ;
3 crossings.

Figure 2.24: A and B have the same rotation. There are 1 or 3 crossings.

1 2 3

A B

(a) Drawing 1 ;
0 crossings.

A B

1 2 3

(b) Drawing 2B.2 ;
2 crossings.

Figure 2.25: A and B have different rotations. There are 0 or 2 crossings.

In conclusion, the drawings with the same rotation systems have the same parity
of their number of crossings. In particular, the number is odd if all vertices have
the same rotation and even otherwise.

Remark 2.4.4. It can be easily observed that while the parity of the number of
crossings of all simple drawings with the same rotation system is the same, the
numbers themselves differ.
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2.4.2 K3,3 is not planar

We can use Theorem 2.4.1 to show a very famous result in graph theory.

Theorem 2.4.5. There is no plane drawing of the complete bipartite graph K3,3.

There exist several proofs of this result already. However, Theorem 2.4.1 offers
a completely new approach.

Proof. We call the sides of the bipartition U and V and label the vertices in V
with 1, 2, and 3 as before. There are only two possible rotation for the vertices
in U (namely {1, 2, 3} or {1, 3, 2}). Hence at least two of the vertices in U have
the same rotation. From Theorem 2.4.1 it follows that the subdrawing consisting
of those two vertices, all vertices in V , and the edges between them, has at least
one crossing. Consequently, the drawing of K3,3 has at least one crossing.

2.4.3 Km,n with m,n odd

In simple drawings of Km,n where m and n are fixed and both odd, the parity of
the number of crossings is fixed. This result was first used and shown by Kleitman
in 1971 when he studied the crossing number of K5,n [11]. Since some found his
proof unconvincing, Kleitman published another proof in 1976 [12].

Both proves work with a continuous movement of edges to get from one sim-
ple drawing to another. Each time the crossings change there is an even number
of changes. In Figure 2.26 it can be seen how such a change looks like. In the
first drawing (Figure 2.26a) the vertex v is at “another side” of the edge e than in
the second drawing (Figure 2.26b). As a consequence, all edges incident to v that
cross e in the left drawing do not cross e in the right drawing and vice versa. The
exception is the edge that is incident to v and adjacent to e. It may never cross e
in any simple drawing.

ev

(a) The (purple) vertex v is “on the
left side” of the (green) edge e.

e
v

(b) The (purple) vertex v is “on the
right side” of the (green) edge e.

Figure 2.26: The vertex v moves over the edge e, causing the crossings to change.
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Let, without loss of generality, v be on the side of the bipartition with m vertices.
That means v is incident to n edges. Let a be the number of edges incident to v
that crossed e before the movement and do not cross it after the movement. Let b
be the number of edges incident to v that did not cross e before and cross it now.
Then a + b + 1 = n and therefore a + b is even. Thus, b− a is even. That means
that every-time the number of crossings changes there is an even number added or
subtracted. Hence, the parity stays the same.

A more formal and complete proof done by Kleitman can be found in [12]. An
alternative, more recent proof, can be found in [15]. It was published by McQuillan
and Richter in 2010. Their proof is inductive and works mainly with counting
arguments.

All mentioned authors call this result the parity argument.

Theorem 2.4.6. [11] The number of crossings of all simple drawings of the complete
bipartite graph Km,n with m,n fixed and odd have the same parity.

2.4.4 Drawings with complete bipartite subdrawings

We have shown that the rotation system of simple drawings of the complete
bipartite graphs K2,3 contains the information about the parity of the number of
crossings. The question arises whether it is sufficient if we have those drawings as
subdrawings of the graph. Does the rotation system of simple drawings of graphs
that contain K2,3 determine the parity of the number of crossings?

In general, the answer is no. Figure 2.27 shows two simple drawings of the
same graph with the same rotation system. The complete bipartite graph K2,3 is
a subgraph of the drawn graph. The drawn graph contains only one edge more
than K2,3. There are no additional vertices. Still the number of crossings of
these simple drawings have different parities. This means that one additional
edge is sufficient to loose the information that the rotation system contains for
simple drawings of K2,3.

We could add another edge like we did in Figure 2.28. The complete bipartite
graph K2,3 is a subgraph of that graph as well. The drawn graph now has only 2
edges less than the complete graph K5. Still both drawings have the same rotation
system, but their number of crossings have different parities.
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1

2

3

BA

1

2

3

BA

Figure 2.27: Two simple drawings of the same graph. The black edges stay the
same. The red edges are drawn differently, but the drawings still have the same
rotation system. The parity of the number of crossings is different.

1

2

3

BA

1

2

3

BA

Figure 2.28: We add a (green) edge to the drawings of Figure 2.27. We obtain two
simple drawings with the same rotation system and a different number of crossings.

Proposition 2.4.7. In general simple drawings, the rotation system alone does
not determine the parity of the number of crossings.



Chapter 3

Shooting stars in simple drawings
of complete bipartite graphs

In this chapter we look for plane spanning trees in simple drawings of complete bipar-
tite graphs. First we look at a proof that simple drawings of the complete bipartite
graph K2,n contain spanning trees and in particular shooting stars. (Shooting stars
are defined in Definition 1.5.2 on page 9.) Next we show that simple drawings
of the complete bipartite graph K3,n contain shooting stars as well. We then
consider a special kind of simple drawings, called outer drawings. We show that all
outer drawings of the complete bipartite graph Km,n contain shooting stars. We
present three different proofs for this. Then we consider further special kinds of
simple drawings. Those drawings are straight-line drawings, 2-page book drawings,
and circular drawings. We show that those drawings contain shooting stars. Finally,
we conjecture that shooting stars are also contained in general simple drawings of
the complete bipartite graph Km,n.

Parts of this chapter has been turned into a paper jointly with O. Aichholzer,
M. Scheucher, I. Parada, and B. Vogtenhuber. It has been published in [2].

3.1 Existence of a plane spanning subgraph in K2,n

The existence of plane spanning subgraphs in the complete bipartite graph K2,n

has been proven by I. Parada and M. Scheucher and given to the author in personal
communication. It has also been published in our common paper [2]. For the sake
of completeness it is written in this thesis as it is printed in the paper.

We prove that every simple drawing of K2,n contains plane spanning trees of a
certain structure. In order to do so, we introduce some notions and provide some
auxiliary results.

48
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a

b

rg

c

(a) Case 1

c

a

b

g r

(b) Case 2

Figure 3.1: An illustration of the two cases of base case k = 3 from Lemma 3.1.1.
The area 4 is colored light green.

For a given simple drawing of Kn with vertex set V and two fixed vertices g 6=
r ∈ V , we define a relation →gr on the remaining vertices V \{g, r}, where a→gr b
if and only if the arc ra properly crosses gb. In the following, we simply write a→ b
if the two vertices g and r are clear from the context.

Lemma 3.1.1. The relation → is asymmetric and acyclic, that is, there are no
vertices v1, v2, . . . , vk (k ∈ N) with v1 → v2 → . . .→ vk → v1.

Proof. We give a proof by induction on k.
Induction basis: The case k = 1 is trivial. The case k = 2 follows from the fact
that there is at most one proper crossing in every 4-tuple in a simple drawing
– if ra crosses gb then rb cannot cross ga. For the case k = 3 assume there are
three vertices a, b, c with a→ b→ c→ a. Let 4 denote the area bounded by the
edges ga, gb, ra and not containing the vertex r, as illustrated in Figure 3.1. We
distinguish the following two cases:

Case 1: c 6∈ 4. Since c → a holds, the arc rc crosses ga, and therefore the
boundary of 4. Since r 6∈ 4 and since rc cannot cross ra, rc must also
cross gb. Thus we have c→ b, which is a contradiction to b→ c.

Case 2: c ∈ 4 . Since a→ b, the arc rb cannot cross ga. Moreover, since rb can
neither cross ra nor gb, it is therefore completely outside of 4. Since gc is
completely contained in 4, rb and gc cannot cross, and therefore, b 6→ c.
Contradiction.

Since c can neither be inside nor outside 4, the statement is proven.

Induction step: Suppose – towards a contradiction – that there exist v1, . . . , vk
with k ≥ 4 and v1 → v2 → . . . → vk → v1. We write a = v1, b = v2, w = vk−1,
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and z = vk. Let 4 denote the area bounded by the edges ga, gb, and ra that does
not contain the vertex r. We distinguish the following two cases:

Case 1: z 6∈ 4. We continue analogously to Case 1 of base case k = 2. Since z → a
holds, rz crosses ga, and therefore the boundary of 4. Since r 6∈ 4 and
since rz cannot cross ra, rz must also cross gb. Thus we have z → b.

Case 2: z ∈ 4. Since w → z holds, rw crosses gz at some point inside 4.
Since r 6∈ 4 and since rw cannot cross ra, it must cross ga or gb (or
both). Thus we have w → a or w → b.

In both cases, we can find v′1, . . . , v
′
l for some l < k with v′1 → . . .→ v′l → v′1, which

is a contradiction. This completes the proof of the lemma.

Theorem 3.1.2. Let D be a simple drawing of the complete bipartite graph K2,n

with sides of the bipartition {g, r} and P . Then, for every k ∈ {1, . . . , n}, D
contains a plane spanning tree with k edges incident to g and n − k + 1 edges
incident to r.

Proof. According to Lemma 3.1.1, we can find a labeling v1, . . . , vn of the vertices
in P such that vi →gr vj only holds if i < j. Let S1 be the star with center g and
children {v1, . . . , vk} and let S2 be the star with center r and children {vk, . . . , vn}.
By definition of relation →gr, the edges of S1 and S2 do not cross, and hence we
have a plane spanning tree.

Corollary 1. Let D be a simple drawing of the complete bipartite graph K2,n

with sides of the bipartition {g, r} and P . Then for each c ∈ {g, r}, D contains a
shooting star rooted at c.

Proof. Consider again the proof of Theorem 3.1.2. With the according labeling
of P , no edge rvi can cross the edge gv1. Hence, the plane spanning tree consisting
of all the edges incident to r together with the edge gv1 gives the desired shooting
star rooted at r. Similarly, the tree with all edges incident to g and the edge rvn is
a shooting star rooted at g.

3.2 Remarks to a possible generalization of the

proof for K2,n to a proof for Km,n

Remark 3.2.1. In Km,n for m ≥ 3 there might be a spanning subgraph that cannot
be obtained by an order as we used it in the proof for K2,n. Figure 3.2 shows such
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Figure 3.2: A plane spanning subgraph that cannot be found by the ordering.

a subgraph. It is a valid plane spanning subgraph. Since one of the vertices has
degree 3 in the subgraph, that subgraph can never be obtained by the ordering.

It follows, that trying to find a spanning tree by extending the order, might not
be enough.

Remark 3.2.2. Another possibility to find a plane spanning tree in a drawing of Km,n

that we considered is to extend a plane spanning tree we found for K2,n. Every
simple drawing of Km,n contains simple drawings of K2,n as subdrawings. Those
subdrawings contain plane trees that are spanning the simple drawing of K2,n. We
would only need to add one edge for every vertex of the side of the bipartition
that is not yet covered (in K3,n one in total) to obtain a spanning subgraph for
the whole graph. However, there are drawings in which this approach can fail even
for m = 3. An example for that can be found in Figure 3.3. This means it is not
always possible to extend a subgraph of the complete bipartite graph K2,n to a
plane subgraph of the complete bipartite graph K3,n.
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Figure 3.3: The subdrawing consisting of blue and red vertices together with the
blue and red edges are a plane drawing of K2,5. The yellow marked edges are one
possibility for a spanning tree in that subdrawing. Every green edge crosses an
edge of that spanning tree.

3.3 Shooting stars in simple drawings of K3,n

As shown in the last section, every simple drawing of the complete bipartite
graph K2,n contains a shooting star. In this section we proof that every sim-
ple drawing of the complete bipartite graph K3,n contains a shooting star as well.
The following theorem has been published without proof in [2].

Theorem 3.3.1. Let D be a simple drawing of the complete bipartite graph K3,n

with sides of the bipartition {g, r, b} and P = {v1, . . . , vn}. Then for each c ∈
{g, r, b}, D contains a shooting star rooted at c.

Proof. We color the vertices r, b, and g with colors red, blue, and green, respectively,
and all edges of D in the color of the vertex in {r, b, g} they are incident to. Then
we choose one vertex c ∈ {g, r, b}, without loss of generality g, as root of the
shooting star F that we are constructing. We fix all green edges as part of F.
Note that due to the simplicity of D, those edges are pairwise non-crossing.

From Theorem 3.1.2 it follows that there is a blue edge and a red edge that do
not cross any of the green edges. In the rest of this proof, we call these two edges
candidate edges. If they do not cross each other, we can add them to F and hereby
complete our shooting star.

Hence assume that the candidate edges cross. Let vb ∈ {v1, . . . , vn} be the
vertex that is incident to the blue candidate edge. We denote with r2 the edge vbr.
Analogously, let vr ∈ {v1, . . . , vn} be the vertex that is incident to the red candidate
edge and let b2 be the edge vrb. The two edges r2 and b2 cannot cross the candidate



53

edges, because they are incident to them. They also cannot cross each other, since
in a simple drawing every subdrawing with at most 4 vertices contains at most one
crossing (and since the candidate edges cross). Thus, r2 and b2 together with the
candidate edges form two triangular regions1 as depicted in Figure 3.4. We denote
the region incident to b as 4b and the one incident to r as 4r.

4b

blue candidate
edge

red candidate
edge

b2 r2

4r

rb

vr vb

Figure 3.4: The two crossing candidate edges together with the edges r2 and b2
form two triangular regions.

If either b2 or r2 does not cross any of the green edges, we obtain our shooting
star F by adding that edge and the candidate edge of the other color.

So assume next that both edges cross at least one green edge. We will prove
that in this case there has to be another blue or red edge which does not cross any
green edges and does not cross the candidate edges either. Since green edges do
not cross the candidate edges and can only cross the other edges at most once, it
follows that there has to be at least one vertex in each of the triangles 4b and 4r.
Further, the green vertex g can lie either inside one of the triangles or outside of
both of them. As the case in which g lies in 4r and the case in which g lies in 4b

are symmetric, among those we only consider the case in which g lies in 4b. Hence,
there are two cases to be considered:

Case 1: g lies in 4b. In this case, g lies in 4b and there has to be at least one
vertex that lies in 4r, as shown in Figure 3.5 (left). Actually, all green edges that
lie partly inside 4r have one endpoint in 4r (since green edges do not cross the
candidate edges and can cross r2 at most once). We denote this set of vertices
inside 4r as Vr, as shown in Figure 3.5 (right).

Claim 3.3.2. All edges from a vertex in Vr to the red vertex r lie completely
inside 4r.

1Note that “triangular” here is not meant in a straight-line way, but in the sense that the
regions are bounded by a 3-cycle of (parts of) the bounding edges.
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Figure 3.5: Case 1: The green vertex g lies inside a triangle.

Proof of claim: Red edges cannot cross any of the other red edges and may only
cross every blue edge at most once. Furthermore, no red edge can cross a green
edge adjacent to it. Thus, any red edge that has an endpoint in Vr is forced by the
green edge adjacent to it, the candidate edges, and b2 and r2 to stay completely
inside 4r.

That can be seen in Figure 3.6.

Figure 3.6: The red edge incident to the yellow marked vertex may not cross the
yellow marked edges and may only cross the purple marked edges at most once.

�

Claim 3.3.3. There is a (red) edge from a vertex in Vr to the red vertex r that
does not cross any green edges and does not cross the blue candidate edge.

Proof of claim: Consider the subdrawing D′ of D that has Vr, the red vertex r,
and the green vertex g as its vertex set and all green and red edges incident to the
vertices in Vr as its edge set. Notice that D′ is a simple drawing of K2,|Vr|. From
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Theorem 3.1.2 it follows that there is a red edge in that subdrawing that does
not cross any green edge within the subdrawing. That red edge lies completely
inside 4r, because of Claim 3.3.2. Also, no green edges outside the subdrawing
can lie (partly) inside 4r. Thus, the red edge we just found does not cross any
green edges outside the subdrawing either, and as it lies completely inside 4r, it
also cannot cross the blue candidate edge. � Adding the red edge from Claim 3.3.3
and the blue candidate edge to F completes our shooting star for Case 1.

Case 2: g lies outside 4b and 4r. In this case, the green vertex g lies outside
both triangles, and in both triangles there is at least one vertex, as depicted in
Figure 3.7 (left). Again, it holds that all green edges that lie partly inside one of
the two triangles have one endpoint in the corresponding triangle.

b2 r2

rb

g

b2 r2

rb

g

Figure 3.7: Case 2: The green vertex g lies outside both triangles. Right: case in
which a red edge from a vertex in 4r to the r does not stay completely inside 4r.

In drawings in which Claim 3.3.2 also holds, we can obtain a plane spanning
tree as we do in Case 1. However, it does not hold in general. It is possible that a
red edge incident to a vertex in Vr lies only partly inside 4r and crosses the blue
candidate edge. That can bee seen in Figure 3.7 (right) and Figure 3.8.

Denote with Vr the set of vertices inside 4r and with Vb the set of vertices
inside 4b. If all red edges incident to a vertex of Vr lie completely in 4r, we can
complete our shooting star F in the same way as in Case 1. Hence assume that
this is not the case. We will show that all blue edges lie completely inside 4b. Once
we have proven that, we can apply Theorem 3.1.2 to the simple drawing of K2,|Vb|
formed by g, b, Vb, and their incident edges, by this obtaining our shooting star F
with similar arguments as in Case 1 (just with swapped colors).

Note that all red edges incident to a vertex of Vr that do not lie completely
inside 4r connect to r from outside 4r, avoid 4b, and intersect all edges from g to
a vertex in Vb as well as the edge b; see Figure 3.7 (right). Hence every blue edge
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Figure 3.8: In Case 2, there might be a red edge lying only partly inside 4r.

incident to a vertex in 4b is forced to stay completely inside 4b by (i) the green
edge adjacent to it, (ii) the blue edges from the triangle, (iii) the red candidate
edge, and (iv) a red edge that goes from a vertex of Vr to the red vertex r and
does not stay completely inside 4r. The only edges out of the listed ones that the
blue edge may cross are the red ones. But if the blue edge crossed one of those red
edges, it would have to cross one of them at least twice (in order to still be an edge
from inside 4b to the blue vertex), and that is not allowed in a simple drawing.

Corollary 2. Let D be a simple drawing of the complete bipartite graph K3,n

with sides of the bipartition {g, r, b} and P , and let e be an edge of D. Then D
contains a shooting star containing e.

Proof. Every edge in the complete bipartite graph K3,n is incident to a vertex c ∈
{g, r, b}. By Theorem 3.3.1 there is a shooting star containing all edges incident to
that vertex c.

3.4 Plane spanning subgraphs in outer drawings

In this section we study the problem of finding plane spanning trees in a special
kind of simple drawings of bipartite graphs, namely outer drawings. The term
outer drawings for complete bipartite graphs was introduced in [3]. They are
defined as follows:

Definition 3.4.1. [3] A simple drawing of the complete bipartite graph Km,n in
which all the m vertices of one side of the bipartition lie on the outer boundary of
the drawing is called outer drawing.

We denote by P the side of the bipartition whose (perimeter) vertices must lie
on the outer boundary of the drawing. The other side of the bipartition is denoted
by S (as it contains the surrounded vertices).
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Note that points of S may also lie on the outer boundary but are not required
to.

Theorem 3.4.2. Let D be an outer drawing of the complete bipartite graph Km,n

with sides of the bipartition P and S (where the vertices of P lie on the outer
boundary). Let p be an arbitrary vertex in P . Then D contains a shooting star
rooted at p.

In this section we show three different proofs for Theorem 3.4.2. Proof 1 is
the proof we could show first. It proofs a statement that is slightly stronger than
Theorem 3.4.2. The other two proofs only show Theorem 3.4.2, but are more
compact than Proof 1. The last proof we found, Proof 3, is more elegant than the
other proofs.

3.4.1 Proof 1

In our first proof of Theorem 3.4.2 we revisit the proof of Theorem 3.3.1. We
simplify it for outer drawings and derive a stronger theorem for them. By means
of this stronger result for outer drawings of K3,n we proof the general statement
for outer drawings of Km,n.

Theorem 3.3.1 revisited for outer drawings of Km,n

As outer drawings are simple drawings, Theorem 3.3.1 holds. In the case of
outer drawings the proof for the original statement can be simplified. Moreover, a
slightly stronger statement holds.

Theorem 3.4.3. Let D be an outer drawing of the complete bipartite graph K3,n

with sides of the bipartition {g, r, b} and S, where the vertices of {g, r, b} lie on
the outer boundary. Then for each c ∈ {g, r, b}, D contains a plane subgraph that
contains all edges incident to c. Moreover, for every edge e that does not cross any
edges incident to c, there is a shooting star that contains the edge e and all edges
incident to c.

Proof. We will not repeat the proof of Theorem 3.3.1 in detail. Instead we point
out what new properties hold, what can be concluded from that, and which points
of the original proof can be omitted.

Let us color D as before, and again fix the green edges as the ones we want to
have in the spanning tree. Let us further fix the blue candidate edge as the edge
we want to have additionally in the spanning tree.

As before, if the two candidate edges do not cross, we can use both of them
together with the green edges, and we have the desired plane shooting star.
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If the two candidate edges cross, we need to find a red edge that crosses neither
the blue candidate edge, nor any green candidate edges. To achieve that, we
consider 4r. If there is no vertex in 4r, we can use the red edge incident to the
blue candidate edge. The proof that in that case it cannot be crossed by any green
edge is the same as in the proof of Theorem 3.3.1.

If there is at least one vertex in 4r, then there is at least one edge completely
inside 4r that does not cross any green edges and does not cross the blue candidate
edge. We will show that by using special properties of outer drawings.

The green vertex has to lie on the outer boundary. In particular, it cannot lie
inside 4r or 4b. Thus, we are always in Case 2 of the proof for Theorem 3.3.1. As
before all green edges that lie partly inside the triangle, have to have an endpoint
there.

Figure 3.9: The green vertex has to lie on the outer boundary, that is drawn as
dashed circle.

In outer drawings every red edge incident to a vertex in 4r has to lie completely
within 4r. That is because any such edge may not cross the green edge incident
to it, the red candidate edge, the red edge incident to the blue candidate edge, and
the outer boundary. As marked in Figure 3.10 those lines together with the blue
candidate edge, that it may only cross once, force the red edge to stay completely
within 4r.

As before, we can conclude that there has to be a red edge which crosses no
green edge and does not cross the blue candidate edge. (We again do so by using
Corollary 1 on the complete bipartite graph consisting of the vertices inside 4r, the
red and green edges incident to them, and the red and green vertex.) Thereby we
have found a plane spanning subgraph using all green edges and the blue candidate
edge.

Remark 3.4.4. Theorem 3.4.3 does not hold for general simple drawings.
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Figure 3.10: Any red edge incident to a vertex in 4r is forced by the yellow (parts
of) edges and the yellow part of the outer boundary to stay completely inside 4r.

Proof. In Figure 3.11 no green edge crosses the marked red edge. However, there
cannot be any plane spanning subgraph that contains that red edge and all green
edges, because all blue edges cross at least one of them.

Figure 3.11: Theorem 3.4.3 does not hold in this simple drawing.

Shooting stars in outer drawings of Km,n

Using Theorem 3.4.3 we can now proof that every outer drawing of the complete
bipartite graph Km,n contains a shooting star. First, we introduce an idea of how
we can find such a drawing. Then we proof that this construction does indeed
work.

We proof a generalization of Theorem 3.4.3, making our new Theorem slightly
stronger than Theorem 3.4.2.

Theorem 3.4.5. Let D be an outer drawing of the complete bipartite graph Km,n

with sides of the bipartition P and S (where the vertices of P lie on the outer
boundary). Let p be an arbitrary vertex in P . Then D contains a shooting star



60

rooted at p. Moreover, if H is a plane subgraph of D that contains all edges
incident to v and is a tree, then H can be extended to a plane spanning tree of G.

With Theorem 3.4.5 we can construct a shooting star.
Let D be a given outer drawing of Km,n. Color all vertices of P with col-

ors c1, c2 . . . cm. As before, color the edges incident to them with the same color.
Start with a subgraph H of D that is a tree which contains all edges of color c1.

(There is always at least one such subgraph, namely the one that contains exactly
all edges of color c1.)

Then consider the colors c2 to cm successively. In the step where ci is considered,
add an edge to H that has color ci and does not cross any edges already in H. If
there are several such edges, choose an arbitrary one, and add it to H.

What needs to be shown is, that this edge of color ci that does not cross any
edge already in H truly exists.

Lemma 3.4.6. Let D be an outer drawing of the complete bipartite graph Km,n

with sides of the bipartition P and S (where the vertices of P lie on the outer
boundary). Let p be an arbitrary vertex in P . If every subdrawing of D that is a
simple drawing of Km′,n with m′ ∈ N, m′ < m and contains p has a plane spanning
tree that contains all edges incident to p, then any such tree can be extended to a
plane spanning tree of D.

Proof. As described before we color p with color c1 and the other vertices of P
with colors c2, c3, . . . , cm.

We proof the theorem by induction on m.
Induction basis: For m = 1 all edges are of color c1. They do not cross

because it is a simple drawing. For m = 2 Lemma 3.4.6 follows from Corollary 1,
and for m = 3 it follows from Theorem 3.4.3.

Induction hypothesis: Assume Lemma 3.4.6 is true for Kl,n with 3 ≤ l ≤
m− 1.

Induction step: Let H be a plane tree that is a subgraph of D that contains
all edges of color c1. If H has an edge of every other color, it already is a plane
spanning tree. So assume H does not contain any edge of (at least) one color,
say cm.

Let Dm be the subgraph of D that contains all edges and vertices of D but the
ones of color cm.The graph Dm is Km−1,n, and all its subgraphs are also subgraphs
of D. Thus, Dm fulfills the spanning subgraph requirement of Lemma 3.4.6. The
graph H is a subgraph of Dm. Hence, the induction hypothesis can be applied.
It yields a plane spanning tree of Dm that contains all the edges of H. We call
this tree H1. Since H1 contains all edges of color c1 and is a tree, it can only
contain at most one edge of any other color. Otherwise there would be a cycle (see
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Figure 3.12: If all edges incident to one vertex and at least two edges of another
vertex on the other side of the bipartition are contained in the subgraph, then
there is a cycle.

Figure 3.12). If we can find an edge of color cm in D that does not cross any edge
in H1, we have the desired spanning tree of D.

Let H2 be the subgraph of H1 that contains all its edges but the one of color cm−1.
Let Dm−1 be the subgraph of D that contains all edges and vertices of D but the
ones of color cm−1.The graph D2 is a subgraph of Dm−1. Applying the hypothesis
on H2 yields a plane spanning tree of Dm−1 that contains all edges of H2. Call
it H3.

Consider now the union of H3 and H1. Since both are plane and contain H2,
the edges in H2 do not cross anything in the union. That means that the edges
of color c1 and the candidate edges of color c2 to cm−2 cross no edge in the union.
The only possible crossing is between the candidate edge of color cm−1 and the one
of color cm.

As stated before, we wish to keep the edges of H1 and add another edge of
color cm. If the candidate edge of color cm, that we just found, does not cross the
candidate edge of color cm−1, we are done. Otherwise we proceed similar to the
proof of Theorem 3.3.1, to find another edge of color cm that we can add.

Assume that the candidate edges of color cm and cm−1 cross. Together with the
edges of color cm and cm−1 that are incident to them, they form two triangles. We
call the triangle that has the vertex of color cm on its boundary 4cm , as we did
with 3 colors.

Observe that what was true for green edges in the proof of Theorem 3.3.1, is
now true for the edges of color c1 and for all candidate edges of colors c2 to cm−2.
That is, they are not allowed to cross the candidate edges, they are only allowed to
cross other edges at most once, they cannot go over the outer boundary. Hence,
such edges can only cross the edge of color cm that is incident to the candidate
edge of color cm−1 if they have an endpoint in 4cm .

• If 4cm does not have any vertices inside, then the edge of color cm that is
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incident to the candidate edge of color cm−1 is not crossed by any candidate
edges or any green edges. Consequently, H1 together with that edge is a
plane spanning tree.

• All green edges that lie partly inside 4cm , and all candidate edges that lie
partly inside 4cm have to have an endpoint there.

All vertices inside 4cm have to have edges to the vertex of color cm.
Those edges of color cm have to stay completely inside 4cm . Like in Theo-

rem 3.4.3 and Figure 3.10 (with cm is red, cm−1 is blue, and c1 is green), they are
bounded by the edges that form 4cm , the c1 edge they are incident with, and the
outer boundary.

Consider now the subgraph F that has all the vertices inside 4cm , the vertex
of color c1, the vertex of color c2, and all the vertices whose candidate edges lie
partly inside 4cm as vertex set, and all edges between those vertices as edge set
(as seen in Figure 3.13). It is a complete bipartite graph. The vertex of color cm−1
is not contained in the subgraph, because its candidate edge is a boundary of the
triangle. Hence, F is a simple drawing of Kl,n with l ≤ m−1. Let HF be the graph

Figure 3.13: Here the color cm is red, cm−1 is blue, and c1 is green. We consider
the complete bipartite graph consisting of all vertices in 4cm (the red triangle),
the vertex of color c1 (green), and the vertices whose candidate edges are inside
the triangle (purple and orange).

that contains all edges and vertices in the intersection of H1 and F . In particular,
it contains all edges of color c1 in F and all candidate edges of H1 that lie in F .
Those candidate edges do not cross each other (because the candidate edges of
colors cm−1 and cm are not in F ). Thus, HF is a plane subgraph of F which fulfills
all the requirements of Lemma 3.4.6.

We can use the hypothesis to obtain a plane spanning subgraph that contains
all the edges of color c1 incident to vertices inside the triangle, all the candidate
edges incident to vertices inside the triangle, and an edge of color cm that does not
cross any of them. That edge also crosses no other edge of color c1 and no other
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candidate edge, because it lies completely inside the triangle. Thus, that edge of
color cm together with H1 is a plane spanning tree of D.The graph H is a subgraph
of that spanning tree, as H is a subgraph of H1.

Theorem 3.4.5 follows immediately from Lemma 3.4.6.

Proof. We proof Theorem 3.4.5 via induction on m, using Corollary 1 and Theo-
rem 3.4.3 as base and Lemma 3.4.6 as induction step.

Induction basis: For simple drawings of K1,n the edges incident to p (which
are all edges) are the spanning subgraph. For K2,n and K3,n the Theorem follows
immediately from Corollary 1 and Theorem 3.4.3.

Induction hypothesis: Theorem 3.4.5 is true for outer drawings of any Kl,n

with l ≤ m− 1 .
Induction step: Let D be an outer drawing of Km,n. It follows from the

induction hypothesis, that D fulfills the requirements of Lemma 3.4.6. Hence,
any tree that is a plane spanning tree and contains all edges incident to p can be
extended to a plane spanning tree of D. The subgraph that has the vertex p and
all the vertices of the other side of the bipartition as vertex set, and all the edges
incident to p as edge set, is such a tree. Thus, it can be extended and therefore a
plane spanning tree exists.

Remark 3.4.7. Theorem 3.4.5 and Lemma 3.4.6 do not hold in general simple draw-
ings.

Proof. Figure 3.11 from Remark 3.4.4 is not an outer drawing, but fulfills all other
requirements of Theorem 3.4.5 and Lemma 3.4.6. The subgraph that consist of all
green edges and the marked red edge is a plane subgraph that is a tree and cannot
be extended to a plane spanning subgraph of D.

3.4.2 Proof 2

When revisiting the first proof and having a careful look at Figure 3.9 we can find
another proof for Theorem 3.4.5.

Proof. We follow the proof of Lemma 3.4.6 until we consider the crossing of
candidate edges cm and cm−1. As stated before, we are finished if they do not cross.
So let us consider the crossing.

If the two edges cross, then the part of the candidate edge of color cm that goes
from the vertex of color cm to the crossing, and the part of the candidate edge of
color cm−1 that goes from that crossing to the vertex of color cm−1 split the area
bounded by the outer boundary into two areas. The vertices of S that are incident
to the candidate edges of color cm and cm−1 lie in one of those areas. We call the
other area the outer triangle. It can be seen in Figure 3.14.
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Figure 3.14: The candidate edges together with the outer boundary form a triangle
whose bounds are marked in yellow.

Claim 3.4.8. Either the vertex p and all the vertices of S lie inside the outer
triangle or none of those vertices lie inside the outer triangle.

Proof of claim: Any edge that lies partly inside the outer triangle has to either lie
completely inside it or cross a candidate edge of color cm or cm−1. The edges of
color c1 cannot cross any candidate edges.

Thus either p and all vertices incident to edges of color c1 lie inside the outer
triangle or all of them lie outside the outer triangle. As D is complete bipartite,
all vertices in S are adjacent to p and therefore incident to edges of color c1. Since
the vertices of S that are incident to the candidate edges of color cm and cm−1 do
not lie in the outer triangle, it follows that neither p nor the vertices of S can lie
inside the outer triangle.

The vertices of P that are not p have candidate edges that do not cross the
candidate edge of color cm or cm−1. Therefore, the candidate edges either lie
completely inside the triangle or completely outside of the triangle. Since there is
no vertex of S inside the triangle, they cannot lie completely inside. Thus, they
have to lie completely outside. Hence, the vertices of P have to lie outside the
outer triangle as well. �

Assume that the candidate edges of colors cm−1 and cm cross. It follows from
Claim 3.4.8 that they form an outer triangle that is empty. That means that there
is one direction in which we can follow the outer boundary from cm−1 to cm and
encounter no vertex.

We look at the root of our shooting star, vertex p (which is colored in c1).
Starting in p we follow the outer boundary clockwise. We colour the first vertex
in P that we encounter with color cm−1. We again start in p and follow the outer
boundary counter-clockwise. We colour the first vertex in P that we encounter with
color cm. The side of the bipartition P contains at least four vertices. (The cases
in which P contains less vertices are the induction basis.) This together with our



65

choice of coloring implies that we cannot follow the outer boundary from cm−1 to cm
in any direction without encountering vertices in P . (In particular, we encounter p
if we go counter-clockwise and all other vertices of P if we go clockwise.) Hence,
the candidate edges of colors cm and cm−1 cannot cross.

3.4.3 Proof 3

This final proof works inductively as well. But it constructs the shooting star in a
smarter way, leading to a shorter and more elegant proof. This proof has also been
published in [2].

Proof. First, we label the vertices in P . We start in p1 := p and go clockwise along
the outer boundary and denote the vertices of P by p2 to pm following the order
in which they occur. Let T1 be the subgraph that is induced by all edges incident
to p1. Notice that T1 is a plane tree. We will add edges to T1 until it becomes a
spanning tree. We do so inductively by first adding an edge incident to p2, then an
edge incident to p3 and so on until we add an edge incident to the vertex pm. We
denote by Ti the tree that we get by adding to Ti−1 the selected edge incident to pi
for 2 ≤ i ≤ m. We will show that it is possible to add edges such that Ti is always
plane. After adding the last edge the statement then follows.

In the first step, for T2, we need to find an edge that is incident to p2 and does
not cross any edge incident to p. We know from Theorem 3.1.2 that there is at
least one such edge. We add that edge to T1 and get a plane tree T2. For Ti we
need to find an edge that is incident to pi and does not cross any of the edges
of Ti−1. We denote by ei−1 the edge in Ti−1 that is incident to pi−1 and by si−1
the vertex in S that ei−1 is incident to. We also denote the edge that is incident
to si−1 and p by ep. See Figure 3.15 for an illustration. The part of the boundary
that goes from p clockwise until pi−1 together with the edges ei−1 and ep encloses a
region that we call R1. The vertices p2 to pi−1 all lie on that part of the boundary,
because of the way we labeled them. We call the rest of the area inside the outer
boundary R2.

Claim 3.4.9. All edges in Ti−1 that are not incident to p lie completely inside R1.

Proof of claim: Since the boundary of R1 consists of edges in Ti−1 and the outer
boundary, all edges of Ti−1 that lie partly inside R2 have to lie completely inside
it. The edges in Ti−1 that are not incident to p are incident with the vertices p2
to pi−1. As they have to lie on the part of the outer boundary that is also part of
the boundary of R1, the edges incident to these vertices have to lie partly inside R1.
Thus these edges have to lie completely inside R1. �

Let us now consider the region R2. The subdrawing induced by p, pi, and
all vertices of S that lie in R2 is a simple drawing of K2,n′ with n′ ∈ N. By
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p

R1

R2

pi

pi−1

Figure 3.15: The edges ep and ei−1 together with the outer boundary form two
regions.

Theorem 3.1.2 there is an edge incident to pi that does not cross any edges incident
to p. This edge can neither cross the outer boundary nor ep and it can only
cross ei−1 once. Since the edge has both endpoints in R2, it follows that the edge
has to lie completely in R2. From Claim 3.4.9 it follows that it does not cross any
of the edges of Ti−1 that are not incident with p. As it doesn’t cross any edges
incident with p either, it follows that it doesn’t cross any of the edges of Ti−1. Thus,
we can add that edge and obtain a plane tree Ti. We continue to do so until we
added an edge for every vertex in P . The plane spanning tree Tm is a shooting
star.

3.5 Other drawings

3.5.1 Straight-line drawings

Theorem 3.5.1. Let D be a straight-line drawing of the complete bipartite
graph Km,n and let v be an arbitrary vertex. Then D contains a shooting star rooted
at v.

Proof. If one side of the bipartition has cardinality 2 , the theorem follows from
Corollary 1. So we assume that both sides of the bipartition contain at least three
vertices. Let V be the side of the bipartition that contains v and let U be the other
side of the bipartition.

We extend the edges incident to v to infinity such that v is still an endpoint of
the extended lines. Those lines part the plane into sections. We split those sections
into two using the angle bisectors between two edges that are following each other
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in the rotation around v. (An angle bisector divides the angle into two angles with
equal measures.) This construction can be seen in Figure 3.16. The new sections
are bounded by a bisector on one side and the extension of an edge on the other
side. All sections have exactly one vertex of U on their boundary. By construction
the angle around v of any section has an angle of degree at most 180.

For our shooting star, we add all edges incident to v. We need to connect the
vertices in V . Let w be a vertex in V . It can lie inside one section, or on the
boundary of two section. Let S be a section that w lies inside of or on the boundary
of. We add the edge connecting v to the vertex on the boundary of S.

As the drawing uses only straight lines, these edges lie within one section and
therefore cannot cross any edges outside its section. By our construction all edges
within one section are connected with the same vertex. Thus they cannot cross any
other edges within the same section. Therefore, we have obtained a shooting star.

v

Figure 3.16: A shooting star in a straigt-line drawing of K7,5, and our construction
to find the shooting star. The vertices in U are black, empty circles. The vertex v
is a filled blue circle. The other vertices in V are circles that are filled in other
colors. The edges are colored in the same color as the vertex in V they are incident
with. The section bounds obtained by extending edges are drawn in dashed, black
lines. The section bounds obtained by angle bisectors are drawn in dotted, black
lines.

3.5.2 2-page book drawings

In this subsection we look at a special type of simple drawing called 2-page book
drawing.

Definition 3.5.2. [1] A simple drawing where all vertices lie on a line, called the
spine, and every edge lies completely on one side of the spine is called 2-page book
drawing.

It is possible that different edges lie on different sides of the spine, but no edge
may lie on both sides and thus no edge can cross the spine.
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Theorem 3.5.3. Let D be a 2-page book drawing of the complete bipartite
graph Km,n and let v be an arbitrary vertex. Then D contains a shooting star rooted
at v.

Proof. We denote the side of the bipartation that contains v as V and the other
side of the bipartition U . Again we start by adding all edges incident to v. We
then have to add edges for the other vertices in V . Let w be a vertex in V . There
are three possibilities where w can lie:

1. Case 1 : There are vertices in U between v and w. Let u be the closest of
those vertices with respect to w. Closest here means that there are no other
vertices in U between u and w. Then we add the edge joining w and u. The
yellow, and the purple vertex in Figure 3.17 are examples for that case.

2. Case 2 : There are no vertices in U between w and v, but there are vertices
in U on the same side of v as w. Then we add an edge joining w and the
closest of those vertices with respect to w. The red, and the blue vertex in
Figure 3.17 are examples for that. (If w lies right of v, that means we look
at the vertices in U that lie right of v as well. Then we choose the leftmost
of those vertices.)

3. Case 3 : There are no vertices in U between w and v, and no vertices in U
lie on the same side of v as w. Then we add the edge joining w and the
vertex in U that is farthest away from w. The gray, and the brown vertex of
Figure 3.17 are examples for that. (If w lies right of v that would mean we
add the edge joining w and the leftmost vertex in U .)

We proof that this construction works by means of an observation:

Claim 3.5.4. In a 2-page book drawing two edges can only cross if one endpoint
of one of the edges lies in between the endpoints of the other edge and the other
endpoint does not.

Proof of claim: Let a and b be adjacent vertices joined by an edge e1. Let e2 be
an edge that crosses e1. We denote by A the area that is enclosed by e1 and the
spine. In order for the edges to cross, e2 has to lie partly in A. As the drawing is
simple, e1 and e2 may only cross once. By the definition of 2-page book drawings,
the spine may not be crossed. Thus one vertex incident to e2 has to lie inside A
and the other vertex has to lie outside A. �

In Case 1 and Case 2 only vertices in V can lie between w and the vertex it is
connected to in the shooting star. By our construction these vertices are connected
to the same vertex as w and in a simple drawing such edges cannot cross.
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v

Figure 3.17: The shooting star rooted at the (green) vertex v that is contained of
a 2-page book drawing.

In Case 3 the only vertices that do not lie between w and the vertex it is
connected to, are vertices in V . By our construction these vertices are connected
to the same vertex as w and in a simple drawing such edges cannot cross.

3.5.3 Circular drawings

Finally, we look at a special kind of simple drawing that is very closely related to
outer drawings.

Definition 3.5.5. A simple drawing of the complete bipartite graph Km,n, in
which the m vertices of one side of the bipartition lie on a closed curve that is not
crossed by any edges, the vertices of the other side of the bipartition do not lie on
the curve is called a circular drawing.

We denote by P the side of the bipartition whose (perimeter) vertices must lie
on the closed curve.

Theorem 3.5.6. Let D be a circular drawing of the complete bipartite graph Km,n,
and let v be a vertex in P . Then D contains a shooting star rooted at v.

Proof. We can construct a spanning tree as we did with outer drawings. We add all
edges incident to v. The only vertices that are not yet connected with the tree have
to lie on the curve. We connect them in the same way as we connected vertices
on the boundary of the outer drawings. An example for such a spanning tree is
Figure 3.18.
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v

Figure 3.18: The shooting star rooted at the (green) vertex v that is contained of
a circular drawing.

3.6 Plane spanning trees in Km,n

The question of whether every simple drawing of a completely bipartite graph
contains a plane spanning tree remains open. It is not even clear for simple drawings
of K4,n.

However, as it is true for all special drawings we looked at as well as for
simple drawings of K2,n and K3,n it seems plausible that all simple drawings
of Km,n contain plane spanning trees. In fact, after working with the drawings and
trying long and hard to find a counter example, we strongly believe that this is the
case.

Conjecture 3.6.1. Let D be a simple drawing of the complete bipartite graph Km,n.
Then D contains a plane spanning tree.

We also think it is highly possible that all simple drawings of Km,n contain
shooting stars.

Conjecture 3.6.2. Let D be a simple drawing of the complete bipartite graph Km,n.
Then D contains a shooting star.

It might even be, that an arbitrary vertex can be chosen as root, and there is a
shooting star rooted at that vertex.

Conjecture 3.6.3. Let D be a simple drawing of the complete bipartite graph Km,n,
and let v be a vertex of D. Then D contains a shooting star rooted at v.

Note that Conjecture 3.6.3 would include Conjecture 3.6.2, which would include
Conjecture 3.6.1.



Chapter 4

Conclusion

We considered questions about simple drawings beyond the complete graph. A
particular focus was on the complete bipartite graph. We were interested in
crossings, number of crossings, rotation systems, and plane spanning trees.

Pach and Tòth showed that rotation systems of simple drawings of complete
graphs determine which pairs of edges cross [17]. We started by studying the
question: What can the rotation system tell us about simple drawings beyond the
complete graph? We presented our research on rotation systems in Chapter 2.

We showed that the rotation system of simple drawings of graphs with only one
edge less than compete graphs (that means

(
n
2

)
− 1 edges) determines the number

of crossings. Then we proved that in graphs with n ≥ 5 vertices and a minimal
degree of at least (n− 2) the rotation system determines the number of crossings as
well. Additionally, we showed examples of a graph with minimal degree of (n− 3),
and a graph with only 4 vertices (but minimal degree of 2), where this no longer
holds.

Then we turned to complete bipartite graphs. We showed that the rotation
system of simple drawings of the complete bipartite graph K2,3 determines the
parity of the number of crossings. We looked at the question which rotation system
leads to an even number of crossings and which to an odd. Then we used that
result to present a proof that drawings of K3,3 cannot be plane. We recalled that
if n and m are fixed and both odd, all simple drawings of the complete bipartite
graph Km,n have the same parity of number of crossings. Then we showed that
containing the complete bipartite graph K2,3 as subgraph is not sufficient for the
rotation system to carry the information about the parity. We showed that even
graphs with five vertices that contain the complete bipartite graph K2,3 and have
only two or three edges less than K5 can have simple drawings which have the
same rotation system, but different parities of their number of crossings.

Our research on crossings in complete bipartite graphs led us to wish for a
plane structure that we can use to divide the drawings and to start drawing them.
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This motivated the question we studied in Chapter 3: Do all simple drawings of
complete bipartite graphs contain plane spanning trees?

We answered that question to the affirmative for some types of simple drawings
of complete bipartite graphs. We proved that simple drawings of the complete
bipartite graphs K2,n and K3,n contain shooting stars. Furthermore, we showed
for special types of simple drawings that they contain shooting stars. Those
simple drawings were outer drawings, straight-line drawings, 2-page book drawings,
and circular drawings of the complete bipartite graph Km,n.

We conjectured that every simple drawing of the complete bipartite graph
contains a shooting star. However, it is still an open problem whether every
simple drawing of the complete bipartite graph contains even a plane spanning
tree.
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Appendix A

Program to check equivalences

This is the code of the program that we use in Section 2.3.1 to find equivalent
rotation systems. In the proof of Theorem 2.3.2 from Section 2.3.1, we obtain
the rotation systems of all non-isomorphic drawings of graphs with five vertices
and minimal degree 3. We can represent those rotation systems with matrices of
the standard form explained in the proof. These standard form matrices are the
matrices of the code. The order in which the matrices are written in the code is the
order in which they are listed in the table of the proof. Rotation systems that are
identical are only written once in the code. (It is obvious that two identical rotation
systems are equivalent to each other.) The output of the program indicates which
of the matrices represent equivalent rotation systems, and which permutations we
can use to get from one rotation system to another. More details on the program
can be found in Section 2.3.1.

import numpy
import i t e r t o o l s

perms = [ ( x + ( 5 , ) ) \
f o r x in i t e r t o o l s . permutat ions ( range (1 , 5 ) ) ]

de f a l l p e rms (m0) :
””” a l l p e rms r e tu rn s a l l i somorphic \

r e p r e s e n t a t i o n s o f m0.”””
f o r p in perms :

m = numpy . matrix ( [ p [ x−1] f o r x in \
m0. f l a t ] ) . reshape (m0. shape )

m = r e p a i r (m)
y i e l d (m, p)
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de f r epa i r r ow ( row , sk ip ) :
””” r epa i r r ow r o t a t e s the enumeration o f the neighbours ,

s t a r t i n g with the lowest one .”””
i = numpy . argmin ( row [ sk ip : ] ) + sk ip
re turn row [ : sk ip ] + row [ i : ] + row [ sk ip : i ]

de f r e p a i r (m) :
””” r e p a i r f i x e s the matrix m \

so that i t i s g iven in standard form ”””
f o r i in range ( 4 ) :A

m[ i ] = repa i r r ow ( l i s t (m[ i ] . f l a t ) , 1)
m[ 4 ] = repa i r r ow ( l i s t (m[ 4 ] . f l a t ) , 0)
m[ : 4 ] = m[ numpy . a r g s o r t (m[ : 4 , 0 ] . f l a t ) ] # s o r t rows
re turn m

ms = [

( ” 1 . 1 . 1 ” , [
[ 1 , 2 , 5 , 4 ] ,
[ 2 , 1 , 3 , 5 ] ,
[ 3 , 2 , 4 , 5 ] ,
[ 4 , 1 , 5 , 3 ] ,
[ 1 , 2 , 3 , 4 ] ,

] ) ,

( ” 1 . 2 . 2 ” , [
[ 1 , 2 , 5 , 4 ] ,
[ 2 , 1 , 3 , 5 ] ,
[ 3 , 2 , 5 , 4 ] ,
[ 4 , 1 , 5 , 3 ] ,
[ 1 , 2 , 4 , 3 ] ,

] ) ,

( ” 1 . 2 . 3 ” , [
[ 1 , 2 , 5 , 4 ] ,
[ 2 , 1 , 3 , 5 ] ,
[ 3 , 2 , 5 , 4 ] ,
[ 4 , 1 , 5 , 3 ] ,
[ 1 , 3 , 2 , 4 ] ,

] ) ,

( ” 1 . 2 . 4 ” , [
[ 1 , 2 , 5 , 4 ] ,
[ 2 , 1 , 3 , 5 ] ,
[ 3 , 2 , 5 , 4 ] ,
[ 4 , 1 , 5 , 3 ] ,
[ 1 , 3 , 4 , 2 ] ,

] ) ,

( ” 1 . 2 . 5 ” , [
[ 1 , 2 , 5 , 4 ] ,
[ 2 , 1 , 3 , 5 ] ,
[ 3 , 2 , 5 , 4 ] ,
[ 4 , 1 , 5 , 3 ] ,
[ 1 , 4 , 2 , 3 ] ,

] ) ,

( ” 1 . 3 . 6 ” , [
[ 1 , 2 , 5 , 4 ] ,
[ 2 , 1 , 3 , 5 ] ,
[ 3 , 2 , 5 , 4 ] ,
[ 4 , 1 , 3 , 5 ] ,
[ 1 , 4 , 3 , 2 ] ,

] ) ,

( ” 1 . 4 . 7 ” , [
[ 1 , 2 , 5 , 4 ] ,
[ 2 , 1 , 5 , 3 ] ,
[ 3 , 2 , 4 , 5 ] ,
[ 4 , 1 , 3 , 5 ] ,
[ 1 , 4 , 3 , 2 ] ,

] ) ,

( ” 2 . 1 . 8 ” , [
[ 1 , 2 , 5 , 4 ] ,
[ 2 , 1 , 5 , 3 ] ,
[ 3 , 2 , 4 , 5 ] ,
[ 4 , 1 , 3 , 5 ] ,
[ 1 , 2 , 4 , 3 ] ,

] ) ,

( ” 2 . 2 . 9 ” , [
[ 1 , 2 , 5 , 4 ] ,
[ 2 , 1 , 5 , 3 ] ,
[ 3 , 2 , 5 , 4 ] ,
[ 4 , 1 , 5 , 3 ] ,
[ 1 , 2 , 4 , 3 ] ,

] ) ,



81

( ” 2 . 2 . 1 0 ” , [
[ 1 , 2 , 5 , 4 ] ,
[ 2 , 1 , 5 , 3 ] ,
[ 3 , 2 , 5 , 4 ] ,
[ 4 , 1 , 5 , 3 ] ,
[ 1 , 4 , 2 , 3 ] ,

] ) ,

( ” 2 . 3 . 1 1 ” , [
[ 1 , 2 , 5 , 4 ] ,
[ 2 , 1 , 5 , 3 ] ,
[ 3 , 2 , 4 , 5 ] ,
[ 4 , 1 , 5 , 3 ] ,
[ 1 , 2 , 3 , 4 ] ,

] ) ,

( ” 2 . 4 . 1 2 ” , [
[ 1 , 2 , 4 , 5 ] ,
[ 2 , 1 , 5 , 3 ] ,
[ 3 , 2 , 4 , 5 ] ,
[ 4 , 1 , 5 , 3 ] ,
[ 1 , 3 , 4 , 2 ] ,

] ) ,

( ” 2 . 4 . 1 3 ” , [
[ 1 , 2 , 4 , 5 ] ,
[ 2 , 1 , 5 , 3 ] ,
[ 3 , 2 , 4 , 5 ] ,
[ 4 , 1 , 5 , 3 ] ,
[ 1 , 4 , 2 , 3 ] ,

] ) ,

( ” 2 . 4 . 1 4 ” , [
[ 1 , 2 , 4 , 5 ] ,
[ 2 , 1 , 5 , 3 ] ,
[ 3 , 2 , 4 , 5 ] ,
[ 4 , 1 , 5 , 3 ] ,
[ 1 , 3 , 2 , 4 ] ,

] ) ,

( ” 2 . 4 . 1 5 ” , [
[ 1 , 2 , 4 , 5 ] ,
[ 2 , 1 , 5 , 3 ] ,
[ 3 , 2 , 4 , 5 ] ,
[ 4 , 1 , 5 , 3 ] ,
[ 1 , 2 , 4 , 3 ] ,

] ) ,

( ” 3 . 1 . 1 6 ” , [
[ 1 , 2 , 5 , 4 ] ,
[ 2 , 1 , 3 , 5 ] ,
[ 3 , 2 , 4 , 5 ] ,
[ 4 , 1 , 5 , 3 ] ,
[ 1 , 2 , 4 , 3 ] ,

] ) ,

( ” 3 . 1 . 1 7 ” , [
[ 1 , 2 , 5 , 4 ] ,
[ 2 , 1 , 3 , 5 ] ,
[ 3 , 2 , 4 , 5 ] ,
[ 4 , 1 , 5 , 3 ] ,
[ 1 , 4 , 2 , 3 ] ,

] ) ,

( ” 3 . 1 . 1 8 ” , [
[ 1 , 2 , 5 , 4 ] ,
[ 2 , 1 , 3 , 5 ] ,
[ 3 , 2 , 4 , 5 ] ,
[ 4 , 1 , 5 , 3 ] ,
[ 1 , 3 , 2 , 4 ] ,

] ) ,

( ” 3 . 1 . 1 9 ” , [
[ 1 , 2 , 5 , 4 ] ,
[ 2 , 1 , 3 , 5 ] ,
[ 3 , 2 , 4 , 5 ] ,
[ 4 , 1 , 5 , 3 ] ,
[ 1 , 3 , 4 , 2 ] ,

] ) ,

( ” 3 . 2 . 2 0 ” , [
[ 1 , 2 , 5 , 4 ] ,
[ 2 , 1 , 5 , 3 ] ,
[ 3 , 2 , 4 , 5 ] ,
[ 4 , 1 , 5 , 3 ] ,
[ 1 , 4 , 3 , 2 ] ,

] ) ,

( ” 3 . 3 . 2 1 ” , [
[ 1 , 2 , 5 , 4 ] ,
[ 2 , 1 , 3 , 5 ] ,
[ 3 , 2 , 5 , 4 ] ,
[ 4 , 1 , 5 , 3 ] ,
[ 1 , 4 , 3 , 2 ] ,

] ) ,

]

# generate g l o b a l mapping o f a l l p o s s i b l e matr i ce s and the
# i d s ( and perms ) that l ead to that matrix
seen = {}

”””mapping from matrix to a s e t o f i d s \
( i n c l u d i n g the perm)”””

f o r id , m0 in ms :
f o r m, p in a l l p e rms (numpy . matrix (m0 ) ) :

key = s t r (m)
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l s t = seen . get ( key )
i f not l s t :

l s t = d i c t ( )
l s t [ id ] = p
seen [ key ] = l s t

# pr in t the g l o b a l mapping
f o r key , l s t in seen . i t e r i t e m s ( ) :

p r i n t ( key , l s t )

# f i n d a l l d u p l i c a t e s
dupl = s e t ( )
f o r key , l s t in seen . i t e r i t e m s ( ) :

i f l en ( l s t ) > 1 :
dupl . add ( ’ ’ . j o i n ( so r t ed ( l s t ) ) )

# pr in t a l l d u p l i c a t e s
f o r x in dupl :

p r i n t ( ’ − %s ’ % x )


