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Abstract

Various technological challenges still prevail when it comes to the devel-
opment and validation process of advanced driver-assistance systems and
autonomous functions. This dissertation aims to introduce new approaches
and methods that still adhere to the process flow of the V-cycle, and to
address some of the existing development challenges. To satisfy these ap-
proaches, a physical sensor model for an advanced driver assistance camera
has been created, and in the context of the proposed modeling approach,
pertinent levels of abstraction and relevant optical and image sensor effects
are identified. Additionally, applied concepts and employed methods for
the camera model parametrization are presented as well.

Moreover, this dissertation illustrates the effectiveness of hybrid-development
and test strategies. For the development part, the usage of a camera model
in training image-based neural network algorithms is illustrated. Besides,
concerning the test part, several classical computer vision algorithms and
image-based neural network algorithms are tested and evaluated in a dedi-
cated but generic/modular framework. Finally, co-simulation frameworks
are presented for the integration and coupling process of various software
components (sensor models, highly automated functions and simulation
software) with standardized interfaces like the functional mockup interface
and the open simulation interface.
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1

1 Introduction

Whether on a local national, European, or global scale, road transport plays
a vital role in ensuring a continuous flow of goods and personnel. A subject
of various technological innovations, road transport continuously undergoes
new inventions and discoveries to ensure comfortable mobility. Numerous
studies and a copious amount of research rely on active safety systems to
achieve these goals.

Organizations in the European Union (EU) mobility sector have signed a
road safety pledge aimed at achieving zero traffic fatalities by 2050, and, ac-
cording to the European Commission, ”Safe Vehicles” is one way to achieve
this vision, proposing to make some essential safety features mandatory,
which include: Intelligent Speed Assistance, Autonomous Emergency Brak-
ing, and improved direct vision for trucks [1].

To validate a specific Automated Driving (AD) function, during the testing
process, it is necessary to cover all situations that the system may encounter,
e.g., highly complex traffic situations and intersections, harsh weather con-
ditions and other unusual situations like a zebra crossing the road. One
approach in covering these situations is with simulation, for example, at
Waymo1 each day, as many as 25 thousand cars drive eight million miles in
simulation testing out new skills and refining old ones [2].

The following subsections provide an introduction to Advanced Driver
Assistance Systems (ADAS) and their role in AD; additionally, motivation
and related work is illustrated, and research objectives are highlighted.

1Waymo is a self-driving technology development company. It is a subsidiary of
Alphabet Inc. Waymo originated as a project of Google before it became a stand-alone
subsidiary in December 2016. https://waymo.com/
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1.1 ADAS for Automated Driving

Sensor technologies, like camera, Radio Detection and Ranging (RaDAR),
referred to as radar throughout this dissertation (radar), Light Detection and
Ranging (LiDAR), referred to as lidar throughout this dissertation (lidar),
and infrared sensors perform environment perception in order to, among
other things, automatically execute situation assessment and action imple-
mentation. Automated driving, a type of active safety system, implies the
capacity of a car to drive partly or fully by itself, in which at least some
aspects of a safety-critical function (e.g., steering, throttle, or braking) occur
without direct driver input. Today, ADAS covers numerous tasks such as
monitoring, warning, braking, and steering, and are continuously becoming
enablers for AD.

1.1.1 Development and Testing Process

ADAS/AD functions are considered multi-domain systems, as they pro-
foundly interact with almost every functional domain in the vehicle; more-
over, since the development focus is increasingly geared towards autonomous
driving, ADAS functions are becoming more safety-related, and with that,
the system’s complexity is rapidly increasing. Despite these challenges,
ADAS global market is constantly increasing and is expected to reach
$ 60.14 billion by 2020 [3].

To cope with the inevitable complexity of this system, the development
of ADAS functions should be executed in a structured and reproducible
manner. For the development of electric/electronic based systems, the so-
called V-Model is widely adopted. Primarily developed for software based
functions, the V-Model reproduces the technical aspects of the project cycle
as a ”Vee,” starting with user needs on the upper left and ending with a
user-validated system on the upper right [4]. The V-model is a phase-driven
development process; the process is not plotted linearly against the time
axis, but in the shape of the letter ”V” [5].
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Figure 1.1: V-Model for ADAS function development, adapted from [5].

Figure 1.1 represents an adapted V-model to cope with the technical domain
of ADAS/AD functions; however, the general structure and concept of the
V-model are preserved. The downward path of the V-Model contains the
systematic analysis of user requirements and leads to the implementation
of essential system components. The last step of the downward path si-
multaneously represents the first step in the upward path of the V-Model;
during this step, the actual implementation development of all specified
components is done. The upward path of the V-Model contains the system-
atic synthesis of the system and includes all testing and integration steps of
single components and of the entire system.

Each part of the downward path has a corresponding part on the upward
path. Test cases that tend to be formulated at each step of the downward
path represent the links between the downward and upward paths.

Two methods are used to link each matching pair of the development
process:

• Validation, ”Are we building the right system?”

– This step is used only for the link between user requirements and
acceptance tests.

– The method aims to ensure that all user requirements are fulfilled.
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– The validation test cases are the only ones that allow for the
evaluation of the developed functions, and whether they fulfill
all user requirements or not.

• Verification, ”Are we building the system correctly?”

– This step is used for any other pair of process steps in the V-
Model.

– The method aims to ensure that the specification of each process
step in the downward path is fulfilled.

– The purpose of verification is to ensure that the respective imple-
mentation adheres to specifications.

Due to the complexity of high-level ADAS functions, a toolchain is usually
needed to ensure efficient and traceable development. Toolchains also enable
automatic execution and evaluation of test cases. Additionally, in some
situations where it is essential to keep the number of test cases low, engineers
appeal to additional methods like Design of Experiment (DOE).

1.1.2 Modeling and Simulation

Modeling and simulation can be viewed as substitutes for physical exper-
imentation. The computing power of modern computers allows users to
calculate the results of a particular experiment based on a set of predefined
modeling boundaries and abstraction levels. Models which contain all rele-
vant parameters of desired systems are then integrated into a simulation
environment where additional settings are set before starting the simulation,
and eventually display the results.

In the context of ADAS, Fig. 1.2 represents a use case where test cases for
ADAS/AD function development could benefit from the modeling and
simulation process.

On the left of Fig. 1.2, it is shown how a test car, usually at the final step of
the V-model, i.e., acceptance test, consumes a set of test cases and reports log
the results. The feedback loop connecting the Results and the Test Cases
blocks could, in some cases, lead to an endless repetition of the test cases,
especially if certain combinations of the driver, vehicle, and environment
parameters cannot be directly satisfied. For example, testing a Lane Keeping
Assist (LKA) in foggy weather conditions, with deteriorated road marking
on road segments, and at a distance that is always greater than 50 meters
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Figure 1.2: Modeling and simulation versus real tests.

between the ego vehicle and first-encountered traffic participant, could be
very hard to satisfy throughout the entire test drive. In this context, only
real components are used, i.e., real sensors, driver, vehicle, and environment.

On the right side of Fig. 1.2, it is shown how simulation could be used to
execute several sets of test cases. In this setup, the feedback loop connecting
the Simulation Results and the Test Cases blocks will not cause the sys-
tem to loop endlessly or drastically increase the number of additional test
cases; this is mainly due to the high flexibility of simulation environments.
Theoretically, any combination of driver, vehicle, and environment parame-
ters can be directly satisfied. In this context, virtual components are being
employed, i.e., sensors and vehicle models, virtual drivers, and simulation
environments.

As the advantages of modeling and simulation easily stand out in such a
use case, the most critical prerequisite is the existence of reliable models
that could be integrated in order to perform the underlying tasks.

”All models are wrong, but some are useful.”
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This quotation is from George Box, one of the greatest statistical minds of the
20th century [6]. When considering a specific model for ADAS development
and AD, as George Box illustrated in his paper [7], the problem should be
posed in the following form:

For a model, there is no need to ask the question:

”Is the model true?”

If ”truth” is to be the ”whole truth” the answer must be ”No.”

The only question of interest is:

”Is the model illuminating and useful?”

By adopting this analogy, it should always be taken into consideration
whether the integrated models reflect the necessary level of abstraction to
successfully and reliably handle the issues at hand, i.e., is the generated
camera model suitable for ADAS/AD applications?

Despite the possibility of creating highly accurate and detailed models, and
even with regards to already existing models, developing/using them is
subject to acceptable levels of complexity and to system runtime constraints.
These constraints can also be seen during simulations, where a simulator
re-enacts small subsets of its content for specific simulations as needed. The
simulator’s entire content is never activated all at once; only a small subset
becomes active—that which is tailored to the constraints of the current
situation [8].

1.1.3 Enablers for Hybrid Testing and Development

In Fig. 1.3, the inter-dependence between driver, vehicle, and environment
are represented. Information exchange and interactions between these enti-
ties defines a vital role in the development of autonomous driving technol-
ogy.
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Driver
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Figure 1.3: Driver-Vehicle-Environment system.

Currently, these relationships are still inseparable during the performance
of a driving task. Vehicles equipped with ADAS rely on information (col-
lected by various strategically mounted sensors) about the surrounding
environment. Via human-machine interface, ADAS functions may utilize
this information and command vehicle actuators. These relationships also
illustrate the existing level of complexity in testing such a system, given that
different uncontrollable parameters and factors are at stake.

Figure 1.4 represents a decomposition diagram showing some underlying
components of the Environment block where ADAS/AD functions are
meant to operate safely.

Environment

Traffic
Participants Time of DayWeather

Conditions
Road

Conditions ...

Figure 1.4: Environment decomposition.
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In such an environment, one cannot guarantee similar behavior of traffic
participants each time a test case is being executed. Moreover, complex inter-
actions between boundary conditions such as different weather conditions
make the repetition of particular test cases a challenging, if not impossible,
task to achieve.

Perception, defined as the process of extracting scene representation from
sensor inputs, plays a crucial role in obtaining an accurate representation of
the surrounding environment, which is a crucial component for the correct
development of ADAS/AD functions. Figure 1.5 shows how different factors
may contribute independently and collectively to the complexity of scene
variability.

Objects

Objects-Environemnt
Variability Environments

Figure 1.5: Dependency of perception variability.

The Objects axis represents the variability regarding the type of objects
that could appear in a driving situation. This may include not only familiar
objects, like other vehicles and pedestrians but also unexpected objects, like
animals and disguised pedestrians, to be present in the driving environment.
Figure 1.6 gives an idea of these occurrences.

(a) (b)

Figure 1.6: Unexpected objects on the road: (a) A sheep on the road, (b) Five people on a
motorcycle.
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As illustrated in Fig. 1.7, the Environments axis represents the variability
in the surrounding environment, such as weather conditions and different
times of the day.

(a) (b) (c)

Figure 1.7: Variable Weather Conditions: (a) Rainy, (b) Foggy, (c) Sunny.

The last axis, Objects-Environments Variability, shows how different ob-
jects can coexist in different environments, creating a new dimension in
which the complexity of perception increases. A person riding a horse is an
excellent example of such a variability.

The driving activity cannot be restricted to a specific environment with a
specific number and type of objects. Because vehicles are active on the road
in different weather conditions, encountering objects and situations that
cannot be controlled, ADAS and AD functions should develop reliable map-
ping functions from sensor data for a correct and pertinent representation.

Developing and testing such mapping functions is challenging on its own.
Currently, the developing and testing steps still heavily rely on real sensor
data, data that has been recorded on the streets during real test drives. The
main drawback of this method is the lack of control over the driving envi-
ronment. In other words, it is impossible to dictate weather conditions or
the number and behavior of traffic participants. Additionally, studies have
shown that even when dealing with a relatively controllable environment
where the perception’s variability is not so high (for instance driving on
the motorway), ADAS functions still require a proof distance of 240 million
km when considering the distance of 12 million km between two accidents
involving personal injuries on German motorways and Poisson’s statistical
distribution [5].
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Referring to the V-model illustrated in Fig. 1.1, another challenge appears
in the fact that the validation process is not possible until the last step of
the development cycle. For automated driving systems, the functionality
is derived from the initial customer requirements, the very first step of
the V-model. This means that any inaccurate or misinterpreted customer
requirement will propagate undetected through all intermediate steps of
the V- Model and all the way to the Implementation phase. Moreover, as
pointed out in [13], another challenge is the absence of efficient feedback
and information flow between different stages of the V-model.

All of the above-mentioned factors emphasize the need for hybrid develop-
ment and testing strategies, where a combination of real and virtual setups
provides a substitute for elaborate real tests in the development process. Hy-
brid development and test strategies would enable us to relax the primary
constraints of the V-model by incorporating, stepwise, several internal loops
along different levels of the V-model. Figure 1.8 illustrates this concept.

In addition, this creates the need for sensor models that are vital for virtual
perception development and validation, and for integrating co-simulation
tools to cover the overall implementation.

Logical
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Figure 1.8: Loops in a stepwise fashion in the V-Model.

1.1.4 Co-Simulation and Model Integration

Cyber-Physical Systems (CPS) are integrations of computation with physical
processes. Embedded computers and networks monitor and control the
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physical processes, usually with feedback loops where physical processes
affect computations and vice versa [14]. From this definition, ADAS in their
central core can also be considered CPS. Additionally, ADAS are multi-
domain systems, meaning that different experts from varied disciplines
need to work together simultaneously in order to reach the target goal.
Though modeling and simulation (presented in section 1.1.2) are crucial for
virtual development and testing, it is also essential for a multi-disciplinary
solution to create a development process that could enable a heterogeneous
model-based approach between different tools [15].

One possible solution is a co-simulation framework, where different teams
can produce their conventional models and carry out their usual mono-
disciplinary analysis. In addition, different models can be coupled together
with the help of standardized interfaces, like the Functional Mock-up Inter-
face (FMI)2, which will also ease co-simulation between different tools [15],
[16].

1.2 Motivation and Related Work

In section 1.1, it was discussed how ADAS/AD function development and
testing procedures are executed using the conventional V-model, and how,
with the help of modeling and simulations, numerous test cases could be
efficiently driven and executed. Additionally, the need for hybrid test and
development strategies, which could be embedded in a co-simulation frame-
work with standardized interfaces, was emphasized.

Figure 1.9 represents a proposed co-simulation framework where simulation
platforms like CarMaker3, VIRES4, and PreScan5 are coupled with a virtual

2A tool independent standard to support both model exchange and co-simulation
of dynamic models using a combination of xml-files and compiled C-code. https://fmi-
standard.org/

3 IPG Automotive develops software and hardware solutions for the application areas
advanced driver assistance systems, automated and autonomous driving. https://ipg-
automotive.com

4 VIRES Simulationstechnologie GmbH provides simulation solutions for the automo-
tive, railroad and aerospace industries https://vires.com

5 PreScan is a physics-based simulation platform that is used in the auto-
motive industry for development of Advanced Driver Assistance Systems (ADAS)
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development and testing environment via standardized interfaces. In Fig. 1.9,
data exchange between all block components is enabled via standardized
interfaces, i.e., the FMI and the Open Simulation Interface (OSI)6, that
respectively ease co-simulation and facilitate information-transfer between
automated driving functions and simulation platforms.

Co-Simulation Framework

Virtual Development & Testing

Sensor Models
Camera Model

Radar Model

Lidar Model
...

FMI2/OSI6

FMI2/OSI6

FMI2/OSI6

Simulation Platform
��������

3

� ����
4

�������
5

...

ADAS Functions
Adaptive Cruise Control

Lane Keeping Assist

Emergency Brake Assist
...

Figure 1.9: Proposed co-simulation framework.

Advanced driver assistance cameras are currently the primary computer
vision solution for ADAS, and due to the complexity of driver assistance
functions, it is necessary to evaluate their performance at an early stage of
the development cycle. The availability of a comprehensive approach, one
where a camera model is generated and implemented with standardized
interfaces to test and analyze its effect on computer vision applications in
virtual environments, is currently non-existent.

In the following section, work related to the usage of co-simulation in the
automotive industry, ADAS/AD in particular, and to the development of
advanced driver assistance camera models is presented.

that are based on sensor technologies such as radar, laser/lidar, camera and GPS.
https://tass.plm.automation.siemens.com prescan

6Contains an object based environment description using the mes-
sage format of the protocol buffers library developed and maintained by
Google. https://www.hot.ei.tum.de/forschung/automotive-veroeffentlichungen/,
https://github.com/OpenSimulationInterface/open-simulation-interface
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1.2.1 Co-Simulation and Standardized Interfaces

Virtual design provides proof-of-concept and the possibility to test scenarios
which are complicated and often impossible or too expensive to perform in
real life, such as re-creating certain weather conditions and/or a simulated
failure of sensor components (such as camera, lidar, radar). Co-simulation
platforms enable virtual development and evaluation of ADAS in distinctive
test cases and scenarios. By enabling various integrations of vehicle, envi-
ronment, and sensor models, several automated driving functions could be
tested and evaluated in reproducible simulations. In the following, related
work for the usage of virtual platforms and co-simulation frameworks in
automotive and ADAS/AD function development areas is presented.

In [17], Artuñedo et al. showed that in order to address the gap between traf-
fic simulators and vehicle dynamics simulators, a co-simulation framework
is necessary for the development of applications in the autonomous-driving
field. Implemented in MATLAB Simulink, this approach allows Intelligent
Transportation System (ITS), researchers, and developers to test onboard
vehicle equipment such as sensors, actuators, or controllers, in addition to
cooperative transport maneuvers in realistic urban scenarios [17].

Main GUI:
Scenario defintion

3D Visualizaion

Simulated Vehicles Simulated Interfaces

Simulation Model

Control GUI:
Simulation Control

Real Vehicle

position, speed,
acceleration, ...

steering, vehilce
ID, brake, ...

Figure 1.10: Framework diagram, adapted from [17].

As represented by the functional diagram in Fig. 1.10, the framework is
structured in various yet modular components that increase its flexibility. In
this approach, numerous models and components can be implemented at
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different levels in the simulation environment.

In another publication, [18] provides another co-simulation framework
between three different tools. In order to evaluate the performance of auto-
mated driving functions under realistic traffic conditions, a co-simulation
framework is used to handle the interaction between a microscopic traffic
simulation and a highly detailed vehicle simulation.

Three tools integrated in a co-simulation framework were used: PTV VIS-
SIM7, IPG CarMaker as a vehicle simulation tool, and MATLAB Simulink8

to demonstrate a Predictive Adaptive Cruise Control (P-ACC) case study.
The third tool, VISSIM is a microscopic discrete traffic simulation system
modeling motorway traffic as well as urban traffic operations [19]. To fur-
ther highlight the advantages of Vehicle to X (V2X) based prediction model
within the P-ACC, the approach is compared to a P-ACC with constant
disturbance prediction. Thus, in this dissertation, ADAS and AD function
evaluation was made possible via a co-simulation framework that combines
the advantages of all utilized tools, and therefore improves development
and the testing process.

In [20], Bücs et al. proposed a joint framework to facilitate ADAS proto-
typing via full virtualization and whole-system simulation. The proposed
technique extends the boundaries of specialized simulation tools and mod-
els by providing means for cross-domain interconnection and joint control.
By connecting the Hardware (HW)/Software (SW) simulation with the
virtual environment of a driving simulator, the multi-domain approach can
be used to fulfill the ISO 26262 requirement of full-system validation. At
the heart of the system, a highspeed Virtual Platform (VP) was presented
supporting distributed, multicore, virtual Electronic Control Unit (vECU)
configurations and FMI coupling. Lastly, the capabilities of the joint tools
were shown by prototyping an Automatic Transmission Control (ATC) and
a LKA application in various system configurations, thus enabling function
developers to perform tests in various virtual environments [20]. This work
presented a multi-domain co-simulation framework system to establish an

7PTV Vissim is a flexible traffic simulation software for simulat-
ing complex vehicle interactions realistically on a microscopic level.
https://www.ptvgroup.com/en/solutions/products/ptv-vissim

8MATLAB Simulink is a graphical programming environment for
modeling, simulating and analyzing multidomain dynamical systems.
https://www.mathworks.com/products/simulink.html
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entire virtual ADAS rapid prototyping environment.

In the following subsection, the usage of co-simulation is further extended
to include standardized interfaces like the FMI and the OSI.

In [21] , the authors demonstrated how multi-domain co-simulation via
FMI interconnect all involved domains of a heterogeneous system empha-
sizing the fact that VPs should be transformed into Functional Mock-up
Units (FMUs). SystemC9 based VPs were in this regard integrated into
heterogeneous multi-domain vehicular simulation systems via the FMI stan-
dard. The flexibility and interchangeability of a co-simulation setup were
demonstrated by the evaluation of three different ADAS algorithms using
the Virtual AUTOTILE Platform (VAP) in a virtual Hardware-in-the-Loop
(vHIL):

• Anti-lock Brake System (ABS).
• Traction Control System (TCS).
• Adaptive Cruise Control (ACC).

Furthermore, the paper presented the possibility of fault injection in a ve-
hicular multidomain simulation in order to increase system robustness and
close the functional safety gap of virtual HW/SW systems with a simulation-
based evaluation, testing, and verification approach.

In [23], Krammer et al. illustrated the integration of SystemC/SystemC-
AMS10 into the FMI standard without any changes to the standardized
SystemC or SystemC-AMS libraries. The main advantages discerned were
an ease of integration in a co-simulation framework and expansion into
more complex simulation scenarios (a two-part battery system use case was
presented and demonstrated a high level of transportability).

9SystemC is a C++ class library that provides a mechanism for modeling hardware and
software together at multiple levels of abstraction. This standard defines SystemC®1 as an
ANSI standard C++ class library for system and hardware design. The general purpose
of SystemC is to provide a C++ based standard for designers and architects who need to
address complex systems that are a hybrid between hardware and software [22]

10This standard defines the Analog/Mixed-Signal extensions for SystemC® 1, as an ANSI
standard C++ class library based on SystemC for system and hardware design including
analog/mixed-signal elements. The general purpose of the SystemC AMS extensions is
to provide a C++ standard for designers and architects, who need to address complex
heterogeneous systems that are a hybrid between hardware and software. [24]
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In [25], it was argued that due to the increasing complexity of AD func-
tions, predefined test catalogs are not able to cover the necessary test space
of millions of kilometers to cover all functions’ safety aspects. Therefore,
different test instances like Vehicle-the-Loop (VIL), Hardware-in-the-Loop
(HIL), and most importantly at early developmental stages, Software in
the Loop (SIL), as represented in Fig. 1.1, are needed in combination with
a scenario-based approach in order to expand and transfer the test space
into the virtual world. The authors provided a first reference implemen-
tation of the upcoming standard, ISO 23150 for standardized hardware
sensor interfaces, for the common development of sensor models. Therefore,
OSI, endorsed by the Pegasus11 Project [26], is introduced [25]. OSI, is a
generic interface for information exchange between function development
frameworks and simulation environments, and together with FMI can be
integrated into a co-simulation framework that enlarges the scope towards
other test instances using sensor models for development, verification, and
validation.

1.2.2 Types of Sensor Models

As previously mentioned, in order to meet the challenges facing ADAS/AD
function development and validation, physical test drives must be extended
with virtual development and testing setups. For a successful integration of
the ego vehicle in a simulation environment, vehicle dynamic models, in
addition to ADAS/AD functions and sensor models, should be provided.
Well-developed models for vehicle dynamics and ADAS/AD already ex-
ist 3 4 5. However, there is still a gap in reliable and well-defined sensor
models. The following section presents an overview of the already existing
approaches for sensor modeling in general and camera models in particular.
Furthermore, current classification methods for sensor models are also pre-
sented.

11PEGASUS delivers the standards for the automation of the future. With the PEGASUS
joint project, promoted by the Federal Ministry for Economic Affairs and Energy (BMWi),
key gaps in the field of testing of highly-automated driving functions will be concluded by
the middle of 2019, https://www.pegasusprojekt.de/en/home.
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In [25], sensor models are classified into three different categories:

1. Ideal Sensor Models:
Described as an extended sensor data sheet, this model type provides
object lists as an output in the sensor’s reference coordinate system, i.e.,
the effects of the mounting position and other technical specifications
like Field of View (FOV) and resolution range on the outputted object
list. In such types of sensor models, weather conditions do not affect
the object list.

2. Phenomenological Sensor Models:
These represent an extension of ideal sensor models, where the FOV is
not a binary decision that leaves the sensor blind at the boundary of
the technical specification, but a stochastic transition that takes into
consideration various aspects like detection certainty, false positives,
false negatives, and weather conditions.

3. Physical Sensor Models:
These are tasked with taking into account physical sensor properties
and generating raw data, including images, point clouds, or reflection
lists as outputs. For a camera use case, the simulation environment
provides the ideal rendered image as an input, and the camera model
implements various effects, such as lens distortion, to produce an
augmented/more realistic image output to be consumed by Highly
Automated Driving Functions (HAF). Traffic sign detection is one
example of this.

The ability to model one sensor type or another does not only depend on
the necessity of such models but also on the available resources, knowledge,
and information regarding the sort of sensor to be modeled. Figure 1.11
provides an overview of the relationship between the depth of the modeling
process and sensor model types. Note that even though the graph is only
informative, i.e., based on an approximation assumption, the gap difference
between the modeling depth of types of sensor models can still be relied
upon.
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Figure 1.11: Modeling depth versus sensor model type.

The focus of this research work is on camera sensor models, so related
work on available physical sensor models will be discussed in more depth.
In the following, camera models like the one represented in [27] are not
considered because although they reproduce a very accurate virtual image
when compared to real camera output, they are subpar when it comes to
operating in real time or even close to real time. In addition, research that
only considers one specific camera effect that is modeled, like the modula-
tion transfer function in [28] or blur model in [29], are also not included.

In [30], a numerical model for the Point-Spread Function (PSF) of an optical
system that can efficiently model both experimental measurements and lens
design simulations is presented. The mathematical basis for this model is a
non-linear regression of the PSF with an Artificial Neural Network (ANN).
Its main advantages lie in the portability and parametrization of this model,
which yields to the possibility of applying this model to basically any optical
simulation scenario. Figure 1.12 shows all parameters that were used as
inputs to the ANN; defocus ∆z, image height R and azimuth ϕ (used for
training the ANN)).
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Figure 1.12: ANN for PSF model overview, adapted from [30].

A monochromatic Charge-Coupled Device (CCD) sensor, with a pixel size of
0.3070 µm in combination with 27 different lenses, was used to perform the
required measurements. As the pixel size used for this experiment was too
small (0.3070 µm—high resolution) a down-sampling procedure was applied
to transform it into a resolution of 6 µm (lower resolution). Additionally, to
obtain a better runtime, a bilinear interpolation technique was introduced
to avoid generating PSFs for every pixel. The usage of this model lies in
implementing the resulted PSF as a convolution kernel, thus applying it on
ideal images to obtain a blurry, degraded image. Taking into consideration
that a monochromatic sensor was used, neither the spectral resolution, the
Color Filter Array (CFA) of the imager, nor the demosaicing process was
handled. Additionally, all lens distortions are ignored.

In an attempt to reduce the gap between synthetic and real images, Carl-
son et al. introduced a physically based augmentation pipeline to vary
sensor effects like chromatic aberration, blur, exposure, noise, and post-
processing [31]. The modeling pipeline is illustrated in Fig. 1.13, where the
second row of the image represents the augmentation pipeline that reflects
the image formation process in a real camera (first row).

Optical Effects 
(Effects Augmentation)

Chromatic
Aberration Blur

Image Sensor
(Effects Augmentation)

Exposure Sensor
Noise

On board Post-Processig
(Effects Augmentation)

Tone/Color Shift

Output ImageInput Image
(no augmentation)

Figure 1.13: Schematic of image formation and processing pipeline, adapted from [31].

This paper also illustrated that synthetic image dataset augmentation with
the proposed pipeline reduces the domain gap between synthetic and real
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domains for the task of object detection. In the proposed pipeline, all effects
were modeled based on technical definitions from the literature, i.e., the
proposed method lacks a sensor model parametrization procedure that can
be applied to a specific advanced driver assistance camera.

Using Neural Network (NN), Carlson et al. extended their previous approach
presented in [31] to propose a learned augmentation network composed
of physically based augmentation functions. The proposed augmentation
pipeline transfers specific effects of the sensor model—chromatic aberration,
blur, exposure, noise, and color temperature—from a real dataset to a syn-
thetic one [32]. The NN training pipeline is represented in Fig. 1.14, where
the style loss trains the sensor effect parameter generators to effectively
transfer the sensor style of the target dataset to the source dataset.
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Figure 1.14: Schematic of the proposed sensor transfer network structure, adapted
from [32].

Contrary to their previous method, here a sensor transfer network is de-
veloped, one that is capable of learning the optimal set of augmentations
that would transfer sensor effects from a real dataset to a synthetic one. The
training objective for each of these networks is to learn the distribution over
its respective augmentation parameter(s) based on real data. Aside from
the time needed for the sensor transfer network to learn the desired effects,
this approach still heavily relies on real-world image data to successfully
improve and implement different sensor effects on ideal synthetic images.
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In [30]–[32], different approaches for physical sensor modeling were pre-
sented. Regardless of the number of modeled effects, none of the presented
approaches included an implementation pipeline of its models.

1.3 Research Objectives and Outline

Due to the complexity and unpredictability of operating environments,
many challenges still face the development and validation of ADAS/AD
functions. Technological, safety, and economic aspects are in many ways
constantly hindering the process flow presented in the V-Model. As other
solutions may target these problems from different points of view, this
thesis aims to address some of these challenges through virtualization and
standardization. The following sections provide a more detailed explanation
of the contributions made throughout this research and an outline for the
rest of this thesis.

1.3.1 Thesis Contributions

The main contributions presented in this thesis can be summarized as
follows:

• Creating a physical sensor model for advanced driver assistance
camera. This contribution aims to extend the usage of sensor models,
specifically a camera sensor model, to ADAS/AD function develop-
ment phase. The proposed modeling approach identifies the necessary
level of abstraction and relevant optical and image sensor effects,
and implements them on a pre-rendered image provided by a simu-
lation environment. Additionally, the proposed modeling approach
presents the methods used and the applied concepts in camera model
parametrization rather than just relying on technical definitions from
the literature or on a massive number of real images for training NN
as presented in 1.2.2.

• Development of a hybrid test strategy for the evaluation of physical
sensor models and ADAS/AD functions. In order to evaluate the
outputs of the camera model, a hybrid test strategy that represents a
combination of real and virtual testing scenarios is developed. In this
contribution, the camera model is coupled with classical Computer
Vision (CV) and NN image-based AD functions. Among others, the
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results show the effects of synthetic image augmentation using physics-
based camera model on object detection algorithms.

• Camera model integration in a co-simulation framework with stan-
dardized interfaces. Creating a physical sensor model and a strategy
to evaluate and test its effects on ADAS/AD functions development
is not enough. In compliance with the motivation mentioned in sec-
tion 1.2, the final contribution of this thesis is to implement the camera
model in a co-simulation framework with standardized interfaces. In
this regard, the Open Simulation Interface and the FMI were imple-
mented in the developed camera model to show the advantages of
virtual test drives by coupling the camera model with various HAF in
a co-simulation framework.

1.3.2 Thesis Outline

This dissertation is divided into nine chapters. Chapter 1 provides an in-
troduction to the main topics that are further analyzed and studied. Also,
it explains the motivation behind this work and specifies all underlying
contributions. Background information and definitions related to simulation
software for virtual test driving, image based highly automatic functions,
OSI, and FMUs are presented in Ch. 2. In Ch. 3, the main components
and concepts behind a Multi-Functional Camera (MFC) and their role in
ADAS/AD are presented, forming the necessary bedrock for the modeling
methodology and modeling process applied in chapters four and five respec-
tively. In Ch. 4, the modeling methodology is introduced with a focus on
camera effects and their identification and classification, model parametriza-
tion, and correlation with target HAF. After MFC effects description and
modeling in Ch. 5, Ch. 6 provides an overview of model implementation
where a tool-chain is proposed for a co-simulation framework. In section. 6.4,
the evaluation results of the modeling process are introduced. Chapter 7
demonstrates the application of an MFC model in various detection algo-
rithms as well as in NN training, and finally Ch.8 concludes the dissertation
and gives an overview that includes the usability of this approach in other
use cases.
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2 Background and Definitions

In this chapter, the aim is to provide background information about key
elements, such as software tools and standardized interfaces, that are used
throughout this dissertation. In addition, this chapter defines the context in
which vision-based, highly automated functions are used, along with their
relevance to camera sensor modeling and evaluation.

2.1 Simulation Software for Virtual Test Driving

As simulation starts to form a vital part of the regulatory framework affect-
ing autonomous vehicles [33], virtual validation of ADAS and AD functions
will not only depend on accurate and reliable sensor models, but also on
the simulation software providing virtual representations of the driving
environment.

Similar to real test drives, in order to perform a virtual test drive, the
following main components are required:

1. A test vehicle that contains all parts of a real vehicle, e.g., powertrain,
chassis, and sensors that are modeled via mathematical/physics-based
approaches.

2. A test track that simulates a real course from real-life scenarios (digi-
tized tracks) or even edge-case scenarios (computer modeled) purely
for testing purposes.

3. A virtual test driver that simulates the actions of a real driver, including
steering, braking, and shifting gears.

In this context, modeling and its implementation in SW is considered in-
dispensable in incorporating all necessary elements for a virtual test drive.
In a virtual test drive, computer-modeled representations of the required
components seek to present themselves with a behavior that matches that
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of the real world.

Main benefits of ADAS/AD function development when using simulation
software for virtual test driving lie in the ability to perform early stage
testing. For example, in the case of the Electronic Control Unit (ECU), HIL
testing can be performed by connecting real ECUs using I/O cards, Con-
troller Area Network (CAN) bus, or other methods to a virtual vehicle
instead of an actual one. Alternatively, SIL uses sensor models and software
modeled controllers that can be integrated into the simulation software
through a co-simulation environment.

Simulation software for virtual test driving like CarMaker1, Vires-VTD2,
rFPro3, and others are dedicated software to the testing and validation of
automated driving. Aside from the technological and engineering advan-
tages, simulation software has a direct impact on the financial aspect of
the development phase, where early updates in design change before the
production of mass produced vehicles or even prototypes are critical.

2.2 Image-Based Highly Automated Driving
Functions

In Ch. 6.4 and 7, camera model evaluation and applications for different
image-based functions are presented, and a separation between classical CV
and NN-based functions is made; thus, this chapter introduces the general
concept behind both approaches.

Vision-based ADAS/AD systems are rapidly growing research areas for
autonomous driving; it is a cross/multi-disciplinary area encircling specific
fields like computer vision, machine learning and NN. Most automotive
manufacturers employ some form of a camera system in their models [34].
For example, Tesla’s Autopilot had currently driven more than 1.6× 109

1IPG CarMaker: https://ipg-automotive.com/
2VTD - Virtual Test Drive https://vires.com/
3rFPro: http://www.rfpro.com/

https://ipg-automotive.com/
https://vires.com/
http://www.rfpro.com/
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estimated km [35] on Hardware 14 and Hardware 25.

Figure 2.1 represents several vision-based applications, either intended for
viewing applications like Surround View (SV), assistance functions like
Parking Assist (PA), or more advanced automated functions like ACC.

Figure 2.1: Vision-based applications [34].

Widely considered the most versatile sensors and offering a broad range
of applications, camera-systems are continuously stretching the limitations
of CV, which differentiates between the following main tasks (adapted
from [38]):

1. Image Classification:
Defined as the task of assigning an input image with one label from a
fixed set of categories, i.e., automatically assigning the ”car” label for
the image presented in Fig. 2.2 (a).

2. Classification + Localization:
In addition to correctly classifying the input image, this task aims to
locate the classified object inside the input image, i.e., to define its
position inside the image with respect to a specific reference system.

4Hardware 1 refers to vehicles manufactured after late September 2014 that are
equipped with a camera mounted at the top of the windshield, forward looking radar in
the lower grille and ultrasonic acoustic location sensors in the front and rear bumpers that
provide a 360-degree view around the car [36].

5Hardware 2 includes eight surround view cameras and 12 ultrasonic sensors, in
addition to a forward-facing radar with enhanced processing capabilities[37]
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Fig. 2.2 (b) shows how the ”car” is localized with the help of a yellow
bounding box.

3. Object Detection:
Refers to performing classification and localization on an input image
that contains more than one object type. In Fig. 2.2 (c) object detection
is performed on ”car,” ”Traffic Sign” and ”Pedestrian.”

4. Instance Segmentation:
Resembles the object detection task; however, instead of localizing
classified objects with bounding boxes, this task aims to label all the
pixels that belong to each instance separately, see Fig. 2.2 (d).

Car Traffic Sign Pedestrian Car Traffic Sign PedestrianCarCar

Classification Classification
+ Localization

Object Detection Instance Segmentation

(a) (b) (c) (d)

Figure 2.2: Computer vision tasks [38].

2.2.1 Based on Classical Computer Vision

For the purposes of this dissertation, classical CV algorithms refer to vision-
based applications that primarily perform image manipulation using linear
algebra and numerical techniques. Such techniques include, but are not
limited to, matrix algebra and factorization methods, linear least squares,
QR6 decomposition for solving poorly conditioned least squares problems,
iterative techniques like image derivatives and sliding-window approaches,
and finally, Bayesian modeling and inference for solving problems that
involve estimating some unknown model parameters from a given number
of measurements.

For example, to estimate the motion between two or more consecutive frames
(optical flow), an error metric should be chosen and implemented for frames
comparison. Translational alignment is one method of achieving this by

6QR decomposition, also known as a QR factorization, is a decomposition of a matrix
A into a product A = QR of an orthogonal matrix Q and an upper triangular matrix R.
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merely shifting one frame relative to the other. Given a template image I0(x)
sampled at discrete pixel locations {xk = (xi, yj)}, i = 1, ..n j = 1, ..m, it’s
location in image I1(x) could be estimated by computing its displacement:
u. A least squares solution to this problem is to find the minimum of the
SumSquaredDi f f erence(SSD) function [39]:

ESSD(u) =
n×m

∑
k=1

[I1 (xk + u)− I0 (xk)]
2 =

n×m

∑
k=1

e2
k (2.1)

where:

ek = I1(xk + u)− I0(xk) is called the residual error [39].

Additionally, various interpolation methods, bilinear or bicubic, and color
correction techniques are applied to obtain better results.

For vision-based object detection tasks, a typical pipeline is to test for the
presence of an object in a predefined bounding box at various positions and
scales in the image. This technique, known as sliding-window, enables the
bounding box of a certain size to slide on the image from top left to bottom
right, and in most cases repeating with bounding boxes of different sizes;
the size of targeted objects to be detected varies with respect to their distance
from the camera. During the sliding window approach, and depending on
the object of interest, several calculations are performed for each bounding
box position. For example, in Fig. 2.3 histograms of two bounding boxes,
red and orange, calculations are computed at all positions and are then
compared with a reference histogram (in this case histogram of the bicycle)
in order to detect the bicycle’s position inside the image at different time
stamps.
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Figure 2.3: Sliding window approach.

This example does not entirely describe the detection pipeline, as several
pre- and post-processing steps, such as noise compensation, dynamic ref-
erences, image intensity equalization, and color-space conversion are not
illustrated. The aim of this example is to show that with classical computer
vision algorithms, especially those that rely on scanning the entire image or
a large Region of Interest (ROI), vision-based applications usually rely on a
set of predefined parameters, like histogram values, which are affected by
the quality of the acquired image. Other detection algorithms like ”License
Plate Detection” may have a much smaller ROI, restricted by the target
vehicle and provided by other sensors like a radar sensor.

Prior knowledge on how these algorithms operate is a crucial point for
understanding the effects of a camera model on vision-based applications,
and it will be further illustrated in Ch. 3 and Ch. 4.

2.2.2 Based on Neural Networks

Due to driving environment variations, fully or partly autonomous vehicles
necessitate the development of reliable algorithms that can generate envi-
ronment models where vehicles can safely and autonomously navigate. In
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addition to classical computer vision algorithms (discussed in 2.2.1), engi-
neers and researchers are more frequently focusing on NN based algorithms
that possess learning capabilities for solving various computer vision tasks.

Driving environment exploration is typically fulfilled by data collection
from various sensors like camera, lidar and radar. Via sensor fusion, the
state of the ego-vehicle and its surrounding objects is not directly observed
but instead deduced by several algorithms through a set of sensor readings;
various autonomous driving algorithms would make use of these state
vectors for path planning in such an environment [40]. With image-based
NN algorithms, the state vectors are no longer a result of sensor fusion,
but rather a sequence of snapshots acquired by the camera at different
time stamps. This means that specific information like position, orientation,
velocity and acceleration is no longer explicitly provided to the algorithm
but rather deduced by a Deep Neural Network (DNN), more specifically a
Convolutional Neural Network (CNN).

With deep learning, we do not program CNN to recognize these specific
features. Rather, a CNN learns on its own how to recognize specific objects
through forward- and back-propagation without being supplied with spe-
cific features to look for. In the case of vehicle detection, several hierarchy
levels can be identified:

1. Simple shapes, like edges, curves and colored blobs/geometrical
forms.

2. Complex objects, as a combination of simple shapes, like tail lamps,
license plate, car doors and wheels.

3. The vehicle, as a combination of complex objects.

A CNN might have several layers, and each layer might capture a different
level in the hierarchy of objects. The first layer is the lowest level in the
hierarchy, where a CNN generally classifies small parts of the image into
simple shapes like horizontal and vertical lines and simple blobs of color. In
subsequent layers, higher hierarchical levels are considered, and generally
more complex structures like shapes (combinations of geometrical shapes)
are classified. Eventually, full objects (such as vehicles) are detected. To
achieve this, several filters look at small pieces, or patches, of the image.
Then a sliding-window (introduced in section 2.2.1) technique is applied to
focus on different regions of the image.
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In contrast to classical computer vision algorithms and non-convolutional
NN, CNN groups adjacent pixels together and treats them as one entity. In
doing so, the network takes advantage of the fact that pixels in an image are
close together for a reason and have a specific meaning. This fact reflects
directly on the effectiveness of using the output of physical camera models
for advanced driver assistance cameras, and will be further elaborated in
Ch. 7.

2.3 Functional Mock-up Interface

The Functional Mock-up interface (FMI7) is a tool independent standard for
dynamic model exchange and more importantly for co-simulation. In order
to improve the model-based design, FMI’s primary goal is to support the
exchange of simulation models between OEMs and suppliers.

The FMI standard consists of two main parts [15]:

1. FMI for Model Exchange: The intention is that a modeling environ-
ment can generate C code of a dynamic system model in the form of
an input/output block that can be utilized by other modeling and
simulation environments.

2. FMI for Co-Simulation: The intention is to couple two or more simula-
tion tools in a co-simulation environment. The data exchange between
subsystems is restricted to discrete communication points. During the
time needed between two communication points, the subsystems are
solved independently from each other by their individual solver.

For the scope of this dissertation, FMI for co-simulation (coupled with sub-
system models that have been exported by their simulators together with
its solvers as runnable code) has been used. Usually, FMI for co-simulation
is contained in a Functional Mock-up Unit (FMU) which is a zip file with
an extension .fmu.

7FMI development was initiated by Daimler AG with the goal to improve the exchange
of simulation models between suppliers and OEMs[41].
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The FMU contains the following main files [41]:

1. An XML-file, also referred to as a model description file, that contains
the definition of all variables of the FMU in a standardized way.

2. C functions that represent the model equations. The C code for co-
simulation is then distributed in binary form for one or several target
machines, such as Windows dynamic link libraries .dll or Linux
shared object libraries .so.

All information about a model and a co-simulation setup that is not needed
during execution is stored in an XML-file called modelDescription.xml. The
benefit is that every tool can use its favorite programming language to read
this XML-file (e.g., C, C++, C\#, C\#, Python) and that the overhead, both in
terms of memory and simulation efficiency, is reduced [15].

FMI for co-simulation is designed for both the coupling of simulation tools
(simulator coupling, tool coupling) and coupling with subsystem models,
which have been exported by their simulators together with their solvers as
a runnable code.

FMI for co-simulation stand-alone will be used throughout the entire imple-
mentation. As represented in Fig. 2.4, in such use case the master and the
slave run in the same process, where the master acts as an executable, and
the slave contains the model as well as the solver. This enables the dynamic
linking between FMU’s libraries and simulation software.

Process

FMU

Slave

Model Solver

Executable

Master

Figure 2.4: Single process stand-alone use case.

2.4 Open Simulation Interface

OSI, officially a part of the PEGASUS project, aims to develop a proce-
dure for testing of automated driving functions in order to facilitate the
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rapid implementation of automated driving into practice. The scope directly
aligns with the desire of the German automotive industry to establish a
standardized interface in the field of testing of, and experimentation on,
higher levels of automation [26].

OSI is a generic interface that enables the connection of automated driv-
ing functions with a variety of driving simulation frameworks in order to
achieve easy and straightforward compatibility. The vision is to be able
to connect any automated driving function to any driving simulator with
ease while integrating a variety of sensor models, thus strengthening the
usefulness of virtual testing. OSI contains an object-based environment
description using the message format of the protocol buffers library devel-
oped and maintained by Google. Ensuring modularity, integrability, and
interchangeability of individual components, the interface defines several
top-level messages that are used to exchange data between separate mod-
els [42].

OSI defines top-level messages that are used to exchange data between
separate models. Among others, main messages define:

1. GroundTruth interface which provides an exact view on the simulated
objects in a global coordinate system, the world coordinate system.
This message is populated using the data available internally and
then published to external subscribers by a plugin within the driving
simulation framework.

2. SensorView that is derived from GroundTruth and used as input to
sensor models. The SensorView information is supposed to provide
input to sensor models for simulation of actual real sensors; all infor-
mation regarding the environment is given with respect to the virtual
sensor coordinate system.

3. SensorData interface which describes the objects in the reference
frame of a vehicle for environmental perception. It is generated from
GroundTruth/SensorView messages and can be used to connect to an
automated driving function using simulated data directly.

Figure 2.5 illustrates a possible use case where OSI messages can be gener-
ated and consumed by separate tools and models. The ”Environment Sim-
ulation” block, usually a simulation software, provides the GroundTruth
and SensorView messages as an output to be utilized by various sensor
models like camera, lidar or radar. SensorView message may internally
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contain several packages of sensor view data corresponding to different
virtual sensors employed in a test scenario. ”Sensor Models” on their turn
process these messages and output one or several SensorData messages
that can either be directly consumed by ADAS/AD functions or merged
by a ”Fusion Model” and provided as a single SensorData message for the
”ADAS/AD Functions” block.

Environment
Simulation Sensor Models Fussion Model ADAS/AD

Functions

GroundTruth

SensorView
SensorData 

SensorData 

SensorData 

Figure 2.5: OSI top-level interfaces.
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3 Multi-Functional Camera

This chapter provides a general introduction about the MFC and a more
detailed description of the MFC’s system architecture and optical path.

3.1 Introduction

Front view Multi-Functional Cameras (MFCs) are primarily designed for
static and dynamic environment detection and recognition of all relevant
road users, road markings, and road signs. Driving environments consist
of various traffic participants, road marks, traffic signs, and others that
are highly suited to human visual perception, which, from an automotive
sensor’s perspective, can directly be integrated into camera systems. MFCs’
ability to enable versatile ADAS and AD function implementation makes
them essential components for virtual test environments. In other words,
camera models are imperative.

MFCs are usually mounted either behind the windshield of the vehicle,
close to the rearview mirror, or integrated into the rearview mirror, and
thus they are projecting a wide FOV and protected from external weather
conditions. The FOV of an MFC is defined by the optical module and the
image sensor. In Fig. 3.1, the FOV is divided into Horizontal Field of View
(HFOV) and Vertical Field of View (VFOV). Based on the targeted ADAS
functions (e.g., detection of large lane curvature), an HFOV angle larger
than 40° is recommended [43].
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VFOV

HFOV

Figure 3.1: VFOV and HFOV of a MFC.

For the VFOV, a first estimate is performed based on the mounted height
and the minimum required detection distance. The lower HFOV (Fig. 3.2)
angle is calculated by applying Eq. (3.1) [43].

α

Horizon

d

h

Figure 3.2: Lower VFOV of a MFC.

Lower field of view equation:

α = tan−1
(

h
d

)
(3.1)
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Where:

α is the lower VFOV angle.
h is the mounting height.
d is the minimum detection distance.

3.2 Multi-Functional Camera System Architecture

A basic camera section-view is shown in Fig. 3.3. The optical acquisition pro-
cess starts by the projection of a bundle of light rays, representing an object
or a scene, through the front lens onto the image sensor. Before reaching the
image sensor, light rays are delimited via an aperture, deviated/focused by a
lens train, and, more often than not, the infrared parts of the light spectrum
are filtered out by the InfraRed-Cut-Off Filter (IRCF). Pixels of the image
sensor convert the photons into an electronic output signal, representing
the image acquisition process, which is later analyzed by a processing unit
for further ADAS/AD function development.

Figure 3.3: MFC 3D section view.

The basic system decomposition of the MFC module is illustrated in Fig. 3.4.
The MFC module is divided into two main components: the Optical Module
and the Imager Module. On a lower decomposition level, the system’s sub-
components are also represented, thus identifying the first abstraction level
of the modeling process to follow.



3 Multi-Functional Camera 37

MFC Module

Optical Module Imager Module

LensAperture Lens
Holder IR Filter ISPImage

Sensor
I/O 

Interface 

1 1

1 1 11 11 1..*

Figure 3.4: MFC system decomposition.

In Fig. 3.4, the ”1” beside the arrows indicates the number of necessary
components for the system (MFC in our case) to function properly. ”1..*” in-
dicates that one or many components are required, which varies depending
on the number of necessary lenses inside the optical module.

The system’s Optical Module consists of the following main components:

1. Aperture: Represents an opening through which light travels. More
specifically, it limits the amount of light that can reach the image-
sensor.

2. Lens: An optical lens, or a train of lenses, are usually made from
material such as glass or plastic with the main purpose of focusing
incident light to form an image. Depending on the fabrication process
and tolerances, lenses introduce different degrees of distortions and
aberrations that make the image an imperfect replica of the object.

3. Lens Holder: Usually a cylindrical design manufactured from plastic
or a metal alloy. Its main purpose is to position and hold all optical
module’s components in their place. Additionally, the lens holder also
connects the optical module to the imager module.

4. IR Filter: Infrared filters are designed to reflect or block close- and
mid-range infrared wavelengths while passing visible light.
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The system’s secondary components are part of the Imager Module and
consist of the following parts:

1. Image Sensor: A Complementary metal-oxide-semiconductor (CMOS)
in this case; it converts received photons into electrons and collects the
generated charges to be later converted into electric signals (voltage).
The latter is then converted into a digital value with the help of an
Analog to Digital Converter (ADC).

2. ISP: The Image Signal Processor (ISP) acts directly on the digital
signal and includes several image-processing algorithms, such as Noise
Reduction (NR), demosaicing, and image sharpening.

3. I/O Interface: The input/output interface enables image data trans-
fer from the image sensor to other host processors. Data transfer is
performed either by parallel or serial interface.

3.3 Optical Path and the Pixel Journey

The optical path represents the distance that light travels in a vacuum con-
gruous with the time it takes to travel a distance d in a medium [44]. When
a light ray travels through a series of optical media of thickness d, d’, d”, ...,
and refractive indices n, n’, n’’, ..., the total optical path (∆) is merely the
sum of the separate values:

∆ = nd + n′d′ + n′′d′′ + ... (3.2)

The reason for identifying the optical path lies in the fact that photon light
may slow down or speed up as it travels from one medium to another, may
undergo a change of direction (refraction) at an interface between media,
or could be absorbed (or reflected) when encountering certain substances
or surfaces [45]. These stages and media that a source light passes through,
especially at the ”Lens Train” block, determine the errors related to lens
imperfections, incorrect locations, or variations in lens geometry, which are
collectively referred to as ”distortion and aberration.”

Taking into consideration the mounting position of the MFC inside the
car as defined in section 3.1, light rays emerging from the environment
(outside of the ego vehicle) should first pass through the windshield before
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reaching the MFC. Laminated glass manufactured by sandwiching a layer of
Polyvinyl butyral (PVB) between two pieces of glass is used for the automo-
tive windshield. Laminated glass is, later on, bent to the desired curvature,
with a radius between 3300 and 4000 mm, Fig. 3.5 (a), possessing a specific
optical power. Due to various factors involved in the manufacturing process,
the windshield’s optical power is not uniform throughout its surface area;
this leads to non-uniform light distortion over the intersection between the
camera’s FOV and the windshield; such an intersection area is represented
in Fig. 3.5 (b).

(b)(a)

Figure 3.5: (a) Camera FOV representation behind the front windshield, (b) FOV intersec-
tion with the windshield.

Another important aspect is the refraction that occurs when light travels
from one material into another material with a different refractive index.
The direction of light changes because the speed of light changes. The
speed of light slows down when entering an optically dense material, since
different materials have different refractive indices [46]. Using Snell’s law,
the refractive index or angles for a certain situation can be calculated thus:

n1 × sin(α) = n2 × sin(α2) (3.3)

Where:

n1 is the index of refraction for air.
α is the incident angle for.
α2 is the angle of refraction.



3 Multi-Functional Camera 40

For example, when light passes through a windscreen at an angle different
from 90° (Fig. 3.6), the incoming and outgoing light has the same direction
if the two surfaces of the windscreen are parallel, but a slight displacement
of the beam will still exist [46].

n2n1

n1

n2

α

α

n3

Figure 3.6: Windshield refraction.

Even though the windshield may have several effects on the final image
acquired by an MFC, these effects are briefly mentioned in this section and
are outside the scope of this dissertation.

Figure 3.7 represents the bases of the 2nd abstraction level to be considered
in the modeling process. In Fig. 3.7, light, acting as a pencil of incident
rays, travels from the environment to the camera sensor primarily through
its front lens (not shown in the diagram) and is limited further on by the
Aperture. It continues its path as an analog signal through the Optical
Train and the infrared Cut-Off Filter (if available) until it reaches the Image
Sensor.Eventually emerging as a digital signal to be consumed by various
Image-Based Functions.

Depending on the quality assessment of the produced image (raw/Red,
Green Blue (RGB)), a feedback signal could be sent to the ISP unit and/or
to the image sensor unit to adjust their parameters, such as exposure time,
white balance, etc. In some cases, image enhancements and histogram ad-
justments could directly be performed on a dedicated Pre-Processing unit
(not shown in the diagram), which lies between the raw image and Image-
Based Functions.
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: Optical Signal

: Digital Signal

CIF: Camera Interface

CIF1 CIF2 CIF4
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Optical TrainAperture Cut-Off Filter
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Object List
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Figure 3.7: Camera interfaces.

Additionally, Fig. 3.7 depicts main Camera Interface (CIF) at different decom-
position levels. This decomposition illustrates the type of information/sig-
nals being transmitted (analog, digital) and their usage:

• CIF1, CIF2, CIF3: Camera Optical Interface, with light being transmit-
ted, absorbed, or reflected.

• CIF4: Internal data transfer via control registries. It is directly per-
formed on the image sensor Chip itself (image without demosaicing,
or raw image). Bidirectional arrows indicate that other units can send
signals to the image sensor for better performance under different
conditions (the same concept applies to CIF5 and CIF6).

• CIF5: Could be parallel or Series communication, e.g., HiSPi (image
without demosaicing, or raw image). CIF5 usually connects different
processing units to the camera.

• CIF6: Internal data transfer via control registries and memory access;
directly performed on the processing unit.

• CIF7: Interface providing the object list to other control functions to
be later passed on to the vehicle.

CIF represent a generic example of a basic interface architecture and the
following points should be kept in mind:

1. The diameter of the aperture does not necessarily indicate the diameter
of the effective aperture, i.e., there could be different optical stops
inserted after the Optical Train..
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2. The cut-off Filter’s position could also vary or not even be present at
all. Additional coating materials are also always used on lenses and
on the lens holder.

3. The image sensor in Fig. 3.7 shows a Bayer filter implementation;
however, it is important to point out that this may differ between
varying image sensors.

4. The processing unit may or may not have an interface to acquire raw
image and RGB image data; this depends on the unit itself and on the
image sensor being used.
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4 Modeling Methodology

4.1 Introduction

A physics-based model is a mathematical representation of an object or its
behavior. Such representations usually incorporate physical characteristics,
such as forces and energies, into the model, allowing a numerical simulation
of its behavior, e.g. its deformation or acceleration. For example, in the case
of a physics-based camera model, optical characteristics, such as the focal
length, and image sensor characteristics, such as quantum efficiency and
Analog-to-Digital Converter (ADC) resolution, could be mathematically
represented to describe parts of the camera’s behavior, which, in this case,
is the generated image in various conditions.

Simulation software for virtual test driving is capable of directly generating
rendered images based on data related to ego vehicle dynamics, traffic
behavior, and driving environment. Such software, however, do not take
into consideration all physical characteristics of an advanced driver assis-
tance camera, and thus fail to incorporate several camera artifacts that may
result from various optical and electrical component imperfections or design
limitations.

Taking into consideration that the simulation environment already provides
3D shape representations of objects, their motions, and their interactions
with the environment, the modeling methodology will rely solely on a pre-
rendered image or a Video Data Stream (VDS) provided by the simulation
environment. The model’s output will depend on physics-based modeling
of a set of relevant camera effects for ADAS/AD functions. These effects
are identified and classified in sections 4.2 and 4.3 respectively.
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4.2 Multi-Functional Camera System Analysis and
Effects Identification

Due to the non-uniform distribution of camera effects over the entire image,
it is crucial to analyze all relevant regions of interest for various CV algo-
rithms.

Since the first demonstration of visual road vehicle guidance at speeds of up
to ≈ 40km/h in 1986 [47], computer vision algorithms relied primarily on a
specific ROI to achieve their designated tasks. Such ROIs were significant
not only in reducing computing time, but also avoiding false positives and
negatives due to various image artifacts that could appear if the entire image
is set to be processed.

For a front facing MFC, different ROIs with different sizes and positions
could be pre-defined for various CV algorithms. For example, in the case
of Lane Detection (LD), represented in Fig. 4.1 (c), only the lower half of
the image is important, whereas for Traffic Sign Detection (TSD) and Traffic
Light Detection (TLD) in Fig. 4.1 (d and e; adapted from [48]), the image’s
margins and upper part are essential. In the case of dynamic object detection,
as shown in Fig. 4.1 (a, b, and c) for Vehicle Detection (VD) or Pedestrian
Detection (PD), a pre-defined ROI would prove difficult to create. In such
cases, a vehicle or a pedestrian can occupy several positions in the image at
various distances; thus, the size of the ROI changes as well.

Traffis Sign/Light Detection

Lane Detection

Vehicle Detection

a b c

d e

Figure 4.1: ROIs for ADAS/AD functions.
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In Fig. 4.2, the overlapped ROIs from different ADAS/AD functions are
represented and depicted in a 1240x980 px image. The gray color indicates
the regions where no ROIs are extracted, which covers a very small area
from the overall image. This justifies the need to apply the physics-based
model on the entire image and take into consideration image distortions
and aberrations that are most prominent on image margins.

Traffis Sign/Light Detection

Lane Detection

Vehicle Detection

1280

960

0

Figure 4.2: ROI overlap representation.

As represented in Fig.4.3, this also applies for ADAS and AD functions that
rely on DNN, more specifically CNN where such networks don’t rely on a
specific ROI, but instead consider the whole image as an input.

Output

Fully connected

SubsamplingConvolutionsSubsamplingConvolutions

Figure 4.3: Example of a CNN architecture.

In Fig.4.3, the green bounding box will eventually slide over the whole
image, subsampling each pixel and eventually generating a fully connected
layer through various convolutions.
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4.3 Classification of Imperfections

Based on the previously presented argumentation (section 4.2) and on MFC’s
system decomposition/optical path shown in Ch. 3; sources of various
image artifacts can be traced back to the Optical Module; Imager Module
or to Post Processing; the latter is included to provide an overall picture of
the decomposition. However, it is out of the scope of this dissertation. In
Fig. 4.4, a block definition diagram illustrating the main effect types and
their decomposition is presented. The diagram is color coded. For example,
the color transition from blue to violet of the Intrinsic Blur block signifies
that it is caused by a combination of Optical and Image Sensor effects.

MFC Model

Optical Effects Image Sensor Effects

Optical  Distortion

Vignetting

Blur Rolling Shutter

Temporal Noise

Spatial Noise

Lens Flare (ghost)

Intrinsic Blur

Post Processing

White-Balance

Demosaicing …

Gamma 
Correction

Color Sensitivity 
Model

Figure 4.4: Block definition diagram for camera effects classification.

4.3.1 Optical Effects

In this section, effects that are generated by the optical module, their causes,
and impact on ADAS/AD functions are illustrated. Optical aberrations are
generally classified into two categories: chromatic (polychromatic, multiple
wavelengths) and monochromatic (single wavelength). Chromatic aberra-
tions occur because visible light consists of different wavelengths, each with
a particular imaging property. From the lens train perspective, chromatic
aberrations are caused by dispersion due to the variation of the lens’s refrac-
tive index with the incident wavelength [49]. In contrast, monochromatic
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aberrations are caused by the geometry of the boundary surfaces (the in-
cidence angle varies across a spherical lens surface) and occur when light
rays are reflected or refracted [44], [50].

Despite the existence of well-defined technological procedures and solutions
for chromatic and monochromatic aberrations, and to keep the total Bill
of Material (BOM) low, optical modules suppliers do not entirely integrate
them, and consequently aberrations and other optical effects continue to
persist [43].

Distortion Effect

For an ideal optical system, the formed image should be geometrically
similar to the object, i.e., image dimensions should be linearly related to
those of the object. However, in practice, optical modules currently fail
to maintain a linear relationship between the object and its image. This
phenomenon, referred to as image distortion, occurs when the rays from
an off-axis point do not converge perfectly at the image point; this is also
known as radial distortion, as shown in Fig. 4.5.

(a) (b) (c)

Figure 4.5: Radial Distortion: (a) No Distortion, (b) Barel
Distortion, (c) Pincushion Distortion.

Radial distortion is considered a negative distortion when the actual im-
age is closer to the optical axis, and a positive distortion when the image
lies further from the axis than the ideal image. Fig. 4.5 (a) represents the
undistorted image of an object consisting of a rectangular wire mesh; when
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suffering a negative distortion, the image takes on a barrel-like appearance
in which the image magnification decreases with an increasing distance
from the optical axis (Fig. 4.5 (b)). By contrast, when suffering a positive dis-
tortion, the image takes on a pincushion-like shape (pincushion distortion),
where the image magnification increases with an increasing distance from
the optical axis (Fig. 4.5 (c)).

Additionally, tangential distortion occurs when the lens and the image plane
(image sensor) are not parallel or if the image is not formed on the focal
plane as predicted by the paraxial equations as shown in Fig. 4.6.

Vertical Plane

Image Sensor

Camera Lens

θ

   

Figure 4.6: Tangential distortion.

Distortion due to false object representation may play an essential role
in deceiving several ADAS/AD functions in image data extraction and
interpretation. For example, to estimate the distance of the ego vehicle
inside a driving lane, an LD function may rely on detected lane markings
and on the camera’s mounting position to evaluate its position. Fig. 4.7,
illustrates the influence of distortion on estimating the vehicle’s central offset
between the solid yellow and the dashed white lane, where a difference of
0.05 m can be measured.
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(a) (b)

Figure 4.7: Distortion effects on image perception, calibration done via OpenCV API.

Vignetting Effect

Vignetting effect can be described as the reduction of the image’s brightness
or saturation at or around the periphery compared to the center of the image.
In its essence, the optical module of an advanced driver assistance camera
consists of a multi-lens system where front elements shade rear elements
(closer to the image sensor). In some cases, this results in a reduced effective
lens opening of the off-axis incident light, and, subsequently, a gradual
decrease in light intensity toward the image periphery. Additionally, when
extremes of object points move away from the optical axis, the effective
aperture stop is reduced for the off-axis rays, thus further decreasing the
brightness of the image at image points near the periphery [45].

In Fig. 4.8, the effect of the aperture’s size on the vignetting effect is repre-
sented. In Fig. 4.8 (a), light rays traveling from image points AB go through
the aperture and hit the lens optimally. By increasing the size of the object,
the bundle of rays entering the lens is now reduced by the aperture, causing
peripheral darkening (Fig. 4.8 (b)). In more extreme cases, if the object’s size
is made even more significant, and the camera is still at the same distance
from the object, the field of view does not change, yet the bundle of rays
that enters the focal plane is reduced even more.
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Figure 4.8: Effect of aperture size on vignetting.

Moreover, one other cause of vignetting is referred to as Natural Vignetting
or Natural Illumination Falloff. Natural vignetting is associated with the
cos4 law of illumination falloff [51]. The brightness of the image away from
the optical axis falls at a rate proportional to the cosine to the fourth power
of the angle that the light makes with the line perpendicular to the image
sensor. It is essential to keep in mind that this principle only applies to a
perfect system and that natural vignetting varies according to each lens
design. A more detailed derivation of the cos4 law can be found under [51].

The vignetting effect can be detrimental to machine vision, as it impairs
measuring results and detecting edges of specific objects.

Blur Effect

In an ideal situation, each small point within the object should be rep-
resented by a small, well-defined point within the image. In reality, the
”image” of each object point is spread, or blurred, within the image. In
every imaging process, blur places an absolute limit on the amount of detail
(object smallness) that can be visualized. Blur most often occurs on out-
of-focus objects due to camera motion. However, there is also an additional
permanent lens blur caused by the optics of image formation, e.g., lens
aberration and light diffraction [29].

Due to the wave nature of light and the finite aperture size of an optical
system, the angular resolution can be estimated by the Rayleigh criterion.
For the circular aperture (which is the case of most MFCs) θ, the angular
resolution can be defined as follows:
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θ = 1.22× λ

D
(4.1)

Where:

θ is the angular resolution.
λ is the wavelength.
D is the diameter of the aperture.

θ

Figure 4.9: Angular resolution for two point objects.

The angle θ, (Fig. 4.9) in this case, represents the limit of how small an
image can be distinguished and not rendered sharply (the latter is image
sensor relevant). The airy disk of a circular slit consists of a widening and
reshaping of the image of a point source, spreading the central point but
also consisting of a series of secondary rings.

In a driving situation, this may play an important role when trying to
distinguish between two cars at a certain lateral distance from one another,
or even when trying to detect both headlights of the same car in night
driving situations.
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Flare and Ghost Effects

Lens flare, in its general form, occurs when light is scattered in a lens
system due to a bright light source bouncing off of different optical module
elements. Lens flare can be mainly divided into two main categories:

1. Veiling flare that manifests in a drastic reduction of image contrast by
introducing haze in different colors.

2. Ghost flare, which may add different halos or other geometrical shapes
into the image.

In the following section, the ghost effect that results from the lens’s aperture
shape is considered. As light travels through one medium to another, part
of the incident light is reflected, part is transmitted, and the remainder
is absorbed or scattered. Although for most uncoated optical glasses the
reflected light only accounts for 4% of the total incident light (for air to
glass), such losses may accumulate for a compound lens assembly [45].
For example, in a three-lens compound assembly, the final incident light
that reaches the image sensor will be reduced by approximately 12%. The
following equation represents the amount of reflected light at any given
optical component:

rn = λ ∗ I0 ∗ (1− λ)n (4.2)

Where:

rn is the intensity of reflected light at component n.
λ is the reflection percentage with respect to the incident light.
I0 is the intensity of the incident light that hits the first lens.

For example, in Fig. 4.10, if the incident light I0 has an intensity value of
100, then according to Eq. (4.2) I3 = I0 − (r0 + r1 + r2) = 88.47.



4 Modeling Methodology 53

I1

r0 r1
r2

I0

I2
I3

Figure 4.10: Reflection and refraction in a multi-lens optical system.

Furthermore, in an encapsulated optical system, the weak reflected rays rep-
resented in Fig. 4.11 might create ghost images superimposed on the image
generated by the transmitted rays. For example, r2 in Fig. 4.11 indicated
in blue may undergo a total internal reflection and reach the image sensor,
thus forming a ghost image.

I1

r0 r1
r2

I0

I2
I3

Figure 4.11: Ghost image formation.

4.3.2 Image Sensor Effects

As previously described in section 3.2, a digital image sensor converts pho-
tons hitting the active pixel area into a digital number, depending on the
desired temporal resolution and other sensor properties. This process is
governed by predefined exposure time. The temporal resolution, i.e., frames
per second (fps) is often dictated by ADAS/AD functions.



4 Modeling Methodology 54

The term ”noise” in image sensors may be defined as signal variations that
lead to image deterioration. As a result, sensitivity and performance of an
image sensor are determined by noise [52]. Image degradation caused by
noise can be classified into the following two categories:

1. Spatial Noise.
2. Temporal Noise.

In addition to noise, in a CMOS image sensor, an electronic rolling shutter
is usually used in order to read out the accumulated charge from the pixel
array. The shifted readout exposure times distort the image of moving ob-
jects; this is also known as the rolling shutter effect.

For ADAS/AD functions, image noise may lead to a high number of false
positive and negative detections. For example, in low light conditions (at
night or in other low light situations like tunnels), cars cannot be detected
by their visual features, and thus several detection algorithms rely on
headlights/taillights [53]. This lack of visual features can affect detection
and tracking processes, especially when coupled with high noise level due
to bad illumination and other camera-specific limitations. In the next section,
more details regarding image sensor effects are presented.

Spatial Noise

Signal variations in an image-sensor array that differ from one pixel to the
other are referred to as spatial noise or Fixed Pattern Noise (FPN), and may
occur when the camera is in either dark or illuminated environments.

As presented in table 4.1, FPN in dark conditions is caused by Dark Signal
Non-Uniformity (DSNU) that may result from a thermal component, which
depends on temperature and exposure time, and manifests itself directly
as an offset that is always present on a pixel level. Another cause of DSNU
that is independent from the exposure time is the manufacturing process of
the image sensor, where gain variations and imperfections in the electronic
circuits influence the spatial non-uniformities.

On the other hand, Photon Response Non-Uniformity (PRNU) occurs in
illuminated scenarios. When uniform light falls on a camera sensor, each
pixel should ideally output the same value [54]. Due to pixel geometry and
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variations in cell size and substrate material, pixels exposed to the same
source of light output different values. PRNU is usually considered to be
a common characteristic of the sensor since it is caused by the physical
properties of the sensor and cannot be eliminated.

Table 4.1: Spatial Noise in Dark and Illuminated Environments
Dark Conditions Illuminated Conditions

Spatial Noise DSNU PRNU
Row/Column-wise Fixed Pattern Noise

Temporal Noise

Noise variation/fluctuation in the time domain is referred to as temporal
noise and may present in dark and low light conditions. Table 4.2 represents
the main components of temporal noise.

Table 4.2: Temporal Noise in Dark and Illuminated Environments
Dark Conditions Illuminated Conditions

Temporal Noise Theram Noise (Dark Current) Photon Shot Noise
Read/Reset Noise

When the sensor is placed in darkness, the sensor output should ideally be a
black picture over its entire pixel array, and the output should be sustained
throughout the entire functioning duration. However, in reality, this ideal
is hardly attainable, since the image sensor or camera are often subjected
to a so-called ”dark current noise” that is dependent on the exposure time
and the imager’s operating temperature. Due to dark currents, the image
quality may be drastically degraded when the camera is operating at low
light conditions. In illuminated functioning conditions (low light levels), the
photon shot noise contributes a large portion of the temporal noise. Since
photons (quantum particles) possess a random arrival nature at the image
sensor over a specific duration of time, even when the intensity of the light
source is constant, the result is an inconsistent number of collected photons
on the pixel level. As these events are independent of one another, photon
shot noise obeys Poisson’s distribution [27].
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Rolling Shutter and LED Flicker Effects

In a CMOS image sensor array with an electronic rolling shutter, a timing
and control circuitry is usually required to sequence through the rows of
the array, resetting and then reading each row in turn. In the time interval
between resetting a row and reading that row, the pixels in the row inte-
grate incident light. This means that the very last row of the image sensor
is exposed late to light in comparison to the very top row of the sensor.
This time shift from the top to the bottom of the image causes the rolling
shutter effect, which can be seen as a bending or skewing of the image. This
occurs when the object or the camera moves sideways as the image is taken.
Fig. 4.12 (a) represents a photo of a stationary white disc mounted on a
motor. In Fig. 4.12 (b), the rolling shutter effect can be observed when the
black rectangle stretches over the entire disc when the motor starts spinning
at a specific speed.

(a) (b)

Figure 4.12: Rolling shutter effect, (a) Stationary white disc mounted on a motor, (b) Rolling
shutter effect when the motor starts spinning.

Finally, when trying to capture an image of Light-Emitting Diode (LED)
lighting (vehicle taillights, traffic signs or traffic lights), the so-called ”LED
Flicker” effect is observed, where an imaged light source appears to flicker,
even though the light source appears constant to a human observer.
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As illustrated in Fig. 4.13, a pulsed light source may appear to be off for the
camera whenever the LED ON time and the camera’s exposure time do not
coincide.

0

Frame

LED

Exposure

on on on on

Exp Exp

frame1 frame2

Figure 4.13: LED flicker effect, on/off.

This behavior could be observed whenever the exposure time of the camera
is less than or equal to that of the light source [55]:

Texp ≤
1− PWMdutycycle

PWM f req
(4.3)

Where:

PWM f req is the frequency of the light source.
PWMdutycycle is the duty cycle of the light source.

Another effect of LED flicker occurs when different image frames are ex-
posed to more than one pulse during the same exposure time. For example,
in Fig. 4.13, frame one was exposed to two pulses of light during f rame1’s
exposure time, whereas f rame2 only once. Consequently, f rame2 will have
a lower brightness level.

This behavior could be observed whenever the exposure time of the camera
is greater than or equal to that of the light source [55]:

Texp ≥
1− PWMdutycycle

PWM f req
(4.4)
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Where:

PWM f req is the frequency of the light source.
PWMdutycycle is the duty cycle of the light source.
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Figure 4.14: LED flicker effect, brightness variation.

Pulsed LED lights are increasingly used for traffic signals and other traffic
signs, including variable speed signs and road work signs. LED flicker in
such situations may cause miss or non-detection of traffic signs, leading to
potentially hazardous implications.

4.4 Modeling Approach

An advanced driver assistance camera consists of many hardware compo-
nents that interact intrinsically with each other and extrinsically with the
surrounding environment. Additionally, there are often various software
components governing these interactions and adapting them to various
assistance systems. The main challenge in modeling a physics-based sen-
sor lies in the difficulty of obtaining necessary specifications for various
hardware and software components. In the following sections, challenges
in model parametrization and compatibilities with simulation software are
addressed.

4.4.1 Challenges in Model Parametrization

Most of the previously defined optical and image sensor effects are repeat-
edly studied and investigated, and on different occasions even modeled
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and simulated. Nevertheless, when it comes to advanced driver assistance
cameras, obtaining the necessary parameters to derive and calibrate such
models has proven to be an arduous, especially for parties who are not part
of an optical or semiconductor manufacturer.

For example, if provided with the exact optical module composition, i.e., a
number of lenses and their positions, lens diameter and thickness, coating
materials, indices of refraction, etc., it is possible, via dedicated software
and other techniques (like ray tracing model), to simulate the behavior of
such a system with high precision. In reality, datasheets for optical modules
and image sensors provide rudimentary information, and that is not enough
to parametrize such physics-based models.

In order to overcome this challenge, the presented modeling approach relies
on theoretical aspects, defined necessary parameters for a specific camera
effect, and on experimental setups to calibrate and set these parameters.
(Such parameters are derived empirically.) Additionally, theoretical aspects
of specific effects are used to construct experimental setups and proce-
dures for generating lookup tables that could, later on, be used for image
augmentation and manipulation.

4.4.2 Compatibility with Integration Software

Several aspects regarding the camera model’s input and output should
be taken into consideration, especially when targeting various simulation
software and integration platforms.

Aside from the model’s parameters, the main input consists of pre-rendered
images or VDS that can be provided either by a simulation software for
virtual test drive or directly by any other synthetic image generator, like
Unreal Engine 41 (Fig. 4.15). Thus, the final model should always contain a
dedicated interface that is capable of adapting to the source of its input.

1Unreal Engine 4 contains a physics-based rendering engine with advanced dynamic
shadow options, ray-tracing functionality, screen-space reflections and lighting channels
https://www.unrealengine.com/en-US/features .
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Simulation Software

Synthetic Image
Generator

Augmented ImageImage Data

Figure 4.15: Camera model input.

On a second note, the model’s augmentation pipeline should be flexible
enough to bypass specific camera effects that may be provided by the image
source, i.e., either a simulation software or a synthetic image generator. For
example, in Fig. 4.16, if the input image (Image Data*) is directly generated
with optical distortion, the camera model in this case should not implement
additional distortions on the received image. This is depicted by the red
Optical Distortion box inside the camera model.

OR

Simulation Software

Augmented ImageImage Data*

Image Data*: Image data with optical distortion

Camera Model

Optical Distortion

Effect 2

Effect n
Synthetic Image

Generator

Figure 4.16: Selective effect implementation.
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5 MFC Modeling and Parameters
Calibration

5.1 Introduction

In this chapter, the modeling and parametrization process of various optical
and image sensor effects is demonstrated. The obtained results highly de-
pend on the abstraction levels, and the intended use. For this dissertation,
one of the main focuses is to illustrate the need for physics-based (behav-
ioral) sensor models during the development and validation of ADAS/AD
functions. Therefore, starting by the modeling and parametrization process
of optical effects, like distortions and vignetting, this chapter continues to
describe a more abstracted model for image sensor effects, like temporal/s-
patial noise and rolling shutter.

5.2 Modeling Optical Effects

In this section, optical effects that are primarily generated by several imper-
fections in the optical module or light-related properties are modeled and
parametrized.

5.2.1 Radial and Tangential Distortions

For the process of modeling radial and tangential distortions, the Brown-
Conrady [56] [57] distortion model is used. For such a model, Eq. (5.1)
and (5.2) describe the radial distortions, while Eq. (5.3) and (5.4) describe
the tangential distortions:

xu = xd

(
1 + k1r2 + k2r4 + k3r6

)
(5.1)
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yu = yd

(
1 + k1r2 + k2r4 + k3r6

)
(5.2)

xu = xd +
[
2p1xdyd + p2

(
r2 + 2x2

d

)]
(5.3)

yu = yd +
[
2p2xdyd + p1

(
r2 + 2y2

d

)]
(5.4)

Where:

(xd, yd) represent the pixel coordinates as projected on the image plane.
(xu, yu) represent the undistorted pixel coordinates.
kn is the nth radial distortion coefficient.
pn is the nth tangential distortion coefficient.

Additionally, the intrinsic camera parameters (represented as a 3x3 matrix)
are calculated.

intrinsic matrix =

 fx 0 cx
0 fy cy
0 0 1


Where:

(cx, cy) represent the coordinates of the optical center.
( fx, fy) represent the camera focal lengths.

OpenCV1 is used to calculate the distortion parameters and the camera’s
intrinsic matrix. The calibration process starts by taking several photos of a
known calibration pattern and feeding them into a set of predefined calibra-
tion APIs provided by OpenCV.

Due to the accuracy of available corner detector algorithms, a chessboard
calibration pattern of size 11x9 is used. Instead of printing out the calibration
pattern and risking errors caused by printer issues or paper flatness during
the image acquisition process, the chessboard pattern is directly displayed
on a high-resolution screen and subsequently exposed to the camera. To

1OpenCV (Open Source Computer Vision Library) is an open source computer vision
and machine learning software library. https://opencv.org/about/
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form a well-posed system of equations, and to solve it, several chessboard
pattern images are captured by the Camera Under Modeling (CUM). In
order to account for noise and other image artifacts, it is recommended to
use at least ten pictures from various distances and orientations with respect
to the calibration pattern. During the calibration process, the focal length
and distortion parameters are estimated using the least square method;
so by moving the camera or the checkerboard, and acquiring a different
number of images, we are actually also receiving more information that is
used in obtaining more accurate results from the calibration process.

The process of image acquisition is automated with the help of a camera
testbed prototype presented in Fig. 5.1. The kinematic diagram of the testbed
represents one Degree of Freedom (DoF) for translation and three DoFs for
rotation, i.e., for yaw, pitch and roll.

End effector

Figure 5.1: Camera testbed kinematic diagram.

During the image acquisition process, the camera is mounted at the end
effector, and its orientation and position are manipulated by the testbed in a
specific range of motion, assuring that the entire chessboard pattern, which
is displayed on a high-resolution screen, is within the boundaries of the
camera’s FOV. The obtained results are then fed to a calibration algorithm
(OpenCV), and the intrinsic calibration matrix is calculated. The following
is an ideal intrinsic calibration matrix for a 1280x960 pixel, referred to as px
throughout this dissertation (px) image format captured by the CUM: (Ideal
values are obtained from the camera’s data sheet.)
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Ideal intrinsic matrix =

1466 0 640
0 1466 480
0 0 1


In addition to the intrinsic calibration matrix, a one-row matrix with five
columns containing radial and tangential distortion parameters is also
obtained:

Distortioncoe f . :
[
k1 k2 p1 p2 k3

]
Ideal Distortioncoe f . :

[
0 0 0 0 0

]
Figure 5.2 represents the overall process of generating a lookup table to
distort ideal images.

Resolution (Sensor Active area)

1280x960

11x9 High Resolution

Camera_Calibration.py

Calibration Results:
• Intrinsic Matrix
• Object Points
• Image Points
• Translation Vectors
• Rotation Vectors

Pixel_LookupTable.py
(Distortion)

Theoretical Data:
• Intrinsic Matrix
• Object Points
• Image Points
• Translation Vectors
• Rotation Vectors

Lookup Table

Figure 5.2: Distortion model calibration.

The distortion-model calibration setup starts by projecting an 11x9 checker-
board on a high-resolution display. Using the testbed presented in Fig. 5.1, a
number of pictures with the CUM from different distances and orientations
is captured and fed to Camera_Calibration.py. After the calibration process
has been completed, CUM’s intrinsic matrix and distortion coefficients are
obtained:

intrinsic calibration matrix =

1484 0 655
0 1485 505
0 0 1
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Distortioncoe f . :
[
5.98× 10−2 −0.56 1.02× 10−3 −2.91× 10−4 0.96

]
The accuracy of the calibration process is then tested by computing the
absolute L2 Norm (Eq. (5.5)) between the position of reference checkerboard
corners and projected corners using the obtained intrinsic and distortion
matrices:

||re f − proj||L2 =

√
n

∑
i=1

re f (i)− proj(i))2 (5.5)

Where:

re f contains the position of reference corners in the image space.
proj contains the position of projected corners in the image space.

Figure 5.3 represents the L2-Norm calculation for a total of 30 images. Based
on the results obtained in Fig. 5.3, the calibration setup is considered to be
accurate, where an total average error of 0.013 px is obtained. The reason for
both outliers observed at images 7 and 30 is a failure in the corner detection
algorithm to accurately detect the position of the checkerboard corners and
not due to the calibration process.
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Figure 5.3: Calibration error.
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It is essential to keep in mind that the aim of calculating the calibration and
distortion matrices is not to calibrate the image, that is, they are not meant
to remove distortions, but rather to introduce them on synthetic, undistorted
images usually provided by any simulation software or rendering engine
(Fig. 5.4).

Distorted ImageOriginal Image

X X

map

Figure 5.4: Pixel position mapping from original to distorted.

By using the camera calibration results and the theoretical data presented in
Fig. 5.2, Pixel_LookupTable.py generates a lookup table that is used later
on to map the pixels’ position from original to distorted, i.e., as they would
normally have been had they been captured by the CUM (using a lookup
table implies that there is no need to calculate the pixels’ position for each
and every frame.)

In Fig. 5.5,the corners’ position from a distorted image in red (image cap-
tured by the CUM) and that of the remapped corners in blue (using the
lookup table) is presented. The overlay of red and blue circles indicates the
accuracy of the model, yet in some places the circles do not overlay 100%
(like in the magnified section), but the miss-projection error is always less
than one pixel.
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Figure 5.5: Mapping from ideal to distorted.

5.2.2 Vignetting Effect

Since modeling the light’s intensity fall-off purely on physics/optical princi-
ples necessitates the knowledge of various parameters that cannot be easily
obtained, the vignetting model and parametrization process is done experi-
mentally with the help of the so-called integration sphere (Ulbricht-Kugel).

An integration sphere is an optical component, consisting of a hollow, spher-
ical cavity with an interior covered with a diffuse, white, reflective coating,
with small holes for entry and exit ports. Its most important property is the
uniform scattering or diffusing effect [58]. The most significant characteris-
tic of the integration sphere for the conception of the vignetting model is
that light intensity at its opening surface is uniform. To further ensure this
property, the opening of the integration sphere used for the experimental
setup is fitted with a light diffuser that also ensures the homogeneity of the
light’s intensity at its surface. Theoretically, an image of the sphere’s open-
ing acquired by a camera should have uniform pixel intensity distribution
throughout the entire image.

The experimental setup is presented in Fig. 5.6; a number of evenly dis-
tributed red, green, and blue LED arrays illuminate the integration sphere,
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and the camera under test is placed at a predefined distance from the light
diffuser such that only the light diffuser is captured in its field of view.

Integration Sphere

Light Diffuser

Camera Under Test

Light Source

Figure 5.6: Experimental setup for the vignetting effect.

With the help of an LED color mixer, the color intensity of the LED arrays is
altered to obtain a white color, and when using a frame grabber, a specific
number of frames is captured — 100 in this case. The captured frames are
averaged out in order to reduce the temporal noise. It is essential to point
out that during this process the captured images should not be saturated
at any pixel level, this can be ensured by constantly monitoring the pixels’
intensity values.

In Fig. 5.7, the left picture represents the averaged image resulting from 100
frames, and on the right, the variation in average pixel intensity values per
column is represented. When examining the graph presented in Fig. 5.7,
it is observed that the maximum intensity is 0.683, whereas the minimum
intensity is 0.570; this corresponds to approximately 16% drop in the average
pixel intensity value. It is clear that this analysis may have been based on
the radial position of pixels from the image center; however, for the sake
of simplicity and because this does not have a direct effect on the derived
model, presented variations are based on column averaging.
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Figure 5.7: Averaged captured image and corresponding intensity graph.

With the maximum detected intensity value for each image channel, i.e.,
RGB, a uniform image is created and used as a reference to determine a
pixel-wise lookup table that would indicate the intensity drop of each pixel
for the vignetting model implementation. In Fig. 5.8, the reference image
is represented, as well as its corresponding intensity graph, indicating a
uniform illumination.
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Figure 5.8: Uniform reference image and corresponding intensity graph.

The vignetting lookup table represents the pixel’s relative intensity differ-
ence throughout the entire image. For example, if pixel a(x, y) in the lookup
table has a relative intensity value of 90%, then its value computed from a
uniformly illuminated synthetic image of 0.7 intensity would be 0.63. Fig. 5.9
represents the vignetting effect’s parameter calibration and test process.
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Figure 5.9: Vignetting model calibration.

The vignetting model is tested by comparing the average pixel intensity per
column between a picture taken by the CUM and another picture created by
the vignetting model. The target picture is a uniformly illuminated white
screen, so a reference image for the model to augment is made available.

Figure 5.10 represents the average pixel intensity difference between the
image generated by the vignetting model and that of the CUM. The total
average error in pixel intensity difference is a negligible 0.0334 (0.49 % of
the maximum intensity), and the average error per channel is represented
below:

• Red Channel: 0.0272.
• Green Channel: 0.0326.
• Blue Channel: 0.0404.
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Figure 5.10: Average pixel intensity difference between vignetting model and CUM output.

5.2.3 Lens Flare and Ghost Effect

As previously mentioned in section 4.3.1, only the ghost effect resulting
from the lens’s aperture and internal reflections between optical elements is
considered. The absence of a lens-system simulation prevents such a model
from conveying a high level of realism to the rendering process, and so,
only the ghost effect resulting from very bright lights, like sun or headlights,
is considered. For example, in Fig. 5.11 a bright source of light (e.g. the sun)
results in a circular ghost image that partially occludes the right taillight of
the vehicle in Fig. 5.11 (a), and the entire vehicle in Fig. 5.11 (b).

a b

Figure 5.11: Ghost effect due to direct sun light.
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Every time a ray of light hits an interface between two media, a part of it is
reflected, while the rest is transmitted. It is the reflected part that gives rise
to ghosting artifacts [59]. Reflected rays in conjunction with the aperture
size and shape determine the ghost’s shape and position in the image. For
ADAS cameras, optical modules with circular aperture and fixed diameter
are generally used.

For the modeling process, an experimental setup that consists of the CUM
and bright light sources is constructed. With the help of the testbed, the
CUM’s position and orientation with respect to the plane that contains three
bright light sources are controlled (Fig. 5.12). Ideally, only two light sources
are needed; however, a third light source is used for control.

CUM

Figure 5.12: Experimental setup for ghost effect calibration.

Using a frame grabber, several pictures are captured, and the relative posi-
tion of the Light-Emitting Diodes (LEDs) with respect to their ghost image
is analyzed. In Fig. 5.13, the bright LEDs and their ghost image are repre-
sented, where each light source is connected to its ghost image by a yellow
line.
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Figure 5.13: Ghost effect from the experimental setup.

After examining the pictures presented in Fig. 5.13, it becomes clear that the
intersection point of the lines connecting two LEDs with their ghost image
is independent of the camera’s position and orientation, which is a clear
indication that the ghost effect is due to internally reflected light in the opti-
cal module. The circular shape of the ghost image results from the camera
having a circular aperture. By performing a number of measurements, the
coordinates of the intersection point are defined, in addition to the ratio of
the distance from the reflection point to the LED and its ghost image. In
this setup, the third LED and its ghost image are used to verify that the line
connecting them also passes through the same intersection point, thus not
only validating its coordinates, but the aspect ratio as well.

For the current CUM, the calculated reflection point’s coordinates are 658
and 502 in x and y respectively (origin: bottom left), and the aspect ratio
is 0.557, which means that the distance from the reflection point to the
ghost image is larger than that to the light source. Furthermore, the circle
of influence where the ghost effect could occur is defined and represented
in Fig. 5.14, where the red crosses represent the bright light source and the
blue ones represent the ghost image. In Fig. 5.14, the circle of influence has
its center at the reflection point; its radius (347 pixels) defines the maximum
distance where the ghost of a bright light source will still be present. In
the presented image, the calculated radius is considered with respect to the
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distance between the reflection point and the top right corner of the image,
i.e., a light source may still be present inside the circle, but its ghost image
is outside the image boundaries.
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Figure 5.14: Ghost effect circle of influence.

5.3 Modeling Camera Blur

As previously described in Fig. 4.4, camera blur is due to several optical and
image sensor effects, that is, the optical and imager modules both contribute
to its existence in the final, acquired image. For this reason, this part is
separated from sections 5.2 and 5.4. In the following, a rough estimate of
the PSF is experimentally derived.
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The experimental setup consists of a point light source, such as a laser
pointer, a black background, and the CUM. With the help of a laser pointer,
a dot of light is projected on a black background, and its diameter is
measured. By adjusting the distance between the CUM and the black back-
ground plane, the projected size of the laser dot is controlled in such a way
that it is smaller than the pixel pitch; this is necessary so that the PSF of the
camera (and not that of the laser pointer) is measured.

In Fig. 5.15, the laser pointer’s diameter, Sobject is 2 mm and its spread
diameter, S

′
object is 6 mm. In Eq. (5.6), S

′
object is considered in order to make

sure that the total size of the point light source is smaller than the pixel’s
pitch size, i.e., less than 3.75 µm for the current CUM.

Figure 5.15: Camera blur experimental setup.
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Simage =
f ∗ S

′
object

d
(5.6)

Where:

Simage is the laser dot size in the image space [mm].
f = 1485 ∗ 3.75 µm ≈ 5.56mm is the focal length [mm].
S
′
object is the laser point spread diameter [mm].

d is the distance between the camera and the laser dot [mm].

Using Eq. (5.6) and placing the camera at a distance d = 16× 103 mm results
in:

Simage ≈ 2.1 µm< 3.75 µm

Fig. 5.16 represents the PSF of the camera when capturing a laser dot at a
distance d = 16× 103 mm. The average pixel intensity values are computed
for a set of captured images covering various positions at the image corners,
center, and other intermediate locations.

Figure 5.16: Laser point spread as seen by CUM.

From the computed intensity values of several images acquired by the setup
described in 5.15, the PSF is estimated, by taking the average values over all
images, with a 3x3 kernel represented below:

PSF kernel =

0.03734 0.12685 0.04564
0.12448 0.32128 0.14404
0.03852 0.12092 0.04090
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Taking into consideration that the CUM is a fixed-focus camera, the camera
is most probably focused at the hyperfocal distance, which means that
the camera will hold a depth of field from H/2 to infinity (H being the
hyperfocal distance). For this reason, the distance-dependent blur model is
not considered and only the PSF kernel approximation is used for image
blur; this means that objects at a closer distance than H/2 will not be
correctly blurred. Fig. 5.17 represents the PSF kernel in a 3D view where
the z-axis indicates the intensity value in x and y directions.

Figure 5.17: PSF kernel representation.

In Fig. 5.18, a 2D convolution implements the blur kernel on a synthetic
image that was previously generated by a simulation software. The result is
a blurred image that reflects the PSF of the CUM.
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Blured Image (model output)

Figure 5.18: Blur model generation.

5.4 Modeling Image Sensor Effects

Since the main goal is to show that physics-based/behavioral models are
necessary for further ADAS/AD development and not to completely model
all effects, only some image sensor effects such as noise, rolling shutter,
and LED flicker effects are considered. Moreover, only temporal and spatial
noises in the dark are modeled.

Before starting with temporal and spatial noise modeling, the sensor’s
output is studied beforehand; this is necessary in order to check for dead
pixels or fixed defects in the sensor’s image array. The measurement process
starts by covering the camera’s lens, and then placing it in a dark room,
ensuring that no light can reach the image sensor. By taking a set of pictures
at various exposure times (0-100 ms) and during different timestamps (over
10 sec), pixels values are monitored and tracked over time. Pixels with
intensity values that are greater than zero and that are relatively constant
over time are selected (a total of 53 px). The pixels’ mean values and
standard deviation are presented in Fig. 5.19, where it becomes apparent
how the standard deviation of each pixel is miniscule with respect to the
corresponding mean value. From this observation, the detected pixels are
ignored in temporal and spatial noise modeling. In Fig. 5.20, the defected
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pixels are highlighted to the left (where the entire image is represented) and
to the right, where zoomed-in sections are presented (the rest of the pixels
are temporarily set to zero).
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Figure 5.19: Standard deviation and mean values of defected pixels.

Figure 5.20: Visual representation of defected pixels.
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5.4.1 Temporal Noise

In this section, temporal noise in the dark for the CUM is measured and
modeled for implementation as a Probability Density Function (PDF). Only
temporal model in the dark is considered, so the PDF will eventually repre-
sent the read and dark current/thermal noise.

For the measurement procedure, and in order to minimize the influence
of DSNU, the integration time is kept as low as possible (in this case 11
µs). Moreover, and to reduce variations in the dark current of the pixel, the
sensor’s temperature (via an onboard sensor) is monitored and ensured that
it is kept constant during the image acquisition process.

The process starts by capturing several images (30-50) to bring the camera
into a stable state, and then by capturing a set of images (100 in this case)
and storing them in raw format. The root mean squared error (Eq. (5.7))
for each pixel is then calculated, and the histogram representation of the
calculated errors is generated.

Noiserms =

√
∑N

n=1 | pn |2
N

(5.7)

Where:

N is the total number of pixels.
pn is the nth pixel intensity values [DN].

In Fig. 5.21, the histogram representing the noise on pixel level is extracted.
The presented distribution shows a mean value of λ = 199.4, which is also
obtained when trying to fit the Noiserms values into a Poisson distribution.
Note that in Fig. 5.21, since the y-axis has a scale factor of 105, the number
of pixels with a temporal noise value less/grater than 200 Digital Number
(DN) may appear to be zero in the printed out version of this dissertation.
This is also true for other distributions presented in Fig. 5.22, Fig. 5.24, and
Fig. 5.25.
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Figure 5.21: Histogram representation of temporal noise in the dark.

To model the calculated noise, random variables from the Poisson distribu-
tion with a mean value λ = 199.4 are generated. Considering the sensor’s
resolution, a total of 1280x960 pixel values are randomly generated. The
distribution of the generated values is represented as a histogram diagram
in Fig. 5.22.
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Figure 5.22: Histogram representation of modeled temporal noise in the dark.

To better enhance the model’s approximation of temporal noise, the gen-
erated values are then passed through a low-pass filter, thus reducing the
effect of randomly generated high frequencies. Fig. 5.23 (a) represents the
ground truth noise generated by the sensor, Fig. 5.23 (b) displays the model’s
output without the low-pass filter, and finally, the filtered model’s output is
represented in Fig. 5.23 (c), which shows a better noise approximation.

(a) (b) (c)

Figure 5.23: Visual representation of temporal noise, (a) ground truth noise generated by
the sensor, (b) model’s output without the low-pass filter, (c) model’s output
with a low pass filter.
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5.4.2 Spatial Noise

Spatial noise represents the variations of the dark signal from one pixel
to another in the same frame. Similar to temporal noise measurement, the
temperature of the image sensor is carefully monitored and maintained
constant throughout the image acquisition process.

The modeling process starts by capturing several images at different expo-
sure times (0-100 ms); at each exposure time, several images are taken and
averaged in order to decrease the influence of thermal noise. With the ob-
tained images, the averaged spatial noise over the entire image is calculated
for each exposure time. It is observed that for the current CUM, the spatial
noise variation from one exposure time to the other is minimal; therefore,
using Eq. (5.7) the Root Mean Square (RMS) error is calculated with re-
spect to each exposure time, and a histogram representation is generated
(Fig. 5.24).
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Figure 5.24: Histogram representation of spatial noise in the dark.

Following the same technique illustrated in section 5.4.1, with λ = 197.3,
random spatial noise values that follow Poisson’s distribution are generated
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and later passed through a low-pass filter for a better approximation of
spatial noise.
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Figure 5.25: Histogram representation of modeled spatial noise in the dark.

(a) (b) (c)

Figure 5.26: Visual representation of spatial noise, (a) ground truth noise generated by the
sensor, (b) model’s output without the low-pass filter, (c) model’s output with
a low pass filter.

5.4.3 Rolling Shutter and LED Flicker

A CMOS imager often adopts the electronic rolling shutter, where each
row of a CMOS is exposed at different time intervals. Therefore, a fast
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relative motion between the camera and moving objects inside the FOV
results in image distortions, which is referred to as the rolling shutter
effect. In Fig. 5.27 a spatial illustration of image readout for the CUM is
represented; horizontal and vertical blanking together represent the total
blanking time between two consecutive frames. As illustrated in Fig. 5.28,
the readout window is typically set to a region including only active pixels.
Thus, horizontal and vertical blanking are excluded but still contribute to
the total frame time, which can be calculated using Eq. (5.8).

F = Vimage + Hb + Vb (5.8)

Where:

F is the total frame time [ms].
Vimage is the valid image readout and exposure time [ms].
Hb is the horizontal blanking time [ms].
Vb is the vertical blanking time [ms].

VALID IMAGE

...............................................
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Horizontal Blanking

Vertical Blanking Horizontal/Vertical
Blanking

--------------------
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Figure 5.27: Illustration of image readout.

VALID IMAGEHorizontal BlankingVertical Blanking VALID IMAGEHorizontal BlankingVertical Blanking

Figure 5.28: Pixel output timing.



5 MFC Modeling and Parameters Calibration 86

When modeling the rolling shutter effect for a digital image with an active-
pixel array of H x V px and a total frame time F, the spatial distribution of
the image readout should, ideally, be taken into consideration (Fig. 5.27).
Usually, the user does not have access to such information, and only primary
data like frame rate and image resolution is provided. In the following, these
factors are considered, and an abstract model of the rolling shutter effect is
generated based only on the fps and image resolution. The model is tested
and verified by an experimental setup.

For the experimental setup, a white disk with a black mark and a diameter
of 48 mm is mounted on a brushless DC motor capable of 18,000 rotation
per minute (rpm). The CUM is then mounted on a tripod and positioned
above the spinning disk, as represented in Fig. 5.29. The motor’s speed is
controlled via a dedicated motor control board with a tolerance value of ±
5 rpm; more details on the theoretical concept can be found below [60].

Figure 5.29: Rolling shutter experimental setup.

Fig. 4.12 represents the disk in a stationary situation and the rolling shutter
effect when the disk is spinning at 4362 rpm and the camera is set to 30 fps.
The active-pixel array of the image is set to 1280H x 960V. In Fig. 5.30, a
virtual representation of the disk is generated with the exact black mark on
it (the black circle is just for reference).
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Figure 5.30: Virtual replica of the white disk.

By approximating the pixel line integration time ( 1
FPS×V ) and the speed of

the motor, the radial position of the black mark can be calculated at all times,
as well as its projection on the image sensor. Following the pixel readout
timing scheme, a virtual representation of the black dot is represented in
Fig. 5.31 with respect to the rolling shutter mechanism. To ensure that the
model is providing the correct results, Fig. 5.32 represents the model, with
the camera’s output at the same frame rate but at a higher rpm (5220).
The rolling shutter effect, visualized by the distortion patterns of the black
marks, is identical.
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(a) (b)

Figure 5.31: Rolling shutter pattern of the white disk 30 fps, 4362 rpm; (a) simulated, (b) as
acquired by the camera.

(a) (b)

Figure 5.32: Rolling shutter pattern of the white disk 30 fps, 5220 rpm; (a) simulated, (b) as
acquired by the camera.

In the context of this dissertation, the rolling shutter effect is not directly
applied on the pixel level, but on the object list level. This is because the
camera model’s input is already a pre-rendered image (see 4.4.2). The model
is adapted to accommodate lateral and transversal movements of target
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vehicles inside the camera’s FOV. For example, in Fig. 5.33 (a), the detected
vehicle — shown in Fig. 5.33 (b) — is represented. In an ideal simulation
(no rolling shutter effect), the detected vehicle’s bounding box will always
be represented as in Fig. 5.33 (a); however, with the rolling shutter effect
for a vehicle moving at 100 km/h towards the ego car, the bounding box
will take the shape represented in Fig. 5.34, which will eventually have an
altered center of mass.

x

y

(a) (b)

Figure 5.33: (a) bounding box representation of detected vehicle without the rolling shutter
effect, (b) corresponding virtual scenario.

b

x

y

Figure 5.34: Bounding box representation of detected vehicle with the rolling shutter effect.
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As for the LED flicker effect, the modeling approach relies on the sensor’s
exposure time as well as the Pulse Width Modulation (PWM) signal pro-
vided by a microcontroller development board, which drives the light source.
The effect could lead to a false negative in a driving scenario (Fig. 5.35),
where ”ON” LEDs may be perceived as ”OFF”. It is important to point out
that the probability of this behavior largely depends on how a bundle of
LEDs (forming a traffic sign/light) is driven, and whether the condition
described by Eq. (4.3) is satisfied or not. A more probable situation is the
one represented in Fig. 5.36, where Eq. (4.4) is satisfied, and anti-flicker
measures are taken either on the camera’s side or that of the LEDs. Fig. 5.37
represents a rough output of a traffic sign captures at 30 fps; the traffic sign
is driven by a PWM signal of 250 Hz and 20% duty cycle.

(a) (b)

Figure 5.35: LED flicker effect on one LED.
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Figure 5.36: LED flicker effect on an LED matrix.

original sign captured sign

Figure 5.37: LED flicker effect, f requency = 250 Hz dutycycle = 20 %.
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6 Camera Model Implementation

This chapter presents how the modeling methodology presented in Ch. 4 is
implemented. Chapter 5 presented several camera effects that depended on
parameter files, VDS, and in some cases, ground truth data (like bounding
boxes), which in most cases is directly provided by simulation software for
a virtual test drive. In order to ensure a modular and flexible toolchain, in
the following sections the usage of FMUs as enablers for co-simulation, and
OSI as a standardized interface in simulation software, is illustrated.

6.1 Introduction

The main aim of camera model implementation is to establish a modular
evaluation and development framework for ADAS/AD functions. Larger
systems, which is the case of ADAS/AD function development and inte-
gration, usually rely on various models, simulation tools, and algorithms
that make it challenging to study and investigate such heterogeneous sys-
tems [61]. Co-simulation, together with standardized interfaces, can be
considered as a pragmatic approach in reducing the complexity of heteroge-
neous system simulation and integration, where it allows the exchange of
various components on different integration test levels, e.g., on HIL or SIL
level [18].

Through a modular co-simulation architecture, an iterative model develop-
ment process may be achieved, thus further enabling the implementation
of the updated V-Model presented in Fig. 1.8. Using a tool for model
integration and co-simulation platform, virtual components and real com-
ponents can be connected. Virtual components, i.e., the camera model and
simulation software, can be provided as an executable library using FMI
for co-simulation. Real components, as well, can be interfaced to the co-
simulation platform, and the whole process may be executed via real-time
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operating systems whenever necessary.

Aside from integrating the camera model in an FMU and benefitting from
various capabilities of the FMI standard, the camera model is also OSI
enabled, i.e., wherever necessary the camera model may consume OSI mes-
sages like GroundTruth and SensorView, and provide SensorData to be
used by convenient ADAS/AD functions (Fig. 2.5).

For a co-simulation to be successfully performed, the following steps are
necessary:

1. Authoring:
In the context of this dissertation, the model is programmed in C/C++

and exported as an FMU using a dedicated framework provided by
PMFS1. FMU-export is not limited to dedicated frameworks; many
other tools like MATLAB/Simulink with AVL fmi.LAB or MapleSoft
and others are also capable of performing FMU-exports.

2. Model components’ connection:
Basically refers to establishing the correct connections between various
sub-models available in a co-simulation framework.

3. Execution:
In the context of virtual simulation software, external model integration
(like a camera model) may be directly integrated into the simulation
software or incorporated via 3rd party software like Model.CONNECT2.
Additionally, in the execution process, different configuration plat-
forms and bitness (32bit/64bit) may be used, so it is vital to ensure
that no compatibility issues arise due to the selected configuration.

In the following portion of the chapter, the camera model FMU is presented
together with OSI integration; additionally, the model integration in simu-
lation software featuring stand-alone co-simulation and a 3rd party tool is
also illustrated.

1(C) 2016 – 2017 PMSF IT Consulting Pierre R. Mai https://pmsf.eu. The Source Code
Form is subject to the terms of the Mozilla Public License, v. 2.0.

2Model.CONNECT™ is model integration and co-simulation platform, connecting
virtual and real components, https://www.avl.com/de/-/model-connect.
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6.2 Camera Model FMU

To ensure interchangeability between sensor models and other simulation
software or ADAS/AD HAF, the developed camera model is integrated
into a modular fashion based on standardized interfaces, like FMI, as well
as based on specific interfaces, like OSI.

In Fig. 6.1, the integration process is illustrated, and it can be summarized
in three main steps:

1. Model Development:
The model development step lies entirely under the developer’s respon-
sibility, where the final model can be considered as a black box with
dedicated access points/ports for model calibration, input, and output.
In general, there should be no restrictions on the modeling/program-
ming language or the model’s abstraction levels.

2. Standardized Interface:
Selecting a suitable interface is crucial for further integration and use
of the developed model, so in general, a standardized interface is
always preferable. Targeting a co-simulation framework, in this case
the functional mock-up interface, is utilized. Additionally, integration
feasibility between the selected interface and the generated model
should always be assured. For example, if the selected interface does
not support the programming language used for the model develop-
ment, a suitable wrapper may always be used to ensure integration
feasibility.

3. Modular Integration:
The importance of this step lies in the fact that in large heterogeneous
systems, it is rarely the case that one standardized interface can meet
all simulation demands. A modular integration process enables the
integration of standardized interfaces as well as other upcoming inter-
faces (like OSI and others) that should eventually lead to a harmonized
co-simulation framework which satisfies all requirements. In this case,
the following integration steps are considered:

Integration Step 1:
In this step, FMI is implemented by generating an FMU that mainly
contains a description file and model executables. To enable the usage
of other open source libraries like OpenCV, FMU’s model equations
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(defined as a set of C functions) are made accessible from a C++ based
model.

Integration Step 2:
Depending on the number of additional interfaces needed for a simu-
lation scenario, this step may be extended to include ”n” other steps,
where ”n” is the number of necessary interfaces. For the current use
case, only the OSI is implemented, and it can be seen in Fig.6.1 in the
last section in orange.

XML

C Code

Libs

FMU

XML

C ++Code

Libs

FMU

XML

C Code

Libs

OFMU

XML

C ++Code

Libs

OFMU

OSI OSI

Camera Model

Model Development

Integration Step 1

Standardized Interface Modular Integration

Integration Step 2

Figure 6.1: Camera model FMU integration.

To access the input/output data and status information during a co-simulation
framework, the FMI standard defines a specific state machine for a functions-
calling sequence. After a new FMU instance is successfully created (using
fmi2Instantiate()), the following two main states follow:

1. Initialization Mode:
In this state, the FMU is made ready for simulation by determining
all outputs and other variables exposed by the exporting tool. In the
CameraModel.fmu block diagram represented in Fig. 6.2, the Model
Parametrization block receives its necessary inputs, and with that the
function CameraModel_doInit() is called. The following code snippet
illustrates how the vignetting model parameters are loaded and stored
in OpenCV matrices.
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/* GLOBAL VARIABLES */

vector<Mat> vigChannel; //stores all Vignetting parameters

/* FUNCTIONS */

int CameraModel_doInit(string filePath, string paramfileName){

//Vigneting parameterization

Mat placeHolder; //place holder matrix to perform necessary

conversions

string sTemp; //temporray file name for constructing the

paramFile

string paramFile; //gets the parameter file name

//three parameter files for Vignetting (for RGB)

for (int i = 1; i < 4; i++) {

paramFile = filePath + paramfileName;

sTemp = to_string(i) + ".xml";

paramFile += sTemp;

//read the parameters and store them in matrix for each

channel

FileStorage fs(paramFile, FileStorage::READ);

fs[paramfileName + to_string(i)] >> placeHolder;

placeHolder.convertTo(placeHolder, CV_8U, 255);

//populate the global variable vector with the

corresponding vignetting parameters matrecies

vigChannel.push_back(placeHolder);

fs.release();

}

....

return 0;

}
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2. Slave Initialized:
In this state, the slave is initialized, and the co-simulation computa-
tion is performed. The most important function call in this state is the
fmi2DoStep; each time this function is called, the CameraModel_doCalc()
function automatically runs all necessary augmentations on image-
and object-base level. For example, the following code snippet illus-
trates the vignetting effect implementation represented in Fig. 6.2
under Optical Effects.
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int CameraModel_doCalc(Mat IdealImage){

Mat imgIn; //input matrix

Mat imgOut; //output matrix

imgIn = IdealImage;

//three matrecies for vignetting implementation, one for

each channel

Mat vignetingImage_1, vignetingImage_2, vignetingImage_3;

vignetingImage_1 = Mat::zeros(imgIn.rows, imgIn.cols,

vigChannel[0].type());

vignetingImage_2 = Mat::zeros(imgIn.rows, imgIn.cols,

vigChannel[1].type());

vignetingImage_3 = Mat::zeros(imgIn.rows, imgIn.cols,

vigChannel[2].type());

Mat bgr[3];

split(imgIn, bgr);

// vignetting implementation

for (int col = 0; col < imgIn.cols; col++) {

for (int row = 0; row < imgIn.rows; row++) {

vignetingImage_1.at<uchar>(row, col) =

bgr[0].at<uchar>(row, col) *

vigChannel[0].at<uchar>(row, col) / 255;

vignetingImage_2.at<uchar>(row, col) =

bgr[1].at<uchar>(row, col) *

vigChannel[1].at<uchar>(row, col) / 255;

vignetingImage_3.at<uchar>(row, col) =

bgr[2].at<uchar>(row, col) *

vigChannel[2].at<uchar>(row, col) / 255;

}

}

vector<Mat> vigChannels{ vignetingImage_1,

vignetingImage_2,vignetingImage_3 };

Mat vignetingImage; //image with vignetting effect

merge(vigChannels, vignetingImage);

.....

return 0;

}
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Figure 6.2: Camera model FMU.

In a similar fashion, Image Sensor Effects and the rest of the Optical Ef-
fects can be parameterized and implemented. The camera model’s outputs,
represented as FMU Outputs, rely entirely on the simulation framework; they
may represent an augmented VDS (transmitted through a communication
interface or simply by creating a local copy of the augmented VDS), OSI
buffer, or even an object list in any other format.

6.3 Simulation Toolchains and Model Integration

Due to numerous possible applications of sensor models and different inte-
gration/simulation capabilities of simulation software that are currently on
the market, this section provides a set of toolchains that covers the model
integration approach for different use cases.

For the camera model FMU represented in section 6.2, the following use
cases are considered:

1. Co-simulation platform:
In Fig. 6.3, it is shown that by using a co-simulation platform like
Model.Connect, the CameraModel.fmu can be integrated and coupled
with various components. Starting from the very left-hand side of
Fig. 6.3, the Linux/Windows-Host enables the integration of simula-
tion software that is either running on a Linux or Windows operating
system. For both the Model Parameters and HAF, the gradient color
indicates that they may either exist on the same host machine, like the
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Environment Simulation, or directly on the machine hosting the Co-
Simulation Platform. Usually, Model Parameters are locally stored
files that are in specific formats (like XML, JSON) and don’t need
to be executed but merely accessed, which is done by correctly con-
figuring the CameraModel.fmu. In such a toolchain, the HAF may be
integrated as a standalone executable or directly as an FMU (only
in the co-simulation platform). In this toolchain, the Co-Simulation
Platform is the one providing the master clock and managing the syn-
chronization between all sub-components when executed in different
threads.
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Model Parametrization

Camera Blur

Image Sensor Effects

Temporal Noise

Spatial Noise

Rolling Shuter - LED Flicker

Optical  Distrotions

Vignetting Effect
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Figure 6.3: Toolchain for camera model integration in a co-simulation platform.

2. Integration in simulation software:
Several simulation software supports most functionalities of FMI inter-
faces and are capable of dynamically linking an FMU to its running
application. In Fig. 6.4, integrating an FMU in such a toolchain is
usually done over an FMU-plug-in dialog, which enables importing
and configuring FMUs. For the CameraModel.fmu, the parametrization
process is still done from the Model Parameters block; however, other
inputs like VDS and OSI data is directly provided by the simulation
software. Currently, neither FMI nor OSI supports a direct transfer
of image data; consequently, the VDS can be transferred over any
other communication protocol (like Transmission Control Protocol
(TCP), User Datagram Protocol (UDP)) or by direct shared memory
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access. Similar to the Co-simulation platform setup, HAF may be
directly integrated into the Simulation Software or as an external
standalone application. In such a toolchain, the Simulation Software
is the master.

CameraModel.fmu

Model Parametrization

Camera Blur

Image Sensor Effects

Temporal Noise

Spatial Noise

Rolling Shuter - LED Flicker

Optical  Distrotions

Vignetting Effect
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HAF Object List

Simulation Software

VDS* OSI*VDS* OSI*VDS* OSI*

VDS* is the augmented video data stream.
OSI* is a sensor data buffer (only if applicable).

Figure 6.4: Toolchain for camera model integration with simulation software.

3. Offline Integration:
Certain use cases necessitate offline usage of sensor models, more
precisely of data generated by sensor models. For example, in the case
of NN training and inferencing, the CameraModel.fmu outputs may be
used. Moreover, offline integration may also be used for sensor model
evaluation, where its output may be directly compared with that of real
sensors in a post-processing step. In Fig. 6.5, the CameraModel.fmu* is
exported as a standalone simulator by dedicated software like PMFS.
The FMU still needs to be configured for parametrization and for
accessing the VDS and OSI buffers (if applicable). In such a toolchain,
the exported simulator is the master, and thus the simulation time,
step size, and other parameters are directly controlled by it. Coupling
the simulator with other HAF can be either attained with dedicated
scripts (in this case the script may control the simulation time and the
step size) or directly triggered by the CameraModel.fmu*.
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Figure 6.5: Camera model integration as a simulator.

6.4 Evaluation of the Modeling Process

In this chapter, the camera model calibration and implementation processes
represented in Ch. 5 and Ch. 6 are put to the test. The process is implemented
on two development kit cameras equipped with automotive image sensors
and one automotive MFC that is already available in series production.

6.4.1 Camera Calibration Setup

To demonstrate the repeatability of the calibration and implementation
processes on different cameras, this section represents the preparation and
initialization setup of the CUM. For confidentiality reasons, only the process
on the development kit cameras is shown, i.e., for two cameras.

Two Demo3 kits, consisting of the same sensor headboard and USB 3.0 inter-
face board, are selected. In Fig. 6.6, both cameras are illustrated. As the aim
is to prove the repeatability of the calibration and implementation processes,
both cameras have the same manufacturing release and revision number,
thus diminishing the possible effect that different HW components may
have on the model’s output. Moreover, both cameras’ acquisition setup and
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internal configuration parameters, like exposure time and Bayer 3 pattern,
are set exactly the same.

Figure 6.6: Demo Kit3 cameras, sensor and interface board.

As previously mentioned, current automotive cameras have a fixed focusing
distance; however, since the focusing distance for the current development
kit is adjustable (by screwing/unscrewing the lens), it is essential to ensure
that the focusing distance for both cameras is exactly the same before start-
ing the modeling process. This is achieved with the implementation of a
defocus detection algorithm that is based on the second image derivative,
i.e., by calculating the Laplacian of the image. The method is based on the
following paper [62].

The defocus detection method examines the gradient of the image, so for
this method to work, a target object that has some texture in it is chosen. In
other words, images with pure color are not suitable for this method. The
Laplacian highlights regions of an image containing rapid intensity changes.
As the first derivative of an image in either x, y, or diagonal-direction
represents the rate of pixel intensity shift with respect to neighboring pixels,
the 2nd derivative would pass high frequencies that directly correspond to
sharp edges. By computing the variance of the obtained Laplacian image

3A Bayer filter mosaic is a color filter array (CFA) for arranging RGB color filters on a
square grid of photosensors.
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in x and y-direction, the spread between pixels that correspond to sharp
edges, and others that don’t, can be estimated. As a consequence, 2nd image
derivatives with higher variance value would directly correspond to a larger
gap between pixels that have high frequencies and those that don’t, i.e.,
more focused edges. This concept is applied in order to adjust the focusing
distance for both cameras until similar variance value are obtained for
images taken from both cameras. For example, Fig. 6.7 (a) represents the 2nd

image derivate of a defocused target object (Fig. 6.7 (a)), whereas a correctly
focused image is represented in Fig. 6.8.

(a) (b)

Figure 6.7: (a) 2nd image derivative of a defocused image, (b) Defocused input image.

(a) (b)

Figure 6.8: (a) 2nd image derivative of a focused image, (b) Focused input image.
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As represented in Fig. 6.9, the method is proven to provide consistently reli-
able results under the same image acquisition conditions. After reaching a
low variance value difference (1627.85− 1625.05 = 2.8 in this case), cameras
”A” and ”B” can be considered to have the same focusing distance, and
hence the modeling process can start as described in Ch. 5 and Ch. 6.

(a) (b)

Figure 6.9: Variance values of the 2nd image derivatives and best focused images for (a)
Camera A, (b) Camera B.

6.4.2 Results

Due to time constraints and to the availability period of both cameras, the
modeling process was only tested on distortion and vignetting effects.

1. Distortion Effect:
For the calibration of the distortion effect, the setup represented in
Fig. 5.2 together with the testbed prototype represented in Fig. 5.1 are
used. Table 6.1 illustrates the obtained distortion parameters results for
cameras A and B, where ”Ideal” represents the data sheet parameter
values, and ∆ ideal represents the difference between ”Ideal” values and
other parameter values obtained for corresponding camera. Similarly,
∆(A−B) represents the corresponding parameter differences between
cameras A and B.
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Table 6.1: Calibration results for distortion parameters.
Focal Length [pxl] Principal Point [pxl]

fx fy cx cy
Ideal 1466 1466 640 480

Camera A 1484, ∆ ideal = 18 1485, ∆ ideal = 19 655, ∆ ideal = 15 505,∆ ideal = 25
Camera B 1480, ∆ ideal = 14 1480,∆ ideal = 14 619, ∆ ideal = 21 518, ∆ ideal = 38

∆(A−B) 4 5 36 13

In table 6.1, it can be seen that ∆ ideal for both cameras is greater than
zero, which is expected. However, by further examining ∆(A−B) for
the focal lengths, the difference value is not zero, but relatively small
(less than ∆ ideal); in contrast ∆ A−B for the principal points cannot still
be considered small especially for cx, where ∆(A−B) = 36 exceeds both
∆ ideal values. These observations mainly illustrate that the focal length
calibration values may be generalized and used for other cameras
but not the principal point parameter values. A shift in the cx value
means that the optical center of the lens system is not perfectly aligned
with the center of the image sensor in the x-direction, and may be
the result of various factors (please refer to section 5.4). Generalizing
the principal points for the distortion model may result in a wrong
representation/projection of a 3D object into the image space.

2. Vignetting Effect:
For the parameters’ calibration of the vignetting effect, the setup
represented in Fig. 5.9, together with the testbed represented in Fig. 5.1,
are used. Contrary to the distortion model, Fig. 6.10 shows a negligible
difference between pixel intensities obtained from the calibration of
cameras A and B. This indicates that the vignetting model may be
generalized for cameras with the same revision release (same optical
module was used).
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Figure 6.10: Averaged pixel intensity of the vignetting effect for cameras A and B.

To conclude this chapter, a solid conclusion may not be directly drawn
regarding what effects may be generalized and benefit from only one cali-
bration process. To reach such a conclusion, more than two cameras should
be taken into account (something that is subject to future work) and driven
through the entire calibration and implementation processes. The required
number of samples necessary to make a valid inference can be determined
either by setting a target variance or a confidence level; both of which are
highly dependent on previous experience. Despite the mentioned limita-
tions, this chapter still indicates the need for an investigation of separate
effects, and paves the way for future strategies related to physical camera
model calibration. As a final note, differences that may be obtained through-
out the calibration process should not immediately be a cause for alarm,
because in the end, these may still lie inside the tolerance and abstraction
levels needed for a specific use case. Therefore, George Box’s quote proves
pertinent yet [7]:

“All models are wrong, but some are useful.”
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7 Camera Model Applications

7.1 Introduction

This chapter presents several possible applications of the camera model in
ADAS/AD function development and virtual testing. The following sections
handle different image-based algorithms, like lane and vehicle detection.
The developed algorithms cover approaches that rely entirely on classical
CV methods as well as others that rely on NN approaches.

7.2 Virtual Testing Setup for Lane Detection
Algorithm

7.2.1 Scope

The scope is to demonstrate the usage of the first toolchain represented in
Ch. 6, Fig. 6.3. The ability to couple different simulation software running
on different operating systems (Linux and Windows), and the integration of
an LD algorithm in the simulation toolchain, are illustrated. Additionally,
the flexibility in including or excluding any camera effect through the
CameraModel.fmu configuration is also demonstrated. It is essential to point
out that the scope here is not to validate the camera sensor model but to
demonstrate that image data generated from the camera model influence
the behavior of ADAS/AD functions.

7.2.2 Method Description

For this demonstration, an LD algorithm is created and integrated into a
separate FMU: LaneDetecion.fmu. The LD pipeline consists of seven main
steps:



7 Camera Model Applications 109

1. Threshold & Convert to Binary:
In this step a binary image is created first by transforming the input
image (7.1 (a)) from an RGB color space into an Hue, Saturation,
Lightness (HSL) color space, and applying a threshold operation per
channel; second by extracting and accentuating the edges via a Sobel
operator. The final, obtained binarry image is the result of two logical
operations (&, ‖) performed on the previously obtained images. The
result of this step is represented in Fig. 7.1 (b).

1 - Thresold & Convert to Binary

(b)

Input Image

(a)

Figure 7.1: LD input and threshold image.

2. Extract Region of Interest:
After the binary image is obtained, a specific ROI (Fig.7.2 (a)) is ex-
tracted based on the mounting position and orientation of the camera
inside of the vehicle. The camera’s mounting position is provided as
an FMU input from the CameraModel.fmu.

3. Obtain Warped Image:
This step aims to perform a perspective transformation, which maps
the points extracted from the ROI image into a bird’s-eye view trans-
formation; this is necessary for calculating the lane curvature in later
steps. Fig. 7.2 (b) represents the obtained result.
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2- Extract Region of Interest

a b

3 - Obtain Warped Image

Figure 7.2: ROI implementation and bird’s-eye view representation
of the cropped image.

4. Estimate Lane Position:
In order to reduce the search region for candidate lanes inside the
bird’s-eye view image, the histogram along the columns is calculated
in this step; then the position of both peaks represented in Fig. 7.3 (a)
are used as starting points when it comes to searching for the lines.

5. Execute Sliding Window:
With the points obtained from the previous step, the sliding win-
dows are placed around the line centers, and moved upward step
by step following the lines up to the top of the frame as represented
in Fig. 7.3 (b). At each window position, active pixels, i.e., non-zero
pixels, are identified and saved to be used later on for line estimation.

a b

5 - Execute Sliding Widnow4 - Estimate Lanes Position

Figure 7.3: a. Column histogram, b. Sliding window representation.
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6. Compute Vehicle Position:
After obtaining all pixels belonging to each line, in this step a 2nd

degree polynomial is fitted to each line:

f (y) = ay2 + by + c (7.1)

With the obtained equation, the radius of curvature is then calculated
using the following equation:

Rcurve =

(
1 + (2ay + b)2

) 3
2

|2a| (7.2)

Where:

a , b , c are the polynomial coefficients.
y is the position of the current detected point (in the vertical direction).

Up to now, all calculations are done in pixels, so the last step before
displaying the results is to convert them into world space, i.e., to
meters. This can be achieved by knowing how many meters per pixel
exist in our perspective transformation. Estimating such values can
be derived from various camera-related parameters; however, for this
demonstration, the horizontal distance between two lines is set to a
minimum value of 3.5 m, and the length of the lane considered in the
perspective transformation is set to approximately 25 m (verified in
the simulation software). Additionally, the vehicle’s offset from the
middle lane is calculated as the difference between the center point
of the detected lanes and the image center (considering the camera is
mounted in the middle of the vehicle with no yaw or roll angle).

7. Recast Image for Display:
In the last step (and only for visualization purposes), the bird’s-eye
view image is transformed back into the original image shape and
overlaid, together with additional text information, on the input image.
The obtained results are represented in Fig. 7.4; the large curvature
indicates that the current detected lanes are straight, whereas a positive
center offset indicates a shift in the vehicle’s position to the left of the
lane center. Likewise, a negative offset would indicate a shift to the
right of the lane center.
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7 - Recast Image for Display

Figure 7.4: LD output with computed lane curvature and center offset.

After successfully generating the LaneDetection.fmu, the aim is to integrate
it with the CameraModel.fmu and simulation software in a co-simulation plat-
form. Due to current limitations of the developed LD algorithm (currently,
it cannot handle sharp turns), only high-way scenarios with a minimum
radius curvature of 800 m are considered. With the usecase ready, two
different simulation software, i.e., CarMaker and VIRES VTD, are coupled
to the FMUs, and the algorithm’s outputs are saved for further analysis.

7.2.3 Experimental Setup

For the camera model and LD use case evaluation, the experimental setup
presented in Fig. 7.5 is used. In Fig. 7.5, the VDS exchange between the
simulation environment and the camera model is done via TCP communi-
cation. Depending on the host IP address and the port number, the camera
model can be configured, through FMU parameters, to receive the VDS
either from VTD (Linux-Host) or CarMaker (Windows-Host); both setups
run separately, i.e., with either VTD or CarMaker. Through the camera
model’s FMU parameters, the path for the parametrization file is also set,
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and the desired effects for implementation are selected, that is, one test run
can be configured to include camera blur and vignetting, the other may be
set to consider only camera distortions. For the current test scenario, the
camera model is configured to include the distortion, blur, and vignetting
effects.

Co-Simulation Platform (Model.Connect)

Simulation
Environment

Figure 7.5: Co-Simulation platform for LD and camera model integration.

As described in section 7.2.2, the LD pipeline starts with an input im-
age. In the current toolchain, this image is provided by the camera model.
For computation and data transfer efficiency, the camera model writes
its output on a global shared memory and provides the memory address
(CM_SharedMemoryAddress_OUT) and (CM_SharedMemoryBufferSize_OUT), the
buffer size, as FMU outputs to the LD in order to access the image data.
Furthermore, the camera model provides other information, like camera
mounting position and orientation, to the LD FMU. By default, the camera
model is always writing the non-augmented and augmented images to the
shared memory (this behavior is configurable). For the LD algorithm to be
aware of where an image starts and ends, the camera model also provides
image information, like height width and the number of channels, as stan-
dard FMU outputs. The final two blocks in Fig. 7.5, i.e., ”Ground Truth”
and ”LD Output,” are two data loggers used for offline data analyses.



7 Camera Model Applications 114

7.2.4 Results

For the evaluation process, the vehicle’s lateral offset from the center of the
driving lane, calculated by the LD algorithm, is compared with the ground
truth data obtained from the simulation environment. Using Eq. (7.3), the
precision of the calculated offset is obtained for each image frame.

Precisiono f f set = 100−
|GTo f f set − LDo f f set|

GTo f f set
(7.3)

Where:

Precisiono f f set is the precision of the calculated offset in [%].
GTo f f set is the ground truth vehicle offset from the driving lane’s center

[m].
LDo f f set is the center lane offset calculated by the LD algorithm [m].

For the current test run, the LD algorithm running on non-augmented VDS
recorded an average precision of 97.45% and 88.96% for the LD algorithm
running on the camera model output indicating that the augmentation
method is negatively affecting the performance of the LD algorithm. In
Fig. 7.6, the calculated offset precision is represented for both the synthetic
VTD and the camera model augmented image data. The latter shows a lower
precision value, indicating that the LD algorithm operating on augmented
image data faces some difficulties in correctly detecting the lane markings.
The observed results may reflect the fact that some LD algorithm parameters
need to be tuned to better cope with real scenarios; however, this can only
be confirmed by bringing a real test scenario to simulation; this, at the time
and due to several logistical reasons, proved to be an unfeasible process to
perform.
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Figure 7.6: Relative precision for the calculated vehicle offset from the lane center.

Similar results (but with slightly different ranges) were also observed when
the process was running with image data generated from CarMaker. For
a more modular toolchain, all separate ground truth and sensor-related
signals can be replaced by OSI messages. Throughout this dissertation,
OSI buffer messages were used and implemented but not presented in this
toolchain since, currently, the used simulation environments do not officially
support OSI.

7.3 Virtual Testing for Vehicle Detection

7.3.1 Scope

In the automotive industry, and especially in ADAS/AD domain, functions
like VD undergo a costly and time-consuming process for development
and validation before their deployment in a vehicle. In many cases, the
testing and validation process of image-based VD algorithms highly rely
on previously recorded data, which in some cases is challenging to obtain,
especially for some edge use cases that often rely on uncontrollable factors,
like weather conditions.
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In the following section, the toolchain presented in Fig. 6.4 (Ch. 6) is put
into practice. The main aim of this process is to investigate the possibility
of testing image-based functions (VD in this case) on virtually generated
image data.

7.3.2 Method Description

For the current use case, and in order to illustrate the usage of the developed
camera model in ADAS/AD function development and testing, a relatively
simple VD algorithm is developed and put to the test using different setup
versions of the toolchain presented in Ch. 6, Fig. 6.4.

Fig. 7.7 represents the main block diagram of the VD algorithm. The process
consists of two main parts:

1. Training:
This process is done offline and normally used for obtaining a ve-
hicle classifier. A combined dataset of images labeled as vehicle or
non-vehicle from Karlsruhe Institute of Technology and Toyota Tech-
nological Institute at Chicago (KITTI) [48], BDD100K [63], and Cars
dataset [64] is created as the main input for the feature extraction
process, which relies on color and a Histogram of Oriented Gradients
(HOG). The justification behind considering color as a feature for the
training process is that virtually generated images fail to reproduce
accurate color representations when compared to real recorded scenar-
ios, a gap which may be diminished by the camera model. In the next
step, the extracted features are combined and used to train a linear
Support Vector Classifier (SVC).

2. Processing (VD):
The second part illustrates the VD processing pipeline. Starting from
an input image, a sliding window approach is implemented and set
to start approximately on the lower half of the image with different
window sizes and overlap. Cropped images are then obtained and
passed through the feature extractor, where color and gradient-based
features are obtained. Using the previously trained VD algorithm, the
overlapping tiles from each frame are then classified as ”vehicle” or
”non-vehicle.” Since several overlapping windows may be classified as
vehicles or non-vehicles, and in some cases, they may partially overlap,
a heat map to identify vehicle classifications in the same or near



7 Camera Model Applications 117

the same locations from several subsequent frames is implemented.
As a final step, bounding boxes around high-confidence detections
(extracted from the heat map) are generated and overlapped onto the
input image.

Feature Extraction:

1. Color Features

2. Gradient based Features

Training Set:

1. Vehicle

2. Non-Vehicle

Train a Classifier:

1. Linear SVC

Frame:

Video Data Stream

Search for Vehicles:

1. Sliding Window technique

Reduce False Positives:

1. Heat map technique

Object List:

1. Bounding Boxes

Feature Extraction:

1. Color Features

2. Gradient based Features

Classifier:

1. Linear SVC

Training (offline): Processing (VD):

Figure 7.7: VD training and processing pipeline represented as a block diagram.

For a meaningful comparison of the object list generated by the VD al-
gorithm when running on real, synthetic, and camera model VDS, it is
imperative to construct virtual driving scenarios that emulate real driv-
ing scenarios as accurately as possible. In Fig. 7.8, the green dashed box
roughly illustrates the process for obtaining the necessary ground truth
data and camera sensor information, like mounting position, orientation,
and resolution from the real test run scenario. The obtained information is
necessary to generate a virtual scenario that is as close as possible to the
real one. To generate the virtual scenario, CarMaker is used as a simulation
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software and, with the help of IPG Movie1, a synthetic non augmented
VDS is obtained (represented as VDS* in Fig. 7.8). The VDS* is then fed to
the camera model, which is directly integrated into the simulation software
(as the toolchain in Fig. 6.4 suggests) and, as a result, the augmented VDS
(VDS**) is obtained and fed to the same VD algorithm (Vehicle Detection
Algorithm*). Depending on the selected camera effects that are configured
for simulation, VDS** may represent an image that is augmented by one
camera effect, or a combination of them; a complete list of possible effects
to be implemented is presented in Ch. 5 under section 5.2 or 5.4.

Real Scenario

Ground 
Truth

Vehicle Detection 
Algorithm* 

Vehicle Detection 
Algorithm* 

Generated Object List

Virtual Scenario 
Generation

Generated Object List
(From virtual Image Data)

VDS

VDS*

Evaluate 
Results

Extract

Camera Model

VDS**

Object List, 
Vehicle Dynamics

VDS*

Camera Sensor 
Information

Figure 7.8: Real to virtual scenario process and simulation toolchain representation.

7.3.3 Experimental Setup

Transferring an entire real scenario into a virtual software is a highly de-
manding task that necessitates specific measurement equipment and ex-
tended planning beforehand. For the purpose of this demonstration, a test
vehicle is equipped with a dedicated measurement system to log its position
at all times and a camera, of which its mounting position, orientation, and

1IPGMovie is a visualization tool that can be used as a camera raw signal interface.
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resolution are known. One target vehicle is used, the ADAC target vehi-
cle [65], and its relative position with respect to the ego vehicle is provided
at all times. With the recorded ground truth data, the results of replicating
the real scenario into a simulation software are represented in Fig. 7.9. The
first image on the left is a visual representation of the ego vehicle’s track;
Dist_Target_VUT represents the relative distance between the test target
and the front end of the ego vehicle (current position indicated by the green
cross on the bottom of the image). The ADAC test target is represented in
the middle figure; the reason behind using an ADAC test target instead of a
real vehicle is that these measurements were done through an emergency
backing assist function test. On the right side of Fig. 7.9, the virtually gener-
ated track and a close enough representation of the ADAC test vehicle are
shown.

GPS Data + Ego Vehicle Dynamics Data

+

Virtual Test ScenarioTraffic Data (Stationary) 

Figure 7.9: Real and virtual scenario representation.

After creating the virtual test run, the toolchain presented in Fig. 7.8 is
adapted to the representation in Fig. 7.10. This means that, for the current
test run, both real and virtual scenarios are identical from vehicle dynamics
and ground truth object list point of view; from a visualization point of
view, i.e., image data, the scenarios are brought to resemble each other as
much as possible.
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Real Scenario
Vehicle Detection 

Algorithm* 

VDS

Recorded

Evaluate 
Results

Vehicle Detection 
Algorithm* 

Virtual Scenario 
Generation

VDS*
Synthetic

Camera Model

VDS**

VDS*

Object List

Object List

Vignetting
All Effects

Distortion
Blur

Recorded

Vignetting
All Effects

Distortion
Blur

Synthetic

Figure 7.10: Experimental setup for VD testing with synthetic and camera model image
data.

For the interpretation of Fig. 7.10 the color codes and notations signifies the
following:

• VDS associated with ”Recorded” is highlighted in blue, and refers to
image data from the real camera under modeling.

• VDS* associated with ”Synthetic” is highlighted in orange, and refers
to non-augmented data from the simulation software (IPG Movie in
this case).

• VDS** associated with ”Distortion”, ”Vignetting”, ”Blur”, and ”All
Effects”, respectively highlighted in gray, pink, green, and violet, refers
to augmented image data obtained from the camera model. For exam-
ple, VDS** ”All Effects” is a video data stream augmented with the
distortion, vignetting, and blur effects.

• The same concept applies to the output of the VD algorithm, i.e.,
Object List.

7.3.4 Results

Taking into account that the VD algorithm used is based on Support Vector
Machine (SVM), in the training process, a separating hyper-plane between
both classes (vehicle and non-vehicle) is determined. From the calculated
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distance to the generated hyper-plane, an input sample is classified ei-
ther as a vehicle or as a non-vehicle. Based on the calculated distance, a
classification-confidence value is obtained for all input samples that are
classified as vehicles.

The obtained classification-confidence values are then used to assess the
effects of the camera model on the VD algorithm. In the following sec-
tion, histogram representations illustrating the occurrence rate and the
classification-confidence values are represented. Keeping in mind that the
aim is to check the performance variations of the VD algorithm when tested
on recorded VDS (VDS directly obtained from the camera) and other VDSs
obtained from simulation, the object list obtained from the VD algorithm
acting on recorded VDS is considered as the new ground truth. Additionally,
in all histogram representations, positive detections that co-occurred (at the
same frame) in both object lists coming from recorded and simulation use
cases are considered for analysis.

In Fig. 7.11, classification-confidence values from Recorded and Synthetic
images are represented. Most positive vehicle detection occurrences for Syn-
thetic VDS lies below 50%, contrary to occurrences obtained from Recorded
VDS. For the current use case, this gap indicates that testing the VD algo-
rithm on data that is directly generated from simulation software, otherwise
referred to as Synthetic VDS, does not provide a meaningful/accurate no-
tion on how the VD algorithm would behave in reality. Conversely, directly
testing on simulation data indicates that the algorithm would behave far
worse than it would do on real image data.
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Figure 7.11: Histogram representation of VD object list from recorded and synthetic data.

Comparing classification-confidence values from Recorded and Distorted
images (Fig. 7.12) shows similar results to those obtained in Fig. 7.11. It
can be noticed that the distortion effect on its own is not capable of closing
the gap between simulation and real data. This behavior is rooted in the
fact that the distortion effect, in its essence, does not lead to information
loss but information displacement. Additionally, as previously illustrated
in 7.7, the VD algorithm relies on color, which is not affected by radial or
tangential distortions, in addition to HOG features that, as an ensemble, are
not highly sensitive to geometrical distortions, especially when the target
lies approximately in the middle of the image where distortions are at their
minimum.
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Figure 7.12: Histogram representation of VD object list from recorded and distorted data.

Vignetting, by definition, has a direct influence on pixel intensity values,
i.e., color features. In Fig. 7.13, better results can be noticed, where several
classification-confidence values obtained from Vignetting start to resemble
those from Recorded. The difference is still relatively big yet better, and
a part of this is due to the fact that the VD algorithm does not entirely
depend on color features, but also on HOG features. Actually, the color
feature vector is smaller than that of the HOG’s feature vector.
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Figure 7.13: Histogram representation of VD object list from recorded and vignetting data.

In the case of the blur effect, Fig. 7.14 shows a better resemblance between
both classification-confidence values. The blur model is implemented as a
kernel convolution with the synthetic image; thus, it will have an effect on
color and structural image features.
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Figure 7.14: Histogram representation of VD object list from recorded and blurred data.
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Finally, as presented in Fig. 7.15, when including all effects, i.e., distortion,
vignetting and blur, All Effects classification-confidence values presented
the best resemblance to Recorded values. It is observed that the changes
made to color and HOG features had a direct impact on the VD algorithm.
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Figure 7.15: Histogram representation of VD object list from recorded and all effects data.

This experiment demonstrated the effects of the developed camera model
on an image-based algorithm, namely VD algorithm. Though other effects,
like temporal and spatial noise, can still be used for image augmentation,
the aim here is not to obtain 100% similar classification-confidence values
from simulation and real data, but to show and prove that accuracy can
be increased when it comes to such results. Another essential aspect relies
upon the nature of the detection algorithm and its functioning principle.
In this regard, the distortion model may have yielded better results if the
assessment were based on the accuracy of generated bounding box positions
and not the classification-confidence values. Finally, it is also observed
that one cannot derive a linear relationship between the influence of the
implemented camera effects and their effect on the object list generated
from the VD algorithm.
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7.4 NN Training and Inference

7.4.1 Scope

Classification, detection, segmentation, and regression are considered the
four fundamental tasks of autonomous driving. Taking into consideration
the ability of DNN in performing these tasks, a natural cohesiveness be-
tween DNNs and autonomous driving can be seen. In general, training and
testing DNNs for supervised learning relies on a large number of labeled
datasets; this amount only increases in the context of autonomous driv-
ing, especially when the ”driver” cannot take control to provide corrective
actions and the system must be designed to a higher Automotive Safety
Integrity Level (ASIL) [66].

For autonomous driving tasks, size, and variation of labeled training
datasets are critical for performance improvement of DNNs, and several
benchmark datasets are already available [67]–[71]. However, considering
the vastly dynamic environment autonomous vehicles need to operate in
and its everlasting variations, it is practically impossible to gather real
datasets capable of capturing all real-world variabilities. One way to tackle
these challenges is by bridging the gap between real and synthetic images
for the scope of DNN training on virtually augmented images. This can be
achieved using the developed camera model and the toolchain proposed in
Ch. 6, Fig. 6.5. Using the Virtual KITTI Virtual KITTI (VKITTI) dataset [71],
the following section demonstrates the camera model’s usage in synthetic
image augmentation for the scope of training a car detection DNN, and, by
using the KITTI dataset [69], the DNN’s behavior on real camera images.

7.4.2 Method Description

For the augmentation pipeline, the previously generated lookup table for
vignetting implementation is used. Fig. 7.16 represents the main work-
flow of this approach. In Fig. 7.16, VKITTI dataset is fed into the camera
model, which performs a pixel-wise computation on the original image
for vignetting implementation. As a result, ”Augmented VKITTI” dataset
is produced with the vignetting effect implemented on each image of the
dataset.
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CameraModel.fmu* 
(Exported as a Simulator)

Model Parametrization

Optical  Distrotions

Vignetting Effect

Lens Flare - Ghost Effect

Optical Effects
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VKITTI (21,260)

Augmented VKITTI
(Vignetting)

Figure 7.16: Vignetting augmentation pipeline.

Taking into consideration that the primary purpose of the camera model is to
demonstrate the effects of augmented synthetic data on DNN’s performance,
only the ”Car” class is considered. Additionally, the process is configured to
start from a pre-trained Faster R-CNN [72] with ResNet50 [73] as a feature
extractor and weights pre-trained on ImageNet [74]. The model is trained
with an open-source implementation [75], using Adam optimizer [76] for
both the classifier and the regional proposal network with a fixed learning
rate of 10−5.

7.4.3 Experimental Setup

Fig. 7.17 represents the setup used for evaluating the effects of vignetting on
DNN training and ”Car” detection. In Fig. 7.17, two independent instances
for training the DNN on original synthetic images (non-augmented) and
images augmented by the vignetting effect are configured; both datasets
consist of 21260 images. In Fig. 7.18, the mean average precision of the
network, calculated on the validation dataset, is represented, where it can
be seen that both networks reached approximately the same precession
values.
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(ResNet5)
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Car Detection
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Figure 7.17: DNN training setup.

Figure 7.18: Mean average precision on VKITTI validation dataset.

The final step in the experiment setup is to check the trained DNN’s perfor-
mance results on real images, which is attained by performing inferencing
using the KITTI dataset for 2D object detection [69] as demonstrated in
Fig. 7.19. The same dataset is fed into the trained car detection algorithms,
and the results are recorded for further performance assessment and analy-
sis.
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Results

Results

Figure 7.19: Inferencing setup.

7.4.4 Results

To assess the performance differences between DNN trained on ideal syn-
thetic images and DNN trained on augmented synthetic images, the mean
Average Precision (mAP) during training, validation, and inferencing is
used.

Table 7.1, represents the obtained results after inferencing is applied. DNN
trained on the augmented dataset showed a 5.84% increase in precession
when tested on the real KITTI dataset. In order to understand the effect
of vignetting on the observed precision gain, it is worth pointing out that
included in the 5.84% precision increase, 970 true positive detections are
unique to the DNN trained on augmented data. Fig. 7.20 represents their
distribution over the image space.

Table 7.1: Inferencing results on KITTI dataset.

Augmentation Method Precision [%]
Value Gain

No Augmentation 83.12 -
Vignetting 88.96 +5.84
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Figure 7.20: Exclusive true positives to DNN trained on augmented images.

In Fig. 7.20, the red crosses represent the center of the bounding boxes,
whereas the blue circle (slightly less than the image height in diameter, i.e.,
355 pixels) represents a boundary where vignetting, theoretically, should
not have a significant effect on light intensity fall-off. By computing the
average intensity for the bounding boxes of detected cars outside the blue
circle, the distribution represented in Fig. 7.21 is obtained.

Figure 7.21: Average bounding box intensity distribution.

The pixel intensity range of the original image may vary between 0 and
255. In Fig. 7.21, the maximum average intensity is approximately 80, and
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the minimum is slightly below 20. The average intensity of pixels behind
the bounding boxes is a result of several factors, such as a dark paint job,
shadows, or even occlusions. For example, in Fig. 7.22, a vehicle occluded
by tree shadows is only detected by the DNN trained on the augmented
dataset.

Figure 7.22: Detected car under low illumination by the DNN trained on the augmented
dataset (right figure).

By further examining the distribution of bounding boxes with average
light intensity less than 60 (considered as a low illumination value), it
can be observed that the initial histogram diagram represented in Fig. 7.23
resembles the shape of the light’s fall-off graph represented in Ch. 5 (Fig. 5.7).
In Fig. 7.23, the missing bins in the middle of the graph can be observed
due to the fact that corresponding detections for the current representation
are excluded. Fig. 7.23 only provides an abstract representation, for this
distribution is highly dependent on the initial number of vehicles that did
not lie at the image center but toward image peripherals. To account for this
situation, in Fig. 7.24 the relative percentage of detected vehicles to the total
number of detected vehicles over the entire image width is represented.
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Figure 7.23: Histogram representation of bounding box center of mass.

Figure 7.24: Car relative detection over the entire image width.

Fig. 7.24 shows how more cars were detected in low light conditions at both
margins of the image than those detected with low light conditions around
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the center of the image. When considering the detected vehicles in better
light conditions (100 Relative Detection [%]), the graph starts to resemble
the light fall-off graph in a more intuitive way. Illustrated in Fig. 7.24, the
percentage of detected vehicles follows the trend at which the light intensity
falls off at the image edges’.
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Figure 7.25: Car relative detection (left graph) and light fall-off representaion (right graph).
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8 Conclusion and Outlook

In order to achieve the main aim of this dissertation, a physical model for
an advanced driver-assistance camera was created, a hybrid test strategy
initiated, and co-simulation frameworks with standardized interfaces envi-
sioned.

For the modeling process of an MFC, the system architecture and the cam-
era’s interface were illustrated and used as a starting point to identify rele-
vant optical and image sensor effects. Followed by model parametrization,
calibration and implementation, this work demonstrated the importance of
modularity and interchangeability in modeling and simulation since not all
results can be generalized for all cameras, even when dealing with identical
cameras with precisely the same hardware components. To sum up this
section, the modeling process used was applied to three cameras; however,
the same concept is also applicable to other perception sensors like radar or
lidar.

With the hybrid development and test strategies, the usage of the camera
model was demonstrated in different setups, where its applicability in test-
ing classical CV algorithms and NN image-based algorithms was illustrated.
The test strategy showed how the behavior of several detection functions,
namely LD and VD algorithms, differ when tested on real, synthetic (non-
augmented), and augmented (camera model output) image data. The usage
of the camera model is also shown in the case of training DNNs, where
DNNs trained on augmented images provided better results than those that
were trained on purely synthetic images. More precisely, the correlation
between the vignetting effect and performance improvement of DNN was
shown. The obtained results can be utilized as springboards for more in-
vestigations in this domain where other effects can be put to the test and
similar approaches can be applied to other perception sensors like radar or
lidar.
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Finally, considering the importance of flexible and modular co-simulation
platforms, standardized interfaces, like FMI and OSI, are integrated and
enabled for the overall system architecture. By encapsulating the camera
model and an LD algorithm inside two separate FMUs, performing various
test cases with different simulation software (hosted on Linux or Windows)
was shown to be possible. OSI, a relatively embryonic interface with promis-
ing potential, was also integrated into the camera model.

ADAS and AD function development and testing are hard to achieve with
”only” elaborate real tests, results presented in Ch. 7 demonstrated the
usage and the importance of camera sensor models. In conclusion, gen-
erating modular and interchangeable sensor models and shifting towards
simulation are some of the essential pillars for reaching fully autonomous
vehicles.

It is also important to point out the importance of defining appropriate
abstraction levels throughout the model generation process, as it was demon-
strated that one generic sensor model may not be suitable for all use
cases. This dissertation aims to lay the groundwork for simulation and
virtualization-based approaches. From the author’s perspective, these ap-
proaches are not limited to camera sensors, but can also be applied to other
sensors related to autonomous driving.
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