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Abstract

The topic of this thesis is the auxiliary master equation approach (AMEA), which is fur-
ther developed and applied to study nonequilibrium many-body effects in the interacting
resonant level model (IRLM) and the Hubbard model. AMEA is a numerical approach
to simulate quantum impurity problems out of equilibrium in a non-perturbative and sys-
tematically improvable manner. The main idea is to embed the interacting region of the
original problem into an auxiliary open quantum system of Lindblad form with additional
bath sites, which mimics the physical situation as close as possible. This mapping to an
auxiliary system is most effective when the free parameters of the bath sites are optimized
with respect to some suitable cost-function measuring the deviation between the auxiliary
and physical situation. After the mapping is performed, the resulting many-body Lindblad
system has to be solved. Since the latter explicitly describes only the dynamics of a finite
number of degrees of freedom, the auxiliary system can be solved by numerical many-body
techniques. One of the main strengths of AMEA is that it allows to numerically simu-
late the auxiliary system for arbitrarily long times. This allows not only to reliably reach
the steady state but also to disturb it and measure the response, which yields accurate
nonequilibrium steady state Green’s functions (NEGF’s). This property makes AMEA a
suitable impurity solver to be used in nonequilibrium steady state dynamical mean-field
theory (DMFT), which is a self-consistent approximation scheme to investigate interacting
lattice systems. Employing AMEA as such, we study the effect of impact ionization on
the photo-current across a Mott insulating layer modeled by a periodically driven Hub-
bard model and discuss its relation to the idea of Mott photovoltaics. Outside DMFT, we
apply AMEA to the self-dual IRLM, where an analytic solution of the I/V -characteristic
is known, to investigate the relation of its negative differential conductance to the NEGF’s
of the model and benchmark technical developments. In particular, we test an alternative
solution strategy for the auxiliary open quantum system, namely stochastic wave-functions
(SWF’s). In contrast to the previously used technique of superfermions, where the density
matrix is “purified” by doubling the degrees of freedom, the density matrix is unraveled
in a stochastic manner, thereby circumventing the need to introduce additional degrees of
freedom.

This dissertation is conducted in a cumulative manner and therefore build around a
series of publications. As is customary for this style of thesis, we first provide a com-
prehensive introductory part providing background on the physical applications that were
studied and discussing the main findings. In this first chapter, we also review AMEA pre-
senting technical details of the developments and complementing them with material and
considerations not included in the respective publications. After this all-encompassing first
chapter, the individual publications are presented, summarized and discussed with respect
to contributions of the different authors.



Key words: Nonequilibrium Green’s functions, nonequilibrium impurity solver, Floquet
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Chapter 1

Introduction

Many complex phenomena arising in condensed matter systems are driven by interactions
present between the constituents, such as electrons, phonons and other quasi-particles.
Examples are (high Tc-) superconductivity and the related Josephson effect, magnetism,
ferroelectricity, the Kondo effect[7] and Mott insulators[8] to name a few. To understand
these phenomena, theoreticians have devised approximate models which often capture the
relevant physics. Representatives are the famous Hubbard model and variants thereof, like
the Hubbard-Holstein, Bose-Hubbard and extended Hubbard model as well as spin systems
like the Kondo, Heisenberg and Ising model. Technical applications of such many-body
effects, like the Superconducting Quantum Interference Device (SQUID), which is based
on the Josephson effect, for instance, are naturally operated in nonequilibrium situations.
Further, studying these systems beyond the linear response opens the way to even richer
physics featuring genuine nonequilibrium effects like dynamical phase transitions where the
system undergoes a phase transition as some parameter inducing the nonequilibrium situ-
ation is changed. While the theoretical foundations for the description of nonequilibrium
quantum systems were already laid in the sixties[9, 10], the growing field of nonequilibrium
many-body physics has developed mainly over the last two decades. On the theoretical
side, this is because, in contrast to equilibrium, one cannot rely on thermodynamics prin-
ciples for simplification but one has to resolve the full quantum dynamics instead. Since
the analytic treatment of the latter is very limited, except for integrable models, one has to
rely on computer simulations, which became feasible only with the development of modern
computers and cluster facilities. On the experimental side, the realization of these theoret-
ical models under clean and controlled conditions became possible around the same time
with the aid of ultracold atomic gases. For instance, the realization of the Hubbard model
in the Mott regime was reported in 2008[11, 12].

In nonequilibrium one can distinguish two cases. In the first, one is interested in the
correlations between some time-evolving state and the initial condition, which is referred
to as initial correlations. For example, this could be transient dynamics or the long time
behavior after a quantum quench, which is of great interest for the fundamental question
of thermalization in closed many-body quantum systems. This thesis is concerned with
the second case, where one is not interested in initial correlations, but the nonequilibrium
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steady state forming in the presence of dissipation. The simplest and one of the most
intensively studied class of many-body systems that can give rise to such steady states are
so-called quantum impurity problems, where a single interacting site is in contact with some
non-interacting environment. These systems, for example, allow to study the Kondo effect
in a nonequilibrium setting[13–17] or fundamental principles of information theory, like
the entropy production in nonequilibrium steady states[18]. Apart from being interesting
by themselves, they constitute the backbone of nonequilibrium DMFT[19] which allows to
treat local correlations in extended systems in a non-perturbative manner. While originally
developed for the equilibrium case[20], DMFT has been extended to nonequilibrium[19] and
applied to study especially the Hubbard model out of equilibrium[21–33].

In recent years, the area of nonequilibrium steady states of many-body systems has
developed a new branch with increasing attention in periodically driven systems, so-called
(interacting) Floquet systems. The field is driven by the idea of Floquet engineering, where
the additional band structure induced by the periodic drive is exploited to control material
properties or create new states of matter by realizing effective Hamiltonians not accessible
in static systems. The adaptation of nonequilibrium DMFT to Floquet systems[34] opened
the way to theoretically simulate the interplay of strong correlations and periodic driving
in extended systems[21, 27, 28, 31, 35–39], revealing for instance enhanced high harmonic
generation in Mott insulators[38].

This thesis: The success of nonequilibrium DMFT on the model level, recently ex-
perimentally verified also for the periodically driven Hubbard model[40], motivates the en-
deavor to treat more realistic systems as in equilibrium. In equilibrium the DFT+DMFT[41]
approach , where a DMFT calculation is carried out on top of DFT, is well established
to treat strongly correlated materials on an ab-initio basis. The key point is, that multi-
ple orbitals have to be considered in order to reliably treat such realistic materials which
on the technical side demands efficient and accurate impurity solvers applicable to the
multi-orbital case.

As mentioned above, this thesis concentrates on nonequilibrium steady states. Besides
various approaches to address a nonequilibrium impurity problem, see Sec.2.3 for a list of
references, a systematically improvable and non-perturbative method which directly targets
the steady state is AMEA[16, 42, 43]. In this thesis, we further develop AMEA[1, 2], paving
the way to be used as multi-band steady state impurity solver in the future. We apply
AMEA as impurity solver within nonequilibrium steady state [3, 4] and Floquet DMFT,
where we study the effect of impact ionization on the photo-current across a periodically
driven Mott insulator[5]. Further, we apply AMEA to a multi-site impurity model, namely
the IRLM, to benchmark the new developments[2] and complement studies on the NDC
in the IRLM by calculating the NEGF in depence of the bias voltage[6].

Outline: The present thesis is written in a cumulative manner and is organized in three
chapters. The first chapter introduces the two physical applications that were studied
(Sec.1.1) and presents the technical developments within AMEA (Sec.1.2). The second
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chapter constitutes the main part of this thesis and is devoted to the conducted publi-
cations. A summary and outlook of the results and advances is presented in the final
chapter.
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1.1 Physical applications

During the course of this thesis we studied two physical situations. Here, we present
background on the corresponding fields together with an overview of the previous literature
and highlight the contributions within this thesis. We note that naturally, and for the sake
of readability and self-containment of this section, there is a substantial overlap with the
introductory parts of the corresponding publications[5, 6], attached in Sec.2.2 and Sec.2.4.

1.1.1 Photovoltaic effect and impact ionization in Mott insula-
tors

The photovoltaic effect is the conversion from radiative to electrical energy. It is based on
the principle of the photoelectric effect where a photon is absorbed and some electronic
system excited. Its break through in applications was achieved by the use of semiconductors
and corresponding devices are nowadays referred to as “conventional” in contrast to other
devices based on organic materials[44] for instance.

Let us consider a direct bandgap semiconductor with some bandgap ∆ and conduc-
tion(valence) bandwidth Wc(Wv). To excite an electron from the filled valence band into
the conduction band, the photon energy, εγ, must fulfill ∆ ≤ εγ ≤ ∆ +Wc +Wv. Since the
time scale for the separation of the excited electron-hole pair in some (internal or exter-
nal) electric field, is much larger than the scattering time with other degrees of freedom,
mostly phonons, the excited electron(hole) has typically relaxed to the bottom(top) of the
conduction(valence) band before contributing to the photo current. Thus, only the gap
energy is converted into electrical energy and the excess energy, εγ − ∆, is dissipated as
heat thereby limiting the efficiency in applications. For instance, this wasting of the excess
energy, together with other factors, leads to the famous Shockley-Queiser limit for the
efficiency of conventional solar cells[45].

A spectral gap is also present in a so-called Mott insulator. Such a state exists in the
strongly correlated regime of the Hubbard model and is realized in transition metal oxides.
In contrast to semiconductors, the gap is not a conventional bandgap, but it is induced by
the strong electronic correlations which split a single band into the so-called LHB and UHB,
that, in the present context, can be seen in analogy to the valence and conduction band in
a semiconductor. Thus, the same scenario for energy conversion, as described above, holds
true with one key difference. Due to the strong electronic correlations the electron-phonon
coupling in such systems is usually much weaker than the electron-electron interactions.
This means, that an excited electron, referred to as doublon in a Mott insulator, relaxing
to the bottom of the UHB is likely to undergo electronic scattering, if possible, keeping the
excess energy in the electronic system, thereby increasing the efficiency of the photovoltaic
effect in comparison to semiconductors. For instance, an excited high energy electron
with an energy1 εe, higher than twice the gap energy2, εe ≥ 2∆, is expected to “impact

1measured with respect to the top of the LHB.
2For this, the bandwidth of the UHB must fulfill WUHB ≥ 2∆.
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ionize” an electron from the LHB turning into two low energy doublons near the bottom
of the UHB3. This basic process is called impact ionization, see Fig.1 in Ref.[5] attached in
Sec.2.2, and constitutes the leading order inter band electronic scattering process for the
decay of a high energy doublon or hole.

At this point, we want to note that the idea of enhancing the photovoltaic efficiency
by increasing the effect of impact ionization is an old concept[47] and it is pursued also in
other classes of materials[48, 49].

Previous works on Mott photovoltaics: The photovoltaic effect in a Mott insulator,
observed experimentally in Refs.[50, 51], was first discussed theoretically by considering the
strong coupling limit of the Hubbard model in a pn-junction setup. It was found that the
energy conversion efficiency in narrow gap Mott insulators can be significantly enhanced
by impact ionization acting on time scales shorter than alternative decay mechanisms[52].
This work was followed by ab initio based studies of transition metal oxides reporting a
direct bandgap in the optical range and an internal electric field gradient forming in a pn-
junction setup of LaVO3 transition metal oxides heterostructures[53] as well as a greatly
enhanced impact ionization rate in the M1-phase of VaO2

4 compared to silicium within the
solar spectrum[54]. Later on, the carrier multiplication via impact ionization in the M1-
phase of VaO2 was verified experimentally[55] and several experiments where conducted
to investigate the photovoltaic efficiency and photoresponse of LaVO3 thin films[56–58].
The latter overall find a poor photovoltaic efficiency due to low carrier mobility, mainly
hindered by defects, in LaVO3 thin films[56, 58] and a high sensitivity of electronic and
optical properties on the growth conditions[57, 58]. Especially, stoichiometry was found to
be key to high quality samples, with respect to defect concentration, and greatly enhanced
photoresponsivity[57]. Further, numerical simulations based on nonequilibrium DMFT in-
vestigated the Mott insulating phase of the Hubbard model after a photo excitation[24–
26, 28, 46, 59–62]. In particular, impact ionization was found to be the dominant chan-
nel on short time scales in the consequent thermalization process after an initial photo
excitation[46] and high mobility of photo excited carriers in heterostructures from Mott
antiferromagnets was reported[62].

Contribution of this thesis: We saw, that the theoretical considerations regarding
Mott photovoltaics and impact ionization have been focused on either equilibrium prop-
erties of realistic materials or the time evolution after a photo excitation in model cal-
culations. However, in a photovoltaic application a corresponding device will typically5

operate in a periodic steady state. Despite the promising theoretical results, experiments
have measured poor photovoltaic efficiencies and demonstrated that sample quality is of
major importance. Since the samples in experiments are inevitably plagued by imperfec-

3If the initial hole is also highly energetic, forming at the bottom of the LHB, it can undergo the
particle-hole symmetric analog process, thereby creating an additional low-energy doublon-hole pair[46].

4a prototypical example for a Mott insulator
5An exception would be, for example, a highly sensitive photo detector in the single photon regime.
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Figure 1.1: Sketch of a quantum dot setup for transport calculations.

tions, it is very interesting to complement the previous theoretical studies and consider an
idealized Mott photovoltaic model setup allowing to investigate the role of impact ioniza-
tion in the periodic steady state under clean conditions.

Within this thesis[5], we devised a simplistic toy model tailored to study the effect of
impact ionization on the continuous energy harvesting across a periodically driven Mott
insulating layer by investigating the photo current as a function of the external driving
frequency. We find that impact ionization plays a dominant role also in the periodic steady
state dynamics and leads to a significant increase of the photo current, if the external
driving frequency is consistent with impact ionization.

1.1.2 Charge transport in quantum impurity models

Transport through nanostructures has been intensively studied over the last decades, due
to its relevance in electronic devices. In particular, quantum dot setups have been studied
due to their rich physics, experimental versatility and theoretical simplicity. In a typi-
cal quantum dot setup one considers a central region, where many-body interactions are
present, connected to a left and a right lead, as sketched in Fig.1.1.2.

To study the nonequilibrium charge transfer across the central region induced by a
symmetrically applied bias voltage, one usually considers two physically distinct scenar-
ios, which can be realized in time-dependent simulations of finite systems[63, 64]. In the
first[65], denoted by (I) in the following, the three subsystems are assumed to be ini-
tially decoupled and in grand canonical equilibrium with different chemical potentials6,
µL/R = ±V/2. Upon turning on the coupling between the leads and the central region a
steady state is reached. In the second scheme[66], denoted by (II), the system is initially
assumed to be coupled and thus characterized by a single chemical potential, µ. To induce
the nonequilibrium situation, the leads are energetically quenched by the application of
potentials ±V/2 and the steady state is reached after time evolution with the voltage bias
present.

When targeting the time invariant steady state directly, the two different scenarios and
initial conditions are translated into boundary conditions for a static problem by using the
fact that far enough away from the central region, the leads are always in their respective

6The steady state is independent of the initial conditions in the central region. This is why the initial
choice of µc is arbitrary.
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Figure 1.2: Panel a): Sketch of the two transport schemes described in the main text. The
indicated transport window refers to independent particles. Panel b): Sketch of a typical
I/V -characteristic for the two transport schemes.

equilibrium state. Thus, (I) is characterized by leads which asymptotically differ only in
the chemical potentials while (II) is obtained by considering them energetically shifted as
well. As a consequence, the leads asymptotically maintain half filling in (II), while their
filling in (I) depends on the specific bias voltage. Fig.1.1.2a shows a sketch of the two
different situations.

While the two scenarios have the same linear response and agree well, for voltages V
which are small compared to the lead bandwidth W , they lead to drastically different
behaviors for large voltages. In particular, for V > W , the steady state current settles
on a finite value in (I) and vanishes for (II), see Fig. 1.1.2b. Consequently, (II) naturally
features a regime of NDC when the voltage becomes comparable to the bandwidth due to
the decreasing spectral overlap of the leads. In contrast, even in the presence of interactions,
one generally does not expect such a regime in (I) since the density of lead states available
for transport is increasing with the bias voltage.

1.1.2.1 The NDC in the IRLM

The IRLM is a quantum impurity model of spinless fermions consisting of a single impurity
site connected to two semi-infinite tight-binding chains and a density-density interaction
term between the impurity site and its nearest neighbors. In the following, we will denote
the interaction strength by U , the hopping inside the tight-binding chains by J , resulting
in a bandwidth W = 4J , and the hopping at the contact links to the impurity by J ′.

In the context of nonequilibrium transport, the IRLM has gained considerable attention
over the last decade due to the seminar work by Boulat et al.[67], who derived an analytic
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expression for the steady state current, when a voltage bias is applied by (I), which is
in excellent agreement with numerical tDMRG simulations. The solution is based on a
mapping to a continuum model and valid at the so-called self-dual point, where U = 2J ,
and at zero temperature. The mapping to a continuum model is a priori valid in the
scaling regime, where the bandwidth is the dominant energy scale in the system. More
fundamentally, the defining property of the scaling regime is that the physics becomes
universal depending only on a single energy scale, ∝ J ′4/3 within the IRLM. Since numerical
simulations[67, 68] have obtained scaling at the sef-dual point up to values J ′ . J/2 and
V . 2J , the scaling regime is parametrically extended up to these values.

Most notably, the solution for the steady state current features a regime of NDC and
the numerical simulations further revealed that the NDC prevails also for other values
of U . This rose the question of the physical mechanism in the lattice model responsible
for the observed NDC. This was addressed by RG approaches[69–71] showing that J ′ is
renormalized to lower values by large voltages resulting in the NDC. These studies were
complemented by a perturbative analysis within NEGF[72] which agree with the RG results
up to leading order in the interaction. Further, the NDC in the IRLM is already captured
within Hartree-Fock[73] where it is technically encoded into the renormalization of J ′ as
well.

Contribution of this thesis: While the RG results are arguably applicable within the
full realm of the scaling regime and especially reliable for J ′ � J and small values of the
interactions, the first order perturbative NEGF approach is valid for U � J and arbitrary
J ′. To extend the confirmation of the RG results up to the (parametric-) boundaries of
the scaling regime, i.e. the sef-dual point with J ′ . J/2, the NEGF’s need to be evaluated
with an approach which, treats the interaction and the hybridization to the leads in a
non-perturbative manner and on equal footing.

Within this thesis, we have calculated the NEGF’s in the corresponding parameter
regime by employing AMEA. Investigating the numerical results of the nonequilibrium
spectralfunction and effective local distribution functions on the sites next to the impurity,
we found that the NDC is carried by the change in the effective local distribution functions,
which resemble the equilibrium form of their corresponding leads for high voltages. Since
this can be interpreted as consequence of an effective decoupling of the leads from the
impurity, we were able to confirm this mechanism within a non-perturbative approach.
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1.2 Method development

In this section, we review AMEA and present details of the new developments, with respect
to the works[42, 1], summarized in the dissertation of Antonius Dorda[43]. To lighten the
notation, we use the convention ~ = c = e = kB = 1.
We start with a brief summary of steady state NEGF’s (Sec.1.2.1) and discuss details
of AMEA as well as its developments (Sec.1.2.2-1.2.4). We close this section with the
discussion of AMEA as impurity solver in Floquet DMFT, presenting a method comparison
with the NCA and IPT (Sec.1.2.6).

1.2.1 Summary of nonequilibrium steady state GF’s

In this thesis, we use the framework of NEGF’s to study many-body systems out of equilib-
rium. For a concise introduction see for example the reviews[21, 74] while a more thorough
treatment can be found in the textbooks[75, 76].

In this work, we are interested in nonequilibrium steady states that form in the presence
of dissipation where initial correlations7 can be neglected8. We consider a closed but infinite
quantum system and denote an expectation value in the steady state limit by 〈...〉ss which
is defined as the long time limit when the expectation value becomes time-translation
invariant. For instance, for a single time expectation value, we have

〈A(t)〉ss ≡ lim
τ→∞

lim
L→∞

〈A(τ + t)〉L ≡ lim
τ→∞
〈A(τ + t)〉L→∞ , (1.1)

where L denotes the system size. Of course, in the steady state, this is just a constant
since

lim
τ→∞
〈A(τ + t)〉L→∞ = lim

τ̃=(τ+t)→∞
〈A(τ̃)〉L→∞ = 〈A〉ss . (1.2)

Also multi-time correlation functions are given by the usual form

G
(n)
AnAn−1...A1

(tn, tn−1, ..., t1)ss = 〈An(tn)An−1(tn−1)...A1(t1)〉ss
= lim

τ→∞
〈An(τ + tn)An−1(τ + tn−1)...A1(τ + t1)〉L→∞

= lim
τ→∞

〈
eiHτAn(tn)An−1(tn−1)...A1(t1)e−iHτ

〉
L→∞ , (1.3)

and also depends only on the time differences. For the n = 2 case, we have

〈A(t)B(t′)〉ss = lim
τ→∞
〈A(τ + t)B(τ + t′)〉L→∞ = lim

τ̃=(τ+t′)→∞
〈A(τ̃ + t− t′)B(τ̃)〉L→∞

= 〈A(t− t′)B〉ss = 〈AB(−(t− t′)〉ss . (1.4)

In the following, we consider the single particle GF and explicit expressions will refer to
the fermionic case. For instance, the retarded and advanced GF’s are defined, in equivalence

7Correlations between some initial state and the steady state.
8This is equivalent to the statement that the steady state is unique and independent of the initial state.
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to equilibrium, as

GR(t− t′) = −iΘ(t− t′)
〈
{c(t− t′), c†}

〉
ss
,

GA(t− t′) = iΘ(−(t− t′))
〈
{c, c†(−(t− t′))}

〉
ss

= GR(−(t− t′))∗ ,

where c/c† denote creation/annihilation operators9 in the Heisenberg picture and curly
brackets are used for the anti-commutator. While in equilibrium, the knowledge of the
retarded GF is enough to completely specify the state of the system because the occupa-
tion is prescribed by thermodynamics principles, the nonequilibrium situation requires to
consider also an additional correlation function that keeps track of this information. It
turns out that this information is encoded in the so called keldysh GF

GK(t− t′) = −i
〈[
c(t− t′), c†

]〉
ss
. (1.5)

It is further convenient to define also a lesser and greater GF as

G<(t− t′) = i
〈
c†c(t− t′)

〉
ss
,

G>(t− t′) = −i
〈
c(t− t′)c†

〉
ss
, (1.6)

which are related to the retarded, advanced and keldysh GF’s by

G< =
1

2
(GK −GR +GA) ,

G> =
1

2
(GK +GR −GA) . (1.7)

The family of GF’s considered in the steady state situation is completed by the definition
of the causal (or time-ordered) and anti-causal (or anti-time-ordered) GF

Gc(t− t′) = −i
〈
T c(t− t′)c†

〉
ss
,

Gc̃(t− t′) = −i
〈
T̃ c(t− t′)c†

〉
ss
, (1.8)

where T̃ /T denotes the time/anti-time-ordering operator. In the NEGF theory, essentially
different GF’s are then viewed as real time components of a contour-ordered GF, see below.

The reason why we consider GF’s is of course the machinery of many-body perturbation
theory which is formulated in terms of them. The corresponding perturbation expansion
relies on Wick’s theorem, which requires that expectation values are calculated with re-
spect to a non-interacting state. In the standard (groundstate) theory, this is achieved by
considering a reference state in the infinite past which is time-evolved into the targeted
interacting state by adiabatic switching of interactions. Due to the ”Gell-Mann and Low”
theorem [77, 78], which is a statement about eigenstates, the standard theory allows to

9We suppress any label on the c-operators, such as a spin, site or band index, for clarity. The latter
would just result in a matrix structure of the GF
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Figure 1.3: The Keldysh contour as two copies of a real time axis. For the single particle
GF, operators c(†) are then inserted at times τ and τ ′ on the upper and/or lower branch
of the contour. The dashed parts in the contour indicate redundant time evolutions.

control also the infinite future where the initial state10 is recovered when the interactions
are adiabatically switched off again. The crucial difference to the present case is that the
steady state is not an eigenstate. Thus the ”Gell-Mann and Low” theorem and its corre-
sponding protocol of adiabatic switching of interactions can not be used to have certainty
about the infinite future. More fundamentally, while the nonequilibrium situation can be
generated according to a suitable protocol starting from a non-interacting initial state in
the infinite past, there does not exist a general protocol to return back to this initial state in
the infinite future. This is the reason why in the nonequilibrium theory one has to unwind
the initial protocol and time-evolve the system back to the non-interacting initial reference
state. This gives rise to the so-called Keldysh contour, see Fig.1.2.1, which comprises two
branches, a forward branch C1 and a backward branch C2.

To obtain a systematic perturbation expansion, the time-ordered GF from the standard
theory is generalized to a contour-ordered GF, where time is viewed along the Keldysh
contour. This yields a GF with 2x2=4 real time components, stemming from the two
operators being inserted along the two branches, Gij(t, t

′), with t ∈ Ci, t′ ∈ Cj. The four
components are not independent and related by11

G11 +G22 = G12 +G21 . (1.9)

If the two operators lie on the forward branch, the corresponding component is nothing
else than the causal GF, G11 = Gc and one can further identify G22 = Gc̃, G12 = G< and
G21 = G>. The matrix build from these real time components,

Ĝ(t, t′) =

(
Gc G<

G> Gc̃

)
, (1.10)

is then referred to as the NEGF. Due to the relation between the components, Eq.(1.9),
it is convenient to transform into a basis where this redundancy is accounted for, which is
achieved by the so called Keldysh rotation given by

G = Lτ3ĜL
† =

(
GR GK

0 GA

)
, (1.11)

10apart from a phase
11This is because the time evolution after tmax = max(t, t′) cancels among the two branches which means

the operator at tmax can be thought of as belonging to both the forward and backward branch.
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with

L =
1√
2

(
1 −1
1 1

)
, τ3 =

(
1 0
0 −1

)
. (1.12)

Hereby the retarded, advanced and keldysh GF appear. Explicitly, they are related to the
original components by

GR =
1

2
(G11 −G12 +G21 −G22) ,

GA =
1

2
(G11 +G12 −G21 −G22) ,

GK =
1

2
(G11 +G12 +G21 +G22) . (1.13)

The advantage of the matrix representation is that a convolution in contour variables,
[G1 ? G2](τ, τ ′) =

∫
C dτ

′′G1(τ, τ ′′)G2(τ ′′, τ ′), is translated to a single real-time integral

G1 ? G2(t, t′) =
∫ +∞
−∞ dt′′G1(t, t′′)G2(t′′, t′). In this form, the theory is structurally equiva-

lent to the equilibrium case and the existing equations, such as the Dyson equation, can
be reused when respecting the additional matrix structure.

Connections to physical quantities: Here, we want to exemplify the relation of the
different GF’s defined above to physical quantities. Since the GF’s in the steady state only
depend on a single real time argument, it is expedient to work with their Fourier transform,
G(ω) =

∫
dteiω(t−t′)G(t− t′).

The retarded and advanced components hold the information about the density of
states of our system, while the keldysh GF keeps track of how these states are occupied.
More explicitly, the retarded and advanced GF are related to the spectralfunction A(ω) by

A(ω) = − 1

2π
(GR(ω)−GA(ω)) = − 1

π
ImGR(ω) . (1.14)

The particle density can be expressed as

n =
1

2

(
1−

∫
dω

2π
GK(ω)

)
= −i

∫
dω

2π
G<(ω) . (1.15)

Redundancies when applied to Equilibrium: In equilibrium, the occupation is pre-
determined by thermodynamics principles which leads to the fact that here the keldysh GF
is related to the retarded/advanced GF by the so called fluctuation-dissipation theorem,

GK(ω) = (1− 2f(ω)(GR(ω)−GA(ω)) , (1.16)

where f(ω) is the thermodynamic distribution function, i.e. the Fermi-function for fermions.
Equivalently, we can write Eq.(1.16) in the alternative forms

G<(ω) = if(ω)A(ω) ,

G>(ω) = −i[1− f(ω)]A(ω) . (1.17)
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This motivates the interpretation of the lesser(greater) GF as the spectral density of (un-)
occupied states and the keldysh GF as the difference between them. This interpretations
can be carried over to the nonequilibrium case, although the density of states and corre-
sponding filling may be well defined only locally.

Dyson’s equation and the selfenergy A central equation in the GF formalism is the
so-called Dyson equation, which is a formal result of the diagrammatic perturbation expan-
sion originally developed by Feynman in the context of quantum field theory. Historically,
it expresses the GF G of a system in the presence of many-body interactions, in terms of a
reference GF, G0 of a non-interacting system, and a term which is called the selfenergy, Σ.
The selfenergy contains all the information about the many-body interactions, when added
to the non-interacting system, at the level of the single-particle GF. The nonequilibrium
steady state Dyson equation in frequency is given by

G−1(ω) = G−1
0 (ω)− Σ(ω) . (1.18)

1.2.1.1 Floquet GF

The method of steady state NEGF’s can be conveniently generalized to the case of pe-
riodically driven systems, where the system is assumed to synchronize with the driving
resulting in a periodic steady state. In this state all expectation values of the system, and
thus also the GF, are periodic in time

〈A(t)〉 = 〈A(t+ T )〉 , (1.19)

G(t, t′) = G(t+ T, t′ + T ) , (1.20)

with some period T . By exploiting this, one can arrive at a formulation where the peri-
odicity is encoded in an additional matrix structure for the Fourier transformed GF, the
so-called Floquet GF[79–83],

Gmn(ω) =

∫
d(t− t′) 1

T

∫ T
2

−T
2

dt(
t+ t′

2
)ei(ω+mΩ)t−i(ω+nΩ)t′G(t, t′) , (1.21)

where Ω denotes the frequency corresponding to the period T . For more details, we refer
to Appendix A. The important point is that the targeted periodic steady state is indepen-
dent of the initial conditions such that the Keldysh formalism is applicable, with only an
additional matrix structure, resulting in the Floquet-Keldysh GF Gmn(ω).

1.2.2 Auxiliary master equation approach

AMEA is a numerical approach to solve nonequilibrium many-body quantum impurity
problems with special emphasis on the steady state. To demonstrate the idea, we consider
a Hamiltonian

H = HS +HE = H0 +Hint +HE (1.22)
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Figure 1.4: Sketch of the AMEA mapping from the infitnie physical system to the auxiliary
finite open quantum system. Finite parts are sketched as closed objects and infinite parts
are indicated by open ones. In the auxiliary system the two infinite Markovian baths are
traced out leading to the finite auxiliary Lindblad system described by Eq.1.24-1.28.

that consists of a system part HS, hosting possible many-body interactions, and a non-
interacting and infinite environment HE, which allows the system part to reach a nonequi-
librium steady state situation. The Dyson equation for the system GF reads,

G−1
ph (ω) = g−1

H0
(ω)−∆ph(ω)− Σph(ω) = G−1

0,ph(ω)− Σph(ω) . (1.23)

Here, the so-called hybridization function, ∆ph, describes the effect of HE on H0 resulting
in the GF G0,ph, while Σph holds all information about the action of Hint on H0 when the
system is already coupled to the environment. Since H0 +HE describes a non-interacting
system, the corresponding GF, G0,ph, and therefore also the hybridization function, can
be solved for exactly. In contrast to the hybridization function, the determination of the
selfenergy is a many-body problem and one usually has to resort to approximations.

One such approach to obtain an approximation to the selfenergy is AMEA. It relies
on the fact, that the influence of HE on HS is uniquely determined by the hybridization
function, ∆ph, and does not depend on the details of HE[84]. Especially, this means that
the selfenergy in Eq.(1.23) only depends on HS and ∆ph. The idea of AMEA is now to
replace the infinite, and thus numerically intractable, but formally closed quantum system
of Eq.(1.22) with a finite but open one. In more detail, instead of coupling the system
part to HE, HS is considered as part of a finite sized open quantum system such that it is
immersed into an auxiliary bath12 which approximates the original one, see also Fig.1.2.2.

More technically, we consider an open quantum system of Lindblad form[85] consisting
of HS plus NB additional sites that are coupled to Markovian baths. The resulting equation
of motion for the density matrix of the open quantum system, the so-called Lindblad
equation, reads

dρ

dt
= Lρ . (1.24)

12Generically not an equilibrium one.
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The Liouvillian,
L = LHS + LB = LHS + LHB + LDB , (1.25)

comprises two parts. The first is the unitary evolution, due to the system Hamiltonian HS,
which, according to the von Neumann equation, acts as

LHSρ = −i[HS, ρ] . (1.26)

The second term, LB, describes the additional NB sites and can further be decomposed
into a unitary part

LHBρ = −i[HB, ρ] ,

HB =

NB∑
i=1

Eijc
†
icj , (1.27)

and the dissipative term

LDBρ =2

NB∑
ij=1

Γ
(1)
ij

(
cjρc

†
i +

1

2

{
ρ, c†icj

})
+ (1.28)

2

NB∑
ij=1

Γ
(2)
ij

(
c†iρcj +

1

2

{
ρ, cjc

†
i

})
, (1.29)

stemming from the couplings to the Markovian baths that are traced out. For the GF of
HS in the Lindblad system, we can write in analog to Eq.(1.23)

G−1
aux(ω) = g−1

H0
(ω)−∆aux(ω)− Σaux(ω) = G−1

0,aux(ω)− Σaux(ω) . (1.30)

The free parameters in the three matrices E,Γ(1),(2), Eq.(1.27) and Eq.(1.28), are then
optimized such that ∆aux(ω) ≈ ∆ph(ω).
Once the mapping has been performed, any quantity of HS calculated in the auxiliary
Lindblad system serves as an approximation for the one in the original physical system.
Most prominently, the auxiliary selfenergy Σaux(ω) = G−1

0,aux(ω)−G−1
aux(ω). It is important

to note that the mapping to the auxiliary Lindblad system is a purely non-interacting prob-
lem concerning only H0 + HE and it is independent of Hint. The many-body interactions
Hint are then turned on to calculate properties of HS coupled to the environment. We note
that, if the solution of the auxiliary Lindblad system is performed exactly, the difference
∆aux(ω) ≈ ∆ph(ω) constitutes the only approximation made within AMEA. Further, the
mapping can in principle be made arbitrarily accurate by increasing the number of auxil-
iary bath sites NB. From now on, we will refer to the auxiliary Lindblad system simply as
auxiliary system.
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1.2.3 Mapping

To present the details about the mapping procedure to the auxiliary system we will consider
the SIAM, where a single interacting site is in contact with an environment of independent
particles. Thus, we consider an auxiliary system of size N = NB + 1 where we denote the
index of the physical impurity site by f . For technical details, we refer to our work [1] and
references there in. The auxiliary non-interacting Green’s function of the auxiliary system
is given in terms of the three Lindblad matrices E,Γ(1),(2), here of size NxN , by

GR
0,aux(ω) =

[
ω − E + i

(
Γ(1) + Γ(2)

)]−1
,

GK
0,aux(ω) = 2iGR

0,aux(ω)
(
Γ(2) − Γ(1)

)
GA

0,aux(ω) , (1.31)

The hybridization function at the impurity is subsequently obtained as

∆R
aux(ω) = 1/gR0,ff (ω)− 1/GR

0,aux,ff (ω) , (1.32)

∆K
aux(ω) = GK

0,aux,ff (ω)/
∣∣GR

0,aux,ff (ω)
∣∣ . (1.33)

where gR0,ff is the Green’s function of the isolated impurity site. With a suitable chosen
cost-function χ(~x) of the following form,

χ2(~x) =

∫
dω
∥∥∆aux(ω)−∆ph(ω)

∥∥2
, (1.34)

where ~x is the collection of all free parameters in the Lindblad matrices, Eq.1.31-1.32 are
turned into a (potentially high-dimensional) non-convex optimization problem. Detailed
expressions can be found in [1, 2]. In [1] it was found that the value of the cost-function
typically reduces quadratically on a logarithmic scale, lnχ ∼ −N2

B, when the system size is
increased. However, this is possibly only true if the global optima are found for a given NB,
which becomes very hard for bigger systems NB & 6. For practical purposes it is sufficient
to find local minima that maintain a constant exponential decrease of the cost-function,
since this equips AMEA overall with an exponential convergence with respect to NB. We
will refer to such minima as good minima.

1.2.3.1 Auxiliary geometries and parameterization

In general[85], the three Lindblad matrices E,Γ(1),(2) are hermitian matrices where Γ(1),(2)

must be PSD and Γif = Γfj = 0 such that the impurity is not directly coupled to the
Markovian baths. Originally[42, 84], the Lindblad matrices were considered to be real

Eij,Γ
(1)(2)
ij ∈ R. However, due to the freedom to rotate the bath sites, i 6= f , which

leaves the hybridization, Eq.1.32, unchanged, only one of the three matrices can be chosen
tridiagonal, real and symmetric13, in general. Considering all fitting parameters to be real
is a restriction on the parameter space and in [1] we found that better minima are obtained
when allowing for imaginary parts as well. A convenient choice is to consider E of sparse

13For instance by the Householder algorithm [86]
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form and leave Γ(1),(2) general. E then has 2NB independent non-zero entries and can be
directly parametrized. Here and in the following, we will always consider the general, non
particle-hole symmetric case, when quoting the number of fit parameters for a given system
size.

The parametrization of the Lindblad couplings turns out to be more involved, due the
condition of being PSD and even restrictions have proven to be effective. For notational
simplicity, we will omit the superscripts of the Γ-matrices in the following.

Parametrising a Γ-matrix The straight forward way without imposing restrictions is
to parametrize Γ as the square of a hermitian matrix M,

Γ = M†M ,with Mif = Mfj = 0 , (1.35)

which ensures that Γ is hermitian and PSD. However, this parametrization is not unique,
since M̃ = UM with U†U = 1 leaves Eq. (1.35) invariant. Thus, this choice introduces
redundancies in the fit parameters and, in general, makes optimization algorithms less
effective.
Based on the empirical observation that the Γ-matrices of obtained minima usually show
a low rank, we have recently employed also a variable-rank parametrization[2] of the form

Γ = γγ† , γ = (~γ1, ..., ~γrankΓ
) . (1.36)

This has the advantage that the parameter space of the optimization problem is drastically
decreased and can be systematically increased by adding vectors to γ.
Another alternative would be to restrict to the case that the Γ-matrix has only a single
eigenvalue that is zero, stemming from Γif = Γfj = 0, and the others are strictly positive.
This can be realized with the Cholesky decomposition similar to Eq.(1.35), but with a
lower triangular matrix L instead of M with real diagonal entries Lii > 0, i 6= f . This
results in an unique parametrization. However, in view of the empirical observation that
good or global minima usually have low rank and the Cholesky decomposition excludes
exactly these minima from the parameter space, it is probably inferior to the variable-rank
approach, Eq.(1.36).

As a general note, a unique parametrization of a PSD matrix, either directly, or via a
linear relation such as above, is mathematically impossible due to the non-trivial topology
of the space of PSD matrices of rank r > 1. A unique parametrization of a PSD matrix
can be found using so-called quotient spaces[87, 88]. Since the parametrizations mentioned
above have proven to be effective enough for the considered applications and the concept
of quotient spaces is mathematically advanced and not straight forwardly implemented
numerically, we did not pursue this route.

1.2.3.2 Optimization algorithm

Once, we have parametrized our three Lindblad matrices, we need an optimization algo-
rithm to find good minima. The cost-functions arising within AMEA typically show a
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landscape with many local minima and reliably finding the global one or good ones is a
formidable task for increasing system size. In the works [16, 17, 42, 89] a PT approach,
details presented in[43, 1], was used together with the parametrization, Eq.(1.35), as op-
timization routine. PT obtains minima by exploring the parameter space in a stochastic
manner, it is able to overcome local minima and possibly finds the global optimum. It is
thus especially useful in problems with many local minima. Due to its nature, however,
the PT approach gets increasingly inefficient with the dimension of the parameter space
and does not find good minima anymore for dim~x & 100, even if the program is run for
several days14.

One way, to overcome this so-called curse of dimensionality is to use gradient based
optimizations, which follow a certain path in parameter space, until they reach a local min-
imum. Naturally, these approaches typically do not reach the global optimum and are very
starting point dependent. In particular, we tested the Adam algorithm[90] implemented
within the python library tensorflow[91], which is an optimization routine from machine-
learning tailored to find local minima in very high dimensional problems. With respect
to other implementations of gradient based techniques, the gradient does not need to be
supplied by hand, but tensorflow internally keeps track of the derivations15. Unfortunately,
when applied directly with the full parametrization from Eq.(1.35), this approach was not
performing well with respect to the obtained minima. It was found that progress can be
made by changing the parametrization to the variable-rank parametrization, Eq.(1.36),
which has proven to be effective upon increasing the rank and system size in a consecutive
manner while straight forwardly trying random starting points at a given system size and
rank was found to be inefficient.

In more detail, for a given physical hybridization and corresponding cost-function, we
start by finding an optimum of the N = 3 system. The latter can be obtained by PT
or by running Adam with several random starting points, which usually confirms the
minimum found by PT16. With the found minima in the variable-rank parametrization,
usually featuring Γ-matrices of rank one, we perform the following iterations.

• Increase the system size, NB = NB + 1, and optimize.

• Increase the rank, rankΓ = rankΓ + 1, by adding a vector to γ and optimize.

• Iterate increasing the rank until the cost-function does not show a significant decrease.
Return to increasing the system size.

• Terminate if target system size is reached or if increasing the system size does not
yield a significant decrease in the cost-function.

14on a cluster node with sixteen cores
15There is no numerical finite difference method involved, it is handled exactly like in symbolic languages.
16Although the parametrization in this cases is different, they can be compared by the resulting auxiliary

hybridization, and the PT result can be translated to the variable-rank parametrization by solving the
eigenvalue problem of Γ obtained by PT and keeping only the dominant eigenvector(s). Generally, there
is only one for N = 3.
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Here, new parameters are always initialized randomly17 and optimizations are always done
with respect to all parameters. With this new optimization approach, we were able to
reliably18 find good minima up to system sizes N = 10 with dim~x ≈ 100. In comparison,
the full parametrization from Eq.(1.35) would feature dim~x = 180 parameters.
Thus, also the gradient based approach fails for dim~x & 100 and the key to reach system
sizes up toNB ≈ 10 is the reduced dimensionality, due to the variable-rank parametrization.
This suggests that the variable-rank parametrization would also increase the applicability
of PT up to similar system sizes. However, the latter was not tested since the gradient
approach in the tensorflow implementation is far superior to the PT approach with respect
to the computational resources. This makes the variable-rank parametrization together
with the Adam optimization the current method of choice.

1.2.4 Extrapolation to zero cost-function

The accuracy of AMEA can be systematically increased by increasing the auxiliary system
size. It is then natural to ask if this systematic can be used to extrapolate results obtained
with AMEA to infinite auxiliary system size. In Sec.1.2.3 a cost-function was introduced
to optimize the mapping from the physical to the auxiliary system needed within AMEA
and formally an infinite system size corresponds to zero cost-function. Within AMEA an
extrapolation in system size is thus equivalent to an extrapolation to lower cost-functions.
Assuming that the expectation value of an operator, 〈A〉 ≡ A, calculated within the
auxiliary system, corresponding to some value of the cost-function χ, is an analytic function
of the latter, A = A(χ), we can expand this function as a Taylor series,

A(χ̃) = A(χ̃ = 0) + kAχ̃+O(χ̃2) , χ̃(~x) = χ(~x)/χ0 , (1.37)

where we have introduced a normalized cost-function χ̃ as a meaningful extrapolation
parameter. A sensible choice is χ0 = χ

∣∣
∆aux=0

which turns the normalized cost-function χ̃

into a measure for the relative deviation from the physical situation.
Since χ̃ = 0 formally represents the physical situation, we have A(χ̃ = 0) = Aph, where
Aph is the value of the desired expectation value in the physical system. Thus, collecting
the cost-functions and expectation values for different system sizes yields a series of value
pairs {χ̃N , A(χ̃N)} and Aph can be obtained by extrapolating these data points linearly to
the χ̃ = 0 limit in the (χ̃, A)-plane.
In [2], we have tested this extrapolation scheme and found that it significantly improves the
results. More specifically, the linear fit was performed by minimizing the summed squared
error and no error estimation was performed.

1.2.4.1 Error estimation

Here, we want to complement the benchmark in [2] by discussing how error estimates can
be obtained and presenting corresponding results. We will assume that an expectation

17Initializing them with zeros would lead to zero gradient in the new directions.
18Due to the severe starting point dependence of the approach good minima are obtained occasionally.
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value of the auxiliary system is affected by some statistical error, like in the SWF algo-
rithm, see Sec.1.2.5, and that higher order terms in the Taylor expansion can be neglected.
An individual data point has two sources of errors, a statistical and a systematic one.
The systematic error, ∆sys

A(χ), is introduced by the AMEA mapping itself and stems from

the fact that qualitatively different fits19 with similar cost-functions can lead to a variety
of expectation values. Thus, the corresponding scattering of expectation values does not
follow a statistical distribution. To make progress, however, we will assume a Gaussian dis-
tribution. Since finding such a collection of qualitatively different minima is troublesome
in practice and the corresponding evaluation of expectation values leads to additionally
needed many-body solutions, a straight forward determination of the systematic error is
impractical.

A very simple approach to obtain an estimate for the systematic error is to use the fact
that we can interpret the normalized cost-function as a measure for the relative error from
the physical situation and approximate

∆sys
A(χ̃) = χ̃

∣∣∣A(χ̃)
∣∣∣ . (1.38)

Combining this with the statistical error, ∆
(stat)
A(χ̃) originating from the stochastic solution

of the auxiliary system, we can get an estimate for the overall error of the data point by

∆A(χ̃) =

√(
∆

(sys)
A(χ̃)

)2

+
(

∆
(stat)
A(χ̃)

)2

. (1.39)

To get the final estimates for the two free fit parameters of the linear relationship, Eq.(1.37),
and the corresponding errors, we employ Bayesian probability theory[92] assuming a Gaus-
sian noise and a flat prior.
In short, a so called posterior distribution is constructed as product over the individual
Gaussian distributions of the data points20 and the parameters as well as error estimates
obtained by considering the first and second moment of the posterior distribution with
respect to the two parameters. In view of this approach, the results in Ref.[2] are given
by the maximum of the posterior distribution, which must not coincide with the average
values calculated in the Bayesian approach.

In Fig.1.2.4.1, we present results where the above error estimation scheme is applied to
the steady state current in the IRLM. We see that overall the results of Ref.[2] are within
one sigma of the new ones, which show a trend to lower values for J ′ = 0.5. Since finite
temperature in this model reduces the current, a tentative interpretation of this systematic
deviation is that the finite temperature of T = 0.025 is more faithfully reproduced in the
new results. The data points at small voltages for J ′ = 0.2 constitute exceptions, where
the difference of the two approaches yields significantly different results. This is, because
these points are very sensitive to uncertainties as discussed in [2].

19Fits showing significant deviations in different ω-regions.
20To be precise, the product of the individual distributions must be divided by the prior, which is

,however, assumed to be flat and therefore does not influence the result.
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Figure 1.5: The steady state current in the IRLM. Compared are the extrapolated values
from AMEA at T = 0.025, obtained by minimizing the summed squared error (filled
symbols) and by taking the individual errors into account with Bayesian probability theory
(open symbols with error bars). The solid black line shows the analytic reference solution
at T = 0. For further parameters we refer to our work[2].
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1.2.5 Stochastic wave-functions

After the mapping to the auxiliary system has been performed, the resulting many-body
Lindblad problem has to be solved. Previously, this was done by using SF [93], which
maps the super-operator problem for the density matrix to a standard operator problem
with twice as many sites, where the density matrix is represented as a state vector. The
standard operator problem can be treated by standard numerical many-body approaches
such as ED[42] and MPS[16] that where successfully applied. An alternative approach to
SF are so-called SWF’s[94–96], also referred to as quantum jumps.

In the context of open quantum systems, the SWF algorithm unravels the (classical)
stochastics encoded in the density matrix into a probability distribution for the wave-
functions. Since this method is formulated entirely in terms of wave-functions, it has the
inherent advantage that the Hilbert space of our many-body system does not need to be
squared in comparison to SF. For an open quantum system of Lindblad form this probabil-
ity distribution of wave-functions can be sampled according to the algorithm summarized
in [2]. In short, an initial wave-function |ψ0〉 is evolved in time by performing a determin-
istic time-evolution, according to an non-hermitian Hamiltonian Heff, which is interrupted
by random jumps.

For a normalized initial state |ψ0〉, the survival probability of the deterministic time
evolution up to time t, where a jump needs to be performed, is given by its norm,

S(t|ψ0) =
∥∥e−iHefftψ0

∥∥2
, (1.40)

which is exponentially decreasing, since the non hermitian part of Heff is given by the Γ-
matrices which are PSD. Sampling the corresponding probability distribution by inversion
leads to the algorithm used in Ref.[2] where a random number rj ∈ (0.1) is drawn from a
uniform distribution and the initial state evolved until a time tj, that fulfills ‖ψ(tj)‖2 = rj.

1.2.5.1 Fixed time-stepping in the SWF algorithm within ED

In Ref.[2] we presented the SWF algorithm to solve the many-body problem within AMEA.
Here, we want to complement this by some further details. Within the current implemen-
tation we are working on a fixed time-grid such that measurements are done at multiples
of a time interval ∆t, as is convenient for the calculation of a GF21.

Fig.1.2.5.1 shows a sketch of a possible time-evolution of the norm and the fixed time-
grid, on which we want to measure. In ED we use the Arnoldi scheme to set up a Krylovs-
pace representation of the Hamiltonian valid up to a certain end time. For more details,
we refer to Sec.2.2.2.1 of Ref.[43]. In the following, we will denote the Krylovspace cor-
responding to a starting vector22 |ψ0〉 and valid up to a time tmax as Ktmax

ψ0
and a time

evolved state up to time t < tmax with respect to this Krylovspace as |ψ(t)〉Ktmax
ψ0

. Further,

21For sampling a steady state expectation value other choices are possible, since all times are equal in
the steady state

22here |ψ0〉 is in general not normalized
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Figure 1.6: Sketch of the norm for a possible realization of the time dependent wave-
function |ψ(t)〉. Multiple jumps are possible within a time step ∆t. The discontinuous
jump back to ‖ψ(tj)‖2 = 1 corresponds to a jump in the SWF algorithm, where it is
restarted with a normalized state.
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the norm at tmax is obtained, without much effort, when setting up the Krylov space Ktmax
ψ0

.
A single time-step of length ∆t from |ψ0〉 to |ψ〉 is performed following the pseudo code in
Algorithm 1.

Algorithm 1 Perform a time step ∆t

1: |ψ0〉 , rj,∆t← initial values
2: K = K∆t

ψ0

3: if ‖ψ(∆t)‖2
K ≥ rj then

4: |ψ〉 = |ψ(∆t)〉K
5: else
6: ontime = False, dt = ∆t
7: while ! ontime do
8: tguess

j =
(‖ψ0‖2−rj)dt
‖ψ0‖2−‖ψ(∆t)‖2 ← initial value for Newton

9: tj = find jump time(K, tguess
j )← perform a root search with the Newton method

10: dt = dt− tj
11: |ψ0〉 = do jump(|ψ(tj)〉K)
12: rj = random ∈ [0, 1]
13: K = Kdtψ0

14: if ‖ψ(dt)‖2
K ≥ rj then

15: |ψ〉 = |ψ(dt)〉K
16: ontime = True
17: end if
18: end while
19: end if

1.2.6 AMEA as impurity solver in Floquet DMFT

In Refs.[23, 3, 97, 98] AMEA was used as impurity solver within nonequilibrium steady
state DMFT where the solution of a lattice problem is mapped onto solving a self-consistently
determined quantum impurity problem. The latter is defined by its hybridization function

∆(ω) = g−1

imp
(ω)−G−1

loc(ω)− Σ(ω) , (1.41)

where Gloc denotes the local GF of the lattice problem and g
imp

is the GF of the isolated

impurity, see also section III D in Ref.[5] which is attached below, Sec.2.2, for a quick
overview of the DMFT equations. The resulting impurity problem can be treated straight
forward by AMEA as presented above.

Currently used implementation of AMEA as impurity solver, SF+ED: Within
DMFT the impurity problem needs to be solved multiple times for an arbitrary hybridiza-
tion. Currently, only the SF+ED implementation of AMEA is automated enough for
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being used as a ”black-box” impurity solver. In more detail, the fit is performed by PT,
the steady state is obtained by time-evolution with the Arnoldi method and the GF is
directly determined in frequency by Bi-Lanczos, see Ref.[43] for details.

The Floquet impurity problem: When studying periodically driven lattice systems,
the GF is generalized to the Floquet-Keldysh GF, Eq.(1.21), which encodes the periodic
time-dependence in an additional Floquet matrix structure. Naturally, the hybridization
function arising from the Floquet DMFT equations shares this structure. In more detail,
the hybridization function becomes

∆mn(ω) = g−1

imp,mn
(ω)−G−1

loc,mn(ω)− Σmn(ω) , (1.42)

where the indices mn indicate the Floquet structure, and g−1
mn denotes the matrix entry

of the inverse GF. Thus, the bath of the Floquet impurity problem is perdiocially time-
dependent which limits the available impurity solvers. In principle one can employ any
impurity solvers developed for time-dependent DMFT since they are able to cope with
a general time-dependence of the bath ∆(t, t′). However, non-perturbative approaches,
such as Continuous-time quantum Monte Carlo[99, 100], are limited in the simulation time
and cannot reliably reach the steady state. This limits the available options to impurity
solvers of perturbative nature such as IPT[19, 101–105] and the NCA[36, 38, 106], which
are naturally applicable only in a certain parameter regime.

1.2.6.1 AMEA in Floquet DMFT

At present, the implemented SF+ED impurity solver as described above is not applicable
to the Floquet impurity problem. First, the current form of the Liovillian, Eq.(1.25)-(1.28),
is not able to accomodate a time periodic bath. For this, the Lindblad matrices E,Γ(1),(2)

would need to be made time dependent and a periodic bath would be described by

E(t) =
∑
n

Ene
−inΩt,Γ(1),(2)(t) =

∑
n

Γ(1),(2)
n e−inΩt , (1.43)

where Ω denotes the frequency corresponding to the considered periodicity. Next, the
resulting non-interacting Lindblad problem needs to be solved for the Floquet GF of the
auxiliary system to obtain the Floquet version of Eq.(1.31), G0,aux,mn from which the auxil-
iary Floquet hybridization ∆aux,mn is obtained straight forward, similar so Eq.(1.32). With
a suitable cost-function, respecting also the off-diagonal entries of the Floquet hybridiza-
tion, the optimization problem for the AMEA mapping is formulated. However, due to
Eq.(1.43) the number of fit parameters is multiplied by the number of considered modes
and it is questionable, if one is able to obtain good minima, see Sec.1.2.3.2. In contrast
to the problems arising in the mapping to the auxiliary system, the many-body solution
should be adapted easily calculating the GF by time-evolution with Arnoldi which is al-
ready implemented in the search for the steady state.
Due to the complications in the mapping, in our work [5] we followed a different approach
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and introduced an approximation within Floquet DMFT which we termed FDSA. The
main idea is to exploit the fact that the Floquet formalism can be seen in analog to Bloch
theory with a periodicity in time instead of space. We can thus reuse the original DMFT
approximation in the time domain and make the selfenergy not only diagonal in spatial
indices, which constitutes the orginal DMFT approximation, but also diagonal in Floquet
indices. For the technical details, we again refer to section III D in Ref.[5] which is attached
below, Sec.2.2. The main point is that the resulting hybridization, like the selfenergy23,
becomes time-translation invariant leading to a standard nonequilibrium steady state im-
purity problem. From a numerical point of view, the latter is a tremendous simplification,
however the convergence of the DMFT self-consistency is generally slower and can become
problematic. This is because the impurity problem has no explicit knowledge of the driv-
ing frequency Ω, which there only enters through the changing hybridization in the DMFT
cycle.

1.2.6.2 FDSA in the Mott regime: AMEA, IPT and NCA

In Ref.[5], we presented a test of the validity of the FDSA in the context of the electric
field driven dissipative Hubbard model for intermediate interaction strengths by employing
IPT as impurity solver, which allowed a self-consistent comparison of the FDSA versus full
Floquet DMFT. Here, we complement this by focusing on the Mott regime and present
a comparison of AMEA+FDSA with the NCA24. At this point, we want to acknowledge
that this method comparison was performed in collaboration with Yuta Murakami from
the Group of Phillip Werner, who performed all calculations with the NCA and IPT.
We consider the single-band Hubbard model on a hypercubic lattice in the limit of infinite
dimensions. The model is driven by a time-periodic electric field, E(t) = E sin(Ωt), which
modifies the hopping,

v(t) = v0e
−E

Ω
t, , (1.44)

where the bare hopping v0 serves as unit of energy. The driving is balanced by dissipative
bath chains, described by a semi-circular density of states at a fixed inverse temperature
β, attached to every lattice site. This leads to a local hybridization,

ΓR(ω) =
g

W

√
1−

( ω
W

)2

, (1.45)

parametrized by the half-bandwidth W and the dissipation strength g. For further details
of the model we refer to Ref.[37].
For such an AC field, the small parameter controlling the validity of the FDSA is[5] α = vE

Ω2 .

23An object which is diagonal in Floquet indices is time-translation invariant and depends only on the
time difference. This is most easily seen from Eq.A.13. Thus, Σ(t, t′) = Σ(t − t′) as in a steady state
situation.

24While the NCA, in analogy to IPT, would in principle allow to test the FDSA in a self-consistent
manner, we were not able to converge the DMFT self consistency within the FDSA when employing the
NCA as impurity solver.
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Due to the inverse dependence on the squared driving frequency, we expect the FDSA to
work very well around resonant frequencies Ω = U in the Mott regime25.

IPT in the Mott regime: Fig.1.7 shows the local and time-averaged density of states,
A(ω), as well as the effective local distribution function26 f̃(ω) obtained by employing IPT
as impurity solver with and without the FDSA. We consider two different driving frequen-
cies, Ω = {4, 6} and electric field strengths E ∈ [0.4− 6.0] leading to αΩ=4 ∈ [0.025, 0.375],
αΩ=6 ∈ [0.01̇, 0.16̇]. We see that the density of states is in perfect agreement up to α ≈ 0.2,
afterwards differences, albeit negligible, become visible. The effective distribution function
behaves similarly for frequencies with significant spectral weight and shows differences at
higher frequencies. In fig. 1.8, the highly suppressed Floquet-sidebands are plotted. The
figure shows that they are also well reproduced within the FDSA. Quantitative differences
are observed for the effective distribution function within the Floquet-sidebands. They
are insignificant, due to the negligible spectral weight for the considered parameters, but
become important for pronounced Floquet-sidebands, which marks the end of the applica-
bility of the FDSA.

The fact that the Floquet-sidebands and their effective occupation are well reproduced
within the FDSA is quite noticeable, however their existence even in the FDSA is readily
explained by the structure of the Floquet Dyson equation for the lattice GF, which for the
present case within the FDSA and for the retarded component reads

GR,−1
mn (ω, k) = ωnδmn − εm−n(k)− [Γ(ωn) + Σ(ωn)] δmn ,

ωn ≡ ω + nΩ , (1.46)

where the coupling of the Floquet blocks through the dispersion relation εm−n(k) is inde-
pendent of the omega dependence. Because of this, the Floquet GF does allow a separation
in analog to non-interacting electrons[34] as GR,−1(ω, k) = Λ(k)Q−1(ω)Λ†(k), with unitary
Λ(k) from Ref.[34] Eq.(15), and Q−1

mn(ω) = [ωn − ε0(k)− Γ(ωn)− Σ(ωn)] δmn. Thus, we
can write the 00 component of the Floquet GF, analog to Ref.[34] Eq.(33), in the FDSA
in the form

GR
00(ω, k) =

∑
n

1

ωn − ε0(k)− Γ(ωn)− Σ(ωn)
Fn(k) , (1.47)

where we have put the multiplicative k dependence in a set of general functions Fn(k).
For no periodic drive the selfenergy, Σ(ω), when plugged into the steady state Dyson
equation leads to some steady state density of states. From Eq.(1.47), we see that the time
averaged Floquet GF features copies of this steady state density of states with renormalized
dispersion relation at integer multiplies of the driving frequencies, i.e. the observed Floquet
sidebands in Fig.1.8.

25As usual, we denote the Hubbard interaction parameter as U .
26defined in equivalence to the fluctuation-dissipation theorem Eq.(1.16).
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Figure 1.7: Comparison of the local time-averaged density of states, A(ω), and effective
distribution function, f̃(ω), obtained by the FDSA (solid lines) and full Floquet DMFT
(dashed lines) within IPT. The different colors denote different electric field strengths
E = (0.4, 1.2, 2.4, 3.2, 4.0, 4.8, 6.0). Top(Bottom) panels for Ω = 6(4) corresponding to
αΩ=4 = (0.025, 0.075, 0.15, 0.2, 0.25.0.3, 0.375) and αΩ=6 = (0.01̇, 0.06̇, 0.07̇, 0.1, 0.13̇, 0.16̇) .
Other parameters are U = 6, β = 2, half-bandwidth of the bath W = 8 and the dissipation
strength g = 0.03. Due to particle-hole symmetry, we show only positive frequencies. Note
the different range of the frequency axis for f̃(ω) to show the occupation in the Floquet
sidebands presented in Fig.1.8.
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Figure 1.8: The Floquet sidebands corresponding to Fig.1.7. The sharp feature around
ω = 8 in panel a) is due to the band-edge of the bath, Eq.(1.45).
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AMEA+FDSA vs. NCA: Here, we compare the developed AMEA+FDSA approach
against Floquet DMFT within the NCA, which is known to be reliable in the Mott regime
of the Hubbard Model[106]. In contrast to the previous test, where any deviation between
the results can be ascribed to the FDSA, in the present case, there are multiple sources.
First, there is the difference in the impurity solvers, which would lead to deviations even in
the standard steady state or equilibrium. For instance, the NCA is known to overestimate
the insulating state while AMEA typically underestimates the latter27. However it should
be noted that both impurity solvers make approximations on the level of the hybridization
and not the interaction. In addition, the accuracy of AMEA tends to vary for different
electric field strengths depending on the performance of the AMEA fit. Finally, there are
again differences induced by the FDSA, which is not used for the NCA results. To keep
the latter under control, we consider parameters, where we can expect the errors induced
by the FDSA to be negligible to focus on a comparison of the impurity solvers within the
context of a periodically driven Mott insulator.
In more detail, we consider the same model and parameters as used above, Fig.1.7, with
the restriction to the resonant driving frequency Ω = 6 and all AMEA results are obtained
with six auxiliary bath sites. From Fig.1.9a, we see that the Hubbard band agrees well
within the two approaches, with the expected trend of a more pronounced gap in the NCA
results. More pronounced deviations are visible for the highest two considered electric field
strengths and bigger relative differences are observed in the Floquet sideband, Fig.1.9b,
which is more pronounced in the NCA. Interestingly, the sharp feature due to the bandedge
of the dissipative bath, Γ(ω), at ω = 8 present in the AMEA and IPT results is completely
smeared in the NCA.
Looking at the AMEA fits, Fig.1.10, we observe that the sideband in the hybridization is
resolved for the highest two electric fields. As a tradeoff for those cases, the hybridization
around the Hubbard band and the distribution function is less accurately described by the
auxiliary system explaining especially the differences at the top of the Hubbard band in
Fig.1.9a. From Fig.1.9c, we observe qualitative agreement in the effective distribution with
bigger differences again for the highest two electric fields and artificial oscillations in the
AMEA results for smaller electric fields induced by oscillations in the auxiliary effective
distribution function28. Further, the fact that the occupation in the Floquet sideband,
which is poorly represented in the auxiliary system, is in good agreement between NCA
and AMEA shows that the latter occupation is dominated by the Floquet contributions
from the Hubbard band. This is further supported by the fact that the physical hybridiza-
tion in the AMEA results, Fig.1.10c, is close to the final result in Fig.1.9c.
Overall, the two approaches show reasonable agreement with larger deviations mainly stem-
ming from the accuracy in the AMEA fit , which can be improved, in principle. Further,
we see that AMEA+FDSA is a symbiotic combination, since both are more accurate for
small electric fields and/or large driving frequencies. The first one due to the perturba-

27This is because a sharp gap in the hybridization is smeared out in the auxiliary system due to the long
tails of the involved Lorentzians in the fit.

28Here, it is worth to note that the effective distribution function is not directly fitted, but rather the
Keldysh component shown in Fig.1.10b is considered in the cost-function.
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tive nature of the FDSA and the second one, since the AMEA fit performs worse when
Floquet-sidebands have to be resolved.
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Figure 1.9: Comparison of results obtained by Floquet DMFT with NCA as impurity solver
(dashed lines) and AMEA+FDSA within Floquet DMFT (solid lines) for different electric
field strengths (colors). The parameters are the same as in Fig.1.7 but only for Ω = 6.
Panel a) shows the time averaged density of states with the inset representing a zoom onto
the indicated region around the top of the peak. Panel b) and c) show the suppressed
Floquet-sideband and the effective distribution function, respectively.
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Figure 1.10: The AMEA fit comparing the imaginary part of the last DMFT hybridization
(dashed lines) and the corresponding one in the auxiliary system (solid lines) for the results
of Fig.1.9. Panel a) and b) show the retarded and keldysh component, respectively. The
latter two are used in the cost-function of the fit. The insets in panel a) and b) show a
zoom on the indicated regions. In panel c), we plot the corresponding effective distribution
function defined by the relation, Im ∆K(ω) = 2(1− 2f̃∆(ω)) Im ∆R(ω).
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Chapter 2

Publications

This chapter is devoted to the presentation of the manuscripts published in peer reviewed
journals. Out of the six publications in which contributions were made during the course
of this thesis, we chose to explicitly present only the ones, where parts of the manuscript
were written and parts of the presented results were actively obtained by the author of
this thesis. The four publications attached below are listed in chronological order and can
be grouped in two categories. Ref.[1, 2] are concerned with technical aspects and develop-
ments of AMEA while Ref.[5, 6] contain physical applications. In more detail:

The first publication Ref.[1] is concerned with the mapping to the auxiliary system
and serves two purposes. First, the technicalities of the mapping are discussed and the
previously developed PT optimization algorithm is presented in great detail, thereby com-
plementing earlier works that focused on the many-body aspect of AMEA[16, 42]. Second,
different geometries1 of the auxiliary Lindblad system are considered and their performance
in terms of the corresponding cost-functions for different system sizes are investigated as
well as their capability to reproduce the Kondo-peak in the equilibrium spectralfunction of
the Anderson Impurity Model at the level of six bath sites, NB = 6, in the auxiliary system.
Due to the detailed considerations of the technical aspects it was realized that the most
general geometry allows for complex Lindblad couplings2. The corresponding “full com-
plex” geometry was found to significantly improve the performance of the fit. Especially,
NB = 4 allowed us to achieve the same accuracy previously obtained with NB = 6, which
is of great importance for the application of AMEA within the SF+ED implementation in
DMFT, where maximally six bath sites can be treated.

In the second publication Ref.[5] we apply AMEA as impurity solver in Floquet DMFT
considering a Mott-insulating layer which is periodically driven by a time-periodic electric
field and coupled to metallic leads with the aim to investigate the effect of impact ionization
in the periodic steady state of the system. By neglecting off diagonal entries in the Floquet
selfenergy, we could replace the Floquet impurity problem with a steady state one. Testing

1restricting the entries in the Lindblad matrices E,Γ(1),(2),
2entries in the Γ(1),(2) matrices
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this FDSA in a self-consistent manner by using IPT, we were able to demonstrate its
validity for the considered parameters. The achieved simplification on the level of the
impurity problem allowed the application of the previously developed AMEA SF+ED
steady state impurity solver. It turned out that the increased accuracy, due to the “full
complex” geometry introduced in the first paper, was crucial to keep spurious currents in
the system under control allowing to obtain reliable results that confirmed the effectiveness
of impact ionization in enhancing the photo-current.

In the third publication Ref.[2], further technical developments of AMEA were presented
and benchmarked within the IRLM with the focus on an alternative solution strategy for
the auxiliary many-body Lindblad problem based on SWF’s, which constitutes a very
promising approach to make AMEA a feasible choice as future impurity solver within
nonequilibrium multi-orbital DMFT. By calculating the equilibrium spectralfunction and
the I/V -characteristic of the IRLM we provided a proof of concept and showed that, due to
the trivial parallelizability, extremely low wall-times can be reached. The latter results were
complemented by studying the effect of finite temperature on the impurity spectralfunction
of the IRLM and the presentation of developments regarding the mapping to the auxiliary
system utilizing a variable-rank parametrization for the Lindblad Γ-matrices as well as
optimization routines from machine learning. Additionally, the notion of finite size scaling
within AMEA was introduced which was successfully applied to extrapolate the results for
the steady state current showing significant improvement.

In the fourth publication Ref.[6], we used the new AMEA SWF+ED implementation to
calculate accurate NEGF’s of the IRLM in dependence of the bias voltage with the aim to
investigate how the prominent NDC of the IRLM manifests itself in the non-perturbative
regime. Rewriting the integrand for the steady state current in terms of the local spec-
tral and effective distribution function on the site next to the impurity and comparing to
results obtained by the Hartree-Fock method, we were able to confirm the scenario of a
renormalized hybridization strength previously found in the literature. Further, the impu-
rity spectralfunction shows the development of a dominant central peak at high voltages,
which could be interpreted by considering the many-body steady state density matrix in the
central interacting cluster obtained from the numerical simulations and its corresponding
single-particle excitations in the atomic limit.

Publication Preambles: In the following, a preamble is included before the presenta-
tion of each publication to describe the contributions of the different authors, as needed
for the cumulative style of this thesis.
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2.1 Publication 1: Geometries of the auxiliary Lind-

blad system

The article titled Optimized auxiliary representation of non-Markovian impurity problems
by a Lindblad equation was published in New Journal of Physics 19 063005, June 2017.
The work was conducted by Antonius Dorda (AD) as first author and Max Sorantin (MS)
as co-author under the supervision of Wolfgang von der Linden (WL) and Enrico Arrigoni
(EA). The work was initialized by EA and AD with the aim to investigate the mapping to
the auxiliary system in more detail with respect to different geometries of the latter. The
consideration of complex Lindblad couplings was put forward by MS. The optimization cal-
culations were done with the existing PT C++ code, which had been previously developed
by AD[43]. AD and MS implemented the different geometries, carried out corresponding
optimization calculations and data analysis. The presented spectralfunctions were calcu-
lated by MS using the existing SF+ED implementation previously developed by AD[43].
A first version of the manuscript was written by AD, extended and revised by MS with
the inclusion of the results for the “full complex” geometry and the section discussing the
spectralfunction of the SIAM, further extended and revised by EA adding the Appendix
C, and revised by WL. All authors contributed to the discussion of the results.
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New J. Phys. 19 (2017) 063005 https://doi.org/10.1088/1367-2630/aa6ccc

PAPER

Optimized auxiliary representation of non-Markovian impurity
problems by a Lindblad equation

ADorda,MSorantin,Wvonder Linden andEArrigoni1

Institute of Theoretical andComputational Physics, GrazUniversity of Technology, A-8010Graz, Austria
1 Author towhomany correspondence should be addressed.

E-mail: arrigoni@tugraz.at

Keywords: strongly correlated systems, quantum systems out of equilibrium, open quantum systems and decoherence, nonequilibrium
Green’s function,Markovian andnon-Markovian systems

Abstract
Wepresent a general scheme to address correlated nonequilibriumquantum impurity problems
based on amapping onto an auxiliary open quantum systemof small size. The infinite fermionic
reservoirs of the original system are thereby replaced by a small numberNB of noninteracting auxiliary
bath sites whose dynamics are described by a Lindblad equation, which can then be exactly solved by
numericalmethods such as Lanczos ormatrix-product states. Themapping becomes exponentially
exact with increasingNB, and is already quite accurate for smallNB. Due to the presence of the
intermediate bath sites, the overall dynamics acting on the impurity site is non-Markovian.While in
previousworkwe put the focus on themanybody solution of the associated Lindblad problem, here
we discuss themapping scheme itself, which is an essential part of the overall approach. On the one
hand, we provide technical details together with an in-depth discussion of the employed algorithms,
and on the other hand, we present a detailed convergence study. The latter clearly demonstrates the
above-mentioned exponential convergence of the procedurewith increasingNB. Furthermore, the
influence of temperature and an external bias voltage on the reservoirs is investigated. The knowledge
of the particular convergence behavior is of great value to assess the applicability of the scheme to
certain physical situations.Moreover, we study different geometries for the auxiliary system.On the
one hand, this is of importance for advancedmanybody solution techniques such asmatrix product
states whichworkwell for short-ranged couplings, and on the other hand, it allows us to gainmore
insights into the underlyingmechanismswhenmapping non-Markovian reservoirs onto Lindblad-
type impurity problems. Finally, we present results for the spectral function of theAnderson impurity
model in and out of equilibrium and discuss the accuracy obtainedwith the different geometries of the
auxiliary system. In particular, we show that allowing for complex Lindblad couplings produces a
drastic improvement in the description of the Kondo resonance.

1. Introduction

Strongly correlated systemsout of equilibriumhave recently attracted considerable interest due to progress in
several experimentalfields, such as ultrafast pump-probe spectroscopy [1–5], ultracoldquantumgases [6–10], and
solid-state nanotechnology [11–13]. These advances have also prompted interest in related theoretical questions
concerning thermalization [14–16], dissipation anddecoherence [17], andnonequilibriumquantumphase
transitions [18–20]. An interesting aspect is the interplay between correlation anddissipation in systemswhere the
latter is not included phenomenologically but is part of themicroscopicmodel. The challenge lies in the fact that
one has to treat inhomogenous correlated systemsof truly infinite size since anyfinite systemwould not feature
dissipation.When considering purely fermionic correlated systems, dissipation is usuallymodeled by infinite
reservoirs of noninteracting fermions. These reservoirs are in contactwith a correlated central regionof interest. A
paradigmatic example of such a system is the single-siteKondoorAnderson impuritymodel [21–25]. If there is
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just one reservoirwith a single chemical potentialμ and temperatureT, then thewhole system (typically) reaches
thermodynamic equilibrium, a problemwhich is nowadayswell understood [25–32]. Alternatively, one can
consider a nonequilibrium situation [33–55] inwhich several reservoirswith differentμ andT are in contactwith
the central region. Since the reservoirs are infinite, they act as dissipators and the system inmost cases reaches a
nonequilibrium steady state inwhich a particle and/orheat currentflows across the central region2.

There are several approaches to treat such systems numerically [35–51]. Some of them start out from the
situation inwhich the central region and the reservoirs are decoupled, which allows the individual systems to be
treated exactly [56–61]. There are different schemes to include themissing coupling between the reservoirs and
the central region. First of all, one could carry out a perturbative expansion in terms of the reservoir–central
region coupling [56–59]. Low-energy properties are better addressedwithin a renormalization-group treatment
of the perturbation (see, e.g. [62]). Alternatively, one can try and compute the self-energy (most nonequilibrium
quantities of interest follow fromDyson’s equation) for the correlated sites based onfinite clusters consisting of
the central region plus a small numberNr of reservoir sites. This is done in nonequilibrium cluster perturbation
theory [56, 61], whose accuracy increases with increasingNr. A generalization of this idea is the nonequilibrium
variational cluster approach, [57–60], where single-particle parameters of themodel are optimized self-
consistently, which allows for the adjustment of the self-energy to the nonequilibrium situation.

1.1.Markovian approximations andbeyond
In a different class of approaches, one tries to ‘eliminate’ the degrees of freedomof the reservoir and take into
account its effects on the dynamics of the interacting central region [63–67]. Oneway to do this is by treating the
coupling to the reservoir within a Lindblad equation [63–65]. In this way, the effect of the reservoir is to
introduce nonunitary dynamics in the time dependence of the reduced density operator rf of the central region
leading to the Lindblad equation, which is a linear, time-local equation for rf preserving its hermiticity, trace,
and positivity. One important precondition for the validity of thismapping, however, is theMarkovian
assumption that the decay of correlations in the reservoir ismuch faster than typical time scales of the central
region. As pointed out, e.g. in [63, 66], the approximations leading to theMarkovian Lindbladmaster equation
are justified provided the typical energy scaleΩ of the reservoir ismuch larger than the reservoir–central region
coupling.However, for a fermionic system,Ω can be estimated as m e-( (∣ ∣ ))W Tmin , max , , whereW is the
reservoir’s bandwidth, and e is a typical single-particle energy of the central region. Therefore, even in thewide-
band limit  ¥W , the validity of theMarkov approximation is limited either to high temperatures or to
chemical potentials far away from the characteristic energies of the central region. As amatter of fact, the effect of
a noninteracting reservoir with m  ¥∣ ∣W , (or  ¥T withfinite m T ) can be exactly written in terms of a
Lindblad equation. This can be easily deduced from the ‘singular coupling’ derivation of the Lindblad equation
[63]. This is valid independently of the strength of the coupling between central region and reservoir. A
nontrivial situation is obtained by introducing different reservoirs with different particle densities. The pleasant
aspect of this limit is that the Lindblad parameters depend on the properties of the reservoir and of its coupling
with the central region only, but not on the ones of the central region.

This is in contrast to themore standardweak-coupling Born–Markov version inwhich the Lindblad
couplings (see, e.g. [63–65])depend on the central region’s properties. To illustrate this, consider a central
region consisting of a single site with energy ef , i.e. withHamiltonian

e= ( )†H f f 1f f

(omitting spin) and reduced densitymatrix rf . The part of the Lindblad operator b describing the coupling to a
noninteracting reservoir is given by

 r r r r r= G - + G -( { }) ( { }) ( )† † † †f f f f f f ff2 , 2 , 2b f f f f f1 2

with

e eG = G - G = G( ( )) ( ) ( )f f1 . 3f f1 F 2 F

Here,Γ is proportional to the reservoir’s density of states at the energy ef , and fF is the Fermi functionwhich
obviously contains the information on the chemical potential and temperature of the reservoir but also on the
onsite energy ef in the central region. This could be unsatisfactory since onewould like to describe the effect of
the reservoir in a formwhich is independent of the properties of the central region, especially when the latter
consists ofmany coupled sites.

One possible way to eliminate the dependence of the Lindblad couplings on the parameters of the central
region is to use an intermediate auxiliary buffer zone (mesoreservoir) between the Lindblad couplings and the

2
Anotable exception is when a bound state is present, i.e. a state with energy outside of the continuumof the reservoir. In this case, there is

no unique steady state.
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central region (see, e.g. [68–71]). The buffer zone consists of isolated discrete sites (levels), each one coupled to a
Markovian environment described by Lindblad operators with the sameT andμ as given in equations (2) and
(3). If the buffer zone is sufficiently large, i.e. if its levels are dense enough, then one can show that the buffer zone
including Lindblad operators yields an accurate representation of the reservoir, which becomes exact in the limit
of an infinite number of levels. Importantly, the parameters of this buffer zone do not depend on the central
region’s properties. The disadvantage of this approach is, however, that one needs a quite large number of buffer
levels, especially at low temperatures where the Fermi function is sharp. Consequently, themany-bodyHilbert
space becomes very large, resulting in a challenging problem for the treatment of the correlated situation.

A very effective technique to solve low-dimensional correlated systems arematrix product states (MPS), and
great progress has beenmade in recent years to applyMPS techniques to interacting Lindblad equations [72–85].
With this, rather large systems are within reach even though the numerical effort forHubbard-type problems is
rather high due to an extensive entanglement growthwith system size [77, 85].

1.2. This work
In this paper, rather than focusing on solution techniques for the interacting Lindblad equation,we investigate
different strategies for themappingof a general physical (‘ph’) reservoir onto an auxiliary (‘aux’)one, consistingof a
small numberNB of noninteracting fermionic sites (auxiliary levels) and arbitrary Lindblad terms.This is important
since the accuracyof the buffer-zone idea discussed above canbe significantly improvedby allowing formore general
Lindblad couplings,which are determined throughanoptimizationprocedure. In thisway, the associated interacting
impurity solver becomes exponentially accuratewith increasingNB.Moreover, if the appropriate geometry is chosen
(figure 1), already amodest value ofNBproduces an accurate representationof thephysical reservoir. An interesting
aspect is that, as in the buffer-zone approach, the combinationof intermediate bath levels and couplings to
Markovian environments via Lindblad terms allowsone todescribe anon-Markovianbath seenon the impurity site.

We have used these ideas in previousworks [85–88] to address nonequilibrium impurity physics in the
Kondo regime, withmanybody solution techniques based on exact diagonalization (ED) andMPS. Especially in
the latter case, we achieved very accurate results for the splitting of theKondo peakwith applied bias.
Furthermore, in the equilibrium limit, we found a close agreementwith numerical renormalization group
(NRG) temperatures well belowTK. The sizes of the auxiliary systemswere rather small,NB= 16 forMPS and
NB= 6 for EDonly,3 which demonstrates the significant improvement provided by using a Lindblad coupling in
the appropriate geometry.

Figure 1. Sketch of thefive geometries (setups) for the auxiliary system equation (15). An explicit formof the correspondingmatrices
forNB=4 is given in appendix B. The impurity is represented by a red circle while the bath sites are filled green ones. The hoppings
described by thematrix E are represented by thick black lines. The couplings to theMarkovian environments given by G( )1 2 are
expressed by gray lines connected to empty (G( )1 ) or full (G( )2 ) reservoirs. On-site terms in the G( )1 2 matrices are illustrated as a
double gray line. The setup ‘full’ represents themost general casewith dense G( )1 and G( )2 matrices, which couple each bath site with
every other one via the G( )

i j,
1 2 . For simplicity, we don’t depict all terms for this ‘full’ case. For the other (sparse) cases all couplings are

drawn, and n.n. denotes nearest neighbor terms in G( )1 2 .

3
Consider that within themany-body Lindblad equation, we have to deal with the space of densitymatrices not of state vectors, so that the

Hilbert space size is that of an +( )N2 1B sitesHubbardHamiltonian.
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Here, wewant to elaborate inmuchmore detail the advantages of considering long-ranged Lindblad
couplings in combinationwith the optimization strategy. In particular, we investigate five different geometries
for the auxiliary Lindblad system, see figure 1.These setups, described in detail in section 2.6, feature different
connections between theMarkovian bath and the auxiliary levels. The important point is that the accuracy of
our approach forfixedNB crucially depends on the choice of the appropriate geometry. A systematic analysis of
the performance of these geometries is, therefore, themain content of this paper. Besides determining the
scaling of the accuracy as a function of the number of bath sitesNB, we discuss the importance of the different
couplings and relate our results to the commonly used buffer-zone idea.With the applicability ofmanybody
solution techniques inmind, we consider also the case of sparse geometries which arewell-suited forMPS. Even
with this limitationwefind drastic differences between the different geometries. This highlights the huge
potential for improvement and furthermore yields important insights into the underlyingmechanisms. For ED
approaches, any of the discussed geometries can be applied and one is generally interested infinding the best
possiblemapping for afixed and low value ofNB. In this case the geometrywith long-ranged and complex
Lindblad terms outperforms the other choices, as shown below.

Finally, we also discuss results for the interacting spectral function of the Anderson impuritymodel in and
out of equilibrium, obtainedwith the different geometries. In particular, we showhere for thefirst time to our
knowledge that allowing for complex Lindblad couplings produces a drastic improvement in the description of
theKondo resonance.

This paper is organized as follows: in section 2.1, we introduce themodels under study and define the basic
notation. In section 2.2, we illustrate themost important aspect of this work, namely themapping of the physical
Hamiltonian problemonto an auxiliary open quantum systemdescribed by a Lindblad equation. In section 2.3,
we present the expressions for the non-interactingGreen’s function of the auxiliary system, and in section 2.4we
illustrate thefit procedure. In section 2.5, we briefly discuss the relationwith the interacting case. In section 3, we
present in detail the convergence of the fit as a function ofNB for the different geometries presented in
section 2.6 and for different temperatures, as well as a discussion on the advantages and disadvantages of these
setups. As an example, we present results for the spectral function of theAnderson impuritymodel. Finally, in
section 4we summarize our results and discuss possible improvements and open issues. In three appendices we
present technical details of theminimization procedure (appendix A), show the explicit formof thematrices for
the different geometries (appendix B), and discuss certain redundancies of the auxiliary system (appendix C).

2.Model andmethod

2.1.Model
Webeginwith a general discussion, whichwe eventually apply to the single-site Anderson impuritymodel. In
the general case the central regionmay represent a small cluster ormolecule. TheHamiltonian of the physical
system at study is written as

å= + +
a

a a( ) ( )H H H H 4f f

where Hf is theHamiltonian of the central region describing a small cluster of interacting fermions,Hα is the
Hamiltonian of the reservoir a describing an infinite lattice of noninteracting particles, and aH f is the coupling
between central region and reservoirs.

= + ( )H H H 5f f U0

consists of a noninteracting part

å= ( )†H h f f 6f
ij

ij i j0

and an interaction termHU. The fermions in the reservoirs can be described by

åe=a a a a
¢

¢ ¢ ( )†H d d 7
p p

p p p p
,

,

in usual notation. For simplicity, spin indices are not explicitlymentioned here. Quite generally, a suitable single
particle basis can be chosen such that e d~a ¢ ¢p p p p, , . In the context of impurity problems, such a basis is often
referred to as ‘star representation’, see alsofigure 1. aH f is taken to be quadratic in the fermion operators:

å= +a a a ( )†H v d f h c. ., 8f
p i

pi p i
,

and di ( fi) are the fermionic destruction operators on the reservoir’s (central region’s) sites i.

4
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Weare interested in a steady-state situation, although the present approach can be easily extended to include
time dependence, especially if this comes froma change of the central region’s parameters only. In the steady
state, theGreen’s functions depend only on the time difference andwe can Fourier transform so that theGreen’s
functions depend on a real frequencyω only, which here is kept implicit.We assume that initially the
hybridization aH f is zero and the reservoirs are separately in equilibriumwith chemical potentials ma and
temperatures aT . Then the aH f are switched on and after a certain time a steady state is reached.We use the non-
equilibrium (Keldysh) formalism [89–94]whereby theGreen’s function can be represented as a 2×2 block
matrix

=
⎛
⎝⎜

⎞
⎠⎟ ( )G G G

G0
, 9

R K

A

where the retardedGR, advancedGA, andKeldyshGK components arematrices in the site indices (i, j) of the
central region.Wewill adopt this underline notation in order to denote this 2×2 structure.We use lowercase
g (

a
g ) to denoteGreen’s function of the decoupled central region (reservoir a), while uppercase G represent

the full noninteractingGreen’s function of the central region. For simplicity we omit the subscript 0, since in this
paperwe dealmainly with noninteractingGreen’s functions anyway.We use the subscript int for interacting
ones. G is easily obtained from theDyson equation as

= - D- -( ) ( )G g , 101 1

where

*åD =
a

a a a
¢

¢ ¢
( )v v g 11ij

p p
pi p j p p

, ,
,

is the reservoir hybridization function (commonly called bath hybridization function) in theKeldysh
representation. The retardedGreen’s functions ag R for reservoirs with non-interacting fermions in equilibrium

can be determined easily by standard tools, and theKeldysh components ag K can be obtained from the retarded
ones by exploiting the fluctuation-dissipation theorem:

w w w w= -a a a a( ) ( ( ) ( ) ) ( ) ( )†g g g s , 12K R R

which is valid since the uncoupled reservoirs are in equilibrium.Here,

w w m= -a a a( ) ( ) ( )s f T1 2 , , 13F

and w ma a( )f T, ,F is the Fermi function at chemical potential ma and temperature aT .
Fromnowon, for simplicity of presentation, we restrict to the Anderson impuritymodel (SIAM) inwhich

the central region, described by equation (5), consists of a single site, i.e. there is only one value for the index i,
whichwe drop, and

= =s s s  ( )†H Un n n f f . 14U f f f

The ideawe are going to present in section 2.2 can be immediately extended to the case of a central region
consisting ofmany sites inwhich each site is connected to separate reservoirs. In themost direct fashion, this can
be donewith exactly the same approach as formulated here for the SIAMby justmapping each reservoir
independently onto auxiliary Lindblad bath sites. An interesting application is, for example, the case of an
interacting chain coupled on both sides to reservoirs with different chemical potentials [95]. Also, the extension
to the case of arbitrary (quadratic) couplingswith the reservoirs that intermix the central region sites relevant,
e.g., for cluster dynamicalmean-field theory, is conceptually straightforward althoughmore involved.

2.2.Mapping onto an auxiliarymaster equation
A crucial point in the following considerations is the fact that, even in the interacting case, the influence of the
reservoirs upon the central region is completely determined by the bath hybridization function wD( ) only. In
otherwords, any interacting correlation function of the central region solely depends on the central region
Hamiltonian Hf and onD. This result is well known at least in equilibrium, and can be easily proven; for
example, diagrammatically (see footnote4). The argument holds independently onwhether oneworkswith
equilibriumor nonequilibriumGreen’s functions.Moreover, it crucially depends on the fact that the reservoir is
noninteracting.

4
Since there are no interactions in the reservoir, external indices of any bare interaction vertex belong to the central region only.Moreover,

an interacting correlation function of the central region consists, by definition, of diagramswhose external lines belong to the central region.
Consequently, all diagrams consist only of vertices (determined byHU) and of propagator lines whose endpoints belong to the central region
only, i.e. they correspond to noninteractingGreenʼs functions G of the central region equation (10). Therefore, all relevant diagrams only
depend onHU and the noninteracting = - D- -( )G g 1 1.
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This can be exploited to choose different representations for the reservoir. A convenient discretization in
equilibrium is to represent the reservoir by a finite number of bath sites, as commonly used in the context ofNRG
[25, 27] or exact-diagonalization-based dynamical-mean-field theory (ED-DMFT) [96–98]. Here, the desired
physical hybridization functionDph is approximated by an auxiliary oneDaux,

5 corresponding to a bathwith a
finite number of sites. In ED-DMFT, the parameters of theseNB bath sites are obtained through fitting the
hybridization function inMatsubara space. As can be readily shown, only N2 B bath parameters are of relevance
per spin degree of freedom, and it is common to choose a ‘star’ or ‘chain’ representation.

Clearly, the samefit strategy is inconvenient out of equilibrium for several reasons. First of all, the auxiliary
system cannot dissipate since it isfinite, and a steady state cannot be reached. In [86, 99]wehave suggested an
auxiliarymaster equation approach (AMEA), which adopts an auxiliary reservoir consisting of a certain number
NB of bath sites which are additionally coupled toMarkovian environments described by a Lindblad equation

  r r r= = +( ) ( )
t

d

d
. 15H D

Here, theHamiltonian for the auxiliary system is given by (we reintroduce spin)

å= +
s

s s   ( )†H E c c Un n , 16
ij

ij i j f faux

and enters the unitary part of the Lindblad operator

 r r= - [ ] ( )i H , . 17H aux

The dissipator D describes the coupling of the auxiliary sites to theMarkovian environment and is given by

 å år r r r r= G - + G -
s

s s s s
s

s s s s⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠{ } { } ( )( ) † † ( ) † †c c c c c c c c2

1

2
, 2

1

2
, . 18D

ij
ij j i i j

ij
ij i j j i

1 2

in terms ofmatrices G( )1 2 withmatrix elements G( )
ij
1 2 to be determined by an optimization procedure, as

discussed below. The indices i j, in equations (17) and (18) run over the impurity i=f (we identify =s sc ff ) and
over theNB bath sites

6. Similar to the case of the ED-DMFT impurity solver previouslymentioned, the idea is to
optimize the parameters of the auxiliary reservoir in order to achieve a bestfit to the physical bath hybridization
function equation (11), i.e., for a givenNB, wD ( )aux should be as close as possible to wD ( )ph :

w wD » D( ) ( ) ( ). 19aux ph

As for the ED-DMFT case, one can choose a single-particle basis for the auxiliary bath such that thematrix E is
sparse,7, i.e. it has a ‘star’ or a ‘chain’ form and is real valued.However, there is no reasonwhy thematrices G( )1

and G( )2 should be sparse and real in the same basis as well, and, in fact, as discussed below, for an ED treatment
of the Lindblad problem it is convenient to allow for a general form in order to optimize the fit. This larger
number of parameters allows one to fulfill equation (19) to a very good approximation. The introduction of
dissipators equation (18) additionally allows us to carry out thefit directly for realω (see section 2.4) since

wD ( )aux is a continuous function. Thismakes this approach competitive with ED-DMFT for the equilibrium
case aswell.

Notice that equation (18) is not themost general formof the dissipator, and one could think of including
Lindblad terms that contain four ormore fermionic operators or also anomalous and spin-flip terms. This
would increase the number of parameters available for the fit. However, the latter would violate conserved
quantities and the formerwould describe an interacting bath, so that the argument of section 2.2 (see footnote 3)
does not apply. As amatter of fact, the exact equivalence to a noninteracting bath (see footnote 6) only holds for a
quadratic formof the Lindblad operator as in equation (18).

Once the optimal values of thematrices E , G( )1 and G( )2 for a given physicalmodel are determined for the
non-interacting system, one could solve for the dynamics of the correlated auxiliary systemdefined by
equation (15), which amounts to a linear equation for the reducedmany-body densitymatrix. If the number of
sites of this system is small, one can solve exactly for the steady state and the dynamics of this interacting system
bymethods such as Lanczos exact diagonalization ormatrix product states (MPS) [81–83, 85].

5
We shall use suffixes ph and aux to distinguish between the physical bath hybridization function equation (11) and the ones produced by the

auxiliary reservoir .Whenever necessary to avoid ambiguities, these suffixes will be used also for other quantities.
6
It can be easily shown that the dissipative form (equation (18)) exactly corresponds to the coupling of the auxiliary baths to a small number

of noninteracting reservoirs with constant density of states and infinite chemical potentials and/or temperatures. This can be easily deduced
from the ‘singular coupling’ derivation of the Lindblad equation [63], see also [115].
7
Weuse boldface to denotematrices in the indices i j, of the auxiliary system. This should not be confusedwith ... , which denotesmatrices

inKeldysh space.
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2.3. Computation of the auxiliary bath hybridization function
In order to carry out thefit equation (19), we need to compute the auxiliary reservoir hybridization function

wD ( )aux formany values of the bath and Lindblad parameters. This can be done in an efficientmanner since only
noninteractingGreen’s functions are needed, see also equation (10) and the preceding discussion. Computing
the single-particle Green’s functionmatrix Z, obtained from the steady-state solution of equation (15), amounts
to solving a noninteracting fermion problem,which scales polynomially with respect to the single-particle
Hilbert space . Amethod to deal with quadratic fermionswith linear dissipation based on a so-called ‘third
quantization’has been introduced in [100].We adopt the approach of [69] inwhich the authors recast an open
quantumproblem like equation (15) into a standard operator problem in an augmented fermion Fock space
with twice asmany sites andwith a non-HermitianHamiltonian [69, 101, 102]. This so-called super-fermionic
representation is convenient for our purposes, not only to solve for the noninteractingGreen’s functions but
also to treat themany-body problem in an analogous framework toHermitian problems. An analytic expression
for the noninteracting steady-state retarded andKeldysh auxiliary Green’s functionswas derived in [86]. An
alternative derivation, which does not rely on super-fermions, is given in [71]. For the retarded component, we
get (see footnote 7)

w w G G= - + + -( ) ( ( )) ( )( ) ( )E iZ , 20R 2 1 1

and theKeldysh component of the inverse Green’s function reads

G G= - --( ) ( ) ( )( ) ( )iZ 2 , 211 K 2 1

yielding theKeldyshGreen’s function

G G
=-

= -

-( )
( ) ( )( ) ( )i

Z Z Z Z

Z Z2 . 22

K R 1 K A

R 2 1 A

The ff component of Z is the auxiliary impurity Green’s function

= ( ) ( )G Z . 23ffaux

From this, one can determine the retarded component of wD ( )aux

wD = -( ) ( )g G1 1 . 24aux
R R

aux
R

For theKeldysh component, one has to carry out two inversions of Keldyshmatrices (see, e.g. [92]), yielding

wD = - =-( ) ( ) ∣ ∣ ( )G G G1 , 25aux
K

aux
1 K

aux
R 2

aux
K

where the contribution from gK is infinitesimal.

2.4. Fit procedure
From the preceding equations, we can efficiently compute wD ( )aux for a given set of parameters of the auxiliary
reservoir. The numerical effort for a single evaluation is low and scales only atmost as( )NB

3 .We introduce a
vector of parameters x which yields a unique set ofmatrices E , G( )1 and G( )2 within a chosen subset (see, e.g.
figure 1 and appendix B) and quantify the deviation from equation (19) through a cost function

ò
å

c
c

w w

w w

= D - D

D - D = D - D

w

w

x

x x

-

Î

( ) ∣ ∣ ( )

∣ ∣ { ( ) ( )} ( )
{ }
I

x

x

W

m

1
d ,

; , 26

2

0
2 ph aux

ph aux
R,K

ph aux
2

c

c

andminimize c ( )x with respect to x. The normalization c0 is hereby chosen such that c =( )x 1when
wD º( ) 0aux . It is important to note that both the retarded and theKeldysh componentmust befitted. Due to

Kramers–Kronig relations, the real part of wD ( )ph
R is fully determined by its imaginary part, provided the

asymptotic behavior isfixed. Therefore, we can restrict tofit its imaginary part, while wD ( )ph
K is purely

imaginary. Furthermore, in equation (26)we introduced a cut-off frequency wc and aweighting function w( )W .
In this work, we take w =( )W 1and w = D1.5c , withD the half-bandwidth of wD ( )ph . Different forms of

w( )W can be used, for instance in order to increase the accuracy of thefit near the chemical potentials. In
general, other definitions for equation (26) are possible such as a piecewise definitionwith varying interval
lengths. By this, onemay combine the present approachwithNRG ideas such as the logarithmic discretization,
andwork along these lines is in progress (see also [71]). On thewhole, theminimization of equation (26)
constitutes amulti-dimensional optimization problem and appropriate numericalmethods for it are discussed
in appendix A.

As asymptotic limit, we require here wD ( ) 0aux for w  ¥, which is obtainedwhen setting
G =( ) 0ff

1 2 . Semipositivity further requires G = G =( ) ( ) 0if fi
1 2 1 2 . For simplicity, we restrict here to the particle-

hole symmetric case. This reduces the number of free parameters in E , G( )1 and G( )2 . For the case inwhich the
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impurity site f is located in the center and that one has an even number of bath sitesNB, particle-hole symmetry
in the auxiliary system is obtainedwhen

= -

G = - G

+ +
+ - + -

+
+ - + -

( )
( ) ( )( ) ( )

E E1 ,

1 , 27

ij
i j

N j N i

ij
i j

N j N i

1
2 , 2

1
2 , 2

2

B B

B B

for Î ¼ +{ }i j N, 1, , 1B .More details for the particular formof E , G( )1 , and G( )2 are given in appendix B.

2.5. Interacting case
Wenowbriefly discuss here some relevant issues in connectionwith the evaluation of particular observables of
the physical system from results of the auxiliary system.More details can be found in [85, 86].

As already discussed, bymapping onto an auxiliary interacting open quantum systemof finite size described
by the Lindblad equation (equation (15)), we obtain amanybody problemwhich can be solved exactly or at least
with high numerical precision, providedNB is not too large. In [86], we presented a solution strategy based on
exact diagonalization (ED)withKrylov spacemethods, and in [85] one based onMPS. In the end, both
techniques allow us to determine the interacting impurity Green’s function w( )Gaux,int of the auxiliary system.
As discussed previously, in the limit w wD  D( ) ( )aux ph (i.e. for largeNB) this becomes equivalent to the
physical one w( )Gph,int . However, this equivalence only holds for impurity correlation functions, and, for
example, it does not apply for the currentflowing froma left (a = l) to a right (a = r) reservoir across the
impurity. Therefore, the current evaluatedwithin the auxiliary Lindblad systemdoes not necessarily correspond
to the physical current even for large NB,

8 unless one fits the bath hybridization functions wD a ( )ph, for the left
and right reservoirs separately. Such a separate fit, however, is not necessary andwould simplyworsen the overall
accuracy for a givenNB.Once the approximate w w»( ) ( )G Gph,int aux,int is known, the current of the physical
system can be evaluated bymeans of thewell-knownMeir–Wingreen expression [92, 103, 104], albeit by using
the Fermi functions and density of states (hybridization functions) of the two physical reservoirs separately.
Therefore, the knowledge of w( )Gaux,int enables one to computemost quantities of interest.

An additional step consists in extracting just the self-energy from the solution of the auxiliary impurity
system

w w wS = -- -( ) ( ) ( )G G .aux aux
1

aux,int
1

and inserting it into theDyson equation for the physical systemwith the exact physical noninteractingGreen’s
function

w w w» - S- -( ) ( ( ) ( )) ( )G G . 28ph,int ph
1

aux
1

Clearly, this step is only useful when the relation equation (19) is approximate, since for w wD  D( ) ( )aux ph

also the noninteractingGreen’s functions w( )Gph and w( )Gaux would coincide, i.e. in the hypothetical
 ¥NB case, and one could just set w w( ) ( )G Gph,int aux,int . ForfiniteNB, this substitution has the advantage

that in equation (28) the noninteracting part w( )Gph is exact, and the approximation equation (19) only affects
the self energy.

2.6.Different geometries for the auxiliary system
With the goal inmind of providing the best approximation to the full interacting impurity problemdescribed by
theHamiltonian equation (4), wewould like to approximate wD ( )ph by wD ( )aux as accurately as possible for a
given number of bath sitesNB. In principle, one has the freedom to choose different geometries for the auxiliary
system, and a generic set offive different setups is depicted infigure 1. (An explicit formof the corresponding
matrices forNB= 4 is given in appendix B.) For largeNB all geometries converge to the exact solution

w wD  D( ) ( )aux ph , and the question is how fast. In section 3, wewant to elaborate on this point in detail and
present results obtainedwith those geometries, whichwe briefly discuss andmotivate here.

In all cases one can restrict the geometries to a sparse (e.g. tridiagonal) and real-valuedmatrix E . As is
commonly true for impurity problems, the physics on the impurity site is invariant under unitary
transformations among bath sites only. For an arbitrary unitary transformationU with d= =U Uif fi if to new

fermionic operators, one obtains an analogous auxiliary systemwithmodified bath parameters ¢ = †E U EU ,

G G=
¢( ) † ( )U U1 1 and G G=

¢( ) † ( )U U2 2 . It is easy to check that the ff-component of theGreen’s functions
equations (20) and (22) is not affected by this transformation. Therefore, we choosewithout loss of generality E
to be sparse as well as real, and for G( )1 2 in themost general case densematrices with( )NB

2 parameters. The

8
This situation is particularly interesting in equilibrium:with large enoughNB and an appropriate choice of the parameters of the

nonequilibriumLindblad system, one can still produce an auxiliary wD ( )aux so that the fluctuation dissipation theorem equation (12) is
fulfilled to high precision at the impurity, representing an equilibriumphysical wD ( )ph .While afinite currentmay flow in the auxiliary
system, the equilibriumproperties at the impurity are correctly reproduced.
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particular formof E is irrelevant, i.e. whether it is diagonal for bath sites (star) or tridiagonal (chain), as long as
the G( )1 2 matrices are transformed accordingly.

Such a general geometry with sparse E and dense G( )1 2 is referred to as ‘full’ setup in the following.Here, we
will further distinguish between the case inwhich the G( )1 2 are real or they have complex elements (‘full
complex’). In addition, we consider the four sparse cases ‘2 chains n.n.’, ‘2 chains onsite’, ‘star’, and ‘1 chain n.
n.’, inwhich also the G( )1 2 are sparse. Themeaning of these abbreviations is given infigure 1, see also
appendix B. These sparse geometries are, however, not linked to each other by unitary transformations and
represent nonequivalent subsets of the ‘full’ setup.Which one of these is advantageous in practice is not obvious
a priori, and is discussed in the next section9.

The ‘full’ geometry comprises all other ones and thus, obviously, gives the best possiblefit for a givenNB. In
addition, one can allow for the off-diagonalmatrix elements of the G( )1 2 to be complex, thus extending the set
offit parameters. Nevertheless, the sparse setupsmay be of great value for sophisticatedmanybody solution
strategies for the interacting Lindblad equation, such asMPS.Wemade use of the ‘full’ setup (with real
parameters) in the ED treatment [86], which is applicable to dense G( )1 and G( )2 matrices and could consider up
toNB= 6. Larger systems are prohibitive due to the exponentially increasingHilbert space (see footnote [2]). On
the other hand, withinMPS, we can currently consider up toNB= 20 bath sites. However, in favor of the
applicability ofMPSmethods, one should avoid long-ranged hoppings andwe thus employed the ‘2 chains n.n.’
geometry. As becomes evident also from the results below, the gain inNB hereby outweighs the restriction of the
fit setup, so that theMPS approach is clearlymore accurate. Also, the other sparse setups investigated below are
possible candidates forMPS, see also [105]. Besides this, approaches such as the previouslymentioned buffer
zone scheme and variations of it [68–70], which are often applied concepts in Lindblad-type representation of
noninteracting environments, are related to the ‘star’ geometry; see also our later discussion.

3. Results

As just discussed, while the ‘full’ geometry is themost efficient one, for the purpose of employing efficient
manybody eigenvalue solvers such asMPS, it is of great relevance to consider setupswhich feature only sparse E ,
G( )1 , and G( )2 matrices. Furthermore, it is also of general interest to investigate the importance of long-range
terms in the G( )1 2 matrices andwhy they are crucial to improving the fit. These are the questions that are
addressed in this section.Moreover, wewill analyze the rate of convergence as a function ofNB for the different
setups shown infigure 1, and for different temperatures of the physical system. The detailed knowledge of the
convergence properties is important in order to be able to estimatewhether or not certain systems can be
accurately treated.

We consider a ‘physical’ SIAMconsisting of an impurity site coupled to two reservoirs (leads) at different
chemical potentials, corresponding to a bias voltagef across the impurity, andwith aflat density of states as
plotted infigures (2–4). Typical results for a givenf and temperatureT are shown infigures (2–4). For the
different setups, the quality of the fit ismeasured by theminimumof the cost function equation (26). As
discussed previously, the ‘full’ setups give the best results. Already for a rather small number of bath sites

N 4B , a good agreement betweenDaux andDph is achieved, and the convergence is exponential as a function
ofNB. Allowing for complexmatrix elements produces a drastic improvement. The accuracy obtainedwith
NB= 8 for the real case is essentially achieved alreadywithNB= 6 in the complex case (see alsofigure 5). In
particular,figure 8 shows that this improvement produces amuch better description of theKondo resonance.
This is crucial, sinceNB= 6 is themaximum size that we can currently address byKrylov-spacemethods. Here,
an excellent agreement is evident withminor differences in theKeldysh component. In the retarded component,
the largest differences occur at the positions of the jumps in theKeldysh component, i.e. at the chemical
potentials. This is a consequence of the simultaneous fit of the retarded andKeldysh components in
equation (26), which produces oscillations in the retarded one. These oscillations are strongly reduced in the
complex case. By increasing the number of bath sites, the amplitude and the extension of these oscillations in the
retarded component decay rapidly.

We now consider the sparse geometries. In contrast to the ‘full’ setups, no improvement is obtained by
allowing thematrix elements to be complex in this case. Among the sparse geometries, the oneswith two chains
are themost accurate. Both setups performquite well. Again, a good agreement for smallNB is obtained and a
quick improvement shows upwith increasingNB. ‘2 chains n.n.’has off-diagonal G( )1 2 terms in contrast to ‘2
chains onsite’, which leads to a faster convergence as seen, e.g., forNB= 12. The ‘star’ andmost notably the ‘1
chain n.n.’ geometry are clearly worse. Both exhibit a rather poor convergence as a function ofNB. For the ‘star’
setup, this is due to the fact that the fitted auxiliary hybridization function consists of a sumof Lorentzian peaks.

9
The number ( )C NB of fit parameters for each geometry for the particle-hole symmetric case, whichwe consider here, is presented in

appendix B.
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These enter in theKeldysh component with either positive or negative weights and can thus cancel each other.
However, the rather broad Lorentzians with long w1 2 tailsmake it apparently difficult to resolve the Fermi
edges properly. The problemwith slow convergence ismost severe for the ‘1 chain n.n.’ geometry. Here, the
single chain is clearly inadequate to represent at the same time the desired density of states and the sudden
changes in the occupation number, see also the subsequent discussion.While theKeldysh component is roughly
reproduced, this comes at the price of large oscillations in the retarded component. In addition, the
improvements with increasingNB areminor and the results forNB= 4 andNB= 12 are very close to each other.

The behavior just discussed is evenmore visible in the convergence study presented infigures 5 and 6. In
figure 5, theminimal values of the cost functionχ, equation (26), for various values ofNB and the different
setups are shown. Four different temperatures, each of themwith f = 0 and f = G3 , are considered. As
expected, the ‘full complex’ setup gives the lowest values ofχ in all cases, and,moreover, the fastest rate of
convergence as a function ofNB. The ‘full’ setupwithout complex terms also performs quite well. The sparse
geometries ‘2 chains n.n.’ and ‘2 chains onsite’ performnot aswell, although still achieving a rather high rate of

Figure 2. Fit to the bath hybridization functions for the ‘full’ setups (real and complex) (seefigure 1). The physical wD ( )ph (black
lines) describes a reservoir with aflat density of states with hybridization strengthΓ and a half bandwidth of = GD 10 which is
smeared at the edges. An applied bias voltage f = G3 shifts the chemical potentials of the two reservoirs (leads) anti-symmetrically
and a temperature of = GT 0.1 is considered here.

Figure 3. Same asfigure 2 for the ‘two-chains n.n.’ and ‘two-chains onsite’ setups.
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convergence. Inmost cases studied here, the off-diagonal G( )1 2 terms in ‘2 chains n.n.’ result in a significant
improvement compared to ‘2 chains onsite’, which is the reasonwhywe favored the former in ourMPS
manybody calculations performed in [85]. In thatwork, we found that an accuracy of at least c » -10 2 was
necessary in order to properly account for Kondo physics. This could be reached already for »N 12B .

We nowdiscuss the ‘star’ setup.One should note that in standard buffer zone approaches [68–70], an
equidistant energy spacing D » D N2i B with equal onsite G( )1 2 terms is often assumed for the bath sites.
Clearly, such a discretization approach cannot converge exponentially and it is only first-order accurate in the
spacing D i. On the other hand, in our scheme, we optimize all parameters within afitting procedure, so the
value of the cost function presented here for the ‘star’ setup can be seen as a lower bound for an improved buffer
zone approach. Despite the exponential convergence of the ‘star’ geometry, it becomes apparent fromfigure 5
that a very slow rate of convergence is achieved. To reach an accuracy c » -10 2 for the case = GT 0.05 and

Figure 4. Same asfigure 2 for the ‘star’ and ‘1-chain n.n.’ setups.

Figure 5.Minimal values of the cost functionχ, equation (26), as a function of the numberNB of bath sites for the setups sketched in
figure 1 (including ‘full complex’) for four temperatures = G G G G{ }T 0.05 , 0.1 , 0.2 , 0.4 and two bias voltages f = 0 and
f = G3 .Markers represent the raw data and dotted lines are obtained from thefits offigure 6.
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f = 0 for instance,much larger auxiliary systemswith »N 40B would be needed. For theMPS-solver used in
[85], such large auxiliary systems are out of reach.

Let us now turn to the results for the ‘1 chain n.n.’ setup infigure 5.Despite the poor performance and the
strongly limited practical use, the observed behavior is interesting from a fundamental point of view. As becomes
evident from the results, a single chainwith local dissipators is a particularly bad choice to represent a partially
filled bath. The convergence is very slow and an extremely long chainwould be needed in order to achieve results
comparable to the other geometries. As just shown, a drastic improvement is obtainedwhen using two chains
instead. This would bemore or less intuitive for the nonequilibrium case inwhich the physical system also
consists of two baths. However, the advantage of the ‘2 chains’ geometry over the ‘1 chain’ case is evenmore
pronounced in the equilibrium case (see F = 0). Another important observation to better understand this is the
following: in [85], we found nearly identical accuracies when considering the ‘2 chains’ geometry as used here, or
afilled/empty restriction of it. In the latter case, one chain has the purpose of representing thefilled spectrum
and the other chain the empty spectrumof the physical hybridization function10, and not necessarily the two
physical reservoirs. This shows that a single chain of small size is verywell suited to reproduce a certain density of
states but not simultaneously a Fermi edge or other sharp changes in the occupation number. Furthermore, a ‘2
chains’filled/empty setup seems to be a rather natural representationwhere the resolution of sharp features in

wD ( )ph , which either correspond to band edges or sudden occupation changes at the Fermi edges, are resolved

by appropriateHermitian couplings E and corresponding broadenings/couplings stemming from G( )1 2 . In
this way, the filled and empty chain together canwell reproduce sharp features in wD ( )R

ph and wD ( )K
ph

11.
Additionally to the convergence as a function ofNB, we depict infigure 6 the cost function versus the number

of availablefit parameters ( )C NB . As can be seen, the trends in the semi-logarithmic plot are well described by
straight lines in all cases, which clearly shows the achieved exponential convergence with respect to ( )C NB . For
the sparse setups thismeans that c µ -[ ( )]Nexp B whereas, for the ‘full’ setups, even c µ -[ ( )]Nexp B

2 .
Due to this, the ‘full’ geometries convergemuch quicker, as observed in the results just given.With respect to the
number offit parameters, however, the ‘2 chains’ setups performbest. This justmeans that these setups contain
themost relevant subset of all possiblefit parameters.

Another important aspect is the dependence of the convergence rate r(T) on temperature. The estimated
rates r(T) for each setup are depicted infigure 7.Of course, the superior scaling of the ‘full’ and the ‘2 chains’
setups is also apparent in themagnitude of r(T). Furthermore, in all cases, one observes the trend that the higher

Figure 6. Same asfigure 5 but plotted versus the number of fit parameters ( )C NB . In order to resolve the scalingwith temperature
more reliably, we exclude the two data points with the smallestNB from each of the linearfits, which have not enough structures to
resolve low-energy scales. Dotted lines represent results of linearfits in these semi-logarithmic plots. The temperature dependence of
the convergence rates (as a function ofNB) obtained in this way are illustrated infigure 7.

10
The filled (empty) spectrum corresponds to the lesser (greater) hybridization functionD, and furthermore: D = D D { }Ii m2K R .

11
From this point of view, the additional improvement in the ‘full’ setups can be interpreted in such away that one achieves an optimal

linear combination offilled/empty states with the long-ranged couplings in G( )1 2 .
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the temperature the faster the convergence. This can be understood from the fact that, at highT, theKeldysh
component wD ( )ph

K is weaklyω-dependent so that less bath sites are necessary for a reliable fit. Eventually, in the
 ¥T andwide-band limit, theMarkov approximation even becomes exact. In the other extreme T 0

limit, discontinuous functions are present in wD ( )ph
K , produced by the abrupt Fermi edges. However, each of the

frequency-dependent functions in the effective set given by equations (20)–(25) is continuous. Therefore,
T 0 can only be reproduced in the limit  ¥NB . This explains the observed trend that, for a givenNB, the

high-temperature regime is generally better represented than the low-temperature one. Furthermore, a nonzero
f tends to result in larger values for the cost function, see alsofigure 5 12.

In conclusion, the present analysis clearly demonstrates the huge advantage of optimizing the bath
parameters of the auxiliary system, and furthermore, of choosing an appropriate geometrywhen considering
only a restricted subset of the ‘full’ setup.

3.1. Spectral function of the interacting SIAM
Wenowpresent and discuss results for the interacting spectral function of the SIAM,

w
p

w= -( ) ( ) ( )IA m G
1

29R
ph,int

(see equation (28)) in and out of equilibrium and in particular investigate the accuracy obtained by each of the
geometries offigure 1 for afixedNB.We also discuss the relationwith thefidelity in reproducing the physical
hybridization function, i.e. the fit just discussed. Infigures 8 and 9, we confront the results of the fit on the left
with the interacting spectral function on the right. Results forNB= 6 are presented for two values of the bias
voltage, f = 0 (equilibrium case) and f = G3 . In particular, we focus on the region around theKondo peak,
which gets split atfinitef, since this is themore sensitive to approximations.

Starting with the equilibrium case, we see that all but the twoworse geometries are able to resolve the
Hubbard side bands. Further improvements of thefit show that, the better an auxiliary system reproduces the
Fermi jump in theKeldysh and the plateau in the retarded hybridization function, the sharper is the
correspondingKondo resonance. Only the ‘2 chains n.n.’ setup seems to break this trend as, for f = 0, its peak
is clearly sharper than for the ‘full’ geometry although thefit is less accurate.However, this peculiarity can be
readily explained by looking at the corresponding fit and in particular at the oscillations in the retarded
component at low energies. Here, the ‘full’ geometry shows a substantial dipwhich in turn leads to a suppression

Figure 7.Estimated convergence rates obtained from the data in figure 5 plotted as a function of temperature. The rates for the sparse
setups are obtained by assuming c µ -[ ( ) ]r T Nexp B . For the ‘full’ setups, the exponent is quadratic inNB, and thereforewe plotted

the differential rate, defined as- c
N

d log

d B
evaluated atNB= 6.

12
Note that the difficulty of thefit, i.e. themagnitude ofχ, is determined by the degree of variations inDph and the length scale of these

variationswrt the half bandwidthD. The coupling strengthΓ of the leads enters only trivially. Therefore, f D andT/D determineχ.
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of theKondo peak. Away to improve this is to introduce aweight w( )W (cf equation (26)) to thefit that
emphasizes regions around the chemical potentials. One can also notice the drastic improvement in the
description of theKondo resonance obtained by allowing for complex values of the parameters G( )

ij
1 2 . The same

accuracy is expected to be obtained for the real ‘full’ case forNB= 8, but this is currently beyond the reach of a
Krylov-space solutionmethod.

Turning to the nonequilibrium case, wefirst note that the ‘star’ and ‘1 chain’ setup are not able to follow the
double Fermi step in theKeldysh hybridization function but rather produce a single jump at an elevated

Figure 8. Fits (left) and spectral function (right) in the equilibrium case (f = G0 ) for the lowest considered temperature = GT 0.05
andwithNB= 6. The value of theHubbard interaction is = GU 6 and, as a reference solution (black curve), we take results for
NB= 16 in the ‘2-chains n.n.’ geometry which deviate by atmost 1% (at the tip w = 0) from the numerically exactNRG85.
Geometries in the key are sorted fromworst (top) to bestfit (bottom).

Figure 9. Same asfigure 8 out of equilibrium (f = G3 ).

14

New J. Phys. 19 (2017) 063005 ADorda et al



temperature. Thus, assuming for themoment a flat retarded component, onewould expect only a single
temperature-broadened Kondo resonance. The fact that the spectral function instead shows a two-peak
structure is not a genuine effect but rather is connected to corresponding oscillations in the retarded component
of the hybridization function.Notice that the two-peak structures occur here at thewrong frequency. In fact, all
but the ‘full complex’ and ‘full’ setups fail to correctly reproduce the positions of the peaks, despite resolving the
double Fermi step, as oscillations in the retarded component interfere with the physical effect. In general, this
example shows that one has to be careful with interpretations of structures in the interacting spectral function
when thefit does not resolve important features and/or displays unphysical oscillations. On the other hand, if
deviations from the physical hybridization function are small, one can be confident that the results are correct.
Results suggest this to be the case alreadywith 6 bath sites for the ‘full’ setups and about 12 bath sites for the ‘2
chains’ geometries.

4. Summary and conclusions

In this work, we presented and developed a general scheme formapping nonequilibrium correlated quantum
impurity problemswith infinite non-Markovian fermionic reservoirs onto auxiliary finite open quantum
systems. The approach as outlined here can be used to study transport through interacting impurities, Hubbard
chains, or small clusters andmolecules. For simplicity and clarity we presented results for the single impurity
Andersonmodel (SIAM). The key aspect is to replace the infinite fermionic reservoirs of the original ‘physical’
problemby an ‘auxiliary’ one consisting of a combination of a small numberNB of bath levels plusMarkovian
terms. The auxiliary problem is described by an open quantum systemwhose dynamics are controlled by a
Lindblad equation. Being finite, itsmanybody problem can be solvedwith high accuracy by numerical
techniques. Despite the fact that the bath levels are directly coupled to aMarkovian environment, the dynamics
at the impurity site in the auxiliary system correctly describe the non-Markovian properties of the physical
reservoir.

It is important to note that the overall accuracy can be evaluated by the difference between the bath
hybridization functions of the physical and auxiliary system, i.e. the cost function equation (26).While this idea
is not new, the key point of ourwork is the formulation of an optimization procedure in order to determine the
parameters of the auxiliary bath levels. This allows us to achieve an exponential convergence of the accuracy of
themappingwith increasingNB. This exponential improvement is probably the reasonwhy a fewnumber of
bath sites, such that exact diagonalization can be employed, is sufficient to (at least partially) resolve the
exponentially small Kondo scale.

Themain scope of this paperwas to analyze themapping procedure itself in detail. One has a certain freedom
in the geometry of the auxiliary system.Here, we investigated an exemplary set of possible choices. Themost
general ‘full’ geometries achieve the bestmapping for a fixedNB value. In [86]we employed such a real-valued
‘full’ setupwithNB= 6 to analyze the splitting of theKondo resonance in nonequilibrium. In the present work,
we additionally investigated the performance of a complex-valued (‘full-complex’) geometry and found a drastic
improvement for the sameNB. For example, the Kondo resonance turns out to be twice as high and sharp than
for the real ‘full’ case and very close to the one obtained byNRG for G =U 6, see figure 8.

Depending on the requirements and on the algorithm applied to address themanybody problem, one could
prefer one setup or the other. For example, if one usesMPS-like approaches, a chain-like or,more generally, a
sparse setup is preferable. In this way, one can address interacting auxiliary systemswith largerNB and improve
the accuracy. If long-range hoppings are not a problem, like for Lanczos exact diagonalization, one should use
themost general ‘full complex’ geometry. Krylov-spacemethods are considerably less time-consuming than
MPS. Therefore, they could bemore convenient when applying the present AMEA approach in the context of
nonequilibriumDMFTwhere repeated solutions of the impurity problem are required for theDMFT self-
consistency. Finally, when combining the approachwithNRG, itmay be convenient to adopt ‘star-like’
geometries (see, e.g. [71]).

Concerning sparse setups, we compared the performance of the common ‘star’ geometry with a ‘1 chain’ and
two ‘2 chains’ setups. The results demonstrated clearly that the performance of these individual sparse setups
may differ by orders ofmagnitude. In particular, thewidely used ‘star’ geometry exhibits a very slow rate of
convergence with increasingNB, and a geometrywith ‘1 chain’ and local Lindblad drivings performedmuch
worse than the other cases. In contrast, setupswith ‘2 chains’ and local Lindblad drivings produced very good
results, with an accuracy orders ofmagnitude better than the other two sparse cases. Togetherwith the results
obtained in [85], we can conclude that a so-called filled/empty geometrywith ‘2 chains’ is essentially a natural
representation of a non-Markovian reservoir by auxiliary Lindblad levels. In this geometry, one chain has the
purpose of reproducing the filled spectrumof the original reservoir whereas the other chain reproduces the
empty spectrum. This is achieved in each chain separately by an optimal combination of hoppings between the
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bath levels and couplings to oneMarkovian environment, which is then either completely filled or empty. By this
separation it is possible to resolve sharp features in the original hybridization function in great detail, whichmay
correspond to sharp occupation changes at the Fermi jumps or band edges. A single chain coupled tofilled and
emptyMarkovian environments, on the contrary, cannot simultaneously represent a particular density of states
and a partiallyfilled spectrum appropriately, as is evident from the ‘1 chain’ setup.

Besides comparing different auxiliary setups, we also analyzed the general convergence properties in detail.
As justmentioned, we found an exponential convergence as a function ofNB in all cases, which can be accounted
to the optimization strategy for the bath parameters. Furthermore, we analyzed systematically the convergence
properties as a function of temperature both in equilibrium aswell as in nonequilibrium. This showed the
common trend that the high-temperature regime is better represented by the auxiliary system than the low-
temperature one, i.e. the rate of convergence of themapping increases with temperature. Therefore, to achieve a
given accuracy it ismore challenging to resolve low temperatures, which thus requires larger auxiliary systems.
The plain exponential convergence shown here yields a simple tool to extrapolate results for lowNB to higher
values, and by this to judge the feasibility of treating certain physical situations.

As a concrete application, we presented results for the spectral function of the interacting SIAM in and out of
equilibrium as producedwithin the different auxiliary setups, and analyzed its relation to a given fit.We found
that one has to be careful with interpretations when the fit does not resolve important features and shows sizable
oscillations. On the other hand, if deviations from the physical hybridization function are small, one can be
confident that the results are correct, which is usually the case alreadywith 6 bath sites for the ‘full’ setups and
about 12 bath sites for the ‘2 chains’ sparse geometries.We also showed that drastic improvements are obtained
by allowing for complex-valued parameters.

Besides the technical aspects, the current study contains relevant information to the general question of the
representability of non-Markovian fermionic reservoirs by open quantum systems, and in particular by
Lindblad-type equations.We expect that the insights gained in this workmay contribute also to other closely
relatedfields onMarkovian and non-Markovian quantummaster equations.
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AppendixA.Multi-dimensionalminimization

In this section, we provide detailed information for readers interested in an actual implementation.
Furthermore, a working code is available on request; to obtain it, simply contact us via e-mail.Much of the
information below is contained in standard textbooks and reviews.However, for completeness we outline here
the standard algorithm in detail and point out choices wemadewhich turned out to be convenient for the
specific problem.

As stated previously, a single evaluation of equations (20)–(25) is numerically cheap since it involves only one
matrix inversion andmatrix-vectormultiplications of size +( )N 1B . Thus, the increase in computation time
withNB is rathermoderate. However, themulti-dimensional optimization problem itself is demanding and it
strongly depends on the particular behavior of c ( )x when varying the set of parameters x. In theworst case
scenario, when c ( )x is a rough potential landscapewithmany localminima and short-scaled variations, one
could imagine that it becomes necessary to nearly explore thewhole parameter space.However, x is a
continuous vector and evenwhen assuming afixed number of discrete values for each component in x, one faces
a number of points in parameter space that grows exponentially with ( )xdim . In the other extreme, for the case
inwhich c ( )x is quadratic in x, it is well-known that a conjugate gradient scheme leads to the exactminimum
in ( )xdim iterations.What we found in practice, when performing theminimizationwithin AMEA [85, 86], is
that we have an intermediate situationwhich exhibits localminima but gradient-basedmethods still work fine,
especially for smaller values ofNB. In thefirst work on the ED-solver [86], we employed a quasi-Newton line
searchwithmany random starting points. This is particularly useful for <N 6B . However, the necessary
number of starting points increases rapidly withNB. Therefore, in the course of thework on theMPS-solver,
[85], we looked formore efficient solution strategies. In the end, we implemented a parallel tempering (PT)
approachwith feedback optimization, which is aMonte Carlo scheme that is able to overcome localminima.We
describe it inmore detail in the following section. In this way, theminimization problem for the ED-solver with
NB= 6 and for theMPS-solver with up toNB= 16 can be solved in reasonable time. This amounts tominimizing
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in a space of» -30 60 parameters in both geometries, depending onwhether or not one has particle-hole
symmetry.13

A.1.Markov chainMonteCarlo
The PT algorithm is outlined in detail in the following. For completeness, let us first briefly recap the basic ideas
of the underlyingMarkov chainMonte Carlo (MCMC), and of the related simulated annealing algorithm.

MCMC techniques were originally developed to evaluate thermodynamic properties of classical systems
which exhibit a very large phase spacewhere simple sampling strategies fail. For our purposes here, we are
interested inminimizing the cost function c ( )x as defined in equation (26)with respect to the parameter vector
x. For such high-dimensionalminimization problems, one can adaptMCMC schemes by viewing c ( )x as an
artificial energy and by introducing an artificial inverse temperatureβ. In the so-called simulated annealing, one
samples from the Boltzmann distribution c b= -( ) ( ( ) )x xp Z1 exp at a certainβ, and then successively cools
down the artificial temperature.Motivated by the behavior of true physical systems, one expects to end up in the
low-energy state when letting the system equilibrate andwhen cooling sufficiently slowly. Analogous to
thermodynamics, one can calculate the specific heat b c= áD ñ( )xCH

2 2 and by this locate regionswith large
changes, i.e. phase transitions, where a slow cooling is critical. However, in practice itmay be time consuming to
realize the equilibration and sufficiently slow cooling, and for tests within AMEAwe often ended up in local
minima. In order to obtain a robust algorithmwhich can also start fromprevious solutions as needed, for
instance, withinDMFT,we sought amethodwhich is able to efficiently overcome localminima and still
systematically target the low-energy states. For this, amulticanonical and PT algorithmwere tested and the latter
turned out to bemore convenient. In the following, we briefly outline the PT scheme usedwithinAMEA and
refer to [106–110] for a thorough introduction toMCMC, simulated annealing,multicanonical sampling,
and PT.

As just stated, in aMCMC scheme, one typically samples from the Boltzmann distribution
c b= -( ) ( ( ) )x xp Z1 exp at some chosen inverse temperatureβ. This is done through an iteratively created

chain of states { }xl , whereby one avoids the explicit calculation of the partition functionZ. An effective andwell-
known scheme for this is theMetropolis–Hastings algorithm [106, 107]. One starts outwith some state xl and
proposes a new configuration xk, whereby it has to be ensured that every state of the system can be reached in
order to achieve ergodicity. The proposed state xk is acceptedwith probability [106, 107]
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min 1, min 1, e . A.1x xl k k

l
pacc.
, k l

If the proposed configuration is accepted, then the next element +xl 1 in the chain is xk, otherwise xl again. From
equation (A.1) it is obvious that =p 1l k

pacc.
, when >( ) ( )x xp pk l , so that an importance of sampling towards

regionswhere ( )xp is large is achieved. One can show that the algorithm fulfills detailed balance and draws a set
of samples { }xl that follow the desired distribution ( )xp . However, stemming from the iterative construction,
correlations in the chain are present which require a careful analysis for the purpose of statistical physics
[106, 107]. For optimization problems, on the other hand, the situation ismuch simpler and one is just interested
in the element in { }xl whichminimizes c ( )x . Since a proposed stepwith c c<( ) ( )x xk l is always accepted, the
algorithm targetsminima; however, uphillmoves in configuration space are also allowedwith a probability
depending exponentially on the barrier height c c cD = -( ) ( )x xk l k l, andβ. Effectively, uphillmoves only
take placewhen c bD ( )1k l, . For small values ofβ, largemoves in configuration space with large cD k l, are
likely to be accepted, whereas for largeβ the distribution ( )xp is peaked atminima in c ( )x so that those regions
are especially sampled. For the latter case, configurations in the chain { }xl are generallymore correlated and
once a xl corresponds to a localminimum, the algorithmmay stay there for a very long time.

One has great freedom in defining a proposal distribution fromwhich the new state xk is drawn given the
current configuration xl

15. Common choices are, for instance, aGaussian or a Lorentzian distributionwith the
vector difference -x xk l as argument.We favored the former and updated each component iwith a probability
according to [106]

13
In order to perform themapping for even larger systems efficiently, itmay be of interest to combine the PT approachwith, for instance,

gradient-basedmethods.
14

In principle, one has to take the proposal probabilities qk l, and ql k, into account. However, sincewe only consider the case =q qk l l k, , here,
the terms drop out of the equations and are neglected everywhere.
15

Note that, forminimization purposes only, one has in general flexibility in designing the algorithm and the Boltzmann distribution or
detailed balance are not compulsory.
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Hereby, a different step size si for each component is expedient since the potential landscape c ( )x around xl is
typically highly anisotropic. Ideally, one shouldmake use of the covariancematrixSl of c ( )xl and consider as
argument for theGaussian instead - S --( ) ( )x x x xk l

T
l k l

1 [106]. However, we encountered a problem in that
the estimation of the covariancematrix at run timewas strongly affected by noise and thus not feasible. The
adjustment of the step sizes si, on the contrary, can be done after a short number of updates by demanding that a
value of »p 0.5l k

pacc.
, is reached on averagewhenmodifying the component i. For this, we implemented a check

at every single proposal that increases s s 1.1i i when >p 0.6l k
pacc.

, and decreases s s 0.9i i when <p 0.4l k
pacc.

, .

Analogous to the treatment of spin systems, we define one sweep as a single update of all the components of x16.

A.2. Parallel tempering
In a PT algorithmone considers, instead of sampling at one certain temperature, a set of different temperatures
b-

m
1 and corresponding replicas xl

m, each of which is evolved through aMarkov chain. The largest bm thereby
target localminimawhereas low bm values allow for largemoves in configuration space. The key idea of the PT
approach is to let the individual replicas evolve dynamically in the set of bm. By this, one achieves a situation
whereby a replica at high bm values systematically targets localminima but can overcome potential barriers
againwhen its inverse temperature is changed to lower values. As a result, the time scales to reach an absolute
minimumare drastically reduced and an efficient sampling of the low-energy states is achieved. For the purpose
of calculating thermodynamic properties, one usually chooses aMetropolis–Hastings probability to swap two
replicas with adjacent temperatures [109, 110]

= = b b c c+
+ +
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, 1
1 1

1 1
m m l

m
l
m

1
1

with theBoltzmanndistribution for each bm givenby c b= -( ) ( ( ) )x xp Z1 expm
m m . Such swapmoves are

conveniently proposed after a certainnumber of sweeps,which satisfies the sufficient conditionof balance for
thermodynamics [110]. Inpractice,we chose 10 sweeps before swapping replicas. For the exchange to effectively take
place, theunderlying requirement is that the adjacent bm and b +m 1 values be close enough to eachother, so that the
twoenergydistributions cW[ ( )] ( )x xpm and cW +[ ( )] ( )x xpm 1 overlap,with òc d c cW = -[ ] ( ( ))x xd0 0 being
thedensity of states of the cost function.Thismeans that a replica at one temperaturemust represent a likely
configuration for theneighboring temperature [110, 111]. In order to achieve this, a crucial point in thePTalgorithm
is to adjust the distributionof the inverse temperatures properly to the considered situation.Various criteria for this
have beendevised, see e.g. [110]. A commonchoice is todemand that the swappingprobability equation (A.3)
becomeconstant as a functionof temperature [112, 113], and in [114] a feedback strategywaspresentedwhich
optimizes the round trip times of replicas.We tested the latterwithinAMEAbut favored the simpler former criterion
in the end, since it allows for a rapid feedback andquick adjustment to large changes in c ( )xl

m . In the simple situation
of a constant specificheatCHwith respect to energyχ for instance, anoptimal strategy is known since a geometric
progression b b =+ const.m m 1 of temperatures yields a constant swappingprobability [110, 111]. For interesting
cases, in practice, this is rarely fulfilled, butwithinAMEA it served as a good startingpoint. The set of inverse
temperatures is thenoptimizedby averaging +p l

m m
swap,

, 1 over a couple of swappings toobtain themeanprobability
+p̄m m

swap
, 1 and adjusting the bm thereafter. For thiswe chose afixed lowest andhighest bm value and changed the

spacings in between according to

b
b

D ¢ =
D

+( ¯ ) ( )c
plog

, A.4m
m

m m
swap

, 1

with b b bD = -+m m m1 and c adjusted properly so that b b b b¢ - ¢ = -( ) ( ) ( ) ( )max min max minm m m m . In
[112, 113], it was shown that a constant swapping probability of 20%–23% seems to be optimal.We determined
the highest and lowest bm values by the changes in c ( )x wewant to resolve or allow for, and the number of
inverse temperatures bm was then set accordingly in order to roughly obtain »+p̄ 0.25m m

swap
, 1 . Fixing the smallest

and largest bm is, for our purposes, themost convenient choice among themany possibilities.
However, despite the feedback optimization of temperatures as just described, we encountered unwanted

behavior in practice, whereby the set of parallel replicas effectively decoupled into several clusters. In
suppressing this, we found it advantageous to introduce the following simplemodification to equation (A.3)17:

16
Again, different choices are possible. For instance, in cases where ( )xdim is very large, randomupdates of themost relevant components

could bemore appropriate.
17

One should note that themodification violates balance conditions and therefore the applicability in statistical physics. However, it is
perfectly valid for the purpose ofminimization problems.
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m m
l

m m
swap,

, 1
swap,

, 1
swap
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with a certain threshold probability pswap
th. , e.g. =p 0.1swap

th. or 0.05. In this way, one avoids the bm shifting

unnecessarily close to each other and prevents very long time scales inwhich replicas oscillate only between two
neighboring inverse temperatures.

Appendix B.Matrix form andnumber of independent parameters for the different setups

For the sake of clarity, we present here for the different setups offigure 1 the formof the (Hermitian)matrices E
and G( )1 for the caseNB= 4 in the particle-hole symmetric case, i.e. under the constraint equation (27)which
alsofixes G( )2 . In addition, we quote the number of availablefit parameters ( )C NB for each setup. Thefit
parameters are denoted below as xi for = ( )i C N1, B , with the only constraint being that G( )i should be
semipositive definite. This, togetherwith the requirement thatDaux vanish for w  ¥, further requires
G = G = G =( ) ( ) ( ) 0ff if fi

1 2 1 2 1 2 . In thefirst four setups, the impurity is in the center (i = 3). In the ‘1 chain n.n.’, it
is on thefirst site (i = 1).

B.1. ‘Full’ geometry
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The parameters x9 to x14 can be complex. Therefore, it is straightforward to see that, for generalNB the number
of independent (real)parameters is = +( ) ( )C N N 3N

B 2 B
B for the real case and = +( ) ( )C N N N 1B B B for the

complex case.

B.3. ‘2-chain n.n.’ geometry equation (B.1)
=E Et
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so in general = -( )C N N3 2B B .

B.4. ‘2-chain onsite’ geometry equation (B.1)
=E Et
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Here, =( )C N N2B B.

B.5. ‘Star’ geometry
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Also here =( )C N N2B B.

B.6. ‘1 chain n.n.’ geometry
Remember, here the impurity is on i=1.
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In this case, = -( )C N N3 1B B .

AppendixC. Reduction of bath to a ‘star’ form

Inprinciple, one can represent anoninteractingdissipativebath consisting ofNB sites = )i N1, ... B coupled to an
impurity (i = f, we take f = 0)by specifying the single-particle parametersEij, G( )

ij
1 , and G( )

ij
2 ( =i j N, 0,... B), with

correspondingHermitian, and in the case ofG( )1 ,G( )2 , semipositive definitematrices.We showhere that, for the sake
offitting the retarded componentof a givenbath spectral functionDaux

R , these parameters are redundant.
We rewrite equation (20) in block form

w
w

= - -
- -

-⎛
⎝⎜

⎞
⎠⎟ ( )T

T F
FZ C.1R 0

1

where thefirst 1×1 block contains18 º - G +( )F E i0 00 00 , the ´N NB B complexmatrix F is given by
º - G +( )F E iij ij ij for =i j N, 1, ... B, the column vectors º - G +( )T E ii i i0 0 , º - G + ( )T E ii i i0 0 , andwe have

introduced G G Gº ( ) ( ) ( )1 2 .
We are interested in Gaux

R , which is the 00 component of ZR. By awell known result ofmatrix inversion, this is
given by

w w= - - - -( ( ) ) ( )T F TG F1 , C.2aux
R

0
1

which identifies w dD = - +-( )T F T FT
aux
R 1

0, where d eº -F F f0 0 , which, for simplicity, we set to zero. The
first term can be rewritten by introducing thematrix V which diagonalizes F,19 i.e.

=- ( )V FV F . C.31
diag

This gives

w

w
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TVV F VV T
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aux
R 1 1 1

diag
1

1

Wecan thus replace in equation (C.1) F with a diagonal, complexmatrix Fdiag and T (T )with T (T ), andwe get

w¢ = - ¢
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⎝
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R 1

0
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1

18
In order to bemore general, we allow for nonzero elements of the Gmatrices on the impurity site as well.

19
Note that diagonalization of F is not always guaranteed.
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Here, ¢Z R has the same 00 element as ZR from equation (C.1), i.e. the same Gaux
R andDaux

R . In this way, by the
requirement that E and G +( ) must beHermitian, we can construct new ¢ = ¢ + ¢( )†E F F 2 and
G¢ = ¢ - ¢+ ( ) ( )( ) †F F i2 , i.e. a new auxiliary systemwhich yield the sameDaux

R and have the ‘star’ geometry
(figure 1)20. Thismeans that, concerning the retarded part, one can restrict to the case of diagonal bath energies
and G +( ), i.e., as in the non-dissipative case,Daux

R is fixed by only( )NB independent bath parameters, the rest
being redundant. This is also the case when the bath hybridization function is represented by a completely
empty and a completely full chain, as discussed in section 3, since in that case one simply fits the retarded
components of the two chains separately. On the other hand, for themost generic case, G( )1 and G( )2 will not
commute and cannot be simultaneously diagonalized, so that the Keldysh component wD ( )aux

K appears to still
depend on( )NB

2 bath parameters (figure 5). Further investigations should be carried out in order to clarify
this issue.
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2.2 Publication 2: Floquet DMFT

The article titled Impact ionization processes in the steady state of a driven Mott-insulating
layer coupled to metallic leads was published in Physical Review B. 97 115113, March 2018.
The work was conducted by Max Sorantin (MS) with Antonius Dorda (AD) as co-author
supervised by Karsten Held (KH) and Enrico Arrigoni (EA). The work was initiated by KH
in collaboration with EA. EA closely guided the project, especially in the early stages, while
KH helped with clarifying discussions and guiding directions especially in later stages. MS
performed preliminary studies with Matlab implementations by considering a correlated
layer sandwiched between two leads in the Hubbard I approximation. EA suggested the
step towards DMFT by employing, in some way, the AMEA impurity solver developed
previously by AD. MS put forward the idea to solve only the time-averaged impurity
problem, which, through further discussions with AD and EA, led to the formulation of the
developed FDSA in Floquet-DMFT. MS implemented the “full complex” geometry within
the existing SF+ED impurity solver, under guidance of AD, and generalized the C++ real
space DMFT+AMEA code existing in the group3 to Floquet DMFT. AD introduced the
idea to use also computationally more lightweight impurity solvers such as IPT (or NCA).
A corresponding Floquet DMFT+IPT implementation in Matlab was developed by MS
and used to test the validity of the FDSA. The results of a thorough parameter scan of
the model, calculations and data analysis performed by MS, were discussed between all
authors. The manuscript was written by MS and revised by EA and KH.

3Developed by Irakli Titvinidze and AD.
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Impact ionization processes in the steady state of a driven Mott-insulating
layer coupled to metallic leads

Max E. Sorantin,1,* Antonius Dorda,1 Karsten Held,2 and Enrico Arrigoni1,†
1Institute of Theoretical and Computational Physics, Graz University of Technology, 8010 Graz, Austria

2Institute of Solid State Physics, TU Wien, 1040 Vienna, Austria
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We study a simple model of photovoltaic energy harvesting across a Mott-insulating gap consisting of a
correlated layer connected to two metallic leads held at different chemical potentials. We address, in particular,
the issue of impact ionization, whereby a particle photoexcited to the high-energy part of the upper Hubbard band
uses its extra energy to produce a second particle-hole excitation. We find a drastic increase of the photocurrent
upon entering the frequency regime where impact ionization is possible. At large values of the Mott gap, where
impact ionization is energetically not allowed, we observe a suppression of the current and a piling up of charge
in the high-energy part of the upper Hubbard band. Our study is based on a Floquet dynamical mean-field theory
treatment of the steady state with the so-called auxiliary master equation approach as impurity solver. We verify
that an additional approximation, taking the self-energy diagonal in the Floquet indices, is appropriate for the
parameter range we are considering.

DOI: 10.1103/PhysRevB.97.115113

I. INTRODUCTION

Strongly correlated materials are known to display intrigu-
ing effects and show properties not observed in ordinary sys-
tems. Some examples are high-temperature superconductivity
[1], half-metallicity [2], spin-charge separation [3], and the
Kondo effect [4] just to quote a few. A prototypical class
of these materials are so-called Mott insulators where strong
electronic interactions are responsible for the spectral gap as
realized in transition-metal oxides (TMOs). Recent theoretical
works have proposed these materials as candidates for effi-
cient photovoltaics [5–7], exploiting electronic correlations to
increase the photovoltaic efficiency.

The key idea is that in a strongly correlated insulator
high-energy electrons, created by photoexcitation, are likely
to undergo a process called impact ionization thereby exciting
another electron across the gap. Although impact ionization is
also present in conventional semiconductor devices, the time
scales are such that a highly excited electron will generally
dissipate its energy to phonons. In contrast, the time scale
of electron-electron (e-e) scattering is orders of magnitude
shorter in correlated TMOs because of the strong interaction.
In this way, the excess energy of photoexcited electrons is
substantially less prone to thermal losses and the efficiency
of the resulting solar cell is not restricted by the Shockley-
Queisser limit [8] any longer. Previous works have studied
Mott systems after a photoexcitation with time-dependent
dynamical mean-field theory (t-DMFT) investigating the role
of impact ionization [9,10] as well as doublon dynamics
[11,12] in the subsequent thermalization. This work confirmed
the dominant character of impact ionization on short time

*sorantin@tugraz.at
†arrigoni@tugraz.at

scales of the order of 10 fs [10] and a high mobility of charge
carriers in layered structures [12].

While the aforementioned studies have investigated the
short- and medium-time dynamics of these model systems after
a short electromagnetic pulse, in the present work we aim at
studying a steady-state situation in which the system is under
constant illumination and energy is continuously harvested
by transferring electrons from a metallic lead at a lower
chemical potential into one at a higher chemical potential (see
Fig. 1). We consider a purely electronic and highly simplified
model for a Mott photovoltaic device consisting of a left/right
lead and a correlated layer acting as a photoactive region
in between. To study the effect of impact ionization on the
photovoltaic efficiency we investigate the photon-frequency-
resolved steady-state photocurrent, whereby the illumination
is accounted for by coupling the correlated layer to an electric
field oscillating with a single frequency. Experimentally this
would correspond to studying the photovoltaic effect with a
laser in the laboratory.

The energy structure of the system is sketched in Fig. 1.
In this special setup, one can distinguish between driving
frequencies that support steady-state current without the need
of scattering [direct excitations, Fig. 1(a)] and frequencies that
require the production of an extra electron-hole excitation by
impact ionization [Fig. 1(b)]. While the narrow bandwidth of
the leads is certainly rather unconventional, it is ideally suited
for the detection of impact ionization, not only for theoretical
means but also experimentally. Our main results, Fig. 4 below,
show a steep increase of the current in the impact ionization
case (by roughly a factor 2 in comparison to the case of
direct excitations), accompanied by an increase in the double
occupancy.

To corroborate the fact that direct excitations and impact
ionization are the dominant processes in this steady-state
situation, we investigate the system also in a parameter region
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FIG. 1. A sketch of the energy distribution of the system studied
and an illustration of the dominant steady-state photoinduced pro-
cesses. The dark-blue (light-blue) region describes the full (empty)
lead, while the lower and upper Hubbard bands of the central layer are
marked in dark- and light-red, respectively. Electromagnetic radiation
with energy � (yellow) initially produces a particle-hole excitation
(red wiggly line). For �ss < � < �ss + 2D, panel (a) shows an
electron coming from the left (full) lead which is photoexcited into the
upper Hubbard band at energies such that it can directly escape into the
right (empty) lead without further scattering processes. For� > 2�ss ,
panel (b), we have impact ionization: First, an electron-hole pair is
created with a high-energy electron via photoabsorption (e−

1 ,h+
1 in the

figure). Since the energy of the photoexcited electron is incompatible
with states in the right lead, it cannot escape the correlated region.
Thus, it can only contribute to the current if it can get rid of its
excess energy. The simplest, and therefore dominant process is impact
ionization, where e−

1 scatters with a second electron from the lower
band, thereby exciting it over the steady-state gap and creating a
second e-h pair e−

2 ,h+
2 . In the final state, both electrons and holes

can now escape into the leads and contribute to the current. Notice
that in the present steady-state situation only processes that eventually
recover the initial configuration are allowed.

for which impact ionization is prohibited. Here, we find
indeed a significant current only in the frequency regime of
direct excitations. For strong electric fields, however, we find

possible signatures of, what we refer to as, higher order impact
ionization processes.

In order to explore properties of the system in a steady state
with the period associated with the frequency of the electric
field, we employ a Floquet plus DMFT [13–15] approach,
whereby the recently introduced auxiliary master equation
approach (AMEA) [16–19] is used as an impurity solver. For
simplicity, we restrict the self-energy to be diagonal in the
Floquet index. We find that this Floquet diagonal self-energy
approximation (FDSA) is valid within the parameter range of
interest by testing it against a fully time-dependent impurity
solver. For this test, i.e., for being able to include the full time
dependence, we employ the iterated perturbation theory (IPT).

This work is organized as follows: We introduce the model
in Sec. II and outline the technical details related to the Floquet
plus DMFT formalism used in this paper in Sec. III. Some
additional information and more elaborate discussions on some
key points can be found in the Appendix together with a test of
the validity of the FDSA. The main results and their discussion
are presented in Sec. IV and our conclusions together with
an outlook on possible future investigations are presented in
Sec. V.

II. MODEL

To make for a first numerical study of the possible increase
in photovoltaic efficiency due to impact ionization in the setting
of a periodic drive, we work with the most basic model that
captures only the key aspects of the physical situation. Since
impact ionization is a purely electronic process, we work solely
with electrons and neglect any other degrees of freedom. We
want to note that, in particular, the coupling to lattice vibrations,
including the polaron structure of the electronic quasiparticles,
should be included in a more elaborate treatment as the latter
are known to play a significant role in photoexcited Mott
systems [20–23]. Other extensions of the model are discussed
in our conclusions (see Sec. V).

In more detail, we consider a system consisting of a single-
band Hubbard layer connected on the two sides with metal-
lic leads described by noninteracting tight-binding models.
The central (Hubbard) layer is driven by a time-periodic,
monochromatic and homogeneous electric field of frequency
�. Figure 2 shows a sketch of the lattice system. Its Hamilto-
nian reads

Ĥ = Ĥcenter(t) + Ĥleads + Ĥcoupling,

Ĥcenter(t) = −
∑
〈ij〉,σ

tij (t)c†
i,σ cj,σ + U

2

∑
i,σ

ni,σ (ni,σ̄ − 1),

Ĥleads =
∑

γ∈{l,r}

⎛
⎝−tγ

∑
〈ij〉,σ

f †
γi ,σ

fγj ,σ +
∑
i,σ

εγ f †
γi ,σ

fγi ,σ

⎞
⎠,

Ĥcoupling =
∑
〈i,j〉σ

(
Vlf

†
li ,σ

cj,σ + Vrf
†
ri ,σ

ci,σ + H.c.
)
. (1)

Here, c
†
i,σ /ci,σ denote creation/annihilation operators in the

central layer and ni,σ = c
†
i,σ ci,σ , while f †

γi ,σ
/fγi ,σ refer to

operators in the leads. We consider a spatially uniform electric
field along the diagonal direction of the central layer. By choos-
ing the temporal gauge, where the scalar potential vanishes,
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V

FIG. 2. Sketch of the considered lattice system. The leads, Hub-
bard layer, monochromatic light, and the coupling between the lead
and layer are illustrated in blue, red, yellow, and green, respectively.

the electric field is described by the vector potential A(t) =
E0 cos(�t)/� resulting, according to the Peierls substitution
rule, in a time-dependent hopping

tij (t) = tce
−(ie/h̄c)A(t)(rj −r i ). (2)

The units for the electric field are chosen such that the
coefficient e

h̄c
= 1. Moreover, we set the lattice spacing to unity

and take tc as the unit of energy throughout this work.

Parameter setup

To study, in particular, the role of impact ionization on the
steady-state dynamics, we choose a very special and uncon-
ventional parameter setup that allows us to distinguish between
regimes in which impact ioniszation can take place or not as
the external driving frequency is varied, hence enabling us to
isolate the effect under study. To this end, we consider narrow
leads with no overlap of their respective density of states and
place the lead lower/upper in energy at the top/bottom of the
lower/upper Hubbard band. In order to avoid the backflow of
carriers into the source, the left (i.e., lower) lead is taken as
completely filled, while the right one is empty [24]. Accord-
ingly, the chemical potential μl/μr lies just above/below the
left/right band. Furthermore, we consider large hybridization
strengths � = 2π |V |2ρ(ω = 0) = 9.6, with VL = VR = V in
Eq. (1) and ρ(ω) denoting the density of states (DOS) of the
leads. A large hybridization guarantees that electrons with
the correct energy escape quickly into the right lead [25].
At the same time it must be small enough not to dominate
the dynamics in the central layer or to alter its corresponding
DOS substantially. As a matter of fact, this is a balancing act
and as we will see below the DOS is (somewhat) affected.
Finally, we take moderate electric field strengths such that
first-order absorption processes dominate. More specifically,
we set E = 2 for the main results of this work [26] (Fig. 4
with U = 12). For the larger value of U = 30 we demand that
the effective electric field strength α, defined in Sec. III D 1,
for resonant driving frequencies, � = U , is roughly the same.

The situation is depicted in Fig. 1. In this setup, (particle)
current can only flow from the (filled) left lead into the (empty)
right one and only when the system is externally driven. In the
absence of scattering, the minimal frequency needed to drive
a steady-state current is � � �ss , where �ss is the energy gap
between the leads. Our aim here is not to provide a realistic
model for photovoltaic applications, but rather to study and
distinguish the different kind of process that can take place in
a Mott photovoltaic in a steady-state situation. As we will see
below, this setup is ideally suited to identify the existence of
impact ionization in a steady state.

III. METHOD

A. Floquet Green’s functions

To solve for the (periodic-)steady-state properties of the
system we work with the so-called Floquet Green’s function
(GF) [27–31] formalism, which allows for the evaluation of
the steady-state current and spectral properties. Here, every
observable of the system, and thus also the single-particle GF,
is assumed to be periodic with the external driving frequency.
Since a periodically driven system is inevitably out of equi-
librium we work with nonequilibrium Keldysh GFs [32–34].
More precisely, one defines the Floquet-Keldysh GF as

Gmn(ω) =
∫

dtrel
1

τ

∫ τ/2

−τ/2
dtavge

i(ω+m�)t−i(ω+n�)t ′G(t,t ′),

(3)

where trel = t − t ′, tavg = (t + t ′)/2, m and n denote the
Floquet indices, and the underline indicates the Keldysh
matrix structure

G =
[
GR GK

0 GA

]
(4)

with retarded, Keldysh and advanced component. In
Appendix A we mention some properties of Floquet GF
that are of importance for the current work. Here, we just want
to note that the time average (over one driving period) of a
matrix in Floquet space X(ω) is given by

X̄(ω) =
∫ τ/2

−τ/2

dtavg

τ
X(ω,tavg) = X00(ω). (5)

Here and in the following, we use boldface to indicate matrices
in Floquet space (the only other boldface object is the wave
vector k‖, but there is no ambiguity).

B. Dyson equation

The Dyson equation for the central Floquet lattice GF reads

G−1
mn(ω,k‖) = G−1

0,mn(ω,k‖) − 
mn(ω,k‖), (6)

where k‖ = (kx,ky) is the crystal momentum in the two
translational-invariant directions and X−1

mn denotes the mn

element of the inverse Floquet-Keldysh matrix. The GF corre-
sponding to the noninteracting part of the Hamiltonian, Eq. (1),
is given by

G−1
0,mn(ω,k‖) = g−1

0,mn
(ω,k‖)

−
∑

γ∈{l,r}
V 2

γ g
γ

(ωn,k‖)δmn (7)
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with the shorthand ωn ≡ ω + n� and
[
g−1

0
(ω,k‖)

]R

mn
= (ωn + i0+ − εc)δmn − εmn(k‖),

[(
g−1

0
ω,k‖|

)]K

mn
= 0. (8)

Here, as usual in steady state, we can neglect the Keldysh
component of the inverse Green’s function of the layer, and
εmn(k‖) = εmn(kx) + εmn(ky). The Floquet dispersion relation
in the presence of the periodic field described by Eq. (2) is
readily found to be [15]

εmn(k) = −tc(−i)m−n

×
[
eikJm−n

(
−E0

�

)
+ e−ikJm−n

(
E0

�

)]
(9)

with Jn denoting the nth order Bessel function of the first kind.
The surface GF of the semi-infinite, decoupled leads are given
by

gR
γ (ω,k‖) = ω − εγ (k‖)

2t2
γ

− i

√
4t2

γ − [ω − εγ (k‖)]2

2t2
γ

,

gK
γ (ω,k‖) = 2i[1 − 2fγ (ω)]ImgA

γ (ω,k‖), (10)

where fl/r is the Fermi function for the l/r lead and εγ (k‖) =
εγ − 2tγ [cos(kx) + cos(ky)] is the usual dispersion relation for
the simple cubic lattice.

C. Time-averaged observables

In this work, we are interested in time-averaged steady-state
observables. In particular, we focus on Green’s functions, spec-
tral functions, and the current density through the correlated
region. By virtue of Eq. (5), the time average of a Floquet GF
is readily obtained by picking out the (0,0) component of the
corresponding Floquet matrix. It is then natural to define the
time-averaged density of states or spectral function as

A(ω) = − 1

π
ImGR

00(ω) (11)

which obeys the zeroth-order spectral sum rule (normalization
to unity) and reduces to the usual definition in the limit of no
periodic driving.

To generalize a formula for a quantity that contains the
product of GF’s to the corresponding time-averaged one in
a Floquet system, care has to be taken as objects which
commuted in the original formulation might not commute in
the Floquet formalism. Thus, one has to be certain about the
ordering in a given expression before applying the straightfor-
ward substitutions. For the case of the time-averaged current
a correctly ordered expression can be found in [16,35] which,
according to Appendix A, is readily generalized to

jL→R = v2
∫ �/2

−�/2

dω

2π

∫
B.Z.

dk‖
(2π )2

Re TrJ (12)

= v2
∫ +∞

−∞

dω

2π

∫
B.Z.

dk‖
(2π )2

ReJ00, (13)

where J is a Floquet matrix given by

J = [
GR(

gK
l − gK

r

) + GK(
gA

l − gA
r

)]
(14)

with uppercase G denoting the lattice Floquet GF of the
interacting region and lowercase gl/r referring to the two
surface GFs of the decoupled leads. The two alternatives in
Eq. (12) can be used to check for consistency. They agree for
a sufficiently large Floquet matrix cutoff, and the agreement is
a sign of convergence with respect to the cutoff.

D. Floquet DMFT

Since the correlated lattice problem cannot be solved
exactly, we have to resort to an approximate scheme for
calculating the self-energy 
mn(ω,k‖). To this end, we use
DMFT [36–38] in its generalization to the periodically driven
systems [13–15]. Within DMFT one neglects the k‖ depen-
dence of the self-energy, 
mn(ω,k‖) ≈ 
mn(ω), which allows
one to calculate the approximate self-energy by the solution
of a self-consistently determined impurity problem. In the
following, we will provide only a very short description of
the DMFT scheme and concentrate on the aspects due to the
periodic time dependence;, for more details we refer the reader
to the recent review on nonequilibrium DMFT [39].

With an initial guess for the self-energy �(ω), the first step
of DMFT is to obtain the local GF from the self-energy via the
k‖-integrated Dyson equation for the lattice problem

Gloc(ω) =
∫

B.Z.

dk‖
(2π )2

[
G−1

0 (ω,k‖) − �(ω)
]−1

. (15)

The essential step is now the mapping onto an impurity
problem. This step is achieved by considering the Dyson
equation of the impurity model

G−1
imp(ω) = g−1

imp
(ω) − �(ω) − �(ω). (16)

Here, g−1
imp

(ω) is the noninteraction Floquet-Keldysh GF of the

impurity which is defined as in Eq. (8) but without εmn(k‖).
Demanding equality of the local GF and the impurity GF,

Gloc(ω)
!= Gimp(ω), we get the effective bath hybridization

function

�mn(ω) = g−1
imp,mn

(ω) − [
G−1

loc mn(ω) + 
mn(ω)
]
, (17)

where we have explicitly reintroduced the Floquet indices
(instead of the boldface matrices before) to emphasize that
the corresponding impurity problem is now subject to a
time-periodic driving. At this stage one inputs the obtained
hybridization �(ω) from Eq. (17) to an impurity solver,
obtains a new self-energy, and iterates the steps above until
convergence.

1. Floquet-diagonal self-energy

As we have seen above, the Floquet DMFT equations lead
to a periodically time-dependent bath for the impurity problem
which makes the latter hard to solve. In the literature, the
Floquet-DMFT impurity problem is treated with low-order
perturbative expansions that work directly in the time domain
[13,15,40–45], for example, IPT. While this is numerically
possible to carry out quite easily, the drawbacks of such solvers
is of course their limitation to certain parameter regimes, in
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the interaction and/or hybridization strength. There is also
a limited error control when such solvers are applied to
new situations where no benchmarks are available. In the
present work, we use instead the AMEA, a nonperturbative
impurity solver, which is very accurate in addressing steady-
state situations in a wide range of parameters [17,18]. When
addressing photovoltaic effects, we are in the regime of weak
periodic driving where first-order photon absorption processes
are dominant. In this case, off-diagonal Floquet terms are sup-
pressed by a factor α ≡ tcE0/�2 [46]. Motivated by this, we
restrict the self-energies to be diagonal in the Floquet indices.
This is in analogy with the original DMFT approximation
where one takes the self-energy as being diagonal in lattice
indices. It allows the simplification of the Floquet impurity
problem to a nonequilibrium steady-state one, albeit with time-
translation invariance. Of course, the periodic time dependence
of the problem remains via the Floquet-index dependence of
the noninteracting Green’s function. In more technical terms,
instead of solving an impurity problem with the hybridization
Eq. (17), we take the time average of the local GF, i.e.,
Gloc 00(ω), and calculate from it a time-translation-invariant
hybridization function, given by

�(ω) = g−1
imp

(ω) − [(Gloc,00)−1(ω) + 
(ω)]. (18)

The resulting steady-state impurity problem is then solved to
obtain 
(ω), and the Floquet self-energy is reconstructed as


mn(ω) = 
(ω + n�)δmn. (19)

This self-energy, plugged into Eq. (6), in turn yields the full
Floquet lattice GF. This approximation for the self-energy
(FDSA) is of course an ad hoc one, since the AMEA solution
of a periodic time-dependent problem would have been numer-
ically too time consuming. To check its range of validity, we
carry out a numerical test in Appendix C where we use IPT
and find that it is very accurate in the parameter region we are
interested in.

2. Auxiliary master equation approach impurity solver

For the sake of completeness, we briefly present the DMFT
impurity solver used to obtain our results, namely, the so-called
AMEA. For details we refer to our recent work [16–19]; for the
IPT impurity solver, see Appendix C. The key idea behind the
DMFT-AMEA impurity solver, in close analogy with the exact
diagonalization (ED) [47] in equilibrium, is to replace the bath
of the original impurity problem obtained via the DMFT cycle
and defined by the hybridization function [cf. (18)] �(ω), with
an auxiliary one described by a corresponding hybridization
function �aux(ω).

In contrast to ED, this auxiliary bath is an open quantum
system consisting of a finite number of sites embedded into
a Markovian environment. One should, however, point out
that the dynamics at the impurity site are non-Markovian.
This auxiliary system, being finite, can be solved exactly by
conventional Krylov-space methods [17] or matrix-product
states [18], and the self-energy at the impurity site can be
extracted. The only approximation entering the approach
comes from the difference between the �(ω), and the auxiliary
one �aux(ω) provided by the non-Markovian open system. The
parameters of the latter are determined by a fit requiring that

TABLE I. The parameters for the two considered regimes in
accordance with Eq. (1) where tc serves as the unit of energy. Addi-
tionally, we work roughly at room temperature by setting kbT = 0.02
in all calculations. Please recall, � = 2π |V |2ρ(ω = 0), D denotes the
bandwidth of the leads.

U E0 tl/r εl/r D �SS Vl/r �l/r

Hc Hleads Hcoupling

Ra 30 12 1/6 ±12 2 22 0.8 9.6
Rb 12 2 1/6 ±3 2 4 0.8 9.6

�(ω) ≈ �aux(ω) as close as possible. This mapping shows an
exponential convergence [19] with respect to the number of
bath sites in the auxiliary system, allowing quick convergence
of results. This has to be, of course, confronted with the
exponential growth in the numerical effort to solve the open
quantum system.

IV. RESULTS AND DISCUSSION

We investigate our model in two different regimes, Ra and
Rb characterized by different values of the Hubbard gap. We
show results for time-averaged quantities, namely, the current
density, Eq. (12), and (time-averaged-) spectral/Green’s func-
tions, Eq. (11), as the driving frequency is varied. For regime
Ra , we check our method and implementation by considering
the model in a parameter regime incompatible with impact
ionization where the result for the current is severely limited
by simple arguments as discussed below. The second case, Rb,
allows us to directly study the effect of impact ionization. The
corresponding parameters are summarized in Table I.

A. General considerations: Direct excitations
versus impact ionization

In order to yield impact ionization processes the bandwidth
of the upper Hubbard band of the central correlated layer
must be larger than twice the gap. Only if this is the case, the
photoexcited electron (or hole) in the upper (lower) Hubbard
band has enough excess energy to excite an additional electron
across the band gap, i.e., to create a second electron-hole pair.
Before presenting our actual results, we would like to first
discuss the physical processes that we expect upon increasing
the photon frequency �. For the following discussion, we
will assume that only first-order light absorption processes are
possible.

First, for � < �ss , we have a situation with no current,
provided the central DOS has a true gap as in Fig. 1. In the
case of a partial gap, as we have in Fig. 4(c), the current should
be suppressed, as multiple absorption processes will be needed
to overcome the steady-state gap.

For larger frequencies �ss < � < �ss + 2D electrons
coming from the left lead are photoexcited to an energy within
the bandwidth of the right lead and can directly escape, without
the need of further scattering. We refer to such processes, which
are illustrated in Fig. 1(a), as direct excitations. In addition,
the strong hybridization with the leads ensures that a charge
carrier with the right energy quickly leaves the central layer to
the other side. Note that in a noninteracting model, say a band
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FIG. 3. (a) Time-averaged current density and (b) double occu-
pancy as a function of driving frequency for a situation with a gap
larger than the bandwidth so that impact ionization is impossible.
Parameters as in Ra in Table I.

insulator for the central layer, this would be the only � regime
with nonzero current.

Next, we could have, in principle, an intermediate frequency
region where the driving frequency is too big for a direct
excitation but too low for steady-state impact ionization, �ss +
2D < � < 2�ss . However, we will work with parameters such
that �ss = 2D and therefore this region is absent.

Finally, for � > 2�ss we enter the regime of impact
ionization, illustrated in Fig. 1(b). In this regime each absorbed
photon produces two carriers, so that one should expect a
current up to twice as large for fixed absorption rate. The abrupt
increase of the current at a given frequency hence signals the
presence of impact ionization. In our model which neglects
phonons and considers the steady state, intraband scattering
is not effective in allowing high-energy electrons to dissipate
energy in the upper Hubbard band as we argue in Appendix B.
For this reason, we can be certain that the current observed for
� > 2�ss can only be due to interband scattering from which
steady-state impact ionization should be the dominant one.

B. Current and spectral functions

Another aspect that we need to consider before presenting
the results for the current density, is that a certain background
current is intrinsic within the AMEA approach in the presence
of spectral gaps or a band edge. This is due to the fact that the fit
to the hybridization function cannot go to zero abruptly when
a gap is present, since sharp features are hard to resolve when
fitting with smooth functions. We have therefore estimated a
“background current” to be removed from the results presented
in Figs. 4, 3, and 5(b). For example, for large � the current
should go to zero in all cases, as there are no final states
available for photoexcitation, but instead it settles at a finite
value.

This value is the same as the one we get when the external
drive is switched off. The background that is estimated by

FIG. 4. (a) Time-averaged current density (in units of j0 =
eh̄/tca

2) and (b) double occupancy as a function of driving frequency
for parameters compatible with impact ionization, Rb in Table I.
The current and the double occupancy show the same behavior in
the region of the main peak as expected for impact ionization pro-
cesses. (c) Time-averaged spectral function A(ω) and corresponding
filling A(ω)f (ω) [here, f (ω) denotes the nonequilibrium distribution
function] for representative driving frequencies for direct excitations
(� = 6) and impact ionization (� = 12).

switching off the electric field is indicated by the wiggly lines in
Figs. 4 and 3 as well as (5b) and agrees with the residual AMEA
current in the region where no current is expected because of
large (small) �. Unfortunately, the background current is not
always independent of frequency, so that it is sometimes hard
to identify it. This occurs, for example, when the accuracy
of the AMEA fit changes considerably in different frequency
regions due to a crossover to different DMFT solutions, as is
the case in Fig. 5.

1. Regime without impact ionization

We start by considering the system in the large gap regime,
Ra in Table I. In this case, for frequencies beyond �ss + 2D

(see Sec. IV A), no current should be expected, as high-energy
doublons are trapped in the higher Hubbard band and cannot
dissipate their energy (see also Appendix B). The correspond-
ing spectral function and filling is shown in Fig. 5. Since impact
ionization is not allowed, there should be a substantial current
density only in the regime of direct excitations 22 < � < 26.
The corresponding plot in Fig. 3 indeed shows a current above
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FIG. 5. (a) Time-averaged spectral function and filling at � = 37.
(b) Time-averaged current density as a function of driving frequency
for the two solutions discussed in Sec. IV B 3. Parameter set Ra as in
Fig. 3.

the background in this expected frequency region and a clear
double peak structure. The latter feature is a simple DOS effect
consistent with the picture of direct excitations [48]. The fact
that the current shows substantial broadening on the edges of
the expected frequency region is due to the above-mentioned
limited resolution of the AMEA fitting procedure. Notice that
within the FDSA the impurity solver has knowledge about
the frequency through the DMFT self-consistency, which, for
example, affects the occupation of the upper Hubbard band.
Further, we can see that in the region � > 25 the background
current is much smaller than at lower frequency. This is
because the spectral situation changes around that point, since
for � > 24 electrons can get excited from the lower lead
directly in the trapping region above the right lead, leading
to an accumulation of high-energy doublons. In Fig. 5 this is
reflected in a considerable filling of high-frequency states. The
different situation for � > 25 in turn allows for a better DMFT
fit. This is the reason why also the background level in Fig. 3
changes around � = 25 [49]. In summary, the current in Fig. 3
is consistent, within the limited accuracy of the present method,
with the physical expectations and we can be confident that our
approach captures the relevant physics.

2. Regime with impact ionization

Having established the correctness of our approach in
the simple but nontrivial large gap case, we now consider
the second set of parameters Rb in Table I. In this case,
there is the possibility of impact ionization as sketched in
Fig. 1 and discussed in Sec. IV A. The current density as
a function of � is plotted in Fig. 4 where we can identify
three domains separated by smooth transitions: The region
around the first maximum at � ≈ 4.5 corresponds to direct
excitations, which are allowed for 4 < � < 8 (see Sec. IV A).
The second domain, hosting the main peak, is consistent with
impact ionization, 8 < � < 16 [50]. The maximum current
for these frequencies is roughly twice as large as the one in
the region of direct excitations. This corroborates the fact that

a single photoabsorption produces two charge carriers in the
frequency region for impact ionization. The current for large
driving frequencies � > 16 is just the background current
mentioned above.

From Figs. 4(b) and 4(c), we can see that going from a
situation of direct excitations to one with impact ionization the
double occupation and, in particular, the occupation of high-
energy states (high-energy doublons) compatible with impact
ionization increases. This is consistent with our interpretation
that the second peak in Fig. 4(a) originates from the latter
process. Also in experiment such an abrupt doubling of the
current could serve as a clear indication of impact ionization.
For example, this can be used to detect impact ionization in
semiconductor quantum dots [51] (cf. Ref. [52]).

3. Instability to multiparticle impact ionization processes

Coming back to the large gap case, Ra , an intriguing
finding of our analysis is that we actually find two distinct
nonequilibrium solutions for large driving frequencies. That
is, for � � 35 there are two DMFT solutions (depending on
the initial DMFT self-energy) (see inset of Fig. 5). While this
makes the behavior of the current in this region inconclusive,
it is instructive to study the spectral properties of these two
solutions, which we plot in Fig. 5. In the first solution there is
an accumulation of high-energy doublons in the upper Hubbard
band and a suppressed current. The second solution is not
showing this charge accumulation and supports a substantial
steady-state current above the background for 33 � � � 38
hinting at a possible dissipation channel. This second solution
gets unstable at lower driving frequencies below � ≈ 35. On
the other hand, this second solution becomes more stable at
larger values of the electric field (not shown). We speculate
that this behavior may be due to the occurrence of higher-order
impact ionization as explained in the following:

Higher-order steady-state impact ionization. As already
mentioned, a steady-state process must be such that all the
energy going into the system is dissipated again. For the
present situation we have one source of energy—the driving
field characterized by �—and one drain of energy—namely,
the possible energy differences of the leads given by φ ≡
εr − εl ± D, i.e., for the parameters considered 22 < φ < 26.
Therefore, we must have

m�
!= nφ, with n � m (20)

in order for a process to be allowed. In view of Eq. (20),
direct excitations correspond to m = n = 1 while ordinary
impact ionization is obtained when n = 2,m = 1. The next
process is n = 3,m = 2. Here two “photons” excite three
electrons over the gap. Of course, this process is higher order,
so that it will be visible only at large driving intensities. At
this point, one can argue that the second metastable DMFT
solution mentioned above is related to the latter process as
it falls in the corresponding regime with m = 3,n = 2, i.e.,
33 < �2m=3n < 39. This interpretation is supported by the
fact that the second solution gets more stable at higher light
intensities. However, we stress that the interpretation is still
very speculative as, due to several reasons connected with our
approach, this frequency region is difficult to address.
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V. CONCLUSION AND OUTLOOK

We have investigated the effect of impact ionization on the
current density through a periodically driven Mott insulator
in the (periodic)steady-state using a simplified model for a
Mott photovoltaic system. As a function of driving frequency
we identify a crossover between a regime of direct excitations
into one in which impact ionization takes place and the current
is substantially enhanced.

We also consider the deep Mott regime, where the Hubbard
gap is larger than the bandwidth such that impact ionization is
not possible. Here, we find hints for competing nonequilibrium
phases of the system for larger driving frequencies. We give a
possible interpretation of this behavior in terms of higher-order
impact ionization processes where multiple photoexcitations
together with higher-order interband scattering open a dissipa-
tion channel supporting a nonvanishing current. The present
work addresses a simplified model to study photovoltaic
processes in a Mott solar cell but can be generalized in several
directions to make for a more realistic modeling of actual solar
cells. For instance, realistic metallic leads have typically a
wide band and are only partially filled. Instead, we use narrow
bands in the leads which are optimally suited to separate impact
ionization from other processes. Such narrow lead bands can
be realized in organic crystals which have a small hopping
amplitude or in materials with strong spin-orbit coupling which
splits the band structure into several subbands. The extreme
situation of zero bandwidth can be realized by bridging the
photoactive region through molecules to the leads. Indeed, this
approach is employed for semiconductor quantum dots [53],
e.g., with the purpose to extract hot, photoexcited carriers from
the quantum dot [54,55]. Moreover, for solar cells based on
oxide heterostructures the correlated region should consist of
multiple layers making for the possibility to model an electric
field gradient which separates electrons and holes. On top of
this, one should account for electron-phonon interactions and
also long-range Coulomb forces to address bound excitons.

As discussed in Sec. III D 1, in this work we have restricted
ourselves to a time-translation-invariant hybridization func-
tion. In principle, the solution of the full time-periodic (Flo-
quet) impurity problem can also be obtained within AMEA,
and it would therefore be interesting to address the effects of
a time-dependent self-energy beyond the FDSA. This would,
however, be numerically rather expensive and relevant only in
the case of strong driving which is not relevant for solar cell
applications.
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APPENDIX A: PROPERTIES OF FLOQUET GF

First, the Floquet transform, defined through Eq. (3), for a
GF that depends only on the time difference G(t,t ′) = G(t −

t ′) = G(trel) leads to a diagonal Floquet matrix

∫
dtrel

∫ τ/2

−τ/2

dtavg

τ
eiωmt−iωnt

′
G(trel) = G(ωn)δmn (A1)

with ωn ≡ ω + n�. The Floquet matrix entries are then not
independent, but we have

Gmn(ω) = Gm−n,0(ω + n�). (A2)

For the important case of the equal-time correlation function,
we get

G(t = t ′) =
∑
m,n

e−i(m−n)�t

∫ �/2

−�/2

dω

2π
Gmn(ω), (A3)

and for its time average

∫ τ/2

−τ/2

dτ

τ
G(t = t ′) =

∑
n

∫ �/2

−�/2

dω

2π
Gnn(ω)

=
∫ +∞

−∞

dω

2π
G00(ω). (A4)

Second, we want to note that the time average of a quantity
is always encoded in the diagonal contributions of its cor-
responding Floquet matrix and thus by virtue of Eq. (A2)
contained in the m = n = 0 component alone. Finally we want
to mention the most appealing aspect of Floquet GFs, namely,
that a convolution in time is mapped to the multiplication of the
corresponding Floquet GFs which leads to an algebraic Dyson
equation in frequency.

APPENDIX B: INTRABAND SCATTERING PROCESSES
IN STEADY STATE

It is important to stress that in our steady-state setup
and in the absence of other inelastic scattering processes
besides electron-electron interaction, high-energy doublons
lying above the upper edge of the upper lead cannot easily
dissipate their energy via intraband processes so as to be able
to exit via the drain lead. Indeed, if a particle (A) loses a certain
energy �, a second particle (B) must, at the same time, gain that
same amount. For the case in which B is in the upper Hubbard
band, this would produce an accumulation of particles in the
high-energy region of the band, as observed in Fig. 5. However,
in a stationary situation the rate of particles flowing into this
energy region must be equal to their outflow. For this reason,
these high-energy particles must also find a channel to dissipate
their energy, but again only electron scattering is available. For
the case in which (B) is in the lower Hubbard band, this process
would produce an accumulation of particles in the upper part
and a depletion in the lower part of the band, and we have the
same situation as above.

The only possibility is that the energy � is large enough
so that particle B is excited across the lead gap, i.e., impact
ionization. In the situation of Sec. IV B 1, however, the central
bandwidth is smaller than the gap, so that this is possible
only within multiscattering and absorption processes. This
statement may sound counterintuitive, and in fact in a realistic
situation, acoustic phonons will carry away the energy excess.
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FIG. 6. Test of the FDSA (see Sec. III D 1). Time-averaged current
as a function of the effective coupling constant α ≡ tcE0/�2 for
different driving frequencies obtained with IPT. The lines labeled
with “FDSA” correspond to data computed with the FDSA, while
the label “full” refers to the solution with the full Floquet im-
purity problem. For α � 1/2, the FDSA approximation is very
reliable.

Therefore, the present results are valid for the case that
these scattering processes are faster than the electron-phonon
dissipation rate. In principle, also magnons are relevant for
energy dissipation [12,56]. However, since magnons consist
themselves of electronic excitations, electron-magnon scat-
tering is simply another form of electron scattering and the
argument above remains valid. In a steady-state situation we
are not able to steadily transfer energy and excite magnons in
the central Hubbard layer.

APPENDIX C: TEST OF THE VALIDITY OF THE
FLOQUET-DIAGONAL SELF-ENERGY

The goal of this Appendix is to test the range of validity for
the FDSA. The AMEA impurity solver, while being numeri-
cally controlled, is computationally expensive when carrying
out a real-time evolution. Hence, for this analysis we employ
IPT as an impurity solver, which is much cheaper. Specifically,
we compare time-averaged observables from calculations with
and without the FDSA.

For the sake of simplicity and because the nature of the
approximation does not depend on it, we present here checks
where the total system defined by Eq. (1) is two dimensional.
That is, the correlated central region is a Hubbard chain
instead of a layer. In Figs. 6 and 7 we plot data for U = 5,
Vl = Vr = 0.1, and zero temperature kbT = 0. Figure 6 shows
the steady-state current density as a function of the effective
driving strength α = tcE0

�2 for different driving frequencies �.
In Fig. 7, we complement this with the results for the local
spectral function at � = 5 for selected electric field strengths
E0. Together, they confirm that the FDSA is justified for
the moderate driving intensities and large frequencies, which
we study within AMEA in this paper. The reason why the
current approaches zero for the highest two considered �’s

FIG. 7. Test of the FDSA introduced in Sec. III D 1. (a) Time-
averaged spectral function for different electric field strengths at
constant frequency � = 5 obtained with IPT. (b) The lower plot
shows a zoom onto the upper Hubbard band as indicated by the
box in the upper plot. Numerical parameters are the same as in
Fig. 6.

for large electric fields is due to dynamical localization [57]
which localizes the spectrum in frequency (see also Fig. 7),
and therefore suppresses the current for these higher driving
frequencies as “photonic” excitations are no longer possible
within the spectrum. A more detailed analysis and benchmark
in different parameter regimes with different impurity solvers
is beyond the scope of this work and will be presented
elsewhere.

For the sake of completeness, let us briefly recapitulate the
nonequilibrium IPT equations that have been used for this
analysis. In short, IPT is second-order perturbation theory
in the Hubbard interaction U . However, in the case of the
one-band Hubbard model at particle-hole symmetry it turns
out to be exact in the limit of infinite interaction as well.
It is hence quite reliable in this case, whereas it fails off
particle-hole symmetry. In technical terms, IPT is very simple
as the self-energy for a given hybridization �(t,t ′) is given
by



<
>(t,t ′) = U 2G

<
>
0 (t,t ′)G

<
>
0 (t,t ′)G

>
<
0 (t ′,t), (C1)

where G</> refer to the lesser/greater GF in the
Keldysh formalism and we introduced the so-called Weiss
GF

G−1
0 (t,t ′) = g−1

imp
(t,t ′) − �(t,t ′). (C2)
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We present further developments of the auxiliary master equation approach (AMEA), a numerical method
to simulate many-body quantum systems in as well as out of equilibrium and apply it to the interacting
resonant level model to benchmark the new developments. In particular, our results are obtained by employing
the stochastic wave functions method to solve the auxiliary open quantum system arising within AMEA.
This development allows us to reach extremely low wall times for the calculation of correlation functions
with respect to previous implementations of AMEA. An additional significant improvement is obtained by
extrapolating a series of results obtained by increasing the number of auxiliary bath sites, NB, used within the
auxiliary open quantum system formally to the limit of NB → ∞. Results for the current-voltage characteristics
and for equilibrium correlation functions are compared with the one obtained by exact and matrix-product
states–based approaches. Further, we complement this benchmark by the presentation of spectral functions for
higher temperatures where we find different behaviors around zero frequency depending on the hybridization
strength.

DOI: 10.1103/PhysRevE.99.043303

I. INTRODUCTION

Quantum impurity models have a long history in many-
body quantum mechanics. Some prominent examples in-
clude the single impurity Anderson model [1] (SIAM), the
(Anderson-) Holstein model [2], the Kondo model [3], and the
interacting resonant level model [4] (IRLM). They feature in-
teresting, unconventional physics such as the Kondo effect [5]
or negative differential conductance [6] and allow for experi-
mental in terms of quantum dots [7]. Besides this, the solution
of quantum impurity problems alone constitutes already a
crucial task in dynamical mean-field theory [8].

Since the late 2000s, there has been increasing interest
in quantum impurities out of equilibrium and the develop-
ment of numerical methods which are able to accurately
simulate such systems poses a great challenge for contempo-
rary condensed matter theory. Existing methods [9] include
iterated perturbation theory [10], numerical renormalization
group [11], real-time quantum Monte Carlo (QMC) [12,13],
noncrossing approximation and beyond [14,15], imaginary-
time QMC supplemented by a double analytical continu-
ation [16–19], scattering-states approaches [20,21], pertur-
bative and renormalization group (RG) methods [22–25],
time-dependent density-matrix RG and related tensor-network
approaches [26–28], numerical RG [29], flow equation [30],
functional RG [31,32], and dual fermions [33,34]. A method
developed over the past few years is the so-called auxiliary
master equation approach [35–37] (AMEA). The advantage of
this approach is that, in contrast to approaches which simulate
a closed Hamiltonian system, it allows us to directly address

*sorantin@tugraz.at
†arrigoni@tugraz.at

the steady state. Also time-dependent correlation functions
can be readily evaluated starting from the steady state or any
arbitrary initial condition.

AMEA is based on mapping the physical system to an
auxiliary open quantum system of Lindblad form. The dy-
namics of the resulting auxiliary system is described by the
density matrix and is solved by numerical means. In previous
works the Lindblad system was solved by using the so-called
superfermion (SF) representation [38], which formulates the
superoperator problem in terms of a standard operator prob-
lem with twice as many sites. The operator problem was then
solved by standard numerical many-body techniques such as
Krylov-space methods [36,39] (ED) or time evolution with
matrix product states [40] (MPS). AMEA within SF+MPS
was successfully used to calculate highly accurate spectral
functions of the SIAM under the influence of a bias voltage
[40,41] and the SF+ED implementation was employed as
impurity solver within single-site steady-state nonequilibrium
dynamical mean-field theory [42–45] (DMFT).

In equilibrium, the combination of density functional the-
ory (DFT) with DMFT (DFT+DMFT) has proven to be very
successful in describing materials with strong correlations
[46]. However, to address real materials one often has to
consider multiorbital correlated regions. Accordingly, on the
technical side, for DFT+DMFT one needs a multiorbital
impurity solver, which is modeled by an interconnected im-
purity consisting of multiple interacting sites in contact with
individual baths. Within existing implementations of AMEA,
SF+MPS, and SF+ED, as well as other nonperturbative
nonequilibrium approaches, the treatment of such multiple
interacting sites has limitations related either to the memory
(SF+ED) or to the CPU time (SF+MPS). For this reason, a
different approach to solve the many-body Lindblad problem

2470-0045/2019/99(4)/043303(12) 043303-1 ©2019 American Physical Society
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is needed in order to employ AMEA as an impurity solver for
nonequilibrium DFT+DMFT.

In this work, we make a step in this direction and test an
alternative approach which does not rely on the SF represen-
tation, namely stochastic wave functions [47–49] (SWF). The
new method is statistical in nature and most notably highly
parallelizable. This makes it a very promising candidate to ex-
ploit the multicore architecture of (future-) cluster facilities. In
addition, we introduce the notion of finite-size scaling within
AMEA and report on progress regarding the optimization
problem arising when mapping to the auxiliary system.

To test and benchmark the new developments, we apply
AMEA to the IRLM where we can compare to the existing
literature. In addition, we present a short study of the spectral
function in dependence of temperature. Our results show the
development of a central peak at higher temperatures which
rises (lowers) its amplitude for increasing temperature de-
pending on the hybridization strength. This work is structured
as follows.

We begin by describing the technical aspects in Secs. II–
IV and present the results for the IRLM in Sec. V. In
more detail, in Sec. II we outline AMEA for spinless one-
dimensional systems and discuss the size limits of existing
AMEA approaches with respect to DMFT. Section III and
the Appendix are devoted to the description of the SWF
algorithm; the finite-size scaling is introduced in Sec. IV. In
Sec. V we apply AMEA within SWF to the IRLM and test
the finite-size scaling scheme and the capability to compute
correlation functions against the literature. We also discuss
the temperature dependence of the impurity spectral function.
Finally, we present our conclusions together with a summary
and outlook in Sec. VI.

II. AUXILIARY MASTER EQUATION APPROACH

We briefly review AMEA to deal with fermionic impurity
problems. We consider a generic interacting region of size Nint

connected to a left and right baths of noninteracting fermions.
Accordingly, we write the Hamiltonian as

H = Hint + HBaths + HHyb. (1)

Here Hint describes the interacting region, HBaths =∑
α=L/R HBα

corresponds to the remaining reservoirs, and
HHyb contains the hopping terms connecting the baths to
the interacting region. In the following we will assume that
an individual bath is connected only to a single site of the
interacting region.

The idea of AMEA is to model the physical situation by
an auxiliary open quantum system described by the Lindblad
equation. It consists of the interacting region and additional
bath sites to approximate the action of the leftover Hamilto-
nian on the interacting region. In more detail, the Lindblad
superoperator (Liouvillian) defining the dynamics of the open
quantum system of size L = Nint + 2NB reads [50]

Lρ = −i[Hint, ρ] + LDρ, (2)

LDρ =
∑

α=L/R

Lαρ, (3)

where ρ is the density matrix of the Lindblad system. The
Liouvillian of the dissipative bath sites is given by

Lαρ = −i
∑

i j

E (α)
i j

[
c†

i c j, ρ
]

+ 2
∑

i j

�
(α),(1)
i j

(
c jρc†

i − 1

2

{
ρ, c†

i c j
})

+ 2
∑

i j

�
(α),(2)
i j

(
c†

i ρc j − 1

2

{
ρ, c jc

†
i

})
, (4)

where α denotes the left (right) reservoir [51] and c(†)
i are the

creation (annihilation) operators of a fermion on site i of the
open quantum system. The time evolution of the system is
described by the Lindblad equation,

d

dt
ρ(t ) = Lρ(t ). (5)

For the steady state of the original system, Eq. (16), the
Dyson equation for the interacting region in the formulation
of Keldysh Green’s functions reads

G−1
int (ω) = g−1

0,int
(ω) − �ph(ω) − �(ω), (6)

where an underline indicates the 2×2 Keldysh matrix,

X ≡
(

XRet XKel

0 XAdv

)
, (7)

and bold denotes the matrix structure in site indices, X = Xi j .
In Eq. (6) g

0,int
is the Green’s function (GF) of the interacting

region when isolated from the baths and without interaction,
� is the self-energy, holding all the information about the
interaction, and � is the so-called hybridization describing
the effect of HBaths + HHyb on the interacting region. For the
present case in which the first (last) site of the interacting
region couple to the left (right) bath, the hybridization has the
spatial structure � = diag[�(L)

ph , 0, . . . , 0,�
(R)
ph ].

The mapping from the physical to the auxiliary system is
performed by fitting the parameters Eα, �α,(1,2) in Eq. (4) such
that the hybridization in the auxiliary system approximates
the physical hybridization as close as possible, �(α)

aux ≈ �
(α)
ph ,

and this is the only approximation made within AMEA. The
accuracy of the mapping can then be systematically improved
by increasing the number of auxiliary bath sites NB and it
becomes formally exact in the limit of NB → ∞. Once the
mapping is performed, one can solve the auxiliary system by
some appropriate numerical method and evaluate observables
belonging to the interacting region. Their accuracy in describ-
ing the corresponding exact quantities will be directly related
to the difference between �(α)

aux and �
(α)
ph .

A. Different AMEA implementations and their applicability
to multiorbital DMFT

Here we want to briefly discuss the applicability of the
different AMEA implementations as impurity solvers within
multiorbital DMFT.

To address the open quantum system problem described
by Eq. (4), one can use the SF representation or the SWF
approach presented in this paper. These two approaches can
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in turn be combined with two different schemes to carry out
the time evolution, namely ED or MPS. This makes a total
of four different combinations (SF+ED [36], SF+MPS [40],
SWF+ED, present paper, and SWF+MPS).

To estimate the number of correlated orbitals that can be
treated within DMFT for each one of these methods, we
assume that at least four bath sites are needed per correlated
orbital to represent accurately a single bath [37,52] leading to
a total system size of L = Nimp(NB + 1). SF+ED is limited
in system size to L � 7 due to memory requirements. It is,
thus, restricted to the treatment of a single correlated orbital.
With the same memory limits, SWF+ED allows for a twice-
as-large system, L � 14, which accommodates two correlated
orbitals. One should, however, point out that, for the same L,
SWF+ED requires more CPU resources. On the other hand,
the wall time [53] can be reduced considerably due to the high
parallelizability of the SWF approach.

When using MPS as a time-evolution algorithm for
AMEA, the situation is more complex. On the one hand, MPS
is generically not limited in system size but rather expensive
with respect to the wall time. On the other hand, conventional
MPS becomes inefficient when the system is not truly one
dimensional. This is the case in the SF representation, where
the impurity+bath system is mapped into a ladder structure
[36,40]. Also the inclusion of additional correlated orbitals
makes the problem higher dimensional and thus unsuitable
for MPS. Recently, a generalization of MPS suitable to ad-
dress efficiently a multiorbital impurity problem, the so-called
fork tensor product states [54,55] (FTPS) approach, has been
introduced. This approach, implemented within the SWF
representation, could constitute a promising candidate for a
nonequilibrium multiorbital DMFT impurity solver.

B. Mapping to the auxiliary system

Here we briefly want to summarize the mapping procedure
and mention key points that we need for the present work. For
a thorough discussion of the mapping and technical details we
refer to our previous work [37]. The mapping is performed for
each individual bath α by minimizing a suitable cost function,

χ2(xα ) ≡ χ2
α =

∫ ∥∥�
(α)
ph − �(α)

aux

∥∥2
dω,

∥∥�
(α)
ph − �(α)

aux

∥∥2 ≡
∑

ξ∈{Ret,Kel}

[
Im�

(α),ξ
ph (ω)

− Im�(α),ξ
aux (ω; xα )

]2
. (8)

Here we have introduced a parameter vector xα that
parametrizes the matrices Eα, �α,(1,2) in Eq. (4), from which
one evaluates the auxiliary hybridization �(α)

aux. It is important
to note that the precise form of the cost function is very
flexible and may be chosen differently for different physical
situations. However, proper cost functions should quantify
how well the auxiliary system captures some desired physical
situation. For instance, the quadratic deviation as used in
Eq. (8). One important property of the mapping is that proper
cost functions decrease exponentially with the number of fit
parameters [37], − log χα ∝ dim(xα), which typically leads to
a rapid increase of accuracy when the number of bath sites NB

is increased.

In previous works, Eq. (8) was minimized via a parallel
tempering (PT) algorithm which is appropriate to find the
global minimum. However, it should be noted that within
AMEA it is not strictly necessary to find the global optimum
[56]. In general, the fit struggles to resolve sharp features such
as band edges in the retarded component or the Fermi jumps in
the Keldysh component at zero temperature. Therefore, T = 0
cannot be reached exactly in practice and the auxiliary system
always has some nonzero effective temperature.

Developments of the fit

With increasing dimensionality of the fitting problem,
the PT algorithm gets computationally prohibitive and it is
not able to find even good local minima anymore for [57]
dim(x) = 2NB(NB + 1) � 80. Good minima should be such
that they display an exponential decrease in the cost func-
tion when the number of bath sites is increased. To obtain
good-enough minima for NB = 7, 8, we use the fact, which
we observed empirically, that the � matrices of obtained
minima typically have very low rank. Utilizing a variable rank
parametrization in terms of a corresponding matrix γ ,

γ = (�γ1, . . . , �γrankγ
), � = γ γ †, (9)

where �γi denote column vectors of length L. Note that the
maximal useful rank typically increases with the system size
[58]. With this procedure, we have reduced the dimensionality
of the parameter vector to dim(x) = 2NB(rankγ + 1), extend-
ing the applicability of the PT algorithm to about NB = 8. To
achieve an exponential decrease in the cost function for even
more bath sites we have adopted an optimization algorithm
which makes use of the gradient of the cost function, which
can be evaluated directly. This information is not used in
the PT algorithm. Suitable gradient-based approaches can
be found in the area of machine learning, which provides
algorithms tailored to find local minima in very high dimen-
sional problems utilizing variants of steepest descent. Here
we employ the ADAM [59] optimizer as implemented in the
python library tensorflow [60].

Steepest descent approaches are obviously very sensitive to
the starting point. In our case, it has proven to be very effective
to first find the solution for a small auxiliary system (small
NB) and, consequently, add bath sites until the required NB is
reached. For a fixed NB, we start with the result of the previous
system size and increase the rank stepwise until no significant
decrease in the cost function is observed. In addition to being
applicable for larger NB, the ADAM routine is also faster than
PT for a given NB. This is because the PT algorithm tries to
explore the total phase space, whereas ADAM only follows a
certain path.

III. SOLUTION OF THE LINDBLAD SYSTEM
WITH STOCHASTIC WAVE FUNCTIONS

The auxiliary open system is still correlated but due to
its finite size can be addressed by numerical techniques.
One route is to make use of the so-called SF representation
[38], which maps a superoperator problem to a standard,
albeit non-Hermitian, operator problem. The drawback of this
approach is that the resulting SF problem is formulated on
twice as many effective sites leading to a rapid increase in the
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numerical complexity. In previous works employing AMEA
we have successfully used the SF representation together
with established many-body techniques such as Krylov-space
methods [35,36] or MPS [40] to solve for steady-state prop-
erties. A completely different route is to use SWF [47–49],
also referred to as “quantum jumps,” to solve the auxiliary
many-body problem. The method is based on the stochastic
nature of the Lindblad problem and is formulated in terms of
wave functions instead of a density matrix and thus circum-
vents the need to square the Hilbert space. In the following,
we will only give a brief introduction to the SWF method
and focus more on a practical prescription to simulate the
many-body Lindblad system arising within AMEA. For more
details, mathematical definitions and background we refer to
the literature [47–49]. In the following we consider a Lindblad
system of spinless fermions of size L.

The density operator ρ(t ) can be mapped onto a probability
distribution P[ �ψ, t] for the quantum mechanical (many-body)
wave function [61],

|ψ〉 =
2L∑

λ=1

ψλ|λ〉,

�ψ ≡ (ψ1, . . . , ψ2L ), (10)

where λ indexes a complete set of (many-body) basis states
[62]. With the Hilbert space volume element,

D �ψD �ψ∗ ≡
2L∏

λ=1

i

2
dψλdψ∗

λ , (11)

defining the needed probability measure [63], the expectation
value of an observable can then be formally expressed as

〈A(t )〉 =
∫

D �ψD �ψ∗〈ψ |A|ψ〉P[ �ψ, t]. (12)

In short, instead of dealing with an evolution equation for
the density matrix, one formulates a stochastic process on
the Hilbert space. For the specific case of a Lindblad system,
the process is simulated according to a stochastic differential
equation leading to the algorithm presented in Fig. 1.

In this algorithm, a state vector |ψ〉 is evolved in time
according to an effective, but non-Hermitian, Hamiltonian,
Heff . Heff comprises the Hamiltonian Hint as well as the
particle-number-conserving terms from the part describing
the L and R baths, i.e., the terms proportional to E (α)

i j as
well as the terms containing the anticommutators in Eq. (4).
This deterministic time evolution is interrupted by stochastic
jump processes to different particle sectors, mediated by jump
operators L(β )

k , see Appendix A for details. Observables are
determined as the average over expectation values in indepen-
dent realizations of |ψ〉. Such a stochastic unraveling of the
Lindblad equation into a pure state description, in the form
of Eq. (11), only works for quantities which only require the
knowledge of the time-dependent density matrix ρ(t ), as is the
case for expectation values 〈A〉 = TrA(t )ρ = TrAρ(t ). When
evaluating a Greens function, multiple operators at different
times are involved and additional information is required. In
order to compute two-time correlation functions,

GBA(t, t ′) = 〈ψ (t0)|B(t )A(t ′)|ψ (t0)〉, (13)

FIG. 1. The stochastic wave function algorithm for the time
evolution.

we follow the approach outlined in Ref. [48] and consider the
stochastic time evolution of a doubled Hilbert space resulting
in the algorithm in Fig. 2.

Here a state vector |ψ〉 is evolved in time together with
a corresponding vector A|ψ〉. A Green’s function is then
proportional to the stochastic sample of off-diagonal matrix
elements of the second operator B, see Eq. (14). Notice
that for single-fermion Green’s functions, A is a fermionic
creation (annihilation) operator. In that case one has to use
the negative sign in front of the jump term for the lower part
of the doubled Hilbert space, cf. Eq. (A4), see Appendix B
in Ref. [64]. Notice that generalizing the doubled Hilbert
space to a multiple Hilbert space allows us to sample different
correlation functions at once, see Appendix Sec. A 2 b i.

The SWF algorithm requires a routine which is able to
time evolve an initial vector with a non-Hermitian generator
for some (arbitrarily-) small time dt . In the present work
we use the so-called Arnoldi algorithm [39] for the time
evolution which is the Lanczos method generalized to the
non-Hermitian case. For more details, see the Appendix.

IV. EXTRAPOLATION OF OBSERVABLES TO
THE LIMIT OF VANISHING COST FUNCTION

As illustrated above, AMEA is a method which can be
systematically improved by increasing the number of bath
sites NB leading to an exponential decrease in the cost func-
tion, χ = ∑

α χα , which is a measure of the overall accuracy.
Clearly, the best approximation for some quantity of interest
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FIG. 2. The stochastic wave function algorithm in the doubled
Hilbert space which allows us to calculate correlation functions.

for given NB is obtained within the auxiliary system with
the smallest χ . To improve on these results one can think of
numerically extrapolating the results to the χ → 0 limit. This
is equivalent to a scaling to the limit of an infinite number
auxiliary bath sites NB → ∞. However, since the accuracy is
directly related to χ rather than NB, it is more convenient to
use χ as an extrapolating parameter. For a given observable
A of interest we can assume for its deviation from its exact
(physical) value

�A(χ ) = Aph − Aaux(χ ) = kA χ + O(χ2) (15)

with some constant of proportionality kA. This suggests that
given a series of value pairs {χi, A(χi )} one can obtain an
approximation to Aaux(χ = 0) by performing a linear fit in the
(χ, A) plane. Within AMEA a series of value pairs {χ (NB), A}
is naturally generated by the different possible auxiliary sys-
tem sizes. The truncation of the Taylor series, Eq. (15), to
first order is only justified for cost functions which are small
compared to χ0 ≡ χ |�aux=0 which is χ obtained by Eq. (8)
with �aux = 0. The resulting normalized cost function, χ/χ0,
is then a measure for the relative error from the physical
situation.

We want to emphasize that the extrapolation scheme pre-
sented here is not able to give a consistent error estimate of
the extrapolated value as the uncertainty of the individual data
points is unknown and not statistically distributed.

Here one has to distinguish between a purely statistical
error stemming from the solution of the Lindblad system
within stochastic wave functions, which is known and neg-
ligible, and the systematic error introduced by the mapping to

the auxiliary system, which is unknown. Further, the role of
the higher-order terms in Eq. (15) introduces another source
of unknown error. To get a grip on the error due to the
AMEA mapping, one could perform the extrapolation in some
limit where the true value in the physical system is known,
for example, at zero interaction strength or for some other
parameters where the value is known from the literature. One
could then use the deviation from the extrapolation fit as an
approximation to the error of a data point. Since there is a lot
of freedom in obtaining this error estimates—and it will thus
be very situation dependent—we will not pursue this further
in the current work where we are interested in an unbiased
benchmark of the extrapolation scheme.

Nevertheless, this scheme provides a significant improve-
ment, for example, in the current, as can be seen in Fig. 5.

V. APPLICATION TO THE INTERACTING
RESONANT LEVEL MODEL

The IRLM [4] is a commonly used nonequilibrium impu-
rity model of spinless fermions. It features an impurity site
connected to two semi-infinite tight-binding chains together
with an interaction term coupling the particle densities of the
impurity site to the neighboring chain sites, see Fig. 3. The
Hamiltonian is defined as

HIRLM = HL + HR + Hdot,

HL = −J
−2∑

r=−∞
c†

r cr+1 + H.c.,

HR = −J
+∞∑
r=1

c†
r cr+1 + H.c.,

Hdot = −J ′ ∑
r=±1

c†
r c0 + H.c.,

+U
∑
r=±1

(
c†

r cr − 1

2

)(
c†

0c0 − 1

2

)
, (16)

where c†
r /cr denote the fermionic creation or annihilation

operators at site r. Here HL−R describe the semi-infinite tight-
binding chains of bandwidth W = 4J and Hdot introduces
the hopping to the impurity as well as the interaction term.
A nonequilibrium steady-state situation is induced in the
system via an applied bias voltage V simulated by shifting
the chemical potentials of the leads symmetrically, that is,
μl = −μr = V

2 . We use J as unit of energy and work in units
where h̄ = e = kB = 1.

The IRLM is known to be integrable [4] and becomes
equivalent to the continuum model in the so-called scaling
regime where the bandwidth becomes the largest energy scale
in the system. Most notably, there is a closed form expression
for the steady-state current as a function of the bias voltage
[6,65] for the special value of the interaction U = 2,

I (V ) = V

2π
2F3

[{
5

6
,

7

6

}
,

{
1

4
,

3

4
, 1

}
; −

(
V

Vc

)6
]
, (17)

with Vc = r(J ′)
4
3 and r ≈ 3.2 [66]. Here 2F3(a, b; z) is

the generalized hypergeometric function [67]. The formula
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FIG. 3. A sketch of the IRLM as lattice model and its mapping
to the auxiliary open quantum system used within AMEA.

Eq. (17) is valid at zero temperature and in the scaling regime.
Parameters can be considered to be in the scaling regime [68]
if the I (V ) function falls onto a single curve in the scaling
plot, see Fig. 5. In this way, I/Vc becomes a universal function
of the scaled voltage V/Vc alone and in particular does not
depend on the hybridization strength J ′.

A. AMEA for the IRLM

In the IRLM, the interaction lives on the contact links to
the leads and, therefore, the interacting region comprises the
sites r = {−1, 0, 1} which corresponds to having

Hint = Hdot, (18)

HBL = −J
−3∑

r=−∞
c†

r cr+1 + H.c., (19)

HBR = −J
∞∑

r=2

c†
r cr+1 + H.c., (20)

HHyb = −J (c†
−2c−1 + c†

1c2) + H.c., (21)

as indicated in Fig. 3. Since HBL/R describe semi-infinite tight-
binding chains in equilibrium, �ph,L/R represent baths with
a semicircular density of states with a bandwidth of W = 4
and an electronic distribution function given by the Fermi
function. Within AMEA, a given parameter set Eα, �α,(1,2)

fixes both the density of states as well as the distribution
function of the corresponding bath. Since the Hamiltonian
Eq. (16) is particle-hole symmetric, it suffices to perform

FIG. 4. Comparison of the physical and auxiliary hybridization function at the boundary of the left bath, i.e., r = −1, and T = 0.025.
[(a) and (b)] Retarded-Keldysh part of the hybridization function for L = 19, μ = 2. [(c) and (d)] Retarded-Keldysh part of the hybridization
for L = 13, μ = 0. The L = 19 results where obtained with the ADAM routine from Sec. II B 1 while L = 13 was optimized with PT. Solid
lines represent the hybridization of the physical system, �ph, and dashed lines that of the auxiliary system, �aux. Panels (a) and (b) show a fit
for μ 
= 0 to exemplify the capability of representing a nonequilibrium situation. Panels (c) and (d) illustrate the fit used for the calculation
of the equilibrium spectral functions in Fig. 6. The insets in panel (a) show a zoom onto the band edge and the region around the chemical
potential, μ = 1, where the sudden occupation change in the Keldysh component typically induces oscillations in the retarded one.
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FIG. 5. Scaled steady-state current as function of the scaled bias voltage V/Vc. We plot the analytic solution for T = 0 (solid black line), the
extrapolated AMEA current (filled circles), and the current for L = 17 and L = 19 (open symbols). Shown are results for J ′ = 0.2 (red symbols)
and J ′ = 0.5 (blue symbols). The arrows indicate the data points which correspond to the voltage V = 2 for the two different considered J ′.
The inset shows an example of the current vs. cost function I (χ ) for V = 1.2, J ′ = 0.5 (filled blue circles) and the corresponding linear fit
(solid red line) as well as the extrapolated value at zero cost function (open red circle) together with the analytic result (filled black diamond).
Other parameters are T = 0.025 and U = 2.

the fit only for one of the two baths, e.g., the left ones, and
obtain the parameters of the right bath by a particle-hole
transformation. Thus, also the cost function for the left and
right bath will be equal for a given bias voltage, χL = χR. To
illustrate the mapping, we show in Fig. 4 two examples for
such a fit with L = 13 (NB = 6) and L = 19 (NB = 9). Notice
that the same fit can be used for any set of parameters in the
interacting region.

B. Extrapolation of the steady-state current

Since there are no free parameters in Eq. (17) we can use
this as a benchmark for our numerical approach and test the
extrapolation scheme of Sec. IV. However, it should be noted
that our results are obtained for T = 0.025 while Eq. (17) is
the result for zero temperature.

Given an auxiliary system of size L we can evaluate the
current over a physical bond i in the auxiliary system [69]

Ii,i+1 = Ei+1,i〈c†
i+1ci〉 − Ei,i+1〈c†

i ci+1〉,
= 2Ei+1,iIm〈c†

i+1ci〉, (22)

where the parameters Ei,i+1 represent the hopping along the
chain in the interacting region. In the following, we consider

results obtained with 7 � L � 19. In Fig. 5 we plot the univer-
sal steady-state current together with the corresponding data
points obtained with AMEA for J ′ = 0.5 and J ′ = 0.2. Shown
are the AMEA results for individual system sizes as well
as the extrapolated current. We find a linear relationship to
normalized cost functions, χ/χ0 ≈ 1, suggesting that higher-
order terms in the Taylor expansion, Eq. (15), are suppressed
in the present case.

We see that the current improves significantly toward the
analytic solution thanks to the extrapolation scheme. As men-
tioned above, the analytic solution is only valid for not-too-
large bias voltages [70]. Indeed, we see a systematically grow-
ing deviation between the analytic solution and the current
from AMEA for voltages V � 2; see the markers in Fig. 5.

For J ′ = 0.2, somewhat larger deviations from the analytic
solution are visible around the maximum of the scaled current.
These are due to the finite temperature, which introduces a
broadening of the Fermi edge and, thus, can be seen as an
uncertainty [71] in the chemical potentials or, equivalently,
in the voltage �V ∼ T . The important point is that this
uncertainty is symmetric around the correct V value. In the
linear regime, this uncertainty is compensated, because to a
±δV corresponds (approximately) a ±δI which essentially
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cancels out. This does not occur in the quadratic regime close
to the maximum. Therefore, here the error in I is larger. This
effect is larger for small J ′ because any error in the current gets
amplified in the scaling plot for J ′ = 0.2 (where Vc =≈ 0.37)
in contrast to J ′ = 0.5 (where Vc ≈ 1.27).

The inset in Fig. 5 shows an example extrapolation. As
one would expect, the data points with bigger cost functions
(smaller system sizes) show a stronger scattering from the
linear fit than the more accurate points. While the points with
low cost functions make for more confidence in the results, the
accuracy of the extrapolated current does not suffer when the
biggest system size, L = 19, is excluded from the analysis.
This suggests that when utilizing the extrapolation to zero
cost function, it is probably not necessary to simulate the
biggest system sizes within reach. Rather, one can check for
a small fraction of points whether the (usually very CPU-
time intensive) bigger system size(s) are worth calculating.
However, if error estimates are used, then points at lower cost
functions will reduce the uncertainty in the final result.

C. Spectral function of the IRLM

In this section, we evaluate the steady-state single-particle
Green’s function G at the central impurity site. The calcula-
tion is carried out in the real time domain and we use the
approach discussed in Sec. III, see also Sec. A 2. We use a
step size of dt = 0.05 and 105 time steps to first reach the
steady state at t0 = 5×103. We have verified that expectation
values of static observables do not change after this time.
Then we sample the Green’s function G(t − t0) for later
times beyond t0 up to tend = t0 + 6000dt . This is sufficient,
since here G(tend − t0) < 10−6. Finally, we average G over
O(105) realizations and determine the spectral function by
direct Fourier transform. All results presented in this section
are obtained with an auxiliary system of size L = 13. The
corresponding hybridization function is shown in the lower
panels of Fig. 4.

Like any nonequilibrium approach, AMEA is also ap-
plicable in equilibrium situations which is just the special
case when μl = μr = 0, allowing us to compare our results
against the literature. In Fig. 6, we compare our results to the
equilibrium density of states obtained by Braun and Schmit-
teckert via MPS [72]. For interaction strengths U < 2 that are
small compared to the bandwidth, we observe a very good
agreement with the reference over the whole frequency range.
At the self-dual point U = 2 we start to see small quantitative
deviations of peak heights but still obtain an satisfactory
agreement. When the interaction becomes comparable to the
bandwidth, U = 3, the deviations become significant and
continue to grow as the interaction is increased (not shown).
The reason for the growing deviations, such as sharper reso-
nances in the AMEA results and a different behavior around
zero frequency, is that in the present AMEA mapping to a
system of size L = 13 the region outside the bandwidth is
not well reproduced, see also Fig. 4. While these states do
not play a role as long as all energy scales in the system are
small compared to the bandwidth, i.e., in the scaling regime,
the details of the leads at higher energies become important
when the interaction becomes comparable to the bandwidth.
However, the latter does not mean that AMEA is not at all

FIG. 6. Equilibrium (V = 0) spectral function at the impurity
site, r = 0, for different interaction strengths. We compare our results
with Braun et al. [72] (obtained at T = 0). Our parameters are
J ′ = 0.2, T = 0.025.

applicable in this parameter regime; rather, one has to make
sure that the region outside the bandwidth is also faithfully
reproduced by the auxiliary system. This can be achieved by
using a differently distributed cost function in the fit or by
going to larger auxiliary system sizes.

Impurity spectral function at finite temperatures

We complement our benchmark of the spectral function
in the limit of low temperatures with a presentation of finite
temperature results, where our method has an even better
accuracy. In Fig. 7, we plot the impurity spectral function
for increasing temperatures and two different hybridization
strengths, J ′ = 0.2 and J ′ = 0.5, at the self-dual point U = 2.

We observe that with rising temperature the resonances
around ω ≈ 2, 4 get weakened and the spectral function de-
velops a broad central peak for both considered hybridization
strengths. While for J ′ = 0.2 the amplitude of this peak is
decreasing with increasing temperature, the trend is reversed
for J ′ = 0.5 where the peak is formed around T = 0.8 and
continues to grow. This different behaviors can be interpreted
as the consequence of two competing effects of the increasing
temperature. First, there is a shift of spectral weight away from
the resonances around ω ≈ 2, 4 to small frequencies which
leads to an increase of the central peak. Second, in addition to
broadening effects due to the hybridization, the central peak
gets broadened by temperature which tends to decrease its
height due to the overall normalization.

For the smaller hybridization strength, where the initial
broadening due to the hybridization is smaller, the increase
in broadening initially dominates over the shift of spectral
weight, leading to a decreasing central peak as function
of temperature, while the two effects balance out for high
temperatures, T ≈ 1. In the case of the larger hybridization,
the shift of spectral weight dominates the behavior of the
zero-frequency spectral function.
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FIG. 7. Equilibrium spectral function at the impurity site, r = 0,
for different temperatures and two different hybridization strengths.
Panel (a) for J ′ = 0.2 and panel (b) for J ′ = 0.5.

D. Performance

From a numerical point of view, the SWF method has two
main advantages. First, since one evolves wave functions there
is no need to square the Hilbert space as when one deals with
the density matrix. For the present case of using Krylov-space
methods, this means that one can use a twice as large L and
thus achieve a much better accuracy. Second, individual real-
izations of possible time evolutions are independent, which
means that the method is easily parallelizable. This makes
SWF very suitable for future cluster facilities which thrive on
highly parallel algorithms.

However, the price to pay is a CPU time that is about 20
times longer than solving an auxiliary system with the same
value of the cost function by MPS. On the other hand, thanks
to parallelization, the wall time can obviously be made almost
arbitrarily small. For example, the GF’s for L = 13 in Fig. 6
where averaged over about half a million realizations where a
single one takes around 1 s. For comparison, the solution with
the superfermion plus ED approach for L = 13 would be on
the order of minutes.

VI. SUMMARY, CONCLUSION, AND OUTLOOK

We reported on technical developments within the auxil-
iary master equation approach and applied it to the IRLM

in and out of equilibrium to benchmark the new techniques.
We successfully applied the SWF algorithm to determine the
steady-state properties of the auxiliary Lindblad system. On
the one hand, the SWF algorithm is highly parallelizable
allowing to reach very low wall times. On the other hand,
we found that in the current implementation of SWF+ED
the total CPU time for a spectral function is 20 times higher
than in available alternatives for the solution of the aux-
iliary system introduced by AMEA. Further, we saw that
an auxiliary system size of L = 13 is enough to obtain
reliable spectral information of the IRLM for interactions
U � W/2.

We obtained a further significant improvement by extrap-
olating physical quantities, most notably the current, to the
NB → ∞ limit. In fact, it turns out to be more effective
to extrapolate linearly in the cost function χ , which then
would correspond to an exponential extrapolation in NB. Such
an extrapolation is able to improve the results significantly
and possibly circumvents the need to go to larger system
sizes.

In addition, we introduced a variable rank parametrization
of the auxiliary Lindblad matrices which typically reduces the
number of fitting parameters in the AMEA mapping. Employ-
ing the new parametrization together with an optimization
routine from machine learning, we were able to maintain
an exponential decrease of the cost function also for larger
system sizes where the previously used parallel tempering
algorithm failed.

In view of the high parallelizability of the SWF algorithm,
which we found to hold in practice, the fact that MPS is
limited in CPU time rather than system size makes a possible
SWF+MPS implementaion of AMEA an ideal combination.
Especially the combination of AMEA within SWF and FTPS
[54]—a generalization of MPS—together with further opti-
mizations, such as extrapolating the Green’s function to larger
times with linear prediction, could prove to be very fruitful
with respect to nonequilibrium DFT+DMFT.

Besides the technical developments within AMEA and
their benchmark within the IRLM, we also investigated the
effect of increasing temperature on the impurity spectral
function. We find that the competition of temperature induces
broadening effects and shift of spectral weight gives rise to
different behaviors of the spectrum around zero frequency for
different hybridization strengths.
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APPENDIX: TECHNICAL DETAILS
OF THE SWF ALGORITHM

In order to present the SWF algorithm, we consider a
general Lindblad system for a generalized “density-matrix”
�̃ = f ({c(†)})ρ, where f ({c(†)}) denotes some function of
fermionic operators,

L = LH + LD. (A1)

It is composed of a central region with Hamiltonian H and the
corresponding Liouvillian LH ,

LH �̃ = −i[H, �̃], (A2)

and a dissipative part described by LD,

LD�̃ = 2
∑

i j

�
(1)
i j

(
±c j �̃c†

i − 1

2
{�̃, c†

i c j }
)

+ 2
∑

i j

�
(2)
i j

(
±c†

i �̃c j − 1

2
{�̃, c j c

†
i }

)
. (A3)

Here i and j run over all L sites of the system and �(1)/(2)

are L × L matrices. The minus sign in Eq. (A3) is valid if �̃ is
odd in the number of fermion operators, i.e., �̃ = c(†)

i ρ. This is
the case with Green’s functions, where we need to propagate
c(†)

i ρ.
In order to obtain the jump operators one has to diagonalize

the matrices �(β ), β = 1, 2,

2�
(β )
i j =

∑
k

U (β )
ik γ

(β )
k U (β )∗

jk ,

and end up with the eigendecomposition of the dissipator,

LDρ =
∑
βk

(
±L(β )

k ρL(β )†
k − 1

2

{
ρ, L(β )†

k L(β )
k

})
, (A4)

L(1)
k =

∑
i

√
γ

(1)
k U (1)∗

ik ci,

L(2)
k =

∑
i

√
γ

(2)
k U (2)

ik c†
i . (A5)

The anticommutators in Eq. (A4) are included into the
effective, non-Hermitian Hamiltonian [73],

Heff = H − i

2

∑
βk

L(β )†
k L(β )

k

= H − i
∑

i j

[
�

(1)
i j − �

(2)
i j

]
c†

i c j − i
∑

i

�
(2)
ii . (A6)

With this Hamiltonian and the jump operators L(β )
k ,

Eq. (A5), one formulates the SWF algorithms in Sec. III,
Figs. 1 and 2.

1. Jump-time search and Arnoldi

As mentioned in Sec. III we use the so-called Arnoldi al-
gorithm [39] for the time evolution. Arnoldi is a Krylov space
method analog to Lanczos but for non-Hermitian Hamilto-
nians. For a given initial state, |ψ0〉, and time interval, dt ,
a Krylov space, spanned by Q, is generated by iteratively

applying Heff to the starting vector until a satisfactory approxi-
mation for the time evolution operator e−iHeff dt ≈ Q†e−iHK dt Q
is found. For any given time t up to the maximal time dt ,
the state and the corresponding norm needed for the SWF
algorithm are given by

|ψ (t )〉 = Q†e−iHK t Q|ψ0〉 = Q†e−iHK t�v0, (A7)

�v0 = Q|ψ0〉 = (1, 0, 0, . . . )�, (A8)

‖ψ (t )‖2 = 〈ψ0|Q†eiH†
K t QQ†︸︷︷︸

1

e−iHK t Q|ψ0〉, (A9)

= �v�
0 eiH†

K t e−iHK t�v0, (A10)

where we have used the property that Q|ψ0〉 is nothing else
than the first Krylov vector and QQ† = 1 is the identity
[74]. We want to point out that by virtue of Eq. (A10) the
norm can be calculated within the Krylov space representation
itself, which is typically of size dimK = O(10), without the
need to use the transformation matrices Q which are of
dimension dimQ = dimF dimK , where dimF is the dimension
of the Hilbert space (many-body Fock space). Differentiating
Eq. (A10) yields

d

dt
‖ψ (t )‖2 = −2Im

(�v�
0 eiH†

K t iHK e−iHK t�v0
)
, (A11)

which allows to determine the jump time t j in the SWF al-
gorithm, satisfying ‖ψ (t j )‖2 − r j = 0, by applying Newton’s
method.

2. Practical implementation for the steady-state situation

Here we want comment on the practical implementation
for the special case of steady-state quantities.

a. Steady-state observables

We start with the, with respect to the needed numerical
simulation protocol, simpler case of sampling a steady-state
observable. A steady-state expectation value is obtained like
in a MC simulation. We start with a random starting state and
time evolve the system until it reaches the steady state, where
the system is time-translational invariant (like the thermaliza-
tion in a MC simulation). Once we are in the steady state, we
start measuring the observable generating an autocorrelated
time series from which an estimator of the expectation value
can be obtained. As usual the time series needs to be long
enough to have overcome autocorrelations, which can be
checked for example by a Binning plot.

For the present case we typically recorded Nm = 218 mea-
surements separated by a time �t = Ntskip dt with a time step
dt = 0.05 and Ntskip dt = 16dt ≈ 10t̄ j , where t̄ j is the average
jump time. For thermalization we performed additionally 10%
of the total time evolution leading to O(105) thermalization
time steps. Parallelization can be achieved by computing
several individual realizations on a single cluster node, where
each realization is bound to one core, for instance.

b. Steady-state single-particle GF’s

To obtain steady-state GF’s of the Lindblad system we
follow Ref. [40]. In short, it is best to calculate the lesser and
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greater steady-state GF, defined by

G<
i j (t ) = i〈c†

i (t )c j〉∞, G>
i j (t ) = −i〈ci(t )c†

j 〉∞, (A12)

where 〈·〉∞ = Tr{·ρ∞} denotes the expectation value in the
steady state. We sample the GF by first time evolving into
the steady state like above. Next, we apply the operator c(†)

r ,
construct the doubled Hilbert space, continue to time evolve in
the doubled Hilbert space, and measure according to the SWF
algorithm in the doubled Hilbert space.

As stated in the main text, the time steps needed for GF’s
is of O(103) and to reach the accuracy needed for smooth
spectral functions, we had to average over O(105) realizations.
Further, we perform O(105) time steps to get into the steady
state. For the performance in terms of CPU time, it is crucial
that the time steps into the steady state are done only for
a small fraction of the realizations; the corresponding final
states are saved [75]. Another realization starts from a state
obtained by time evolving such a saved state for some time
�t ≈ 100t̄ j , where t̄ j denotes the mean jump time [76], to
make sure that individual realizations are independent to a
very good approximation. Here we note that only early times
will be correlated as the realizations gain in independence
through the jumps in the time evolution [77].

i. Multistates. One can sample multiple correlation func-
tions, GBiAi (t, t ′), together when generalizing the doubled
Hilbert space to a multiple Hilbert space. For this, generalize

�(t ) =

⎛
⎜⎜⎜⎜⎜⎝

ψ (t )
φ1(t )

.

.

.

φn(t )

⎞
⎟⎟⎟⎟⎟⎠ (A13)

with the excited states φi = Ai |ψ〉. For instance, this allows
us to sample the lesser and greater GF together in a tripled
Hilbert space or multiple components of a cluster GF [78],

Gi j . The advantage is that |ψ〉 is only time evolved ones,
where as in the individual approach, with only a doubled
Hilbert space, |ψ〉 is time evolved n times.

ii. Destroyed states in the multiple Hilbert space. Here we
want to elaborate on the fact that part of the state may be
destroyed when applying the SWF algorithm in the multiple
Hilbert space. For simplicity, we consider in the following
a doubled Hilbert space. Part of the state can get destroyed
when the system leaves the physical particle sectors through
the application of a jump operator [79]. For instance, a state
can get destroyed when the system is in the N = L particle
sector and a jump operator L(2)

k gets chosen that increases the
particle number.

First, let us note that this cannot happen in the sin-
gle Hilbert space since the corresponding weight wβk ∝
||L(2)

k ψ (t j )||2 is zero and this jump operator will never be
chosen. The situation is different in the doubled Hilbert space
when the two components of a state reside in different particle
sectors. Too see this, let us consider the case of the greater GF.
Here, if |ψ〉 is in sector N , then |φ〉 will always describe a state
with N + 1 particles, since the jump operator applied is the
same for both components. If at some time tkill, |φ〉 is in the
sector L, then the weight for a jump operator that increases the
particle number, wβk ∝ ||L(2)

k ψ (t j )||2 + ||L(2)
k φ(t j )||2, might

be nonzero since the first part can be nonvanishing.
If part of the state is destroyed, then all subsequent mea-

surements in this specific realization of the time series for the
GF will all be zero.

It is important to realize that this is the correct behavior.
It exemplifies why the doubled Hilbert space is needed when
calculating correlation functions and why it would be wrong
to simply consider an independent time evolution for the
excited state and the initial state separately. In fact, in the
independent approach, any correlation between the initial
state and the final state would be lost very quickly through
the stochastic process and it is key that the two states always
jump together, thereby mediating the correlation.
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2.4 Publication 4: Steady state NEGF in the IRLM

The article titled Nonequilibrium Green’s functions and their relation to the NDC in the
interacting resonant level model was published in Physical Review B. 99 075139, February
2019.
The work was conducted by Max Sorantin (MS) with Roman Lucrezi (RL) as co-author
and supervised by Wolfgang von der Linden (WL) as well as Enrico Arrigoni (EA). It was
initiated by MS and constitutes a follow-up to the third publication using its implementa-
tion of AMEA for the IRLM. RL implemented the Hartree-Fock self-consistent equations
in Matlab and performed the corresponding computations under supervision of WL. MS
used the existing implementation from Ref.[2] to calculate the NEGF’s with AMEA. All
authors took part in discussing the results and contributed to their interpretation. A first
draft of the manuscript was written by MS and revised by EA, RL and WL.
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Nonequilibrium Green’s functions and their relation to the negative differential
conductance in the interacting resonant level model
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We evaluate the nonequilibrium single-particle Green’s functions in the steady state of the interacting resonant
level model (IRLM) under the effect of an applied bias voltage. Employing the so-called auxiliary master
equation approach, we present accurate nonperturbative results for the nonequilibrium spectral and effective
distribution functions, as well as for the current-voltage characteristics. We find a drastic change of these spectral
properties between the regimes of low- and high-bias voltages and discuss the relation of these changes to the
negative differential conductance (NDC), a prominent feature in the nonequilibrium IRLM. The anomalous
evolution of the effective distribution function next to the impurity shown by our calculations suggests a
mechanism whereby the impurity gets effectively decoupled from the leads at voltages where the NDC sets
in, in agreement with previous renormalization group approaches. This scenario is qualitatively confirmed by a
Hartree-Fock treatment of the model.

DOI: 10.1103/PhysRevB.99.075139

I. INTRODUCTION

Transport through nanodevices such as molecular junc-
tions or quantum dots has become of great interest in the
past due to the potential application of these systems as
new types of electronic components [1,2]. Generically, the
working principle of such components is entailed in their
current-voltage (I-V ) characteristic. In some situations this
can display nonmonotonic behavior, usually referred to as
negative differential conductance (NDC), a peculiar effect
that is intriguing by itself but also most useful in potential
applications [3–7]. Therefore, a thorough understanding of the
NDC is highly desirable.

A prototypical model exhibiting a NDC is the so-called
interacting resonant level model (IRLM), a simplistic model
featuring a two-level quantum dot connected to leads used
to study the interplay of quantum fluctuations and electronic
correlations in the setting of quantum impurity problems.
Introduced by Vigman and Finkelstein [8] in the (equilibrium)
context of the Kondo problem, the IRLM in nonequilibrium
has received increasing attention over the last decade after the
discovery of an analytic expression for the I-V characteristic
[9] in the so-called scaling regime and for a special value of
the interaction, referred to as the self-dual point of the IRLM.

Previous works on the IRLM in nonequilibrium extended
the analytic treatment of the self-dual point [10], consider-
ing also higher-order statistics of charge transport [11,12],
and provided further validation by numerical treatments of
increasing accuracy [13]. Away from the self-dual point,
Perfetto et al. [14] studied the transport properties of the
IRLM employing nonequilibrium Green’s functions (NEGFs)
focusing on the effect of long-range interactions. In addi-
tion, a perturbative treatment within NEGF [15] as well as
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renormalization group (RG) approaches [16,17], valid for
weak interactions, provide further insight for small interac-
tions. In particular, it is found that the NDC within RG
arises due to a renormalization of the hopping rate into the
leads which gets suppressed for higher voltages [18–20]. In
contrast, less is known about the physical mechanism of the
NDC at the self-dual point, i.e., for intermediate values of
the interaction. Related to the NDC, but also very interesting
in itself, is the spectral function of the IRLM which in equi-
librium was numerically studied by Braun and Schmitteckert
[21] but, to our knowledge, has not been considered so far in a
nonequilibrium situation within a nonperturbative treatment.

In this paper, we evaluate NEGF of the IRLM in order
to investigate their connection with the NDC and how the
spectral and effective distribution functions evolve in terms of
the bias voltage. Our results are obtained within the so-called
auxiliary master equation approach (AMEA), a numerical
method to treat nonequilibrium quantum impurity problems
and evaluate their NEGF with considerable accuracy. For
simplicity, our calculations refer to the self-dual point, but
can be readily carried out for other values of the interaction.
Finally, we complement our discussion of the AMEA results
with a Hartree-Fock (HF) treatment in order to help with the
interpretation.

We find that in the regime of the NDC, the spectral function
evolves from a peak at finite frequencies into a dominant
central peak and that the NDC can be traced back to the
behavior of the effective distribution functions on the first lead
sites. We interpret this behavior as an effective decoupling of
the impurity from the leads, which is confirmed from the HF
calculations.

II. MODEL AND METHOD

A. Model

The IRLM is a well-known impurity model of spin-
less fermions. It features an impurity site connected to two
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FIG. 1. A sketch of the IRLM as a lattice model and its mapping
to the auxiliary open quantum system used within AMEA.

semi-infinite tight-binding chains together with a density-
density interaction term coupling the impurity site to the
neighboring chain sites (see Fig. 1). The Hamiltonian is
defined as

HIRLM = HL + HR + Hdot,

HL = − J
−2∑

r=−∞
c†

r cr+1 + H.c.,

HR = − J
+∞∑
r=1

c†
r cr+1 + H.c.,

Hdot = − J ′
r=0∑

r=−1

c†
r cr+1 + H.c.

+ U
∑
r=±1

(
c†

r cr − 1

2

)(
c†

0c0 − 1

2

)
, (1)

where c†
r /cr denote the fermionic creation/annihilation op-

erators at site r. Here, HL/R describe the semi-infinite tight-
binding chains and Hdot introduces the hopping to the impurity
as well as the interaction term. A nonequilibrium steady state
situation is induced in the system via an applied bias voltage
V simulated by shifting the chemical potentials of the leads
symmetrically, that is, μl = −μr = V

2 . We use J as the unit
of energy and work in units where h̄ = e = kB = 1.

The continuum limit and the scaling regime of the IRLM
Here, we want to summarize some well-known facts about

the IRLM in the so-called scaling regime, which are important
for the present work. A nice overview in the nonequilibrium
context can be found in the recent works [8,9,12,13] and
references therein.

When the bandwidth of the leads, W = 4J , is the dominant
energy scale in the system, the lattice model [Eq. (1)] becomes
equivalent to its continuum limit [22], allowing for a field
theoretic description. In this scaling regime of the IRLM, the
physics becomes universal with the emergence of a Kondo
energy scale TB ∼ (J ′)

4
3 . The constant of proportionality is the

lattice regularization of the corresponding field theory relating
results from the continuum limit to the lattice model.

The continuum model can be solved analytically for the
special value of the interaction U ∗

c = π , which corresponds
to U ∗

lat
∼= 2 in the lattice model, where the IRLM exhibits

a certain self-duality. Most notably, there is a closed form

FIG. 2. Current-voltage characteristic of the IRLM for two dif-
ferent hybridization strengths J ′ = 0.5 (blue circles) and J ′ = 0.2
(red squares). We display the analytic solution at T = 0 (solid lines),
the extrapolated, formally L → ∞, AMEA data from Ref. [31]
(solid symbols), and the AMEA current in the L = 13 system (open
symbols).

expression for the steady state current at T = 0,

I (V ) = V

2π
2F3

[{
5

6
,

7
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}
,
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4
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4
, 1

}
; −

(
V

Vc

)6
]
, (2)

with Vc = c(J ′)
4
3 , where c ≈ 3.2 [23] and 2F3(a, b; z) is the

generalized hypergeometric function [24]. From Eq. (2), it
immediately follows that I/V = f (V/Vc) depends only on the
rescaled voltage and thus has a universal form set by the
energy scale TB. As is best seen by expanding the hyperge-
ometric function up to leading order,

I (V � Vc) ≈ V

2π

[
1 − 24

170

(
V

Vc

)6

+ O

(
V

Vc

)12
]
, (3)

the current is linear for small voltages V < Vc. The most
prominent feature of the current arises for V > Vc where
the model exhibits a negative differential conductance (see
Fig. 2).

B. Method

In this paper, we use the auxiliary master equation ap-
proach (AMEA) [25–27] to investigate the IRLM under the
influence of an applied bias voltage. AMEA is a method to
treat nonequilibrium correlated impurity problems which is
particularly efficient to target the steady state. It is based
upon mapping the noninteracting bath onto an auxiliary open
quantum system whose dynamics is described by the Lindblad
equation. This mapping becomes exponentially accurate by
increasing the number of sites in this auxiliary system. This
open quantum system effectively mimics a system with infi-
nite volume, so that one can reliably reach the steady state.
Correlation functions are then obtained by time evolution of
the many-body density matrix starting from the steady state.

The dynamics of the auxiliary open quantum system can
be solved numerically exact by available approaches. Here,
we employ the so-called stochastic wave functions [28–30],
whose application to AMEA is presented in Ref. [31]. Within
the mapping, the central interacting region |r| � 1 described
by Hdot (cf. Fig. 1) remains unchanged [32]. In total, the
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auxiliary open quantum system thus consists of L = 3 + 2NB

sites, where NB denotes the number of auxiliary dissipative
bath levels used to replace the left (right) semi-infinite leads.
For details, we refer to previous publications [25–27,31].

Steady-state current

The current Ir,r+1 across a bond connecting site r and
r + 1, which is clearly independent of r in the steady state,
can be expressed within the Keldysh Green’s function (GF)
formalism as [33]

Ir,r+1 = t2
r,r+1

∫
dω

2π
Re j(ω),

j(ω) = GR
rr (ω)gK

r+1,r+1(ω) + GK
rr (ω)gA

r+1,r+1(ω), (4)

provided the interaction self-energy is zero across the bond.
Here, a capital Gr,r (ω) denotes the local GF of the full system,
while the lower case gr,r (ω) is the one when the system is
disconnected at the bond connecting the sites r and r + 1. A
convenient choice is the bond from one noninteracting bath to
the interacting region, i.e., r = −2 to r = −1.

In equilibrium, V = 0, the Keldysh and retarded GF are
not independent and connected by the fluctuation-dissipation
theorem, which for the GFs appearing in Eq. (4) reads

Im GK
rr′ (ω) = 2[1 − 2 f (ω)]Im GR

rr′ (ω),

where f (ω) denotes the Fermi-Dirac distribution function.
In analogy, one can define an effective local nonequilibrium
energy distribution function f̃r (ω) via the relation (cf. also,
e.g., Refs. [34–38])

Im GK
rr (ω) = 2[1 − 2 f̃r (ω)]Im GR

rr (ω), (5)

which by definition reduces back to the Fermi function in an
equilibrium situation. With Eq. (5), we can express the current
from the left lead into the central region as [39]

IL(V ) ≡ I−2,−1 = 2π (J )2
∫

dωA−1(ω;V )ATB(ω)

× [ fL(ω;V ) − f̃−1(ω;V )], (6)

where Ar ≡ − 1
π

Im GR
rr is the local density of states, ATB(ω)

denotes the density of states (DOS) of the disconnected left
lead, that is, the DOS of a semi-infinite tight-binding chain,
and fL is the Fermi function of the left lead. Here, for
convenience, we have indicated any possible dependence on
the bias voltage. In Eq. (6), the frequency integrand con-
tains the difference between the effective distribution function
at the first correlated site r = −1 and the one deep into the left
lead weighted with the corresponding DOS.

III. RESULTS

In this section, we present results for the nonequilibrium
spectral properties of the IRLM. We are not aware of previous
numerically accurate results for the nonequilibrium Green’s
function of this model from the literature. We consider the
self-dual point U = 2 and compute results for two different
values of the hybridization strength J ′ = 0.2 and J ′ = 0.5
at a finite temperature T = 0.025. The size of the auxiliary
system, which controls the accuracy of the bath hybridization

FIG. 3. Local density of states at the impurity site, r = 0, for dif-
ferent bias voltages. (a) J ′ = 0.2 and (b) J ′ = 0.5. Other parameters:
T = 0.025 and U = 2. The insets show a zoom around the peak at
ω = 2 and its appearing satellite at ω = 2 ± V/2.

function (see Refs. [26,27]) is fixed to L = 13. Both the steady
state as well as the Green’s functions are obtained by time
evolution by stochastic wave functions (see Ref. [31] for
technical details). In order to illustrate the accuracy of the
approach, we first plot the steady state current as a function of
the bias voltage in Fig. 2. Specifically, we compare data from
the present L = 13 auxiliary-system calculation with the ones
of the more accurate approach of Ref. [31], where the current
is obtained via an extrapolation for values of L up to L = 19.
The analytic solution of the continuum model at T = 0 is also
shown for comparison. In this paper, we use smaller values
of L because a full Green’s function calculation for L = 19
would be computationally too expensive. These results show
that also L = 13 provides quite accurate results [40] and, in
particular, reproduces the NDC.

A. Spectral properties at the central impurity site

Figure 3 shows the density of states at the impurity site,
r = 0, for different bias voltages [41]. The equilibrium (V =
0) system is characterized by a pronounced peak at ω =
2. Upon increasing the bias voltage, the spectral weight is
removed from the ω ≈ 2 in favor of a second peak at zero fre-
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FIG. 4. Distribution function at the central impurity site for dif-
ferent bias voltages. Parameters are as in Fig. 3. The nonsmoothness
of the curves is due to the statistical error of the stochastic wave-
functions (SWF) approach, which gets amplified for the effective dis-
tribution function as this is given by the ratio two Green’s functions.
For V = 0, we observe deviations from the expected Fermi function
(see Sec. II B). It is a consequence of the fact that AMEA only
reproduces approximately the lead hybridization functions including
their occupation. This is improved exponentially upon increasing the
size L of the auxiliary system.

quency, which quickly becomes dominant for large bias volt-
ages. At the same time, the equilibrium resonance develops
sidebands at ω = 2 ± V/2. This effect is more pronounced
for the case of low J ′ = 0.2 since a stronger J ′ broadens all
peak features. At large voltages, V � 3.2 for J ′ = 0.2, the left
satellite merges with the central peak.

Out of equilibrium the fermionic effective distribution
function obviously deviates from the Fermi-Dirac distribu-
tion and acquires an anomalous, position-dependent shape.
In Fig. 4, we plot the effective distribution function, f̃r (ω)
defined in Eq. (5), at the impurity site, r = 0, for different
bias voltages. We find that the latter is dominated by a
double Fermi step, 2 f̃r=0(ω) = fL(ω) + fR(ω), for small bias
voltages and drastically changes its shape for bias voltages
where the NDC sets in.

FIG. 5. Local density of states for different bias voltages at site
r = −1. Parameters are the same as in Fig. 3.

B. Sites next to the impurity (r = ±1)
and relation with the current integrands

To make contact with the current integrands [Eq. (6)], we
now consider the spectral properties on the sites next to the
impurity (see also Sec. II B) [42]. Figure 5 displays the local
density of states for different bias voltages. It shows two
main peaks around ω = ±2 [43], and a featureless spectrum
in between. For both hybridization strengths, J ′ = 0.2 and
J ′ = 0.5, the peaks become sharper and higher with increasing
voltage. In addition, for J ′ = 0.5, spectral weight accumulates
for negative frequencies up to the lower band edge at ω = −2.

A more interesting behavior can be seen in the correspond-
ing effective distribution function for r = −1 presented in
Fig. 6. Similarly to the central impurity site, a double Fermi
step persists in the linear regime, while for higher-bias volt-
ages the effective distribution function becomes more similar
to the effective distribution function of the isolated left lead
for which all states for frequencies smaller than its chemical
potential μl are occupied. More specifically, the plateau in the
positive frequency region 0 < ω < μl rises in the regime of
the NDC.

To elucidate the effect of the bias-dependent spectral and
effective distribution functions on the current [cf. (6)], we
display in Fig. 7 for J ′ = 0.5 the difference in the effective
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FIG. 6. Same as Fig. 4 but for the site r = −1.

distribution functions entering Eq. (6) as well as the current
integrand [44] which can be seen to be dominated by the be-
havior of the effective distribution function. The difference of
the effective distribution functions has a Fermi-window form
of amplitude 1/2 for small voltages which is considerably
distorted in the NDC regime. For negative frequencies ω �
−1 the amplitude quickly vanishes due to the corresponding
states being filled at larger voltages (see Fig. 6), whereas
at positive frequencies, the amplitude gets suppressed with
increasing bias voltage which technically leads to the NDC.
Outside of the Fermi window the difference of the effective
distribution functions becomes slightly negative. One should
not overemphasize this negative region, since the negative
differential conductance does not depend on this [45].

IV. DISCUSSION AND INTERPRETATION
OF THE RESULTS

In order to understand the behavior of the spectral and
effective distribution functions presented above, we discuss
the probabilities of certain characteristic many-body config-
uration states on the correlated sites. These are displayed in
Fig. 8 and ranked according to their energy for zero voltage.
Notice that the configurations in each pair are related to each
other by a particle-hole+inversion (PHI) transformation [46]
and thus have the same probability. In addition, the states (IIa)
and (IIb) have the same probability at zero-bias voltage. The

FIG. 7. Difference of the effective distribution functions entering
the expression for the current [Eq. (6)] for different bias voltages.
The inset shows the overall integrand of Eq. (6), which is dominated
by the behavior of the effective distribution functions. We only
present the results for J ′ = 0.5. Other parameters and the label as
in Fig. 3. Note that the current integrand is identically zero outside
the bandwidth, |ω| > 2.

corresponding probability is given by the diagonal terms of
the reduced (many-body) steady state density matrix, which
is plotted in Fig. 9 as a function of the bias voltage.

One can see that the lowest-energy state, type (I), initially
slightly gains weight as the bias voltage is increased. This
occurs approximately until the point where the NDC sets
in. In the NDC regime, V > Vmax, the (I) state loses weight
and eventually crosses with the state (IIa) which becomes
the dominant state at high voltages. Further, the states of
type (IIa(b) ), which are degenerate in equilibrium, get their
degeneracy lifted by the bias voltage favoring the (IIa) state
since it is the one showing more occupation on the left in
accordance with the chemical potentials, μL > μR. On the
other hand, the weight of the highly suppressed high-energy
states (III) stays roughly constant for all bias voltages.

FIG. 8. Sketch of the eight different many-body configurations
of the interacting region Hdot. The ordering corresponds to their
respective weight in the zero-voltage case, where all states of type
(II) are equivalent. The arrows indicate the respective behavior for
growing bias voltages in the NDC regime. States are displayed in
PHI symmetric pairs.
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FIG. 9. Probabilities of the many-body configurations displayed
in Fig. 8 for J ′ = 0.2 (solid lines) and J ′ = 0.5 (dashed lines). The
markers on the x axis mark the voltages corresponding to the maxi-
mum of the current, Vmax(J ′ = 0.2) ≈ 0.5 and Vmax(J ′ = 0.5) ≈ 1.6.

A. Impurity spectral function

As discussed above, in equilibrium (V = 0), the configu-
ration (I) has a large overlap with the ground state. Adding a
particle at the impurity site to (I) leads to the state (III). Since
the energy difference, in the atomic limit J ′ = 0, between
these two states is �E = 2, this process can be associated
with the ω ≈ 2 resonance. The suppression of the ω = 2
resonance for higher voltages immediately follows from the
loss of the weight of the (I) state (cf. Fig. 9). It remains to
explain the development of the dominant central peak for high
voltages. In general, a resonance at zero frequency occurs
when two low-lying states differing by one particle, at the
corresponding site, are almost degenerate. This is the case for
the states of type (II). The development of the central peak
is then readily explained by the increased weight of the state
(IIa) at high-bias voltages.

B. Negative differential conductance

In Sec. III B, we discussed that on the level of NEGFs the
NDC at large voltage in the IRLM arises due to the effective
distribution function on the site next to impurity resembling
the Fermi function of the corresponding lead. This can be seen
as an effective decoupling of the impurity from the leads at
large bias voltage.

References [15,47] showed that the NDC in the IRLM is
already obtained at the Hartree-Fock (HF) level. Therefore, it
is interesting to investigate if the mechanism leading to the
NDC obtained from our results is qualitatively similar to the
one in the HF approximation.

FIG. 10. Scaled current as a function of scaled voltage for differ-
ent hybridization strengths 0.2 < J ′ < 0.5 (colored lines) obtained
within Hartree-Fock (HF) and the analytic solution, Eq. (2) (black
line). The inset shows the squared effective hopping amplitude |J |2
obtained within HF as a function of the rescaled bias voltage for
U = 2, T = 0, and different hybridization strengths J ′. The dashed
lines in the inset mark the squared bare hoppings J ′2.

C. Comparison with Hartree-Fock

We will not present the details of the HF calculations, but
we will only underline the connection to the AMEA results.
For an alternative discussion of the NDC arising already
within HF, we refer to the work of Vinkler-Aviv et al. [15].
Within HF for the particle-hole symmetric case, which we
are discussing in this paper, the Hamiltonian is the same as
the noninteracting one with the only exception that we have a
renormalized complex hopping between the central impurity
and the r = ±1 sites,

J ′ −→ J± = J ′ + U
〈
c†
±1c0

〉
HF

. (7)

The computation of the GFs can be taken from the U = 0
case, keeping in mind that the hopping J± is complex and
has to be determined self-consistently. It occurs that the local
NEGFs within HF depend only on |J |2 and the expression for
the distribution function on the site r = −1 has the form

f̃−1(ω;V ) = fL(ω;V ) + α(ω,V ) fR(ω;V )

1 + α(ω,V )
, (8)

where α(ω) depends on the bias voltage only through |J |2
and is proportional to |J |4 [48].

In Fig. 10, we display the (scaled) current and the squared
effective hopping amplitude as a function of the scaled bias
voltage within HF. The HF current is qualitatively the same as
in the exact solution, but instead of a smooth transition from
the linear regime to the NDC, it shows a cusp and a sudden
drop [49] at V/Vc ≈ 2. The drop in the current is accompanied
by a drop in the squared effective hopping, which becomes
small for voltages outside the linear regime. This behavior
of |J |2 can be interpreted as an effective decoupling of the
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impurity from the r = ±1 sites in the NDC regime, consistent
with the interpretation of the AMEA results.

In the regime in which |J |2 is small, i.e., large V , the
impurity is weakly coupled to the reservoirs. Its spectral
function thus consists of a single central peak. It follows
that the spectral function at site r = −1 will be given by
the DOS of a semi-infinite tight-binding chain. In addition,
from Eq. (8) it is clear that the effective distribution function
f̃−1(ω) will resemble the one of the left lead since α is
strongly suppressed. In the opposite case, when |J |2 is not
small, f̃−1(ω) will be close to a double Fermi step and the
spectral functions, independent of r, will resemble the DOS
of an infinite tight-binding chain. This means that A(HF)

−1 (ω)
changes between two different shapes in the large and small
V regions, in contrast to the AMEA results. Similar to the
AMEA results, the NDC within HF is also caused by the
change in the effective distribution function since the spectral
density A(HF)

−1 (ω) in the NDC regime has more spectral weight
inside the transport window compared to the solution just
before the cusp in the current.

V. SUMMARY AND CONCLUSION

We calculated the nonequilibrium single-particle Green’s
functions (GFs), as well as the (many-body) steady state
density matrix, of the interacting resonant level model (IRLM)
in the presence of an applied bias voltage employing the
auxiliary master equation approach (AMEA). We find devel-
opments of sidebands in the impurity spectral function which

transforms into a single peak at zero energy for high-bias
voltages in the regime of the negative differential conductance
(NDC). Further, on the level of the nonequilibrium spectral
and effective distribution functions, the negative differential
conductance in the IRLM arises due to the behavior of the
effective distribution functions at the sites next to the impu-
rity. In more detail, they feature a double Fermi step which
persists in the linear regime of the current and resemble their
equilibrium form of one separated lead for high-bias voltages
which we interpret as an effective decoupling of the system for
voltages in the NDC regime. Supplementing our results with
a Hartree-Fock (HF) treatment makes the decoupling explicit
and shows that the spectral features resulting in the NDC are
shared by both approaches.

In conclusion, our results suggest, in accordance with
previous results for small interactions, an effective decoupling
of the impurity from the leads as the origin of the NDC in the
IRLM also at the self-dual point.
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2.5 Contributions to further publications

In addition to the four publications explicitly presented above, MS contributed as co-author
to [3, 4]. In Ref.[3], the interplay between local and long range Coulomb interactions was
considered and the charge redistribution in a metal - Mott insulator - metal hetero struc-
ture studied. The strong local Coulomb interaction in the Mott insulator was treated
within realspace DMFT and the long range Coulomb part on a mean-field level via the
Poisson equation. MS helped in the code development and debugging of the C++ program,
engaged in the discussions of the results and revised the first version of the manuscript
written by Irakli Titvinidze (IT).
The work published in Ref.[4] was a collaboration with the group of Walter Hofstetter in
Frankfurt who investigated the charge-density wave state in the dissipative extended Hub-
bard model as realized in experiments with ultracold fermionic gases. The corresponding
first author Jaromir Panas (JP) had implemented his own version of the AMEA SF+ED
impurity solver and contacted our group for expertise. MS clarified some technicalities
regarding the mapping and provided reference solutions for the impurity model without
spin-degeneracy in the bath. In equilibrium test cases JP found that the AMEA SF+ED
impurity solver with four bath sites produces the wrong magnetization (even in sign) when
compared to a Quantum Monte Carlo (QMC) simulation. To clarify the issue, MS and
IT conducted single-shot impurity calculations for the steady state magnetization with
the AMEA SWF+ED implementation featuring up to ten bath sites, which proved that
the problem is rectified with higher accuracy in AMEA. For this MS adapted the exist-
ing SWF+ED implementation and performed the needed fits while IT took care of the
many-body computations.
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Chapter 3

Summary and Outlook

We have further developed AMEA and applied it to study nonequilibrium many-body
effects in the IRLM and the dissipative Hubbard model.

NDC in the IRLM: The NDC in the IRLM (Sec.1.1.2 and Sec.2.4) was investigated by
calculating the NEGF’S of the model in the presence of a bias voltage. The correspond-
ing results support the scenario of a renormalized hybridization strength at high voltages
leading to the NDC as reported in previous studies based on RG approaches and NEGF
evaluated to leading order in the interaction. Since the latter approaches are reliable only
in certain parameter regimes (Sec.1.1.2.1), our results complement the existing literature
by providing non-perturbative confirmation of the renormalized hybridization, even outside
the scaling regime.

The work around the IRLM within this thesis is concentrated on the self-dual point
at low temperatures. Since AMEA becomes more efficient with increasing temperature
it would be very interesting to study the effect of finite temperatures on the transport
properties, which would also allow to consider strong interactions, U ≥ W . The latter
needs an accurate representation of the hybridization also outside the bandwidth, which
was not possible to achieve at low temperatures with the limited number of bath sites.
Also higher order moments of charge transfer could be considered to study possible charge
fractionalization effects, known to be present at the self-dual point, also for other interaction
strengths.

Floquet DMFT: The role of impact ionization in the periodic steady state of an electric
field driven Mott-insulating layer coupled to metallic leads was studied within Floquet
DMFT (Sec.2.2) and its relation to Mott-photovoltaic systems discussed (Sec.1.1.1). We
found a significant enhancement of the photo-current in a regime, where impact ionization
is possible with respect to its value, when the driving frequency does not support the
latter. Our results show that impact ionization plays a dominant role also in the periodic
steady state and are thus in line with previous model based calculations, which report the
effectiveness of impact ionization on the photovoltaic efficiency of Mott insulators. This has
to be confronted with the poor performance of fabricated devices observed in experiments,
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which is, however, linked to low carrier mobility, due to imperfections in the samples. Thus,
on the level of the simplified toy-model that was considered, this scenario is strengthened
by our results in the sense that the periodic drive does not negatively interfere with impact
ionization and cannot be the source of the poor efficiency observed in experiments.

To study the effect of impact ionization on the Mott photovoltaic efficiency in a more
realistic situation, the model can be generalized in multiple directions. One could consider
a heterostructure of Mott insulating layers under light incidence. This would allow to simu-
late also the internal electric field needed to separate the charge carriers as well as the usage
of broad and only partially filled leads, as is more appropriate for the description of metallic
reservoirs. Another crucial ingredient for a more realistic description are electron-phonon
interactions since they provide a competing dissipation mechanism. For a first study, the
electron-phonon interaction could be treated by adding only the leading order diagram to
the electronic selfenergy. This could be extended by treating the electron-phonon coupling
by the self-consistent Migdal approximation[35], which constitutes a conserving approxi-
mation in contrast to the simpler variant. Finally, long ranged Coulomb forces could be
introduced to address bound excitons. For instance, this can be done on the level of the
Poisson equation as demonstrated within this thesis[3] and would avoid the need to build
in the electric field for charge separation by hand, since the latter is build up automatically
by the charge redistribution induced by the long-range Coulomb forces.

On the technical side, we have introduced the FDSA within Floquet DMFT (Sec.2.2),
which allows to simplify the involved impurity problem to a standard nonequilibrium steady
state one. In Sec.1.2.6.2 we extended tests from the original publication[5], performed at
intermediate interaction strengths within IPT, to the Mott regime confirming the reliability
of the approximation as long as Floquet sidebands are highly suppressed which is the case
for low driving amplitudes and or high frequencies. These tests were complemented by
a method comparison between the NCA and FDSA+AMEA for the periodically driven
dissipative Hubbard model, which cross validates both approaches.

As a final note on Mott photovoltaics we would like to add that the broad application,
not restricted to niche markets, as efficient solar-cell is only feasible if the production
costs can be made very low. This seems hard to achieve due to the difficulties in the
synthesization. However, in view of the high photoresponsivity of the Mott insulating
materials, it would be interesting to consider instead of an application as solar-cell also the
possibility of a photo-detector which is not so reliant on cheap mass production.

Technical developments of AMEA: AMEA was further developed in various aspects
(Sec.1.2.2-1.2.5). Considering a variable-rank parametrization for the Γ-matrices in the
Lindblad system has proven to substantially reduce the fit parameters in the corresponding
optimization problem. This allowed us to reliably find minima, featuring an exponential
decrease in the cost-function with respect to increasing system size, for auxiliary systems
with up to eight bath sites. Further, we found that a gradient based optimization algorithm
from machine learning, in the efficient implementation of a corresponding python library,
is an efficient replacement for the previously used PT approach and, in particular, features
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drastically lower cpu-times for bigger systems, where the PT algorithm becomes unfeasible.
The idea of extrapolating a result obtained with AMEA to zero cost-function by taking into
account the information of different auxiliary system sizes was successfully applied to the
steady state current in the IRLM showing significant improvement towards the reference
solution (Sec.2.3). The latter was complemented in this thesis by the presentation of an
error estimation scheme for the extrapolated values (Sec.1.2.4.1). In addition to these
developments, an alternative solution strategy for the many-body Lindblad problem based
on SWF’s was tested. The latter constitutes a completely different approach with respect
to the previously considered ones that are based on SF, SF+ED and SF+MPS, where the
density matrix is “purified” by considering a system with twice as many sites, thereby
squaring the Hilbert space. In contrast to this, the density matrix is unraveled in SWF
algorithm by considering stochastic time-evolutions of individual wave-functions, which
allows to simulate the system without the need to square the Hilbert space. This allows
to treat systems with twice as many bath sites with respect to the SF approach, which,
due to the exponential convergence of AMEA with respect to system size, constitutes a
drastic improvement in the possible accuracy. This improvement comes at the cost of
much higher cpu-times, due to the large number of realizations needed for a sufficiently
low statistical error. However, the SWF algorithm, like most stochastic approaches, is
trivially parallelizable with respect to the different realizations and therefore allows to
reach extremely low wall-times on modern cluster facilities. This paves the way for AMEA
to be used as multi-orbital impurity solver within nonequilibrium steady state DMFT, as
discussed below.

Outlook on AMEA: Various ways exist to further advance the method. On the level
of the mapping and its optimization problem, the current implementations are only able to
maintain an exponential decrease of the cost-function for systems with about one hundred
fit parameters, dim~x ≈ 100. To effectively find good minima in even higher dimensions, a
combination of the stochastic element of the PT algorithm together with a local gradient
based optimization is of great potential, whereby the low temperatures in the PT approach
are replaced by the deterministic local optimization leading to a more efficient sampling
of the parameter space. The efficiency of this approach could be further increased by the
consideration of “stretching” techniques[107, 108], where already found minima, and worse
ones, are excluded in the further optimization by deforming the cost-function.

The many-body solution within SWF’s is presently only implemented in the combi-
nation with ED and calls for extensions to other time-evolution schemes such as tensor
network techniques. Especially the combination of SWF+MPS is very promising and,
in contrast to the already implemented SF+MPS variant, it has the advantage that the
system being time-evolved can be chosen truly one-dimensional, which is where the MPS
approach is most efficient. In view of multi-orbital nonequilibrium DMFT, the combina-
tion of SWF with so-called Fork Tensor Product States (FTPS) is most promising, since
the FTPS is tailored to the multi-orbital impurity problem and has already been applied
successfully as real-time impurity solver in equilibrium[109, 110].
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An interesting development for the many-body solution is the use of Dual Fermions[111–
114] (DF) utilizing the auxiliary Lindblad system as reference[115]. The combination
is quite natural, since AMEA exactly solves a system with a precisely known auxiliary
hybridization. The DF approach then formulates a perturbation expansion in the difference
between the physical and auxiliary hybridization around the interacting reference solution.
The improved accuracy, boosting a system with two bath sites effectively to six bath
sites[115], is paid for by the effort to calculate the two-particle GF of the auxiliary system,
needed as input for the first order correction in the DF formalism. The latter becomes a
formidable task for system sizes beyond two bath sites, which cannot be fully diagonalized.
When applied to bigger auxiliary systems, it is questionable, if the same level of accuracy
increase can be maintained, since the reference state is more accurate and thus the first
order correction in DF might be less substantial. Further, the combination of DF with
many-body solution strategies, which are, as far their implementation is concerned, not
strictly limited in system size, like MPS, might not be beneficial. This is, because it could
be numerically more efficient to go to bigger system sizes instead of evaluating the two-
particle GF. In contrast, when combined with a method like in ED, which, due to memory
requirements, is limited in system size, the DF approach constitutes an option to improve
the result. A corresponding collaboration with the authors of Ref.[115] is in progress, in
order to test the DF scheme in combination with the SF+ED variant of AMEA with the
aim to investigate the behavior of DF+AMEA with increasing auxiliary system size. If
fruitful, this could be used to enhance the capabilities of the SF+ED impurity solver in
DMFT applications. If we assume that two bath sites are enough to represent a single
bath, the DF approach also opens the door to use SWF+ED as multi-orbital impurity
solver, at least for up to three orbitals, in nonequilibrium steady state DMFT.

One of the strengths of AMEA is that the many-body aspect enters only in the solu-
tion of the auxiliary system and is completely decoupled from the foundation of AMEA,
which is based on the mapping to the latter. Therefore, any existing or future method
to simulate correlated systems, especially time-evolution algorithms which can be applied
or generalized to the treatment of a non-hermitian generator, may be adapted and used
within AMEA. This endows the method overall with a high flexibility and a great potential
for the future.
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Appendix A

Details on the Floquet
transformation

Here, we present some details about the Floquet transformation, Eq.(1.21).
We consider a function F (t, t′) of two time arguments, which is periodic with periodicity
τ ,

F (t, t′) = F (t+ τ, t′ + τ) . (A.1)

First, we transform variables to so-called Wigner coordinates defined by the relative time,
trel = t− t′, and the average time, tavg = t+t′

2
. In this new variables, we have

F (W )(trel, tavg) = F (t, t′) = F (t+ τ, t′ + τ) = F (W )(trel, tavg + τ) , (A.2)

where the superscript (W ) denotes the function after transformation to Wigner coordinates,
which we will omit in the following. Performing a Fourier transform in the time-translation
invariant coordinate trel, we obtain

F (ω, tavg) =

∫ +∞

−∞
dtrele

iωtrefF (trel, tavg) . (A.3)

Next, we use the periodicity in the average time, Eq. (A.2), to expand the transformed
function into a Fourier series

F (ω, tavg) =
+∞∑

k=−∞

Fk(ω)e−ikΩtavg with Ω =
2π

τ
, (A.4)

where the coefficients are given by

Fk(ω) =
1

τ

∫ τ

0

dtavge
ikΩtavgF (ω, tavg) . (A.5)

Eq(A.5) is referred to as Wigner representation, where all information about the time
dependence of the original function is encoded into the frequency dependent expansion
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coefficients Fk(ω). Now, we can define a matrix structure, called Floquet matrix, as

Fmn(ω) ≡ Fm−n(ω +
m+ n

2
Ω) =

∫ +∞

−∞
dtrel

1

τ

∫ τ

0

dtavge
i(ω+mΩ)t−i(ω+nΩ)t′F (t, t′) , (A.6)

which leads to Eq.(1.21). It has the advantage that a convolution in time variables trans-
forms into a matrix product in Floquet space, i.e. C(t, t′) = A(t, t′′)∗B(t′′, t′) −→ Cmn(ω) =
Aml(ω)Bln(ω).
From now on, F with one subscript denotes the Wigner representation and with two sub-
scripts the Floquet matrix representation. Some useful relations are

Fm±k,n(ω) = Fm,n∓k(ω ± kΩ) ,

Fm,n(ω) = Fm−n,0(ω + nΩ) ,

Fk(ω) = Fn+k,n(ω − nΩ− k

2
Ω) = Fk,0(ω − k

2
Ω)) . (A.7)

Inverse relation: To connect us back to the time variables, we calculate the inverse
relation from the Floquet transformation. Using the inverse Fourier transform for Eq.(A.3)
and plugging it into Eq.(A.4), we find

F (trel, tavg) =
+∞∑

k=−∞

∫ +∞

−∞

dω

2π
e−iωtrel−ikΩtavgFk(ω) ,

=
+∞∑

k=−∞

∫ +∞

−∞

dω

2π
e−iωtrel−ikΩtavgFk,0(ω − k

2
Ω) ,

=
+∞∑

k=−∞

∫ +∞

−∞

dω

2π
e−i(ω+ kΩ

2
)trel−ikΩtavgFk,0(ω) . (A.8)

Due to Eq.(A.7), we can rewrite the integration over ω, as∫ +∞

−∞

dω

2π
e−iωtrelFk,0(ω) =

+∞∑
n=−∞

∫ (n+1)Ω

nΩ

dω

2π
e−iωtrelFk,0(ω) ,

=
+∞∑

n=−∞

∫ Ω

0

dω

2π
e−i(ω+nΩ)trelFk,0(ω + nΩ) ,

=
+∞∑

n=−∞

e−inΩtrel

∫ Ω

0

dω

2π
e−iωtrelFn+k,n(ω) . (A.9)
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Plugging it back into Eq.(A.8), we get

F (trel, tavg) =
+∞∑

n,k=−∞

e−i(n+ k
2

)Ωtrele−ikΩtavg

∫ Ω

0

dω

2π
e−iωtrelFn+k,n(ω) , (A.10)

m≡n+k
=

+∞∑
m,n=−∞

e−i
m+n

2
Ωtrele−i(m−n)Ωtavg

∫ Ω

0

dω

2π
e−iωtrelFm,n(ω) . (A.11)

Or in terms of the original time variables (t, t′) and for the special case of equal time, we
have

F (t, t′) =
+∞∑

m,n=−∞

e−iΩ(mt−nt′)
∫ Ω

0

dω

2π
e−iω(t−t′)Fm,n(ω) , (A.12)

F (t = t′) =
+∞∑

m,n=−∞

e−i(m−n)Ωt

∫ Ω

0

dω

2π
Fm,n(ω) . (A.13)

As a consequence, for equal times, only the diagonal part of the Floquet matrix contributes
to a quantity averaged over one period

1

τ

∫ τ

0

dtF (t = t′) =
+∞∑

m,n=−∞

1

τ

∫ τ

0

dte−i(m−n)Ωt︸ ︷︷ ︸
=δm,n

∫ Ω

0

dω

2π
Fm,n(ω)

=
+∞∑

n=−∞

∫ Ω

0

dω

2π
Fn,n(ω) =

∫ +∞

−∞

dω

2π
F0,0(ω) (A.14)
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