
Michael Herold

Communication in an Agile FOSS Project:
A Socio-Technical Case Study

Master’s Thesis

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Software Engineering and Management

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl-Ing. Dr.techn. Wolfgang Slany

Co-Superviser

Dipl-Ing. Matthias Müller, BSc

Institute for Softwaretechnology

Graz, August 2019

This document is set in Palatino, compiled with pdfLATEX2e and Biber.

The LATEX template from Karl Voit is based on KOMA script and can be
found online: https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present master‘s thesis.

Date Signature

iii

Abstract

The development of Free and Open Source Software (FOSS) involves several
challenges. Besides the required technical experience, a contributor needs to
have a profound domain expertise as well as a comprehensive knowledge
about the project’s guidelines, rules and standards. These requirements
constitute potential barriers for newcomers. To facilitate a smooth project
entry, it is necessary to identify and understand the challenges contrib-
utors are facing while placing their first contributions. This thesis offers
insights into the collaborative software development process of an agile
FOSS project, presenting the case of Catrobat. A multiple case study was
conducted to qualitatively analyze the contributions of newcomers within
the scope of the Google Summer of Code program. Potential hurdles were
identified and propositions were made by investigating multiple qualitative
and quantitative data sets collected through the newcomers’ socio-technical
interactions with the community. Based on these findings, multiple expert
interviews were conducted and triangulated with the outcomes of the case
study. The final results indicate that newcomers at Catrobat strongly de-
pend on guidance from the community because of (a) the project’s strict
requirements about software testing, (b) an insufficient awareness about
internal guidelines; and, (c) a lack of domain expertise. The results suggest
that frequent and direct communication as well as pair programming and
synchronous code reviews have a positive effect to a newcomer’s contribu-
tion. This thesis provides a set of recommendations to lower the entrance
barriers at Catrobat.

iv

Kurzfassung

Die Entwicklung von Free and Open Source Software (FOSS) bringt einige
Herausforderungen mit sich. Mitwirkende eines FOSS Projektes benötigen
neben der vorausgesetzten technischen Erfahrung auch ein tiefgreifendes
Domänenwissen sowie umfangreiche Kenntnisse von projektinternen Richt-
linien, Regeln und Standards. Diese Voraussetzungen stellen mögliche
Hürden für Neuanfänger dar. Um einen reibungslosen Projekteintritt zu
ermöglichen, ist es notwendig, die anfänglichen Probleme der Neulinge
zu erkennen und zu verstehen. Diese Arbeit gewährt Einsicht in den kol-
laborativen Softwareentwicklungsprozess eines agilen FOSS Projektes und
stellt in diesem Rahmen das Catrobat Projekt vor. Eine mehrfache Fallstudie
wurde durchgeführt um das Mitwirken von Neuanfängern im Rahmen des
Google Summer of Code Programms qualitativ zu untersuchen. Durch die
Analyse von mehreren qualitativen und quantitativen Datensätzen, gesam-
melt durch die soziotechnischen Interaktionen zwischen den Einsteigern
und der Community, wurden potentielle Hürden identifiziert und Behaup-
tungen aufgestellt. Basierend auf diesen Erkenntnissen wurden mehrere
ExpertInnen-Interviews geführt und mit den Ergebnissen der Fallstudie
trianguliert. Die daraus entstehenden Resultate weisen darauf hin, dass Ein-
steiger bei Catrobat stark von der Betreuung der Community abhängig sind,
unter anderem aufgrund (a) der strikten Projektvoraussetzungen bezüglich
Softwaretests, (b) einem unausreichenden Bewusstsein über interne Richt-
linien; und, (c) einem fehlenden Domänenwissen. Die Ergebnisse deuten
an, dass synchrone und direkte Kommunikation, Pair-Programming und
synchrone Code-Reviews einen positiven Effekt für Neuanfänger haben.
Diese Arbeit liefert eine Reihe von Empfehlungen um die Einstiegsbarrieren
bei Catrobat zu reduzieren.

v

Contents

Abstract iv

1. Introduction 1
1.1. Outline . 2

2. Free and Open Source Software (FOSS) 3
2.1. Roles . 5

2.2. Community structure . 7

2.3. Development practices . 7

2.4. Communication . 8

2.5. Motivation . 9

2.6. Community engagements . 10

2.6.1. Google Summer of Code 11

2.6.2. Google Code-in . 12

2.7. Entrance barriers . 12

2.8. Demographics . 13

3. Agile software development 15
3.1. Extreme Programming (XP) . 16

3.1.1. Variables and values . 16

3.1.2. Activities and practices 17

3.2. Kanban . 19

3.2.1. Practices . 19

4. Catrobat: an agile FOSS project 22
4.1. Motivation and educational aspects 24

4.2. Community structure . 25

4.2.1. Roles . 25

4.3. Contributors and Demographics 27

vi

Contents

4.4. Development practices . 29

4.4.1. Issue tracking . 30

4.4.2. The Planning Game . 30

4.4.3. Code repository . 31

4.4.4. Code review . 31

4.4.5. Continuous integration 32

4.4.6. Test-driven development (TDD) 32

4.4.7. Pair programming . 33

4.5. Documentation . 34

4.6. Communication . 35

5. Research design 37

6. Case studies 41
6.1. Units of analysis . 41

6.2. Data collection . 42

6.3. Case A – technical experience meets infrequent asynchronous
communication . 44

6.3.1. First contact . 45

6.3.2. Communication . 45

6.3.3. Contribution . 47

6.3.4. Summary . 51

6.4. Case B – moderate technical experience meets frequent asyn-
chronous communication . 52

6.4.1. First contact . 52

6.4.2. Communication . 53

6.4.3. Contribution . 54

6.4.4. Summary . 58

6.5. Case C – low technical experience meets intense synchronous
communication . 58

6.5.1. First contact . 59

6.5.2. Communication . 60

6.5.3. Contribution . 61

6.5.4. Summary . 66

7. Case study outcomes and propositions 67
7.1. Find a task to start with . 67

vii

Contents

7.2. Guidance from the community 68

7.3. Communication . 69

7.4. Community bonding . 70

7.5. Technical hurdles . 70

7.6. Agile software development . 71

8. Interviews 72
8.1. Interview outcomes . 72

8.1.1. Communication . 73

8.1.2. Project guidelines . 74

8.1.3. Awareness . 75

8.1.4. Code reviews . 76

8.1.5. Domain expertise . 77

8.1.6. Guidance from the community 78

8.1.7. Software architecture . 79

8.1.8. Interpersonal communication 79

9. Findings and recommendations 81
9.1. Findings . 81

9.2. Recommendations . 87

9.2.1. Find a task to start with 87

9.2.2. Pull request checklists 88

9.2.3. Code review code of conduct 90

9.2.4. Natural mentoring culture 91

10.Limitations 93
10.1. Threats to validity . 93

10.2. The third generation of FOSS 95

11.Conclusion and future work 96
11.1. Future work . 96

Bibliography 97

A. List of abbreviations 105

B. Change request on GitHub 107

viii

Contents

C. Kanban board 108

D. Jira workflow 109

E. Training ticket 110

F. Interview guideline 111

G. Media richness theory 115

ix

List of Figures

2.1. Roles in FOSS communities (Ye and Kishida, 2003) 6

4.1. Pocket Code on Android (left) and iOS (right). 23

4.2. Team structure of Catrobat as of June 2019 (based on Müller,
Schindler, and Slany, 2019) . 26

4.3. Roles in the Catrobat community 28

4.4. Contributors of the Catroid repository grouped by country
(rounded to two decimals) . 29

4.5. Test results and required review for a pull request on GitHub 33

4.6. Conversations in Slack grouped by channel (as of 15 June 2019) 36

5.1. The research design applied in this thesis 40

6.1. Structure of the evidentiary case study database 44

6.2. Communication channels used in Case A (rounded to two
decimals) . 46

6.3. Communication pattern during development in Case A . . . 48

6.4. An example of pseudo code used in a change request message 50

6.5. Communication channels used in Case B (rounded to two
decimals) . 54

6.6. Communication pattern during development in Case B 55

6.7. Communication channels used in Case C (rounded to two
decimals) . 61

6.8. Communication pattern during development in Case C 62

9.1. An example for a pull request template on GitHub 89

10.1. The three generation view of the FOSS economy types (Ya-
makami, 2011) . 95

x

List of Figures

B.1. An example of a change request on GitHub 107

C.1. An example of a kanban board 108

D.1. The Jira workflow at Catrobat 109

E.1. An example of a training ticket in Jira 110

G.1. The richness of different communication media (Daft and
Lengel, 1986) . 115

xi

1. Introduction

The development of Free and Open Source Software (FOSS) involves several
challenges different to those perceived in conventional software develop-
ment teams (Crowston, Li, et al., 2007). While FOSS is getting more and more
popular throughout the whole industry (GitHub, 2019; Ebert, 2008), a lot of
research has been conducted about the collaborative software development
practices of the loosely coupled contributors (Scacchi, 2010; Crowston, Li,
et al., 2007). Geographical separation, cultural differences and a decentral-
ized team structure bring up new challenges for the collective development
process (Steinmacher, Conte, Gerosa, et al., 2015; Herbsleb and Grinter,
1999). Additionally, these challenges are reinforced by the application of
agile methods due to its reliance on frequent and open communication
(Korkala and Abrahamsson, 2007). Still it is proven that FOSS usually is of
high quality considering code quality and other technical aspects (Krogh,
Haefliger, et al., 2012). Besides personal interest and motivation, contrib-
utors need to have (a) technical experience, (b) domain expertise; and, (c)
knowledge about organizational rules in order to find their way into the
project (Canfora et al., 2012; Trainer, Chaihirunkarn, and Herbsleb, 2013).
This can be a challenging task which relies on a lot of communication and
guidance. The socio-technical congruence in software development projects
has been researched a lot since the publication of Conway’s law (Herbsleb
and Grinter, 1999; Scacchi, 2010; Syeed and Hammouda, 2013). Conway, 1968

argues that a software’s architecture reflects the organizational structure of
its development team. Nevertheless, this field has rarely been studied in the
context of FOSS development (Bolici, Howison, and Crowston, 2009). Rather
than trying to give evidence for a potential congruence of the communi-
cation needs induced by a project’s technical components and the actual
communication performed within a FOSS community, this thesis focuses on
the rationales behind the contributors’ communication patterns. To better
understand the complex context of this socio-technological environment,

1

1. Introduction

the case of Catrobat is presented offering an insight into the collaborative
software development process of an agile FOSS project. In this study, poten-
tial hurdles showing up during a newcomer’s contribution are identified
and it is investigated how they can be overcome. Since onboarding is a chal-
lenging process for both the newcomers and the community, it is important
to streamline this process and to keep the project’s entry barriers as low as
possible; otherwise contributors might find it too time-consuming to join
(Krogh, Spaeth, and Lakhani, 2003). However, the long-term success of FOSS
projects strongly relies on the constant acquisition of newcomers who even-
tually transform to seniors (Jensen, King, and Kuechler, 2011; Steinmacher,
Wiese, and Gerosa, 2012). Therefore it is crucial to understand the challenges
contributors are facing: Why, when and how are newcomers interacting with the
community? What are they communicating about? What are their main hurdles
while placing their first contributions? How can these hurdles be overcome? This
thesis sheds light into these questions investigating the case of Catrobat.

1.1. Outline

The remainder of this thesis is organized as follows: Chapter 2 elucidates the
term FOSS, addresses its major influences, outlines how FOSS communities
are structured and how development and communication practices are
handled. An introduction to Extreme Programming and Kanban, two agile
development practices employed at Catrobat, is given in Chapter 3. The
Catrobat project, which constitutes the research subject of this thesis, is
presented in Chapter 4. The research questions as well as the combined
research design are discussed in Chapter 5. In the subsequent chapters, the
contributions of three participants of the Google Summer of Code program
are thoroughly analyzed as part of the case study (Chapter 6 and 7). To build
up a chain of evidence, three semi-conducted expert interviews are evaluated
combining diverse perspectives from different areas (Chapter 8). In Chapter
9, the outcomes of the case studies are triangulated with the findings
of the interviews and discussed with prevalent literature. Furthermore,
recommendations are given to lower the entry barriers for newcomers at
Catrobat. Limitations and threats to validity are listed in Chapter 10. To
conclude, the outcomes of this thesis are summarized in Chapter 11.

2

2. Free and Open Source Software
(FOSS)

The term “Free and Open Source Software”, hereafter referred to as FOSS,
is a hybrid phrase influenced by two major movements: the free software and
the open source software movement. In 1985 Richard M. Stallman founded the
Free Software Foundation (FSF)1, a nonprofit organization to support the
notion of free software. Stallman refers to free software (FS) as a product that
respects the users’ freedom by allowing them to “run, copy, distribute, study,
change and improve software” freely at any time (Stallman, 2002). In order to
make use of the freedom to study, change and improve software, a user
needs to have access to a software’s source code. Different to proprietary or
non-free software, the free software label propagates that users must have
the freedom to run a program on any kind of computer system, for any
purpose without being required to ask or pay for permission. Thus, “free”
is referred to the users’ liberty and not the product’s price.

More than a decade later, in 1998 the Open Source Initiative (OSI)2 was
founded by Eric Raymond and Bruce Perens, two representatives of the
aforementioned open source movement. One of the OSI’s first tasks was
to assess licenses and state compliance criteria for the distribution terms
of open source software (OSS). To continue, the OSI is a philosophy and
development model to foster the collaborative development of OSS. In his
book, Raymond, 1999 refers to this collective method as the bazaar, where
the development process is done by a large number of equal developers.
Development is coordinated over the internet and exposed to the public. The

1https://www.fsf.org, visited on 30 May 2019

2https://opensource.org, visited on 30 May 2019

3

2. Free and Open Source Software (FOSS)

author, who was one of the first GNU3 contributors, credits Linus Torvalds4

as the inventor of this process. In a case study of the Fetchmail5 project,
the writer lists the advantages of the bazaar model and claims that it is
more successful than the traditional model of developing software in small,
hierarchical teams – referred to as the cathedral model. Raymond states that
“given enough eyeballs, all bugs are shallow” and refers to this as the Linus’s Law
(Raymond, 1999), underpinning the necessity to disclose source code to as
many developers as possible.

Although the four freedoms of free software and the ten criteria of open
source advocate similar principles in terms of licenses, both movements
underlie different values. While the former can be interpreted as a social
philosophy, the later has a more practical goal and focuses on a collaborative
development methodology. To combine both values, the hybrid terms “Free
and Open Source Software” (FOSS) and “Free/Libre Open Source Software”
(FLOSS) were introduced to emphasize that free relates to “free speech, not
free beer” (Stallman, 2002). In the remainder of this thesis, the term FOSS
is being used without considering the controversy of the aforementioned
movements and its underlying values.

Nowadays FOSS is widely used, both in industry and for private use. Ac-
cording to GitHub’s yearly report for 2018, there are more than 31 million
developers and more than 96 million repositories on Github6, one of the
world’s largest FOSS development platform (GitHub, 2019). To name a
few popular examples, Microsoft’s Visual Studio Code7, Facebook’s React-
Native8 and Tensorflow9 are the top three FOSS projects having the largest
number of contributors as shown in the report. Among the most success-
ful and best-known FOSS products all-time are the Apache web server10,

3GNU is an operating system that is free software. https://www.gnu.org, visited on 30

May 2019

4Linus Torvalds is the creator and leader of the Linux kernel. https://www.kernel.org,
visited on 30 May 2019

5http://www.fetchmail.info, visited on 30 May 2019

6https://github.com, visited on 31 May 2019

7https://github.com/Microsoft/vscode, visited on 31 May 2019

8https://github.com/facebook/react-native, visited on 31 May 2019

9https://github.com/tensorflow/tensorflow, visited on 31 May 2019

10https://httpd.apache.org, visited on 31 May 2019

4

2. Free and Open Source Software (FOSS)

the Mozilla browser11, the GNU C compiler12 and the MySQL database
management system13 (Fitzgerald, 2006).

2.1. Roles

Different to conventional closed source software projects, Ye and Kishida,
2003 show that in FOSS projects there is a role transformation allowing
contributors to transform to different roles depending on the phase of
contribution. Figure 2.1 illustrates the different roles, as originally proposed
by Ye and Kishida, 2003. A community is built around the Project Leader
who initiated the project and is responsible for communicating the project’s
vision and mission. The development process is guided and coordinated
by Core Members who have been in the project for a long time and made
a multitude of contributions to the code base. While their main task is
to support other contributors and serve as advisors for key decisions, the
majority of the development is done by Active Developers. Similarly, Peripheral
Developers are making selective contributions to new features on an irregular
basis. Having no clear overall picture, Bug Fixers are primarily focussing
on parts of the code base necessary to implement bug fixes reported by
either themselves or other community members, like Bug Reporters. These
reporters do not know the source code and exclusively serve as testers to
submit potential bugs. In contrast to members who are directly or indirectly
involved in the development process, Readers profit from the source code by
trying to learn from the ideas and patterns of the implementation which is
usually of high quality. The final software product is then used by so-called
Passive Users, who use the software similar to traditional closed source
software.

Identifying all users as potential developers, the role of a user can transform
from a passive role to a more active role, moving towards the core of the
model as illustrated in Figure 2.1. According to the authors, the existence
and proportion of different roles varies across different FOSS communities.

11https://developer.mozilla.org, visited on 31 May 2019

12https://gcc.gnu.org, visited on 31 May 2019

13https://www.mysql.com, visited on 31 May 2019

5

2. Free and Open Source Software (FOSS)

Passive Users

Readers

Bug Reporters

Bug Fixers

Peripheral Developers

Active Developers

Core Members

Project Leader

Figure 2.1.: Roles in FOSS communities (Ye and Kishida, 2003)

The number of participants increases from inner to outer layers resulting in
the largest group of people carrying out the role of Passive Users. Contribu-
tors at the core of the model have more influence to key decisions and the
development of the project than members at outer layers (Ye and Kishida,
2003).

Underpinning the transformation towards the core, Hippel and Krogh, 2003,
Scacchi, 2002, and Scacchi, 2005 state that FOSS is regularly developed by
the same people who use it. Fitzgerald, 2006 found out that traditional FOSS
projects tend to be horizontal infrastructural systems – for example operating
systems, web server, database management systems and compilers – where
developers were unexceptionally users of the software in development, thus
involving both a profound domain knowledge as well as a strong technical
expertise.

6

2. Free and Open Source Software (FOSS)

2.2. Community structure

Centralization refers to the number of people who contribute to the code
base. In a highly centralized project, the majority of code is written by a few
contributors, whereas decentralization would result in an equal distribution
of development. Additionally, in hierarchical projects a few members would
have more authority over the code than others (Crowston and Howison,
2006).

In a case study of the Apache Foundation, Crowston and Howison, 2006

suggest that non-hierarchical and decentralized structures are favored com-
pared to hierarchical and centralized structures “because they are more robust
to personality disputes and the withdrawal of individuals at the centre or top of
the hierarchy”. On the other hand, research has revealed that a multitude of
contributions are made by only a small amount of people (Ye and Kishida,
2003; David, Waterman, and Arora, 2003). In another case study, Mockus,
Fielding, and Herbsleb, 2002 found out that 80% of the new functionality is
created by only 10-15 developers.

To enable a successful collaboration of all persons involved in the community,
it is important that all contributors are communicating with each other. In
their research, Crowston and Shamshurin, 2017 argue that community
interactions are related to a project’s success. They suggest that successful
projects have a larger amount of communication which is almost evenly
divided between the core (Project Leader, Core Members and Active Developers)
and peripheral users (all other roles except Readers and Passive Users).

2.3. Development practices

Typically, source code is stored at a public software repository using a
Concurrent Versions System (CVS). According to Fogel and Bar, 1999, a CVS
has two main functions: (a) to keep record; and, (b) to enable collaboration.

Record keeping involves the maintenance of a commit history to allow the
restoring of source code to a previous version at any time. To continue,

7

2. Free and Open Source Software (FOSS)

source code can be modified by multiple developers following the copy-
modify-merge development model as suggest by Fogel and Bar, 1999. A
simplified version of this process looks as follows:

1. A developer requests a local working copy from the CVS.
2. The local working copy can be freely modified.
3. When the local changes are complete, the working copy can be com-

mitted to the CVS along with a message indicating what has changed.

A survey of eleven successful FOSS projects (Halloran and Scherlis, 2002)
revealed that in relation to CVS, there is a distinction between two different
kinds of developers: developers with commit privileges and developers
without commit privileges. Commits by developers without privileges need
to be reviewed by developers with commit privileges. Furthermore, all
projects under study have automated nightly builds ensuring that the source
code still compiles after changes have been committed. To continue, most
projects have regression tests ensuring that the changes do not affect the
existing behavior. The central point of development constitutes a public
issue tracking tool where users can post bugs and feature requests. While
duplicate bug reports are common, bug reports typically need to be accepted
by core members before they become visible to others. Having a list of
issues publicly available, a contributor then starts with the development of
a preferred ticket. When the work is done, the changes are submitted to the
CVS.

2.4. Communication

To increase awareness of the geographically distributed developers, Hal-
loran and Scherlis, 2002 found out that tool mediation plays a critical role
during development. While communication is solely done by the means of
computer supported tools, an organization is able to build an organizational
memory embodying a large extent of knowledge which would not be pos-
sible for traditional synchronous face-to-face conversations. Jensen, King,
and Kuechler, 2011 discovered that mailing lists constitute the heart of all
communications and discussions. In mailing lists messages are broadcasted

8

2. Free and Open Source Software (FOSS)

to all subscribers making the development work transparent to increase the
team awareness (Yamauchi et al., 2000). Messages are being archived and
can be accessed at any time. Krogh, Spaeth, and Lakhani, 2003, Jensen, King,
and Kuechler, 2011 and Ducheneaut, 2005 show that mailing lists offer a
frequent starting point for newcomers who may spend weeks and months
silently observing the community.

In his book, Fogel, 2009 recommends the use of different communication
channels. Mailing lists and forums serve as archivable platform for asyn-
chronous technical discussions and announcements. Real-time chat rooms,
like Internet Relay Chat (IRC)14 are employed to ask questions and get
instant feedback from the community. This is in accordance with a study
of the GNOME15 project (Poo-Caamaño et al., 2017) which presents that
their main communication channels are mailing lists and IRC. Additionally,
GNOME’s community is interacting using the issue tracking system, a wiki
platform, developers’ blogs and face-to-face meetings at conferences.

2.5. Motivation

While some FOSS projects are supported by commercial companies provid-
ing paid contributors, most organizations are depending on the contribu-
tions of volunteers (David, Waterman, and Arora, 2003; Dinh-Trong and
Bieman, 2004). Therefore it is important to understand the motivation that
drives these volunteers to contribute during their spare time.

According to Ryan and Deci, 2000, motivation moves people to do some-
thing. In their study it is argued that people have both different amounts
and different kinds of motivation. Motivation is divided into an intrinsic
and an extrinsic form. The former involves that an activity is done solely
because of the satisfaction to do so rather than profiting from some supple-
mentary consequences. On the other hand, extrinsic motivation leads to the
performance of tasks in order to obtain some additional benefits. Thus, an

14Internet Relay Chat (IRC) is a text-based, instant messaging system
15A free and open-source desktop environment for Unix-like operating systems

9

2. Free and Open Source Software (FOSS)

activity is not done because of enjoyment but to benefit from a separable
outcome, like receiving an external reward (Ryan and Deci, 2000).

A survey conducted by Lakhani and Wolf, 2003 shows that motivation of
FOSS contributors is either

• enjoyment-related intrinsic because development is experienced as a
pleasing and creative exercise,

• community-related intrinsic because it is perceived to have obligations
with the community; or,

• extrinsic because contributors are getting paid for their contribution.

To continue, Ye and Kishida, 2003 demonstrate that volunteers who are
simultaneously developing and using the software (see Section 2.1) are
frequently getting involved due to the need for additional functionality. It is
argued that one of the major driving forces that motivate contributors in
FOSS projects is learning. By contributing to open source, developers learn
from high-quality source code as well as from sharing knowledge with other
developers. This complies with the findings of Yamauchi et al., 2000 who
investigated the mailing list of the FreeBSD Newconfig project16 and found
out that questions were answered almost 2.7 times more often than new
questions were placed, thus providing the community with a lot of valuable
feedback and additional information.

2.6. Community engagements

As suggested by Jensen, King, and Kuechler, 2011 and Steinmacher, Wiese,
and Gerosa, 2012, the success of FOSS projects strongly relies on a constant
influx of newcomers. In order to engage a large number of people to
contribute to existing FOSS communities, various community and coding
engagement events are organized by multiple associations. Among the
largest events are the Rails Girls Sommer of Code17 where women receive
a three-month scholarship to work on FOSS projects, the Google Summer

16http://www.jp.freebsd.org/newconfig/project.html, visited on 30 May 2019

17https://railsgirlssummerofcode.org, visited on 23 May 2019

10

2. Free and Open Source Software (FOSS)

of Code (GSoC)18 and the Google Code-in19 program. These programs
typically offer a sponsorship to students to promote contributions to FOSS
projects during the summer. Students get assigned to a mentor who guides
them through their first steps into the community, the development process
and the upcoming tasks.

2.6.1. Google Summer of Code

The GSoC program is the largest community engagement event and was ini-
tiated by Google in the year 2005. Since then this annual program increased
strongly, having over 14,000 students from 118 countries accepted in the year
2018, as mentioned on their website20. Upon many other goals, the program
wants to inspire young students to take part in the open source development
and thus help FOSS communities to find and retain newcomers. As stated
on their website, the main goals of the programs are:

• “Get more open source code written and released for the benefit of
all.”

• “Inspire young developers to begin participating in open source devel-
opment.”

• “Help open source projects identify and bring in new developers.”
• “Provide students the opportunity to do work related to their academic

pursuits during the summer: flip bits, not burgers.”
• “Give students more exposure to real-world software development

(for example, distributed development and version control, software
licensing issues, and mailing list etiquette).”

Typically the three-month program lasts from the end of May to the end
of August. Students from accredited universities can submit up to three
proposals to up to 217 participating FOSS organizations (as of 2018). Once
accepted by an organization, the program consists of a community bonding
phase which serves as a starting point to get to know the people behind a
community. Thereupon the actual development starts with the coding period.

18https://summerofcode.withgoogle.com, visited on 23 May 2019

19https://codein.withgoogle.com, visited on 23 May 2019

20https://google.github.io/gsocguides/student/index, visited on 23 May 2019

11

2. Free and Open Source Software (FOSS)

During all phases the student is paired with one or several mentors who
serve as a central point for guidance and who introduce the student to
domain- and project-related areas (Trainer, Chaihirunkarn, and Herbsleb,
2013).

This offers a great opportunity for organizations to engage newcomers to
become long-term contributors. While a study by Trainer, Chaihirunkarn,
Kalyanasundaram, et al., 2014 found out that around 18% of the GSoC
students are becoming mentors in subsequent years, Silva et al., 2017 argue
that around 64% of the students do not contribute longer than one month
after the program has finished.

2.6.2. Google Code-in

Founded by Google in 2010, the main purpose of this annual program is
to engage pre-university students with the age of 13-17 to become part of
an open source community. According to their archive21, 27 FOSS organiza-
tions participated in the year 2018 enabling the completion of 15,323 tasks.
During this program each organization provides a large list of short tasks
which should take no longer than 5 hours to complete. Similar to GSoC,
organizations provide mentors who provide the participants with feedback
and guidance and evaluate their work. Depending on their evaluation, par-
ticipants can win multiple prizes provided by Google. Organizations, on the
other hand, have the opportunity to introduce the next-generation students
to their FOSS projects.

2.7. Entrance barriers

First-time contributors are frequently imposed to various barriers that hin-
der them from contributing. For some newcomers this can even lead to the
abandonment of open source development as a whole (Steinmacher, Conte,
Gerosa, et al., 2015). In order to counteract these barriers it is important to

21https://codein.withgoogle.com/archive/, visited on 23 May 2019

12

2. Free and Open Source Software (FOSS)

understand what hindrances are experienced while placing a first contribu-
tion. In their study, Steinmacher, Silva, et al., 2015 classified these barriers
into five categories:

1. social interaction
2. newcomers’ previous knowledge
3. finding a way to start
4. documentation
5. technical hurdles

The first category represents the largest, appearing in 60% of all cases. As
explained in their study, problems within this category mainly arise because
of (a) a lack of social interaction with project members, (b) receiving an improper
answer; and, (c) not receiving a (timely) answer from the community.

In order to allow newcomers to readily start contributing and to enable a
constant acquisition of new community members, it is important to counter-
act these entrance barriers. This is a necessary step in order to ensure the
long-term success of a FOSS project (Jensen, King, and Kuechler, 2011).

2.8. Demographics

A survey of 1,588 FOSS developers conducted by researchers of the Stan-
ford University illustrate that the majority of FOSS developers are living in
Western Europe (52.7%), North America (27.1%), Russia and Eastern Europe
(7.6%) (David, Waterman, and Arora, 2003). Their findings comply with
Jensen, King, and Kuechler, 2011 who revealed that almost all FOSS devel-
opers are male (98.4%), leaving the female part to a minority comprising
only 1.6%. While half of the contributors are between 23 and 33 years old,
the age ranges from 11 to 69 (David, Waterman, and Arora, 2003).

Even though most projects understood the importance of diversity within
their communities (Poo-Caamaño et al., 2017), Nafus, Leach, and Krieger,
2011 conducted a survey on gender among FOSS developers and found
out that “half of the woman observed or experienced discriminative behaviour
against women, but only about one out of ten men had the same perception.”. They

13

2. Free and Open Source Software (FOSS)

argue that discriminative behavior is often not perceived as such by men,
mostly expressed in the sense of “jokes”. To foster diversity, many FOSS
projects nowadays focus on attracting and retaining women (Jensen, King,
and Kuechler, 2011).

14

3. Agile software development

In the context of software engineering, the term agile became widespread
when Beck, Beedle, et al., 2001 met to discuss their similar beliefs and
attitudes about software craftsmanship. In the “Manifesto for Agile Software
Development” they expressed their common values and beliefs in writing.
Following four basic values, agile software development is based on the use
of light but effective project rules as well as human- and communication-
oriented rules (Cockburn, 2001), as listed by Beck, Beedle, et al., 2001:

1. Individuals and interactions over processes and tools
2. Working software over comprehensive documentation
3. Customer collaboration over contract negotiation
4. Responding to change over following a plan

Based on these ideals, the manifesto states twelve principles which put the
human in the centre as the most important ingredient for success. Martin,
2006 states that principles and rules are important, but “it’s the people who
make them work”. The sixth principle which is especially important when
it comes to team communication underpins the necessity of direct, face-
to-face conversations as “the most efficient and effective method of conveying
information to and within a development team” (Beck, Beedle, et al., 2001).
Additionally, agile software development embraces change as emphasized
in the second principle which advocates to “welcome changing requirements,
even late in development”. Thus, the term agile refers to the flexibility and
the ability to constantly react to changing environments to gain a decisive
competitive advantage. Pursuing these values and principles, the literature
lists multiple successful agile software development methodologies, includ-
ing Extreme Programming (XP), Scrum, Lean Software Development (LD),
Feature-Driven Development (FDD), Adaptive Software Development (ASD)

15

3. Agile software development

and Crystal (Chow and Cao, 2008). In the remainder of this section, two
important approaches will be discussed.

3.1. Extreme Programming (XP)

Extreme Programming (XP) as introduced by Beck and Gamma, 2000 is a
collection of practices designed to develop quality software in teams and on
time. XP focuses on team work, early and continuous feedback, progressive
planning approaches, flexible scheduling depending on business changes
and on an evolutionary design process. As proposed by Beck and Gamma,
2000, XP reduces project risk, is open to changes, increases productivity and,
among other things, makes fun. On the other hand, XP counteracts prob-
lems related to communication, unclear requirements and rapidly changing
environments. This is done with the help of various activities, practices and
variables, as described in the subsequent paragraphs.

3.1.1. Variables and values

In XP there are two basic groups of people: the customer and the devel-
opment team. According to the authors, it is most important that these
groups have a close cooperation and efficient communication during all
phases of development (Beck and Gamma, 2000). To continue, XP embodies
four project variables: (1) cost, (2) time, (3) quality; and, (4) scope. At the
beginning of a project, the customer has to pick the value of any three
of these variables which constitute the most important ones according to
the customer’s perspective. The developers then assign the value of the
remaining fourth variable which is a flexible variable and can be adjusted
during various releases. In order to accomplish this, Beck and Gamma, 2000

emphasize that XP focuses on four important values:

• Communication. In many software projects, bad and infrequent com-
munication is the main cause of problems. Thus, XP proposes an
efficient, frequent communication within the development team as

16

3. Agile software development

well as between the customer and the developers.

• Simplicity. XP emphasizes the importance to develop simple today
and pay attention to changes whenever the situation requires it.

• Feedback. The customer needs to provide a constant feedback of the
current state of the project to foster continuous improvement and
learning.

• Courage. It is essential that the team is motivated, open to learn new
things, open for critics and always tries to give its best.

3.1.2. Activities and practices

One of the basic activities in an XP project is listening. By listening to the
customer, the developers gain domain knowledge and business expertise
within the customer’s business domain. This is an essential element of
this methodology since it enables the developers to better understand the
customer’s requirements. Besides other important activities like coding,
testing and designing, XP is based on 12 principles. In the subsequent
paragraphs the most important principles are listed as explained by Beck
and Gamma, 2000:

The Planning Game. Business and technical experts regularly meet to
estimate new features according to their business value and according to
their technical effort and dependencies. As a result, the scope of the next
release is provided by prioritizing features according to their costs and
benefits.

Small releases. During all phases of development, XP offers two strategies:
(a) frequent iterations of small releases; and, (b) focus on the most important
functionalities first. In this way both risk and costs can be reduced since
changing requirements cost less money in early stages of the development
process.

Collective ownership. The code base is not split into several parts each
maintained by individual programmers. Instead, the whole developer team

17

3. Agile software development

is responsible for the whole code base allowing all parts to be changed by
everyone. In order to enable this, every engineer needs to be familiar with all
parts of the system. Consequently, this practice is ensuring that knowledge
is not getting lost when core developers are leaving. This problem is also
known as the truck factor, reflecting “the number of people on your team who
have to be hit with a truck before the project is in serious trouble” (Bowler, 2019).

Pair programming. This practice involves two developers working collab-
oratively on one machine. One person (the driver) has control over the
computer and writes code while the other is observing (the observer or nav-
igator). After a certain amount of time, the roles are periodically switched
(Williams et al., 2000). Pair programming provides an opportunity to ef-
fectively transfer knowledge within a team and to foster team building
(Cockburn and Williams, 2001). Thus, this practice is counteracting the
aforementioned truck factor problem. Williams et al., 2000 found out that
through pair programming software can be produced with higher quality,
among other things because coding standards are followed more accurately
and design quality is improved.

Testing. To save time for potential debugging and to gain confidence in
code changes, tests are written to guarantee that changes do not break
the system. This is an essential part to foster collective code ownership
and to enable continuous refactoring. XP also allows customers to write
functionality tests in the sense of stories. As a result of testing, the software
becomes more reliable and trust-worthy by both the customer and the
developers. From a developers’ point of view, Test-Driven Development
(TDD) plays a fundamental role. TDD involves the writing of unit tests
prior to the implementation of the actual functionality (Martin, 2006). At the
beginning tests fail because of the functionality under test does not exist.
Thereupon, the missing functionality is implemented until the previously
failed test passes. At this point, the developer begins to refactor code in
order to increase readability and improve design. When the tests still pass,
the developer is confident that the refactoring did not break the system. In
this way code is designed to be testable and modularity is increased because
code is written in a fashion which tends to be much less coupled (Martin,
2006; Martin, 2008).

In addition to these practices, XP uses a metaphor for every project, focuses

18

3. Agile software development

on simple design decisions, embraces continuous refactoring and requires the
compliance to a predefined coding standard. Finally, importance is attached
to the presence of an on-site customer as well as to a 40 hour week.

3.2. Kanban

kanban is a compound Japanese term consisting of the words kan, meaning
“signal”, and ban which translates to “card” (Epping, 2011; Anderson and
Carmichael, 2016). The term was first introduced by Taiichi Ohno at the
Toyota Motor Company (Sugimori et al., 1977). In this context, Kanban is
considered as a production control system for just-in-time manufacturing
(JIT) designed for making the full use of the employees’ capabilities. Ander-
son and Carmichael, 2016 summarize Kanban as “a method that shows us how
our work works”. A shared understanding of work is established in order to
facilitate continuous improvement and to become more predictable. Kan-
ban, as a method for managing and improving knowledge-based services,
first occurred in the context of software engineering in the year 2004 when
Microsoft employed this method for the first time (Epping, 2011). Since then
Kanban has been successfully employed in a large number of agile software
projects.

3.2.1. Practices

According to Anderson and Carmichael, 2016, Kanban is based on six
general practices which all involve the transparency of work and rules,
continuous improvement as well as an ongoing learning process. In this
section these practices are briefly introduced.

Visualize. To understand the current state of a system, the work and the
process it goes through, also known as workflow, needs to be visualized
on a Kanban board. In this way, information about ongoing work as well
as information about potential bottlenecks and blockades are accessible
to the whole team. The design of such a board is not limited, yet it is
commonly visualized as a two-dimensional grid representing every step

19

3. Agile software development

of the workflow process as a column. Work items correspond to cards in
the grid whereas the items’ respective column represents the current work
progress. An example of a digital depiction of a Kanban board can be found
in Appendix C. Furthermore, it is essential that work is limited for every
workflow step, as mentioned below.

Limit work in progress. Columns in the aforementioned board are limited
to a certain amount of items, thus limiting the overall work in progress
(WIP). To facilitate this, tickets are “pulled” from one column to another
rather than “pushed” when the work is done. According to Anderson
and Carmichael, 2016, too much partially completed work is wasteful as it
increases the lead time since it can not be used in releases yet. To enable WIP
limits, tasks need to be prioritized. As a consequence, lead time decreases
and predictability increases (Epping, 2011; Ahmad, Markkula, and Oivo,
2013; Anderson and Carmichael, 2016).

Manage flow. Processes should be optimized in such a way that work can
flow as fast as possible through all stages of the system. In order to maximize
this flow, it is important to measure and quantify the flow’s value. This
is frequently done with the help of the cost of delay. This figure represents
a delivery’s lost value when the implementation of certain work items is
delayed or postponed to a subsequent release (Anderson and Carmichael,
2016). Work items need to be managed in order to facilitate a constant and
maximized flow.

Make policies explicit. To enable a continuous improvement, it is essen-
tial that the team understands all processes and its underlying rules and
policies. Kanban is trying to make policies transparent by allowing the
team to jointly decide on their rules, for example to define a policy stating
which criteria must be met in order to pull work items to their next step
(Epping, 2011). As a result, team communication is fostered to increase
awareness and understanding. Additionally, transparent policies enable a
technical discussion to question or update certain policies, hence facilitating
continuous improvement (Anderson and Carmichael, 2016).

Implement feedback loops. Feedback loops are kept short to quickly adapt
processes and to foster constant learning (Ahmad, Markkula, and Oivo,

20

3. Agile software development

2013). Feedback, both on an intra-team as well as on a project level, is pro-
vided at regular meetings and periodical reviews (Anderson and Carmichael,
2016).

Improve collaboratively, evolve experimentally. Kanban fosters change.
Different to other approaches where the desired outcome of change pro-
cesses is well defined, Kanban does not offer fixed endpoints since “per-
fection in an ever-changing fitness landscape is unattainable” (Anderson and
Carmichael, 2016). Consequently, Kanban emphasizes the necessity to con-
tinuously implement new approaches and to constantly reverse changes
which are considered to be ineffective.

By following these practices, Ahmad, Markkula, and Oivo, 2013 found out
that projects benefit, among other things, from improved communication,
improved software quality and increased productivity.

21

4. Catrobat: an agile FOSS project

Catrobat1 is a non-profit FOSS project initiated by Wolfgang Slany, a profes-
sor at the Institute of Software Technology at Graz University of Technol-
ogy. Founded in 2010, the main goal is to develop a visual programming
language for mobile devices. Inspired by Scratch2, a further visual program-
ming language developed by the Lifelong-Kindergarten-Group at the MIT
Media Lab, Catrobat enables children and teenagers to create and execute
programs in a visual “LEGO-style” solely using their smartphones (Slany,
2012). By doing so, the project has an educational purpose allowing young
people to foster conceptual thinking and learn programming in a visual
way, thus becoming creators instead of being consumers.

Programs built with the Catrobat language can be easily created and shared
using a mobile development environment which is freely available by down-
loading an app named “Pocket Code”. The app is available for Android and
iOS devices and can be downloaded from the Google Play Store3 and Ap-
ple’s App Store4. With the help of Pocket Code, Catrobat programs can be
developed without the need of a computer. A large number of pre-defined
commands are available in the means of Bricks which are block shapes,
similar to Lego bricks, used to create code. Additionally, the device’s camera
and numerous device sensors (like the compass, or the acceleration and
inclination sensor) can be easily utilized in the users’ programs. To get a
better understanding, Figure 4.1 shows an example of various Bricks. Once
a program has been created, Pocket Code allows its user to upload and share
their creative work with others using a community website. This integral

1https://www.catrobat.org, visited on 2 June 2019

2https://scratch.mit.edu, visited on 2 June 2019

3https://play.google.com/store/apps/details?id=org.catrobat.catroid, visited on 2 June
2019

4https://itunes.apple.com/app/pocket-code/id1117935892, visited on 2 June 2019

22

4. Catrobat: an agile FOSS project

part of the project enables teenagers to creatively express themselves and
allows them to learn from each other by studying each other’s code and
by getting inspired by new ideas. Being motivated by someone else’s idea,
a project can be downloaded and enhanced with additional functionality –
this feature is known as “remixing”.

Figure 4.1.: Pocket Code on Android (left) and iOS (right).

In the practical part of this thesis, contributions to the Catrobat project
will be investigated in close details. To get a better overall pricture of the
project, the remainder of this section gives insights into Catrobat’s structure,
contributors and development practices.

23

4. Catrobat: an agile FOSS project

4.1. Motivation and educational aspects

On the one hand, the demand for software systems is vastly increasing
throughout numerous parts of our society (Slany, 2012). On the other hand,
the high complexity of software is less and less understood by people
not affiliated with computer science. Raising this discrepancy, the National
Academies of Sciences, 2018 found out that the outsized number of computer
science jobs grows much faster than the number of graduates enrolled
to a computer science bachelor program. To counteract this problem, it
is important to foster computational thinking from an early age and to
motivate children to get inspired by the world of software engineering.
Catrobat is making its contribution to this problem by providing children
with a platform to create and share their own games. Games are published
under an Open Source and Creative Commons (CC) license allowing to get
downloaded and modified by other people than the author. This exchange
of ideas not only enables teenagers to learn from each other, but also gives
an insight into the open source philosophy.

But that’s not all: as listed in Section 4.3, Catrobat’s development team
mainly consists of university students, thus trying to introduce students to
open source as well. This two-sided educational effect represents a unique
setting and offers benefits for all parties. A survey conducted by Müller,
Schindler, and Slany, 2019 revealed that there are strong indicators that
university students are benefitting from their contribution at Catrobat in
their later careers. One reason for this is that students have to deal with
professional development tools, high-quality code and collaborate with
experienced developers.

Catrobat sets its focus on the mobile device market, a market with a tremen-
dous growth. Smartphones are available at low-prices enabling children
from all over the world, starting from a young age to have access to their
own devices (Slany, 2012). Since Pocket Code runs on almost every modern
smartphone and does not require computer access, the app is being used by
a large and diverse group of users of different age and from a large variety
of different countries, including developing countries.

24

4. Catrobat: an agile FOSS project

4.2. Community structure

The non-hierarchical organizational structure at Catrobat promotes inno-
vational thinking and enables a rapid flow of information between the
contributors. The project is managed by Professor Wolfgang Slany and a
small management board of highly involved contributors. Development
is carried out by multiple teams each concentrating on a special field of
expertise. Figure 4.2 illustrates the organigram based on the internal team
structure as of June 2019. The nature of open source code enables a con-
tribution to almost every part of the project. Contributors are not limited
to be part of one single team but are allowed to freely shift to different
activities. Since the majority of contributors are connected to the university
and voluntarily contribute as part of their bachelor’s projects and master’s
thesis, there is a high fluctuation within the community. This complies with
the findings of Müller, Schindler, and Slany, 2019, who found out that a
great number of contributors stay in the community for less than one year
only. Thus, to ensure the long-term success of the project, several challenges
are faced.

Like in other FOSS projects, there needs to be a constant influx of newcomers
(Jensen, King, and Kuechler, 2011) to ensure a constant size of the com-
munity and the long-term success of the project. To continue, information
and organizational rules need to be communicated effectively to enable a
knowledge transfer between contributors ensuring that knowledge is not
getting lost when core developers are leaving. In conventional software
projects this problem is also known as the truck factor, as discussed in
Chapter 3.

4.2.1. Roles

To apply the roles discussed in Section 2.1 to the Catrobat community, this
section provides a list of roles available throughout all teams. Although
the roles at Catrobat deviate from those originally proposed by Ye and
Kishida, 2003, there is a similar role transformation allowing all contributors
to transform to different roles depending on their phase of contribution.
Figure 4.3 illustrates the different roles whereas the contributors’ influence

25

4. Catrobat: an agile FOSS project

Catrobat

App
Development

iOS
Development

Android
Development

Pocket
Code

Pocket
Paint

Hardware
Extensions

Robotics

Web
Development

Sharing
Platform

“Blockly”

Scratch
Converter

Supportive

Usability

Translation

Marketing

Design

Education

Infrastructure

Servers

CI/CD

Figure 4.2.: Team structure of Catrobat as of June 2019 (based on Müller, Schindler, and
Slany, 2019)

increases when moving towards the core and the number of people increases
when moving away from the core. In the project, the following roles are
identified throughout all teams:

• Project Head: The head of the project is the founder who is responsi-
ble for communicating the project’s vision and mission. The project
head has the most influence.

• Product Owners: A board of a few people highly involved into the
project. Contributors carrying out this role are responsible for the
project’s organization and strategic management.

• Coordinators: Each team has one coordinator who acts as an informa-
tion disseminator and represents a bridge between the developer team
and the management board.

• Senior Contributors: Contributors practicing this role have a perti-

26

4. Catrobat: an agile FOSS project

nent technical expertise and a thorough understanding of the project’s
overall picture. They are responsible for development, code acceptance
and for introducing newcomers.

• Active Contributors: This role represents the majority of all contribu-
tors within the community. Their main task is code development in
the form of bug fixing and the development of new features.

• Peripheral Contributors: Contributors who are no active part of the
community but occasionally contribute by opening a pull request
and/or creating a bug ticket are called peripheral contributors.

• Passive Users: Instead of contributing, people of this role are mainly
using the software. This role primarily consists of children.

Different to other FOSS projects, where a role transformation is possible
between all roles within the community (Ye and Kishida, 2003; Hippel and
Krogh, 2003; Scacchi, 2002), there is usually no transformation between
Passive Users and other roles observed within the Catrobat community, thus
clearly separating developers and users.

4.3. Contributors and Demographics

The hybrid nature of this project allows both student of the Graz University
of Technology and external developers to contribute. As of 2 May 2019,
Catrobat’s main code repository consists of contributions from 203 different
developers. Figure 4.4 illustrates that more than 80% of the contributors
were working from Austria at the time of the study. Additionally it is
shown that altogether 84.24% were affiliated with the Graz University of
Technology. From now on this subset is referred to as internal contributors in
contrast to the other 15.76% which are named external contributors. The data
was manually collected from the develop branch of the Catroid repository5

and assigned to countries by evaluating the contributors’ profile page on

5https://github.com/Catrobat/Catroid

27

4. Catrobat: an agile FOSS project

Passive Users

Peripheral Contributors

Active Contributors

Senior Contributors

Coordinators

Product Owners

Project Head

Figure 4.3.: Roles in the Catrobat community

GitHub and Catrobat’s internal Confluence6 page using the contributors’
email addresses and full names if available. Contributors who could not be
allocated to a specific country were assigned to the country named Other.
Contributors affiliated with the Graz University of Technology were either
having an email address ending with tugraz.at or were having an entrance
in the project’s Confluence page confirming the affiliation.

Including active and inactive members of all sub-teams, the Catrobat de-
velopment team involves more than 370 members, as listed on the credits
page7.

6A collaboration software published by Atlassian, the company behind Jira
7https://developer.catrobat.org/credits, visited on 2 June 2019

28

4. Catrobat: an agile FOSS project

Austria (83.74 %)

Other (5.42 %)

India (4.93 %)

Germany (1.48 %)

Malaysia (1.48 %)

USA (0.99 %)

Macedonia (0.49 %)

Belarus (0.49 %)

Romania (0.49 %)

Singapur (0.49 %)

Figure 4.4.: Contributors of the Catroid repository grouped by country (rounded to two
decimals)

4.4. Development practices

At Catrobat development is strongly influenced by agile development meth-
ods. Kanban (see Chapter 3) is used to improve software productivity,
increase team awareness and to quickly react to a rapidly changing envi-
ronment. Additionally, Extreme Programming (XP) is employed to foster
collaboration and collective code ownership and to improve communication,
knowledge transfer and code quality. Furthermore, TDD (Beck, 2003) is
used to get an instance feedback of newly written code, to create a detail
specification of what’s required from the code and to ensure that the code
is still functionally correct after refactoring. While the details of these agile
methods are illustrated in Chapter 3, this section gives an insight into the
development tools and processes utilized at Catrobat, as summarized in the
project’s README file8:

If you want to contribute we suggest that you start with forking

8https://github.com/Catrobat/Catroid/blob/develop/README.md, visited on 14

June 2019

29

4. Catrobat: an agile FOSS project

our repository and browse the code. Then you can look at our

Issue-Tracker and start with fixing one ticket. We strictly use

Test-Driven Development and Clean Code, so first read everything

you can about these development methods. Code developed in a

different style will not be accepted. After you’ve created a

pull request we will review your code and do a full testrun

on your branch.

4.4.1. Issue tracking

Jira9 is used as an issue tracking and agile project management tool. The
platform can be accessed publicly with a limited functionality allowing
visitors to view all open tickets. A ticket can have two different types:
(a) a Bug indicating an error or a failure; or, (b) a Story describing a new
feature in an informal, natural language. Each ticket describes all necessary
information in order to start development and serves as an acceptance
criteria for the code review, as explained in the remainder of this section.

Newly created tickets need to be confirmed by a Product Owner (PO) in
order to become visible by others. This ensures that the focus is put on
important development tasks first and that the number of tickets currently
in development is limited, as suggested by the work in progress (WIP) limit
of Kanban. To get a better overall picture of what’s currently in development
and which tickets are ready for code review, the workflow of each team
is visualized in a Kanban board. Jira also provides information about the
persons involved during the development and review process providing an
important information for newcomers to find potential guidance for detailed
questions of a specific topic.

4.4.2. The Planning Game

In order to decide which tickets are visible and ready for development,
regular “Planning Games”, an XP practice mentioned by Beck and Gamma,

9https://www.atlassian.com/software/jira, visited on 14 June 2019

30

4. Catrobat: an agile FOSS project

2000, are held at the Graz University of Technology. These meetings can
only be attended by local contributors, which can be seen as a limitation.
Nonetheless, since most contributors are students from this university (see
Section 4.3), the majority of contributors are able to attend these local
meetings. As mentioned in Chapter 3, the Planning Game offers an excellent
opportunity to vaguely communicate desired requirements and estimated
efforts between POs and the developer team, thus combining business
priorities and technical estimates (Beck and Gamma, 2000). Finally, this
meeting can also serve as an additional aid to clarify unclear requirements
from the developer’s point of view.

4.4.3. Code repository

The source code of all teams is available on GitHub10 and can be publicly
viewed and copied by everyone. Like most other FOSS projects, Catrobat is
using the copy-modify-merge development model as introduced in Section 2.3.
Thus, although the source code can be freely copied and locally modified
by others, it can only be merged back into the project’s repository by senior
contributors (see Section 4.2.1). Catrobat is using the “Gitflow Workflow”
as suggested by Atlassian11.

4.4.4. Code review

Once local changes are made they need to be submitted for a code review by
opening a pull request on GitHub. In case of a successful review, the changes
are becoming part of the project’s code base. If that is not the case, the author
of these changes is either requested to make additional changes (in a change
request) or the whole changes are discarded. Figure 4.5 illustrates a pull
request where merging is blocked prior to the submission of a code review.
This review process is an essential part of the development process since it
ensures both a high code quality and a high customer satisfaction. To further

10https://github.com/Catrobat, visited on 14 June 2019

11https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow,
visited on 14 June 2019

31

4. Catrobat: an agile FOSS project

increase quality from a technical and a functional perspective, Catrobat’s
review process has changed in the last few years. While the review initially
merely consisted of a technical check by a senior contributor, the review
process has been extended by an additional step: the validation by at least
one PO. This supplementary approval guarantees that the code is not only
well written and tested from a technical point of view, but also behaves as
expected from a domain-related, functional view. Section 4.2.1 outlines that,
different to other FOSS projects, there are no developer-users at Catrobat,
making the PO review inevitable in order to overcome a potential lack of
domain expertise.

From a technical perspective, a pull request needs to confirm to the princi-
ples suggested in the book Clean Code by Martin, 2008. Furthermore, every
change must be reflected by an according test case. In order to be approved,
both the existing tests and the newly created tests need to be passed.

4.4.5. Continuous integration

To speed up the process of testing and code integration, the open source
automation server Jenkins12 is used. After a pull request is submitted,
Jenkins checks out the respective changes, builds it and runs the automated
test suite. The results are reported back to the web interface of GitHub,
as illustrated in Figure 4.5, and serve as a basis for the aforementioned
code review. Additionally, the main code base is checked out automatically
several times a day to ensure that the software still builds and all tests are
passing, even after a successful integration of a pull request.

4.4.6. Test-driven development (TDD)

In addition to the existence of meaningful and readable tests, contributors
are advised to employ the red/green/refactor pattern as introduced by Beck,
2003. TDD involves the writing of tests prior to the actual code which is
being tested. By doing so, developers are more likely to create a detailed

12https://jenkins.io, visited on 14 June 2019

32

4. Catrobat: an agile FOSS project

Figure 4.5.: Test results and required review for a pull request on GitHub

specification of what’s required and to write code which solely focuses
on this specification and nothing else. Finally, to enable TDD the software
design needs to be well thought out prior to the development which usually
results in cleaner and better modularized code (Beck, 2003).

4.4.7. Pair programming

Local contributors are profiting from a team room which is provided by
the Graz University of Technology. Contributors are highly engaged to
meet there to carry out pair programming, an XP practice mentioned by
Beck and Gamma, 2000. As explained in Chapter 3, this practice helps
to improve the quality of software design and code and offers a unique
opportunity to share knowledge, improve communication and foster team
building (Cockburn, 2001; Williams et al., 2000). Secondarily, applying this
practice can help to reduce the risk of losing key programmers, as explained
by the aforementioned truck factor.

33

4. Catrobat: an agile FOSS project

4.5. Documentation

Instead of employing a heavyweight, documentation-driven development
process, Catrobat makes use of software informalisms as proposed by Scac-
chi, 2002. Informalisms used in the form of mailing lists, discussion forums,
online chats or posts on wiki-like systems are utilized as resources to de-
scribe and document all relevant happenings in the project. This process is
in agreement with the Manifesto for Agile Software Development which
states that “working software” is preferred “over comprehensive documenta-
tion” (Beck, Beedle, et al., 2001). Catrobat was facing some problems in the
past where the focus was more on formal, comprehensive documentation.
Documentation became outdated, owners and maintainers left the project
and there was no clear overview of the content available, as pointed out
by Fellhofer, Harzl, and Slany, 2015. This complies with the findings of
Steinmacher, Conte, Treude, et al., 2016 who confirm that documentation
issues are one of the main entry barriers newcomers are facing in FOSS
projects. Nowadays at Catrobat, documentation is primarily written in one
of the following forms:

• READMEs and how-tos are briefly formulated guides publicly avail-
able on GitHub13, primarily addressed for first-time contributors.
These documents serve as rough guides to find out how to get in
touch with the community and how to start contributing.

• Confluence pages serve as artifacts for meeting notes, blog posts and
general information about the project. Additionally, how-to guides are
available for code review, pull requests and for how to write clean
code. This system is for internal use only and can not be accessed
without credentials. However, credentials with limited access can be
obtained via self-registration.

• Software tests serve as a human-readable basis to understand how
code can be used as well as to get an insight of what the code is
doing without even looking at it. Instead of writing a comprehensive

13An example README is available at (visited on 14 June 2019):
https://github.com/Catrobat/Catroid/blob/develop/README.md

34

4. Catrobat: an agile FOSS project

technical documentation about the code base and instead of writing
inline documentation in the form of code comments, software tests
are used as the only form of technical documentation.

4.6. Communication

At the beginning of the project, communication mainly took place via face-
to-face meetings at university (Fellhofer, Harzl, and Slany, 2015). While this
approach worked fine for local students, it was not feasible for remote con-
tributors not affiliated with the Graz University of Technology. To counteract
this problem, a project-wide IRC channel was introduced open to everyone,
as suggested by Fogel, 2009. Since the technology seemed old-fashioned to
the contributors and the majority of Catrobat’s contributors has never used
IRC before, this turned out to be no practicable solution for the long run
(Fellhofer, Harzl, and Slany, 2015).

To come up with a better solution, Slack14 was introduced in 2017 and
eventually became the main communication channel for both intra- and
cross-team conversations. As of 15 June 2019, Catrobat’s Slack channel
counts 175 members in 33 public channels. Figure 4.6 illustrates that
direct messages (DM) between two contributors are strongly preferred to
conversations in public channels. While messages in public channels can be
read and answered by all contributors of the community, DM can only be
received by the two conversation partners.

Local contributors are benefitting from regular team meetings which take
place in the team room at the university. Meetings are held individually
for every team but can be joined by all interested parties. Additionally, to
strengthen cross-team communication, a biweekly coordinator meeting (Bi-
WeCo) takes place. At this meeting, each team reports its incidents, updates
and achievements of the last two weeks.

14A team communication tool available at https://catrobat.slack.com, visited on 15 June
2019

35

4. Catrobat: an agile FOSS project

Direct messages (85%)

Public channels (14%)
Private channels (1%)

Figure 4.6.: Conversations in Slack grouped by channel (as of 15 June 2019)

36

5. Research design

This chapter illustrates the research methodology employed in this thesis,
as summarized in Figure 5.1. The aim of this research is to (1) find out how
and why new contributors are interacting with the community, (2) identify
potential challenges showing up during their contributions, (3) investigate
how they can be overcome; and, (4) give recommendations of what works
best as well as to discuss the outcomes with correlating findings in literature
to motivate further research.

To better understand the complex context of this socio-technological en-
vironment, a multiple case study was conducted presenting the case of
Catrobat. Providing valuable insights into the collaborative software de-
velopment process of an agile FOSS project, the research subject of this
thesis is limited to the Catrobat project. Case studies are useful methods for
conducting “how” and “why” research questions whereas the researcher
has little control over the investigated, contemporary events (Yin, 1984).
Instead of trying to generalize the results from this case study to a wider
population (statistical generalization), the purpose of this approach is to
extend and generalize theories (analytic generalization), as suggested by
Yin, 1984 and Strauss and Corbin, 1990.

As illustrated in Section 6.2, multiple data from different sources is collected
resulting in both qualitative and quantitative data to get a more holistic
understanding of the subject under study (Yin, 1984). Grounded theory
(Glaser and Strauss, 1967) is used to iteratively analyze the qualitative
data. Different to the initial variant developed by Glaser and Strauss, 1967

where the research question is developed from the emerging codes during
data collection and no literature should be reviewed prior to data analysis,
this study integrates the Straussian approach (Strauss and Corbin, 1990)
which adheres to the processes applied in the case study methodology. The

37

5. Research design

integration of grounded theory as a method for the case study methodology
is a combination commonly used in information system research (Halaweh,
Fidler, and McRobb, 2008). As proposed by Yin, 1984, the researcher starts
with a literature review and a set of propositions in order to be able to
focus on a certain kind of information during the data collection. This
complies with grounded theory developed by Strauss and Corbin, 1990

which suggests that the research should be started with a literature review
and a vague definition of the research questions which can be further
developed by emerging ideas.

While analyzing the case studies, conceptual categories are identified using
open, axial and selective coding (Strauss and Corbin, 1990). Open coding
was conducted multiple times on each of the qualitative data sets until no
more new codes emerged, thus theoretical saturation was reached (Glaser
and Strauss, 1967). A repetitive application of axial coding resulted in a
refinement of codes and categories and the identification of relationships
between these. Selective coding finally led to a predominant core category
and several sub-categories which is represented by the formulation of
propositions. Different to hypotheses, which require measured relationships,
Pandit, 1996 emphasizes that propositions require conceptual relationships
which complies with the application of grounded theory. The case study
outcomes and the resulting propositions are listed in Chapter 7.

To build up a “chain of evidence”, as suggested by Yin, 1984, three semi-
structured interviews are conducted with long-term experts of the Catrobat
FOSS project. This chain combines the perspective of both internal and
external contributors, as suggested in Section 4.3. The outcomes are then
compared with the generated theory resulting from the case studies. A
blend of open-ended and specific, closed-ended questions helps to ensure
that in addition to expected information, new and unexpected types of
information can be collected (Seaman, 1999). The experts have a detailed
knowledge about the project and a profound experience in collaborating
with other contributors making them qualified to precisely respond to
complex questions. Consequently, this research method is combining new
points of views with prevalent outcomes from the case studies. The interview
guideline, which is enclosed in Appendix F, ensures to address the most
significant parts of the propositions under study. On the other hand, the
open-ended questions were designed to enable an interactive conversation

38

5. Research design

between the interviewee and the interviewer to get an insight into new and
unexpected points of views (Turner III, 2010). The interview transcriptions
are analyzed using the aforementioned coding procedure suggested by
Glaser and Strauss, 1967. Bogner, 2014 prefers this procedure for theory-
generating interviews rather than using qualitative content analysis, as
proposed by Mayring, 2000, which is a popular method frequently applied
when gathering facts (Bogner, 2014).

The outcomes from the interviews are then cross-validated against the
propositions to confirm, deny and extend theory and to capture different
perspectives. As mentioned by Flick, 2004, the observation of the subject
under study from different point of views is referred to as “triangulation”.
To summarize, Figure 5.1 depicts the approach followed in this thesis.
Finally, the cross-validated results are discussed in Chapter 9.

39

5. Research design

Data Collection Research Database

Data Analysis

Selective Coding Axial Coding Open Coding

GitHub EmailJira Slack Google
Groups Notes

Propositions

Case Studies

Interviews

Expert InterviewsData Analysis

Transcriptions

Interview Results

Results

Triangulation Final Results

Figure 5.1.: The research design applied in this thesis

40

6. Case studies

The research subject of this study is limited to the Catrobat FOSS project.
All data, observations and assumptions being made are exclusively based
on investigations observed at the Catrobat project, or to be more precisely,
the iOS1 subproject.

6.1. Units of analysis

In order to get insights into the different phases of contribution (first interac-
tion, onboarding, development, code review and integration), the contribu-
tions of three participants of the GSoC program is thoroughly analyzed, as
summarized in Table 6.1. The GSoC program proves to be particularly help-
ful for this study since it provides a possibility to observe the perceptions of
first-time contributors for a certain amount of time (at least three months).
As mentioned in Chapter 2, the program is open to students enrolled in
an accredited university program and usually starts in the middle of May
and lasts until the end of August. The educational context of this program
reflects a common setup in the Catrobat project since most contributors are
students from the Graz University of Technology (see Section 4.3), offering
a wide range of different experience levels. None of the participants did
have any connections either to the Catrobat community nor to the Graz Uni-
versity of Technology prior to the GSoC program. A mentor was assigned to
each contributor who guided them through all phases of contribution and
served as a central point of contact for questions, feedback and guidance of
any kind. In the remainder of this chapter, the participants’ contributions
as well as their interactions with their mentors and the community were

1https://github.com/Catrobat/Catty

41

6. Case studies

Case A Case B Case C
Year of contribution 2017 2017 2018

Technical experience High Moderate Low
Contributions to other FOSS projects Yes Yes No
Pull requests submitted 16 25 47

Pull requests merged into code base 56.25% 84.00% 78.22%

LOC merged into code base +3,620 +7,931 +10,458

-6,471 -974 -1,359

Interactions per week 4.3 12.2 146.4
Average length of message 453 426 82

Asynchronous communication Yes Yes Yes
Synchronous communication No No Yes
Voice chat No No Yes
Pair programming No No Yes

Table 6.1.: Summary of case studies

investigated in close details. Finally the findings of the case studies (from
now on referred to as Case A, Case B and Case C) are discussed with related
literature and propositions are formulated.

6.2. Data collection

While investigating the contributions of each case, a research database was
compiled consisting of quantitative and qualitative data. Seaman, 1999 states
that the combination of social and technical aspects in software engineering
perfectly qualifies the mix of qualitative and quantitative data to benefit from
the strengths of both. Quantitative data was collected from the source code
repository on GitHub2 and from the issue tracking and project management
software Jira3. Qualitative data was collected from observations, notes, and
communication records obtained from (1) email messages (2) Slack messages

2A web-based version control service using Git (https://github.com/Catrobat)
3A project management and issue tracking tool used by Catrobat (https://jira.catrob.at)

42

6. Case studies

(3) comments on Jira tickets (4) comments on GitHub pull requests; and, (5)
messages on Google Groups.

After collecting the qualitative data, each communication record between
the contributor and the community has been manually labelled with the
following properties:

• Name of the sender. The sender was either directly extracted from the
header of an email message, or, for all messages other than email, the
name was extracted from the username.

• Name of the recipient. The recipient was extracted similar to the sender.
Messages not addressed directly to a single person, were labelled with
the recipient Community.

• Link to Jira ticket (optional). Each interaction was manually assigned to
a task. On GitHub and Jira the name of the ticket was explicitly listed
which was also valid for a large number of messages. If a message
could not be explicitly assigned to a ticket, this link was omitted.

• Link to pull request on GitHub (optional). The link to a pull request on
GitHub was established either through the Jira ticket or extracted from
the text, if directly mentioned.

• Parent interaction (optional). Interactions were connected to a parent
interaction to reconstruct threads, if available, to gain a better under-
standing of the context.

Quantitative data has been extracted from Jira (number of tickets, time to
close a ticket) and GitHub (lines of code added and deleted, as well as time
to close a pull request). Combining all data in a single database enables the
simultaneous analysis of the contributors’ communication pattern and their
contribution to the source code. A detailed representation of the research
database can be found in Figure 6.1.

43

6. Case studies

id name email first_contact

number title reporter developer created closed status url parent

Person

Jira Ticket

id jira_ticket person status created closed loc_inserted loc_deleted url

GitHub Pull Request

id pull_request author email sha message loc_ins loc_del url

GitHub Commit

id sender receiver type text screenshot date jira_ticket parent

date

Interaction

Figure 6.1.: Structure of the evidentiary case study database

6.3. Case A – technical experience meets
infrequent asynchronous communication

The subject of the first case study is the contribution of a participant of the
GSoC program representing the case of a technical experienced newcomer
trying to find a way into the project by communicating on an infrequent
and solely asynchronous basis. At the time of the study, the contributor
already had a founded technical knowledge about software engineering in
general as well as a pertinent experience with the technology utilized in
the project. The concept of block-based programming including Catrobat’s
visual programming language was not familiar to the student.

44

6. Case studies

An interaction between the contributor and the mentor, who were separated
by one timezone, is defined as an exchange of email messages, comments
on Jira tickets as well as comments on GitHub pull requests. During this
program 15 Jira tickets were in development, allowing a total of 8 tickets
(53.3%) to be merged into the project’s code repository.

6.3.1. First contact

The first contact with Catrobat’s community took place 52 days prior to
Google’s announcement of the accepted students’ names. The student com-
mented on a Jira ticket asking to get permission to start working on a
ticket:

“I would like to work on this issue. Could you please give me permis-
sions to move issues on the board.”4

After receiving the proper permissions, two patches fixing two small bugs
were submitted. The domain expertise required to fix these two tickets was
kept to a minimum, making it possible to start contribution in a timely
manner and without further guidance. Derived from this, it can be said
that the student was able to autonomously find a task to start with and
autonomously setup the required local working environment.

6.3.2. Communication

The communication between the mentor and the mentee took place on
an infrequent, asynchronous basis averaging to 4.3 interactions per week
during the community bonding and coding period. The average number
of characters per message amounts to 435. During that period 14% of
all interactions occurred in the week before the first evaluation and 44%
took place one week before the final submission. As illustrated in Figure
6.2, around two third of all conversations were being held on Jira using
ticket comments, slightly more than one quarter using email messages

4https://jira.catrob.at/browse/IOS-431, visited on 16 May 2019

45

6. Case studies

Jira

67.37%

Email

26.31%
GitHub

6.32%

Figure 6.2.: Communication channels used in Case A (rounded to two decimals)

and 6% were exchanged using GitHub’s commenting functionality for pull
requests.

Public communication channels (Jira and GitHub) were mainly employed
to communicate change requests for submitted pull requests, to refine
requirements and to explain missing domain knowledge. In contrast to that,
private email messaging served to clarify organizational aspects, to give
guidance about further contributions and to address problems related to
communication and the schedule of the GSoC program.

Interactions were solely observed between the student and the mentor – any
kind of public communication between the student and other community
members has not been recorded. Due to the distance between the mentee
and the mentor there was no face-to-face meeting. A project-wide Internet
Relay Chat (IRC) channel was offered open to everyone interested. Since the
technology seemed old-fashioned to the contributors (Fellhofer, Harzl, and
Slany, 2015) and was rarely used at the time of the case study, it was not
taken advantage of.

46

6. Case studies

6.3.3. Contribution

The primary contribution consisted of the implementation of a new feature
which was a fairly complex task with a lot of interdependencies throughout
the whole app. Beyond that, propositions for refactoring tasks were made
to increase the internal code quality and design.

A transition diagram shown in Figure 6.3 illustrates the different types of
events during development. The diamonds represent the begin and the end
of the development of an issue described in a Jira ticket. The circular and
square-shaped nodes represent an interaction between the contributor and
the community while the edges are labelled with the transition probability.
Submission indicates the opening of a new pull request on GitHub, whereas
Accepted and Declined signal the closing of the stated. The square labelled
Change Request reflect the appeal to make changes to the submission, for
example because of unexpected behavior, missing functionality, bugs or
missing project guideline compliances. The node Interaction represents any
task-related communication between the contributor and other members
of the community other than a change request. For instance, this type of
interaction serves to clarify any uncertainties, to give feedback to a pull
request, or to get synchronized on the progress of work initiated by either
the contributor or the community. An example wording for change requests
is illustrated in Appendix B.

The high probability (0.77) between Start and Submission indicates that there
is a trend to start development and open pull requests before interacting
with the community to, for instance, coordinate action plans or ask for guid-
ance. A pull request for slightly more than three-quarter of all tickets was
submitted without asking any questions about technical and/or functional
requirements. Half of the submitted patches were instantly accepted without
any change requests. While this half mainly consisted of bug tickets, it was
necessary to pass on a large number of change requests when it comes
to the implementation of new features requiring a comprehensive domain
knowledge. A closer look at the interactions between the contributor and
the community, either before or after the hand-in of a pull request, revealed
the predominance of the following categories discussed in the remainder of
this section.

47

6. Case studies

0.23

Start

Submission

0.77

0.08

0.03
Interaction

0.31

End

0.83

0.55

Change
Request

0.19

0.08

0.75

0.25

Declined

0.07

0.27

0.730.17Accepted

0.50

0.18

Figure 6.3.: Communication pattern during development in Case A

48

6. Case studies

A. Requirements and domain knowledge

Slightly more than one quarter of all communications (27,15%) was about
unclear requirements, requirement refinements and change requests related
to misunderstood requirements since it was not clear “how exactly [this
feature] should behave”. In contrast to a pertinent technical experience, there
was a lack of domain knowledge leading to misunderstandings in how the
visual programming language is expected to behave and how it is being
used. Although the anticipated functionality can be perceived in the Android
version of Pocket Code, the need for documentation has been addressed
asking whether “any documentation about this except [Jira Issue]” exists. As a
result of lacking domain knowledge and lacking documentation there has
been a large number of interactions leading to potential idle times due to
its asynchronous form: While the contributor was dependent on further
guidance from the community, the development could not be continued
prior to receiving an answer.

B. Change requests

The combination of a misunderstood requirements and the tendency to
make a pull request before communicating any action plans (see Section
6.3.3) turned out to be an issue. Since the submission did not always have
the expected behavior and most of the time did not comply to the project’s
guidelines, a lot of change requests needed to be communicated, comprising
more than 15% all of interactions. This was done with the help of plain text,
screenshots, pseudo code and stack traces. Figure 6.4 shows an example
where pseudo code was exchanged in order to provide the relevant context
for a change request. While this worked fine for simple bug tickets, this was
a cumbersome process involving a large amount of communication when
trying to clarify complex, domain related issues.

Change requests were mainly necessary due to unexpected behavior, app
crashes and code refactoring. Additionally, many changes needed to be
made because of compliance problems with the project’s development
guidelines, for instance because of missing tests. When repeatedly asking

49

6. Case studies

Scene1:

- increment global var "global" by 5

- increment object var "local" by 5

- show object var "local" -> 5

- show global var "global" -> 5

- start "Scene2"

Figure 6.4.: An example of pseudo code used in a change request message

for multiple change requests negative attitude was observed resulting in
short answers and unresponsiveness.

C. Technical discussion

Discussions about code related issues, like the advantages and disadvan-
tages of different implementation strategies and design decisions were
observed. Unexpected technical hurdles arose, requiring more effort than
expected to be put into the completion of tasks, for instance because “it was
really difficult [...] to work on this”, thus causing “many new problems [...] during
development”.

According to the contributor, changes to the code base were inducing too
many unexpected side effects, which resulted in unforeseen problems. Au-
tonomous propositions for code refactoring were made by the contributor
suggesting to “write cleaner/simpler/safer code” in order to increase the at-
tractiveness for other open source developers since “all these minuses push
open-source developers away”.

D. Lack of awareness

While a lot of refactoring and restructuring was done during this case study,
concurrent actions by other members of the community and upcoming
plans were not communicated well enough. Subsequently, a lot of effort had
to be put into the resolving of conflicts since there was no communication

50

6. Case studies

between the participant and other developers. To give an example, one code
reviewer from the community commented on a JIRA ticket:

“This will cause terrible headache when merging the master. Reason
for that is because in the meantime lists have been introduced (like
variables which can hold several values like a list). What is the reason
for removing this class?”5

E. Feedback, status update and toolchain

The remaining interactions (around 30%) mainly addressed feedback on
pull requests, status updates and organizational topics related to the GSoC
program. Occasionally there was a short discussion about issues related
to git6 or other matters related to the toolchain (for example Jira). While
technical and organizational guidance was offered mainly at the beginning
of the contribution, the contributor did not ask for any technical help during
the development.

6.3.4. Summary

The participant in this case study already had a pertinent technical experi-
ence and preferred to contribute autonomously keeping the communication
with the community to a minimum. For tasks requiring a low level of
domain knowledge, like bugs, it was possible to individually make a contri-
bution without any guidance. There has been the desire to refactor code in
order to try to make the code base more attractive for further contributors.
Guidance was needed for the implementation of new features, mainly due to
vague requirements, a lacking domain knowledge and unclear specifications.
Consequently, the need for documentation has been addressed multiple
times. To continue, the trend to make pull requests prior to interacting
with the community (for example to coordinate action plans), as illustrated
in Figure 6.3, and the infrequent and asynchronous nature of interactions
between the mentor and the mentee resulted in multiple change requests

5https://jira.catrob.at/browse/CATTY-5, visited on 16 June 2019

6A free and open source version control system used by GitHub

51

6. Case studies

and a large amount of conflicts. As a result, there was a lag behind the
schedule of Google’s program and not all submissions became part of the
code repository. Although it was promised to continue contributing after
the end of the program, the last interaction so far took place 22 days after
the final submission7.

6.4. Case B – moderate technical experience
meets frequent asynchronous communication

This case was documented to illustrate the collaboration of a contributor
with a moderate technical experience interacting with the community on a
frequent but asynchronous basis. While the student was already familiar
with FOSS due to multiple contributions to other projects on GitHub, the
concept of visual programming languages and the usage of Pocket Code
were not familiar.

Interactions between the participant of the GSoC program and other mem-
bers of the Catrobat community, who had a time difference of 3.5 hours,
took place using entirely asynchronous forms of communication. Exchanged
messages were recorded on GitHub comments, Jira tickets, Google Groups8

as well as using private email messages.

6.4.1. First contact

It was asked for permissions to start contribution on a ticket 65 days prior
to Google’s official announcement of the accepted students:

“Can someone please assign this to me? Also, all I have to do is push
the changes to my fork and let it be known here right?”9

7As reviewed by 10 May 2019

8A service hosted by Google providing discussion groups similar to mailing lists
9https://jira.catrob.at/browse/IOS-451, visited on 16 May 2019

52

6. Case studies

The contributor was able to autonomously setup the local working envi-
ronment and, after becoming the assignee of the ticket, start working on a
task. Although the ticket did not require any domain knowledge and was
mainly concentrating on code related issues, an autonomous completion of
this ticket was not possible. While the contributor was waiting for guidance
from the community, it was asked to simultaneously start working on other
tickets. This second approach to get in touch with Catrobat’s community did
not succeed since the contributor’s requests remained unanswered. Possibly
driven by the incentives to participate in Google’s program at some point in
the future, the student persistently continued to contribute to other tickets,
even without receiving an answer from the community.

6.4.2. Communication

Finding it difficult to find out how to get in touch, the demand for various
synchronous communication tools was addressed:

“Since the IRC channel is inactive and there is no other service like
gitter or slack being used, any and all communication would be either
over email, or directly on JIRA itself, right?”

At the time of the case study, Catrobat did not offer services like Slack or
Gitter to the public (see Chapter 4). IRC was set up, but as mentioned in
Section 6.3.2 it was rarely used, making it an unattractive alternative.

During the community bonding and coding period an average of 12.2
interactions between the contributor and the community were recorded
each week whereas the average message length amounts to 414 characters.
As illustrated in Figure 6.5, slightly more than 6% were exchanged using
GitHub’s commenting functionality, more than three-quarter of the con-
versation took place on Jira whereas only 15% were transferred via email
messages. Google Groups has been utilized with a frequency rate of less
than one percent solely for affairs related to the GSoC program.

The majority of change requests and domain related issues were communi-
cated on public channels (Jira and GitHub) whereas email was primarily
used for organizational matters. Although there was a constant interaction

53

6. Case studies

Jira (77.17%)

Email (15.22%)

GitHub (6.88%)

Google Group (0.73%)

Figure 6.5.: Communication channels used in Case B (rounded to two decimals)

between the contributor and the community, around 20% percent of all
communications took place one week before the final submission.

6.4.3. Contribution

As part of the GSoC program, 25 pull requests were submitted allowing a
total of 21 (84%) to become part of the main code repository. During this
case primarily new Bricks were implemented requiring a large extent of
domain knowledge to understand how each Brick should behave and/or
interact with other Bricks of the programming language.

Figure 6.6 depicts the different types of events which appeared during the
contribution. While depending on support from the community, for more
than 80% of all submissions there was an interaction prior to the delivery
of a pull request. The low transition probability (0.04) between Submission
and Accepted indicate that a lot of communication was necessary before
a submission became part of the code repository. On the other hand, the
small transition probability (0.01) to Declined demonstrates that there is
a high chance that pull requests were accepted after interacting with the

54

6. Case studies

community. The resulting interactions have been recorded and investigated
in the subsequent paragraphs of this section.

0.82

Start

0.04 Submission

0.18

0.01

0.09

Interaction

0.96

Accepted

0.09

End

0.040.57

0.91

Change Request

1.00

Declined

0.43
0.73

0.05 0.09

Figure 6.6.: Communication pattern during development in Case B

55

6. Case studies

A. Technical discussion

One major category comprising around 20% of all conversations was deal-
ing with discussions about different implementation strategies, asking the
community for suggestions and recommendations on which one to follow.
Unexpected hurdles arose during development, possibly due to the code
base being perceived as not intuitive and too complicated:

“Phew, this one took a LONG time. [...] There were way too many
complicated constraints, and the scroll view’s scrollable content height
was not being inferred properly.”10

B. Guidance for further contribution

During this case a new theme emerged, frequently asking for hints and
guidance on how to start or continue with the development of a task. While
this pre-action communication was causing less domain-related problems
during code reviews, it was resulting in a potential cause for delay since it
was not practicable to continue development without further community-
driven support. The purpose for these interactions were mainly arising from
issues related to the project’s strict guidelines about testing:

“But can’t really figure out how to get it working. Is it feasible to test
this way? How else should I go about testing this?”11

“I do understand what this is about, but can’t seem to be able to figure
out what exactly is the right way to go about fixing this. Could you
please let me know what I should do here?”12

Around 17% of all communication subjects can be categorized into this or
a similar type of interaction where guidance was necessary. While wait-
ing for further instructions and hints from the community, the desire to
simultaneously “assign more tickets [...] to work on” was expressed by the
contributor multiple times. Delayed answers were perceived as hindrance

10https://jira.catrob.at/browse/IOS-509, visited on 16 June 2019

11https://jira.catrob.at/browse/IOS-496, visited on 16 June 2019

12https://jira.catrob.at/browse/IOS-200, visited on 16 June 2019

56

6. Case studies

resulting in the contributor to repeatedly ask the same question on different
communication channels.

C. Requirements and domain knowledge

Explained by the tendency to discuss action plans prior to performing
actions (see Figure 6.4.3), a lot of requirement- and domain-related in-
teractions were recorded before the actual development was initiated, for
example because the contributor was “unable to understand what exactly this
brick does”.

The development was not commenced until most uncertainties were elimi-
nated resulting in a large amount of interactions and standby times due to
its asynchronous nature. Having to accomplish reverse engineering13 tasks,
the already existing implementation of the Android version of Pocket Code
served as a model to better understand expected behavior:

“Could you suggest a script / series of bricks I could try on the an-
droid app that could better help me understand the functioning of this
brick?”14

D. Feedback and status update

The largest category (22.5 % of all topics) covers regular status updates
mainly communicated proactively by the contributor to both update the
community on the current state of the development and to ask for feedback
about recent implementations. No coordination problems were perceived
which could possibly be a positive side effect of frequent communication
and multiple feedback loops.

13An existing functionality is deconstructed to reveal details about its implementation
and behavior

14https://jira.catrob.at/browse/IOS-502, visited on 16 June 2019

57

6. Case studies

E. Change requests and toolchain

The remaining interactions were dealing with questions and problems
related to the code repository and the issue tracking system (Jira). As a
result of immediate feedback and the coordination of action plans prior to
starting development, only less 10% of all affairs cover requests to make
changes to pull requests.

6.4.4. Summary

The contributor of this case study preferred to interact with the community
on a frequent basis: action plans, unclear requirements and design decisions
were discussed prior to the start of development. Since the code base was not
always perceived as self-explaining, multiple unexpected technical hurdles
were observed. As a result of both technical and domain related issues,
there was a frequent call for guidance. Issues related to a lacking domain
knowledge were solved with the help of a lot of communication. To be
more independent from the community, the ambition was expressed to
simultaneously work on multiple tasks.

As a result of frequent status updates, immediate feedback and the coordina-
tion of action plans, only less than 10% of all affairs cover the conversation
of change requests. Communication issues and coordination problems were
not observed. After Google’s program has finished, the participant was
planning to continue contributing whereas the last interaction so far was
recorded 23 days after the final submission15.

6.5. Case C – low technical experience meets
intense synchronous communication

The subject of this case study is another contribution of a participant of the
GSoC program, which was documented one year after the first two case

15As reviewed by 10 May 2019

58

6. Case studies

studies. In contrast to the majority of first-time contributors, the student was
already experienced with the concept of visual programming languages.
While the student already had a profound experience using Scratch, the
use of the Catrobat programming language was not familiar. Having only
little experience in programming itself, Catrobat was the first FOSS project
a contribution was made to.

The interaction between the contributor and other members of the Catrobat
community, who were separated by only one timezone, took place on an
intense basis using both asynchronous and synchronous forms of text-
based communication. Additionally, voice chat and desktop sharing was
employed to enable the use of remote pair programming. At the time of
this case, a project-wide Slack workspace16 has been introduced which was
already in use by a majority of Catrobat’s contributors. Data reflecting the
interactions between the contributor and the community was collected using
Jira, GitHub, Slack, private emails and pair programming protocols.

6.5.1. First contact

After submitting a proposal for the GSoC stipend, the mentor got in touch
with the potential candidate 15 days before the announcement of the ac-
cepted students. Different to last year’s candidates, the student did not
make a contribution prior to the start of the program. A phone interview
revealed that the contributor was not able to autonomously setup the re-
quired local working environment, thus not being able to start contributing.
After investigating this issue, it turned out that there was a wrong directory
listed in the according README17 section which was causing the setup to
fail.

16A shared place where community members can communicate and collaborate on
various channels

17A text file in the repository to tell other people about the project and how to use it

59

6. Case studies

6.5.2. Communication

During the community bonding period and the period until the first eval-
uation, email was used to exchange information whereas desktop sharing
and voice calls were regularly employed to give guidance to code related
issues. During that period the need for a synchronous form of text-based
communication was frequently addressed by the contributor:

“First of all, regarding Slack, if it is not available, I am fine with using
Facebook Messenger or Whats App. I know it is less professional, but
any chat is slightly better than these long and formal emails.”

Although a project-wide Slack workspace was already available at that time,
it could only be instantly joined by contributors having an email address
ending with tugraz.at. Thus, external contributors need a separate invitation
in order to join the project’s workspace. After the participant has received
such an invitation, communication increased drastically. Whereas there was
a constant interaction between the mentor and the mentee, around 17%
of all interactions took place one week before the second evaluation and
more than 24% of all messages were exchanged after the final submission.
During the community bonding and coding period an average of 146.38

interactions between the contributor and the community were observed
each week. Due to the predominant form of synchronous communications,
the average message length is lower than in the other cases, amounting to 82

characters. Additionally, around 28 hours were spent on voice chat, remote
desktop and pair programming sessions. According to collaboration notes,
the mentor and the mentee agreed on having two remote session per week
during the coding period.

As Figure 6.7 illustrates, messages were mainly exchanged using Slack
(95.95%). The category labelled Other consisted of interactions using Google
Hangouts18, Skype19, Stride20, TeamViewer21 and Zoom22.

18A communication platform enabling text-based messaging, video and voice chat
19An application providing text, video and voice chat
20A collaboration tool for text, video and voice chatting and desktop sharing
21A software enabling desktop sharing and remote control
22A remote collaboration platform providing voice and video chat and desktop sharing

60

6. Case studies

Slack (94.95%)

Email (3.42%)
GitHub (0.90%)

Other (0.73%)

Figure 6.7.: Communication channels used in Case C (rounded to two decimals)

6.5.3. Contribution

The main contribution consisted of the implementation of multiple tasks
requiring a large amount of detailed, domain-related expertise. The contrib-
utor was working on 37 tickets, allowing a total of 35 tickets (94.59%) to be
merged into the code repository.

Figure 6.8 demonstrates that there was a constant interaction with the
community prior to the start of the development. This can be derived from
the transition probability (1.0) of the edge connecting the nodes Start and
Interaction, outlining the strong dependency on community-driven guidance.
In the remainder of this section the communication between the contributor
and the community was investigated in depth.

61

6. Case studies

1.00

Start

0.20

0.04

0.09

0.67

Submission

0.01

0.010.03

0.03

0.02

Interaction

Accepted End

0.02

0.58

0.020.38 Change
Request

0.03

0.56

0.44

Declined

0.11

0.91

0.53

0.33

Figure 6.8.: Communication pattern during development in Case C

62

6. Case studies

A. Technical discussion and support

Slightly less than one third of all types of interactions (30.6%) were of
technical nature, mainly initiated by the contributor. Questions related to
Xcode23, TDD and the code base came up during development. Since the
student did not have any experience with code testing in general, several
technical questions arose:

“I can’t test anything because I don’t know how to do the setup (the
code snippet I sent you). And what is it that I have to do? Do I have to
test if the x is exactly as specified in the CG point?”

While trying to support the contributor and give understanding to code
related issues, remote desktop sharing and voice chatting sessions were initi-
ated between the mentor and the mentee. Clarifying technical issues related
to the code base proved to work better when performing pair programming
sessions rather than text-based chatting. During remote desktop sharing ses-
sions the contributor’s screen was visible to the mentor enabling both sides
to see and control the integrated development environment (IDE) running
on the contributor’s computer. For the role of the navigator (see Chapter 3)
a tool for indicating which position on the screen the conversation is about
has proven to be very helpful. Without such a functionality, it was more
time consuming to make it clear which position at the code to look at using
solely verbal communication (for example “Please look at line number 123 in
the file called Implementation.swift”).

Table 6.2 summarizes the different software tools employed during the
collaboration. Zoom and Slack turned out to be the student’s favorite ap-
plications, among other things because on both applications an annotation
tool was available enabling the navigator to draw and write on the driver’s
screen. Given that Zoom offers more features for its annotation tool, the
contributor was suggesting to continue working with this application: “why
not zoom? [...] please, let’s use zoom! [...] LETS MOVE TO ZOOM”.

Furthermore, design decisions and implementation details were discussed
before and during the development making the contributor more confident
to start and continue the implementation of a certain task:

23An integrated development environment (IDE) provided by Apple

63

6. Case studies

Zoom TeamViewer Stride Slack
Plan Free Free Standard Standard
Remote Control Yes Yes Yes Yesa

Annotation Tool Yes No No Yes
Shared clipboard No Yes No No
Switch between screens Yes Yes No Yes

a This feature has been removed in July 2019 (Slack, 2019)

Table 6.2.: Summary of collaboration tools employed in Case C

“I will continue once I have your feedback, I do not want to keep writing
wrong things until the end and then having to modify. :D”

B. Guidance for further contribution

In around 15% of all conversation topics, it was asked for hints on how
to continue or start with the development of a certain task. In those cases,
the contributor otherwise was not able to autonomously continue with the
implementation. Simple tickets were recommended on how to get familiar
with the code base. Guidance was necessary especially in the following
areas:

• IDE and toolchain
• Compilation errors
• Find a task to start with
• Hints on where to start debugging
• Hints on how to test

The lacking experience in these areas were counteracted with a lot of com-
munication, mainly using pair programming sessions which were scheduled
regularly and initiated on demand:

“I did commit. But I think I might have cloned the branch in a wrong
way... we need a Zoom Call.”

64

6. Case studies

C. Toolchain

Problems related to git were observed on a regular basis. A total of 307 inter-
actions were related to issues with the versioning system mainly resulting
from merge conflicts with the base branch or an improper usage. While most
of the issues were resolved within a few minutes during pair programming
sessions, these affairs were causing demotivation for the contributor.

D. Community bonding

A new theme emerged for the first time covering conversations about the
Catrobat community in general not related to the GSoC program. Questions
about other members, their roles and responsibilities were observed trying
to get a broader understanding of what is happening in the project. The
contributor started to become a part of the community and tried to get
in touch with other members from other teams. An offer was provided to
promote the Catrobat project on social media platforms in order to help to
reach a wider audience. Additionally a blog post about the contributor’s
personal experience at Catrobat was published on a social media platform,
followed by a presentation at the contributor’s home university to encourage
other students to become part of open source communities. Other developers
were contacted to get implementation details of certain features and it was
helped to make contact between new contributors and the community
almost one year after the program has finished.

E. Requirements and change requests

An in-depth understanding of domain-related details was acquired through
reverse engineering as well as interactions with other community mem-
bers. Change requests were passed on mainly caused by inaccurate and
unexpected behavior (slightly more than 3% of all interaction topics).

65

6. Case studies

6.5.4. Summary

Voice chat and desktop sharing were employed to enable remote pair pro-
gramming to (a) counteract issues related to programming and the toolchain,
(b) guide the contributor through the code base; and, (c) give an introduc-
tion to the concept of testing and TDD. While the student already had a
sound experience with visual programming languages, there was only little
experience with FOSS projects and programming in general, making pair
programming sessions inevitable. In the period between pair programming
sessions, the use of long and formal emails was not well accepted by the con-
tributor stressing the need for a synchronous form of communication, like
for example Slack. After switching to Slack, the communication frequency
increased drastically (having up to 548 interactions per week).

Development consistently started with an interaction clarifying require-
ments, code related issues or the coordination of action plans (see Section
6.5.3). Contribution was not possible without further guidance, underscoring
the necessity for both mentorship and frequent communication. Response
time was significant in order to enable a continuous development. To coun-
teract issues related to high response times, multiple tasks were chosen to
simultaneously work on.

During this case a new theme emerged, comprising community-related con-
versations not associated with Google’s program. The contributor wanted to
get in touch with other community members and tried to encourage other
students to contribute to FOSS projects.

After the final submission, the student was planning to continue to con-
tribute to the Catrobat project whereas the last interaction with the commu-
nity was recorded 253 day after the end of the program (compared to 22

days in Case A and 23 days in Case B)24.

24As reviewed by 10 May 2019

66

7. Case study outcomes and
propositions

The contribution of three volunteers with different levels of technical and
domain-related experience was examined in close details. The communica-
tion between the contributor and the community took place on diverging
frequencies (ranging from low to intense) whereas the form of communica-
tion ranged from formal emails and comments on GitHub to voice chatting
and pair programming. In this section the findings of all three case stud-
ies are compared with each other drawing cross-case conclusions. Similar
results (literal replication) and contrasting results (theoretical replication)
are employed to develop a cross-case report (Yin, 2017) which is used to
generate theory for the expert interviews (see Chapter 8). In the remainder
of this chapter the outcomes of the case studies are listed in the form of
propositions.

7.1. Find a task to start with

Proposition 1. In the case of Catrobat, first-time contributors tend to start with
technical bug fixes keeping the required domain-specific knowledge to a minimum.

Contributors with a pertinent technical experience did not have any prob-
lems setting up the required environment and were able to autonomously
start development and open their first pull requests (Case A and Case B). With
the help of the issue tracking system Jira it was possible to autonomously
find a task to start with. Rather than starting with domain-specific affairs
related to the Catrobat language, small bug fixes were autonomously chosen

67

7. Case study outcomes and propositions

in all three cases, keeping the required domain knowledge to a minimum in
order to foster a swift start.

7.2. Guidance from the community

Proposition 2. In the case of Catrobat, newcomers need guidance from the commu-
nity in order to make a contribution to domain-related tickets (e.g. the implementa-
tion of new features).

While an autonomous contribution worked well for technical experienced
newcomers implementing refactoring tasks and bug fixes, it was causing
severe problems when autonomously developing new features requiring
a large extent of domain knowledge (Case A and Case B). As a result of
misinterpreted requirements, lacking documentation and infrequent com-
munication, the submitted changes did not behave as expected involving a
large number of change requests subsequent to the submission. To get a bet-
ter understanding of the requirements and the project’s guidelines, the need
for documentation has been addressed, asking whether “any documentation
about this except [Jira Issue]” exists (Case A).

The contributor of Case B was taking up contact with the community in
more than 80% of all submissions whereas the contributor of Case C was
always (100%) proactively interacting with the community before starting
development. Along with domain-related affairs, in Case B and Case C there
was a constant discussion about software testing and TDD, two important
internal project requirements (see Chapter 4). Due to the diverse levels
of experience and seniority, either a lack of domain knowledge, a lack of
technical experience or a combination of both has been observed. Moreover,
newcomers need to collect knowledge about organizational rules (coding
guidelines, quality standards, organizational workflows, et cetera), mak-
ing a large number of interactions with the community unavoidable and
underpinning the necessity to help newcomers to find their way into the
project.

68

7. Case study outcomes and propositions

7.3. Communication

Proposition 3. In the case of Catrobat, frequent and direct communication has
positive effects to a newcomer’s contribution. Low frequency and high response
times have a negative impact.

To overcome the aforementioned difficulties a lot of communication was
necessary. To discuss technical details and refine unclear requirements a
wide range of questions were asked using a large number of asynchronous
emails (Case A, Case B and Case C). While this worked well for simple tasks
and bug fixes, in complex situations, a more direct contact, like the use
of synchronous voice chatting in combination with desktop sharing was
inevitable, especially when trying to clarify complicated technical issues
(Case C). Deferred communication and delayed answers were seized as a
problem by both the mentor (Case A) and the contributors (Case B, Case C)
who were not able to continue development without receiving an answer
from the community.

Infrequent communication turned out to be an issue in Case A where
misinterpreted requirements were discovered too late causing many conflicts
and a long delay in development. In contrast, frequent communication and
a constant exchange of pre-action plans facilitated the reduction of required
change requests (compare 15.83% in Case A and 9.38% in Case B with 3.16% in
Case C). The necessity for a synchronous chat-based form of communication
was addressed in Case C stating that “any chat is slightly better than these
long and formal emails”. After switching to Slack as the main communication
channel, the interaction frequency increased tremendously averaging to
146.4 interactions per week compared to 4.3 weekly interactions in Case A
and 12.2 interactions per week in Case B. On the other hand, the average
length of a message decreased to 82 characters compared to 453 in Case A
and 426 in Case B. As a result, the average response time decreased from
11.89 hours when using email to 0.29 hours when using Slack (Case C).

69

7. Case study outcomes and propositions

7.4. Community bonding

Proposition 4. In the case of Catrobat, frequent and direct communication fosters
community bonding.

During the third case study a new category emerged for the first time
representing community-related discussions not affiliated with the GSoC
program. While this category did not show up in Case A and Case B, this
could be a positive side effect of a frequent, synchronous and direct form of
communication. Contact with other members was established and it was
tried to engage other developers to start contributing to FOSS projects. While
the contributor and the mentor in Case C are still in contact one year after the
GSoC program, the last interactions with the community and the contributor
of Case A (Case B) were recorded 22 (23) days after the end of the program.
It has been observed that direct and frequent communication potentially
has a positive effect on creating strong ties with the community.

7.5. Technical hurdles

Proposition 5. In the case of Catrobat, unexpected technical hurdles and the
project’s strict guidelines foster demotivation and raise the entrance barrier for
newcomers.

Issues related to the code base were remarked in the first and second case
study arising from (a) bad code quality, (b) complex and outdated code;
and, (c) unexpected hurdles resulting from high interdependencies and low
modularity. In all three case studies, more time than expected was needed
for development, among other things because the code base was perceived
as not intuitive and too complicated. Additionally, the software architecture
made it difficult to comply to the project’s strict guidelines about testing,
especially when not having much experience in the area of software testing
at all. Demotivation was observed as a result of passing on a large number
of change requests, offering a possible reason to discontinue contribution.
As observed in Case A, the desire to write “write cleaner/simpler/safer code”
has been noted in order to increase the attractiveness for future contributors

70

7. Case study outcomes and propositions

since “all these minuses push open-source developers away”. Due to the limitation
of this thesis, technical aspects of software quality are not being discussed.
However, this has already been investigated by Schranz et al., 2019.

7.6. Agile software development

Proposition 6. In the case of Catrobat, newcomers want to work on multiple tickets
simultaneously while waiting for guidance from the community.

In Case A, Case B and Case C the need to simultaneously work on multiple
tickets was repeatedly stressed while waiting for guidance, feedback or
code reviews in order to overcome potential idle times resulting from
asynchronous communications:

“Meanwhile, please assign more tickets for me to work on?” (Case B) 1

As previously mentioned in Section 7.2, contribution was strongly depen-
dent on community-driven guidance, representing a possible restraining
factor, especially when response times are high. In those cases, a contin-
uous development was not feasible which led to multiple waiting times.
The contributors in all three cases overcame this challenge by simultane-
ously working on multiple tickets while waiting for an answer from the
community.

1https://jira.catrob.at/browse/IOS-493, visited on 13 May 2019

71

8. Interviews

As a secondary research method, semi-structured interviews were conducted
with three long-term experts in the area of FOSS, GSoC and the Catrobat
project in general. Rather than gathering facts, expert interviews are a useful
method for reconstructing subjective interpretations for specific research
topics (Bogner, 2014). All experts have been in the Catrobat project for
multiple years and have introduced and guided both many co-located
newcomers as well as several external contributors within the scope of GSoC
and/or similar programs. With their profound experience in collaborating
with other community members they provide a valuable input for this
thesis. As a consequence, new perspectives are combined with prevalent
outcomes from the case studies, building up a “chain of evidence”, as
suggested by Yin, 1984. An interview guideline (Bogner, 2014) was employed
to ensure that the most significant parts of the propositions under study
are addressed. On the other hand, the guideline, which is enclosed in
Appendix F, was designed to enable an interactive conversation between
the interviewee and the interviewer. The mixture of open- and closed-
ended questions enable the collection of new and unexpected types of
data along with expected information (Seaman, 1999; Turner III, 2010). The
interview transcriptions are analyzed using a coding procedure as illustrated
in Chapter 5. Finally, the outcomes of this analysis are presented in the
remainder of this section.

8.1. Interview outcomes

The experts (in the remainder of this section referred to as E1, E2 and E3)
have been in the Catrobat project for at least four years and have a lot of
experience in the areas of onboarding, code reviews, project management

72

8. Interviews

and collaborating with other contributors. To get an insight info different
perspectives, the interview partners were thoroughly selected from different
areas within the project to have both overlapping and divergent fields of
responsibility. Therefore it is crucial to emphasize that the experts might
have different mindsets and diverging expectations regarding the project.
This needs to be considered when trying to draw conclusions, as detailed in
Chapter 10.

8.1.1. Communication

When collaborating with other contributors, the experts have tried various
strategies and different forms of communication. Prior to the introduction
of a project-wide Slack channel, E1 preferred to communicate using email
messages, comments on Jira tickets and comments on GitHub pull requests,
because “that were practically the only channels to communicate with people.
Because at that time, only the IRC channel was available but it was rarely used, not
even by the internal students” (E1). In contrast to that, E2 prefers to employ
Slack for both text and voice chatting as well as remote desktop sharing.
Instant messaging is strongly preferred in comparison to email because
“personally, I think that writing emails would result in much more overhead in
contrast to instant messengers” (E2). On the other hand, E3 prefers to directly
get in touch with the contributors using face-to-face communication when
ever possible: “solely communicating remotely in a written, asynchronous form
is not that efficient compared to situations where people sit next to each other
directly explaining things in person” (E3). If face-to-face contact is not possible,
the expert encourages to directly get in touch with each other using any
form of synchronous communication. The expert stresses the importance to
simultaneously speak with each other.

To continue, E2 believes that when introducing newcomers, communication
should be as frequent and direct as possible. The expert once introduced a
couple of newcomers holding a remote meeting once a week. It is empha-
sizes that this was far too infrequent and that this was not sufficient in order
to familiarize with the project, especially because of its high complexity
and its large scale. Technical hurdles, mainly resulting from insufficient
modularization were mentioned as one of the reasons why it is probably

73

8. Interviews

not feasible to “sit down for just two hours a week and complete a task. If so,
this is only possible for small bug fixes” (E2). To counteract this issue, the
contributors started to meet face-to-face and performed on-site pair pro-
gramming. Several advantages were mentioned in comparison to the remote
collaboration, among other things because “interpersonal matters helped to
break down social barriers” (E2) and that the contributors were more likely to
ask questions whenever something was not clear to them. From a technical
point of view, the interviewee states that there was almost no difference
between the remote and co-located collaboration:

“When technology is available which allows to remotely share a screen
and to annotate parts of the screen [using a virtual pen], then it is
not vital to sit next to each other. [...] Maybe sometimes it can be even
better, because you do not have to switch mice and you can draw on the
screen.” (E2)

8.1.2. Project guidelines

When it comes to the main problems during the contribution, E1 recalls
that the application of TDD and testing in general were one of the biggest
hurdles. According to the expert, students often do not have any technical
expertise in these areas at all. This is in accordance with the experience of
E2 who notes that writing tests is difficult for newcomers, because some
contributors “do not even know what a test is, or what JUnit is or what an
instrumented test is” (E2). To continue, it is stressed that sometimes tests are
skipped simply because contributors claim that “this [feature] is difficult to
test” (E3). This turns out to be a great challenge, especially because on the
one hand the contributors’ technical experience is so diverse and on the
other hand the project’s expectations are very high:

“One of the biggest challenges for newcomers is that we are taking
automated tests so seriously. There’s no one, no matter where you look
at, there’s no one who takes that so seriously. Not even the Android
Developer Guides. [...] If you ask me, that’s more like performing
research.” (E2)

74

8. Interviews

This is confirmed by E1 who states that the project has several strict guide-
lines which need to be complied to in order to get code merged into the
project’s code base. These policies are mainly about software tests, Clean
Code (Martin, 2008) and coding standards. It is emphasized that these stan-
dards are as important as a well functioning code in order to maintain a
project in the long run. In compliance to that it is claimed that “our project
only works because we have that many tests. [...] Without them, we would have
no progress at all” (E3). According to E3, this has also been confirmed by
many senior members. Without regression testing it would be mandatory
to manually test the whole app after every change which would not be
possible due to its high complexity and its large scale. On the other hand, E1

counteracts that these strict guidelines can also lead to demotivation when
pull requests need to be changed multiple times and do not get merged for
a long period. This behavior was encountered at some of the interviewees’
students when it was observed that “suddenly the student stopped to write long
explanations as usual and started to answer in very short sentences” (E1) or the
students even “do not continue to work on other tickets and are not that responsive
anymore” (E2). Sometimes contributors seem to be a little bit annoyed and
try to convince their reviewers to finally merge their changes (E3). In those
cases, demotivation was a reaction to technical hurdles and multiple change
requests.

8.1.3. Awareness

It is proceeded that the project’s internal guidelines can be an unexpected
hurdle for external contributors who simply do not know that there are
certain standards. To increase the awareness in such cases, direct contact
with a pull request’s author is usually established by E1 to, for example, “tell
the contributor that the pull request has checkstyle1 warnings and that checkstyle
can be run locally by executing this and that command”. This is a vital measure,
because for external contributors there is no exhaustive list of rules and
standards which can be read before opening a pull request. On the one
hand, it is emphasized that without documentation or written resources

1A static code analysis tool that checks whether Java code adheres to a coding standard.
https://checkstyle.sourceforge.io, visited on 12 July 2019

75

8. Interviews

of any kind, there is always the need for people to directly communicate
unwritten rules to newcomers which can be a time- and resource-intense
procedure. On the other hand, it is stressed that, according to E1, this is
far more personal than receiving a large list of rules at the beginning of a
contribution. Similar to that, E2 reveals that a large number of contributors
are simply not aware of the technical details and quality standards required
in this project. It is therefore necessary to raise the awareness of these
standards because, according to E2, contributors tend to think that “code is
equal to code, and testing is equal to testing”, no matter of which quality. It is
emphasized that “this happens often, very often; actually I would say that this is
the standard already” (E2).

Therefore it is necessary to properly onboard and train all newcomers. The
high fluctuation and the large number of short-term contributions set a
challenge to pass on knowledge to newcomers so that it is possible for them
to comply to these guidelines. This is a time-consuming process; therefore
it is vital to motivate every contributor to stay in the project for as long as
possible (E3). It is emphasized that there is no static hierarchy in this project
and that it is important that, ideally, every contributor makes progress
to finally become a senior. Nevertheless, it is continued that “sometimes I
have the feeling that seniors always stay seniors and that newcomers always stay
newcomers” (E3).

8.1.4. Code reviews

A few years ago, a long email was received by E1 complaining about the
way pull requests are handled in this project. The author of this email
was complaining because it took so long until his or her pull request got
merged which, according to the external contributor, was unusual for FOSS
projects. This was the author’s first and last contribution to this project.
It is emphasized that there is a potential for improvement when it comes
to the review of pull requests, because “in this project, it is kind of the way
that many people are getting discouraged because code reviews are handled in a
too negative way” (E1). Sometimes the only feedback you get for a complex
pull request is that “this needs to be done in this way, that this needs to be done
in that way and this needs to be done like that – and so on, and so forth” (E1).

76

8. Interviews

According to the expert, this can be very demotivating, especially when
contributors only hear negative things without being praised for the good
and positive parts of their pull requests. It is mentioned that one of the
main reasons for this behavior could be that contributors of this project are
used to collaborate with students within the Graz University of Technology,
and that students possibly tend to address their student colleagues more
directly, which should not be done the same way with external contributors.
In E2’s opinion, contributors can be insulted rapidly when telling them that
their changes do not comply to certain standards or that their pull requests
can be improved in certain ways, although it is believed that:

“Personally, I do not know a single person who does that because he
or she wants to cause harm or wants to be evil in any manner. Code
reviews are meant to be absolutely constructive, among other things to
improve the code quality.“ (E2)

When it comes to code reviews, E3 prefers to directly get in touch with
the contributors using face-to-face communication when ever possible, be-
cause sometimes developers do not realize how unfriendly they appear
to other people when writing comments on GitHub as part of their code
reviews. According to E3, this happens especially when developers have
built an emotional opinion about the code base and its underlying qual-
ity. When communicating asynchronously, E3 states that the interpersonal
part is getting lost, which can sometimes cause troubles, especially when
communicating both “in a written form and emotionally”:

“Instead of passing on change requests back and forth with insane
delays and great frustration, code reviews are finished immediately
[when communicating face-to-face] and both parties are happy. Among
other things, this is because they directly communicate with another
real human being who, instead of giving disparaging comments, turns
out to be friendly.” (E3)

8.1.5. Domain expertise

Apart from the technical point of view, it is mentioned that in many cases
changes to pull requests are necessary because new features are not behaving

77

8. Interviews

as expected or are not perfectly implemented from the users’ point of view.
According to E3, in those cases sometimes as many as 20 change requests are
passed on before the code can be merged. Different to other FOSS projects,
Pocket Code is not programmed by the same people who use it, which
sometimes causes unawareness of what is important for the users:

“In general it is not problematic that our developers are no end users.
But sometimes this results in an insufficient problem awareness. [...]
Because our developers are not using the app, they never experience the
frustration when things do not work.” (E3)

When developing new features, it is stressed by E2 that vague requirements
and unclear specifications can be one of the main issues. It is believed
that sometimes specifications do not appear to be defined in a sufficiently
comprehensive way. When it comes to complex features, the behavior for
corner cases2 is often not specified well enough. The developers’ missing
domain expertise makes it infeasible to autonomously give meaningful sug-
gestions to undefined behavior. Therefore it is important that requirements
are getting defined as detailed as possible. Nevertheless, it is stressed that
this process has drastically improved recently (E2).

8.1.6. Guidance from the community

According to E3, newcomers have to learn so many things while making
their first contribution that it is almost impossible to accomplish that with-
out further guidance from the community. To prevent situations where a
newcomer’s contribution could not be continued autonomously, a spread-
sheet with multiple bug tickets was provided by E1 in order to enable a
steady, uninterrupted contribution. This can be especially helpful when
collaborating remotely across several timezones. Bug reports were chosen
by the expert because they, according to E2, usually do not require the
understanding of the whole code base and they can typically be solved
within a short timeframe.

2A corner case involves a situation where input parameters or environmental variables
are outside of their normal value range. Typically, at a corner case several boundary
conditions are met at once.

78

8. Interviews

Similarly, a pool of training tickets has been provided to the newcomers
mentored by E2 and E3. This list consisted of easy to fix bug tickets which
were explicitly reserved for newcomers. Such a list is important in order to
enable a smooth project entry. On the other hand, it is counteracted that,
according to E2, chances are high that with such a list people tend to start
working on multiple tickets simultaneously before even finishing one single
ticket. It is continued that sometimes pull requests are submitted and never
respected again even though they are not completed at all:

“Sometimes pull requests are handed in and that is it. Test results or
similar checks are not even looked at.” (E2)

It is emphasized that, in those situations, it would be much more efficient
to carefully look whether all checks in the pull request have passed and
hence completely finish one ticket before starting working on other tickets
simultaneously.

8.1.7. Software architecture

It is argued by E1 and E2 that some of the technical entry barriers are a
result of the project’s software architecture which “sometimes makes things
simply untestable” (E2). The interviewee claims that this is a negative side-
effect from shipping new features too early in the past. In those cases, the
code quality has been neglected in the favor of new functionalities. As a
result, code with moderate to bad quality was merged while it was hoped
to be patched at some point later in time. In reality this was rarely done, as
stressed by E2, who names the high contributor fluctuation as one of the
main reasons for this issue.

8.1.8. Interpersonal communication

Multiple internal and several external contributors have been introduced
into the project by the experts. When it comes to the main difference between
the co-located and the remote collaboration, it is emphasized by E1 that
when being physically collocated, the team spirit, the sense of belonging

79

8. Interviews

and the community bonding is much stronger. E1 quotes that “when we were
in the team room we also talked about other things not related to the project [...]
and you got to know many other people which was resulting in a more relaxed and
personal atmosphere.”. When talking directly to each other on a synchronous
basis, E1 mentions that there is almost no difference between a remote and
co-located collaboration. Nevertheless, it is suggested to have an as direct
contact as possible. A similar experience was shared by E2 who argues that
from a technical point of view both forms of collaboration are equally good.
The main advantages of a co-located collaboration though is that “people
start to talk about things they would not write [on digital communication channels]”
(E2). As a result you get to know many other people, their experiences and
interests and you have the ability to debate about different problems:

“Personally, I think this is something really cool. You get to know other
people with cool ideas. Especially when communicating with people
from other teams. [..] You have the chance to ask them how they would
deal with this and that situation. And I can not imagine that there
would be a similar communication when using Slack.” (E2)

This complies with the experience of E3, who mentions that when commu-
nicating asynchronously on a written basis, the interpersonal component is
getting lost. As a result people feel more distanced from each other which
can have several negative side effects. Therefore it is suggested to directly
communicate with each other using face-to-face meetings, or, if not possible,
to use any form of synchronous communication.

80

9. Findings and recommendations

In this section the propositions resulting from the case studies are triangu-
lated with the outcomes from the expert interviews to confirm, deny and
extend theory. The cross-validated outcome is then discussed with findings
from related literature. Finally, in Section 9.2, recommendations for the
Catrobat FOSS project are given.

9.1. Findings

The experts have underpinned Proposition 2 in two ways: To start with,
it is argued that, at Catrobat, developers sometimes have an insufficient
problem awareness when it comes to the end users’ perspective (E3). While
Hippel and Krogh, 2003, Scacchi, 2002, and Scacchi, 2005 state that FOSS
is regularly developed by the same people who use it, this is not the case
for the Catrobat project which aims to “empower children and teenagers to
easily create their own program” (Fellhofer, Harzl, and Slany, 2015). In his
research, Fitzgerald, 2006 argues that traditional FOSS projects tend to be
horizontal infrastructural systems – for example operating systems, web
server, database management systems and compilers – where developers
were unexceptionally users of the software in development. As Section 4.3
illustrates, the majority of Catrobat’s contributors are students from the Graz
University of Technology, hence can not be classified as typical “developer-
users”. As a result, developers sometimes have a lack of domain expertise as
characterized by Steinmacher, Conte, Gerosa, et al., 2015. In the study of
Krogh, Spaeth, and Lakhani, 2003, it is suggested that the level of difficulty
to start “modifying and coding” in open source projects is a barrier relative to
the developer’s profession, technical experience and pre-existing domain
knowledge. In order to contribute successfully in the long run a developer

81

9. Findings and recommendations

needs to be experienced in all areas. This is in accordance with Case A, Case
B and Case C where a constant communication about domain-related issues
has been observed, among other things arising from from an insufficient
problem awareness, as suggested by the experts.

Secondly, it is necessary to comply to the project’s strict guidelines about
TDD and Clean Code (Martin, 2008) which can be difficult for newcomers,
especially when developing complex features. It is argued that, among
other things, “one of the biggest challenges for newcomers is that we are taking
automated tests so seriously” (E2). As emphasized by E3, newcomers have to
learn so many things while making their first contribution that it is almost
impossible to autonomously accomplish that without further guidance from
the community. In literature it is claimed that mentorship can offer an
exceptionally important opportunity to give newcomers an understanding
of (a) domain-related affairs, (b) technical aspects; and, (c) organizational
rules (Canfora et al., 2012; Trainer, Chaihirunkarn, and Herbsleb, 2013).
Furthermore, Steinmacher, Conte, Gerosa, et al., 2015 state that newcomers
look for mentorship and guidance when starting their contribution which
confirms with the outcomes of the case studies and the expert interviews.

To continue, Proposition 1 and Proposition 6 were strongly supported by all
experts who provided newcomers with a pool of training tickets to help
to find a task to start with, a technical barrier mentioned by Steinmacher,
Conte, Gerosa, et al., 2015. Small and easy to implement bug tickets were
chosen and explicitly reserved because they, according to E2, usually do
not require the understanding of the whole code base and can typically
be solved within a short timeframe. Wang and Sarma, 2011 state that new
developers typically start contributing to open source projects by lurking
on issue trackers trying to discover potential bugs to start working on. In
their study it is argued that it is difficult to find out which bugs are of
interest, can be solved with pre-existing knowledge and are no duplicates
– a process which takes a substantial amount of time. This barrier is also
mentioned by Gousios, Storey, and Bacchelli, 2016 who emphasize the need
for a comprehensive task list with recommendations for newcomers. To
overcome this challenge at Catrobat, a pool of easy to implement bug tickets
were notably marked as training tickets in Jira and explicitly kept free for
newcomers by E3. When using Kanban, a popular framework to implement
agile software development practices (see Chapter 3), it is recommended to

82

9. Findings and recommendations

limit work in progress (WIP) per workflow state (Kniberg and Skarin, 2010).
While WIP limits offer several advantages for co-located teams – like the
predictability of cycle times, the discovery of work blockers or a continuous
work capacity (Epping, 2011; Ahmad, Markkula, and Oivo, 2013; Anderson
and Carmichael, 2016) – this can lead to several issues for newcomers in
FOSS projects. First, it can slow down the newcomers’ process to find a task
to start with. Furthermore, when WIP limits are low and the community’s
response times are high, this can be a potential restraining factor while
depending on guidance from the community. As suggested by Proposition
6, this issue was overcome by simultaneously working on multiple tickets
(Case B and Case C). Thus, it is crucial to offer newcomers the ability to easily
find as many tasks as possible to work on and to easily find out whether a
ticket can be solved with the contributor’s pre-existing knowledge.

Software testing and the project’s architecture were mentioned as one of
the major technical barriers. Demotivation was observed by both the con-
tributors in Case A, Case B and Case C, as suggested in Proposition 5, and
the contributors mentored by the experts. It was observed as a reaction to
technical hurdles and multiple, long-lasting change requests which were
mainly caused due to the non-compliance to certain quality standards, like
the existence of software tests. As mentioned in Section 7.1, technical hur-
dles are reinforced due to the project’s high interdependencies and low
modularity. A case study by Syeed and Hammouda, 2013 shows that, to a
large extent, the communication pattern of the contributors is due to the
communication needs induced by the software architecture. Supporting
Conway’s law (Conway, 1968), the researcher found out that interdepen-
dencies and low modularity influence the contributors’ communication,
thus verifying the socio-technical congruence. Hannebauer, 2016 argues that
a higher degree of modularity in FOSS projects lowers technical barriers
allowing newcomers to start development as soon as they gained a certain
understanding about the modules involved. According to E1 and E2 and
the contributor of Case A, the software architecture in the Catrobat project is
not ideal which “sometimes makes things simply untestable” (E2). As observed
in Case A, the desire to write “write cleaner/simpler/safer code” has been noted
in order to increase the attractiveness for future contributors since “all these
minuses push open-source developers away”. This confirms with the literature
review by Beecham et al., 2008 which reveals that “producing poor quality

83

9. Findings and recommendations

software” is a frequent de-motivator in software engineering. On the other
hand, Ye and Kishida, 2003 theorize that learning is one of the most frequent
reasons why developers contribute to FOSS projects. Thus, it is important
that developers can constantly learn from a project and value it from a
technical point of view because otherwise they may stop contributing and
move on to a different project (Scacchi, 2010).

As suggested by all experts, newcomers are getting discouraged because
“in this project, [...] code reviews are handled in a too negative way” (E1). It is
continued that contributors can be insulted rapidly when telling them that
their changes do not comply to certain standards or can be improved in
certain ways, although it is believed that no one “does that because he or
she wants to cause harm or wants to be evil in any manner” (E2). This concurs
with the observations of E1 who received a complaint from an external
contributor protesting about the way pull requests are handled in this
project which, according to the external contributor, was unusual for FOSS
projects. This is in accordance with the findings of Gousios, Storey, and
Bacchelli, 2016 arguing that contributors should have more empathy towards
new contributors when reviewing pull requests. Referring to code reviews,
E3 suggests to directly get in touch with the contributors using face-to-
face communication when ever possible. When collaborating remotely, it
is suggested to use any form of synchronous voice chatting. When using
an asynchronous form of communication, like mailing lists or comments
on GitHub, the interpersonal component is getting lost and people feel
more distanced from each other, which can sometimes have several negative
side effects (E3). A case study at Google reveals that the geographical
distance between the author and the reviewer is perceived as potential cause
of delays and misunderstandings (Sadowski et al., 2018). The researchers
found out that communication plays a critical role while performing code
reviews. Tone and power, referring to the ability to induce another person
to change something, were mentioned as possible source for frustration and
demotivation. In their study, Bacchelli and Bird, 2013 recommend that code
reviews should be done in-person or at least on a synchronous basis. It is
argued that developers have the need for richer forms of communication to
overcome the aforementioned issues. This is in accordance with the media
richness theory (MRT) by Daft and Lengel, 1986, which illustrates that
personal, direct communication is more effective for complex and unclear

84

9. Findings and recommendations

situations. Communications able to clarify ambiguous concerns, punctually
change awareness and give immediate feedback are referred to as rich.
As depicted in Appendix G, the richest media is face-to-face followed by
telephone whereas letters and impersonal written documents represent the
lowest information richness and effectiveness of communication (Daft and
Lengel, 1986).

Similar to that, it is claimed that face-to-face contact results in a “more
relaxed and personal atmosphere” (E1) and that “people start to talk about things
they would not write [on asynchronous communication channels]” (E2). As a
result, the expert mentions that you get to know many other people, their
experiences and interests which you would not when communicating on an
asynchronous basis. This goes in line with the outcomes of the case study
underpinning Proposition 4 where strong ties with the community were only
established when directly communicating on a frequent and synchronous
basis. It is crucial for newcomers to build strong ties with the community in
order to finally transform to long-term contributors. This transformation
is vital for FOSS projects in order to succeed in the long-run (Steinmacher,
Conte, Gerosa, et al., 2015; Trainer, Chaihirunkarn, Kalyanasundaram, et al.,
2014; Silva et al., 2017; Krogh, Spaeth, and Lakhani, 2003).

The importance of frequent communication is emphasized by E2 as well
as E1 who preferred to get in touch with his mentees on a daily basis.
Experience has shown that communicating on an infrequent basis, like once
a week, is not enough in order to familiarize with the project, especially
because of the its high complexity and its large scale (E2). As suggested in
Proposition 3, this was also observed in the case studies. Since newcomers rely
on support of the community (E2, E3, Case A, Case B, Case C), it is important
to quickly respond to their questions. Herbsleb and Grinter, 1999 argue that
developers strongly rely on informal ad hoc communications to manage
exceptions and eliminate uncertainties. The researchers claim that this
becomes challenging when being geographically separated, having different
timezones and cultural differences. Consistent with Steinmacher, Conte,
Gerosa, et al., 2015 who argue that delayed answers are a barrier affecting the
contributors’ motivation, deferred communication was seized as a problem
by both the community (Case A) and the contributors (Case B, Case C). This
is in line with the findings of Gousios, Storey, and Bacchelli, 2016 who state
that poor responsiveness is one of the biggest challenges and frequently

85

9. Findings and recommendations

generates frustration among the contributors. Jensen, King, and Kuechler,
2011 proved that both receiving an answer and receiving it in a timely
manner is fundamental for newcomers to enable a steady contribution. A
study of the Freenet1 project by Krogh, Spaeth, and Lakhani, 2003 illustrates
that 10.5% of the participants of their mailing list did not receive a response
resulting in not appearing on the same list again, underpinning the necessity
for frequent and direct communication.

While the need for documentation has been addressed by the contributors
of Case A, Case B and Case C, this has not been addressed by the intervie-
wees. Instead, the existing amount of documentation was considered to
be sufficient. Nevertheless, it has been emphasized by E1 and E2 that, in
the majority of cases, contributors are not aware of the strict guidelines
and unwritten standards required in this project. According to E1, there
is no exhaustive list of rules and standards which can be read by external
newcomers before opening a pull request which makes a large number of
interactions and a large number of change requests unavoidable. Gousios,
Storey, and Bacchelli, 2016 reported project compliance as one of the major
hurdles for newcomers. Knowledge about these unwritten standards can
only be passed on to newcomers by communicating with them. Referring to
the transfer of knowledge, the high contributor fluctuation and the diverse
degrees of experience and seniority set an additional challenge at Catrobat
(E3). However, it is crucial for new contributors to become familiar with
both the project’s technical and social rules and standards (Wang and Sarma,
2011). In their research, Bacchelli and Bird, 2013 argue that code reviews
offer a practical ability for a bidirectional knowledge transfer and to increase
the awareness of the team. Similar to that, it is claimed that when employing
pair programming, knowledge is constantly being passed on between the
contributors (Cockburn and Williams, 2001). This complies with E2, E3 and
Proposition 3 where pair programming was preferred when introducing new-
comers. From a technical point of view, the experts claim that there is almost
no difference between a remote and co-located collaboration, provided that
the appropriate tools are available. Nevertheless, several advantages were
mentioned in comparison to a remote collaboration, among other things
because “interpersonal matters helped to break down social barriers” (E2) and that
the contributors were more likely to ask questions whenever something was

1Freenet is a peer-to-peer platform for communication

86

9. Findings and recommendations

not clear to them. In their research, Crowston and Shamshurin, 2017 proved
that successful FOSS projects have more communication than unsuccessful
projects which correlates with the finding of this thesis (Proposition 3).

9.2. Recommendations

A set of recommendations are presented in order to help to lower the
entrance barriers for newcomers and to streamline the process of handling
pull requests and code reviews. The recommendations are based on three
basic principles: (a) awareness, (b) transparency; and, (c) frequent and direct
communication.

9.2.1. Find a task to start with

To enable a smooth project entry, it is crucial to easily find adequate tasks
that can be completed with the contributors’ pre-existing knowledge. While
a list of tickets can be easily found on Jira, it is currently not possible
to immediately determine the level of skills required for development.
Although recently the Catroid subproject has started to encode similar
things into the tickets’ name (see Figure E.1), it is recommended that this
essential information should be a required part of the project-wide Jira
workflow. An additional required dropdown field should ensure that this
information is filled out when tickets transform from the Issues Pool to Ready
for Development (see Figure D.1). This field should represent the level of
seniority required for a certain ticket (e.g. starter, medium, advanced) and
should be displayed on the Kanban board as well as used in the link on the
How to contribute section on GitHub2 as part of Jira’s filter query.

Additionally, in the current Jira workflow newly created bug tickets are
gathered in the Bug Backlog (Seniors only) workflow status. While senior
contributors can directly move these issues to the Ready for Development
status, newcomers (internal and external) can not start working on these

2https://github.com/Catrobat/Catroid/blob/develop/README.md, visited on 8 Au-
gust 2019

87

9. Findings and recommendations

tickets because of insufficient permissions. Nevertheless, it is important to
provide newcomers with a constant list of training tickets. Therefore it is
favorable to set high (or no) WIP limits for trainings tickets and move them
to Ready for Development as soon as possible.

9.2.2. Pull request checklists

As previously discussed, in many cases contributors are not aware of the
guidelines and standards required in this project. As a consequence a
large number of change requests need to passed on which increases the
time to merge and thus increases the lead time of a release (see Chapter 3).
As a result, this gradually generates frustration and demotivation among
both newcomers and code reviewers. To raise awareness and make policies
explicit, as suggested in one of the Kanban practices (see Chapter 3), it is
recommended to provide contributors with a prominent checklist which
can be reviewed before submitting a PR. This can be implemented as a list
of checkboxes within a PR template on GitHub3. As a result, this list should
make sure that developers do not miss anything important and thus remind
the author of a PR to:

• Include the name of the Jira ticket in the PR’s title
• Include a summary of the changes plus the relevant context
• Choose the proper base branch
• Confirm that the changes follow the project’s coding guidelines
• Verify that the changes generate no compiler or linter warnings
• Perform a self-review of the changes
• Verify to commit no other files than the intentionally changed ones
• Include reasonable and readable tests verifying the added or changed

behavior
• Confirm that new and existing unit tests pass locally
• Check that the commits’ message style matches the project’s guideline
• Stick to the project’s git workflow (rebase and squash your commits)
• Verify that your changes do not have any conflicts with the base branch

3https://help.github.com/en/articles/creating-a-pull-request-template-for-your-
repository, visited on 9 August 2019

88

9. Findings and recommendations

• After the PR, verify that all CI checks have passed
• Read further details on the wiki pages (Commit message guidelines4 and

Creating a pull request5)

To continue, this template can also serve as an additional checklist6 for code
reviewers, lowering the barrier for contributors to initiate or take part in
code reviews. The aforementioned list includes issues emerged during the
case studies, but is not exhaustive; it needs to be adapted on a regular basis.
An example of such a checklist is illustrated in Figure 9.1.

Figure 9.1.: An example for a pull request template on GitHub

4https://github.com/Catrobat/Catroid/wiki/Commit-Message-Guidelines, visited on
9 August 2019

5https://github.com/Catrobat/Catroid/wiki/Creating-a-pull-request, visited on 9

August 2019

6In addition to https://confluence.catrob.at/display/KNOWHOW/How+to+do+Code+Reviews,
visited on 10 August 2019

89

9. Findings and recommendations

9.2.3. Code review code of conduct

Code reviews constitute one of the most central parts of collaborative
software engineering. As illustrated before, they ensure that changes meet
the project’s quality standards, allow to transfer knowledge and in many
cases represent the first point of contact between a newcomer and the
community. Therefore it is important to conduct these reviews as effectively
as possible which requires a set of socio-technical skills. As emphasized in
the previous section, at Catrobat, there is still room for improvement when
it comes to code reviews. Passing on multiple change requests can be a
frustrating and demotivating part for both the reviewer and the developer.
While the previously mentioned checklist could help to lower the number
of change requests in some cases, it is most essential to develop an effective
communication and reviewing culture. Therefore it is necessary to raise
awareness to:

• Be constructive. Make sure that comments have a useful purpose and
that comments are about the code and not about the code’s author.

• Give suggestions instead of commands. Ask questions instead of giving
answers. Try to understand the author’s motives for choosing a certain
implementation.

• Distinguish personal preferences from project guidelines. Do not try to make
the code look like it was written by the reviewer.

• Share responsibilities and avoid selective code ownership. Avoid phrases
like “your code” or “my function”. Avoid a blame culture.

• Provide positive feedback. Try to occasionally provide positive feedback
when deserved, but do not exaggerate.

• Learn from each other. Celebrate mistakes and take up the opportunity
to share knowledge.

• Be responsive. Quickly respond to questions and be accessible to clarify
misunderstandings. If possible meet in person, initiate a remote desk-
top sharing conference, or, if not possible, at least communicate on a
synchronous basis.

Most importantly, it is fundamental that code reviews are based on technical
facts instead of personal preferences and that change requests are commu-
nicated in a technical and non-derogatory way. These social values could be

90

9. Findings and recommendations

outlined together with a code of conduct (CoC) for code reviews. While in
literature it is recommended that CoCs should be collaboratively developed
by an ethics commission, similarities among communities may plead for
the reusage of existing CoCs (Tourani, Adams, and Serebrenik, 2017). The
researchers crawled several hundreds FOSS projects and found out that
the Contributor Covenant7 offers a practicable template designed for FOSS
projects. Like most codes, the Contributor Covenant fosters a respectful, wel-
coming behavior and prosecutes sexist and racist language, harassment and
violence. While “constructive criticism” plays a central role, it is suggested
to be “respectful of differing viewpoints and experiences” which offers a very
good starting point for developing an effective code review culture. Beyond
that, it is crucial that these social value are lived by the community, most
importantly by the senior contributors and code reviewers to exemplify and
foster a welcoming learning culture.

9.2.4. Natural mentoring culture

Experience of the case studies has shown that mentorship offers a great op-
portunity for newcomers to find their way into the project. Newcomers can
overcome hurdles related to (a) technical experience (like software testing),
(b) domain expertise; and, (c) project guidelines. While programs like GSoC
offer a one-to-one mentorship, this is not feasible for all newcomers due to
the project’s limited resources. Therefore it is essential to develop a natural
mentoring culture as part of the daily workflow. Contributors should be
motivated to do code reviews in person or at least on a synchronous basis
when communicating remotely. The results of the case studies have shown
that Slack offers a great tool for synchronous communication and a great
solution for remote pair programming. Furthermore, it is presented that
personal code reviews and pair programming sessions (either remotely
or face-to-face) foster a bidirectional knowledge transfer and reduce the
occurrence of misunderstandings and delays. In addition to this, a positive
influence on community bonding, team awareness, and on the contributors’
motivation has been observed. Therefore it is necessary to motivate contrib-
utors to perform pair programming sessions as often as possible, which has

7https://contributor-covenant.org, visited on 9 August 2019

91

9. Findings and recommendations

also been suggested in the XP methodology (see Chapter 3). For internal
contributors it is recommended to enforce regular sessions by requiring a
certain amount of tickets to be implemented as pairs; ideally starting from
the very beginning of the contribution to expedite the onboarding process.

92

10. Limitations

10.1. Threats to validity

In his book, Yin, 2017 recommends four tests to establish the quality of
empirical case studies:

• Construct validity examines whether a study investigates what it claims
to evaluate. This test ensures that data collected by the researcher is
not biased by “subjective” judgements (Yin, 2017). Quantitative and
qualitative data (see Section 6.2) from multiple sources were collected
to increase the construct validity. The author had no control over the
outcomes of the cases since the study was conducted almost one year
after the end of the last case. Additionally, triangulation was applied
to enable observations from different points of views, as suggested
by Flick, 2004. A further tactic to increase construct validity is the
use of a draft case study (Yin, 2017) which has not been conducted,
representing a potential limitation of this thesis.

• Internal validity assures that no other variable expect the one under
study is causing the result (Campbell, 1986). Seaman, 1999 emphasizes
that measures must be taken by the researcher to ensure that the
participants being observed should not constantly be aware of being
observed in order to ensure that the inspected behavior is “normal”.
At the time these case studies were conducted, neither the author nor
the contributors were aware of the existence of this thesis, thus having
no possibility to intentionally influence their behavior. According to
Yin, 2017, internal validity is mainly a concern for explanatory case
studies rather than for descriptive case studies (like the one in this

93

10. Limitations

thesis).

• External validity deals with the problem of arguing whether a study’s
findings are generalizable to settings other than described in the study
(Yin, 1984). As mentioned in Chapter 5, the purpose of this thesis
is to extend and generalize theories (analytic generalization) instead
of trying to generalize the results from this case study to a wider
population (statistical generalization), as suggested by Yin, 1984 and
Strauss and Corbin, 1990. Deducted from this it can be said that the
findings observed within the Catrobat FOSS project, do not implicitly
need to occur in other projects. The propositions in this thesis are
solely made in conjunction with the project under study. Furthermore,
it is important to state that the interview outcomes are solely based on
the expert’s personal judgements and thus can not be statistically gen-
eralized to all project members. To get a more representative insight
into the contributors’ views, additional interviews or questionnaires
need to be conducted. Finally, to get a more holistic picture of the
research topic, it would be necessary to make further research within
various other FOSS projects. However, it could be difficult to draw
cross-project conclusions due to the projects’ diverse organizational
structures, guidelines and workflows.

• Reliability ensures that an external researcher is able to conduct the
same case study over again and to be able to reproduce the same
findings. In order to enable this, a detailed description of the research
method utilized in this thesis has been stated in Section 5. Data has
been compiled into a research database separated from the actual
research report which can be shared individually to enable the in-
spection of the raw data by other people in order to replicate the
conclusions of the case study. The collected evidence is stored in a
retrievable form as illustrated in Figure 6.1, increasing the reliability of
the case study (Yin, 2017). To continue, the expert interviews have been
transcribed to enable a separate analysis by additional researchers.
Due to the limitations of the thesis, the open, axial and selective coding
was not reviewed by other investigators. Although codes have been
precisely characterized by properties and keywords, the actual coding
decision was solely made by the author of this thesis, offering a possi-

94

10. Limitations

bility to obtain a diverging categorization when performed by other
researchers. Whereas in a scientific setup, the coding phase could have
been conducted by multiple researchers who mutually agree on the
final coding, this can be identified as a limitation of this thesis.

10.2. The third generation of FOSS

Figure 10.1 illustrates a transition model proposed by Yamakami, 2011

where FOSS shifts from a free economy to a cost-benefit economy. FOSS
started with an economy where gifts were the basic construct having no
traditional economic rules. A contribution was made as a gift, in return to
the gift of sharing FOSS with others. In the subsequent years, open source
communities became greater, eventually resulting in the evolvement of social
norms and ties. The emerging guild economy was built upon an association of
craftsmen where the community becomes the core of the model. Nowadays
this model is shifting towards a cost-benefit economy applying traditional
economic rules.

This thesis does not focus on the cost-benefit economy and is not targeting
to put the outcome of a contribution in relation to the costs resulting
from support and mentoring. Disregarding cost-benefits analyses, it is not
questioned whether the mentorship of a contributor is the best investment
of time and money or whether the resources necessary for mentorship can
be employed differently in a more efficient way.

Gift economy
Craftsmanship

economy
(guild economy)

Cost and benefit
economy

Figure 10.1.: The three generation view of the FOSS economy types (Yamakami, 2011)

95

11. Conclusion and future work

This thesis qualitatively investigates first-time contributions to the collec-
tive software development process of an agile FOSS project. Presenting the
case of Catrobat, a multiple case study was conducted to identify the main
challenges newcomers have to overcome in order to place their first contribu-
tions. The results emerged from qualitative and quantitative data collected
from the analysis of multiple contributions within the GSoC program as
well as from interviews conducted with long-term experts. Based on the
triangulation of the outcomes, recommendations are given to streamline the
collaborative software development process at Catrobat and thus lower the
project’s entry barriers.

11.1. Future work

The case studies elaborated in this thesis could be used as a draft case
study for further research, as suggested in Chapter 10. The findings in
Chapter 9 could serve as an input for a larger study targeting a greater
set of Catrobat’s contributors by conducting quantitative research. Addi-
tionally, experiments could be conducted on how to efficiently overcome
the aforementioned challenges. To continue, further investigations could
focus on the differentiation of internal and external contributors and on
how contribution can be optimized for both parties. All data, observations
and assumptions are exclusively limited to the Catrobat project and do not
have to apply for other projects. To get a more holistic understanding of the
socio-technical environment, future researchers could compare the case of
Catrobat with other FOSS projects.

96

Bibliography

Ahmad, Muhammad Ovais, Jouni Markkula, and Markku Oivo (2013).
“Kanban in software development: A systematic literature review.”
In: 2013 39th Euromicro conference on software engineering and advanced
applications. IEEE, pp. 9–16 (cit. on pp. 20, 21, 83).

Anderson, David J. and Andy Carmichael (2016). Essential kanban condensed.
Blue Hole Press (cit. on pp. 19–21, 83).

Bacchelli, Alberto and Christian Bird (2013). “Expectations, outcomes, and
challenges of modern code review.” In: Proceedings of the 2013 interna-
tional conference on software engineering. IEEE Press, pp. 712–721 (cit. on
pp. 84, 86).

Beck, Kent (2003). Test-driven development: by example. Addison-Wesley Pro-
fessional (cit. on pp. 29, 32, 33).

Beck, Kent, Mike Beedle, et al. (2001). “Manifesto for agile software devel-
opment.” In: (cit. on pp. 15, 34).

Beck, Kent and Erich Gamma (2000). Extreme programming explained: embrace
change (cit. on pp. 16, 17, 30, 31, 33).

Beecham, Sarah et al. (2008). “Motivation in Software Engineering: A sys-
tematic literature review.” In: Information and software technology 50.9-10,
pp. 860–878 (cit. on p. 83).

Bogner, Alexander (2014). Interviews mit Experten: Eine praxisorientierte Einführung
(Qualitative Sozialforschung) (German Edition). Springer VS. isbn: 9783531194158

(cit. on pp. 39, 72).
Bolici, Francesco, James Howison, and Kevin Crowston (2009). “Coordina-

tion without discussion? Socio-technical congruence and Stigmergy in
Free and Open Source Software projects.” In: (cit. on p. 1).

Bowler, Michael (2019). Truck factor. url: http://www.agileadvice.com/
2005/05/15/agilemanagement/truck-factor (visited on 6 February
2019) (cit. on p. 18).

97

http://www.agileadvice.com/2005/05/15/agilemanagement/truck-factor
http://www.agileadvice.com/2005/05/15/agilemanagement/truck-factor

Bibliography

Campbell, Donald T. (1986). “Relabeling internal and external validity for ap-
plied social scientists.” In: New Directions for Program Evaluation 1986.31,
pp. 67–77 (cit. on p. 93).

Canfora, Gerardo et al. (2012). “Who is going to mentor newcomers in open
source projects?” In: Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering. ACM, p. 44 (cit. on
pp. 1, 82).

Chow, Tsun and Dac-Buu Cao (2008). “A survey study of critical success
factors in agile software projects.” In: Journal of systems and software 81.6,
pp. 961–971 (cit. on p. 16).

Cockburn, Alistair (2001). Agile Software Development. Addison-Wesley Pro-
fessional. isbn: 0201699699 (cit. on pp. 15, 33).

Cockburn, Alistair and Laurie Williams (2001). “Extreme Programming
Examined.” In: ed. by Giancarlo Succi and Michele Marchesi. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc. Chap. The
Costs and Benefits of Pair Programming, pp. 223–243. isbn: 0-201-71040-
4 (cit. on pp. 18, 86).

Conway, Melvin E. (1968). “How do committees invent.” In: Datamation 14.4,
pp. 28–31 (cit. on pp. 1, 83).

Crowston, Kevin and James Howison (2006). “Hierarchy and centralization
in free and open source software team communications.” In: Knowledge,
Technology & Policy 18.4, pp. 65–85 (cit. on p. 7).

Crowston, Kevin, Qing Li, et al. (2007). “Self-organization of teams for
free/libre open source software development.” In: Information and soft-
ware technology 49.6, pp. 564–575 (cit. on p. 1).

Crowston, Kevin and Ivan Shamshurin (2017). “Core-periphery communi-
cation and the success of free/libre open source software projects.” In:
Journal of Internet Services and Applications 8.1, p. 10 (cit. on pp. 7, 87).

Daft, Richard L. and Robert H. Lengel (1986). “Organizational Information
Requirements, Media Richness, and Structural Design.” In: Management
Science 32.5, pp. 554–571 (cit. on pp. 84, 85, 115).

David, Paul A., Andrew Waterman, and Seema Arora (2003). “FLOSS-US
the free/libre/open source software survey for 2003.” In: (cit. on pp. 7,
9, 13).

Dinh-Trong, Trimg and James M. Bieman (2004). “Open source software
development: a case study of FreeBSD.” In: 10th International Symposium
on Software Metrics, 2004. Proceedings. IEEE, pp. 96–105 (cit. on p. 9).

98

Bibliography

Ducheneaut, Nicolas (2005). “Socialization in an open source software com-
munity: A socio-technical analysis.” In: Computer Supported Cooperative
Work (CSCW) 14.4, pp. 323–368 (cit. on p. 9).

Ebert, Christof (2008). “Open source software in industry.” In: IEEE Software
25.3, pp. 52–53 (cit. on p. 1).

Epping, Thomas (2011). Kanban für die Softwareentwicklung. Springer-Verlag
(cit. on pp. 19, 20, 83).

Fellhofer, Stephan, Annemarie Harzl, and Wolfgang Slany (2015). “Scaling
and Internationalizing an Agile FOSS Project: Lessons Learned.” In:
IFIP International Conference on Open Source Systems. Springer, pp. 13–22

(cit. on pp. 34, 35, 46, 81).
Fitzgerald, Brian (2006). “The transformation of open source software.” In:

MIS quarterly, pp. 587–598 (cit. on pp. 5, 6, 81).
Flick, Uwe (2004). “Triangulation in qualitative research.” In: A companion to

qualitative research 3, pp. 178–183 (cit. on pp. 39, 93).
Fogel, Karl (2009). “How To Run A Successful Free Software Project-Producing

Open Source Software.” In: (cit. on pp. 9, 35).
Fogel, Karl and Moshe Bar (1999). Open source development with CVS. Coriolis

Group Books (cit. on pp. 7, 8).
GitHub (2019). The State of the Octoverse. url: https://octoverse.github.

com/ (visited on 31 May 2019) (cit. on pp. 1, 4).
Glaser, Barney and Anselm Strauss (1967). The discovery of grounded theory:

Strategies for qualitative research. New York: Aldine de Gruyter (cit. on
pp. 37–39).

Gousios, Georgios, Margaret-Anne Storey, and Alberto Bacchelli (2016).
“Work practices and challenges in pull-based development: the contrib-
utor’s perspective.” In: 2016 IEEE/ACM 38th International Conference on
Software Engineering (ICSE). IEEE, pp. 285–296 (cit. on pp. 82, 84–86).

Halaweh, Mohanad, Christine Fidler, and Steve McRobb (2008). “Integrating
the Grounded Theory Method and Case Study Research Methodology
Within IS Research: A Possible ’Road Map’.” In: ICIS. Association for
Information Systems, p. 165 (cit. on p. 38).

Halloran, Timothy J. and William L. Scherlis (2002). “High quality and open
source software practices.” In: 2nd Workshop on Open Source Software
Engineering (cit. on p. 8).

99

https://octoverse.github.com/
https://octoverse.github.com/

Bibliography

Hannebauer, Christoph (2016). “Contribution Barriers to Open Source
Projects.” PhD thesis. University of Duisburg-Essen, Germany (cit. on
p. 83).

Herbsleb, James D. and Rebecca E. Grinter (1999). “Architectures, coordina-
tion, and distance: Conway’s law and beyond.” In: IEEE software 16.5,
pp. 63–70 (cit. on pp. 1, 85).

Hippel, Eric von and Georg von Krogh (2003). “Open-Source Software and
the ”Private -Collective” Innovation Model: Issues for Organization
Science.” In: Organization Science 14.2, pp. 208–223 (cit. on pp. 6, 27, 81).

Jensen, Carlos, Scott King, and Victor Kuechler (2011). “Joining free/open
source software communities: An analysis of newbies’ first interactions
on project mailing lists.” In: 2011 44th Hawaii international conference on
system sciences. IEEE, pp. 1–10 (cit. on pp. 2, 8–10, 13, 14, 25, 86).

Kniberg, Henrik and Mattias Skarin (2010). Kanban and Scrum-making the
most of both. Lulu.com (cit. on p. 83).

Korkala, Mikko and Pekka Abrahamsson (2007). “Communication in dis-
tributed agile development: A case study.” In: 33rd EUROMICRO Con-
ference on Software Engineering and Advanced Applications (EUROMICRO
2007). IEEE, pp. 203–210 (cit. on p. 1).

Krogh, Georg von, Stefan Haefliger, et al. (2012). “Carrots and rainbows:
Motivation and social practice in open source software development.”
In: MIS quarterly 36.2, pp. 649–676 (cit. on p. 1).

Krogh, Georg von, Sebastian Spaeth, and Karim R. Lakhani (2003). “Com-
munity, joining, and specialization in open source software innovation: a
case study.” In: Research Policy 32. (visited on 30 September 2013) (cit. on
pp. 2, 9, 81, 85, 86).

Lakhani, Karim R. and Robert G. Wolf (2003). “Why hackers do what they
do: Understanding motivation and effort in free/open source software
projects.” In: (cit. on p. 10).

Martin, Robert C. (2006). Agile Principles, Patterns, and Practices in C#. Prentice
Hall. isbn: 0131857258 (cit. on pp. 15, 18).

Martin, Robert C. (2008). Clean Code: A Handbook of Agile Software Craftsman-
ship. Prentice Hall. isbn: 9780132350884 (cit. on pp. 18, 32, 75, 82).

Mayring, Philipp (2000). “Qualitative Content Analysis.” In: Forum Quali-
tative Sozialforschung/Forum: Qualitative Social Research. Vol. 1. 2 (cit. on
p. 39).

100

Bibliography

Mockus, Audris, Roy T. Fielding, and James D. Herbsleb (2002). “Two case
studies of open source software development: Apache and Mozilla.” In:
ACM Transactions on Software Engineering and Methodology (TOSEM) 11.3,
pp. 309–346 (cit. on p. 7).

Müller, Matthias, Christian Schindler, and Wolfgang Slany (2019). “Engaging
Students in Open Source: Establishing FOSS Development at a Univer-
sity.” In: Proceedings of the 52nd Hawaii International Conference on System
Sciences (cit. on pp. 24–26).

Nafus, Dawn, James Leach, and Bernhard Krieger (2011). “Deliverable
D16: Gender: Integrated Report of Findings.” In: Free/Libre/Open Source
Software: Policy Support. (Cit. on p. 13).

National Academies of Sciences (2018). Assessing and responding to the growth
of computer science undergraduate enrollments. National Academies Press
(cit. on p. 24).

Pandit, Naresh R. (1996). The creation of theory: a practical examination of the
grounded theory method. Manchester Business School (cit. on p. 38).

Poo-Caamaño, Germán et al. (2017). “Herding cats in a FOSS ecosystem: a
tale of communication and coordination for release management.” In:
Journal of Internet Services and Applications 8.1, p. 12 (cit. on pp. 9, 13).

Raymond, Eric (1999). “The cathedral and the bazaar.” In: Knowledge, Tech-
nology & Policy 12.3, pp. 23–49 (cit. on pp. 3, 4).

Ryan, Richard M. and Edward L. Deci (2000). “Intrinsic and extrinsic moti-
vations: Classic definitions and new directions.” In: Contemporary educa-
tional psychology 25.1, pp. 54–67 (cit. on pp. 9, 10).

Sadowski, Caitlin et al. (2018). “Modern code review: a case study at google.”
In: Proceedings of the 40th International Conference on Software Engineering:
Software Engineering in Practice. ACM, pp. 181–190 (cit. on p. 84).

Scacchi, Walt (2002). “Understanding the requirements for developing open
source software systems.” In: IEE Proceedings - Software 149.1, pp. 24–39

(cit. on pp. 6, 27, 34, 81).
Scacchi, Walt (2005). “Socio-technical interaction networks in free/open

source software development processes.” In: Software process modeling.
Springer, pp. 1–27 (cit. on pp. 6, 81).

Scacchi, Walt (2010). “Collaboration practices and affordances in free/open
source software development.” In: Collaborative software engineering.
Springer, pp. 307–327 (cit. on pp. 1, 84).

101

Bibliography

Schranz, Thomas et al. (2019). “Contributors’ Impact on a FOSS Project’s
Quality.” In: Proceedings of the 2Nd ACM SIGSOFT International Workshop
on Software Qualities and Their Dependencies. SQUADE 2019. Tallinn,
Estonia: ACM, pp. 35–38 (cit. on p. 71).

Seaman, Carolyn B. (1999). “Qualitative methods in empirical studies of
software engineering.” In: IEEE Transactions on software engineering 25.4,
pp. 557–572 (cit. on pp. 38, 42, 72, 93).

Silva, Jefferson et al. (2017). “How long and how much: What to expect from
Summer of Code participants?” In: 2017 IEEE International Conference
on Software Maintenance and Evolution (ICSME). IEEE, pp. 69–79 (cit. on
pp. 12, 85).

Slack (2019). Removal of remote screen control in Slack Calls. url: https://
get.slack.help/hc/en-%20us/articles/360022908874-Removal-of-

remote-screen-control-in-Slack-Calls (visited on 23 August 2019)
(cit. on p. 64).

Slany, Wolfgang (2012). “A mobile visual programming system for Android
smartphones and tablets.” In: 2012 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). IEEE, pp. 265–266 (cit. on pp. 22,
24).

Stallman, Richard (2002). Free software, free society: Selected essays of Richard
M. Stallman. Lulu. com (cit. on pp. 3, 4).

Steinmacher, Igor, Tayana Conte, Marco Aurélio Gerosa, et al. (2015). “Social
barriers faced by newcomers placing their first contribution in open
source software projects.” In: Proceedings of the 18th ACM conference on
Computer supported cooperative work & social computing. ACM, pp. 1379–
1392 (cit. on pp. 1, 12, 81, 82, 85).

Steinmacher, Igor, Tayana Conte, Christoph Treude, et al. (2016). “Overcom-
ing open source project entry barriers with a portal for newcomers.”
In: Proceedings of the 38th International Conference on Software Engineering.
ACM, pp. 273–284 (cit. on p. 34).

Steinmacher, Igor, Marco Aurelio Graciotto Silva, et al. (2015). “A systematic
literature review on the barriers faced by newcomers to open source
software projects.” In: Information and Software Technology 59, pp. 67–85

(cit. on p. 13).
Steinmacher, Igor, Igor Scaliante Wiese, and Marco Aurélio Gerosa (2012).

“Recommending mentors to software project newcomers.” In: 2012 Third

102

https://get.slack.help/hc/en-%20us/articles/360022908874-Removal-of-remote-screen-control-in-Slack-Calls
https://get.slack.help/hc/en-%20us/articles/360022908874-Removal-of-remote-screen-control-in-Slack-Calls
https://get.slack.help/hc/en-%20us/articles/360022908874-Removal-of-remote-screen-control-in-Slack-Calls

Bibliography

International Workshop on Recommendation Systems for Software Engineering
(RSSE). IEEE, pp. 63–67 (cit. on pp. 2, 10).

Strauss, Anselm and Juliet Corbin (1990). Basics of Qualitative Research:
Grounded Theory Procedures and Techniques. Sage Publications (cit. on
pp. 37, 38, 94).

Sugimori, Y. et al. (1977). “Toyota production system and kanban system
materialization of just-in-time and respect-for-human system.” In: The
international journal of production research 15.6, pp. 553–564 (cit. on p. 19).

Syeed, M.M. Mahbubul and Imed Hammouda (2013). “Socio-technical con-
gruence in OSS projects: Exploring Conway’s law in FreeBSD.” In: IFIP
International Conference on Open Source Systems. Springer, pp. 109–126

(cit. on pp. 1, 83).
Tourani, Parastou, Bram Adams, and Alexander Serebrenik (2017). “Code

of conduct in open source projects.” In: 2017 IEEE 24th International
Conference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, pp. 24–33 (cit. on p. 91).

Trainer, Erik, Chalalai Chaihirunkarn, and James D. Herbsleb (2013). “The
Big Effects of Short-term Efforts: Mentorship and Code Integration in
Open Source Scientific Software.” In: Journal of Open Research Software
(cit. on pp. 1, 12, 82).

Trainer, Erik, Chalalai Chaihirunkarn, Arun Kalyanasundaram, et al. (2014).
“Community code engagements: summer of code & hackathons for
community building in scientific software.” In: Proceedings of the 18th
International Conference on Supporting Group Work. ACM, pp. 111–121

(cit. on pp. 12, 85).
Turner III, Daniel W. (2010). “Qualitative interview design: A practical guide

for novice investigators.” In: The qualitative report 15.3, pp. 754–760 (cit.
on pp. 39, 72).

Wang, Jianguo and Anita Sarma (2011). “Which bug should I fix: helping
new developers onboard a new project.” In: Proceedings of the 4th Interna-
tional Workshop on Cooperative and Human Aspects of Software Engineering.
ACM, pp. 76–79 (cit. on pp. 82, 86).

Williams, Laurie et al. (2000). “Strengthening the case for pair program-
ming.” In: IEEE software 17.4, pp. 19–25 (cit. on pp. 18, 33).

Yamakami, Toshihiko (2011). “The Third Generation of OSS: A Three-Stage
Evolution from Gift to Commerce-Economy.” In: Open Source Systems:
Grounding Research. Ed. by Scott A. Hissam et al. Berlin, Heidelberg:

103

Bibliography

Springer Berlin Heidelberg, pp. 368–378. isbn: 978-3-642-24418-6 (cit. on
p. 95).

Yamauchi, Yutaka et al. (2000). “Collaboration with Lean Media: how open-
source software succeeds.” In: Proceedings of the 2000 ACM conference on
Computer supported cooperative work. ACM, pp. 329–338 (cit. on pp. 9, 10).

Ye, Yunwen and Kouichi Kishida (2003). “Toward an understanding of the
motivation Open Source Software developers.” In: Proceedings of the 25th
international conference on software engineering. IEEE Computer Society,
pp. 419–429 (cit. on pp. 5–7, 10, 25, 27, 84).

Yin, Robert K. (1984). Case Study Research: Design and Methods. Applied social
research methods series. Sage Publications, Beverly Hills, London, New
Delhi (cit. on pp. 37, 38, 72, 94).

Yin, Robert K. (2017). Case Study Research and Applications: Design and Methods.
SAGE Publications, Inc. isbn: 1506336167 (cit. on pp. 67, 93, 94).

104

Appendix A.

List of abbreviations

ASD Adaptive software development

CoC Code of conduct

CVS Concurrent versions system

DM Direct message

FDD Feature-driven development

FS Free software

FSF Free Software Foundation

FOSS Free and open source software

GSoC Google Summer of Code

IDE Integrated development environment

IRC Internet Relay Chat

JIT Just-in-time

LD Lean software development

MRT Media richness theory

OSI Open Source Initiative

OSS Open source software

PO Product owner

105

Appendix A. List of abbreviations

PR Pull request

WIP Work in progress

XP Extreme programming

106

Appendix B.

Change request on GitHub

Figure B.1 illustrates an example of a change request made to a submission
on GitHub1 using GitHub’s code review functionality.

Figure B.1.: An example of a change request on GitHub

1https://github.com/Catrobat/Catty/pull/1001, visited on 8 August 2019

107

Appendix C.

Kanban board

Figure C.1 represents a digital kanban board as visualized by Catrobat’s
Jira1.

Figure C.1.: An example of a kanban board

1https://jira.catrob.at/secure/RapidBoard.jspa?rapidView=127, visited on 21 June 2019

108

Appendix D.

Jira workflow

The Jira workflow employed in all sub-projects of the Catrobat foundation
is illustrated in Figure D.1 (as of 8 August 2019).

Figure D.1.: The Jira workflow at Catrobat

109

Appendix E.

Training ticket

Figure E.1 shows an example for a training ticket in Jira1.

Figure E.1.: An example of a training ticket in Jira

1https://jira.catrob.at/browse/CATROID-334, visited on 8 August 2019)

110

Appendix F.

Interview guideline

This section illustrates the original version of the interview guideline in
German.

111

Interview Leitfaden
Communication in an Agile FOSS Project: A Socio-Technical Case Study

1. Einführung
Vorstellung des Forschungsthemas und Interviewablaufs, 1 Minute (Interviewer) 

● Danke für die Bereitschaft zum Interview
● Einführung in das Forschungsthema

○ Zusammenarbeit und Kommunikation mit “neuen Contributors”
○ Anfängliche Probleme

■ welche Fragen stellen sie, welche Probleme gibt es?
● Erklärung des Interviewablaufs

○ Zeitlicher Rahmen (ca. 45 Minuten)
○ Erläuterung warum der Interviewleitfaden notwendig ist
○ Offene Antworten wünschenswert
○ Zwischenfragen können jederzeit gestellt werden
○ Es sind auch kritische Aussagen möglich und wünschenswert

● Anonymität zusichern
● Erlaubnis für Aufnahme erbeten

[Aufnahmegerät starten]

2. Allgemeine Einstiegsfragen
Einstiegsfragen zum “Aufwärmen”, 2 Minuten

● Können Sie zum Einstieg schildern, was Ihre Aufgabe bei Catrobat ist oder war?

3. Betreuung von Contributors
Relevanz für das Forschungsthema, 4 Minuten

● Haben Sie in den letzten Jahren Newcomers in das Projekt eingeführt bzw. diese bei
ihrer “Contribution” betreut - wie es beispielsweise bei Programmen wie dem “Google
Summer of Code” verlangt wird?

● Wie würden Sie deren Erfahrung - vor Ihrer Betreuung - im Hinblick auf
○ …mobile App Entwicklung einschätzen?
○ …visuelle Programmiersprachen, insbesondere Block-basierende

Programmiersprachen einschätzen?
● Waren die Programmiersprachen Scratch oder Catrobat bereits bekannt? 

4. Kommunikation
Informationsaustausch und Zusammenarbeit, 4 Minuten 

● Wie oft haben Sie mit den Contributors kommuniziert?
● Wie bzw. über welche Kanäle haben Sie kommuniziert?
● Über welche Themen wurden hauptsächlich kommuniziert?

5. Probleme mit der Kommunikation
Synchron vs. asynchron, Response time, 6 Minuten 

● Sind hinsichtlich der Kommunikation irgendwelche Probleme aufgetreten?
● Hat es einen Unterschied zwischen verschiedenen Kommunikationsformen gegeben?

○ beispielsweise Voice-Chats und Desktop-sharing im Vergleich zu Text-Chats
● Haben Sie den Contributor jemals persönlich getroffen?

○ falls “Ja” -> GO TO 5a
○ falls “Nein” -> GO TO 6 

5a. Vorort vs. Remote
Unterschiede, Vor- und Nachteile, 3 Minuten 

● Wenn Sie sich an die Zusammenarbeit zurückerinnern, hat es Unterschiede in der
Zusammenarbeit und Kommunikation vor Ort und über das Internet gegeben?

6. Anfängliche Probleme
Probleme beim Projekteinstieg, 6 Minuten 

● Können Sie einige Hürden nennen, die es den Neulingen besonders schwer gemacht
haben in das Projekt einzusteigen?

● Können Sie sich noch an den ersten Pull-Request erinnern?

○ Hat es sich hier um einen einfachen Bugfix gehandelt oder war das bereits eine
Implementierung eines neuen Features?

● Wie ist der Contributor mit den vorhandenen Dokumentationen zurechtgekommen?

7. Probleme während der Contribution
Probleme während der Implementierung, Change Requests, Code-Base, 12 Minuten 

● Gab es Probleme, die wiederkehrend aufgetreten sind?
● Gab es Situationen in denen der Newcomer nicht mehr selbstständig weiter arbeiten

konnte und auf Hilfe von der Community angewiesen war?
● Wurden PRs in der Regel sofort akzeptiert oder waren mehrere Change-Requests

notwendig?
○ Falls “Ja”: worüber ging es hauptsächlich in diesen Change Requests?

● Inwiefern haben sich technische Probleme auf die Motivation ausgewirkt? 

8. Community bonding
Soziale Ebene, 3 Minuten 

● Wäre es Ihnen aufgefallen, dass der Contributor auch mit anderen Mitgliedern der
Catrobat Community in Kontakt getreten ist?

● Ist der Contributor nach wie vor aktiv tätig?
○ falls “Nein”: wie lange war er nach dem Program (bspw. GSoC) noch aktiv?

Zusatzfragen (optional)

● Was wurde gemacht währenddessen der Contributor auf Hilfe der Community gewartet

hat und selbstständig nicht mehr weiterarbeiten konnte?
● Wurde parallel an mehreren Tickets gearbeitet?
● Haben Sie Remote-Desktop Sessions oder Pair-Programming betrieben?
● Gab es irgendwelche gröbere Probleme, die eventuell sogar zum Ausschluss aus der

Community führten?
● Hatte es Probleme mit der Verständlichkeit der Code-Base gegeben?

○ Falls “Ja”: inwiefern hat sich das auf die Motivation ausgewirkt?
● Wurde die Kommunikation eher von Ihnen oder dem Contributor initiiert?
● Gab es kulturelle Unterschiede, die einen Einfluss auf die Kommunikation bzw.

Zusammenarbeit im Allgemeinen hatten?

Appendix G.

Media richness theory

Figure G.1 depicts the effectiveness and richness of different communication
media, as suggested by Daft and Lengel, 1986.

Ef
fe

ct
iv

en
es

s
of

 c
om

m
un

ic
at

io
n

Low

High

Face-to-face

Video conferencing

Voice chatting
Telephone

Letters
Emails

Personal written documents

Unpersonal written documents

Figure G.1.: The richness of different communication media (Daft and Lengel, 1986)

115

	Abstract
	Introduction
	Outline

	Free and Open Source Software (FOSS)
	Roles
	Community structure
	Development practices
	Communication
	Motivation
	Community engagements
	Google Summer of Code
	Google Code-in

	Entrance barriers
	Demographics

	Agile software development
	Extreme Programming (XP)
	Variables and values
	Activities and practices

	Kanban
	Practices

	Catrobat: an agile FOSS project
	Motivation and educational aspects
	Community structure
	Roles

	Contributors and Demographics
	Development practices
	Issue tracking
	The Planning Game
	Code repository
	Code review
	Continuous integration
	Test-driven development (TDD)
	Pair programming

	Documentation
	Communication

	Research design
	Case studies
	Units of analysis
	Data collection
	Case A – technical experience meets infrequent asynchronous communication
	First contact
	Communication
	Contribution
	Summary

	Case B – moderate technical experience meets frequent asynchronous communication
	First contact
	Communication
	Contribution
	Summary

	Case C – low technical experience meets intense synchronous communication
	First contact
	Communication
	Contribution
	Summary

	Case study outcomes and propositions
	Find a task to start with
	Guidance from the community
	Communication
	Community bonding
	Technical hurdles
	Agile software development

	Interviews
	Interview outcomes
	Communication
	Project guidelines
	Awareness
	Code reviews
	Domain expertise
	Guidance from the community
	Software architecture
	Interpersonal communication

	Findings and recommendations
	Findings
	Recommendations
	Find a task to start with
	Pull request checklists
	Code review code of conduct
	Natural mentoring culture

	Limitations
	Threats to validity
	The third generation of FOSS

	Conclusion and future work
	Future work

	Bibliography
	List of abbreviations
	Change request on GitHub
	Kanban board
	Jira workflow
	Training ticket
	Interview guideline
	Media richness theory

