
Martin Hinteregger, BSc

Evaluating a 2.4GHz Free-Space Data Link
and associated Multirate Digital Signal

Processing using Software-Defined Radio

MASTER’S THESIS

to achieve the university degree of

Master of Science

Master’s degree programme: Information and Computer Engineering

submitted to

Graz University of Technology

Supervisor

Ass.Prof. Dipl.-Ing.Dr.techn.Michael Gadringer

Institute of Microwave and Photonic Engineering

Leica Geosystems AG

Graz, February 2020

This master’s thesis was supported by
Leica Geosystems AG

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other than

the declared sources/resources, and that I have explicitly indicated all material which

has been quoted either literally or by content from the sources used. The text document

uploaded to TUGRAZonline is identical to the present master’s thesis dissertation.

Date Signature

Zusammenfassung

Wir leben in einer Zeit der Vernetzung, immer mehr elektronische Geräte kommunizieren

miteinander. Dieser Kontakt kann nicht immer über Kabel gebundene Systeme realisiert

werden. Eine Drahtlose Kommunikation bietet sich sowohl über kurze, als auch über weite

Distanzen als populäre Alternative an. Der Entwicklungsaufwand mag höher sein, jedoch

sprechen sich Anwendbarkeit und Kostenaufwand oft für eine Freiraum-Übertragung aus.

Ein großer Nachteil einer Kabel gebundenen Kommunikation ist die geringe Flexibilität.

Kaum ein drahtloses Konzept kontert dieses Problem wie konfigurierbare Wireless Systeme,

so genannte Software-Defined Radio. Die Flexibilität wird durch eine Zusammenführung

von digitaler Signalverarbeitung, meist realisiert durch Field Programmable Gate Arrays,

und analoger Schaltungstechnik erreicht. Der Anteil an analogen Komponenten ist dabei so

gering wie möglich, meist nur mehr Verstärkung und Filterung im Basisband und mischen

mit der Trägerfrequenz.

Konfigurierbare Wireless Systeme sind in den letzten Jahren vermehrt im Einsatz, sowohl

in der Industrie, als auch kostengünstig im Amateurfunkbereich. Für letztere Anwendungen

kommen vor allem lizenzfreie Frequenzbänder ins Spiel, und die Werkzeuge für das schnelle

entwickeln einer digitalen Signalverarbeitung bei dieser Anwendung sind oft frei für jeden

verfügbar. Für eine industrielle Anwendung wird die Plattform jedoch selten von einem

PC, sondern eher von einem eingebettetem System aus gesteuert. Weiters muss ein großer

Entwicklungsaufwand in die konfigurierbare Digitaltechnik investiert werden.

Deshalb wird in dieser Masterarbeit das Augenmerk auf digitale Multiraten-Signalverarbei-

tung gelegt. Ein großes Vorwissen in die notwendige, und vor allem optimale, digitale

Signalverarbeitung spart Entwicklungszeit und -kosten. Um dieses Wissen zu untersuchen

werden unterschiedliche Werkzeuge genutzt. Die Auswertung erfolgt zum einen mithilfe

von Software, sowie Messtechnisch mit geeigneten Instrumenten.

Nach einer theoretischen Einführung in ausgewählte Themen befasst sich diese Arbeit

mit der Konfiguration des Systems sowie einem Auswahlverfahren für mögliche SDR

Plattformen. Ein Konsolen-basiertes Nutzerprogramm zum kennenlernen und einarbeiten

war der erste Schritt im Entwicklungszyklus. Die folgenden Kapitel behandeln GNU Radio

(ein Entwicklungstool für digitale Signalverarbeitung das frei zugänglich ist), sowie die

zusätzlich programmierten Funktionen und die entwickelten Flussdiagramme. In weiterer

Folge wird zur Evaluierung von Symbolen im Zeit- und Freuqeunzbereich ein selbst erstelltes

MATLAB Analyseprogramm vorgestellt. Schlussendlich werden die Flussdiagramme analy-

siert und eine Zusammenfassung der Arbeit präsentiert.

Diese Masterarbeit wurde am Institut für Hochfrequenztechnik der Technischen

Universität Graz geschrieben und in Kooperation mit der Firma Leica Geosystems

AG in Heerbrugg, Schweiz, entwickelt. Die Firma Leica Geosystems AG fungierte im

Zuge dieses Projekts sowohl als Entwicklungsplatz als auch als Sponsor der notwendigen

Hardware. Benutzte Software Pakete sind entweder unter GNU General Public License

lizenziert oder wurden selbst entwickelt.

Abstract

Nowadays a high number of connected electronic devices has been entering our every

day life. These contacts can’t always be realized via a wired connection. Wireless

communication is a popular alternative for both short and long distances. The development

cost might be higher, but applicability and expense often favor a free-space communication.

A big disadvantage of a wired communication is the low flexibility. One free space concept

that counters this problem are re-configurable wireless systems, so-called Software-Defined

Radio. The flexibility is achieved by combining digital signal processing, mostly realized by

Field Programmable Gate Arrays, and analog circuitry. The amount of analog components

is often as low as possible, only consisting of amplification and filtering in baseband and

mixing with the carrier frequency.

Re-configurable wireless systems are well-engineered and get deployed with rising popularity

in industry and also cost-efficient in ham radio implementations. For these applications,

most systems operate in license free frequency bands and can be implemented using open

source tool kits for fast development of digital processing. However, for industrial use, a

SDR platform often cannot be operated by a host PC, but rather by an embedded device.

Also, a big part of the development process is getting the re-configurable digital circuitry

right for the preferred application.

Therefore, in this master’s thesis, the main focus is on multirate digital signal processing.

A strong background knowledge about the necessary and optimal digital signal processing

chain saves development time and cost. In order to get an understanding about this

mechanism, the evaluation of the different processing steps will be conducted with software

tools and with appropriate measurement instruments.

After an initial theoretical background, this thesis will discuss the setup of the system in use

as well as a selection procedure of possible SDR platforms. A console based user program to

get acquainted with the design environment was the first step of the development process.

The following chapters will deal with GNU Radio, an open source tool kit for digital signal

processing, as well as the additionally independently programmed processing steps and the

developed flow graphs. To evaluate symbol data, a MATLAB tool was created illustrating

data in both time and frequency domain. Finally, the evaluation of the different flow

graphs will be documented with an appending conclusion of the different development

and processing steps.

This master’s thesis was created at the Institute of Microwave and Photonic

Engineering at Graz University of Technology in cooperation with Leica Geo-

systems AG in Heerbrugg, Switzerland. Most of the development process was conducted

at Leica Geosystems AG, which also sponsored the necessary hardware. Used software

packages in this thesis are either licensed under GNU General Public License or were

programmed by the author.

Acknowledgement

First, I would like to thank my supervisor Ass.Prof. Dipl.-Ing. Dr.techn. Michael Gadringer

at Graz University of Technology for his competent guidance during my progress through

this master’s thesis, and for always keeping me on track.

I extend my gratitude to the company Leica Geosystems AG, represented by R&D Director

Electronics Marco Landert, for giving me the opportunity to research this topic backed

by an industry partner. A special thank you to my advisor in his team, Senior Engineer

Electronics Michael Klammer, who helped me through the stages of this thesis with his

many years of experience.

Further thanks to the Institute of Microwave and Photonic Engineering, a professional

workplace for many years with competent colleagues and friends. Particular gratitude

to my employer Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Erich Leitgeb and my tutor at the

institute Dipl.-Ing. BSc Ing. Michael Vorderderfler.

For helping to guide me through the synchronization challenges, a special thanks to

Assoc.Prof. Dipl.-Ing. Dr.techn. Wilfried Gappmair at the Institute of Communication Net-

works and Satellite Communications.

Lastly, a big thank you deserve my parents Kurt and Renate for supporting me through

my years of study, and my sisters Carolin and Verena, who always had an open ear to my

challenges.

Graz, February 2020 Martin Hinteregger

i

Table of Contents

1 Introduction 1

1.1 Structure . 2

2 Theory 5

2.1 Digital Communication System . 5

2.1.1 Transmitting . 6

2.1.2 Wave Emitter . 7

2.1.3 Transmission Channel . 7

2.1.4 Receiving . 8

2.2 Information Formats . 8

2.2.1 Binary Representation . 8

2.2.2 Waveforms . 9

2.2.3 Receiver Side . 12

2.3 Filters and Sampling . 12

2.3.1 Linear System Transmission . 13

2.3.2 Ideal Filters . 13

2.3.3 Nyquist Filter . 15

2.3.4 Digital Filter . 19

2.3.5 Sample-Rate Conversion . 20

2.4 Diversity Techniques . 24

2.4.1 General . 24

2.4.2 Time and Frequency Diversity . 25

2.4.3 Antenna Diversity . 25

2.5 Channel . 27

2.5.1 Noise . 27

2.5.2 Link Budget . 28

2.5.3 Rayleigh and Ricean Fading . 30

2.5.4 MIMO Channel . 31

2.6 Synchronization . 32

2.6.1 Timing Synchronization . 32

2.6.2 Carrier Synchronization . 37

2.6.3 Frame Synchronization . 38

2.6.4 Equalization . 38

ii

2.7 Software-Defined Radio . 40

2.7.1 Architecture . 42

2.7.2 Automatic Gain Control . 43

2.7.3 Software Environment . 43

3 System Overview 45

3.1 Parameters and Limitations . 45

3.1.1 General Concept and Parameters . 45

3.1.2 Norm Limitations . 46

3.2 Hardware Design Options . 47

3.2.1 USRP B210 / USRP-2901 . 47

3.2.2 LimeSDR . 49

3.2.3 XTRX . 50

3.2.4 Other Options . 51

3.3 Hardware Design Decision . 52

3.4 LMS7002M Structure . 53

3.4.1 Gain Control . 54

3.4.2 Low-Pass Filters . 54

3.4.3 Synthesizer . 55

3.4.4 Interface Lengths . 55

3.4.5 Transceiver Signal Processing . 55

3.5 Antennas . 56

3.6 Host Setup . 59

3.6.1 Hardware . 59

3.6.2 Software . 59

4 Wireless Analysis Tool 61

4.1 Goals . 61

4.2 Implementation . 62

4.3 Use Cases . 67

4.3.1 Startup . 68

4.3.2 Device Configuration . 70

4.3.3 Stream . 73

4.3.4 AGC Control . 75

4.3.5 Stream Pause Controls . 75

4.4 Conclusion . 77

5 GNU Radio Framework 79

5.1 About GNU Radio . 79

5.2 GNU Radio Companion . 80

5.3 Additional Custom Blocks . 83

iii

6 GNU Radio Flow Graphs 87

6.1 Full System Concept . 87

6.2 Data Preparation and Modulation . 88

6.2.1 Variables . 89

6.2.2 Data Processing . 91

6.3 Transmit and Receive . 93

6.3.1 Variables . 94

6.3.2 Data Processing . 94

6.4 Data Synchronization, Demodulation and Correlation 96

6.4.1 Variables . 97

6.4.2 Data Processing . 98

7 Constellation Evaluation GUI 101

7.1 Implementation . 101

8 Design Evaluation 105

8.1 Data Format . 105

8.1.1 Test Cases . 105

8.1.2 Frame Structure . 107

8.2 Theoretical Prove of Concept . 109

8.2.1 Concept Prove with l Test File . 111

8.3 Using one Device as TX and RX . 112

8.3.1 TX/RX Flow Graph . 112

8.3.2 Spectrum and Constellation . 113

8.3.3 Data Results . 116

8.3.4 Other Test Cases . 118

8.3.5 Comparison using CEG . 119

8.3.6 Comparison using Reference Vector Signal Generator 120

8.4 Two Devices with Wired Connection . 123

8.5 Actual Free-Space Transmission . 126

8.6 Synchronization Chain . 129

8.6.1 Evaluation using CEG . 129

8.6.2 Varying Symbol Timing Recovery Algorithm 131

9 Conclusion and Outlook 135

9.1 Outlook . 135

Appendix A Source Code 137

Appendix B Host Packages 138

B.1 Development Environment . 139

iv

Appendix C Project Setup 140

C.1 LimeSuite Driver . 140

C.1.1 Driver API . 142

C.2 Development Environment Setup . 142

C.2.1 Manual Setup . 142

C.2.2 Import Setup . 145

Appendix D Adding Custom Blocks 146

D.1 Modtool . 146

D.2 Setup Development Environment . 147

D.3 Modify Block . 148

D.3.1 XML File . 148

D.3.2 var sources i.h . 149

D.3.3 var sources i impl.h . 150

D.3.4 var sources i impl.cc . 150

D.4 Build Modules . 151

v

List of Figures

1.1 During a typical development process, the system set-up might be similar

to structure (a). Once the system was configured successfully, the host gets

replaced by embedded hardware (b) in the final product. 2

2.1 Block diagram of a typical digital communication system. 6

2.2 The Poynting radiation vector ~S as the vector product of ~E and ~H. 7

2.3 Baseband translation to higher band-pass using mixer. 10

2.4 Baseband translation to higher band-pass in frequency domain. (a) represents

a baseband waveform (b) represents a band-pass modulated signal around

a carrier frequency. 11

2.5 Different constellation diagrams. (a) BPSK (b) QPSK (c) 16QAM. 12

2.6 Linear System with its parameters. 13

2.7 Transfer functions of ideal LPF and BPF filters. 14

2.8 Impulse Response of an ideal LPF. 15

2.9 Components of an equivalent channel chain. 16

2.10 Frequency transfer function of a raised-cosine filter. 17

2.11 Impulse response function of a raised-cosine filter. 18

2.12 Decimation process block chain. 20

2.13 Discrete decimation example. Top is the original signal, bottom is the

decimated signal with decimation factor D=4. 21

2.14 Interpolation process block chain. 21

2.15 Interpolation of the previously decimated signal. Top is the upsampled

signal with I=4, bottom is the low-pass filtered. 22

2.16 Upsampling and downsampling in frequency space, both by a factor of 2. (a)

upsampling operation compresses the spectrum (b) downsampling operation

stretches the spectrum, with visible aliasing. 23

2.17 Irrational factor SRC. 23

2.18 MIMO channel and stream principle. 26

2.19 Normalized Gaussian distribution function. 28

2.20 Example Ricean pdf distributions with different A value (v =⇒ A) with

σ2 =1. 31

2.21 Receiver synchronization block chain. 32

2.22 Basic components of a PLL. 33

2.23 Early-late symbol recovery block diagram. 34

vi

2.24 Early-late symbol recovery sampling. (a) is perfectly timed (b) sampling

timing to early (c) sampling timing to late. 34

2.25 Gardner symbol recovery sampling. (a) is perfectly timed (b) sampling

timing to early (c) sampling timing to late. 35

2.26 M&M symbol recovery block diagram. 36

2.27 M&M symbol recovery sampling. (a) is perfectly timed (b) sampling timing

to fast (c) sampling timing to slow. 36

2.28 Costas loop block diagram. 38

2.29 Block diagram of a basic adaptive equalizer. 40

2.30 Ideal receiver principle of a software-defined radio. 41

2.31 Dual stage superheterodyne signal chains. Top is receive part, bottom shows

transmit path. 42

2.32 Zero intermediate frequency architecture splitting incoming signals into I

and Q parts. 43

3.1 Common development concept for this thesis. 46

3.2 USRP-2901 product picture from NI homepage. 48

3.3 Block diagram of LMS7002M with dual transceiver topology. 49

3.4 LimeSDR components block diagram. 50

3.5 XTRX block diagram showing all hardware components. 51

3.6 Ordered LimeSDR in aluminum kit. 53

3.7 LMS7002M interface, digital and analog concept. 54

3.8 LMS7002M RX digital path. 55

3.9 LMS7002M TX digital path. 56

3.10 Horizontal radiation pattern of a dipole compared to an isotropic emitter. . 56

3.11 Anechoic chamber with connected AUT. 57

3.12 Polar radiation graphs for LimeSDRs antennas, both for vertical and horizontal

polarization. 58

3.13 Reflection coefficient over a defined frequency range. 59

4.1 Simplified block diagram of WAT. 63

4.2 TX constellation data for QPSK modulation. Symbols are visible in the

edge areas. 74

4.3 RX constellation data for QPSK modulation with clearly visible synchronization

problems. 75

5.1 GNU Radio Companion GUI with empty flow graph. 81

5.2 The different data types in GRC, as illustrated in the help section. 81

5.3 A very basic flow graph which modulates a random source with additive

noise. 82

5.4 Graphical result of the noisy constellation points. 83

5.5 Additionally programmed GRC blocks. 84

6.1 Full system concept of GNU Radio flow graphs. 88

vii

6.2 Concept for data preparation and modulation. 89

6.3 Frame structure concept. 89

6.4 Variables needed for data preparation and modulation flow graph. 89

6.5 Data Processing for data preparation and modulation flow graph. 91

6.6 Results of the data processing in frequency, complex and time domain. . . . 93

6.7 Concept for transmit and receive. 94

6.8 Variables needed for transmit and receive flow graph. 94

6.9 Data Processing for transmit and receive flow graph 95

6.10 Concept for data synchronization, demodulation and correlation. 97

6.11 Variables needed for data synchronization, demodulation and correlation

flow graph. 97

6.12 Data Processing for data synchronization, demodulation and correlation

flow graph. 98

6.13 Concept diagram of symbol sync block. 99

7.1 CEG right after startup. 101

7.2 Constellation, time and frequency data from the modulated TX data. . . . 102

8.1 Example flow graph to create random binary sequence test cases. 106

8.2 Flow graph to illustrate frame structure. 108

8.3 Representation of complete frames as decimal values. After the header data,

the packet contains a reoccurring ”cafe” sequence. 108

8.4 Simulation setup for prove of concept. 110

8.5 Concept prove of data processing only flow graphs: Synchronized data. . . . 110

8.6 Simulation setup for using only one device. 112

8.7 Results of the wired connection between TX and RX path. 113

8.8 Measurement setup using an FSQ Spectrum Analyzer. 114

8.9 Transmitted spectrum from LimeSDR using upsampled QPSK. 114

8.10 QPSK constellation data with the additional samples. 115

8.11 QPSK constellation data without the additional samples. 116

8.12 Results of the received samples when using only one LimeSDR as TX and

RX simultaneously. 117

8.13 Transmitted spectrum from LimeSDR using QPSK and random data. . . . 119

8.14 Using CEG to illustrate the received data. 120

8.15 Measurement setup using a SMBV Vector Signal Generator, an FSQ Signal

Analyzer and an oscilloscope. 120

8.16 SMBV configuration for PRBS generation. 121

8.17 PRBS signal from SMBV measured with FSQ. 122

8.18 PRBS constellation from SMBV measured with FSQ. 123

8.19 Example data from oscilloscope measurement. 124

8.20 System setup with two devices connected via cable. 124

8.21 Results of the flow graph when transmitting data between two LimeSDR

via a wired connection. 125

viii

8.22 Results of the synchronization when transmitting data between two LimeSDR

via a wired connection. 126

8.23 System setup with two devices connected via a free-space transmission. . . 127

8.24 Results of the flow graph when transmitting data between two LimeSDR

via a free-space connection. 128

8.25 Results of the synchronization when transmitting data between two LimeSDR

via a free-space connection. 129

8.26 Using CEG to visualize the received symbol data. 130

8.27 Using CEG to visualize the synchronization chain. 131

8.28 Upsampled and filtered QPSK frequency spectrum when using a roll-off

factor of 1. 133

C.1 LimeQuickTest and LimeUtil use cases in console. 141

C.2 LimeSuite driver GUI, right after start-up. 142

C.3 Which options to choose when setting up the project in eclipse. 143

C.4 Project options, register card Paths and Symbols, included build paths. . . 144

C.5 Which options to set when adding a symbol. 145

C.6 Libraries that need to be included into the build. 145

D.1 How to import the newly created module to the eclipse project. 148

ix

List of Tables

4.1 Possible console commands. 64

4.2 Possible commands during stream pause and how they are used. 67

8.1 Relative BER deviation between symbol timing algorithms, β=0.35. 132

8.2 Relative BER deviation between symbol timing algorithms, β=1.00. 133

x

List of Listings

4.1 Starting prompt of WAT. 68

4.2 Help and exit command. 68

4.3 Disconnect device that is connected on tool startup and connect it again.

Ensure connection using devices command. 69

4.4 Init command example. 70

4.5 LO command example. 70

4.6 LPBF and -1 commands example. 71

4.7 Antenna command example. 72

4.8 Save command example. 72

4.9 Calibration command example. 72

4.10 Stream command example. 73

4.11 Selecting continuous stream. 73

4.12 Stream pause menu, changing the constellation to QPSK. 75

4.13 Change the sampling rate to 2MHz and oversampling to 4. 76

4.14 Starting SPI mode, printout all SPI registers and search for a specific one. . 76

4.15 Read and write operations on single SPI register. 77

8.1 Usage of the xxd command to view cafe test case data. 106

8.2 Usage of the xxd command to view l test case data. 107

8.3 Showcase of the frame structure, the first frame and beginning of the second

one (address 48 in hexadecimal). 109

8.4 Resulting information sink when using data processing only flow graphs. . . 111

8.5 Resulting information sink when using data processing only flow graphs and

l test file. 111

8.6 Resulting information sink. First frame is synchronized perfectly, later ones

only partially. 117

D.1 Usage information to gr modtool and list of possible commands. 146

D.2 Create a new module with gr modtool. 147

D.3 Add a new C++ block to the module. 147

D.4 The final XML file structure. 149

D.5 The constructor of the variable source block. 150

D.6 The work function of the variable source block. 150

D.7 The callback function of the variable source block. 151

xi

List of Abbreviations

ADC Analog-to-Digital Converter

AFSL Atmospheric Free Space Link

AGC Automatic Gain Control

API Application Programming Interface

ARM Advanced RISC Machines

AUT Antenna Under Test

AWGN Additive White Gaussian Noise

BER Bit Error Rate

BPF Band-Pass Filter

BPSK Binary Phase-Shift Keying

CEG Constellation Evaluation GUI

CPU Central Processing Unit

CRC Cyclic Redundancy Check

CSI Channel State Information

DAC Digital-to-Analog Converter

DC Direct Current

DCR Direct-Conversion Receiver

DCS Digital Communication System

DD Decision-Directed

DSB Double-Sideband

DSP Digital Signal Processors

DSSS Direct-Sequence Spread Spectrum

DUT Device Under Test

EIRP Effective Isotropic Radiation Power

EM Electromagnetic

EN European EN Standard

ESA European Space Agency

EVM Error Vector Magnitude

FDD Frequency-Division Duplexing

FDM Frequency-Division Multiplex

FFT Fast Fourier Transform

FHSS Frequency-Hopping Spread Spectrum

FIFO First In, First Out

FIR Finite Infinite Response

xii

FPGA Field Programmable Gate Array

FPRF Field Programmable Radio Frequency

FSPL Free-Space Path Loss

GCC GNU Compiler Collection

GFIR General-Purpose FIR filter

GNU GNU General Public License

GPIO General-Purpose Input/Output

GPL see GNU

GPS Global Positioning System

GPU Graphics Processing Units

GRC GNU Radio Companion

GUI Graphical User Interface

HDD Hard Disk Drive

IC Integrated Circuit

IDE Integrated Development Environment

IF Intermediate Frequency

IID Independent and Identically Distributed

ISI Intersymbol Interference

ISM Industrial, Scientific and Medical Radio Bands

JTAG Joint Test Action Group

LED Light-Emitting Diode

LMS Least Mean Square

LO Local Oscillator

LOS Line-of-Sight

LPF Low-Pass Filter

LSB Least Significant Bit

MAP Maximum a Posteriori Probability

MCU Micro Controller Unit

MIMO Multiple-Input and Multiple-Output

ML Maximum-Likelihood

MLSE Maximum-Likelihood Sequence Estimation

MSB Most Significant Bit

NI National Instruments

OFDM Orthogonal Frequency-Division Multiplexing

OS Operating System

PAM Pulse-Amplitude Modulation

PDF Probability Density Function

PC Personal Computer

PCIe Peripheral Component Interconnect Express

PCM Pulse-Code Modulation

PLL Phase-Locked Loop

PPA Personal Package Archive

xiii

PPM Parts-Per Million

PRBS Pseudo-Random Binary Sequence

PSD Power Spectral Density

PSK Phase-Shift Keying

QA Quality Assurance

QAM Quadrature Amplitude Modulation

RAM Random-Access Memory

RC Raised-Cosine

RF Radio Frequency

RISC Reduced Instruction Set Computer

RMS Root Mean Square

RRC Root-Raised-Cosine

RSSI Received Signal Strength Indicator

RX Receive, also Receiver

SDR Software-Defined Radio

SI International System of Units

SIM Subscriber Identity Module

SISO Single-Input and Single-Output

SMA Subminiature version A

SNR Signal-to-Noise Ratio

SPI Serial Peripheral Interface

SRC Sample-Rate Conversion

SSD Solid-State Drive

SWIG Simplified Wrapper and Interface Generator

TDD Time-Division Duplexing

TDM Time-Division Multiplex

TED Timing Error Detector

TRX Transceiver

TSP Transceiver Signal Processing

TX Transmit, also Transmitter

UHD USRP Hardware Driver

USB Universal Serial Bus

USRP Universal Software Radio Peripheral

VCO Voltage-Controlled Oscillator

VHDL Very High Description Language

WAT Wireless Analysis Tool

XML Extensible Markup Language

ZIF Zero Intermediate Frequency

xiv

Chapter 1

Introduction

Wireless communication is a key component in a majority of everyday electronic products.

Initial inventions in the field of electrical telecommunication date back to the early eighteen-

hundreds. The beginning of the semiconductor age in 1950 revolutionized designs, suc-

ceeded in a boost of wireless technology for the past 30 years. This process lead to a shift

from wired to wireless and from pure analog to a mixture of analog and digital systems in

RF (Radio Frequency) communications.

By now the variety and options that wireless communications enable seem almost limitless,

especially considering the high amount of frequency ranges in the electromagnetic spectrum

and their individual applicability. From low to high frequency ranges, from infrared

over the visible spectrum: With enough work put into it, every desired form of wireless

communication is feasible. However, the process from the beginning of development to

the final product can mean a lot of effort, and a sufficient initial knowledge of both analog

and digital theory can conserve cost and save development time.

Recent trends also shifted from a fixed frequency communication to a more adjustable

approach. Software-Defined Radios, abbreviated as SDR, combine the flexibility of digital

signal processing with the power of analog front ends. This enables products with a

multitude of functionality and re-usability. The most recent example being the OPS-

SAT satellite deployed by the European Space Agency (ESA)[1] in cooperation with

Graz University of Technology. This satellite employs, among other components, a re-

configurable wireless hardware, enabling a variety of different experiments without the

need of extra satellites.

In this thesis, emphasis will reside on an optimum configuration of digital signal processing

using the 2.4GHz frequency band. Different technologies already operate at this frequency

range, which makes it crowded, yet also one of the most well researched bands there is.

Once a software-defined radios’ digital processing has been configured at this carrier, efforts

to switch to similar bands are low.

A typical development process first starts with configuration (a) illustrated in Figure 1.1.

1

1.1. STRUCTURE

The host is used to program a re-configurable digital signal processing hardware, mostly

realized in form of a FPGA (Field Programmable Gate Array). Once this system is fully

functional, final efforts need to be taken to replace the host with an embedded hardware

to uncouple the final product from a fixed processing platform and make it a standalone

mobile wireless communication system.

Host

Interface

Interface

controller

Digital signal

processing
Analog RF

Antenna(s)

Embedded

hardware

Digital signal

processing
Analog RF

Antenna(s)

(a)

(b)

Software-defined radio

Product

Figure 1.1: During a typical development process, the system set-up might be similar to
structure (a). Once the system was configured successfully, the host gets replaced by

embedded hardware (b) in the final product.

Knowledge on an optimum digital-signal processing chain, which this thesis will cover,

gives developers a good starting point. The employed digital signal processing in the final

product can either still be re-configurable or configured for specific uses, for example in

form of an ASIC (Application-Specific Integrated Circuit).

In order to enable a stable communication, different concepts of wireless techniques can

be used. A few important ones will be subjects in this thesis, including antenna diversity,

multirate digital signal processing techniques and synchronization algorithms.

1.1 Structure

This thesis is structured into 9 different chapters. After this introduction, 2. Theory

necessary for later discussion is presented. These topics include an introduction into digital

communication system design, filter theory including sampling rate conversions, diversity

techniques, channel models, synchronization algorithms and finally an introduction to

SDR. The different topics are supported by literature references, mainly originating from

books by the topic of wireless communications and SDR design.

2

1.1. STRUCTURE

Chapter 3. System Overview first discusses the parameters and limitations of the

system to be developed. As a preparation to this thesis a case study was conducted to

compare different possible hardware options. The results of this is presented in sections 3.2

and 3.3. As an analog front end serves a FPRF (Field Programmable Radio Frequency)

integrated circuit, the very basic concepts of the specific chip is documented in section 3.4.

The first step was getting to know the design environment, and in this course a console

based 4. Wireless Analysis Tool was developed. After declaring the goals of this tool,

section 4.2 shows how the tool was implemented. The following section will give a few use

cases of selected commands, finally giving a conclusion of the tool in section 4.4.

Main development tool for the digital signal processing block chain is introduced in

chapter 5. GNU Radio Framework, together with the graphical version of the environ-

ment. Section 5.3 gives an overview of newly created and modified blocks.

Chapter 6. GNU Radio Flow Graphs documents the structure of the digital signal

processing. It starts with the primary concept design of the whole system. However, to

ease computational load when processing huge amounts of data, the system was divided

into several parts. The structure of each one of these is documented in the following

sections.

In order to support later measurements, chapter 7. Constellation Evaluation GUI

describes a MATLAB tool created to import GNU Radio constellation data and process it.

This tool illustrates the constellation diagram, samples in time domain and the frequency

representation of the signal.

The evaluation of the system is documented in chapter 8. Design Evaluation. It first

describes how a frame is structured and what kind of binary test cases were used. Following

is a theoretical prove of concept and a step by step evaluation of the design. These steps

are supported by measurement equipment and by software. Additionally, this chapter also

evaluates different symbol timing recovery algorithms.

Finally, the last chapter 9. Conclusion and Outlook summarizes the work accomplished

in this thesis and gives a short outlook on additional topics and how this system could be

further improved.

3

Chapter 2

Theory

This chapter will cover the theoretical aspects necessary for later topics. The first part

is a basic introduction in digital system design. Following sections will move on to

special theories about filters, propagation diversity and an overview of different channel

models. The chapter will concluded with an overview of synchronization mechanisms and

an introduction to the topic of software-defined radio.

2.1 Digital Communication System

The block diagram of a typical DCS (Digital Communication System) is illustrated in

Figure 2.1[2], containing signal processing blocks and displaying the signal flow through the

system. Goal of a DCS is to transmit information between two devices. The information

can either be an analog signal or a finite numbered and discrete in time digital signal.

Top blocks show the connection from the information source to the wave emitter. Next is

the transmission channel, which is the physical medium that the propagating signal must

traverse to arrive at the receiving part of the system. This physical medium may be a

wire line or a free-space link, to name two possibilities. Illustrated at the bottom of the

Figure is the receiver part. Here the blocks are in a reversed order: from the receiving

component to the information sink.

Since some of these blocks are design specific and may not be relevant for this thesis,

reference to more detailed literature will be provided if necessary. Also keep in mind that

the order of the blocks shown in Figure 2.1 can vary for different kinds of systems.

This section will discuss the different processing blocks, the next section 2.2 will describe

the information formats passed from one block to another.

5

2.1. DIGITAL COMMUNICATION SYSTEM

Information

source
Format

Source

encode
Encrypt

Channel

encode
Multiplex

Pulse

modulate

Band-pass

modulate

Channel

h(t)

Information

sink
Format

Source

decode
Decrypt

Channel

decode
Demultiplex Detect

Demodulate

and sample

Message symbols

mi(t)

Channel symbols

ui(t)

Bit stream

Digital baseband

waveform

gi(t)

Digital band-pass

waveform

si(t)

Channel symbols
Digital baseband

waveform

z(t)

Digital band-pass

waveform

r(t)

Synchronization

From other

source

To other

sink

m̂
i
(t)

Message symbols
û
i
(t)

Figure 2.1: Block diagram of a typical digital communication system.

2.1.1 Transmitting

The information source, as stated above, can be any form of appropriate analog signal.

If the following blocks need a discrete signal, the analog signal could first pass through a

format block to sample and quantize the information into binary digits (bits).

The goal of source encoding is to reduce redundancy to allow more information per second

to traverse the system. Note that the previously decribed format block can be part of

the source encoding block. Encryption adds coding for privacy reasons[2]. The result is

redundant neutral information compared to the output of the source encoder.

A channel encoder aims to reduce the probability of error in the channel by adding

redundant information, for example error correction coding. This reduces the effect of

noise but in turn affects the speed of the system in a negative way. If additional signals

need to be concatenated with the current stream of information, a multiplexer can combine

these. Note that multiplexer blocks can be at different locations, even multiple, depending

on the system design.

Modulation is the last step in the transmit path and it consists of two parts: A pulse

modulator transforms the binary information representation to a baseband waveform.

Baseband is a signal with a bandwidth from DC to a finite frequency value. Band-

pass modulation is necessary whenever the transmission medium will not support the

propagation of pulse-like waveforms. This step requires a band-pass waveform, which

means that the baseband waveform gets frequency translated to a much higher frequency,

the carrier frequency. The carrier frequency must be higher than the bandwidth value of

the baseband waveform.

6

2.1. DIGITAL COMMUNICATION SYSTEM

2.1.2 Wave Emitter

Different transmission mediums require different transmission components. In case of a

free-space transmission, one or more antennas, radiating either linear or circular polarized

waves, can be used. Antennas follow the reciprocal theorem, meaning they can both

transmit (refereed to as TX) and receive (refereed to as RX) signals. A developer can

either use the same type of antennas as TX and RX, or a combination of different antennas.

If the system operates in the visible light spectrum (or fairly close to it), the TX side

usually sends its information with a LED (Light-Emitting Diode) or laser. Receiving the

signal is realized with a photo diode.

2.1.3 Transmission Channel

There are different types of transmission mediums. The most common is an ASFL

(Atmospheric Free Space Link), where the signal is propagating as an EM (Electromag-

netic) wave. As the name suggests, EM waves consist of an electric and a magnetic part

which are connected via the wave impedance Z0 and the Poynting radiation vector S.

~S = ~E × ~H (2.1)

Z0 =
√
µ0ε0 (2.2)

Assuming to traverse vacuum, both the permeability µr and the permittivity εr values

are equal 1. From a linear polarized antenna, the emitting magnetic wave is shifted by 90

degree in space to its electric counterpart as illustrated in Figure 2.2. Depending on the

used band-pass frequency and the distance between TX and RX, the electric and magnetic

part is either in phase (further distance, far field) or phase shifted by 90 degrees (smaller

distance, near field, inductive or capacitive coupling).

Figure 2.2: The Poynting radiation vector ~S as the vector product of ~E and ~H[3].

The channel adds noise to the transmitted signal. This topic will be further discussed in

section 2.5.

7

2.2. INFORMATION FORMATS

Using the visible spectrum, the channel can also be a free-space optical atmospheric link or

a fibre glass connection. Other possibilities include wireline channels, waveguide channels,

underwater acoustic channels and storage channels[4].

2.1.4 Receiving

On the RX side of the system, after the receiving wave emitter (e.g. antenna), the signaling

blocks are in reversed order. However, there can be additional blocks not necessary on the

transmitter side. Typical examples that are relevant for this thesis are synchronization

blocks. An in depth analysis of additional blocks on receiver side will be discussed in

sections 2.6 and 6.4.

2.2 Information Formats

After discussing the general design of a DCS it is now necessary to talk about nomenclature

and nature regarding the information formats being passed from one block to another in

Figure 2.1.

This thesis will restrain to talk about selected fundamentals of digital communications, for

example the sample theorem, aliasing, ISI (Intersymbol Interference) and SNR (Signal-

to-Noise Ratio). There are a lot of in-depth descriptions of fundamentals in literature,

and basic knowledge of these topics will be assumed[2][3][4][5].

2.2.1 Binary Representation

Bit Stream

Assuming the data is already quantified in binary digits (bits) by the format block. If

a continuous stream of bits is transmitted from one block to another, this is called a bit

stream.

Message Symbols

Single bits can be grouped together to get message symbols mi:

mi = {m1,m2, . . . ,mM} (2.3)

M = 2k (2.4)

where k is defined as the number of bits (i.e. length) of the message symbol, and M as

the number of possible unique message symbols. An example of this is the 7-bit ASCII

character code: The length of one symbol is k=7 bit, resulting in a M=128 sized alphabet

of symbols.

8

2.2. INFORMATION FORMATS

This is all assuming fixed-length code words, which means that the number of binary digits

per symbol is always k.

Symbol Rate

Symbol rate fS is the amount of symbols per second that can be passed from one block to

another. Symbol duration time TS is the reciprocate of this value and states the length of

a symbol.

TS =
1

fS
(2.5)

Note that different blocks can change the symbol by adding or removing redundant

information. If the symbol rate changes in a system, this is refereed to as a multirate

system.

Since all symbols still consist of a sequence of bits, a sequence of symbols can also be

referred to as the previously mentioned bit stream.

Channel Symbol

While it is still valid to refer to symbol rate, the output of a channel encoder may rather

be called channel symbols ui. Channel symbols got more redundancy due to the nature of

a channel encoder.

Data Rate

Since every symbol consists of at least one bit and all other necessary parameters have

been discussed, a data rate in bits per second is defined as:

R =
k

TS
=

log2 (M)

TS
(2.6)

2.2.2 Waveforms

Since it’s not possible to send a binary representation of information before preparing

it (binary data has no ”physical” property), it is common to transform the bit streams

to digital band-pass waveforms for a RF (Radio Frequency) application. In order to

modulate, the system processes the message symbols to waveforms that are able to traverse

the channel. This process consists of two steps.

Pulse Modulation

A pulse modulator transforms the binary format representation to a baseband waveform

g(t)[2].

gi = {g1, g2, . . . , gM} (2.7)

Which means that there is a unique baseband waveform for every possible message or

channel symbol.

9

2.2. INFORMATION FORMATS

Baseband is a signal with a bandwidth from DC to a finite frequency value. The resulting

binary waveforms are called PCMs (Pulse-Code Modulations). There are a variety of

possible pulse modulators, yielding different pulse shapes.

Band-pass Modulation

If the transmission medium will not support the propagation of pulse-like waveforms, band-

pass modulation needs to be implemented. A band-pass waveform si(t) is a baseband

waveform translated by a carrier wave c(t) to a frequency that is much larger than

baseband[2]. The baseband gets multiplied or heterodyne with the carrier.

c (t) = cos (2πfct) (2.8)

si (t) = gi (t) c (t) i = 1, 2, . . . ,M (2.9)

gi(t)

c(t) = cos(2πfct)

si(t) = gi(t) cos(2πfct)

Figure 2.3: Baseband translation to higher band-pass using mixer.

The Fourier frequency shifting theorem states that this operation splits the spectrum to

one part at positive and one part at negative fc. This is called a DSB (Double-Sideband)

modulated signal.

In digital modulation, mapping symbols to a continuous waveform is accomplished by

manipulating the amplitude, frequency or phase according to every specific message symbol

in the pool of possible symbols M . However, these waveforms might also differ in a

combination of the previously mentioned signal parameters. This mapping is done during

each symbol duration time TS and has the advantage that every unique waveform represents

a specific symbol, negating the need to map every single bit and therefore improving data

rates.

This results to constellation symbols in a complex plane: Data containing a real part

called in-phase I (the cosine wave part) and an imaginary part called quadrature carrier

Q (the sine wave part). Data is mapped to fixed points in the constellation diagram,

depending on the modulation scheme, representing different message symbols. Most

common modulation schemes are PSK (Phase-Shift Keying) and QAM (Quadrature

Amplitude Modulation).

10

2.2. INFORMATION FORMATS

-fS/2 fS/2

|Xg(f)|

f

0

Baseband

bandwidth

-fc fc

|Xs(f)|

f

0

Double-sideband

(DSB) bandwidth

(a)

(b)

-fc-fS/2 -fc+fS/2 fc-fS/2 fc+fS/2

Figure 2.4: Baseband translation to higher band-pass in frequency domain. (a)
represents a baseband waveform (b) represents a band-pass modulated signal around a

carrier frequency.

Figure 2.5 shows three different modulation schemes in the complex plane: (a) BPSK is a

binary scheme where the amplitude stays the same and the symbols are distinguished by

a phase jump. (b) represents a higher order phase modulation with 4 different symbols.

Note that the amplitude is still constant, only the phase differs. (c) shows a 16QAM

modulation: Both amplitude and phase can be different for different symbols.

While lower order schemes like BPSK have a higher distance between symbols, higher

order schemes like 16QAM have higher data rates since they posses a higher amount of

unique message symbols.

11

2.3. FILTERS AND SAMPLING

I

Q

10

(a)

I

Q

(b)

01 11

00 10

I

Q

(c)

1011 1001 0010 0011

1010 1000 0000 0001

1101 1100 0100 0110

1111 1110 0101 0111

Figure 2.5: Different constellation diagrams. (a) BPSK (b) QPSK (c) 16QAM.

2.2.3 Receiver Side

After traversing the channel, the band-pass waveforms were influenced by two parameters:

The channel impulse response hc(t) and the additive noise n(t) imposed by the channel.

r (t) = si (t) ∗ hc (t) + n (t) i = 1, 2, . . . ,M (2.10)

These channel effects will be discussed in section 2.5.

The formats between the blocks are in reversed order at the receiver side. At first

the blocks will pass constellation data between them, as they synchronize the noise

afflicted constellation data and map it to expected constellation points. These will then

be demodulated and detected to get possible channel symbols ûi and message symbols m̂i,

resulting in the correct data arriving at the information sink, and therefore completing

the transmission.

2.3 Filters and Sampling

Filtering is common case in RF communication. There are various filters throughout the

system. Especially for narrow-band applications, filters constrain signals to the bandwidth

they should operate in.

Filters usually have three main goals. First, make the signal suitable to transmit over

the physical channel. Second, increase SNR to reduce propagation errors. And finally

third, reduce ISI from a multipath channel. Instead of discussing basics, this section will

deal with ideal and Nyquist filters, as well as basics to digital filtering and sample-rate

conversion.

12

2.3. FILTERS AND SAMPLING

2.3.1 Linear System Transmission

Hardware and software blocks, if processing analog information, are assumed to be linear

and time-invariant. This means that blocks map an input x(t) or X(f) to an output y(t) or

Y (f) with its operator h(t) or H(f), as visualized in Figure 2.6. The mapping is calculated

mathematically with the convolution operator in time domain and by multiplication in

frequency domain. Note that h(t) refers to the impulse response.

y (t) = x (t) ∗ h (t) =

∫ ∞
−∞

x (τ)h (t− τ) dτ (2.11)

Y (f) = X (f)H (f) (2.12)

Linear networkInput Output

x(t) y(t)h(t)

X(f) Y(f)H(f)

Figure 2.6: Linear System with its parameters.

An impulse response in time domain can be transformed into frequency domain using either

the Laplace transform or Fourier transform. Getting from frequency to time domain is

achieved with the inverse Laplace or Fourier transform.

H (s) = L{h (t)} (2.13)

h (t) = L−1 {H (s)} (2.14)

H (f) = F {h (t)} (2.15)

h (t) = F−1 {H (f)} (2.16)

2.3.2 Ideal Filters

When talking about ideal filters, assumptions are that the transfer function has a constant

magnitude of 1 for the bandwidth were the frequencies should pass (pass-band) and 0

magnitude for all other frequencies (stop-band). This filter can operate at the theoretical

minimum system bandwidth without ISI. Relevant to this thesis are the transfer functions

of LPFs (Low-Pass Filters) and BPFs (Band-Pass Filters), see Figure 2.7.

13

2.3. FILTERS AND SAMPLING

-fu fu

|HLPF(f)|

f

fl

BLPF

|HBPF(f)|

f

0

(a)

(b)

-fl -fu fl fu

BBPF

1

1

Figure 2.7: Transfer functions of ideal LPF and BPF filters.

For simplicity purpose, whenever working with an example filter during this thesis, it

will be a LPF. The transfer function matching to the previous representation of a LPF is

defined as

H (f) = |H (f) | e−Φ(f) (2.17)

containing the frequency dependent phase Φ(f) and the frequency dependent magnitude

|H(f)| where

|H (f) | =

1 for |f | < fu

0 for |f | ≥ fu
(2.18)

Using equation 2.16 to calculate the impulse response of an ideal LPF in time domain,

the result is a function in the form of

sinc(
t

T
) =

sin
(
t
T

)
t
T

(2.19)

14

2.3. FILTERS AND SAMPLING

-40 -30 -20 -10 0 10 20 30 40

Time [ms]

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

A
m

pl
itu

de
 [V

]

Example impulse response of ideal LPF and timeshifted response by T=10ms.

T-T

h(t)
h(t-T)

Figure 2.8: Impulse Response of an ideal LPF.

This is called the ideal Nyquist pulse, since two successive pulses time shifted by T (h(t)

and h(t − T)) show that the first one is zero at the second’ ones peak, e.g. its sampling

timing. Likewise all other zero crossings overlap.

The Nyquist pulse-shaping criterion states that to satisfy the described condition

h (nT) =

1 for n = 0

0 for n 6= 0
(2.20)

it is necessary for the Fourier transform to be equal to

∞∑
m=−∞

H
(
f +

m

T

)
= T (2.21)

However, looking at the rectangular shape of the transfer function and its infinite impulse

response, it is clear that such kind of filters are not realizable (acausal). Instead, a

filter that is narrow in frequency and therefore wide in time (frequency-time inverse

relationship), but not infinite, and simultaneously fulfills the Nyquist condition, is needed.

2.3.3 Nyquist Filter

In order to get an approximation filter with the previously discussed parameters, the

general consent is to use a filter with a frequency transfer function that can be represented

15

2.3. FILTERS AND SAMPLING

by a rectangular function convolved with any real even-symmetric frequency function. This

type of filter is called a Nyquist filter[2].

The goal is to compress the bandwidth of the pulses to just a minimal higher value than

the Nyquist minimum (see the Nyquist sampling theorem) of 2 symbols/s/Hz, which is

accomplished with pulse shaping using a Nyquist filter. This is also refereed to as an

equalizing filter to compensate distortion of both transmitter and the channel. For further

details to equalization see subsection 2.6.4.

Equivalent Channel

It is common practice to design a TX and RX filter according to the given channel. These

three parts can be combined to get the equivalent channel model illustrated in Figure 2.9

Transmit

filter
Channel

Receive

filter

Equivalent Channel

si(t) r(t)

hTX(t) hRX(t)hc(t)

Transmitted

signal

Received

signal

Figure 2.9: Components of an equivalent channel chain.

where hTX(t) and hRX(t) denote the impulse response of the transmitting and receiving

filter respectively and hc(t) is the channel response. These three can be combined to get

the impulse response of the equivalent channel

h (t) = hTX (t) ∗ hc (t) ∗ hRX (t) (2.22)

The reason being is to take the Nyquist pulse-shaping theory into account to get ISI

free transmission, therefore including pulse-shaping filters when designing a system. In

this configuration, the TX filter is pulse-shaping the signal, while the RX filter performs

matched filter operations[6].

Raised-Cosine Filter

A RC (Raised-Cosine) filter can be expressed by the frequency transfer function[4]

H (f) =


1 for 0 ≤ |f | ≤ 1−β

2TS

1
2

[
1 + cos

(
πTS
β

(
|f | − 1−β

2TS

))]
for 1−β

2TS
≤ |f | ≤ 1+β

2TS

0 for |f | > 1+β
2TS

(2.23)

16

2.3. FILTERS AND SAMPLING

where β is the roll-off factor, which represents the excess bandwidth. This defines the

steepness of the filter roll off and can be calculated using the absolute bandwidth B

and the minimum Nyquist bandwidth B0, resulting in the definition that B − B0 is the

additional bandwidth to the Nyquist minimum.

β =
B −B0

B0
(2.24)

-1500 -1000 -500 0 500 1000 1500

Frequency [Hz]

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 m
ag

ni
tu

de
 [1

]

Raised-cosine frequency transfer functions for different roll-off factors with symbol frequency f=1kHz.

beta = 0.0
beta = 0.5
beta = 1.0

Figure 2.10: Frequency transfer function of a raised-cosine filter.

A value of β=0 relates to a rectangular shape while β=1 relates to an excess bandwidth

of 100%. Larger valued roll-off factors mean less sensitivity to timing errors at the cost

of more excess bandwidth, while a smaller roll-off filter increases signal rates by smaller

bandwidth, at the cost of larger pulse tails and amplitudes, i.e. sensitivity to timing errors.

Transforming the frequency transfer functions for different roll-off factors to time domain

results in the representation of Figure 2.11.

17

2.3. FILTERS AND SAMPLING

-0.03 -0.02 -0.01 0 0.01 0.02 0.03

Time [s]

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 V
ol

ta
ge

 [V
]

Raised-cosine time impulse response for different roll-off factors with symbol duration T=10ms.

beta = 0.0
beta = 0.5
beta = 1.0

Figure 2.11: Impulse response function of a raised-cosine filter.

A general relationship between the bandwidth B and the symbol rate fS that satisfies the

Nyquist bandwidth is defined with formula

B =
1

2
(1 + β) fS (2.25)

where a roll-off factor of β= 0 refers to the minimum bandwidth. Band-pass modulated

signals like PSK require twice the transmission bandwidth and are refereed to as DSB

signals. Therefore, the formula modifies to

BDSB = (1 + β) fS (2.26)

Usually RC filters are used as receiving filters, to filter out the unwanted effects of the

channel. But there are also implementations where a RC filter is on the TX side, just

before transmission.

Since the type of impulse response in Figure 2.11 is still not realizable (the impulse response

is not zero for t < 0), the impulse response needs to be time shifted by a value t0 to the

right. This time shift is crucial.

Root-Raised-Cosine Filter

A RRC (Root-Raised-Cosine) filter has a similar appearance, but it’s spectrum does not

decay as rapidly. The combination of two of these filters, also known as a square-root-

18

2.3. FILTERS AND SAMPLING

raised-cosine filter, is equal to the previously mentioned RC filter.

HRC (f) = HRRC (f)HRRC (f) (2.27)

and therefore

HRRC (f) =
√
HRC (f) (2.28)

A perfect assumption is that the channel is ideal (H(f)=1 for |f |≤B). The reason being

that RRC filters do not have zero ISI. However, if both TX and RX side deploy RRC filter,

the product of these transfer functions result in a RC filter as shown in equation 2.27, which

result in ISI free transmission. To prove this, just modify the Fourier transformation of

formula 2.22 regarding the equivalent channel.

H (f) = HTX (f)Hc (f)HRX (f) = HRRC (f) · 1 ·HRRC (f) = HRC (f) (2.29)

2.3.4 Digital Filter

Digital filter deal with discrete-time signals. Therefore the convolution formula must be

discretized and, using the z-transform, transformed into discrete-frequency domain.

y [n] = x [n] ∗ h [n] (2.30)

Y (z) = X (z)H (z) (2.31)

”Since ideal brick wall filters are not achievable in practice, we limit our attention

to the class of linear time-invariant systems specified by the difference equation:

y [n] = −
N∑
k=1

aky [n− k] +

M∑
k=0

bkx [n− k] , (2.32)

where y[n] is the current filter output, the y[n−k] are previous filter outputs, and

the x[n− k] are current or previous filter inputs. This system has the following

frequency response:

H (z) =

∑M
k=0 bke

−z

1 +
∑N

k=1 ake
−z

(2.33)

where the ak are the filter’s feedback coefficients corresponding to the poles of

the filter, and the bk are the filter’s feed-forward coefficients corresponding to the

zeros of the filter, and N is the filter’s order.

The basic digital filter design problem is to approximate any of the ideal frequency

response characteristics with a system that has the frequency response, by properly

selecting the coefficients ak and bk.” From literature[6], chapter 2.6.4.

19

2.3. FILTERS AND SAMPLING

2.3.5 Sample-Rate Conversion

Sample-rate conversion (abbreviated as SRC) is the process of changing the time interval

between adjacent elements. Increasing the interval is called decimation, which reduces

storage and computational requirements. Decreasing time intervals is called interpolation

and it preserves fidelity[6]. This subsection will also define the term resampling.

Decimation

This is usually a two step process, containing a low-pass anti-aliasing filter and a down-

sampler as illustrated in Figure 2.12.

Low-pass filter

h[n]

Downsampler

↓D

x[n] y[n]

Figure 2.12: Decimation process block chain.

This results in ignoring every Dth sample as is visible in Figure 2.13 and leads to the

following equation

xD [n] = x [Dn] D = 1, 2, . . . (2.34)

where x[n] is the original signal, xD[n] is the downsampled signal and D is the decimation

rate. It can be shown[6] that frequency values get transformed by

fD =
f

D
(2.35)

where f is the original sampling frequency and fD is the decimated sampling frequency.

It is obvious, since time and frequency are inversely related, that decimation stretches the

spectrum and adds copies of the original frequency transfer function. The implementation

of the mentioned LPF is therefore crucial to avoid anti-aliasing.

Figure 2.16 shows the downsampling process in frequency domain, with visible aliasing

effects. This representation is the result of a convolution of the original signal with the

downsampled impulse train.

20

2.3. FILTERS AND SAMPLING

-5 -4 -3 -2 -1 0 1 2 3 4 5

Time [ms] #10-3

-1

-0.5

0

0.5

1

A
m

pl
itu

de
 [V

]

Arbitrary digital signal y.

-5 -4 -3 -2 -1 0 1 2 3 4 5

Time [ms] #10-3

-1

-0.5

0

0.5

1

A
m

pl
itu

de
 [V

]

Decimated signal y
d
 with D=4.

Figure 2.13: Discrete decimation example. Top is the original signal, bottom is the
decimated signal with decimation factor D=4.

Interpolation

Interpolation happens in two steps: First the signal gets ”stretched” by adding a defined

number of samples with a value of 0 between every original sample. This process is

refereed to as upsampling. Next the signal gets smoothed using a LPF, which means that

the inserted zeros get interpolated to an expected curvature trend.

y [n] =

x
[
n
I

]
n = 0,±I,±2I, . . .

0 otherwise
(2.36)

Upsampler

↑I

Low-pass filter

h[n]

x[n] y[n]

Figure 2.14: Interpolation process block chain.

21

2.3. FILTERS AND SAMPLING

I is the interpolation factor and must be a positive integer value. The sampling frequency

gets therefore changed reciprocally to the equation of a decimator[6].

fI = If (2.37)

Assuming the decimated signal from Figure 2.13, an interpolation process will reverse the

decimation operation, as is illustrated in Figure 2.15.

-5 -4 -3 -2 -1 0 1 2 3 4 5

Time [ms] #10-3

-1

-0.5

0

0.5

1

A
m

pl
itu

de
 [V

]

Upsampled signal from y
d
 with I=4.

-5 -4 -3 -2 -1 0 1 2 3 4 5

Time [ms] #10-3

-1

-0.5

0

0.5

1

A
m

pl
itu

de
 [V

]

Low-pass filtered (interpolated) signal.

Figure 2.15: Interpolation of the previously decimated signal. Top is the upsampled
signal with I=4, bottom is the low-pass filtered signal and clearly the same as the

original arbitrary one.

Again it is obvious that this process compresses the original frequency signal. It also

creates copies of this signal, therefore the design of the LPF is crucial. Figure 2.16 shows

the upsampling process in frequency domain. Same as with downsampling, the result of

upsampling is a convolution of the original signal with the corresponding impulse train.

22

2.3. FILTERS AND SAMPLING

p

|X(f)|

f

0-p 2p-2p p

|Xu(f)|

f

0-p 2p-2p

Upsampler

↑2

p

|X(f)|

f

0-p 2p-2p p

|Xd(f)|

f

0-p 2p-2p

Downsampler

↓2

(a)

(b)

Figure 2.16: Upsampling and downsampling in frequency space, both by a factor of 2.
(a) upsampling operation compresses the spectrum (b) downsampling operation stretches

the spectrum, with visible aliasing.

Resampling

It’s important to note, that the term resampling in general refers to a combination of

the previously discussed interpolation and decimation process. In other word, while

decimation and interpolation work with an integer factor, a resampling operation can

also change the sampling rate by a floating value. This is done by combining an upsample

with a subsequent downsample operation, or vice versa, with additional filters.

Irrational factor SRC is illustrated in Figure 2.17. First the incoming signal gets upsampled

by L and filtered. Afterwards it passes through a continuous time integrate and dump

circuit with the goal of integrating the input sample until the output picks up the current

content of the accumulator and clearing it[7]. Finally, the decimation process takes place

where the signal is first filtered and then downsampled by M .

Figure 2.17: Irrational factor SRC[7].

The factor of this operation is referred to as irrational factor ν and can be defined by the

following equation[7]

ν =
T1

T2
=

L

M
+ ε (2.38)

23

2.4. DIVERSITY TECHNIQUES

where T1 and T2 are symbol duration times and ε is an approximation error, which is an

irrational number. There is a restriction to this resampling factor, in this case it must be

limited to still meet the Nyquist criteria. The irrationality of this design relates to the

fractional value of the symbol duration times in equation 2.38 resulting in an irrational

number. However, if the fraction of these two result in a rational value, this design is

instead defined as a rational factor SRC and the formula modifies to[7]

ν =
T1

T2
=

L

M
(2.39)

where both L and M are positive integers.

If one of these two factors has a value of 1, then the design modifies to a integer factor

SRC, i.e. a interpolation or a decimation process.

An advantage of this system is that it can ease a filtering operation. The order can be

changed to a downsampling first followed by an upsampling operation. By placing a filter

in between these two, the filter can then operate at a way lower frequency bandwidth,

which makes the magnitude transfer function easier to design. Of course in this case, both

factors M and L must be the same to return to the correct sample rate. Care must be

taken not to get aliasing effects during downsampling.

2.4 Diversity Techniques

This section will discuss the topic of diversity in a DCS: Separating a signal over time or

frequency, or transmitting the signal through multiple antennas to get multiple independent

or highly uncorrelated signal paths. Diversity techniques like polarization diversity or

angle-of-arrival diversity will not be subject of this section[5].

Note that these subsections assume basic knowledge of multipath propagation and fading

channels.

2.4.1 General

The goal is to reduce the depth and duration of fades at the receiver side to provide

significant link improvements with little added cost. This is done by exploiting the nature

of a wireless propagation system, where if one path undergoes a deep fade, another path

may have a peak. In other words, uncorrelated signals will experience different fades.

Diversity systems are popular if there is no clear LOS (Line-of-sight) connection between

two transceivers (abbreviated as TRX, meaning devices which can both send and receive

signals). Using diversity techniques a designer is able to mitigate both small-scale and

large-scale fading problems.

24

2.4. DIVERSITY TECHNIQUES

2.4.2 Time and Frequency Diversity

If a receiving device has a probability p of any one signal to fade below some threshold

where it can no longer be detected, then pN is the probability that N independently

fading copies of the same signal will fade below the detection threshold[2]. Therefore,

more independent copies of the original signal reduce the error probability significantly,

even if the channel attenuation is large.

One way to employ diversity is frequency diversity, where the same information is transmit-

ted using N different carriers. Important aspect is that the frequency bandwidths do not

overlap and are separated by a defined value. Here the term coherence bandwidth of the

radio channel comes into play: these are the frequencies at which the channel can be

considered ”flat”, meaning that frequencies in this range experience an equivalent amount

of amplitude fading. Frequency diversity is often employed as multiplex mode (FDM =

Frequency-Division Multiplex) in LOS links.

The other possibility is to employ time diversity by sending the same signal overN different

time-slots. Again it’s important to separate the different time slots by a given time value.

This is refereed to as coherence time, the time in which the phase is predictable. An

example is TDM (Time-Division Multiplexing).

This kind of system is defined as repeating or as a form of block-interleaving. Consequently

there are also systems that use time and frequency diversity together.

2.4.3 Antenna Diversity

Antenna diversity, also refereed to as space diversity or spatial diversity, usually means

spacing out base stations to achieve uncorrelated signals in a mobile radio system. In

other words, a system that uses two or more antennas to improve link stability. This is

also called diversity gain.

However, the scope of this thesis will distinguish between two principles:

1.) Spatial antenna diversity - Here all TX antennas transmit the same signal. By

spacing the antennas far enough (at least one wavelength on a mobile unit, ten

wavelengths between base stations) the propagation of all signals through the channel

will be non coherent. Link stability will improve, but care must be taken to process

the receiving signal correctly.

One could also, as an example, use multiple RX antennas that all receive the same

signal. The next step would be to implement a detection algorithm that only

forwards the ”best” of the received signals, for example by comparing SNR values.

2.) Spatial antenna multiplexing - With this principle multiple antennas send multi-

ple parts of a symbol stream. The different streams could be created by de-interleaving

25

2.4. DIVERSITY TECHNIQUES

on TX side and interleaving on the RX side of the system. Although this may sound

like pure time diversity, keep in mind that these systems transmit multiple streams

of different data at once, instead of just one. This system would not result in a more

stable communication, but would lead to higher data rate as a whole.

There are different processing techniques available on the receiving side of the system.

The already described selection algorithm (based on best SNR) would route only one of

the RX antennas to the following blocks. Another possibility would be to combine all RX

antennas directly (equal gain combining) or weighted & added coherently (maximal ratio

combining).

Multiple-Input and Multiple-Output

Note that the described spatial antenna multiplexing technique is one of the three

categories of MIMO (Multiple-Input and Multiple-Output). The two other categories

(precoding and diversity coding) will not be subject of this thesis.

MIMO systems can work with accurate CSI (Channel State Information). CSI refers to

information about the channel properties like fading and scattering, and can be measured

by alternating in the transmission of known data (for example just one ”1” magnitude

level) through every TX antenna. All receiver antennas note how well this maximum

magnitude level traverses to them, therefore giving the information which TX antenna to

RX antenna stream is the best.

Figure 2.18 shows the principle of a basic MIMO system. It is apparent that n transmitting

antennas and m receiving antennas (usually n≥m) result in n ·m different streams that

experience different channel impulse responses. This topic will be discussed further in

subsection 2.5.4.

1

TX

1

RX

2 2

.

.

.

.

.

.

n m

h11

h21

h12

h22

hm1
hm2

hmn

Channel

Figure 2.18: MIMO channel and stream principle.

26

2.5. CHANNEL

2.5 Channel

After emitting from the TX antenna, the propagating signal s gets influenced by the

channel impulse response h(t). Mathematically this operation equals a convolution. Fur-

thermore, simple channel models dictate an additional AWGN (Additive White Gaussian

Noise) n(t).

r (t) = s (t) ∗ hc (t) + n (t) (2.40)

As already discussed in section 2.3.1, the impulse response of the channel is connected

by a mapping of input and output using the convolution operator as in equation 2.11.

However, an impulse response is defined as the function h(t) of a system if the input is a

unit impulse δ(t), given the system is causal.

In frequency domain the complex channel impulse response contains its magnitude and

its phase over the frequency.

Hc (f) = |Hc (f) | e−Φc(f) (2.41)

These following subsections will assume basic knowledge of calculation using dB.

2.5.1 Noise

The term noise refers to unwanted electrical signals and can result from thermal noise,

interference from other transmitters and interference from circuit switching transients.

Overall this noise causes detection errors on the receiving side, together with ISI.

The mentioned thermal noise is one of the natural sources of noise and refereed to as

Johnson noise. This noise is caused by the motion of single electrons, the same electrons

responsible for electrical conduction, in dissipative components (resistors, wires, . . .).

Johnson noise can be described by a Gaussian random process[2].

p (n) =
1

σ
√

2π
e−

1
2(nσ)

2

(2.42)

Therefore n(t) is a Gaussian process where the random function n at any arbitrary time

t is statistically characterized by a Gaussian PDF (Probability Density Function) p(n)

with a variance of σ2.

27

2.5. CHANNEL

-4 -3 -2 -1 0 1 2 3 4

Sigma [1]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

A
m

pl
itu

de
 [1

]

Gaussian pdf with sigma=1 (normalized).

sigma = 1

Figure 2.19: Normalized Gaussian distribution function.

The power spectral density for all frequencies of interest is the same in thermal noise,

therefore referring to as ”white”, and is denoted as

Gn (f) =
N0

2
(2.43)

where N0 is called the noise power per units of bandwidth with the SI unit watts/hertz.

The division by 2 denotes a double sided white noise. N0 can be calculated using the

temperature T and the Boltzmann’s constant k

N0 = kT (2.44)

or by adding the channel bandwidth ∆f , resulting in the Johnson-Nyquist noise

PN = kT∆f (2.45)

Notice that the SI unit of this value is watts. A memoryless channel is a channel where

the AWGN noise affects each transmitted symbol independently.

2.5.2 Link Budget

The term link budget defines the received power, given a known wireless communication

system. It contains a multiplication of all gains and losses through this wireless system:

Starting with the transmitter, losses in the channel and finally values through the receiver.

28

2.5. CHANNEL

In order to simplify the calculations, all these values can be logarithmized and summarized.

This can lead to the simplified link budget formula

PRX,dB = PTX,dB +GTX,dB − LTX,dB − LCh,dB − LM,dB +GRX,dB − LRX,dB (2.46)

where PRX,dB is the receiving power, PTX,dB is the transmitted power, GTX,dB and GRX,dB

are the transmitter and receiver antenna gains respectively, LTX,dB and LRX,dB are the

total losses in the transmitter and the receiver respectively, LCh,dB are losses in the channel

and LM,dB are miscellaneous losses.

Most of these losses are grouping together individual values. For example LTX,dB and

LRX,dB could be comprised of band limiting losses, modulation losses, efficiency losses,

pointing losses and polarization losses[2].

Path Loss

The FSPL (Free-Space Path Loss) is a wavelength dependent value defining the free-space

loss over the channel. It can be calculated by[4]

LS =

(
λ

2πd

)2

(2.47)

where d is the distance between transmit and receive antenna. Logarithmized the formula

modifies to

LS,dB = 10n log
λ

2πd
(2.48)

while log being the common logarithm. n is the path loss exponent and usually 2 in

free-space, but gets higher in more crowded channels, like dense urban areas.

Friis transmission equation

The Friis transmission equation is a variant of the link budget equation under simplified

conditions. It implements the path loss into the link budget formula.

PRX,dB = PTX,dB +GTX,dB +GRX,dB − 10n log
λ

2πd
(2.49)

29

2.5. CHANNEL

2.5.3 Rayleigh and Ricean Fading

This subsection will take a short look in statistical channel models. In other words, taking

multipath into account, a large number of signal paths makes it possible to apply the

central limiting theorem[8]. Therefore, these models can be described with probability

density functions.

Rayleigh Fading Distribution

”In mobile radio channels, the Rayleigh distribution is commonly used to describe

the statistical time varying nature of the received envelope of a flat fading signal,

or the envelope of an individual multipath component. It is well known that the

envelope of the sum of two quadrature Gaussian noise signals obeys a Rayleigh

distribution. [...] The Rayleigh distribution has a probability density function

(pdf) given by

p (r) =

 r
σ2 e
− r2

2σ2 (0 ≤ r ≤ ∞)

0 (r < 0)
(2.50)

where σ is the rms value of the received voltage signal before envelope detection,

and σ2 is the time-average power of the received signal before envelope detection.”

From literature[5], chapter 5.6.1.

Rayleigh fading is a typical model for tropospheric and ionospheric wireless signal communi-

cation and used when there is no dominant LOS component in the communication. It is

also very popular in urban communication systems. In Rayleigh fading, transmitting

each symbol from every antenna simultaneously is equivalent to using a single transmit

antenna[9].

Ricean Fading Distribution

Ricean fading models are similar to Rayleigh models, however they get primarily used

when there is a strong direct path component between transmitter and receiver (often

refereed to as specular path). Imposed multipath components summarize to a smaller

valued amplitude than the LOS component. The Ricean PDF distribution is given as

p (r) =

 r
σ2 e
− r

2+A2

2σ2 I0

(
Ar
σ2

)
(A ≥ 0, r ≥ 0)

0 (r < 0)
(2.51)

where A denotes the peak amplitude of the dominant signal and I0 is the 0th order modified

Bessel function of the first kind[5].

If the dominant LOS component grows smaller, the Ricean model approaches a Rayleigh

model. For simplification, introduce the factor K, the ratio between deterministic signal

30

2.5. CHANNEL

power and the variance of the multipath.

KdB = 10 log
A2

2σ2
(2.52)

K is known as the Ricean K factor [8] and it specifies the Ricean distribution: The smaller

the dominant LOS component A, the higher valued K will get, until it equals a Rayleigh

distribution at K=−∞dB.

Figure 2.20: Example Ricean pdf distributions with different A value (v =⇒ A) with
σ2 =1[10].

2.5.4 MIMO Channel

For the sake of completeness it shall be noted that the channel model for a typical MIMO

system illustrated in Figure 2.18 can be defined with the formula

~y = H~x+ ~n (2.53)

where ~y is a vectorm×1 of the received signals, ~x is a vector n×1 of the transmitted signals,

~n is a vector m×1 for the thermal noise (IID = Independent and Identically Distributed,

circularly symmetric complex Gaussian with unit variance) and H is a matrix m × n

containing all the different impulse responses that the signal paths take[9].

31

2.6. SYNCHRONIZATION

2.6 Synchronization

DCSs need different types of synchronization blocks: Phase synchronization, carrier syn-

chronization, frame synchronization and network synchronization[2]. This section will

discuss a few concepts that will be relevant in later chapters of this thesis.

Figure 2.21 shows the different synchronization blocks on the receivers side. Blue colored

blocks are for timing synchronization. Matched filters were discussed in section 2.3.3.

Orange Blocks are frequency synchronization blocks for the carrier. Frame Synchronization

is depicted in yellow and equalization illustrated in purple.

Coarse frequency

correction
Matched filter Timing recovery Carrier recovery

Frame

synchronization
Equalization

Figure 2.21: Receiver synchronization block chain.

2.6.1 Timing Synchronization

Timing synchronization, also called timing recovery, is responsible for the correct sampling

time instances. This is one of the most critical functions performed in the receiver. The

receiver must know the frequency at which the outputs of the matched filters are sampled

and also where to sample each symbol during its interval.

In some systems both the TX and RX synchronize their clocks (for example hardwired),

in which case the timing recovery only has to account for the time delay of the signal

through the channel. This will be relevant later, when connecting the TX output of one

device via a cable to the RX input of the same device. Another possibility would be to

add information about the clock frequency (or a multiple of it) to the transmitted signal.

This can be done with the previously mentioned SRC, which will also be demonstrated in

later chapters.

Phase-Locked Loop

Some of the following algorithms use a so-called PLL (Phase-Locked Loop). It consists

of three main components: A multiplier, a loop filter and a VCO (Voltage-Controlled

Oscillator). Figure 2.22 shows how these come together.

32

2.6. SYNCHRONIZATION

Input signal
Loop filter

G(s)

VCO

Output signal

f̂

f−f̂

f

Figure 2.22: Basic components of a PLL.

Let’s assume that the input signal is a sinusoid cos (2πfct+ φ) and the VCO outputs

sin
(

2πfct+ φ̂
)

. φ̂ represents the estimate of the phase φ. Calculating the product of

these two and simplifying the result using trigonometric identities leads to

e (t) = cos (2πfct+ φ) sin
(

2πfct+ φ̂
)

=
1

2
sin
(
φ̂− φ

)
+

1

2
sin 4πfct+

(
φ̂+ φ

) (2.54)

The loop filter is designed as a LPF that lets the term φ̂−φ pass. This term is zero if the

estimated phase is correct. If it’s not zero, the VCO will correct its value. An example

transfer function of the LPF could be

G (s) =
1 + τ1s

1 + τ2s
(2.55)

where τ1, τ2; τ1 > τ2 are design parameters. Lastly the VCO can be modelled as an

integrating function, e.g.

GV CO (s) =
K

s
(2.56)

where K is a scalar gain factor. Using the formula for the closed loop it is obvious to

arrive at a second-order transfer function. After simplification the formula modifies to

H (s) =

(
2ζωn − ω2

n/K
)
s+ ω2

n

s2 + 2ζωns+ ω2
n

(2.57)

where ζ is the loop damping factor and ωn is the natural frequency of the loop[4].

Early-Late

A very simple algorithm for timing recovery is called Early-Late symbol timing recovery.

Figure 2.23 shows the block diagram of this symbol timing algorithm[11] and Figure 2.24

illustrates the sampling in time domain.

33

2.6. SYNCHRONIZATION

Receive filter Sampler
Decision

device

Early-Late

timing error

detector

Loop filter
Adjustable

clock

r(t)

Splitter

e

x[nT±d]

x̂ [nT]

Figure 2.23: Early-late symbol recovery block diagram.

This algorithm samples the signal at a timing nT , together with two additional samples,

equidistant apart from nT by a small value δ. nT−δ is called the early symbol, nT+δ is

the late symbol. The timing error is evaluated by comparing the two equidistant samples:

The difference of amplitude of these two defines if the timing point must be moved. If the

amplitudes are the same, a perfect timing was achieved.

r(t)

t
nT nT+dnT-d

r(t)

t
nTnT-d nT+d

r(t)

t
nTnT-d nT+d

(a) (b) (c)

Figure 2.24: Early-late symbol recovery sampling. (a) is perfectly timed (b) sampling
timing to early (c) sampling timing to late.

The real timing error, which is the output of the TED (Timing Error Detector), is

computed as follows

e = {x [nT + δ]− x [nT − δ]} x̂ [nT] (2.58)

where x̂ is the decision. See also literature[11][12] for a more detailed evaluation of

this parameter. Note that the imaginary part was neglected, to work only with the

amplitude, for simplicity purpose. The same applies for other error formulas in this section.

Depending on the value of this timing error, it is either perfectly sampled (e= 0), or it

needs alignment (e<0 or e>0).

34

2.6. SYNCHRONIZATION

Gardner and Zero Crossing

In principle, the Gardner symbol timing recovery is very similar to the block diagram of

the Early-Late timing recovery in Figure 2.23. However, this algorithm needs an additional

zero crossing. When sampled perfectly, the amplitude at point nT −T/2 is zero. If the

sampling instance was wrong, the numerically controlled oscillator needs to be adjusted,

depending on the sign of the amplitude. Figure 2.25 shows this concept.

r(t)

t

(a)

(n-1)T

nT

nT -T/2

r(t)

t

(b)

(n-1)T

nTnT -T/2

t

(c)

(n-1)T

nT

nT -T/2

r(t)

Figure 2.25: Gardner symbol recovery sampling. (a) is perfectly timed (b) sampling
timing to early (c) sampling timing to late.

The timing error output from TED gets computed by[12]

e = {x [nT]− x [(n− 1)T]} x̂ [nT − T/2] (2.59)

Again, if this value is not zero, the sampling timing was wrong. The Gardner algorithm

should work better with larger roll-off factors in the implemented matched filters.

A close relative to Gardner is the Zero Crossing algorithm. A big difference is that while

Gardner is non-data-aided, Zero Crossing is actually a decision-directed.

Mueller and Müller

Mueller and Müller synchronizer is a decision-directed optimum timing algorithm. Other

then the previous described Early-Late algorithm, this synchronizer only requires one

sample per symbol and knowledge of the previous symbol to estimate the timing error. It’s

block diagram is depicted in Figure 2.26 and illustrates its decision feedback architecture.

This synchronizer combines the PAM signal with the error samples, which in turn is used

to bring the timing clock in synchronization[11].

One interesting aspect of this concept is that the Mueller and Müller synchronizer, different

to other synchronizers, actually performs better with a lower roll-off factor in the Nyquist

filter[12]. This means that the receiving filter should either have a very low roll-off factor

or even keep it at zero.

35

2.6. SYNCHRONIZATION

Receive filter Sampler
Decision

device

M&M timing

error detector

Loop filter
Adjustable

clock

r(t)

e

x̂ [nT]

Figure 2.26: M&M symbol recovery block diagram.

Figure 2.27 shows how this algorithm functions in time domain. Different then the previous

symbol recoveries, M&M operates on T -spaced samples and adjusts its symbol sampling

depending on the distance between these samples.

r(t)

t

(a)

(n-1)T

nT

Correct symbol

sampling

r(t)

t

(b)

(n-1)T

nT

Fast symbol

sampling

t

(c)

(n-1)T

nT

Slow symbol

sampling

r(t)

Figure 2.27: M&M symbol recovery sampling. (a) is perfectly timed (b) sampling timing
to fast (c) sampling timing to slow.

The error output from the TED gets computed by

e = {x [(n− 1)T]} x̂ [nT]− {x [nT]} x̂ [(n− 1)T] (2.60)

Maximum-Likelihood

In order to construct an optimal receiver, the goal should be to detect the symbol sequence

with minimal probability of detection error. It is known that this is accomplished when

36

2.6. SYNCHRONIZATION

the detector maximizes the a posteriori probability for all sequences a. This is refereed to

as MAP (Maximum a Posterior Probability).

âMAP = arg max
a

p (a|r) (2.61)

The a posteriori probability can be rewritten using Bayes’s rule.

p (a|r) =
p (r|a) p (a)

p (r)
(2.62)

Since p(r) is only a normalization parameter, it can be ignored. The problem then

simplifies to maximizing the likelihood function p(r|a). This process is refereed to as

Maximum-likelihood (abbreviated as ML).

It is obvious, that to maximize this likelihood function, a derivative is needed, where a zero

crossing of this derivative means an extremum. This concept is exploited by sgn(y[n]y’[n])

ML symbol timing recovery. As the name of this algorithm suggests, it uses a derivative

of the matched filter together with this matched filter itself to recover the symbol timing.

This makes this approach very efficient, but also very complex to implement, which is

why it gets used very rarely. Instead, easier-to-implement algorithms like the previously

described ones are more popular.

2.6.2 Carrier Synchronization

Carrier synchronization complements the previous phase synchronization and it is necessary

to maintain wireless links with separate LOs (Local Oscillators) in TX and RX. Relative

frequency offsets will exist between these two LOs due to natural effects, even dynamic

drifts must be taken care of. Commercial oscillators provide the frequency offset in PPM

(Parts-Per Million) which can be translated into a maximum carrier frequency drift:

fo,max =
fc · PPM

106
(2.63)

This is an important parameter, since this value dictates some design criteria. There

are multiple examples of decision-directed and non-decision-directed loops that perform

carrier locking. In the scope of this thesis, only Costas loops are of interest. Figure 2.28

shows the block diagram of a Costas loop.

37

2.6. SYNCHRONIZATION

x(t)

Low-pass

filter

VCO
Loop filter

F(w)

90°

Low-pass

filter

y(t)

Figure 2.28: Costas loop block diagram.

This PLL based structure multiplies the input signal with the sinusoid output from the

VCO sin
(

2πfct+ φ̂
)

and a 90 degree phase shifted signal cos
(

2πfct+ φ̂
)

. The following

LPFs eliminate high frequency parts (2 · fc). Both results are being multiplied to get an

error signal, this error signal then controls the VCO and therefore the frequency. Important

to notice is that the two LPFs must be perfectly matched[2][4].

2.6.3 Frame Synchronization

For the sake of completeness it shall be noted that many communication systems have

uniformly sized groups of bits that can be refereed to as a frame.

Frame synchronization guarantees that the receiver has a synchronized data stream around

the frame structure. This is usually accomplished with the aid of some special signalling

procedure in the transmitter. For example, these frames can also come with a synchro-

nization sequence to indicate the start of the frame. The receiver needs to be aware of

the correct pattern and the injection interval. Correlating the known pattern with the

incoming data stream, achieving frame sync once the correlation was correct[4].

2.6.4 Equalization

In order to get ideal transmission characteristics over the channel, the magnitude of the

channel |Hc(f)| in equation 2.41 must be constant and the phase Φc(f) must be a linear

function of the frequency. In other words, the delay must be constant for all spectral signal

components.

Because attenuation in the magnitude is not constant, amplitudes will be distorted. If the

phase is not linear, the signal will have phase distortion. These affects usually even occur

together and it’s refereed to as smearing (pulse is not well defined). Overlapping smearing

38

2.6. SYNCHRONIZATION

effects are also known as ISI.

There are two main groups of equalizers:

1.) MLSE (Maximum-Likelihood Sequence Estimation) - Measures the channel fre-

quency response hc(t) and provides means to adjust the receiver to the physical

transmission environment. The symbols are not modified in any way, instead the

MLSE receiver adjusts itself to deal with distorted symbols. A very popular example

is the Viterbi equalizer.

2.) Equalization with filters - Means compensating distorted pulses using filters. The

goal is to forward ISI free symbols to the demodulator blocks. The filters are either

transversal equalizers (linear and only containing feedforward elements) or decision

feedback equalizers (nonlinear containing both feedforward and feedback elements).

In other words, preset or adaptive filters.

”The performance of an algorithm is determined by various factors which include:

� Rate of convergence - This is defined as the number of iterations required

for the algorithm, in response to stationary inputs, to converge close enough

to the optimum solution. A fast rate of convergence allows the algorithm to

adapt rapidly to a stationary environment of unknown statistics. Furthermore,

it enables the algorithm to track statistical variations when operating in a

nonstationary environment.

� Misadjustment - For an algorithm of interest, this parameter provides a

quantitative measure of the amount by which the final value of the mean

square error, averaged over an ensemble of adaptive filters, deviates from

the optimal minimum mean square error.

� Computational complexity - This is the number of operations required

to make one complete iteration of the algorithm.

� Numerical properties - When an algorithm is implemented numerically,

inaccuracies are produced due to round-off noise and representation errors

in the computer. These kinds of errors influence the stability of the algorithm.”

From literature[5], chapter 7.8.

39

2.7. SOFTWARE-DEFINED RADIO

Input signal

yk

z
-1

z
-1

z
-1

w0k w1k wnkw2k

∑

Output signal

∑

Error signal

ek
-

+

Known property

xk

d̂
k

Adaptive algorithm in charge of updating weights

Figure 2.29: Block diagram of a basic adaptive equalizer.

Figure 2.29 shows the basic structure of an adaptive equalizer. For this thesis the relevant

equalizer is a decision-directed LMS (Least Mean Square) algorithm. The prediction error

is given as

ek = xk − d̂k (2.64)

where the indices k refers to the time instant and ek refers to the error between the

equalizer output d̂k and the known property xk, for example the modulation constellation

points. The LMS algorithm computes the mean square error by computing |ek|2 and

minimizing this error by updating the weights wnk accordingly[5].

ζ = E [e∗kek] (2.65)

2.7 Software-Defined Radio

In wireless communication it is very common to combine digital processing with analog

RF components. A Software-Defined Radio (SDR) is a wireless device where much of the

digital signaling operations and baseband functionality can be implemented using software

rather than fixed hardware circuits[13]. This gives the developer a big degree of flexibility,

makes these devices re-configurable and very powerful.

SDR technology is nothing new, the term software radio first appeared in 1984[6]. Similar

to many other technological advances, SDRs have their roots in military. SPEAKeasy was

a United States Military project in 1991 with the goal to develop a single radio system

that could be used to communicate with 10 different types of military radios. Today

there is a range of military grade SDR hardware available, very powerful devices aimed to

40

2.7. SOFTWARE-DEFINED RADIO

search for enemy communication frequencies and combined with powerful computational

power to fast crack encryption. Some systems even work with computational intelligence

and neuronal networks (signal intelligence). However, there is also a consumer market for

low-cost high performance radios, aimed for industrial or amateur use. Cellular options

are also very popular, to send and receive different radio protocols in real time, and to

create base stations. Some SDRs even find use in radio astronomy.

The software part that replaces hardware blocks like mixers, filters and amplifiers is usually

implemented on a PC (Personal Computer) or embedded device. However, most of the

hardware boards come with dedicated re-configurable ICs (Integrated Circuits) systems,

specially DSPs (Digital Signal Processors). These integrated circuits can be FPGAs (Field

Programmable Gate Arrays), GPUs (Graphics Processing Units) or ARMs (Advanced

RISC Machines). An ideal basic receiver design of an SDR consists of an antenna,

an analog-to-digital converter and the digital signal processing, see concept principle in

Figure 2.30. The system needs enough computational capabilities to achieve realtime

operations in order to implement this big signal processing part.

Configurable

filters and

amplifiers

ADC /

DAC

Channelization

and sample rate

conversion

Processing

Hardware (DSP)Software

Host /

Embedded

AntennaBaseband processing Digital front end
A è D

D è A
RF

Figure 2.30: Ideal receiver principle of a software-defined radio.

As already mentioned, a typical SDR has an onboard configurable IC. However the heart

of every SDR is its FPRF (Field Programmable Radio Frequency) integrated circuit.

These ICs usually integrate the whole analog and digital RF signal chain on one piece

of silicon, therefore minimizing process variations. They often contain duplicates of their

signal processing paths, enabling them to to implement antenna diversity.

A SDR is the perfect device to integrate all the previously mentioned topics in this chapter.

It can set up a digital communication system, process the information formats from

section 2.2 through the blocks mentioned in the first section of the theoretical chapter,

employ filters for ISI free communication (section 2.3, but instead of static filters, tune-able

filters are implemented), use diversity technologies as described in section 2.4 to improve

link stability and correct negative channel effects, and lastly handle the synchronization

of data by employing the technologies from section 2.6.

41

2.7. SOFTWARE-DEFINED RADIO

2.7.1 Architecture

Single or dual mixing stage superheterodyne architecture RF is a very popular and

commonly used architecture in radio frequency communication systems. The benefits

include configurable channel bandwidth and selectivity thanks to IF (Intermediate

Frequency) filters, low spurious emissions and trade-off between optimizing noise figure

and linearity thanks to gain distribution across the stages[6][13].

Figure 2.31 shows a typical dual stage superheterodyne signal block chain[14]. It consists of

different filters and amplifiers, mixers where the VCO frequency is mixed with the signal

and finally the digital part of the system, interfaced by Analog-to-Digital Converters

(ADC) and Digital-to-Analog Converters (DAC) respectively.

FPGA

Digital

filter

Digital

filter

ADC

DAC

Clock

gen

ADC

driver

Digital step

attenuator
BPF

PLL/

VCO

BPF
IF

amplifier
BPF

PLL/

VCO

BPF LNA Preselector

LPF
IF

amplifier
LPF LPF

IF

amplifier
LPF LPF Driver

Power

amplifier

Figure 2.31: Dual stage superheterodyne signal chains. Top is receive part, bottom
shows transmit path.

A more popular architecture in recent years is the ZIF (Zero Intermediate Frequency)

architecture, which utilizes a single frequency mixing stage with a local oscillator. A ZIF

receiver is also refereed to as DCR, Direct-Conversion Receiver. This LO is directly set

to the interesting frequency, translating the signal down to baseband. Figure 2.32 shows

how after this translation, when phase shifting before by an angle of 90 degree, the result

is the in-phase I and quadrature Q part of the signal. The structure strongly resembles

the principles discussed in section 2.6.

42

2.7. SOFTWARE-DEFINED RADIO

LNA

0° / 90°

Phase splitter

PLL /

VCO

LPF

LPFMixer

Mixer

ADC

ADC

I

Q

Figure 2.32: Zero intermediate frequency architecture splitting incoming signals into I
and Q parts.

The positive aspect about this design is that all analog filtering takes place at baseband

level. This lower frequency makes it easier to design components, reduces sampling times

and makes components cheaper. Since components are non-perfect, care must be taken to

correct the I/Q imbalance between the two paths. Therefore calibration is an important

part of every SDR as bad calibration can lead to reduced performance. Most SDR boards

equip a microprocessor to perform the calibration.

2.7.2 Automatic Gain Control

Automatic gain control, abbreviated as AGC, is a regulating technique used to maximize

signal amplitudes on the output of an amplifier circuit to its maximum value. In other

words, given a range of input signal values, a AGC circuit modifies the gain to give

output signal levels the maximum range. Usually SDR platforms employ AGC circuits

that regulate the gain of a chain of amplifiers dynamically. This is of course done on the

RX path of the transceiver. Automatic gain control is used in a variety of systems, the

implementation varies for different use cases.

2.7.3 Software Environment

The software part of a SDR can start after an ADC and end at a DAC. A SDR is fully

configurable, however the most important parameters are center frequency, bandwidth,

sample rate, gains and type of modulation. In a development process, the system first gets

configured on a host PC or embedded device: Configure and calibrate the device correctly,

develop, tune and optimize the modulation and demodulation of the signals. Doing this

on a host makes it easier to debug and visualize the signals. The second step would be to

write the developed technique in a high-level language in floating point and implement it

on a production worthy environment, making it a truly standalone software-defined device.

43

2.7. SOFTWARE-DEFINED RADIO

For the first step it is important to chose a software environment that is both powerful in

processing huge amount of data and flexible enough to implement the goals of the project.

One of these environments is MATLAB, which is a technical computing environment and

programming language. This is especially handy if the communication systems toolbox

is available. Another possibility is the open-source GNU Radio software toolkit. GNU

Radio employs a variety of C++ libraries for digital communications and signal processing

and combines these libraries with SWIG (Simplified Wrapper and Interface Generator,

an open source software wrapper, connecting C/C++ programs with scripting languages

like Python). More about GNU Radio will be discussed in chapter 5.

As mentioned, the real implementation (once the project has been developed and is

functional) would be written in a higher level language like Very High Speed Integrated

Circuit Hardware Description Language, often abbreviated as VHDL. However, the scope

of this theses will only focus on the development process and the lessons and results this

will lead to.

44

Chapter 3

System Overview

This chapter will first focus on system parameters, limitations and possible development

platforms. Afterwards a short design decision on which SDR hardware to use will be

presented. When choosing between different SDR boards, it is also very important to

keep the software environments for the development process in mind. An additional look

on the performance of the antennas follows an short summary of a few selected analog and

digital hardware parts. Finally a overview on the host configuration will be provided.

3.1 Parameters and Limitations

3.1.1 General Concept and Parameters

Figure 3.1 shows the concept of this thesis. An unidirectional link between two SDR over

a variable distance dFS using a bandwidth BC at a center frequency fc (and therefore

wavelength λ). Even though it is an unidirectional communication, the SDR will include

TRX FPRF chips, meaning that both devices can send and receive information. Therefore,

it’s technically a bidirectional communication. Additionally, both SDR shall have multiple

antennas for transmission and reception, in other words they implement antenna diversity.

The transmission channel is assumed to have LOS or near LOS (meaning that the link

sight can be sporadically disrupted by moving objects like cars or people) propagation

conditions, in an urban environment. The maximum distance between two devices where

communication is still possible is not specified. Higher possible communication distances

are better, though having a stable communication at a very short distance would be viewed

as proficient, as increasing the range would just be a matter of increasing the radiated

power. The data rate shall be up to 10MBit/s with a minimum of 1MBit/s.

Given these first parameters it is obvious why to choose SDR hardware (see also section 2.7).

High data rates over the channel mean that higher order modulation schemes come in

handy. However, if the distance is getting longer and the noise level over the channel

rises, it would make sense to decrease the amount of symbols (i.e. change the modulation

scheme) to guarantee a stable communication at a reduced data rate. With a SDR this

45

3.1. PARAMETERS AND LIMITATIONS

kind of modification is possible. Using the discussed spatial antenna diversity technique,

the link stability can be improved even further.

Host

PC

Interface

controller

Digital signal

processing

FPRF A

fc, BC, l

TXA1

SDR A

Channel

dFS

Host

PC

Interface

controller

Digital signal

processing

SDR B

Interface

Interface

Power supply

Clock network

Power supply

Clock network

RAM

RAM

TXA2 RXA1 RXA2

FPRF B

fc, BC, l

TXB1 TXB2 RXB1 RXB2

Figure 3.1: Common development concept for this thesis.

3.1.2 Norm Limitations

Chosen frequency band for this thesis is the ISM (Industrial, Scientific and Medical) radio

band at 2.4GHz. The system to design will be non adaptive, and the specification for this

frequency band for European standards can be looked up in the ETSI EN 300 328[15]

document. This norm specifies a few of the system parameters:

� Frequency Range - Describes the start and stop frequency values in which both

transmitting and receiving signals must operate. For this ISM band, the frequency

range is the same for TX and RX, and it ranges from 2400MHz to 2483.5MHz. Also

note the term occupied channel bandwidth, which is defined as the bandwidth in

which 99% of the signal power must resign.

� Operation Mode - There are two different modes. Adaptive, meaning that the

system automatically scans its radio environment and chooses the best frequency

range or channel to operate in. And non-adaptive mode, which just transmits on its

predefined frequency range and does not react to its radio surrounding.

46

3.2. HARDWARE DESIGN OPTIONS

� Spread Spectrum - The EN also distinguishes between spread spectrum communi-

cations, in this case FHSS (Frequency-Hopping Spread Spectrum), and non spread

spectrum communications. Note that other technologies with multiple dedicated

frequency bands or carriers in the frequency range (for example DSSS and OFDM)

are refereed to as non spread spectrum communications.

� Maximum RF Power - Is the maximum power value of the transmission radiating

from the equipment, summarized over the whole area around the antenna. This

is also refereed to as EIRP (Effective Isotropic Radiation Power) and the value is

given in dBm. The exact value depends on the operational mode and if it is spread

spectrum technology.

� Power Spectral Density - Defines how much power can be transmitted for a given

frequency range. Therefore, the unit is given as dBm/MHz, by default normalized

to 1MHz.

� Other Specifications - Include duty cycle, medium utilization factor, receiver

blocking and adaptivity.

To simplify the overall implementation it was decided to avoid adaptive or spread spectrum

approaches. This results in the following limitations of the system: The hardware will stay

in the occupied channel bandwidth and, therefore confine itself to the maximum bandwidth

given by 20MHz. If this value is reached there can still be 4 different channels active at

the same time. The maximum RF power is limited by a value of 100mW or 20dBm EIRP

and a maximum power spectral density of 10dBm/MHz. Most of the other specifications

become invariant with this given setup or are not relevant for further discussions.

3.2 Hardware Design Options

In preparation of this thesis and after the initial definition of the previously described

system parameters, a case study has been conducted which SDR hardware and software

pair would be optimal to reach the desired goals.

First of all the host will be a standard issue PC or Laptop. The only requirements are

to have sufficient computational power for the signal processing (i.e. fast processor and

preferably fast hard discs like SSD. RAM should not be that crucial) and an appropriate

interface to the SDR with suitable data speed.

As of the SDR, three possible platforms were evaluated.

3.2.1 USRP B210 / USRP-2901

Hardware

USRP B210[16] is a SDR kit from Ettus Research providing a dual channel transceiver

board, meaning it supports antenna diversity with two TX and two RX antennas. USRP

47

3.2. HARDWARE DESIGN OPTIONS

stands for Universal Software Radio Peripheral. It has a frequency range from 70MHz

to 6GHz and supports a bandwidth of around 30MHz when both transmission channels

are active. As for digital signal processing, the board employs a Xilinx Spartan 6 FPGA

and connects to a host via a USB 3.0 interface. The transceiver FPRF is an AD9361 from

Analog Devices applying 12 A/D and D/A converters at the digital interface.

However, since Ettus was fairly recently acquired by National Instruments (NI), a contact

for a sale offer to NI concluded in the company offering the USRP-2901[17], which has the

same characteristics as the B210. In detail, NI offered the Comm Sys MIMO Teaching

Bundle[18], which includes two USRP-2901 devices together with cables and courseware.

Figure 3.2: USRP-2901 product picture from NI homepage[17].

The front face of the device has the analog connections to the antennas, where as the back

side includes interfaces to the host and a plug for power supply. The FPGA employs

147.000 logic elements. Note that NI has an even wider collection of possible SDR

devices[19].

Software

This product comes with the choice of two different software tool chains.

The first one is the NI-USRP driver, which is programmed using NI’s development toolkit

LabVIEW. This is a data flow programming style toolkit, where both the host and the

FPGA can be programmed, therefore no VHDL skills are needed. The second option

is the USRP Hardware Driver (abbreviated as UHD), which is published under open

source license and uses C/C++ libraries. It offers cross-platform support for development

environments like GNU Radio, MATLAB and Python. Both drivers work under Windows

and Linux.

48

3.2. HARDWARE DESIGN OPTIONS

3.2.2 LimeSDR

Hardware

LimeSDR[20] is a SDR platform from Lime Microsystems. The FPRF is one of Limes’ own

chips, the LMS7002M, a transceiver IC which employs dual antenna diversity. LMS7002M

has a built in Microcontroller that handles the calibration and tuning, a 12 bit interface to

its analog front-end and a frequency coverage between 100kHz and 3.8GHz at a bandwidth

of around 30MHz in dual mode. Furthermore, it provides a digital transceiver signal

processing block and adjustable analog and digital filters.

Figure 3.3: Block diagram of LMS7002M with dual transceiver topology[21].

Figure 3.3 illustrates the internal structure of the LMS7002M FPRF transceiver. It clearly

shows the dual transceiver topology and visualizes the transmission part on the top half

and the receiving part on the bottom half. The transmission chain first gets the samples

from the FPGA, further processes them, converts them to analog domain before they

are filtered, amplified and mixed with the carrier frequency. In the receiving part, the

signals are processed in reversed order. However, there are three different pre-selections

on received signal frequency range and therefore three analog paths: Low-, high- and

wideband frequency range. The different blocks are controlled via SPI (Serial Peripheral

Interface).

As for the digital signal processing, the SDR uses an Altera Cyclone IV FPGA with 39.600

logic elements. The interface controller is a Cypress USB 3.0 controller. Figure 3.4 shows

the different components on the LimeSDR board and how these are connected to each

other. Note that there is also a Lime board with a different interface (PCIe) and a SDR

49

3.2. HARDWARE DESIGN OPTIONS

called LimeSDR mini using the already mentioned older LMS6002D.

Figure 3.4: LimeSDR components block diagram[22].

Software

As for the software, Lime Microsystems offers a full open source project and its own driver

for its devices[20]. Designers have access to board schematics and layouts, FPGA gateware

projects, interface controller firmware and all data sheets.

The open source driver is called LimeSuite, which includes C/C++ API library and an

additional MATLAB API, with comes with limited functionality. After installing the

driver, LimeSuite also deploys a GUI (Graphical User Interface). This makes it easy to

fast set-up a communication or to sniff for frequency bands. The digital signal processing

on the host can be implemented using GNU Radio, Pothos, SoapySDR or UHD. As for

operating systems, both Linux and Windows are supported.

3.2.3 XTRX

Hardware

The XTRX platform[23] uses the same FPRF as the already mentioned LimeSDR, the

LMS7002M, see Figure 3.3. Therefore, it has a similar frequency range from 30MHz to

3.8GHz, and of course a dual transceiver architecture enabling antenna diversity. Digital-

to-analog interface has a width of 12 bits.

As for the digital part, XTRX deploys a Xilinx Artix 7 FPGA. There are two configurations

of the platform, CS and Pro. The first one comes with a smaller FPGA in terms of logic

gates. The hardware block diagram is illustrated in Figure 3.5 and it shows the connection

50

3.2. HARDWARE DESIGN OPTIONS

between the components and also the interface to the host, a mini PCIe edge. This interface

has a very high bandwidth. XTRX also comes with a SIM Card reader and an on-board

GPS disciplined oscillator. Similar to the previous discussed SDRs the platform also has

GPIO (General-Purpose Input/Output) connectors.

Figure 3.5: XTRX block diagram showing all hardware components[24].

If embedding the device in a host PC using the PCIe interface is not possible, the producers

also sell a USB 3.0 adapter with aluminum enclosure.

Software

All the needed software is open source and can be found on Github[25]. It includes FPGA

gateware and the driver which implements low-level API and a SoapySDR interface. This

interface can be implemented in the already mentioned UHD environment. Note however,

that as of the writing of this thesis, the driver is only supported by Linux, although a

Windows version is in development.

3.2.4 Other Options

There are a variety of other hardware platforms that could be used for this thesis, especially

considering the option of using multiple single transceiver boards to set up a antenna

diversity system. However, most options had a general fraud like being under powered, to

expensive or with insufficient software support.

51

3.3. HARDWARE DESIGN DECISION

3.3 Hardware Design Decision

After summarizing the advantages and disadvantages of the different SDR platforms, a

design decision was made. First of all, the XTRX, even though it has sufficient hardware

capabilities, had one major drawback: At the time of deciding which hardware platform

to use, this board was in an early stage of development. The platform versions that would

have been available were still prototypes and the software support was lacking at that time.

As of the other two possibilities, both boards have a USB 3.0 interface and were very similar

in terms of computational power. They also had sufficient bandwidth, dual transceiver

capabilities and they covered the desired frequency range. However, the USRP platform

has a way higher maximum frequency than is actually needed. Both devices provide not

enough output power to utilize the maximum output power as constrained by the ETSI

EN 300 328[15]. As for the price range, LimeSDR is a much more affordable SDR. On the

software support side, both platforms can be used with GNU Radio and UHD and have

full FPGA support. USRP can also be operated using LabVIEW. Both drivers work with

Linux and with Windows.

Comparing these two devices, it is obvious that USRP is the more powerful option. When

keeping in mind that the advantages of the USRP are not necessary for this thesis (for

example the higher frequency range), they both become very similar again. And this

does not justify the higher price of the USRP, coming in at least five times the amount

compared to the LimeSDR platform. The LimeSDR also has the advantage of having a

total open source software environment.

So it was concluded to work with the LimeSDR platform in this thesis. Over the course

of development, a total of four LimeSDR boards were ordered, two of which were bought

with the aluminum kit as shown in Figure 3.6 and additional antennas and USB interface

cables. Additional material include:

� Two USB 3.0 type A male/female cables with a length of one meter for a more

flexible deployment of the boards.

� A USB 3.0 Hub to further extend flexibility of deployment.

� Four QPF7200 evaluation boards from Qorvo. These are power amplifiers with

selective bandwidth filters and 37dB of TX gain. With these it was planned to

extend the maximum radiated power of both devices to meet the maximum allowed

transmission power of the EN.

52

3.4. LMS7002M STRUCTURE

Figure 3.6: Ordered LimeSDR in aluminum kit.

For simplicity purpose the four devices were named by different colors. The corresponding

serial numbers of the devices are

� Green, 0009070602451726

� Red, 0009070105C50D11

� Blue, 0009072C02881C16

� Yellow, 0009070602461225

3.4 LMS7002M Structure

For later discussions, it is necessary to know about some internal structures of the

LMS7002M dual transceiver FPRF. Therefore, this section will cover the parts that will

become relevant later on. Note that most information will be taken from the current

newest version of the data sheet[26]. Some information will also link hardware structures

to their usage in the LimeSuite driver implementation and API calls.

Section 3.2.2 already mentioned that the LMS7002M connects to a DSP, in this case

to a FPGA. The interface between these two components is called LimeLight. It is

TDD (Time-Division Duplexing) and FDD (Frequency-Division Duplexing) capable.

After this interface, LMS7002M first employs a digital circuit chain refereed to as TSP

(Transceiver Signal Processing), followed by DAC/ADC components and the analog chain

which contains filters, amplifiers and mixers. All of the analog parts are adjustable.

53

3.4. LMS7002M STRUCTURE

The concept how these parts are connected is illustrated in Figure 3.7 for both the

analog and digital part. It’s also clearly visible that there are 3 RX paths, optimized for

different frequency ranges, and 2 different TX paths. Since the chip has dual transceiver

architecture, all these paths are doubled.

Figure 3.7: LMS7002M interface, digital and analog concept[26].

3.4.1 Gain Control

The transmitter path has two amplifier stages: One provides digital gain control and

another one handles the programmable gain of the RF signal. On the receiving side of the

system are three stages of gain control. Their maximum gain ranges from 12dB to 32dB

and is most times being controlled by AGC to get the optimum range of signal magnitude

into filter stages or into the ADCs. There is also an additional optional digital gain control

step.

Gain values can be changed via the LimeSuite API call LMS SetGaindB for both directions.

Notice that when using this function, the individual amplifier gains will be set automatically,

only a gain value in dB must be specified.

3.4.2 Low-Pass Filters

There are selective LPF in both transmit and receive path. All filters have programmable

pass-band frequency values, however, exact ranges vary between TX and RX filters.

Two kinds of filters complement each other: Analog and digital filters combine their

performance in high flexibility and very good adjacent channel rejection.

54

3.4. LMS7002M STRUCTURE

The API call to change transition widths of filters is called LMS SetLPFBW. Similar to

the API call for the gain, it sets and tunes all relevant filters automatically.

3.4.3 Synthesizer

LMS7002M has two low phase noise synthesizers to mix the carrier frequency. Both of

these can operate up to 3.8GHz and drive the IQ mixers on the transmit and the receive

path.

In the LimeSuite driver, using the API call LMS SetLOFrequency lets the user define the

LO frequency by which the baseband signal is mixed.

3.4.4 Interface Lengths

As previously discussed, the LMS7002M comes with 12 bit D/A and A/D converters. This

is also the interface width on the LimeSDR between the LMS7002M FPRF and the Altera

Cyclone IV FPGA. LimeSDR has some additional interfaces like GPIO and JTAG which

are not relevant for this thesis.

To modify the sampling rates of the ADC and DAC, the user can call

LMS SetSampleRateDir and provide a sampling rate in floating point notation as well

as an oversample value.

3.4.5 Transceiver Signal Processing

As obvious from the last few subsections, LMS7002M has a multiple staged digital path.

Figure 3.8 illustrates the digital processing in the receive path and Figure 3.9 illustrate

digital processing in the transmitting path of the FPRF.

Figure 3.8: LMS7002M RX digital path[26].

Both paths have correction blocks: DC correction and phase/gain correction in the complex

symbol plane. The TX path also employs an inverted sinc filter, which compensates for

sin(x)/x amplitude roll of by the DAC. A mixer structure, designed to correctly mix

complex IQ signals together, processes the incoming signal with a numerically controlled

oscillator, which provides high resolution sine and cosine waveforms. Further blocks are

decimation and interpolation in the receive and transmit path respectively and 3 freely

55

3.5. ANTENNAS

configurable digital GFIR (General-Purpose FIR filter) filter blocks. Finally, the RX path

also employs AGC control.

Figure 3.9: LMS7002M TX digital path[26].

3.5 Antennas

The mentioned LimeSDR aluminum kit comes with extra antennas to connect to the SMA

(Subminiature version A) connectors. These are dipole antennas, transmitting a strong

linear polarized signal along their horizontal plane and low power into the vertical axis.

Figure 3.10 shows the ideal radiation pattern of a dipole antenna in the horizontal plane.

Figure 3.10: Horizontal radiation pattern of a dipole compared to an isotropic emitter[3].

For the sake of completeness, these antennas were characterized for the thesis in the

anechoic chamber of the institute. The Institute of Microwave and Photonic Engineering

has an antenna measurement chamber.

First of all, the measurement setup had to be calibrated. For this purpose a Rohde &

Schwarz ZVA 67 Vector Network Analyzer was connected to a Schwarzbeck SBA 9113

56

3.5. ANTENNAS

reference antenna. Figure 3.11 shows the already calibrated measurement setup with one

of the antennas to be characterized.

Figure 3.11: Anechoic chamber with connected AUT.

Clearly visible to the right is a circular disc which rotates and measures the radiating

power from the AUT (Antenna Under Test). The AUT sits on a rotating desk which can

turn by a full 360 degree angle.

A MATLAB script was responsible to evaluate the measurement results and plot them

respectively. Figure 3.12 shows the results, with a clearly visible radiation pattern re-

57

3.5. ANTENNAS

sembling the ideal depicted in Figure 3.10 in the XY plane. However, the XZ plane

measurements could not complete a full 360 degree turn due to obstructing material, and

it shows a very bad radiation power in the zero degree direction.

(a) Radiation in XY plane. (b) Radiation in XZ plane.

Figure 3.12: Polar radiation graphs for LimeSDRs antennas, both for vertical and
horizontal polarization.

Finally, the MATLAB tool also evaluated the matching of the antenna for a frequency

range up to 10GHz, illustrated in Figure 3.13. It is clearly visible that the dipole shows

rather mediocre results. At the interesting frequency range between 2.4GHz and 2.5GHz

the reflection coefficient ranges between -7dB and -9dB. These measurements were

accomplished for only one of the antennas, quick checks with a calibrated ZVL Network

Analyzer showed that all other antennas have similar characteristics.

58

3.6. HOST SETUP

Figure 3.13: Reflection coefficient over a defined frequency range.

3.6 Host Setup

This system will either work with one host connecting to both devices for short range

transmissions, or use two hosts with each connecting to one device for longer distance

channels. Using two hosts also reduces the workload and should be considered when

processing large amounts of data over a small period of time.

3.6.1 Hardware

The host will be a standard issue PC or Laptop. Minimum requirements consist of at

least 4GB RAM, an Intel i5 Processor (or equivalent or better) and USB 3.0 interface

connectors. Additionally it is suggested to use a SSD for faster read and write operations.

3.6.2 Software

Operating System

LimeSDRs driver supports both Windows and Linux OS (Operating Systems). However,

it was decided to use Linux as OS. The reason being that it is a good platform for software

development and compiling of source code is simplified.

For simplicity the chosen Linux based OS was Ubuntu 16.04 LTS. Over the course of this

thesis the version changed though, since close at the beginning of development Ubuntu

59

3.6. HOST SETUP

was updated to 18.04 LTS. Therefore this documentation will focus on version 18.04.

Additional Packages

There are a multitude of additional packages that should be installed to Ubuntu. Chapter

Host Packages in the appendix includes a list of packages and which releases to use. It

also mentions how to install the development environment.

60

Chapter 4

Wireless Analysis Tool

The first step to familiarize with the software environment of the open source driver called

LimeSuite and the hardware platform LimeSDR was to create a console based Wireless

Analysis Tool (abbreviated as WAT) for simple communications between two devices.

This chapter will document the goals of the tool, how WAT was set up and what additional

software libraries were used, its structure, how it implemented the LimeSuite driver API,

some use cases and why the tool was discontinued.

Chapter Project Setup in the appendix documents how to set up the development

environment to modify and compile this tool.

4.1 Goals

Besides the goal of familiarizing with the development environment, console based WAT

also aimed at the following:

� Incorporate the driver API.

� Operate on a single host.

� Open interface connection with multiple devices.

� Configure devices independently. There are multiple parameters to configure, in-

cluding selecting antenna ports, setting gain values, sampling rates, LPF and LO

frequencies.

� Save configuration files from a connected SDR and load configuration files into a

connected SDR.

� Choose between different modulation schemes.

� The ability to calibrate devices.

� Either select two devices to set up a transmission, or select a single device and

have the transmission between its transmit and receive paths. Also select which

61

4.2. IMPLEMENTATION

binary data file should be transmitted, and if it should only be transmitted once or

continuously.

� Furthermore start a stream environment. This includes importing the chosen data

file, modulate and prepare it accordingly, transmitting the data and receiving it on

the RX side. The received data is then demodulated and saved in a separate file.

Also add a visualization of the data by using appropriate software tools.

� The mentioned stream environment should be controllable by the user. This means

that the transmission shall be interrupt able, stopping the stream and giving the user

the ability to change different parameters of the device or of the stream environment.

This includes changing the modulation scheme, turning AGC on or off and configu-

ration of all the previously mentioned device parameters, for example the gain. The

user will even be able to read and write individual SPI registers.

� Finally, once the communication is finished or the user cancels the transmission,

close the stream environment in a controlled manner, free up memory and close all

opened descriptors.

The last steps would be to add signal processing to the data to correct for synchronization

issues, add error correcting codes to counter BER (Bit Error Rate) and divide it to a

multiple host communication tool. However, these functions were not implemented into

WAT, the reasons for this being discussed in the conclusion of this chapter.

4.2 Implementation

Figure 4.1 shows the simplified block diagram of WAT. This is the latest release (Jan.

2020) of the project. Not all member variables and member functions are listed. In some

cases, like multiple get functions, only representatives are listed. Blue blocks are external

code, orange ones are global files needed across the whole project and yellow blocks are

object classes.

62

4.2. IMPLEMENTATION

eCmd: enum

commands: static const char**

WAT.cpp

+ main(int, char**)

+ checkIfOpenedStillConnected(

const deviceVector, int)

commands.cpp

+ calibrate(deviceVector&, int,

float_type, const char*, int)

+ connect(deviceVector&, int)

…

+ getGain(deviceVector&, int, int)

+ getLOFreq(deviceVector&, int, int)

…

+ setGain(deviceVector&, int, const

char*, int)

+ setLOFreq(deviceVector&, int,

const char*, int)

...
deviceVector: vector<Device*>

complex16_t: struct

globals.h

id: int

numChannels: int

deviceName: lms_info_str_t

devicePointer: lms_device_t*

devLck: mutex

constel: Constellation*

Device.cpp

+ Device(int, lms_infor_str_t)

+ ~Device()

+ devCalibrate(bool, float, int)

+ devDisconnect()

…

+ devGetGain(int)

+ devGetLOFreq(int)

…

+ devSetGain(int, bool, unsigned int)

+ devSetLOFreq(int, bool,

float_type)

…

+ devSetupStream(lms_stream_t*)

+ devStartStream(lms_stream_t*)

+ devSendStream(lms_stream_t*,

void*, size_t, lms_stream_meta_t*,

unsigned)

…

+ devReadParam(LMS7Parameter,

uint16_t*)

+ devWriteParam(LMS7Parameter,

uint16_t*)

…

logFileName: const char*

lckFile: mutex

fdLogFile: FILE*

debug_logger.cpp

+ debug_logger()

+ writeHeader()

+ openLogFile(bool)

+ printConsoleLine(const char*)

+ printDebugLine(const char*)

+ printConsoleAndDebugLine

(const char*)

lms7_customAPIs

+ LMS_ToogleAGC(lms_device_t*,

uint32_t, bool)

+ LMS_ReadParam(lms_device_t*,

const string&, uint16_t)

+ LMS_WriteParam(lms_device_t*,

const string&, uint16_t)

arguments: typedef struct

randomStream.cpp

+ startRandomStream(deviceVector&, int,

int)

+ streamRandomRX(void*)

+ streamRandomTX(void*)

+ createTestFilename(const char*, const

char*)

iCommands: enum

pauseThreadArgs: typedef struct

rxDev: Device*

txDev: Device*

rx_stream: lms_stream_t*

tx_stream: lms_stream_t*

rx_status: lms_stream_status_t*

tx_status: lms_stream_status_t*

lengthSourceBytes: streamsize

maximumBufferSize: int

sourceFileName: string

fsSourceFile: fstream

fdDestinationFile_ch0: FILE*

fdDestinationFile_ch1: FILE*

fdResultsFile: FILE*

Stream.cpp

+ Stream(deviceVector&, int, int)

+ ~Stream()

+ setupStream()

+ createResultsFile()

+ filemanagement(const char*)

+ startStream(bool)

+ pauseLoop(int16_t*, int&, int_16_t*, int&,

bool)

+ SPIMode()

+ modulateData(int16_t*. int)

+ printTxDataToFile(int16_t*. int)

+ printRxDataToFile(int16_t*. int)

+ returnStreamStatus(int)

+ setIntAndDeci(int, int)

+ streamPause(void*)

constellationID: int

constellationName: const char*

numBits: int

numSymbols: int

bitmask: int

Constellation.cpp

+ Constellation()

+ ~Constellation()

+ modulateSingleSymbol(int8_t)

+ demodulateSingleSymbol(int16_t,

int16_t)

+ demodulateToChar(int16_t*, int)

+ getConstellationID()

+ getConstellationName()

...

Bpsk.cpp Qpsk.cppgnuPlotPipe.h

INI.h

L
im

e
S

u
it

e
 A

P
I

Figure 4.1: Simplified block diagram of WAT.

Main project file is called WAT.cpp. It holds an enum which enumerates the different

available commands. The main function is basically an endless while loop that waits for

commands, then probes the user for different parameters dependent on the instruction.

As of global files, globals.h defines a custom vector type of the Device class, while

debug logger.cpp manages a debug file and defines functions to print data to the file,

to the console or to both. The debug file is automatically created (log.txt) in the folder

where the binary gets called.

A very important file is Device.cpp, which defines a class called Device that gets created

once for every connected device and then stored in a deviceVector list in main. It contains

different specific variables for the device and also a mutex to make calls to this class thread

safe. Thread safe calls were implemented for future extensions of the program, not all of

which got implemented. This Device object is the main interface to the LimeSuite driver

API, all functions that are implemented use at least one API call. The functions either

are basic instructions (calibrate, initialize and reset the device), set or get different device

parameters (gain, LPF bandwidth, LO frequency, ...), handle stream data (setup stream,

send/receive data, ...) and calls to read/write SPI registers. Special API calls necessary

for this project are defined in the file lms7 customAPIs. These functions mimic or

slightly alter given API calls.

The commands.cpp file holds functions for every different command. The functions

receive command specific information as well as a deviceVector list by reference, containing

63

4.2. IMPLEMENTATION

all opened Device objects from the main function. These functions then process the

received data and either call the specific public functions of the selected Device classes or

they set up a Stream class and start transmission. Table 4.1 shows a list of commands.

ID eCmd enum Explanation

0 ANTENNA Get / Set specific Antenna ports.

1 CALIBRATE Calibrate a device using a specified bandwidth.

2 CONNECT Open to all connected devices. Already opened ones will
be disconnected first.

3 CONSTELLATION Swap the constellation (modulation scheme) of a opened
device.

4 DEVICES List all connected and, if available, all opened devices.

5 DISCONNECT Disconnect all opened devices.

6 ENABLE Enable specific TX / RX channel.

7 EXIT Will clean up and exit the program.

8 GAIN Get / Set relative TX or RX gain.

9 HELP Print a list of available commands into console.

10 INIT Load opened devices with default configuration.

11 LO Get / Set LO Frequency.

12 LOAD Load a configuration file.

13 LPBW Configure low-pass bandwidth.

14 QUIT Will clean up and exit the program.

15 RESET Resets opened devices.

16 SAMPLE Get / Set sampling rate.

17 SAVE Save a configuration file.

18 STREAM Will set up a stream object and start stream procedure
between user defined devices and with a defined test file.
User can pause stream by pressing p and issue commands.

19 WFMPLAYER Specify a device to send a waveform through the FPGA
waveform player.

Table 4.1: Possible console commands.

There are two possibilities to stream data: Either select a random data stream by using the

functions in randomStream.cpp. This file starts a very basic stream with randomized

information. The special thing about this stream environment is that it sets up two

threads, one for TX and one for RX. It uses the typical pthread create system calls to create

threads, pthread join to wait for thread termination and yield to pass thread execution

to the next thread. However, this stream option should not be used, as it was written

more as a tutorial for the author to write a much better stream object later on. Also, the

64

4.2. IMPLEMENTATION

code was written when the Device class was not yet thread safe, making this two threaded

system very complicated using chronos high resolution clock and global bools to wait and

synchronize threads.

The user can also set up a proper stream by using the Stream.cpp class, once the device

parameters were set up properly. First create a Stream object, then call the member

functions setupStream and fileManagement. It used to be that the function setupStream

configured devices automatically, as this was faster then setting all device parameters via

console every time WAT was restarted. Now it will only configure the device for stream

operations. The second member function fileManagement will open the source file with

the data to be modulated and sent, and then set up a source file with the received and

demodulated data.

After the initial setup is complete, a call to the startstream member function will prepare

data structures, read the data in the source file, modulate this data and start the stream

threads. These are not the only threads however, an extra pauseThread gets created which

will probe user input. The reason behind this: once the data gets sent and received by

the devices, the user will have the possibility to press p or P on his keyboard whereby the

pause thread will completely stop the stream and probe the user for commands.

The function pauseLoop gets called, which is structured very similar to the loop in the

main function, asking the user for commands and subsequent parameters. However, the

commands will not be called via characters, but rather via integer input. See Table 4.2

for a list of possible commands, what they do and how they are used. In this case, ID

refers to the respective command integer input. Notice how this interface primarily works

with numbers: The letter i symbolizes that the probed parameter should be an integer, f

assumes a float and b assumes a bool (1/0) value.

65

4.2. IMPLEMENTATION

ID iCommands enum Explanation

1 iCONTINUE Will resume the communication.

2 iQUIT Exit the stream environment and return to
main.

4 iNEWDESTFILE Delete the results file with the demodulated and
received data and create a new, empty file.

5 iCHANGECONSTELLATION Change the modulation scheme. This will
modulate the data new. 1 is for BPSK, 2 for
QPSK.

10 iPRINTTXDATA Print all I/Q data points of the TX data into
console.

11 iPRINTRXDATA Print all I/Q data points of the RX data into
console.

15 iPRINTSTREAMDATA Get information about the LimeSuite internal
lms stream t struct of the stream.

16 iPRINTDEVICEINFO Print device ID and name.

18 iPRINTTXDATATOFILE Take TX buffer data and print it to a file.

19 iPRINTRXDATATOFILE Take RX buffer data and print it to a file.

20 iCHANGELPBW Change the LPF bandwidth. Assumed input is
float in MHz.

21 iGETLPBW Return the LPF bandwidth.

22 iCHANGESAMPLING Change the sampling rate. Assumed input is
float in MHz and afterwards the oversampling
value as integer.

23 iGETSAMPLING Return the sampling rate.

24 iCHANGEGAIN Change the gain value. Assumed input is integer
for the gain value and afterwards bool for TX (1)
or RX (0) direction.

25 iGETGAIN Return the gain value.

26 iCHANGECLOCK Change a specific clock. The first query assumes
the clocks’ ID (see iGETCLOCK), the second
one the value in float (MHz).

27 iGETCLOCK Return the frequency values for the clocks
LMS CLOCK SXR (1), LMS CLOCK SXT (2)
and LMS CLOCK CGEN (3).

28 iTUNECLOCK Similar to iCHANGECLOCK, but this will tune
the clock instead of setting a value.

66

4.3. USE CASES

30 iCHANGELO Change the LO frequency. Assumed input is
float in MHz, then a bool for the direction
(TX/RX).

31 iGETLO Return the LO frequency.

32 iCHANGEANTENNAPORT Change the antenna port. First select the ID of
the port, then the bool for direction (TX/RX).
See also iGETANTENNAPORT.

33 iGETANTENNAPORT Return the antenna ports. There are
different antenna bands: High frequencies, low
frequencies and wideband frequency band.

34 iSETGFIRLPF Set GFIR frequency value. This is a digital
filter in the LMS7002M digital path, see also the
data sheet[26]. First parameter is the direction
(TX/RX), second one a bool that decides to
enable (1) or disable (0) the filter and the third
parameter is the bandwidth float in MHz.

36 iSETINTANDDEC Set interpolation and decimation values in
LMS7002M digital path, see also the data
sheet[26]. The first integer is the interpolation
value, the second one is the decimation value.

100 iONETONE This will replace the TX data with a one tone
sinusoidal using the formula sin (2πi/n), where
i is the sample number and n is the chosen
number by the user.

200 iSPIMODE This will start SPI mode.

Table 4.2: Possible commands during stream pause and how they are used.

In SPI mode, the user can read and write individual SPI registers. The user can choose

between read (0)/ write (1) a register or search for a register (3), see also the LMS7002M

programming guide[27]. Further examples on how to use this mode are described in

subsection 4.3.5.

The object Constellation.cpp is a virtual class. It holds virtual functions for modulation

and demodulation that have no implementation, instead they get implemented by the files

Bpsk.cpp and Qpsk.cpp that inherit the parent object.

The headers INI.h and gnuPlotPipe.h are external files. Note that the API library used

was a locale one, which means that the LimeSuite source code was copied into the project.

This included not all LimeSuite files, rather picking together the necessary source code

and header files. The commit that was used is, as already mentioned, from 2018-08-16.

4.3 Use Cases

This section will focus on use cases of this tool and showcase a few commands.

67

4.3. USE CASES

4.3.1 Startup

To start the tool, simply run the binary in the terminal. If there are Permission denied

errors thrown by libusb, it is useful to start the tool as administrator using sudo.

./WAT

1 WAT version 0.3, will init and start prompt.

2 Warning: Most inputs will not be checked for type or validity.

3 =>

Listing 4.1: Starting prompt of WAT.

If no devices are connected, the program will only give a prompt and wait for further

commands. If the user enters help he will be presented with a list of available commands.

The commands exit or quit will close the tool again, see Listing 4.2.

1 WAT version 0.3, will init and start prompt.

2 Warning: Most inputs will not be checked for type or validity.

3 =>help

4 Available commands (case sensitive):

5 antenna: Get / Set specific Antenna ports active.

6 calibrate: Calibrate a device for a specified bandwidth.

7 connect: Open to all connected devices. Already opened ones will

be disconnected first.

8 constellation: Swap the constellation (modulation scheme) of a opened

device.

9 devices: List all connected and , if available , all opened

devices.

10 disconnect: Disconnect all opened devices.

11 enable: Enable specific TX / RX channel.

12 exit / quit: Will clean up and exit the program.

13 gain: Get / Set relative TX or RX gain.

14 init: Load opened devices with default configuration.

15 lo: Get / Set LO Frequency.

16 load / save: Load / Save a configuration file.

17 lpbw: Configure low -pass bandwidth.

18 reset: Resets opened devices.

19 sample: Get / Set sampling rate.

20 stream: Will set up a stream object and start stream procedure

between user defined devices and with a defined test file. User can

pause stream by pressing "p" and issue commands.

21 wfm: Specify a device to send a waveform through the FPGA

waveform player.

22

23 Tip: Use -1 when prompted with deviceID , channel or similar to select

all available.

24 =>exit

Listing 4.2: Help and exit command.

If devices are already connected, the tool will open communication with them as the

program starts. However, this can also be done by issuing the connect command. Typing

68

4.3. USE CASES

devices gives a list of devices and tells the user if the interface is already opened, while

disconnect closes the communication. Listing 4.3 shows an example on how to use these

commands.

Note that the tool will inform the user of a gateware mismatch! The reason

being, as already discussed, that the tool uses an older local LimeSuite API library. This

warning can be ignored, especially if the gateware version on the device is higher than the

expected one.

1 Gateware version mismatch!

2 Expected gateware version 2, revision 17

3 But found version 2, revision 21

4 Follow the FW and FPGA upgrade instructions:

5 http :// wiki.myriadrf.org/Lime_Suite#Flashing_images

6 Or run update on the command line: LimeUtil --update

7

8 Estimated reference clock 30.6587 MHz

9 Reference clock 30.72 MHz

10 WAT version 0.3, will init and start prompt.

11 Warning: Most inputs will not be checked for type or validity.

12 Found number of devices: 1

13 Opened devices:

14 0: LimeSDR -USB , media=USB 2.0, module=FX3 , addr=1d50:6108 ,

serial =0009070105 C50D11 , RED

15 =>disconnect

16 =>devices

17 Connected devices:

18 LimeSDR -USB , media=USB 2.0, module=FX3 , addr=1d50:6108 ,

serial =0009070105 C50D11 , RED

19 No opened devices.

20 =>connect

21 Gateware version mismatch!

22 Expected gateware version 2, revision 17

23 But found version 2, revision 21

24 Follow the FW and FPGA upgrade instructions:

25 http :// wiki.myriadrf.org/Lime_Suite#Flashing_images

26 Or run update on the command line: LimeUtil --update

27

28 Estimated reference clock 30.6587 MHz

29 Reference clock 30.72 MHz

30 Found number of devices: 1

31 Opened devices:

32 0: LimeSDR -USB , media=USB 2.0, module=FX3 , addr=1d50:6108 ,

serial =0009070105 C50D11 , RED

33 =>devices

34 Connected devices:

35 LimeSDR -USB , media=USB 2.0, module=FX3 , addr=1d50:6108 ,

serial =0009070105 C50D11 , RED

36 Opened devices:

37 0: LimeSDR -USB , media=USB 2.0, module=FX3 , addr=1d50:6108 ,

serial =0009070105 C50D11 , RED

69

4.3. USE CASES

Listing 4.3: Disconnect device that is connected on tool startup and connect it again.

Ensure connection using devices command.

4.3.2 Device Configuration

Once a device is connected it can be configured using specific commands. This subsection

will show a few examples. The ID of the different devices to use is visible using the devices

command, on the far left. Note that ”...” means that debug lines were cut from this

representation. Listing 4.4 shows how to use the init command.

1 =>device

2 Connected devices:

3 LimeSDR -USB , media=USB 2.0, module=FX3 , addr=1d50:6108 ,

serial =0009070105 C50D11 , RED

4 Opened devices:

5 0: LimeSDR -USB , media=USB 2.0, module=FX3 , addr=1d50:6108 ,

serial =0009070105 C50D11 , RED

6 =>init

7 Init all devices? (y/n)

8 =>init=>n

9 Specify device ID to init.

10 =>init=>0

11 ...

Listing 4.4: Init command example.

The next example Listing will set the LO frequency of device 0 to 2400MHz for both

channels.

1 =>lo

2 Get/Set LO frequency? (get , set)

3 =>lo=>set

4 Specify device ID.

5 =>lo=>0

6 Specify Channel (0/1).

7 =>lo=>0

8 TX, RX or both? (tx, rx, both)

9 =>lo=>set=>both

10 Device: 0. LO Frequency range: RX = 0.100000 MHz - 3800.000000 MHz , step

0.000000. TX = 0.100000 MHz - 3800.000000 MHz , step 0.000000

11 Device: 0. LO Frequency: RX = 1200.000000 MHz , TX = 1249.999995 MHz.

Channel: 0

12 Specify desired LO frequency in MHz for channel 0.

13 =>lo=>set=>tx= >2400

14 ...

15 Device: 0. LO Frequency range: RX = 0.100000 MHz - 3800.000000 MHz , step

0.000000. TX = 0.100000 MHz - 3800.000000 MHz , step 0.000000

16 Device: 0. LO Frequency: RX = 1200.000000 MHz , TX = 2400.000000 MHz.

Channel: 0

17 Specify desired LO frequency in MHz for channel 0.

18 =>lo=>set=>rx=>=>2400

70

4.3. USE CASES

19 ...

Listing 4.5: LO command example.

Note that in this context channel refers to the analog paths to the antennas. LimeSDR

has two integrated transceiver paths, therefore two channels. The user can also choose -1

if probed for a multiple choice answer to select all. This includes for example channels or

choosing multiple devices. In the next Listing, the LPF bandwidth of two devices will be

changed to 10MHz on both channels using the -1 command.

1 =>devices

2 Connected devices:

3 LimeSDR -USB , media=USB 2.0, module=FX3 , addr=1d50:6108 ,

serial =0009072 C02881C16 , BLUE

4 LimeSDR -USB , media=USB 2.0, module=FX3 , addr=1d50:6108 ,

serial =0009070105 C50D11 , RED

5 Opened devices:

6 0: LimeSDR -USB , media=USB 2.0, module=FX3 , addr=1d50:6108 ,

serial =0009072 C02881C16 , BLUE

7 1: LimeSDR -USB , media=USB 2.0, module=FX3 , addr=1d50:6108 ,

serial =0009070105 C50D11 , RED

8 =>lpbw

9 Set low -pass bandwidth of which device?

10 =>lpbw=>-1

11 TX, RX or both? (tx, rx, both)

12 =>lpbw=>tx

13 Specify Channel (0/1).

14 =>lpbw=>-1

15 Device: 0. LPBW Range: RX = 1.400100 MHz - 130.000000 MHz , step

0.000000. TX = 5.000000 MHz - 130.000000 MHz , step 0.000000

16 Device: 0. Currently LPBW set to RX = 5.000000MHz , TX = 5.000000 MHz.

Channel: 0

17 Device: 0. LPBW Range: RX = 1.400100 MHz - 130.000000 MHz , step

0.000000. TX = 5.000000 MHz - 130.000000 MHz , step 0.000000

18 Device: 0. Currently LPBW set to RX = 5.000000MHz , TX = 5.000000 MHz.

Channel: 1

19 Specify bandwidth in MHz (0 to exit) for channel 0.

20 =>lpbw=>set=>tx=>10

21 ...

22 Specify bandwidth in MHz (0 to exit) for channel 1.

23 =>lpbw=>set=>tx=>10

24 ...

25 Device: 1. LPBW Range: RX = 1.400100 MHz - 130.000000 MHz , step

0.000000. TX = 5.000000 MHz - 130.000000 MHz , step 0.000000

26 Device: 1. Currently LPBW set to RX = 5.000000MHz , TX = 5.000000 MHz.

Channel: 0

27 Device: 1. LPBW Range: RX = 1.400100 MHz - 130.000000 MHz , step

0.000000. TX = 5.000000 MHz - 130.000000 MHz , step 0.000000

28 Device: 1. Currently LPBW set to RX = 5.000000MHz , TX = 5.000000 MHz.

Channel: 1

29 Specify bandwidth in MHz (0 to exit) for channel 0.

30 =>lpbw=>set=>tx=>10

31 ...

71

4.3. USE CASES

32 Specify bandwidth in MHz (0 to exit) for channel 1.

33 =>lpbw=>set=>tx=>10

34 ...

Listing 4.6: LPBF and -1 commands example.

As mentioned there are also get functions. Listing 4.7 shows how to return the available

antenna ports. This also shows which antenna ports are active.

1 =>antenna

2 Get/Set antenna ports? (get , set)

3 =>antenna=>get

4 Specify device ID.

5 =>antenna=>0

6 Specify Channel (0/1).

7 =>antenna=>-1

8 ID| RX | TX

9 0: NONE | NONE

10 1: LNAH | BAND1

11 2: LNAL | BAND2

12 3: LNAW |

13 4: LB1 |

14 5: LB2 |

15 Device: 0. Acitve ports: RX 1, TX 1. Channel: 0. DeviceID: 0

16 ID| RX | TX

17 0: NONE | NONE

18 1: LNAH | BAND1

19 2: LNAL | BAND2

20 3: LNAW |

21 4: LB1 |

22 5: LB2 |

23 Device: 0. Acitve ports: RX 1, TX 1. Channel: 1. DeviceID: 0

Listing 4.7: Antenna command example.

The user can also export the configuration of a device by using the save command and

choosing a file name.

1 =>save

2 Save Config from which device?

3 =>save=>0

4 Where to save the Config File?

5 =>save=>conf.ini

Listing 4.8: Save command example.

As a last example, Listing 4.9 will show how to calibrate a specific transceiver path.

1 =>calibrate

2 Specify device ID to calibrate.

3 =>calibrate =>0

4 Specify bandwidth in MHz.

5 =>calibrate =>10

6 Specify Channel (0/1).

7 =>calibrate =>0

72

4.3. USE CASES

8 TX, RX or both? (tx, rx, both)

9 =>calibrate=>both

10 ...

11 Tx | DC | GAIN | PHASE

12 ---+-----+------+------

13 I: | -154 | 1963 | -15

14 Q: | 150 | 2047 |

15 ...

16 RX | DC | GAIN | PHASE

17 ---+-----+------+------

18 I: | 8 | 1663 | 87

19 Q: | 8 | 2047 |

20 ...

Listing 4.9: Calibration command example.

4.3.3 Stream

In order to send and receive data (binary data, for example a text file), the user needs to

issue the stream command, as shown in Listing 4.10. First select RX and TX device (this

can also be the same device) and then select a file to send. The user can either select the

file including its path in the file system, relative to the binary, or for simplicity purpose

copy the file in the same directory as the binary.

1 ...

2 0: LimeSDR -USB , media=USB 2.0, module=FX3 , addr=1d50:6108 ,

serial =0009070602451726 , GREEN

3 1: LimeSDR -USB , media=USB 2.0, module=FX3 , addr=1d50:6108 ,

serial =0009070105 C50D11 , RED

4 =>stream

5 RX device?

6 =>stream=>1

7 TX device?

8 =>stream=>0

9 Specify file to stream in local folder.

10 =>stream=>cafe.txt

11 ...

Listing 4.10: Stream command example.

After this the stream environment will be set up. If this is successful, the last query will

be if the data should be transmitted once or in a continuous mode. If the binary was

compiled with the gnuPlot symbol set, there will be a visualization of the data. For TX

the constellation data will be shown only once, for RX it will update every second.

1 Continuous stream? (0/1)

2 =>stream=>

3 Tx: 8.016 MB/s

4 Rx: 8.037 MB/s

5 Tx: 7.979 MB/s

6 Rx: 8.028 MB/s

7 Tx: 8.040 MB/s

73

4.3. USE CASES

8 Rx: 8.045 MB/s

Listing 4.11: Selecting continuous stream.

In order to stop a continuous stream, press p or P and hit the enter key. This will stop

the communication and start the pause loop. Type in a 2 to stop the stream environment.

Other possible options will be discussed in subsection 4.3.5.

An example configuration: Set antenna ports to BAND1 on TX side and LNAH on RX

side, both LO to 2.4GHz and a bandwidth of 10MHz, with a sampling rate of 1MHz at

4 times oversampling and a gain value of 40 for both devices. Furthermore, use QPSK

modulation scheme.

Figure 4.2 shows the TX constellation data using gnuplot. Since QPSK has 4 constellation

symbols with equal amplitude but different phase, the symbols are visible at the edges of

the constellation diagram. Of course multiple symbols lie on the same spot.

Figure 4.2: TX constellation data for QPSK modulation. Symbols are visible in the edge
areas.

On the other hand, Figure 4.3 shows the received symbols, or rather one batch of received

symbols. It is clearly visible that the symbols experienced additional noise. Since there

is no carrier locking, the symbols rotate around the origin point, and a lack of clock

synchronization means that the symbols get sampled at wrong intervals, therefore variate

in amplitude. Both of these effects were visible during execution of the transmission.

74

4.3. USE CASES

Figure 4.3: RX constellation data for QPSK modulation with clearly visible
synchronization problems.

4.3.4 AGC Control

In order to change the AGC value of the RX device, the user just needs to input a number

in the console during the communication and hit the enter key. This will call a custom

API call in the lms7 customAPI.cpp file which will calculate the desired RSSI (Received

Signal Strength Indication) with the formula

RSSI(xAGC) =
87330

10
3+xAGC

20

(4.1)

where xAGC is the numerical input from the user. The formula closely resembles the used

formula in the LimeSuite driver GUI.

4.3.5 Stream Pause Controls

As already mentioned, once the user pauses a stream environment, he can modify different

parameters. The different integer commands and how to use them were described in

Table 4.2. As an example, choosing 1 continues the stream, a input of 2 quits the

stream and returns to the main loop and 5 lets the user change the constellation, i.e.

the modulation, method. Listing 4.12 shows how to change the constellation to QPSK.

1 ...

2 Channel: 0 TX | RX

3 Active: 0 | 0

4 Dropped Packets: 0 | 0

75

4.3. USE CASES

5 FIFO Filled Count: 2720 | 68000

6 FIFO Size: 87040 | 87040

7 Link Rate: 0.000000 | 0.000000

8 Overruns: 0 | 0

9 Timestamp: 3113 | 3098250

10 Underruns: 0 | 0

11

12 Channel: 1 TX | RX

13 Active: 0 | 0

14 Dropped Packets: 0 | 0

15 FIFO Filled Count: 0 | 17680

16 FIFO Size: 87040 | 87040

17 Link Rate: 0.000000 | 0.000000

18 Overruns: 1 | 0

19 Timestamp: 3113 | 3098250

20 Underruns: 0 | 0

21

22 Halt stream confirmed. Ready for integer commands.

23 paused=>5

24 paused=>i5=>2

25 paused=>

Listing 4.12: Stream pause menu, changing the constellation to QPSK.

As a further example, the next Listing shows how to change the sampling rate to 2MHz

and the oversampling factor to 4.

1 paused =>22

2 paused=>f22=>2.0

3 paused=>i22=>4

4 ...

5 paused=>2

Listing 4.13: Change the sampling rate to 2MHz and oversampling to 4.

All other commands work very similar and are described in the mentioned Table. Only one

is really different, this being the SPI mode. This mode can be activated with the integer

200, after which the user can choose between reading a register (0), writing a register (1),

find a specific register by a string (3) or showing all available registers in the LimeSuite

drivers LMS7parameterList vector, see also the programming guide[27]. Press c to exit at

any time and return to normal pause mode.

For example, Listing 4.14 shows how to print out the different SPI registers and how to

search for a specific one, in this case all GFIR related registers. The first value shows the

address, next are the registers MSB and LSB, the default value, the name of the register

and an optional tooltip.

1 paused =>200

2 Entering SPI Mode , careful from now on. Write "c" to quit at all time.

3 paused=>SPI=>rd(0)/wr(1)/help (2)/find (3)=>2

4 0x0020 / 15:15/ 1; LRST_TX_B , Resets all the logic registers to the

default state for Tx MIMO channel B

76

4.4. CONCLUSION

5 0x0020 / 14:14/ 1; MRST_TX_B , Resets all the configuration memory to

the default state for Tx MIMO channel B

6 ...

7 0x0641 / 6: 0/ 32; RSSIDC_DCO1 , Value of RSSI offset DAC1

8 0x040c / 8: 8/ 0; DCLOOP_STOP , Stops RxDC tracking loop

9 paused=>SPI=>rd(0)/wr(1)/help (2)/find (3)=>3GFIR

10 0x0205 / 10: 8/ 0; GFIR1_L_TXTSP , Parameter l of GFIR1 (l =

roundUp(CoeffN /5) -1). Unsigned integer

11 ...

12 0x040c / 5: 5/ 1; GFIR3_BYP_RXTSP , GFIR3 bypass

13 0x040c / 4: 4/ 1; GFIR2_BYP_RXTSP , GFIR2 bypass

14 0x040c / 3: 3/ 1; GFIR1_BYP_RXTSP , GFIR1 bypass

15 paused=>SPI=>rd(0)/wr(1)/help (2)/find (3)=>

Listing 4.14: Starting SPI mode, printout all SPI registers and search for a specific one.

This next Listing shows how a simple read command first queries the name of the register,

if the user wants RX or TX device, and then returns the value plus address. In this case

its the desired AGC value in the RX path. A write command for the same register calls

a readout of the register first. After setting the register, another readout is performed to

check if the value was set correctly. However, the user can also check this with another

read command.

1 paused=>SPI=>rd(0)/wr(1)/help (2)/find (3)=>0

2 paused=>SPI=>rd=>Name=>AGC_ADESIRED_RXTSP

3 paused=>SPI=>rd=>rx(0)/tx(1)=>0

4 AGC_ADESIRED_RXTSP (0x0409): 0x00/0

5 paused=>SPI=>rd(0)/wr(1)/help (2)/find (3)=>1

6 paused=>SPI=>wr=>Name=>AGC_ADESIRED_RXTSP

7 paused=>SPI=>wr=>rx(0)/tx(1)=>0

8 AGC_ADESIRED_RXTSP (0x0409): 0x00/0

9 paused=>SPI=>wr=>Value=>1

10 AGC_ADESIRED_RXTSP (0x0409): 0x01/1

11 paused=>SPI=>rd(0)/wr(1)/help (2)/find (3)=>0

12 paused=>SPI=>rd=>Name=>AGC_ADESIRED_RXTSP

13 paused=>SPI=>rd=>rx(0)/tx(1)=>0

14 AGC_ADESIRED_RXTSP (0x0409): 0x01/1

Listing 4.15: Read and write operations on single SPI register.

4.4 Conclusion

The goals described in section 4.1 were all met. However, further development of this tool

was not possible for one reason: Since it was basically a single threaded user program, it

scraped the limits of the hosts computational power. Of course there were three additional

threads running during stream (the pause thread and the two LimeSuite driver threads

for both devices), but these were not prioritized by the scheduler. Therefore, as soon as

there was any form of additional data processing, for example trying to synchronize the

received data as seen in section 4.3.5, the threads for handling the devices and API calls

77

4.4. CONCLUSION

were neglected. This meant that data did not pass through FPGA and FPRF fast enough,

FIFO (First In, First Out) buffers were filled and packets were dropped.

One solution to this problem would be to use a combination of fork, exec and

pthread setschedparam system calls in unistd.h C/C++ library to create a multi threaded

user program that shares data, for example via the pipe command. However, this would

still not guarantee a stable communication and would also exceed the scope of this master

thesis.

Therefore the decision was made to explore other possibilities, which lead to the conclusion

to use GNU Radio as further development environment.

78

Chapter 5

GNU Radio Framework

This chapter will focus on an introduction to GNU Radio. It will cover what GNU Radio

is about, an introduction to its graphical tool and what additional processing blocks were

developed in the course of this thesis.

Keep in mind that the GNU Radio release version is important if the intention is to further

develop this thesis. Refer to subsection 3.6.2 and appendix chapter Host Packages for

details. For a detailed explanation on how to develop a custom block to be added to the

environment, refer to chapter Adding Custom Blocks in the appendix.

5.1 About GNU Radio

GNU Radio is an open source development toolkit, specialized in digital signal processing

and incorporating SDR hardware via host interfaces. Using hardware is optional though,

GNU Radio can be used as a pure signal processing simulation. It’s an ideal development

environment to quickly set up basic transmissions between radios or send/receive with a

single SDR. Furthermore, it can be used to develop signal processing chains that will get

integrated in a DSP in later stages of projects.

This toolkit offers a huge variety of so-called blocks, which process, absorb or create digital

data. It can also be expanded by programming custom blocks, for which it offers tools to

create bare-bone file structures to incorporate these blocks into the environment. GNU

Radio installations come with filters, encoders and decoders, modulators and demodulators,

synchronizers and many other useful blocks. Furthermore, it has blocks to illustrate data

in various domains (time, frequency, constellation, . . .). All blocks get connected via so-

called ports, for which there are different data types available. These ports usually pass

the data types as data streams. Included to the environment is the GNU Radio scheduler,

which manages what blocks process data at which time, and also how the data is passed

from block to block.

The GNU Radio application as a whole incorporates different programming languages.

Many of the blocks are written in Python, especially when they perform rather simple

79

5.2. GNU RADIO COMPANION

tasks. For more complex implementations, blocks can also be written in C++, which

gives the opportunity to develop real time, high throughput, performance critical digital

signaling processes. In order to connect these languages, GNU Radio uses SWIG , an open

source software wrapper, merging a variety of programming and scripting languages.

While GNU Radio can be built and added to the host system from scratch (for example

from Github) and since it depends on various different open source software, it is recom-

mended to instead install it directly using Debians advanced package tool (apt). See also

the host setup the appendix chapter Host Packages, which includes the gnuradio package.

GNU Radio is licensed under the GNU GPL (General Public License) version 3 or later.

All of the code is copyright of the Free Software Foundation.

There are several hardware platforms that are supported. Platform developers supply their

own implementations freely to be added to the GNU Radio environment. For example,

GNU Radio contains the mentioned UHD driver in chapter 3, which makes development

with the USRP hardware platform available, while Lime Microsystems supplies its own

implementation on Github for their various boards[28].

Another feature of GNU Radio are so-called tags. These are basically markers that get

added to specific points of a data stream to simplify searching for these location. It makes

later blocks in a processing chain more efficient, instead of searching for a specific pattern,

blocks only need the location of specific tags.

While GNU Radio comes with a variety of tools that can be used in console, there is also

a graphical tool available to create signal processing flow graphs. This tool is called GNU

Radio Companion.

5.2 GNU Radio Companion

GNU Radio Companion (abbreviated as GRC) is a graphical tool for easy and fast

development of GNU Radio flow graphs. Figure 5.1 shows an empty GRC project. Blocks

can be selected on the right and dragged into the flow graph. When executing a flow

graph (assuming it has no errors), GRC creates a Python script that gets executed. This

script runs in an own process on the host. The program can be executed in console with

the command

gnuradio-companion

There are different types of available blocks: While variables are rectangular blocks

without connections (i.e. ports), most other blocks actually either generate data streams

(source block) through ports, consume data (sink block) through ports or get data, process

it and then output them further (e.g. sync blocks). The color of the port symbolizes which

80

5.2. GNU RADIO COMPANION

kind of data format gets passed. Figure 5.2 shows these different data types from the help

section of GRC, ranging from bit or byte streams to integer or float streams and also

complex, i.e. constellation data, streams. When connecting blocks together, both ports

must have the same data type. However, every block can have multiple ports with different

data types.

Figure 5.1: GNU Radio Companion GUI with empty flow graph.

Figure 5.2: The different data types in GRC, as illustrated in the help section.

When using a GRC flow graph without any hardware blocks, it is imperative to use a

81

5.2. GNU RADIO COMPANION

throttle block. This block reduces the amount of data flowing through. If this is not done,

the host might use all its computational power to execute the flow graph, which could

deteriorate or even damage the hardware. If an SDR is connected and part of the flow

graph, the interface to the hardware limits the data speed, neglecting the need of a throttle

block.

Figure 5.3 shows an example flow graph without hardware, modulating QPSK with additive

noise. In the top left corner are blocks to define variables, where the sbs variable is

deactivated, therefore colored in a darker gray. There are also object blocks like the

Constellation Rect. Object which defines an object with multiple member variables. All

other blocks have ports, first consisting of byte streams (from the random source until the

input of the symbols mapper, i.e. the modulator) and finally complex (i.e. constellation)

data. The random source repacks its stream into 2 bit pairs and modulates it, then AWGN

gets added and finally visualized in a QT GUI sink. QT is a open source widget tool kit

for creating GUIs.

Figure 5.3: A very basic flow graph which modulates a random source with additive
noise.

The result of this flow graph is illustrated in Figure 5.4, or rather one snapshot of the

data. There is clearly a QPSK modulation scheme visible, also the added Gaussian noise.

The next section will discuss how to add additional blocks to GRC by programming an

example block.

82

5.3. ADDITIONAL CUSTOM BLOCKS

Figure 5.4: Graphical result of the noisy constellation points.

5.3 Additional Custom Blocks

In the course of this thesis, multiple GNU Radio blocks were programmed. Most of them

were newly created, while two were adaptation of existing ones. All custom blocks are

grouped in the gr limesdrmod module and are illustrated in Figure 5.5. Note that even

though they were developed, not all of them actually find use in the coming flow graphs.

Some were just for testing or became deprecated during the process of the thesis.

Following is a list of the tasks and data processing that each of these blocks provide.

Bitshifter: This block takes a bit stream and shifts the whole stream by the number of

bits specified. This is useful in text files: if the whole bit sequence is shifted, the displayed

text from the ASCII Table is no longer correct. A bit shift can solve this issue.

CRC Checksum Append: This calculates a CRC for a defined length of bytes. First,

the binary data for the checksum gets passed to the output (the length of this data is

defined by the Tag length variable). The same data is then used to calculate the CRC

checksum (length of this checksum can be between 1 and 4 bytes), which gets passed to

the output as well with a user defined tag.

83

5.3. ADDITIONAL CUSTOM BLOCKS

Figure 5.5: Additionally programmed GRC blocks.

Tagged Mux: Even though there are native multiplexer in the GNU Radio environment,

there are none that multiplex depending on tags. This multiplexer searches for the in0

tag on the input of in0 and passes the amount of data (stored as the tags’ value) to

the output. Then it switches to in1 input and the procedure repeats with the in1 tag.

However, after the data from in1 got passed to the output, an additional guard sequence

gets added, which can be defined by the user. This guard sequence is optional. The block

alternates this way between both input ports.

Correlate and Sync: In order to filter the incoming byte streams between useable and

neglectable data, this block correlates the data with a defined bit sequence. The length

of this correlation sequence should be a multiple of 8. After an initial correlation with

the first data on the input, if the sync word was not found, the block shifts the input

data by one bit and correlates again. If no sync word was found, the entire input data

set will be discarded. Once a correlation was successful, the work function first adds a

header tag to the data to symbolize the start of the frame. Then the sync word, and an

optional CRC data length, get passed to the output. Additionally, the block adds a packet

tag afterwards and passes the amount of specified packet length in bytes to the output,

therefore completing the frame data.

Tagged Demux: This block is the inverted version of the previously discussed Tagged

Mux, to give later blocks the opportunity to process header and packet independently. It

imports all tags on the input port and checks if the first one matches the defined header

tag. If it matches, the header data, the length of which is stored as the tags value, gets

passed to output out0, together with an identifier tag to numerate the frame. If the

84

5.3. ADDITIONAL CUSTOM BLOCKS

tag name does not correlate, the next tag is checked and the data up to this point gets

discarded. Once the first header tag was found, the block searches for the packet tag,

correlates the same as with the header tag, outputs the data length to out1 and adds the

same numerated identifier tag to this output as with the previous one. Following blocks

just need to check the identifier tag ID to find out which header belongs to which data

packet.

CRC Checksum Header Checker: There are two inputs to this block. The first one,

in0, expects enumerated header data, while the second in1 expects the associated packet

data, tagged with the same enumerated ID. Therefore it is the optimal block to come after

the previously described Tagged Demux. It reads the header data at in0 and checks if the

provided CRC matches the sync word, i.e. the header data. If the checksum correlates,

the packet data is passed to output port out0. If it does not match, it is passed to port

out1, therefore separating correct data from false data packets.

Data Rate Eval: This is a very specific block. It consumes all the input data on in0

and correlates the data with 4 specific characters: ’c’, ’a’, ’f’ and ’e’. If the first byte

matches one of these ASCII characters, it is considered as a correct byte. If it does not

correlate with any of this characters, then the MSB of this byte is considered as a bit

error, the whole byte is bit shifted by 1 bit and the test repeats by including the MSB of

the next byte on the input port. Therefore the block can then calculate how much bits

were correct. Every two seconds it outputs its data rate from the input onto out0 port as

an floating point variable, while simultaneously writing the calculated BER onto output

port out1. Additionally, it also outputs both of these values into the console every two

seconds. Therefore, both output ports can also be connected to a null sink.

The reason for this specific character test was that the given source test data to transmit

during development was a repeating sequence of the word ”cafe”.

Delayed Blocker: Since this is a very simple block, it is one of the two that have been

written in Python. The user defines a time in milliseconds and the block only passes the

input to the output port once this time has passed after executing the flow graph. Before

the time is passed, it simply stops the data, not discarding it.

Timed Blocker: The second block to be written in Python. First it blocks all data,

similar to the Delayed Blocker, for the given block time in milliseconds. Then it passes

its input data to the output port for the defined pass time in milliseconds. Afterwards it

repeats this procedure.

Modified LimeSuite Sink (TX): This is a clone of the open source gr-limesdr GNU

Radio block on Gihtub[28] provided by Lime Microsystems. For documentation purpose,

refer to the given website. The only change is that the block has an additional parameter

Print Stream Stats. If this is enabled, the device periodically prints the devices

85

5.3. ADDITIONAL CUSTOM BLOCKS

lms stream status t information to the console. This struct contains information about the

data rate in MB/s, buffer sizes and packet drops. Beside of this changes and incorporating

the member variable into the general work function, nothing was changed.

Variable Source: A tutorial on how to program and add this block to the GNU Radio

environment is documented in the appendix chapter Adding Custom Blocks. Whatever

value is set in the variable will be output to port out0. If the value gets changed during

the execution of the flow graph, the callback function gets executed and the value on the

output port is updated.

Counter Source: This block outputs an incremental number between its defined range

by the given increment value. This is a very simple block, since it outputs a byte stream,

the maximum possible value is 255. Use case for this block is to create and incremental

packet ID, which will again start at its minimum once it overflows.

Modified LimeSuite Source (RX): Similar to the TX variant, this is also a clone of

the source code from Github[28] and has the same new parameter Print Stream Stats to

enable printout of stream statistics into console for the RX device. Again refer to the

documentation on the website. One additional change though, is that the block has an

integer input. The value on in0 defines the AGC value of the RX. If the value is zero, AGC

is deactivated (the implementation has an additional callback function called set agc(int

agc)). If the value is not zero the device calls the same custom API function as described

in section 4.3.4 with formula 4.1. This AGC input is controlled with the previous described

variable source block.

86

Chapter 6

GNU Radio Flow Graphs

This chapter will give an overview of the developed GNU Radio flow graphs. The first

section will illustrate the system as a whole, remaining sections focus on the three parts

that make up the the full system.

Once all parts have been discussed and their blocks linked to the theoretical chapter of

this thesis, chapter 7 will explain how to compare the different parts with software, and

chapter 8 will contain the actual evaluation using a measurement setup.

6.1 Full System Concept

Figure 6.1 shows the full system, with obvious similarities to the DCS in section 2.1. The

advantage of a DCS is that the different blocks can work independently of each other.

Every block takes the input that gets passed to it, processes it accordingly and sends it to

the next block. This constraints possible errors to individual parts and avoids problems

with CPU limitation.

In order to ease the workload of the host PC, the whole system will be divided into three

independent flow graphs. Each one of these can then be evaluated separately.

1. Data preparation and modulation.

2. Transmit and receive.

3. Data synchronization, demodulation and correlation.

Part 2 will contain hardware blocks that actually send and receive data via a channel

respectively, while the other parts perform only data processing on the host. In order

to compare different stages of this system with each other, a standardized method for

evaluation is required. Since there is an actual wireless transmission in place, comparing

in the frequency domain would be preferred. It’s possible to save data into a sink at the

end of one flow graph and use it as input of the next one. Therefore, a tool to translate

data from the complex symbol plane to the frequency domain was programmed using

MATLAB. This will be discussed in chapter 7.

87

6.2. DATA PREPARATION AND MODULATION

Binary

source

Sync word

& packet ID
Multiplexer

& guard

sequence

injector

Data

formatting

CRC

append

Symbol mapping &

interpolation & RRC filter

LimeSDR

TX

TX1 TX2

RX1 RX2

LimeSDR

RX

AGC

Costas loop

& RRC filter

Symbol

sync
Demodulate

Sync word

correlator
Binary sink

Channel

Data preparation and modulation Transmit and receive

Data synchronization, demodulation and correlation

CRC

append

Binary data Binary data Constellation data

Constellation dataBinary data

Equalizer

Figure 6.1: Full system concept of GNU Radio flow graphs.

Note that all parts execute consecutively on one single host. If a higher distance between

TX and RX were required, flow graph 2 would need to be divided.

6.2 Data Preparation and Modulation

This part focuses on preparing the source data to be sent over the physical channel.

Figure 6.2 illustrates the concept of this flow graph.

It starts with a defined synchronization sequence (frame synchronization), including a

simple packet ID mechanism and a trailed CRC checksum to recognize bit errors in the

header. This gets multiplexed with the binary information source (chopped into defined

packet lengths), which also gets a trailed CRC checksum. The multiplexer can add an

optional guard sequence. Figure 6.3 depicts the structure of one single frame. Red is the

header, yellow the packet and blue the optional guard space.

88

6.2. DATA PREPARATION AND MODULATION

Binary

source

Sync word

& packet ID
Multiplexer

& guard

sequence

injector

Data

formatting

CRC

append

Symbol mapping &

interpolation & RRC filter

Data preparation and modulation

CRC

append

Binary data Binary data Constellation data

TX.dat

Figure 6.2: Concept for data preparation and modulation.

Synchronization

sequence

Packet

ID

Header

CRC
Data packet Packet CRC

Optional guard

sequence

header_len crc_len_packet variable lenght1 byte crc_len_header packet_len

Figure 6.3: Frame structure concept.

Depending on the modulation scheme, the binary data stream is then processed into

correct symbol lengths and modulated to complex constellation points. This modulation

is performed in one single block: First, the binary symbols are mapped to the constellation.

Then the signal gets upsampled. Thereafter, to satisfy the equivalent channel equation,

the samples are then processed by a RRC filter.

In the last step of this flow graph, the results are visualized and saved into a .dat file.

This file can then be used to evaluate the result and as input for the next flow graph.

6.2.1 Variables

Figure 6.4 shows the variable blocks of this flow graph.

Figure 6.4: Variables needed for data preparation and modulation flow graph.

The first block that is always present in flow graphs is the Options block. It defines

89

6.2. DATA PREPARATION AND MODULATION

the project name and how the Python file for execution will be named. Other possible

options are the size of the flow graph in the GUI and what kind of software will be used

to illustrate the data. In this case, QT was chosen, as described in section 5.2.

Regarding the frequency and bandwidth values for modulation, the variable LO freq

defines the carrier frequency to which the baseband signal is translated to and samp rate

defines the sampling rate. For now this sampling rate refers to how much symbols will be

processed per second by the different blocks in this flow graph. These variables will be

more meaningful once hardware blocks are present.

There are two possible modulation schemes in this flow graph: BPSK and QPSK. The

Constellation Rect. Object defines the parameters of these schemes. One of these

objects must be deactivated (i.e. grayed out), the other modulation scheme will then be

active. Since it is a C++ object, other blocks can access its member variables by first

giving the object name (in this case constel) followed by a dot and the name of the member

variable (e.g. constel.points() for the location of the symbols in the complex plane). The

parameters of the modulation scheme can either be set manually or by using GNU Radios’

digital objects and functions. For example, the symbol locations in the complex plane of

BPSK can be set with digital.psk 2()[0] and the symbol mapping with digital.psk 2()[1],

while for QPSK this can be done with the psk 4() member function. Other parameters

refer to symmetry in the complex plane, these were left as defaults.

Variables that depend on the constellation scheme are: Bit per symbol (bps) with the

command constel.bits per symbol(), samples per symbol (sps) which defines the upsample

value and the order of modulation (arity) by constel.arity(). Additionally, beta stores

the excess bandwidth of the RRC filter.

The variable sync word defines the frame synchronization sequence that gets multiplexed

with the packed ID and then with the data packet. This synchronization sequence

symbolizes the start of a packet frame and is defined by a bit sequence. Because of

the structure of the flow graph and the implementation of later blocks, this sequence must

have a length of modulo 8.

QT GUI Tab Widgets are for positioning graphs on the results screen that gets

presented to the user.

The final variables define data lengths and tag names. As for the frame header, the

variable header tag key defines the name of the tag and header len the length of the

header in bytes. Furthermore, crc len header defines the length of the CRC checksum

in bytes that get appended to the synchronization sequence plus packet ID. On the other

hand, packet tag key defines the name of the tag for the packet data, packet len sets

the packet length in bytes and crc len packet defines the number of bytes for the CRC

90

6.2. DATA PREPARATION AND MODULATION

checksum of the data packet.

6.2.2 Data Processing

This subsection will explain the blocks used in the flow graph illustrated in the following

Figure 6.5. It will also discuss how they are configured. Note that this is only one possible

configuration of the parameters, different simulation configurations and their results are

discussed in chapter 8.

Figure 6.5: Data Processing for data preparation and modulation flow graph.

The Vector Source in the top left corner of the flow graph outputs the frame synchroni-

zation sequence. As for the parameters, it only needs the previously discussed sync word,

which is already defined in vector form. Furthermore, the Repeat option is set to true to

output the vector endlessly. Since the vector is defined as a bit sequence, the following

Repack Bits block takes all bits from the source and stuffs them together into byte

lengths. Otherwise, only the LSB would contain one bit of the synchronization word

in the bit stream and all other bits would be 0. A simple packet ID gets created by

the Counter Source block and multiplexed with this sequence. Finally, this combined

header passes through a CRC Checksum Append block. This processes the header by

adding one byte of CRC checksum.

For representation purpose, this flow graph has a File Source as data source. There will

be multiple test sources in chapter 8 to emulate different test cases, in which case the

source block might be replaced. This block opens the file on the hard drive and outputs

the data. Same as with the vector source, the output is set to repeat. A CRC Checksum

Append bundles the incoming data into fixed lengths, adds the packet tag and appends

91

6.2. DATA PREPARATION AND MODULATION

a CRC checksum.

Both the header data and the data package will then be multiplexed using the Tagged

Mux block. As described in section 5.3, this block uses GNU Radios’ tags to multiplex

data alternately, with the addition of an optional guard sequence. In the depicted Figure,

the guard sequence consists of a repeating sequence of the number 27. This decimal

number gets added as a byte sequence after the data packet.

The Char To Float block converts the binary data stream to float in order to display the

frame data in decimal format. This representation will be further discussed in

subsection 8.1.2.

Following is the modulation process. First of all, the binary data stream must be chopped

into the correct symbol length, depending on the modulation scheme, i.e. the bps variable.

In the illustrated case, QPSK is active, which has 4 possible symbols, which according to

equation 2.4 results in 2 bits. This operation is performed by the Repack Bits block.

The Constellation Modulator block performs three actions to modulate the data:

First it maps the incoming binary symbols to the constellation points in the complex plane.

For this, it needs to know the constellation scheme, which is stored in the Constellation

parameter. A user can also decide if the scheme should have Differential Encoding or not.

With differential coding, the symbol depends not only on the current data input, but also

on the location of the previous symbol.

Second, it upsamples the data, which shrinks the bandwidth. The resample value is defined

by the parameter Samples/Symbol.

And finally third, to complete the interpolation process and satisfy the Nyquist criteria,

the signal gets RRC filtered. The parameter Excess BW defines the roll-off factor of the

filter. For details to Nyquist filters, see section 2.3.3. Since the RX side of the system

deploys a RRC filter as well, the equivalent channel equation 2.22 is satisfied and there

should be a ISI free transmission.

While previous blocks worked with binary data streams, this is the first block that outputs

constellation data.

Since there is no hardware block present in the flow graph, a Throttle block is mandatory.

This block confines the rate at which data passes through the system. If none such blocks

were used, the flow graph would utilize the whole computational power of the host PC,

potentially damaging its hardware by overloading the CPU or the interfaces to the hard

drives.

Finally, the symbols pass into different GUIs to illustrate the data for the user. Furthermore,

the data gets saved into a .dat file for the next flow graph.

92

6.3. TRANSMIT AND RECEIVE

Figure 6.6 shows the result of this flow graph with the illustrated parameter configuration.

Clearly visible are the effects of the RRC filter. The interpolation process adds additional

symbols in the complex plane. These are the transitions between one symbol and the next.

Figure 6.6: Results of the data processing in frequency, complex and time domain.

6.3 Transmit and Receive

The transmitting and receiving flow graph incorporates actual hardware blocks, Figure 6.7

illustrates this concept.

While the Transmit part reads a .dat file and sends the symbols into the channel using an

antenna, the Receive part outputs the received signal constellation data into a different

.dat file. The input of the Receive block is used to control the AGC of the device.

93

6.3. TRANSMIT AND RECEIVE

TX.dat
LimeSDR

TX

TX1 TX2

Transmit

Constellation

data

RX1 RX2

LimeSDR

RX

AGC

RX.dat

Receive

Constellation

data

Figure 6.7: Concept for transmit and receive.

6.3.1 Variables

The first variable is again the Options block. Previously discussed samp rate and

LO freq actually determine physical properties in this case: One defines the sample rate

of the ADCs and DACs while the other characterizes the carrier frequency. Both devices

need a gain and a frequency value to be set for the amplifier and filter chains, discussed

in subsections 3.4.1 and 3.4.2. These gain values are stored in a graphical slider block to

change values on the fly during flow graph execution. Finally, the RX hardware block also

needs a variable input to determine the AGC value. This is again realized as a graphical

slider block.

Figure 6.8: Variables needed for transmit and receive flow graph.

6.3.2 Data Processing

As mentioned in section 5.3, the used hardware blocks are modifications from the open

source implementations on Github[28]. The modifications include an additional parameter

to activate stream statistics to be printed out to console, and also an input on the RX

94

6.3. TRANSMIT AND RECEIVE

block to activate and control AGC.

The data processing flow graph is shown in Figure 6.9. The TX block gets the complex

symbols as input, which are also sent to GUIs to illustrate them for the user. Furthermore,

the RX block stores its received symbols into a file.

Figure 6.9: Data Processing for transmit and receive flow graph

The first option is the devices’ serial number to identify it on the host interface. A list of

serial numbers of the used devices is documented in section 3.3. Next is the Device type

option that defines which kind of model of LimeSDR is to be used. If the Chip mode is set

to MIMO, the device uses antenna diversity and activates its second input port. In the

illustrated flow graph the option is set to SISO, therefore only enabling one input port. If

Print Stream Stats is enabled, the previously mentioned console printouts will be activated.

LimeSDR can be configured by a .ini file. This is activated by setting the Load settings

option. If chosen, all other parameters get deactivated, since they are already stored in

the configuration settings of the .ini file. The RF frequency is the mentioned synthesizer

frequency in section 3.4.3. Additionally, Sample rate is the speed of the ADCs and DACs

with associated oversampling, see also section 3.4.4.

Next is a configuration of the analog channel CH0. Some of the options originate from

the digital part of the TRX, as briefly described in section 3.4.5. The list of configuration

variables include:

� NCO frequency is the frequency of the optional numerically controlled oscillator.

� CMIX mode is the mixing mode of the complex mixer[26].

95

6.4. DATA SYNCHRONIZATION, DEMODULATION AND CORRELATION

� Calibration is a boolean variable to determine if the device should calibrate before

any sort of transmission takes place.

� Calibration bandw. (not active since calibration is deactivated) is, as the name

implies, the bandwidth for what the analog and digital paths should be calibrated

for.

� PA path defines on which of the two possible TX paths the antenna is actually

connected. The choice is between Band1 and Band2.

� Analog filter activates the filters in the analog paths.

� Analog filter bandw. is only visible if the previous Analog filter option is enabled

and it defines the bandwidth to be set for the filters.

� Digital filter is similar to the previously mentioned Analog filter option and also

activates the bandwidth for which the filter taps should be optimized.

� Gain,dB finally defines for what values the amplification stages should be set and

tuned.

If the mentioned chip mode is set to MIMO, a second register card is active and the second

channel CH1 can be configured with the same parameters as mentioned.

The RX hardware block configuration is very similar. It has an additional parameter

called Use AGC to toggle the input port. If it is enabled, the input port expects an

integer value. Is the value zero, then the block deactivates AGC. If it is a non zero value,

AGC gets activated using formula 4.1. The input is connected with the Variable Source

block documented in section 5.3. This block uses the graphical slider value to change AGC

dynamically.

Finally, the received data is illustrated in GUI blocks and also saved into a .dat file for

the next flow graph.

6.4 Data Synchronization, Demodulation and Correlation

The data that the LimeSDR receives is noisy and not synchronized. During times when

the transmitter does not send data, the receiver still processes the background noise. For

these reasons the next flow graph visualized in Figure 6.10 performs data synchronization

(see section 2.6), demodulation and data correlation (i.e. frame synchronization).

96

6.4. DATA SYNCHRONIZATION, DEMODULATION AND CORRELATION

Costas loop

& RRC filter

Symbol

sync
Demodulate

Sync word

correlator
Binary sink

Data synchronization, demodulation and correlation

Constellation data Binary data

EqualizerRX.dat

Figure 6.10: Concept for data synchronization, demodulation and correlation.

As described in section 2.6, the synchronization chain starts with a Costas Loop to

performs carrier locking. Next is a decimating RRC filter to satisfy the equivalent channel

equation. Following this filter is the timing recovery realized by a Symbol sync block

and finally an Equalizer to reduce smearing effects.

Afterwards, the symbols will get demodulated, resulting in a byte stream. The data from

this byte stream will in most cases not be perfectly aligned regarding its MSB and LSB

positions. Therefore the mentioned custom programmed Sync word correlator shifts the

whole bit sequence to the correct positions every time it detects the frame synchronization

sequence. The resulting data gets saved into a binary file for evaluation.

6.4.1 Variables

The previous sections already mentioned most of the variables required for this flow graph.

Figure 6.11: Variables needed for data synchronization, demodulation and correlation
flow graph.

A few new QT GUI Range variables are in use that can be changed during execution of

the flow graph. From left to right these variables are: The loop bandwidth of the Costas

97

6.4. DATA SYNCHRONIZATION, DEMODULATION AND CORRELATION

loop, the gain of the equalizer, the mentioned TED value in section 2.6 and the damping

value of the loop filter. The loop bandwidth of the symbol timing algorithm is fixed, as

well as its deviation tolerance. The depicted values are optimal parameter values for most

configurations of this flow graph.

This flow graph also imports a Python module named math. This gives access to mathe-

matical constants, especially π. There are also QT GUI Tab Widgets, which arrange

the depicted GUIs and sliders on the resulting window.

6.4.2 Data Processing

As expected, the flow graph depicted in Figure 6.12 starts with a source block on repeat

mode that loads the data file of the LimeSDR RX output. Next is again a Throttle block

to constrain hardware use for the host.

Figure 6.12: Data Processing for data synchronization, demodulation and correlation
flow graph.

Next is a Costas Loop block that uses a PLL circuit with a defined Loop Bandwidth to

recover the carrier frequency by locking to the center frequency. This locks the symbols

in the complex constellation diagram, see also subsection 2.6.2. An additional optional

input port called noise is a floor estimate to calculate the SNR of symbols. Besides of

the out port there is an optional output port called frequency that passes the normalized

frequency of the loop.

The following Root Raised Cosine Filter performs the decimation process by first

downsampling the signal and then using a RRC matched filter. This block also needs to

98

6.4. DATA SYNCHRONIZATION, DEMODULATION AND CORRELATION

know the excess bandwidth, defined by the parameter Alpha.

Next is a very crucial block called Symbol Sync. This is responsible for correct symbol

timing recovery. It implements a few different timing error detector algorithms to be

chosen by the user. The most relevant ones for later are:

� Mueller and Müller, decision-directed.

� Zero Crossing, decision-directed.

� Gardner, non-data-aided.

� Early-Late, non-data-aided.

� sgn(y[n]y’[n]) Maximum Likelihood, non-data-aided.

All of these were described in subsection 2.6.1. Figure 6.13 shows the concept diagram of

this block. It implements an Interpolating Resampler that can decimate the signal. The

remaining parameters control the expected gain of the TED (the slope of the S-curve), the

Loop Bandwidth of the symbol clock tracking loop, and the Maximum Deviation of the

average clock period estimate. Additionally, if the chosen timing error detector algorithm

is decision-directed, the block also needs access to a constellation object. Finally, the

Damping Factor defines the stability of the loop: Values below 1 are under-damped, 1/
√

2

is maximally flat response, a value of 1 is critically damped and a value greater 1 means

over-damped.

Figure 6.13: Concept diagram of symbol sync block[29].

The last of the synchronization blocks is a Least Mean Square Decision-Directed

Equalizer. As the name suggests, this block uses a LMS algorithm to calculate the error

99

6.4. DATA SYNCHRONIZATION, DEMODULATION AND CORRELATION

between the incoming sample and the defined sampling locations of the given modulation

scheme. Therefore, the constellation object used must be passed into the parameter

Constellation Object. The block does not reduce the sampling rate since the parameter

Samples per Symbol is set to 1. The decision for the equalizer is defined by a number of

weights specified by Num. Taps and a Gain factor.

”It uses a set of weights, w, to correlate against the inputs, u, and a decisions

is then made from this output. The error in the decision is used to update the

weight vector.

y[n] = conj(w[n]) u[n] d[n] = decision(y[n]) e[n] = d[n] - y[n] w[n+1] = w[n] +

mu u[n] conj(e[n])

Where mu is a gain value (between 0 and 1 and usually small, around 0.001 -

0.01.” From the GNU Radio API reference[30].

Next is the demodulation process. The Constellation Decoder converts the signals

from the complex plane into binary data. Similar to previous blocks, knowledge about

the modulation scheme is required. Therefore, this block gets passed the Constellation

Object. The Map block maps incoming symbols to their specific value in the Map variable

and the Differential Decoder uses knowledge of the incoming binary symbol and their

previous ones to perform differential decoding. It’s variable Modulus defines how many

symbols the modulation scheme used.

The final crucial block before the information sink is the Correlate and Sync block. This

is a custom block and its function was documented in section 5.3. In short, it correlates

the incoming data with the expected synchronization sequence. If the sequence is found,

the whole frame (header plus data packet) gets bitwise shifted for correct representation

on the host and passed to the output. Data which does not contain the synchronization

sequence will be discarded.

The final data will be saved in a binary File Sink for later evaluation.

100

Chapter 7

Constellation Evaluation GUI

As described in section 6.1, to evaluate the GNU Radio flow graphs, a method was

developed to compare different data files containing complex constellation data. This

tool is called Constellation Evaluation GUI, abbreviated as CEG, and was programmed

in MATLAB. Figure 7.1 shows the blank tool, right after startup.

Figure 7.1: CEG right after startup.

7.1 Implementation

The GUI was created using the guide tool in MATLAB. First of all, the data file containing

the constellation data must be chosen. It’s important that this file is in the same directory

101

7.1. IMPLEMENTATION

as CEG. Next is the identifier by which the data will be labeled in plots.

After clicking Import and calc the program opens the file and reads the data. This GNU

Radio data alternates between real values and complex values, both of which are saved

as floating point numbers. Together they form a single symbol. The constellation data

is displayed on the first Figure. Next, the data is transformed to time domain using a

combination of repmat and reshape. In order to better convert the data to frequency

domain later, the time domain values are oversampled, given by the Oversampling in time

domain parameter. The time domain data then gets displayed on the next two Figures,

divided by real and imaginary part. Note that the user can also decide how many samples

to display, how much to time shift them to the left and by how much to downsample it

again. This downsampling is advantages for oversampled data.

Finally, the data gets transformed into frequency domain. For this purpose the Institute of

Microwave and Photonic Engineering provided functions to pass upsampled complex data

to. These functions then calculate the frequency values and displays them in a Figure.

For this, the user also needs to provide the Sampling frequency parameter. The mentioned

MATLAB functions either calculate the PSD (Power Spectral Density) via normal FFT

or using Welch’s method. The user can chose which form to use.

Figure 7.2: Constellation, time and frequency data from the modulated TX data.

As an example, Figure 7.2 shows CEG after importing the example data from Figure 6.6.

102

7.1. IMPLEMENTATION

When comparing the data, it is obvious that the constellation data is the same, as well as

the time domain data. However, in time domain, it is visible that the data needs a few

samples before it ”starts”. This is due to the design of the RRC filter being a differential

equation. The PSD shows the frequency representation. Next chapter will show that this

is also the same when transmitting it using a SDR.

Additionally, the user can Overlay additional data sets, with a maximum of 3 data sets

to import. Pressing Clear Data deletes all internal variables and clears all Figures. Save

Figure creates a copy of the frequency illustration and saves it.

CEG will be used to compare different data sets in the next chapter. It will also complement

measurements on a signal analyzer and compare the different synchronization steps.

103

Chapter 8

Design Evaluation

In order to prove the functionality of the system and its parameters, a step by step

evaluation will be performed in this chapter. To complement this evaluation, measurement

instruments will be used to show the practicability and repeatability of this design.

Section 8.1 will showcase test files and frame structures. A theoretical prove of concept is

discussed in section 8.2. In other words, this means not using the SDR hardware, instead

using the modulated data output from the first flow graph as input for the synchronization,

demodulation and correlation flow graph.

Following steps expand the system further. Section 8.3 proves that the system works as

expected when one SDR is used to both transmit and receive the data simultaneously.

This is achieved by connecting the analog paths of the device via a cable. Section 8.4

takes this one step further by connecting two LimeSDR via a cable. Finally, section 8.5

implements an actual free-space transmission between two SDR.

To expand this evaluation, section 8.6 will compare the frequency domain representation

of the different steps in the RX synchronization chain. The section will also contain a

comparison of different symbol recovery algorithms at different RRC roll-off factors.

8.1 Data Format

The first step is to define the data that will be processed, how it is structured and also

how a data frame looks like. Since this design starts at a host PC, the information source

has a binary format. In order to ease evaluation for a human developer, some of the test

cases are in form of text files with known sequences of ASCII characters, which translate

to binary data on the hard drive.

8.1.1 Test Cases

There are two types of test files in use. While in both cases this data is in binary format,

one type uses random binary sequences while the other uses defined sequences to better

105

8.1. DATA FORMAT

recognize bit errors.

Random Test File

The random binary sequence is generated with GNU Radio, using the simple flow graph

illustrated in Figure 8.1. A Random Source outputs the samples, these are then stored

in data files. The Num Samples attribute of the source determines how large the data file

will be.

Figure 8.1: Example flow graph to create random binary sequence test cases.

cafe Test File

As for the test cases with known binary sequences, any ASCII form text file on the host is

sufficient. In order to standardize this test case, a repeating sequence of cafe will be used.

This sequence can be repeated multiple times in a test file. In order to examine these files

on a binary level, one can look up the binary sequence of the characters in an ASCII Table

and use the command xxd -b in a Linux terminal. An example of the first few rows of

this command is shown in Listing 8.1. The left most column shows the address of data in

the file, followed by a binary representation of the data and finally of the ASCII character

representation on the far right.

1 mh@mh :~$xxd -b cafe.txt

2 00000000: 01100011 01100001 01100110 01100101 01100011 01100001 cafeca

3 00000006: 01100110 01100101 01100011 01100001 01100110 01100101 fecafe

4 0000000c: 01100011 01100001 01100110 01100101 01100011 01100001 cafeca

5 00000012: 01100110 01100101 01100011 01100001 01100110 01100101 fecafe

6 00000018: 01100011 01100001 01100110 01100101 01100011 01100001 cafeca

7 0000001e: 01100110 01100101 01100011 01100001 01100110 01100101 fecafe

8 ...

Listing 8.1: Usage of the xxd command to view cafe test case data.

l Test File

An additional test case is a repeating sequence of the letter l. Looking this up in a ASCII

Table, the value is 108 in decimal and 01101100 in binary. This includes all 4 possible

symbols for QPSK: 01, 10, 11 and 00.

106

8.1. DATA FORMAT

1 mh@mh :~$xxd -b l.txt

2 00000000: 01101100 01101100 01101100 01101100 01101100 01101100 llllll

3 00000006: 01101100 01101100 01101100 01101100 01101100 01101100 llllll

4 ...

Listing 8.2: Usage of the xxd command to view l test case data.

8.1.2 Frame Structure

Section 6.2 discussed the flow graph to prepare and modulate the test cases. A simple

frame structure is set up in the first half of this flow graph, and Figure 6.3 illustrated how

a frame is structured.

The synchronization sequence is repacked from a binary sequence to a byte structure. In

order to distinguish different frames, this synchronization sequence gets multiplexed with

an identification byte using the custom programmed block Counter Source. This ID

number is between 0 and 255, i.e. has a length of 1 byte. Together these two steps produce

a simple header with the length header len + 1. This header is then sent into a CRC

Checksum Append custom block to add a header tag and to append a checksum for

later error detection.

As for the data packet, a File Source loads the previously described test files and appends

a checksum in the same fashion as with the header. The only difference being the length

of the data packet, set by a variable (packet len). Both header and packet data are

then multiplexed to get a frame. Finally, the Tagged Mux also adds an optional Guard

sequence. The reason behind this guard sequence is to separate packages and give following

blocks the ability to better lock on the carrier frequency.

Figure 8.2 shows an example flow graph to illustrate the frame structure. This is basically

the same flow graph as the data preparation and modulation flow graph, but without the

modulation step.

This frame structure in decimal format is visible in Figure 8.3. The synchronization

sequence is a repetition of three W characters, which according to the ASCII Table

translates to a decimal value of 87. Clearly visible is the header tag at the start of

the frame. After the synchronization sequence follows the identification byte (0) and the

checksum byte. This marks the end of the header, which is followed by the data package.

The data package is clearly tagged with its packet length, and identifiable by the repeating

cafe sequence (99-97-102-101). The packets’ length is defined as 60 bytes, together with

a checksum length of 4 bytes. Finally, the frame is completed by a guard sequence, in this

case 3 bytes with the value 27.

107

8.1. DATA FORMAT

Figure 8.2: Flow graph to illustrate frame structure.

Figure 8.3: Representation of complete frames as decimal values. After the header data,
the packet contains a reoccurring ”cafe” sequence.

108

8.2. THEORETICAL PROVE OF CONCEPT

Using the xxd command in console, a user can confirm this structure. Listing 8.3 shows

the first rows of the output of this command. Clearly the data corresponds with the

described frame structure: Synchronization sequence WWW, packet ID beginning

with 0, CRC byte, 60 bytes of packet data, CRC with length 4, and 3 bytes of guard

sequence.

1 mh@mh :~$xxd -b frame_structure.dat

2 00000000: 01010111 01010111 01010111 00000000 00000101 01100011 WWW..c

3 00000006: 01100001 01100110 01100101 01100011 01100001 01100110 afecaf

4 0000000c: 01100101 01100011 01100001 01100110 01100101 01100011 ecafec

5 00000012: 01100001 01100110 01100101 01100011 01100001 01100110 afecaf

6 00000018: 01100101 01100011 01100001 01100110 01100101 01100011 ecafec

7 0000001e: 01100001 01100110 01100101 01100011 01100001 01100110 afecaf

8 00000024: 01100101 01100011 01100001 01100110 01100101 01100011 ecafec

9 0000002a: 01100001 01100110 01100101 01100011 01100001 01100110 afecaf

10 00000030: 01100101 01100011 01100001 01100110 01100101 01100011 ecafec

11 00000036: 01100001 01100110 01100101 01100011 01100001 01100110 afecaf

12 0000003c: 01100101 01100011 01100001 01100110 01100101 00100011 ecafe#

13 00000042: 01000101 11100100 01011001 00011011 00011011 00011011 E.Y...

14 00000048: 01010111 01010111 01010111 00000001 00000111 01100011 WWW..c

15 0000004e: 01100001 01100110 01100101 01100011 01100001 01100110 afecaf

16 00000054: 01100101 01100011 01100001 01100110 01100101 01100011 ecafec

17 ...

Listing 8.3: Showcase of the frame structure, the first frame and beginning of the second

one (address 48 in hexadecimal).

Of course the frame structure is the same when using random sequence test cases, in which

case the data packets would contain the random data information. The test case with l

sequences contains this data accordingly.

8.2 Theoretical Prove of Concept

The previous section illustrated the test cases and how the frames are structured. The

following section will show that the developed system actually works by only running

the flow graphs that do not use hardware blocks. These are the data preparation and

modulation flow graph (section 6.2) and the data synchronization, demodulation and

correlation flow graph (section 6.4). Throughout the evaluation the configuration stays

the same as described in these two sections.

If the data at the end of the second flow graph resembles the test case data, this will prove

the theoretical concept of this system. The structure of this simulation is illustrated in

Figure 8.4.

109

8.2. THEORETICAL PROVE OF CONCEPT

Test

file.txt

Frame

creation

Data

modulation &

RRC

TX.dat

Data preparation and modulation

RRC &

synchro-

nization

Demodulation

& correlation

sync_ou

t.bin

Data synchronization,

demodulation and correlation

Figure 8.4: Simulation setup for prove of concept.

The result of the modulation and resampling process was already discussed. Figure 6.6

depicted the data in GNU Radio and Figure 7.2 illustrated it using CEG. When using this

data as input for the flow graph in section 6.4, the result is obvious: The data is ideal (i.e.

no additive noise and no synchronization problems), therefore the constellation after the

carrier locking is the same. Furthermore, the symbol timing recovery only performs small

corrections, same as the equalizer. This results in an ideal QPSK constellation. Figure 8.5

illustrates exactly these results.

Figure 8.5: Concept prove of data processing only flow graphs: Synchronized data.

The resulting binary information can again be observed when examining the resulting file

110

8.2. THEORETICAL PROVE OF CONCEPT

using the xxd -b command. Listing 8.4 shows the resulting information when running

the flow graph. The data packets are perfect, and are the same as the illustrated frame

structure in Listing 8.3.

1 mh@mh :~$xxd -b sync_out.bin

2 00000000: 01010111 01010111 01010111 00000000 00000101 01100011 WWW..c

3 00000006: 01100001 01100110 01100101 01100011 01100001 01100110 afecaf

4 0000000c: 01100101 01100011 01100001 01100110 01100101 01100011 ecafec

5 00000012: 01100001 01100110 01100101 01100011 01100001 01100110 afecaf

6 00000018: 01100101 01100011 01100001 01100110 01100101 01100011 ecafec

7 0000001e: 01100001 01100110 01100101 01100011 01100001 01100110 afecaf

8 00000024: 01100101 01100011 01100001 01100110 01100101 01100011 ecafec

9 0000002a: 01100001 01100110 01100101 01100011 01100001 01100110 afecaf

10 00000030: 01100101 01100011 01100001 01100110 01100101 01100011 ecafec

11 00000036: 01100001 01100110 01100101 01100011 01100001 01100110 afecaf

12 0000003c: 01100101 01100011 01100001 01100110 01100101 00100011 ecafe#

13 00000042: 01000101 11100100 01011001 00011011 00011011 00011011 E.Y...

14 00000048: 01010111 01010111 01010111 00000001 00000111 01100011 WWW..c

15 0000004e: 01100001 01100110 01100101 01100011 01100001 01100110 afecaf

16 00000054: 01100101 01100011 01100001 01100110 01100101 01100011 ecafec

17 ...

Listing 8.4: Resulting information sink when using data processing only flow graphs.

This proves that the system works perfectly in theory, i.e. when not including actual SDR

hardware.

8.2.1 Concept Prove with l Test File

The concept can also be proven with the previously mentioned l Test File for QPSK

modulation. After modulating the new text data and sending it through the synchronization

flow graph, the information sink shows the result in Listing 8.5. As expected, the data

now consists of repeating l. Everything else stays the same.

1 mh@mh :~$xxd -b sync_out.bin

2 00000000: 01010111 01010111 01010111 00000000 00000101 01101100 WWW..l

3 00000006: 01101100 01101100 01101100 01101100 01101100 01101100 llllll

4 0000000c: 01101100 01101100 01101100 01101100 01101100 01101100 llllll

5 00000012: 01101100 01101100 01101100 01101100 01101100 01101100 llllll

6 00000018: 01101100 01101100 01101100 01101100 01101100 01101100 llllll

7 0000001e: 01101100 01101100 01101100 01101100 01101100 01101100 llllll

8 00000024: 01101100 01101100 01101100 01101100 01101100 01101100 llllll

9 0000002a: 01101100 01101100 01101100 01101100 01101100 01101100 llllll

10 00000030: 01101100 01101100 01101100 01101100 01101100 01101100 llllll

11 ...

Listing 8.5: Resulting information sink when using data processing only flow graphs and

l test file.

111

8.3. USING ONE DEVICE AS TX AND RX

8.3 Using one Device as TX and RX

The previous section proved that the system works in theory when not using SDR hardware.

To continue the evaluation, this section will take one step further and use one of the

LimeSDRs. Since these are TRX boards, it’s possible to use them to both transmit and

receive data simultaneously. However, to keep this concept simple, both analog ports will

be connected via a cable instead of a free-space transmission. One advantage of this is

that the LimeSDR uses the same LO value for both analog paths. Therefore, the receiving

signal will not experience carrier drift, instead the constellation will be locked in place.

This concept is visualized in Figure 8.6.

Test

file.txt

Frame

creation

Data

modulation &

RRC

TX.dat

Data preparation and modulation

RRC &

synchro-

nization

Demodulation

& correlation

sync_ou

t.bin

Data synchronization,

demodulation and correlation

SDR 1

„green“

RX.dat

Transmit and receive,

wired channel

TX

RX

Figure 8.6: Simulation setup for using only one device.

8.3.1 TX/RX Flow Graph

The flow graph to modulate will stay the same for now, which means that the constellation

data will still be QPSK and resemble Figure 6.6. It will also stay the same configuration

for the flow graph to synchronize, demodulate and correlate the data.

However, the transmit and receive flow graph discussed in section 6.3 will be executed

between these two flow graphs and actually send and receive data. The flow graph is

configured the same as depicted in Figure 6.9. However, care has to be taken to set the

variable slider values correctly. If one would maximize both the TX gain and the RX

sensitivity, this could potentially damage the hardware. In this case, a gain tx of 50 and

a gain rx of 32 was chosen, while AGC was left turned off with 0. Used device for this

transmission was ”green” (see list of devices in section 3.3 for the serial number).

112

8.3. USING ONE DEVICE AS TX AND RX

Figure 8.7: Results of the wired connection between TX and RX path.

The result of this is visible in Figure 8.7. Clearly visible is the modulated TX data

in symbol plane and frequency domain. The received constellation still resembles the

transmitted one, and although it’s phase shifted in the diagram, this shift is in fact constant

during execution of this flow graph.

8.3.2 Spectrum and Constellation

There are a few possibilities to compare the transmitted spectrum of the SDR. First of all,

the modulated data was already illustrated using CEG, see Figure 7.2. Next, it’s possible

to evaluate the actual transmitted signal using appropriate measurement equipment. This

measurement setup is illustrated in Figure 8.8. The host reads the modulated data and

sends it via USB to the LimeSDR. From the analog transmission path, the signal gets

wired into a FSQ 20Hz-26.5GHz Spectrum Analyzer, manufactured by Rohde &

Schwarz.

113

8.3. USING ONE DEVICE AS TX AND RX

Test

file.txt

Frame

creation

Data

modulation &

RRC

TX.dat

Data preparation and modulation

SDR 1

„green“

Transmit

SA

FSQ

Figure 8.8: Measurement setup using an FSQ Spectrum Analyzer.

The FSQ is configured for a center frequency of 2.45GHz using a span of 10MHz, a

resolution bandwidth of 100kHz and a video bandwidth of 10kHz. Resulting frequency

domain signal, when setting the TX gain to the maximum value of 60, is depicted in

Figure 8.9. Clearly, the signal is the same as in Figure 8.7, and it also corresponds to the

result using CEG in Figure 7.2. The only difference is in the bandwidth, which is in this

case at around 3.5MHz, while the maximum power is at -20dB.

Figure 8.9: Transmitted spectrum from LimeSDR using upsampled QPSK.

Another possibility with the FSQ is to visualize the signal in the complex constellation

domain. Figure 8.10 shows the constellation emitting from the transmitter at a sample

rate of 10MHz (the sample rate of the DACs). It clearly shows the correct constellation

114

8.3. USING ONE DEVICE AS TX AND RX

diagram, including the additional samples between the symbols. Since the FSQ does

consider those samples for its measurement, the EVM (Error Vector Magnitude, which is

the summarized error magnitude between the measured samples and the optimal sample

positions) value is very high at 21.5%.

Figure 8.10: QPSK constellation data with the additional samples.

However, this can be configured to show the real symbols. The signal was upsampled by a

factor of 4, so by reducing the sample rate to 2.5MHz on the FSQ, the additional samples

get removed and the raw QPSK data is left. Figure 8.11 shows the new constellation.

Since the received samples now better match with the QPSK modulation scheme, the

EVM reduces to a value of 6.1%.

115

8.3. USING ONE DEVICE AS TX AND RX

Figure 8.11: QPSK constellation data without the additional samples.

8.3.3 Data Results

The received constellation data from the SDR is of course then saved into a separate file.

This file then gets imported by the synchronization flow graph and further processed.

Figure 8.12 shows the result of this operation. Clearly visible is the constant shift in

the input data, and the operations of following blocks. Primarily this proves that the

Costas loop successfully locks on the carrier mismatch, especially since this mismatch is

constant, and that rotates the constellation. The following blocks don’t have to perform

a big amount of synchronization, yet the equalizer clearly can’t match all samples correctly.

Therefore, other then in the previous section with the ideal settings, this time the data will

not be perfectly synchronized. This becomes clear when expecting the resulting binary

data information sink in Listing 8.6.

116

8.3. USING ONE DEVICE AS TX AND RX

Figure 8.12: Results of the received samples when using only one LimeSDR as TX and
RX simultaneously.

Some frames are synchronized very good, in this example the frame starting at address

cc. Others start off correctly, but then the symbol recovery shifts, as can be seen with

the frame at address 288. There is still a repeating sequence of X.Y., and when expecting

it further, it’s clear that this is bit shifted by 2 bit to the cafe sequence. However, some

of the frames were synchronized partially wrong on a bit level, see address a80 and the

following lines of data.

1 mh@mh :~$xxd -b sync_out.bin

2 000000 cc: 01101101 00000100 11100110 01010111 01010111 01010111 m..WWW

3 000000 d2: 11001110 00101111 01100001 01100110 01100101 01100011 ./afec

4 000000 d8: 01100001 01100110 01100101 01100011 01100001 00000000 afeca.

5 000000 de: 01100011 01100001 01100110 01100101 01100011 01100001 cafeca

6 000000 e4: 01100110 01100101 01100011 01100001 01100110 01100101 fecafe

7 000000 ea: 01100011 01100001 01100110 01100101 01100011 01100001 cafeca

8 000000 f0: 01100110 01100101 01100011 01100001 01100110 01100101 fecafe

9 000000 f6: 01100011 01100001 01100110 01100101 01100011 01100001 cafeca

10 ...

11 00000288: 01010111 01010111 01010111 01111110 00100010 01100101 WWW~"e

12 0000028e: 01100011 01100001 01100110 01100101 01100011 01100001 cafeca

13 00000294: 01100110 01100101 01100011 01100001 01100110 01100101 fecafe

117

8.3. USING ONE DEVICE AS TX AND RX

14 0000029a: 01100011 01100001 01100110 01100101 01100011 01100001 cafeca

15 000002 a0: 01100110 01100101 01100011 01100001 01100110 01100101 fecafe

16 000002 a6: 01100011 01100001 01100110 01101100 11010101 11010101 cafl..

17 000002 ac: 11010101 11100000 01001000 11011001 01011000 11011000 ..H.X.

18 000002 b2: 01011001 10011001 01011000 11011000 01011001 10011001 Y.X.Y.

19 000002 b8: 01011000 11011000 01011001 10011001 01011000 11011000 X.Y.X.

20 ...

21 00000 a80: 01010110 00110110 00000000 01010111 01010111 01010111 V6.WWW

22 00000 a86: 01100000 10001101 10000101 10011001 10010101 10001101 ‘.....

23 00000 a8c: 10000101 10011001 10010101 10001011 11001101 10000101

24 00000 a92: 10011001 10010101 00000000 00010110 01100110 01010110fV

25 00000 a98: 00000101 10001101 10000101 10011001 10010101 10001101

26 ...

Listing 8.6: Resulting information sink. First frame is synchronized perfectly, later ones

only partially.

8.3.4 Other Test Cases

There are two additional test cases to evaluate: The l test file and the random data

test file. Both of them had a very similar frequency representation to the cafe test file.

However, since the random data has more possible symbol transitions, more frequency

components are present. When comparing the following Figure 8.13 with the spectrum

from Figure 8.9, a very small difference can be observed.

In detail, the change in the test files have no major impact on the communication, and the

remaining results are the same. This is also observable when using the l test file. After

the correlation, the binary data observed matches the results in the previous Listing 8.6.

Some of the frames have no BER, others are only partially correct and show either bit

shifts or that the data was synchronized wrong.

118

8.3. USING ONE DEVICE AS TX AND RX

Figure 8.13: Transmitted spectrum from LimeSDR using QPSK and random data.

8.3.5 Comparison using CEG

By importing the received data into CEG, the constellation shows the same constant phase

rotation as in the flow graph. Furthermore, the time domain data is very similar to what

was seen before, for example by comparing it to Figures 6.6 and 7.2. The same applies to

the frequency domain in the referenced Figures.

119

8.3. USING ONE DEVICE AS TX AND RX

Figure 8.14: Using CEG to illustrate the received data.

8.3.6 Comparison using Reference Vector Signal Generator

It’s useful to to compare the constellation to that of a defined source. For this purpose, a

SMBV100A 9kHz-3.2GHz Vector Signal Generator from Rohde & Schwarz was

used to generate an optimal signal. The measurement setup is illustrated in Figure 8.15.

SMBV

Modulated signal source

SA

FSQ

I/Q

Figure 8.15: Measurement setup using a SMBV Vector Signal Generator, an FSQ Signal
Analyzer and an oscilloscope.

The SMBV is configured to a frequency of 2.45GHz and a power level of -25dBm.

120

8.3. USING ONE DEVICE AS TX AND RX

Configuration of the Custom Digital Modulation is set to produce a PRBS (Pseudo-

Random Binary Sequence) with a symbol rate of 2.5Msym/s. The option PRBS 9

generates a sequence of length 29−1[31]. Additionally, to match the modulation scheme

in the GNU Radio flow graphs, coding was set to Differential and modulation type to

QPSK . This will generate optimal symbols. In order to further match the developed flow

graph, the signal is filtered using a Root Cosine filter with a roll-off factor of 0.35. This

specific configuration of the measurement instrument is also depicted in Figure 8.16.

(a) Modulation configuration. (b) General configuration.

Figure 8.16: SMBV configuration for PRBS generation.

The signal in frequency domain is measured using the FSQ, see Figure 8.17. This is

obviously not the same signal as previously used in the measurement using a LimeSDR.

The difference is clear: This signal has no upsampling in contrast to the modulation

process using GNU Radio.

121

8.3. USING ONE DEVICE AS TX AND RX

Figure 8.17: PRBS signal from SMBV measured with FSQ.

Additionally, the constellation data can be compared. Figure 8.18 illustrates the same

PRBS data in complex symbol domain. By comparing it to the transmitted constellation

of the SDR in Figure 8.11, the main difference is the better EVM value of around 1.2%.

To examine the generated signal in time domain, the SMBV can output real and complex

signals respectively. These ports are connected to a HMO3002 4GSa/s Oscilloscope by

Rohde & Schwarz. As an example, triggered at a random point, Figure 8.19 illustrates

the signal sequence on the oscilloscope. Channel 1 is the In-phase signal and Channel

2 shows the Quadrature sequence. The values are clearly filtered by a RC filter. They

also resemble the time domain representation of the modulated data using GNU Radio in

Figure 6.6 and using CEG in Figure 7.2.

122

8.4. TWO DEVICES WITH WIRED CONNECTION

Figure 8.18: PRBS constellation from SMBV measured with FSQ.

8.4 Two Devices with Wired Connection

The previous section showed that the system functions correctly when using only one

LimeSDR. This simplified the constellation data, since there may have been a phase offset,

but the carrier frequency was already locked. The next logical step is to use two LimeSDRs,

and to connect them via a wired line. Figure 8.20 illustrates this concept. Advantage of

this is that there are not many losses in the channel.

The flow graph configurations stay the same. Only the AGC value in the transmit and

receive flow graph needs to be adjusted. In this case, it was changed to a value of 8.

123

8.4. TWO DEVICES WITH WIRED CONNECTION

Figure 8.19: Example data from oscilloscope measurement.

Test

file.txt

Frame

creation

Data

modulation &

RRC

TX.dat

Data preparation and modulation

RRC &

synchro-

nization

Demodulation

& correlation

sync_ou

t.bin

Data synchronization,

demodulation and correlation

SDR 1

„green“

SDR 2

„blue“
RX.dat

Transmit and receive,

wired channel

Figure 8.20: System setup with two devices connected via cable.

The result from executing this flow graph is illustrated in Figure 8.21. Clearly visible

while the measurement was running were three effects:

First, there was a visible carrier frequency drift. This means that the constellation was

rotating around the center point.

124

8.4. TWO DEVICES WITH WIRED CONNECTION

Second, there were symbol timing problems, resulting in a ”pulsating” constellation. This

meant that since the symbol timing was incorrect, the symbols were no longer sampled in

their perfect timing, but rather the position of the symbol timing was constantly changing.

And finally third, there were visible dropouts during the communication. This meant that

the received constellation either was fully zero, or it maximized to the outer possible value.

In this case, the maximum value was at 1, either in the real axis or the imaginary axis.

Figure 8.21: Results of the flow graph when transmitting data between two LimeSDR
via a wired connection.

Figure 8.22 shows how this data was synchronized with the following flow graph. The

Costas Loop successfully locked to the carrier drift. Afterwards, the signal was do-

wnsampled and the symbol timing recovery algorithm managed timing synchronization.

Finally, the equalizer matched the data to the ideal symbol points. After evaluation of the

correlated binary data on the host, it was clear that the BER did not worsen compared

to the previous section.

However, there was still the problem with the mentioned dropouts. Whenever one of these

occurred, the whole synchronization chain went out of sync, and had to first lock again

once the constellation was correct again. This meant a lot of time, were only noise was

125

8.5. ACTUAL FREE-SPACE TRANSMISSION

processed. Reasons for this dropout were possible overloads on the analog receiving path

and short time termination of the signal from the transmitter.

Figure 8.22: Results of the synchronization when transmitting data between two
LimeSDR via a wired connection.

When using one of the other test cases, the results were again very similar.

8.5 Actual Free-Space Transmission

Now that the system proved to function correctly when using a wired connections, the final

step is to evaluate an actual free-space transmission. For this purpose, the only change

to the previous section is that two of the antennas characterized in section 3.5 are used

instead of a cable. Therefore, the system setup modifies to illustration 8.23.

126

8.5. ACTUAL FREE-SPACE TRANSMISSION

Test

file.txt

Frame

creation

Data

modulation &

RRC

TX.dat

Data preparation and modulation

RRC &

synchro-

nization

Demodulation

& correlation

sync_ou

t.bin

Data synchronization,

demodulation and correlation

SDR 1

„green“

SDR 2

„blue“
RX.dat

Transmit and receive,

free-space channel

Figure 8.23: System setup with two devices connected via a free-space transmission.

Since the antennas are not optimally matched (between -7dB and -9dB in this frequency

range) and the LimeSDR’s final power amplifier stage can’t output large amounts of power,

the received signal is assumed to have a very small power level. This was also discussed

in the link budget section 2.5.2. All the additional loses, especially over the free-space

channel, lower the signal power. Because of these reasons, the gain on the transmitting

LimeSDR was set to maximum, while the sensitivity on the receiving SDR was set to

maximum as well. Regarding the AGC value, a good value for a wireless distance of

around 20cm is to set it to 8.

Figure 8.24 illustrates the received symbol data for this configuration. Similar to the wired

connection between both SDRs, this free-space transmission showed a carrier drift and less

then optimal symbol timing. However, the main difference was an increase in noise power.

Note also, that when the distance between the devices was increased, the signal drastically

deteriorated. This was mainly due to the previously discussed low output power from the

SDR. In order to increase the distance where stable communications is still possible, either

the output power must be increased using a power amplifier, or the antenna gain must

be optimized in the direction of communication. This antenna gain could be increased by

developing directional beam antennas.

127

8.5. ACTUAL FREE-SPACE TRANSMISSION

Figure 8.24: Results of the flow graph when transmitting data between two LimeSDR
via a free-space connection.

Another visible effect in the received constellation diagram was that the QPSK symbols

were divided. It seemed as if the ideal positions were split into two positions. This was

either a symbol timing problem, or the representation in GNU Radio overlapped with two

different instances of symbol timing.

Clearly the signal propagating through the channel experienced additional noise power.

Even though the free-space distance was kept rather short, fading due to multipath

propagation is still a problem. Additionally, the mentioned dropouts in received signal

power were occurring as well. All these factors together resulted in a higher BER in

the correlated binary sink data file, but it still contained frames which were perfectly

synchronized.

Figure 8.25 illustrates the synchronization operation. Again it successfully displays QPSK

constellation after equalization.

128

8.6. SYNCHRONIZATION CHAIN

Figure 8.25: Results of the synchronization when transmitting data between two
LimeSDR via a free-space connection.

Same as with the previous sections, varying the test data file did neither improve nor

worsen the system.

8.6 Synchronization Chain

After developing this system, it was very clear that the most crucial part in the flow graphs

is the RX synchronization chain. Section 2.6 documented all possible synchronization

techniques in the Symbol Sync block. However, it is interesting to see how the frequency

domain representation changes between the different steps, as well as comparing different

symbol recovery algorithms. Until now, only Mueller and Müller symbol timing recovery

was used, with a roll-off factor of 0.35 for the RRC filter.

8.6.1 Evaluation using CEG

For now the system is configured the same as in the free-space transmission. Figure 8.26

illustrates the received data using CEG. The constellation diagram is filled with samples,

since the constellation data both spins around the center point and ”pulses” because of

129

8.6. SYNCHRONIZATION CHAIN

wrong symbol timing. Time domain data is as expected and can be compared to previous

simulations, and to the measurement result from the oscilloscope, see Figure 8.19. There

are again visible symbol timing problems. As for the frequency domain, the Welch’s

method was used to represent it, and it’s also very similar to the spectrum in the results

of the synchronization flow graph.

Figure 8.26: Using CEG to visualize the received symbol data.

In contrast, Figure 8.27 illustrates the different synchronization stages. Unfortunately,

the constellation diagram contains to many data to separately visualize the symbols. The

time domain representation illustrates that the processed data from the Costas loop

is as expected a typical upsampled and RRC filtered signal. Before the Symbol Sync

block, the signal gets downsampled and filtered. Therefore, its time domain representation

contains 4 times more samples then the one of the Costas loop. The Equalizer matches

the symbols to the expected constellation points.

Regarding the frequency domain, the spectrum of the Costas loop does not change signifi-

cantly compared to Figure 8.26. However, the downsampling operation of the decimating

RRC filter is clearly visible in the spectrum after the symbol timing recovery. The signal

gets multiplied over the spectrum and appears 4 times and the overall PSD is higher.

Finally, the spectrum after equalization does not change significantly. It only increases

the PSD by a value of around 2dB.

130

8.6. SYNCHRONIZATION CHAIN

Figure 8.27: Using CEG to visualize the synchronization chain.

8.6.2 Varying Symbol Timing Recovery Algorithm

Following is a comparison between different symbol timing recovery algorithms at different

roll-off factors. As mentioned in section 6.4.2, the symbol timing recovery block implements

different symbol timing algorithms. This includes the two decision-directed ones (Mueller

and Müller, Zero Crossing) and the non-data-aided (Gardner, Early-Late, sgn(y[n]y’[n])

Maximum Likelihood). All of these were described in subsection 2.6.1.

Previous sections used Mueller and Müller symbol timing recovery. The RRC filter had

a roll-off factor of 0.35. In order to compare the symbol recovery algorithms, the Data

Rate Eval block described in section 5.3 was used. This block prints the effective BER of

the system into console, which makes it possible to draw a conclusion between the different

algorithms.

Roll-off factor 0.35

The comparison was conducted via the free-space transmission over a short distance with

the previous configuration. Mueller and Müller symbol timing was used as a reference, and

the relative BER deviation to this algorithm was measured for the other symbol timing

recovery algorithms. Table 8.1 contains the result of these simulations.

131

8.6. SYNCHRONIZATION CHAIN

Symbol timing algortihm Relative BER deviation to M&M

BER−BERMM

Zero Crossing 0.76%

Gardner 0.62%

Early-Late 0.10%

sgn(y[n]y’[n]) Maximum Likelihood -1,32%

Table 8.1: Relative BER deviation between symbol timing algorithms, β=0.35.

As expected, the maximum likelihood algorithm performs best when compared to the

other symbol timing recoveries, even though it is not decision-directed. The roll-off factor

is rather low, and therefore, the Mueller and Müller algorithm performs better then the

other algorithms[12].

Roll-off factor 1.00

This measurement can be repeated with a roll-off factor of 1, which means that the

modulation block doubles the bandwidth, see also subsection 2.3.3. Of course this also

changes the transmitted signal from the SDR. Figure 8.28 illustrates the measured

frequency spectrum when using a roll-off factor of 1. When comparing this to the previous

measurement in Figure 8.9, the spectrum is clearly wider.

Regarding the EVM at a sample rate of 2.5MHz, the value rises to about 6.9% compared

to the 6.1% when using a roll-off factor of 0.35. The fact that this value gets worse matches

with ideal measurements: By connecting the SMBV to the FSQ, the EVM changes from

1.2% (0.35 roll-off factor) to 5.9% (1.00 roll-off factor). The reason why this change is

so minor using the LimeSDR is that this signal is upsampled, which means it cannot be

compared directly, but the negative trend is still visible.

132

8.6. SYNCHRONIZATION CHAIN

Figure 8.28: Upsampled and filtered QPSK frequency spectrum when using a roll-off
factor of 1.

It is critical to increase the bandwidth of the receiving device to account for the additional

transmitted bandwidth. Comparing the relative deviation of BER in Table 8.2, the result

matches with literature references[12]. Since the roll-off factor is higher, the Mueller and

Müller symbol recovery algorithm performs not as good as previously. Again, the best

algorithm is the maximum likelihood.

Symbol timing algortihm Relative BER deviation to M&M

BER−BERMM

Zero Crossing -1.32%

Gardner -0.90%

Early-Late -1.60%

sgn(y[n]y’[n]) Maximum Likelihood -1.83%

Table 8.2: Relative BER deviation between symbol timing algorithms, β=1.00.

133

Chapter 9

Conclusion and Outlook

In this thesis, the applicability of a digital communication system was proven using

software-defined radios. The theoretical chapter covered all necessary topics, supported by

literature references. An overview of the system was discussed next. The ISM frequency

band of 2.4GHz was chosen, and all transmissions in the thesis were conducted at a carrier

frequency of 2.45GHz. A console based user program was developed, which was able to

configure LimeSDR devices and start a simple transmission. Although this free-space

transmission was successful, the received signal experienced both carrier frequency drift

and symbol timing errors. To counter this problem, focus was switched to GNU Radio,

an open source environment specializing on digital signal processing. The developed flow

graph for the communication system was then divided into three parts. This gave the

opportunity to evaluate every part for itself, and it also eased the workload on the host

PC. To support the development and to visualize the results in different stages of the flow

graphs, a MATLAB tool was created. And finally, the system was evaluated step by step

for practicability.

The final evaluation was supported with high quality measurement equipment. Different

stages of the system were evaluated and compared. The received information was inspected

on a binary level, to make a statement on the quality of the transmission in place. However,

it was observed that the BER was higher then expected, especially when transmitting over

a free-space channel. Additionally, the transmission was stable only over short distances.

In summary, the communication was a success. Because the span of this thesis was already

reached once a stable, short range transmission was possible, no further improvements

were implemented into the system. However, there are a list of possibilities to expand this

system even further.

9.1 Outlook

In order to expand the range of the free-space transmission, more radiating output power

would be desired. In the evaluation chapter, the output power of the LimeSDR never

reached the maximum allowed radiation power specified by the EN norm. This can be

135

9.1. OUTLOOK

improved by using a power amplifier. Connecting this component between the SDR and the

transmit antenna, the maximum distance for stable communication would be drastically

increased.

However, even when radiating the maximum allowed power, this system would still have

limits on the possible distance between two devices. To further improve link stability, other

topics need to be considered. One of these improvements would be to use spatial antenna

diversity. When transmitting the same information over multiple channels, a system could

decide which of these channels is the best one in the current case. On the other hand,

the system could also be configured to combine incoming signals and to implement an

algorithm to process this data. There are three possibilities for an algorithm to decide

which connection to use: Maximum ratio combining, equal gain combining and selective

gain combining. Additionally, since the used antennas in this thesis were not optimal,

another option would be to design new directional gain antennas, like inverted-F antennas.

Further improvement would be achieved by implementing an adaptive system. The hard-

ware could observe the bandwidth in which it plans to send data before transmitting. If

this frequency bandwidth were crowded with foreign signals, the device could choose a

different channel in the ISM band and probe this channel for availability.

Another possibility to improve the quality of the communication is to use error correction

algorithms, instead of a simple error detection CRC checksum. There are different methods

available, mainly convolutional codes (Viterbi) and block codes (Hamming, Reed-Solomon,

Turbo codes).

To increase the data rate over the transmission channel, the bandwidth of the signal could

be increased. During measurements, the utilized bandwidth was always lower than the

permitted bandwidth of the EN norm. A developer could also implement spatial antenna

multiplexing. This would mean transmitting several separate information streams over

multiple antennas. Another possibility to increase data rates would be to increase the

order of the modulation scheme. However, this would in turn effect the maximum possible

communication distance. In addition to these possibilities, changing the modulation

scheme would also increase the data rate.

A final step to further improve this system would be to implement the discussed multirate

digital signal processing into dedicated digital signal processing hardware. Even though

this would be a huge development effort, the final product would be a truly configurable

embedded wireless device.

136

Appendix A

Source Code

There were two software projects documented in this thesis, and both of them include

software packages licensed under GNU General Public License. The first one is the console

based wireless analysis tool in chapter 4. Although the user interactions were programmed

independently, the LimeSuite driver API is a old version copied into the project. And since

there were some minor changes committed into the code, the whole project needs to be

made public.

The second project was an adaptation of the gr-limesdr project on Github[28]. Changes

to the code includes the ability to print stream stats into console and an optional AGC

input on the RX sink block. Obviously, these changes must be made public as well. And

since all additional blocks in section 5.3 were created using the gr modtool, they also fall

under the GNU General Public License. Therefore, all of the blocks are summarized into

one GNU Radio module.

These two projects are publicly accessible for every one to use on the GitHub page of the

author:

https://github.com/MartinHinteregger

The source code for the Constellation Evaluation GUI in chapter 7 does not use any open

source packages, therefore it was not made public.

137

https://github.com/MartinHinteregger

Appendix B

Host Packages

After a fresh installation of the OS, the following packages need to be installed. This can

be achieved using the apt command in the console. However, be sure to run the Ubuntu

software updater at least once before installing these packages.

First of all, add the Myriad repository for the required SDR tools, and the GNU Radio

PPA (Personal Package Archive) for release 3.7:

sudo add-apt-repository -y ppa:myriadrf/drivers

sudo add-apt-repository ppa:gnuradio/gnuradio-releases-3.7

sudo apt-get update

Then install the following packages. To install them, use the following commands in this

order. Note that some packages might already be up to date, for the sake of completeness

however they are listed here as well.

sudo apt-get install cmake cpp libboost-all-dev libcppunit-dev

sudo apt-get install swig python-numpy python-swift libusb-1.0-0-dev

sudo apt-get install limesuite liblimesuite-dev

sudo apt-get install limesuite-udev limesuite-images

sudo apt-get install soapysdr-tools soapysdr-module-lms7

sudo apt-get install gnuplot default-jre

The following list is a description of all packages, obtained using the console command apt

show [name].

� cmake Cross-platform, open-source make system.

� cpp GNU C preprocessor (cpp).

� libboost-all-dev Boost C++ Libraries development files.

� libcppunit-dev Unit Testing Library for C++.

� swig Generate scripting interfaces to C/C++ code.

138

B.1. DEVELOPMENT ENVIRONMENT

� python-numpy Numerical Python adds a fast array facility to the Python language.

� python-swift Python libraries for swift support.

� libusb-1.0-0-dev Userspace USB programming library development files.

� limesuite Lime Suite - Library applications.

� liblimesuite-dev Lime Suite - development files.

� limesuite-udev Lime Suite - USB rules for udev.

� limesuite-images Lime Suite - Install firmware and gateware images.

� soapysdr-tools Software-defined radio interface library tools.

� soapysdr-module-lms7 Lime Suite - SoapySDR bindings metapackage.

� gnuplot Command-line driven interactive plotting program.

� default-jre Standard Java or Java compatible Runtime.

For good measure, it is also advised to install git if the goal is to further develop this

project.

Finally, install GNU Radio using the package manager. Active GNU release was 3.7.13.5,

later versions will cause issues when adding the custom data processing blocks discussed

in this thesis. These newer releases also need additional packages. Note that more recent

versions of limesuite will also cause problems. Latest stable version to work was 19.0.4,

so this package might need to be installed from source by checking out the specific GIT

commit.

sudo apt-get install gnuradio

B.1 Development Environment

Eclipse was chosen as a development environment. It’s freely available and can be installed

either via the console or manually, although it is recommended to install it manually.

Following a console installation, start it in console with the command eclipse. After a

manual installation start it with the command

~/eclipse/cpp-<Version>/eclipse/eclipse &

where <Version> is the installed version of eclipse, containing year and moth (for example

2019-12). It’s suggested to install the C/C++ IDE (Integrated Development Environment)

to have all the necessary tools available.

139

Appendix C

Project Setup

This chapter describes what steps need to be taken on the host to set up a development

environment for WAT.

C.1 LimeSuite Driver

After setting up the host as described in section 3.6 and chapter Host Packages, the

system is ready to test the software driver and the connectivity of the hardware platforms.

As mentioned, care has to be taken to install the correct release of the driver. In the

console the user can do simple tests after connecting one or more LimeSDR boards with

the host via a USB cable.

The command LimeQuickTest probes all serial interfaces for connected devices and runs

advanced hardware tests of the LimeSDR board. This way it can be confirmed that the

driver was installed successfully and if the devices still work as intended. All tests should

pass. Note that some of the LimeSDR devices might not be able to cold start, meaning

that they should be connected and therefore powered for a while before communication

over the interface is initiated.

The command LimeUtil also probes serial interfaces for devices and gives the user the

possibility to do automatic firmware and gateware updates of the device. It will automa-

tically flash all FX3 USB controller firmware and FPGA gateware. Additionally this

command can also print basic information of the device and do a calibration sweep.

140

C.1. LIMESUITE DRIVER

(a) LimeQuickTest. (b) LimeUtil.

Figure C.1: LimeQuickTest and LimeUtil use cases in console.

Finally the user can also start the GUI of the installed driver by calling the command

LimeSuiteGUI. Figure C.2 shows a screenshot of the GUI just after starting. Here the

user has complete control over all devices once they were connected by the program (i.e.

opening a udev USB device using libusb on Linux) by choosing Options →
ConnectionSettings. The user can also Save a configuration file. These configuration

files are stored as .ini files and can be uploaded onto any other LimeSDR by using Open

to get the same configuration.

The menu Modules gives access to a few different tools like a FFT viewer, MCU (Micro

Controller Unit) programming, SPI read/write commands and a FPGA waveform player.

On the top side of the program the user can choose between different index cards, each one

referring to parts or functions of the device. Most of the index cards are abbreviations.

For further information on what these mean and what they relay to, refer to the data

sheets[20][26]. This thesis will not go into detail about the program, since this work is

mainly interested in the driver API. The GUI version represented in the Figure is version

19.04, build date 2019-05-13. However, the driver version during development of this

console based user program was from 2018-08-16. The GIT commit number to this release

v18.10.0 is 99731b677a250aef7fd27469c5dac23b87cd80d7.

141

C.2. DEVELOPMENT ENVIRONMENT SETUP

Figure C.2: LimeSuite driver GUI, right after start-up.

C.1.1 Driver API

The host also installed the LimeSuite driver API libraries. These can be found in the

directory /usr/include/lime/. However, the user can also choose to get a clone of the

open source code from Github[32].

C.2 Development Environment Setup

As already mentioned in the previous chapter, Eclipse was used as the main development

platform. This section will describe how to set up the project using Eclipse, both by

manual setup and by importing the project settings. It is of vital importance to have all

packages listed in chapter Host Packages installed for a successful build of the project.

C.2.1 Manual Setup

The project was set up as a Automatic Makefile project. This is easily achieved using

Eclipse development platform: Create a new C/C++ Project and choose a C++ managed

build. In other words, the project should use a Cross GCC (GNU Compiler Collection)

compiler toolchain and a GNU Make Builder. Figure C.3 shows how to set up the project.

142

C.2. DEVELOPMENT ENVIRONMENT SETUP

(a) Choose a wizard. (b) Choose project options.

Figure C.3: Which options to choose when setting up the project in eclipse.

After defining a project name and folder location, the initial project is empty. If one would

want to start a new project from scratch (for example a hello world project) the first step

would be to create a new .cpp file with the same name as the project, add a main function

and some lines of code. A simple Build command in Eclipse will create a folder called

Debug (this is usually the initial configuration of the build) where the Makefile will be

auto generated and the project will be build. After successful completion, the object file

is named as the project name and can be found in the Debug folder. This object can then

be called in the console to start the program.

However, to get the WAT project going the user first needs to import the source code into

the setup and then set some additional options. To import source files, right click the

project in the project explorer and choose Import, then select File System and browse to

the directory containing the source files. Select all folders and files to import the whole

project. This will copy all files into the folder of the eclipse workspace.

Next make sure the necessary libraries, include paths and symbols are all set. Open the

project options and choose the register card C/C++ General → Paths and Symbols. Add

all folders containing header files to all languages and to all configurations. Adding them

as workspace paths makes them independent of the file system location. See Figure C.4

for a list of all include paths.

143

C.2. DEVELOPMENT ENVIRONMENT SETUP

Figure C.4: Project options, register card Paths and Symbols, included build paths.

Next switch to the register card Symbols, add the symbol USE GNU PLOT to all confi-

gurations and languages and give it the value 1. Setting this pre-processor symbol to zero

is possible, but no visualization of the data using GNUPlot will be available. Lastly add

the necessary libraries that should be installed in the /usr/include/ folder, see Figure C.6

for a list of needed libraries.

After this configuration steps the project will compile and create the binary executable in

the Debug folder.

144

C.2. DEVELOPMENT ENVIRONMENT SETUP

Figure C.5: Which options to set when adding a symbol.

Figure C.6: Libraries that need to be included into the build.

C.2.2 Import Setup

By default the folder containing the source code already has the necessary project files. In

this case simply open the import wizard, choose General and select Projects from Folder

or Archive and browse to the directory where the source code of the project resides. The

import wizard automatically detects the Eclipse project. After successful import, the

project should be able to compile using the debug configuration. If problems arise, make

sure that all necessary packages are installed on the host (see chapter Host Packages),

and check the needed libraries, include paths and symbols described in the manual setup.

145

Appendix D

Adding Custom Blocks

This chapter will describe how to set up a new block for GNU Radio by giving an example

implementation. It will also cover how to add custom blocks to the OS such that the user

can implement them in their GRC flow graph.

D.1 Modtool

When installing GNU Radio, the user also adds a tool to enable setting up development

of custom GNU Radio blocks. This tool is called gr modtool and it can be used in console.

It simplifies development of own blocks by setting up the basic file structure needed,

including bare-bone code.

1 mh@mh :~$ gr_modtool help --

2 Usage:

3 gr_modtool <command > [options] -- Run <command > with the given options.

4 gr_modtool help -- Show a list of commands.

5 gr_modtool help <command > -- Shows the help for a given command.

6

7 List of possible commands:

8

9 Name Aliases Description

10 ===

11 disable dis Disable block (comments out CMake entries

for files)

12 info getinfo ,inf Return information about a given module

13 remove rm,del Remove block (delete files and remove

Makefile entries)

14 makexml mx Make XML file for GRC block bindings

15 add insert Add block to the out -of-tree module.

16 newmod nm,create Create a new out -of-tree module

17 rename mv Rename a block in the out -of-tree module.

Listing D.1: Usage information to gr modtool and list of possible commands.

Before adding a block, the user must create a new module. This is a generic term to group

blocks together, much likely how GNU Radio combines its digital blocks (e.g. digital

modulation blocks, linear-feedback shift registers and synchronization blocks) into the gr-

146

D.2. SETUP DEVELOPMENT ENVIRONMENT

digital module.

This tutorial will explain how to develop a source block that will have no input, but instead

will output an integer value defined by the user. This block will be called var source i,

to signal every potential developer, that the source block outputs an integer value. The

module will be called gr-tut source in accordance to GNU Radio naming policies.

To add the module, simply type gr modtool newmod in the console and specify the name

(without gr-, as this will be added automatically). Finally, switch to the newly created

directory and add a block, select source as block type, cpp to create C++ files, the name

of the block (var source i) and int value as argument list. Finally, chose not to add QA

(Quality Assurance) code. The tool then adds all the necessary files to start development.

Before the block can be built and added to the environment, some minor changes need to

be made.

1 mh@mh :~$ gr_modtool newmod

2 Name of the new module: tut_source

3 Creating out -of-tree module in ./gr-tut_source ... Done.

4 Use ’gr_modtool add ’ to add a new block to this currently empty module.

Listing D.2: Create a new module with gr modtool.

1 mh@mh :~$ cd gr-tut_source/

2 mh@mh :~/gr-tut_source$ gr_modtool add

3 GNU Radio module name identified: tut_source

4 (’sink ’, ’source ’, ’sync ’, ’decimator ’, ’interpolator ’, ’general ’,

’tagged_stream ’, ’hier ’, ’noblock ’)

5 Enter block type: source

6 Language (python/cpp): cpp

7 Language: C++

8 Enter name of block/code (without module name prefix): var_sources_i

9 Block/code identifier: var_sources_i

10 Enter valid argument list , including default arguments: int value

11 Add Python QA code? [Y/n] n

12 Add C++ QA code? [Y/n] n

13 Adding file ’lib/var_sources_i_impl.h’...

14 Adding file ’lib/var_sources_i_impl.cc ’...

15 Adding file ’include/tut_source/var_sources_i.h’...

16 Editing swig/tut_source_swig.i...

17 Adding file ’grc/tut_source_var_sources_i.xml ’...

18 Editing grc/CMakeLists.txt...

Listing D.3: Add a new C++ block to the module.

D.2 Setup Development Environment

Unfortunately, there is no special project option available in Eclipse that works with

this kind of structure, a project incorporating three different languages (C++, XML and

Python). But it is still possible create a C++ project to get all the C++ development

147

D.3. MODIFY BLOCK

features like indexer and refraction. This is of course assuming that the instructions in

the appendix chapter Host Packages were followed and the C/C++ IDE was added.

Therefore, first create a new and empty C++ project as described in the manual setup

of chapter Host Packages, call the project gr-tut source and import the recently created

file structure as illustrated in Figure D.1. Be sure to create virtual links, otherwise Eclipse

will copy the files into Eclipses’ work space directory. The project doesn’t need to compile

in Eclipse, it will be built in console. Eclipse is just used for development.

(a) Choose to import a file system. (b) Select the directory and check all files
and folders.

Figure D.1: How to import the newly created module to the eclipse project.

D.3 Modify Block

The previous steps helped setting up the file structure and the required functions. However,

some parts still need modification before the module can be built and added to the

environment.

D.3.1 XML File

The first change is to the XML file that defines how the block will be visualized in the GUI,

and also which parameters and ports the block contains. This file is located in the grc

directory and is called tut source var sources i.xml. The following tags should be changed:

� Add a reasonable name that will be displayed in the GUI.

� The tag category specifies the general tab in the GUI under which all blocks of the

module will be listed.

� Furthermore, make defines the call to a C++ function that will be used later. It

also contains which parameters are passed, the previously discussed value parameter

148

D.3. MODIFY BLOCK

should already be included.

� Add a function callback to a set value($value) function that will be written later

with the callback tag. This function will be called whenever the value that the

block should output is changed, even during execution of the flow graph.

� Next will be the declaration what kind of data format the previously mentioned

value parameter should be and its default value. This is defined with the param

tag.

� Finally, since this block will only have one output, define one single output port with

integer type using the source tag.

The file should then look similar to Listing D.4. As with other XML files, the sequence of

tags is important.

1 <?xml version ="1.0"? >

2 <block >

3 <name >Variable Source </name >

4 <key >tut_source_var_sources_i </key >

5 <category >[tut_source]</category >

6 <import >import tut_source </import >

7 <make >tut_source.var_sources_i($value)</make >

8

9 <callback >set_value($value)</callback >

10

11 <param >

12 <name >Value </name >

13 <key >value </key >

14 <value >0</value >

15 <type >int </type >

16 </param >

17

18 <source >

19 <name >out </name >

20 <type >int </type >

21 <nports >1</nports >

22 </source >

23 </block >

Listing D.4: The final XML file structure.

D.3.2 var sources i.h

It is located in the include/tut source folder and serves as the header implementing the

block into GNU Radio and adding API functionality. The previously mentioned callback

function must be added as a virtual function into the var sources i class.

virtual void set_value(int value) = 0;

149

D.3. MODIFY BLOCK

D.3.3 var sources i impl.h

This header, together with its .cc file described next, handle the actual implementation

of the block. It can be found in the directory lib. Only add the function callback to this

header, with the exception that it is not virtual this time, but an actual implementation.

void set_value(int value);

Also add a private integer variable called val :

int val_;

D.3.4 var sources i impl.cc

The constructor function defines how the inputs and outputs of the block are defined. This

needs to be adjusted accordingly, in this case no input connection and a single output port

with integer type. Also, save the passed value into the private integer val .

1 var_sources_i_impl :: var_sources_i_impl(int value)

2 : gr:: sync_block (" var_sources_i",

3 gr:: io_signature ::make(0, 0, 0)

4 gr:: io_signature ::make(1, 1, sizeof(int)))

5 {

6 val_ = value;

7 }

Listing D.5: The constructor of the variable source block.

This file contains the actual work function of the block, which handles what the block does

when the GNU Radio scheduler executes the block to process data. In the work function,

just cast the output variable, store the private integer variable into the first element of

the array and tell the GNU Radio scheduler to only read the first value.

1 int

2 var_sources_i_impl ::work(int noutput_items ,

3 gr_vector_const_void_star &input_items ,

4 gr_vector_void_star &output_items)

5 {

6 gr_int32 *out = (gr_int32 *) output_items [0];

7

8 out[0] = val_;

9

10 return 1;

11 }

Listing D.6: The work function of the variable source block.

Finally, implement the callback function by storing the passed value into the private

variable. This function will be called if the user chooses to change the output value during

execution of a flow graph.

150

D.4. BUILD MODULES

1 void var_sources_i_impl :: set_value(int value)

2 {

3 val_ = value;

4 }

Listing D.7: The callback function of the variable source block.

After these steps, the module is ready to be built and added to the GNU Radio environment.

D.4 Build Modules

In order to build blocks, first navigate in the console to the directory of the module and

issue the following commands:

mkdir build

cd build

cmake ..

make all

sudo make install

sudo ldconfig

This will first create a folder called build, switch into this folder, prepare the build process

and check necessary libraries and tools by using cmake, then build the project using make

as well as installing the block. Finally, ldconfig updates links and cache to the most recent

shared libraries in various directories. When starting GRC, the newly created block can

now be selected and used in flow graphs.

To uninstall the module, navigate to the build directory in the console and issue the

following commands:

sudo make uninstall

make clean

cd ..

rm -rf build

This will first uninstall the module, then clean and remove the build folder. Note that

GRC might need a restart for the changes to take effect.

151

Bibliography

[1] Ops-sat. , European Space Agency. [Online]. Available: https://www.esa.int/

Enabling Support/Operations/OPS-SAT

[2] B. Sklar, Digital Communications: Fundamentals and Applications, 2nd ed. Bernard

Goodwin, 2005.

[3] K. Finkenzeller, RFID Handbook, 2nd ed. Carl Hanser Verlag, 2003.

[4] J. G. Proakis, Digital Communications, 4th ed. The McGraw-Hill Companies, Inc.,

2000.

[5] T. S. Rappaport, Wireless Communications: Principles and Practice, 2nd ed.

Bernard Goodwin.

[6] T. F. C. Di, Software-Defined Radio for Engineers. Artech House, 2018.

[7] T. Hentschel, Sample rate conversion in software configurable radios. Artech House

Publishers, 2002.

[8] S. Hara and R. Prasad, Multicarrier Techniques for 4G Mobile Communications.

Artech House Publishers, 2003.

[9] A. Lozano and N. Jindal, “Transmit diversity vs. spatial multiplexing in modern mimo

systems,” IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 9,

NO. 1, JANUARY 2010, 2010.

[10] E. Biglieri, Coding for Wireless Channels (Information Technology: Transmission,

Processing and Storage). Springer, 2005.

[11] H. Meyr, M. Moeneclaey, and S. A. Fechtel, Digital Communication Receivers,

Synchronization, Channel Estimation, and Signal Processing. Wiley-Interscience,

1997.

[12] U. Mengali, Synchronization Techniques for Digital Receivers (Applications of

Communications Theory). Springer, 1997.

[13] J. Mitola, “The software radio architecture,” IEEE Communications Magazine, 1995.

[14] B. Hall and W. Taylor, “X- and ku-band small form factor radio

design.” [Online]. Available: https://www.analog.com/en/technical-articles/

x-and-ku-band-small-form-factor-radio-design.html

153

https://www.esa.int/Enabling_Support/Operations/OPS-SAT
https://www.esa.int/Enabling_Support/Operations/OPS-SAT
https://www.analog.com/en/technical-articles/x-and-ku-band-small-form-factor-radio-design.html
https://www.analog.com/en/technical-articles/x-and-ku-band-small-form-factor-radio-design.html

[15] Wideband transmission systems; Data transmission equipment operating in the 2,4

GHz band; Harmonised Standard for access to radio spectrum, ETSI Std. ETSI EN

300 328, Rev. V2.2.1, Nov. 2019. [Online]. Available: https://www.etsi.org/deliver/

etsi en/300300 300399/300328/02.02.01 30/en 300328v020201v.pdf

[16] Usrp b210. , Ettus Research. [Online]. Available: https://www.ettus.com/

all-products/ub210-kit/

[17] Usrp-2901. , National Instruments. [Online]. Available: https://www.ni.com/en-us/

support/model.usrp-2901.html

[18] Usrp communications mimo teaching bundle. , National Instruments. [Online].

Available: http://sine.ni.com/nips/cds/view/p/lang/en/nid/213007

[19] Usrp software-defined radio device. , National Instruments. [Online]. Available:

http://www.ni.com/en-us/shop/select/usrp-software-defined-radio-device

[20] Limesdr. , Lime Microsystems. [Online]. Available: https://limemicro.com/products/

boards/limesdr/

[21] Lms7002m product brief. , Lime Microsystems. [Online]. Available: https://github.

com/myriadrf/LMS7002M-docs/blob/master/LMS7002M Product Brief.pdf

[22] Limesdr crowdsupply funding page. , Lime Microsystems. [Online]. Available:

https://www.crowdsupply.com/lime-micro/limesdr

[23] Xtrx. , Fairwaves. [Online]. Available: https://xtrx.io/

[24] Xtrx - the first ever truly embedded sdr. , Fairwaves. [Online]. Available:

https://www.crowdsupply.com/fairwaves/xtrx

[25] Xtrx source code on github. , Fairwaves. [Online]. Available: https://github.com/

xtrx-sdr

[26] Lms7002m data sheet. , Lime Microsystems. [Online]. Available: https://github.

com/myriadrf/LMS7002M-docs/blob/master/LMS7002M Data Sheet v3.2r00.pdf

[27] Lms7002m - multi-band, multi-standard mimo rf transceiver ic -

programming and calibration guide -. , Lime Microsystems. [Online].

Available: https://github.com/myriadrf/LMS7002M-docs/blob/master/LMS7002M

Programming and Calibration Guide v31r05.pdf

[28] gr-limesdr source code on github. , Lime Microsystems. [Online]. Available:

https://github.com/myriadrf/gr-limesdr

[29] Gnu radio wiki for symbol sync block. [Online]. Available: https://wiki.gnuradio.

org/index.php/Symbol Sync

154

https://www.etsi.org/deliver/etsi_en/300300_300399/300328/02.02.01_30/en_300328v020201v.pdf
https://www.etsi.org/deliver/etsi_en/300300_300399/300328/02.02.01_30/en_300328v020201v.pdf
https://www.ettus.com/all-products/ub210-kit/
https://www.ettus.com/all-products/ub210-kit/
https://www.ni.com/en-us/support/model.usrp-2901.html
https://www.ni.com/en-us/support/model.usrp-2901.html
http://sine.ni.com/nips/cds/view/p/lang/en/nid/213007
http://www.ni.com/en-us/shop/select/usrp-software-defined-radio-device
https://limemicro.com/products/boards/limesdr/
https://limemicro.com/products/boards/limesdr/
https://github.com/myriadrf/LMS7002M-docs/blob/master/LMS7002M_Product_Brief.pdf
https://github.com/myriadrf/LMS7002M-docs/blob/master/LMS7002M_Product_Brief.pdf
https://www.crowdsupply.com/lime-micro/limesdr
https://xtrx.io/
https://www.crowdsupply.com/fairwaves/xtrx
https://github.com/xtrx-sdr
https://github.com/xtrx-sdr
https://github.com/myriadrf/LMS7002M-docs/blob/master/LMS7002M_Data_Sheet_v3.2r00.pdf
https://github.com/myriadrf/LMS7002M-docs/blob/master/LMS7002M_Data_Sheet_v3.2r00.pdf
https://github.com/myriadrf/LMS7002M-docs/blob/master/LMS7002M_Programming_and_Calibration_Guide_v31r05.pdf
https://github.com/myriadrf/LMS7002M-docs/blob/master/LMS7002M_Programming_and_Calibration_Guide_v31r05.pdf
https://github.com/myriadrf/gr-limesdr
https://wiki.gnuradio.org/index.php/Symbol_Sync
https://wiki.gnuradio.org/index.php/Symbol_Sync

[30] Gnu radio api reference about lms dd equalizer. , GNU Radio. [Online].

Available: https://www.gnuradio.org/doc/doxygen/classgr 1 1digital 1 1lms dd

equalizer cc.html

[31] (2017) Smbv100a operation manual web help. , Rohde & Schwarz. [Online].

Available: https://www.rohde-schwarz.com/webhelp/smbv html usermanuals

online en 1/SMBV HTML UserManuals Online en.htm

[32] Limesuite source code on github. , Lime Microsystems. [Online]. Available:

https://github.com/MyriadRF/LimeSuite

155

https://www.gnuradio.org/doc/doxygen/classgr_1_1digital_1_1lms__dd__equalizer__cc.html
https://www.gnuradio.org/doc/doxygen/classgr_1_1digital_1_1lms__dd__equalizer__cc.html
https://www.rohde-schwarz.com/webhelp/smbv_html_usermanuals_online_en_1/SMBV_HTML_UserManuals_Online_en.htm
https://www.rohde-schwarz.com/webhelp/smbv_html_usermanuals_online_en_1/SMBV_HTML_UserManuals_Online_en.htm
https://github.com/MyriadRF/LimeSuite

	1 Introduction
	1.1 Structure

	2 Theory
	2.1 Digital Communication System
	2.1.1 Transmitting
	2.1.2 Wave Emitter
	2.1.3 Transmission Channel
	2.1.4 Receiving

	2.2 Information Formats
	2.2.1 Binary Representation
	2.2.2 Waveforms
	2.2.3 Receiver Side

	2.3 Filters and Sampling
	2.3.1 Linear System Transmission
	2.3.2 Ideal Filters
	2.3.3 Nyquist Filter
	2.3.4 Digital Filter
	2.3.5 Sample-Rate Conversion

	2.4 Diversity Techniques
	2.4.1 General
	2.4.2 Time and Frequency Diversity
	2.4.3 Antenna Diversity

	2.5 Channel
	2.5.1 Noise
	2.5.2 Link Budget
	2.5.3 Rayleigh and Ricean Fading
	2.5.4 MIMO Channel

	2.6 Synchronization
	2.6.1 Timing Synchronization
	2.6.2 Carrier Synchronization
	2.6.3 Frame Synchronization
	2.6.4 Equalization

	2.7 Software-Defined Radio
	2.7.1 Architecture
	2.7.2 Automatic Gain Control
	2.7.3 Software Environment

	3 System Overview
	3.1 Parameters and Limitations
	3.1.1 General Concept and Parameters
	3.1.2 Norm Limitations

	3.2 Hardware Design Options
	3.2.1 USRP B210 / USRP-2901
	3.2.2 LimeSDR
	3.2.3 XTRX
	3.2.4 Other Options

	3.3 Hardware Design Decision
	3.4 LMS7002M Structure
	3.4.1 Gain Control
	3.4.2 Low-Pass Filters
	3.4.3 Synthesizer
	3.4.4 Interface Lengths
	3.4.5 Transceiver Signal Processing

	3.5 Antennas
	3.6 Host Setup
	3.6.1 Hardware
	3.6.2 Software

	4 Wireless Analysis Tool
	4.1 Goals
	4.2 Implementation
	4.3 Use Cases
	4.3.1 Startup
	4.3.2 Device Configuration
	4.3.3 Stream
	4.3.4 AGC Control
	4.3.5 Stream Pause Controls

	4.4 Conclusion

	5 GNU Radio Framework
	5.1 About GNU Radio
	5.2 GNU Radio Companion
	5.3 Additional Custom Blocks

	6 GNU Radio Flow Graphs
	6.1 Full System Concept
	6.2 Data Preparation and Modulation
	6.2.1 Variables
	6.2.2 Data Processing

	6.3 Transmit and Receive
	6.3.1 Variables
	6.3.2 Data Processing

	6.4 Data Synchronization, Demodulation and Correlation
	6.4.1 Variables
	6.4.2 Data Processing

	7 Constellation Evaluation GUI
	7.1 Implementation

	8 Design Evaluation
	8.1 Data Format
	8.1.1 Test Cases
	8.1.2 Frame Structure

	8.2 Theoretical Prove of Concept
	8.2.1 Concept Prove with l Test File

	8.3 Using one Device as TX and RX
	8.3.1 TX/RX Flow Graph
	8.3.2 Spectrum and Constellation
	8.3.3 Data Results
	8.3.4 Other Test Cases
	8.3.5 Comparison using CEG
	8.3.6 Comparison using Reference Vector Signal Generator

	8.4 Two Devices with Wired Connection
	8.5 Actual Free-Space Transmission
	8.6 Synchronization Chain
	8.6.1 Evaluation using CEG
	8.6.2 Varying Symbol Timing Recovery Algorithm

	9 Conclusion and Outlook
	9.1 Outlook

	Appendix A Source Code
	Appendix B Host Packages
	B.1 Development Environment

	Appendix C Project Setup
	C.1 LimeSuite Driver
	C.1.1 Driver API

	C.2 Development Environment Setup
	C.2.1 Manual Setup
	C.2.2 Import Setup

	Appendix D Adding Custom Blocks
	D.1 Modtool
	D.2 Setup Development Environment
	D.3 Modify Block
	D.3.1 XML File
	D.3.2 var_sources_i.h
	D.3.3 var_sources_i_impl.h
	D.3.4 var_sources_i_impl.cc

	D.4 Build Modules

