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Abstract 

Coating processes are ubiquitously used in the pharmaceutical industry. Often as the last process steps 

to modify the final product. It is used to enhance performance. Coatings are applied for a wide variety 

of reasons. But is more often than not an afterthought during product development. Therefor the goal 

is to find process conditions that can deliver the desired product quality and little attention is paid to 

optimization possibilities. The goal of this work is to introduce and show the application of state of the 

art simulation for coating processes. It should be shown that process simulation can be used to develop 

or improve the coating process while simultaneously reducing the number of experiments  

In this work state of the art, discrete element methods and computational fluid dynamics simulations 

are used to describe coating processes. DEM is used to simulate the movement of granular material, in 

this work, tablets and granules. DEM solves Newton's second law through time discretization. 

Computational fluid dynamics solves the Navier stokes equation through resolving the considered 

volume in small subvolumes and solving for each subvolume the Navier stokes equation. CFD and DEM 

algorithms can be coupled to exchange momentum, heat, and mass. In this work pure DEM simulation 

is used to describe tablet coating processes as well as coupled CFD-DEM simulations to characterize a 

Wurster coating and novel tablet coating process.  

This work is structured into 5 main sections that are either already published or planned for publishing. 

In the first part, a tablet-coating process in a drum batch coater is analyzed. The influence of the 

material parameters on the tablet bed dynamic is shown in the laboratory and pilot scale. Through 

validating the simulation approach the tablet coating process is scaled from the laboratory to the 

industrial scale using the two most commonly used scale-up rules, scaling by keeping either the 

circumferential velocity or Froude number constant. Showing the influence of the scaling parameters 

a multidimensional analysis of the tablet coating process is performed at the industrial scale. These 

three parts are connected through similarity in the coater design and simulation approach. Afterward, 

the coating process inside a Glatt 15-30 Wurster coater is simulated. In this work, the influence of the 

fluidization airflow, particle size, and Wurster gap height are shown. In the last part of this work, we 

validated our developed model to simulate a novel continuous tablet coating process. The simulation 

results of the tablet movement, coating quality, outlet air temperature, and humidity agree well with 

experimental results. 



 

 

This work shows how to apply state of the art simulation techniques for the process development. This 

way developing and improving existing coating process can be simplified by replacing time and material 

consuming experiments with simulations and only run experiments on the most promising settings.  

  



Zusammenfassung 

Coatingverfahren sind allgegenwärtig in der pharmazeutischen Industrie. Oft bilden sie den letzte 

Prozessschritte in dem das Produkt noch modifiziert wird. Coatings werden aus einer Vielzahl von 

Gründen verwendet. Meistens wird der Coatingprozess aber erst am Ende des 

Produktentwicklungszyklus betrachtet. Das Ziel ist oft Prozessbedingungen zu finden, die die 

gewünschte Produktqualität liefern können, dabei werden Optimierungsmöglichkeiten wenig 

betrachtet. Ziel dieser Arbeit ist Coatingverfahren in silico zu modellieren. Es soll gezeigt werden, dass 

durch Prozesssimulation die Coatingverfahren otpimiert werden können, bei gleichzeitiger 

Reduzierung der Anzahl von Experimenten. 

In dieser Arbeit werden modernste Simulationen verwendet, diskrete Elementmethoden und 

Computational Fluid Dynamics, um Coatingprozesse zu simulieren. Mit DEM wird die Bewegung von 

Partikeln  simuliert, in dieser Arbeit Tabletten und Granulate. DEM löst Newtons zweites Gesetz durch 

zeitliche Diskretisierung. Computational Fluid Dynamics löst die Navier-Stokes-Gleichung durch 

Auflösen des betrachteten Volumens in kleine Teilvolumina und löst für kedes Teilvolumen die Navier-

Stokes-Gleichungen. CFD- und DEM-Algorithmen können gekoppelt werden, um Impuls, Wärme und 

Masse auszutauschen. In dieser Arbeit werden reine DEM-Simulationen zur Beschreibung von 

Tablettencoatingverfahren sowie gekoppelte CFD-DEM-Simulationen zur Simulation eines Wurster-

Coater und eines neuartigen Tablettencoatingverfahren verwendet. 

Die Arbeit gliedert sich in fünf Hauptabschnitte, die entweder bereits veröffentlicht sind oder 

veröffentlicht werden sollen. Im ersten Teil wird ein Tablettencoatingverfahren in einem 

Trommelcoater analysiert. Der Einfluss der Materialparameter auf die Tablettenbettdynamik wird im 

Labor- und Pilotmaßstab gezeigt. Durch die Validierung des Simulationsansatzes wird der 

Tablettencoatingverfahren mithilfe der beiden am häufigsten verwendeten Scale-up-Regeln vom Labor 

auf den industriellen Maßstab skaliert, wobei entweder die Umfangsgeschwindigkeit oder die Froude-

Zahl konstant gehalten werden. Nach dem der Einflusses der Skalierungsparameter gezeigt wurde, wird 

eine mehrdimensionale Analyse des Tablettencoatingverfahren im industriellen Maßstab 

durchgeführt. Diese drei Teile sind durch Ähnlichkeit im Ansatz des Tablettencoatingverfahren und der 

Simulation miteinander verbunden. Anschließend wird der Beschichtungsprozess in einem Glatt 15-30 

Wurster Coater simuliert. In dieser Arbeit wird der Einfluss des Fluidisierungsluftstroms, der 

Partikelgröße und der Wurster-Spalthöhe gezeigt. Im letzten Teil dieser Arbeit haben wir unser 

entwickeltes Modell validiert, um einen neuartigen kontinuierlichen Tablettencoatingverfahren zu 



 

 

simulieren. Die Simulationsergebnisse der Tablettenbewegung, der Beschichtungsqualität, der 

Auslasslufttemperatur und der Luftfeuchtigkeit stimmen gut mit den experimentellen Ergebnissen 

überein. 

Diese Arbeit zeigt, wie modernste Simulationstechniken für die Prozessentwicklung angewendet 

werden. Auf diese Weise kann die Entwicklung und Verbesserung bestehender Coatingverfahren 

vereinfacht werden, indem zeit- und materialaufwendige Experimente durch Simulationen ersetzt und 

nur Experimente mit den vielversprechendsten Einstellungen durchgeführt werden. 
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A. Introduction  

The pharmaceutical industry is currently undergoing rapid changes in terms of process development 

and operation procedure. This is not only due to the pressure of globalization and the associated cost 

pressure but also to internal changes in the pharmaceutical industry. 

Expiring patents for their blockbuster drugs over the last years hit the pharmaceutical industry hard. 

The so-called patent cliff. New discoveries targeted often smaller population and could not reach the 

same market as the former blockbuster. This forces the pharmaceutical industry to innovate or 

streamline its processes to increase the yield of the production and decrease the cost at the same time, 

e.g. through switching to continuous processes [1]. Another possibility to increase the duration of 

blockbuster sales is to improve product quality. Song and Han [2] advise that the pharmaceutical 

industry should follow multiple paths to ensure profitability.  

Regulating agencies changed their strategy to improve the quality of the pharmaceutical production 

process due to increased recalls and drug shortages[3]. A focus was laid on allowing for continuous 

improvement of the production and good manufacturing practice. Manifold initiatives were launched 

and broadly discussed to achieve this goal [4]. Up to this date, the pharmaceutical industry is still in the 

transition phase to apply the possibilities and requirements.  

Granular processes can widely vary and the same process can behave differently when operated at 

different sites. Understanding the mechanisms behind the granular material behavior allows to set-up 

and run processes safer and for a more precise process control strategy which in return enables for 

more flexible process space. 

These factors force the pharmaceutical industry to rethink its production process development. Old 

batch processes are often outdated and poorly understood. Production was often an afterthought in 

the process development. The focus in research and development of new APIs was the discoveries of 

new molecules. Nowadays the trend is to catch up to other industries in production capabilities through 

increased process understanding [5] e.g. six sigma processes in the semiconductor industry.  

Pharmaceutical coating processes are widely used to enhance the product recognizability, stability or 

functionality. Coatings can be applied to granules or tablets. Granules are coated in fluidized bed 

systems. In the case of granule coating, the Wurster coater is predominantly used as it allows for a 

defined coating cycle and minimizes the risk of granulation. The Wurster coater is a special form of the 

bottom spray fluidized bed coater[6]. The drying air simultaneously provides drag for the particle 
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movement. Tablets are another typical target for coating. In comparison to granules, tablets are seldom 

coated in fluidized bed systems. The bulk of tablets are coated in rotating drum batch coaters. In the 

rotating drum batch coater tablets are agitated through the rotation of the drum concurrently baffles 

and anti-slip bars are installed in the coater to increase tablet movement and the mixing of the tablet 

bed. The coating is applied from a central axis of the coater and angled to spray the tablet bed surface 

at around 1/3 of its height. In the tablet coating process, the drying air is introduced independently 

from the drum movement and does not influence the tablet movement. Both coating processes are 

investigated numerically in this work.  

The goal of this work is to introduce and display the capabilities of numerical simulations in 

understanding and improving coating processes. Normally coating processes are developed at the end 

of the process development and seldom much thought is put into improving existing processes due to 

prohibitive costs either due to material or lost production time. Process understanding is key when 

creating new or enhancing old processes. Most of the time laboratory experiments are performed to 

extend the process understanding. Afterward, dimensionless numbers are used to transfer the process 

behavior to different scales. But to truly understand and control a process mechanistic understanding 

is the key [7], [8]. Mechanical understanding of the underlying processes allows for accurate 

measurements and control strategy as well as running the process more efficiently. Creating a 

mechanical understanding of the process is often hard, as measuring all needed information during and 

after the process is challenging and often very costly. Simulation can help to bridge the gap between 

the observed effects and the resulting behavior[9]. In this work numerical models are used to describe 

the movement of tablets, granules and the drying airflow. In the first half, the discrete element method 

is used to investigate tablet coating processes. A focus was laid is used to describe the tablet movement 

at different scales and process settings. The idea is to use simulation showing the relationship between 

process input parameters and the process responses. It is shown how simulation can help to 

understand the tablet coating process and it shows how simulation could be used to select better 

process settings. Similar thoughts were put into the simulation of a Wurster coater process. The 

influence of the process settings and even the granule size were considered when investigating it. In 

the end, a model was developed that allows to include the heat and mass transfer inside the simulation. 

The performed simulations allowed to investigate coating processes at the industrial scale. Performing 

the same investigation experimentally is either impossible or not feasible due to cost. Therefore 

simulations allow for profound insights of processes involving granular material materiahere 

exemplified through the simulation of coating processes.  
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A-1. Coating Processes 

Coating processes are often employed in the pharmaceutical industry. A solid is coated onto substrate 

particles. In the pharmaceutical industry mainly three types of coating processes are in use, sugar 

coating, batch film coating, and fluidized bed coating [10]. All coating process types in common are that 

the suspension is applied via one or multiple spray nozzles. Through high atomization air pressure, a 

fine mist is created and the particles pass through the designated spray zones. The spray zones are 

defined through the applied pattern pressure and depend on the overall process strategy and layout 

[11]. The advantage of the liquid coating process is the flexibility and frequency of use. The 

disadvantage is the necessity to evaporate the coating liquid and the possibility of coating defects as 

well as the after-treatment to evaporate the excess liquid. Sugarcoating originated in the confectionery 

production and was adopted for the pharmaceutical industry to mask the often bitter taste of the drug. 

Nowadays film coating is the primary form of tablet coating. Fluidized bed coating is used mainly to 

coat pellets or micro tablets.  

A-1.1. Coating process goals  

Reasons for coating in the pharmaceutical industry range from adding color, a functional layer either, 

for environmental protection or delayed-release, or a secondary functionality, e.g. active 

pharmaceutical ingredient (API) [17]. Sometimes all the above-mentioned motives have to taken into 

consideration when designing a coating process. Color coating is done for brand recognition, ease of 

use or to mask tablet defects e.g. dark spots due to the tableting process. A functional layer is applied 

to protect the API from environmental influences e.g. humid conditions, sunlight or heat. Delayed-

release is used to help transport the API to the part of the digestive tract to allow for the most beneficial 

ways of administration or to release the API over a well defined period of time. This is done through pH 

active coatings that either protect from the acid environment of the stomach and release the API in the 

small and large intestines or through a coating that allows the slow diffusion of the API. This is done by 

coating an API onto the substrate particle either as the main or as a secondary API that supports the 

main API in its functionality. 

A-1.2. Coater types 

Coater types are typically defined through the direction in which the coating is applied. Similar to the 

coating types there exist four main coater types, these are the top, bottom, Wurster and side coater 

[18], see Figure 1. In the top coater, the coating is applied from the top. A typical top coating would be 

a fluidized bed or drum tablet coater. In the bottom coater, the coating is applied through a nozzle at 
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the bottom of the coater. An often used bottom spray coater is the so-called Wurster coater [6]. In the 

side coater, the spray nozzle is positioned at the side of the coater. Independent of the direction of the 

spray all coaters have to apply mechanisms to provide mixing of the particle bed to avoid overwetting 

and guarantee an evenly consistent application of the coating.  

 

Figure 1: Different types of fluidized bed coaters:  Top (a), Bottom (b), Wurster (c), and side (d) fluidized bed coater. Figure is 
taken from [18] 

A-1.3. Tablet Coating 

Tablets are the most commonly taken dosage forms. Tablets simplify the administration, especially self-

administration, as usually a tablet is one dosage [19]. Tablets are easy to store and can be differentiated 

due to shape, size or color. Tablets are coated for the reasons mentioned in the chapter Coating process 

goalsA-1.1. A typical tablet coating process is set in a drum coater, which rotates slowly around its 

lateral axis [20]. An image of the simulation of a typical coating process is shown in Figure 2. Through 

the rotation movement, the tablets are lifted up along the outer drum wall. When they reach a certain 

angle which is defined through the rotation rate, tablet shape, tablet material properties, and drum 

design the tablets fall down the top of the tablet bed [21]. To provide an even tablet bed height the 

lifting can be supported through anti-slip bars along the drum hull. The spray coating is applied through 

a spray nozzle stationed at roughly the drum center axis. The number and exact position of the spray 

nozzles depends on the scale, drum design and mode of operation. The spray is applied via a top spray 

approach. When the tablets reach the end of the tablet bed surface they get remixed into the tablet 

bed and are transported again to the spray zone. To ensure a good mixing the drum coater typically 
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also employes baffles. Baffles can have spiral, paddle or helical shapes. The baffles provide additional 

lift as well as provide axial and radial mixing of the tablet bed. In most tablet coating processes, the 

coating is provided through a liquid-solid suspension. Therefore the liquid has to be removed during 

and after the coating process. Drying air is usually introduced in such a way that it enters the coater 

outside the tablet bed and is sucked out through the tablet bed. This way the tablet – air contact time 

or drying time is maximized.  

 

Figure 2: Typical tablet coating process in an industrial drum batch coater 

A-1.4. Wurster coater 

Another typically employed coating unit is the Wurster coater [6]. The Wurster coater is a special kind 

of a fluidized bed coater in which the coating is applied through one or more bottom spray nozzles 

(Figure 3). Above the spray nozzle, a tube is located. The bottom plate is perforated and through a 

varying number of perforation holes and diameters, the gross of the fluidization air is directed through 

the riser tube. Thus the particles are directed to pass through the Wurster tube through a chimney 

effect and thus a well adjustable cycle time between spray events can be achieved compared to 

conventional fluidized bed coaters. The particle-particle, particle-geometry and particle-air interactions 

are very complex and defining a process that fully fulfills all CQAs is challenging. Especially the scaling 

between the laboratory and larger process scales is not yet fully understood. 
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Figure 3: Wurster coater process. The particles are colored according to their velocity. 

A-1.1. Laboratory experiments 

During process development, the amount of available material is limited. Therefore initial experiments 

are performed in small laboratory coaters which can have a load between a few hundred grams up to 

a few kilograms [22], [23]. These initial experiments give first impressions about the tablet bed behavior 

and the slippiness of the tablet material. Also, the absorbency of the tablets as well as the drying 

behavior of the tablets is initially investigated. All these factors influence the tableting process and can 

be optimized if initial experiments show the necessity. But seldom laboratory experiments give insights 

into the tablet bed behavior at larger scales due to changes in material, geometry and drying behavior. 

Often dimensionless numbers are used to transfer the coating process from the smaller to larger scales. 

Agrawal et al. give an extensive overview of the dimensionless number used to scale the complete 

tablet coating process including thermal effects and spray nozzle setup [26]. 

A-1.2. Definition good coating process  

The goal of the tablet coating process development is to guarantee that all critical quality attributes 

(CQAs) can be reached [27], [28]. Therefore the understanding of how to influence and achieve the 

CQAs should be demonstrated through experiments and models of the existing process. Then the 

process space should be chosen such that the CQAs can be achieved in a short period of time to 

maximize the throughput rates and production capacity and to allow a consistent product output 

quality for a wide variety of process input parameters.  
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A coating process is often described through two parameters the inter- and intraparticle coating 

variability. Interparticle coating variability (CoVinter ) is the standard deviation σmc of the coating mass 

distributed over all tablets divided by the mean of the coating mass µmc  [12]: 

𝐶𝑜𝑉𝑖𝑛𝑡𝑒𝑟 =
𝜎𝑚𝑐

𝜇𝑚𝑐
 (1) 

An optimal tablet coating process has a consistently low CoVinter. In a typical coating process, the CoVinter 

is measured through weighting randomly chosen sample particles. The intraparticle coating variability 

(CoVintra) is the variability on the particle itself [13]. CoVintra can be measured through the variability in 

the coating thickness over the particle surface or the calculated coating mass difference over the whole 

tablet. Typically the CoVintra is measured through cutting the particle and doing microscopic 

measurements of the coating layer. Nowadays this process can be simplified for some coating 

processes by employing terahertz spectroscopy [14] or optical coherence measurements of the coating 

(OCT) [15]. These approaches also allow to rapidly measure the CoVintra of a lot of particles. Other 

quality attributes for a good coating process are no defects, blistering, peeling, and no particle sticking 

to each other or the processing unit [16].  

A-2. Process simulation,  

Process simulation allows predicting process outcomes for a varying amount of process settings by 

reducing the demand for actual experiments [29]. There exist two main types of process simulation 

models, empirical and mechanistic. Empirical models use experimental gathered data to connect the 

process settings to the process outcomes via more or less complex mathematical fitting equations. The 

advantage of the empirical models is that the model fitting can nowadays be done via a wide variety of 

tools, beginning from simple excel sheet interpolations to complex multi-variant model analysis. The 

main disadvantage is that the empirical models typically do not give insight into the process 

mechanisms. This means that most empirical models are only valid for a narrowly defined process space 

or device. Mechanistic models, on the other hand, try to describe the physical laws inside the process 

units and thus predict the process outcome from a physical point of view. Describing physical laws in 

real processes is a complex task as a lot of different phenomena take place at roughly the same time 

during the process. The advantage of mechanistic models is that once set up and validated they should 

hold up for all possible process conditions. The discrete element method (DEM) is a typical mechanistic 

model that describes the behavior of granular material in all possible process units and conditions and 

allows to investigate processes in experimental impossible or very challenging ways. Another 

mechanistic simulation model employed in this work i  is computation fluid dynamics(CFD). Other worth 
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mentioning models are the Lattice Boltzmann Models (LBM), direct numerical simulation (DNS), and 

molecular dynamics (MD). As these other models are not used in this work only the DEM and CFD-DEM 

will be explained in more detail.  

A-2.1. CFD-DEM Simulation  

CFD-DEM simulations model the fluid-solid material interactions. Both phases are simulated separately 

and information is exchanged via source terms. Both simulation methods are iterative in nature. In the 

DEM the time is discretized through small difference. In the CFD the volume is spatially resolved and 

the time can be discretized as well. Source terms allow exchanging momentum, heat and mass 

information between the fluid and solid phase. CFD models the fluid phase by solving the volume-

averaged Navier-Stokes equations. All variables are locally volume-averaged quantities over the control 

volume V, which has to be at least one order of magnitude larger than the particle volume VP [30]. The 

conservation of mass can be written as follows: 

𝜕

𝜕𝑡
(𝜀𝐹 ∙ 𝜌𝐹) + 𝛻 ∙ (𝜀𝐹 ∙ 𝜌𝐹 ∙ 𝑣𝐹) = 0 (2) 

where ρf is the fluid density, εF is the local volume fraction of the fluid, vF is the fluid velocity vector and 

t is the time. Sm  represents the mass source term  The conservation of the momentum is  

𝜕

𝜕𝑡
(𝜀𝐹 ∙ 𝜌𝐹 ∙ 𝑣𝐹) + 𝛻(𝜀𝐹 ∙ 𝜌𝐹 ∙ 𝑣𝐹 ∙ 𝑣𝐹) = −𝜀𝐹 ∙ 𝛻𝑝 − 𝛻 ∙ (𝜀𝐹 ∙ 𝜏𝐹) + 𝜀𝐹 ∙ 𝜌𝐹 ∙ 𝑔 − 𝑆𝑀 (3) 

In CFD-DEM the fluid phase and the granular phase are modeled and the simulation can exchange 

information about the momentum, energy and even mass. Similar to equation 4 the source term can 

be used to transfer mass and energy between the granular and fluid phases. This allows simulating the 

coating process in even more detail as it allows to track the wetness and temperature of the particles 

during the coating process, showing zones of low and high energy/temperature. This helps to indicate 

possible weaknesses of the investigated processes and also more detailed scaling/changing of process 

size and settings.  

The discrete element method (DEM) was developed by Cundall and Strack [31] in 1979. It solves 

Newton’s second law by resolving particle-particle and particle–wall interactions [32], [33]. For the 

motion of each particle, the following equation is solved: 

𝑚𝑃

𝑑𝑣𝑃

𝑑𝑡
= −𝑉𝑖𝛻𝑝 + 𝐹⃗𝑖

𝑑 + ∑ 𝐹𝑃→𝑃

𝑁𝑃

0

+ ∑ 𝐹𝑃→𝑊

𝑁𝑤

0

+ 𝑚𝑝𝑔 (4) 
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where mP is the particle mass, vP is the particle velocity, −𝑉𝑖𝛻𝑝 is the pressure gradient force, 𝐹⃗𝑖
𝑑 is the 

drag force, FP->P is the particle-particle force and FP->W is the particle-wall force. Here the fluid-particle 

interaction is already integrated in the equation. The three-dimensional angular momentum of the 

particle is calculated as 

𝐼𝑃

𝑑𝜔𝑃

𝑑𝑡
= ∑ 𝑀𝑃 + 𝑀𝑊

𝑁𝑐

0

+ 𝑀𝐹  (5) 

where ωP is the angular velocity, MP is the torque coming from other particles Mw is the torque coming 

from particle–wall interactions and MF is the torque coming from the surrounding fluid and IP is the 

moment of inertia. Typically particles are represented as spheres in the simulation. There exist several 

ways to calculate the contact forces. The two main types are the hard- and soft-sphere model. The 

hard-sphere approach is an event-driven method while the soft-sphere approach is time step driven. 

This work only uses soft-sphere models to resolve particle contact. In soft sphere contact models, the 

contact events are timely resolved and the time step size has to be chosen such that the average 

contact has a duration of 10 to 20 time-steps. 

A-2.2. DEM usage in the pharmaceutical industry 

DEM is increasingly used in the pharmaceutical industry [32]–[35]. Initially, only small or simple 

processes could be investigated due to the high computational costs. One of the first processes to be 

investigated was the tablet coating process on the laboratory scale. Often coarse-graining[36], [37] 

methods are applied to reduce the number of particles to simulate. This holds true up to date for the 

simulation of powders where even in a small sample the number of particles reaches the hundred 

millions. For the tablet coating process, the particle shape was not taken into consideration when 

simulating pharmaceutical processes. But due to increasing computational power in combination with 

more advanced models realistic simulations of even large scale processes are possible. 

Publications show the influence the material interaction parameters have on the bulk material behavior 

[38], [39]. Changing the parameters of material interaction can result in completely different results. 

Thus calibrating and choosing the right parameters is of utmost importance if the goal is to correctly 

predict process outcomes. 

A-2.3. Advanced DEM 

Similar to the material parameters, the shape of the granular material can influence the bulk behavior 

in the simulation. While some effects can be replicated through choosing the right material interaction 
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parameters other phenomena can only be simulated by trying to replicate the particle shape. Different 

ways of introducing particle shapes exist. The simplest form is the so-called glued sphere approach [40]. 

In this approach, the particle shape is emulated through gluing several spheres together. The accuracy 

of the modeled particle depends on the number of used sub spheres. This approach has the advantage 

of using the same contact detection and force calculation algorithm as for spheres and the 

disadvantage of needing a high number of sub spheres to realistically emulate the particle shape. It also 

introduces an artificial roughness to the particle which has to be taken into consideration when 

calibrating the material properties. A special case of the glued sphere model is the so-called real tablet 

shape. In this approach, biconvex tablets are described through three overlapping spheres. The tablet 

is described as the volume where the three spheres overlap [41].  

Another approach to model nonspherical particles is to use ellipsoidal or super ellipsoidal particle shape 

[42]. This has the advantage of mathematical describing particle shape but is limited to ellipsoidal 

particles. Further is the contact and force calculation algorithm more complex than for simple spheres 

or glued sphere particles. A more widely applicable shape representation is the super quadric 

[43]approach. This allows representing a very wide type of particle shape mathematical through three 

parameters. Again the contact and force calculation is more complex. Both approaches, the ellipsoidal 

and super quadrics approach allow to even further increase the accuracy of the particle shape through 

multi-element models. The polyeder particles allow specifying arbitrary particle shape by defining the 

outer surfaces of the particle as planes[44]. By connecting several planes around a volume the particle 

shape is mimicked. This approach allows to model nearly all possible particle shapes but again the 

contact and force algorithms are increasingly complex.  

A-3. Goal 

The goal of this work is to use simulations, DEM and CFD-DEM to investigate granular processes in the 

pharmaceutical industry. In the next three chapters (B-D) a tablet-coating process is investigated, in 

chapter E a Wurster coating process at the industrial scale is investigated. In chapter F a model for a  

fully coupled, meaning momentum, heat and mass transfer, CFD-DEM simulation of a new tablet bed 

coater is validated.  

In chapter B, the influence of the material properties on the tablet bed behavior is shown. The tablet 

bed surface velocity was experimentally evaluated through a novel high-speed camera combined with 

an image analysis algorithm. This approach eliminates the necessity to use tracer tablets to measure 

the tablet bed surface velocity. The performed experiments in the lab and pilot-scale were repeated in 
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silico. Through varying the tablet-tablet, tablet-wall friction, tablet stiffness, restitution, and simulation 

time step the material properties were calibrated. The tablet stiffness has the largest influence on the 

tablet surface velocity. At last, the change in the tablet bed behavior and process outcome were 

illustrated. This chapter was published [45]. 

After the influence of the material properties is shown the developed DEM model is used to scale a 

tablet-coating process from the lab to pilot and industrial scale. Here the focus was on the mechanical 

tablet bed behavior. The work focuses on the change in tablet surface velocity, spray residence time, 

coating quality, and cycle time through the varying coater scales. Thermal effects, e.g. tablet heating 

and drying were neglected as only the tablets were simulated. It could be shown that scaling by the 

circumferential velocity is not favorable compared to the Froude scaling as it would result in long (high) 

process durations. This chapter was published as [46]. 

After the effects of the scale-up rules on the tablet bed behavior were demonstrated a multi-variant 

study of the tablet coating process at the industrial scale was performed. The study was performed in 

silico to show the influence of the drum load, rotation rate, spray rate and number of spray nozzles on 

the coefficient of inter tablet coating variability. The simulation allowed an in-depth analysis of the 

changes in tablet bed behavior. Additionally, the calculated results for the CoV agreed well with the 

experimental investigated ones. It could be shown that increasing the spray nozzle number has the 

highest influence on coating mass distribution. As thermal effects were not included here as well there 

are be no predictions made regarding the drying behavior. This paper was published as [47]. 

An industrial-scale Wurster coating process was simulated to introduce the fluid-particle coupling at 

the industrial scale. A Glatt 15-30 Wurster coater with a load of 40 kg was simulated using our 

simulation approach. The simulations show the influence of the fluidization air flow rate, particle size, 

on the coating quality, cycle time, residence time and particle velocity. This chapter was published as 

[48]. 

In chapter G, a validation of a CFD-DEM simulation of the newly developed ConsiGma tablet coater is 

presented. The ConsiGma® tablet coater handles small batches, coherent to the ConsiGma production 

philosophy. During the coating process, the tablets are centrifuged to the drum wall and detached at 

around 2-3 o’clock positions through so-called air knives. Therefore to replicate the coating process in 

silico the air has to be included. This allows to also model the heat and mass transfer. The used models 

are validated against performed experiments and correlate very well. This part is planned for 

publishing.  
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B. Comparison of Video Analysis and Simulations of a Drum Coating 

Process 

Published as: P. Boehling et al., “Comparison of video analysis and simulations of a drum coating 

process,” Eur. J. Pharm. Sci., vol. 104, no. March, pp. 72–81, 2017. 

B-1. Abstract 

Tablet coating is a common unit operation in the pharmaceutical industry. To improve currently 

established processes, it is important to understand the influence of the process parameters on the 

coating quality. One of the critical parameters is the tablet velocity. In this work, numerical results are 

compared to results obtained experimentally.  

Tablet movement in the drums was simulated using the Discrete Element Method (DEM). The 

simulation parameters were adapted to fit the simulation to the experimental data. A comparison of 

the experimental and simulation results showed that the simulation correctly represents the real tablet 

velocity. A change in the velocity over time and its dependence on the rotation rates and the baffle 

position in the simulation were similar to the experimental results.  

In summary, simulations can improve the understanding of tablet coating processes and will thus 

provide insights into the underlying process mechanics, which cannot be obtained via ordinary 

experiments. 

B-2. Introduction  

In the pharmaceutical industry, tablet coating is commonly performed as the last step of the drug 

production process. Perforated pan coaters are generally the equipment of choice since they provide 

a gentle yet effective mixing of the tablet bed. Mixing, spraying and drying may occur simultaneously 

during coating. Understanding the underlying processes involved results in a better quality of the final 

product. A low coating variability is often required, especially for active coatings. Coating variability is 

significantly affected by the drum design, the rotation rate, the number of nozzles, the spray rate, the 

coating time and the drying temperature [1]–[3]. Good mixing in the tablet bed is essential for the 

homogeneous quality of the end product. Mixing is influenced by the pan speed, which in turns controls 

the mechanical energy introduced into the system.  

Image analysis software for particle tracking, in combination with tracer tablets, was used in previous 

studies [4-7] to automate the analysis of tablet motion. The effects of pan loading, pan speed and 
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particle shape on the circulation times, surface appearance times, projected area of particles per pass 

and cascading velocities were investigated. Most of these studies were only performed on the 

laboratory scale. Some studies reported rules that govern the cascading velocities [5] when the process 

is scaled up. In this work, we propose an alternative approach, which combines a high speed camera 

with an image analysis spatial cross-correlation algorithm, to calculate the velocity fields in the tablet 

bed without tracer tablets. By computing the difference in the tablet position between two images, the 

velocity of the tablets can be calculated. 

Experiments are expensive and can be material- and time-consuming. Furthermore, dedicated 

experiments are generally unfeasible after implementing final changes to the process. When planning 

a new process or optimizing an existing one, simulations can be used to reduce the number of 

experiments required [6]. The Discrete Element Method (DEM), which is increasingly applied in the 

pharmaceutical industry to simulate various processes [7], can help to improve the understanding of 

granular material flows. Due to a low number of particles and a relatively large size of tablets, tablet 

coating is particularly suitable for the DEM analysis [8]–[10]. When applying DEM, matching the 

simulations with experiments is crucial [11]. Spheres were often used to simplify the tablet shape in 

the simulations [9], [12]. However, since the tablet shape influences the bulk behavior and the validity 

of the simulation results [13][14] , the way the tablet shape is modeled greatly influences the simulation 

outcome. There are several methods to imitate the shape of the real tablets. In this work, we followed 

the glued-sphere approach (also termed the multi-element model) [15], which was successfully used 

in numerous works [13], [14], [16], [17]. It involves several simple shapes (spheres) arranged to mimic 

the real tablet shape. In this work, we employed the “eXtended Particle System” (XPS), an in house 

developed DEM software that uses the CUDA programming language to parallelize DEM on graphics 

processing units (GPUs) [18], [19]. 

The validity of the experimental results is shown first. A base configuration was chosen and the 

simulation material parameters were fitted to best reflect the experimental results. A full numerical 

DOE was performed on the laboratory and pilot scales using the parameters that fit the experiments 

best. The results show that it is possible to realistically simulate the behavior of a tablet bed and 

determine the tablet velocity. Moreover, they can predict the tablet velocity on larger scales. Finally, 

we investigated the influence of the material on the process outcome (coefficient of variation) and 

established that the elastic properties have a major effect on this quality parameter.  
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B-3. Material and Methods 

B-3.1. Drum and Tablets 

This work is a part of an active-coating-process optimization for the production of tablets that contain 

two active pharmaceutical ingredients (APIs): one with immediate release in the coating layer (active 

coating) and the other with sustained release in the core. For studying the process of tablet-core 

coating, gastrointestinal therapeutic systems (GITS 30) were used as a starting material (Bayer Pharma 

AG, Leverkusen, Germany). GITS 30 are round biconvex two-layer tablets that contain the API 

Nifedipine. They have a diameter of 9 mm and a height of 5 mm and are pre-coated with cellulose 

acetate and polyethylene glycol. The tablet shape used in the simulations can be seen in Figure 4 which 

is taken from [20]. 

 

Figure 4: Tablet shape modeled via the glued sphere approach taken from [20]. 

The tablet velocity assessment experiments were performed on the laboratory scale using a perforated 

drum coater BFC 5 with a 5kg drum and on the pilot scale using a BFC 50 using a 25kg drum (both L.B. 

Bohle Maschinen + Verfahren GmbH, Ennigerloh, Germany). The 5 kg and 25 kg coating drums for the 

experiments and the detailed geometry of the drums were provided by the manufacturer.  

B-3.2. Experimental Determination of Tablet Velocity 

Drum filling degrees of 12.6% and 16.9% were used in the experimental part of our study. Experiments 

were done in cooperation with Dreu et al. [21]. Rotation rates of the 5 kg and 25 kg coating drums were 

varied in order to achieve circumferential drum speeds of 8.3, 16.5, 24.8, 33.1, 41.1 cm/s and for the 

25 kg-coating drum, additionally, of 49.6 cm/s. In order to determine tablet surface flow velocities, a 

560 or 1180 mm borescope (88590DF, 88770DF, Karl Storz GmbH, Germany) was inserted sideways 

into the coating drum and mounted to a high-speed camera (MotionBLITZ EoSens mini 2, Mikrotron 

GmbH, Germany). A high-speed video of the externally-illuminated tablet surface flow was taken at a 

frame rate of 1 kHz and with a shutter time of 350 or 450 µs. Image pairs from the high-speed tablet 

surface flow video were analyzed via a cross-correlation algorithm (VidPiv 4.7, ILA GmbH, Germany). 
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High-speed video data were imported as successive image pairs with a time gap of 1 ms and masked 

for the area of ~ 300 x 300 pixels that had sufficient sharpness and illuminance. To extract a velocity 

vector field for each time step, we first applied a cross-correlation algorithm with an interrogation area 

of 128 x 128 pixels and an interrogation grid separation of 20 pixels and continued with an adaptive 

cross-correlation algorithm with the same grid settings. A window filter was used to filter out velocity 

vector outliers. The minimum downward tablet surface flow velocity was set to one half of the drum 

circumferential speed. To determine the maximum threshold for the downward tablet velocity, tablets 

that moved to the highest location in the drum were used and a free-fall trajectory was assumed, 

yielding the maximum possible velocity. In order to attain the correct captured image magnification, 

the borescope-to-tablet-bed distance was measured in-line by an ultrasonic distance sensor (UM18, 

SICK, Germany). Representative tablet bed dynamic angles of repose were established by analyzing a 

separate sideways video (24 fps) of the tablet bed surface contour movement. The obtained spatially 

averaged velocities in pixels/s were transformed to velocity units by applying a distance-dependent 

scale and corrected for misalignment between bed dynamic angle of repose and optical axis angle, 

using equation 6. 

|𝑣⃑| =
|𝑢⃑⃑⃑|

cos(𝛩−𝛼) 
 , (6) 

where |𝑣⃑| is the tablet surface flow velocity magnitude aligned with the tablet bed, |𝑢⃑⃑| is the video-

extracted tablet velocity,  is the optical axis angle of inclination measured from the vertical line and 

 is the local dynamic angle of repose measured from the horizontal line. The whole model is describe 

and shown by Dreu et al.([21] Figure 1). The time averaged tablet bed distance and dynamic angle of 

repose was used in the transformation to determine from video the final absolute tablet velocity.  

B-3.3. Simulation Setup 

B-3.3.1. Simulation Experimental Setup 

After initializing the simulation, the tablet bed was allowed to settle for the first 10 seconds, followed 

by a simulation run of additional 20 seconds (total process time of 30 seconds). 3 seconds during which 

the baffle position in the simulation matched that in the experiments were used for comparing the 

tablet velocity. For the simulation parameter, a fill level of 12.6 % and a rotation rate of 15 rpm were 

chosen as the base case.  

Drum filling degrees of 12.6% and 16.9% were used in the simulation part of the study. The rotation 

rates of the 5 kg and 25 kg coating drums were varied in order to attain coating drum circumferential 
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speeds of 8.3, 16.5, 24.8, 33.1, 41.1 cm/s and, additionally, of 49.6 cm/s for the 25 kg coating drum. An 

overview over the different process settings is given in Table 1 

                                              Table 1. The position and velocity of every tablet were saved every 0.02 

seconds of the simulated  process time. 

                                              Table 1: Design of Experiment 

Drum load 

in kg 

Drum Fill 

level 

in % 

Rotation 

rate 

in rpm 

circumferential 

velocity 

in cm/s 

3.00 12.6 5.00 8.25 

3.00 12.6 10.30 16.99 

3.00 12.6 15.40 25.40 

3.00 12.6 20.70 34.14 

3.00 12.6 25.40 41.89 

4.00 16.9 5.00 8.25 

4.00 16.9 10.30 16.99 

4.00 16.9 15.40 25.40 

4.00 16.9 20.70 34.14 

4.00 16.9 25.40 41.89 

16.11 12.6 2.88 8.29 

16.11 12.6 5.69 16.39 

16.11 12.6 8.61 24.80 

16.11 12.6 11.51 33.15 

16.11 12.6 14.44 41.58 

16.11 12.6 17.25 49.68 
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21.48 16.9 2.88 8.29 

21.48 16.9 5.69 16.39 

21.48 16.9 8.61 24.80 

21.48 16.9 11.51 33.15 

21.48 16.9 14.44 41.58 

21.48 16.9 17.25 49.68 

The experimental design with a fill level of 12.6 % and rotation rate of 15 rpm in the BFC 5 was used to 

investigate how varying the spring constant influences the tablet coating process in terms of spray 

residence time, bed cycle time and coefficient of inter-tablet coating variation. To that end, cases with 

a spring constant of 2,500 N/m and 25,000 N/m were run for 156 seconds, discarding the first 6 seconds 

as the initialization phase. 

B-3.3.2. Simulation Software 

The “eXtended Particle System” (XPS) is a commercial discrete element software that primarily relies 

on the parallelization technology of nVidia graphics cards (GPUs), which are designed for direct 

programming using the CUDA language GPUs [22] and are intrinsically designed for massive calculation 

thread parallelization. This is especially interesting for cases where many simple calculations have to 

be performed independently from each other, as it is the case when calculating the movement of many 

independent particles. Modern GPU architectures allows over 2000 CUDA cores in parallel and a 

simulation of over 70 million single spheres on a single GPU. The glued-sphere [15] approach makes it 

possible to simulate non-spherical shapes, such as tablets. The XPS –DEM algorithm applied in this 

study uses a linear spring-dashpot system. The forces calculation and the integration scheme are 

detailed in [18] for both the normal and tangential force calculation a linear spring dash pot model is 

used. Although previous works [23] and [24]showed that the glued sphere approach is less accurate 

when simulating a single sphere or cylinders it was already used in various other studies to simulate 

tablet shaped particles. In these investigations it was shown that the glued sphere approach works well 

when used for a large number of tablets ([11], [13], [25], [26]) 

 The investigated process parameters (with the values used for the comparison of experimental and 

simulation results in brackets) used in the simulations are shown in Table 2. The initial contact settings 

were taken from [11] (time step size and sliding friction) and the spring constant was chosen to match 
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the results. For the variation studies the spring constant was varied between 2,500 N/m and 25,000 

N/m, the particle-particle friction coefficient between 0.13 to 0.78 and the time step between 10-4 s 

and 10-6 s.  

The critical time step was calculated for each spring constant using Eq7. It is defined by the tablet mass 

(m) and the particle stiffness (k) and a α-value which should be lower than 0.4[27]. 

∆𝑡𝑐𝑟𝑖𝑡 =  𝛼 ∙ √
𝑚

𝑘
 (7) 

Table 2 Simulation Parameters. 

Tablet properties:  

Spring constant 2,500-25,000 N/m 

Density  1150 kg/m3 

Tablet Weight 0.000282 kg 

Interaction Tablet – Wall:  

Coefficient of restitution  0.78 

Sliding friction coefficient (pw) 0.55 

Rolling friction coefficient  0.01 

Interaction tablet – tablet:  

Coefficient of restitution  0.78 

Sliding friction coefficient  0.13-0.78 (0.39)  

Rolling friction coefficient  0.01 

Simulation:    

Time step duration 10-6 - 10-4 (4·10-5) s 

Cell size (X,Y,Z) 0.0061 m, 0.0058 m, 0.0061 m 
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B-3.3.3. Velocity Measurement 

The saved simulation files were read into a post processing software written in Python and the velocity 

of the tablets in the area of interest was extracted. In the simulation the camera view was recreated as 

a bundle of rays with a geometrical range that resembles the size of the analyzed tablet surface flow 

video. Since the position (distance and angle) of the ray bundle is the same as the borescope optics 

position and orientation in the experiments, the same spatial point in the tablet bed was investigated. 

A ray-tracing algorithm was applied to find the tablets that were on top of the tablet bed. The velocity 

of the detected tablets was saved. The mean velocity per time step was established based on the 

number of rays hitting each tablet. This approach considers the influence of the tablets’ visibility on the 

measured velocity in the experiments. The rays and camera position are shown in Figure 5. The exact 

location coordinates are presented in Table 3. 

 

Figure 5: Tablet bed (blue) and rays (green) used in the post processing algorithm in the cases of BFC 5 (left) and BFC 50 
(right). The angle of the camera is α. 

Table 3: Position and angle (with respect to the vertical direction) of the camera and ray in the simulation and experiment. 

 BFC 5 BFC 50 

Position (X,Y,Z) in mm -33.4, 19.6, 296 -85.2, 11.5, 550  

Angle in ° 33.5 33.2 

B-3.4. Process Properties 

The influence of various spring constants (i.e., various mechanical properties of the tablets) on the 

results is discussed in the last part of the study. Tablet coating was simulated for a total of 36 s (up to 

156s for spring constants of 2,500 and 25,000 N/m), discarding the first 6 seconds of each simulation. 

During post-processing, the spray was simulated using the same ray-tracing algorithm that was applied 
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to identify the tablet in the spray zone. Two spray zones (Figure 6) were analyzed to determine the 

tablet velocity, the spray residence time and the bed cycle time.  

 

Figure 6: Spray nozzle position (red ellipses) in BFC 5 drum with the tablets colored according to their velocity. 

B-4. Results and Discussion 

B-4.1. Validity of Experimental Results 

The experimental methodology for determining the tablet surface velocity was tested and validated in 

[28]. Specifically, this novel approach of measuring the tablet velocity via a high speed camera was 

validated by comparing the results with literature data using the same laboratory tablet coater BFC 5. 

For the literature values the tablet tracer technique was employed [5]. In Figure 7, we compare tablet 

velocity results for biconvex GITS 30 tablets, which are used in this study, to oblong tablets [5]. Both 

experiments had similar filling levels of 16.9 % and 18 % (of the total drum volume) and similar static 

bed angles of 34.1° for oblong tablets and of 36° for GITS 30. One can observe a fairly good agreement 

between both sets of experimental data, validating the new experimental approach.  

The advantage of high speed camera imaging and subsequent image analysis over the more common 

approach of tracing color-tagged tablet is the statistical relevance of the obtained data and the ability 

to follow the dynamic changes of the average tablet velocity caused by the drum and baffle movement 

(i.e., an extra step of time aligning the tablet bed distance and dynamic angle of repose data with the 

surface flow image data).  
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Figure 7: Comparison of average tablet velocity as a function of drum circumferential speed, obtained for GITS 30 and oblong 
tablets [5] in BFC down bed 5 laboratory coater. 

B-4.2. Influence of Simulation Parameters on the Tablet Velocity 

We studied the influence of the particle-particle (pp) friction, the spring constant (stiffness of tablets) 

and the DEM time step size on the tablet velocity. Each parameter was varied separately. First, the 

value of the particle-particle (pp) friction was changed and its influence on the tablet velocity was 

investigated. Theoretically, the velocity should increase with the decreasing pp friction. The initial value 

for the pp friction was 0.39. The friction coefficient was varied between 0.13 and 0.78. The tablet 

velocity increased with the decreasing pp friction as can be seen in Figure 8. As can be seen, the 

experimental velocity ranges could not be matched. However, the influence of the pp friction overall is 

insignificant. This is caused in part by the shape of the simulated tablets as the non-smooth surface 

provides additional friction and possibilities for interlocking, thus reducing the effect of the friction 

coefficient. 

Since the tablet velocity failed to reach the experimentally measured tablet velocity, the pp friction was 

chosen to be 0.39, an experimentally determined value that, in an earlier simulation study, delivered 

good results for the dynamic angle of repose in combination with particle-wall friction coefficient (pw) 

value of 0.55 [29]. A relatively high value of particle-wall friction was selected due to a perforated type 

of the drum wall and the roughness of GITS coating.  
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Figure 8: Mean down-bed tablet velocity for various values of the particle-particle friction coefficient (BFC 5, 12.6 % fill level, 
15rpm). The red line is the mean tablet velocity and the dashed red line is the standard deviation of the experiment (k = 

2,500, pw = 0.55, time step = 4·10-5s). 

Next, the influence of the spring constant on the tablet velocity in the simulation was investigated. 

Increasing the spring constant increases stiffness and thus, the impact dynamics, and results in an 

increased tablet velocity. A possible explanation is that the contact time decreases with increasing 

spring constant, thus leading to more effective gliding of the tablets over each other. The 

computational disadvantage of an increased spring constant value is that the simulations become time-

consuming, as very small time steps have to be chosen and simulations easily become unstable. Thus, 

smaller values are used frequently. A realistic spring constant would be in the range of 105 N/m and 

would require a very small time step, which would significantly increase the wall clock time of the 

simulation. See Just et al. [29] for further information about the tablet material properties used in this 

work. Here a Young’s modulus of 31.9 MPa was chosen.  

Initially, a spring constant of 2,500 N/m was chosen, since it provided a good fit to earlier simulations 

[30], which fitted well other experimental data. The spring constant was steadily increased. In Figure 9, 

the results for the tablet velocity are shown. The mean velocity for spring constants over 10,000 N/m 

are within the standard deviation of the lab results. While a value of 25,000 N/m matches the 

experimental observation perfectly, values over 25,000 N/m could not be studied at this time step size 

(4*10-5). A higher stiffness would require a lower simulation time step size. Otherwise the forces 

resulting from the contacts (particle-particle or particle-wall) are too large and the particles accelerate 

to quickly, being ejected from the simulation domain. Thus, the spring constant for all simulations was 
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set to 25,000 N/m. These results agree with the finding of Freireich et al. [31] which also found a 

correlation between increased particle stiffness and particle velocity in the DEM. 

 

Figure 9: Mean down-bed tablet velocity as a function of spring constant (BFC 5, 12.6 % fill level, 15rpm). The red line is the 
mean tablet velocity and the dashed red line is the standard deviation in the experiments (pp = 0.39, pw = 0.55, time step = 

4·10-5s). 

To confirm that the tablets still behave realistically while increasing the spring constant, the 

composition of the velocity vector was investigated. The ratio between the velocity vector components 

in the horizontal and vertical direction should stay constant as to not distort the simulation results. 

Both velocity components in the radial direction of the drum (x (horizontal), y (vertical)) increased with 

the increasing spring constant, yet the ratio between the components stayed constant (Figure 10, left 

column). The velocity in axial direction of the drum (z) remained constant, independent of the spring 

constant. This leads to less axial mixing in the tablet bed since the tablets move relatively slower along 

the axial direction, travel shorter distances and spend a shorter time on top of the tablet bed.  
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Figure 10: Velocity vector components and velocity vector magnitude in m/s over various spring constants (coefficient of 
particle-particle friction = 0.39, coefficient of particle-wall friction = 0.55, time step = 4*10-5s). (BFC 5, 12.6 % fill level, 

15rpm). 

In order to understand the impact of time step-size on the simulation performance, it was varied from 

5·10-7 up to 4·10-5 seconds for a spring constant of 25,000. Larger time steps were not possible and 

smaller time steps are not feasible as the time needed for one simulation would increase beyond 

reasonable limits. As can be seen in Figure 11, the velocity decreases slightly for smaller time steps, yet 

does not reach a lower limit. Theoretically, the mean velocity should reach a lower limit when using a 

small enough time step. However, GPUs use single precision when calculating the forces between the 

tablets (and the forces between the tablets and the coater geometry). Thus, for very small time steps 

round-off errors may become noticeable, which could explain the decreasing velocity for smaller time 

steps.  

The standard deviation for the simulation results are larger than for the experimental results. This can 

be explained by the fact that the simulation results include all tablets which can theoretically be seen 

through the camera, even ones that would be dismissed in the experimental data due to coverage by 

other tablets. This leads to a wider spread of the tablet velocity, and thus, to a larger standard deviation. 

To maintain the simulation stability and achieve reasonable tablet velocities, we chose the particle 

parameters of 0.39 for the PP friction, 25,000 N/m for the spring constant and 4·10-5 for the time step. 

Using these parameters, a full numerical DoE was performed. 
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Figure 11: Mean down-bed tablet velocity for various time step sizes and a spring constant of 25,000 N/m (BFC 5, 12.6 % fill 
level, 15rpm). The red line is the mean tablet velocity and the dashed red line is the standard deviation in the experiments (pp 

= 0.39, pw = 0.55, spring constant = 25,000 N/m). 

B-4.3. Comparison of Simulations with the Experimental Tablet Velocity 

After establishing the simulation parameters, simulations were carried out. The mean tablet surface 

velocities and the standard deviation of the time-averaged velocity (over three seconds) for all cases 

are shown in Figure 12 and in Table 4. The standard deviation shows the variation of the tablet velocity. 

The tablets differ in velocity due to several factors, mainly the baffle positions (which in returns 

influences the bed height) and the influence of other tablets (tablets that impede/push the tablets 

along in their path down the tablet bed). In the case of BFC 5, experimental and numerical results 

matched well. In the case of BFC 50, the simulation results were lower than the mean velocity in the 

experiments. The deviation between the BFC 5 and BFC 50 can be explained by the way the material 

parameters were adjusted. Material parameters were adjusted to match the experimental results in 

the BFC 5 at a fill level of 12.6% and a rotation rate of 15 rpm, and thus, may not fit as well the case of 

the BFC 50. However, a similar dependence on the drum rotation rate was observed on the laboratory 

(BFC 5) and pilot (BFC 50) scales. 
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Figure 12: Mean down-bed tablet velocity and standard deviation for the BFC 5 (upper) and BFC50 (under) cases with a fill 
level of 12.6% (left) and 16.9 % (right). 

Table 4: Design of Experiment and experimental/simulation results. 

Drum load 

in kg 

Drum Fill 

level 

in % 

Rotation 

rate 

in rpm 

circumferential 

velocity 

in cm/s 

vtablet,exp 

 

in cm/s 

vtablet,sim 

 

in cm/s 

3.00 12.6 5.00 8.25 23.5 19.88 

3.00 12.6 10.30 16.99 45.0 41.20 

3.00 12.6 15.40 25.40 57.7 58.60 

3.00 12.6 20.70 34.14 68.6 70.54 

3.00 12.6 25.40 41.89 77.2 77.82 

4.00 16.9 5.00 8.25 24.7 17.76 

4.00 16.9 10.30 16.99 42.6 38.37 

4.00 16.9 15.40 25.40 56.5 56.78 

4.00 16.9 20.70 34.14 72.4 74.36 
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4.00 16.9 25.40 41.89 80.9 88.05 

16.11 12.6 2.88 8.29 12.5 8.40 

16.11 12.6 5.69 16.39 47.4 34.66 

16.11 12.6 8.61 24.80 64.4 50.32 

16.11 12.6 11.51 33.15 78.8 66.06 

16.11 12.6 14.44 41.58 88.9 77.95 

16.11 12.6 17.25 49.68 105.6 95.94 

21.48 16.9 2.88 8.29 20.0 10.94 

21.48 16.9 5.69 16.39 42.7 27.31 

21.48 16.9 8.61 24.80 59.9 45.72 

21.48 16.9 11.51 33.15 71.0 61.17 

21.48 16.9 14.44 41.58 86.9 83.55 

21.48 16.9 17.25 49.68 98.2 96.66 

Simulation and experimental results agreed well and the trends were well captured. Especially, for the 

small system (BFC 5) the agreement is very good. For the larger system the agreement is slightly worse, 

with the velocities being under-predicted by the simulation, for both fill levels. This can be explained 

by the difference in the measuring methods in the simulation and experiments. In the simulation all 

tablets which are detected by the ray tracing algorithm are taken into account when calculating the 

mean tablet velocity. In the experiments only tablets which can be clearly seen are counted when 

calculating the motion of the tablets between the different frames. Thus, only tablets on top of the 

tablet bed which are clearly seen are used to determine the tablet bed surface velocity, while tablets 

in the deeper layers are dismissed. Clearly, top tablets are faster, explaining the slightly higher velocities 

in the experiments. Thus the tablet velocity is usually faster in the experiments as the experiments 

include mostly tablets on the tablet bed surface. 

To demonstrate that both processes can provide comparable solutions, the spatially averaged velocity 

of each time step during three seconds is shown for some example cases in Figure 13. As can be seen, 
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the velocity fluctuates significantly and the frequency and amplitude of the fluctuations is well-

captured by the simulation. 

The fluctuations are due to the baffle position in the drum, which influences the local tablet bed height 

and speed by plowing through the tablet bed in the direction opposite to the tablet bed’s surface flow. 

Although the peaks were the same in the simulation and experiments, in all cases the minima were 

somewhat lower in the simulation, leading to a lower time-averaged tablet mean velocity. Dependency 

on the baffle passage frequency, which depends on drum rotation rate and number of baffles (Figure 

13) can be seen. A similar pattern in the mean velocity fluctuation is observed between simulations and 

experiments. 

 

Figure 13: Evolution of the mean down-bed tablet velocity in the experiment and simulation for the 3 seconds of evaluation in 
the experiment at a drum circumferential speed of 42 cm/s on the laboratory scale, BFC5 (top), and on the pilot scale, BFC 50 

(bottom), at 12.6 % and 16.9 % fill levels 

A comparison of spatially- and time-averaged tablet velocities in the experiment and simulation is 

shown in Figure 14. The mean tablet velocity is mostly under-predicted in the simulations. The scatter 

of the data shows a mean deviation between the simulation and experimental results of 14.66 % and a 

standard deviation of 12.83%. The largest absolute deviation between simulation and experiments is 

around 0.1 m/s. significant differences are observed at lower drum rotation rates. At lower rotation 

rates the influence of the slower tablets which are in the second layer of the tablet bed (seen from the 

surface) are partially included in the averaging of the simulation data but are excluded by the 
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experimental investigation due to poor visibility. Additionally, in the image analysis, a lower threshold 

of the tablet velocity was set as one half of the circumferential drum velocity. 

 

Figure 14: Down-bed tablet velocity in the simulation over the tablet velocity in the experiments. 

B-4.4. Changes in the Tablet Bed Behavior and its Relevance for Coating Variation 

In reality, material and structure-dependent mechanical properties of the tablet core and, especially, 

its coating can introduce a change in the tablet spring constant. To that end, we numerically 

investigated the influence of tablet spring constant on the overall process outcome. First, we studied 

the influence of an increased spring constant and tablet velocity on the spray residence time (i.e., the 

time the tablets spend in the spray zone). For measuring the residence time in the spray zone a 

threshold of 0.4 seconds was chosen. This values was already used in previous work using the same 

coater geometry and similar rotation rates/ fill level ([20]). 

As expected, the mean of the spray residence time distribution decreases with the increasing spring 

constant due to the increasing tablet velocity. In addition, its distribution becomes narrower (Figure 

15). The corresponding tablet velocity distributions for a spring constant of 2,500 and 25,000 N/m are 

shown in Figure 16. The velocity distribution becomes wider and shifts to higher velocities at a higher 

spring constant.  
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Figure 15: Spray residence time for the various spring constants (left) (BFC 5, 12.6% fill level, 15 rpm). 

 

Figure 16: Down-bed velocity distribution for the tablets in the observation zone for spring constants of 2,500 N/m and 
25,000 N/m (BFC 5, 12.6% fill level, 15 rpm) 

The bed cycle time is the time a tablet spends inside the tablet bed between two distinct spray events. 

The tablet bed cycle time decreases from around 2/3 to around 1/2 of one drum revolution when the 

spring constant increases from 2,500 N/m to 25,000 N/m (Figure 17). This is due to higher tablet 

velocities in the lower bed region, as the upward transport rate should be similar (i.e., the latter is 

determined by the rotation of the drum). Faster tablets reappear more quickly in the spray zone and 

have an increased number of spray area passages during a total coating time. 



Comparison of Video Analysis and Simulations of a Drum Coating Process 

35 

 

Figure 17: Normalized bed residence time for spring constants of 2,500 N/m and 25,000 N/m (BFC 5, 12.6% fill level, 15 rpm) 

B-5. Summary and Conclusions 

The proposed approach to measuring the tablet velocity proved to be in good agreement with previous 

measurements that involved tracer tablets. This opens new ways of directly measuring the tablet 

velocity during the process. Although tracer tablets are still required for measuring the spray residence 

and bed cycle times, these values can theoretically be determined based on the tablet velocity.  

DEM was used to reproduce the experiments numerically and to improve the understanding of the 

tablet behavior during the spray coating process. First, we determined the best values of DEM 

parameters to fit the experiments. To that end, the influence of pp friction, spring constant and time 

step on the tablet velocity was investigated. It was established that the spring constant has the most 

significant effect and the pp friction has the smallest one. These results are in agreement with finding 

from Freireich et al. [31] Next, these parameters were used to reproduce the experiments. The 

velocities in the simulation matched (or were somewhat below) the velocity in the experiments. 

However, in both cases the trend was the same and the dependence of tablet velocity on the baffle 

position was clearly observed in both the experimental and the simulated results.  

The simulations could realistically recreate the tablet bed behavior and matched the result in the BFC 

5 case. In the case of BFC 50, the simulations were close and matched very well the dependence on the 

rotation rate. The relative deviation between the simulation and experimental velocity results varied 

between 45.30% (maximum value) and 0.28% (minimum value) from the experimental results with a 
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mean deviation of 14.66 % and a standard deviation of 12.83%. The results agreed best at higher 

rotation rates and least at lower rotation rates. 

In summary, this work demonstrates that it is possible to accurately simulate the tablet behavior in a 

drum coater. The results can be used in the future for even more accurate simulations. 
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C-1. Abstract 

Spray coating of tablets is an important unit operation in the pharmaceutical industry and is mainly 

used for modified release, enteric protection, better appearance and brand recognition. It can also be 

used to apply an additional active pharmaceutical ingredient to the tablet core. Scale-up of such a 

process is an important step in commercialization. However, scale-up is not trivial and frequently, at 

manufacturing scales the required coating quality cannot be reached. Thus, we propose a method 

where laboratory experiments are carried out, yet scale-up is done via computational methods, i.e., by 

extrapolating results to larger scales. 

In the recent years, the Discrete Element Method (DEM) has widely been used to simulate tablet 

behavior in a laboratory scale drum coater. Due the increasing computational power and more 

sophisticated DEM algorithms, it has become possible to simulate millions of particles on regular PCs 

and model industrial scale tablet coating devices. In this work, simulations were performed on the 

laboratory, pilot and industrial scales and DEM was used to study how different scale-up rules influence 

the bed behavior on larger scales. The material parameters of the tablets were measured in the 

laboratory and a glued sphere approach was applied to model the tablet shape.  

The results include a vast amount of qualitative and quantitative data at the different scales. In 

conclusion, the evolution of the inter-tablet coating variation for the different scales and process 

parameters is presented. The results suggest that keeping the Froude number constant during the scale 

up process leads to faster processes as the cycle time is shorter and the spray residence time is more 

uniform when compared to keeping the circumferential velocity constant. 

C-2. Introduction 

Tablets are one of the most widespread pharmaceutical delivery forms and are frequently coated. The 

simplest form of coating is color coating, which can be used for branding or for aesthetic or 

psychological considerations [1]. More complex coating formulations provide a function, e.g., enhanced 

protection functionality (i.e., low pH in the stomach), modification of the release or, in the case of active 

coating, introduction of an additional active pharmaceutical ingredient (API). With regard to the second 

category of functional coating processes, the intra- and inter-tablet coating uniformities are critical 
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quality parameters. Intra-tablet coating uniformity is the uniformity of coating layer on a single tablet. 

Inter-tablet coating uniformity is the uniformity of coating mass of all tablets in a batch. Particularly 

strict limits with regard to the inter-tablet coating uniformity apply to coatings that contains an API, 

namely the content uniformity requirements of relevant Pharmacopoeia [2], [3]. 

Experiments can help to optimize these critical quality parameters and to ensure adherence to the 

limits established by the regulatory agencies. In the lab, behavior of tablets or the influence of 

operation parameters on the tablet coating quality can be studied [4] and [5] and input data required 

for modeling can be gathered (e.g., a compartment or Monte Carlo models)[5]–[8]. Also models that 

use empirical relation between the tablet velocity, spray residence time and bed cycle time to predict 

the process outcome are developed [9]. Some studies involve pilot-scale drum coaters to investigate 

the scale-up process and the influence of coater geometries and batch sizes on the process outcome 

[10]–[12]. Industrial scale drum coaters are rarely used during experimental studies or DoEs due to the 

high costs [13]. 

In contrast, simulations make it possible to analyze – in theory at every scale - process properties that 

cannot be tracked experimentally. Initially, computer simulations were of limited use due to available 

computational power. As computer technologies have become more sophisticated, simulations of 

pharmaceutical processes have become more common. They can reduce the cost of experiments: 

fewer experiments have to be performed and changing parameters is easier. For example, the discrete 

element method (DEM) is increasingly applied in the pharmaceutical industry. Ketterhagen [14] 

provides an overview over the various processes for which DEM can be employed.  

Investigating the behavior of tablets in a drum coater was one of the first applications of DEM in the 

pharmaceutical industry [15]. In the simplest cases, tablets can be approximated as spheres [16], [17]. 

Experiments are performed to ensure the correct material properties [16], [18] and to adapt the 

specific simulation material parameters (stiffness, coefficient of particle-particle and particle-wall 

friction etc.) to fit the experiments. With that regard, the shape of simulated particles is important since 

the bulk and flow characteristics of biconvex tablets differs from that of spheres. Favier et al. [19], [20] 

proposed using connected spheres, which are allowed to overlap to mimic the shape of real particles. 

This so-called “glued-sphere approach” was applied in numerous studies [10], [18], [21], [22], e.g., to 

investigate the tablet shapes and their influence on the tablet bed behavior [23], [24] and to 

understand the mixing and flow in the tablet bed [25]. For example, Suzzi et al. [26] applied this method 
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together with a Quality by Design Approach to study the influence of process parameters on the quality 

of the finial product. 

Typically, a few thousand tablets are coated on the lab scale, compared to a few hundred thousand on 

the pilot scale and 1-2 million tablets on the industrial scale. All of the above referenced studies were 

performed at the laboratory scale, primarily due to the limited number of tablets that can be simulated 

with most DEM implementations. To overcome these limitations, a DEM code named ‘eXtended 

Particle System’ (XPS) was developed at the RCPE that runs on graphics processors (GPU) and permits 

a massive parallelization due to its architecture. It is possible to simulate up to 13 million spheres on 

one gigabyte of GPU RAM using the XPS code, which allows the simulation of industrial-sized tablet 

coating processes that typically involve 1-2 million tablets. The XPS code has been described by Radeke 

et al. [27].  

A transfer from the laboratory to the industrial scale can be performed using two scale-up rules for 

drum speed. For drum coaters, these were established by Turton and Chen in [28]. The first method is 

to scale the rotation rate by keeping the Froude number constant. The Froude number Fr is calculated 

as: 

𝐹𝑟 =  
𝜔2 ∙ 𝐷

𝑔
 (8) 

which gives a rotation rate of the scaled device:  

𝜔2 = 𝜔1 ∙ √
𝐷1

𝐷2
  (9) 

where ω is the rotation rate, D is the radius of the drum and g is gravity. The subscripts 1 and 2 refer 

to devices one and two. Circumferential velocity influences the flow regime in the drum [24]. In the 

case of tablet coating, a flow regime between rolling and cascading is preferable. With a constant 

Froude number, the flow regime in drum coaters remains constant [17]. However, this scale-up strategy 

may lead to too high tablet velocities in the bigger drums, and to higher tablet abrasion.  

Thus, we also used the second scale-up rule with a constant circumferential speed: 

𝜔2 = 𝜔1 ∙
𝐷1

𝐷2
 (10) 

For geometrically similar coaters (such as the ones in this study), the fill level ratio is also kept constant: 
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𝑀2 = 𝑀1 ∙
𝐷1

2 ∙ 𝐿1

𝐷2
2 ∙ 𝐿2

 (11) 

M is the loading mass and L is the length of the drum. 

For this study it is assumed that the process settings are given on the lab scale. We then used both 

scale-up rules 9 and 10 for the rotation rate and for the drum load 11 to calculate settings for pilot- and 

industrial-scale coaters. With this approach, the pilot- and industrial-scale coaters contain around one 

hundred thousand and one million tablets, respectively. Moreover, at every scale two rotation rates 

are obtained, each for every scale-up rule.  

Then, a comparison of the lab- and larger-scale coaters was carried out, comparing the bed behavior 

and velocity of tablets in the spray zones in drums with different rotation rates and with different sizes. 

Next, spray and bed cycle time at various rotation rate were compared and mixing efficiency of the 

coaters was evaluated. Finally, the evolution of the coefficient of inter-tablet coating variation (cv,inter) 

was studied on various scales. 

C-3. Material and Methods 

C-3.1. Coater and Tablets 

In this work, we studied an active coating process for the production of tablets. Gastrointestinal 

therapeutic systems (GITS) were used as a starting material (Bayer Pharma AG, Leverkusen, Germany). 

GITS are round biconvex two-layer tablets with a diameter of 9 mm and a height of 5 mm.  

The coating was performed on the laboratory scale in a Bohle Film Coater 5 (BFC 5, L.B. Bohle 

Maschinen + Verfahrens GmbH, Ennigerloh, Germany), on the pilot scale in a Bohle Film Coater 50 (BFC 

50, L.B. Bohle Maschinen + Verfahrens GmbH, Ennigerloh, Germany) and on the industrial scale in a 

Bohle Film Coater 400 (BFC 400, L.B. Bohle Maschinen + Verfahrens GmbH, Ennigerloh, Germany). The 

geometries of coating drums were provided by the manufacturer. The operational settings used for the 

simulation runs are described in Section C-3.3. 

When comparing the geometries of coaters in Figure 18, their similarities in the overall form and the 

increasing number of baffles with the increasing size of the coater are apparent. The coaters in the 

Figure are not scaled to size. In reality, they differ by a factor of 5 in diameter and length of the drum 

between the lab and industrial scales, respectively. The ratio of the length and the drum diameter differ 

in the various scales. 
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Figure 18: Drum geometries of the BFC 5(A), BFC 50 (B) and BFC 400 (C), not to scale. 

The size and volume of the three drums are reported in Table 5. 

Table 5: Drum dimensions of the three drums used. 

DRUM RADIUS LENGTH VOLUME 

 In m In m In m3 

BFC 5 0.158 0.45 0.35 

BFC 50 0.349 0.82 0.31 

BFC 400 0.713 2.24 3.58 

C-3.2. Simulation Method 

XPS is a DEM code developed at Research Center Pharmaceutical Engineering, which is based on the 

DEM developed by Cundall and Strack [29]. It uses the CUDA programming language [30], which is a C 

extension developed by Nvidia for utilizing graphical processing units (GPUs, i.e., graphics cards) to 

achieve massive speed up of a highly parallelizable algorithm [27].  

To simulate the particles, we used a glued sphere approach [31]. The tablet consists of eight 

overlapping spheres ([32]) and has a mass of 282 mg. The volume and moment of inertia were 

calculated using a Monte Carlo integration scheme. The position and size of the sub-spheres were 

adjusted for the modeled tablets to have the same volume and dimensions as the real tablets. 
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Figure 19: Tablet shape modeled via the glued sphere approach taken from[32]. 

The coaters’ fill level ratios were kept constant to ensure the same relative fill volume in each of them. 

The resulting fill levels were 3.5 kg (12,411 tablets), 31 kg (110,496 tablets) and 354 kg (1,258,085 

tablets) on the lab, pilot and industrial scales, respectively. The tablet properties and the tablet-tablet 

and tablet-wall interaction parameters were taken from [18]. These properties are reported in Table 6. 

The material parameters applied in this work were taken from earlier experiments [18]. 

The material parameters were set to be constant. We did not yet include the influence of the air flow 

and temperature on the tablet properties, since analyzing friction was not within the scope of this work. 

The effect of these parameters on the tablet flow behavior was estimated to be low. The forces acting 

on the tablet rim were modeled in a simplified way using the glued sphere approach. The edges are 

approximated by the outer spheres of the model tablets and thus behave differently from real tablets. 

All simulations have a 6 seconds initialization phase, during which the tablet bed is allowed to reach a 

quasi steady state. After this, the simulations run for an additional 90 seconds and data are collected. 

These data are used for the post processing. 
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Table 6 Simulation parameters 

Tablet properties  

Spring constant 2500 N/m 

Density  1150 kg/m3 

Interaction Tablet – Wall  

Coefficient of Restitution  0.78 

Static friction coefficient 0.45 

Rolling friction coefficient  0.01 

Interaction tablet – tablet  

Coefficient of Restitution  0.78 

Static friction coefficient 0.39 

Rolling friction coefficient  0.01 

Simulation    

Time step length 4x10-5 s 

Cell size (X,Y,Z) (0.0061, 0.0058, 0.0061) m 

Position and velocity information of the particles was recorded every 0.02 seconds during the 

simulations. These data were then analyzed by a post-processing algorithm, which simulated spray 

coating. For spray coating, a ray-tracing approach was used following a mechanism proposed by 

Toschkoff et al. [22]. In this approach the spray is simulated as an ensemble of rays that are oriented 

normal to the tablet-bed surface. At each time step, the algorithm determines the tablets that are hit 

by a ray. Velocities of the hit tablets were saved independently to obtain the velocity distribution in the 

spray zone. The spray dimensions were taken from measurements and estimations in the coater. The 

mean value of the spray zone diameter were used in the post processing. They have an ideal elliptical 

shape with major and minor axes of 6.5 and 3.2 cm (BFC 5 coater), 10 and 5 cm (BFC 50 coater) and 12 

and 6 cm (BFC 400 coater). The spray zone positions with respect to the coater bed are shown in Figure 

20.  
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Figure 20: Top view of the spray zones in the BFC5, BFC50 and BFC 400 coaters, tablet bed size not for scale. Note that the 
tablets in the spray zone are marked as red. 

The number of nozzles changed depending on the scale. As can be seen in Figure 20, the ratio between 

the covered and uncovered areas of the tablet bed increased from the lab scale to the pilot scale and 

decreased from the pilot to the industrial scale. The ratio of coated tablets to uncoated tablets is 

important for the initial cv,inter value as was shown in previous already by previous Authors 

[7][16][17].This may lead to a better coating uniformity on the pilot scale, yet a long processing time 

on the industrial scale.  

C-3.3. Process Parameters 

For scale-up purposes, the base case, i.e., the laboratory-scale coater, was chosen to be 3.5 kg and the 

rotation rates was set to 18 rpm. These data were taken from a previous work [33]. Based on that, the 

drum loads on the pilot and industrial scales were calculated (via Eq. 11). For the rotation rate, Eqs. 9 

10 were used, resulting in 5 DEM simulations. After the simulations were completed, qualitative and 

quantitative process parameters were investigated.  

As a first qualitative check, the shape of the tablet bed was assessed visually for slumping (i.e. the tablet 

bed moves upward the drum walls and then falls back in one swift movement), which should be 

avoided. In parallel, the bed angle was calculated. To compare the tablet bed shape, the Python code 

was used, which reads the saved simulation data and plots via the matplotlib module for Python. The 

script also calculates the bed angle at different time steps by locating the tablets on the surface. 

Subsequently, a linear regression was used to obtain the slope of the tablet bed. Based on the slope, 

the bed angle was derived.  
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Mixing behavior on different scales and for different rotation rates was investigated in two ways. In the 

first approach, the tablets in the middle of the bed in length-wise direction were marked and the bed 

was divided into bins along its length (i.e., in axial direction). The ratio between marked and unmarked 

tablets was calculated for each bin at each time step. Information concerning the evolution of this ratio 

and standard deviation for the entire coater was generated. The Lacey index was used to determine 

when the coater was perfectly mixed. In the second approach, the distance travelled by the tablets on 

the different coating scales and at difference rotation rates was analyzed. The distance travelled by 

every single tablet in the drum was tracked and normalized by the mean distance travelled.  

For further comparison, the mean, 5 and 95 percentile of the distance travelled were evaluated. Finally, 

spray coating was simulated in the post-processing step, as described by Toschkoff et al [22]. The spray 

zones were positioned at around 1/3 of the tablet bed top length measured downwards from the top. 

This algorithm was used to determine the spray residence time, the bed cycle time, the tablet velocity 

in the spray zone and the evolution of coefficient of inter tablet coating variation (cv,inter).  

The spray residence time is the time that the tablets spend in the spray zone. The distribution should 

be as narrow as possible, since it influences the coating efficiency and the cv,inter. The bed cycle time is 

the time that a tablet spends in the total tablet bed between two coating events. Both are important 

indicators of inter-tablet coating variability. For cv,inter we used the mean coating mass accumulated over 

all tablets.  

𝑐𝑣,𝑖𝑛𝑡𝑒𝑟 =  
𝜎𝑚𝑐

𝜇𝑚𝑐
=  √

1

𝑁
∑

(𝑚𝑐,𝑖−𝑚̅𝑐)2

𝑚̅𝑐
2

𝑁
𝑖=1  , with 𝑚̅𝑐 =

∑ 𝑚𝑐,𝑖
𝑁
𝑖=1

𝑁
  

 

(12) 

N is the number of tablets and mc,i is the coating mass of tablet i. The aim is to obtain low values of 

cv,inter. While in an experimental investigation, the total variation is estimated from the variation in a 

sample, in the DEM simulation the coating of all tablets (the entire statistical population) is used for 

that purpose. 

The drum load and rotation rate on various scales are shown in in Table 2 below. It should be noted, 

that the influence of the spray rate, friction change, temperature of the drying air and the air flow in 

general are not included in this work. All these parameters (especially the air flow) would lead to 

unreasonably long simulation times. 
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Table 7: Drum load, Fill ratio, number of tablets, circumferential velocity and rotation rate  

Drum 

Name 

load Fill ratio Tablets Circumferential 

velocity 

Rotation 

rate 

Froude 

number 

 in kg In %  in m/s in rpm  

BFC 5 3.5 14.75 12411 0.30 18 0.0029 

BFC 50Fr 31.16 14.75 110496 0.44 12.1 0.0029 

BFC 50vc 31.13 14.75 110496 0.30 8.14 0.0013 

BFC 400Fr 354.78 14.75 1258085 0.63 8.47 0.0029 

BFC 400vc 354.78 14.75 1258085 0.30 3.99 0.0006 

C-4. Results and Discussion 

Simulating the coating process on all scales enables unprecedented insight into the impact of various 

parameters on the process behavior. For a first comparison, the shape of the tablet bed can be used, 

as this information reflects what the operator would see in the real-world process. The dynamic bed 

angle was also investigated since it provides an overview of the flow regimes in the drum coater.  

Moreover, tablet velocity in the spray zone on various scales was studied to assess the dependence of 

the tablet velocity on the rotation rate and drum size. For an in-depth quantitative study of the mixing 

behavior, the distance the tablets travel during the simulation was investigated. Mixing behavior was 

analyzed and compared for the various scales as well. Finally, for all five cases the effect of time on the 

decrease of coefficient of variation was investigated.  

C-4.1. Shape of the Tablet Bed  

The shape of the tablet bed and, especially, the dynamic bed angle are important characteristics of the 

tablet coating process. Knowing how the dynamic bed angle changes at different rotation rates is 

helpful in terms of setting up a consistent process (e.g., positioning of the spray gun). Using the DEM, 

the dynamic bed angle and the shape of the tablet bed can easily be determined[34][33]. Based on the 

shape and height of the tablet bed over time it is possible to predict possible slumping behavior. 

Figure 21 shows that the overall shape of tablet bed is similar in all cases, from the lab to the industrial 

scale for both scaling methods. For better comparability, all plots are scaled to the same size. The 

dynamic bed angle was calculated and averaged for each saved simulation time step. When the 

circumferential velocity is constant, the dynamic bed angle is lower than when the Froude analogy is 

used. This effect can be observed in the BFC 50 case and, even more prominently, in the BFC 400 case. 

This was expected since the dynamic bed angle is directly influenced by the rotation rate. The dynamic 
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bed angle in Table 8 shows that the bed angle increases slightly with the increasing circumferential 

velocity (constant Froude number) for the pilot scale and slightly decreases on the large scale. The angle 

significantly decreases at a constant circumferential velocity with larger scales. This is due to the 

avalanching behavior of the tablet bed at lower Froude numbers.  

 

Figure 21: Tablet bed shape observed from the front of the drum in the axial direction. From left to right: BFC5, BFC50 and 
BFC400; the top row shows a constant Froude number, the bottom row shows a constant circumferential velocity. 

Table 8: Dynamic bed angle on various scales and in various cases. 

COATER DYNAMIC BED ANGLE IN ° 

BFC5 37,2 

BFC 50 FR 39,9 

BFC 50 VC 35,2 

BFC 400 FR 36,4 

BFC 400 VC 32,7 

The results also indicate that adapting the spray nozzle angle/position based on the shape of the bed 

at various rotation rates can be advantageous for the final product.  

C-4.2. Velocity in the Spray Zone 

Velocity distribution of the tablets in the spray zone is an important factor for designing the coating 

process. Most of the time it depends on the circumferential velocity of the rotating drum. Another 

important factor that influences the tablet velocity is the tablet bed height and the position of spray 

zone. Typically, tablets will accelerate during the first half of their downwards movement decelerate 
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during the second half and reach zero speed at the bottom of the tablet bed. After that, they are 

transported upwards once again alongside the drum walls. Tablets reach their top speed in the area 

from around the middle to two thirds of the tablet bed [35] [36].  

The velocity distribution in the spray zone for constant circumferential velocity and constant Froude 

number is provided in Figure 22. All tablets inside the spray zone that are hit by at least one ray are 

counted. Their influence on the velocity distribution is weighted according to the number of rays that 

hits the tablets, thus tablets on top, which are hit with more rays have a higher impact on the velocity 

distribution. The velocity distribution for the BFC 400FR appears to be bimodal due to the different 

velocities on top of the tablet bed. Due to the baffles there tablet bed surface is divided between 

regions with higher and lower velocity. This effect is even more pronounced for higher circumferential 

velocities (Froude scaling provides higher circumferential velocities). If the circumferential velocity is 

constant (subscript vc), the mean tablet velocity across scales is almost constant, i.e., at a constant 

circumferential velocity, tablet velocities are influenced only slightly by the geometry of the coater and 

the position of spray zones.  

 

Figure 22: Velocity in the spray zone at a constant circumferential velocity (subscript vc) and with a constant Froude number 
(subscript Fr). 

The mean velocity for the BFC 5 is 0.34 m/s with a standard deviation of 0.15 m/s. when the 

circumferential velocity is kept constant the mean velocity increases to 0.38 for the BFC 50 (standard 

deviation of 0.13 m/s) and 0.37 for the BFC 400 (standard deviation of 0.07 m/s). Thus the increase is 
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negligible and can be explained through the increase in size and the position of the spray zones which 

allow the tablets to accelerate a little longer than in the smaller scale.  

If the Froude number is kept constant and thus the circumferential velocity increases the mean tablet 

velocity increases as well. For the BFC 50 the mean tablet velocity is 0.62 m/s with a standard deviation 

of 0.19 m/s and for the BFC 400 the mean tablet velocity is 0.99 m/s with a standard deviation of 0.21 

m/s.  

The increase of the tablet velocity in the spray zone for a constant Froude number in the BFC 50 is the 

results of the increased circumferential velocity ( ~ 50% increase) and results in a nearly 100 % higher 

tablet velocity and for the case of the BFC 400 the circumferential velocity nearly doubles and the mean 

tablet velocity increases ~200 %.  

C-4.3. Spray Residence Time 

Time in the spray zone going from the lab to the industrial scale was investigated. Spray residence time 

is connected to the tablet velocity in the spray zone. Here it is the time a tablet spends in the spray 

zone during a single spray event. The distribution for the 5 investigated cases can be seen in Figure 23. 

Figure 23 indicate that the time in the spray zone is influenced by the rotation rate of the drum. To 

ensure that each spray event for the tablets in the spray zone is an individual spray event a threshold 

of 20 store intervals (0.4 sec) was chosen. The store interval is time when the position and velocity of 

the particles is written out during the simulation. This threshold of 0.4 sec is shorter than the shortest 

bed cycle time of ~1.5 seconds and is used in all scales. The mean residence spray residence time for 

the BFC 5 is 0.10 s. For the case of the BFC 50 and a constant circumferential velocity the distribution 

and mean residence time stays constant (0.095 s). This is due to the time resolution of the ray tracing 

algorithm (0.02s) that cannot detect differences smaller than 0.02 sec and also due to the slightly 

increased tablet velocity. For the BFC 400vc the mean residence time increases by around 40 % to 0.14 

s and shows an increased tailing which is the result of the previous discussed slumping due to the lower 

tablet velocity and change tablet bed behavior due to the different Froude number. 

With a constant Froude number, on larger scales vc increases and mean spray residence time decreases. 

The mean residence time on the lab scale is 0.1 s. With a constant Froude number, it decreases to 0.062 

s on the pilot scale and 0.058 s on the industrial scale. This is due to the increases speed of tablets in 

the spray zone. Again the store interval of 0.02 s does not allow to evaluate if there are bigger 

differences in the spray residence time distribution but one can assume that there are some fast tablets 

that receive coating but are not counted in this evaluation.  
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Figure 23: Time in the spray zone for various drum sizes and at various rotation rates. (vc = constant circumferential velocity, 
Fr = constant Froude number) 

In Figure 24 the spray residence time is shown for all cases over the number of revolutions. All cases 

except for the BFC 5 have a similar distribution of the spray residence time when plotted over the 

number of revolution with a mean value of around 0.01 revolutions per pass. Mean residence time for 

the BFC 5 is 0.03. This can be explained by the faster rotation rate in the BFC 5. This effect should be 

considered when planning or scaling up a process from the laboratory scale. 

 

Figure 24: Time in the spray zone for various drum sizes and at various rotation rates over the number of revolutions. (vc = 
constant circumferential velocity, Fr = constant Froude number) 
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A narrow distribution of time in the spray zone is advantageous: the spray amount that each tablet 

receives is more uniform and the risk of over-wetting is reduced. In contrast, a wide distribution may 

mean that some tablets (especially at the tail towards high residence times) are exposed to the spray 

for too long. This can cause defects, such as sticking of tablets to each other or to the wall. Knowing 

the quantitative dependence of residence time on process conditions (e.g., Figure 23) may prevent 

tablet damage through a knowledge-based, targeted increase of rotation rate. The time in the spray 

zone also affects the development of the cv,inter as a narrower distribution of the spray residence time 

effects the coefficient of inter tablet variation as it decreases the standard variation of the tablet 

coating mass to the mean coating mass as shown by Freireich [7] up to a point where the variation in 

the spray residence time is far lower than in the bed residence time. After this point decreasing the 

variation of the spray residence time has no effect on the coefficient of inter tablet coating variation. 

C-4.4. Bed Residence Time  

Bed residence time is the time a tablet spends in the tablet bed during two distinct spray events. It is 

shown two folds here, first over time (Figure 25) and second over the number of revolutions (Figure 

26). Figure 25 shows that the bed cycle time is dependent on the drum size and rotation rate. The BFC 

5 has the shortest bed cycle time, due to the smallest drum radius and highest rotation rate), while the 

BFC 400vc has the longest bed cycle time. For all cases the probability that a tablets enters again the 

spray zone after one cycle is the highest.  

 

Figure 25: Bed cycle time for different cases. 
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When the bed residence time is plotted over the number of revolution all plots nearly collapse and lay 

on top of each other independent from the drum size and rotation velocity (Figure 26). The difference 

can be explained by the difference on how the tablet bed is covered with spray zones and the distance 

the tablets travel in the tablet bed. The closer the spray zones are to each other the higher is the 

likeliness that a tablet will be spray again in the next cycle. This was already shown to be true in smaller 

scales [33], and is here shown that it is also true for larger scales. The bed cycle times is around 0.6 

revolutions, thus the tablet bed cycle time is less than one drum rotation cycle. This is true for all cases 

except for the BFC 5 where only the mean of the first peak is identical with the peaks of the other cases. 

This behavior can be explained by the wider distribution of the individual cycles and the longer time 

per rotation in the spray zone (see Figure 24) which skews the cycle bed cycle time to longer cycles 

especially for later cycles. This is explained by the shape of the tablet bed which is approximately 

around 1/3 of the drum wall and a nearly equal long distance on top of the tablet bed. 

 

Figure 26: Bed cycle time over the number of revolutions for different cases. 

C-4.5. Mixing Efficiency 

The Lacey index is used to determine the mixing quality in a granular material. It compares the two 

most extreme cases of the total segregation and random mixing with the current state of the granular 

material. The Lacey index can have the values of 0 (total segregation) or 1 (random mixing).  
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𝑀𝐿 =  
𝜎0

2 − 𝜎(𝑡)2

𝜎0
2 − 𝜎𝑟

2  (13) 

where σ(t) is the standard deviation, σ0 is the total segregated state and σr is the standard deviation in 

a totally randomly mixed state.  

To measure ML, the tablet bed is divided into bins along the axial direction. Each bin had the width of 

one tablet diameter. Thus there are 47 bins in the BFC 5, 83 bins in the BFC 50 and 226 bins in the BFC 

400. The tablets in the center of the tablet bed are marked in the beginning of the evaluation. Thus 282 

tablets in the BFC 5 (2.27 %) ~2400 tablets in the BFC 50 (2.15 % and 2.14 %) and ~28000 tablets in the 

BFC 400 (2.22 % and 2.27 %). Thus, nearly the same ratio of tablets is marked in each case. The marked 

tablets together with example bins (bins are not shown in real size) are shown in Figure 27. The ratio 

between marked to unmarked tablets in every bin and the standard deviation for the tablet bed per 

time step are calculated. The standard deviation per time step is than used to calculate the Lacey index. 

Where the standard deviation at time step 0 was used as σ0. σr is the standard deviation after the value 

of the standard deviation is constant.  

 

Figure 27: Start (0 seconds) and end mixture (90 seconds) for BFC5, 50 and 400 with a constant Froude number and at a 
constant circumferential velocity (top and bottom rows). Please note that the marked tablets are plotted after the unmarked 

in this graph and thus seem to be on top of the other tablets. Actually the tablets are mixed in the tablet bed. 

ML is plotted as a function of the number of rotations in Figure 28. The Figures indicates that the tablet 

bed mixing shows very similar behavior in all 5 cases. The Lacey index depends similar to the bed 

residence time on the number of rotations. In the BFC 5 and BFC 50vc a short reduction in ML between 
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0.4 and 0.5 rotation can be explained by a back mixing of the marked tablets into the bins in which 

already other marked tablets are sitting.  

 

Figure 28: Lacey index ML over the number of rotations at constant circumferential velocity and Froude number 

C-4.6. Distance Traveled 

The distribution of distance traveled by the tablets in the drum should be as uniform as possible. It is 

an indicator of good mixing in the axial and radial directions. Significant variations in the tablet 

movement can be a sign of dead zones that should be avoided during the coating process.  

One of the main advantages of the DEM is that, since the position and velocity of every particle are 

known at all times, it is easy to establish were dead zones occur. For better comparability, the traveled 

distance was normalized by the mean distance traveled are shown in Table 9. Figure 29 shows that the 

overall normalized distance traveled in all cases (except BFC400vc) is similar to the base case in the small 

drum.  
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Figure 29: Relative distance traveled in the coating drum. The total distance is standardized by the mean distance traveled. 

A narrow distribution of the traveled distance is an indicator for good mixing in the drum. On the 

industrial scale, a wider distribution at constant circumferential velocity scaling indicates that mixing is 

more challenging. With a constant Froude number scaling, this can be counter-acted by an increased 

tablet velocity. Table 9 shows the minimal, maximal and mean distances traveled, as well as the ratio 

of the 5 and 95 percentile values. The ratio is a good indicator of how narrow the distribution of traveled 

distance is. It has values from around 1.2 in the lab-scale case to 1.87 in case 4, indicating a very wide 

distribution, which can also be seen in Figure 29.  

Table 9: Minimal and maximal distances traveled in the five investigated cases during the 90 s simulated process time 

Coater  5 % distance 

traveled 

95 % distance 

traveled  

Mean 

distance 

traveled 

Ratio 

 in m in m in m  

BFC 5 13.42 16.07 14.74 1.20 

BFC 50 Fr 20.48 25.17 23.05 1.23 

BFC 50 vc 12.50 16.59 14.82 1.33 

BFC 400 Fr 33.48 44.01 39.20 1.31 

BFC 400 vc 11.33 21.22 17.27 1.87 
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Clearly, the ratio of the shortest and longest distance travelled increases at lower rotation rates, which 

implies that the rotation rates should be above a certain minimum. This was not expected since the ML 

suggests that mixing does not depend on the rotation rates. The higher the rotation rate, the better 

mixing becomes, especially in bigger drums. This should be considered when choosing the process 

parameters. 

C-4.7. Time Dependence of Uniformity 

According to the literature[33], the coefficient of variation should decrease with the inverse square 

root of time. 

𝑐𝑣,𝑖𝑛𝑡𝑒𝑟 ≈
1

√𝑡
 (14) 

In this work, we tested if this is true on various scales. In Figure 30, cv,inter is shown over the process time 

(double logarithmic scale). Although cv,inter does, to some degree, depend on the drum speed, the drum 

scale has a more significant effect on it. The initial cv,inter value at the different scale sizes is constant for 

the individual scales, because the same amount of tablets is coated at the first time step. This effect is 

explained in the literature in various works ([7],[16],[17]) because the initial cv,inter can be calculated 

from the following observation:  

𝑐𝑣,𝑖𝑛𝑡𝑒𝑟 =  √
1 − 𝑥

𝑥
 (15) 

Where x is the ratio of the tablets in the spray zone to the total amount of tablets. The decrease in 

cv,inter is slower at slower rotation rates as a lesser number of individual tablets are inside the spray zone 

for the same amount of time as less tablets are pass through the spray zone in the same amount of 

time. As expected, cv,inter is the highest on the industrial scale in BFC400vc as the cycle time highest and 

initial ratio of coated to uncoated tablets is the lowest.  
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Figure 30: Coefficient of variation over the total simulated time at a constant circumferential velocity and with a constant 
Froude number with the spray zones defined beforehand 

For the first few tablets travelling through the spray zone, cv,inter changes slowly. After around 1 second, 

the curve of cv,inter nearly reaches the expected slope in the double logarithmic plot of -1/2, as reported 

in the literature for spherical tablets [16], [37] and non-spherical tablets using the glued sphere 

approach [33]. After around 60 seconds the slope of the decrease is constant for all cases. In an ideal 

coating process, the tablets are coated independent of the previous coating event (i.e., a Markovian 

process). However, in reality the tablets that are coated have a higher chance of travelling along the 

coater wall to the top of the tablet bed and being sprayed again. This was confirmed by the bed cycle 

times, where the possibility is the highest that a tablet passes again through the spray zone after one 

cycle. The slope of the decline is -0.51 for the BFC 5 -0.53 for the BFC50Fr -0.57 for the BFC50vc -0.52 for 

the BFC400Fr and BFC400vc. 

A higher rotation rate shortens the process time and provides a lower cv,inter after a given time. At a 

constant rotation rate, cv,inter decreases at a constant rate with the increasing process time, when 

plotted over a double logarithmic axes. A higher rotation rate is favorable due to the shorter process 

time. cv,inter after 90 seconds (Figure 31) confirms that a higher rotation rate is favorable since it reduces 

the process time significantly. 
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Figure 31: cv,inter in % after 90 seconds on various scales and at various rotation rates. 

C-5. Conclusion 

This work demonstrates the possibilities that DEM offers with regard to scale-up of a tablet coating 

process. The particle range in this work is between 10,000 and 1.5 million tablets, which can easily be 

simulated using a modern DEM algorithm [38]. To measure tablet properties, experimental and real 

shapes of the tablet were considered for the purposes of simulation process. 

The tablet coating process was scaled-up from the laboratory coater to the pilot and industrial scales. 

The two most commonly used scale-up rules were tested and the difference in the tablet bed behavior 

was documented. The first rule is to keep the Froude number constant and regulate the rotation rate 

of the drum accordingly. The other rule is to keep the circumferential velocity constant.  

The tablet velocity influences the spray and bed cycle times. By keeping the Froude number constant 

the circumferential velocity of the coating drum increases with increasing drum diameter, which 

increases the overall tablet velocity and especially the tablet velocity on top of the tablet bed. Keeping 

the circumferential velocity constant shows that the tablet velocity stays constant. When the spray and 

bed cycle time is compared between the different scales it shows that keeping the Froude number 

constant the time in the spray zone is constant or decreases (especially prominent in the industrial 

scale) and the bed cycle time is shorter when compared to the results of a constant circumferential 

velocity. These effects are more prominent in the industrial scale than in the pilot scale. Moreover, 

mixing is influenced by the rotation rate and the uniformity of the distance travelled distribution. 
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Mixing is enhanced when scaling up using a constant Froude number compared to a constant 

circumferential velocity. The better the mixing efficiency is, the faster cv,inter decreases. At low rotation 

rates, due to poorer mixing, cv,inter decreases slower than at faster rotation rates, and the tablet coating 

process takes a shorter time with a constant Froude number than at a constant vc. Thus, keeping the 

Froude number constant is preferable to keeping the circumferential velocity constant as it allows a 

lower the necessary process time in the larger scales. Keeping the Froude number constant also ensures 

that the tablet bed are in the same state (rolling cascading) in the bigger scales. Thus higher rotation 

rates can be used but should be tested in the laboratory scale (or the simulation) first to ensure that 

the tablet bed flow regime stays the same. Assuming that the tablets withstand the mechanical stress 

due to the higher velocities and impact forces, higher rotation rates can be used.  

The results from simulation can also be used as input parameters for simplified models e.g. Chen et al. 

[9] describing the drum tablet coating process to help identify the process parameters needed for the 

models. Simulations can be used to confirm the simplified model predictions before testing them in 

experiments which would save time and money as more process setting points can be tested in parallel. 

(e.g. the number of tablets in the spray zone, tablet velocity, tablet spray residence and bed cycle time.)  

This work demonstrates that it is possible to predict the tablet bed behavior using the common scale-

up rules. Overall, we confirmed that the DEM can help to improve the mechanistic understanding of 

and optimize the tablet coating process. The scale-up using simulations can be faster and at reduced 

costs (prototype construction, faulty batches etc.). 

Nevertheless, it must be emphasized that the scale-up study presented here exclusively focused on 

mixing, bed dynamics and spray interaction. Thermal effects were not included. Typically, during scale-

up the bed temperature or the exhaust air temperature are kept constant, in order to have the same 

film formation process (film-forming temperature). In addition, the mass-flow ratio between coating 

solution sprayed and process air should be kept similar, in order to have the same energy input per kg 

of tablets.  
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D. Analysis of Large-Scale Tablet Coating: Modeling, Simulation and 

Experiments 

Published as: P. Boehling et al., “Analysis of large-scale tablet coating : Modeling , simulation and 

experiments,” Eur. J. Pharm. Sci., vol. 90, pp. 14–24, 2016. 

D-1. Abstract 

This work concerns a tablet coating process in an industrial-scale drum coater. We set up a full-scale 

Design of Simulation Experiment (DoSE) using the Discrete Element Method (DEM) to investigate the 

influence of various process parameters (the spray rate, the number of nozzles, the rotation rate and 

the drum load) on the coefficient of inter-tablet coating variation (cv,inter). The coater was filled with up 

to 290 kg of material, which is equivalent to 1,028,369 tablets. To mimic the tablet shape, the glued 

sphere approach was followed, and each modelled tablet consisted of eight spheres. We simulated the 

process via the eXtended Particle System (XPS), proving that it is possible to accurately simulate the 

tablet coating process on the industrial scale. The process time required to reach a uniform tablet 

coating was extrapolated based on the simulated data and was in good agreement with experimental 

results.  

The results are provided at various levels of details, from thorough investigation of the influence that 

the process parameters have on the cv,inter and the amount of tablets that visit the spray zone during 

the simulated 90 seconds to the velocity in the spray zone and the spray and bed cycle time. It was 

found that increasing the number of nozzles and decreasing the spray rate had the highest influence 

on the cv,inter. Although increasing the drum load and the rotation rate increased the tablet velocity, it 

did not have a relevant influence on the cv,inter and the process time. 

D-2. Introduction 

Tablets are the most common form of drug products and they are often coated to mask the API’s taste, 

to add protection functionality, to provide a modified release of an active pharmaceutical ingredient 

(API) or to add a second API (active coating). Especially, with respect to active coating, ensuring content 

uniformity - and thus coating uniformity - is a challenging task. Consequently, intra-tablet and inter-

tablet coating variability are critical quality attributes (CQAs). Intra-tablet coating variability is the 

variability in the coating mass on a single tablet, with the edges and the bands being especially critical. 

In contrast, inter-tablet coating variability refers to the variance between all tablets in one batch. For 
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the case of active coating, inter-tablet variability is even more critical and is regulated by the 

corresponding guidelines and pharmacopoeias. 

One of the main goals of designing a coating process is to ensure that it reliably delivers a low inter-

tablet coating variability. Thus, mixing of the tablet bed and the spraying process are often studied 

experimentally, typically in a small-scale drum coater [1], [2], [3]. Since extensive experimentation on 

the pilot or, even more demanding, on the production scale typically is prohibitively expensive, 

experimental studies are mainly performed on the laboratory scale. Scale-up rules and the experience 

of the process engineer are used to calculate/estimate the correct loads and rotation rates on larger 

scales[4], [5], [6], [7]. Verification of the process parameters is carried out via test runs on the industrial 

scale, which are also used for obtaining the approval of the regulatory agencies. Results of experiments 

on the industrial scale are rarely published[8].  

One way to reduce the amount of experiments and the associated costs is to perform simulations in 

addition to experiments. In this context, the Discrete Element Method (DEM), developed by Cundall 

and Strack in 1979 [9], has proven to be an effective simulation methodology. In this method, Newton’s 

second law of motion and a momentum balance are solved for each particle in three dimensions. All 

forces, including normal and tangential contact forces are included and the detail of modeling 

distinguishes the different implementations of DEM. DEM has successfully been applied in the 

pharmaceutical industry [10]. Tablet coating is particularly suitable for DEM simulations as the number 

of particles (i.e., tablets) is relatively low compared to other processes involving granular material, 

where particle numbers easily reach many billions [11]. In the past, simulations reported in the 

literature focused mainly on small- scale systems, with the number of tablets being in the order of 104-

105 [12]–[14]. Early simulations used spheres [15] to approximate the tablet’s shape: the glued sphere 

approach was developed to model non-spherical particles [16] through multiple spheres [13], [14], 

[17],[18]. However, due to an increasing computational power available and sophisticated 

parallelization efforts, it is now possible to simulate many millions of particles on a single graphical 

processing unit (GPU)[19], [20]. In combination with the glued sphere approach, current models can 

simulate the tablet coating process on the pilot and even on production scales with up to 2 million 

tablets within a reasonable amount of time. Based upon these new approaches, it is possible to create 

a full factorial Design of Simulation Experiment (DoSE) with multiple factors on every scale.  

In the current study, we modeled the coating process and simulated the flow of tablets in a production-

scale drum tablet coater to determine the optimal process parameters. A full DoSE on the production 
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scale was carried out, which so far was not possible due to the limited computational resources. The 

Coefficient of Variation in the coating drum was calculated for various process settings. Moreover, the 

influence of the drum load, the rotation rate, the spray rate and the number of nozzles on the cv,inter 

were studied. The end-point of the process (i.e., the time needed to complete the process with the 

desired coating thickness and quality) could be predicted based on the simulation data. The predicted 

end point was then compared to experimental results. The spray residence time, the bed cycle time 

and the tablet velocity in the spray zone and their effect on the cv,inter were investigated.  

D-3. Material and methods 

D-3.1. Tablet coating process, tablet and drum design 

In this study an active coating process was considered for the production of tablets that contain two 

APIs: one in the coating and the other in the core. Gastrointestinal therapeutic systems (GITS, see Figure 

32) were used as a starting material (Bayer Pharma AG, Leverkusen, Germany). These are biconvex 

round tablets with a diameter of 9 mm and a height of 5 mm. During the coating process, a coating 

solution containing the API candesartan (Cilexetil) was sprayed on the tablets. 

 

Figure 32: GITS tablet schema, orange is an outer tablet color coating, white the active coating layer discussed in this paper, 
blue a semipermeable membrane with an orifice surrounding the inner drug layer (yellow) and the polymeric push 

compartment (red). 

During the coating process, the tablet bed is flowing in the drum coater due to the drum rotation [21]. 

Integrated baffles in the coater enhance axial and radial mixing and ensure that no dead zones are 

formed. Individual tablets are transported upwards in the bed. After reaching the top of the tablet bed, 

the tablets slide down and pass through the spray zone where the coating mass is applied. The spray 

droplets impact on the tablet surface, spread and the solvent is removed (dried) by the drying air. The 

remaining polymer particles of the coating suspension form first a tightly packed bed and then a film. 
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This occurs only above the minimum film forming temperature (MFFT). Thus, a minimum temperature 

in the bed needs to be maintained. 

The coating mass applied to an individual tablet mostly depends on the time a tablet stays in the spray 

zones. The results of a DEM simulation of the tablet bed during the coating process and the spray zone 

position are shown in Figure 33. The tablet velocities are represented by color variations: the fastest 

tablets are on the top of the tablet bed. 

 

Figure 33: Filled drum coater and the position of the spray nozzles. The drum is filled with 290 kg (1,028,369 tablets) of 
material and is rotating with 8 rpm. The tablets are colored according to their velocity. 

D-3.2. Experimental investigation 

Experimental investigations were performed at the Bayer site to investigate the necessary process time 

for achieving a desired coating quality. The tablets were coated in a production-size coater (BFC 400, 

L.B Bohle Maschinen + Verfahren GmbH, Ennigerloh, Germany). The geometry of the coating apparatus 

was provided by the manufacturer (Figure 34). During the experiments, the drum load was varied 

between 240 and 260 kg. The rotation rate was set to 9 rpm and the spray rate was varied between 

160 g/min to 360 g/min. The tablets were coated between 172 up to 522 min. The set of experiments 

can be seen in Table 10. 
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Figure 34: Mesh of the BFC 400 drum used in the simulation. 

Table 10: Study design of the experimental part 

Case  Load 

In kg 

Rotation Rate 

In rpm 

Spray Rate 

In g/min 

Duration 

In min 

A 260  9 360 172 

B 240  9 240 248 

C 250  9 160 368 

D 250  9 360 345 

E 250  9 240 522 

D-3.3. Simulation model  

XPS is a DEM algorithm written in CUDA, which is a C-extension developed by Nvidia and is designed 

for GPU computing. While a modern CPU typically has about 24 cores, CUDA allows for parallel 

computing with over 2000 CUDA cores. Parallelization of the DEM algorithm allows the simulation of 

up to 130 million spheres in a single GPU, applying a linear spring dashpot model to calculate the forces 

acting on the particles upon collision (see [19], equations 1-11).  

To compute the interaction between non-spherical particles (e.g., tablets), a glued sphere approach 

was applied. Each simulated particle was represented via several primitive shapes. XPS currently uses 

overlapping spheres to mimic the real shape of a complex-shaped particle. The material properties 
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(Table 11) were taken from [22] and adapted accordingly. The modeled tablets were represented via 

eight spheres (Figure 4), which had the same volume as the real tablet. This approach allows simulating 

the process within a reasonable amount of time.  

 

Figure 35: Tablet shape as modelled with the glued sphere approach 
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Table 11: Simulation and material parameters 

Tablet properties  

Spring constant 2500 N/m 

Density  1150 kg/m3 

Interaction Tablet – Wall  

Coefficient of Restitution  0.78 

Static friction coefficient 0.45 

Rolling friction coefficient  0.01 

Interaction tablet – tablet  

Coefficient of Restitution  0.78 

Static friction coefficient 0.39 

Rolling friction coefficient  0.01 

Simulation    

Time step length 4·10-5 s 

Cell size (X,Y,Z) (0.0061, 0.0058, 0.0061) m 

D-3.4. Simulation setup 

One tablet weight is 282 mg. The total number of tablets depends on the fill level, and was between 

815,602 (230 kg) and 1,028,368 (290 kg) tablets. Tablets were allowed to settle during the first six 

seconds of simulation, the tablet bed reached a steady state and the created data were discarded. The 

simulation continued for additional 90 seconds (in true process time) and information on the position, 

velocity and orientation of the particles was analyzed every 0.02 seconds. Finally, the simulation 

continued for one additional second with a storage interval of 0.002 seconds to obtain a highly 

temporal resolution for the investigation of the spray residence time. The stored files were then 

analyzed using the post-processing algorithms written in Python. 
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D-3.4.1. Design of simulation experiments 

The simulation runs were chosen following a statistical design, commonly known as Design of 

Experiments (DoE). Derived from this terminology, we refer to this approach as Design of Simulation 

Experiments (DoSE). Upper and lower limits were defined for each parameter. The goal was to mimic 

the real process and find the optimal process parameters. The rotation rate and the fill level varied 

between 8 to 10 rpm and 230 to 290 kg, respectively. For each load and rotation rate, a DEM simulation 

was performed (i.e., a total of 7 simulations). The impact of the spray was determined after the DEM 

simulation, i.e., during post-processing: Here, the number of nozzles was four, six and eight and the 

center spray rate was 240 g/min, with changes to 160 and 360 g/min. This resulted in 9 different post-

processing parameters and a total of 7×9 (63) simulated cases (Table 12). 

D-3.4.2. Spray modeling  

There are several methods for modeling the spray via DEM. One method includes the spray coating 

process in the simulation where spray droplets are considered DEM particles. Other approaches 

account for the spray during post processing using a ray tracing algorithm [23]. In this work, a ray tracing 

algorithm was used similar to the one proposed by Toschkoff et al. [23]. For details of the method refer 

to [23]. The position and dimension of the spray zones were obtained from the real process. In this 

method, the spray is simulated as a bundle of rays. The spray zones are oriented as shown in Figure 5, 

i.e., at 1/3 of the distance down from the top of the tablet bed. With the ray tracing algorithm it is 

possible to determine which tablets are currently in the spray zone. Additionally, the velocity of these 

tablets, and their spray-residence and bed-cycle time can be determined exactly. For every single 

tablet, the amount of coating mass is determined which depends on the number of rays that hit the 

tablet. The mass is computed according to 

𝑚𝑟𝑎𝑦 =
ṁ𝑠𝑝𝑟𝑎𝑦

𝑛𝑟𝑎𝑦𝑠
∙ ∆𝑡 (16) 

mray is the mass that gets added during one storage interval (0.02 s) to the tablet if it is hit inside the 

spray zone by one single ray. ṁspray is the spray rate in g/s, nrays is the number of rays used in the post 

processing and Δt is the store interval. The more rays hit the tablet the more coating mass the tablet 

receives. Thus, the time and the exposure of the tablet in the spray zone is taken into account. The 

more rays (𝑛𝑟𝑎𝑦𝑠) are used in the post processing the more accurate the calculation becomes. Realistic 

spray cones with varying density and shape can be modeled as well with this approach. With this 

information the coefficient of variation can be calculated a posteriori. Thus, using this approach varying 

spray gun configurations can be studied rapidly. 
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In our case, the spray regions are elliptically shaped. Spray zone dimensions are 6 x 12 mm. In total 

three nozzle set-ups were investigated with 4, 6 and 8 nozzles each (Figure 36). 

 

 

Figure 36: Spray zones (white ellipses). The number inside the ellipse is the distance from the middle of the coater in the BFC 
400 (view from the top, normal to the tablet bed surface). The set up with four nozzles represents the true position. The 

configuration with six and eight nozzle is shifted down for the purpose of clarity. 

D-3.4.3. Critical quality attributes 

Inter-tablet coating variability was chosen as the relevant quality criterion of the coating process. It is 

defined as the cv,inter ,which is the standard deviation σmc of the coating mass distributed over all tablets 

divided by the mean of the coating mass µmc: 

𝑐𝑣,𝑖𝑛𝑡𝑒𝑟 =
𝜎𝑚𝑐

𝜇𝑚𝑐
=  

√ 1
𝑁

∑ (𝑚𝑐,𝑖 − 𝑚𝑐)
2𝑁

𝑖=1

𝑚𝑐
 , 𝑤𝑖𝑡ℎ 𝑚𝑐 =  

1

𝑁
∑ 𝑚𝑐,𝑖

𝑁

𝑖=1

 (17) 

Here, N is the number of tablets, mc,i is the coating mass of tablet i and mc is the mean coating mass. 

The goal of the optimization of the tablet coating process is to obtain a consistently low cv,inter. Typically, 

in experimental investigations the total variation is estimated based on the variation in a sample. In 

contrast, in a DEM simulation the coating of all tablets (the entire statistical population) is used for this 

calculation. The associated limit set by regulations is 6.25 % [24].  

The simulations were run using varying parameter settings to investigate their influence on the process 

outcome. The parameters were chosen based on the ability to adjust the parameters in realistic coating 
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operations, i.e., the rotation rate, the fill level, the number of spray nozzles and the spray rate. Other 

parameters, such as the tablet-tablet friction, were excluded as these parameters cannot be controlled. 

For each variation in the rotation rate and fill level, a DEM simulation was performed for 90s of real 

processing time. The spray analysis was done as post processing (described above). The total spray rate 

was given and, depending on the number of nozzles, each nozzle sprayed a fraction of the total spray 

rate (i.e., for 2 nozzles each nozzles sprays 50 % of the total spray rate). We extrapolated the spray 

results (i.e., the coefficient of variation cv,inter ) to 300 min for a base spray rate of 240 g/min in two 

ways: First, we calculated the exponent of decay of cv,inter for the last 30 seconds of DEM simulation 

time. Next, we used literature data [25]–[28] that report that the cv,inter is inversely proportional to the 

square time: 

𝑐𝑣,𝑖𝑛𝑡𝑒𝑟 ∝
1

√𝑡
= 𝑡−0.5 (18) 

Finally, we used this equation to extrapolate the cv,inter after 300 min and to the process durations given 

in the experimental study Table 10. Thus, two differently predicted cv,inter are available and reported 

below. 

Varying the number of nozzles and the spray rate was done during the post processing. The base case 

of the spray rate was 240 g/min for a total coating time of 300 min, yielding a total amount of coating 

solution of 72 kg. In the simulations the spray was varied (160 g/min and 360 g/min). Thus, also the 

coating time had to be adapted to 450 min and 200 min, respectively. The coefficient of variation cv,inter 

does not depend on the absolute spray rate (see Eq. 17), yet strongly depends on the spraying time as 

mentioned above (Eq. 18). Thus, cv,inter for the spray rate settings 160 g/min and 360 g/min was 

computed based on Eq. 19: 

𝑐𝑣,𝑖𝑛𝑡𝑒𝑟,2 = 𝑐𝑣,𝑖𝑛𝑡𝑒𝑟,1√
𝑉̇2

𝑉̇1

 (19) 

D-4. Results 

The results of the designed simulation experiments (DoSE) are shown in Table 12. Table 3 also contains 

the final result for the cv,inter after 90 s of computation. Moreover, Table 2 presents the final cv,inter 

extrapolated to the end of the process, i.e., after 300 min at a spray rate of 240 g/min and 

shorter/longer times depending on the selected spray rate. 240 g/min was set as the base value for the 

spray rates. For different spray rates the cv,inter was calculated using Eq. 19 For different nozzle numbers 

the API concentration in the spray was assumed to change accordingly. Two different extrapolated 
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numbers are given: First, with the exponent calculated based on the time decay during the last 30 s of 

the simulated first 90s, and, second, with an exponent of -0.5 as given in the literature (Eq. 18) 

Table 12: Design of Simulation Experiment in the BFC 400 and the corresponding values of cv,inter after 90 s (extrapolated to 
135 s and 60 s), 300 min (450 min and 200 min)with an ideal decay and with a fitted decay. The cv,inter values for a spray rate 

of 160 and 360 g/min were adapted according to Eq. 19 

Case 

Load  

Rotation 

rate Number of Spray Rate cv,inter  cv,inter  cv,inter  

  

 

in kg in rpm Nozzles in g/min after 90 s 

final 

exponent 

0.5 

final 

fitted 

exponent 

1 230 8 4 160 82.32% 5.62% 4.98% 

2 230 8 4 240 100.82% 6.89% 6.10% 

3 230 8 4 360 123.47% 8.43% 7.48% 

4 230 8 6 160 67.07% 4.59% 3.79% 

5 230 8 6 240 82.15% 5.63% 4.64% 

6 230 8 6 360 100.61% 6.89% 5.68% 

7 230 8 8 160 59.26% 4.20% 2.97% 

8 230 8 8 240 72.58% 4.99% 3.63% 

9 230 8 8 360 88.89% 6.11% 4.45% 

10 230 10 4 160 73.74% 5.04% 4.37% 

11 230 10 4 240 90.31% 6.17% 5.35% 

12 230 10 4 360 110.61% 7.56% 6.55% 

13 230 10 6 160 61.08% 4.20% 3.38% 

14 230 10 6 240 74.81% 5.12% 4.13% 
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15 230 10 6 360 91.63% 6.28% 5.06% 

16 230 10 8 160 54.70% 4.20% 2.76% 

17 230 10 8 240 66.99% 4.61% 3.38% 

18 230 10 8 360 82.05% 5.64% 4.14% 

19 240 9 4 160 78.56% 5.37% 4.57% 

20 240 9 4 240 96.22% 6.58% 5.60% 

21 240 9 4 360 117.85% 8.06% 6.85% 

22 240 9 6 160 64.57% 4.43% 3.45% 

23 240 9 6 240 79.08% 5.43% 4.22% 

24 240 9 6 360 96.85% 6.65% 5.17% 

25 240 9 8 160 57.54% 4.20% 2.77% 

26 240 9 8 240 70.47% 4.85% 3.39% 

27 240 9 8 360 86.31% 5.94% 4.15% 

28 250 9 4 160 79.49% 5.44% 4.59% 

29 250 9 4 240 97.35% 6.66% 5.63% 

30 250 9 4 360 119.23% 8.16% 6.89% 

31 250 9 6 160 65.32% 4.48% 3.43% 

32 250 9 6 240 80.00% 5.49% 4.20% 

33 250 9 6 360 97.98% 6.73% 5.14% 

34 250 9 8 160 58.01% 4.20% 2.70% 

35 250 9 8 240 71.04% 4.90% 3.31% 

36 250 9 8 360 87.01% 6.00% 4.05% 
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37 260 9 4 160 80.37% 5.50% 4.62% 

38 260 9 4 240 98.43% 6.73% 5.66% 

39 260 9 4 360 120.55% 8.25% 6.93% 

40 260 9 6 160 66.12% 4.54% 3.50% 

41 260 9 6 240 80.98% 5.56% 4.29% 

42 260 9 6 360 99.18% 6.80% 5.25% 

43 260 9 8 160 58.55% 4.20% 2.69% 

44 260 9 8 240 71.71% 4.94% 3.30% 

45 260 9 8 360 87.83% 6.05% 4.04% 

46 290 8 4 160 88.81% 6.09% 4.82% 

47 290 8 4 240 108.78% 7.45% 5.91% 

48 290 8 4 360 133.22% 9.13% 7.23% 

49 290 8 6 160 72.30% 4.98% 3.40% 

50 290 8 6 240 88.55% 6.10% 4.17% 

51 290 8 6 360 108.45% 7.47% 5.10% 

52 290 8 8 160 63.59% 4.41% 2.43% 

53 290 8 8 240 77.88% 5.40% 2.98% 

54 290 8 8 360 95.38% 6.62% 3.65% 

55 290 10 4 160 79.60% 5.43% 4.98% 

56 290 10 4 240 97.49% 6.65% 6.10% 

57 290 10 4 360 119.40% 8.14% 7.47% 

58 290 10 6 160 65.55% 4.48% 3.89% 
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59 290 10 6 240 80.29% 5.48% 4.77% 

60 290 10 6 360 98.33% 6.72% 5.84% 

61 290 10 8 160 58.31% 4.20% 3.21% 

62 290 10 8 240 71.42% 4.89% 3.93% 

63 290 10 8 360 87.47% 5.99% 4.81% 

D-4.1. Coefficient of inter-tablet coating variation 

In Figure 37 the evolution of cv,inter is shown for spray rate of 240 g/min. For clarity, only the best (230 

kg, 10 rpm, 8 nozzles) and worst case (290 kg, 8rpm, 4 nozzles) are shown. The results for cv,inter in the 

other cases are in between these two extremes. The exponent of decay during the last 30 seconds was 

calculated and was the basis for extrapolating the values to a total process time of 300 min. Since cv,inter 

is plotted over a double logarithmic scale, it appears to be linear. Note that for lower (higher) spraying 

rates and thus longer (shorter) coating times better (worse) results are achieved.  

 

Figure 37: cv,inter over the simulated time and estimated values for a process time of 300 min for the best and worst cases. The 
dashed line is extrapolated from the last 30 seconds with the calculated exponent. 

In literature (e.g., [25], [29], [30] ,[31]) it was reported that the exponent of decay for cv,inter evolution 

is -0.5, based on the assumption that the coating process is random. In our simulations, initially the 

decay was flatter than the literature value. This is expected during the initialization phase of the coating 

process. However, the exponent steadily increased and reached a value slightly above -0.5 in all cases. 
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A linear fit in the double-logarithmic diagram was used during the last 30 s to compute the exponent. 

The exponent did not change, even when fewer data points (the last 20, 10 or 5 seconds of simulated 

time) were used, indicating that the process reached a quasi-steady state in terms of mixing after 60s. 

The fitted values are shown in Table 13.  

Table 13: Exponent of the decrease in cv,inter as a function of time 

Load Rotation 

rate 

Number of 

Nozzles 

Number of 

Nozzles 

Number of 

Nozzles 

in kg in rpm 4 6 8 

230 8 -0.530 -0.543 -0.565 

230 10 -0.534 -0.547 -0.564 

240 9 -0.537 -0.553 -0.573 

250 9 -0.538 -0.557 -0.579 

260 9 -0.539 -0.555 -0.581 

290 8 -0.550 -0.577 -0.616 

290 10 -0.523 -0.533 -0.548 

As can be seen these values are all significantly above the value for a random coating event reported 

in the literature and increase with an increasing number of nozzles. This shows that the coating process 

is not purely random and is faster than predicted by Eq18 in this specific coater.  

Based on these results the minimum process time was computed to reach a cv,inter of 6.25% (Table 14) 

which is independent of the spray rate. The strongest effect is the number of nozzles. Clearly, a higher 

nozzle number leads to a significantly shorter process time. Moreover, it can be seen that increasing 

the rotation ratedecreases the necessary process time, while increasing the drum load increases the 

process time. This is true in all cases, except for 290 kg and 8 rpm, where – in this case -possibly not 

enough bed cycles were simulated to reach a steady state.  

For comparison, in Table 15 the required coating times are presented using a constant exponent of k=-

0.5. In all cases, the process took significantly longer. Thus, the results indicate that with proper design 

of the tablet mixing system in the drum a faster coating process can be achieved in order to reach a 

required cv,inter.  
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Table 14: Process time in [min] until cv,inter of 6.25 % is reached at a spray rate of 240 g/min, extrapolated using the fitted 
exponent from Table 13 

Drum Load Rotation 

rate 

Number of 

Nozzles 

Number of 

Nozzles 

Number of 

Nozzles 

in kg in rpm 4 6 8 

230 8 265 160 106 

230 10 207 130 93 

240 9 226 136. 95 

250 9 228 136 93 

260 9 231 141 92 

290 8 251 138 84 

290 10 264 167 119 

Table 15: Process time in [min] until cv,inter of 6.25 % is reached at a spray rate of 240 g/min extrapolated using a constant 
exponent of -0.5. 

Drum Load Rotation 

rate 

Number of 

Nozzles 

Number of 

Nozzles 

Number of 

Nozzles 

in kg in rpm 4 6 8 

230 8 335 223 176 

230 10 269 185 150 

240 9 306 208 166 

250 9 313 213 169 

260 9 320 218 172 

290 8 393 263 206 

290 10 312 212 169 

D-4.2. Comparison of experimental and simulation results 

Experimental investigations were performed on the industrial scale to determine the minimal 

necessary process time to achieve consistently a cv,inter below 6.25 %. The experiments were performed 

at the Bayer production facility. The process time, of these experiments, varied between 172 and 522 

min. Thus the results of the simulations were extrapolated for the same period, using the same 

exponents used as for the 300 min extrapolation. The load was between 240 to 260 kg, the rotation 

rate was 9 rpm in every case, the spray rate was varied between 160 and 360 g/min and 4 spray nozzles. 

A total of 5 experiments were performed, and the results were compared with the values extrapolated 
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from the 90 seconds simulated process time. The results were extrapolated using, first, the fitted 

exponents from Table 13 and, second, a fixed exponent of -0.5. The results are shown in Figure 38.  

 

Figure 38: cv,inter for experiments and simulations as a bar chart. A (drum load: 260 kg, rotation rate: 9 rpm, process time: 172 
min, spray rate: 360 g/min), B (drum load: 240 kg, rotation rate: 9 rpm, process time: 248 min, spray rate: 240 g/min), C 

(drum load: 250 kg, rotation rate: 9 rpm, process time: 368 min, spray rate: 160 g/min), D (drum load: 250 kg, rotation rate: 
9 rpm, process time: 345 min, spray rate: 360 g/min), A (drum load: 250 kg, rotation rate: 9 rpm, process time: 522 min, 

spray rate: 240 g/min) 

As can be seen, all extrapolated results closely match the experimental ones. The fitted exponent had 

a mean deviation of 0.51 %, which gives a relative deviation of 10 %. For the constant exponent, the 

mean deviation was 1.02 % and the mean relative deviation was 22 %. For the fitted exponent, the 

results were either over- or under-predicted. For a constant exponent, all results were under-predicted. 

The smaller error when using the fitted exponent confirms that the exponent is indeed higher than -

0.5, indicating good mixing in the coating drum. The difference in the results may be due to the way 

the cv,inter is measured in experiments and simulations. In experiments, 10-30 tablets are typically 

chosen and with the aid of statistical methods they allow to draw conclusions of the cv,inter of the whole 

batch. In simulations, it is extrapolated from the cv,inter of the entire batch after 90 s. The deviation can 

also be caused by the simplification of the simulation due to omitting several factors that influence the 

process outcome, including the change of tablet-tablet friction through the spray coating, the moisture 

content in the drum, the drying process air and possible spray losses. However, the influence of these 

parameters seems to be small. 
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In summary, the results also show that DEM simulations can predict reliably the process time without 

performing experiments on the production scale, and can thus reduce the required number of 

experiments on the production scale.  

D-4.3. Inter-tablet coating uniformity as a function of process parameters 

As described in the DoSE the cv,inter, was calculated for 63 cases after 90 seconds and extrapolated for a 

total process time of 300 min for a spray rate of 240 g/min and for other processing times depending 

on the spray rate. The results were analyzed via Umetrics Modde®, which is a widely used tool for 

design of experiments, multi-variate data analysis (MVDA) and model generation in the pharmaceutical 

industry. A first order-model in Eq. 20 was used to calculate the dependence and influence of various 

process parameters on cv,inter. Furthermore, a second order-model Eq. 21 was applied as well: 

𝑐𝑣,𝑖𝑛𝑡𝑒𝑟 = 𝑎1𝑥𝑅 + 𝑎2𝑥𝐿 + 𝑎3𝑥𝑆 + 𝑎4𝑥𝑁 (20) 

𝑐𝑣,𝑖𝑛𝑡𝑒𝑟 = 𝑎1𝑥𝑅 + 𝑎2𝑥𝐿 + 𝑎3𝑥𝑆 + 𝑎4𝑥𝑁 + 𝑏1𝑥𝑅
2 + 𝑏2𝑥𝐿

2 + 𝑏3𝑥𝑆
2 + 𝑏4𝑥𝑁

2  (21) 

Here xR denotes rotation ate, xL denotes drum load, xS denotes the spray rate and xN denotes the 

number of nozzles. The corresponding coefficients ai (bi) were determined by fitting the known data 

points. The model after 90s (135 s and 60 s) shows a good fit (R2 = 0.906) and good predictive capability 

(Q2 = 0.893). The results for the extrapolated values after 300 min (450 min and 200 min) using the 

calculated exponent show a good fit as well (R2
 = 0.895) and predictive capability (Q2 = 0.875). The 

centered and scaled coefficients are shown in Figure 39 to illustrate the effect of the process 

parameters after 90s (135 s and 60 s) and 300 min (450 min and 200 min). The second order model had 

nearly the same fit (R2 = 0.910) and predictive capability (Q2 = 0.900). Thus, the simpler model was 

chosen. 

 

Figure 39: Effect of the various parameters on the cv,inter after 90 s (A) and 300 (B) min (Considering different spray rates using 
Eq. 19 using the linear model in Eq. (5). The relative relationship is constant going from 90 s to 300 min. 
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A high absolute value in the coefficient Plot Figure 39 indicates that a factor has a significant influence 

on cv,inter. A negative value means that by increasing this value cv,inter can be decreased, and a high 

positive value means that by decreasing the factor cv,inter can also be decreased. As can be seen from 

Figure 39 the number of nozzles and the spray rate have the greatest influence. An increased number 

of nozzles allow for more tablets sprayed at the same time which reduces the minimal necessary 

process time and increases drastically the cv,inter for the same process time.  

Using the established model, we investigated how changing the process parameters changed the 

process outcome. The results of this multi-variate data analysis (MVDA) are shown as a 4D contour plot 

in Figure 40. cv,inter was calculated for 300 mins and a spray rate of 240 g/min and adjusted the cv,inter 

according to Eq. 19 for a spray rate of 160 and 360 g/min (i.e. 450 min and 200 min). Since the scale is 

the same for all plots, one can quickly determine which settings are more suitable to reach a certain 

desired cv,inter. Overall, the best results were achieved with eight nozzles and a spray rate of 160 g/min 

(upper left part), and the worst results were achieved with 4 nozzles and the highest spray rate (lower 

right).  

In Figure 40 it can be seen that conditions in the lower-right sub-plot (for 300 min) do not achieve a 

required cv,inter value ≤ 6.25%. The cases with 4 nozzles and a spray rate of 240 g/min and 6 nozzles and 

360 g/min are on the edge of the desired limit, with some settings (rotation rate and drum load) over 

the limit and some exactly at the limit. Another advantage of the plot is that multiple scenarios that 

fulfill the requirements can be weighed against each other. For example, one could increase the 

number of nozzles, and thus, decrease processing time and/or increase overall efficiency.  

Finally, it can be seen that higher nozzle numbers give consistently a lower cv,inter, thus providing a 

consistently higher product quality. Alternatively, one could lower the loading or increase speed for 

intermediate nozzle numbers and medium to high spray rates. However, this is of less importance. In 

general, this figures show again, that increasing the number of spray guns has the most significant 

benefit and allows operation in a wide range of operating conditions.  
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Figure 40: 4D contour plot showing the effect of the four investigated process parameter on the cv,inter, after 90 s (A) and 
extrapolated for a process time of 300 min (B) (with a spray rate of 240 g/min and adapted for lower/higher spray rates 

using Eq. 19 with a decay calculated based on the last 30 seconds of the simulation (lower). 

D-4.4. Number of sprayed tablets 

The number of tablets that visited the spray zones at least once during the simulated 90 seconds of 

process time is an important indicator of the coater’s mixing efficiency and the reliability of the 

extrapolation with regard to the total coating time. The amount of coated tablets per time is shown in 

Figure 41. Only the best and worst results for four and eight nozzles are shown. The results for all other 

cases are between these extreme values. 
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Figure 41: Percentage of tablets that were sprayed at least once. For clarity reasons, only the best and worst cases (see 
above) are shown. 

As expected, the best results are achieved with a load of 230 kg and 10 rpm and 8 nozzles, with 98.6% 

of the tablets appearing in the spray zone at least once during the simulation. The worst case is the 

case with 290 kg and 8 rpm and 4 nozzles, with only 81.6% of the tablets visiting the spray zone. The 

difference is due to the varying number of tablets and rotation rate. Faster rotation rates promote 

better mixing of the tablet bed, resulting in more tablets coated within a shorter time and reducing the 

risk of dead zones due to poor mixing. This clearly demonstrates that a low fill level and a high rotation 

rate leads to relatively more tablets coated within the same time period.  

D-4.5. Velocity distribution in the spray zone 

The velocity distribution in the spray zone is important for the process performance. A uniform 

distribution of the velocity in the spray zone results in a uniform spray residence time distribution and 

a good coating quality due to a homogenous distribution of coating mass per pass. Higher velocities 

lead to shorter single-visit residence times, better mixing in the spray zone and an increased probability 

of tablet and coating defects due to abrasion. In contrast, low tablet velocities increase the risk of over-

wetting the tablet, which is the main cause for tablets sticking together and other defects.  

Figure 42 demonstrates that the velocity distribution is quite similar and rather narrow in all seven 

cases with different loading and rotation rates. Moreover, the results reflect data from the literature, 

i.e., that the tablet velocity increases with the increasing drum load and rotation rate. The mean 
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velocity was between 1.035 m/s for 230 kg and 8 rpm and 1.377 m/s for 290 kg and 10 rpm, being 33% 

higher. 

 

Figure 42: Velocity distribution in the BFC 400 at the various process settings. 

D-4.6. Spray residence time 

 The spray residence time is defined as the time span tablets spend in the spray zones during one 

coating event. It is directly influenced by the tablets velocity. It affects the process outcome: a narrow 

distribution in the spray residence time also results in a uniform spray coating since each tablet receives 

the same amount of coating mass per pass through the spray zone. The spray residence time 

distribution is shown in Figure 43. In this case, the simulation was performed for an additional 1 second 

and the storage interval was set to 0.002 seconds, in contrast to the 0.02 seconds during the previous 

90 seconds. This was done to capture tablets in the spray zone that would not be captured otherwise.  

Due to the similar velocity distributions, the spray residence time distributions are similar in all cases. 

When the velocity is slower, the tablets spend longer time in the spray zone but the difference is small. 

Large variations of the rotation rate would potentially lead to more significant changes in the 

distribution.  

The longest mean residence time of around 0.047 seconds was in the case of 290 kg and 8 rpm and 

shortest one was in the case of 0.036 seconds for 290 kg and 10 rpm With regard to the mean time 

value, the difference was 25%, which is less than the mean velocity difference of 33%. No tablet was 
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inside the spray zone for longer than 0.16 seconds, and since the results for six or eight nozzles were 

the same as for four nozzles, they are not shown. 

 

Figure 43: Spray residence time in the BFC 400 for different process settings and a store data interval of 0.002 (four nozzles) 

D-4.7. Bed cycle time 

Bed cycle time is the time that a tablet spends outside the spray zone between two individual spray 

events. The normalized distribution of the bed cycle time is shown in Figure 44 and Figure 45 for all 

loads and rotation rate and 4 spray nozzles. Figure 44 shows a high first peak after approximately 4.5 

seconds followed by smaller peaks at regular intervals. Higher rotation rate shifted the peaks to shorter 

times and vice versa. The decreasing chance of a tablet to reenter the spray zone after one missed cycle 

can be explained by the way the tablets move inside the drum. When a tablet passes through the spray 

zone, the re-entry probability is high. When a tablet misses the spray zone, the re-entry probability is 

only half as high to enter the spray zone. But the time for one cycle is constant (second peak). This is 

true for all subsequent cycles and can explain why all subsequent peaks are smaller than the first one 

and approximately only half as high as the previous peak. After a certain amount of cycles the 

probability that the tablet enter the spray zone again reaches one hundred percent.  

If the distribution of the bed cycle time is plotted vs. the number of revolutions the curves for different 

rotation rates collapse, as shown in Figure 45, which plots bed cycle time as a function of the number 

of revolutions. The logarithmic y-axis also highlights the period peaks more clearly. Here, the bed cycle 

time is approximately 2/3 of the time needed for one rotation. This plot also shows that the bed cycle 
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time is nearly independent of the drum load in the range of parameters studied. This behavior was 

already shown for smaller coaters in the laboratory scale and is confirmed by Toschkoff et. al. [30]. 

 

Figure 44: Normalized bed cycle time during thirty seconds of process time. 

 

Figure 45: Normalized bed cycle time for the different process settings in the BFC 400 vs. the number of revolutions. 

D-5. Summary and Conclusion 

The objective of this work was to simulate the tablet coating process in a production-scale drum coater 

filled with up to 290 kg (1,028,369 tablets) of material using the Discrete Element Method. To that end, 

a full factorial 22+3 Design of Simulation Experiments was executed to investigate the impact of the 
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various process parameters: the drum load (ranging from 230 kg to 290 kg) and the rotation 

rate(ranging from 8 to 10 rpm). Moreover, the spray rate and the number of nozzles were varied.  

First, the influence of process parameters on the coefficient of inter-tablet variation, cv,inter, was 

investigated. The simulations indicate that the number of nozzles and the spray rate have the highest 

impact on cv,inter , while the drum load and the rotation rate have a much lower impact. The last 30 

seconds of the simulation were used to calculate the exponent of the cv,inter decrease as function of 

time. The calculated exponent in all cases was larger than the value reported in the literature for a 

randomly mixed process (-0.5), indicating that the coating process is not completely random but is 

influenced by the optimized mixing in the drum. The number of nozzles also influences the decrease of 

the cv,inter: increasing the number of nozzles increases the exponent, i.e., leading to faster reduction of 

the cv,inter compared to a purely random process.  

The computed exponents were used to predict the cv,inter value for a 300 min process. Experimental 

results confirmed the computational results. The computed exponents offered a better predictions and 

resulted in a mean deviation of only 0.51 % between measured and predicted coefficient of variation 

cv,inter. The mean deviation of the fixed exponent (-0.5) was 1.02 %. Thus, it is possible to predict the 

process outcome accurately based on only 90 seconds of simulation time and with particle parameters 

obtained from the laboratory experiments.  

The data were used in a MVDA to determine the optimal process parameters via a 4d plot. The best 

strategy was to decrease the drum load and the spray rate and increase the rotation rateand the 

number of nozzles. The best cv,inter value of 54.7 % after 90 seconds was achieved for a load of 230 kg, 

a rotation rate of 10 rpm, eight nozzles and a spray rate of 160 g/min. After extrapolation to 300 min, 

these settings give a cv,inter of 2.73% with the fitted exponent, which is significantly below the 6.25 % 

required by regulations.  

The velocity distribution and the spray residence time varied little for different process settings. The 

difference between the minimal and maximal values was 33 % and 25 %, respectively. The bed cycle 

time showed an even smaller difference.  

Our study was intended to demonstrate that DEM simulations can be a useful tool for studying large-

scale industrial coating process with >1 Mio tablets. Thus, the number of experiments on the industrial 

scale can be reduced and the influence of various process parameters on the process can be studied in 

silico. Consequently, design, scale-up, transfer and control of coaters can now be done via well-



Analysis of Large-Scale Tablet Coating: Modeling, Simulation and Experiments 

92 

documented and experimental confirmed computational tools. Moreover, DEM can improve the 

mechanistic understanding of the tablet coating processes and can help in optimizing the process, i.e., 

computations can help to determine the shortest process time, to minimize the number of experiments 

and to significantly reduce the process development costs and process failures, leading to the need to 

discard a batch. It can be especially advantageous on the production scale, with one batch often 

containing over 1 million tablets. 
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Published as: . Böhling et al., “Computational Fluid Dynamics-Discrete Element Method Modeling of an 

Industrial-Scale Wurster Coater,” J. Pharm. Sci., vol. 108, pp. 538–550, 2018. 

E-1. Abstract 

Large-scale fluid-bed coating operations using Wurster coaters are common in the pharmaceutical 

industry. Experimental measurements of the coating thickness are usually analyzed for just few 

particles. To better predict the coating uniformity of the entire batch, computational techniques can 

be applied for process understanding of the key process parameters that influence the quality 

attributes. Recent advances in computational hardware, such as graphics card (GPU), has enabled 

simulations of large industrial-scale systems. In this work, we perform coupled CFD-DEM simulations 

of a large-scale coater that model the actual particle sizes. The influence of process parameters, the 

inlet-air flow rate, atomizing-air flow rate, bead-size distribution, and Wurster-gap height, are studied. 

The focus of this study is to characterize the flow inside the coater; eventually, this information will be 

used to predict the coating uniformity of the beads. We report the residence time distribution of the 

beads inside the Wurster column, i.e., the active coating zone, which serves as a proxy for the amount 

of coating received by the beads per pass. The residence time provides qualitative and quantitative 

measurements of the particles-coating uniformity. We find that inlet air-flow rate has the largest 

impact on the flow behavior and, hence, the coating uniformity. 

E-2. Introduction 

Fluid-bed coating is widely used in the food, chemical, and pharmaceutical industry to apply one or 

more coating layers onto smaller particles (e.g., mini-tablets, pellets, agglomerated granules, etc.)—

these coatings can be aesthetic or functional. The latter may be required, for example, to protect from 

environmental influences, modify the release behavior, add an active drug coating, or for taste-

masking. Several types of fluidized bed coaters exist, which are differentiated by the way the coating 

solution (or suspension) and fluidization air are introduced. The main classes are the top-, bottom- and 

side-spray fluidized-bed coaters [1]. The Wurster coater is a special type of bottom-spray fluidized bed 

coaters [2], in which a riser tube is placed in the middle of the coater geometry to channel the air flow 

(‘chimney effect’) to provide a more uniform exposure of particles to the spray, leading to a more 

uniform coating. 
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Experiments involving Wurster coaters have mostly been conducted at the laboratory-scale [1], thereby 

providing insights into the minimal fluidization air velocity of particles and fluidization behavior. For 

example, positron emission particle tracking (PEPT)[3] [4] can be used to follow individual particles 

through a Wurster coating process. Using PEPT, the residence time distribution (RTD) in different region 

of the coater [5][6][7] can be mapped as a function of the operating parameters. However, it is difficult 

to extract meaningful data from experiments on larger scales, since it is prohibitively expensive to set 

up PEPT measurements at industrial scales. In-depth experimental investigations of industrial-scale 

coaters with hundreds of millions of particles are therefore rare; often, experiments at larger scales are 

conducted to perform a pass/fail assessment of process settings without a thorough analysis of 

operating ranges.  

In contrast, computer simulations may be used to understand complex coating processes in greater 

detail, including tracking the movement of every particle in the fluidized bed. For modeling a fluid bed, 

the air flow has to be modeled in conjunction with particle trajectories. Particle-particle interactions 

(collisions) become especially important for dense-phase systems. Computer simulations based on 

computational fluid dynamics (CFD) coupled with the discrete element method (DEM) is an appropriate 

technique to model fluidized beds; the CFD portion is used to model air flow while the DEM tracks 

particle trajectories and collisions. An overview of CFD-DEM simulation for fluidized bed systems was 

reported by Deen [8]. 

In CFD, the simulation volume is resolved in finite volumes (cells) and the Navier-Stokes equations 

describing the fluid flow are solved for each cell. All variables are considered to be locally volume-

averaged quantities over the cell control volume V, which has to be at least one order of magnitude 

larger than the particle volume Vp[9]. DEM was developed to simulate the behavior of granular 

(particulate) materials [10]. Initially, DEM was limited to a few hundreds to a few thousand particles, 

but eventually simulations of laboratory-scale devices became possible [11][12]–[14], [15]. Simple two-

dimensional geometries were considered in coupled simulations [16]–[18]. New algorithms have 

allowed the simulation of increasingly complex systems, including physical property changes of 

particles during coating [19]–[21] and heating of particles in a fluid [22], [23]. Moreover, advances in 

the computational speed and the development of better algorithms enabled the simulation of many 

millions [24], [25] of particles in industrial-scale devices [26], [27] using a graphics processing unit (GPU) 

([28] [29]). Moreover, non-spherical particle models are becoming increasingly versatile [30][31]. These 

studies provide a better understanding of particle dynamics, since each individual collision can be 
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calculated and investigated separately. This even makes it possible to model particle breakage or similar 

effects [32]. Experimental validation of DEM simulation results continues to be an area of research [33]. 

In the present work, the commercial DEM code XPS (eXtended Particle Systems) is coupled with CFD 

code AVL-Fire® to simulate an industrial-scale Wurster coater process (Glatt GPCG 15/30). The DEM 

portion of the simulation is executed on the GPU and the CFD portion runs on the central processing 

unit (CPU) [34]. Due to the efficient coupling algorithm, a coupled simulation containing millions of 

particles can be executed on a relatively inexpensive, local workstation, allowing rapid testing of various 

process settings[26], [27].  

In previous investigation, XPS was validated for single, double, and triple pseudo-2D fluidized system 

[34]. Because wall effects are less pronounced in real 3-D applications (such as Wurster coaters) 

compared to pseudo-2D beds, we performed an additional validation of the CFD-DEM method using a 

3-D system. The test data for validation was obtained from a lab-scale Wurster coater study published 

by Li et al. [15], where particle residence times in different zones, particle velocity profiles, and particle 

cycle times were reported from PEPT experiments.  

The primary goal of this work was to provide insights into the performance of an industrial-size Glatt 

GPCG 15/30 Wurster coater, operating with a batch size of 40 kg, as a function of different processing 

conditions. The coating process contains approximately 200 million particles. However, our GPU-based 

DEM code can currently model up to 20 million of particles. Therefore, in this work, we exploited the 

azimuthal symmetry of the Wurster geometry to our advantage to successfully simulate a smaller, 3-D 

sector (pie-slice) of the full unit.  

Altogether, four process parameters were varied: the fluidization air flow rate, the atomization air flow 

rate, the Wurster gap height and the particle size distribution. Variations in the particle size distribution 

were intended to reflect the difference between the various coating stages. The first three parameters 

were studied to elucidate their influence on the single-visit spray-zone RTD and the cycle time 

distributions (CTD). Moreover, aspects of the flow profile, such as the transverse velocity profile, the 

mass of beads inside the Wurster tube, and the mass flow through the Wurster tube were compared 

for various process settings.  

E-3. CFD-DEM Method 

The CFD-DEM computational approach treats the fluid flow (gas phase) as a continuum (Eulerian 

approach) and models every particle (solid phase) as a discrete element (Lagrangian approach). In DEM, 
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the motion of discrete particles is tracked by solving Newton's second law of motion. Since particle-

particle and particle-wall collisions occur frequently in Wurster coaters, describing these interactions is 

critical for predicting the particle-bed dynamics. For scalability and accuracy reasons [8], [34], the soft-

sphere method was used in this work. 

For the motion of each particle, a linear force balance is solved, 

𝑚𝑝

𝑑𝐯𝒑

𝑑𝑡
= −𝑉𝑖∇p + β(𝐯f − 𝐯p) + ∑ 𝐅𝑃→𝑃

𝑁𝑃

0

+ ∑ 𝐅𝑃→𝑊

𝑁𝑤

0

+ 𝑚𝑝𝐠 (22) 

where mp is the particle mass, vp is the particle velocity, vf is the gas velocity, −𝑉𝑖𝛻𝑝 is the pressure 

gradient force,  is the inter-phase momentum transfer coefficient, FP->P is the particle-particle force 

and FP->W is the particle-wall force. The three-dimensional angular momentum of the particle is 

calculated as  

𝐈𝑝

𝑑𝛚p

𝑑𝑡
= ∑ 𝐌𝑃

𝑁𝑃

0

 (23) 

where ωp is the angular velocity, MP is the torque and Ip is the moment of inertia. The detailed DEM 

algorithm can be found in [28].  

Coupling between the air and particles, i.e., the CFD and DEM, occurs via the interphase fluid-particle 

drag model. In the literature, several drag force models are reported [35],[29],[36]. All of them describe 

the inter-phase momentum transfer coefficient as a function of particle volume fraction εp, gas volume 

fraction εg, particle Reynolds number Rep, particle diameter dp and particle density ρp. In our work, the 

model proposed by Gidaspow [35] is used, which combines the Ergun [37] equation for dense regimes 

and a correlation for more dilute regimes proposed by Wen and Yu [38]. Detailed information about 

the used coupling mechanism can be found in Jajcevic et al. [34]. 

The gas phase was modeled by solving the volume-averaged Navier-Stokes equations. All variables are 

considered to be locally volume-averaged quantities over the cell control volume V, which was chosen 

to be at least one order of magnitude larger than the particle volume VP [34]. The conservation of mass 

can be written as follows: 

𝜕

𝜕𝑡
(𝜀𝑓 ∙ 𝜌𝑓) + ∇ ∙ (𝜀𝑓 ∙ 𝜌𝑓 ∙ 𝐯f) = 0 (24) 

where ρf is the fluid density, εf is the local volume fraction of the fluid, vf is the fluid velocity vector and 

t is the time. Similarly, the conservation of the momentum is  
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𝜕

𝜕𝑡
(𝜀𝑓 ∙ 𝜌𝑓 ∙ 𝐯f) + ∇(𝜀𝑓 ∙ 𝜌𝑓 ∙ 𝐯f ∙ 𝐯f) = −𝜀𝑓 ∙ ∇p − ∇ ∙ (𝜀𝑓 ∙ 𝛕𝑓) + 𝜀𝑓 ∙ 𝜌𝑓 ∙ 𝐠 − 𝐒𝑀 (25) 

Here p is the hydrodynamic pressure, τf is the stress tensor, g is the gravitational acceleration and SM is 

the inter-phase momentum transfer between particles and fluid. The stress tensor is defined as 

𝛕 = −𝑝 ∙ 𝐈 + 𝜎 (26) 

I is the unit matrix and σ is the viscous stress tensor, 

𝜎 = 𝜇𝑓 ∙ (∇𝐯𝑓 + ∇𝐯𝑓
𝜏) −

2

3
∙ 𝜇𝑓 ∙ ∇ ∙ 𝐯𝒇 ∙ 𝐈 (27) 

with µf being the dynamic viscosity. The turbulence was modeled using standard k-zeta-f turbulence 

model in the steady state as well as coupled simulation. 

E-4. Validation of particle flow and verification of "pie-slice" approach for a large scale 

Wurster coater simulation 

Our CFD-DEM coupling method for momentum exchange between the gas and solid phase has already 

been validated for single-, double-, and triple-spouted pseudo-2D beds by Jajcevic et al. [34]. The 

simulation results were in good agreement with the measurement and simulation data of Van 

Buijtenen et al. [39] . In a pseudo-2D spouted bed, the distances between the front and back walls are 

typically equal to a few particle diameters (i.e., 5 times the particle diameter), causing significant wall 

effects that damp particle-velocity fluctuations and dominate the flow dynamics of the system. Since 

in real applications, such as in Wurster coaters, wall effects are clearly less pronounced than that in 

pseudo-2D beds (the volume to surface-area ratio is much larger for 3-D fluidized beds), we performed 

an additional validation of the CFD-DEM coupling method to reconfirm the modeling method’s validity. 

The test case for the validation was a lab-scale Wurster coater described by Li et al. [7]. The authors 

experimentally estimated the residence time, cycle time, and time-averaged vertical particle velocities 

via PEPT. In a follow-up study, they utilized their previously-generated experimental data to validate 

new CFD-DEM simulations and demonstrated that predictions were in good agreement with the 

experiments. In the present work, our CFD-DEM code was used to model the lab-scale fluidized bed 

described by Li et al. with identical simulation input parameters and process settings. 

The domain of the Wurster coater was divided into four different zones (Figure 1), in which the 

residence times were evaluated. Li et al. [15] report the time-averaged particle velocity at a distance of 

90 mm from the bottom plate and the cycle time distribution.  
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Figure 46: Wurster coater zones according to Li et al. [6] and [13]. 

Particle flows inside a Wurster coater can be characterized as primarily axial; flow in circumferential 

direction is less prominent. Thus, “pie-slice” simulations (where only a slice is simulated) may be 

performed without any significant loss of accuracy. This reduces the amount of particles that need to 

be considered and accelerates the simulations. In our work the full system (360°) and a 90° “pie-slice” 

segment (quarter) were considered. In the model, two vertical walls are defined as symmetry planes 

and the number of particles and the inlet air flow rate (including atomization air flow rate) are reduced 

by a factor of 4. 

Figure 47 shows the time-averaged vertical particle velocity at a height of 90 mm above the air 

distributor plate; comparisons are shown between the PEPT measurements from Li et al. [7], the 

reference CFD-DEM simulation data from Li et al. [15], and our present CFD-DEM simulation 

predictions. For both Li et al. [13] and our present case, the simulations over-predict the particle 

velocity close to the Wurster tube axis (in the radial zone spanning from 0 mm to about 10 mm from 

the central axis). Nevertheless, our results show better agreement with the PEPT measurements 

compared to Li et al. [13]. Inside the Wurster tube and close to the cylinder wall, both simulations 

predict negative vertical particle velocity, identifying recirculation close to the Wurster tube wall. 

Outside of the Wurster tube, the results of our simulations and the PEPT data are very similar. 

Comparing the full and the quarter models, it can be seen that both simulations predict almost identical 

particle velocities. 
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Figure 47: Time-averaged particle velocity at 90mm from the bottom plate. Comparison between experimental data, 
reference simulation results and obtained results during this project. 

Figure 3 shows the time-averaged residence time inside the four Wurster zones. Inside the Wurster 

tube and the fountain zones, the results of both our simulations (full and quarter models) are very close 

to the PEPT measurements and reference simulation data from Li et al. [13]. Nevertheless, in the 

horizontal region, the reference CFD-DEM data of Li et al. [13] and our results somewhat under-predict 

the experimental residence time. Again, when comparing full and the quarter models, very minor 

differences between the full and the quarter models can be seen. Within the Wurster tube, the quarter 

model over-predicts particle residence time by 0.18 seconds in comparison to full-model results. In the 

horizontal transport region, the residence time is under-predicted by 0.16 seconds. Notwithstanding, 

these differences are small.  

Figure 4 shows the cycle time distribution and a comparison between our results and both reference 

data sets from Li et al. Our results slightly under-predict the percentage of the particles with a cycle 

time longer than 5 seconds and over-predict the percentage of particles with a cycle time shorter than 

5 seconds. Since our simulation results are very close to the reference data, it can be concluded that 

our CFD-DEM approaches (both full and quarter models) can predict particle dynamics in the Wurster 

coater with the desired level of accuracy. Henceforth, the pie-slice model can be used for the large-

scale simulations because the deviation compared to the full model is small. 
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Figure 48: Time-averaged residence time in the various Wurster coater zones. Comparison between experimental data, 
reference simulation results and obtained results during this project. 

 

 

Figure 49: Cycle time distribution. Comparison between experimental data, reference simulation results and obtained results 
during this project. 

E-5. Glatt 15/30 Wurster coater: Materials and process conditions 

A schematic snapshot of the Glatt-15/30 Wurster coater is shown in Fig. 5a. The height of the unit, 

measured from the distributor plate (air inlet) to the top filters is approximately 1.9 m. The height is 

comprised of two main sections: a lower conical portion and an upper, cylindrical expansion chamber 
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leading up to the air outlet. The Wurster-column insert has a height of 0.6 m and a diameter of 

approximately 0.2 m. The spray nozzle is situated at the center of the bottom distributor plate, and is 

surrounded by a short collar. The distributor plate contains a series of holes of varying diameters that 

help divert the airflow as desired (Fig. 5b). Holes in the central core region are larger than those in the 

outer annular region, resulting in a greater inlet air velocity at the center under the Wurster tube.  

                  

(a)       (b) 

Figure 50: A schematic snapshot of the Glatt-15/30 Wurster coater (a) and distributor plate (b). 

The bead cores to be coated are composed of microcrystalline cellulose (MCC). The particle-size 

distribution of the beads (PSD) was determine experimentally using a shape analyzer (Sympatec QicPic). 

These experimentally-measured PSDs, shown in Figure 51, were used as direct inputs to the CFD-DEM 

simulations. The density was measured using gas pycnometry (AccuPyc II 1340 Pycnometer) and also 

used as an input to the simulations. In Figure 51, three different particle size distributions are shown, 

corresponding to uncoated particles (blue: PSD 0), PSD after the first coating stage (green: PSD 1), and 

after the second and final coating stage (red: PSD 2).  
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Figure 51: QicPic analysis of the particle size distribution of the three coating stages. 

The particle properties used in the CFD-DEM simulations are summarized in Table 16. The friction 

coefficients are taken from the values reported by Li et al. [2] for MCC particles. The coefficient of 

restitution and static friction was taken from the literature, viz., Li et al. [15]. The spring constant for 

the spring dashpot model was chosen to allow a relatively large time step, while keeping the simulation 

computational stable. This is an adequate particle-particle force model as these beads are not cohesive 

and particle collision events are secondary to the air-driven fluidization behavior [19]. Density and 

viscosity of air was taken from standard engineering reference tables.  
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Table 16: Particle parameters used in the CFD-DEM simulation 

Particle properties  

Spring constant 1000 N/m 

Density (PSD 0, PSD 1, PSD 2) 1497 kg/m3, 1420 kg/m3, 1386 kg/m3 

Mean particle sauter diameter (PSD0, PSD1, 

PSD2) 

639.97 µm, 719.86 µm, 749.74 µm 

Standard deviation of particle diameter 49.2 µm 56.8 µm, 60.2 µm 

Interaction Particle – Wall  

Coefficient of Restitution  0.83 

Static friction coefficient 0.53 

Rolling friction coefficient  0.01 

Interaction Particle – Particle  

Coefficient of Restitution  0.80 

Static friction coefficient 0.33 

Rolling friction coefficient  0.01 

Simulation    

DEM Time step length 1·10-5 s 

CFD  

CFD time step length 1·10-3 s 

Air Density 1.204 kg/m³ 

Air Viscosity 18.37 µPas 

To recap, in this study, we varied four parameters which we believe influences the coating process: 

atomization air-flow rate, fluidization air-flow rate, Wurster=gap height, and particle size distribution. 
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These parameters are marked in Figure 52. The ranges of the various process parameters are shown in 

Table 17. The case with a batch load of 40 kg, fluidization air-flow rate of 850 m³/h, atomization air-

flow rate of 45 m³/h, Wurster gap height of 30 mm, PSD corresponding to those for uncoated particles 

(PSD 0) was chosen as the base case (reference case). The baseline values are denoted by blue-colored 

font in Table 2. In total, 10 simulations were performed as part of our parametric investigation.  

 

Figure 52: Process parameters considered in the parameter study. 

Table 17: Parameters varied in the simulations (the base case simulation is marked blue) 

 
    

Air flow 

(Gap: 30mm, Atomization rate: 45m³/h) 

700 m³/h 850m³/h 1100m³/h 
 

Atomization air rate 

(Air flow rate: 850m³/h, Gap 30mm) 

45m³/h 52m³/h 61m³/h 
 

Wurster gap height 

(Air flow rate: 850m³/h, Atomization rate: 45m³/h) 

20mm 30mm 40mm 50mm 

PSD and particle density 

(Air flow rate: 850m³/h, Gap: 30mm, Atomization 

rate: 45m³/h) 

PSD 0 

1497 kg/m³ 

PSD 1 

1411 kg/m³ 

PSD 2 

1386 kg/m³ 

 

The results of interest from our CFD-DEM simulations, as these quantities strongly influence the coating 

variability, are the single-visit residence time distribution (RTD) in the spray zone and the cycle time 
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distribution (CTD). The single-visit residence time is defined as the time a particles spends in the 

Wurster tube. The cycle time is the time a particle spends between two distinct visits to the Wurster 

region. Other flow properties that are measured and reported are the mass of particles in the Wurster 

tube (i.e., the number of particles that receive coating at any given instant) and the mass-flow rate 

through the Wurster tube. 

E-6. Results 

E-6.1. Estimation of air-flow distribution through the distributor plate  

As shown in Figure 50b, the distributor plate includes a large number of small holes. To include these 

details in the full-scale CFD-DEM model would result in a very large number of computational cells and, 

as a consequence, very long computational times. However, the distributor plate is may be simplified 

as a series of annular mass-flow-inlet boundary conditions. However, the inlet air mass-flow 

distribution through each annular region is not known. To determine the air flow distribution through 

the core and outer annular regions, a highly-resolved, steady-state CFD-only simulation of the 

perforated distributor plate was executed wherein all holes in the plate were explicitly resolved. The 

particles inside the Wurster coater were simulated as a static porous zone. The solid void fraction was 

set to 0.6 in the particle bed and 0.1 inside the Wurster tube. The values for the solid fraction in the 

particle bed and Wurster tube were later checked against the coupled CFD–DEM simulations and found 

to be roughly comparable. The steady state mesh had about 9 million computational cells when 

modeling a 90° segment (Fig. 9).  

Figure 53 shows the velocity distribution for the base-case, air-flow rate of 850 m³/h. The velocity is 

the largest close to the center of the Wurster coater; the air flow is diverted to this central regions not 

only due to the larger holes available, but also due to the lower permeability through the densely-

packed particle bed above the outer annular region.  
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Figure 53: Air flow velocity at 0mm and 500mm height from the bottom plate. Steady-state simulation including resolved 
plate. 

The distribution of the air flow among the various distributor-plate regions is shown in Figure 54. The 

values are: 51% in the central core region, 36% in the outer annular region of the distributor plate, and 

13% in narrow zone in between. Although the air flow distribution may change with the net air-flow 

rate, any such changes were assumed to be negligible and the same distribution was used in all cases.  

 

Figure 54: Mass flow distribution on the distributor plate in the steady-state simulation (fluidization air flow rate of 850 
m³/h). 

For the coupled CFD-DEM simulations, a mesh with about 90,000 CFD cells was created. The inlet region 

was divided into 4 area regions: a jet region, core region (with 51% air flow), outer annular region (36% 

air flow), and the narrow in-between region (13% air flow). Each region was prescribed its own inlet air 

velocity, computed from the previously-described steady-state CFD simulations. The area includes a 

thin layer of cells which is representing the distributor plate. To account for the volume excluded by 



Computational Fluid Dynamics-Discrete Element Method Modeling of an Industrial-Scale Wurster 
Coater 

109 

the solid portions (steel) of the distributor plates, a thin layer of cells was defined with appropriate 

porosity. Using this strategy, it is possible to replace the distributor plate and to closely match both the 

mass-flow rate and inlet velocity with those in an actual system. 

E-6.2. Time-Averaged Particle Velocity at 500 mm Height 

Now that the inlet airflow distribution has been estimated all the simulation conditions described in 

Table 2 can be executed. The time-averaged radial particle velocity profile was evaluated at a height of 

500 mm above the distributor plate. This location was chosen because it is a location above the free 

surface of the particle bed, yet still below the upper rim of the Wurster tube. Figure 55 shows the 

results of (a) three different fluidization air flow rates, (b) three atomization air flow rates, (c) four 

Wurster gap heights and (d) finally three different particle size distributions (which represent different 

coating stages). The vertical solid black line in all four graphs marks the radial location of the Wurster-

tube wall. The first number in the legend description represents air flow rate in m³/h, the second one 

the atomization air flow rate in m³/h, the third one the particle size distribution (see Figure 51), and 

the last one the Wurster gap height in mm. 

It can be seen that the particle velocity inside the Wurster tube increases with increasing fluidization 

air flow rate (Figure 55 (a)). Near the center line of the Wurster tube, the particle velocity is not 

significantly affected by an increasing fluidization air flow rate. This is probably due to the central spray 

nozzle position and the fact that the atomization air-flow rate is not changed for the three runs 

reported in Fig. 10a. However, in the regions farther away from the spray nozzle, the vertical particle 

velocities are larger as the fluidization air-flow rate increases.  

Increasing the atomization air flow rate slightly increases the particle velocity along the Wurster coater 

axis, (Figure 55 (b)). This effect is, however, small compared to the other parameters examined and the 

region of influence is small—realize that radial distances near the center constitute a smaller volume. 

As we near the inner wall of the Wurster-tube, the particle velocities are unaffected by an increase in 

the atomization air flow. 

The influence of the Wurster-gap height (Fig. 10c) is more complex since the particle velocity in the 

center increases with increasing Wurster-gap height, but decreases close to the inner Wurster wall. The 

Wurster-gap height controls the particle mass-flow rate entering the tube as well as the mass inside 

the tube, thus directly influencing the particle fraction in the spray zone and resulting in different 

coating performances. 
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For larger particle sizes (Figure 55 (d)), a higher particle velocity along the inner Wurster wall is 

observed. This can be explained by the fact that larger particles have a larger projected area and thus 

a larger acting drag force. Additionally, the density of the particles decreases with increasing coating 

layers, and thus, the mass of the coated particles does not increases as fast as the projected area. The 

velocity close to the central axis of the Wurster tube is slightly decreased by increasing the particle size.  

 

Figure 55: Time averaged vertical particle velocity at 500 mm height for (a) three fluidization air flow rates, (b) atomization 
air flow rate, (c) Wurster gap heights and (d) coating stages. The solid black lines in all four graphs symbolizes the Wurster 

tube wall. The first number in the legend description represents air flow rate in m³/h, the second one the atomization air flow 
rate in m³/h, the third one the particle size distribution (see Figure 6), and the last one the Wurster gap height in mm. 

The effect of increasing particle velocity with increasing particle size can be seen in Figure 56, which 

plots a contour map of particle velocities. A cluster of particles with negative velocity can be seen for 

the uncoated particles, i.e., PSD 0 (Fig. 11a) but not for the coated particles with larger particle 

diameters (PSD 1 and PSD 2) (Figure 56 b and c). This is valid for the total simulated time span. This 

explains the lower time-averaged particle velocity close to the Wurster tube of the uncoated particles 

(PSD 0), see Figure 55(d). 
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(a) (b) (c)  

Figure 56: Vertical particle velocity close to the Wurster wall: a) uncoated particle and PSD0, and coated particles (b and c). 
The particle cluster with negative vertical velocity is marked in the dashed circle. The particle with higher velocities are made 

transparent. 

E-6.3. Evaluation of Residence Time Distribution (RTD) inside the Wurster Tube 

The Wurster tube residence time is the time that an individual particle spends in the tube during a 

single visit. Since a DEM simulation can track millions of particles, it is possible to obtain RTD statistics 

after 40 s of simulated process time, even though the real process time may span several hours. 

Figure 57a shows the RTD for varying inlet air-flow rates. Figure 12b shows the average residence time 

computed from the curves in Fig. 12a. In Fig. 12b, the size range of beads is further subdivided into five 

size classes and the mean residence time is calculated for each size class. The purpose of this subdivision 

is to evaluate whether there is any systematic variation in the spray-zone, i.e., Wurster tube, residence 

time as a function of particle size. The fluidization air flow rate clearly has a noticeable impact on the 

RTD and the mean residence time. The mean RT reduces from ~0.69 s for 700 m³/h inlet flow rate to 

~0.32 s for 1100 m³/h. Moreover, the width of the RTD decreases with the increasing fluidization air-

flow rates. It can be also seen that the mean residence within the Wurster tube does not depend on 

the particle-size class, i.e., smaller and larger beads in the coater have almost-identical behavior and 

follow similar trajectories. These results demonstrate that the particles are well mixed within the 

Wurster tube and no size-based segregation occurs. 

Although the modes of the RTD curves in Figure 12 (left-hand figure) are similar for all fluidizing air-

flow rates, a large difference between the mean residence times can be observed (right-hand figure). 
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Upon closer examination, differences in the distributions for longer residence times, between 1 s to 2 

s, can be seen. For the lowest fluidization air flow rate (green curve), some particles have long residence 

times within the Wurster tube. By examining the simulation animations, we find that these longer 

residence times are caused by recirculation of some particles near the inner wall of the Wurster tube. 

These longer-residing particles, although few in number, influence the mean residence time 

approximately by a factor of 2 between air-flow rates of 700 m3/h and 1100 m3/h.  

 

Figure 57: Residence time distributions (left) and mean residence times (MRT) (right) for three fluidization air flow rates and 
uncoated particles. Mean residence time is plotted for different size classes to show the influence of the particle size on the 
residence time. The first number in the legend description represents air flow rate in m³/h, the second one the atomization 
air flow rate in m³/h, the third one the particle size distribution (see Figure 6), and the last one the Wurster gap height in 

mm. 

Figure 58a shows the RTD curves and Fig. 13b shows the mean residence times for five sizes classes at 

three atomization air flow rates, similar to the format presented in Fig. 12. Apparently, the atomization 

air flow rate has almost no influence on the RTD or the mean residence time in the Wurster tube zone. 

The reason is that only a few particles near the center of the tube are influenced by the larger air 

velocity from the nozzle; the majority of the particles are unaffected by changes in the atomizing air-

flow rate. Although the RTD and CTD are not affected, the atomization air-flow rate is certainly of 

importance as it will influence the spray behavior and drying characteristics of beads in the spray zone. 

The bead size has no impact on the flow at all atomizing air-flow rates for the range of values 

investigated.  
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Figure 58: Residence time distributions (left) and mean residence times (right) for three atomization air flows and uncoated 
particles. Mean residence time is plotted for different size classes to show the influence of the particle size on the residence 

time. 

Figure 59a and 14b show the RTD curves and the mean residence times of the five particle-sizes classes 

for varying Wurster gap height. The mean residence time increases significantly as the gap height is 

increased from 20 mm to 30 mm. This increase can be explained by the increase in particle recirculation 

through the tube as the inlet size to the tube is increased (see Figure 56 for an example of the particle 

recirculation). This effect can be also seen in the time-averaged particle velocity (Fig. 10c), where the 

velocity close to the inner Wurster wall is larger for the 20 mm gap compared to other Wurster gap 

heights. Subsequently, increase of the gap size from 30 mm to 40 mm or 50 mm does not have further 

impact on the mean residence time (Figure 59b). As before, the bead size has no noticeable impact on 

the flow for all Wurster gap heights investigated.  

 

Figure 59: Residence time distributions (left) and mean residence times (right) for four Wurster gap heights and uncoated 
particles. Mean residence time is plotted for different size classes to show the influence of the particle size on the residence 

time. The first number in the legend description represents air flow rate in m³/h, the second one the atomization air flow rate 
in m³/h, the third one the particle size distribution (see Figure 6), and the last one the Wurster gap height in mm. 
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Figure 60 presents the RTD and the mean residence time for the five particle size classes for three 

particle size distributions, representing three stages of the coating. Recall that the first distribution (PSD 

0) represents the uncoated beads, PSD 1 are the beads after the first coating stage, and PSD 2 are the 

beads after the second coating stage. These distributions are obtained from direct experimental 

measurements, along with the true density of the beads which change slightly from one stage to 

another.  

As the particle sizes grow, the RTD shifts leftwards, i.e., the mean residence time decreases with 

increasing particle size. The reason for this observation has been explained earlier: particle velocities 

in the Wurster tube are larger for the bigger particles (PSD 1 and PSD 2), resulting shorter residence 

times. For the smallest particles (PSD 0), some backflow was observed (Fig. 11) which explains the 

disproportionately longer residence times. For any given distribution, the mean Wurster residence time 

does not vary noticeably with particle size.  

 

Figure 60: Residence time distributions (left) and mean residence times (right) for three particle size distributions for 
uncoated, once coated particles and twice coated particles. Mean residence time is plotted for different size classes to show 
the influence of the particle size on the residence time. The first number in the legend description represents air flow rate in 
m³/h, the second one the atomization air flow rate in m³/h, the third one the particle size distribution (see Figure 6), and the 

last one the Wurster gap height in mm. 

E-6.4. Evaluation of the Cycle Time  

The cycle time (CT) for a particle is the time between two successive visits to the spray zone, i.e., the 

entrance to the Wurster tube. It is strongly influenced by mixing dynamics in the denser, particle bed 

region. Figure 61a shows the CTD curves for varying inlet air-flow rate and Fig. 16b shoes the mean 

cycle times calculated for the five different particle-size classes at the three fluidization air-flow rates. 

As before, the range of particle sizes is sub-divided into the same five particles size classes as was 
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defined for the Wurster residence time calculations; the mean cycle time was computed for each 

individual particle-size class.  

Similar to the trend for the Wurster residence time, the cycle time also decreases with increasing 

fluidization air-flow rates. However, it is interesting to note that the decrease between 700 m³/h and 

850 m³/h is much more significant than that between 850 m³/h and 1100 m³/h, even though the change 

in the air flow rate 𝑉̇ is higher in the latter case (150 m³/h vs. 250 ³/h). It can be also seen that the 

cycle time decreases slightly with an increasing particle diameter. Therefore, there is a subtle difference 

in the circulation rates of larger and smaller particles—the smaller particles experience fewer coating 

passes over the duration of the coating operation.  

 

Figure 61: Cycle time distributions (left) and mean cycle times (right) for three fluidization air flows rates. Mean cycle time is 
plotted for different size classes to show the influence of the particle size on the cycle time. The first number in the legend 

description represents air flow rate in m³/h, the second one the atomization air flow rate in m³/h, the third one the particle 
size distribution (see Figure 6), and the last one the Wurster gap height in mm. 

Figure 62 shows the CTDs of all particles and the mean cycle times of the five particle-size classes for 

three atomization air flow rates. As earlier, the difference between the atomization air flow rates is 

negligible since the atomization air flow rate only affects a small volume in the Wurster tube and does 

not significantly influence the particle bed dynamics. However, the difference between the Wurster 

residence time and the CTD lies in the influence of particle size: the mean Wurster residence time was 

unaffected by bead size, whereas the mean cycle time is found to decrease slightly with increasing 

particle diameter. Hence, smaller beads will experience fewer coating passes. This is consistent with 

the behavior observed in Fig. 16b.  
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Figure 62: Cycle time distributions (left) and mean cycle times (right) for three atomization air flows and uncoated particles. 
Mean cycle time is plotted for different size classes to show the influence of the particle size on the cycle time. The first 

number in the legend description represents air flow rate in m³/h, the second one the atomization air flow rate in m³/h, the 
third one the particle size distribution (see Figure 6), and the last one the Wurster gap height in mm. 

Figure 63 presents the CTD curves and the mean cycle times for five different particle-diameters classes 

for four Wurster-gap heights. The cycle time decreases systematically with increasing Wurster-gap 

height. This has been explained by the increased particle mass flow rate through the Wurster tube as 

the inlet gap size to the Wurster tube increases. The CTD data suggests that a larger Wurster-gap height 

should result in a better coating uniformity. According to our analysis, for a gap height of 50 mm, 

particles pass through the Wurster tube, i.e., the spray zone, approximately 820–850 times per hour; 

in contrast, for a gap height of 20 mm, number of passes lies in the wider range of 630—850. When the 

number of passes through the spray zone is more consistent, we can expect a more uniform mass gain 

among particles and, thus, better coating uniformity.  
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Figure 63: Cycle time distributions (left) and mean cycle times (right) for four Wurster gap heights and uncoated particles. 
Mean cycle time is plotted for different size classes to show the influence of the particle size on the cycle time. The first 

number in the legend description represents air flow rate in m³/h, the second one the atomization air flow rate in m³/h, the 
third one the particle size distribution (see Figure 6), and the last one the Wurster gap height in mm. 

Figure 64 shows the CTD and the mean cycle times for the three coating stages (three different PSDs). 

The cycle time decreases with increasing particle diameters for all coating stages. The mean cycle time 

exhibits s a linear variation with particle diameter. This linear relationship between the mean cycle time 

and the particle size was observed for all coating stages. The width of the CTD decreases with the 

increasing particle size, even though some particles have not visited the Wurster tube after 40 seconds 

of simulated time for the case with PSD 1, and even more so for the particles from PSD 2.  

It can be also surmised that the dependence on the particle size is more pronounced for the cycle time 

than for the mean residence time in the Wurster tube (see Figure 60). This can be explained by the fact 

that the denser, horizontal transport region is more prone to size-based particle segregation compared 

to the dilute, spray zone. This can be observed in Figure 65, which shows a snapshot of the particles 

colored by the particle diameter. It can be clearly seen that a segregated cluster of smaller particles 

(colored blue) exists in the horizontal transport region. These smaller particles are more likely to be 

back-mixed inside the horizontal transport region, thus leading to a longer cycle time.  
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Figure 64: Cycle time distributions (left) and mean cycle times (right) for three particle size distributions for uncoated, once 
coated and twice coated particles. Mean cycle time is plotted for different size classes to show the influence of the particle 

size on the cycle time. The first number in the legend description represents air flow rate in m³/h, the second one the 
atomization air flow rate in m³/h, the third one the particle size distribution (see Figure 6), and the last one the Wurster gap 

height in mm. 

 

Figure 65: Snapshot of the simulation showing segregation inside the particle bed and no segregation (good mixing) in the 
Wurster tube. Particles are colored according to their radius.  

E-6.5.  Evaluation of Mass Flow Rate and Mass Holdup 

The mass flow rate through the Wurster tube and the mass holdup of particles inside the Wurster tube 

for all parametric simulations are shown in Figure 66. The mass-flow rate is related to the mean 

Wurster-tube residence time and, as expected, the mass flow rate increases with increasing fluidization 

air flow rate, atomization air flow rate, and particle size. The particle size has the greatest influence, 

followed by the Wurster-gap height, followed by the fluidization air-flow rate. The mass holdup, which 
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dictates the number of particles in the spray zone that receive coating at any instant, decreases with 

the increasing fluidization air-flow rate and particle size and with the decreasing Wurster=gap height. 

It can also be seen that the mass holdup remains approximately constant when the Wurster gap height 

or the atomization air flow rate are varied.  

 

 

Figure 66: Mass flow rate (a) and mass holdup (b) in the Wurster tube for various process settings. The first number in the 
legend description represents air flow rate in m³/h, the second one the atomization air flow rate in m³/h, the third one the 

particle size distribution (see Figure 6), and the last one the Wurster gap height in mm. 

E-7. Conclusions 

In our study, an industrial-size Wurster coater, the Glatt GPCG 15/30, with a batch size of 40kg is 

analyzed using coupled CFD-DEM simulations. Several sets of varying process conditions are studied. 

First, the CFD-DEM simulation method was validated by a comparison of the model predictions with 

reference experimental and simulation results from Li et al. [15]. Our methods showed a good 

agreement with the published data regarding the particle residence time in different zones, the particle 

velocity profiles, and the particle cycle time. In order to apply CFD-DEM approach for an industrial size 

Wurster coater, a smaller axisymmetric 3-D sector (pie-slice) was considered. Almost identical results 

can be obtained by applying this pie-slice approach. Thereby significant reduction of computational 

time and especially the number of particles can be achieved, making it possible to simulate an industrial 

coating process containing a 40 kg batch size with an unmodified particle size distribution.  

The primary goal of our work was to provide insights into the performance of an industrial-sized 

Wurster coater as a function of different processing conditions. For the analysis, the residence time 

within the Wurster tube (spray zone), the cycle time, and time-averaged radial velocity profiles were 

evaluated. The results of this computational investigation indicate that the particle flow behavior is 
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affected mostly by the fluidization air flow rate and the Wurster gap height. Although changing the 

atomization air flow rate has almost no influence on the particle flow, it could affect the spray 

properties and the spray coating. Since these effects were not considered in this study, the impact of 

the atomizing air-flow rate on bulk flow dynamics of beads is minimal.  

We also established that the particle flow changes with the changing particle size and that, surprisingly, 

larger beads spend less time in the Wurster tube. A correlation between the particle size and cycle time 

was established, with a difference of around 4 % between the smallest and largest particles in one PSD. 

When the various coating stages were compared, the difference between the smallest particle size (530 

µm) and the largest particle size (1000 µm) was 0.54 s (11 %). Overall, the Wurster coater process is 

robust in terms of residence time in the Wurster tube and cycle time. Since the change in the spray 

zone residence time was insignificant regardless of the process settings, the process design should 

focus on reducing the particle CT, leading to a faster, intensified process without affecting the product 

quality.  

Based on the simulation results, correct process settings can be established to reduce the cycle time 

while preserving the residence time in the Wurster tube (i.e., the spray zone) as constant. This can be 

achieved by inducing recirculation of particles inside the Wurster tube zone and by setting the Wurster 

gap height to a value larger than 30mm. The negative vertical particle velocity close to the Wurster 

tube walls indicate recirculation of particles (see for instance Figure 56). Process settings with a 

fluidization air flow rate of 850-900 m³/h and a Wurster gap height of 40 mm for the uncoated particles 

should give optimal process conditions. At later coating stages, the Wurster gap height should be kept 

at 40 mm and the fluidization air flow rate should be reduced to allow particle recirculation in the 

Wurster tube and to maintain the same overall particle behavior. 

In the future, the results of the CFD-DEM simulations will be used to generate long-term coating 

prediction models based on the insights into the particle behavior associated with the investigated 

process parameters. In this way, a coupled CFD-DEM simulation of a large-scale Wurster Coater process 

can help to optimize the coating process and increase the yield of a unit operation. 
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F. Validating a numerical simulation of the ConsiGma® semi-continuous 

tablet coating process  

Planned for publication: Böhling et al., “Validating a numerical simulation of the ConsiGma® semi-

continuous tablet coating process” TBD. 

F-1. Abstract 

Process understanding is the key element of process control. In this regard, computational tools can 

improve the fundamental understanding and process performance, especially those related to new 

processes, such as continuous tablet coating whose process mechanics remain a conundrum. In the last 

years, Computational Fluid Dynamics (CFD) and the Discrete Element Method (DEM) have increasingly 

been applied to analyze and understand processes in the pharmaceutical industry. GEA developed a 

semi-continuous tablet coater which can be integrated into a continuous tableting line, accelerating 

the switch from traditional batch production to the continuous mode of operation. The latter offers 

certain advantages over batch production, e.g., operational flexibility, increased process/product 

quality and decreased cost. 

The goal of this work was to develop and validate a CFD-DEM simulation model of the tablet coating 

process in the GEA ConsiGma® coater. After the model development, simulation results for the tablet 

movement, coating quality, and heat and mass transfer during the coating process were validated and 

compared to the experimental outcomes. The experimental and simulation results agreed well on all 

accounts measured, indicating that the model can be used in further studies to investigate the 

operating space of the continuous tablet coating process. 

F-2. Introduction 

Continuous manufacturing (CM) is increasingly applied in the pharmaceutical industry [1], [2]. In 

comparison to batch production, it enables a higher throughput while simultaneously decreasing the 

waste and energy consumption and production costs [3]. Since the inline measurements are typically 

intrinsic to the process design, CM allows enhanced process control [4]. Above all, CM requires a high 

level of process understanding. Small, semi-continuous batches suffice for extensive exploration of the 

operating space, dramatically increasing the level of process understanding and making an extensive 

research on all kinds of CM production units possible [5]–[9]. 
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In light of the transition fro2m batch to continuous manufacturing, GEA developed the ConsiGma® 

continuous processing line to process powder raw materials into tablets [10]. There are two types of 

ConsiGma® lines: the ConsiGma® continuous tableting line (CTL) and the continuous direct compression 

line (CDC). The advantages of both are a small footprint and reduced waste. 

Tablets are the most commonly administered pharmaceutical dosage form and are often applied to 

add a color coating, a protective layer or a second active pharmaceutical ingredient, as well as to 

differentiate products and provide a delayed-release. All coating types have certain critical quality 

attributes that define the ultimate product performance. The most important ones are inter- and intra-

coating variability [11], which should be low to ensure sufficient product quality, e.g. color uniformity. 

Coating variability (CoV) is defined through experiments and is typically confirmed using samples taken 

during production. Uniformity can be assessed by comparing the weight of the film-coated tablet to 

the mean tablet core weight or via spectroscopy methods e.g., terahertz or Raman probe. 

Tablet coating experiments are performed on various scales [8], [12], [13], generally beginning with the 

smallest-scale equipment (laboratory scale) and only a few kilograms of tablets[12], [14], [15]. The 

benchtop laboratory equipment is typically scaled to the pilot scale in a piece of manufacturing 

equipment with a drum load of 10-50 kg [16]. Experiments on the industrial scale are carried out at the 

end of process development [17][18] using the intended commercial equipment. The product and 

technology transfer is accomplished and based on the existing scale-up rules and experience of the 

operating engineers [16], [19]. However, scale-up often causes problems due to changes in the coater 

geometry designs across the scales or completely different drum designs on the production scale. The 

general goal is to reduce the number of experiments required on a larger scale since they are expensive 

due to the time and material consumption [18].  

Although continuous tablet drum coaters are still rarely used in the pharmaceutical industry, the 

increasing interest in end-to-end continuous manufacturing has created the need for integrated 

continuous tablet coaters [20]–[22]. Continuous tablet drum coaters typically have a similar shape and 

operating principles as traditional batch tablet coaters [20], [23]. The main difference is the design. For 

instance, in continuous tablet coaters, the baffles are constructed to direct the flow of the tablet bed 

from the inlet to the outlet region. The spray is applied from the top, and the drying airflow is either 

parallel or counter-current to the tablet movement. Therefore, a fully continuous tablet coater with an 

operating principle similar to the traditional batch pan coating process may require more space and 

additional equipment. 
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GEA has developed a tablet coater that should eliminate these shortcomings and can be integrated into 

both ConsiGma® continuous production lines [8][24]. It is a small semi-batch tablet coater, which can 

be nominally loaded with 2.5 to 7 kg of tablets depending on the drum insert. Compared to traditional 

batch tablet coaters, the ConsiGma® tablet coater operates at high rotation rates, with a Froude 

number close to 1. Streams of air (referred to as ‘air knives’) push the tablets away from the drum wall 

to form a cascade through the spray zone, allowing a very short coating cycle time (a total process time 

of about 10 minutes). 

Simulations can be used to increase an understanding of the coating process, especially the Discrete 

Element Method (DEM) simulations that can provide a detailed analysis of the coating process [25], 

[26]. Nowadays it is possible to simulate the tablet coating process on every scale due to a relatively 

low number of tablets within the system (small batch size) and to analyze the process for a number of 

parameters [27]. Simulations can offer information about the inter- and intra-tablet CoV, tablet 

velocity, tablet bed dynamics (i.e., velocity, residence and cycle times) and forces acting on the 

tablets[19], [28]–[30].  

Computational Fluid Dynamics (CFD) has been increasingly used in industrial applications to simulate 

fluid flow [31], [32]. In recent years, CFD and the DEM are coupled to model the interaction between 

granular and fluid materials. Initially, only the momentum term was exchanged [31], [33], [34]. Either 

only one phase was affected (one-way coupling) or both phases interacted with each other (two-way 

coupling). This allows simulating the movement of granular material, e.g., in a conveyor or fluidized 

bed coater. Further functionality is added by integrating the exchange of mass and heat into the 

simulation via a so-called four-way coupling [35]. The level of model complexity is determined by a 

particular problem statement.  

A full simulation of the ConsiGma® tablet coating process requires the above-mentioned four-way 

coupling approach. Although existing models only consider the heat and mass transfer from a global 

perspective, they cannot resolve the local tablet wetness or coating quality [8][24]. The approach 

presented in this work involves the development of an algorithm for the coupling momentum, heat 

and mass transfer in the ConsiGma® film-coating equipment. Since most simulations consider only 

spherical particles, accounting for the momentum transfer is challenging due to the tablet shape. To 

that end, a model simulating the fluid forces acting on the tablets was introduced. Considering the heat 

and mass transfer is important for the prediction of wet and dry processes. The goal in this work was 

to develop a model (a so called digital twin) that simulates and predicts the entire coating process 
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inside the ConsiGma® coater in order to test the process parameters and optimize the performance 

without conducting experiments.  

The focus of this work is the CFD-DEM model validation. First, the tablet bed dynamics are validated by 

comparing experimental and simulation results for the tablet acceleration. Next, the coefficient of 

inter-tablet CoV was compared. Finally, the heat and mass transfer in the simulation was compared to 

the experimental results. To that end, the outlet air temperature and humidity and the tablet moisture 

(measured via the loss on drying (LoD)) and temperature are analyzed. The goal of the validation was 

to establish if the CFD-DEM simulation can be used as a digital twin of the ConsiGma® coater and to 

recommend the testing of process points inside the coater. This work explores a novel method of 

defining the process operating space of a semi-batch film coating unit operation that can be integrated 

into the ConsiGma® lines to continuously produce film-coated tablets.  

F-3. Simulation model 

In the following Section, the CFD-DEM simulation model is briefly introduced. Next, the biconvex tablet 

model developed is explained. Finally, the models for the momentum-, heat- and mass-coupling are 

presented in detail.  

F-3.1. CFD-DEM model 

The code XPS (eXtended Particle System) based on Graphics Process Units (GPUs) and developed in-

house was used to calculate the particle motion [36]. It solves Newton’s second law by solving particle-

particle and particle-wall interactions [37], [38]. This method was developed by Cundall and Strack [39] 

in 1979. For the motion of each particle, the following equation is solved: 

𝑚𝑃

𝑑𝐯𝑷

𝑑𝑡
= −𝑉𝑖∇p + 𝑭⃗⃑⃑𝑖

𝑑 + ∑ 𝐅𝑃→𝑃

𝑁𝑃

0

+ ∑ 𝐅𝑃→𝑊

𝑁𝑤

0

+ 𝑚𝑝𝐠 (28) 

where mP is the particle mass, vP is the particle velocity, −𝑉𝑖𝛻𝑝 is the pressure gradient force, 𝑭⃗⃑⃑𝑖
𝑑  is the 

drag force, FP->P is the particle-particle force, FP->W is the particle-wall force and g is the gravity constant. 

The three-dimensional angular momentum of the particle is calculated as:  

𝐈𝑃

𝑑𝛚P

𝑑𝑡
= ∑ 𝐌𝑃 + 𝐌𝑊

𝑁𝑐

0

+ 𝐌𝐹  (29) 

where ωP is the angular velocity, MP is the torque coming from other particles, Mw is the torque coming 

from the tablet-wall interactions, MF is the torque coming from the surrounding fluid and IP is the 

moment of inertia. Details of the algorithm can be found in [36] and [40]. 
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To calculate the gas phase, a commercially available CFD code AVL Fire© was used, which models the 

gas phase by solving the volume-averaged Navier-Stokes equations. All variables are locally volume-

averaged quantities over control volume V, which must be at least one order of magnitude larger than 

particle volume VP [40]. The conservation of mass is: 

𝜕

𝜕𝑡
(𝜀𝐹 ∙ 𝜌𝐹) + ∇ ∙ (𝜀𝐹 ∙ 𝜌𝐹 ∙ 𝐯𝑭) = 0 (30) 

where ρf is the fluid density, εF is the local volume fraction of the fluid, vF is the fluid velocity vector and 

t is time. Similarly, the conservation of momentum is:  

𝜕

𝜕𝑡
(𝜀𝐹 ∙ 𝜌𝐹 ∙ 𝐯𝑭) + ∇(𝜀𝐹 ∙ 𝜌𝐹 ∙ 𝐯F ∙ 𝐯F) = −𝜀𝐹 ∙ ∇p − ∇ ∙ (𝜀𝐹 ∙ 𝛕𝐹) + 𝜀𝐹 ∙ 𝜌𝐹 ∙ 𝐠 − 𝐒𝑀 (31) 

SM is the momentum transfer source term. The heat and mass transfer is identical to the momentum 

exchange. For detailed information about the coupling mechanism see Jajcevic et al. [40]. 

The thermal energy equation for the gas phase is: 

𝜕

𝜕𝑡
(𝜀𝐹 ∙ 𝜌𝐹 ∙ 𝐶𝑝,𝐹 ∙ T𝐹) + ∇(𝜀𝐹 ∙ 𝜌𝐹 ∙ 𝐯F ∙ 𝐶𝑝,𝐹 ∙ T𝐹) = ∇ ∙ (𝜀𝐹 ∙ 𝑘𝐹

𝑒𝑓𝑓
∙ ∇T𝐹) + 𝐒𝐸 (32) 

where 𝐶𝑝,𝐹  is the gas heat capacity, T𝐹 is the gas temperature, 
ES is the inter-phase energy transfer and 

𝑘𝐹
𝑒𝑓𝑓

is the effective thermal conductivity calculated as follows: 

𝑘𝐹
𝑒𝑓𝑓 =

1 − √1 − 𝜀𝐹

𝜀𝐹
∙ 𝑘𝐹  (33) 

Various components of the vapor are solved considering the species transport model in the fluid phase. 

The transport of an arbitrary gaseous species “i” is described by the following equation: 

𝜕

𝜕𝑡
(𝜀𝐹 ∙ 𝜌𝐹 ∙ µ𝒗𝒂𝒑,𝒊) + ∇(𝜀𝐹 ∙ 𝜌𝐹 ∙ µ𝒗𝒂𝒑,𝒊) = ∇ ∙ (𝐷𝑒𝑓𝑓∇ ∙ (𝜀𝐹 ∙ 𝜌𝐹 ∙ µ𝒗𝒂𝒑,𝒊)) + 𝐒𝑣𝑎𝑝 (34) 

µ𝒗𝒂𝒑 is the mass fraction of the vapor gas species, Deff is the diffusion coefficient and 𝑺𝒗𝒂𝒑 is the vapor 

gas species source term. Forgber et al. [42] have provided an in-depth overview of the models used 

and validated the momentum, heat, and mass transfer models for spheres. 

F-3.2. Bi convex tablet model  

A biconvex tablet model was developed to accurately model the given tablet shape. The tablet has a 

diameter of 9.8 mm (L3) and a height of 4.3 mm (L2) with a rim thickness of 2.6 mm (L1). For the purposes 

of CFD-DEM simulation, the tablet shape is modeled by overlapping three spheres and assumes that all 

tablets have the same size. The three spheres consist of one central smaller sphere describing the rim 

surface and two larger ones describing the cap. Figure 67 shows a sketch of the approximation via three 

overlapping circles.  
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Figure 67: Construction of the biconvex tablet shape, including all symbols and expressions used. The image is taken from 
Kureck et al.[41]. 

Approximation via three overlapping spheres has advantages over other widely used shape 

approximations (e.g., the multi-sphere model and polyhedral shape model). Since only three spheres 

are needed to approximate the shape (vs. eight spheres typically applied under the traditional multi-

sphere approach [30], [43]), the amount of memory required for the simulation is reduced, decreasing 

the computational expense while maintaining high accuracy of the simulation. Approximating the 

tablet shape without adding any artificial roughness required for the multi-sphere and polyhedral 

models enables fast simulations. For details of contact detection and force calculations see Kureck et 

al. [41]. Due to the symmetrical nature of the biconvex tablet, a drag model was developed for the 

coupling algorithms.  

F-3.3. Drag force model 

In contrast to spherical particles, the calculation of the drag force acting on a tablet requires special 

consideration. There are many ways to compute the drag coefficient for spheres in coupled CFD-DEM 

simulations[17], [44], [45]. A number of models are available for calculating the drag force acting on 

non-spherical elements [46], [47]. Typically these drag models only take into account a single particle 

in relatively dilute flows. However, for dense regimes of non-spherical particles, such as tablets, the 

correlation is not well established and is difficult to determine. Lattice Boltzmann Methods are often 

used to calculate the fluid forces acting on the particles [48], i.e., a model with varying numbers of 

fitting parameters is developed to correlate the drag on the particles. The problem with these 

approaches is that the fitting parameters have limited applicability to other shapes. Generally, a 

number of parameters have to be fitted to each particle shape. In this work, the drag coefficient 

calculation for non-spherical particles of Hölzer and Sommerfeld [47] for a single non-spherical particle 

is combined with the drag force model of Rong et al. [49], [50]. This model covers the single particle 

flow and the zones with a high packing fraction.  
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𝑭⃗⃑⃑𝑖
𝑑 =

1

2
∙ 𝐶𝐷,0 ∙ 𝜌𝐹 ∙ 𝐴⊥ ∙ 𝜀𝐹

2 ∙ 𝜑(𝑑𝑖 , 𝑥𝑖 , 𝜀𝐹) ∙ |𝒖⃗⃑⃑𝐹 − 𝒗⃗⃑⃑𝑖| ∙ (𝒖⃗⃑⃑𝐹 − 𝒗⃗⃑⃑𝑖) ∙ 𝜀𝐹
−(𝛽(𝜀𝐹,〈𝑅𝑒〉)+(𝜆(𝜙,〈𝑅𝑒〉) 

 

(35) 

𝐴⊥ is the projected area perpendicular to the airflow direction and 𝜒 is a correction factor. 𝐴⊥ is 

calculated based on an approximation algorithm, which interpolates the projected area of the tablets 

based on the mean angle and surface area computed at the beginning of the simulation. The drag 

coefficient is calculated as:  

𝐶𝐷 =
8

𝑅𝑒
∙

1

√𝜙⊥

+
16

𝑅𝑒
∙

1

√𝜙
+

3

√𝑅𝑒
∙

1

𝜙
3
4

+ 0.42 ∙ 100.4(− log(𝜙))0.2 1

𝜙⊥
 (36) 

𝜙 is the sphericity of the tablet and 𝜙⊥ is the crosswise sphericity. The sphericity is the ratio of the 

tablet volume to the sphere volume with the same surface area. The crosswise sphericity is calculated 

through 𝐴⊥ and is the exposed surface area ratio of the tablet volume to the surface area of a sphere 

with the same volume.  

Coefficient 𝜑(𝑑𝑖 , 𝑥𝑖 , 𝜀𝐹) depends on the particle characteristic diameter (di), particle type fraction xi 

and void fraction 𝜀𝐹. Since only one type of particle is considered in this work, 𝛼 is set to 1. For 

simulations with different particle shapes or sizes, this parameter has to be defined via calibration with 

CFD simulations with varying packing fractions, void fractions, and diameters.  

𝛽 is a correction factor for a low-void fraction, taking into account the void fraction and Reynolds 

number.  

𝛽(𝜀𝐹 , 〈𝑅𝑒〉) = 2.65 ∙ (𝜀𝐹 + 1) − (5.3 − 3.5 ∙ 𝜀𝐹) ∙ 𝜀𝐹² ∙ exp [
1

2
∙ (1.5 ∙ log(𝑅𝑒))²] (37) 

𝜆 is a correction factor that takes the tablet diameter into consideration, as well as the Reynolds 

number.  

𝜆(𝜙, 〈𝑅𝑒〉) = (1 − 𝜙){𝐶 − 𝐷 ∙ 𝑒−0.5∙(3.5−log〈𝑅𝑒〉)2
} (38) 

C is based on a linear regression of drag forces. 

𝐶(𝜙) = 39 ∙ 𝜙 − 20.6 (39) 

D is also based on the above linear regression. 

𝐷(𝜙) = 101.8 ∙ (𝜙 − 0.81)2 + 2.4 (40) 

In addition to the drag force, a CFD-DEM simulation of non-spherical particles has to consider the fluid 

lift force, CL. To calculate it, the lift coefficient is computed. Correlations for the lift coefficient typically 
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link the lift coefficient to the drag coefficient and the relative angle of fluid velocity fields to the particle 

orientation, φ. 

𝐶𝐿 = CDsin²(φ) ∙ cos(φ) (41) 

Torque resulting from the non-sphericity of the tablets should not be neglected. To calculate it, the 

center of gravity, xcp, has to be computed: 

xcp = L ∙(3/4)∙(sin(φ)/(4+π cos(φ)) (42) 

Torque acting on the tablets due to the fluid-tablet interaction can be calculated by multiplying the 

center of gravity by the fluid forces:  

𝐌𝑭 = xcp(𝑭⃗⃑⃑𝐿𝑖𝑓𝑡 + 𝑭⃗⃑⃑𝐷𝑟𝑎𝑔+𝑭⃗⃑⃑𝑜𝑡ℎ𝑒𝑟) (43) 

F-3.4. Heat and mass transfer 

The heat and mass transfer is realized via source terms, 𝑺𝑬 and 𝑺𝒗𝒂𝒑. In this work, it is assumed that 

the air is not saturated and no condensation occurs during the coating process. 

The energy source term, 𝑺𝑬, is calculated based on the heat transfer coefficient, tablet surface 𝐴𝑃, and 

the difference between the tablet and film coating suspension temperatures (𝑇𝑃 − 𝑇𝐹) as follows: 

𝑆𝐸 = ℎ𝐹𝑃 ∙ 𝐴𝑃 ∙ (𝑇𝑃 − 𝑇𝐹)  (44) 

ℎ𝐹𝑃 =
𝑁𝑢𝑃 ∙ 𝜆𝐹

𝑑𝑃
 (45) 

The heat transfer coefficient, ℎ𝐹𝑃, is a function of the Nusselt number, 𝑁𝑢𝑃, fluid heat conductivity, 𝜆𝐹, 

and the specific particle diameter, 𝑑𝑃. For tablets, a specific diameter is the diameter of the area-

equivalent sphere.  

𝑁𝑢𝑃 = (7 − 10𝜀𝐹 + 5𝜀𝐹
2)[1 + 0.7𝑅𝑒𝑃

0.2𝑃𝑟0.33] + (1.33 − 2.4𝜀𝐹 + 1.2𝜀𝐹
2)𝑅𝑒𝑃

0.7𝑃𝑟0.33  (46) 

The Nusselt number is a function of the void fraction Reynolds and Prandtl numbers. Mass transfer 

applies an algorithm similar to the heat transfer one: 

𝑚̇𝑃 = 𝑘𝑚 ∙ 𝐴𝑃,𝐶 ∙ (𝑤𝑃 − 𝑤𝐹) (47) 

Mass transfer 𝑚̇𝑃 is calculated via the mass transfer coefficient, 𝑘𝑚, the coated area, 𝐴𝑃,𝐶 , and the 

humidity difference between the tablet surface, 𝑤𝑃 , and the surrounding gas, 𝑤𝐹.The wet surface area 

is calculated according to the model proposed by Kariuki et al. [51].  

𝑘𝑚 =
𝑆ℎ𝑃∙𝐷𝑣𝑎𝑝

𝐿
  (48) 
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The mass transfer coefficient is a function of the Sherwood number, Sh, and the binary diffusion 

coefficient, Dvap. 

𝑆ℎ𝑃 = (7 − 10𝜀𝐹 + 5𝜀𝐹
2)[1 + 0.7𝑅𝑒𝑃

0.2 ∙ 𝑆𝑐0.33] + (1.33 − 2.4𝜀𝐹 + 1.2𝜀𝐹
2) ∙ 𝑅𝑒𝑃

0.7 ∙ 𝑆𝑐0.33 (49) 

The Sherwood number (ShP) is a function of the void fraction and the Reynolds (Re) and Schmidt (Sc) 

numbers [52]. 

F-3.5. Spray coating model 

To model the spray, an inline ray tracing algorithm similar to the approach proposed by Toschkoff et al. 

[53], [54] was used to detect the coated tablets. This algorithm requires a point of origin, opening 

angles, droplet size distribution, spray interval and direction vector as input variables. This way, a point 

of origin for each spray nozzle and the direction of the spray vector can be defined. The number of rays 

is a function of droplet size and spray interval time. This approach neglects the momentum and heat 

and mass transfer from the spray to the surrounding fluid. All mass and energy are only transferred 

between the spray and the tablet or between the tablet and the fluid. From the point of origin in the 

direction of the spray, tablets in the way of the spray vector are monitored. If a ray detects a tablet, 

the spray mass given by the droplet radius, the spray composition, and the density is transferred to the 

tablet. The spread is calculated via the spread function during the simulation run. The coated surface 

area is calculated using the above-mentioned algorithm of Kariuki et al. [51], which is also applied to 

calculate the evaporation rate. For more information about this approach, please refer to Forgber et 

al. [42]. 

F-4. ConsiGma® coater 

In the following sub-Sections, the ConsiGma® coater is introduced in detail, from the coating geometry 

to an explanation of the process and experimental data. 

F-4.1. Coater geometry 

The coating process in the ConsiGma® coater involves small batches of consistent coating quality in 

series. This approach has several advantages over truly continuous and traditional processes. 

Experiments for setting up a new product or optimizing an existing one are fast and do not require a 

lot of material. Process settings are tested in small sub-batches, and a continuous process is achieved 

by recreating the optimal process conditions identified. Additionally, no start-up (e.g., pre-heating and 

cooling) or end effects typically associated with the continuous process are present and the 

equipment’s footprint is smaller. 
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An overview of the most important ConsiGma® tablet coater parts is provided in Figure 68. The coating 

drum (b) is placed in a housing and loaded over a movable lid and chute (a). The adjustable spray nozzle 

is centrally mounted and is typically in a 12 o’clock position (d). It can be moved vertically and 

horizontally and rotated around its center. Air is introduced into the drum coater through a central pipe 

behind the coating wheel (e). Conditioned inlet air knives, which are installed outside of the drum 

coater between 2 and 3 o’clock (c), dislodge the tablets from the wall and guide them to the spray zone 

and provide additional drying air. When the coating process is finished, the tablets are discharged from 

the bottom of the drum (f,h). In addition, the sensors (g) measure the temperature and humidity of air 

exiting from the outlet air pipe (f) behind the drum coater. The CFD-DEM simulation performed only 

considers the drum interior (b). The drying air inlet was placed on the side of the drum, and the air 

knives were modeled as mass inlets on the drum surface. The remaining drum surface was set as the 

outlet region. The spray nozzle arm and the accompanying light source were included in the simulation 

volume. In the simulation, the surrounding housing and equipment were neglected, as well as the heat 

loss to the surrounding air.  

 

Figure 68: ConsiGma® coater, including the supporting surroundings: a) inlet funnel; b) drum; c) air knives; d) spray nozzle; e) 
air inlet; f) air outlet; g) temperature/ humidity sensor, and h) outlet funnel. 

The ConsiGma® tablet coater drum has a diameter of 44.5 cm and a depth of either 160 mm or 320 mm 

(Figure 69) determined by the drum insert. The drums can be loaded with 2.5 to 7 kg of tablets 

depending on the tablet shape and the drum used. The 160 mm drum employs one spray nozzle (Figure 

69), while the 320 mm coater uses two. The spray nozzle(s) are set up so that the spray zone covers 
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nearly the entire drum depth. This minimizes the need for fast axial tablet mixing, and only the radial 

tablet bed has to be mixed. ConsiGma® 320 has central gripper bars in addition to the gripper bars on 

the side of the drum to stabilize the tablet bed and accelerate the ring formation, as well as the lateral 

gripper bars.  

 

Figure 69: Coater Geometry of the ConsiGma 160 (left) and 320 (right) coater. 

F-4.2. Process description  

The coating process in the ConsiGma® coater can be divided into seven stages: loading, bed 

distribution, ring formation, cascade formation, spray coating, drying and discharging. The ConsiGma® 

coater is loaded via a hopper above the coater. When the loading stage is completed, the drum lid is 

closed and the coater is rotated at a low speed (ex. 5 rpm) to evenly distribute the tablet bed (A). After 

this, the drum accelerates to up to 115 rpm. High rotation rates enable the tablets to form a ring along 

the drum wall due to the centrifugal force that exceeds the gravitational force (B). When the tablet bed 

forms a steady ring, the rotation rate is reduced to 88-95 rpm depending on the tablet shape, the 

material properties, the drum load, and the drum type. The air knives inject air from the side and the 

tablet cascade is formed in preparation for spraying. Once a stable cascade is formed, the spray 

nozzle(s) are turned on to apply the coating solution (C) onto the tablets until the target quantity of 

suspension and the associated mass gain are reached. Finally, the tablets dry for a short time before 

the drum rotation stops and the tablet bed is allowed to collapse. After that, the lid at the bottom of 

the drum coater is opened and the coated tablet bed is discharged. The remaining tablets are emptied 

by slowly rotating the drum. A typical coating cycle lasts about 10 minutes depending on the target 

mass gain and the spray rate. 
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Figure 70: Stages of the coating process, loading/tablet bed distribution, ring formation and tablet cascade with spray. 

Figure 71 shows the process output for a typical coating process in the ConsiGma® tablet coater. It 

provides the rotation rate, inlet air flow rate, air knife pressures, inlet temperature and humidity, and 

outlet air temperature and humidity. In the first 30 seconds, the tablets are loaded into the drum, which 

slowly rotates to distribute the tablet bed. After that, the rotation rate is increased to 115 rpm. In this 

phase, the tablets are distributed along the drum wall and form a ring. After 20 seconds, the rotation 

rate is reduced to 93 rpm and, shortly after, the air knives are started and the air knife pressure 

increases from its background pressure of 80mbar to 220mbar, which is kept constant during the 

coating process. In this example, the rotation rate is reduced in two steps from 93 rpm to 92 rpm and 

to 91 rpm by altering the tablet-drum friction. The friction between the tablet and the wheel changes 

in response to the coating applied. The outlet air temperature decreases from 70°C to 60°C and the air 

humidity increases from 6 g/kg to 14g/kg of air. After 11 minutes, the coating process is completed and 

the tablets are discharged from the coater wheel. After that, the outlet air temperature increases and 

the humidity decreases. 



Validating a numerical simulation of the ConsiGma® semi-continuous tablet coating process 

136 

 

Figure 71: Typical coating process in the ConsiGma® coater. 

F-4.3. Experimental setup and operating points 

During the experimental runs, four parameters are tracked to validate the simulation model. First, the 

forces acting on the tablets are recorded to validate the tablet bed dynamics. Second, the coating 

quality is assessed by tracking the mass gain of 30 tablets across the coating process. Third, the 

influence of spray rate, drying air flow rate and temperature on the outlet air humidity is analyzed. 

Fourth, the influence of spray rate, drying air flow rate and temperature on the outlet air temperature 

is established. 

In order to validate the tablet bed dynamics of the simulation model, accelerations of the model tablets 

are compared to the experimental results. To monitor the forces inside the ConsiGma® coater 

experimentally, an accelerometer from Maritime BioLogger (https://maritimebiologgers.com/) is 

placed in the system to track the accelerations in three dimensions every 0.02s. Due to the small size, 

it is assumed that the forces that the accelerometer experiences are similar enough to the accelerations 

experienced by the tablets during the coating process. The data are stored on a MicroSD and evaluated 

after the experiment is completed. 

https://maritimebiologgers.com/
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Figure 72: Size Comparison of the maritime bioLogger with a 5 cent coin (image from the manual). 

 

Figure 73: Maritime BioLogger inside the tablet bed in the ConSigma® 320 tablet coater. 

The coating quality is tracked by marking and weighing 30 individual tablets before starting the coating 

process. The tablets are coated for 1%, 2%, 3%, and 4% coating mass gain. After the coating process is 

finished, the marked tablets are weighed again and the coefficient of inter-tablet coating variation is 

calculated.  

The outlet temperature and humidity are recorded automatically during the coating process inside the 

ConsiGma® coater. Both values are saved every 2 seconds and can be accessed either during the coating 

process or in subsequent analysis. The tablets are dried for up to 30 seconds and then discharged. The 

tablet temperature is measured after the coating process is finished using an infra-red camera and a 

distance thermometer. 
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Altogether, six experiments were performed to validate the simulation results for the heat and mass 

transfer. In the experiments, the drum load, rotation rate, and air knife pressure were kept constant, 

while the drying air flow rate, temperature, spray rate, and the coater size varied (Figure 69). The 

simulations were run until the tablet, air humidity and temperature reached a steady state. The 

design of experiment is provided in Table 18. 

Table 18: Process parameters of the experiments and simulations performed. 

Process 

Property 

DoE 

Number 

Coater 

Type 

Load 

in kg 

Rotation 

rate in 

rpm 

Spray 

rate in 

g/min 

Number 

of 

Nozzles 

Drying air 

flow rate 

in m³/h 

Drying air 

temperature 

in °C 

1 160 3 90 75 1 180 60 

2 160 3 90 60 1 180 80 

3 160 3 90 45 1 210 90 

4 320 6 93 75 2 300 60 

5 320 6 93 60 2 360 80 

6 320 6 93 45 2 420 90 

F-5. Results 

The primary goal of this work was to validate the CFD-DEM model of a representative coating process 

in the ConsiGma® tablet coater. The model was assessed with regard to the four most important 

process output parameters that define the tablet coating process. First, the tablet bed dynamics were 

analyzed. Changes in acceleration during the various phases were tracked using an accelerometer and 

compared to the simulation results. Second, the coating mass gain and distribution were assessed. 

Experiments were conducted tracking the coating mass of 30 tablets for 1%-4% coating mass gain. The 

mean coating mass and standard deviation were measured and used to calculate the coefficient of 

variation and compared to the simulation results. Third, the outlet air humidity was tracked. Six 

experiments were performed and recreated in silico. Process conditions were varied from wet to dry 

in two coater drum sizes. Additionally, the LoD of the tablets was tracked experimentally and compared 

to the simulation. Fourth, the outlet air temperatures were analyzed. In addition, the tablet 

temperature during the coating process was evaluated in the simulation (without being compared to 

the experimental results). 
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F-5.1. Forces  

An accelerometer tracked changes in the acceleration during the various phases of the coating process. 

The results are shown in Figure 74, which illustrates the following four stages: loading, ring formation, 

cascade formation, and discharge process. The first row depicts the entire 260 seconds of the 

experimental run, including the transition from one phase to the next. In the second row, 5 seconds of 

the four phases of the coating cycle in the ConsiGma® coater are shown. The positions in the five 

seconds of interest are indicated by two black vertical lines. In this work, the acceleration is normalized 

using the gravity constant of 9.81m/s². During the load and tablet bed distribution phase, the 

accelerometer experiences accelerations of around 1g, i.e., mainly the gravitational pull. All other 

changes are minimal. During the ring formation, the drum coater is accelerated to 115 rpm and a 

regular sine wave-like behavior can be observed. During this phase, the tablet bed is in a steady-state 

and the movement of the tablets relative to each other is almost zero. The various accelerations tracked 

correspond to the position of the accelerometer. High acceleration values indicate the bottom of the 

drum coater, with the centrifugal and gravitational forces working in the same direction. The low values 

correspond to the top of the drum coater, with the centrifugal force counteracted by the gravitational 

force.  

After the ring formation, the cascade phase begins. First, the rotation rate of the drum is reduced to 93 

rpm. After 15 seconds, air knives are activated to push the tablets away from the drum wall and allow 

a wider cascade and enhanced mixing in the reentry zone. During this phase, peaks of up to 8g are 

observed, as well as periods of almost zero acceleration changes. Periods of high acceleration are due 

to rapid changes in the acceleration, indicating the reentry or contact of the accelerometer with the 

tablet bed and the drum wall after the free fall of the cascade. The periods of no acceleration relate to 

the free fall inside the cascade when the accelerometer appears to fall with a constant velocity. The 

period following the high peak zones is when the tablets are at the bottom of the drum coater. After 

the cascade, the tablet bed collapses and the drum rotation is reduced to 5 rpm. Again, mainly the 

gravitational force is acting on the accelerometer.  
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Figure 74: Accelerations recorded during an experimental run. The various phases of the coating process are shown in the 
subplots below: drum loading and tablet bed distribution, ring formation, cascade formation, and drum discharge. 

Figure 75 shows the acceleration during the ring and cascade phases for ten individual rotations 

overlaid on each other. A full rotation in the ring phase is around 0.5 seconds, while in the cascade 

phase it lasts 0.7 seconds. In the ring phase, the acceleration changes recorded correspond well to the 

upper and lower limits of the drum wall. High values indicate the bottom of the drum, where the 

centrifugal and gravitational forces work in the same direction. Low values indicate the top of the drum, 

where the gravitational force works in the opposite direction from the centrifugal force. Between 0 and 

0.1 seconds and 0.5 and 0.7 seconds, periods of no acceleration are observed. These periods represent 

the free fall of the accelerometer during the cascade. The accelerometer falls with the tablet bed 

cascade through approximately 1/3 of the drum coater with no change in the direction and velocity. 

The peaks at around 0.1 second indicate the end of the free fall and the reentry of the accelerometer 

into the tablet bed. The period of steady acceleration between 0.2 and 0.5 seconds represents the 
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acceleration after the reentry of the accelerometer into the tablet bed, up to the contact with the air 

knife zones. The air knife zones correspond to the smaller peaks in the acceleration at 0.45-0.5 seconds.  

 

Figure 75: Forces acting on the accelerometer recorded during the ring (left) and cascade (right) phases over the coating 
cycle time. 

Figure 76 shows an image of the simulated tablet bed during the cascade phase. The tablets are colored 

according to the forces acting on them, and the angle degree of the coater positions is shown around 

the drum. 0° is at the top of the drum and the angle is rotated counterclockwise, just as the tablets 

during the coating process do. The tablets experience low/no forces during the cascade phase, high 

forces during the reentry into the tablet bed and medium forces at the bottom of the drum.  

 

Figure 76: Visualization of the drum angle and the tablet forces. 

Figure 77 shows the time-averaged acceleration values in the ring and cascade phases and a 

comparison between the simulation and experimental results. The simulation results are time- and 
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spatially-averaged across all tablets. On the left-hand side, the acceleration during the ring phase is 

shown. The experimental and simulation results agree well. An increase and a decrease in the 

acceleration from the bottom to the top of the drum and back are clearly visible, as well as the 

magnitude of the acceleration changes.  

On the right-hand side, the acceleration during the cascade phase is shown, as well as the time-

averaged acceleration changes of a single tablet during the simulation. The simulated and experimental 

results also agree well with regard to the overall shape of the curves. Once again, the value at the 

bottom of the drum (0°) is in good agreement. In the simulation, the zone of reentry into the tablet bed 

between 60° and 120° is wider and the maximal forces are higher. The zone of free fall/low acceleration 

is wider in the experimental results than it is according to the time- and spatially-averaged simulated 

results. In the simulation, some tablets adhered to the drum wall even during the cascade/free-fall 

period. Although this effect is also present in the experiments with single tablets, it was not recorded 

for the accelerometer. A possible explanation is that due to its different size, shape, and mass the 

accelerometer segregates in the inner layer of the tablet bed. The inner layer of the tablet bed always 

detaches during the free-fall phase. These tablets have higher acceleration forces acting on them since 

the centrifugal forces from the drum rotation are still contributing. Thus the mean force in this period 

is higher in the simulation. Since the shape and size of the accelerometer are different from those of 

the tablets, it tends to segregate and stay on top of the tablet bed. Thus, it is more likely to detach from 

the drum wall and be engaged in the free-fall phase, while not all tablets follow that pattern.  

Regardless of these factors, the experimental and simulated results agree well and confirm the 

accuracy of the simulation results. This explanation seems to be valid if only the values for a single 

tablet are compared to the time-averaged experimental results. For a single tablet, the experimental 

and simulated accelerations are in good agreement even in the free-fall zone. In both cases, the 

acceleration values are time-averaged over ten cycles. Both the detached state during the free fall and 

the high acceleration in the reentry zones are captured in the simulation.  
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Figure 77: Experimentally time-averaged forces compared to time- and spatially-averaged forces acting on the tablets and 
time-averaged forces of a single tablet based on the simulation data.  

F-5.2. Coefficient of inter-tablet coating variability  

Figure 78 shows tablets coated with a mass gain of 1%, 1.7%, 2.5%, 3% and 4%. In the experimental 

run, 30 tablets were weighed and numbered, and the starting and final tablet weight were compared. 

The difference between the final and starting tablet weight is the coating mass gain. The Figure shows 

how the coating layers cover the marking as the coating mass gain increases. The mass gain of the 

marked tablets was used to calculate the mean coating mass and the standard deviation of the coating 

mass over time. In the case of 4% mass gain, the coating layer was thick, making it impossible to retrieve 

all marked tablets after the coating process was completed (although a change in the coating quality 

and uniformity is visible on the nine sample tablets). While 1% and 1.7% coated tablets show a clear 

difference in the coating quality as indicated by varying degrees of opacity, it is more difficult to 

visualize the difference between 2.5% and higher coating mass gains.  
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Figure 78: Uncoated and coated tablets with various mass gains. 

Changes in the CoV over the processing time are shown in Figure 79. Six experiments with a process 

duration of 2.5, 5, 7.5 and 10 minutes were performed. This time corresponds to a coating mass gain 

of 1 – 4%. They are shown as black dots in the plot. The simulation results are represented by a solid 

red line for all tablets and a dotted blue line for 30 randomly selected tablets that were chosen to 

illustrate the influence of the number of tablets on the CoV variability. After an initial phase of 10 

seconds, the simulation results show a steady decline with exponent over time of -0.5, indicating that 

the coating process in ConsiGma® adheres to the random mixing theory for a conventional batch tablet 

coating process [55]. The simulation results agree well with the experimental values for 2.5, 5 and 7.5 
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minutes. Only one simulation was run for 10 minutes. Figure 79 shows that a decline in the CoV is a 

steady process, which makes it unnecessary to simulate the entire process time.  

 

Figure 79: Evolution of the coefficient of variation and comparison between the experiment and the simulation.  

Figure 80 shows the CoV for the six cases investigated in the simulation. The variants in the legend are: 

coater size in mm (ex. 160 in the first experiment); drying airflow rate in m³/h (ex. 180); drying air 

temperature in °C (ex. 60); and spray rate in g/min (ex. 75). The results for the CoV follow a very similar 

trend. All simulations were run for a coating period of at least 120 seconds, with the CoV decrease 

reaching a steady state after about 20 – 30 seconds or 30 – 45 coating rotations. Additionally, the plot 

shows that the ConsiGma® 160 and 320 tablet coaters behave similarly in terms of coating quality.  
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Figure 80: CoV in all simulated cases over time. The variants in the legend are: coater wheel type, drying air flow rate [m³/h], 
drying air temperature [°C] and spray rate[g/min]. 

F-5.3. Mass transfer 

Figure 81 shows the outlet air humidity over time after the spray nozzle is activated. The left and right 

columns show the values for ConsiGma® 160 and for ConsiGma® 320, respectively, going from wet to 

dry cases. Experimentally, the humidity is measured at the outlet behind the tablet coater. In the 

simulation, the outlet air humidity is measured at the drum surface. In all cases, after 10 seconds the 

outlet air humidity increases from initial values of 2-6g/kg in the experiments to steady-state values of 

15g/kg in the wet cases and 11g/kg in the dry cases. In the simulation, the inlet humidity value is set to 

4g/kg in all cases, increasing at the same rate as the experimental results and with the steady-state 

values matching well in all cases, except for the wet case for ConsiGma® 160 (180m³/h, 60°C, 75g/min) 

in which the simulation underpredicts the outlet air humidity. In this case, the experimental inlet air 

humidity is higher than in the simulation, which explains the resulting higher outlet air humidity. The 

influence of process conditions on the air humidity was shown. The results indicate that the drying air 

flow rate and temperature together with the spray rate influence the outlet humidity and the 

evaporation rate. Since the values of all six conditions investigated are quite close, it can be concluded 

that the evaporation efficiency decreases with the decreasing temperature, airflow rate and 

temperature.  
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Figure 81: Comparison of the outlet humidity between the experiment and the simulation for ConsGima 160 with a drum load 
of 3kg: (a) drying air flow rate 180m³/h, air temperature 60°C, spray rate 75g/min; (b) drying air flow rate 180m³/h, air 

temperature 80°C, spray rate 60g/min; and (c) drying air flow rate 210³/h, air temperature 90°C, spray rate 45g/min, and 
ConsGima 320 with a drum load of 6 kg: (d) drying air flow rate 300m³/h, air temperature 60°C, spray rate 150g/min; and (e) 
drying air flow rate 360m³/h, air temperature 80°C, spray rate 120g/min; and (f) drying air flow rate 420³/h, air temperature 

90°C, spray rate 90g/min. 

The mean LoD of the tablets in the simulation in all six cases investigated is shown in Figure 82. In the 

simulations, the tablets are initialized without any liquid content. When spraying begins after 12 

seconds of process time, the liquid mass on the tablets increases in all cases. After 10 seconds of spray 

coating, the mean liquid mass of the tablets reaches a steady-state under dry and medium conditions 

(160-180-80-60, 160-210-90-45, 320-360-80-120 and 320-420-90-90) and increases steadily under wet 

conditions (160-180-75-75 and 320-300-60-160). The steady-state mean LoD values in the dry case are 

0.05%, 0.2% in the 160-180-80-60 case and 0.15% in the 320-360-80-120 case. Although neither of the 

wet cases (160-180-75-75 and 320-300-60-160) achieves a steady-state, the increase seems to get 
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shallower over time and reaches a LoD of 1%. This means that in the wet case, the water on the tablets 

accumulates and does not evaporate fast enough. 

 

Figure 82: Mean liquid mass during the coating process inside the ConsiGma® coaters. 

An increase in the LoD under wet coating conditions was also observed in the experiments. Figure 83 

shows the LoD of the tablets before and after coating. The uncoated tablets have a LoD of 1% due to 

the previous process steps and the surrounding air. The initial tablet LoD is plotted as a dotted line. 

Silverman et al. defined a scaling parameter for the thermodynamics of a film coating process, Nthermo, 

as [56]:  

𝑁𝑇ℎ𝑒𝑟𝑚𝑜 =
𝑚̇𝑤𝑎𝑡𝑒𝑟

𝑉̇𝑎𝑖𝑟 ∙ 𝜌𝑎𝑖𝑟 ∙ (𝐻𝑠𝑎𝑡,𝑏𝑒𝑑,𝑇 − 𝐻𝑖𝑛𝑙𝑒𝑡,𝑑𝑒𝑤,𝑝𝑜𝑖𝑛𝑡,𝑇)
 (50) 

where 𝑚̇𝑤𝑎𝑡𝑒𝑟 is spray liquid mass flow rate [g/h], 𝑉̇𝑎𝑖𝑟is the drying air inlet volume flow rate 

[m³/h], 𝜌𝑎𝑖𝑟 is the air density [kg/m³], 𝐻𝑠𝑎𝑡,𝑏𝑒𝑑,𝑇 is the specific humidity of the inlet air at tablet bed 

temperature [g/kg] and 𝐻𝑖𝑛𝑙𝑒𝑡,𝑑𝑒𝑤,𝑝𝑜𝑖𝑛𝑡,𝑇 is the specific humidity of the inlet air at the inlet air dew 

point temperature [g/kg]. Except for very wet coating conditions, the tablets leave ConsiGma® coater 

drier than when they entered it. Under very dry conditions, this means that the tablet LoD decreases 

from 1% to 0.5% and in the moderate cases to 0.8%. The tablets that leave ConsiGma® 320 are drier 

than those that leave ConsiGma® 160 at similar Nthermo. Under wet conditions, the tablets retain some 

of the coating suspension. The LoD increases to 1.5% in both cases, although in the wet cases Nthermo in 

ConsiGma® 160 is lower than in ConsiGma® 320, indicating an increased energy contribution from the 

surrounding equipment in ConsiGma® 320. 



Validating a numerical simulation of the ConsiGma® semi-continuous tablet coating process 

149 

 

Figure 83: LoD of the tablets before and after the coating process. 

F-5.4. Heat transfer 

Figure 84 shows the outlet air state under all six conditions investigated. On the left- and right-hand 

sides, the results for ConsiGma® 160 and ConsiGma® 320 are shown, respectively, going from wet to 

dry conditions. The initial outlet temperatures in the experiments are higher than in the simulated 

cases. The reason is that the surrounding equipment is heated over time (also in between the coating 

experiments). The air cools due to the tablets and the coating spray while being heated due to the 

stored heat of the equipment. In the simulation, the energy input from the equipment and the heat 

loss to the surrounding air is neglected since only the drum inside the coater housing was considered. 

As such, the simulated air temperature increases while the experimental one decreases. Under wet 

conditions, the simulation underpredicts the outlet temperature. It seems that the simulations 

underestimate the energy input from the equipment and overestimate the evaporation rate. In the 

moderate and dry cases in ConsiGma® 160, the outlet air temperature is overpredicted in the 

simulation, which may suggest that the heat loss to the surrounding air in the smaller drum is higher 

due to longer residence times in the coater housing. In terms of the outlet air temperature, in the 
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moderate and dry cases in ConsiGma® 320 the experimental and simulated results match well. The 

residence time of the drying air is lower due to an increased volume airflow.  

 

Figure 84: Comparison of the outlet air temperature between experiment and simulation for ConsGima 160 with a drum load 
of 3kg and a) drying air flow rate 180m³/h, air temperature 60°C, spray rate of 75g/min; b) drying air flow rate 180m³/h, air 

temperature 80°C, spray rate of 60g/min; and c) drying air flow rate 210³/h, air temperature 90°C, spray rate of 45g/min, 
and ConsGima 320 with a drum load of 6 kg and d) drying air flow rate 300m³/h, air temperature 60°C, spray rate 150g/min; 

e) drying air flow rate 360m³/h, air temperature 80°C, spray rate 120g/min; and f) drying air flow rate 420³/h air 
temperature 90°C, spray rate 90g/min. 

Figure 85 shows the steady-state outlet temperatures using Nthermo. The steady-state temperatures for 

Nthermo below 0.2 fit well, with the best match observed for ConsiGma® 320. The simulation 

underpredicts the outlet air temperature for Nthermo values over 0.2, possibly due to neglecting the heat 

stored in the equipment which seems to reheat the outlet drying air. The largest difference between 

the outlet air steady-state temperature and the simulated outlet air temperature is 5K.  
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Figure 85: Mean tablet temperature comparison in the simulation after reaching steady-state using the Thermal number. 

Figure 86 shows the evolution of the difference between the outlet air and tablet temperatures. After 

increasing during an initial peak for the first 10 seconds, the difference between the air and tablet 

temperature progresses towards a steady state. The initial peak indicates the time when the tablet bed 

is distributed, with most of the drying air bypassing it. After 5 seconds, the ring formation begins and 

the tablets are distributed along the drum wall. This enlarges the air-tablet interaction surface and 

increases the heat transfer to the tablets. After 12 seconds, the spray nozzle is activated and the tablet-

air temperature difference reaches a steady state after 60 seconds between 8°C and 10°C. Clearly, the 

initial peak is due to the initialized tablet temperature of 30°C, i.e., the difference increases with the 

increasing air temperature. The steady-state does not clearly indicate how the tablet-air temperature 

difference is influenced by the thermal process settings since the highest temperature corresponds to 

the medium settings, followed by the wet settings and the dry settings that have the lowest 

temperature difference.  
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Figure 86: Mean temperature difference between the simulation and experimental results. 

F-5.5. Conclusion 

The goal of this work was to assess the validity of a CFD-DEM simulation model of the ConsiGma® tablet 

coater. Six experiments were performed in two coater sizes at varying spray rates, drying airflow rates 

and inlet temperatures. These experiments were repeated in silico using coupled CFD-DEM simulations 

that exchange the momentum, heat and mass between the tablet and the air phase. To validate the 

tablet bed dynamics, the tablet acceleration during the various process stages was evaluated and 

compared to the experimental results. Furthermore, the coating quality in terms of CoV, mass transfer 

(evaporation of the coating liquid) and heat transfer (between the gas and the tablet phases) were 

compared to the experimental results in order to validate the entire coating process.  

Overall, the simulation and experimental results were in good agreement. During the ring formation 

stages, they match well with respect to the tablet acceleration. During the cascade stages, although 

the spatial- and time-averaged simulation values match well, the simulation overpredicts the 

acceleration during the free fall. In the simulation, the tablets adhered to the wall in this phase, while 

in the experimental run this phenomenon was not observed possibly due to the difference in the size 

and shape between the accelerometer and the tablets investigated (the accelerometer tends to 

segregate in the top or inner layer of the tablet bed and is more likely to detach during the free-fall 

period).  
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The coating quality was tracked in six experiments under constant conditions but with a variable coating 

mass gain target. In these experiments, the simulation was able to capture the evolution of CoV over 

time. In the simulation, since the spray drying and overwetting effects were not included, it was 

impossible to show or predict the coating defects.  

The mass transfer was tracked through an increase in the outlet air humidity. The simulations matched 

the increase in the outlet air humidity during the ramp-up period and at steady-state. Moreover, the 

simulations were able to keep track of the liquid on the tablets, which can help to explain an increase 

in the LoD and can be used in future work to predict overwetting of the tablets. Finally, the heat transfer 

was validated by comparing the outlet air temperatures. The experimental and simulated values 

matched well at steady-state. During the ramp-up (transient) period, the outlet air temperature in the 

simulation was cooler than it was in the experiments. This can be explained by the heat stored in the 

equipment, which was not integrated into the simulation. The simulation also showed the temperature 

difference between the tablets and the outlet air temperature, which was around 10K in all cases. Since 

the outlet air temperature and humidity match well, it is assumed that this value is also valid for the 

ConsiGma® tablet coater.  

The simulation model was able to replicate the movement and thermal behavior during the coating 

process inside the ConsiGma® tablet coater on various scales and in various process settings. This 

validates our simulation approach and confirms that the proposed model can be used to investigate 

the process space of ConsiGma® coating process. Furthermore, it can be applied to expand the design 

space of the ConsiGma® coater and reduce the total number of experiments during the development 

by excluding process settings that are predicted to fail.  

Even though the model captured the main features of the coating process inside the ConsiGma® tablet 

coater, it can be improved. Three important issues will be addressed in its future iterations. The first 

one is the spray drying and evaporation of the liquid before a droplet is deposited on the tablet. This 

model extension will offer a more accurate prediction of the liquid deposition efficiency and identify 

drier and wetter runs even more accurately. The second one is the liquid absorption deposited from 

the surface and the tablet drying by diffusion. The third one the model equipment to account for the 

influence of heat transfer from the equipment to the tablets and drying air. 

F-6. Bibliography 

[1] FDA, “Quality Considerations for Continuous Manufacturing Guidance for Industry Quality 
Considerations for Continuous Manufacturing Guidance for Industry(draft),” no. February, 



Validating a numerical simulation of the ConsiGma® semi-continuous tablet coating process 

154 

2019. 

[2] “FDA Perspective on Continuous Manufacturing,” Scharmista Chatterjee, 2012. 

[3] S. Sacher, P. Wahl, M. Weißensteiner, and M. Wolfgang, “Shedding light on coatings : Real-time 
monitoring of coating quality at industrial scale,” vol. 566, no. May, pp. 57–66, 2019. 

[4] J. Rehrl, A. Karttunen, N. Nicolaï, T. Hörmann, and M. Horn, “Control of three different 
continuous pharmaceutical manufacturing processes : Use of soft sensors,” vol. 543, no. 
February, pp. 60–72, 2018. 

[5] L. Zema, G. Loreti, A. Melocchi, A. Maroni, and A. Gazzaniga, “Injection Molding and its 
application to drug delivery.,” J. Control. Release, vol. 159, no. 3, pp. 324–31, May 2012. 

[6] R. Singh, M. Ierapetritou, and R. Ramachandran, “An engineering study on the enhanced control 
and operation of continuous manufacturing of pharmaceutical tablets via roller compaction.,” 
Int. J. Pharm., vol. 438, no. 1–2, pp. 307–26, Nov. 2012. 

[7] L. Saerens et al., “In-line solid state prediction during pharmaceutical hot-melt extrusion in a 12 
mm twin screw extruder using Raman spectroscopy.,” Eur. J. Pharm. Biopharm., Mar. 2014. 

[8] I. C. Kemp, L. Iler, M. Waldron, and N. Turnbull, “Modeling, experimental trials, and design space 
determination for the GEA ConsiGmaTM coater,” Dry. Technol., vol. 0, no. 0, pp. 1–11, 2018. 

[9] A. F. Silva, J. Vercruysse, C. Vervaet, J. P. Remon, T. De Beer, and M. C. Sarraguça, “In-Depth 
Evaluation of Data Collected During a Continuous Pharmaceutical Manufacturing Process : A 
Multivariate Statistical Process Monitoring Approach,” J. Pharm. Sci., vol. 108, pp. 439–450, 
2019. 

[10] O. Goldstein, “ConsiGma TM A platform for Continuouos Solid Dosage manufacturing enabling 
Quality by Design and Lean Manufacturing,” 2017. 

[11] E. Pharmacopoeia, “European Pharmacopoeia (PhEur) chapter 2.9.40 Uniformity of dosage 
units,” Eur. Pharmacop., vol. 8.8, pp. 3117–3120. 

[12] J. M. A. Mauritz, R. S. Morrisby, R. S. Hutton, C. H. Legge, and C. F. Kaminski, “Imaging 
pharmaceutical tablets with optical coherence tomography.,” J Pharm Sci, vol. 99, no. 1, pp. 
385–91, Jan. 2010. 

[13] P. Pepiot and O. Desjardins, “Numerical analysis of the dynamics of two- and three-dimensional 
fluidized bed reactors using an Euler–Lagrange approach,” Powder Technol., vol. 220, pp. 104–
121, Apr. 2012. 

[14] R. Dreu et al., “Evaluation of the tablets ’ surface flow velocities in pan coaters,” Eur. J. Pharm. 
Biopharm., vol. 106, pp. 97–106, 2016. 

[15] S. Just et al., “Optimization of Inter-Tablet Coating Uniformity for an Active Coating Process at 
the Lab and Pilot Scale,” Int. J. Pharm., vol. 30, no. 11, 2013. 

[16] J. Ban, R. Kumar, and S. Agarwal, “Scaling Inter-Tablet Coating Variability in a Horizontal Rotating 
Drum,” vol. 63, no. 9, pp. 3743–3755, 2017. 

[17] F. Cello, A. Di Renzo, and F. P. Di Maio, “A semi-empirical model for the drag force and fluid-
particle interaction in polydisperse suspensions,” Chem. Eng. Sci., 2010. 



Validating a numerical simulation of the ConsiGma® semi-continuous tablet coating process 

155 

[18] S. Tanabe, H. Nakagawa, T. Watanabe, H. Minami, M. Kano, and N. A. Urbanetz, “Setting the 
process parameters for the coating process in order to assure tablet appearance based on 
multivariate analysis of prior data,” Int. J. Pharm., vol. 511, no. 1, pp. 341–350, 2016. 

[19] P. Boehling et al., “Simulation of a tablet coating process at different scales using DEM,” Eur. J. 
Pharm. Sci., vol. 93, pp. 74–83, 2016. 

[20] D. Suzzi et al., “DEM simulation of continuous tablet coating: Effects of tablet shape and fill level 
on inter-tablet coating variability,” Chem. Eng. Sci., vol. 69, no. 1, pp. 107–121, 2012. 

[21] B. N. K. Thakral, “Continuous Tablet Coaters : Developments , Advantages and Limitations,” pp. 
70–73. 

[22] C. Cahyadi, P. Wan, S. Heng, and L. W. Chan, “Optimization of Process Parameters for a Quasi-
Continuous Tablet Coating System Using Design of Experiments,” vol. 12, no. 1, 2011. 

[23] R. Kumar and C. Wassgren, “Angular Circulation Speed of Tablets in a Vibratory Tablet Coating 
Pan,” vol. 14, no. 1, 2013. 

[24] B. Cha et al., “A Thermodynamic Balance Model for Liquid Film Drying Kinetics of a Tablet Film 
Coating and Drying Process,” AAPS PharmSciTech, pp. 1–13, 2019. 

[25] C. Pei, H. Lin, D. Markl, Y. Shen, J. A. Zeitler, and J. A. Elliott, “A quantitative comparison of in-
line coating thickness distributions obtained from a pharmaceutical tablet mixing process using 
discrete element method and terahertz pulsed imaging,” Chem. Eng. Sci., vol. 192, pp. 34–45, 
2018. 

[26] G. Toschkoff et al., “Modeling of an Active Tablet Coating Process,” J. Pharm. Sci., vol. 104, no. 
12, pp. 4082–4092, Dec. 2015. 

[27] P. Toson and J. G. Khinast, “Impulse-based dynamics for studying quasi-static granular flows: 
Application to hopper emptying of non-spherical particles,” Powder Technol., vol. 313, pp. 353–
360, 2017. 

[28] P. Boehling et al., “Analysis of large-scale tablet coating : Modeling , simulation and 
experiments,” Eur. J. Pharm. Sci., vol. 90, no. EuPAT 7 Special Issue, pp. 14–24, 2016. 

[29] R. Kumar, B. Freireich, and C. Wassgren, “DEM – compartment – population balance model for 
particle coating in a horizontal rotating drum,” Chem. Eng. Sci., vol. 125, pp. 144–157, 2015. 

[30] B. Freireich, R. Kumar, W. Ketterhagen, K. Su, C. Wassgren, and J. A. Zeitler, “Comparisons of 
intra-tablet coating variability using DEM simulations , asymptotic limit models , and 
experiments,” Chem. Eng. Sci., vol. 131, pp. 197–212, 2015. 

[31] L. Li et al., “Residence time distributions of different size particles in the spray zone of a Wurster 
fluid bed studied using DEM-CFD,” Powder Technol., vol. 280, pp. 124–134, 2015. 

[32] M. Girardi, S. Radl, and S. Sundaresan, “Simulating wet gas – solid fluidized beds using coarse-
grid CFD-DEM,” Chem. Eng. Sci., vol. 144, pp. 224–238, 2016. 

[33] C. Bu, D. Liu, X. Chen, C. Liang, Y. Duan, and L. Duan, “Modeling and Coupling Particle Scale Heat 
Transfer with DEM through Heat Transfer Mechanisms,” Numer. Heat Transf. Part A Appl., vol. 
64, no. 1, pp. 56–71, Jul. 2013. 

[34] A. S. Peter Böhling, Dalibor Jajcevic, Conrad Davies, Alan Carmody, Pankaj Doshi, Johannes G. 



Validating a numerical simulation of the ConsiGma® semi-continuous tablet coating process 

156 

Khinast, Mary T. am Ende, “Modeling an Industrial-Scale Fluidized Bed Wurster Coating Process 
Using CFD-DEM (2016 Annual Meeting).” 

[35] K. Takabatake, X. Sun, M. Sakai, D. Pavlidis, J. Xiang, and C. C. Pain, “Numerical study on a heat 
transfer model in a Lagrangian fluid dynamics simulation,” Int. J. Heat Mass Transf., vol. 103, pp. 
635–645, 2016. 

[36] C. A. Radeke, B. J. Glasser, and J. G. Khinast, “Large-scale powder mixer simulations using 
massively parallel GPU architectures,” Chem. Eng. Sci., vol. 65, no. 24, pp. 6435–6442, Dec. 2010. 

[37] P. Toson and J. G. Khinast, “Data in brief Particle-level residence time data in a twin-screw 
feeder,” Data Br., vol. 27, p. 104672, 2019. 

[38] P. Toson et al., “Detailed modeling and process design of an advanced continuous powder 
mixer,” Int. J. Pharm., vol. 552, no. 1–2, pp. 288–300, 2018. 

[39] P. A. Cundall and O. D. L. Strack, “A discrete numerical model for granular assemblies,” 
Géotechnique, vol. 29, no. 1, pp. 47–65, Jan. 1979. 

[40] D. Jajcevic, E. Siegmann, C. Radeke, and J. G. Khinast, “Large-scale CFD–DEM simulations of 
fluidized granular systems,” Chem. Eng. Sci., vol. 98, pp. 298–310, Jul. 2013. 

[41] H. Kureck, N. Govender, E. Siegmann, P. Boehling, C. Radeke, and J. G. Khinast, “Industrial scale 
simulations of tablet coating using GPU based DEM: A validation study,” Chem. Eng. Sci., 2019. 

[42] T. Forgber, P. Toson, S. Madlmeir, H. Kureck, J. G. Khinast, and D. Jajcevic, “Extended validation 
and verification of XPS / AVL-Fire TM , a computational CFD-DEM software platform,” Powder 
Technol., 2019. 

[43] G. Toschkoff et al., “Modeling of an Active Tablet Coating Process,” J. Pharm. Sci., vol. 104, no. 
12, pp. 4082–4092, Sep. 2015. 

[44] D. Gidaspow, R. Bezburuah, and Ding Jianmin, “Hydrodynamics of Circulating Fluidized Beds: 
Kinetic Theory Approach,” 7th Fluid. Conf., 1992. 

[45] Beetstra, R., van der Hoef, M.A., Kuipers, J.A.M., “Numerical study of segregation using a new 
drag force correlation for polydisperse systems derived from lattice-Boltzmann simulations,” 
Chem. Eng. Sci., vol. 62, no. 1–2, pp. 246–255, 2007. 

[46] B. Krueger, S. Wirtz, and V. Scherer, “Measurement of drag coefficients of non-spherical 
particles with a camera-based method,” Powder Technol., vol. 278, pp. 157–170, 2015. 

[47] A. Hölzer and M. Sommerfeld, “New simple correlation formula for the drag coefficient of non-
spherical particles,” Powder Technol., vol. 184, no. 3, pp. 361–365, Jun. 2008. 

[48] S. S. K. P and J. a M. Kuipers, “Direct numerical simulations of fluid drag forces of non-spherical 
particle,” no. December, pp. 1–6, 2015. 

[49] L. W. Rong, K. J. Dong, and A. B. Yu, “Lattice-Boltzmann simulation of fl uid fl ow through packed 
beds of spheres : Effect of particle size distribution,” vol. 116, pp. 508–523, 2014. 

[50] L. W. Rong, K. J. Dong, and A. B. Yu, “Lattice-Boltzmann simulation of fluid flow through packed 
beds of uniform spheres: Effect of porosity,” Chem. Eng. Sci., vol. 99, pp. 44–58, 2013. 

[51] W. I. J. Kariuki, B. Freireich, R. M. Smith, M. Rhodes, and K. P. Hapgood, “Distribution nucleation: 



Validating a numerical simulation of the ConsiGma® semi-continuous tablet coating process 

157 

Quantifying liquid distribution on the particle surface using the dimensionless particle coating 
number,” Chem. Eng. Sci., vol. 92, pp. 134–145, 2013. 

[52] D. J. Gunn, Transfer of Heat or Mass to Particles in Fixed and Fluidised Beds, vol. 21. 1978. 

[53] G. Toschkoff et al., “Spray Models for Discrete Element Simulations of Particle Coating 
Processes,” Chem. Eng. Sci., vol. 101, pp. 603–614, 2013. 

[54] P. Boehling et al., “Analysis of large-scale tablet coating : Modeling , simulation and 
experiments,” Eur. J. Pharm. Sci., vol. 90, pp. 14–24, 2016. 

[55] A. Kalbag and C. Wassgren, “Inter-tablet coating variability: Tablet residence time variability,” 
Chem. Eng. Sci., vol. 64, no. 11, pp. 2705–2717, 2009. 

[56] A. R. Silverman, J. Givand, B. Holstine, and M. Gentzler, “Novel Scaling of Rotary Drum Film 
Coating Developed from Commercialization of Pharmaceutical Tablets.” 

[57] D. Niblett et al., “Development and evaluation of a dimensionless mechanistic pan coating 
model for the prediction of coated tablet appearance,” Int. J. Pharm., vol. 528, no. 1–2, pp. 180–
201, 2017. 



Conclusion 

158 

G. Conclusion  

Coating processes in the pharmaceutical industry are ubiquitous and yet rarely investigated. Typically 

they form the last process step. As most attention is put onto the synthesis and purification part during 

the initial process development, all granular process steps are often more of an afterthought. They 

“just have to work” and only minimal effort is expended to create mechanistic understanding and 

optimize the process after finding a working process point. Investigating and optimizing processes 

through simulations is a promising way to reduce the amount of actually needed experiments. Thus 

even in the past neglected or only marginally investigated processes can be optimized through state of 

the art simulation tools.  

The goal of this work was to show the validity and possibilities to use detailed process simulation of 

coating processes to investigate and improve existing processes in the pharmaceutical industry. The 

first investigated process was a tablet-coating process. A tablet coating process is mainly governed by 

tablet bed behavior. The tablet bed has to move in a certain way to provide good axial and radial mixing 

as well as moderate forces to reduce tablet damage. Tablet coating processes are well suited for DEM 

simulations due to the size and weight of the tablets as the air drag on the tablets can be neglected. In 

the last two chapters, an advanced simulation algorithm was used which includes the fluid-particle 

interaction. A Wurster coater process was investigated taking momentum exchange between fluid and 

particle into account. Afterwards, the coupling algorithm has been extended to include heat and mass 

exchange between the granular and fluid phase as well. The application and validation example was a 

coupled simulation of a novel continuous tablet coater. 

In chapter B, a combined study investigated experimentally and in silico the influence of the drum load, 

scale and rotation rate on the tablet bed surface velocity. First, the validity of the velocity 

measurements was demonstrated. For the DEM simulation, the influence of the material parameters 

on the tablet bed surface velocity was shown. The coefficient of friction and restitution do not influence 

the surface velocity. However, increasing the spring stiffness and time step size proved to influence the 

tablet surface velocity. After the tablet material parameters were calibrated to one process point the 

validity over the whole experimentally investigated process range and coater scales were shown. 

Overall the simulation and experimentally investigated results agreed well. At last, the influence of the 

material properties on the expected process outcome and tablet behavior was illustrated by comparing 

the starting range for the tablet stiffness of 2500N/m to the resulting tablet stiffness of 25000N/m. It 

was shown that the cycle time decreased with increasing spring stiffness but the predicted coating 
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quality decreases with increasing spring stiffness. Thus proving that the choice of the right material 

interaction parameters in DEM simulation is one of the utmost important impacts on the predicted 

process outcome. But false material properties still allow to compare different process settings and 

typically show the same trend as the correct properties. Predicted values will still be off up to a degree 

though.  

After the importance of the material properties was shown DEM simulations were used to scale from 

the laboratory scale, which was extensively analyzed in previous work by Toschkoff et al. (Toschkoff et 

al., 2015) to the pilot and industrial scale (chapter C). Two scaling rules to scale the tablet bed dynamics 

were chosen and tested in silico. Either, the circumferential velocity or Froude number were kept 

constant. The drum load was scaled in both cases by the drum volume. We neglected thermal effects, 

e.g. tablet drying and heating due to changing spray rate, drying air flow rate or temperature due to 

computational constraints at that time. The effect of the scale-up rules on the tablet bed dynamics, 

spray zone velocity, spray residence time and cycle time were shown. Keeping the circumferential 

velocity constant keeps the tablet surface velocity constant but increases the cycle time and spray 

residence time which can have unforeseen consequences for product quality while keeping the Froude 

number constant increases the surface velocity, decreases the cycle time and keeps the spray residence 

time constant which should result in a similar coating quality across all scales. Higher surface velocities 

result from higher forces acting on the tablets in larger scales with the same Froude number. Overall 

scaling the tablet bed dynamics by keeping the Froude number constant results in shorter process times 

as the coefficient of inter tablet coating variation decreases faster and thus allows for faster process 

cycles.  

Chapter D analyses an industrial scale tablet coating process in a multivariant study. In the simulations 

the drum load, rotation rate, spray rate, and the number of nozzles were varied and analyzed for the 

coating quality, cycle time, spray residence time and spray zone velocity. Coating quality for the base 

case simulation was compared to values measured experimentally. Experimental and simulated results 

agree well on the resulting coating quality although only 90s of the coating process were simulated 

while the real coating experiments took up to 5h. But it could be shown that even in the industrial scale 

the coating process reaches a steady state in which the CoV decreases with time to the power of -0.5. 

The simulation overall agreed with this value. Some simulation predicted faster coating processes with 

a calculated decrease of up to t-0.6. It could be shown that increasing the spray zone width over the axial 

coater dimensions decreases the CoV. A possible explanation is that due to the increased coating zone 

width the influence of the axial mixing of the tablet bed is reduced. Thus, the internal radial mixing of 
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the tablet bed influences the process outcome which is independent of the number of nozzles. The 

final output of this work was a 4-dimensional process plot that visualizes the coating quality for all 4 

investigated process input parameters. Additionally, we demonstrated that the simulation can help to 

investigate the tablet coating process at the industrial scale thus simplifying the process development 

process as the number of experiments can be reduced. 

The simulation of an industrial scale Wurster coater, the Glatt 15-30 was performed using the CFD-DEM 

simulation tool (chapter E). The primary goal of our work was to provide insights into the performance 

of an industrial-sized Wurster coater as a function of different processing conditions. For the analysis, 

the residence time within the Wurster tube (spray zone), the cycle time, and time-averaged radial 

velocity profiles were evaluated. The results of this computational investigation indicate that the 

particle flow behavior is affected mostly by the fluidization air flow rate and the Wurster gap height. 

We also established that the particle flow changes with the changing particle size and that, surprisingly, 

larger beads spend less time in the Wurster tube. A correlation between the particle size and cycle time 

was established, with a difference of around 4 % between the smallest and largest particles in one PSD. 

When the various coating stages were compared, the difference between the smallest particle size 

(530 µm) and the largest particle size (1000 µm) was 0.54 s (11 %). Overall, the Wurster coater process 

is robust in terms of residence time in the Wurster tube and cycle time. Since the change in the spray 

zone residence time was insignificant regardless of the process settings, the process design should 

focus on reducing the particle cycle time, leading to a faster, intensified process without affecting the 

product quality.  

In chapter F, the validity of a four-way coupling algorithm was shown on a novel continuous tablet 

coater. Experiments were performed in the coater to show the influence of the process parameters on 

the process output, including the drying air flow rate, spray rate and drying air temperature. It could 

be shown that the forces during the coating process and the decrease of the coating quality over time 

are in good agreement between the experiment and simulation results. Also, the novel heat and mass 

transfer in the experiment are in good agreement. Although the effect of the thermal capacity of the 

equipment on the outlet temperature was not integrated into the simulation the steady-state values 

were in good agreement.   

Over the five performed studies the availability and accuracy of the large scale simulation were shown. 

Simulation proved to be able to realistically replicate and predict the behavior of granular material at 

every scale and thus can help to establish new processes or investigating the process space of existing 
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processes by eliminating the need for extensive experimental studies or enhancing the understanding 

of the process parameters influence. 
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H. Outlook 

The accuracy and applicability of state of the art large scale process simulations have been 

demonstrated in this work. Nevertheless, it is important to further improve upon the accuracy and 

details simulation are able to recreate. As mentioned above it is possible to simulate thermal effects 

such as drying and heating, but they still need to be worked and improved upon. Incorporating drying 

and heating into large scale simulation and still be able to deliver fast results is no easy feat. To further 

increase the detail and accuracy of the simulations also effects like second stage drying, heat transfer 

between the geometry, tablets, and fluid have to be incorporated.  

The goal of future projects should be to increase the accuracy and details of a coating process 

simulation. First, a simplified approach to calibrate the material properties in the simulations should be 

established. As could be shown, the material interaction properties influence the process results. 

Finding the right pair of material interaction materials is no easy task even for the simple contact laws 

used in this work. Even though tablet-tablet interaction can neglect effects that are present in other 

granular material e.g. cohesion, tribocharging, it is still challenging to find good experiments that can 

be on the one hand recreated in the simulation, on the other hand, give predictions about the real 

device – tablet behavior.  

Intra tablet coating variability should be included in coating simulations in the future. It is already 

possible to track which side of the tablet the coating is applied. In future iterations, the tablet surface 

will be resolved in greater detail to predict the real intra-tablet coating variability. This is interesting 

especially for processes with a higher risk of unequal coating distribution on the tablet. Additionally, 

this system can be expanded to allow the three-dimensional resolution of the tablets to show the liquid 

uptake and heat transfer inside the outer and inner layers of the tablet.  

Next tablet – fluid interaction coupling should be realized. This is important even though the fluid only 

has a limited effect on the tablet movement. There are only a few established algorithms to calculate 

the fluid forces acting on non-spherical particles such as tablets. Finding the right drag force models to 

support low and high void fraction for non-spherical particles is no easy task. A more general and more 

accurate model for the particle-fluid interaction of non-spherical particles would simplify the simulation 

process. A possible route would be to increase the resolution of the fluid domain when calculating drag, 

lift, and torque on the tablets. By incorporating polyhedral shapes in the simulation for the tablet-fluid 

interaction it should be possible to calculate the precise void fraction in each CFD cell and the fluid 

forces acting on the tablets would be more precise. Obviously, going this route would increase the 
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computational demand, but with increasing computational capacity should be a viable strategy when 

the computational time is kept constant, compared to the current state.  

After the fluid-particle interaction is improved one should take a further look into the heat and mass 

transfer model. As the heat and mass transfer both benefit from improved tablet-fluid interaction 

calculation through a more precise resolution of the surrounding fluid. Most used models were 

developed a few decades ago and use dimensionless numbers. Nowadays detailed simulation should 

allow increasing the accuracy of the dimensionless models depending on the use case. Allowing to track 

the intra-tablet coating variability allows precise calculation of the wet surface area for evaporation. 

Introducing initial values for the LoD into the simulations and correctly predicting the drying curve of 

second and third stage drying allow even preciser predictions of the coating process. For the heat 

transfer model, a resolved tablet model that allows following the transient intra-tablet temperature at 

varying tablet depths would be practical for increasing process understanding. Such a model could be 

expanded to model the heat transfer between the geometry and the tablet more precisely.  

Finally, a strategy should be developed that leads to simulation as an intrinsic part of the process 

development, especially for coating processes. The simulation should help developing new process 

control strategies that allow for more efficient processes and reduce waste due to error-prone 

processes. This can be realized by gaining insights from the simulation that leads to a better process 

understanding and thus increased process control. Incorporating simulation results in soft sensors and 

thus combining new PAT tools with simulation has the potential to extend the available operating 

space. In the midterm future, not only simplified models will be used to run digital twins in parallel to 

the actual process but process simulations will be fed with inline measured process data. This approach 

allows predicting the process outcome in real-time allowing for on the fly process optimization that will 

help to minimize rejected batches.   
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