
Kevin Winter, MSc MA BSc BSc

Text Style Transfer

Master’s Thesis

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Software Engineering and Management

submitted to

Graz University of Technology

Supervisor

Dipl.-Ing. Dr.techn. Roman Kern

Institute for Interactive Systems and Data Science

Head: Univ.-Prof. Dipl.-Inf. Dr. Stefanie Lindstaedt

Graz, September 2019



Affidavit

I declare that I have authored this thesis independently, that I have not used

other than the declared sources/resources, and that I have explicitly indicated

all material which has been quoted either literally or by content from the

sources used. The text document uploaded to tugrazonline is identical to the

present master‘s thesis.

Date Signature

ii



Abstract

Language can be a powerful tool to convey messages, voice opinions, express

emotions and with that ultimately also influence people. Writing is just one form

of this expression but has become the most important carrier of knowledge since

the invention of the printing press. However, there is more to written texts than

just its content. Famous authors are not only known by the stories they tell, but

rather how they tell it. The way people write, their writing style, is a product of

various factors. Ultimately however, it is based on their individual understanding

of language and the world. In this thesis we investigate methods that allow

for the identification of stylistic patterns in written text and translations

between them. Such style transform algorithms could be used to improve

readability of complex documents and therefore increase access to otherwise

inaccessible knowledge. The methods used are based on stylistic language

models and unsupervised word-to-word translations. For evaluation, measures

for syntactical and semantic similarity as well as a classifier-based authorship

score are used. The results show a significant increase in the authorship score

and a significant decrease in the syntactical similarity while maintaining a

significantly high semantic similarity for all methods developed, except one.
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1. Introduction

Language can be a powerful tool to convey messages, voice opinions, express

emotions and with that ultimately also influence people. Writing is just one

form of this expression, but has become the most important carrier of knowledge

since the invention of the printing press. With a global literacy rate of close

to 90% (Roser & Ortiz-Ospina, 2019) most people on earth read almost every

day. May it be signs to purchase goods, street names to navigate through cities,

books of one’s favorite author, research papers or just the daily dose of social

media. While writing is a mean of transporting information there is more to

it than just its content. While street signs leave little room for variation and

interpretation, the way a message is written can change how people read it.

Famous authors are not only known by the stories they tell, but rather how

they tell it. And even research papers, originally designed to purely distribute

knowledge, may have different impacts depending on the how they are written.

The way people write, their writing style, is a product of various factors.

Ultimately however, it is based on their individual understanding of language

and the world. This understanding may be very similar among people that grew

up and live in close proximity to each other and may be very different if that is

not the case. Dialects are formed, clustering similar uses of language together.

Nonetheless, no matter how similar two people may be in regards of these

1



1. Introduction

linguistic features, there will always be slight deviations, giving everyone its own

idiolect. McMenamin (2002) defines idiolect to be ”the individual’s unconscious

and unique combination of linguistic knowledge, cognitive associations, and

extra-linguistic influences.”.

The idiolect of either arbitrary of very specific individuals has been stud-

ied by researchers of both linguistics (McMenamin, 2002) and computer science

(Juola et al., 2008). Famous examples include the investigation of work of

Shakespeare (Hope, 1994), James Joyce’s masterpiece Ulysses that arguable

was not written by him but rather five other authors (Schoenbaum, 1966) and

of course the analysis of the ”Unabomber” Ted Kaczynski’s manifesto that at

last led to his arrest (Crain, 1998). While much research was done in these

fields, little is known on how to extract the idiolect of an author and apply its

stylistic features to another text.

Such style transform algorithms could be used to improve readability of complex

documents and hence also increase access to inaccessible knowledge. The lingo

of research papers, medical reports or legal documents could be translated into

everyday language. Books could be rewritten in the style of anyone’s favorite

author, stories could be transformed into songs or songs into poems. In this

thesis, methods of modelling and transferring the idiolect of different authors

will be investigated.

The main research questions of this thesis hence evolve around the evalu-

ation of an algorithm that adjusts the linguistic style of a sentence while

retaining the content. These questions are defined as follows:

R1 : Is it possible to transform a sentence, such that the style of the sentence

approaches the style of a given corpus?

2



1. Introduction

R2 : Is it possible to retain the semantic of sentences when transforming them?

From these questions we can derive following hypothesis to be tested:

H1 : The transformed sentences are more similar to the sentences of the target

author than the original.

H2.1 : The transformed sentences are semantically similar to the original.

H2.2 : The transformed sentences are syntactically different to the original.

3



2. Background

2.1. Neural Networks

Inspired by the information propagation present in the human nervous system

Rosenblatt (1958) invented the first artificial neural network. This so called

perceptron perceives input signals and applies a projection to it. Then the

signals are accumulated and passed though a threshold function. This mimics

the electrical potential that is build up in a neuron until a critical threshold is

reached and the neuron fires, forwarding the signal to the neurons connected

to its dendrites (Schandry, 2007; Haykin, 1994).

Figure 2.1.: Perceptron Model (Haykin, 2009)

4



2. Background

This simple model is, when chosen the right set of projection weights w, capable

of any binary classification as long as the two classes are linear separable. The

weights can be learned from data using optimization techniques like Gradient

Descent, as long as the threshold, also called activation or squashing function, is

differentiable. Stacking layers of multiple perceptrons results in a feed forward

neural network. In this case, the errors that are observed in the last layer

when comparing the output of the network to the desired output have to be

propagated back through the network. The back-propagation algorithm does

precisely that (Rumelhart, Hinton, & Williams, 1985).

Since the invention of the perceptron many more architectures where defined,

following the same principle of combining inputs in a non-linear way and

learning the model weights by propagating back the errors. Two fundamental

architectural concepts here are Convolutional Neural Networks (CNNs) and

Recurrent Neural Networks (RNNs).

2.1.1. Recurrent Neural Networks

In the feed forward neural network inputs are fed to the first layer of the

network and all following layers receive only the output of the previous layer as

input. Recurrent neural networks contain recurrent connections, connecting the

output of the units to the inputs of themselves. The inputs are supplied to the

network sequentially, where at each step both the new input and the output of

the neuron from the previous step are fed in as new inputs (Elman, 1990). This

has the advantages of preserving the order of the sequential features as well

as being able to remember information from previous time steps. Additions

to this concepts were made by Hochreiter and Schmidhuber (1997) as well as

Cho, Van Merriënboer, Bahdanau, and Bengio (2014) by introducing gates that

5



2. Background

allow for controlling the information flow inside a neural cell. RNNs are used

to model temporal data, which makes them well suited for language modelling.

Systems that include RNNs are state-of-the-art in many tasks like neural

machine translation (Wu et al., 2016), image-to-text translations (Malinowski,

Rohrbach, & Fritz, 2015) and question answering (Kumar et al., 2016).

2.1.2. Convolutional Neural Networks

The basic concept of CNNs is sharing the same weights among neurons. This

only makes sense if the inputs connected to these weights may observe the same

feature patterns. Then, sets of weights can be interpreted as receptive fields

filter maps, that are applied on every part of the input space. LeCun et al.

(1989) first used this approach to recognize handwritten digits. Later, more

feature maps and layers of convolutions were added to create more complex

architectures (LeCun, Bottou, Bengio, Haffner, et al., 1998; He, Zhang, Ren, &

Sun, 2015). While CNNs have mainly been used in image processing for many

years, they are now used in other fields like time series analysis and natural

language processing too. Here, convolutions are usually applied along characters

and words, exploiting n-gram based patterns, phrases or word prefixes and

suffixes (Bai, Kolter, & Koltun, 2018; W. Yin, Kann, Yu, & Schütze, 2017).
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2. Background

Figure 2.2.: CNN Model for Text Classification (Kim, 2014)

2.2. Language Models

The goal of language models is to learn a representation of certain aspects of

language. This can be the joint or conditional probability distribution of words.

Within one language, between languages or over multiple languages.

2.2.1. Markov Chains

Andrey Markov, known for his work on stochastic processes, was particularly

interested in the independence of future states to previous states of a process

(Markov, 1954). Hence he gave the name to the Markov property, which requires

a stochastic process to be memoryless. That means that the next state only

depends on the present state, and hence the knowledge of the past states has

no influence. This is also known as the limited horizon property.

P (xn|xn−1) = P (xn|xn−1, xn−2, ...x0) (2.1)

7



2. Background

Here we use the short notation xn to denote a random variable Xn = xn.

Considering a stochastic process Markovian (the Markov property holds true)

has major computation implications since no previous event need to be stored.

Therefore Markov processes and Markov chains (Markov processes with district

state space) have become popular in many areas of information theory and

computer science. In 1948 Claude Shannon used Markov chains to model

language as sequence of characters (Shannon, 1948) considering one letter at

the time. The same can be applied for sequences of words. In any case, the

present state might not be sufficient to model the probabilities of the next state.

m-order markov chains reintroduce limited memory of size m.

P (xn|xn−1, ..., xxn−m) = P (xn|xn−1, xn−2, ..., x0) (2.2)

2.2.2. Hidden Markov Models

In hidden Markov models, the states themselves can not be observed directly.

Instead, other visible variables are observed at each point in time that are

emitted by the hidden states. The sequence of observed visible states then

gives information about the sequence of hidden states. The parameters of

hidden Markov models consist of the start probabilities of each state π, the

transition probabilities between states A and the emission probabilities B.

These parameters, if not known, can be estimated using maximum likelihood

methods like the expectation-maximization algorithm. Then, given a sequence

to observed visible states, the most likely hidden state sequence can be decoded

using the Viterbi algorithm (Viterbi, 2010). However the time complexity of

this algorithm is O(|S|2T ) with |S| being the number and states and T the

length of the sequence. For large state spaces, that becomes unfeasible quickly.

Alternatively, an approximate result can be found using beam search. This

8



2. Background

algorithm uses breadth-first search keeping only β best sequences at each

point in time. Hidden Markov models have been used in natural language

processing for speech recognition and part-of-speech tagging, with the tags

being the hidden states that emit words Jurafsky and Martin, 2009; Manning

and Schütze, 1999.

Figure 2.3.: Hidden Markov Model for POS-tagging (Manning & Schütze, 1999)

2.2.3. Neural Language Models

The increasing computational feasibility of neural networks has led to new

methods in many fields of computer science, including the language modelling

(Bai et al., 2018; W. Yin et al., 2017). In 2003 Bengio et al. already modelled

the conditional probabilities of the next word in a sentence given the previous

words as a feed forward network with a single hidden layer and a softmax

output layer (Bengio, Ducharme, Vincent, & Jauvin, 2003). The input and

output words were encoded as one-hot vectors. The hidden layer effectively

learned to represent the joint probability of the context words given. While

since then, many different architectures have been introduced, the Continuous

Bag of Words (CBOW) and the Skip-gram models, both described by Mikolov,

Chen, Corrado, and Dean, 2013 have seen received the most attention. In Figure

2.4 the two models are shown.

9



2. Background

Figure 2.4.: CBOW and Skip-gram Model (Mikolov, Chen, Corrado, & Dean, 2013)

‘ The CBOW model tries to predict a word in a sentence given the words

surrounding it. All input words use the same projection and are averaged.

Therefore the information of the order of words is lost. The projection uses

continuous representations of the context words unlike standard bag-of-words

models. In contrast, the Skip-gram model takes one word as input and tries

to predict the context words surrounding it. During the evaluation process,

the authors noticed that the word representations in the projection layers of

the Skip-gram model show certain semantic patterns. Words that appear in a

similar context are close to each other. Semantic pairs like countries to cities,

countries to currencies, adjectives to adverbs and more share roughly the same

vector difference. An example of this is shown in Figure 2.5

10



2. Background

Figure 2.5.: Two-dimensional PCA projection of Skip-Gram vectors (Mikolov, Sutskever,

Chen, Corrado, & Dean, 2013)

‘ Additions to this model were introduces to improve the performance, like

replacing the computationally expensive full softmax with hierarchical softmax

(Mikolov, Sutskever, Chen, Corrado, & Dean, 2013). Other models like GloVe

(Pennington, Socher, & Manning, 2014) construct a co-occurance matrix of the

words in a corpus first and learn a low dimensional representation of that matrix.

FastText (Bojanowski, Grave, Joulin, & Mikolov, 2017) learns representations

of character n-grams and constructs word representations as a combination

of these n-grams. This allows to obtain representations of unknown words.

While these approaches learn word representations using the context of these

words, in the evaluation phase the context is ignored. Words however may have

different meanings depending on the context given. This introduces the problem

of polysemy, and even more, homonymity. Arora, Li, Liang, Ma, and Risteski,

2018 showed that the vector representation of words with multiple meanings

is located at the superposition of the ideal representations of the individual

11



2. Background

meanings of that words. Hence the different meanings are essentially averaged.

A more recent approach uses a bidirectional Transformer (Vaswani et al., 2017)

architecture to retrieve context aware word representations (Devlin, Chang, Lee,

& Toutanova, 2018). Transformer based models mainly use weighted softmax

function in order to learn the importance of individual words of the input and

output context.

The representations obtained with these methods are used in many applications

since they encode more information than other word vectorization methods like

bag-of-words or TF-IDF and are continuous. In combination with CNNs and

RNNs they achieve state-of-the-art performances in tasks like text classification

(Zeng, Liu, Lai, Zhou, Zhao, et al., 2014; Zhang & Luo, 2018) or machine

translation (Wu et al., 2016; Vaswani et al., 2017).

2.3. Writing Styles

In computational linguistics, researchers discovered a series of features that

are indicative of ones writing style. These features may be grouped in three

classes, lexical features, syntactical features and structural features (Zheng, Li,

Chen, & Huang, 2006). Lexical features include character-based features like

the total number of characters in a text, number of specific types of characters

like white-spaces, digits and symbols (e.g. punctuation symbols, smileys) as

well as frequencies of letters. Character n-grams are used as well to capture

lexical, grammatical and orthographic preferences (Koppel, Schler, & Argamon,

2009; De Vel, Anderson, Corney, & Mohay, 2001). Word-based features are

the number of words per sentence or text, word length or vocabulary size.

Additional measures exist, that are based on words only occuring once (Hapax

legomena) or twice (Hapax dislegomena) or vocabulary richness (e.g. Yule’s
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K measure, Simpson’s D measure) (Tweedie & Baayen, 1998). Word n-grams

are used as well. Syntactical feature look at the use of punctuation, frequencies

of Part-of-Speech (POS) tags and function words (Zheng et al., 2006; Koppel

et al., 2009). POS tags label categories of words with similar grammatical

properties. The degree of detail varies depending on what set of POS tags are

used. A course set would consist of nouns, verbs, adjectives, adverbs, pronouns,

prepositions, conjunctions, interjections and determiners. More detailed versions

like the Penn Treebank (Marcus, Santorini, & Marcinkiewicz, 1993) can be

seen in figure 2.6.

Figure 2.6.: Penn Treebank POS Tags (Marcus, Santorini, & Marcinkiewicz, 1993)
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Function words are words that express relationships rather than content, like

determiner, prepositions and conjunctions (Zheng et al., 2006). Structural

features include the length of paragraphs and their separators as well as the

use of quotes, indentations and greetings.

These features are commonly used to perform authorship attribution (Juola

et al., 2008). So was Argamon, Koppel, Fine, and Shimoni (2003) able to

find differences in the writing styles of men and women. The authors stated,

that men tended to use more specifiers, describing the content in more detail,

adjectives and nouns. Women used more pronouns and shorter words. Since the

increased popularity of neural networks CNNs (Zeng et al., 2014; Kim, 2014)

and RNNs (Zhang & Luo, 2018) have been used more often for character- or

word-based classification.

2.4. Neural Machine Translation

Machine translation is the task of translating text given in one language to

another language. Usually this is done by training an algorithm on pairs of

sentences in those languages. Therefore, a large parallel corpus is required,

consisting of sentences that ideally were translated sentence-wise by professional

translators. Sometimes, parallel corpora need to be aligned first, by identifying

pairs of sentences. For many language pairs parallel corpora already exist,

usually created from translated legal texts, news articles, literature, Wikipedia

articles (Schmied, 2019; Tiedemann, 2012; Ziemski, Junczys-Dowmunt, &

Pouliquen, 2016).

Translation can be seen as a sequence to sequence task, requiring methods
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to generate new sentences from existing ones. Neural machine translation al-

gorithms often model this by creating an encoder-decoder architecture. The

encoder translates the source sentence into a latent feature space. The decoder

takes latent representations of sentences as input to generate a new sentence in

the target language. Both the encoder and the decoder can be modelled using

RNNs (Cho, Van Merriënboer, Gulcehre, et al., 2014). Classical RNN can only

access information of words before. In order to also get information from future

words, bidirectional RNNs are needed, effectively stacking the hidden states

of RNNs that go through the sentence in opposite direction (Sundermeyer,

Alkhouli, Wuebker, & Ney, 2014). Additionally attention mechanisms can be

applied to ease learning translations between languages with different word

orders (Bahdanau, Cho, & Bengio, 2014; Luong, Pham, & Manning, 2015; Wu

et al., 2016). More recently, transformer networks were introduced, disregard-

ing RNNs all together and using attention mechanisms as main component

(Vaswani et al., 2017). What these approaches have in common however, is

that they all need a parallel corpus.

Unsupervised methods try to avoid this problem by learning language struc-

tures on corpora of the individual languages first and combine them afterwords.

Conneau, Lample, Ranzato, Denoyer, and Jégou (2017) train word embeddings

on both languages first. The embedding spaces are then aligned by supplying a

set of word pairs that are known translations between the two languages. A toy

example of this Multilingual Unsupervised and Supervised Embeddings (MUSE)

method is shown in Figure 2.7.

15



2. Background

Figure 2.7.: MUSE Method Illustration (Conneau, Lample, Ranzato, Denoyer, & Jégou,

2017)

The resulting vectors form two matrices, that are used as input for an orthogonal

Procrustes problem Gower, Dijksterhuis, et al. (2004). The goal of the problem

is to find an orthogonal matrix R that maps matrix A to matrix B.

R = arg min
Ω
‖ΩA−B‖F where ΩTΩ = I (2.3)

The resulting aligned embeddings can then be used to generate word-by-word

translations. A word in the source language is first encoded using the source

embeddings. This vector is then transformed into the aligned embedding space

using the transition matrix R. Finally, using nearest neighbor search, the closest

vector in the target embedding is obtained and the word it corresponds to

returned. For measures of distance the cosine similarity is used. This word-to-

word translation may at best be a bad approximation of the true translation,

depending on the language pair and the sentence structure. In order to obtain

a correct the word order, Lample, Conneau, Denoyer, and Ranzato (2017)

suggested a denoising auto-encoder. It is trained on sentences that were altered

by removing words or changing the order of words. The task during training is

to reconstruct the original sentence.
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2.5. Neural Style Transfer

The development of style transfer algorithms is not a new idea. While until

recently little approaches existed in the field of natural language processing,

that cannot be said for image processing.

First approaches used bilinear models to model portraits as a combination of

pose and actual facial features (Tenenbaum & Freeman, 2000). As a result, the

authors were able to create portraits of people in a new pose. Similarly, the style

of a painting can be separated from its subject. This is, because the contours of

the subject are usually bigger and hence are composed of lower frequencies than

the stylistic patterns used (Hertzmann, Jacobs, Oliver, Curless, & Salesin, 2001;

Gatys, Ecker, & Bethge, 2016). Observing the pronounced features of an image

at different degrees of detail reveals differnt layers of pattern. Those layers

can be produced by simply rescaling the image (Hertzmann et al., 2001) or by

exploiting the already hierachical structure of convolutional neural networks

(Gatys et al., 2016).
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Figure 2.8.: Image Style Transfer using CNNs (Modified from Conneau, Lample, Ranzato,

Denoyer, and Jégou, 2017)

By transferring only the more detailed layers to another image sustains the

content of an image while changing its style and creating image analogies (Durk

P Kingma, Mohamed, Rezende, & Welling, 2014). Most recent approaches use

Generative Adversarial Networks (GANs) to perform Image-to-Image transla-

tion (Zhu, Park, Isola, & Efros, 2017; Mo, Cho, & Shin, 2018).
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Recently, there has been growing interest in algorithms that are able to generate

text. This may be largely due to the raise of neural text generation model and

their success in areas like machine translation (Sutskever, Vinyals, & Le, 2014).

Since then, sequence-to-sequence models have been creates employing LSTMs

(Hochreiter & Schmidhuber, 1997), variational auto-encoders (VAEs) (Diederik

P Kingma & Welling, 2013) and more recently generative adversarial networks

(GANs) (Goodfellow et al., 2014). What most of those models have in common

is the need of a parallel corpus. While there are various such corpora for dif-

ferent languages, this is not the case for different styles. Nonetheless, some exist.

The work of Shakespeare was repeatedly translated into modern English to

increase its accessibility. Such translations were aligned and used as training

data for style transfer methods (Xu, Ritter, Dolan, Grishman, & Cherry, 2012;

Jhamtani, Gangal, Hovy, & Nyberg, 2017). The same was done using different

translations of the bible Carlson, Riddell, and Rockmore, 2018 or article titles of

different newspapers (Fu, Tan, Peng, Zhao, & Yan, 2018). In these cases, simple

statistical language models (Xu et al., 2012) or neural sequence-to-sequence

models (Carlson et al., 2018; Jhamtani et al., 2017) were trained in a supervised

manner.
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Other work on text style transfer without parallel corpora considers various

types of styles. Common types are sentiment (Shen, Lei, Barzilay, & Jaakkola,

2017; Hu, Yang, Liang, Salakhutdinov, & Xing, 2017), gender (Prabhumoye,

Tsvetkov, Salakhutdinov, & Black, 2018), age (Lample, Subramanian, Smith,

Denoyer, Boureau, et al., 2018) and related languages (Yang, Hu, Dyer, Xing,

& Berg-Kirkpatrick, 2018). In these cases no real parallel corpora are created.

Instead, small domains like movie reviews used to create mono-corpora for

each category (e.g. positive and negative, male and female). This data is then

used to train auto-encoders with either multiple decoder (Shen et al., 2017),

conditioning mechanisms based on disentangled latent representations (Hu

et al., 2017; Xi Chen et al., 2016) or constraints (Ficler & Goldberg, 2017;

Hu et al., 2018). In addition to the reconstruction error of the auto-encoder,

adversarial methods are used in combination with classifiers to enforce the

stylistic similarity (Hu et al., 2017; Shen et al., 2017; Fu et al., 2018). (Hu

et al., 2018) trained a sequence-to-sequence model with reinforcement learning

to fill in blanks in sentence templates. Some also use back-translation to obtain

a latent representation of sentences using the encoder of pre-trained neural

translation models (Prabhumoye et al., 2018; Lample et al., 2018).

The evaluation measures used are also not consistent. Where parallel cor-

pora exist, the target sentences are known. Therefore BLEU score is used to

measure the difference to the ground truth (Xu et al., 2012). Interestingly, other

authors measured the BLEU score between source and generated sentence,

assuming a high value would indicate good quality and fluency (Yang et al.,

2018; Shen et al., 2017). These authors also measured the perplexity of the

target sentence as measure of quality. The systems employing a classifier used

its accuracy as measure for stylistic similarity (Shen et al., 2017; Hu et al.,

2017; Fu et al., 2018; Yang et al., 2018). In order to evaluate how well the
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original content was retained, (Fu et al., 2018) computed the cosine similarity

between source and generated sentence.
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4. Methods

4.1. System Description

Figure 4.1.: System Overview

4.1.1. Preprocessing

The raw text of the authors we want to model may contain noise, meaning

information that is not only irrelevant to our purpose but may also decrease

the performance of our models. Therefore the text is first cleaned by removing

special characters, lines breaks and numbers. The only exception to this are

punctuation marks, ., ,, ! and ?, since the use of them may be unique to

each author. Additionally, all upper case characters are converted to their
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lower case equivalent in order not to treat words at the beginning of sentences

differently.

4.1.2. Author Language Modelling

The preprocessed sentences are then used to create language models for the

individual authors. The model used developed in this thesis contains three

submodels. First, the transition probabilities between words are modelled. For

this a third order Markov chain is used in order to capture contextual depen-

dencies. This means, that given three words the model outputs a probability

for each word being next. Second, a set of stylistic features is extracted from

each word in the corpus. Pairs of words and their corresponding feature vectors

are then used to create a probabilistic mapping from feature vector to words

that emitted this vector. Third, after translating the corpus to sequences of

feature vectors, we compute the transition probabilities between them. For

that, a third order Markov chain is used again. This is supposed to capture the

stylistic patterns of authors independently of the actual words and hence the

content of the sentences. The combination of these language models can be seen

as a hidden Markov model with the hidden states being words emitting style

feature vectors or the other way around. Since we have transition probabilities

between both the words and the feature vectors it is actually more general

Bayesian network.

Stylistic Feature Extraction

Following the literature, we saw that there are various features that can be

observed when comparing the linguistic stylistics between authors. Some operate
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on a character level, mainly in the form of n-grams at different positions in

words, like prefixes or suffixes. Others look at individual words, which as a

whole represents the authors vocabulary. The length of words, their lexical

frequency, the frequencies of certain classes of words, like POS tags or stop

words may give some indications. Further, the structure of sentences with

regards to their length, complexity and word dependencies are considered.

The models described above require features to be extracted from individual

words. This partially excludes the explicit use of sentence structures. Also, the

number of features can not be too extensive. This is, because the corpora of

individual authors are usually rather small, leading to little statistical evidence

for individual combinations of feature vectors if these vectors have a high

cardinality. Considering this, the following features are chosen: The POS tag,

length and lexical frequency of word as well as whether it is considered a stop

word.

Word POS Stop Word Length-Group Frequency-Group

It PRP 1 0 2

is VBZ 1 0 2

undoubtedly RB 0 2 1

a DT 1 0 2

variation NN 0 1 1

Table 4.1.: Spatial Features of an Example Sentence

In Table 4.1 the extracted features of a sample sentence are shown. Both the

lengths and the lexical frequencies are binned into three bins representing low,

medium and high, again to reduce the cardinality. With the preprocessing step

in mind, there can still be around 40 different POS tags of the Penn Treebank
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and up to 720 different combinations. In practice however this is not the case,

since certain combinations never occur. Nouns are usually not stop words and

most stop words have a high frequency since this is why they are considered

stop words in the first place. The features are than concatenated into one

feature vector, encoded as so called style tokens.

Figure 4.2.: Style Token Emission Probabilities

In Figure 4.2 the extraction of the feature vectors with the resulting probabilities

are shown. It becomes apparent that for certain combinations of features the

emission space is quite limited.

4.1.3. Synonym Translation

One major aspect that may distinguish one’s favourite author from authors

is the their vocabulary. The use different words and phrases can change the

reading experience even if the core message of a text stays the same. On a

word by word basis this essentially describes synonyms. Words with similar

meanings given a certain context. This part of our system can find synonyms
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that a given author would most likely use. To achieve that, an approach from

Neural Machine Translation (NMT) is utilized. NMT The texts of different

authors are considered to be different languages and the search for synonyms

is framed as a word-by-word translation from one language to another. Most

NMT methods are supervised and require parallel corpora in order to learn

the relationship between languages. In our case this is not an option. However

there are also a few unsupervised methods as mentioned before. The one used

here is the MUSE method by Conneau et al., 2017. The method requires word

embedding spaces for each language. These are trained using the Word2Vec

CBOW (Mikolov, Sutskever, et al., 2013) algorithm with a window size of

five words. A vector size of 100 is used since it is big enough to capture the

relevant information (Z. Yin & Shen, 2018) and small enough to obtain an

expressive mapping between the embeddings. This is because MUSE requires a

set of known mappings from one language to the other. These pairs are the

anchors for the Procrustes analysis, which is performed to find transformation

matrices that align the two different embedding spaces. Before outlining the

choice of anchor words, an overview of the synonym translation system is shown

in Figure 4.3.
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Figure 4.3.: Synonym Translation System

Anchor Words

In the case of two different languages anchor word pairs can be obtained easily

by looking up translations in dictionaries. If both the source and target language

is English this is not the case anymore. Hence, a different approach is needed

for choosing these pairs. Since it is the same language, a simple assumption

would be that the words in both are the same and hence any set of words could

be used. However, different authors use different vocabularies so that not every

word may be present in both languages. Additionally, just because authors

may use the same word does not mean that these words are equal in both their

languages. One might use it more frequently than the other. Ideally, we want

so select words that both authors use similarly frequent and still are common

words of the English language itself.
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WA = {w ∈ VS ∩ VT |min(PS(w), PT (w)) > e ∧ |PS(w)− PT (w)| < d} (4.1)

The anchor words WA are chosen from the common set of words in the vo-

cabularies of the source author VS and the target author VT such that the

difference in there relative lexical frequencies PS(W ) and PT (W ) is smaller than

some difference threshold d and the words are more common in the authors’

corresponding vocabularies than e.

Word Queries

The resulting anchor words are used to obtain the new aligned embeddings.

In order to find synonyms for a word this word is encoded as a vector using

the source embeddings. Since the embeddings spaces are aligned, the vector

would point to the same word in the target embeddings space, if the languages

would be identical. Due to their differences however, this is not always the case.

Performing a nearest neighbor search given the vector one can select one of

the closest words found as synonym. To introduce randomness to this process,

noise is added before performing the search. This allows for variations in the

output sentence, if multiple words are close to the transformed vector in the

target embedding space. Figure 4.4 illustrates this method.
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Figure 4.4.: Word Query System

Given this synonym translation it is already possible to obtain word-by-word

translations between authors. Varying the amount of noise added, the new

sentence will be more or less similar to the original sentence. The meaning of the

sentence should also stay intact since words that are similar in the embedding

spaces should be similar in meaning too. However, the abstracting capabilities

are very limited since the structure of the sentence stays the same. This is,

why we introduce a generative approach that merely utilizes this word-by-word

translation as one step.

4.1.4. Sentence Search

Now that the main components of our system were defined, they can be

connected to create said generative model. The idea is to use the different

language models to guide and normalize the generation of a new sentence. This

can be seen as decoding problem, common in NMT tasks and usually solved

with beam search. The obvious advantage of beam search over other methods

being that only the top β most probable candidates are kept track of at every

point in time. In this case the points in time are the sequential words in the
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generated sentence. In this thesis we investigate two different strategies for

decoding, calling them beam search and slot-filling beam search.

Beam Search

When performing beam search we need to compute a score for each candidate

and combine these score for each temporary sequence. In our case, the score

is the probability of candidate word given the n words before. In Equations

4.2 to 4.4 we see, that this probability consists of a weighted sum of three

components, the context P (wt|Wc), the word language model PLM (wt|wt−1:t−n)

and the style token language model PSLM(wt|wt−1:t−n). As input, the method

uses these models, the weighting terms and the context words. The context

defines the words that may be part of the sentence. We insert the word-by-word

synonym translation as context.

P (wt|wt−1:1, θ) = λcP (wt|Wc)+λLMPLM(wt|wt−1:t−n)+λSLMPSLM(wt|wt−1:t−n)

(4.2)

with

θ = {wt−1:1,Wc, λc, λLM , λSLM} (4.3)

and

λc + λLM + λSLM = 1 (4.4)

For the word language model, the output probability for each word is just

the conditional probability of the word in the Markov chain model given

the previous n words or t − 1 words for the first words where t <= n. At

each point in time the style tokens of the previous words are extracted as

mentioned before. For this sequence to tokens the probabilities of the next
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token PSLM(tokent|tokent−1:t−n) are evaluated using the style language model.

Given the resulting tokens, the word emission probabilities are weighted and

summed as formalized in Equation 4.5.

PSLM(wt|wt−1:t−n) = PSLM(wt|tokent)PSLM(tokent|tokent−1:t−n) (4.5)

The context words are added as a third layer, essentially boosting the words of

the input sentence. However not all words in a sentence are equally important

to be kept. While nouns and especially proper nouns should still be the same

in the resulting sentence, the same cannot be said for stop words. This is

why we introduce a simple attention mechanism that weights context words in

accordance to their POS tags.

P (wt|Wc) =
attention(post)∑|Wc|

j=1 attention(posj)
(4.6)

For this the Universal POS tags were used, because of the lower granularity. The

weights used can be taken from Table 4.2. These weights follow the heuristic,

that the main content of a sentence is captured by the relationship between

nouns and verbs. Proper nouns like names should not change at all, while

adjectives may be omitted or replaced.
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pos tag weight

PROPN 5

NOUN 4

VERB 3

ADJ 2

Table 4.2.: Context Wort Attention Weights

The probability of a sequence is then just the weighted product of the prob-

abilities of each individual word in that sequence. To avoid the problem of

numerical underflow, the implementation uses the sum of log probabilities

instead. While this already describes the main algorithm, two additions are

added in order to improve the stability of the model. First, because we do not

specify a fixed sentence length, sentences of different length may be compared

to each other when choosing the best ones. Since all probabilities are less than

one, longer sequences will have smaller probabilities than shorter ones. Hence,

length normalization is required. While various approaches exist already, the

best results were achieved with this novel approach, defined in Equation 4.7.

λlength =
β − 1

N2
t2 +

2(1− β)

N
t+ β (4.7)

We define a concave function that has its maximum of 1.0 at a target length N .

From there it decreases symmetrically in both directions, reaching the value of

β at length 0 and 2t. This way, it is easy to adjust the preferred mean output

length as well as the deviations from it.

Second, the language models also incorporates an End of Sentence (EOS)
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token. To be able to control the length of a sentence, it is necessary to adjust

the probability of that token. Therefore, a damping term is introduced, reducing

the probability of the EOS token quadratically around the target length N .

λEOS =
t

N2
(4.8)

Slot-Filling Beam Search

The second approach used is roughly equivalent to the first one. However, in

this case the style language model is first used to create a sequence of style

tokens. For this, we sample from the transition probabilities to find a likely

sequence until we encounter an EOS token. Intuitively this sequence should

represent typical stylistic patterns an author uses. The idea now is, to use this

encoded sentence as a template for the real sentence. This can be seen as a

hidden Markov model with the style tokens being the emitted visible states

and the actual word of the target sentence being the hidden states. Since we

have both the transition probabilities and the emission probabilities, we could

find the hidden states using the Viterbi algorithm. However, the state space,

which in our case is the author’s vocabulary, is far to big to keep track of

all possible sequences. Therefore beam search is used again to only keep the

most promising candidates. Like in the algorithm described above, we join the

emission probabilities with word transition and context probabilities with the

same weighted sum.
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4.2. Evaluation Methods

The evaluation of the algorithms described in this thesis requires both a special

test data as well as measures that can capture syntactical, semantic and stylistic

similarities. For this purpose we will utilize the preexisting work of well known

authors and use both established and custom made measures.

4.2.1. Sample

In this thesis we focus on the stylistic translation of English prose. Hence

we have to exclude famous pieces of poetry and drama. Also, many pieces of

literature are still protected by copyright. Luckily, Project Gutenberg (“Project

Gutenberg,” 2019) collected over 59.000 books so far, offering them without

restrictions. Typically these are books whose copyrights expired at some point.

With access to this corpus, we want to select authors that created as much text

as possible in order to be able to learn adequate models of their writing styles.

While the website of Project Gutenberg offers some browsing and filtering

functionalities, it does not cover our requirement. Therefore we used a tool

called GutenTag (Brooke, Hammond, & Hirst, 2015). This tool allows to filter

by genre, language, publication date and country or author attributes like

name, nationality, dates of birth and death and gender. Our dataset consists

of English prose text published after 1800. This way we want to exclude old

English words and phrases in order to be able to focus on stylistic differences

given roughly the same vocabulary. The resulting documents were downloaded

in eXtensible Markup Language (XML) format. An analysis of the author with

the most documents written lead to the selection of the authors shown in the

following Table 4.2.1.
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|D| |V | |Vlemma|

Chesterton 34 36362 23362

Churchill 68 41129 26876

Darwin 28 51073 32255

Dickens 61 57299 32335

Twain 141 54688 33929

Verne 35 48837 32598

Wells 43 53757 32793

Table 4.3.: Descriptive Statistics of Author Corpora

In the columns, we see the number of documents |D| as well as the size of

the vocabulary |V | the individual authors used. Defined by |Vlemma| is the

size of the lemmatized vocabulary. For this the lemmatizer provided in the

Python library SpaCy (Honnibal & Montani, 2017) was used. For each of these

authors corresponding word, style and emission language models are created.

Additionally, all documents found using GutenTag are used to create author

independent word embeddings. The style transformation will then be evaluated

on a sample of 1000 sentences from this general corpus.

4.2.2. Variables

In the first chapter, the core research questions were defined. The hypotheses

derived from them require quantifiable measures to allow for the testing of

significance.
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Syntactic Similarity

The syntactically similarity as used in hypothesis H2.2 is operationalized by the

Bilingual Evaluation Understudy (BLEU) Score (Papineni, Roukos, Ward, &

Zhu, 2002). It was introduced to evaluate the quality of translations, given a

correct translation of the original sentence. Usually this correct translation was

performed by linguists or professional translators. The BLEU score measures

the mean percentage of matching n-grams between the correct translation

and a candidate sentence. The length of the n-grams is increased up to a set

maximum N , usually 4. The BLEU score is than computed as the geometric

mean of the match scores for each n-gram length.

BLEUN =

(
N∏
i=1

|NGi(correct) ∩NGi(candidate)|
|NGi(correct)|

)1/N

(4.9)

In Equation 4.9 the formula of the basic BLEU score without normalization

is shown. Here, NGi returns the i -grams of a sentence up to length N . This

version however as various downsides as described by B. Chen and Cherry

(2014). For example, the score of a candidate is 0 if one of the i -gram scores is

0. This is especially problematic for higher N and shorter sentences. Therefore

we use the from the authors introduced smoothing technique number 7, which

handles the just mentioned 0 elements and applies smoothing along n-grams

adjacent in the sentence.

In our evaluation we want to see low BLEU scores, meaning less exact matches of

n-grams while retaining high semantic similarity scores, such that the meaning

of the sentence can be considered close to identical.
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Semantic Similarity

The semantic similarity as used in hypothesis H2.1 is operationalized as follows.

We assume that meaning of a sentence can be approximated by the sum of

the meanings of the words it contains. Following this approach, some loss is

inevitable due to ignoring the word order and sentence length. However, finding

the meaning of phrases and sentences as a whole is not trivial. In contrast, we

already have a model that models the meaning of words. The word embeddings

trained for the translation system map words to vectors in a continuous space.

We encode the meaning of a sentence as the average word vectors computed by

applying the embedding model E to each of the n words in the sentence x.

v(x) =
1

n

n∑
i=1

E(wi) (4.10)

The vectorized sentences can now be compared using a suitable similarity

measure. For this, correlation coefficients, the inverse of distance or divergence

measures like the euclidean distance could be used. Especially for the comparison

of vectors however, the cosine similarity has nice properties. It maps the

similarity to range of −1 to 1 with −1 representing vectors that point exactly

in the opposite direction, 0 meaning they are orthogonal to each other and 1

representing vectors of same direction. Computationally this measure is also

interesting, since it is just the dot product of the two normalized vectors.

cos(x, y) =
x · y

||x|| · ||y||
(4.11)

The semantic similarity is hence defined as shown in Equation 4.12, with T

being the style transformation algorithm returning the new sentence.
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ssem = cos(v(x), v(T (x)))) (4.12)

Authorship Score

The main aspect of this thesis is the stylistic individuality of different authors.

Hypothesis H1 requires a measure of stylistic similarity to a given author.

To accomplish that we create models, that can distinguish sentences of our

known authors from sentences of a general corpus. This binary classification

task is modelled using the CNN architecture used by Zhang and Luo (2018).

Convolutional classifiers like these are commonly used in text classification

and hence also authorship attribution. In Figure 4.5 the schematics of this

architecture is shown.
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Figure 4.5.: CNN-based Text Classification Model (Zhang & Luo, 2018)

The main idea here is that use of convolutions of different sizes along adjacent

words in a sentence. Window sizes of to two to five words can be seen as analysis

of 2-grams to 5-grams respectively. The words are first mapped to vectors using

word embeddings. In the second direction the filters spread over all dimensions

of the word vectors. The resulting filters are than flattened using max-pooling.

The last layer is fully connected following a sigmoid function to output values

between 0 and 1. These values can be interpreted of probabilities that a given
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sentence is written by an author or as a similarity of that sentence to sentences

of that author. Therefore, we expect that this values generated by our classifier

C will be higher after our transformation T than before.

C(T (x)) > C(x) (4.13)

4.2.3. Analysis Plan

For each of the seven authors the same 1000 test sentences, randomly sampled

from the general corpus of English prose literature are transformed using the

following six variations of the style transform methods described in this thesis:

Translate (noise = .2) Synonym Translation only with noise added to the

query vector before performing the nearest neighbor look-up. The noise

is normally distributed with a mean of 0 and a standard deviation of .2.

Translate (noise = .3) Same, but with noise normally distributed with a

mean of 0 and a standard deviation of .3.

Translate (noise = .4) Same, but with noise normally distributed with a

mean of 0 and a standard deviation of .4.

Translate (noise = .5) Same, but with noise normally distributed with a

mean of 0 and a standard deviation of .5.

Beam-Search Beam Search as described in Chapter 4.1.4 with the output of

Translate (noise = .3) as context input.

Slot-Filling Beam-Search Slot-Filling Beam Search as described in Chapter

4.1.4 with the output of Translate (noise = .3) as context input.

For hypothesis H1 we perform a paired two-sample t-test because the authorship

score is measured before and after the application of the transformation method
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and the two measures can be linked to the same sentence (H0 : C(T (x)) ≤ C(x)).

Hypotheses H2.1 and H2.2 are tested using a one-sample t-test since we only

measure the corresponding variables once. The semantic similarity is tested

against a threshold of .9 (H0 : ssem < .9). The syntactical similarity difference

is tested against the threshold .5 (H0 : ssyn > .5). For all tests p-value is chosen

as inference criterion with an α-error limit of .1% (p < .005).

The beam search methods may fail to produce a valid sentence because of

malformed conditional probability distributions. The resulting incomplete, short

sentences are filtered out before the analysis is performed. The true sample size

may therefore differ for each method.

In addition to the analyses performed across all authors, the same will be

performed on each individual author in an exploratory fashion. The results

including the p-values will be reported in the appendix. Note however, that due

to the additional testing leads to the problem of α-error accumulation, which

is why no statements of significance can be made for these results.
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The results of this thesis are presented in three parts. In the first part, various

examples of sentences transformed using the methods introduced before are

presented. Then, exploratory analyses are performed, evaluating the extracted

anchor words and the distribution of the evaluation measures. In the last part

of this chapter, the results of the confirmatory analysis are presented.

In table 5.1 transformed sentences are shown next to the original. Methods are

indicated as Translate (T), Beam-Search (BS) and Slot-Filling Beam-Search

(SFBS).
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Method Original: Translated

T Her appearance was enough to

send a friend into ecstasies, or

drive an enemy to despair.

Her appearance was enough to

send a friend into dreams, or

drive an enemy to anguish.

T How this is done depends upon

the talent and cultivation of

the family.

How this is done depends upon

the capacity and production

of the family.

T I did it in fun, said Jonas, be-

ginning to see that he had need

to be prudent.

I did it in fun, said Kurt, begin-

ning to see that he had need to

be reasonable.

SFBS Did say was that each one of us

was to bring fifteen pennies.

Farthings was saying one did

bring us that thirty each to of.

BS As an admirer of newton he en-

deavoured to teach the ladies to

discuss the theory of light.

Teach her the purely arbitrary

language in common use to hold

wine, and hung out in the light

of ladies discuss theory endeav-

oured snawley as an his little a

expression.

SFBS I do not know about good or

evil.

Know do good unselfish not

around I or man to.

Table 5.1.: Example result sentences by method
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5.1. Exploratory Analysis

5.1.1. Anchor Words

One central element of the methods described in this thesis is the custom

application of the muse algorithm. This step required the selection of anchor

words, linking the embedding spaces of source and target author. This selection

was done considering the relative frequencies of word in the vocabularies of both

authors. Two parameters were introduced: The minimum relative frequency

e and the maximum relative difference d. In the following figures the impact

of varying these parameters is shown. As source corpus the general corpus

discussed before was used. The higher e is chosen, the more words could be

obtained as anchor words. However, this increases the risk of the model not

being able to generalize anymore, matching every word with itself. In Figure

5.1 we see that over 1500 words have a relative frequency higher than 1e− 6 in

both vocabularies.

Figure 5.1.: Mean Number of Anchor Words by minimum Word Frequency e
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Good anchor words should be equally frequently used by both authors. There-

fore, the tolerance of difference between authors should be as small as possible.

However, changes in relative frequencies may deviate easily, considering different

vocabulary sizes and individual differences due to small corpus sizes. In Figure

5.2 we see the impact of increasing the tolerance up to 0.3.

Figure 5.2.: Mean Number of Anchor Words by Tolerance d

Based on these results, a minimum relative frequency of e = 5e − 10 and a

tolerance of d = 0.1 was used. Interestingly, that led to very different numbers

of anchors words for each author. A comparison is shown in Figure 5.3
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Figure 5.3.: Mean Number of Anchor Words by Author

Given these parameters, Charles Dickens has more than four times as many

words in common with an average prose text than Winston Churchill. So either

Dickens has a very big vocabulary or a very generic use of words.

5.1.2. Variable Distribution

In this section a detailed comparison between the methods used is presented. The

three evaluation measures shown are the authorship score, semantic similarity

and syntactical similarly. In Figure 5.4 the change in authorship score before

and after applying the transformation method can be observed.
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Figure 5.4.: Distribution of Authorship Scores before and after Method Application
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The upper four figures present the results of using the muse based approach

only. Varying the amount of noise introduced has little impact on the amount of

change. As one would expect, the most change can be observed with sentences

that had a low authorship score originally. The same is true for the search

based methods. Only the regular beam search shows noticeably more change

than the other methods. In Figure 5.5 the differences per method are visualized

explicitly.

Figure 5.5.: Distribution of Difference in Authorship Scores

The mode of the distributions seems close to zero. However, especially the

search based methods show a heavy right tail. In accordance with the small

changes in authorship score, semantic similarity is close to 1 for the translate

methods, as presented in Figure 5.6. The slot-filling beam-search shows similar

48



5. Results

results, potentially retaining larger amounts of the meaning of the sentence.

Regular beam-search deviates largely, raising the question if the transformed

sentences can still be considered to have the same content.

Figure 5.6.: Distribution of semantic Similarities

How much of the original sentence is matched exactly by the new sentence is

measures using bleu scores. Considering the authorship and semantic similarity

scores, we might expect the syntactical similarity of sentences transformed

using the translate methods to be close to 1 too. This is not the case though.

In Figure 5.7 we can see that most sentences translated differ greatly from

the original. The translation based approaches barely differ. This could be

explained by the assumption, that the random noise added mainly changes

words that have no definitive mapping in the target embedding space. Hence, a
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change in the noise level up to a certain level still only changes the same words,

which results in the same BLEU score, even though the sentences differ.

Figure 5.7.: Distribution of BLEU Scores

The relationship between between semantic and syntactical similarity is also

reported in Figure 5.8. Here it becomes even more apparent, that these two

measures are related, but not at all the same. Interpreting this figure it could be

argued that a sentence can be changed quite a bit without losing its meaning.

At some point however, any further change leads to rapid degeneration. The

clearly visible clusters show once more the difference between the search and

translate methods. Interestingly, the slot-filling beam-search seams to perform

better than the regular beam search with higher semantic similarly and equal

syntactcal similarity.
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Figure 5.8.: Semantic Similarity with Respect to BLEU Score
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5.2. Confirmatory Analysis

The results of the significance test performed as shown below. First, the

difference in authorship scores, stated in H1 was tested. As shown in Table 5.2

there was a significantly increase in authorship scores for all methods. As noted

before, the sample size varies due to the filtering performed.

N MA0 MA1 Md SDd tA pA

Translate (noise = .2) 6191 0.312 0.372 0.060 0.239 19.831 <.000

Translate (noise = .3) 6162 0.313 0.372 0.059 0.235 19.588 <.000

Translate (noise = .4) 6134 0.314 0.371 0.058 0.240 18.816 <.000

Translate (noise = .5) 6122 0.314 0.375 0.060 0.242 19.557 <.000

Slot-Filling Beam-Search 5792 0.308 0.359 0.050 0.408 9.415 <.000

Beam-Search 6065 0.306 0.484 0.178 0.460 30.205 <.000

Table 5.2.: Paired Samples t-Test Summary for Differences in Authorship Scores. N : sample

size, MA0: mean authorship score of source sentence, MA1: mean authorship score

of transformed sentence, Md: Mean change in authorship score, SDd: standard

deviation of change in authorship score, tA: t-Test score, pA: p-value.

Next, the semantic similarity stated in H2.1 was tested. Table 5.3 shows that

the semantic similarity between the transformed to the original sentences is

significantly higher than .75 for all methods except the regular beam search.
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N MS SDS tS pS

Translate (noise = .2) 6191 0.927 0.102 136.280 <.000

Translate (noise = .3) 6162 0.928 0.098 142.254 <.000

Translate (noise = .4) 6134 0.928 0.100 139.081 <.000

Translate (noise = .5) 6122 0.927 0.100 138.645 <.000

Slot-Filling Beam-Search 5792 0.791 0.180 17.193 <.000

Beam-Search 6065 0.652 0.237 0.000 1.000

Table 5.3.: t-Test Summary for Semantic Similarities (H0 : M < .75). N : sample size, MS :

mean semantic similarity, SDS : standard deviation of semantic similarity, tS :

t-Test score, pS : p-value.

Last, the syntactical similarity as stated in H2.2 was tested. The results in

Table 5.4 show that the syntactical similarity between the transformed and the

original sentences is significantly lower than .75 for all methods.

N MB SDB tB pB

Translate (noise = .2) 6191 0.593 0.242 51.037 <.000

Translate (noise = .3) 6162 0.592 0.241 51.468 <.000

Translate (noise = .4) 6134 0.591 0.241 51.621 <.000

Translate (noise = .5) 6122 0.588 0.240 52.893 <.000

Slot-Filling Beam-Search 5792 0.310 0.084 396.645 <.000

Beam-Search 6065 0.282 0.100 365.471 <.000

Table 5.4.: t-Test Summary for BLEU Scores (H0 : M > .75). N : sample size, MS : mean

BLEU score, SDS : standard deviation of BLEU score, tS : t-Test score, pS : p-value.

In summary, all methods except one were able to prove our hypotheses. This
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one being the regular beam search could not produce results that the similar

enough in terms of semantic meaning.
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The goal of this thesis was to design an algorithm that is able to model the

stylistic features of writers in order to perform transformations and transla-

tions on them. Two main methods were developed and evaluated using various

settings.

The first approach employed neural machine translation techniques to perform

a word-to-word translation of sentences by creating a similarity-based mapping

between the word embedding spaces of authors. The same similarity measure

was used to evaluate the semantic similarities between source and target sen-

tence, which partially explains the good results regarding this measure. The

syntactical similarity however showed, that the sentences changed nonetheless.

While the resulting authorship score also showed a significant increase of 19%,

the average absolute change of .06 is still very low. One indisputable issue with

this approach is that the word order, which as mentioned before plays a major

role in an author’s style, stays unchanged. Additionally, the choice of anchor

words posed an additional challenge, since it already leads to assumptions

about similarities between authors.

The second approach took a set of predefined stylistic features and mod-

els conditional probabilities between combinations of them. Additionally, word
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transition probabilities were used to improve sentence quality. The input sen-

tence was then transformed using the first approach before feeding it as a set of

words to a beam-search algorithm, evaluating the most likely word sequences.

This approach has the advantage that style can be modelled independently of

content and other authors. Also, this model could be used to create random

sentences in the style of the author. The result showed that the new sentences

were indeed closed to the target author’s style with an increase of 17% (.06) and

58% (.18) for the slot-filling and regular beam-search respectively. However, the

semantic similarity as well as the quality of the sentences was considerably lower

than the once of the first approach. Additional restrictions and normalization

would need to be added to improve the results in this regard.
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The development of style transfer algorithm poses several challenges. The lack

of parallel corpora makes it difficult to apply translation methods common

in natural language processing. Differing and changing opinions on what is

considered part of writers’ styles hampers a clear separation from the content

of a text. The proposed methods were able to cover some aspects of what is

needed for a fully functional style transform algorithm, but many improvements

need to be made.

Further work might attend to constrain the methods shown in order to improve

sentence quality of the beam-search results. Alternatively, sentence restructur-

ing algorithms may be designed to transform the word-to-word translations

into a structure more representative of an author’s style. Apart from improving

the methods discussed in this thesis, the development of an end-to-end solution

with less hyperparameters could be the superior path to go. Regardless, the

applications of such algorithms will increase in the future and with it the need

for good solutions.
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Cho, K., Van Merriënboer, B., Bahdanau, D., & Bengio, Y. (2014). On the

properties of neural machine translation: encoder-decoder approaches.

arXiv preprint arXiv:1409.1259.
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Appendix A. Evaluation Results per Author

Appendix A.

Evaluation Results per Author

A.1. Gilbert Keith Chesterton

Figure A.1.: Chesterton: Distribution of Authorship Scores before and after Method

Application
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Appendix A. Evaluation Results per Author

Figure A.2.: Chesterton: Distribution of Difference in Authorship Scores

Figure A.3.: Chesterton: Distribution of semantic Similarities
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Appendix A. Evaluation Results per Author

Figure A.4.: Chesterton: Distribution of BLEU Scores

Figure A.5.: Chesterton: Semantic Similarity with Respect to BLEU Score
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Appendix A. Evaluation Results per Author

N MA0 MA1 Md SDd tA pA

Translate (noise = .2) 912 0.457 0.571 0.114 0.271 12.734 .000

Translate (noise = .3) 911 0.455 0.569 0.114 0.267 12.859 .000

Translate (noise = .4) 912 0.458 0.570 0.112 0.277 12.276 .000

Translate (noise = .5) 908 0.458 0.577 0.119 0.281 12.789 .000

Slot-Filling Beam-Search 843 0.460 0.556 0.096 0.412 6.755 .000

Beam-Search 859 0.451 0.662 0.212 0.438 14.148 .000

Table A.1.: Chesterton: Paired Samples t-Test Summary for Differences in Authorship Scores

N MS SDS tS pS

Translate (noise = .2) 912 0.929 0.073 73.972 .000

Translate (noise = .3) 911 0.927 0.073 73.368 .000

Translate (noise = .4) 912 0.925 0.076 69.084 .000

Translate (noise = .5) 908 0.922 0.077 67.100 .000

Slot-Filling Beam-Search 843 0.797 0.148 9.247 .000

Beam-Search 859 0.676 0.211 0.000 1.000

Table A.2.: Chesterton: t-Test Summary for Semantic Similarities (H0 : M < .75)

N MB SDB tB pB

Translate (noise = .2) 912 0.506 0.196 37.702 .000

Translate (noise = .3) 911 0.502 0.196 38.330 .000

Translate (noise = .4) 912 0.497 0.196 38.832 .000

Translate (noise = .5) 908 0.484 0.190 42.175 .000

Slot-Filling Beam-Search 843 0.306 0.084 154.290 .000

Beam-Search 859 0.283 0.101 136.166 .000

Table A.3.: Chesterton: t-Test Summary for BLEU-Scores (H0 : M > .75)
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Appendix A. Evaluation Results per Author

A.2. Winston Churchill

Figure A.6.: Churchill: Distribution of Authorship Scores before and after Method Application
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Appendix A. Evaluation Results per Author

Figure A.7.: Churchill: Distribution of Difference in Authorship Scores

Figure A.8.: Churchill: Distribution of semantic Similarities
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Appendix A. Evaluation Results per Author

Figure A.9.: Churchill: Distribution of BLEU Scores

Figure A.10.: Churchill: Semantic Similarity with Respect to BLEU Score
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Appendix A. Evaluation Results per Author

N MA0 MA1 Md SDd tA pA

Translate (noise = .2) 899 0.302 0.332 0.031 0.222 4.159 .000

Translate (noise = .3) 899 0.299 0.330 0.031 0.216 4.316 .000

Translate (noise = .4) 898 0.301 0.331 0.030 0.221 4.109 .000

Translate (noise = .5) 899 0.300 0.330 0.030 0.229 3.978 .000

Slot-Filling Beam-Search 809 0.294 0.337 0.043 0.438 2.791 .003

Beam-Search 844 0.295 0.372 0.077 0.475 4.689 .000

Table A.4.: Churchill: Paired Samples t-Test Summary for Differences in Authorship Scores

N MS SDS tS pS

Translate (noise = .2) 899 0.948 0.070 84.479 .000

Translate (noise = .3) 899 0.948 0.071 83.636 .000

Translate (noise = .4) 898 0.948 0.068 87.388 .000

Translate (noise = .5) 899 0.946 0.068 86.935 .000

Slot-Filling Beam-Search 809 0.803 0.172 0.000 1.000

Beam-Search 844 0.663 0.255 0.000 1.000

Table A.5.: Churchill: t-Test Summary for Semantic Similarities (H0 : M < .75)

N MB SDB tB pB

Translate (noise = .2) 899 0.625 0.225 16.668 .000

Translate (noise = .3) 899 0.622 0.224 17.162 .000

Translate (noise = .4) 898 0.620 0.224 17.313 .000

Translate (noise = .5) 899 0.616 0.224 17.992 .000

Slot-Filling Beam-Search 809 0.318 0.082 150.064 .000

Beam-Search 844 0.287 0.102 131.595 .000

Table A.6.: Churchill: t-Test Summary for BLEU-Scores (H0 : M > .75)
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Appendix A. Evaluation Results per Author

A.3. Charles Darwin

Figure A.11.: Darwin: Distribution of Authorship Scores before and after Method Application
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Appendix A. Evaluation Results per Author

Figure A.12.: Darwin: Distribution of Difference in Authorship Scores

Figure A.13.: Darwin: Distribution of semantic Similarities
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Appendix A. Evaluation Results per Author

Figure A.14.: Darwin: Distribution of BLEU Scores

Figure A.15.: Darwin: Semantic Similarity with Respect to BLEU Score
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Appendix A. Evaluation Results per Author

N MA0 MA1 Md SDd tA pA

Translate (noise = .2) 786 0.080 0.180 0.100 0.321 8.704 .000

Translate (noise = .3) 760 0.079 0.165 0.086 0.307 7.690 .000

Translate (noise = .4) 740 0.080 0.170 0.089 0.317 7.665 .000

Translate (noise = .5) 728 0.084 0.170 0.086 0.315 7.379 .000

Slot-Filling Beam-Search 826 0.081 0.271 0.190 0.388 14.059 .000

Beam-Search 823 0.081 0.426 0.345 0.455 21.708 .000

Table A.7.: Darwin: Paired Samples t-Test Summary for Differences in Authorship Scores

N MS SDS tS pS

Translate (noise = .2) 786 0.759 0.141 1.830 .034

Translate (noise = .3) 760 0.766 0.131 3.272 .001

Translate (noise = .4) 740 0.763 0.137 2.581 .005

Translate (noise = .5) 728 0.763 0.137 2.609 .005

Slot-Filling Beam-Search 826 0.603 0.218 0.000 1.000

Beam-Search 823 0.537 0.223 0.000 1.000

Table A.8.: Darwin: t-Test Summary for Semantic Similarities (H0 : M < .75)

N MB SDB tB pB

Translate (noise = .2) 786 0.313 0.077 159.822 .000

Translate (noise = .3) 760 0.313 0.071 168.504 .000

Translate (noise = .4) 740 0.314 0.073 162.185 .000

Translate (noise = .5) 728 0.316 0.080 147.129 .000

Slot-Filling Beam-Search 826 0.277 0.085 159.765 .000

Beam-Search 823 0.265 0.096 144.493 .000

Table A.9.: Darwin: t-Test Summary for BLEU-Scores (H0 : M > .75)
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Appendix A. Evaluation Results per Author

A.4. Charles Dickens

Figure A.16.: Dickens: Distribution of Authorship Scores before and after Method Application
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Appendix A. Evaluation Results per Author

Figure A.17.: Dickens: Distribution of Difference in Authorship Scores

Figure A.18.: Dickens: Distribution of semantic Similarities
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Appendix A. Evaluation Results per Author

Figure A.19.: Dickens: Distribution of BLEU Scores

Figure A.20.: Dickens: Semantic Similarity with Respect to BLEU Score
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Appendix A. Evaluation Results per Author

N MA0 MA1 Md SDd tA pA

Translate (noise = .2) 894 0.260 0.294 0.033 0.164 6.030 .000

Translate (noise = .3) 895 0.260 0.295 0.036 0.164 6.497 .000

Translate (noise = .4) 899 0.259 0.290 0.031 0.167 5.592 .000

Translate (noise = .5) 902 0.258 0.292 0.034 0.168 6.038 .000

Slot-Filling Beam-Search 832 0.255 0.203 0.052 0.365 4.099 .000

Beam-Search 866 0.259 0.394 0.136 0.431 9.256 .000

Table A.10.: Dickens: Paired Samples t-Test Summary for Differences in Authorship Scores

N MS SDS tS pS

Translate (noise = .2) 894 0.971 0.048 138.373 .000

Translate (noise = .3) 895 0.970 0.050 133.033 .000

Translate (noise = .4) 899 0.971 0.048 138.362 .000

Translate (noise = .5) 902 0.969 0.055 119.619 .000

Slot-Filling Beam-Search 832 0.844 0.147 18.462 .000

Beam-Search 866 0.678 0.241 0.000 1.000

Table A.11.: Dickens: t-Test Summary for Semantic Similarities (H0 : M < .75)

N MB SDB tB pB

Translate (noise = .2) 894 0.748 0.221 0.324 .373

Translate (noise = .3) 895 0.743 0.222 0.994 .160

Translate (noise = .4) 899 0.743 0.218 0.950 .171

Translate (noise = .5) 902 0.737 0.224 1.743 .041

Slot-Filling Beam-Search 832 0.323 0.082 149.664 .000

Beam-Search 866 0.284 0.103 133.126 .000

Table A.12.: Dickens: t-Test Summary for BLEU-Scores (H0 : M > .75)
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Appendix A. Evaluation Results per Author

A.5. Mark Twain

Figure A.21.: Twain: Distribution of Authorship Scores before and after Method Application

85



Appendix A. Evaluation Results per Author

Figure A.22.: Twain: Distribution of Difference in Authorship Scores

Figure A.23.: Twain: Distribution of semantic Similarities
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Appendix A. Evaluation Results per Author

Figure A.24.: Twain: Distribution of BLEU Scores

Figure A.25.: Twain: Semantic Similarity with Respect to BLEU Score
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Appendix A. Evaluation Results per Author

N MA0 MA1 Md SDd tA pA

Translate (noise = .2) 899 0.379 0.395 0.016 0.205 2.294 .011

Translate (noise = .3) 903 0.382 0.391 0.009 0.204 1.334 .091

Translate (noise = .4) 898 0.381 0.386 0.005 0.202 0.761 .223

Translate (noise = .5) 898 0.383 0.401 0.018 0.200 2.681 .004

Slot-Filling Beam-Search 837 0.382 0.465 0.083 0.408 5.919 .000

Beam-Search 884 0.375 0.561 0.186 0.459 12.076 .000

Table A.13.: Twain: Paired Samples t-Test Summary for Differences in Authorship Scores

N MS SDS tS pS

Translate (noise = .2) 899 0.958 0.062 100.499 .000

Translate (noise = .3) 903 0.957 0.064 97.911 .000

Translate (noise = .4) 898 0.957 0.064 96.422 .000

Translate (noise = .5) 898 0.956 0.065 95.405 .000

Slot-Filling Beam-Search 837 0.828 0.152 14.930 .000

Beam-Search 884 0.645 0.243 0.000 1.000

Table A.14.: Twain: t-Test Summary for Semantic Similarities (H0 : M < .75)

N MB SDB tB pB

Translate (noise = .2) 899 0.661 0.227 11.719 .000

Translate (noise = .3) 903 0.660 0.227 11.911 .000

Translate (noise = .4) 898 0.660 0.228 11.822 .000

Translate (noise = .5) 898 0.652 0.228 12.909 .000

Slot-Filling Beam-Search 837 0.315 0.083 151.147 .000

Beam-Search 884 0.289 0.096 142.107 .000

Table A.15.: Twain: t-Test Summary for BLEU-Scores (H0 : M > .75)
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Appendix A. Evaluation Results per Author

A.6. Herbert George Wells

Figure A.26.: Wells: Distribution of Authorship Scores before and after Method Application
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Appendix A. Evaluation Results per Author

Figure A.27.: Wells: Distribution of Difference in Authorship Scores

Figure A.28.: Wells: Distribution of semantic Similarities
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Appendix A. Evaluation Results per Author

Figure A.29.: Wells: Distribution of BLEU Scores

Figure A.30.: Wells: Semantic Similarity with Respect to BLEU Score
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Appendix A. Evaluation Results per Author

N MA0 MA1 Md SDd tA pA

Translate (noise = .2) 893 0.434 0.477 0.043 0.209 6.183 .000

Translate (noise = .3) 896 0.436 0.483 0.047 0.215 6.535 .000

Translate (noise = .4) 890 0.432 0.480 0.048 0.212 6.749 .000

Translate (noise = .5) 891 0.434 0.479 0.045 0.219 6.168 .000

Slot-Filling Beam-Search 823 0.439 0.479 0.040 0.415 2.762 .003

Beam-Search 892 0.431 0.566 0.136 0.448 9.043 .000

Table A.16.: Wells: Paired Samples t-Test Summary for Differences in Authorship Scores

N MS SDS tS pS

Translate (noise = .2) 893 0.957 0.061 100.851 .000

Translate (noise = .3) 896 0.957 0.061 101.941 .000

Translate (noise = .4) 890 0.955 0.065 93.821 .000

Translate (noise = .5) 891 0.955 0.066 93.097 .000

Slot-Filling Beam-Search 823 0.832 0.144 16.211 .000

Beam-Search 892 0.687 0.226 0.000 1.000

Table A.17.: Wells: t-Test Summary for Semantic Similarities (H0 : M < .75)

N MB SDB tB pB

Translate (noise = .2) 893 0.652 0.223 13.088 .000

Translate (noise = .3) 896 0.654 0.224 12.807 .000

Translate (noise = .4) 890 0.645 0.226 13.848 .000

Translate (noise = .5) 891 0.647 0.225 13.698 .000

Slot-Filling Beam-Search 823 0.317 0.082 151.249 .000

Beam-Search 892 0.286 0.100 138.663 .000

Table A.18.: Wells: t-Test Summary for BLEU-Scores (H0 : M > .75)
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Appendix A. Evaluation Results per Author

A.7. Jules Verne

Figure A.31.: Verne: Distribution of Authorship Scores before and after Method Application
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Appendix A. Evaluation Results per Author

Figure A.32.: Verne: Distribution of Difference in Authorship Scores

Figure A.33.: Verne: Distribution of semantic Similarities
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Appendix A. Evaluation Results per Author

Figure A.34.: Verne: Distribution of BLEU Scores

Figure A.35.: Verne: Semantic Similarity with Respect to BLEU Score
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Appendix A. Evaluation Results per Author

N MA0 MA1 Md SDd tA pA

Translate (noise = .2) 908 0.241 0.329 0.088 0.240 11.069 .000

Translate (noise = .3) 898 0.241 0.333 0.092 0.239 11.530 .000

Translate (noise = .4) 897 0.243 0.335 0.092 0.247 11.111 .000

Translate (noise = .5) 896 0.241 0.336 0.095 0.249 11.417 .000

Slot-Filling Beam-Search 822 0.244 0.196 0.048 0.373 3.724 .000

Beam-Search 897 0.237 0.403 0.166 0.468 10.611 .000

Table A.19.: Verne: Paired Samples t-Test Summary for Differences in Authorship Scores

N MS SDS tS pS

Translate (noise = .2) 908 0.947 0.071 83.163 .000

Translate (noise = .3) 898 0.948 0.068 86.501 .000

Translate (noise = .4) 897 0.947 0.072 82.052 .000

Translate (noise = .5) 896 0.947 0.070 84.529 .000

Slot-Filling Beam-Search 822 0.827 0.140 15.679 .000

Beam-Search 897 0.671 0.229 0.000 1.000

Table A.20.: Verne: t-Test Summary for Semantic Similarities (H0 : M < .75)

N MB SDB tB pB

Translate (noise = .2) 908 0.613 0.224 18.495 .000

Translate (noise = .3) 898 0.611 0.217 19.252 .000

Translate (noise = .4) 897 0.610 0.221 18.883 .000

Translate (noise = .5) 896 0.611 0.219 19.008 .000

Slot-Filling Beam-Search 822 0.313 0.084 148.336 .000

Beam-Search 897 0.279 0.098 144.028 .000

Table A.21.: Verne: t-Test Summary for BLEU-Scores (H0 : M > .75)
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