
Klemens Sudi, BSc

TabEx - Multi-Approach Table Extraction
for Native and Scanned PDF Documents

Master’s Thesis
to achieve the university degree of

Master of Science

Master’s degree programme: So�ware Engineering and Management

submi�ed to

Graz University of Technology

Supervisor

Dipl.-Ing. Dr.techn. Roman Kern

Institute for Interactive Systems and Data Science
Head: Univ.-Prof. Dipl.-Inf. Dr. Stefanie Lindstaedt

Graz, September 2019

A�idavit

I declare that I have authored this thesis independently, that I have not used other
than the declared sources/resources, and that I have explicitly indicated all material
which has been quoted either literally or by content from the sources used. �e text
document uploaded to tugrazonline is identical to the present master‘s thesis.

Date Signature

ii

Abstract

�e subject area of automated Information Extraction from PDF documents is of
high relevance since the PDF standard is still one of the most popular document
formats for information representation and exchange. �ere is no structuring blue-
print for PDF documents, which makes automated information gathering a complex
task. Since tables are structuring elements with a very high information density, the
�eld of Table Detection is highly relevant in the context of Information Extraction.
Due to the high variety of formats and layouts it is hard to choose the correct tool
that suits optimally for every speci�c scenario. In this thesis, the added value of
techniques used to identify table structures in scanned PDF documents is evaluated.
�erefore, two algorithms were implemented to allow an objective comparison of
Table Extraction applied on di�erent types of PDF documents. While the algorithm
developed to treat native PDFs is based on heuristics, the second approach relies
on deep-learning techniques. �e evaluation of both implementations showed that
the heuristic approach performs excellent in detecting tables. However, it shows
weaknesses in distinguishing non-tabular areas that show similarities to table struc-
tures, from tabular areas. �erefore, the Recall metric shows be�er results than the
Precision for the heuristic method. When applying Table Detection on scanned
PDFs using the second approach, the low number of False Positives and therefore
the superior Precision value compared to the �rst approach is notable. On the other
hand the number of tables not detected as trade-o� for the high Precision result in a
lower Recall for single- as well as multi-column documents if partial detections are
classi�ed as correct results. Furthermore, limitations that reduce the detection-ratio
were detected. �is concerns structures that share similarities with tables, like
�gures, formulas and pseudo-code. �ese mentioned limitations are particularly
relevant for the heuristic and less for the deep-learning based approach. All in all,
there were several �ndings concerning advantages and disadvantages of applying
Table Detection on scanned and native documents. Based on the evaluation results,
strategies were elaborated of when to preferably use a speci�c approach dependent
upon the document type, layout and structuring elements.

iii

Contents

Abstract iii

1 Introduction 1

2 Related Work 3
2.1 Background . 3

2.1.1 Types of PDFs . 4
2.1.2 Text Extraction of PDFs 6
2.1.3 Optical Character Recognition 8
2.1.4 Tables in PDFs . 12
2.1.5 Deep Learning . 15

2.2 State of the Art and Trends . 18
2.2.1 Native PDF Table Extraction 18
2.2.2 Scanned PDF Table Extraction 22
2.2.3 Overview of State of the Art Table Detection and Extraction

Tools . 26

3 Method 27
3.1 Native PDF Table Extraction . 28

3.1.1 Technologies . 29
3.1.2 Implementation . 29
3.1.3 Problems and Challenges 48

3.2 Scanned Table Extraction . 51
3.2.1 Technologies . 52
3.2.2 Implementation . 53
3.2.3 Problems and Challenges 62

4 Evaluation 65
4.1 Evaluation Criteria . 65

v

Contents

4.2 Limitations . 70
4.3 Test Data . 71

4.3.1 Native Test Data . 72
4.3.2 Scanned Test Data . 73

4.4 Results . 74
4.4.1 Native PDF Table Detection 74
4.4.2 Scanned PDF Table Detection 77
4.4.3 Comparison of Approaches 79

4.5 Discussion . 80

5 Conclusion 83
5.1 Future Work . 85

Bibliography 87

vi

List of Figures

2.1 Example native PDF . 5
2.2 Example scanned PDF . 6
2.3 Di�erent Types of Tables . 14

3.1 �e process of Table Extraction from high-level perspective. . . . 28
3.2 Preprocessing of native PDFs . 30
3.3 Summarization of words from native PDF 31
3.4 Summarization of lines from native PDF 32
3.5 Table Detection of native PDFs . 33
3.6 Sparse Line Detection . 34
3.7 Example of intended sparse line 35
3.8 Multi column detection example two columns 37
3.9 Multi column detection example one column 37
3.10 Handling of bullet points and justi�ed text 38
3.11 Header and Footer Detection based on Keywords 42
3.12 Header and Footer Detection based on Line Distance 43
3.13 Table Extraction of native PDFs 44
3.14 Example summarized lines because of y-distance 46
3.15 Critical column boundary detection 47
3.16 Training Process for scanned Table Detection 54
3.17 Ground Truth of scanned PDF Tables 55
3.18 Transformation of scanned PDF Page 56
3.19 Training process with TensorFlow based tool Luminoth 57
3.20 Process for scanned Table Detection 58
3.21 Process for scanned Table Boundary Detection 60
3.22 Process for scanned Table Extraction 61
3.23 Table boundaries given coordinates for extraction of tabular data 62

4.1 Statistical parameters to calculate performance of Table Detection 66

vii

List of Figures

4.2 Visualisation of Table Detection Results 69

viii

List of Tables

2.1 Comparison of PDF text extraction tools 8
2.2 Overview of Table Extraction and Table Detection algorithms . . 26

4.1 Description of native test data . 73
4.2 Description of scanned test data 74
4.3 Results of native Table Detection process 75
4.4 Native detection results (partial valid) 76
4.5 Native detection results (partial invalid) 76
4.6 Results of scanned Table Detection process 77
4.7 Scanned detection results (partial valid) 78
4.8 Scanned detection results (partial invalid) 78
4.9 Scanned and native detection results (partial valid) 79
4.10 Scanned and native detection results (partial invalid) 79

ix

1 Introduction

Since the PDF (Portable Document Format) standard still is one of the most popular
electronic documents formats, the extraction of text and additional information like
tables or images from PDF documents is a relevant problem today. �e extraction
of tables, which is investigated on in this paper, is a very relevant task because
of the high information density and the common usage as structuring element in
documents. Since tables can be represented in a variety of formats, for example
using lines or white spaces to point out cell boundaries, extracting information is a
very challenging task [39]. �ere are countless tools available which try to solve
this problem in di�erent ways. Due to the high variety and missing documentation
of these tools, their functionalities, as well as their quality, is hard to determine.
�is makes it di�cult to choose the perfectly suited tool for a speci�c use case.

One of the challenges of performing text extraction and other techniques for
collecting information from PDF documents is the fact that the PDF format is
layout based. In other words, in the PDF standard, the fonts and positions of the
individual characters are speci�ed whereas the role of words or paragraphs in the
documents, as well as their semantics, are usually not provided in the majority of
cases. In the rare case a PDF document is tagged with semantic information the
required quality to pro�t from them is rarely given [19].

Additionally, to extracting text and structural information from PDF documents,
there are many use cases for which native PDF text extraction techniques are not
suitable. �is includes for example to extract text and tables from images. For these
scenarios, Optical Character Recognition (OCR) techniques are highly suitable to
collect information. OCR allows the recognition of characters through an optical
mechanism which makes it possible to convert handwri�en and typewri�en text
as well as scanned images of printed documents into machine-encoded text. Even
though OCR is not able to compete with human reading skills, it makes it possible
to convert certain types of data into editable and searchable data [38].

1

1 Introduction

Table Extraction (TE) is one sub�eld of Information Extraction (IE). For successful
Table Extraction, the tables have to be detected and the cell-information has to
be identi�ed and extracted [48]. Since tables can be found in nearly every type of
document, high quality TE will lead to a relevant increase in information content. As
a cell of a table typically contains one unit of information, the extracted information
of tables is highly suitable for automated machine processing [34].

Although the problem of Information Extraction from PDF tables is from high
practical importance, there does not yet exist the ”perfect tool” for this subject area.
�e goal of this thesis is to develop a strategy of when to use classical Information
Extraction and when to use OCR to generate optimal results concerning Table
Extraction from PDF documents. To reach this goal, an evaluation pipeline will be
de�ned in advance, which allows analysing the results of the di�erent strategies
used. To produce the results, tools using both strategies are developed and the used
technologies, as well as algorithms, will be described. �e results are evaluated and
the optimal use cases for both strategies are outlined. �e evaluation results will
indicate if the usage of OCR additionally to classic PDF extraction techniques adds
value concerning the detection and extraction of tabular content. Furthermore, the
scenarios where both approaches can bene�t from one another are explored and
the �ndings will be documented and analyzed.

2

2 Related Work

�e target of this chapter is to give the reader an overview about terms and concepts
that are relevant for the further understanding of the thesis. Technical terminology
is explained and an overview of the main underlying technologies is given in the
”Background” section. Furthermore, in the section ”State of the Art and Trends”, the
current state of the problem targeted by the research question is examined based
on several scienti�c research papers of the subject area.

2.1 Background

�e Portable Document Format (PDF) is a �le format used for visual presentation
developed by Adobe in the 1990s with the goal to help users to exchange and view
electronic document in an easy and reliable manner without having to consider
the platform or environment in which the document was created or is looked at.
�e document format is based on a similar imaging model as PostScript, a page de-
scription language also published by Adobe, for device and resolution independent
de�nition of text and graphics. �e PDF standard de�nes a more structured format
to enhance the performance compared to the most PostScript language programs.
Additionally, object annotations and hyperlinks are supported to decrease the
unfriendliness concerning interactive viewing and document interchange [36].

Adobe de�nes the PDF standard as follows: ”A PDF document consist of a collection
of objects that together describe the appearance or one or more pages, possibly
accompanied by additional interactive elements and higher-level application data.
A PDF �le contains the objects making up a PDF document along with associated
structural information, all represented as a single self-contained sequence or bytes.”
�e appearance of every page of a PDF document is described by its content stream,
which consists of a sequence of graphical objects. Adobe underlines, that PDF

3

2 Related Work

documents can also include higher-level information like identi�cation and logical
structure information that help when searching and editing content. �is factor
also facilitates the process of content extraction for later reuse somewhere else. �e
technologically advanced imaging model allows pages to consist of text, graphical
shapes and images in terms of abstract elements rather than in pixels. �is way
the high quality can be maintained on a wide range of devices (printers, displays).
A�er the description of the desired output is generated by the page description
language (a role of PDF), it is possible for applications to interpret and render the
content independent of its type.

Even though two PDF documents may look the same on �rst glance, the method
used for their creation can be completely di�erent. PDFs can be generated directly
from applications, which allows the use of the full capabilities of the PDF standard
including tags, the imaging model and document interchange features. Applications
that do not support direct PDF creation can generate them indirectly by calling the
operating systems printing API. Also, third party translation so�ware can be used
for PDF document creation. While indirect PDF generation o�en is the easiest way
of creating PDF document, not all high level structuring features of the standard
can be used. �e application speci�c information for document description is lost in
this process and therefore not available to the driver or translating so�ware [5].

2.1.1 Types of PDFs

PDF documents can be created either directly or indirectly by converting the content.
When directly creating PDFs, the full capabilities of the standard can be used. �e
conversion of content into the PDF format is the easiest and most common way
PDFs are obtained but generally the resulting documents are not taking advantage
of the high-level Adobe imaging model by describing the output at very low level.
A�er the PDF was created indirectly, all higher-level information is lost and can
not be recovered anymore. �is makes tasks in the context of data extraction and
further processing a lot harder since most information has to be recovered on the
basis of the incomplete information included in the document [36].

As mentioned in section 1, there are two main categories in which PDF documents
can be categorized. Which category a PDF belongs to depends heavily on the way
it was created.

4

2.1 Background

�e mentioned categories are [33, 41]:

• Native PDF documents
So called native PDFs (also called true PDFs, Read PDFs or born digital
PDFs) are originally created from a computer by so�ware to generate reports,
spreadsheets etc. and are made up of code that allows to present the content to
the user in the same form the document was created originally. �ese vector-
based �les enable the viewer to search the �le or perform copy-paste actions.
Native PDFs can also be split into two sub categories like described above:
Either PDFs are created directly by programs or indirectly by conversion
from other �le formats. �ese sub categories di�er from one another by the
amount of high-level information that is included. While directly created
PDFs take advantage of all functionalities coming along with the usage of the
PDF standard, indirectly created PDFs are the more common choice because
of the simplicity of this approach [36, 41]. As shown in �gure 2.1, due to
its vector-based characteristic the quality of text remains the same when
zooming into the PDF �le.

Figure 2.1: Example text snippet of a native PDF. �e edges stay sharp when zooming into native
PDFs due to its vector based structure.

• Scanned PDF documents (Image only)
Documents of this category do not have any digital code to describe its
structure or forma�ing. �ese documents may have originally been native
PDFs but by performing a scan they become no more than an image with
the advantage that the �le integrity can be maintained. Editing of scanned
PDFs is very di�cult and requires technical knowledge as well as appropriate
tools. Adding tags to older or scanned PDFs to facilitate further processing
is a very challenging and complex task since every PDF is designed and
structured in its particular way. Working with so called ”image only” PDFs
can be challenging since the missing text layer also prevents the user to
perform searching and copying actions [41]. In contrast to �gure 2.1, one can

5

2 Related Work

recognize in �gure 2.2 that zooming into scanned PDF documents lowers the
quality of the textual elements because of its image like behaviour.

Figure 2.2: Example text snippet of a scanned PDF. �e unsteady edges show the image-like beha-
viour of scanned PDF documents when zooming in.

Additionally to these two main categories, Korneev et al. [41] mentions searchable
PDF documents. Searchable PDFs are positioned in between native and scanned
PDFs since the picture of the scanned document is retained while the recognized
text is placed behind the picture. When performing Optical Character Recognition
(OCR), which will be described in detail in the following paragraphs, on native
PDF documents so called searchable PDFs are created. Depending on the OCR
so�ware the quality of the textual layer can vary and optimal results of copying
and searching actions cannot be guaranteed.

2.1.2 Text Extraction of PDFs

Bui at al. [21] de�ne data extraction as a standard process in systematic review
development. Since such processes usually rely on manual actions which are slow,
costly and error prone, automated systems for text extraction and further processing
are in high demand. Another article by Bui et al. [22] states that Information
Extraction (IE) systems have a huge potential for helping humans performing time
consuming extraction tasks. �e downside is that most IE systems are not designed
for data extraction from PDF typed documents. �e reason why most IE tools are
not focusing on the PDF standard, even though PDF documents are a very common
and important extraction source, especially in the scienti�c domain, is the high
complexity related to the implementation of such tools [22]. PDFs are confusing
narrative content with meta-data as well as semi-structured text which is very
hard to di�erentiate for automated algorithms. According to Damerow et al. [26]
the conversion of images and PDF �les into plain text is in constant demand since

6

2.1 Background

further processing steps like Named Entity Recognition or topic modelling rely
on textual content. �e domain of scienti�c text mining is also mentioned to be
relying on automated approaches for text extraction of articles [29]. Ferres et al. also
mention that the PDF �le format still represents the majority of scienti�c articles
even though other data formats are emerging. A�er extracting textual information
from PDF documents further processes like Natural Language Processing, Parsing,
relation extraction and several others can be applied for enriching and mining
textual content.

Bast and Korzen [19] describe the word identi�cation process within PDF documents
as non-trivial. �ey mention spacing as a main challenge. Whitespaces can vary
a lot between le�ers and words and can also di�er from line to line for example
if the text is justi�ed. �erefore, it is hard to de�ne words by just considering the
spacing distances. Other challenges can be line breaks within words and special
characters which cannot be uniquely identi�ed. Di�erent styles of PDFs (single
column, multiple columns) lead to problems concerning the correct identi�cation of
the word order. Determining paragraph boundaries is hard since these boundaries
can be interrupted by �gures, tables and page breaks. Keeping semantic information
of PDF documents like titles and captions is an important task to allow further
processing in more detail.

Many tools and APIs for performing automated text extraction from PDF documents
are already available for the public but a big variance in quality and the number
of features (like the identi�cation of paragraph boundaries, the identi�cation of
the reading order or the identi�cation of semantic roles) make it hard to evaluate
these approaches. In 2017, Bast and Korzen [19] conducted a detailed analysis of
multiple approaches and give an in-depth overview of the performance and result
quality as well as the features every approach is providing. Following Table 2.1 is
an excerpt or the provided results and gives an overview on the performance and
quality of three of the evaluated text extraction libraries. Bast and Krozen analysed
and evaluated the tools based on ten a�ributes during the extraction process.

�is evaluation shows that concerning the most important criteria like missing
and misspelled words all algorithms provide similar results. Concerning missing
Newlines the tool PDFAct (former known as Icecite) performs the best by far because
PDFBox does not provide automated paragraph boundary detection. PDFExtract
performs badly in this category because isolated formulas are not categorized as
single paragraphs. �e high result within the spurious paragraph evaluation of

7

2 Related Work

Criteria PDFBox1 PDFExtract2 PDFAct3 (Icecite)
Spurious Newines 3.6% 11.0% 4.0%
Missing Newlines 85.0% 40.0% 13.0%
Spurious Paragraphs 27.0% 21.0% 4.2%
Missing Paragrahps 0.2% 25.0% 5.5%
Reordered Paragraphs 0.1% 0.9% 0.1%
Spurious Words 0.5% 0.4% 0.3%
Missing Words 0.0% 0.1% 0.1%
Misspelled Words 1.6% 1.8% 0.6%
Extraction Error 2 176 34
Average Extraction Time/File 8.8 sec. 46 sec. 41 sec.

Table 2.1: Comparison of the PDF text extraction tools PDFBox, PDFExtract and PDFAct. �e
in-depth analysis of ten selected criteria allow a detailed evaluation of di�erent areas
concerning text extraction from PDF documents.

PDFBox is caused by the missing extraction of semantic roles. Even though PDFEx-
tract take semantic roles into account, its performance is not signi�cantly be�er
while only PDFAct can deliver good results in this �eld. None of the three compared
tools struggle with processing multi column documents (reordered paragraphs).
�e most obvious di�erences can be observed when comparing the results of the
criteria extraction error and the average time needed for one PDF document. �e
PDFBox library has by far the lowest extraction error rate and also the extraction
time per document is signi�cantly faster compared to the other tools. To perform
text extraction from scanned or image-typed documents, another technology called
Optical Character Recognition is needed to pre-process the documents.

2.1.3 Optical Character Recognition

Cheung et al. [24] de�ne Optical Character Recognition as ”the process of converting
a raster image representation of a document into a format that a computer can process”.
According to Islam et al. [37] OCR is de�ned as ”the process of digitizing a document
image into its constituent characters”. Even tough research in this �eld has been
performed for decades, the quality of OCR still stays behind human recognition
skills. �is area covers multiple subcategories of computer science like image and

8

2.1 Background

natural language processing, pa�ern recognition, arti�cial intelligence and database
systems [24].
To convert scanned PDF documents to searchable PDF �les, Optical Character Re-
cognition so�ware is used. OCR tools recognize and extract data from the document
pages which store the visual content of the original �les in form of images. To
di�erentiate between scanned and native PDFs one can check the document proper-
ties for font information that is not included in scanned �les since PDF-Converters
cannot recognize the text without performing OCR. �is also means that only areas
of images can be selected while native PDFs allow text selection for e.g. copying
text chunks. Masum et al. [45] describe OCR as a very important technology in the
context of automated analysis of business-related documents. It allows to archive
digital copies of documents that cannot be manipulated in retrospect. �is allows
automated knowledge extraction to improve business e�ciency by performing
search operations based on domain speci�c key phrases.
As mentioned before, OCR technology enables the conversion of imaged typed
�les into machine encoded data that can be edited electronically, searched, digitally
stored and used in machine processes. �erefore institutions like libraries com-
monly make use of the OCR technology to digitize their inventory. According to
Chirag Patel et al [47], the accuracy of Optical Character recognition is heavily
dependent on the text pre-processing and segmentation algorithms. Di�erent styles,
sizes, orientations of text and complex backgrounds make it a challenging task to
detect le�ers in images. Characters with li�le visible di�erence (e.g. digit 0 and
le�er O) are very di�cult to distinguish from one another and text embedded in
very dark background can hardly be recognized by a computer. In 1870 CR Carey
of Boston Massachuse�s invented a retina scanner as image transmission system
which was the origin for character recognition. �is retina scanner was just able
to characterize one font at a time and needed to be trained with pictures of every
single character in advance. Generally speaking, OCR systems were very limited in
the past by focusing on machine printed textual content and just small sets of hand-
wri�en text and symbols. In the majority of cases they were based on comparisons
of images to a library of images, also called template matching [23].

9

2 Related Work

In the year 1955 the �rst commercial OCR system for digitizing o�ce documents
was published. Nowadays many OCR tools of varying quality concerning their
recognition accuracy are available on the market but only few of them are free to
use and open source [47].

According to Chaudhuri et al. [23] Optical Character Recognition systems can be
based on several di�erent techniques such as: optical scanning, location segmenta-
tion, pre-processing, segmentation, representation, feature extraction, training and
recognition and post-processing.

• Optical scanning converts multilevel images into bi-level black and white
images. For this purpose, a threshold is de�ned where grey levels above this
threshold are categorized as white and grey levels below are categorized as
black. More sophisticated thresholding techniques take local properties of
each �le into account when de�ning the boundaries.

• Location segmentation is essential to locate regions which are textual and
separate them from regions consisting of images before continuing with the
recognition process. Most commonly every single character gets isolated
and recognized individually without its context. Problems of segmentation
techniques occur when characters touch their neighbours or when graphics
are confused with text and vice versa. Another challenge is to get rid of the
amount of noise which is contained in documents a�er they were scanned in
and digitized as images.

• Pre-processing targets on producing data that is simple to analyse precisely
for OCR systems. Pre-processing is split into three components: noise reduc-
tion, normalization of data and compression in the amount of information to
be retained. Depending on the quality and resolution of the scanner as well
as the physical document, the characters and lines can be smeared or broken.
By using smoothing techniques like �lling and thinning, small gaps in broken
characters are closed and the width of lines is reduced. To receive standardized
data by removing the variations of the writing, normalization techniques are
applied. �ereby characters are adjusted to the same size, rotation and slant.
When compressing the data to be retained a�er performing noise reduction
and normalization, the shape information has to be maintained.

• Segmentation aims to divide characters into its sub-components. �ere are
several di�erent approaches for this problem but especially the segmentation

10

2.1 Background

of cursive writing still is to be solved. By separating every line of a character
from one another the recognition rate is a�ected directly.

• In which way the images are passed to the recognizer is handled in the
representation step. �e features which maximize the recognition rate
are selected. �is aims on maximizing the variability between classes by
extraction the most representative information from the available data.

• Feature extraction is one of the most challenging problems of pa�ern re-
cognition. Essential characteristics of symbols are captured for being able
to accurately classify them a�erwards. Frequently used techniques for fea-
ture extraction are template matching, distribution of points and structural
analysis. �e second part of this step focuses on classi�cation which is the
process of identifying each character and assign it to the matching class. �is
classi�cation can be realized with the help of decision theoretic and structural
methods. Especially when using structural methods, relationships between
characteristics are highly relevant to classify characters correctly.

• �e main approaches used for the training and recognition step are tem-
plate matching, statistical techniques, structural techniques and ANNs. �e
approaches can be used standalone or as combined variations since they
do not exclude each other. Each of these techniques use either holistic or
analytic strategies for the completion of this step. While the holistic strategy
makes use of top down approaches for full character recognition, the ana-
lytic strategy works bo�om up and focuses on forming meaningful content
starting on character level.

• Post Processing aims at grouping, detecting errors coming up in the former
stages and correcting them. Grouping single characters to strings is based on
their position in the document. Hereby the distances between characters and
words are calculated and used as threshold for the group-assignment. Since
no recognition systems can insure completely correct results, error detection
by using the context is used to improve the outcome. Hereby probabilities
of sequences of characters appearing together are analysed and utilized to
detect errors. Also, the usage of dictionaries is a popular solution to e�ciently
detect and correct errors. Words not contained in the dictionary are classi�ed
as errors and corrected to the most similar existing word. On the one hand
this process is very reliable and e�cient but on the other hand this task is
very time consuming.

11

2 Related Work

2.1.4 Tables in PDFs

According to Göbel et al [32], the �eld of table understanding a�racted much a�en-
tion in the previous years, especially in the context of the PDF �le format, since it
is the most commonly used data format aside from HTML. �e article splits the
process of table understanding into the following three steps: Table Detection, table
structure recognition and table interpretation. �e biggest issue evaluating di�erent
table understanding approaches is the lack of documents where the ground truth is
provided without having to pre-process the documents before the analysis.
In an article [25] published in the year 2017, the PDF standards report like character-
istic that is focused on graphical visualization is described as a problem, since open
data should be made open to the public in a way that that allows further automated
machine processing. �is circumstance has the result that many governmental data
organizations are publishing their data in PDFs in addition to presenting structured
data in .csv �les, since they do not require as much e�ort as PDFs when including
tables in a structured and comprehensible way. For these described reasons, the
demand of tools for automated Table Extraction is given, especially in the sector
of open government data communities, whose goal is to make governmental data
easily accessible for the public in a structured way.
Even though a table is usually considered a simple concept, Embley et al. [28] state
that de�ning a table in general is a di�cult task. According to the free dictionary4,
a table is de�ned as follows: ”An orderly arrangement of data, especially one in which
the data is arranged in columns and rows in an essentially rectangular form”. �e
Cambridge Dictionary5 describes tables as ”an arrangement of facts and numbers in
rows or blocks, especially in printed material”. Tables can contain di�erent types of
data (words, numbers, graphics) and can be generated in di�erent ways (handwrit-
ten, electronically). Hassan et al. [34] state that data of table cells is very suitable
for machine processing since one distinct logical item is contained.

Ranka et al. [49] describes Table Detection in scanned PDFs as an unsolved problem
since there is no algorithm that is capable of identifying tables for all possible
layouts. �e biggest challenge is the variety of di�erent table layouts which results
in a problem of very high complexity. Complex tables can contain rows and columns
spanning multiple areas and also cells not containing any value can exist. Figure
2.3 demonstrates the huge variety of di�erent table layouts and types of tables.

4h�ps://www.thefreedictionary.com/table
5h�ps://dictionary.cambridge.org/dictionary/english/table

12

2.1 Background

Tables are categorized into two main groups by Tran et al. [52]:

• Ruling-line table
Tables of this type are separated from the content by bounding boxes or ruling
lines. Also, separation lines within the table region are common. Ruling-line
tables can further be categorized into: closed table (a rectangular boundary for
table and table cells), non-closed table (no continuous rectangular boundary),
parallel table (only parallel horizontal lines) and color table (structure through
color blocks).

• Non-ruling-line table
Non-ruling-line tables are common for reports, le�ers and emails but hardly
used in scienti�c articles. Neither bounding boxes nor ruling-lines are used
for content structuring.

Since a majority of PDF �les do not include content meta-data in form of tags,
it is hard to identify structural information. Additionally, noise resulting from
pre-processing steps (like OCR) might complicate the correct identi�cation of the
document structure [44][53]. Especially in the domain of scienti�c publication,
complex table structures with nested elements and columns and rows spanning
multiple �elds are very common. It is a big challenge for automated approaches
within the �eld of Information Extraction that today most scienti�c articles are
available as PDF lacking structural information [30]. Since tables do not have a
unique characteristic that allows their reliable identi�cation in documents, it is hard
to teach computers to detect and understand tables even though they are easily
recognizable for humans. A typical example is the way in which cell boundaries
are de�ned. While some documents use lines as delimiters, other documents only
use white spaces to separate cells and rows to achieve a table view [53].

13

2 Related Work

Figure 2.3: �is �gure shows some of the most common types of tables presentation. �e row
and column separation as well as the �lling of the cells may vary heavily and makes
automated Table Detection and extraction a very challenging task.

14

2.1 Background

2.1.5 Deep Learning

For this thesis it is not only necessary to understand the nature of PDF documents
and tabular structures, but also a fundamental knowledge concerning the �eld
of Deep Learning is essential since many Table Extraction approaches are based
on Deep Learning techniques. �e following sections serve the purpose to give
profound understanding concerning some key terms of this topic:

• Deep learning
• CNN, R-CNN, Fast R-CNN, Faster R-CNN
• Region Proposal Network (RPN)
• Learning Rate

According to LeCun et.al. [42] Deep learning has improved the state-of-the-art
in several domains like object detection as well as speech recognition by allowing
computational models consisting of multiple layers for processing to learn data
representations with multiple abstraction levels. With the help of deep learning
complex structures can be found in huge data-sets by using the backpropagation
algorithm. While conventional machine-learning methods rely on the processing
of data in its raw form, more and more applications of this type make use of
deep learning techniques. By applying representation-learning techniques, raw
data is used to automatically detect representations needed for further processing
(detection, classi�cation). Deep learning �ts into this category because the raw
input is transformed into multiple representation levels which allows very complex
functions to be learned.

CNNs (Convolutional Neural Networks) are heavily used for image classi�cation
by reducing dimensionality without a big loss of features and are essential in the
context of the next described approaches[9]. Faster R-CNN is a methodology also
used for real-time object detection because of its high performance. �e predecessors
of the Faster R-CNN algorithm are R-CNN and Fast R-CNN. In the article of Gandhi
[8] it is described that these algorithm are necessary for object detection since
standard convolutional networks along with a fully connected layer are not able to
handle the detection of multiple objects of interest in one picture. A possibility to
overcome this problem is to split up the image into several regions and to apply
CNN on each of them. �is is not practicable since the size and location of the
objects can vary and therefore a huge amount of regions have to be selected to cover
all potential areas which would be very computationally intense and therefore very

15

2 Related Work

ine�cient. R-CNN as well as the Fast R-CNN method approach the above described
problem by using selective search to limit the number of extracted regions called
region proposals to a certain number.

�e R-CNN method extracts 2000 region proposals from the input image with
the help of the selective search algorithm. A�erwards the proposals are warped
into a square and fed to a CNN (convolutional neural network) / convolutional
feature map for feature extraction. �e resulting dense output layer is consisting
of the features that were extracted from the image. A�erwards these features are
fed into a Support Vector Machine (SVM) for object presence prediction as well
as for the speci�cation of the objects boundaries. �is described approach is still
computationally intense and no real-time application is possible because of the
high number of region proposals per image that are fed to the CNN. Further more
the selective search algorithm is not able to improve its performance since it is a
�xed method. �erefore no improvement in candidate region proposal detection is
possible.

In contrast to R-CNN, the Fast R-CNN feeds the input image immediately to a
CNN to generate the convolutional feature map. A�erwards the identi�cation of
the region proposals is performed by using the selective search algorithm. With the
help of a RoI (Region of Interest) pooling layer the region proposals get reshaped
into a �xed size for them to be fed into a fully connected layer. Now a so�max
layer (so�max function is an aviation function that turns numbers into probabilities
[14]) is used for object predictions and boundary box speci�cation. �e Fast R-CNN
performs the convolution operation only one per input image to create a feature
map from it whereas the R-CNN feeds every region proposal to the CNN. Even
though the Fast R-CNN method performs far more e�cient than the R-CNN, the
circumstance that the identi�cation of the region proposals is still realized by using
selective search slows down the execution by a signi�cant degree.

�erefore the Faster R-CNN targets on eliminating the performance bo�leneck
the usage of selective search causes. �e �rst steps of feeding the input image to a
CNN and generating a convolutional feature map are identical for both approaches
(Fast R-CNN and Faster R-CNN). To evade selective search a separate network
(Region Proposal Network or RPN) is used for region proposal prediction which
are again reshaped by the RoI pooling layer before the proposals are classi�ed
and bounding boxes are predicted[8]. Since a learning network instead of a time

16

2.1 Background

consuming selective search algorithm is used for region proposal detection the
Faster R-CNN can be used be used for time-critical scenarios.

According to Ren et. al. [51] Region Proposal algorithms form the basis of object
detection networks for hypothesizing object locations as well delivering objectness
scores. Pictures of any size serve input for a RPN that outputs a set of object
boundaries that present object proposals along with their score. Region Proposal
Networks are fully-convolutional and are trained end-to end. Region boxes also
called ”anchors” are ranked and those most likely to contain the wanted object
class are proposed.

In the context of training neural network the term training rate is from high
relevance. �is rate is a so called hyper parameter that controls the adjustment ratio
of the weights of the trained networks taking into account the loss gradient. �is
means that this value controls the speed in which a model is learning. Choosing an
inappropriate learning rate can have di�erent consequences. If the learning rate is
too low, it takes a long time until convergence. On the other hand when selecting
a too high learning rate the resulting network weights may be sub-optimal while
the training process was very fast compared to a low rate. If the learning rate is
estimated perfectly the model learns fast to best approximate the function given
the available resources [3, 15].

17

2 Related Work

2.2 State of the Art and Trends

�ere are many approaches for Information Extraction from PDF documents but it
is still challenging to �nd the perfectly suited tool for speci�c cases. Several studies
have been performed focusing on di�erent aspects of the topic ”Table Extraction”.
�e following paragraphs discuss current strategies to approach this subject area.
Current literature concerning the data extraction from native as well as scanned
PDFs was reviewed and is presented in the following subchapters.

2.2.1 Native PDF Table Extraction

�e extraction of content from native PDF �les greatly di�ers from the extraction of
imaged typed �les since many techniques can be applied to native PDFs that cannot
be used when dealing with scanned PDFs. Even though the PDF standard does
support tagging to add structural information, hardly any PDF �le contains this
information. �erefore, relying on this information is no su�cient to successfully
extract tabular content from PDF documents.

�e Table Organization (TAO) system allows to automatically detect, extract and
organize table-information from PDF documents [48]. �e systems approach makes
use of the k-nearest neighbor method as well as using layout information to identify
tables in PDF documents and to generate the extraction result. It relies on the
structure of tables, discovers data as well as meta data and is �exible since it
is independent of �xed pa�erns or layouts. TAO generates an enriched version
of the extracted data and aims for portable output that facilitates sharing and
further processing of the information. TAO uses PDFMiner, a tool for extraction
and analyzing textual data from PDF documents, to convert the document into XML
format containing several tags about the document’s characteristics. A�erwards
the XML �le gets parsed and possible table candidates are detected. �e third step
analyses these candidates to extract the content of the table cells. �e extraction
process results in a JSON �le containing table information as well as additional
information of the PDF document. �e tool does not exceed similar approaches
concerning performance but is able to overcome some issues related to Table
Extraction and is able to handle a variety of di�erent document structures. �e
combination of machine learning technology and the analysis of layout heuristics
is deciding for TAO to identify and extract tabular data. A�er the PDF to XML

18

2.2 State of the Art and Trends

conversion with the help of PDFMiner, additional information like coordinates are
included and each page is divided into classes like text, text lines and text boxes.
�e TAO system performs its task based on the provided output of the external
tool PDFMiner and initiates its Table Detection process by searching the text boxes
for table candidates with the help of distance calculations and the identi�cation
of structural relationships. �e extraction process is divided into two steps. A�er
�nding the table candidates, the cells are identi�ed by text line comparisons and
a�erwards the cell value is reconstructed [48].

Table Extraction and Understanding System (TEXUS) is another approach research-
ers came up with to gather information from tables in documents. It consists of a
pipeline of four steps where each step focuses on a speci�c task and the results of
every steps can be analysed separately. Beginning with document converting, a
XML �le gets generated from the given PDF by the open source PDF wrapping so�-
ware XPDF. A�erwards, potential table regions are classi�ed to separate the tables
from the non-tabular content of the document. During the segmentation process
the cells, rows and columns are categorized and header lines are detected. Also,
complex table structures are recognized in this step. By performing functional and
structural analysis on the gained information, header and data cells are examined
to determine the reading order of the table. �e outcome does only focus on pure
data that is completely separated from its presentation layout [50].

According to Ying Liu et al. the Information Extraction research focuses on the
extraction of information from text of digital documents even though the most
important information of articles is mostly presented in tabular form. For prepar-
ing the digital source of data, the detection of table boundaries plays a key role.
Since there is no standard de�ned for tabular presentation of data, the detection
as well as extraction of tabular data is a challenging problem. �e approach de-
scribed in their paper focuses on ”sparse line detection” for identifying the table
boundaries and applies CRF (Conditional Random Field) and SVM (Support Vector
Machines), two machine learning techniques for further processing. By categor-
izing the document-lines into sparse and non-sparse lines before initializing the
table boundary detection process allows to reduce noise and saves time and e�ort
when proceeding with the subsequent steps. �e table boundary detection is also
enhanced by keyword detection (”Form”, ”Table), which can also be used in corner
cases like separating tables which are presented a�er another. �e research was
focusing on scienti�c documents and directly analysed the documents without
conversion into a di�erent format in advance. �e process described is split into

19

2 Related Work

four phases: line construction, removal of non-sparse lines, removal of noisy sparse
lines, labelling of table lines considering keywords. It is described that PDFs o�er
enough information for Table Extraction since most tables are text-based. �e
performance of extracting tables can be signi�cantly improved by prepossessing
the data and spli�ing the line-data into sparse and non-sparse lines[44].

Hassan and Baumgartner [34] describe a Table Extraction method that does not
rely on ruling lines and indentations. �e �rst step includes the extraction of text
and graphical objects from the PDF �le by using the Java library PDFBox. �e
extracted elements include additional information like coordinates, font a�ributes
and metadata. Also, logical information like the reading order is obtained. Data is
further processed to receive all objects on each page with their rectangular bounding
boxes. Words are categorized into segments (preferably under-segmentation) and
vertical clustering is used to group lines together to achieve a segmentation of
paragraphs and table columns. A�er clustering is completed, line-�nding is applied
on the entire width of each cluster to complete the preprocessing steps. �ere are
three table recognition approaches applied to the di�erent types of tables.

• Horizontal and vertical ruling lines When the same vertical lines are
crossing multiple successive horizontal lines, this segment is categorized
as a tabular grid. To determine if this grid should be classi�ed as table, a
validation step is applied a�er the classi�cation. Tables detected in this step
are excluded from the following Table Detection approaches.

• Horizontal ruling lines Pre-processing is applied to lines (do�ed lines,
touching lines) to unify them and they are removed if they are no ruling lines
(separators for headers and footers). A�erwards the candidate columns are
sorted based on a weighting that depends on the width, height and number of
elements it contains. If columns are intersecting horizontal lines, it is checked
if the intersected lines represent a ruling line. If this is the case, it is assumed
that the width of this line represents the width of the whole table. �en
intersecting objects are added to this bounding box and the bounding box is
enlarged if necessary, until no more elements can be added (no intersection).
A�er this, the table validation step is applied to check if the detected structure
is representing a valid table.

• Non-ruled tables �is approach starts similarly to the horizontal ruling
lines approach but since no intersecting horizontal line is detected, adjacent
candidate columns to the le� and to the right are taken into account. At �rst,
columns to the le� are added to the possible table grid and the bounding box

20

2.2 State of the Art and Trends

is adapted. If this step results in a valid table, the next column is processed
until the validation fails or no column to be added is available. �en the same
process is applied to the column to the right until the stopping criteria is met.
�ese steps are repeated until the table cannot be expanded any further. If the
result is no valid table, all columns, except of the initial one, are returned to
the possible table column list. �e initial column is dismissed and the whole
process is reinitiated with the next column in the possible table column list.

Within the validation step it is checked if the table is valid or likely to be categorized
incorrectly. Also some general assumptions are evaluated (same font size, at least
two rows and two columns).

Kern et al. [40] describe two approaches for decomposition, both based on unsu-
pervised machine learning techniques. To detect the table regions, contiguous text
blocks are extracted from the given PDF �les. In the next step, table captions are
recognized, and the neighbouring sparse blocks are merged recursively to �nally
compose a table. Captions are recognized when a line start matches with a pre-
de�ned list of keywords containing Table, Tab, Tab. followed by a number. Sparse
blocks are detected when certain thresholds are matched (width is smaller than 2/3
of the average width or the distance between words is double the average distance
between consecutive words. �en the captions are detected, the closest sparse block
that is overlapping horizontally with the current caption is selected as the �rst
table element and neighbouring blocks are added to the region if they are matching
certain criteria.
To extract the tabular structure two di�erent approaches are compared. �e �rst
technique performs hierarchical agglomerate clustering on the words positioned
inside the table region to group them into columns and rows to �nally achieve a
tree structure. �e merging process continues until inter-cluster distance reaches
a certain prede�ned threshold. �e columns are detected traversing the tree with
breadth-�rst technique and checking if nodes should be split or not until every
node has been parsed. For row identi�cation the coordinates of the upper and lower
bound of the words are used for 2-dimensional clustering. A�erwards, the clusters
are split vertically, and the content of the table cells are detected based on their
intersection with the calculated columns and rows.
�e second technique for tabular structure extraction relies on partitioning based
projection histograms. �e rectangular bounding boxes of all words inside the
table region are used to calculate vertical and horizontal projection histograms.
�e boundaries between columns and rows are displayed as minima in these his-

21

2 Related Work

tograms but also some false positives can occur, since not all minima represent
cell boundaries. �erefore, these incorrectly classi�ed minima are eliminated in
three steps. At �rst, a �lter is applied, that allows to get rid of minima which
occur because of single spaces between words. In the next step, the extrema are
extracted and non-signi�cant ones are removed and the di�erences of extrema
and their neighbouring extrema are calculated and the list containing the extrema
is adjusted. �ose clusters that represent tabular boundaries are chosen and the
k-means algorithm is applied to the histograms and the table clusters are selected
based on the results of the k-means computation.
�e described detection approach is generally able to detect the complete tables
if they were labelled correctly but fails when the table caption is missing since
the Table Detection approach depends on the presence of captions. It occurs that
additional blocks of text are added to tables if they are classi�ed as sparse blocks
or span across the border of the table. Concerning the structure recognition of the
tables, the projection histogram method outperforms the method based on word
clustering. �is shows that space information is more reliable for table structure
recognition than the analysis of overlaps between words[40].

2.2.2 Scanned PDF Table Extraction

Since scanned PDFs consist of images and no real textual data is contained [46],
approaches dealing with this type of documents need to perform some sort of
pre-processing before being able to extract the actual tabular content.

Deivalakshmi describes an algorithm that does not only identify and remove un-
wanted lines that can occur due to accidental remarks or improper scanning, but
also deals with table segmentation and extraction. Before the tables can be detec-
ted and extracted, the scanned documents are pre-processed. �is includes the
removal of noise, contour smoothing and binarization. To identify the tables of
the document, a single mask-based algorithm is applied, only detecting the top
le� and bo�om right corners. Due to this, the algorithm is independent from dif-
ferent line thicknesses as well as language. Additionally, the pre-processed image
is transformed into a Pseudo Diagonal Image (PDI). �e PDI is now rotated and
a line removal algorithm is applied to get rid of unwanted lines of the document
image. �e downside of this approach is that not only the unwanted but also the
meaningful lines are removed. In order to overcome this issue, the already extracted

22

2.2 State of the Art and Trends

tables are reintegrated in the ”line-free” document. PDI is used to prevent data
loss during the rotation process. A drawback of this algorithm is the fact that e.g.
underlines in the actual document image are removed, if they are not part of a
table. �e good computational performance occurs due to the application of a single
mask-based algorithm for Table Detection [27].

Burcu Yildiz et al. describe Table Extraction as a non-trivial topic, which they ap-
proached with their tool ”pdf2table”. �e work described in their paper indicates that
also purely heuristic-based approaches can lead to promising results. ”pdf2table”
uses the tool ”pd�ohtml” for the extraction of the absolute coordinates of all text ele-
ments in the target scanned pdf-�le. A�er the prepossessing step, their task of Table
Extraction is narrowed down to semi-structured �les with additional information.
Based on the a�ributes returned by the ”pd�ohtml” tool, including the coordinates
as well as height, width and font of each text chunk, Burcu Yildiz et al applied their
table recognition and decomposition heuristics, ignoring graphical components
like separating lines. �e algorithm is focused on single-column documents and
uses following classes for its execution: Text (string), Line (text objects of the same
line), Single-Line (line object with only one text object), Multi-Line (line object
with more than one text object) and Multi-Line-Block (set of continuous multi-line
objects). A�er sorting the pre-processed data from top to bo�om, the text object
on the same line are combined by checking if their boundaries are overlapping.
�e algorithm is based on the assumption that each table must consist of two or
more columns. A�er summarizing lines into multi-line block objects and merging
adjacent blocks, the table decomposition step is next. �e decomposition step �rst
focuses on column detection by decomposing the multi-line block and proceeds
with assigning text chunks to columns. �e main limitation of the described ap-
proach is the dependence on the results of the external tool ”pd�ohtml” since the
tool cannot check if the results are incorrect or incomplete. �e tool was tested
using several pdf documents containing 150 tables and lead to good results for
lucid and complex tables concerning the table recognition task. �e decomposition
part struggled in situations where adjacent cells should be merged because of the
need of NLU (natural Language understanding) to reliably perform this task. �e
approach is domain and language independent, since only structural information is
used [53].

Two approaches for automated Table Detection are described by Ranka et al.[49].
�e approaches are divided into the recognition of tables with line information
and tables with spacing information as boundaries. �e assumption on which the

23

2 Related Work

recognition process is based are the following: each table contains a minimum of
two rows and two columns, table cells can only contain textual objects (no charts,
no tables, no images) and the data provided is binarized and skew corrected.

• Tables with line information
�e detection of tables is based on layout, bounding lines and row/column
separators, while the reconstruction process relies on intersection points. By
calculating the average character height, noise lines are removed, candidate
lines of table structure are received and non-tabular images are eliminated.
By horizontal and vertical processing of the document lines, the approximate
table structures are obtained. Intersection points of tabular lines are used to
eliminate non-table lines and reconstruct the table areas. Also, heuristic rules
are included into the reconstruction process. �e resulting structure does not
contain any textual data. �erefore, it is necessary to perform OCR on the
de�ned table regions within the image document to get access to the actual
tabular content.

• Tables with spacing information
Method two uses spacing information for table recognition. A�er spli�ing the
document into separate lines, a spacing threshold is calculated. When gaps
between words exist that exceed the threshold, these lines are categorized as
tabular lines. �e accuracy score of this approach is higher than the score of
the �rst approach but has di�culties when extracting data from multi-column
documents.

Huynh-Van et al. [35] propose a hybrid method to identify table zones in document
images (for example scanned PDFs). �e process is divided into the main parts:
region classi�cation, detection of tables with intersecting lines and detection of
tables with either horizontal or vertical lines. As a result, this approach is only
applicable for the detection of ruling line tables. Based on the region classi�cation,
features are extracted that are later used within the machine learning process.
Connected components are categorized depending on their size in respect to the
image size. Regions are considered as table region candidates if they are part of the
convex hull of a large connected component and contain intersecting horizontal and
vertical lines. �e regions which remain are used for text line identi�cation. Two
di�erent sets of features are determined from the previously categorized regions.
�ey improved their model by using Random Forest and Support Vector Machine

24

2.2 State of the Art and Trends

based on Scikit-learn6.

TableBank [43] is a Table Detection approach for image-based document using deep
learning and neural networks for its purpose. Li et al. describe the Table Detection
and recognition task as a di�cult problem due to the high variety of formats and
layouts in which tables can be structured. �e approach used by TableBank makes
use of the Faster R-CNN model that is heavily used in the computer vision area.
�e Region Proposal Network (RPN) and the Fast R-CNN is merged into a single
network by the Faster R-CNN to allow the training of the network in an end to end
way. �e table structure recognition is achieved with an image-to-text model that
includes an encoder for the image input and a decoder of the text output. In order
to empower the �eld of Table Detection and extraction the TableBank data-set
is published containing image-based tables in Word and Latex document format
[43].

Gilani et al. [31] describe Table Detection as a tricky problem, which most tech-
niques based on layout analysis and hand engineered features fail at, because of the
greatly varying layouts of tabular structures. �e method Gilani et al. describe in
their paper is based on deep learning. A�er pre-processing the document images,
the images function as input for a Region Proposal Network (RPN) that �nally
results in a connected neural network that is used for detecting tables in the given
documents. �e algorithm starts with the image transformation step. Hereby the
document images are transformed into natural images to be able to use the Faster
R-CNN model a�erwards. �is is achieved using three di�erent methods of distance
transformation (distance transformation is used to calculate distances between text
regions and white spaces and presents a derived representation of digital images):
euclidean distance transformation, linear distance transformation and max distance
transformation. For the actual detection step, Faster R-CNN, an algorithm that is
heavily used for detecting objects and classifying the in natural images, is used.
�is process is split in two steps. At �rst, a Region Proposal Network proposes table
region candidates in the form of rectangular objects each having a score. Second
the results of the previous step are passed to the region-based object detection
module identifying the actual tables and returning their bounding boxes [31].

6h�ps://scikit-learn.org/stable/

25

2 Related Work

2.2.3 Overview of State of the Art Table Detection and
Extraction Tools

�e following Table 2.2 summarized the previously described tools. �e name of
the tool (if available), the publication year as well as the type of the algorithm is
listed and the most signi�cant characteristics are mentioned in form of keywords
to give a general overview.

Name of Algorithm Publication Date native scanned trained heuristic
pdf2able [53] 2004 X X
Hassan and Baumgartner [34] 2007 X X
Ying Liu et al. [44] 2008 X X
Kern et al. [40] 2014 X X
TAO [48] 2016 X X
Deivalakshmi [27] 2017 X X
Ranka et al. [49] 2017 X X
Gilani et al. [31] 2017 X X
TEXUS [50] 2018 X X
Huynh-Van et al. [35] 2018 X X
TableBank [43] 2019 X X

Table 2.2: Overview of the in Sections 2.2.1 and 2.2.2 described Table Detection and Table Extraction
algorithms. �eir area of application (scanned or native PDFs) as well as their type (trained
or heuristic) is described.

In Table 2.2 it can be seen that there is a big variety of approaches for the topic of
Table Detection, each approach coming along with advantages and disadvantages
depending on its characteristics. For native as well as scanned PDFs, heuristic as
well as trained Table Extraction techniques are used. �e algorithms reach from
layout dependant (analysis of coordinates, clustering, sparse line/block detection
etc.) over to machine learning approaches based neural networks, region proposal
networks and the Faster R-CNN model.

26

3 Method

�e purpose of this chapter is to give a deep insight into the development process of
Table Extraction tools. Two di�erent approaches for tabular structure recognition
are implemented to be able to handle scanned as well as native PDF documents. For
this reason two completely di�erent methodologies are used to exploit strengths
and avoid weaknesses of the provided PDF input type. While native documents
are processed by a heuristic approach, the Table Detection algorithm used for
scanned PDFs is based on deep learning. Both techniques are described into detail,
its results are collected and analyzed and advantages as well as disadvantages
are discussed. Furthermore, to compare the performance an evaluation data-set
consisting of scanned as well as native PDF documents is put together. A�erwards
various testing iterations are conducted and based on the results several statistics
are generated.

�e method chapter is split into two main parts:

1. development of a tool to detect and extract tables from native PDF documents
2. development of a tool to detect and extract tables from scanned PDF docu-

ments

For both development processes following aspects are discussed:

• used technologies
• Table Extraction process starting with receiving a PDF �le until the export of

its tabular data to a .csv �le
• algorithms used to preprocess input �les, detect tables in preprocessed data

and reassemble the data into tabular structure before performing the export
• advantages and disadvantages of both approaches / scenarios
• issues / challenges when developing a Table Extraction tool
• di�erences that have to be considered when handling native or scanned PDFs

27

3 Method

�e following Figure 3.1 shows the sequence of steps that have to be taken to from
receiving the input document to delivering the structured output in form of .csv
�les. �e actual actions taken in each phase are di�ering a lot between the two
approaches that will be described in the following chapters. Nevertheless from
high-level perspective the sequence order is the same for both approaches.

Figure 3.1: �is Figure shows the process steps that are completed to generate structured tabular
data given a PDF document as input. Even though the actual implementation of the
processing steps are very di�erent, from high level perspective both approaches can be
split into the Preprocessing, Table Detection and Table Extraction phases.

�e following chapters will give deep insights in the implementation of each
processing step mentioned in Figure 3.1 for both described approaches. Although
the high level overview can be summarized for the heuristic as well as the deep
learning based approach, the actual implementation is completely di�erent starting
with di�erent types of input documents (scanned and native).

3.1 Native PDF Table Extraction

�is chapter describes a heuristic approach for Table Extraction from native PDF
documents. �e used technologies are listed and a detailed explanation of the imple-
mented algorithms is given. �e whole process of PDF Extraction, Preprocessing,
Table Detection, Header and Footer Detection and Table Extraction is described in
detail. Furthermore challenges coming along with this tasks are pointed out and
several Figures are used to help understand certain scenarios.

28

3.1 Native PDF Table Extraction

3.1.1 Technologies

For the implementation of the Java based table recognition tool the IntelliJ IDEA
IDE from JetBrains 1 is used. Java was selected as programming language because
of Apache PDFbox, an open source Java library that is a very popular and widely
used in the PDF extraction and manipulation �eld.
�e high popularity among developers is based on its wide range of functionalities.
�e library allows the creation of PDFs, the manipulation of existing PDF documents
and the extraction of content from PDF documents. Also �lling and extracting data
from PDF forms and digital signing is supported by the Apache PDFBox library.
A key component when developing a native PDF Table Extraction tool is the
text extraction engine that allows the extraction of textual elements and several
a�ributes like their coordinates, height, width, Unicode and much more 23. Since
the actual detection and extraction algorithms are implemented using standard
Java version, no other library apart from PDFBox is necessary for the development
of the heuristic Table Extraction tool.

3.1.2 Implementation

In this section the algorithms implemented for every process-step (Preprocessing,
Table Detection, Header and Footer Detection and Table Extraction) are explained
in detail. Also the method of implementation is described and arising problems and
alternative approaches are discussed. �e presented approach of Table Extraction
from native PDF documents is split into three sub-processes which use the results of
the preceding step for their further processing. �e PDF Preprocessing step uses the
given native PDF document as input and hands over the preprocessed Meta-Data
to the next step: Table Detection. Given the Meta-Data, the Table Detection step
performs operations to hand over the necessary table data alongside header and
footer information that is needed for the Table Extraction phase to reconstruct and
export the tabular data in form of .csv �les.

1h�ps://www.jetbrains.com/idea/
2h�ps://pd�ox.apache.org/index.html
3h�p://www.pd�ox.org/pd�ox-user-guide/text-extraction/

29

3 Method

PDF Preprocessing

�e objective of the PDF Prepossessing step is the preparation of input data in form
of native PDF documents for the following Table Detection process. Hereby Meta-
Data containing basic but crucial information like the words and lines along with
their coordinates, boundaries and other a�ributes is prepared. Figure 3.2 illustrates
the steps that are taken to collect the necessary information.

Figure 3.2: �e process steps of the preprocessing phase are illustrated. With the help of the external
library PDFBox the characters and its positions are extracted from a given native PDF
document. A�erwards word and line objects are build by analyzing character coordinates
and boundaries to result in enough Meta-Data information to proceed with the Table
Detection process a�er the preprocessing is �nished.

As outlined above, the goal of the Preprocessing stage is to gather data concerning
words and lines of the given native PDF document. Since the PDFBox library does
not provide the functionality to extract text by word or line from native PDFs,
the extracted characters have to be analyzed and processed manually to achieve
this. �erefore a�er extracting text elements (single characters) from the �le, their
position on the page as well as their width and height are calculated based on their
X and Y coordinates which are passed on by the extraction process of PDFBox. Next,
the le�ers are combined to words using the spacing Tolerance a�ribute o�ered by
PDFBox. �e spacing Tolerance a�ribute represents the minimal space width of
the current document. When the distance between a character and its successor is
smaller than the spacing tolerance and their horizontal boundaries overlap, these
characters are summarized to a word.

Figure 3.3 displays the bounding boxes, demonstrated by red rectangles, which
are key elements for the word summarization step. Furthermore the maximum
values (top, bo�om, le�, right) of the bounding boxes of all chars of a word are

30

3.1 Native PDF Table Extraction

Figure 3.3: In this Figure the summarization of words given the coordinates from the PDFBox export
is visualized. �e spacing tolerance value is used to identify white-space areas between
characters that are likely to separate two words. If the white-space region is smaller
than the spacing tolerance value, the characters are combined to one word as long as the
tolerance distance is not reached or a new line is observed.

used as the bounding box of a word. �is is especially helpful when entering the
line recognition stage.

A�er a word was found, its start and end coordinates as well as its upper-bound
and lower-bound values are calculated based on all characters composing the
word object. Since for the Table Detection step not only words but also the lines
composing the document are very relevant, the next step deals with merging words
to lines. �is is achieved by comparing the upper- and lower-bound of words and
merging them together into the same line if they are overlapping as illustrated
in Figure 3.4. To provide additional information required for the further Table
Extraction process, the last word of a line is marked and each word also stores its
distance to its successor and predecessor if available.

A disadvantage coming along with this approach is the high dependence on the
external library PDFBox since all performed calculations are based on the results
(coordinates of characters) of the PDF extraction process. In case the PDFBox library
passes on incorrect information concerning the coordinates of the extracted charac-
ters, the algorithm can produce inaccurate results since word and line boundaries
can not be calculated precisely.
To simplify the further processing done in the Table Detection phase, every object
(word, line) contains an a�ribute pointing to the predecessor and successor of the
current object (implementation note: currentWord.lastWord is a reference to the
word prior to the current one, currentWord.nextWord is a reference to the follow-
ing word - the same principle is applied to lines). Like this the implementation of

31

3 Method

Figure 3.4: It can be seen how line recognition works, given the computed bounding boxes of the
words. Hereby the subsequent words are checked if a vertical overlap exists. If this is the
case, the words are part of the same line element. As soon as two words are not vertically
overlapping a new line is constructed with the initial bounding boxes according to the
�rst word inserted.

clustering and analyzing mechanisms used in the Table Detection step are made
easier to implement and the source code stays more readable.
Further more the median width of all lines of a document is calculated for being
able to categorize lines based on their structural data in the Table Detection step.
As described in the Table Detection process step, the availability of the median line
width value allows to recognize lines that are likely to be part of a table. Finally
the distances in between lines is calculated which is from high importance when
spli�ing consecutive tables from each other based on the variance of line distances
as well as for detecting headers and footers of tables.

Table Detection

�e Table Detection stage aims at detecting blocks of lines that combined represent
a tabular structure. Given the Meta-Data that is passed on by the Preprocessing
stage, operations to categorize sparse and non-sparse lines are performed and the
document is categorized single or multi-column. Given the outcome of the sparse
line recognition, candidate table areas in form of sparse blocks are computed and
subsequently parsed to remove incorrectly categorized lines and blocks of lines.
A�er �nishing the sparse line and sparse block evaluation and removal, header and
footer detection is performed to pass as much valuable information as possible to
the Table Extraction phase.

�e Table Detection process is initiated by detecting the sparse lines given the

32

3.1 Native PDF Table Extraction

Figure 3.5: �is Figure gives a general overview about the process steps of the Table Detection
process. Given the preprocessed Meta-data from the Preprocessing phase, sparse lines
and sparse blocks are detected and spurious elements are removed. In the end table
header and footer elements are detected and assigned to the associated table.

resulting data of the Prepossessing process containing categorized word and line
objects having a�ached basic information like coordinates and boundaries. Sparse
lines are labelled as such if the distances between words in the line are higher
than a threshold (median space-gap * 1.3). As it can be seen in Figure 3.6, only the
distance in between words is considered for sparse line detection purposes whereas
the distance of the last word of a line to the end of the line is not. Like this the
algorithm does not incorrectly categorize endings of paragraphs and headlines
as sparse lines. �is saves e�ort later when incorrectly classi�ed sparse lines are
removed. Instead of marking these lines as sparse, they get �agged as ”Critical”.
Like this lines of this type which may be endings of paragraphs or headlines but
may also be part of a table can get a special treatment as we proceed into the Sparse
Block Detection process step.

Additionally, following line types are excluded from sparse line categorization be-
cause of their irrelevance for Table Detection as well as their con�icting behaviour
with the applied sparse �eld evaluation algorithm that will be described later on.

33

3 Method

Figure 3.6: To detect sparse lines, the distance between words is compared against the prede�ned
distance threshold. If the distance in between words is as wide or wider than the pre-
de�ned threshold, this area is categorized as sparse. A line containing sparse areas is a
so called sparse line.

• Bullet Points
Lines starting with bullet points are excluded since table columns are not
expected to contain bullet points. �is is relevant because lines containing
bullet points are categorized as sparse lines due to the usually wider white-
space element following a bullet point (Figure 3.10).

• Page Numbering
Lines containing the numbering of pages (mostly the �rst or last line of a
page) are excluded since these lines typically do not contain relevant content
for the Table Detection task. Not excluding these type of lines o�en leads to
incorrectly categorized sparse elements because of the white-space distance
between footer and page number as well as their mostly intended character.

Lines that are categorized as sparse have a count a�ached, indicating the amount of
sparse areas inside each line. �is count helps when eliminating incorrect table rows
and when building row and line boundaries in the Table Extraction phase. Word
groups are built, containing continuous words in lines which are not separated by a
sparse �eld for a more comprehensible and clean implementation of the following
steps. Lines marked as critical are reviewed again a�er having categorized all sparse
lines containing sparse �elds. For a line to be critical, the length of the line must be
lower than two thirds of the median line width. �is �ag is included to be able to
recognize table lines that do not include any sparse point like it can be observed
in Figure 3.7. It is reviewed if a critical line is positioned next to lines containing

34

3.1 Native PDF Table Extraction

sparse �elds. If so, these lines are relevant for the sparse block detection phase
because they potentially are part of a table that might contain lines without a sparse
�eld.

Figure 3.7: �is Figure demonstrates a situation where the second line of the table (containing ”rank”
as table data) would not be categorized as sparse since there is no second element in
this line. �is would lead to wrong results because the table would be split before the
third line. Since the second line is intended, the line is reevaluated a�er the initial line
classi�cation and classi�ed as sparse because the line is situated next to sparse lines.

To overcome the problem pictured in Figure 3.7, the approach described above of
looking for neighbouring sparse lines is used for categorization. If there are no
sparse lines situated next to a critical line, the critical line is irrelevant for further
processing. Otherwise the critical line will be treated a�erwards at the Sparse Block
Detection stage.
�e Sparse Line Detection stage is �nished when all sparse lines as well as critical
line candidates are analyzed and classi�ed correctly. �e gained knowledge about
the given PDF document from the Sparse Line Detection phase is then further
processed in the Sparse Block Detection step a�er the PDF document is analyzed
regarding its structure.

A big challenge when dealing with Table Detection is the di�erent style in which
documents may appear. Many Table Detection tools available are not able to distin-
guish between single-column and multi-column documents by itself. Tools built to
analyze just a speci�c type of PDF document typically deliver poor results when
treating various di�erent types of documents concerning Table Detection because
of their di�erential structural characteristics. Multi-column documents for instance
do contain a typically continuous vertical sparse area in the center of the page that
leads to wrong categorization of lines like it will be described in the Table Detection
process step. While many solutions o�er the option to pass the amount of columns

35

3 Method

to the tool as additional parameter to simplify the process, the algorithm described
in this paper allows the automatic categorization of documents as single-column
or multi-column. Even though this process step would thematically �t into the
preprocessing phase, this step is performed during the Table Detection phase since
the sparse area recognition has to be performed in advance. Like demonstrated
in Figures 3.8 and 3.9, the le� and right page boundaries are determined a�er
eliminating the outliers that may include page numberings or pictures. Given the
le� and right page boundaries the horizontal center of the page is calculated. �is
value is relevant to detect multi-column documents since in seriously structured
scienti�c multi-column articles both columns are from the same width. �is allows
to determine the position in which the �eld of separation has to be situated in case
a multi-column document is analyzed. Based on the computed center value all lines
are parsed and marked as ”center-sparse” if a sparse �eld is situated exactly in the
horizontal center of the page. �is is done by looping over all word-groups of every
line while observing if the end or start values of each word-group full-�ll certain
criteria (positioned in a certain range from the center coordinated). A�er all lines of
a page are categorized as ”center-sparse” or not, the percentage of lines of the page
that are ”center-sparse” is calculated. If a certain threshold-percentage is reached
(in this thesis 60% of all lines of a page are ”center-sparse”), the page is marked as
multi-column and the next processing step can be initiated based on the gained
knowledge regarding the structural type of the document.

A�er the sparse lines are correctly classi�ed, suspicious text areas are dealt with
and the document is categorized regarding its column-structure, the Sparse Block
Detection stage is reached. �is stage aims at identifying continuous blocks of
sparse lines which are likely to represent a table in the original document. In order
to accomplish this, several factors additionally to the continuity of the lines have
to be considered.

Sparse blocks need to consist of at least two sparse line elements since tables consist
of at least two rows. Generally these two initial lines are successive sparse lines.
It can also occur that the initial lines are separated by a non sparse line in certain
scenarios. �is case is considered during the sparse block detection stage with the
help of the already mentioned ”critical” �ag certain lines have a�ached.

In many cases sparse lines appear randomly a�er one another in documents without
actually being part of a table. With the help of techniques described in the Sparse
Line Detection process (handling of Bullet Points, Page Numbering and Critical

36

3.1 Native PDF Table Extraction

Figure 3.8: In this �gure the process of multi-column detection is pictured. �e red lines are rep-
resenting the text boundaries based on which the center value (blue line) is calculated.
A�erwards all lines get analyzed if they contain a sparse point in the center area of the
page (yellow rectangle). In this example this holds true for 90 percent of the lines. �is
leads to the page being categorized as multi-column.

Figure 3.9: In this example only 25 percent of all lines hold true for the condition of being center
sparse because of the majority of the page being single column. �erefor this page is
categorized as single column since the threshold of 60 percent is not reached.

37

3 Method

Lines), the number of incorrectly classi�ed sparse lines is already minimized.
�ough, in certain scenarios the described techniques are not enough to sort out
spurious sparse lines. �is happens for example when justi�ed text is analyzed
(Figure 3.10) which leads to the frequent appearance of wider white spaces between
words because line content is stretched to �t the width of the page.

Figure 3.10: When justi�ed text sections are analyzed, o�en sparse �elds are detected that are not
part of a tabular structure. �is image shows how such scenarios are handled by looking
for horizontally overlapping sparse �elds. It is also shown that lines being started with
a bullet point character are not considered when performing sparse line categorization.

For this reason the spurious sparse lines have to be handled in the Sparse Block
Detection stage. �erefore the sparse �elds of successive sparse lines are compared
to evaluate their adequacy. If sparse �elds are overlapping, or in other words, if the
white-space areas of both lines in between words or word groups are covering the
same areas, the sparse block is considered valid if another criteria also matches. As
demonstrated in Figure 3.10 by the red rectangles, it may also happen that randomly
sparse �elds overlap even though no table is present. �ose scenarios represent
a big challenge since there is no straight forward solution. To overcome this, a
threshold is de�ned that sets a minimum percentage of overlapping sparse �elds in
two consecutive lines. In the example of Figure 3.10 the overlapping sparse �eld
percentage is about 10 percent. �is results in the sparse block being discarded even
though the block is consisting of consecutive sparse lines. In case that there are no
overlapping sparse �elds at all, these lines are also discarded for the Sparse Block
Detection stage and the process continues with the next document line. Generally
speaking a sparse block needs to consist of at least two sparse lines that do not
need to be consecutive since they could be separated by one or more critical lines. If
the sparse block only consists of two or three lines, further analysis concerning its

38

3.1 Native PDF Table Extraction

structure is conducted. �ereby the amount of sparse �elds is compared to minimize
the risk of incorrectly categorized table blocks.

Following listing gives an overview about the criteria that has to be ful�lled by
sparse and critical lines to be part of a sparse block:

A sparse line hast to ful�ll one of the following criteria to be part of a sparse
block:

• line is not �rst line of page (except if the next line is sparse or critical and
has the same line height)

• line is not last line of page (except if the previous line is sparse or critical and
has the same line height)

A critical line hast to ful�ll one of the following criteria to be part of a sparse
block:

• previous line is sparse (except if the critical line is the �rst line of the page)
• there are only critical lines between the current critical line and the previous

sparse line (except if the current critical line is the �rst line of the page)
• next line is sparse and line height of current critical line is the same as the

line height of the next line
• there are only critical lines between the current critical line and the next

sparse line (except if the current critical line is the last line of the page)

A�er the detection of sparse blocks is completed, the majority of steps concerning
the Table Detection phase are completed. Before continuing with the Header and
Footer Detection, the found sparse blocks are parsed and evaluated once more in
the Sparse Block Evaluation and Spurious Sparse Block Elimination stages
to get rid of sparse blocks which are incorrectly categorized. Tables which are
not ful�lling the required criteria are split, shortened or deleted. �is especially
a�ects sparse blocks which are just composed of critical sparse lines that do not
contain real sparse �elds. �is case o�en occurs when handling papers that include
additional administrative information (address, postal code, etc.) that is forma�ed
in a way that meets the described criteria.

Following steps are taken in the Sparse Block Evaluation and Spurious Sparse Block
Elimination phase if they are necessary:

39

3 Method

• sparse blocks get trimmed
�e line height of the lines at the beginning and at the end of each sparse
block are compared to the median line height of the analyzed sparse block
and if the di�erence in line height exceeds a certain prede�ned threshold the
sparse block gets shortened by the a�ected lines.

• sparse blocks get split
It is analyzed if the sparse block contains two lines that are separated by a
signi�cantly higher distance than the median line distance. In this case two
new sparse block are build and the original gets removed.

• sparse blocks get reevaluated
Since the trimming and spli�ing of the existing sparse blocks in the preceding
steps may result in new results, these have to be reevaluated. Hereby sparse
blocks get checked against the minimum length as well as the other criteria
described in the Sparse Block Detection stage.

Finally when sparse blocks are identi�ed, trimmed, split, reevaluated and spurious
sparse blocks are eliminated, the Header and Footer Detection process is initi-
ated. Since this process is started a�er the table areas are already identi�ed, speci�c
techniques can be used for the identi�cation of headers and footers that could not
be used if the process sequence would be performed the other way round. In that
case header and footer recognition can hardly be implemented based on the analysis
of structural a�ributes of textual elements (e.g. distances in between lines, height
of lines), since such scenarios can appear on many positions in a document and it
is hard to distinguish between elements describing tables and other elements like
normal chapter headlines or the description of �gures. To detect Headers describing
the content of a table, following techniques are used:

• Keyword detection
Keyword detection is the most obvious technique and is able to handle the
majority of cases very well. Hereby lines above tables are parsed until a
certain threshold is reached (for example a maximum of 5 lines above a table).
If a parsed line starts with a keyword like ”Table” or ”Figure” all lines between
the top of the table and the currently analyzed line holding the keyword and
also the current line are categorized as header of the table (this can be seen
in Figure 3.11). Most documents, especially scienti�c research papers which
follow a strict labelling concept are covered by performing header detection
based on keywords. In the rare case that a table header can not be recognized

40

3.1 Native PDF Table Extraction

that way, other approaches are used for their identi�cation.
• Analysis of distances between lines

�e second step that is initiated if the keyword detection approach is not
able to detect the header of a table is based on the textual structure. �is
approach compares distances between a line and its preceding one. If the
distance between a line above a table that lies within a certain threshold and
its preceding line is bigger than the average line distance, all lines between
the table and the currently analyzed line including the analyzed line are
categorized as header lines for the speci�c table. �is method is very useful in
documents that include unlabeled tables which can not be recognized based
on keywords. �ere are certain situations where this practice does deliver
incorrect results. �is happens if no header for a table is speci�ed in the
document and there is a headline or something similar randomly situated
inside the de�ned threshold. To deal with this situation, the line heights of all
lines that would be included into the header of a table are compared. If the
line heights are varying, it is obvious that the compared lines do not belong
to the same textual passage (in this case the header of a table). Because of
this the lines can be removed from the header �eld of the table and the table
remains without a header.

When implementing footer detection various characteristics of footers have to be
considered that di�er from the characteristics of headers. When keyword based
footer detection is implemented, it has to be considered, that the start of the footer
is always situated directly a�er the table structure. �is means that even though
a footer is recognized on the basis of a keyword, the end of the footer has to be
detected by performing structural analysis as it can be seen in Figure 3.12.

�erefore the footer detection stage heavily relies on the distance analysis in
between lines, more than the header detection phase. While, during the header
detection phase the line distances analysis is just used if the keyword detection
process does not deliver results, the footer detection stage always relies on it
heavily. Hereby the distances in between the lines a�er the table structure and their
succeeding lines are analyzed and if the distance is bigger than the average line
distance, all lines between the table and the analyzed line are marked as footer of the
particular table. Furthermore, to identify the end of a footer area more e�ectively,
the line height is also used as parameter of comparison. If the line height of lines is
varying, the footer area detection algorithm stops and adds the lines prior to this

41

3 Method

point to the footer �eld of the table.

Figure 3.11: In this Figure an optimal scenario for header and footer detection can be found. �e
header can easily be detected based on keyword analysis while the Footer is clearly
separated from the following text passage by a larger than average line distance.

When taking a look at Figure 3.11, it can be seen that the table header as well
as the table footer are clearly separated from the actual text before and a�er the
table by a large distance in between lines. Moreover for header recognition the
keyword detection approach is successful and therefore the line distance analysis is
not necessary. To detect the ending of the footer section, the distance between the
�rst line a�er the table to the following line is compared to the average distance in
between lines of the document. Since the distance is bigger than average a clear
footer ending can be determined.

In this process lines with one of the following a�ributes are excluded from being
header of footer candidates:

• lines already being part of another table
• lines already categorized as footer
• lines already categorized as header
• last lines of pages (page numberings)

42

3.1 Native PDF Table Extraction

Figure 3.12: When no keywords are available for header and footer detection, line distance analysis
is performed as it can be seen in this �gure. Hereby the lines preceding a table are
analyzed regarding their distances in between them. �is analysis is conducted for
header as well as footer detection. Footer detection is initiated a�er the header detection
process is completed.

Excluding the mentioned types of lines allows to reduce the amount of lines that can
potentially be categorized as table or footer line of a table and allows to increase the
e�ciency of the process. In rare cases a problem can arise by excluding lines that
are already categorized as header or footer of another table. If the PDF document
contains two or more consecutive tables that are just separated by header/footer
lines (as it can be seen in Figure 3.12), the algorithm may incorrectly classify footers
of tables as headers of the succeeding one because of the processing sequence (�rst
all headers of all tables are detected and a�er this is �nished all footers are detected.
If the order would be the other way round or tables are parsed one a�er another,
the problem would be the opposite. Header lines of tables could be incorrectly
classi�ed as footers of the preceding table.

A�er completing the Header and Footer Detection phase, following data is available
to be proceeded in the Table Extraction process:

• Sparse Blocks
Sparse blocks are representing the table data in an unstructured way (no
rows and columns are de�ned, the data is just passed line by line as it is
extracted from the pdf). �e structural data (words groups, sparse areas, size,

43

3 Method

distances, coordinates) will be used in the subsequent process to identify the
actual tabular structure holding the data that is included in the passed along
sparse block.

• Header and Footer information
�e information concerning the header and footer of the tables included in
the given document are already extracted in a form that can be used by the
Table Extraction phase as it is. Headers and footers are just considered when
exporting the data in form of .csv �les since they do not need to be further
processed.

Given this information the Table Extraction process is initiated with the goal to
correctly identify the tabular structure, discarding invalid sparse blocks that do not
contain table data and ultimately exporting the processed tables of the given PDF
document in form of .csv sheets.

Table Extraction

�e algorithm for extracting tables in the Table Extraction phase given sparse blocks
is very complex since many di�erent scenarios have to be considered and a variety
of checks are applied. In general this phase can be summarized into following steps
illustrated in Figure 3.13.

Figure 3.13: �e Table Extraction process relies on the unstructured table data that is the result of the
Table Detection process. �e columns and rows are initialized and combined based on
certain parameters. A�erwards critical sections are evaluated and incorrect assignments
are �xed. �e outcome of this process is structured table data that is forwarded to the
Table Export stage.

44

3.1 Native PDF Table Extraction

Figure 3.13 shows the main processing steps that are conducted during the Table
Extraction Phase. �e illustrated steps are described into detail in the following
Sections and Figures are used to give examples of selected scenarios that are treated
in the process.

At �rst the table columns of the given sparse block are initialized. �e strategy
chosen to initialize the columns is very reliable but shows weaknesses in certain
scenarios. To identify the initial columns, the given sparse block is parsed and the
line containing the highest number of sparse points is taken as indicator. If there
are multiple lines having the maximum sparse-�eld count of the sparse block, the
�rst line is chosen for the initialization of columns. In this step the selected line is
taken as input and the columns of the table structure are initialized based on this
line. Hereby the start and end coordinates of the words or word groups separated
through sparse areas are used as the initialization values for the column boundaries
of the treated table. �ese newly created column boundaries serve as a template for
the next processing step in which the sparse block lines are analyzed, split up and
their parts are assigned to the correct line and column. �erefore, word groups are
compared against the current column boundaries of the table. If the word-group
boundaries overlap with the prede�ned column boundaries, the word group is
added to the column and the algorithm proceeds with the next word-group if there
is one. A�er adding text elements to a column, the boundaries of the columns are
updated if the start value of the word group is smaller or the end value is larger
than the one of the column boundary.

Obviously there might be cases in which a cell might span more than one column. If
this is the case, the a�ribute representing the number of spanned columns by a cell
of the element is increased by the number of columns the cell is spanning. Like this
when exporting the table-data into an .csv sheet, spanning cells can be correctly
represented. If no overlapping column element is found, what is very rare since
the row containing the highest sparse count is taken as structural template, the
current word group is marked as critical as it is the case in column 3 and column 5
of Figure 3.15. Here all elements of the mentioned columns are marked as critical
since the �rst table line is used as column template.

Additionally, before the column classi�cation process is initiated, the average
distance between lines of the block is calculated to perform Row Combination
a�erwards. �is targets cells consisting of multiple line text elements since their
y-distance o�en is smaller than the average y-distance of the whole table as shown

45

3 Method

in Figure 3.14. By comparing these two values (average y-distance and y-distance
between the current and the previous line), textual content that belongs to the
same cell can be summarized and extracted in a more convenient manner. In the
following Figure 3.14 the distance between the second and the third line is less then
the average distance in between lines of this table. �is circumstance points out
that these lines should actually be combined into one and the content positioned in
the same row is combined to one cell.

Figure 3.14: In this Figure the above described case of content belonging to the same cell even though
belonging to di�erent lines is demonstrated. During the Table Extraction process the
distances in between table-lines are compared and lines being conspicuously close to
each other are summarized to one table row (in this example rows two and three).

A�er all lines of a sparse block are analyzed and classi�ed into columns and rows,
the critical ones are reevaluated. Hereby the critical word groups are again
compared against the current table structure as the structure might have changed
and the column now �ts into an existing column. If that is not the case (see example
Figure 3.15), a new column is inserted between the column le� and right of the
word group and the whole table structure is updated.

When this process is completed, all textual elements should be part of a table cell
that is represented via a row and a column index. Even though this would already
lead to considerable results, one more optimization step is executed before the
Table Extraction into a .csv �le is initiated. �is step focuses on �xing incorrectly
aligned columns. �e focus lies on columns that contain just one text element
since these are suspicious on being categorized incorrect. All columns are observed
and those containing just one data element are selected for further processing.
�ereby it is checked whether the horizontally neighbouring cells positioned in
the selected lines are empty or not. If they are empty, the cell value of the column

46

3.1 Native PDF Table Extraction

containing one element is transferred to the empty neighbour-cell. �en the now
redundant column is deleted and the table structure is updated and ready for its
export.

Figure 3.15: In this Figure two challenging situations are displayed. Since all lines have the same
sparse count, the �rst line is chosen as column template. �is leads to the circumstance,
that all word groups of column 3 and column 5 are marked as critical. Moreover column
2 and column 4 are just containing one element and therefore have to be reevaluated
again.

Figure 3.15 demonstrates several critical situations especially concerning column
boundary detection. Since the �rst line of the table is structured in a di�erent way
compared to the remaining table lines, on �rst sight obvious table columns (column
3 and column 5) are marked as critical since they are not overlapping with the
column boundary template. Furthermore there are columns containing just one
word group which leads to them having to be reanalyzed a�er the table structure
is built. For column 2 and column 4 it is checked if any horizontally neighbouring
cell is empty. Since this is the case, columns 2 and 3 as well as columns 4 and 5
are summarized, the structuring process is �nished and the table export can be
initiated.

Table Export

To perform the export of all tables of the analyzed PDF documents, the free Java
library called Apache POI4 is used. �is library targets on o�ering pure Java ports
for reading and writing di�erent �le formats. For the purposes of the described

4h�ps://poi.apache.org/components/index.html

47

3 Method

algorithm a .csv �le per PDF is created and �lled with the given tabular data.
Each table of a PDF �le is exported to a separate worksheet within the csv �le.
Like this the user is o�ered .csv �les containing all extracted tables while each
table can be treated separately since they are split up in sheets. Furthermore the
detected headers and footers of all tables are exported to help understanding the
tables without having to search for the table labels in the actual PDF document.
Additionally every sheet containing a table also contains the page number of the
table in the original document. Like that the user can immediately jump to the
original table in the document if needed. �is might be the case for example for
suspicious table structures or just special interest.

3.1.3 Problems and Challenges

In this section several problems and challenges that come along with the devel-
opment of a heuristic Table Extraction tool are described. Certain scenarios are
outlined with practical examples and also possible solution approaches are men-
tioned that are partially applied in the native Table Extraction tool described in
chapter 3.1.2. �e following listing of problems are categorized depending on the
process step in which they have to be solved (Preprocessing, Table Detection, Table
Extraction).

• Preprocessing Stage

– No automated extraction of structured text elements
When treating native PDFs it is necessary to be aware of its structure.
PDF extraction libraries typically allow to extract all characters of a
page as well as their coordinates. To structure the extraction results
into words and lines an approach similar to the algorithm described in
chapter 3.1.2 has to be applied since e.g. the PDFBox library does not
provide an implementation of this process step.

– Depending on an external extraction tool
Since somehow the input PDF documents have to be extracted to per-
form further operation based on the extraction results an external tool
or library is used. �is results in a certain factor of dependence since
the results delivered by the external tool are used as bases for all other

48

3.1 Native PDF Table Extraction

processing steps. If the extraction results are faulty (e.g. wrong coordin-
ates of characters are delivered) the whole algorithm is not working
properly.

• Table Detection Stage

– No standardized table format
�e structural composition of tables is from great variance. Because of
the broad variety of �elds of application and the big variance of types
of data that can be represented no blueprint of a tabular structure is
existing. �is makes it a very complex task to detect tabular structures
since no heuristics assumptions will be able to work perfectly for every
scenario. �erefore it is necessary to perform heavy testing when de-
termining thresholds and making assumptions that should be able to
handle the majority of cases. �is regard following points described in
the chapter 3.1.2:

∗ What is a table
How many rows and column must a table at least be composed of?

∗ Sparse point threshold
How large is the minimum sparse area in between columns com-
pared to normal text?

∗ Line distance threshold
How much does a line distance have to vary to split sparse blocks?

∗ What is a page header/footer/numbering/bullet points
What do page headings/footer/numberings and other structural
elements on pages look like for being able to categorize them ap-
propriately.

– Separation of consecutive tables
Separating tables that are positioned without being interrupted is hard
since the only indications of a new table starting is the distance in
between lines or a variation of line heights. Hereby a threshold is de�ned
that present the minimal variance concerning distance and height for
the table to be split. Hereby in rare cases tables that are intentionally
structured in a way that a high variance of di�erent distances between
lines of line heights appears my be split incorrectly.

– Exclusion of irrelevant information (page number, heading, etc.)
To detect header or footer areas of pages rules are applied that should

49

3 Method

correctly categorized these lines. If tables are starting in the �rst line of
a page or ending in the last line and are also matching page header or
page footer criteria, these lines of a table can get discarded.

– Document orientation
Depending on the format of the document (landscape or portrait format)
the extraction method has to be slightly adjusted.

– Di�erences in document structure
Since the structure of documents is strongly varying it is hard to select
an algorithm that is able to handle every document at the same level.
Documents that include just tables do need to be treated di�erently to
documents consisting of large textual areas. Hereby determining the
sparse point threshold that �ts both scenarios is the key factor. Also
documents that use justi�ed text present a challenge since many text
lines are categorized as sparse even though they are not part of a table
because the text is stretched to �t the whole line correctly. To minim-
ize the appearance of incorrectly classi�ed sparse blocks techniques
described in Chapter 3.1.2 are applied.

– Boundaries of tables are not used as indicator
Since the described Table Detection approach is optimized to handle
native documents the document is just analyzed based in its textual
components that can be extracted because of its native nature. �is leads
to the circumstance that structural elements like table boundaries are
not used to perform Table Detection even though they would frequently
be a helpful indication of where a table is positioned on a page.

– Multi-column documents with tables overlapping both columns
�e rare case of tables spanning the whole page appearing in multi-
column documents requires complex analysis of the page structure.

– Multi-line table cells / multi-column table cells
Cells spanning multiple table rows or table columns are sometimes hard
to detect correctly because the graphical cell boundaries are not used for
this purpose. �erefore analysis based on line distances are performed
to determine whether a table cell spans one or more columns/rows.

– Header/footer categorization sequence sometimes lead to unexpected
results
It can depending on the situation be hard to di�erentiate between head-
ers and footers of tables if they are positioned consequently on a docu-
ment page. Hereby o�en the processing sequence (at �rst the headers

50

3.2 Scanned Table Extraction

and a�erwards the footers of all tables are detected. Since lines already
categorized as header or footer element (described in Chapter 3.1.2)
are excepted from further categorization analysis, already categorized
header lines that actually represent footer lines of the proceeding table
can get incorrectly categorized.

– Varying distances between lines within tables
In general varying distances inside a tabular structure indicate either
cells spanning multiple lines (smaller distance) or result in the sparse
block being split up (bigger distance) like described in Chapter 3.1.2.
If there are variations in line distances included on purpose this may
lead to a table being split up when a certain line distance threshold is
reached even though no spli�ing would be necessary.

– Charts or images with text
Charts or images that are equipped with text are hard to di�erentiate
from tabular structures because they generally consist of sparse lines.
�erefore false positives may appear that the algorithm is not able to
discard.

3.2 Scanned Table Extraction

In this chapter a deep learning based approach for Table Extraction of scanned
documents is described. As outlined in chapter 2.1.1, a scanned PDF document does
not include any digital code that describes its structure or forma�ing. �ese ”image-
only” typed documents neither include meta-data information nor is it possible to
extract textual content without performing OCR beforehand. �e described method
takes scanned PDF documents as input and feeds the image of every documents
page to a Region Proposal Network a�er they were preprocessed. Subsequently the
Table Detection is performed by a fully connected neural network. �e approach
described by Gilani et. al. [31] is used as basis for the implementation. According
to Gilani et. al. this method is able to handle di�erent typed layout documents like
research papers or magazines with high precision and can compete with state of
the are Table Detection tools like Tesseract.

51

3 Method

3.2.1 Technologies

Since the described approach for Table Detection in scanned PDF documents is
based on deep learning, the machine learning system TensorFlow was chosen
for training of the neural network and prediction. TensorFlow is an open source
library developed by Google‘s Machine Intelligence Research organization with
the focus on data-�ow graph based numerical computations[17]. Training and
inference of deep neural networks are main �elds of application for the Tensor-
Flow system. TensorFlow operates in various environments that include GPUs
(Graphics Processing Unit), CPUs (Central Processing Unit) as well as custom de-
signed TPUs (Tensor Processing Unit) [18]. Many Google applications and services
are using TensorFlow because of the excellent performance TensorFlow provides.
�e �exibility of TensorFlows architecture allows developers to implement their
own optimizations and algorithms for training. Another advantage of TensorFlows
architecture is its portability. As already stated it can be executed in multiple envir-
onments (GPU, CPU, TPU) but it can also be deployed everywhere if the necessary
run-time requirements are met. Adaptions and optimizations can be implemented
to provide good performance also on various platforms. TensorFlow uses so called
TFRecords for the serialization of data. TFRecords is used for storing a sequence
of binary records so they can be read linearly [16]. �e usage of a binary �le format
when working with large data-sets results in increased performance concerning
the training of the model as well as saving disk space. Further more binary data
can be copied and read very e�ciently.
Another bene�t of using TFRecords is its optimization for working with Tensor�ow.
Multiple data-sets can be combined and huge data-sets that can not be stored in
memory as a whole can be processed by only loading the required data at the time
[11]. �e computer vision toolkit Luminoth that is focused on object detection and
built based on TensorFlow is also used for the implementation of the scanned PDF
Table Detection method [4]. Furthermore, Luminoth does provide a great graphical
interface that shows the results of predictions in a comprehensible way. Because of
a huge di�erence in performance it was decided to execute the training of the deep
neural network GPU based. While CPUs are optimized to solve complex tasks with
few powerful cores, the advantage of GPUs in the context of deep learning is the
large number of simple cores that allow the computation of thousands of simple
problems in parallel. Since not the complexity but the number of mathematical
operations executed to train the neural network is high, the performance of GPUs

52

3.2 Scanned Table Extraction

is much higher than when using the CPU cores for processing [2].
�e programming language chosen for the development of the scanned Table Detec-
tion tool is Python and the used IDE Pycharm o�ered by JetBrains [7]. Python was
chosen since it was the �rst language that was supported for using the TensorFlow
engine and furthermore most features of the framework are currently supported in
python even though many features are being implemented to be o�ered as a C API
also. �ese are the main tools and technologies used for implementing the scanned
Table Detection and Extraction tool but a few more will also be mentioned in the
following chapters.

3.2.2 Implementation

�e implementation of the scanned PDF Table Detection tool is split into several
processing steps that will be described in detail in the following chapters. �e main
task before the actual tool is developed is the training of the Network with the
help of several technologies. A�er the training process is completed a checkpoint is
created that will be used for Table Detection in the real program. For detecting the
Tables given the scanned PDF �les several steps have to be taken to structure the
data in a certain way that allows the chosen algorithm Faster R-CNN to perform
optimally since this approach is optimized to process natural images [31]. When
the preprocessing is �nished the actual table boundary prediction is initiated, the
results are stored appropriately and the input documents are recomposed a�er
conducting Optical Character Recognition on every document page. A�er the
scanned documents were processed and OCR was conducted the resulting data that
is passed to the extraction phase are native documents as well as the table boundary
coordinates that were detected. For the Extraction stage native PDFs are necessary
because otherwise it would not be possible to perform text extraction. Given the
bounding boxes the table areas are extracted and the content is structured to �nally
being exported as structured data in form of a .csv �le.

Training Process

�e training process is initiated a�er the required training data is selected and the
�les are preprocessed for optimal performance of the Faster R-CNN algorithm. A�er
the preprocessing is �nished the data is converted into TFRecords, a TensorFlow

53

3 Method

optimized data format. Given the TFRecords the training is started based on the
con�gured parameters. A�er the Training Loss threshold is reached a checkpoint is
manually created that allows to restore the trained model in the following processing
phases.

Figure 3.16: �is Figure shows the procedure of how the data selected for training purposes is
processed. A�er the data was preprocessed the TFRecords are created before initiating
the Training process with the help of the TensorFlows framework. When the training
loss threshold is reached a checkpoint is created that stores the current state of the
trained model.

Before the training process can be initiated the data used for training purposes has
to be chosen. �erefore a data-set consisting of about 500 images along with .csv
�les containing their ground truth is selected [10]. �is image �les get categorized
into training and validation set randomly at a ratio of 80 percent (training) to
20 percent (validation). While the training �les are used to perform the training
process of the model, the validation set is used to estimate the performance of the
current model. Based on these estimations modi�cations on parameters like the
learning rate are performed to optimize the training. Every image contains one or
more tables which are described in the ground truth �les like the following:

As is can be seen in Figure 3.17 every line describing a table consists of six elements.
�e four coordinates (X-Min, Y-Min, X-Max and Y-Max) describe the bounding box
of the tabular structure. X-Min and Y-Min together describe the upper le� corner of
the table element while X-Max and Y-Max are describing the bo�om right corner.
Furthermore the name of the image in which the element is situated is given along
with the label of the object. Since only tables are detected and no other types of
objects are relevant for this task, all entries do have the label ”table”. A�er the
data-set along with its ground truth is selected the images have to be preprocessed.
To allow optimized processing of the Faster R-CNN method the images are now
naturalized. According to Gilani et. al. [31] by applying image transformation the

54

3.2 Scanned Table Extraction

Figure 3.17: �e ground truth consists of six elements per table entry. Each table is described by
its document name, the boundaries of the tabular structure as well as the label of the
object which is in this case always table since only one object type is analyzed.

images can converted into natural images as close as possible. Distance transforma-
tion is applied on the images since in the process the distances between text regions
and white spaces are calculated which gives good indications about the existence of
table regions in the analysed �les. As proposed three di�erent image transformation
algorithms are applied on the binary input images to store di�erent feature types in
the three channels[31]. �e applied transformation methods are the following:

• Euclidean Distance Transformation
• Linear Distance Transformation
• Max Distance Transformation

�e transformation algorithms are applied by using the OpenCV library, an open
source computer vision and machine learning library [1]. A�er the transformation
of the images is �nished the three resulting channels (blue, green, red) are merged
together (cv2.merge). �e following Figure 3.18 shows the result of the applied
image transformation:

A�er all required �les are preprocessed the data is binarized by creating TFRecords.
�ese TFRecords will a�erwards function as input for the training. For doing so the
command line based tool ”lumi” (part of the Luminoth tool) is used. When the con-
version of the data into the for TensorFlow processing TFRecords format is �nished
the training process is con�gured. Hereby several parameters are essential:

55

3 Method

Figure 3.18: A�er performing three di�erent types of distance transformation on the input image,
these three channels are merged together. �is Figure shows the result of the described
process.

• Number of Classes (one since only table objects are relevant)
• Learning Rate
• Used Model (Faster R-CNN)
• Min and Max Boundaries for Image Size
• Checkpoint saving periods
• Number of Epochs

Based on the described con�guration the training is initiated via the command line
tool Luminoth. While the training is in process the current training loss values
as well as the number of steps already executed are displayed as it can be seen
in the following Figure 3.19. Hereby by adapting the learning rate the target is to
minimize the training error to receive the optimal results in training the model.

�e training of the model is �nished as soon as the de�ned threshold for the training

56

3.2 Scanned Table Extraction

Figure 3.19: �is screenshot shows the displayed information by the Tensor�ow based tool Luminoth
while executing the training process. Hereby the number of the current step along with
the name of the current �le is displayed. Moreover the training loss values and the
processing time per �le are shown.

loss is reached. When this phase is reached a checkpoint is manually created that
stores the �nal version of the model that was created during the training process.
�is checkpoint allows to always restore the model when evaluation or prediction
is performed. �is model will be used in the next stages to perform the detection of
tabular bounding boxes inside scanned PDF documents.

57

3 Method

Table Detection

Once the Training process of the model 3.2.2 is completed the implementation of
the actual tool for Table Extraction is initiated. �e method is split up into several
steps that, given a scanned PDF document as input �le, result in a native PDF
�le and along with a .csv �le containing its detected table boundaries. To get to
the desired results the input documents are split up and converted into images
before they are ge�ing preprocessed. A�erwards the table boundary prediction is
conducted and the resulting bounding box coordinates along with the �le name
and the page number are stored in form of .csv �les. Finally the original documents
are recomposed as native documents by applying OCR using the Tesseract engine
and passed over to the extraction process.

Figure 3.20: �e Table Detection process is takes a scanned PDF �les as input before converting
every �le page into an image. Once the Preprocessing is �nished the table boundary
prediction is executed. �e resulting MetaData is stored and passed on to the next stage
a�er recomposing the original documents as native documents by performing OCR.

�e program receives scannedPDFdocuments as input �les, no ma�er how many
and of what size. A�er the process is initiated as a �rst step the input documents
are converted. Hereby every PDF page is converted into an image because the
trained previously described model is optimized for table structure recognition
on image �les. For that purposes the Python library pdf2image is used [6]. When
the conversion process is completed the image �les are ge�ing preprocessed
to prepare them for the table boundary prediction process. As described in 3.2.2
in more detail, the preprocessing is conducted with the help of the open source
OpenCV library. Hereby each three transformation algorithms are applied on each
image before merging all channels together. Once the transformation and merging
procedures are �nished the �les are ready for the Prediction step. �e Prediction
method takes two input arguments:

58

3.2 Scanned Table Extraction

• Checkpoint created when the Training process was �nished (unique check-
point ID)

• Preprocessed image �le of PDF page (�le name)

Given these mentioned parameters the actual table boundary detection is performed.
�e results of this are stored into .csv �les named like the original PDF �le in the
”save Meta-Data” processing step. Every entry in a .csv �le consists of the following
�ve values:

• Page-number
• Min-X
• Min-Y
• Max-X
• Max-Y

With the help of these a�ributes the bounding boxes of each detected table can be
assigned to the correct document as well as the page it is placed on. �e Luminoth
tool also o�ers a simple web application where predictions can be performed using
a graphical user interface for visualizing the results. For using the web tool the
command ”lumi server web –checkpoint ”Checkpoint-ID” is executed. By passing
the checkpoint identi�er to the tool the trained model can be rebuilt in the desired
state. Once the command is execute a preprocessed document image can be uploaded
and the bounding box detection process is executed. �e Result of the execution is
displayed textually as well as graphically as it can be seen in the following Figure
3.21. �e textual output can look like the following:

”objects”:[”bbox”:[600,359,1932,1525],”label”:”table”,”prob”:1.0]

�e output parameters of the above shown output line are:

• objects
containing the actual list of table object that were detected

• bbox
the coordinates describing the boundaries of each detected table object

• label
the label of the detected object (in this scenario irrelevant since only one
object type is detected)

59

3 Method

Figure 3.21: �is Figure shows an excerpt of the web interface o�ered by Luminoth. On the le� side
the original document is shown whereas on the le� side the preprocessed �le is shown
a�er the table boundary detection was executed.

• prob
represents the probability of a structure to be categorized as an object

Once the prediction is �nished and the �les containing the boundary data are created
and �lled with the required information the documents are prepared for being
passed over to the Table Extraction stage. Since for extracting textual data from PDF
documents the type of the target PDF has to be native, the input documents have
to be changed from scanned into native. �erefore Optical Character Recognition
is performed for every document page supported by the open source Tesseract
OCR engine. A�er every page was parsed and the textual content is stored the
documents are recomposed into its original paging structure with the di�erence of
being native typed instead of scanned. Finally the Table Detection stage including
the preprocessing as well as postprocessing of the input �les is concluded by
handing the now native �les along with the .csv �les containing its meta-data over
to the extraction phase.

60

3.2 Scanned Table Extraction

Table Extraction

�e last phase that is put into practice before the structured table data is presented
to the user in form of .csv �les is the Table Extraction phase. �is phase processes
the input of the preceding phase (native PDF documents, �les containing table
boundaries) by �rst extracting the textual data along with its coordinates. A�er-
wards the columns and rows are initialized based on the bounding boxes and the
rows are combined based on the line distances. A�erwards critical sections are
reevaluated and incorrectly aligned columns are corrected before the �nal table
data is exported into .csv �les.

Figure 3.22: �e Table Extraction process takes native PDFs as input along with their predicted
bounding boxes. �e textual content is extracted and structured before the table struc-
ture is initialized. A�erwards speci�c regions are reevaluated and in certain cases
restructured before the table data get exported.

For performing the Table Extraction process several in chapter 3.1.2 described
algorithms and procedures are reused since the treated documents are from the
same type (native PDF documents). �e �rst step a�er the extraction is initiated
is the extraction of the textual content of the originally scanned PDFs. Since
OCR was performed in the previous phase before the documents were passed to the
extraction phase the textual data can be extracted identical to the native approach.
Hereby the same methods for text clustering into words, lines and pages are used
for being able to handle the input data in a more convenient manner. Also the
sparse point minimum value is calculated similar to the native approach since the
input available only gives information about the bounding box coordinates of the
detected table but not about the row and column structure. �is value will allow to
structure the table a�er the content inside the borders is determined. �erefore the
input .csv �le is analysed line by line and every entry is stored as a table region.
When the regions based on the given coordinates (upper le� and lower right corner)
are determined the a�ected textual data is assigned to the region.

61

3 Method

Figure 3.23: Given the coordinates describing the upper le� and lower right points of the table
bounding boxes the whole table area can be reconstructed. Hereby the textual content
situated in between this area is summarized to one tabular structure before further
actions are taken.

A�er all table regions are correctly matched with the textual data situated inside
its border the structuring process of the table itself begins. Since there are no
di�erences between the analysed data and the data structure when performing
Table Extraction in the native PDF Table Extraction process, the same algorithms
and methods are used to do so 2.2.1. A�er the structure was initialized the rows
and columns get assigned their cell values. To identify wrong assignments critical
sections are reevaluated incorrect structures are restructured like described in
chapter 2.2.1. As a result of this process the table structure gets exported as .csv to
allow the user easily go through all detected tables of the document while saving
time that would have been necessary to detect and manually copy the tables.

3.2.3 Problems and Challenges

In this chapter problems and challenges that were faced during the development
process of the deep learning based Table Extraction tool for scanned PDFs. Com-

62

3.2 Scanned Table Extraction

pared to the heuristic tool the number of problems is lower but on the other hand
the signi�cance of the problems that came up is much higher.

• Framework Selection
To implement the described approach for Table Detection in native PDF
documents, a framework to perform deep-learning is necessary. �e target
of deep-learning frameworks lies in allowing the developer to build models
based on an architecture optimized and pre-built for this purpose without
having to be concerned about the underlying algorithms. For the development
of the scanned Table Detection tool described in this thesis the TensorFlow
Framework was chosen. Even though there exist several alternatives (Pytorch,
Sonnet, mxnet and many more), it was decided to select TensorFlow for the
implementation because of its multi-language-support (Python, C++, R) and
the excellent documentation available. �e tool is developed by Google and
will therefore be further improved and will therefore stay relevant for a while.
Moreover CPU as well as GPU support is provided and the TensorBoard
component allows to visualize relevant data [13, 12].

• Model Selection
To realize the implementation of the Table Detection tool for scanned PDF
documents a deep learning-based approach was selected. To implement the
approach, it was necessary to select a model appropriate for the speci�c case
of application. �erefore profound research was conducted to evaluate the
available options. Based on the results of the comprehensive analysis the
Faster R-CNN model was selected. �e Faster R-CNN model is currently the
state-of-the-art approach when performing object detection tasks. It stands
out due to its excellent performance since a RPN (Region Proposal Network)
is used instead of selective search to generate the ”interesting” boxes. Further-
more it was essential that the selected model is supported by the framework
(TensorFlow) that is used to implement the deep-learning component.

• Training Stage

– Find appropriate learning rate
It is hard to �nd the optimal learning rate because multiple testing
cycles have to be conducted and the performance has to be evaluated
a�er the training process has �nished for being able to determine the
performance of a speci�c learning rate.

63

3 Method

– Analyze performance of model (validation)
Model evaluation is also a time-consuming process since a�er a certain
amount of iteration key-parameters have to be compared to the results
of the previous run. Like this it can get checked whether the training
did improve the results or not.

• Extraction Stage
– Performance impact of OCR

To perform OCR on the scanned PDF documents the Tesseract engine is
used. Even though Tesseract delivers good results the usage of Tesseract
also has a drawback. �e OCR process is time and resource consuming
and slows down the tools execution signi�cantly.

– Align coordinates a�er document recomposition
A�er the image �les are recomposed into native PDFs, these are passed
into the work-�ow of the java based Table Extraction tool. When ex-
tracting the native textual input the original coordinates are di�er from
the coordinates that are passed in form of .csv �les to identify the table
bounding boxes. �erefore the coordinates of the extracted textual con-
tent have to be adapted in a certain manner to make them �t the given
input coordinates of the scanned PDF Table Detection method.

64

4 Evaluation

�is chapter focuses on evaluating the two di�erent methods of Table Detection
described in the previous chapter 3. For performing the evaluation, several factors
described by Göbel, Oro and Orsi [32] are considered concerning the selection
of data and building the ground truth of the selected data set. Also, parameters
relevant for the analysis of the performance of a Table Detection tool are chosen
concerning relevant structural a�ributes (single column, multi column, number
of pages). �e evaluation is based on several statistical values including Recall,
Precision and F1-Score.

4.1 Evaluation Criteria

To identify how well the two approaches perform, three metrics, Recall, Precision
and F1, are used. �ese metrics are chosen as they give a good overview about the
overall performance of the applied approaches and re�ect the completeness of the
detected tables, as well as their ability to classify only correct tabular structures. To
evaluate the overall performance considering Precision and Recall, the harmonic
mean is calculated (F1-Score). In order to calculate the above listed statistical
performance indicators, it is necessary to know several numbers that describe the
detection results in detail. �ese relevant parameters are the following:

• Number of tables in PDF documents
• Number of tables detected
• Number of correct tables detected (True Positive = TP)
• Number of incorrect tables detected (False Positives = FP)
• Number of not detected tables

Following Figure 4.1 gives an overview about the above mentioned key parameters.
As it can be seen, the whole data is split in two halves, the le� half representing

65

4 Evaluation

actual tabular data, whereas the right half represents non-tabular data. Identi�ed
tables are part of the circle in the center of the rectangle. �ese identi�ed table
regions are categorized according to whether they are actually correctly identi�ed
(TP) or they don‘t represent a table in the original document (FP). Data not being
categorized as tabular is part of the area outside of the circle. Hereby the False
Negative (FN) fraction contains tables that were not detected by the Table Detection
algorithm, whereas the True Negative (TN) fraction consists of non-tabular data
that was identi�ed as such.

Figure 4.1: �is Figure shows the relevant portions of data that have to be considered for calculating
the Recall, Precision, as well as the F1 value. �e circle represents the detected table
portion that is again split into two categories (FP, TP), depending on the real existence of
these tables. �e points positioned outside the circle represent the data not classi�ed as
table. Hereby again two parts are existing, FN being the non-tabular data and FN being
the tabular data that was non classi�ed as such.

Recall describes the degree of completeness of the retrieval process. �e relation
between the found relevant documents (TP) and all found documents (the whole
circle in Figure 4.1) is calculated. �e Recall value is always in the range between 0
and 1, 0 being the worst and 1 being the perfect result. �e formula for calculating
the Recall is the following:

Recall = TP
FN+TP

Precision helps measuring the accuracy of the search process and shows the ability
of eliminating non-relevant information. �e ratio between the relevant found doc-
uments and all found documents is calculated. Again, the results of this calculation

66

4.1 Evaluation Criteria

are situated between 0 and 1, 0 being the worst and 1 being the perfect result. To
calculate the Precision the following formula is used:

Precision = TP
FP+TP

According to Buckland and Gey [20], a trade-o� between the two values Recall and
Precision is unavoidable. �e higher the Precision of the detection algorithm, the
higher is the chance that some ”Positives” are not detected and categorized as FN.
On the other hand, when the Recall value is very high, typically the Precision is
reduced since a higher amount of FPs is likely to appear.

�e �nal Parameter used to describe and evaluate the detection results is the F1-
Score. �e F1-Score describes the weighted average of Recall and Precision. If the
F1-score is high, the performance of precision and recall will also show good results.
�e formula used to calculate the F1-score is the following:

F1 = 2 ∗ Precision∗Recall
Precision+Recall

In order to allow proper interpretation of the results, several di�erent scenarios are
considered that lead to varying results. �is especially concerns tables that were
detected partially, since a clear separation between correct and incorrect detection
is hard to determine in such cases. Before going on with the description of the test
data used for the evaluation procedure, all possible results of the detection phase
are described, categorized and outlined in form of �gures to give a comprehensible
overview about the whole evaluation process.

For the calculation of the described metrics (Recall, Precision, F1-Score) the follow-
ing result types are interpreted:

• Correct Detections — True Positives
�is category includes correctly identi�ed tabular structures. �e bounding
boxes include the whole tables and no textual elements that are not part of a
table.

• Missing Detections — False Negatives
�is concerns tables that were not recognized by the currently analysed Table
Detection approach.

67

4 Evaluation

• Incorrect Detections — False Positives
Areas categorized as tabular structures that do not contain any form of real
table are incorrect results.

• Partial Detections — True Positives of False Negatives
Table structures that were recognized but the extracted boundaries do not �t
su�ciently into the original boundaries for them to be classi�ed as correct,
are classi�ed as partially correct.

Based on the described categories that are additionally illustrated in Figure 4.2
the following calculations are used to obtain the metrics used to evaluate the
performance of each Table Detection tool. Since the corner cases coming along
with partial detections are hard to strictly classify as Correct Detections or Missing
Detections, the calculations are performed twice, considering both scenarios. Once
partially detected tabular structures are classi�ed as correct results and once they
are classi�ed as missing.

Partial Detections categorized as Correct Detections:

Recall = CorrectDetections+PartialDetections
CorrectDetections+PartialDetections+MissingDetections

Precision = CorrectDetections+PartialDetections
CorrectDetections+PartialDetections+IncorrectDetections

Partial Detections categorized as Missing Detections:

Recall = CorrectDetections
CorrectDetections+MissingDetections+PartialDetections

Precision = CorrectDetections
CorrectDetections+IncorrectDetections

As stated above, the Recall and Precision of each approach is calculated twice
in order to allow an objective evaluation of the approach. To do so, the Partial
Detections are added to the Correct Detections at �rst to compute the performance.
A�erwards, the Partial Detections are included in the False Negative category. �is
way, it is possible to describe the performance considering both evaluation results.
�is leads to more comprehensible and transparent results that will be described in
Chapters 4.4.

68

4.1 Evaluation Criteria

Figure 4.2: In this �gure the di�erent results that may occur during the Table Detection process
are illustrated. �is concerns the categories of Correct Detections, Missing Detections,
Incorrect Detections, as well as Partial Detections.

69

4 Evaluation

4.2 Limitations

Due to the wide range of layouts in which a PDF �le can be built, it is hardly possible
to implement a heuristic approach that performs on the same level for every type
of PDF. For this reason, there are some limitations that have to be mentioned
before analyzing the results of the Table Detection method. �ese limitations also
in�uence the numbers displayed in Table 4.3 and therefore the whole outcome of
the evaluation process. Aside from the heuristic approach, the deep learning based
approach used for scanned PDF documents is also a�ected by some limitations.
�erefore, the following listing includes the concerned approaches and describes
each limitation in detail.

• Documents not containing ”normal” text passages
A�ected: Heuristic Approach
Typically, PDF documents consist of multiple pages containing textual con-
tent, images, as well as tables. In rare cases a document only consists of
tables without actual textual content the implemented algorithm fails. �is is
due to the threshold that is calculated to identify sparse areas inside lines. If
no text passages are contained in a �le and only tables are contained, this
threshold calculation provides a value that is not suitable to identify the
actual tabular structure a�erwards. �erefore, �les of this type (typically one
page documents) are excluded from the testing data-set.

• Images categorized as tabular structures
A�ected: Heuristic Approach, Deep Learning based Approach
As already mentioned in Chapter 3.1.3, the algorithm struggles in di�erenti-
ating tables from charts or images containing text. �e labels of charts, as
well as their textual content, mostly match the criteria that the algorithm
uses to identify tables. �is is due to the fact that lines included are sparse,
as well as successive. Furthermore, the amount of sparse areas are similar
for these lines. �ese circumstances lead to the algorithm to categorize these
structures as tables (False Positives) and therefore represents a limitation.
Since this limitation is well-known and its impact would falsify the actual
results of the table structure recognition process, False Positives appearing
due to this, are excluded from the evaluation process and therefore ignored
in Table 4.3.

• Incorrect extraction results delivered by third party so�ware
A�ected: Heuristic Approach

70

4.3 Test Data

As already described in Chapter 3.1.3, the heuristic approach depends on
external so�ware (in this case PDFBox) that performs the extraction of textual
elements of the native input �les. If the results that are delivered by the third
party library are incorrect, the whole detection fails, since the extracted data
forms the basis for the whole process. Even though this limitation hardly ever
occurs, it is mentioned to give a complete list of scenarios that may in�uence
the outcome of the evaluation process.

• Pseudo-Code and Formulas
A�ected: Heuristic Approach, Deep Learning based Approach
When considering scienti�c documents, frequently formulas or even Pseudo-
Code (especially in the �eld of computer science and so�ware engineering)
areas appear. In those cases neither the native nor the scanned approach
perform well in di�erentiating between real tables and those mentioned
structures. �is leads to a accumulation of FPs that will be ignored when
performing the calculation of the evaluation metrics, since this weakness is
well-known and would falsify the resulting statistics.

�is list of limitations describes several scenarios, as well as dependencies, that
can have a negative impact on the performance of the discussed Table Detection
approaches. Since the described items are very hard to eliminate reliably, those
are excluded when evaluating the actual results of the detection process to ac-
quire objective results that describe the performance regardless of document type,
document layout and subject area.

4.3 Test Data

In order to perform the evaluation of both table-detection approaches, test data
is selected and prepared. �e data selected has to cover di�erent document types
(multi-column, single-column) in order to reveal strengths and weaknesses that a
certain approach has when treating speci�c �le-types. Furthermore, it is essential to
select test data that represents ”real-world” PDF documents. By choosing these kind
of PDFs, it is possible to evaluate how the analysed approaches perform in practice.
For choosing appropriate test data that meets the described criteria, the Google
Scholar 1 platform was used and speci�c search queries were conducted that will

1h�ps://scholar.google.at/

71

4 Evaluation

be described in detail in the next paragraphs. �e data used for test purposes varies
for both analysed approaches, since a di�erent type of document is needed as input.
In order to evaluate both approaches objectively and to compare them with each
other, one part of the data-set is adapted to make it processable for both approaches.
�erefore a number of native documents are converted into scanned documents
(each page is converted into an image). �is way, it is possible to process documents
that seem to be the same at �rst glance for both, the native, as well as the scanned
Table Detection approach. �e results are a�erwards evaluated and interpreted
before performing a comparison based on several indicators. In order to gather the
test data with the help of the Google Scholar platform, following search queries are
used: ”So�ware Testing”, ”Deep Learning”, ”Automobile Industry”, ”Psychology”,
”Food Industry”, ”Music Industry” and ”Creative Industry” and 34 documents that
contain one or more tables are selected. �ese documents contain 152 tables spread
over 589 pages. Data from all these �elds is collected to put together a data-set of
scienti�c articles that is close to real-world data because of its high diversity. In
addition to the data collected via Google Scholar, there is further test data collected
from governmental websites (native). Furthermore, an already prepared data-set is
used to evaluate the scanned Table Detection approach. In Chapters 4.3.1 and 4.3.2
this data is described in more detail and an overview over the whole data-set that
is �nally used to perform the evaluation is given.

4.3.1 Native Test Data

Apart from the already described data-set that is used to evaluate the performance
of the scanned, as well as the native Table Detection method, parts of the ICDAR
2013 data-set 2 are utilized to analyse the heuristic approach targeted on native
documents. �e ICDAR 2013 data-set is an accumulation of PDF documents that are
collected from US and EU governmental websites. �is data-set includes documents
of various structures, including single-column and multi-column PDFs, as well
as documents from varying sizes (from one-page documents up to 30+ pages).
Every document at least contains one table but there may be pages not containing
a single table structure, which increases the probability of False Positives (table
recognitions in areas not containing a tabular structure). For the native test data-set
the ground truth is manually collected and stored in form of a .csv �le. For each

2h�p://www.tamirhassan.com/html/competition.html

72

4.3 Test Data

table the page and position a�ribute is stored. �is allows to identify tables that are
detected correctly (TP), non-tabular areas that were incorrectly categorized (FP)
as a table, as well as tables that were no detected (FN). Based on these values, the
statistical parameters described in chapter 4.1 can be calculated and an evaluation
of the performance of the Table Detection tool for native PDF documents can be
conducted.

Type Documents Pages Tables
single-column 59 575 170
multi-column 15 138 56
total 74 713 226

Table 4.1: Amount of native documents being multi column, single column, as well as the total
page count for each type is displayed. Additionally, the amount of existing tables for each
document type is shown.

4.3.2 Scanned Test Data

�e data-set chosen to evaluate the performance of the Table Detection method for
scanned PDFs, consists of 34 �les of various types as described in Chapter 4.3, in
addition to the �les that are used to evaluate both approaches. Since prepared data-
set only consists of single-page documents, it was necessary to additionally collect
a number of multi-page documents to conduct a more objective evaluation, since
the evaluation data-set used for the native approach also consists of single-page as
well as multi page documents.

�e ground truth of the data-set was largely already available since the data-set
o�ered by [10] already provides the necessary information. �e information used
describing the ground truth for scanned PDF Table Detection is the coordinate
information of the table bounding box. Given these coordinates, the results of
the detection process can be evaluated and classi�ed as successful or not. Since
multi-page documents were added to the evaluation data, the ground truth of those
PDF �les was created manually using a visual tool that supports the extraction of
coordinates in images at certain positions. As the creation of the ground truth can

73

4 Evaluation

Type Documents Pages Tables
single-column 61 498 171
multi-column 37 156 97
total 98 654 268

Table 4.2: �e amount of scanned documents being multi column, single column as well as the page
count for each type is displayed. Also the number of tables is shown for each type and for
the total table-count.

be a subjective ma�er, data that could not be clearly categorized was excluded from
the Evaluation data-set as proposed by Göbel, Oro and Orsi [32].

4.4 Results

In this chapter the results of the heuristic and the deep learning based Table Detec-
tion processes are presented. Based on the metrics Recall, Precision and F1-Score,
the quality of each analysed approach concerning di�erent factors is measured.
Hereby, strengths and weaknesses of the heuristic and the deep learning based
approach are brought up, considering di�erent styles and types of documents.
�is concerns the circumstance of whether a document layout consists of one or
multiple columns. Furthermore, in order to allow an objective interpretation of the
performance, partial detections are interpreted in two di�erent variations (True
Positive, False Negative).

4.4.1 Native PDF Table Detection

�is section describes the results of the native Table Extraction approach. Hereby,
several essential values are considered that will be displayed in the following Table
4.6. �e test-data, containing in total 226 tables, is described in Chapter 4.3.1. 170 of
these tables are part of a single-column document and 56 are part of a multi-column
document. A�er the detection process the results concerning correct, incorrect,
missing and partial detections are collected and structured:

74

4.4 Results

Type existing Tables correct missing incorrect partial
single-column 170 154 3 27 13
multi-column 56 46 2 13 8
total 226 200 5 40 21

Table 4.3: �e results of the Table Detection process for native PDF documents are shown. Hereby, all
existing tables as well as the amount of tables correctly and incorrectly found is relevant.
Also, the number of tables that were not detected and the number of missing tables is
indicated.

Based on the numbers shown in Table 4.3 the values Recall, Precision and F1-
Score (described in Chapter 4.1) can be calculated and interpreted a�erwards. Since
partially detected tables can be categorized in two di�erent ways (correctly detected
= True Positive, not detected = False Negative), the results are calculated twice and
the interpretation is based on both of them. In order to give further information
about strength and weaknesses of the applied approach, the result-data will be split
into single-column and multi-column since it is from interest to see whether the
approach is suited be�er for one of these layouts than for the other one. Finally,
the results without considering the document type are shown to give an overview
of the overall performance.

�e following Table 4.4 shows the Precision, Recall and F1-Score results for the
native Table Detection approach, considering single-column and multi-column
documents. Since partially detected tabular structures are hard to categorize as
correct or incorrect, the calculations are performed twice to allow an objective
analysis of the performance.

Partially detected tables are counted as valid detection results (True Positive) in
Table 4.4, whereas partially detected tables are counted as invalid detection results
(False Negative) in Table 4.5.

As can be seen in Table 4.4, the Recall is very high (total 0.978) when partial
results are considered to be correct results. For this reason, the native approach
performs well in detecting existing tables for both multi-column, as well as single-
column documents. In contrast to that, when partial detections are classi�ed as
incorrect, the Recall decreases especially for multi-column documents. While the
heuristic approach still performs decently for single-column documents, a slight

75

4 Evaluation

Type Precision Recall F1-Score
single-column 0,861 0,982 0,918
multi-column 0,806 0,964 0,878
total 0,847 0,978 0,908

Table 4.4: Native detection results with respect to the document format. Partial Detections are
considered as True Positives.

Type Precision Recall F1-Score
single-column 0,851 0,906 0,877
multi-column 0,780 0,821 0,800
total 0,833 0,885 0,858

Table 4.5: Native detection results with respect to the document format. Partial Detections are
considered as False Negatives.

performance decrease can be observed when treating multi-column PDFs. Due
to the number of Incorrect Detections, the Precision is lower than the Recall. As
already mentioned, a trade-o� between Precision and Recall is inevitable. Since the
positive e�ect of correctly detected tables outweighs the negative e�ect of incorrect
detections, the Recall was chosen to be from higher relevance than the Precision
during the optimization of the results. When comparing the performance decrease
when treating partial detections in both ways, it gets obvious that this has a bigger
in�uence on the Recall than on the Precision. While the Precision only decreases
slightly (0.01 and 0.026), the Recall goes down much more (0.076 and 0.143). But
still the Recall metric holds the superior performance. �e weighted average of
Precision and Recall (F1-Score) takes into account the Recall as well as the Precision.
When analysing the results of the F1-Score calculation, it gets obvious that the
heuristic approach performs be�er for single-column documents than for multi-
column documents.�is holds true for both cases, especially when considering
partial detections to be False Negatives. All in all, the approach performs very
solidly for both considered types of documents (single-column and multi-column).
�e strength of the approach lies in the detection of existing tabular structures, as

76

4.4 Results

represented by the Recall value. Due to the heuristics that are applied to detect table
areas, several scenarios that lead to incorrect categorizations of non-tabular areas
can appear. �is circumstance leads to the Precision of the method not being as high
as its Recall value. Generally speaking, in order to detect tables in PDF documents
from native nature, this approach is highly e�ective but in certain scenarios False
Positives cannot be avoided.

4.4.2 Scanned PDF Table Detection

�is section describes the results of the scanned Table Extraction. Hereby, several
essential values are considered that will be displayed in the following Table 4.6.
�e interpretation of the table rows can be looked up in Chapter 4.1 since both
approaches are analysed on the basis of the same result parameters.

Type existing Tables correct not detected incorrect partial
single-column 171 156 8 16 7
multi-column 97 87 8 8 2
total 268 243 16 24 9

Table 4.6: �e results of the Table Detection process for scanned PDF documents are shown. Hereby,
all existing tables, as well as the amount of tables correctly and incorrectly found, is
relevant. Also, the number of tables that were not detected is indicated.

�e values displayed in Table 4.6 serve as base for the performance evaluation of
the deep learning based approach for Table Detection in scanned PDF documents.
Given these values the Recall, Precision and F1-Score are calculated presented
and analysed in the following paragraphs. In order to eliminate the problem of
categorizing partially detected table areas as True Positives or False Negatives,
since this is hard to put into practice in a reliable manner, the mentioned values are
calculated twice. In Table 4.7 the partially detected tables are categorized as correct
and in Table 4.8 they are categorized as incorrect detection results. Additionally,
the results are split into single-column and multi-column which allows to recognize
areas in which the detection method performs be�er or worse.

77

4 Evaluation

Partially detected tables are counted as valid detection results (True Positive) in
Table 4.7, whereas partially detected tables are counted as invalid detection results
(False Negative) in Table 4.8.

Type Precision Recall F1-Score
single-column 0,911 0,953 0,931
multi-column 0,918 0,918 0,918
total 0,913 0,940 0,926

Table 4.7: Scanned detection results with respect to the document format. Partial Detections are
considered as True Positives.

Type Precision Recall F1-Score
single-column 0,907 0,912 0,910
multi-column 0,916 0,897 0,906
total 0,910 0,907 0,908

Table 4.8: Scanned detection results with respect to the document format. Partial Detections are
considered as False Negatives.

�e tables above show the result metrics that are calculated based on the detection
result values shown in Table 4.6. While the Precision shows nearly no discrepancy
between single-column and multi-column documents, the Recall is signi�cantly
higher for single-column documents. �is can especially be seen in Table 4.7, where
partial detections are considered to be correct. Additionally, it can be observed that
the Precision drops just by a minimal amount (0.004, 0.002 and 0,003) when taking
partial detections into account as False Negatives. �is is not the case for the Recall
that drops signi�cantly (0.041, 0.021 and 0,033) when comparing both tables. �ese
statistics highlight the ability of the scanned approach to detect tables as a whole.
Just a very low percentage of tables are partially detected, which leads to very low
variations between Table 4.7 and Table 4.8. All in all, it can be observed that the
F1-Score displays be�er results for the scanned Table Detection approach when
treating single-column documents in comparison with multi-column documents.

78

4.4 Results

�e distance between both types concerning the performance decreases when
partial tables are classi�ed as incorrect.

4.4.3 Comparison of Approaches

A�er the results of both approaches using di�erent data-sets as test data were
collected, another testing cycle is performed to get a deeper understanding of the
strengths and weaknesses of each approach. In order to extract results that can be
compared for this evaluation cycle, both Table Detection techniques are applied on
the same data-set. To do so, the native documents are rendered into scanned PDFs.
Like that, the same testing data, consisting of 589 pages including 165 tables, can
be used as input for both the scanned and the native approach.

Native Scanned
Type Precision Recall F1-Score Precision Recall F1-Score
single-column 0,867 0,970 0,916 0,901 0,956 0,928
multi-column 0,803 0,961 0,875 0,891 0,961 0,925
total 0,845 0,967 0,902 0,898 0,958 0,927

Table 4.9: Scanned and native detection results with respect to the document format. Partial Detec-
tions are considered as True Positives.

Native Scanned
Type Precision Recall F1-Score Precision Recall F1-Score
single-column 0,854 0,871 0,863 0,899 0,939 0,918
multi-column 0,774 0,804 0,788 0,891 0,961 0,925
total 0,827 0,849 0,838 0,897 0,945 0,920

Table 4.10: Scanned and native detection results with respect to the document format. Partial
Detections are considered as False Negatives.

�e Tables 4.9 and 4.10 illustrate the performance of both Table Detection ap-
proaches applied on the same data-set. �e initially native PDF data-set was pre-

79

4 Evaluation

pared before the scanned approach was applied. �erefore, the pages were rendered
to transform every native document into a scanned one. �e results show that con-
cerning most metrics the deep learning based approach outperformed the heuristic
one. Especially the Precision shows large gaps when considering the multi-column
documents. �e category in which the native approach is superior to the scanned
approach concerns the Recall for single-column documents, when partial detec-
tions are considered as valid. �e F1-Score displays the overall performance of the
tools taking into consideration the Precision as well as the Recall metrics. It can
be seen that, overall, the deep learning based implementation dominates every
category, independent of the document type and the interpretation of the Partial
Detections.

4.5 Discussion

Due to a number of reasons, the problem of table detection in PDF documents is very
complex. Documents can be built in di�erent ways, which makes it impossible to
handle every PDF the same way. Apart from its generation, the layout varies highly,
especially when dealing with documents from di�erent subject areas. Furthermore,
there is no blueprint of how tables should be structured and what they should
look like. For this reason it is not possible to easily identify heuristics which allow
to identify and extract every table in PDF documents. Another challenge when
dealing with Table Detection are several structural elements (�gures, pseudo-code,
formulas), which, due to similar characteristics concerning their appearance, can in
certain cases no be di�erentiated from tabular areas. �e purpose of the Discussion
Section is to give an overview of the results of both approaches delivered and to
compare them to see in which areas the heuristic as well as the deep learning based
approach show strengths or weaknesses. Additionally, the research question of this
thesis is dealt with by interpreting the results.
In general, both approaches perform solidly when considering the metrics used
to evaluate their performances, yet there are still several indicators that show dif-
ferences in speci�c scenarios. �e Precision of the deep-learning based approach
is be�er than the Precision of the heuristic approach, since the high amount of
rules built to detect tables in the heuristic approach o�en classify non-tabular
structures as valid tables. �is is not as o�en the case for the scanned approach,

80

4.5 Discussion

which leads to much be�er results concerning Incorrect Detections (False Posit-
ives). �e number of incorrectly classi�ed table structures is signi�cantly lower for
the deep-learning based approach when compared to the heuristic approach. �is
leads to the conclusion that, for the approach applied on scanned documents, the
results are more precise. In the other hand, when considering the Recall of both
methods, it is obvious that the heuristic approach performs superior as long as
partial detections are considered as correct. If partial detections are classi�ed as
False Negatives, the scanned approach performs slightly be�er for single-column
documents and signi�cantly be�er when treating multi-column documents. Based
on these facts, the perception that, especially when performing Table Detection
on single-column documents, the heuristic approach performs excellently with a
Recall value of 0.982, while the deep learning based approach Recall is 0.953. �e
drawback of the heuristic approach is the high number of Partial Detections as
well as Incorrect Detections in comparison to the method built to detect tables in
scanned documents.
In general, the deep learning based approach performs solidly for both types of
documents. While the Precision value is very similar no ma�er which type of doc-
ument is considered, the Recall shows that, when Partial Detections are considered
as correct, the results of Table Detections in single-column documents are more
complete. When partial detections are considered as correct, the total Recall is
signi�cantly higher, while in Table 4.8 the discrepancy is minimal and in favor of
the Precision metric.
In comparison to the scanned approach, the completeness of the detected tables
is much higher for the native approach, when considering Partial Detections as
correct. �e backside of the excellent Recall is the high number of False Positives, as
well as Partial Detections, which lead to a signi�cantly lower Precision compared to
the deep-learning based approach. �e high number of Partial Detections is caused
by the di�erent heuristics that are applied to e.g. split tables based on varying
line distances. Several factors may cause wrong assumptions, which lead to the
classi�cation of non-tabular areas as tables, yet, on the other hand, hardly any
table is not recognized as it is re�ected by the numbers in Table 4.3. While the
native approach only skips 5 tables in total, the approach applied on the scanned
documents ignores more than three times the amount of tables (16).
Even within speci�c scienti�c �elds (like health industry, computer science or
automobile industry) not even a rough standardization of the PDF layouts and table
structures has been de�ned. �erefore, it is not possible to give any recommenda-
tions concerning the approach that is the best to use for any of these �elds. Which

81

4 Evaluation

algorithm to choose depends on several factors. Apart from the obvious reasons
concerning the document type (scanned, native), both the layout of the documents
and its orientation are decisive factors. �e heuristic tool o�en fails when docu-
ments that do not contain textual content (�les just containing tables) are analysed.
�is occurs because the threshold calculation for classifying sparse areas in lines
fails, since no actual paragraphs containing text are included. Furthermore, the
orientation of the documents is essential, since orientation switches in documents
can lead to incorrect classi�cations due to the fact that the extraction process is
not optimized to handle this scenario. On the other hand, uncommon layouts of
PDF documents or tables may lead to incorrect results for the deep-learning based
approach, since the used model is just trained on a limited amount of �les that don‘t
cover every possible layout a PDF document can have. When interpreting Tables
4.9 and 4.10, which demonstrate the performance of both approaches applied on
the same data set, it gets obvious that, especially concerning the Precision metric,
the deep learning based approach performs superior to the heuristic approach.
Nevertheless, the heuristic approach does a good job at identifying table structures
(especially in single column documents), which is re�ected by the high Recall. Fur-
thermore, for Table Detection in multi-column documents, the scanned approach
provides be�er results.

82

5 Conclusion

�e PDF standard still is one of the most dominant �le formats used for information
exchange and representation. Even though at �rst glance PDF documents may
look the same, there are di�erent ways in which they can get created. Depending
on the creation-type (directly from applications, calling OS printing API or third
party translation so�ware), a di�erent set of information is available for further
processing a�er the creation. �e main categories in which PDFs can be divided are
native as well as scanned PDF documents. While native PDFs still contain high-level
information in di�erent forms, scanned PDFs are image only without including
any digital code to describe structure of forma�ing. Furthermore, di�erent layouts
(single-column, multi-column) and orientations (horizontal, vertical) make the topic
of Information Extraction from PDF documents very challenging. Since textual
content cannot be extracted from scanned documents without further processing,
Optical Character Recognition has to be conducted to convert image-typed content
into a format a computer can process. Since tables can be found in nearly every
type of PDF document and the information density in tables is particularly high, the
�eld of Table Extraction is of high relevance. Even though there are multiple tools
available to the public, it is hard to choose the suitable one in speci�c situations.
Additionally, most publicly available tools are limited on Table Detection in native
PDF documents, which reduces the �exibility for the user drastically.
To develop a strategy on when the usage of a tool specialized on scanned documents
is bene�cial compared to a tool targeting native PDFs, two tools for Table Detection
are developed and analysed. While the approach targeting native PDF documents
is heuristic, the second approach for detecting table structures in scanned PDFs
is based on deep-learning. �e heuristic method is split in the processing steps
”Preprocessing”, ”Table Detection” and ”Table Extraction”. �e applied heuristics
were developed by analysing similarities in table structures and how to distinguish
them from non-tabular content. �e key rule concerning the detection of candidate
table lines are sparse �elds in between words that are situated in the same line. If a
certain threshold is exceeded, the algorithm marks a line as sparse and a�erwards

83

5 Conclusion

consecutive sparse lines are joined together to build a tabular structure. As model
used for the deep learning based approach for scanned documents, the Faster R-
CNN algorithm, which is optimized for real-time object detection, was selected.
Before the detection of the bounding boxes representing the table structures on
the image-typed pages is conducted, every page is preprocessed by applying image
transformation algorithms. �is is done because the Faster R-CNN object detec-
tion method performs best on natural images. By applying image transformation
techniques, the input images are converted into images that are as close as possible
to natural images. �e results of the Table Detection on scanned documents are
represented by coordinates values which hold the boundary-values of the detected
tables. Since the text extraction is not possible from image typed documents, Optical
Character Recognition has to be applied in advance. A�er the detection phase is
completed and the actual table structure is built (rows, columns) and the table-cells
are �lled with information, Header and Footer detection is initiated based on key
words and line distances. �e �nal result of the Table Extraction, regardless of the
applied method, are .csv �les containing a worksheet per detected table and the
actual table structure as content.
�e problems occurring during the development of the heuristic approach were
primarily associated with varying document and table layouts. Due to the fact that
automated extraction of structured text elements is not possible, words and lines
have to be built based on the coordinates of the extracted characters. Furthermore,
for extraction purposes a third party library was used. �is leads to a factor of
dependence on an external tool, which can have negative e�ects on the overall
approach. Furthermore, heuristics have to be developed for several scenarios (e.g.
separation of consecutive tables, exclusion of page header/footer).
Challenges in the context of the development of the scanned Table Detection ap-
proach concern the selection of a suitable framework, model selection, as well as
�nding an appropriate learning rate and validating the current performance of the
model. Additionally, the OCR process is very resource consuming and is therefore
slowing down the execution time signi�cantly.
�e evaluation of both approaches based on the metrics Recall, Precision and F1-
Score shows that the heuristic approach performs excellent considering the amount
of tables not recognized. �erefore, the Recall metric is signi�cantly higher than for
the deep learning based approach as long as the partial detections are categorized as
correct. On the backside the Precision of the heuristic approach is lower since a lar-
ger number of Incorrect Classi�cations are present. When focusing on the di�erent
types of layouts, it can be seen that in general the Table Detection performs be�er

84

5.1 Future Work

for single-column documents compared to multi-column documents. Additionally,
documents consisting of pages that just hold tables and no textual content, are not
suitable for the heuristic approach, since the sparse threshold calculation produces
results that are not su�cient for its purposes.
All in all, the type, layout and orientation are decisive factors when choosing the
appropriate tool for Table Detection. In general it can be said that if the number of
False Positives is irrelevant the heuristic approach is the tool of choice especially
when treating single column documents, since the Recall is signi�cantly higher as
long as Partial Detections are classi�ed as correct results. �e heuristic method also
stands out because of its high recognition-speed compared to the slow execution of
the deep learning based tool that performs complex, resource-intensive operations.
If the Precision is considered to be of higher relevance, the deep learning based
approach provides superior results, regardless of the document layout. �e overall
performance re�ected by the F1-Score shows that the algorithm applied on scanned
PDFs performs superior taking into consideration single-column as well as multi-
column documents. Especially, when the target data-set consists of both types of
documents and the factors time as well as resources are irrelevant, the deep learning
based approach is the best option. Since the PDF format is not standardized and
the layout as well as the type can strongly vary, even within the same scienti�c
�eld, it is hard choose the perfect tool in every situation, but given the mentioned
aspects the selection process is simpli�ed.

5.1 Future Work

�e described approaches in this thesis come along with several limitations, es-
pecially concerning structures that are incorrectly classi�ed as table-structure
regardless of the used methodology (heuristic, deep learning based). �is especially
concerns Figures as well as Pseudo-Code and Formulas because these structures
o�en share similarities with actual table structures concerning its structural fea-
tures as well as sparse nature. Heuristics to exclude incorrect results coming along
with the mentioned structures would signi�cantly increase the performance of the
Table Detection process. Furthermore, a combined approach using the advantages
of both approaches and automatically choosing the one optimized for the current
scenario, would further enhance the performance as well as usability of the Table

85

5 Conclusion

Detection approaches since the users would not be forced to choose by themselves
which approach is suitable.

86

Bibliography

[1] About. https://opencv.org/about/. (Accessed on 08/02/2019).

[2] Do we really need gpu for deep learning? - cpu vs gpu. https:
//medium.com/@shachishah.ce/do-we-really-need-
gpu-for-deep-learning-47042c02efe2. (Accessed on
08/01/2019).

[3] How to con�gure the learning rate when training deep learning neural net-
works. https://machinelearningmastery.com/learning-
rate-for-deep-learning-neural-networks/. (Accessed on
08/04/2019).

[4] Installation — luminoth 0.2.4.dev documentation. https://luminoth.
readthedocs.io/en/latest/usage/installation.
html#before-you-start. (Accessed on 08/01/2019).

[5] Pdf techniques — techniques for wcag 2.0. https://www.w3.org/TR/
WCAG20-TECHS/pdf. (Accessed on 08/26/2019).

[6] pdf2image · pypi. https://pypi.org/project/pdf2image/.
(Accessed on 08/03/2019).

[7] Pycharm: the python ide for professional developers by jetbrains. https:
//www.jetbrains.com/pycharm/. (Accessed on 08/04/2019).

[8] R-cnn, fast r-cnn, faster r-cnn, yolo — object detection algorithms.
https://towardsdatascience.com/r-cnn-fast-r-cnn-
faster-r-cnn-yolo-object-detection-algorithms-
36d53571365e. (Accessed on 07/31/2019).

87

https://opencv.org/about/
https://medium.com/@shachishah.ce/do-we-really-need-gpu-for-deep-learning-47042c02efe2
https://medium.com/@shachishah.ce/do-we-really-need-gpu-for-deep-learning-47042c02efe2
https://medium.com/@shachishah.ce/do-we-really-need-gpu-for-deep-learning-47042c02efe2
https://machinelearningmastery.com/learning-rate-for-deep-learning-neural-networks/
https://machinelearningmastery.com/learning-rate-for-deep-learning-neural-networks/
https://luminoth.readthedocs.io/en/latest/usage/installation.html#before-you-start
https://luminoth.readthedocs.io/en/latest/usage/installation.html#before-you-start
https://luminoth.readthedocs.io/en/latest/usage/installation.html#before-you-start
https://www.w3.org/TR/WCAG20-TECHS/pdf
https://www.w3.org/TR/WCAG20-TECHS/pdf
https://pypi.org/project/pdf2image/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e
https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e
https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e

Bibliography

[9] Region proposal network (rpn) — backbone of faster r-cnn. https:
//medium.com/egen/region-proposal-network-rpn-
backbone-of-faster-r-cnn-4a744a38d7f9. (Accessed on
07/31/2019).

[10] Table detection using deep learning - good audience. https:
//blog.goodaudience.com/table-detection-using-
deep-learning-7182918d778. (Accessed on 08/02/2019).

[11] Tensor�ow records? what they are and how to use them. https:
//medium.com/mostly-ai/tensorflow-records-what-
they-are-and-how-to-use-them-c46bc4bbb564. (Accessed
on 08/02/2019).

[12] Top 10 best deep learning frameworks in 2019 - towards data sci-
ence. https://towardsdatascience.com/top-10-best-
deep-learning-frameworks-in-2019-5ccb90ea6de. (Ac-
cessed on 08/23/2019).

[13] Top 5 deep learning frameworks, their applications, and comparis-
ons! https://www.analyticsvidhya.com/blog/2019/03/
deep-learning-frameworks-comparison/. (Accessed on
08/23/2019).

[14] Understand the so�max function in minutes - data science boot-
camp - medium. https://medium.com/data-science-
bootcamp/understand-the-softmax-function-in-
minutes-f3a59641e86d. (Accessed on 07/31/2019).

[15] Understanding learning rates and how it improves performance in deep learn-
ing. https://towardsdatascience.com/understanding-
learning-rates-and-how-it-improves-performance-
in-deep-learning-d0d4059c1c10. (Accessed on 08/04/2019).

[16] Using tfrecords and tf.example — tensor�ow core — tensor�ow. https://
www.tensorflow.org/tutorials/load data/tf records.
(Accessed on 08/02/2019).

[17] What is tensor�ow? — opensource.com. https://opensource.com/
article/17/11/intro-tensorflow. (Accessed on 08/01/2019).

88

https://medium.com/egen/region-proposal-network-rpn-backbone-of-faster-r-cnn-4a744a38d7f9
https://medium.com/egen/region-proposal-network-rpn-backbone-of-faster-r-cnn-4a744a38d7f9
https://medium.com/egen/region-proposal-network-rpn-backbone-of-faster-r-cnn-4a744a38d7f9
https://blog.goodaudience.com/table-detection-using-deep-learning-7182918d778
https://blog.goodaudience.com/table-detection-using-deep-learning-7182918d778
https://blog.goodaudience.com/table-detection-using-deep-learning-7182918d778
https://medium.com/mostly-ai/tensorflow-records-what-they-are-and-how-to-use-them-c46bc4bbb564
https://medium.com/mostly-ai/tensorflow-records-what-they-are-and-how-to-use-them-c46bc4bbb564
https://medium.com/mostly-ai/tensorflow-records-what-they-are-and-how-to-use-them-c46bc4bbb564
https://towardsdatascience.com/top-10-best-deep-learning-frameworks-in-2019-5ccb90ea6de
https://towardsdatascience.com/top-10-best-deep-learning-frameworks-in-2019-5ccb90ea6de
https://www.analyticsvidhya.com/blog/2019/03/deep-learning-frameworks-comparison/
https://www.analyticsvidhya.com/blog/2019/03/deep-learning-frameworks-comparison/
https://medium.com/data-science-bootcamp/understand-the-softmax-function-in-minutes-f3a59641e86d
https://medium.com/data-science-bootcamp/understand-the-softmax-function-in-minutes-f3a59641e86d
https://medium.com/data-science-bootcamp/understand-the-softmax-function-in-minutes-f3a59641e86d
https://towardsdatascience.com/understanding-learning-rates-and-how-it-improves-performance-in-deep-learning-d0d4059c1c10
https://towardsdatascience.com/understanding-learning-rates-and-how-it-improves-performance-in-deep-learning-d0d4059c1c10
https://towardsdatascience.com/understanding-learning-rates-and-how-it-improves-performance-in-deep-learning-d0d4059c1c10
https://www.tensorflow.org/tutorials/load_data/tf_records
https://www.tensorflow.org/tutorials/load_data/tf_records
https://opensource.com/article/17/11/intro-tensorflow
https://opensource.com/article/17/11/intro-tensorflow

Bibliography

[18] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghem-
awat, G. Irving, M. Isard, et al. Tensor�ow: A system for large-scale machine
learning. In 12th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 16), pages 265–283, 2016.

[19] H. Bast and C. Korzen. A benchmark and evaluation for text extraction from
pdf. In Proceedings of the 17th ACM/IEEE Joint Conference on Digital Libraries,
pages 99–108. IEEE Press, 2017.

[20] M. Buckland and F. Gey. �e relationship between recall and precision. Journal
of the American society for information science, 45(1):12–19, 1994.

[21] D. D. A. Bui, G. Del Fiol, J. F. Hurdle, and S. Jonnalagadda. Extractive text
summarization system to aid data extraction from full text in systematic review
development. Journal of biomedical informatics, 64:265–272, 2016.

[22] D. D. A. Bui, G. Del Fiol, and S. Jonnalagadda. Pdf text classi�cation to
leverage information extraction from publication reports. Journal of biomedical
informatics, 61:141–148, 2016.

[23] A. Chaudhuri, K. Mandaviya, P. Badelia, S. K. Ghosh, et al. Optical character
recognition systems for di�erent languages with so� computing. Springer, 2017.

[24] A. Cheung, M. Bennamoun, and N. W. Bergmann. An arabic optical character
recognition system using recognition-based segmentation. Pa�ern recognition,
34(2):215–233, 2001.

[25] A. S. Corrêa and P.-O. Zander. Unleashing tabular content to open data: A
survey on pdf table extraction methods and tools. In Proceedings of the 18th
Annual International Conference on Digital Government Research, pages 54–63.
ACM, 2017.

[26] J. Damerow, B. E. Peirson, and M. D. Laubichler. �e giles ecosystem–storage,
text extraction, and ocr of documents. Journal of Open Research So�ware, 5(1),
2017.

[27] S. Deivalakshmi. A simple system for table extraction irrespective of boundary
thickness and removal of detected spurious lines. In Inventive Computing and
Informatics (ICICI), International Conference on, pages 69–75. IEEE, 2017.

89

Bibliography

[28] D. W. Embley, M. Hurst, D. Lopresti, and G. Nagy. Table-processing paradigms:
a research survey. International Journal of Document Analysis and Recognition
(IJDAR), 8(2-3):66–86, 2006.

[29] D. Ferrés, H. Saggion, F. Ronzano, and À. Bravo Serrano. Pdfdigest: an adapt-
able layout-aware pdf-to-xml textual content extractor for scienti�c articles.
In Language Resources and Evaluation Conference (LREC) 2018; 2018 May 7-12;
Miyazaki, Japan., 2018.

[30] M. Frey and R. Kern. E�cient table annotation for digital articles. D-Lib
Magazine, 21(11/12), 2015.

[31] A. Gilani, S. R. Qasim, I. Malik, and F. Shafait. Table detection using deep
learning. In 2017 14th IAPR International Conference on Document Analysis
and Recognition (ICDAR), volume 1, pages 771–776. IEEE, 2017.

[32] M. Göbel, T. Hassan, E. Oro, and G. Orsi. A methodology for evaluating
algorithms for table understanding in pdf documents. In Proceedings of the
2012 ACM symposium on Document engineering, pages 45–48. ACM, 2012.

[33] L. Group. Know the di�erence between a native pdf and a scanned pdf.
https://leinickegroup.com/2017/07/31/know-the-
difference-between-a-native-and-a-scanned-pdf/.
(Accessed on 02/11/2019).

[34] T. Hassan and R. Baumgartner. Table recognition and understanding from
pdf �les. In Document Analysis and Recognition, 2007. ICDAR 2007. Ninth
International Conference on, volume 2, pages 1143–1147. IEEE, 2007.

[35] T. Huynh-Van, K. Nguyen-An, T. L. B. Khanh, H.-J. Yang, T. A. Tran, and
S.-H. Kim. Learning to detect tables in document images using line and text
information. In Proceedings of the 2nd International Conference on Machine
Learning and So� Computing, pages 151–155. ACM, 2018.

[36] A. S. Incorporated. PDF Reference, sixth edition: Adobe Portable Document
Format version 1.7. Adobe Systems Incorporated, 2006.

[37] N. Islam, Z. Islam, and N. Noor. A survey on optical character recognition
system. arXiv preprint arXiv:1710.05703, 2017.

90

https://leinickegroup.com/2017/07/31/know-the-difference-between-a-native-and-a-scanned-pdf/
https://leinickegroup.com/2017/07/31/know-the-difference-between-a-native-and-a-scanned-pdf/

Bibliography

[38] R. Jana, A. R. Chowdhury, and M. Islam. Optical character recognition from
text image. International Journal of Computer Applications Technology and
Research, 3(4):239–243.

[39] S. Khusro, A. Latif, and I. Ullah. On methods and tools of table detection,
extraction and annotation in pdf documents. Journal of information science,
41(1):41–57, 2015.

[40] S. Klamp�, K. Jack, and R. Kern. A comparison of two unsupervised table
recognition methods from digital scienti�c articles. D-Lib Magazine, 20(11):7,
2014.

[41] I. Y. Korneev, S. G. Popov, A. S. Makushev, and N. Kolodkina. Retention of
content in converted documents, Oct. 1 2015. US Patent App. 14/570,088.

[42] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436,
2015.

[43] M. Li, L. Cui, S. Huang, F. Wei, M. Zhou, and Z. Li. Tablebank: Table
benchmark for image-based table detection and recognition. arXiv preprint
arXiv:1903.01949, 2019.

[44] Y. Liu, P. Mitra, and C. L. Giles. Identifying table boundaries in digital docu-
ments via sparse line detection. In Proceedings of the 17th ACM conference on
Information and knowledge management, pages 1311–1320. ACM, 2008.

[45] M. Masum, S. Kosaraju, T. Bayramoglu, G. Modgil, and M. Kang. Automatic
knowledge extraction from ocr documents using hierarchical document ana-
lysis. 2018.

[46] A. Nazemi, I. Murray, and D. A. McMeekin. Practical segmentation methods
for logical and geometric layout analysis to improve scanned pdf accessibility
to vision impaired. International Journal of Signal Processing, Image Processing
and Pa�ern Recognition, 7(4):23–26, 2014.

[47] C. Patel, A. Patel, and D. Patel. Optical character recognition by open source
ocr tool tesseract: A case study. International Journal of Computer Applications,
55(10), 2012.

[48] M. O. Perez-Arriaga, T. Estrada, and S. Abad-Mota. Tao: System for table
detection and extraction from pdf documents. In FLAIRS Conference, pages
591–596, 2016.

91

Bibliography

[49] V. Ranka, S. Patil, S. Patni, T. Raut, K. Mehrotra, and M. K. Gupta. Automatic
table detection and retention from scanned document images via analysis of
structural information. In Image Information Processing (ICIIP), 2017 Fourth
International Conference on, pages 1–6. IEEE, 2017.

[50] R. Rastan, H.-Y. Paik, J. Shepherd, S. H. Ryu, and A. Beheshti. Texus: Table
extraction system for pdf documents. In Australasian Database Conference,
pages 345–349. Springer, 2018.

[51] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. In Advances in neural information
processing systems, pages 91–99, 2015.

[52] T. A. Tran, H. T. Tran, I. S. Na, G. S. Lee, H. J. Yang, and S. H. Kim. A mixture
model using random rotation bounding box to detect table region in document
image. Journal of Visual Communication and Image Representation, 39:196–208,
2016.

[53] B. Yildiz, K. Kaiser, and S. Miksch. pdf2table: A method to extract table
information from pdf �les. In IICAI, pages 1773–1785, 2005.

92

Appendix

93

