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You cannot learn
what you think you already know
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Abstract

Data-driven approaches have lead to great successes for a broad range of

tasks, but such approaches typically require large amounts of annotated

data. In particular, big successes have been enabled by a large number of

workers spending a huge effort to annotate enough data for training the

respective systems. For this work the playground is set by the task of 3D

hand pose estimation. A task, which is difficult due to the hands’ high degree

of freedom, fast motion, the frequently occurring (self-)occlusions and the

3D nature of the target. Due to the difficulties the best available solutions

for this task rely on a combination of data-driven prediction models and

prior knowledge about the task in terms of manually defined hand models.

However, even the largest scale training datasets for the data-driven part

are unable to sufficiently cover all the variations which might occur at test

time, and thus, the whole system is hampered by the limitations of the

training data. The insufficiency of the training data coverage is essentially

due to the mentioned difficulties of the task, which also make the manual

labeling a tedious effort. Additionally, new training data is often required

for a new application, e.g ., due to a new camera setup. If it would be

possible, however, to learn hand pose estimation without labeling effort it

would be much more accessible and could thus be applied to a larger range

of applications. Hence, the arising question is whether we can reduce this

labeling effort or even find a way to solve the task without any manual

labeling effort.

In this thesis we subsume three distinct methods, bringing us closer to

eliminating the requirement for labeled real data. We do so by tackling

the problem from different aspects. We first investigate the potential of

exploiting prior knowledge in a specialized hybrid method. We devise a

combination of a data-driven and a model-based part, where the model-
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based part is able to cope with the insufficiency of training data for the

data-driven part by incorporating the uncertainties of the data-driven part

in the optimization of the pose parameters. In the subsequent chapter we

reduce the label hunger of a data-driven approach already during training,

by exploiting unlabeled data. Specifically, we show that by learning to pre-

dict a different view of the captured hand solely from a low dimensional

latent representation extracted from the input view, an end-to-end trained

model is enforced to make the latent representation very specific to the pose

of the hand without requiring any pose labels. For the third main contri-

bution of this thesis, we draw from another, completely different, source of

information – namely synthetic data. To exploit synthetic data we mitigate

the domain gap between real and synthetic data by learning to map from

the features of real data to the features of synthetic data mainly from non-

corresponding, i.e. unlabeled, data. In this way the synthetic data can be

exploited to learn a very accurate mapping from the latent feature space to

the target pose representation also for real data.

We show that each of the three main contributions of this thesis yields

increased label efficiency. We find, that by exploiting prior knowledge with

the hybrid approach we can achieve similar results with significantly less

samples. The improvement is especially significant for small numbers of

labeled samples. When exploiting unlabeled samples by learning to predict

different views, we find that the improvement for a small number of labeled

samples is even stronger, and in general about one to two orders of magni-

tude less labeled samples are sufficient to achieve similar results. Moreover,

when exploiting synthetic together with unlabeled data we are able to im-

prove the result when employing only about 0.1% of the labeled real data,

i.e., three orders of magnitude less than the strong baseline. Given the

large effort for labeling and its importance for the success of a system, we

believe that the methods introduced in this thesis present a step towards

easier adoption of such technology making it accessible to a larger number

of people and a larger range of applications.



Kurzfassung

Sogenannte datengetriebene Ansätze haben sich für ein breites Aufgaben-

spektrum bewährt – diese erfordern in der Regel jedoch große Mengen

an annotierten Daten. Größere Erfolge für unterschiedliche Aufgaben

wurden häufig erst durch enormen menschlichen Annotierungsaufwand

ermöglicht. Die Aufgabe an der wir die Ergebnisse dieser Dissertation

messen ist die Schätzung der Hand-Pose in 3D. Dabei handelt es

sich um eine Aufgabe deren Schwierigkeiten in der hohen Anzahl

an Freiheitsgraden, schnellen Bewegungen, häufig auftretenden

(Selbst-)Verdeckungen und der gewünschten 3D-Schätzung, liegen.

Aufgrund dieser Schwierigkeiten basieren die besten Lösungen für diese

Aufgabe auf einer Kombination datengetriebener Vorhersagemodelle

und Vorwissen über die Handanatomie. Allerdings kann selbst der

größte existierende Trainingsdatensatz für das datengetriebene Modell

nicht alle Variationen abdecken, die zur Testzeit auftreten können. Die

Unzulänglichkeiten der Trainingsdaten lassen sich im Wesentlichen auf

die angesprochenen Schwierigkeiten der Aufgabe zurückführen, welche

die manuelle Annotierung zu einem enormen Aufwand machen. Das ist

umso problematischer da es für eine neue Anwendung häufig nötig ist auch

neue Trainingsdaten zu generieren – z.B. weil für die neue Anwendung

ein anderes Kamera-Setup erforderlich ist. Wenn es aber möglich wäre,

ein System zur Schätzung der Hand-Pose ohne Annotierungsaufwand

zu trainieren, wäre ein solches System viel leichter anwendbar, einem

größeren – im speziellen weniger finanzkräftigen – Kreis an Entwicklern

zugänglich und damit auch für viele neue Anwendungen verwendbar.

Daher gehen wir in dieser Arbeit der Frage nach, ob es möglich ist, den

Annotierungsaufwand zu reduzieren oder sogar einen Weg zu finden um

die Aufgabe gänzlich ohne Annotierungsaufwand zu lösen.
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Diese Arbeit fasst drei Methoden zusammen, die uns dem Ziel, für

die Schätzung der Hand-Pose keine real-world Daten manuell annotieren

zu müssen, näher bringen. In einem ersten Schritt untersuchen wir das

Potenzial der Nutzung von Vorwissen über die Handanatomie mittels eines

Handmodells. Dazu stellen wir eine Kombination aus einem daten- und

einem modellbasierten Teil vor, in welcher die Schätz-Ungenauigkeiten

des datengetriebenen Modells ausgeglichen werden, indem die Verteilung

der Schätzwerte in der nachfolgenden Optimierung der Parameter des

Handmodells explizit berücksichtigt wird. Im darauffolgenden Kapitel

reduzieren wir den Annotierungsbedarf eines datengetriebenen Ansatzes

bereits während des Trainings, indem wir auf nicht annotierte Daten

zurückgreifen. Dazu trainieren wir ein Model um vorherzusagen wie

die Hand aus einem anderen Blickwinkel aussieht. Wir zeigen dass

unser – auf diese Weise – trainiertes Model eine latente Repräsentation

beinhaltet, die sehr spezifisch für die Hand-Pose ist, ohne jedoch mit

solchen Annotierungen trainiert zu werden. Für den dritten Hauptbeitrag

dieser Arbeit ziehen wir wiederum eine völlig andere Datenquelle heran

– nämlich synthetische Daten. Damit synthetische Daten trotz deren

Unterschiede zu realen Daten besser ausgenutzt werden können, lernen

wir eine Abbildung von der latenten Repräsentation realer Daten auf

die latente Repräsentation synthetischer Daten vorwiegend aus nicht

korrespondierenden, d.h. nicht annotierten Daten. Auf diese Weise können

die synthetischen Daten, mittels derer ein äußerst akkurates Schätzmodel

gelernt werden kann, auch für die Schätzung der Posen in realen Daten

ausgenutzt werden.

Es zeigt sich, dass jeder der drei Hauptbeiträge dieser Arbeit den An-

notierungsaufwand verringert. Durch die Ausnutzung von Vorwissen mit-

tels des hybriden Ansatzes zeigt sich eine deutliche Verbesserung speziell bei

einer kleinen Anzahl zur Verfügung stehender annotierter Beispiele. Durch

die Nutzung nicht annotierter Daten von anderen Blickwinkeln während

des Trainings lassen sich ähnliche Ergebnisse bereits mit 10 bis 100-mal

weniger annotierten Trainingsbeispielen erzielen. Durch die Verwendung

von synthetischen zusammen mit nicht annotierten Daten verbessert sich

das Ergebnis schließlich schon mit etwa 0,1% der annotierten realen Daten.

Angesichts des großen Annotierungsaufwands und dessen kritischer Bedeu-

tung für den Erfolg eines solchen datengetriebenen Systems sehen wir die

in dieser Arbeit vorgestellten Methoden als einen Schritt in Richtung der

einfacheren Anwendbarkeit einer solchen Technologie, womit sie gleichzeitig

einer größeren Anzahl von Menschen und weiteren Anwendungsbereichen

zugänglich wird.
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CHAPTER 1

Introduction

Contents

1.1 What is the problem? . . . . . . . . . . . . . . . . 1

1.2 Hand pose estimation: a brief review . . . . . . 2

1.3 Towards closing the gaps . . . . . . . . . . . . . . 4

1.1 What is the problem?

Successful approaches to learning models for hand pose estimation require

extensive amounts of labeled data. This is not only the case for hand pose

estimation, but equally holds for many other classic computer vision tasks,

such as object detection, semantic segmentation, or image classification. All

of these tasks have seen a significant performance increase in recent years

following the availability of large annotated datasets and the corresponding

computational power to exploit these large labeled datasets.

In general, the task of providing labeled data is expensive and has thus

even become an industry of its own1. This especially holds for tasks for

which the target space is structured in a complex manner, like for semantic

segmentation, human pose estimation or the task considered in this work:

hand pose estimation.

1The probably most prominent example for the labeling industry is Amazon Me-
chanical Turk (www.mturk.com). Nevertheless, many specialized companies exist: e.g .,
cloudfactory (www.cloudfactory.com), Might Ai (www.mighty.ai) or DataPure (www.
datapure.co).

1

www.mturk.com
www.cloudfactory.com
www.mighty.ai
www.datapure.co
www.datapure.co


2 Chapter 1. Introduction

Considering 3D hand pose estimation, the labeling is effortful due to

the frequent self occlusions, the 3D nature of the hand and targets, and

especially the large pose space. The pose space grows exponentially with

the degrees of freedom (DoFs) of the hand pose. Model based works on hand

pose estimation usually parameterize the pose of their hand models with at

least 26 DoFs (Oikonomidis et al., 2011a; Taylor et al., 2016; Xu and Cheng,

2013). Hence, when trying to illustrate the size of the emerging space by

taking just three samples from each dimension and ignoring 3D translations,

i.e., using 23 DoFs instead of 26 DoFs, we end up with 323 ≈ 9.4 × 1010,

i.e., 94 billion poses. While such a rough calculation has flaws2, it should

merely serve as an indication of the size of the target space and why even

the largest datasets to date are far from capturing the space well.

Moreover, each time specific assumptions underlying the task change, it

is likely that a large amount of new labeled data has to be provided. This

might be the case if the nature of occlusions changes, e.g ., if the hand pose

should also be estimated during interaction with objects or different objects

are interacted with. Other examples for cases where new data is commonly

required are, e.g ., when a new view point is targeted, (c.f ., data from an

ego-centric view vs. third-person view) or a new sensor with different noise

characteristics is to be used. Whatever the reasons for such changes might

be, the necessary labeling effort hampers applications.

In this thesis we develop methods which largely reduce the labeling

effort. Before introducing these methods we want to point out why the

specific contributions are necessary. Hence, we will first briefly discuss the

main approaches towards hand pose estimation and will especially point out

the limitations which make the contributions of our work necessary.

1.2 Hand pose estimation: a brief review

Traditionally, works on hand pose estimation are categorized into two main

strands (Erol et al., 2007; Supancic et al., 2015; Wu et al., 2001). These

two main strands are often denoted model-based and data-driven. Model-

based approaches fit a manually created hand model to each observation.

Data-driven approaches, on the other hand, learn a mapping from input to

target pose from data and apply this mapping to each observation. Finally,

hybrids, which combine ideas from both strands, have been developed.

2 The calculation ignores, e.g ., anatomical and physical constraints reducing the space,
but also that several of the DoFs will not be sufficiently captured with only three samples



1.2. Hand pose estimation: a brief review 3

Model-based paradigm

Early works on hand pose estimation usually followed the model-based

paradigm (Kuch and Huang, 1995; Rehg and Kanade, 1995; Wu and Huang,

1999). The main observation is that prior knowledge about the task and

especially the hand can be exploited to find the pose which generated the

image. With respect to our work, exploiting prior knowledge also circum-

vents the requirement for large datasets.

To estimate the pose of the hand, approaches from this strand follow

an analysis-by-synthesis approach (Colman, 2015). In these approaches a

manually crafted hand model, which can be compared to the observation,

is employed. During test time, the task is to find a parameterization of the

model, so that the model best fits the observation. The fit can be judged by,

e.g ., rendering the parameterized model and comparing it with the actual

observation. By exploiting prior knowledge in this way, such approaches

do not only eliminate the requirement of a large annotated dataset, the

estimated poses can also be guaranteed to always be physically plausible.

Since computational constraints render it infeasible to exhaustively

search the pose space for the best parameterization, such approaches

require an initialization, which is already close to the true solution. Hence,

the approaches typically rely on an initialization based on the solution

from the previous frame and on a manual initialization in the first frame.

However, especially fast hand movements or dropped frames can lead to

tracking errors, from which such a tracking based approach can usually

not recover.

Data-driven paradigm

The interest in data-driven methods for hand pose estimation raised within

the last five to ten years (c.f ., (Erol et al., 2007; Yuan et al., 2018)). This

goes together with a generally increased interest in data-driven methods

and their increased performance, which was largely triggered by increased

computational resources, together with the construction and availability of

larger datasets.

Data-driven methods learn a mapping from the input to the pose based

on annotated training data. Such a mapping is a complex, highly non-linear

function. Hence, learning the mapping from data – for a large range of poses

– requires a large amount of labeled data. The labeled data is then employed

to learn the mapping function during usually lengthy training times. During

test time the learned functions can then quickly deliver a pose estimate.

Providing a sufficient amount of training data can, however, be a large

effort as described above. Additionally, these approaches build on the as-
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sumption that the poses encountered during test time are covered by the

pose distribution in the training set, since the approaches are prone to fail

for poses outside the training set distribution. However, – as described

above – datasets of current scale are still far from capturing all possible

poses.

Hybrid approaches

We see that model-based and data-driven approaches have their individual

merits and drawbacks. Hence, hybrid approaches aiming to combine the

merits and omit the drawbacks of both strands have been developed.

Hybrid approaches usually produce an initialization using a data-driven

element and validate and/or locally optimize the initial solution using a

model-based element (Panteleris et al., 2018; Sharp et al., 2015; Ye et al.,

2016). Nevertheless, some hybrid approaches mainly rely on the model-

based element (Ganapathi et al., 2010; Wei et al., 2012) and use the data-

driven part only for error correction.

While some merits of both strands can be exploited and some drawbacks

overcome, important issues are not fully circumvented. These approaches

are typically able to always provide a physically valid solution, while not

requiring a manual initialization in the first frame, nor requiring the solution

in the previous frame to be correct or close to the solution in the current

frame. Additionally – as we show in Chapter 3 – the sampling density of

the labeled training set can be reduced. Nevertheless, hybrid approaches

usually still rely on a training set, which densely covers the pose distribution

encountered at test time. This is due to the fact that – at least – for problem

cases of the model-based part, like initialization or track losses, the estimate

of the data-driven part needs to be close to the true solution. The data-

driven approach, however, will not be able to deliver an initial solution close

to the true solution if the training set does not reasonably well cover the

test distribution. Hence, hybrid approaches still depend on the coverage of

the training set.

1.3 Towards closing the gaps

The quest of this thesis is to reduce the labeling effort for learning mod-

els for hand pose estimation while not sacrificing accuracy. To investigate

this question, we essentially explore three directions: (i) exploiting prior

knowledge about the hand, (ii) exploiting unlabeled data and (iii) exploit-

ing synthetic data. The methodological contributions towards these three

directions, which we introduce in this thesis, are largely based on three pre-
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vious conference publications (Poier et al., 2019, 2015, 2018) and contain

additional experiments and analyses.

Naturally, a model learned from a sparsely sampled training set would

be prone to errors. One way to mitigate this is to exploit prior knowledge

about the structure of the hand. Such prior knowledge can, e.g., be provided

by employing a graphical model of the hand.

Combining a learned/data-driven and a hand-model-based part in a hy-

brid approach reduces the need for a densely sampled training set. In Chap-

ter 3 we devise such a hybrid approach, where we first learn a model, which

is able to make independent estimates for each joint location and in this way

also lessens the requirement to densely cover the pose space. During test

time, after applying the learned model, we employ a graphical hand-model

to fit the independent joint estimates of the learned model.

By fitting the hand-model, the system always delivers an anatomically

correct hand pose, even if the independent joint position estimates from the

learned model would not form an anatomically plausible pose. Moreover,

by having the learned model outputting a distribution of joint positions

and optimizing the hand-model parameters by considering this distribution,

the hand-model-based step considers the uncertainties of the learned model

when optimizing the hand-model parameters to provide the final result. We

show that in this way we can achieve similar accuracy using significantly

less labeled data.

Despite the discussed advantages of our hybrid approach, it still requires

a significant amount of labeled training data. This is because the model-

based step cannot fix gross errors that occur for samples to far from the

training set distribution.

In quest of having the training data better covering the pose space with-

out requiring more labeling effort, we develop a way to exploit unlabeled

data. In Chapter 4 we show that unlabeled data can provide supervision for

the task of pose estimation if two cameras observe the hand simultaneously

from different viewpoints. The idea is based on the observation that the

pose is predictive for the appearance of the hand from any known view.

That is, given the pose, the hands’ appearance can be roughly predicted

from any known view. Based on this observation we show that representa-

tions, very specific to the hand pose, can be learned by simply learning to

predict one camera view, given the other.

More specifically, given the image from one camera view, we first learn

to predict a low dimensional latent representation. Intuitively, if this latent

representation contains detailed information about the pose of the hand, a

second model should be able to predict another view of the hand – given

only the latent representation. By training the two models jointly we show
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that the latent representation becomes pose specific and – when trained

with labeled data – the system needs one order of magnitude less labeled

samples to learn to map from the latent representation to the target pose

with similar or better accuracy.

Exploiting unlabeled data can reduce the labeling effort, but, learned

models still need labeled data to define the target space. The latent repre-

sentation learned only from unlabeled data is by definition agnostic to the

exact target representation we are aiming at, like 3D joint positions or joint

angles. Hence, we always need labeled samples to learn the final mapping

to the desired target space.

For hand pose estimation – similar to other tasks – we can also render a

virtual model to generate labeled synthetic data, which can then potentially

be exploited to define the target space. This has the advantage that a

virtually infinite amount of training data together with accurate annotations

can be generated easily. Nevertheless, when aiming to exploit synthetic

data we have to overcome the domain gap between synthetic and real data.

While, this can be overcome using corresponding real and synthetic data

and learning to map from the one to the other,the correspondence between

real and synthetic data needs to be established in the pose space, and hence,

pose labeled real data is required for such an approach.

In Chapter 5 we develop a way to overcome the domain gap between real

and synthetic data by learning a joint feature space of real and synthetic

data using mainly unlabeled data. The idea is to ensure that the feature

distributions of real and synthetic data are aligned using an adversarial

training loss term and simultaneously ensure that similar poses are mapped

to similar locations in the latent feature space by enforcing pose specificity

in the feature space using the view prediction loss described above. Using

these contributions the system improves the results of the strong baseline

with only about 0.1% of the labeled real data and achieves results in the

range of the state-of-the-art approaches when training with only about 1%

of the labeled real data they use.
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The intention of this chapter is to provide the relevant background for

our contributions. To have the thesis self contained we start by defining

what we mean when we talk about a system which learns. We subsequently

transition our discussion towards concepts which are increasingly specific to

our task. This includes a discussion of important strands of work exploiting

unlabeled data. The first focus of this chapter will be on self-supervised

learning to exploit unlabeled data (Section 2.3). We discuss self-supervised

learning strategies in more detail as they are relevant for the contributions

in two of the three methodological chapters of this thesis. In the sequel

we discuss research on transfer learning (2.4), an area which is relevant for

crucial parts of the contributions in Chapter 5, where we aim to overcome

the domain gap between synthetic and real data. The final part (2.5) of

this chapter deals with approaches exploiting prior knowledge in terms of

hand models and is thus most specific to our task of hand pose estimation.

A more detailed discussion of approaches which are closely related to our

7
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contributions – especially in the context of the underlying publications –

are provided in the chapters presenting the respective contributions.

2.1 Notation

To facilitate reading this thesis we briefly summarize the notation and def-

initions we use throughout the work. For convenience Table 2.1 provides a

quick reference of the notations.

As in many modern scientific works in our field, we use lowercase ital-

icized Latin or Greek letters for scalars, e.g ., i, α, ω. If not stated oth-

erwise, we employ uppercase italicized Latin letters to specifically denote

scalar constants, like D,J,N . Bold letters denote vectors or matrices, e.g .,

x = (x1, . . . , xN )>. Vectors are assumed to be elements of a real valued vec-

tor space RN , for which we use an uppercase blackboard bold letter with the

exponent describing the dimensionality of the space. To keep the notation

general, similar to vectors, also images are usually described by lowercase

bold letters. In this case the dimensionality of the vector space is simply

given by the product of the height, H, width, W , and number of channels,

C, of the image, i.e., y ∈ RD, where D = H × W × C. Furthermore,

we use uppercase calligraphic letters to denote sets, like a set of images,

I = {xi}i∈{1,...,N}, of a specific image size: I ⊆ RH×W×C . The size of the

set I, i.e., its cardinality, is given by N = |I|. Functions, mapping between

different vector spaces, are represented by lowercase italicized letters, e.g ., to

describe the result of a function f mapping from an N - to a D-dimensional

space, i.e., f : RN → RD we write y = f (x), where x ∈ RN and y ∈ RD. As

in the previous example, for the sake of notational clarity we usually omit

the parameters on which such functions depend. Nevertheless, sometimes

it makes sense to make such parameters explicit. In this case, if the output

of a function f depends on parameters θ, we write y = f (x;θ). Some-

times we aim to achieve a clearer notation by concatenating corresponding,

individual elements within a single entity, denoted tuple. We represent a

tuple by a Greek uppercase letter, e.g ., Υ = (x, c). Finally, we also follow

common practice by having ‖·‖p represent the Lp-norm of the argument,

i.e., ‖x‖p = (
∑

i |xi|p)
1/p.

For the sake of readability we refer to all 3D positions, which are used

to define the pose of the hand, by joint locations. That is, for the sake of

readability, this can include positions, which are not actually joints, like the

center of the palm or finger tip positions.
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Table 2.1: List of notations. Notational conventions for commonly used entities.

Entity Example notation

Scalar i, α, ω
Constant D,J,N

Vector x = (x1, . . . , xN )>

N -dimensional vector space RN

Image y ∈ RW×H×C

Set S
Function (generic) f : RN → RD

Function (notation with explicit parameters θ) f (·;θ)
Tuple Υ = (x, c)

2.2 Learning from data

The theory for learning machines goes back to at least the mid of the 20th

century1 and was at that time strongly connected with the question whether

machines can think. The question about the possibility to build intelligent

machines was discussed prominently (Jefferson, 1949; Turing, 1950) and first

experiments were conducted (c.f ., McCarthy and Feigenbaum (1990); Prinz

(1988); Strachey (1952)). While the quest of our work is a rather different

one, the way to approach it is very related: by creating a system to learn

autonomously.

In a seminal work Alan Turing proposed to replace the prominent ques-

tion whether machines can think by rather asking whether a machine could

well imitate a human (Turing, 1950). In this work, Turing proposed the

“imitation game” to test whether a machine is able to imitate a human.

The proposed test became well known as the Turing test. In the same work

Turing also discussed how a machine could be implemented to succeed in

his test. One of his conjectures was that a machine – in order to call it

“intelligent” – has to depart from the regime where it does exactly what it

is ordered to do, but rather has to learn autonomously to some extent. Such

an autonomous learning could be based on, e.g ., some supervision signals

from a teacher, but also from other sources without explicit supervision.

In line with Turing’s approach to define an “intelligent” machine by

focusing on what it can do, Tom Mitchell later formulated the probably

most cited definition of a machine learning algorithm (Mitchell, 1997): ”A

computer program is said to learn from experience E with respect to some

1Some might note that theoretical considerations go back to at least ancient Greek and
Chinese tales (McCorduck, 2004). Unfortunately, a discussion of the relations to these
considerations is outside the scope of our work.
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class of tasks T and performance measure P if its performance at tasks in

T, as measured by P, improves with experience E.“ In our case the task

would be hand pose estimation for which a performance measure could be

the distance between estimated and ground truth positions on some test

set. According to Mitchell’s definition such a hand pose estimation system

is said to learn if the distance between its estimates and the corresponding

ground truth on the test set becomes smaller after having been provided

more training data.

For current machine learning based hand pose estimation systems, the

experience in Mitchell’s definition is usually provided by labeled training

data. Such labeled data for hand pose estimation are tuples Υ = (x,y)

consisting of data samples, x, and their corresponding labels, y. The data

samples are images showing a hand, and the labels define the pose of the

hand.

However, the goal of this work is to learn a model for hand pose esti-

mation with as little manual supervision as possible, i.e., the experience in

Mitchell’s definition should require very little manual input. This means

that pose labels are, e.g ., provided only for a small number of real data

samples, since real samples can only be accurately labeled with significant

manual effort.

The system should instead exploit other sources of information, which do

not require manual input on a per frame basis. For example, exploiting some

form of contextual cues can help to learn how visual entities from different

frames relate to each other without needing to rely on manual supervision.

This can be related to the conjectures of Turing (1950) mentioned above

and (if desired) also to learning in biological systems, which are assumed to

learn visual recognition in a rather self-supervised way in their infancy (Held

and Hein, 1963; Markman, 1991; Nawrot et al., 2009) and rely more and

more on (learned) models later (Decker et al., 2015; Hartley and Somerville,

2015; Kahneman, 2011).

For data for which we do not have labels available we employ supervision

signals which are derived from different parts of the input. This is related to

a strand of works for which the corresponding learning tasks are usually for-

mulated so that the system has to learn to relate visual entities to each other

to solve the task. Such relations can be learned based on the recognition of

typical positions and/or orientations of object parts within an image (Do-

ersch et al., 2015; Gidaris et al., 2018; Noroozi and Favaro, 2016), across

frames (Sümer et al., 2017; Wang and Gupta, 2015; Wang et al., 2019b), or

between different modalities (Dosovitskiy and Koltun, 2017; Owens et al.,

2016) and domains (Huang et al., 2018; Massa et al., 2016; Pratt, 1992).
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This form of weak supervision is often called self-supervision or natural

supervision. We follow this naming in this work.

That is, the learning tasks considered in this work are always based on

some form of supervision – even if no target labels are available. Hence, as

usual for such supervised learning tasks, learning accounts for adjusting the

parameters θ of a function f in a way, that the output ŷ of the function for

a given sample x,

ŷ = f(x;θ) (2.1)

corresponds to the samples’ label y. The label y, which is used as supervi-

sion signal during training, can be the desired target label if it is available,

but can also represent, e.g ., a “surrogate label” as it is the case for typical

self-supervised approaches. We will show examples for such surrogate labels

in Section 2.3.

For such a supervised learning task the function parameters are found

by minimizing a loss ` over a training dataset S = {(xi,yi)}:

θ̂ = arg min
θ

|S|∑
i=1

` (f(xi;θ),yi) (2.2)

That is, by using surrogate labels even the exploitation of unlabeled data

can be formulated in the same way as standard supervised learning tasks.

Nevertheless, many approaches have been proposed, which exploit unlabeled

data without relying on supervision signals in this sense (Hastie et al., 2009).

Most notably in this respect are unsupervised and semi-supervised learning

approaches. In the following we thus briefly discuss these prominent strands

and put our work in perspective with regard to them.

2.2.1 Unsupervised learning

An important ingredient of this thesis is the exploitation of unlabeled data.

Learning from unlabeled data is often used interchangeably with unsuper-

vised learning (Doersch et al., 2015; Dosovitskiy et al., 2014; Garg et al.,

2016). However, the usage of the term unsupervised learning is not always

very clear and consistent throughout different works (Chapelle et al., 2006;

Dosovitskiy et al., 2014; Goyal et al., 2019). We, thus, briefly discuss the

term here.

Unsupervised learning obviously relies on exploiting unlabeled data.

That is, the training dataset X contains only the data samples x ∈ X ,

without any corresponding supervision information like labels. The goal of

unsupervised learning is usually described as finding interesting structure in

the data. This search for structure is often related to the problem of density
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estimation (Hastie et al., 2009; Hinton et al., 1999). Likewise, prominent

approaches to unsupervised learning, like clustering (Comaniciu and Meer,

2002; Lloyd, 1982), or dimensionality reduction (Hotelling, 1933), estimate

a known functional of the density (Chapelle et al., 2006). Consequently,

some researchers argue that density estimation would be a better name for

unsupervised learning (Chapelle et al., 2006).

To circumvent misconceptions arising from the aforementioned inconsis-

tency in the usage of the term unsupervised learning and the way we ex-

ploit unlabeled data in this work, we will avoid using the term unsupervised

learning for our work. In this work we exploit unlabeled data to learn image

representations. For the learning task, however, we do not have any target

supervision. Instead we exploit supervision signals, which can be naturally

derived from the data itself. We discuss specifically related approaches, i.e.,

approaches which learn representations usually without having supervision

for these representations, in the subsequent sections (esp. in Sections 2.3

and 2.4).

2.2.2 Semi-supervised learning

Most often, in this thesis we exploit unlabeled data together with labeled

data. Approaches, which learn models by exploiting labeled and unlabeled

data together, are usually coined semi-supervised.

The various existing semi-supervised learning approaches are inspired by

several different but related assumptions. Examples for such assumptions

are that data points are likely to belong to the same class if they belong to

the same cluster (Ji et al., 2018; Zhu et al., 2003), that the decision boundary

should be in a region of low density (Joachims, 1999; Vapnik, 1998), or that

the high dimensional data lies on a low dimensional manifold, which can

be viewed as an approximation of the high-density regions (Chapelle et al.,

2006).

The most common assumptions for semi-supervised learning can be sub-

sumed by the so-called semi-supervised smoothness assumption (Chapelle

et al., 2006). It states that for two data points x1 and x2, which are close

in a high-density region, the corresponding predictions ŷ1 and ŷ2 should

also be close. Figure 2.1 shows a prominent toy dataset to illustrate why

such an assumption can yield a decision boundary with intuitively better

generalization capabilities when exploiting unlabeled data. While, in gen-

eral, the assumption applies to classification and regression tasks, common

instantiations of the cluster assumption, or the low-density separation men-

tioned above are less useful for regression tasks (c.f ., Grandvalet and Bengio

(2004); Laine and Aila (2017); Lee (2013)).
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Class A samples

Class B samples

Unlabeled samples

Supervised decision boundary

Semi-supervised decision boundary

Figure 2.1: Intuition for semi-supervised learning. Illustration of decision
boundaries on the prominent two moons dataset. The dashed green line illus-
trates a decision boundary of a supervised approach. The solid yellow line is the
decision boundary which can be obtained by an adequate semi-supervised model
considering the unlabeled data – like the Π-Model (Laine and Aila, 2017), or the
Mean Teacher (Tarvainen and Valpola, 2017). See e.g ., Oliver et al. (2018) for a
comparison of specific decision boundaries of different approaches on this dataset.

In line with this, the regression methods presented in Chapter 4 and 5

are most related to approaches relying on the manifold assumption. Fol-

lowing Chapelle et al. (2006), a well trained manifold should prove more

useful for regression tasks. This becomes more intuitive when assuming the

manifold to be an approximation of the high density regions. In this case

the predictions ŷ1 and ŷ2 should be close for any two data points x1 and x2

which are close on the manifold. This essentially describes the smoothness

assumption of supervised learning. That is, since the manifold is already an

approximation of the high density regions, on the manifold, the ”closeness

constraint“ is not restricted to high-density regions anymore and the semi-

supervised smoothness assumption reduces to the smoothness assumption

of supervised learning. This means that we can apply standard supervised

learning on the manifold, if we can assume a proper manifold.

To ensure a well trained manifold in Chapter 4 and 5 we add additional

loss terms similar to many prominent state-of-the-art approaches (Berthelot

et al., 2019; Oliver et al., 2018; Tarvainen and Valpola, 2017). In our case

these loss terms essentially implement a self-supervised approach as well as

an approach to domain adaptation. Therefore, we will focus on a review of

the related work for these two strands in the subsequent sections.

2.3 Self-supervised learning

The term self-supervision is often used to denote a way of supervision,

where the supervision signals can be generated automatically from the ob-

servations (de Sa, 1993; Dosovitskiy and Koltun, 2017; Schmidhuber and
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Prelinger, 1993). Such supervision signals can, e.g ., be ”natural“ text se-

quences in a document, sound corresponding to an image, or the subse-

quent frames in a video. Since the input and supervision signals are “nat-

urally” paired, sometimes the term natural supervision is used for such

approaches (Dosovitskiy and Koltun, 2017; Gomez-Bigorda et al., 2017). In

this section we discuss the background on this topic in more detail, since

such ideas are crucial for two of the three methodical chapters of this thesis.

Early works exploit paired sensory inputs (de Sa, 1993; Yamauchi et al.,

1999) or the context of text (Schmidhuber and Prelinger, 1993). For in-

stance, they use image or video data with the corresponding sound (de Sa,

1993; Yamauchi et al., 1999) and train a network for each modality by min-

imizing the disagreement between the output of both networks for a paired

sample. Schmidhuber and Prelinger (1993) proposed a similar loss for two

networks, e.g ., operating on disjoint parts of the same textual sentence. In

this case, one network is supposed to predict a possibly abstract class label

for its text input, the other network should predict the same class label

as the first network, but is only given the context of the input to the first

network.

Similar ideas are seized by many prominent recent works. In the text

domain, learning to predict a word from its context has been shown to yield

powerful representations (Mikolov et al., 2013a,b). These ideas were later

also transfered to the image domain. Instances of the proposed tasks con-

sisted of learning to predict where the relative location of image parts (Do-

ersch et al., 2015) or inpainting large parts of an image just based on the

remaining context (Pathak et al., 2016).

In general such tasks are designed so that the model has to learn to

relate parts of the input, i.e., which parts belong to an object and/or in

which relation the parts are. Since such tasks are usually different from the

final goal (e.g ., text understanding or object recognition), they are often

coined surrogate, pretext or proxy tasks. A crucial advantage of such tasks

is that the input and the corresponding supervision signal are ”naturally“

paired within, e.g ., a text document, image or video. That is, no expensive

labeling is necessary.

In the following we discuss such self-supervised tasks from different ar-

eas of research in more detail. To provide appropriate context, we start

our discussion with prominent examples from the language modeling and

computer vision literature, and subsequently focus on approaches which are

specifically related to our work in terms of the input cues they exploit (i.e.,

multi-view) and the task they target (i.e., pose estimation).
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2.3.1 Learning language models

For learning language models, self-supervised approaches have been very

successful (Devlin et al., 2018; Mikolov et al., 2013b). Predicting a masked

word, sentence or paragraph given its context from a structured document

(or vice versa (Mikolov et al., 2013b)) became a standard task for learning

language models. Some very prominent approaches from this domain are

word2vec (Mikolov et al., 2013b), ELMo (Peters et al., 2018), GPT (Radford

et al., 2018) and BERT (Devlin et al., 2018).

In word2vec (Mikolov et al., 2013b) the surrogate task is – given a word –

to predict the surrounding words within a document. For this task, learning

is posed as a classification problem. That is, each possible target word

is given a corresponding class label and the goal is to predict the class

labels of the words to be predicted. In this case the number of classes is

essentially equal to the number of words in a vocabulary and thus often very

large. For more efficient training a variant of Noise Contrastive Estimation

(NCE) (Dyer, 2014; Gutmann and Hyvärinen, 2012) is used. For NCE

the correct word has to be discriminated from randomly sampled (”noise“)

words instead of all possible words. In this way, the number of classes and

hence the problem size is largely reduced.

The language models of ELMo (Peters et al., 2018), GPT (Radford et al.,

2018) and BERT (Devlin et al., 2018) build upon similar ideas. In contrast

to word2vec, however, the surrogate task in these approaches is to predict

a word given its context, instead of the other way round. While GPT is an

unidirectional ”left-to-right“ model, which can only see the previous tokens

in the text, BERT and ELMo propose a bidirectional model, which is able

to exploit the context in both directions. Another important difference be-

tween the approaches is the model architecture. ELMo employs recurrent

(Long Short-Term Memory (LSTM)) layers, while GPT and BERT build

on the Transformer model (Vaswani et al., 2017), which uses neither convo-

lutions nor recurrent operations, but bases only on attention mechanisms.

The attention based mechanism has been shown to be very effective for

language modeling tasks. For GPT and BERT the model is pre-trained on

unlabeled data and fine-tuned for specific tasks. These approaches show

how minimal architectural changes can be sufficient for different tasks, in

this way being able to transfer the model pre-trained on unlabeled data to

a wide range of tasks.

2.3.2 Learning image representations

Probably one of the most prominent surrogate tasks in the image domain

is to reconstruct the input (Hinton and Salakhutdinov, 2006; Kirby and
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Sirovich, 1990; Vincent et al., 2008). For this task the goal is to recon-

struct the input from a usually much lower dimensional representation de-

rived from the (transformed) input. In this way the lower dimensional

representation has to retain the crucial information of the input and rep-

resent it in an abstract manner. While the Principal Component Analy-

sis (PCA) (Hotelling, 1933) is an example of a linear model implementing

such a task, an autoencoder implements a similar task with a non-linear

model (Vincent et al., 2008). For training an autoencoder the input is of-

ten transformed or distorted, respectively. In a prominent approach coined

denoising autoencoder (Vincent et al., 2008), pixelwise noise is added to

the input and the target is to reconstruct the clean image. The idea is

that similar appearances have to be associated in the training data in order

to discriminate the noise from the original signal. Transforming autoen-

coders (Hinton et al., 2011) on the other hand are trained to generate a

transformed version of the input according to a given transformation, e.g .,

an (x, y) offset or a small rotation. Nevertheless, it appears questionable

whether the model really has to associate semantically similar images to

solve the reconstruction task – as we also point out for the task of hand

pose estimation in Chapter 4.

More recently, Doersch et al. (2015) introduced a prominent attempt to

transfer the ideas of context prediction surrogate tasks to computer vision.

In their work they sample a random patch from an image and a second

patch from the neighborhood and aim to predict the relative location of

the two patches. They formulate the task as a classification problem where

the neighborhood is discretized into eight regions (top, bottom, left, right,

top-left, top-right, bottom-left and bottom-right) and the goal is to predict

the class label corresponding to the relative location from which the second

patch was sampled. Figure 2.2 illustrates the construction of this surrogate

task. By training a model using this surrogate objective they show that

semantically similar images are often close together in the feature repre-

sentation. Moreover, using this surrogate task as the pre-training objective

they show that object detection performance can be improved. Neverthe-

less, the results for pre-training with ImageNet labels (Russakovsky et al.,

2015) are still significantly better.

Noroozi and Favaro (2016) showed that posing the task slightly different

can be more effective as a pre-training task. They proposed to learn to solve

jigsaw puzzles. For this they divide an image region in 3 × 3 square crops

and randomly permute the crops. The crops are input to a network, whose

objective is to predict the correct order of the crops. Again they formulate

this as a classification problem, where a number of different permutations
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Training sample

Figure 2.2: Context prediction surrogate task. Illustration of the formulation
of context prediction as a classification task. A center and a surrounding patch
are sampled and the model is trained to classify which of the predefined relative
locations was sampled. Illustration adapted from Doersch et al. (2015).

are predefined and each permutation represents a different class. That is

the objective is to predict the index of the sampled permutation.

Others formulate inpainting or colorization as surrogate tasks. For in-

stance, the approach of Pathak et al. (2016) can be seen as a straight forward

computer vision implementation of some of the language modeling surrogate

tasks described above. In their work the surrogate task is formulated using

inpainting. That is, they mask a region of the image and the task for the

model is to predict the content of the missing region given the context of the

image. Instead of masking parts of the image in the spatial dimension, other

works reduce the number of image channels which are input to the model

and, e.g ., propose the task of predicting color from grayscale images (Iizuka

et al., 2016; Larsson et al., 2017; Zhang et al., 2016).

One crucial issue of the inpainting as well as color-prediction tasks is

that during training the input is missing parts of the image or has a smaller

number of channels, but at test time the full images are input. That is,

the training samples are different from the test samples. To overcome this

issue, a follow-up work (Zhang et al., 2017) proposes to split the input x

into two disjoint parts x1 and x2 and train one model to predict x2 given x1

and a second model to predict x1 given x2. For instance, for color images

in the Lab colorspace one model can be trained to predict a and b channels

from the L channel and the other model should predict the L channel given

a and b. In this way the concatenation of the two models can digest the

full input, however, the learned representation is unable exploit correlations

between the disjoint inputs since it cannot be trained jointly.

Other self-supervised approaches, which do not exhibit such a strong

domain gap between training and test input, are based on, e.g ., image

transformations. Dosovitskiy et al. (2014) for instance propose to generate

surrogate classes by applying a number of image transformations to each
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sample. Each sample together with all its transformed variants makes up

one class. Another approach relying on the correspondence between images

of objects, which have undergone some transformations has been proposed

by Wang and Gupta (2015). They used an off-the-shelf tracker to track

moving patches within videos. Then the first and last frames of the tracked

patches in some short sequences are used for learning a model. The learn-

ing objective is to move the representations of the related patches closer

together than the representation of a random other patch using a triplet

loss (Wang et al., 2014). More recently Gidaris et al. (2018) have proven

another image transformation based objective to be very effective. In con-

trast to the aforementioned works they rely on the bias that most objects

exhibit a natural upright direction and are captured accordingly by the pho-

tographer. They exploit this bias by inputing a rotated variant of an image

to the model and requiring the model to predict the applied rotation. The

intuition is that the model can only predict the correct rotation if it is aware

of the objects and the relation of their parts.

Employing the existing self-supervised approaches for pre-training im-

age representations have been shown to be more effective than training

from scratch for datasets with a small number of labeled samples. The

approaches have also been shown to match or even outperform results for

pre-training with ImageNet labels for tasks, where the targets have no se-

mantic meaning, like surface normal estimation (Doersch et al., 2015; Goyal

et al., 2019). Nevertheless, – with the exception of some object detection

benchmarks – pre-training with ImageNet labels still yields better results

for semantic classification tasks (Goyal et al., 2019). Increasing problem

complexity, e.g ., in the way of combining (some of) the proposed surrogate

tasks, has been shown to be able to improve the results further (Doersch

and Zisserman, 2017; Goyal et al., 2019). Another remaining issue, hamper-

ing research, are slower training convergence rates compared to ImageNet

pre-training (Doersch and Zisserman, 2017; Goyal et al., 2019), which arise

probably largely due to the weaker and less task specific supervision pro-

vided by the self-supervised tasks.

2.3.3 Learning video representations

In a captured scene, neighboring image regions are often naturally corre-

lated, but also over time a scene exhibits natural temporal relations. Many

works aim to obtain supervision from the temporally coherent processes cap-

tured by video sequences. Such a video sequence can be exploited by learn-

ing the temporal relations between activities – or more generally between

any sequential procedures (Ostrovsky et al., 2009). For instance the natural
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temporal order of the frames exhibiting some motion can be exploited by

e.g ., learning to predict future frames (Liang et al., 2019; Mathieu et al.,

2016; Ranzato et al., 2014), verifying possible temporal sequences (Fernando

et al., 2017; Misra et al., 2016), or tracking patches back and forth (Wang

et al., 2019b). Conceptually, several of these approaches have a strong rela-

tion to the (uni-/bidirectional) language models discussed above, where the

surrogate task is to predict the next or a missing token given the sequential

context (Radford et al., 2018; Ranzato et al., 2014).

To learn to predict future frames from a video is a conceptually simple

idea to make the model learn about natural temporal relations. Implement-

ing the concept, however, exhibits significant obstacles. This task has been

tackled, e.g ., by using LSTMs to generate a video representation from which

the input sequence, i.e., the past frames, can be reconstructed and at the

same time the future frames can be predicted (Srivastava et al., 2015; Vyas

et al., 2018). Other works focused on the difficulty to design a proper loss

function for predicting such high dimensional targets under uncertainty and

proposed, e.g ., to quantize the output space to transform the task to a less

complex classification problem (Ranzato et al., 2014), or to employ an ad-

versarial objective (Mathieu et al., 2016). The inherent ambiguities of the

task and the – compared to language models – extremely high dimensional,

continuous output space are, however, still hampering their application.

Instead of tackling the difficulties with predicting full frames reasonably

far in the future, the prediction of abstracted information might represent a

more feasible alternative. For instance, Liang et al. (2019) propose to pre-

dict future person and activity locations as surrogate tasks for predicting

future activities. However, they assume that all person locations are known

throughout the training videos, which itself can be difficult to achieve au-

tomatically. In another example Neumann et al. (2019) learn to predict,

e.g ., if and when a car with the camera mounted on the windscreen stops.

They show that such abstract events can be predicted and that the models

learned to recognize abstract relations from such a task. For instance, the

influence of the traffic lights or cars in front on a possible future stopping

event were automatically discovered by the learned models.

Another way to have the model learn about natural temporal relations,

but still circumvent the prediction of full frames, is to instead learn to verify

a given sequence order, i.e., verify if a given sequence appears natural. For

instance, Misra et al. (2016) present the network with a sequence of frames

and the objective is to decide whether the order is correct or not. That

is, similar to NCE, for model training the positive samples are correctly

ordered video sequences and the negative samples are generated by shuffling

such sequences. Fernando et al. (2017) later pointed out that – instead of
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just concatenating the encodings of the individual frames as done by Misra

et al. (2016) – using a sequence encoding and increasing the complexity of

the task from binary to multi-class by having the network classify, which

of several sequences has an incorrect order, can yield significantly stronger

representations for action classification.

Nevertheless, a conceptual issue of these approaches is that the model

get incorrectly ordered sequences as input during training, but will never

see incorrectly ordered sequences during test time. This creates a domain

gap similar to the one discussed above for works on learning image repre-

sentations by inpainting (Pathak et al., 2016) or colorization (Larsson et al.,

2017). In line with this, using the sequence verification pre-training task,

the results for action recognition are stronger than when trained from a

random initialization, but still significantly worse than for ImageNet pre-

training. On the other hand, when training on videos of persons performing

various activities, such a pre-training task has been shown to be very effec-

tive for pose estimation, where it can at least match the results of ImageNet

pre-training (Misra et al., 2016).

While similar in spirit, the work of Wei et al. (2018) reduces the domain

gap by simply playing the video sequences either forward or backward, and

having the network learn to discriminate which direction it is. For this task

– as for the related works discussed above – the selection of training samples

is critical (Fernando et al., 2017; Misra et al., 2016; Wei et al., 2018). While

for this task some cues, like gravity, are very strong, others, like constant

motions, or motions which might easily appear in the opposite direction are

unusable. Nevertheless, using this task to pre-train for action classification

can outperform even ImageNet pre-training.

Other interesting areas for learning video representations are tracking

applications. Very recently, self-supervised tasks have been proposed to

learn tracking without any manual supervision. For instance, Vondrick

et al. (2018) have shown that learning to colorize videos can be used as

a valuable cue for learning video representations. The idea is based on the

temporal coherency of color. In contrast to approaches to image coloriza-

tion (Iizuka et al., 2016; Larsson et al., 2017; Zhang et al., 2016) they do

not train the model to directly predict colors from a grayscale video, but

they instead train the model to copy the color from some reference frame of

the sequence. They argue that the model needs to learn to associate objects

despite location changes or deformations and show that the model is able

to track image patches when employing this surrogate task. Wang et al.

(2019b) on the other hand obtain free supervision for learning to track from

the observation that after tracking a patch forward and backward in time

it should end up at the same location again. In their approach correspond-
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ing patches across frames are found by template-matching of the learned

representation. The loss for learning the representation is based on the in-

consistency between the start and the end point of a track. The authors

showed that the model learned using this task can outperform optical flow

based methods (Ilg et al., 2017; Liu et al., 2011) on applications like prop-

agating instance masks, part labels or human pose keypoints. The model

also matches the performance of training on ImageNet for propagating pose

keypoints but is worse for other applications. Similar to the tasks discussed

above, the selection of training samples, which should exhibit appropriate

motion and reasonable appearance variation throughout the sequence, is

again a crucial issue hampering performance.

2.3.4 Learning representations from multi-view data

In machine learning as well as computer vision literature the term multi-

view is generally used to simply describe that different cues of information

are exploited. When speaking about multiple views in this thesis, we re-

fer to the multiple views provided by different camera view points. The

different cues can, however, also be provided by different modalities, like

text (Gomez-Bigorda et al., 2017; Gordo and Larlus, 2017), sound (de Sa,

1993; Owens et al., 2016) or any other signal (Dosovitskiy and Koltun, 2017;

Tian et al., 2019). That is, one view would be provided by one modality, like

a video camera, and another view would be derived from a different modal-

ity, like a microphone. For the case where the different views are provided

by the same modality, they can also be generated from the same sensor,

but from different locations in space or time (Li et al., 2018). When em-

ploying this definition many of the approaches, which were already discussed

above, e.g ., where parts of a text, image or video are predicted from its con-

text (Doersch et al., 2015; Mathieu et al., 2016; Mikolov et al., 2013b), can

also be considered multi-view approaches. Therefore, after discussing some

prominent general approaches, in this section, we subsequently focus our

discussion specifically on works, where the multiple views are provided by

multiple imaging modalities and especially on those which learn to predict

one view from another.

Canonical Correlation Analysis (CCA) A very prominent strand of

approaches for learning from multi-view data is based on CCA – a method

introduced in the 1930th (Hotelling, 1936). CCA aims to find linear projec-

tions of two variables, which maximize the correlation between them. That

is, with two corresponding datasets X = (x1, . . . ,xN ) and Y = (y1, . . . ,yN )

representing two views of the data, the goal of CCA is to find two vectors
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a ∈ RN and b ∈ RM such that the correlation between a>X and b>Y is

maximized, i.e.,

(a?,b?) , arg max
a,b

corr
(
a>X,b>Y

)
, (2.3)

where corr (·, ·) denotes the sample correlation of the two arguments. Later,

also non-linear variants of CCA, like Kernel CCA (Kuss and Graepel, 2003;

Lai and Fyfe, 2000) and Deep CCA (Andrew et al., 2013; Becker and Hinton,

1992; Wang et al., 2015) have been introduced and it has been extensively

used for learning from multi-view data (Li et al., 2018; Sun, 2013).

CCA is one generic approach to multi-view learning. There are also

many approaches, which specifically exploit multiple camera views for var-

ious tasks like detection, tracking or pose estimation (Poier et al., 2014;

Simon et al., 2017). Often these works base on the dis-/agreement of the

predictions from different views (Leistner et al., 2008; Rhodin et al., 2018b;

Simon et al., 2017). Agreement between different views is also exploited

in another prominent generic approach to multi-view learning, namely co-

training.

Co-training With co-training (Blum and Mitchell, 1998), view specific

models are iteratively trained and used to label unlabeled data for the other

view. An example how to apply these ideas to exploit multiple camera views

is provided by Leistner et al. (2008), which use ground-plane homographies

to exchange detection results between the models for the individual camera

views. Co-training enforces agreement between the models for each view and

naturally only helps if there is (initial) disagreement between them (Krogel

and Scheffer, 2004).

Other approaches to body, hand and object pose estimation exploit the

fact that the locations estimated from different camera views should agree

in 3D space. For example, assuming a known camera setup, such agreement

can be enforced by training a Convolutional Neural Network (CNN) to di-

rectly output 3D coordinates, apply it to each camera view and transform

the resulting 3D points according to the (known) camera poses in order to

enforce agreement in the joint space (Rhodin et al., 2018b; Suwajanakorn

et al., 2018; Wan et al., 2019). On the other hand, Pavlakos et al. (2017) em-

ploy a 3D pictorial structure model to find the 3D pose, which best explains

the 2D keypoint heatmaps of each view. Other approaches triangulate the

estimated 2D keypoint locations from different view points to obtain a 3D

pose, which is then used to, e.g ., directly train a 3D pose estimator (Kocabas

et al., 2019) or iteratively improve the 2D pose estimator by employing the

back-projected triangulations as new ground truth (Simon et al., 2017).
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Concurrently with our work in (Poier et al., 2018), other authors pro-

posed to exploit multiple imaging modalities as supervision by learning to

predict one from the other. For instance van Tulder and de Bruijne (2019)

aim to learn cross-modal representations in the medical domain. They

project the input from different modalities to different latent representa-

tions. The task proposed in their work is to reconstruct all input modalities

from the averaged latent representations computed from (a subset of) the

different modalities. The different modalities used in their work are different

MRI sequences for the same subject. The goal is to produce a latent repre-

sentation which is invariant to the different characteristics of, e.g ., different

scanners. Similarly, Spurr et al. (2018) learn a cross-modal latent space

for hand images (RGB or depth) and their poses. They show that using

their approach unlabeled data can be exploited to improve pose estimation

performance.

The idea of using different views for supervision by learning to predict

one from the other has also been used in connection with actually different

camera locations. The feedback which can be generated from a camera at a

different location has, e.g ., been exploited for learning to predict depth for

a given monocular image (Garg et al., 2016), or predict the second image

of a stereo image pair to be used for 3D glasses or head-mounted VR (Xie

et al., 2016). Especially the work of Garg et al. (2016) spurred a lot of

follow-up works (Godard et al., 2017; Kuznietsov et al., 2017; Zhou et al.,

2017a). Similar to Xie et al. (2016), they learn to predict depth/disparity,

which is used together with given camera poses to warp the image to the

second view. In this way a simple photometric error can be used to learn

the model.

Similar ideas have also been used for tasks where the target is more

explicit semantic, like the object instance, the pose or activities (Jayaraman

et al., 2018; Rhodin et al., 2018a; Tatarchenko et al., 2016; Vyas et al., 2018).

For instance, Tatarchenko et al. (2016) aim to reconstruct a full 3D model

given only a single image of the object. They learn a model to reconstruct

color and depth images from different views, which are subsequently used

to compute a point cloud and a mesh, respectively. Their approach consists

of an encoder and decoder neural network, where the decoder is provided

with the desired camera pose of the output images as additional input. For

training the model they had to rely on synthetic data, which was rendered

from randomly sampled viewpoints. Very similar to the view prediction loss

we employ in Chapter 4 and 5, Rhodin et al. (2018a) later proposed such an

idea to learn a latent representation amenable to pose estimation. In their

work they predict a latent representation consisting of 3D points, which are

rotated according to the camera pose of the output view before being input
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to the decoder. Another approach following-up this strand was very recently

proposed by Chen et al. (2019b), which – instead of trying to predict the full

image of another camera view – aim to predict the 2D pose from the other

view. Since their supervision is provided by 2D skeletons they avoid the

necessity to capture appearance variations in the training set for 3D pose

estimation. Instead they require an accurate 2D pose estimator to provide

the supervision from the different views.

2.3.5 Learning representations for pose estimation

Finally we discuss some notable approaches to employ self-supervision

specifically for pose estimation of articulated objects. For this we focus on

approaches which have not been covered in any of the previous sections.

One strand of works on 3D pose estimation builds upon the fact that

2D annotations for related tasks, like keypoint detection or segmentation

are much easier to obtain (Chen et al., 2019a; Pavllo et al., 2019; Wang

et al., 2019a). For instance Chen et al. (2019a) propose to recover the 3D

pose directly from the 2D joint positions, y(i), estimated from an image.

To learn a network which maps 2D poses to 3D without any 3D pose su-

pervision they project the mapped 3D pose to a 2D pose ŷ(k) in a virtual

camera after applying some random 3D transformation T(k). Subsequently,

the same network is employed to map the 2D projection ŷ(k) of the trans-

formed pose to 3D again and the result is enforced to agree with the original

(transformed) 3D pose. Similarly, they enforce agreement between the in-

versely transformed and back-projected 2D pose and the original 2D pose

from the input image. Finally, they employ adversarial training to avoid

degenerate solutions. To this end, a discriminator is trained to contrast the

transformed and projected 2D poses with real 2D poses.

Another strand of works propose to learn to predict the parameters of a

3D model of the target object (e.g ., humans or hands) and build the training

objective upon (differential) rendering of the 3D model. The rendering

can then, e.g ., be contrasted with the observation in order to obtain a

training loss for unlabeled data (Dibra et al., 2017). Nevertheless, several

authors noted that methods, which learn to parametrize 3D models, are

more difficult to train and more sensitive to errors in the estimation of parent

nodes of the 3D model (Sun et al., 2017b; Wan et al., 2019; Zhou et al.,

2016). In an attempt to overcome those issues Wan et al. (2019) recently

proposed to approximate the hand surface with a set of spheres and directly

estimate the sphere positions instead of the model parameters. In this way,

the training can still exploit unlabeled data by rendering the spheres and

minimizing the discrepancy between the rendered spheres and the depth
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image observation. To avoid degenerate solutions they rely on a learned

pose prior, a loss term, which penalizes collisions, as well as constraints on

the bone lengths.

Computing and rendering a realistic estimate of the target object to

compare it with the observation is more difficult for the case when the

input is a color image. Therefore some approaches combine the previous

two ideas, i.e., learn to estimate the parameters of a 3D model and en-

force consistency of the reprojections on images with, e.g ., 2D joints or

foreground masks (Baek et al., 2019; Boukhayma et al., 2019; Kanazawa

et al., 2018; Tung et al., 2017). For example, Tung et al. (2017) learn to

predict the parameters of a 3d body model by pre-training using synthetic

data and subsequently use self-supervision losses to train on real data. The

self-supervision is obtained from differential rendering of skeletal keypoints,

dense motion, and foreground masks. The renderings are contrasted with

ground truth or estimated 2D keypoints, estimated 2D optical flow and

ground truth or estimated segmentation masks.

2.3.6 Discussion

From the literature review we see that self-supervised learning is attracting

more and more research. Already from the mere number of works which have

been published very recently we can see that the interest in self-supervision

is strongly increasing. This is the case for a large range of target tasks,

but especially for tasks where labels are difficult to obtain, like 3D pose

estimation.

We also see that – partly due to the weak supervision – the selection

of the surrogate task, which is used for self-supervised learning, is crucial

for the performance on the target task. A surrogate task, which is very

specific and as similar as possible to the target task is usually favorable for

the performance on the ultimate target task.

2.4 Transfer learning

Another way to reduce the labeling effort for a given task is to exploit

labels from a related task, for which more labeled data is available. Ap-

proaches, which follow this strand are usually subsumed under the term

transfer learning. The goal of transfer learning can be described as im-

proving the performance of a target task using the knowledge from other

domains or tasks (Pan and Yang, 2010).

A source of labeled data we exploit in this thesis is synthetic data. By

synthetic data we refer to data, which can be generated automatically –
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together with accurate annotations. This has the advantage that a virtually

infinite amount of accurately labeled data can be generated. Unfortunately,

synthetic data is usually not distributed identically as real data. That is, a

so called domain gap exists.

In the following we first provide a broad overview over transfer learning

approaches in general including the necessary definitions (Section 2.4.1) and

subsequently focus on ideas, which are more closely related to our work. In

particular, we discuss the related background for the work we describe in

Chapter 5, in which we specifically exploit synthetic data.

2.4.1 Overview

The interest in techniques for transfer learning started to increase in the

1990s. This start is sometimes associated with a workshop on ”Learning to

Learn“ held at the Conference on Neural Information Processing Systems

(NeurIPS) in 1995 (Pan and Yang, 2010). The research on this topic has

been referred to by many different names, which are sometimes used inter-

changeably but sometimes point out a different focus. These names include

e.g . knowledge transfer, learning to learn, meta learning, multi-task learning

or domain adaptation (Pan and Yang, 2010; Thrun and Pratt, 1998).

The different names for transfer learning sometimes also stress that a

different kind of knowledge is transferred. For example for document clas-

sification a source task for which we have many labeled samples might be a

binary classification task, where documents should be classified as relevant

or irrelevant for the current thesis. A possible target task then might be to

classify documents into ten classes according to the research strand they are

following. An example for a different kind of knowledge transfer, would be

if the documents from the source and target domain are categorized into the

same ten classes, but are written in a different language, e.g ., documents

from the source domain are Greek, while the target documents are German.

To make the different kind of transfer learning categories clearer we first

define what we refer to by domain and task, respectively. To this end we

follow the definitions and categorizations from Pan and Yang (2010), which

are still applicable and followed in more recent surveys (Csurka, 2017; Wang

and Deng, 2018).

Definition of a domain A domain Π is defined by an N -dimensional

feature space X ⊆ RN and the marginal probability distribution over the

feature space p(x), i.e., Π = (X , p(x)), where x is a random variable (Pan

and Yang, 2010). Hence, we say that there is a domain difference between

a source domain ΠS = (XS , p(xS)) and a target domain ΠT = (XT , p(xT ))
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if the feature spaces or the marginal distributions are different. Examples

for different feature spaces, XS 6= XT , are different languages as in the

document classification example above or different sensor modalities. A

computer vision related example for the task of human pose estimation

is the case where the source domain is based on RGB images of persons

moving in a room, and the target domain is based on the reflections of

radio frequency signals from another room (Zhao et al., 2018). On the

other hand, we have different marginal distributions, p(xS) 6= p(xT ), in the

document classification example if, e.g ., documents from the source and

target domain are about different topics. A computer vision example are

source and target domain images, which exhibit different noise patterns, as

we have in this work for synthetic and real images.

Definition of a task According to Pan and Yang (2010), given a domain

Π = (X , p(x)), a task E is defined by an M -dimensional label space Y ⊆ RM

and the conditional probability distribution p(y|x), i.e., E = (Y, p(y|x)),

where x and y are random variables. That means that for two different tasks

ES 6= ET , the label spaces or the conditional distributions are different. An

example for different label spaces YS 6= YT was given above for the document

classification example, where the source task was a binary classification and

the target a ten-way classification task. Different conditional distributions

p(yS |xS) 6= p(yT |xT ) can be induced by different label biases. For example,

if the target task is pose estimation of professional skiers during a race and

the source task was to estimate the poses of first-time skiers.

Transfer learning categories

To give a better overview over transfer learning approaches we categorize

them into (i) inductive transfer learning, (ii) transductive transfer learning

and (iii) unsupervised transfer learning (Pan and Yang, 2010). By inductive

transfer learning we refer to approaches for which the source and target tasks

are different, ES 6= ET , – independent of their domains. For transductive

transfer learning, on the other hand, the source and target tasks are the

same, ES = ET , while their domains are different, ΠS 6= ΠT . Finally the

less prominent category of unsupervised transfer learning – like inductive

transfer learning – targets the case when the source and target tasks are

different, ES 6= ET , but no labeled data is available for both tasks.

Inductive transfer learning For inductive transfer learning, where the

source and target tasks are different, some labeled data for the target task

is needed to induce a model for the target task (Pan and Yang, 2010). For
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example, if at least some labeled data is available for both, the source and

target task, this is similar to the setting of multi-task learning (Caruana,

1997; Li et al., 2019; Parameswaran and Weinberger, 2010). In this thesis

we propose to exploit unlabeled data using a self-supervised surrogate task,

for which we have (”natural“) labels, together with some labeled data for

the pose estimation target task. Hence, this idea is related to the inductive

transfer learning category. But also many recent deep learning approaches,

which build upon a pre-trained model, are related to this category, as it has

been shown that features learned for a source task – like image classification

on ImageNet – can be re-purposed to different tasks (Donahue et al., 2014;

Girshick et al., 2014; Long et al., 2015a).

Transductive transfer learning With transductive transfer learning

the tasks are the same, but the source and target domain are different.

It is usually considered as a setting where a large amount of labeled data

from the source domain and unlabeled data from the target domain is avail-

able (Morerio et al., 2018; Pan and Yang, 2010). This category also includes

a recently very prominent strand, which is usually called domain adapta-

tion (Csurka, 2017; Wang and Deng, 2018). Domain adaptation is consid-

ered as the setting where the feature spaces of the two domains are the same,

XS = XT , but their marginal distributions differ: p(xS) 6= p(xT ). This situ-

ation is sometimes also referred to by covariate shift. Similar to the case for

inductive transfer learning, many recent approaches in this category employ

pre-trained deep architectures to build their methods upon them (Csurka,

2017). On the other hand, a very prominent strand of approaches em-

ploys deep learning architectures specifically designed for domain adapta-

tion. In contrast to shallow approaches built upon deep features, or fine-

tuning strategies, these approaches design already the networks with the

goal to make the learned representations more amenable to the knowledge

transfer. The approaches usually build upon a siamese architecture Brom-

ley et al. (1993) with one stream for the source domain and another for

the target domain (Tzeng et al., 2017). Besides the standard task-specific

objective, the model is trained to reduce the difference between the feature

distributions in some latent feature space. The latter objective can, e.g ., be

based on a discrepancy loss (Long et al., 2015b; Tzeng et al., 2014) or an

adverarial loss (Ganin et al., 2016; Tzeng et al., 2017). The method, which

we introduce in Chapter 5 of this thesis is partly inspired by these works on

adversarial domain adaptation. In particular, the intuition behind one of

the loss terms we employ therein is essentially the same as in these works.
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Unsupervised transfer learning If there are only unlabeled samples

available for both, the source and the target domain, Pan and Yang (2010)

speak about unsupervised transfer learning. For this case the source and

target tasks are different but related. Such approaches might be used for

unsupervised learning tasks like clustering or dimensionality reduction. For

example Dai et al. (2008) aims to find a clustering for a small number of

samples in the target domain by simultaneously clustering a large number

of samples from the source domain and learning a shared feature space for

the two domains.

In Chapter 5 we show a way to combine ideas related to inductive and

transductive transfer learning in a multi-task framework. We do this in

order to particularly exploit synthetic data for our task. Hence, in the

following we discuss various ways in which synthetic data has been exploited

for training when the actual application requires handling real data. That

is, we analyze how the respective domain gap has been handled and provide

the background for the approach to domain adaptation we employ.

2.4.2 Learning from synthetic data

It has been shown that synthetic data can be generated for a large range of

applications. Besides simpler silhouette or depth images of hands (Rosales

and Sclaroff, 2006; Tompson et al., 2014) this also includes tasks for which

the input are, e.g ., color images (Tatarchenko et al., 2016), and captures

more complex scenes (Krähenbühl, 2018; Richter et al., 2016; Varol et al.,

2017). Hence, the domain gap between synthetic and real data has to be

tackled in a broad range of scenarios.

For a task, for which appropriate synthetic data can be generated the

probably simplest approach is to ignore the domain gap at all. This has

been surprisingly successful for some tasks (Mayer et al., 2018; Varol et al.,

2017; Zimmermann and Brox, 2017). For example, Tatarchenko et al. (2016)

learned to reconstruct 3D models of objects from single images by training

on synthetic data from the ShapeNet dataset (Savva et al., 2015). While be-

ing trained solely on synthetic data, they show that their approach delivers

reasonable results for real data. This has been enabled by using an ap-

propriate rendering procedure, overlaying the rendered objects for training

on random real image backgrounds, and ensuring that the real test images

show the object in a rather iconic pose (i.e., with uncluttered background

and without occlusions) in the center of the image. Nevertheless, the pre-

dictions for real images seem significantly degraded compared to the results

on synthetic data. Similarly, training only on synthetic data for our task
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yields insufficient results in many cases. The results of such an approach

can easily be improved as we show in Chapter 5.

Instead of using the, usually very clean, rendered synthetic images

directly, the rendered images can be distorted in order to better reflect

the appearance of real data. In the simplest case the distortions can

be rather straightforward adaptions like adding noise or blur to the

images (Tatarchenko et al., 2016). But there have been efforts to imitate

the camera noise more accurately.

For example, Planche et al. (2017) simulate the whole capturing process

of real depth cameras to create realistic depth data from 3D models. They

not only aim to model the degradations related to the sensor like the lens

distortion and sensor noise, but also external factors like material properties

and motion.

Instead of hand engineering a simulation of the capturing process other

approaches aim to learn a model to map from a rendered synthetic image to

a more realistic one. Since it is difficult to obtain a large variety of renderings

of virtual models together with accurately corresponding real images, such

approaches aim to learn the model using unpaired images. For example, this

has been approached using Generative Adversarial Networks (GANs) (Liu

and Mian, 2017; Mueller et al., 2018; Shrivastava et al., 2017), which should

ensure that the output of the mapping from a synthetic to a real image

appears realistic according to a discriminator network. The disadvantages

of such GAN-based approaches include difficulties to train them (Arjovsky

and Bottou, 2017; Sungatullina et al., 2018), and also that popular GAN

models used for this task (Mueller et al., 2018), like CycleGAN (Zhu et al.,

2017), have been shown to encode hidden information in order to solve their

adversarial task (Chu et al., 2017), which can hamper their applicability for

domain adaptation.

Another viable approach to exploit synthetic data is to first estimate

an abstract intermediate representation, which is more similar for synthetic

and real data but still discriminative for the target task. Then a model

can be learned just based on the intermediate representations and targets

from synthetic data (Doersch and Zisserman, 2019; James et al., 2019). For

3D pose estimation such an intermediate representation can, e.g ., be 2D

keypoints, from which 3D poses can still be estimated (Doersch and Zisser-

man, 2019). Such an approach is advantageous if it is easier to obtain the

intermediate representations for real and synthetic data than the ultimate

target representation and the domain gap is smaller at the level of these

intermediate representations.

Instead of hand defining task specific intermediate representations, like

2D keypoints, these intermediate representations can also be obtained from
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an intermediate layer of a neural network. However, since there is no reason

to assume that the domain gap is smaller at an intermediate network layer,

a small domain gap has to be explicitly enforced at this layer (Massa et al.,

2016; Rad et al., 2018b). For example Massa et al. (2016) aim to detect

exemplars by learning from synthetic images. They exploit the features

learned from synthetic data by learning to map the features of real images

to the features of synthetic images. The approach, however, requires a

large amount of corresponding real and synthetic data to enforce the small

domain gap. Establishing the correspondence naturally requires all the real

data samples to be labeled.

A way to overcome the requirement for corresponding samples is related

to generic domain adaptation approaches discussed above (Ganin et al.,

2016; Tzeng et al., 2014), which aim to align the feature distributions be-

tween the synthetic source and real target domain (Huang et al., 2018; Rad

et al., 2018a; Wu et al., 2018). For example, Huang et al. (2018) propose

such a CNN model for semantic segmentation. They enforce that the distri-

bution of the activations for the real data matches the activation distribu-

tion of synthetic data. The matching is enforced using an adversarial loss,

but instead of only matching the output distributions as in related domain

adaptation works discussed above (Ganin et al., 2016; Tzeng et al., 2017),

they rather aim to align the distributions at each layer.

2.4.3 Discussion

In this section we provided an overview over approaches towards transferring

knowledge from different tasks and domains in order to reduce the labeling

effort for the target task. We especially focused on research directions re-

lated to the work we describe in Chapter 5, in which we aim to overcome

the domain gap between synthetic and real data.

We have shown that a broad range of approaches has been proposed. Es-

pecially, recently the interest in this topic increased. Besides the generally

increasing interest in many machine learning related topics, this can be re-

lated to a number of other reasons. These reasons include, e.g ., the advances

in modeling and rendering realistic scenes (Krähenbühl, 2018; Richter et al.,

2016), which enable the generation of increasingly realistic synthetic data,

and that features pre-trained using deep architectures can be re-purposed

for a surprisingly broad range of domains and tasks (Donahue et al., 2014).

Nevertheless, we have pointed out that many of the proposed approaches

are insufficient for our task or exhibit (severe) drawbacks towards our goals.

Instead of following a single specific approach, we draw inspiration from

several of the approaches discussed in this section. Using these ideas, in
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Chapter 5 we show that a large amount of unlabeled samples together with

a rather small amount of labeled samples from the target domain can be

used to significantly improve the results of related approaches.

2.5 Exploiting hand models

Previously in this chapter, we mainly discussed data-driven approaches.

These data-driven approaches aim to learn a model from data, which can

then be used to map from the input observation to the output pose.

We thereby ignored another possibility to estimate the pose of an object.

Instead of having the system learn about the target task and object from

data, we can encode our knowledge about this task and object and guide the

system by this prior knowledge. In general, such prior knowledge has not

only been shown to be crucial for humans to solve a novel task (Dubey et al.,

2018; Spelke and Kinzler, 2007) but has also been shown to be effective for

many computer vision tasks (Fischler and Elschlager, 1973; Koller et al.,

1993; Kolmogorov and Zabih, 2004).

The probably most rigorous way to exploit prior knowledge for pose esti-

mation is to create a graphical model of the target object and find the pose,

which best fits the observation by means of analysis-by-synthesis. In this

section we discuss the main approaches following the analysis-by-synthesis

strand. This includes a discussion of the graphical hand models, which

have been introduced for this case (Section 2.5.1), together with the strate-

gies to find the best model-fit (Section 2.5.2). Additionally, we will discuss

ways how such analysis-by-synthesis approaches have been combined with

data-driven approaches aiming to exploit their complementary advantages

(Section 2.5.3).

Encoded prior knowledge is usually more effective, the more specific the

knowledge is to the task. That is, the discussion in this section will mainly

focus on the task of hand pose estimation. Nevertheless, at least in terms

of the general ideas there are many similarities to other tasks with the goal

to estimate the pose of an articulated object, like human pose estimation.

Hence, we will sometimes also refer to works on related tasks.

2.5.1 Hand modeling

For discussing the hand models, which have been employed for hand pose

estimation, we start with a brief look at human hand anatomy. This does

not only enable us to understand the origins but also the deficiencies of the

individual models, which can eventually lead to advantages and limitations
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Figure 2.3: The skeleton of the human hand. An annotated illustration of the
hand anatomy from Erol et al. (2007). The joint names are based on the names of
the bones they connect: The interphalangeal joints (*IP) connect the finger bones,
the metacarpophalangeal joints (MCP) connect the fingers with the metacarpals
of the palm, and the carpometacarpal (CMC) connect the metacarpals with the
carpals of the wrist. The CMC of the thumb is also called trapeziometacarpal
(TM).

of the respective approaches. This will also allow us to make more informed

decisions about the hand model for specific applications.

An example for the human hand and its bones is visualized in Figure 2.3.

Usually, the human hand consists of 27 bones. The fingers and thumb

are made up from the 14 phalanges. The five metacarpals connect the

fingers with the wrist. And the wrist itself consists of the remaining eight

bones (Erol et al., 2007)2. The bones are articulated by a number of muscles

(usually around 30 to 40 (Sridhar, 2016)3), which, together with other soft

tissue and the finger nails, define the final shape of the hand.

When aiming to model the pose of the hand in isolation, we have to

consider the articulation capabilities of the respective joints connecting the

bones. The articulations of the interphalangeal joints (*IPs) can be accu-

rately defined with a single degree of freedom (DoF) for each of the nine

joints. The metacarpophalangeal joints (MCPs) are often modeled with two

DoFs. While using two DoFs for the MCPs is a reasonable approximation,

it is also slightly restrictive – especially if the limited articulation capability

2See also: https://en.wikipedia.org/wiki/Hand (accessed: 2019-07-25)
3See also: http://www.eatonhand.com/hw/facts.htm (accessed: 2019-07-25)

https://en.wikipedia.org/wiki/Hand
http://www.eatonhand.com/hw/facts.htm
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of the carpometacarpal joints (CMCs) are not modeled either. In partic-

ular, the CMCs of the pinky and ring finger can be slightly articulated,

which would lead to a arching or curving of the palm (Erol et al., 2007).

The CMCs of the index and middle finger are rather static. However, the

trapeziometacarpal joint (TM), i.e., the CMC of the thumb, has two ro-

tation axes, which are neither orthogonal to each other, nor to the bones.

Additionally, the rotation axes are not intersecting each other (Hollister

et al., 1992).

Model based approaches to hand pose estimation typically use about

10 to 50 DoFs to model the pose (Lin et al., 2000; Tompson et al., 2014).

Most works model the global position and orientation of the hand with the

full 6 DoFs and the articulation of each IP with a single DoF. However,

since the CMCs articulation capabilities are rather difficult to model, many

works differ in how they handle these difficulties. Some researchers assume

the palm to be rigid (Lee and Kunii, 1993), ignoring the limited articulation

capabilities of the CMCs. Others use three DoFs to model the MCPs of

the fingers and the TM (Albrecht et al., 2003), or add a single DoF to

specifically model the arching of the palm (Xu and Cheng, 2013). However,

it has also been shown that the articulations of the hand exhibit much more

constraints and can thus be represented by much less DoFs. Such constraints

are imposed by, e.g ., the dependencies between some of the fingers and

joints – like the bending of the ring finger caused by bending the pinky

finger. Some researchers have shown that about 10 DoFs can be sufficient

to achieve comparable accuracy for hand pose estimation (Douvantzis et al.,

2013; Lin et al., 2000).

The defined skeleton models for the pose describe a hierarchy of rigid

transforms. Each of these transforms essentially represents a joint of the

skeleton. This hierarchy of transforms provides a set of constraints for the

hand pose. For example, during test time the DoFs, which are estimated

are the global position and orientation of the hand and the joint angles,

whereas the distances between the joints are fixed. Besides such models,

which employ hard constraints, researchers have also developed models,

which rather impose soft constraints on the final pose (Donner et al., 2013;

Sudderth et al., 2004). In such approaches the soft constraints are imposed

by a prior model, which penalizes if neighboring parts are in some unlikely

configuration, e.g ., too far apart or interpenetrating each other. However, in

the following we focus our discussion on models employing hard constraints

since they are much more frequently used and we employ such a model in

Chapter 3.

The multitude of hand models, which have been introduced for the task

of hand pose estimation, are used to find the pose by comparing them with
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(a) (b) (c) (d)

Figure 2.4: Example hand models. Approximation of the hand using (a)
spheres (Qian et al., 2014), (b) cylinders and spheres (Oikonomidis et al., 2011a),
(c) mixtures of Gaussians (Sridhar, 2016), and (d) using a full mesh (Taylor et al.,
2016). Illustrations taken from the respective works.

the actual observation from the camera. Hence, a hand model need to be

designed in a way that features can be computed from the model which

are comparable with the (features of the) observation. Besides the mini-

mum requirement that such features are computable, there are a number of

other considerations which guide the model design. For instance the require-

ment to achieve real-time capabilities on a target device, or the interplay

with different optimization algorithms e.g . requiring differentiability of the

computed features, are often considered. Naturally, the different design de-

cisions yield hand models with individual advantages and disadvantages. In

the following we provide an overview of the employed models.

We show illustrations for examples of prominent hand models in Fig-

ure 2.4. The models usually present a trade-off between speed and ac-

curacy with respect to the target application. Hence, some approaches

build their models based on simple geometric primitives like cylinders or

spheres (Oikonomidis et al., 2010; Rehg and Kanade, 1994; Stenger et al.,

2001). Others construct a simple differentiable hand model based on, e.g .,

a mixture of Gaussians (Sridhar et al., 2013). On the other hand, also

more accurate models, which represent the hand surface as a 3D mesh have

been constructed (Ballan et al., 2012; Schröder et al., 2014; Taylor et al.,

2016). Some researchers even employ fully textured meshes to exploit cues

provided by the shading (de La Gorce et al., 2011).

2.5.2 Model fitting

To make use of the prior knowledge encoded by a hand model, given an input

observation, one usually wants to find the hand model parameterization,

which best fits the observation. This parameter search has been conducted

using a variety of optimization procedures. To get a clearer picture and
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understand the advantages and disadvantages of the respective approaches,

we provide an overview of those approaches.

The approaches to hand model parameter optimization can be roughly

categorized into two strands by considering whether they perform a local or

a non-local parameter search. Due to the comparably high dimensional pa-

rameter space and that probably any effective objective function will exhibit

a large number of local optima, an exhaustive global search is infeasible.

Hence, the approaches, which we call local, assume that the initialization is

close to, or at least within the basin of attraction of the optimal solution.

On the other hand, the non-local approaches aim to escape local optima by

using stochastic optimization procedures which can find optima outside the

basin of attraction of the initialization.

Local methods often make use of gradient-based methods to quickly find

an optimum (de La Gorce et al., 2011; Schmidt et al., 2015; Tagliasacchi

et al., 2015). Hence, they employ differential functions to compare a model

parameterization with the observation and obtain a search direction to find

a better fit. That is, the hand model as well as the objective function need

to be differentiable with respect to the model parameters. By computing the

search direction based on the surface of the objective function they are able

to quickly find a optimum. However, such approaches naturally encounter

problems if the initialization is only within the basin of attraction of a bad

local optimum.

Other methods do not only rely on the local surface of the objective

function, but rather aim to explore a larger space. Since they are still

bound by the computational budget, which makes a global search infeasible,

they usually rely on stochasticity to find a good solution (Kyriazis and

Argyros, 2013; Oikonomidis et al., 2010). That is, often they perturb the

hand model parameters around one or several initializations and aim to

find increasingly better parameters, e.g ., using an evolutionary strategy

like Particle Swarm Optimization (PSO) (Kennedy and Eberhart, 1995). In

this way they can find a good solution even if the initial parameters lie in

the basin of attraction of a bad local optimum. However, the final solution

might not even be a local optimum since the local behavior of objective

function is ignored.

Finally, the ideas from local and non-local approaches might also be com-

bined. A number of opportunities for combination have already been pro-

posed. For example, such a strategy might start with a stochastic optimiza-

tion method and use the best found solution as initialization for a gradient-

based optimization (Tompson et al., 2014), iteratively narrow the search

space for a stochastic procedure over the course of optimization (Oikono-

midis et al., 2014), employ a number of different random initializations



2.5. Exploiting hand models 37

(restarts) for a gradient-based optimization procedure (Taylor et al., 2016),

or alternate stochastic and gradient-based updates (Qian et al., 2014).

Objective function The choice of the objective function is crucially con-

nected with the choice of the optimization strategy. For example, gradient-

based optimization procedures naturally require the objective to be differ-

entiable, whereas gradient-free approaches are more flexible in their choice.

In general, an objective function e computes the discrepancy or similarity

v between features computed from the model and the observation:

v = e (zm, zo) , (2.4)

where zm are features computed from the model and zo are features com-

puted from the observation. That is, comparable features, zm and zo need to

be computable from the model and the observation. Often the model is ren-

dered to derive features, which are directly comparable with the input, like

the depth map (Oikonomidis et al., 2011a) or the color image (de La Gorce

et al., 2011). Other works directly compute the distance between the in-

put point cloud and the respective closest points on the hand model sur-

face (Qian et al., 2014; Tagliasacchi et al., 2015; Taylor et al., 2016). Due to

the large computational expense and the difficulties to realistically render

the model many works also rely on (combinations of) intermediate repre-

sentations, which can be derived from the model as well as the input, like

image gradients (Rehg and Kanade, 1994), silhouette masks (Oikonomidis

et al., 2011b), or joint positions (Tung et al., 2017).

2.5.3 Hybrid approaches

Despite elaborate strategies, model-based procedures have to rely on a good

initialization. This is due to the highly articulated object, which causes vast

appearance variations and a large parameter space with many local optima.

That is, purely model-based approaches have to rely on an initialization

in the first frame and are subsequently employed in a tracking framework,

where the initialization for the optimization at every frame can be derived

from the solutions at previous frames. Such a tracking framework naturally

assumes constraints on the amount of movement between frames.

If the initialization is not close enough to the true pose the tracking can

fail. This is especially problematic as model-based approaches are unable

to recover from such tracking failures by themselves. We want to underline

the severity of this issue with a theoretical consideration: For this, lets

assume a tracking approach, which finds the correct pose in 99.9% of the

frames. At a typical frame rate, for such an approach the probability to fail
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within 30 seconds is already significantly higher than 50%. That is, despite

the accuracy of the tracking approach, such performance would clearly be

insufficient for many real world applications like user interfaces for human

computer interaction in many work or leisure related scenarios.

To overcome this issue, many works have proposed hybrid approaches

combining a model-based strategy with a – usually data-driven – part, which

is able to (re-)initialize the tracking (Rosales and Sclaroff, 2006). These

hybrid approaches essentially follow one of two general strategies: Either

they employ a model-based tracking strategy and only resort to a data-

driven part for failure cases, or they follow the more prominent approach of

employing a data-driven part to provide guidance for the model-based part

at every frame.

For example, Wei et al. (2012) employ a model-based tracker for 3D

human pose estimation and use a data-driven approach for initialization at

the first frame and in failure cases. They aim to detect failure cases based

on thresholding the discrepancies between the synthesized depth and silhou-

ette images and the actual depth and foreground mask from the observation.

For initialization at the first frame and recovery from failures, they train

a Random Forest (RF) for pixelwise labeling, whose output is then used

to guide the model-based optimization. Similarly, Ganapathi et al. (2010)

employ body part detections and consider all parts, which are not already

explained by the preceding model-based optimization step, in another re-

finement step of the model-based optimization. In contrast to Wei et al.

(2012) they employ the part detections for error correction at every frame.

A more prominent strand of works use the data-driven part at each

frame to initialize or guide the model-based part. For example, several

works use some semantic information derived from the image, like detected

keypoints (Ballan et al., 2012; Tzionas et al., 2016) or pixelwise part la-

bels (Krejov et al., 2017; Roditakis and Argyros, 2015; Sridhar et al., 2015)

to guide the model-based optimization. Qian et al. (2014), on the other

hand, rely on heuristics to detect the finger tips, which are then used to

find an initial hand model parameterization to start the optimization from.

Other works propose to train a data-driven model to directly estimate the

parameters of a hand model (Boukhayma et al., 2019; Dibra et al., 2017;

Zhou et al., 2016), which can then be straightforwardly used to initialize

the model-based optimization. Some approaches even use the data-driven

part to provide a number of different initializations in order to overcome

ambiguities and deficiencies of the learned single-frame model (Sharp et al.,

2015; Taylor et al., 2016).

Beside the discussed approaches combining model-based with

data-driven approaches for inference, there have also been efforts towards
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a stronger integration of the two parts during training. That is, for

such approaches the graphical model is employed to guide the training

of the data-driven part. In general, the intuition is that in this way

the data-driven approach can focus more of its complexity to the cases,

which would be difficult to solve for the model-based approach alone, but

focus less on cases where the model-based approach alone will likely be

sufficient (Boukhayma et al., 2019; Dibra et al., 2017; Ranftl and Pock,

2014). For instance, one such approach has been proposed by Dibra et al.

(2017). They propose to train a CNN to directly predict the parameters of

a hand model. During the training process not only the parameters of the

CNN are updated, but also the hand model is refined. Dibra et al. (2017)

focus on adapting the shape of the hand model during training and thereby

fitting the hand model to a single user. In their work the supervision is

only obtained from the hand model and comparing it to the observation.

The idea of obtaining training-supervision in this way – instead of relying

on labeled data – is closely related to ideas for self-supervised learning.

Hence, a discussion of more works towards this end can be found in the

respective section about pose estimation above (Section 2.3.5).

2.5.4 Discussion

In this section we discussed the exploitation of prior knowledge in related

work. We have seen that representing prior knowledge using a graphical

model and employing it in an analysis-by-synthesis approach provides an

opportunity to approach the pose estimation task without the need for any

labeled training samples. We discussed critical issues for such an approach

– like the inability for effective (re-)initialization – when applying it in an

isolated manner. Finally, we have also pointed out ways to overcome those

issues. In particular, we have discussed various ways in which model-based

approaches can be combined with data-driven approaches to account for the

limitations of the individual approaches.
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Learning data-driven models for hand pose estimation usually requires

a tremendous amount of labeled training samples. This hampers progress

since providing enough samples is a large effort. In the previous chapter

we noted that hybrid approaches, i.e., combinations of data-driven and

model-based parts, can help to overcome some of their individual issues.

We investigate whether this also holds for the issues arising when a smaller

amount of training data is available to train the data-driven part. Intu-

itively, a reduced amount of training data increases the uncertainty in the

predictions of the data-driven part. In this chapter we introduce a hybrid

method which especially exploits the uncertainties of the data-driven part

to improve the results despite a smaller amount of labeled data. The chap-

ter is largely based on a previous publication (Poier et al., 2015) in which

we introduced the hybrid approach.

41
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3.1 Motivation for a hybrid method

Most current approaches to tracking of hand articulations can be roughly

categorized into model-based and data-driven schemes. In model-based

schemes (de La Gorce et al., 2011; Melax et al., 2013; Oikonomidis et al.,

2010; Wu et al., 2001) an underlying 3D hand model is used to render pose

hypotheses, which are subsequently compared to the observations retrieved

from the sensor. Since it is infeasible to search the whole range of possible

hand poses, these methods rely on an initialization which already needs to

be close to the true solution. Typically, the solution from the previous frame

is used for initialization, which leads to problems in the case of very fast

hand movements or dropped frames. Hence, subsequent tracking failures

are hard to recover from.

On the other hand, data-driven schemes learn the mapping from spe-

cific appearances to hand poses from training data (Keskin et al., 2012;

Tang et al., 2014; Xu et al., 2015). During testing, they usually infer joint

locations independently from each other. In this way, the complex depen-

dencies do not need to be modeled. However, the results are not constrained

by hand anatomy or physics. Thus, the obtained pose estimates might be

wrong or even impossible. Another issue for these approaches is that em-

ploying enough training data to densely cover the whole pose space is in-

feasible, because of the highly articulated nature of the human hand and

the fact that the space of possible hand poses grows exponentially with the

number of joints.

In this chapter we introduce a hybrid method with both data-driven and

model-based elements that inherits the advantages of both paradigms. To

this end, we follow the strand of hybrid approaches, which obtain (an) initial

pose(s) based on the data-driven approach, and then validate and/or locally

optimize the pose(s) using a model-based approach. This has been inspired

in parts by several relevant and successful approaches on human pose esti-

mation (Baak et al., 2011; Taylor et al., 2012; Ye et al., 2011). Nevertheless,

for the task of 3D hand pose estimation, inherent difficulties like the sub-

stantial similarities between individual fingers and the very fast movements

or complex finger interactions cause ambiguities and uncertainties which are

often disregarded by previous works.

For deriving more informed decisions under uncertainty, Graphical Mod-

els have been proven very effective (Felzenszwalb and Huttenlocher, 2005;

Fischler and Elschlager, 1973; Koller and Friedman, 2009). Hence, they have

been extensively used in computer vision literature (Felzenszwalb et al.,

2010; Geman and Geman, 1984; He et al., 2004). Besides being applied

in a dense manner (Fulkerson et al., 2009; He et al., 2004; Krähenbühl
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and Koltun, 2011), sparse graphical models have become increasingly pop-

ular for tasks like object detection or pose estimation (Dantone et al., 2014;

Felzenszwalb et al., 2010; Hamer et al., 2009; Wu et al., 2001). Despite their

effectiveness, a naive implementation would lack efficiency due to the com-

plex interactions which need to be modeled. To this end, approximations of

the underlying distributions have enabled efficient inference (Felzenszwalb

et al., 2010; Krähenbühl and Koltun, 2011; Krähenbühl and Koltun, 2013).

To exploit the inherent uncertainties in the task of 3D hand pose estima-

tion, we first need to capture them. For this, we adopt successful work on

body pose estimation (Girshick et al., 2011; Shotton et al., 2013) to train a

regressor that is able to generate a distribution of location proposals for each

joint. We input this distribution to a subsequent optimization procedure.

Within the optimization procedure we can then exploit the uncertain-

ties, which are implicitly captured by the proposal distribution. To do this

efficiently we employ an approximation of the full distribution upon which

a graphical model operates. The optimization procedure considers multiple

entirely different solutions for the global pose configuration, capturing the

uncertainty of preceding processing steps. In this way, the regressor does

not need to be perfectly accurate on its own but should only deliver a set of

likely joint positions, which are subsequently refined. This also attenuates

the need for a complete training database densely covering the whole pose

space. Additionally, the whole process operates in 3D and is thus able to

infer correct joint locations even in the case of occlusions and missing depth

information. Moreover, optimization not only exploits the uncertainties, but

also finds an anatomically valid hand pose, similar to inverse kinematics (see

Figure 3.1).

3.2 Related work

In previous attempts to apply hybrid approaches specifically to hand pose

estimation, the joint proposals provided by the data-driven approach are

often refined by adding penalties to anatomically implausible joint loca-

tions (Poudel et al., 2013; Tang et al., 2013). However, the obtained hand

poses can still be invalid since the refinement performs only a selection of

the most plausible joint proposals and/or refines only some of the provided

proposals. Hence, the approaches fail if all proposals for a single joint are

inaccurate (e.g ., due to occlusions), or if the proposals are uncertain for

many of the joints.

In contrast, our method introduces new joint positions, which respect

anatomic constraints and, simultaneously, best fit the joint positions pro-

posed by the data-driven approach in a global manner. Moreover, the pro-
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(a) (b)

(c) (d)

Figure 3.1: Overview. (a) A learned joint regressor might fail to recover the pose
of a hand due to ambiguities or lack of training data. (b) We make use of the
inherent uncertainty of a regressor by enforcing it to generate multiple proposals.
The crosses show the top three proposals for the proximal interphalangeal joint
of the ring finger for which the corresponding ground truth position is drawn in
green. The marker size of the proposals corresponds to the degree of confidence.
(c) A subsequent model-based optimization procedure exploits these proposals to
estimate the true pose. (d) The ground truth for this particular example. The
same colors are used for the corresponding results throughout this chapter.

posed method does not rely on finding proposals of high confidence, but

incorporates the approximated proposal distributions for each joint to find

the anatomically valid hand pose which explains them best.

Another strand of research combines salient point detection with model-

based optimization (Ballan et al., 2012; Qian et al., 2014; Tzionas et al.,

2014). However, these approaches rely on detection of specific landmarks

and will fail in situations where the landmarks (usually the finger tips or

nails) are not clearly visible. In contrast, we do not rely on any landmark to

be visible, but take a more holistic view considering the whole hand. Thus,

our approach is robust to occlusion of specific landmarks.

Also noteworthy is an approach to 2D body pose estimation (Dantone

et al., 2013, 2014). This Deformable Part Model (DPM) based work focuses

on improving the unaries provided by a Random Forest (RF). In contrast to
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their work, we use hard constraints on the graphical model, which is enabled

by defining it in 3D. However, their ideas for improving the unaries could

potentially be applied to our task too.

Probably most closely related to our method is the approach of Tomp-

son et al. (2014). This approach uses a deep Convolutional Neural Network

(CNN) to infer the most likely positions of some predefined points on the

hand which are then optimized by a model similar to ours. Despite employ-

ing depth information, regression is performed solely in 2D, disregarding

occlusions or “holes” in the depth map. Moreover, in contrast to our ap-

proach, they rely on a single best location to fit the model, which ignores

the uncertainty in the regression.

The basic building blocks of our method are similar to those of other

hybrid approaches to hand pose estimation: a discriminative, data-driven

method that generates likely joint positions (as in (Poudel et al., 2013; Tang

et al., 2013)), and a generative, model-based optimization method that re-

fines the initial solution (as in (Qian et al., 2014; Tompson et al., 2014)).

However, the way we combine these two components is shown to outper-

form competing approaches. Another key difference that makes our method

distinct from any other method we are aware of is that the optimization com-

ponent has access to internal information of the data-driven component. It

can thus make more informed decisions under the given uncertainty, which

again yields significantly improved results.

3.3 Hybrid one-shot hand pose estimation

In this section we present the two building blocks which make up the pro-

posed method. We use a discriminative regressor, which generates an ap-

proximation of the proposal distribution (Section 3.3.1). This distribution

can be effectively transformed to anatomically valid pose hypotheses using

the model-based optimization procedure described in Section 3.3.2.

3.3.1 Joint regression

For the generation of an approximated proposal distribution we build upon

the prominent approach from Shotton et al. (2013). The approach relies on

Random Forests (RFs) (Amit and Geman, 1994; Breiman, 2001; Criminisi

et al., 2012) to infer a 3D distribution of likely hand joint locations. This

approach has been shown to work well for real world applications of body

pose estimation (Shotton et al., 2013), and has also been previously adapted

for hand pose estimation (Tang et al., 2013). We briefly describe the training

and testing procedures as applied in this work since its internal information
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is later exploited during optimization (Sec. 3.3.2). For more details the

interested reader is referred to the related work.

Training For our task we follow a part based approach to learn a mapping

f : X → Y. An input sample x ∈ X ⊆ RD represents the local appearance

of an image patch around a foreground pixel from which we want to infer

the 3D locations of J joints, i.e., Y ⊆ R3×J . A training sample is formed

by associating an image patch x with a part label c and corresponding

offset vectors o pointing from the patch center location to each of the joint

positions. Hence, the training set L = {Υi}i∈{1,...,N} with Υi = (xi, ci,oi) ∈
X × C × O, where ci ∈ C = {1, . . . , J} denotes the class label of the joint

which is closest to the location of xi, and oi ∈ O ⊆ R3×J denotes the

set of 3D offset vectors. The training data is recursively split by each tree

individually, until the maximum depth of a tree (23 in our case) is reached

or less than a minimum number of samples (40) arrives at a node. For the

experiments we fixed the number of trees to three.

Inspired by Schulter et al. (2011), we sub-sample the data arrived at a

node for split selection. This not only speeds up the training process and

enforces de-correlation between the trees, but also implicitly accounts for

the different number of samples which are extracted per class by drawing a

balanced sub-sample. The learned split functions are based upon the same

simple depth features used in (Shotton et al., 2013). Finally, to generate

the prediction models at the leaves, mean-shift (Comaniciu and Meer, 2002)

is applied to the collected offset distributions for each joint (Shotton et al.,

2013). The modes computed by mean-shift define the final offset vectors

used at test time. Additionally, each mode, i.e., offset vector is associated

with a confidence based on the number of offset vectors, which ended up in

the mode.

Evaluation During test time we start with an empty set of proposals

Pj = ∅ for each joint j. Image patches are sampled densely from the

foreground region of the depth image and are passed down through each

tree of the forest. Assuming that a test sample x arrives at leaf lt of tree t,

its 3D center position cx is offset by each of the offset vectors o ∈ O(lt)
j for

each joint j stored at the leaf to obtain proposals for the respective joint:

p = cx + o, o ∈ O(lt)
j . (3.1)

In this way a set of proposals P(lt)
j is formed for each joint j, i.e.,

P(lt)
j = {pjr}r∈

{
1,...,

∣∣∣O(lt)
j

∣∣∣} . (3.2)
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The set of offsets obtained from the associated leaf of each tree t is then

added to the current set for joint j:

Pj ← Pj ∪ P(lt)
j , ∀t ∈ {1, . . . , |T |} , (3.3)

where T denotes the set of trees.

Following Shotton et al. (2013) we keep only a reduced set of top confi-

dent proposals P̃j ⊆ Pj for each joint and, subsequently, perform mean-shift

on those to extract the k top modes P̂j . We thus end up with at most k×J fi-

nal proposals, each associated with a confidence score. The confidence score

is based on the number of initial proposals supporting the mode. Here, we

use this set of proposals and confidences as an approximation of the proposal

distribution for each joint.

3.3.2 Model-based optimization

Using the discriminative RF based method described above, inference of the

individual joint proposals is completely independent from the other joints.

While, in this way, the complex dependencies do not need to be modeled,

the resulting proposals are not necessarily compatible with anatomical con-

straints.

In order to obtain a valid pose we employ a predefined 3D model of a

hand. We use a model with 26 degrees of freedom (DoFs). In this model

the global pose of the hand, i.e., position and orientation, has six DoFs,

and each of the five fingers is specified by four more. These four parameters

per finger encode angles where the base joint of each finger is assigned two

DoFs and the two remaining hinge joints are each assigned one DoF. See

Figure 3.2 for a skeleton visualization with the corresponding DoFs. During

optimization these DoFs are constrained based on anatomical studies (Al-

brecht et al., 2003; Lin et al., 2000) which avoids impossible configurations.

Since a quaternion representation is used for the global orientation, the 26

DoFs are modeled by 27 parameters.

While the used hand model is, in principle, similar to what is used

in related work on hand pose estimation and tracking, our model only

specifies the joint positions instead of specifically designed geometric prim-

itives (Oikonomidis et al., 2011a; Qian et al., 2014), or even a complete

mesh (Khamis et al., 2015; Sharp et al., 2015; Taylor et al., 2014). As

pointed out later in this section, this has important implications on the

computational complexity of the optimization process.

Having defined a hand model, the goal is to find the 27 model parameters

which best describe the modes P̂ of the joint proposals, obtained from the

regression forest. To this end, the objective function e(P̂,h) judges the
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6 DoFs

2 DoFs

1 DoF

Figure 3.2: Skeleton model. Illustration of the skeleton model of the hand
with the respective degrees of freedom (DoFs) of each joint used for model-based
optimization.

quality of any hypothesized parameter set h ∈ R27. More specifically, given

a function δj(h) which extracts the position of joint j from hypothesis h,

the objective is formulated as:

e
(
P̂,h

)
=

J∑
j=1

max
r

(
wjr

(
1− d2jr

))
, (3.4)

where

djr = min

(
1,
‖pjr − δj(h)‖2

dmax

)
. (3.5)

Here dmax is the clamping distance, pjr ∈ P̂ denotes the r-th mode of

proposals for joint j, and wjr is the normalized confidence so that it exhibits

the properties of a probability. Intuitively, the objective enforces those

modes to be “selected” which – together – best form an anatomically valid

pose. The selection of modes, which contribute to the objective, is guided by

the confidence, i.e., the importance of each mode. Moreover, by considering

all the top modes of the proposal distribution for a joint, we overcome the

problem of outlier modes (e.g ., proposals for the wrong finger). The model

will simply converge to joint positions close to those modes which best fit

into the overall model. This is achieved by optimizing the objective for the

best parameter set h?:

h? , arg max
h

e
(
P(m),h

)
. (3.6)

It is important to note that the definition of the objective function is

based on a small number of 3D distances. As a result, no 3D hand model
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rendering is required to evaluate the objective function as, e.g . in (Oikono-

midis et al., 2011a; Sharp et al., 2015). Hence, our objective function can

be computed very efficiently on conventional (i.e., CPU) processors.

For optimization of the objective function we follow other works on

3D hand pose estimation (Kyriazis and Argyros, 2013; Oikonomidis et al.,

2011a; Qian et al., 2014; Sharp et al., 2015; Tompson et al., 2014) by em-

ploying Particle Swarm Optimization (PSO) (Kennedy and Eberhart, 1995).

PSO performs optimization by evolving a number of particles (solutions)

that evolve in parallel over a number of generations (iterations). If not

stated otherwise, an overall number of 50 generations turned out to be

sufficient for our experiments. The incorporated randomness, which is in-

troduced during the initialization of the particles as well as during their

evolution, makes the method well suited for optimizing the non-convex,

non-smooth objective function.

Stepwise optimization Any search space grows exponentially with

the number of its dimensions. Hence, decomposing the space into

non-overlapping sub-spaces offers the possibility of a large speed-up. We

exploit this for hand pose estimation based on the observation that,

given the global orientation of the hand, the fingers can move almost

independently of each other. This independence together with the

performed mapping of the proposals to specific joints allows us to split the

optimization problem into sub-problems of lower dimensionality (c.f ., (Wu

and Huang, 1999)). In line with this, we treat the problem of finding the

best 27 parameters as six sub-problems, where we first optimize for the

7 parameters specifying the global pose of the palm, and subsequently

individually optimize for the 4 parameters of each finger.

3.4 Experiments

We prove the applicability of the introduced method by means of several

experiments on different datasets. A crucial requirement for benchmark

datasets is the availability of ground truth annotations. However, accurate

3D annotations for real data are not easily obtained, especially for articu-

lated self occluding objects like the human hand. To overcome this issue,

we employ synthetic data in addition to real data. To generate a synthetic

sequence which resembles natural movements, a hand is tracked with the

method described in (Oikonomidis et al., 2011a) using the publicly avail-

able implementation1 and with a very high computational budget. We then

1publicly available at http://cvrlcode.ics.forth.gr/handtracking/

http://cvrlcode.ics.forth.gr/handtracking/
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render depth maps from the resulting poses and utilize the renderings as

the test sequence. In this synthetic sequence the hand performs various fin-

ger articulations and typical motions like counting, pinching and grasping.

While the performed movements are slow to ensure that the tracker does

not get lost, we afterwards sampled every 5th frame from the sequence to

simulate a more natural speed of movements. This sequence is referred to

as TrackSeq.

For producing training data, we first defined 4 different articulations per

finger. All 1024 combinations of these articulations were used as an initial

set of poses. These poses were then rendered under 7 different viewpoints

to create the full train set2 of 7168 poses.

For experiments with real data we employ the ICVL Hand Posture

Dataset3 and NYU Hand Pose Dataset4, where we use the available training

and test data as is. The ICVL dataset was acquired using the Intel Cre-

ative Time-of-Flight (ToF) camera and includes a training set with roughly

330k images and two test sequences with 702 and 894 images, respectively.

The two test sequences show a hand facing towards the camera performing

various finger articulations in very fast succession. The NYU dataset was

acquired using the Kinect RGB-D camera and includes a training set with

roughly 73k images and a test set capturing two actors and consisting of

8252 images (2440 and 5812, resp.). However, neither our method, nor the

approach of Tompson et al. (2014), who published the dataset, can yield

meaningful results for the second actor. Table 3.1 shows the results on the

full test set. For both methods the error and standard deviation is rather

high, which is a consequence of having only the hand of a single actor in

the training set, while the hand of the second actor in the test set differs

significantly from the single hand in the training set. This is underlined by

the significantly better results for the hand of the first actor (below 20 mm

for our method) in the subsequent experiments. This brings us to the con-

clusion that both relevant methods for this chapter cannot really handle the

large differences between the training and test set of this dataset. Hence,

for a conclusive comparison in this chapter we compare only on the test

sequence of the first actor for the NYU dataset.

2Note, that rendering from a different viewpoint is equivalent to changing the orienta-
tion of the whole hand.

3publicly available at http://www.iis.ee.ic.ac.uk/~dtang/hand.html
4publicly available at http://cims.nyu.edu/~tompson/NYU_Hand_Pose_Dataset.htm

http://www.iis.ee.ic.ac.uk/~dtang/hand.html
http://cims.nyu.edu/~tompson/NYU_Hand_Pose_Dataset.htm
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Table 3.1: Results on full NYU test set. Mean joint error (ME) and standard
deviation over the errors for all joints of the original NYU test set.

NYU ConvNet (Tompson et al., 2014) Ours

ME (mm) 31.38± 82.95 31.67± 29.36

3.4.1 Influence of major processing steps

Size of proposal sets P̃j An important parameter of our method is the

number of proposals,
∣∣∣P̃j∣∣∣, which are input to mean-shift at test time (see

Sec. 3.3.1). This is especially interesting since mean-shift is responsible for

summarizing the proposal distribution that we want to exploit during op-

timization. As can be seen from Figure 3.3a, the more proposals, which

are used in this step, the lower the error. However, the error decrease be-

comes smaller for a higher number of proposals. Since a higher number

of proposals implies higher runtime cost, the fact that the error levels off

enables us to find a good trade-off between speed and accuracy. In our

case, we fix
∣∣∣P̃j∣∣∣ = 200 for all other experiments. Another interesting ob-

servation is that accuracy seems to level off much later than reported for

body pose estimation by Shotton et al. (2013). We hypothesize that this

difference is due to the higher variation of hand poses compared to body

poses within the respective datasets. In any case, it further advocates the

specific consideration of the uncertainty as introduced in this chapter.

Number of final proposals per joint The optimizer can efficiently

exploit the inherent uncertainty of the regression process due to the ap-

proximation of the proposal distribution using k modes of the distribution.

In another set of experiments we investigate the effect of the number of gen-

erated proposals k on accuracy. Figure 3.3b shows the error with respect to

k. The Oracle always selects the proposal closest to the respective ground

truth joint position. Obviously, the more proposals generated, the closer one

of them will be to the ground truth. The error for our method (Optimised)

is higher because the solution has to respect the anatomical constraints of

the hand. Interestingly, accuracy levels off for a small number of propos-

als (2-3) both for Oracle and for Optimised. Hence, the results show that

utilizing a small number of proposals (together with confidences) instead of

the full proposal distribution P(i) is already very effective. For the other

experiments we thus set k = 3. In fact this also limits the complexity of the

objective function (Eq. (3.4)).
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Figure 3.3: Influence of meta parameters. (a) Mean joint localization error

on ICVL dataset as a function of the number of proposals,
∣∣∣P̃j

∣∣∣, which are input

to mean-shift to extract the final joint proposals at test time. (b) Mean joint
localization error on the TrackSeq sequence as a function of the number of top
proposals, k. For Optimised, instead of markers, there are error bars showing the
standard deviation over multiple runs.

Furthermore, Figure 3.3b indicates that the results of plain regression

can already be improved by applying optimization to the single top proposal

for each joint. This improvement can be attributed to the anatomically valid

solution induced by model-based optimization. As also suggested by the

results (for k = 1 and k = 3) in Figure 3.4, a significant additional gain is

achieved by providing the optimization procedure with internal information

about the uncertainty of the regressor, i.e., multiple proposals per joint.
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Stepwise optimization We investigate the effect of the stepwise opti-

mization procedure described in Sec. 3.3.2. For a meaningful comparison

we fix the overall number of objective function evaluations (i.e., the opti-

mization budget) for both approaches. We used 91 particles and genera-

tions when optimizing all parameters together, whereas for the stagewise

optimization we assigned 64 particles and generations to the optimization

of position and orientation and 29 particles and generations to optimization

of each finger. The results are shown in Figure 3.4 (orange curves), from

which we see that the stepwise optimization procedure proves much more

effective.

Runtime Our current implementation of the Random Forest based re-

gressor takes ∼33 msec on an Intel i7-4820K CPU to compute the joint

proposals which are input to the optimizer. Optimization itself obviously

depends on the budget. For the current implementation 1000 objective

function evaluations take ∼10 msec. If not stated otherwise, we fixed the

number of objective evaluations to ∼3400 for all experiments for a good

speed vs. accuracy trade-off. Note that all timings are given for our current

prototype implementation, which is non-optimized and single threaded.

3.4.2 Comparison to the state of the art

We compare our method to a state-of-the-art model-based (FORTH

(Oikonomidis et al., 2011a)), data-driven (LRF (Tang et al., 2014)) and

hybrid (NYU ConvNet (Tompson et al., 2014)) approach. Note that, all

our results can be found on the project webpage5.

Comparison with FORTH (Oikonomidis et al., 2011a) We conduct

the comparison with the approach from FORTH on the TrackSeq test se-

quence. We do this since the hand model from FORTH was also used to

generate this dataset and hence possible issues due a misfit between the

hand model and the actual hand can be disregarded. Figure 3.4 compares

the frame-based success rate over a number of distance thresholds. The

frame-based success rate gives the ratio of frames in which all joints are es-

timated within a certain threshold to ground truth. The results show that

our plain regressor performs similarly to the approach from Oikonomidis

et al. (2011a) for the most interesting range of thresholds. However, after

enforcing anatomic constraints by model-based optimization, the introduced

hybrid method is able to improve on these results by a large margin. This is

5Results and other material can be found at https://www.tugraz.at/institute/icg/
research/team-bischof/lrs/downloads/hybridhpe/

https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/hybridhpe/
https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/hybridhpe/
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Figure 3.4: Frame-based success rates on TrackSeq. Results for different
variants of our method and the approach from FORTH (Oikonomidis et al., 2011a).

achieved despite the fact that the sequence exhibits strong finger articula-

tions, whereas the position and orientation do not change. Thus, the main

reason for this gain is the improved estimation of finger articulations rather

than the overall position and orientation estimation. This is also illustrated

when solely considering the errors in finger tip localization, where the mean

error for Oikonomidis et al. (2011a) is 19.5 mm, while for our approach it is

11.8 mm – an error reduction of about 40%.

Comparison with LRF (Tang et al., 2014) We compare to the Latent

Regression Forest (LRF) approach on the ICVL dataset, which was pub-

lished by the same authors (Tang et al., 2014). We compare to the results,

which they published online. As shown in Figure 3.5 and 3.6 our regres-

sor outperforms their results over most of the thresholds by a significant

margin.

Unfortunately, we cannot fairly evaluate our model-based optimization

using the annotations provided with the ICVL dataset. This is because

in the ground truth annotations, bone lengths6 vary significantly between

the frames of a single sequence; therefore they are not compatible with an

anatomically valid 3D hand. However, the 26 DoFs hand model used in

this chapter implicitly applies strict constraints on them. Fitting such a

model will therefore always introduce additional errors when compared to

6By bone lengths we refer to the distance between joint annotations connected by
bones
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Figure 3.5: Frame-based success rates on ICVL Sequence 1. Results for
variants of our method and LRF (Tang et al., 2014).
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Figure 3.6: Frame-based success rates on ICVL Sequence 2. Results for
variants of our method and LRF (Tang et al., 2014).

the provided ground truth annotations. Nevertheless, our results appear

more accurate or at least as accurate as those from LRF (Tang et al., 2014).

Comparison with NYU ConvNet (Tompson et al., 2014) We com-

pare to the hybrid approach from Tompson et al. (2014) based on the NYU

dataset, which the same authors published along with their approach. For
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Figure 3.7: Frame-based success rates on the NYU dataset. Results for
variants of our method and the hybrid approach from Tompson et al. (2014) (NYU
ConvNet).

this dataset the annotated positions do not actually correspond to joints,

but to some specific locations on the hand. For evaluation we used the sug-

gested positions with the minor exception that we skipped two of the three

palm positions since the palm is only represented by a single position in our

model. In addition, for their approach Tompson et al. (2014) provide only

2D locations, which are projected to 3D using the input depth. However,

the input depth might be significantly distorted (e.g ., at holes). To correct

their estimates at positions with distorted depth, we augment them with the

median depth of the inferred positions in the same frame and for a second

variant with the ground truth depth to show the theoretical upper bound

for their approach. Figure 3.7 and 3.8 show the results. For our method

the optimization improves results particularly for larger distance thresh-

olds since the optimization mainly performs an error correction rather than

improving estimates which are already very close to the ground truth. In

addition, the difference between the annotation model and our model in-

duces an error, especially for low thresholds. In spite of that, we observe

that our method outperforms the approach from Tompson et al. (2014) by a

large margin – even if we correct their results by augmenting ground truth

depth information.
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Figure 3.8: Average error per joint. Results on the NYU dataset (Actor 1) are
compared to the hybrid NYU ConvNet (Tompson et al., 2014) approach.

3.4.3 Influence of the training set size

To investigate whether our contributions are effective in reducing the label-

ing effort, we evaluate how the results are affected when only training on

a subset of the full training set. For this set of experiments we employ the

NYU dataset and take a subsample of the original training set for training

the joint regression model. More specifically, we investigate how the results

are affected when changing the training set size, n. That is, we subsample

different numbers of training samples and re-train the model only on the

specific subset for each experiment.

Figure 3.9 shows how the mean joint error (ME) changes for different

training set sizes. We see that our hybrid method improves the results over

a number of different training set sizes. It especially improves the ME for a

small number of training samples, while the ME for the full set even becomes

slightly worse.

Looking closer at the differences between the ME and the success rate

for the full training set, we find that these differences are very related to the

differences of the methods and what they optimize for. More specifically,

from the plot of the success rates in Figure 3.7 above, we see that the

plain Regression Forest achieves very accurate estimates for a small number

of frames, while the hybrid approach can improve the results for a large

number of less accurately estimated frames.

When employing the full training set, despite the differences in the suc-

cess rate (Figure 3.7), the mean joint error (ME) is similar for both methods.

This indicates that the plain Regression Forest yields a high error for a small

number of joints in many frames. At the same time many other joints are

estimated accurately. Hence, the overall mean joint error is not significantly

disturbed, but the frame-based success rate clearly shows the issue. This
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Figure 3.9: Ablation experiments over n (mean joint error). The mean joint
error (ME) for the plain joint regression model and our hybrid method. For each n
the results are averaged over ten experiments with different training subsamples.

becomes even clearer when comparing the frame-based success rate (FS)

over different training set sizes in Figure 3.10. For this metric the improve-

ment is much more pronounced and consistent over the number of training

samples. The results point out that the large regression errors in many of

the frames can be reduced by our integrative hybrid method considering the

holistic joint configuration in each individual frame.

Since we take random subsamples from the full training set to obtain

training sets of different sizes, the selection of the subsample affects the

results. To investigate this effect we repeat each experiment ten times and

study how our model-based optimization procedure affects the results of

each experiment. In Figure 3.11 we plot the change of the ME, ∆ME , and

the change of the FS, ∆FS , for each experiment after optimization. That

is, ∆ME is simply the difference between the ME for the Regression For-

est, mf , and the hybrid method, mh: ∆ME = mh − mf and accordingly

∆FS = sh − sf , where sh and sf are the FSs for the Regression Forest and

the hybrid method, respectively. This means, improved results by the hy-

brid method are represented by a negative change of the ME, ∆ME < 0, and

a positive change of the FS, ∆FS > 0. Comparing Figure 3.11a and 3.11b,

we again see the discussed differences between the different metrics for the

comparison of the data-driven and hybrid method. More interestingly, de-

spite the significant variation for a small number of training samples, we see

that our hybrid method consistently improves the results – independent of
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Figure 3.10: Ablation experiments over n (success rate). The area under
the frame-based success rate curve up to a distance threshold of 80 mm (FS80) for
the plain joint regression model and our hybrid method. For each n the results are
averaged over ten experiments with different training subsamples.
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Figure 3.11: Affect of optimization on individual results. Changes of (a)
the mean joint error (ME) and (b) the frame-based success rate (FS80) after op-
timization. We conducted ten experiments for each training set size n and each
datapoint shows the change for an individual experiment. Note, improved results
are represented by a negative change of the ME and a positive change of the FS80.

the selection of the training set. Furthermore, we can see that the potential

performance gain for our hybrid method decreases with increasing training

set size, i.e., the potential gain is larger for smaller training set sizes.

The improvement obtained by our hybrid method is also affected by the

optimization budget, which we set based on a trade-off between accuracy

and runtime. The runtime, however, is also strongly affected by the actual
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Figure 3.12: Ablation experiments for the best runs over different training
set sizes. The best mean joint error (ME) for the plain joint regression model
compared to the result after optimization with a high budget.

implementation and hardware resources. Hence, for a final experiment we

aim to investigate the potential improvement when ignoring runtime con-

siderations. Together with this we investigate the potential improvement

when already starting from a strong baseline, i.e., for the baseline we as-

sume that we are able to select a “good“ training set for the data-driven

approach. That is, we selected the best performing out of ten Regression

Forests for each n and employ a high optimization budget for the model-

based optimization part. The results are shown in Figure 3.12. As expected,

the improvement is generally larger than in the case where we compared the

average results over multiple experiments. However, this is despite the fact

that we already start from a higher baseline. Moreover, we see that the im-

provement is consistent over all n. That is, the model-based optimization

procedure can consistently improve even the best obtained results from the

Regression Forest in terms of the mean joint error (ME).

3.4.4 Qualitative results

Finally, we show some qualitative results and error cases of our method.

Figure 3.13 and 3.14 show input depth maps and the estimated poses ren-

dered from different view points from the ICVL and the NYU dataset,

respectively.
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Figure 3.13: Qualitative results for the ICVL dataset. Each row shows the
input and result for a single frame. The left most column shows the input depth
maps, the remaining columns show the estimated pose rendered from different view
points.

Looking at the error cases we can see that often the joints of a single

finger are estimated incorrectly, while the overall structure of the hand was

estimated rather well. Figure 3.15 shows two examples for error cases. High

errors for single joints are often induced if the parameters of a joint earlier

in the kinematic chain are incorrectly estimated. The inaccurate estimate

for a joint obviously affects all subsequent joints in the chain.

Such error cases can arise when the model-based optimization proce-

dure ends up in a bad local minima or didn’t properly converge due to

the stochasticity, respectively. Possible solutions to such error cases could,

for example, be provided by a better initialization, switching to a gradi-

ent based optimization towards the end of the optimization procedure, or

a higher optimization budget, which could be enabled by a more efficient,

parallel implementation.

3.5 Conclusion

In this chapter, we introduced a hybrid approach for 3D hand pose esti-

mation based on a single depth frame. A Regression Forest delivers sev-
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Figure 3.14: Qualitative results from the NYU dataset. Each row shows the
input and result for a single frame. The left most column shows the input depth
maps, the remaining columns show the estimated pose rendered from different view
points. (Note, for this dataset, for the point cloud renderings one axis was swapped
with respect to the depth image)

eral proposals for each hand joint position. Then, model-based optimiza-

tion is responsible for estimating the best fit of a 3D hand model to the

joint proposals obtained through regression. Thus, optimization exploits

the inherent uncertainty of the data-driven regression. As a result, the in-

troduced method delivers anatomically valid solutions (which most purely

data-driven methods fail to provide) without unrecoverable track losses or

a need for proper initialization (as happens with most purely model-based

approaches). At the time of first publication (Poier et al., 2015), the in-

troduced method has been shown to achieve state-of-the-art performance.

Moreover, we showed that by employing such a hybrid approach similar ac-

curacy can be achieved using a reduced number of training samples. This

is proven by quantitative experiments on several datasets and in compar-

ison to the respective baselines as well as representative methods from all

categories (model-based, data-driven, hybrid).

While the introduced method provides the possibility to reduce the label-

ing effort, a significant amount of labeled training samples is still necessary

to achieve meaningful results. This is due to the fact that the model-based



3.5. Conclusion 63

(a) mean/maximum joint error: 12 mm/39 mm

(b) mean/maximum joint error: 14 mm/58 mm

Figure 3.15: Error cases for the NYU dataset. Each row shows the results for
a single frame rendered from two different view points.

optimization scheme cannot fix gross errors, but is limited to the “initializa-

tion” provided by the data-driven part. And the data-driven part is unable

to provide an estimate close to the true solution for poses too far from the

training set distribution. This situation clearly hampers performance.

To overcome the issues, in the next chapter we focus on improving the

data-driven part for the case when only a small number of labeled samples

is available. In order to make the data-driven part less restricted to the

distribution of labeled training data, we introduce a way to exploit unlabeled

data. We will show that unlabeled data – if properly exploited – provide

a way to make the model learn about the structure of poses for which no

labeled samples are in the training set.
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For the task of hand pose estimation, the best performing methods have

recently relied heavily on models learned from data (Guo et al., 2017; Ober-

weger et al., 2015b; Sun et al., 2015; Supancic et al., 2015). Even methods

which employ a manually created hand model to search for a good fit with

the observation, often employ such a data-driven part as initialization or for

error correction (Krejov et al., 2017; Tang et al., 2015; Taylor et al., 2016)

– similar to the approach we introduced in the previous chapter. Unfortu-

nately, data-driven models require a large amount of labeled data, covering

a sufficient part of the pose space, to work well.

However, for the task of estimating the pose of articulated objects, like

the human hand, it is especially expensive to provide accurate annotations

for a sufficient amount of real world data. The articulated structure and spe-

cific natural movements of the hand frequently cause strong self-occlusions.

Together with the many 3D points to be annotated, this makes the annota-

tion procedure a huge effort for human annotators.

A largely unexplored direction to cope with this challenge is to exploit

unlabeled data, which is easy to obtain in large quantities. We introduce

65
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Figure 4.1: Sketch for learning a pose specific representation from un-
labeled data. We learn to predict a low-dimensional latent representation and,
subsequently, a different view of the input, solely from the latent representation.
The error of the view prediction is used as feedback, enforcing the latent represen-
tation to capture pose specific information without requiring labeled data.

a step towards closing this gap with a method that can exploit unlabeled

data by making use of a specific property of the pose estimation task. We

rely on the observation that pose parameters1 are predictive for the object

appearance of a known object from any viewpoint. That is, given the pose

parameters of a hand, the hand’s appearance from any viewpoint can be es-

timated. The observation might not seem helpful upfront, since it assumes

the pose – which we want to estimate – to be given. However, the observa-

tion becomes helpful if we capture the scene simultaneously from different

viewpoints.

By employing a different camera view, we can guide the training of the

pose estimation model (see Figure 4.1). The guidance relies on the fact

that from any set of pose parameters, which accurately specify the pose

and rough shape of the hand, we necessarily need to be able to predict the

hand’s appearance in any other view. Hence, by capturing another view,

this additional view can be used as a target for training a model, which

itself guides the training of the underlying pose representation.

More specifically, the idea is to train a model which – given the first cam-

era view – estimates a small number of latent parameters, and subsequently

predicts a different view solely from these few parameters. The intuition

is that the small number of parameters resemble a parameterization of the

pose. By learning to predict a different view from the latent parameters, the

latent parameters are enforced to capture pose specific information. Fram-

ing the problem in this way, a pose representation can be learned just by

1For the sake of clarity, here, pose parameters denote the parameters defining the
skeleton, including its size, as well as a rough shape
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capturing the hand simultaneously from different viewpoints and learning

to predict one view given the other.

Given the learned low-dimensional pose representation, a rather simple

mapping to a specific target (e.g ., joint positions) can be learned from a

much smaller number of training samples than required to learn the full

mapping from input to target. Moreover, when training jointly with la-

beled and unlabeled data, the whole process can be learned end-to-end in

a semi-supervised fashion, achieving similar performance with one order of

magnitude less labeled samples. Thereby, the joint training regularizes the

model to ensure that the learned pose representation can be mapped to the

target pose space using the specified mapping.

In this chapter, which is largely based on our previous publication on

Learning Pose Specific Representations by Predicting Different Views (Poier

et al., 2018), we show the specificity of the learned representation and its pre-

dictiveness for the pose in qualitative and quantitative experiments. Trained

in a semi-supervised manner, the introduced method consistently outper-

forms its fully supervised counterpart, as well as the state-of-the-art in hand

pose estimation – even if all available samples are labeled. For the more

practical case, where the number of unlabeled samples is larger than the

number of labeled samples, we find that the introduced method performs

on par with the baseline, even with one order of magnitude less labeled

samples.

4.1 Related work

As discussed above, traditionally, works on hand pose estimation have been

divided into model-based and data-driven approaches. Model-based ap-

proaches (de La Gorce et al., 2011; Melax et al., 2013; Oikonomidis et al.,

2011a; Roditakis et al., 2017; Wu et al., 2001) search to parameterize a

manually created hand model in each frame such that it best fits the obser-

vation. These approaches usually need to rely on an initialization, e.g ., from

previous frames, and thus, have problems to recover if pose estimation fails

once. Data-driven approaches, on the other hand, learn a mapping from the

input frame to a target pose from a usually large number of annotated train-

ing samples (Guo et al., 2017; Keskin et al., 2012; Oberweger and Lepetit,

2017; Tang et al., 2014). These approaches assume that the poses seen at

test time are at least roughly covered by the training set and will otherwise

fail to deliver a good estimate. With the desire to combine the merits of

both strands, hybrid approaches, combining both strands, have been devel-

oped (Mueller et al., 2017; Taylor et al., 2016; Zhou et al., 2016). But, as

pointed out in the previous chapter, the effectiveness of hybrid approaches
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is again crucially affected by the density of the annotations available for

training the data-driven part.

Data annotation To provide a large number of labeled samples, semi-

automatic or sometimes even automatic methods were employed to con-

struct the relevant publicly available training sets. Most often model-based

approaches with the above mentioned issues were used to provide (initial)

annotations, which were manually corrected (Sun et al., 2015; Tang et al.,

2014; Tompson et al., 2014). Other efforts include the development of an

annotation procedure (Oberweger et al., 2016) to propagate annotations to

similar frames, or attaching 6D magnetic sensors to the hand (Wetzler et al.,

2015; Yuan et al., 2017), which resulted in the largest dataset to date (Yuan

et al., 2017). These efforts underline the difficulties to provide sufficient

labeled data, hampering novel applications, which might rely on different

viewpoints or sensors.

Learning from unlabeled data At the same time, capturing unlabeled

data is easy, and considering the way how we make use of such unlabeled

data, several strands of prior work are related to our method. The scheme

of predicting another view from the learned latent representation is, e.g .,

akin to the concept of autoencoders, where the input is reconstructed from

the latent representation (Hinton and Salakhutdinov, 2006; Vincent et al.,

2008). Instead of reconstructing the input, we learn to predict a different

view. This enables the model to capture pose specific representations as the

results in Sec. 4.4.3 clearly point out.

Similarly, the method presented in this chapter is also related to a strand

of works on representation learning from unlabeled data which obtain the

training target by adapting the input. Such works, e.g ., transform the

input and have the model learn to predict the transformed version given

the original input (Hinton et al., 2011), or split the input data into parts

and have the model learn relations between the parts (Doersch et al., 2015;

Owens et al., 2016; Pathak et al., 2016; Zamir et al., 2016; Zhang et al.,

2017). For instance, Doersch et al. (2015) learn to predict the relative

position of patches sampled from an image, which should be possible if a

model has learned to extract semantics. Similarly, this has been targeted

by, e.g ., relating tracked patches (Wang and Gupta, 2015), solving jigsaw

puzzles (Noroozi and Favaro, 2016) or colorizing images (Larsson et al.,

2016). While our method can be considered similar in spirit, our main

objective is to learn a pose specific representation in the latent space, for

which a crucial enabler is to employ multiple viewpoints.
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Learning from multiple views Researchers have also employed multiple

camera views to learn depth prediction or 3D object reconstruction from

unlabeled data (Garg et al., 2016; Jayaraman et al., 2017; Xie et al., 2016).

Garg et al. (2016) propose an approach to monocular depth estimation, for

which the loss is based on the photo consistency of the projected pixels in

the second view of a stereo image pair. Similarly, Xie et al. (2016) target

generating a stereo pair from a single view. Several works add upon this line

of research, e.g ., by incorporating sparse and noisy depth labels (Kuznietsov

et al., 2017), adding a left-right consistency constraint (Godard et al., 2017),

jointly estimating camera pose and depth (Zhou et al., 2017a), or learning

to reconstruct full 3D (Tatarchenko et al., 2016; Tulsiani et al., 2017; Yang

et al., 2015).

In these works the desired target (e.g ., depth or disparity) can directly

be linked to the training loss via geometric relations and, therefore, only the

intermediate latent representations have to encode some kind of semantics

of the scene and objects therein. In our case, the target itself is more explicit

semantic (e.g ., joint positions or labels, resp.) and we show how to formu-

late the task such that our learned latent representation closely resembles

what we are targeting, namely the pose. The formulation also clearly dif-

ferentiates our method from generic multi-view learning approaches, which

we discussed in Chapter 2, like Canonical Correlation Analysis (CCA) and

its variants.

Semi-supervised learning for hand pose estimation Little work has

exploited unlabeled samples for hand pose estimation. To the best of our

knowledge, there are only some notable exceptions (Neverova et al., 2015;

Tang et al., 2013; Wan et al., 2017): Tang et al. (2013) built a discrim-

inative approach which relies on a large synthetic training set and corre-

spondences between synthetic and real samples. Similarly, Neverova et al.

(2015) establish correspondences via an intermediate representation of part

segmentations. For their approach, they do not need pixelwise labels for

real samples, but still require joint annotations. On the contrary, Wan

et al. (2017) incorporate entirely unlabeled data by drawing from advances

in generative modeling within a semi-supervised approach. While elegant

and well set up, neither of these approaches exploit the observation that the

pose is predictive for the appearance from any known view.

View synthesis for hand pose estimation Another notable work on

hand pose estimation, we draw inspiration from, is the work from Oberweger

et al. (2015b). They aim to reconstruct the input view of the hand from

previously estimated joint positions, and subsequently learn to generate an
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update for the pose estimate based on the discrepancy between the input and

the reconstruction (akin to supervised descent methods (Sheerman-Chase

et al., 2013; Xiong and De la Torre, 2013)).

In contrast to the method introduced in this chapter, however, they

aim to reconstruct the same view directly from previous estimates of the

joint positions (without capturing shape information). Consequently, their

approach is fully supervised, i.e., it requires joint annotations for each sam-

ple. In our method, we do not require pose annotations, but exploit the

information we get from an additional view point, which is crucial for the

training process, as we will show in our experiments. Nevertheless, inference

is straight forward with our method, i.e., we neither require an iterative pro-

cedure and generation of images as in (Oberweger et al., 2015b), nor need

a second view at test time.

4.2 Formulating the observations

Our idea is based on the observation that a hand pose representation, θ,

which includes parameters for the hand’s size and shape, is predictive for

the hand’s appearance, x(i), from any known view i. Let T ⊂ RdT denote

the set of possible poses or pose representations of dimensionality dT , i.e.,

θ ∈ T , and similarly, X ⊂ RdX be the set of possible input images of

dimensionality dX , i.e., x(i) ∈ X . Then – based on our observation – we

assume that there exists a view specific mapping, g∗i : RdT → RdX , such that

x(i) = g∗i (θ), ∀θ ∈ T . (4.1)

Nevertheless, for our task we do not know the pose. The pose is what

we are searching for. Given an image of a hand x(i) we want to find the

pose of the hand. That is, we search for a mapping f∗i : RdX → RdT from

the input image to the pose2:

θ = f∗i (x(i)), ∀x ∈ X . (4.2)

Clearly, given the two mappings, f∗ and g∗, by subsequently applying

them we can map from input to pose and back. But we can also see that we

can directly map from one view to another. That is, given an input image

of the hand, x(i), from view i, we can use the mappings to compute the

2To avoid cluttering the notation, we ignore that such a mapping is not always unique,
given only a single view. In theory, we could formulate θ as a random variable, describing
a distribution, we could sample from.
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hand’s appearance x(j), from any known view j:

x(j) = g∗j
(
f∗i (x(i))

)
. (4.3)

In our case, the mappings f∗ and g∗ are unknown. We can, however,

capture the scene simultaneously from two different views i and j. Given

the data from two views, x(i) and x(j), we can formulate our problem as

finding a mapping from one view to another and learn both mappings by

solving this task. While, for our ultimate goal we only need the mapping

f∗ from the input to the pose, the second mapping is required to effectively

exploit the supervision provided by a different view. Hence, we use the task

of learning a mapping from one view to the other as a surrogate task for

learning a mapping to a latent representation, which resembles the pose.

Note, for i = j, Eqn. (4.3) essentially specifies an autoencoder. From our

empirical investigation (see Sec. 4.4.3) we find that in this case the model is

unable to learn a representation specific to the pose. However, for i 6= j and

a sufficient amount of (unlabeled) data we find that it is easy to constrain

the model such that the latent representation captures pose information.

Hence, the crucial case, which we are investigating in this chapter, is the

case i 6= j.

4.3 Implementing the observations

To implement our observations we want to learn the two mappings, f∗ and

g∗, from data. We do so by employing a Convolutional Neural Network

(CNN) with an encoder-decoder architecture. To formalize our method, we

denote the learned estimates of the “true” mappings f∗ and g∗, f and g,

respectively. The encoder fi receives input x(i) from view i and its output

represents the desired latent representation θ. The latent representation

is at the same time the input for the decoder gj , which produces the view

x(j) given θ. Without loss of generality we assume the captured images, x,

to be depth images. Note that, while, for color-only input the appearance

is affected by additional factors like skin color or illumination, the basic

observations still hold.

In the basic model, we train our system to predict a different view x(j),

which we capture for training. The training loss, `u, for this model can thus

be formulated as a reconstruction loss

`u = `recon
(
x̂(j),x(j)

)
, (4.4)
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where x̂(j) is the model’s prediction for view j, given input x(i) from view

i, i.e.,

x̂(j) = gj
(
fi(x

(i))
)
. (4.5)

For the reconstruction loss `recon we experimented with the L1-, L2- and

Huber-norm and found the L1-norm to yield the best results.

Ideally, we want the latent representation, θ = fi(x
(i)), to be very spe-

cific for the pose, not capturing any unnecessary information. The loss itself

does not constrain the latent representation to fulfill such a requirement. We

can, however, constrain the latent representation in a very simple – though

effective – way: We assume that the smallest possible representation which

is predictive for the appearance of any known view, other than the input,

will, crucially, contain a representation resembling the pose.

A low-dimensional representation of the pose is often given by the joint

positions. However, since there are many dependencies between the joints,

the pose can even be represented by a lower-dimensional subspace. While

works on hand modeling (Albrecht et al., 2003; Lin et al., 2000) give an in-

dication for the size of such a low-dimensional subspace, we investigate the

size best matching our requirements in the experimental section (Sec. 4.4.3).

The representation should contain only little additional information which

could obfuscate the pose representation and, thus, hamper learning a map-

ping to any target pose representation as discussed in the next section.

4.3.1 Learning from labeled and unlabeled data

To map from the latent representation space to the desired target space

(e.g ., joint positions) we add a single linear layer to our encoder-decoder

architecture. Using a linear layer is a very common way to evaluate learned

representations (Coates et al., 2011; Dosovitskiy et al., 2014; Noroozi et al.,

2017). In this way only a limited amount of additional parameters need

to be learned from labeled data. We enforce the latent representation to

suffice this linear map by training the encoder, which maps from input to

the latent representation, jointly with labeled and unlabeled data in a semi-

supervised manner. That is, labeled samples guide the training of the latent

representation such that it suffices the linear mapping.

The architecture for semi-supervised training is depicted in Figure 4.2.

The parameters of the linear layer from the latent pose representation to the

joint positions are only trained using labeled samples. All other parameters

are trained using both labeled and unlabeled samples.
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pose
repres-

entation

view 2

3D joint 
positions

view 1

Figure 4.2: Architecture sketch for semi-supervised learning. The input
view, x(1), is mapped to the latent representation, θ, by the encoder f1. Solely
based on θ, the decoder g2 is required to generate a different view 2 of the input.
At the same time the latent representation is ensured to suffice a linear mapping,
gl, to the 3D joint positions by employing labeled samples. This is illustrated
by the green paths depicting the gradient flow to the latent representation and,
consequently, to the encoder.

The semi-supervised loss function, `semi, is a combination of the loss

from unlabeled and labeled data:

`semi = `u + λl `l, (4.6)

where λl is a weighting factor, which is set to zero for unlabeled samples.

Due to the difficulties with labeling hand poses in 3D, essentially all current

datasets exhibit at least some label errors. For robustness to such errors, we

employ the sum of the Huber loss (Huber, 1964) for individual joint errors.

Note, this is different from the standard use of the Huber loss. That is, in

our case

`l =
∑
m

`Huber (‖ym − ŷm‖2) , (4.7)

where ŷm denotes the estimated position of the m-th joint, ym the corre-

sponding ground truth position, ‖·‖2 the L2-norm of the argument and

`Huber(d) =

{
0.5 d2 if d < ε

ε (d− 0.5 ε) otherwise.
(4.8)

Note that d, the input to the Huber loss, is always positive in our case.
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4.3.2 Beyond pixelwise auxiliary objectives

In the previous section the objective for the decoder is based on a simple

reconstruction loss. In this way, the decoder is penalized for any deviation

from the second view’s exact pixel values. However, more important for

our task is the global structure of the image as this is affected crucially by

the pose. That is, the decoder spends representational power on estimating

exact pixel values, which are of little interest to us.

Instead of predicting exact pixel values, the goal of our method is to

capture the latent representation determining the pose of the hand shown

in the image. The adversarial training procedure introduced by Goodfellow

et al. (2014) points out a way to provide loss functions beyond pixelwise

losses. This also appears interesting for our goal since such approaches

have been shown to learn interpretable latent representations (see, e.g .,

(Radford et al., 2016)). The training procedure corresponds to a minimax

two-player game, where each player is implemented by a neural network. A

generator network aims to generate samples from the data distribution and

a discriminator network aims to discriminate generated samples from real

samples. In this game, the loss for the generator is essentially provided by

the discriminator, thus overcoming the need for explicit supervision, e.g .,

from corresponding target images.

Using this idea, we can train the decoder of our method to match the

distribution of real images, but lessen the focus on raw pixel differences. We

do so by adding an additional adversarial term to the loss in Eq. (4.6),

`semi = `u + λl `l + λa `a, (4.9)

where λa is a weighting factor and `a can be intuitively interpreted as how

“unreal” the discriminator network h thinks a generated sample x̂ is. That

is, since this yielded the best results, we define `a inspired by Least Squares

GAN (Mao et al., 2017) as

`a =
1

2

(
hj(x̂

(j))− lr
)2
, (4.10)

where lr ∈ R is the label value for real samples. The objective for the

discriminator, on the other hand, is to push the real samples towards lr and

generated samples towards a different label value lg ∈ R, i.e.,

`h =
1

2

(
hj(x

(j))− lr
)2

+
1

2

(
hj(x̂

(j))− lg
)2
. (4.11)

In our case we set lr = 1 and lg = 0.
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The loss in Eq. (4.9) requires the decoder g to output an image closely

resembling the image of the second view since the reconstruction loss is still

part of its objective. Nevertheless, g is enforced to focus more on the overall

structure of the image through the loss term provided by the discriminator.

For adversarial training it has been shown that the discriminator can

be improved – and thus provide better feedback – by conditioning it on

additional input (Mirza and Osindero, 2014). For our task we can condition

the discriminator on the input from the first view and/or, in case of semi-

supervised training, the pose. That is, the input for the discriminator is

not only the generated or captured image for the second view j (i.e., x̂(j) or

x(j), resp.) but also the input to the generator (i.e., x(i)) and/or the pose

y. For the case of conditioning on the pose, we provide the estimated pose

ŷ for generated samples and the ground truth pose y for real samples. In

our experiments below we evaluate all described conditioning types.

4.3.3 Implementation details

Similar to other works (Krejov et al., 2017; Tang et al., 2014) we assume

the hand to be the closest object to the camera, and compute its center of

mass (CoM), which is also provided as additional input to the decoder, g.

We then crop a region with equal side length in each direction around the

CoM, resize it to 64 × 64 pixels and normalize the depth values within a

fixed range to be between −1 and 1. These crops form the input to our

method.

Our method does not rely on a specific choice of the network archi-

tecture. For our experiments, we implemented our encoder and decoder

networks based on the architecture developed for DCGAN (Radford et al.,

2016), since it is a well developed architecture, which is comparably

“lightweight” and designed for image synthesis. We base our encoder f

and our discriminator h on the discriminator and our decoder g on the

generator of the original publicly available implementation3. We only

interchange the positions of the ReLUs (Fukushima, 1980; Nair and

Hinton, 2010) and leaky ReLUs (Maas et al., 2013) since we want to

ease gradient flow through the decoder, put a hyperbolic tangent (tanh)

activation function at the end of the decoder to ensure that the output

can range between −1 and 1, and adapt the input and output dimensions

accordingly.

We train our model with Adam (Kingma and Ba, 2015) for 100 epochs

using a batch size of 128 and a learning rate of 10−4. For semi-supervised

3 https://github.com/soumith/dcgan.torch

https://github.com/soumith/dcgan.torch
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learning we obtained the best results with λl = 10. Our PyTorch4 imple-

mentation is publicly available5.

4.4 Experiments

To prove the applicability of the proposed method we perform qualitative

and quantitative experiments on different datasets. We investigate the rep-

resentations learned from unlabeled data (c.f . Sec. 4.3) in Sec. 4.4.3. Subse-

quently, we present the results for semi-supervised learning (c.f . Sec. 4.3.1),

compare to the state-of-the-art in hand pose estimation, and provide evi-

dence for the effectiveness of our training procedure in an ablation study

(Sec. 4.4.4).

4.4.1 Datasets

We evaluate on two different datasets. Firstly, we test on the NYU hand

pose dataset (Tompson et al., 2014), which, to the best of our knowledge,

is the only public dataset providing multiple views for the training and test

set. For a broader empirical analysis of our method we additionally provide

a novel multi-view dataset6.

NYU hand pose dataset The NYU dataset provides a training set with

72,757 frames from a single actor and a test set with 8,252 frames from

two actors. It was captured with structured light based RGBD cameras.

The additional cameras captured the scene from side views. Originally, the

additional cameras were employed to mitigate issues with self-occlusions

during annotation; for our evaluation the additional camera views enable us

to compare our method on a standard dataset. Unfortunately, the side view

camera locations were changed several times during training set acquisition

and no camera pose information is provided. Therefore, we searched for

a part of the training set with approximately similar camera setup and

found 43,641 frames (∼60% of the original training set), which we used as

a training set for our experiments. For validation and testing, we use the

full sets from the original dataset. We denote the reduced training set with

consistent setup by NYU-CS.

Multi-view hand pose dataset We captured the dataset for typical user

interaction scenarios in front of a large screen with a Time-of-Flight (ToF)

4http://pytorch.org
5Project webpage with code, data and additional material can be found at

https://poier.github.io/PreView
6See footnote 5

http://pytorch.org
https://poier.github.io/PreView
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camera mounted at each of the two top corners of the screen. We captured

the two cameras synchronously and captured poses needed for typical ges-

tures like swiping, pointing or waving. While the set of poses is restricted,

we aimed to capture each pose in all meaningful hand orientations and

ended up with 63,701 frames from 14 different actors. Since the goal of our

novel dataset is to investigate semi-supervised learning where only a small

fraction of the available samples is labeled, we only labeled a representative

subset from a few actors. To this we employed the method in (Oberweger

et al., 2016), which tries to find a subset of frames covering the pose space

well. Overall 526 frames from 7 out of the 14 actors were manually anno-

tated. We split the labeled data in 289 frames for training and validation

(189/100) and 237 for testing. We denote the resulting multi-view hand

pose dataset MV-hands.

4.4.2 Metrics

For the evaluation, we employ three commonly used metrics: the mean

joint error (ME) as well as the joint- and frame-based success rate (JS/FS).

The ME denotes the average distance between the estimated and ground

truth joint positions in millimeter (mm). The JS is the fraction of joints

which were estimated within a certain distance to the ground truth joint

position. The FS is stricter and gives the fraction of frames for which all

joints have been estimated within a certain distance to the ground truth

position (Taylor et al., 2012).

For hand pose estimation, researchers often employ curves of the success

rates over different distance thresholds. To express these curves with a single

number, we compute the area under the curve (AUC) up to a specified

threshold. We denote the AUC of the JS and FS up to a distance threshold

of 80 mm by JS80, and FS80, respectively.

4.4.3 Representations learned from unlabeled data

In the following, we perform several experiments to investigate the effec-

tiveness of representations learned from unlabeled data.

Linear mapping to joint positions

To quantitatively analyze the predictability of the pose given the learned

latent representations, we follow the standard procedure for testing repre-

sentations learned in an un-/self-supervised manner (Coates et al., 2011;

Dosovitskiy et al., 2014; Noroozi et al., 2017; Zhang et al., 2016): We train

the network using the respective pre-training method, i.e., without pose
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Table 4.1: Results for representations learned from unlabeled data. Mean
joint error and standard deviation on the NYU-CS dataset for different pre-training
methods and numbers of labeled samples, n.

n Autoencoder PreView (Ours)

100 48.0± 0.76 33.4± 1.18 −30.4%
1,000 47.2± 0.29 29.6± 0.32 −37.3%
10,000 47.3± 0.08 29.0± 0.14 −38.7%
43,640 47.1± 0.08 29.0± 0.09 −38.4%

annotations, freeze all layers up to the latent pose representation and train

a linear mapping from the latent representation to the target joint positions

using annotated samples.

The results on the NYU-CS dataset are shown in Table 4.1. We compare

our method to pre-training using an autoencoder because of its close rela-

tion. In particular, the autoencoder’s target is the input view, whereas our

method aims to predict a different view. For a fair comparison, we use the

same architecture, i.e., the same number of parameters and training algo-

rithm for the autoencoder and the proposed method for predicting different

views (PreView).

Here, we also investigate how the respective methods behave when the

number of labeled samples, n, is smaller than the number of unlabeled

samples, i.e., only a subset of labeled samples is provided. In this case, we

use a random subset of the data, which is the same for each method. For

the case where the training set is small, the size of the validation set will

– for a realistic scenario – be similarly small. To account for this, we also

subsample the validation data. We fix the size of the validation set, |V|, as a

fraction of the size of the sub-sampled training set, |L|. That is, we sample

at most |V| ≤ 0.3 |L| samples from the original validation set. We repeat

this experiment 10 times with different random samples to investigate the

effect of the sampling and report the average and standard deviation of the

results in Table 4.1.

The results show that pre-training for view prediction yields a latent

representation which is significantly more predictive for the pose than pre-

training using an autoencoder. The improvement is consistent – indepen-

dent of the ratio between labeled and unlabeled samples – and ranges be-

tween 30 and 40 percent.

On the other hand, qualitative inspection shows that the autoencoder

yields cleaner reconstructions of the inputs, compared to the predictions of

the second view of our method. In Figure 4.3 we compare output images
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of input reconstruction (autoencoder) and view prediction (PreView). Fig-

ure 4.4 shows more view prediction examples on the MV-hands dataset. We

can observe that the reconstructions of the input are cleaner (e.g . for the

fingers) than the predictions for different views. Obviously, reconstructing

the input is an easier task than predicting a different view.

However, input reconstruction can be performed without knowledge

about the pose, as the results in Table 4.1 indicate. Predicting different

views, on the other hand, is a harder task but reveals pose information.

These results suggest that our latent representation is predictive for the

different view as well as the pose.

We believe that the reason for this large improvement in pose predictabil-

ity is that our model is enforced to not just capture pixel statistics as can

be sufficient to reconstruct the input (Hotelling, 1933; Kirby and Sirovich,

1990; Pearson, 1901). Enforcing the model to predict a different viewpoint

requires the model to actually represent the pose. More specifically, our

model needs to learn how the appearance affects the pose and thus the

appearance in the other view.

Additional pre-training baseline A reviewer of the work (Poier et al.,

2018) in which we first published the method described in this chapter,

demanded Context Encoders (Pathak et al., 2016) as a more recent pre-

training baseline. We briefly discuss this here. Context Encoders are an

example of a strand of works on self-supervised learning, which split the

input into parts and have the model learn about the relations between the

parts (Doersch et al., 2015; Noroozi et al., 2017; Zhang et al., 2017). In

particular, Context Encoders are trained to do inpainting. That is, large

random contiguous parts of the input image are removed for training and

the model should learn to inpaint the missing regions based on the context.

The idea is that the model needs to learn to recognize the objects in the

context in order to accomplish this task.

In Table 4.2 we compare the latent representations – pre-trained by dif-

ferent methods – based on their predictability for the pose (c.f . Table 4.1).

The results show that the representations pre-trained using Context En-

coders (Pathak et al., 2016) are even less predictive for the pose than the

representations learned by autoencoders.

One issue of the Context Encoder baseline is the domain gap between

training and testing as has been discussed in (Zhang et al., 2017) and Chap-

ter 2.3. That is, at training time parts of the input are missing, while the

model is applied to full images at test time. Moreover, we believe that the

main idea of Context Encoders does not really apply to pose estimation of

articulated objects, where one part of the object does not necessarily contain
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(a) Input view (b) Input reconstruction

(c) Different view (d) Prediction for different view

Figure 4.3: Input reconstruction vs. different view prediction. Examples
for generated views from the NYU validation set. Input view (a), reconstructions
generated by the autoencoder (b), images from a different view (c), and the cor-
responding predictions from our method (d). Images from (a)-(d) with same grid
index are corresponding. Visually, the autoencoder’s input reconstructions resem-
ble the input more closely than the predictions of our method match the different
view. However, the latent representation learned by our method is much more
predictive for the pose (c.f ., Table 4.1).

pose information for other parts. Hence, the learned latent representation

contains little pose related information.

Size of the latent representation

We expect the size of the latent representation to be an important constraint

for the specificity of the learned pose representation (c.f . (Oberweger et al.,
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(a) Different view (b) Prediction for different view

Figure 4.4: View prediction examples on MV-hands data. Target view (a),
i.e., ground truth images of the different view and the corresponding predictions
from our method (b). Images with same grid index are corresponding.

Table 4.2: Comparison of different pre-training methods on the NYU-
CS dataset. Mean joint error for learning a linear layer on top of the frozen
latent representation with different numbers of labeled samples n. Best results in
boldface.

Number of samples 100 1,000 10,000 43,640

Context Encoders (Pathak et al., 2016) 53.4 53.4 53.3 53.8
Autoencoder 48.0 47.2 47.3 47.1
PreView (Ours) 33.4 29.6 29.0 29.0

2015a; Tekin et al., 2016)). Hence, we investigate how the size of the rep-

resentation affects the results, i.e., the predictability of the pose. For this

hyperparameter evaluation we employ the NYU validation set. We com-

pare the results for representations of size dT ∈ {10, 20, 30, 40, 50, 80} in

Figure 4.5. It shows that the mean joint error is reduced by a large mar-

gin when increasing dT from 20 to 30, but the improvement diminishes if

dT ∼ 40. It seems that, when trained in the proposed way, a size of 20 and

below is too small to capture the pose and shape parameters reasonably

well. However, if the size of the representation is increased above 50 the

predictability of the pose is not improved anymore. This is interesting, since

the size of the parameter space, which was identified by works on hand mod-

eling (Albrecht et al., 2003; Lin et al., 2000) is usually very similar. The

size identified in these works is indeed slightly smaller when representing

the pose alone. Reasons for this might include that in our case the learned
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Figure 4.5: Pose predictability. How the size of the latent representation, dT ,
affects the predictability of the pose (from pre-trained, frozen representations).
Results on the NYU validation set.

latent representation also needs to capture the size and shape of the hand

or that the linear mapping to the joint positions based on which we perform

this evaluation is learned independently from the latent representation and

is thus unable to map to the joint positions for a very low dimensional latent

representation.

Neuron activations

In another experiment we aim to qualitatively investigate what each neuron

in the latent space has learned. To do this we search for the samples from the

validation set, which activate a single neuron most. Figure 4.6 shows these

samples for each neuron. We find that many of the neurons are activated

most for very specific poses. That is, the samples, which activate a neuron

most, clearly show similar poses.

Nearest neighbors

To obtain further insights into the learned representation, we visualize near-

est neighbors in the latent representation space. More specifically, given a

query image from the validation set, we find the closest samples from the

training set according to the Euclidean distance in the latent representation

space. Figure 4.7b visualizes some randomly sampled query images (i.e., no

“cherry picking“) and their corresponding nearest neighbors. We see that
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Figure 4.6: Most activating samples. Each row on the left and right side shows
the ten samples from the validation set, which activate one neuron in the learned
latent representation most. Note, that we randomly perturbed detections to verify
the robustness of our method. Hence, sometimes parts of the hand are cut off in
the crops.
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(a) Autoencoder

(b) PreView (Ours)

Figure 4.7: Nearest neighbors in latent space. Comparison of nearest neigh-
bors in the latent representation space for representations learned using an au-
toencoder (a) and our method (b). Query images (same queries shown for both
methods) – randomly sampled from the validation set – are shown in the marked,
leftmost column of (a) and (b), the remaining columns are the respective nearest
neighbors.

the nearest neighbors most often exhibit a very similar pose as the query

image, even if the detection (i.e., hand crop) is not always accurate. This

is in contrast to the nearest neighbors in the latent representation learned

using autoencoders, which often show a completely different pose (see Fig-

ure 4.7a).

Similarly in Figure 4.8, we show nearest neighbors for the MV-hands

dataset. Again, the nearest neighbors in the latent space exhibit very similar

poses.
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Figure 4.8: Nearest neighbors in latent space. Nearest neighbors from training
set of the MV-hands dataset for query samples from validation set. Query images
are shown in the marked, leftmost column, the remaining eight columns are the
respective nearest neighbors.

4.4.4 Semi-supervised training

In a final set of experiments we test the proposed method for jointly leverag-

ing labeled and unlabeled data (c.f . Sec. 4.3.1) during end-to-end training.

Similar to the previous setup, we consider the case where the number of

labeled samples is smaller or equal than the number of unlabeled samples,

and evaluate different ratios. For a small number of labeled samples we

obtained the best results by sampling the mini-batches such that there is an

equal amount of labeled and unlabeled samples in each batch (c.f ., (Zhou

et al., 2017b)).

Comparison to the state-of-the-art

To evaluate the competitiveness of the employed architecture, we compare

against the state-of-the-art in data-driven hand pose estimation. Since the

NYU-CS set contains about 60% of the original training set, we need to

re-train the state-of-the-art approaches on the same subset for a fair com-

parison. We compare to Crossing Nets (Wan et al., 2017), DeepPrior (Ober-
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weger et al., 2015a) and DeepPrior++ (Oberweger and Lepetit, 2017). We

selected DeepPrior, since its results are still in the range of the state-of-

the-art for the NYU dataset (as shown in a recent independent evalua-

tion (Yuan et al., 2017)), the PCA based ”prior“ makes the approach suffer

less from a reduced training set, and finally, it has about the same number

of model parameters as our model. The improved variant DeepPrior++,

on the other hand, has very recently been shown to be top-performing on

different datasets (Oberweger and Lepetit, 2017).

To train the state-of-the-art approaches, we use the publicly available

source code provided by the authors. Note, Wan et al. (2017) used different

models for the experiments on the NYU dataset than the ones used in their

publicly available code. For a fair comparison we use the same (metric) crop

size when cropping the hand for the entire training and test set, and fix the

training and validation subsets to the same subsets as for the evaluation of

our method.

The results in Table 4.3 and 4.4 show that – by leveraging unlabeled

data – our method consistently improves the performance, independent of

the number of labeled samples, and improves the state-of-the-art approaches

by a large margin for a small number of labeled samples. Note that the NYU

dataset does not provide additional unlabeled samples, i.e., when all labeled

samples are used, our method can not draw from any additional information.

Ablation experiments

Finally, we focus the quantitative evaluation on the main contribution of

this chapter. We exclude disturbing factors like the model architecture or

the training procedure by training a baseline for which we keep everything

the same except that we do not exploit unlabeled data and only train with

labeled data.

In Table 4.4 we compare the results on the MV-hands dataset. We see

that our semi-supervised training improves the results of supervised training

for all metrics. Figure 4.9 compares the results on the NYU-CS dataset,

where our method (Semi-superv.) also improves results for a high number

of labeled samples. We also compare to the variant with the additional

adversarial term (Semi-superv. & Adversarial ; c.f ., Eq. (4.9)). We see that

the additional adversarial term and corresponding training procedure can

improve the results slightly for larger numbers of labeled samples n, but

not in cases where only a small number of samples is labeled. Moreover,

note that we obtained the presented results for the adversarial training

by tuning hyperparameters separately for different n and taking the best

results. We found that, for different n, different conditioning types and
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Table 4.3: Comparison to the state-of-the-art. Results on the NYU-CS
dataset for different metrics and different numbers of labeled samples n. For the
mean joint error (ME) smaller values are better, while for the success rates (FS80
and JS80) higher values are better. Best results in boldface.

(a) n = 100

ME FS80 JS80

DeepPrior (Oberweger et al., 2015a) 44.99 0.11 0.45
Crossing Nets (Wan et al., 2017) 67.65 0.00 0.25
DeepPrior++ (Oberweger and Lepetit, 2017) 38.07 0.14 0.53

Semi-superv. Autoenc. 31.58 0.27 0.60
Semi-superv. PreView (Ours) 29.12 0.31 0.63
Semi-superv. & Adversarial (Ours) 29.52 0.32 0.63

(b) n=1,000

ME FS80 JS80

DeepPrior (Oberweger et al., 2015a) 36.99 0.20 0.55
Crossing Nets (Wan et al., 2017) 36.35 0.16 0.55
DeepPrior++ (Oberweger and Lepetit, 2017) 31.01 0.23 0.61

Semi-superv. Autoenc. 24.05 0.41 0.70
Semi-superv. PreView (Ours) 22.96 0.44 0.71
Semi-superv. & Adversarial (Ours) 23.32 0.41 0.70

(c) n=10,000

ME FS80 JS80

DeepPrior (Oberweger et al., 2015a) 30.31 0.31 0.63
Crossing Nets (Wan et al., 2017) 28.97 0.29 0.64
DeepPrior++ (Oberweger and Lepetit, 2017) 24.14 0.37 0.69

Semi-superv. Autoenc. 21.32 0.47 0.73
Semi-superv. PreView (Ours) 21.49 0.47 0.73
Semi-superv. & Adversarial (Ours) 20.67 0.48 0.74

(d) n=43,640

ME FS80 JS80

DeepPrior (Oberweger et al., 2015a) 27.97 0.35 0.66
Crossing Nets (Wan et al., 2017) 25.57 0.34 0.68
DeepPrior++ (Oberweger and Lepetit, 2017) 20.87 0.44 0.73

Semi-superv. Autoenc. 20.74 0.49 0.74
Semi-superv. PreView (Ours) 20.70 0.48 0.74
Semi-superv. & Adversarial (Ours) 20.23 0.49 0.74
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Table 4.4: Comparison to the state-of-the-art and ablation experiments.
Results for different metrics on the MV-hands dataset.

n 289

Metric (see Sec. 4.4.2) ME FS80 JS80

DeepPrior++ (Oberweger and Lepetit, 2017) 34.17 0.22 0.57

Supervised 26.35 0.36 0.67
Semi-superv. Autoencoder 25.20 0.38 0.68
Semi-superv. PreView (Ours) 24.14 0.39 0.69

settings for λa worked best. While for a small number of labeled samples,

n = 100, conditioning the discriminator solely on the input and a small

weight for the adversarial term (λa = 0.01) yielded best results, for larger

n, conditioning on the pose and a larger weight λa = 0.1 had a positive

impact on the results.

The results point out that training our method with an additional adver-

sarial loss term bears potential to improve results. However, it appears that

a sufficient amount of labeled samples is necessary so that the discriminator

can exploit the pose conditioning and provide improved feedback for training

the decoder. Additionally, it requires significant tuning to achieve improved

performance. The semi-supervised training without the adversarial term, on

the other hand, does not require similar extensive hyperparameter tuning.

Overall, semi-supervised training consistently outperforms supervised

training, even if all samples are labeled. For the more realistic case, where

only a subset of the data is labeled, our method improves the performance

of the fully supervised approach by a large margin. In fact, our method

achieves similar or improved results even when it is trained with one to two

orders of magnitude less labeled samples.

4.5 Conclusion

Learning from unlabeled data has long been recognized as an important

direction for machine learning and is especially desirable for tasks with high

labeling effort, such as estimation of articulated poses. However, tradition-

ally the representations learned from unlabeled data are most often generic.

While in this way the representations are amenable for transfer learning to

novel tasks, concrete applications benefit from task specific representations.

In this chapter, we showed a way how to learn task specific representa-

tions for pose estimation without labels and that such task specific repre-
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Figure 4.9: Ablation experiments. Comparison of purely supervised train-
ing (Supervised), with the proposed method which can exploit unlabeled samples
(Semi-superv.) and the variant trained with the additional adversarial term (Semi-
superv. & Adversarial) for different numbers of labeled samples n on the NYU-CS
dataset.

sentation are beneficial compared to more generic ones. Additionally, the

proposed method can be trained end-to-end in a semi-supervised manner.

Our method consistently surpasses the performance of standard supervised

training, even when all available training samples are labeled. Moreover,

the results of supervised training are already improved with one order of

magnitude less labeled training samples.

While a pose specific latent representation can be learned without re-

quiring labeled data, in order to output a manually defined target represen-

tation (e.g ., joint positions), labeled data is still required. That is, labeled

data is needed to learn the final mapping to the target space. Moreover,

we see that this final mapping still yields better accuracy, the more labeled

samples we provide.

Synthetic data opens up a way to provide labeled data without causing

a significantly increased manual effort. Nevertheless, the exploitation of

synthetic data is hampered by the domain gap between synthetic and real

data. Building upon the method introduced in this chapter, in the next

chapter we introduce a way to exploit synthetic data together with unlabeled

data in order to mitigate the domain gap. We can thus learn the mapping to

the target space from mainly synthetic data and ultimately a strong overall

model from a very low number of labeled real samples.
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Recent methods aiming to reduce the labeling effort for learning pose

estimation models often employ synthetic data or semi-supervised learn-

ing (Neverova et al., 2017; Wan et al., 2017), which, both, have their spe-

cific drawbacks. Approaches, employing synthetic data have to deal with

the domain gap, which has been recently approached for hand pose estima-

tion by learning a mapping between the feature spaces of real and synthetic

data (Rad et al., 2018b). Unfortunately, learning this mapping requires a

large amount of labeled real data and corresponding synthetic data. On the

other hand, semi-supervised approaches can better exploit a small amount

of labeled data, however, the results are often still not competitive.

We aim to overcome these issues by exploiting accurately labeled syn-

thetic data together with unlabeled real data in a specifically devised semi-

supervised approach. We employ a large amount of synthetic data to learn

an accurate pose predictor, and, inspired by recent work (Massa et al., 2016;

Rad et al., 2018b), learn to map the features of real data to those of syn-

thetic data to overcome the domain gap. However, in contrast to previous

work, we learn this mapping mainly from unlabeled data.

91
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We train the mapping from the features of real to those of synthetic

data using two auxiliary objectives based on unlabeled data. One objective

enforces the mapped features to be pose specific, and the other one enforces

the feature distributions of real and synthetic data to be aligned.

For the first of the two auxiliary objectives, which is responsible for

enforcing a pose specific representation, we build upon the idea described in

Chapter 4. Therein we showed that by learning to predict a different view

from the latent representation, the latent representations of similar poses

are pushed close together. That is, the only necessary supervision to learn

such a pose specific representation can be obtained by simply capturing the

scene simultaneously from different view points. In this chapter we employ

the same idea to enforce the joint latent representation of real and synthetic

data (i.e., after mapping) to be pose specific by enforcing the representation

to be predictive for the appearance in another view.

The second objective is to align the feature distributions of real and

synthetic data. The underlying idea of learning a mapping from the fea-

tures of real samples to the features of synthetic samples is that the labeled

synthetic data can be better exploited if real and synthetic samples with

similar poses are close together in the latent space. Simply ensuring that

the latent representation is pose specific does, however, not guarantee that

the features of real and synthetic data are close together in the latent space:

Similar poses could form clusters for real and synthetic data, individually.

To avoid this, we employ an adversarial loss, which acts on the latent space

and penalizes a mismatch of the feature distributions.

By simultaneously ensuring that similar poses are close together and

feature distributions are aligned, we show that we are able to train state-of-

the-art pose predictors – already with small amounts of labeled real data.

More specifically, employing about 1% of the labeled real samples from

the NYU dataset (Tompson et al., 2014) our method outperforms many

recent state-of-the-art approaches, which use all labeled real samples. Fur-

thermore, besides quantitative experiments, we perform qualitative analysis

showing that the latent representations of real and synthetic samples are well

aligned when using mainly unlabeled real data. Moreover, in our extensive

ablation study we find that, both, enforcing pose specificity as well as align-

ing the distributions of real and synthetic samples benefits performance (see

Sec. 5.3.3).

5.1 Related work

As discussed in this thesis, recent works on hand pose estimation heavily

rely on data-driven approaches – either as a stand-alone approach (Keskin
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et al., 2012; Madadi et al., 2017; Tang et al., 2014), or to guide a model-

based approach (Panteleris et al., 2018; Sharp et al., 2015; Ye et al., 2016).

The effectiveness of such a data-driven approach crucially depends on how

well the dataset it is trained on covers the pose space.

Training data and annotation Given the crucial role of annotated

training data for state-of-the-art approaches to hand pose estimation, a lot

of effort has been devoted to the creation of training data sets. Many semi-

or fully-automatic approaches have been employed to label real data (Sun

et al., 2015; Tompson et al., 2014; Yuan et al., 2017). Still, these are of-

ten difficult to set up, require a significant amount of manual interaction,

and/or great care has to be taken to avoid that attached sensors affect the

data too strongly. All these efforts point out that the development of meth-

ods which reduce the dependence on labeled real data would foster quicker

deployment and make such systems more accessible.

Synthetic data One way to lessen the effort for labeling real data is

to employ synthetic data. Synthetic data has the advantage that it has

perfectly accurate labels and a virtually infinite number of samples can be

generated. However, the data generating distribution usually differs between

the synthetic training data and the real test data. Hence, models trained

only on synthetic data suffer from the so-called domain gap and usually

perform significantly worse than models trained on real data (Abdi et al.,

2018; Rad et al., 2018b).

Unlabeled data and domain adaptation Besides synthetic data, un-

labeled real data can be used to lessen the labeling effort as we have shown

in the previous chapter (Chapter 4). In Chapter 4 we only employ real data

and, hence, do not have to deal with a domain gap. However, for a small

number of labeled and a large number of unlabeled data this approach alone

will usually not be competitive due to the reduced pose supervision.

Other works try to boost performance by combining labeled synthetic

and unlabeled real data (Abdi et al., 2018; Mueller et al., 2018; Shrivastava

et al., 2017; Tang et al., 2013). To mitigate the domain gap between these

two distributions they most often use a framework based on Generative

Adversarial Networks (GANs) (Goodfellow et al., 2014). For instance in (Liu

and Mian, 2017; Mueller et al., 2018; Shrivastava et al., 2017) a model is

learned to transform synthetic images to corresponding real images, which

can then be used for training using the accurate labels from the initial

synthetic data. Our method is orthogonal. We show how synthetic and
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unlabeled real data can be used to learn a pose specific latent representation,

which can directly be used during inference.

Our method is closely related to approaches that aim to overcome the

domain gap by learning a shared latent space for different modalities. For

instance in (Spurr et al., 2018; Wan et al., 2017) a shared latent space is

learned for images and poses. Similarly, Rad et al. (2018b) incorporate syn-

thetic data by learning to map the features of real samples to the features of

synthetic samples. Abdi et al. (2018) take the idea of a shared latent space

further and incorporate poses, synthetic samples as well as labeled and unla-

beled real samples. Similar to Wan et al. (2017) they combine a Variational

Autoencoder (VAE) (Kingma and Welling, 2014) with a GAN and exploit

unlabeled samples during training the GAN, which in turn improves the

overall system. In contrast to their work, in our method the adversarial term

does not operate on the images but directly on the much lower dimensional

latent space, for which it should be easier to train a discriminator-generator

pair of lower complexity. Moreover, we enforce pose specific constraints on

the latent representation of both, labeled and unlabeled data, which yields

a significant performance gain. For a more general discussion on transfer

learning and domain adaptation see Chapter 2.4.

5.2 Mapping unlabeled real to synthetic data

Our method builds on the basic observation that for hand pose estimation

from depth images it is easy to obtain labeled synthetic data and unlabeled

real data. First, a large number of synthetic data is used to train a very

strong pose predictor. To make this strong predictor amenable for real data,

we learn to map real data to synthetic data. Crucially, our goal is to learn

this mapping between real and synthetic data with as little ground truth

supervision as possible. Instead, we learn the mapping by mainly relying

on unlabeled data.

To properly exploit unlabeled together with synthetic data, we propose

two auxiliary loss functions. The first one uses a self-supervised term, which

enforces the joint latent representation of synthetic and real data to be pose

specific without the need for pose labels by ensuring that the representa-

tion is predictive for the hands’ appearance in another view. The second

loss is an adversarial loss which ensures that the feature distributions for

real and synthetic data are aligned. That is, we simultaneously ensure that

the distributions are matched and the representation is pose specific. Ulti-

mately, the training loss joins the target loss, `p, with an loss for matching

corresponding real and synthetic samples `c for labeled data and the two
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latent representation neural network layer shared weights

synthetic

real/synthetic

pose

Figure 5.1: Sketch of the architecture. We train our system jointly with real and
synthetic samples. From the joint latent representation z, we predict the pose as
well as two auxiliary outputs from which we also obtain feedback for unlabeled data.
The auxiliary objectives are (i) to predict a different view and (ii) to discriminate
between real and synthetic data. The training using unlabeled data ensures aligned
latent feature distributions and thus, improved exploitation of synthetic data even
with a small amount of labeled real samples. During test time only the pose is
predicted (blue path). Note that the layers per module are just for illustration and
do not represent the actual number of layers.

auxiliary losses `g and `m, which also base on unlabeled data:

` = `p + λc`c + λg`g + λm`m, (5.1)

where `g is the loss of the self-supervised term, `m is the adversarial loss to

match the feature distributions, and λc, λg and λm are respective weighting

terms. Figure 5.1 depicts the overall architecture of our method, giving rise

to the individual loss terms. In the following we describe all terms in detail.

5.2.1 Predicting the pose

For the description of our method we assume the learned model employed

for pose prediction to be based upon two separate functions. A function

f , which transforms the input to some latent space and a second function

p, which maps from the latent space to the desired target space. That is,

given an input image x, the function f will produce a latent representation,

z = f(x). (5.2)
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The function p, on the other hand, maps a given latent representation z to

a pose representation,

ŷ = p(z), (5.3)

where the target space can be any pose representation (e.g ., joint positions).

Hence – successively applied – these two functions map the input image to

a pose representation:

ŷ = p(f(x)). (5.4)

In our work we implemented these two functions as neural networks.

Similar to other works (Rad et al., 2018b; Wan et al., 2017), we train the

networks to directly output 3D joint positions. For comparability to base-

lines we employ the mean squared error to learn the network parameters.

That is, the target loss is simply the squared L2-norm:

`p =
∑
k

‖yk − ŷk‖22 , (5.5)

where yk is the ground truth and ŷk is the prediction for the k-th sample.

5.2.2 Mapping real to synthetic data

To train a neural network for hand pose estimation we can generate a virtu-

ally infinite amount of synthetic data. The model trained solely on synthetic

data will, however, not work similarly well on real images (e.g . c.f ., quan-

titative results in Sec. 5.3.3). To see why this happens we visualize the

feature distribution of real and synthetic data from a model trained solely

with synthetic data in Figure 5.2. The visualization indicates that the fea-

tures of corresponding real and synthetic samples take up different areas

in the feature space, i.e., they are not aligned. And hence it will not be

straightforward for a model trained only with synthetic data to make the

same prediction for a synthetic sample and a real sample with the same

pose, as the features of real samples are often not close to their accurately

corresponding synthetic samples.

To overcome this problem, we take inspiration from recent works (Massa

et al., 2016; Rad et al., 2018b), which learn to map the features of real images

to the features of synthetic images. In this way, a large amount of synthetic

images can be exploited to train a strong pose prediction model, which then

– after mapping the features – also yields improved performance on real

images.
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Figure 5.2: Visualization of latent representations. t-SNE visualiza-
tion (van der Maaten and Hinton, 2008) of the latent representations for corre-
sponding real (green; 6) and synthetic (orange; :) validation samples when the
model was trained only using synthetic data. While real and synthetic samples
are corresponding, i.e., they exhibit the same poses, they are not aligned in the
feature space. For a similar visualization for a model trained with our system c.f .
Figure 5.9.

More specifically, a function m is trained to map from the features z′ of

a real image to the feature space of synthetic images:

ẑ = m(z′), (5.6)

where ẑ denotes the latent representation of a real image in the feature space

of synthetic images. Hence, employing the whole model to predict the pose

of the hand in a real image, xr, we successively apply functions f to extract

features, m to map the features and, finally, p to predict the pose:

ŷ = p(m(f(xr))). (5.7)

To learn the mapping function m, Massa et al. (2016) and Rad et al.

(2018b) require a one-to-one correspondence between real and synthetic

data. The mapping is then trained to minimize the distance between the

mapped feature representation ẑ of a real image and the feature representa-
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tion z of the corresponding synthetic image. For the available corresponding

real and synthetic samples we follow this approach and aim to minimize the

squared L2-norm of the distance between corresponding feature representa-

tions. That is,

`c =
∑
k∈C
‖zk − ẑk‖22 , (5.8)

where C denotes the set of available corresponding real and synthetic sam-

ples. Employing the squared L2-norm assumes rather accurately corre-

sponding real and synthetic samples. Such corresponding samples are avail-

able for our evaluation datasets but can be a large effort to provide in

general. This is because finding a synthetic image, which accurately corre-

sponds to a given real image in terms of the pose is indeed equivalent to

labeling the pose of the real image. While the choice of the norm depends

on the accuracy and reliability of the correspondences, independent of the

choice of the norm, a large number of corresponding samples is required to

learn the mapping between the feature distributions. Hence, relying solely

on this approach would still require to have a significant amount of labeled

real images. In this chapter we introduce ways to overcome this require-

ment and reduce the number of necessary corresponding real and synthetic

images. We describe them in the following.

5.2.3 Learning to map from unlabeled data

We aim to train the mapping (Eq. (5.6)) without requiring a large amount

of labeled real samples. To do this we add two auxiliary loss functions

exploiting unlabeled data to train the mapping. One of them enforces the

mapped representation to resemble the pose, for both, real and synthetic

data. At the same time, a second loss ensures that the model does not push

the features of real and synthetic images apart, i.e., ensure that the feature

distributions are aligned. Together, these two auxiliary loss functions enable

us to effectively train the mapping from mainly unlabeled samples.

5.2.3.1 Learning pose specifity from unlabeled data

We want to map representations of images showing a similar pose close

together. Since we do not have labels we cannot enforce this directly. In

the previous chapter, however, we introduced a way to enforce this indirectly

– solely based on unlabeled data. Here we build upon this idea. We train

a decoder, which is given the latent representation and trained to predict a

second view of the hand. Recall that the idea is that, if the decoder is able

to predict another view of the hand solely from the latent representation,

the latent representation must contain pose specific information.
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That is, we train a decoder g, which – given a pose specific feature

representation z – is able to predict the hands’ appearance x(j) from a

different view j, i.e.,

x̂(j) = g(z(i)), (5.9)

where z(i) denotes the feature representation produced for an input from

view i.

To train such a generator function g we do not need any labels, we

only need to capture the hand simultaneously from a different viewpoint

or render the hand model from a different virtual view for synthetic sam-

ples, respectively. That is, the objective for the generator – given only the

latent representation – is to predict the appearance of the hand as cap-

tured/rendered from the second view. Hence, to train g we employ the

same reconstruction loss as described in the previous chapter:

`g =
∑
k

∥∥∥x(j)
k − x̂

(j)
k

∥∥∥
1
, (5.10)

where x
(j)
k is the captured/rendered image and x̂

(j)
k is the model prediction

for the k-th image from view j.

In the previous chapter we showed that only using the view prediction

objective, the latent representation can be enforced to be pose specific with-

out the need for any pose labels. Nevertheless, for our case we do not have

corresponding real and synthetic data. That is, given a synthetic sample

the target for the generator g is a synthetic sample and, equivalently, for a

real sample the target for the generator is a real sample. In this way the

generator g – besides trying to generate the correct appearance correspond-

ing to the pose of the sample – might also try to discriminate between real

and synthetic samples in order to accurately predict the appearance. This

would clearly counteract the goal of learning a shared latent space, where

real and synthetic samples with similar poses are close together. In the next

section we show how we overcome this issue.

5.2.3.2 Matching feature distributions from unlabeled data

Enforcing the latent representation z to be specific for the pose does not

ensure that real and synthetic samples with similar poses are mapped to

similar latent representations. Indeed, real and synthetic samples could be

pushed into different areas of the feature space by the non-linear functions

f and m, respectively. Such a separation in the feature space would clearly

hamper the exploitation of synthetic data for training a pose predictor for

real data.
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To avoid a scenario where the latent representations of real and syn-

thetic samples are pose specific but still separated in the feature space, we

need a way to ensure that similar poses are mapped to similar latent rep-

resentations, independently of whether the samples are real or synthetic.

Without having corresponding real and synthetic samples, this is difficult

to ensure on the level of individual samples. However, as long as we can as-

sume that the distribution of poses is similar for real and synthetic data, we

can enforce that also the feature distributions match. By ensuring that the

feature distributions match, and at the same time ensuring that the features

are pose specific, similar poses should yield similar pose representations for,

both, real and synthetic samples, which was the initial goal.

Here, we enforce the feature distributions of real and synthetic data to

match by employing an adversarial training loss (Goodfellow et al., 2014).

The adversarial loss operates on the latent representations, i.e., we use a

discriminator, which is trained to discern real and synthetic samples given

the latent representation. The mapping function m, on the other hand,

should make the latent representation of real samples as similar as possible

to the latent representation of synthetic samples and, hence, indiscernible

for the discriminator.

For the implementation we follow the formulation of Least Squares

GAN (Mao et al., 2017), which has shown to work well for adversarial train-

ing. In this formulation the discriminator function h predicts a real-valued

label:

l̂ = h(z), l̂ ∈ R, (5.11)

which should be lr = 1 for real and ls = 0 for synthetic samples, respectively.

Consequently, the loss for the discriminator penalizes deviations from these

target values for predictions on respective samples:

`h =
1

2

∑
k∈R

(
l̂k − lr

)2
+

1

2

∑
k∈S

(
l̂k − ls

)2
, (5.12)

where R is the set of real, and S the set of synthetic samples, respectively.

The loss for the mapping function m, on the other hand, enforces real

samples to be indiscernible from synthetic samples for the discriminator:

`m =
1

2

∑
k∈R

(
l̂k − ls

)2
. (5.13)

We choose the least squares objective here as it overcomes problems with

vanishing gradients compared to the original GAN formulation (Goodfellow

et al., 2014). The original formulation minimizes the Jensen-Shannon di-
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vergence and hence employs a classification loss. Using a classification loss,

the gradients for the mapping function may vanish during training when

real samples are classified as synthetic by the discriminator (which would

be the goal for the mapping function) but the real samples are still out of

the distribution of the actual synthetic samples (Arjovsky et al., 2017; Mao

et al., 2017). While, in such a case, the mapping function would not receive

a significant update with a classification loss, the least squares objective

provides usable gradients everywhere. This appears especially interesting

for our task since we are not targeting a classification but a regression task.

Our analysis in Sec. 5.3.5 shows that using the adversarial training the

latent representations of real and synthetic samples can be well aligned from

mainly unlabeled samples. More importantly, we find that in this way the

pose estimation results are improved.

5.3 Experiments

To verify the applicability of our method we compare the results to re-

cent semi-supervised and fully supervised state-of-the-art methods. Fur-

thermore, we investigate the contribution of the individual parts of our

method in an ablation study, inspect the learned latent representation to

obtain more insights in how it is affected by our contributions and analyze

failure cases of our method.

5.3.1 Experimental setup

Here we describe the details of the experimental setup employed to evaluate

the system introduced in this chapter. Additionally, we make the imple-

mentation of our method publicly available1.

As in many recent works we crop a square region around the hand lo-

cation, resize it to a 128× 128 patch and normalize the depth values to the

range [−1, 1] (Abdi et al., 2018; Oberweger and Lepetit, 2017; Rad et al.,

2018b). These patches are fed into the network. The batch size for training

is 64. We pre-train f and p with synthetic data for about 170k iterations

and subsequently train the whole model (Eq. (5.1)) jointly with real and

synthetic data for about 140k iterations.

Architecture In principle, our contribution is agnostic to the network

architecture. To verify our method we adopt architectures from recent work

for the individual modules (f , m, g, h and p; c.f . Figure 5.1) of our system.

The feature extractor f is similar to the model used in (Oberweger and

1https://poier.github.io/murauer

https://poier.github.io/murauer
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Lepetit, 2017), i.e., an initial convolutional layer with 32 filters of size 5× 5

is followed by a 2 × 2 max-pooling, four “residual modules” with 64, 128,

256, and 256 filters, respectively, each with five residual blocks (He et al.,

2016), and a final fully connected layer with 1024 output units. The pose

estimator p consists of two fully connected layers, with 1024 and 3J outputs,

respectively, where J is the number of predicted joint positions in our case.

The mapping layer m is adopted from (Rad et al., 2018b), i.e., it consists of

two residual blocks, each with 1024 units. The discriminator h has the same

architecture as the mapping m with an additional linear layer to predict a

single output. As in the previous chapter, the generator g is based on the

generator of DCGAN (Radford et al., 2016). It consists of four layers of

transposed convolutions, each followed by Batch Normalization (Ioffe and

Szegedy, 2015) and a leaky ReLU activation (Maas et al., 2013). We add

a bilinear upsampling layer prior to the final hyperbolic tangent (tanh)

activation in order to upsample from 64× 64 to 128× 128 in our case.

Optimization For optimization of the model parameters we use

Adam (Kingma and Ba, 2015) with standard parameters, i.e., β1 = 0.9

and β2 = 0.999. We also found it helpful to follow a warm-up scheme for

the learning rate and decay the learning rate gradually later (Goyal et al.,

2017). More specifically, we start with about one tenth of the pre-defined

learning rate α0 and approximately triple it after the first epoch. We start

training with the pre-defined learning rate α0 – subject to exponential

decay – after three epochs. That is, the learning rate αe for epoch e is

computed by:

αe = ηe α0, (5.14)

with the scaling factor

ηe =

{
0.332−b

e
2
c if e < 4

exp(−γ e) otherwise,
(5.15)

where γ determines the speed of the decay and is set to 0.04 in our case. In

our experiments α0 = 3.3× 10−4 yielded the best results. Here, the notion

of epoch is always based on the number of real data samples in the dataset

(72,757 for the NYU dataset) and independent of the actually used dataset

(e.g ., sub-sampled real data, synthetic data, etc.). That is, the number of

iterations per epoch is the same for all experiments (1,137 iterations per

epoch with a batch size of 64).
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Loss weights λ and mini-batch sampling We found the loss weights

used in our evaluation experimentally and set λc = 0.2, λg = 10−4 and λm =

10−5. For each mini-batch we independently sample a set of corresponding

real and synthetic samples, independent sets of real and synthetic samples

and a set of unlabeled samples such that there is an equal number of samples

from each of the four sets (i.e., 16 samples per set in our case).

Dataset and metric Again, we employ the NYU hand pose

dataset (Tompson et al., 2014), since it is the single prominent dataset

providing data captured from multiple view points together with synthetic

data, which we can readily use to compare to the results of state-of-the-art

approaches. This dataset was captured with three RGBD cameras

simultaneously. It contains 72,757 frames for training and 8,252 frames for

testing. In some works a subset of 2,440 samples from the test set is used

as a validation set (Wan et al., 2017). We use this set for analyzing the

latent space in Sec. 5.3.5. Following standard convention we evaluate on 14

joints (Ge et al., 2018; Moon et al., 2018; Tompson et al., 2014) using the

commonly used mean joint error (ME) (Moon et al., 2018; Oikonomidis

et al., 2011b; Sun et al., 2015). The dataset provides a rendered synthetic

depth frame corresponding to each of the real images. While we sample the

real images only from the frontal camera, which is used for the standard

training set, for our synthetic data set we follow Rad et al. (2018b) and

use images, which have been rendered from the viewpoints of each of the

three cameras. That is, we use all 218,271 synthetic samples provided with

the dataset. Note, for the distribution matching loss, we sample real and

synthetic data only from the 72,757 samples from the frontal view.

In Chapter 4 we performed the view prediction experiments on a subset

of the NYU dataset as the camera setup was changed during capturing the

dataset but the introduced method assumes a fixed setup. Nevertheless,

after the setup change one of the camera viewpoints roughly corresponded

to another camera pose from before the change of the setup. Since the

method we want to test here is not solely based on the view prediction task,

we use the data from the roughly corresponding camera view after the setup

change in order to exploit all 72,757 real samples in the dataset and hence

more fairly compare to other works.

Data augmentation We used online data augmentation. That is, each

time we sample a specific image we also sample new transformation param-

eters. In the experiments for this chapter we randomly rotate the loaded

image, randomly sample the location of the crop and add white noise to

the depth values. The rotation angle is uniformly sampled from [−60◦, 60◦]
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Figure 5.3: Comparison to semi-supervised approaches. Comparison to the
recent approaches PreView (Poier et al., 2018), Crossing Nets (Wan et al., 2017)
and LSPS (Abdi et al., 2018) for different numbers of labeled real samples n.

and the location offset as well as white noise is sampled from a normal

distribution with σ = 5 mm.

5.3.2 Comparison to state-of-the-art approaches

We start with a quantitative comparison to state-of-the-art approaches on

hand pose estimation. To this end, we compare to the results of recent

semi-supervised approaches, but also show how our method performs in

comparison to fully supervised approaches when training on the full dataset.

Comparison to semi-supervised methods Only a few approaches

have recently targeted the semi-supervised setting for hand pose

estimation: we compare to Crossing Nets (Wan et al., 2017), LSPS (Abdi

et al., 2018) and our method introduced in the previous chapter (PreView).

Figure 5.3 shows the results for different numbers of labeled real samples.

Note, that only LSPS (Abdi et al., 2018) exploits synthetic and real data

jointly, tackling the domain gap. We compare to the results published by

the authors, which are provided for different numbers of labeled samples.

Nevertheless, we can see that our method outperforms their results

independent of the number of labeled real samples.
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Table 5.1: Comparison to state-of-the-art. Mean joint error (ME) for training
with all labeled real samples from the NYU dataset for recent state-of-the-art
approaches, baselines and our method.

Method ME (mm)

DISCO Nets (Bouchacourt et al., 2016) (NIPS 2016) 20.7
Crossing Nets (Wan et al., 2017) (CVPR 2017) 15.5
LSPS (Abdi et al., 2018) (BMVC 2018) 15.4
Weak supervision (Neverova et al., 2017) (CVIU 2017) 14.8
Lie-X (Xu et al., 2017) (IJCV 2017) 14.5
3DCNN (Ge et al., 2017) (CVPR 2017) 14.1
REN-9x6x6 (Wang et al., 2018) (JVCI 2018) 12.7
DeepPrior++ (Oberweger and Lepetit, 2017) (ICCVw 2017) 12.3
Pose Guided REN (Chen et al., 2018a) (Neurocomputing 2018) 11.8
SHPR-Net (Chen et al., 2018b) (IEEE Access 2018) 10.8
Hand PointNet (Ge et al., 2018) (CVPR 2018) 10.5
Dense 3D regression (Wan et al., 2018) (CVPR 2018) 10.2
V2V single model (Moon et al., 2018) (CVPR 2018) 9.2
V2V ensemble (Moon et al., 2018) (CVPR 2018) 8.4
Feature mapping (Rad et al., 2018b) (CVPR 2018) 7.4

Synthetic only 21.3
Real only 14.7
Real and Synthetic 13.1
Ours 9.5

Comparison on full dataset We compare to fully supervised state-of-

the-art approaches when employing all labeled data. We want to stress

that our work does not focus on the case where a huge number of labeled

real samples, roughly covering the space of poses in the test set, is readily

available. We show this comparison, rather, to prove the competitiveness of

our implementation. Table 5.1 shows the comparison including some of our

baselines. We can see that the results of our system are within the top state-

of-the-art approaches. Comparing the results for state-of-the-art approaches

in Table 5.1 with the results of our method when using a smaller number of

labeled real samples in Figure 5.3, we see that our method performs similar

to recent state-of-the-art approaches even using only a small fraction of the

labeled real samples. Also note that several of the most recent methods

focus on improved input and/or output representations (Chen et al., 2018b;

Ge et al., 2018; Moon et al., 2018; Wan et al., 2018), which are orthogonal

to our work.
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The comparisons in this section are based upon the numbers published

by the authors. That is, these comparisons disregard differences in the used

data subsamples, models, architectures, and other specificities. For a better

evaluation of the contribution of this chapter we investigate the different

ingredients of our method based on the same experimental setup in the

next section.

5.3.3 Ablation study

In the ablation study we aim to compare our method to baselines based on

the same experimental setup and investigate how effective our contributions

are. To this end, we use the same architecture and train it with different

data: only with labeled real data, only with synthetic data, with labeled

real and synthetic, or with labeled real, synthetic and additional unlabeled

real data. Figure 5.4 shows the results for different numbers of labeled

real samples. We compare to different variants of our method denoted

Real+Synth. | *, where the asterisk (*) acts as a placeholder for how we

train the mapping and thus exploit unlabeled data. That is, we compare

the full implementation of our method (Real&Synth. | Full, Eq. (5.1)) and

two ablated variants: One variant where the exploitation of unlabeled data

is only based on the adversarial loss term (Real+Synth. | Distr. Match),

and another variant where only the view prediction objective is used for

unlabeled data (Real+Synth. | View Pred.).

We see that each of the individual loss terms yields a significant perfor-

mance gain compared to the baseline system, which uses real and synthetic

data but cannot exploit unlabeled data. The additional gain of the full

system over the variants with only one of the loss terms is more enhanced

for a small number of labeled real samples n and only small for large n, but

consistent over all n.

In Figure 5.5 we compare the results of training with and without un-

labeled data qualitatively. Before investigating the error cases, here, we

especially focus on the question for which samples our method actually im-

proved the results. We often find samples which are significantly distorted,

i.e., the depth map contains holes, parts of the hand or even complete fingers

are missing.

5.3.4 Error case analysis

We aim to investigate for which samples our full method makes the largest

errors. We analyze the error cases for our model trained with 100 labeled real

samples. Representative samples from the frames with largest mean error

are shown in Figure 5.6, samples from the frames with largest maximum
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Figure 5.4: Ablation experiments. How different aspects of our method influ-
ence the performance over different numbers of labeled real samples n. Real and
Synth. specifies whether real or synthetic data was used and further descriptions
identify different variants of our method. See text for details.

error are shown in Figure 5.7. Note that many of the frames with large error

are essentially near duplicates of the the shown error cases since the test

set is actually a continuous sequence with similar neighboring frames. We

find that our model has problems especially if none of the fingers is clearly

visible in the depth frame, i.e., the frame has a ”blob-like“ appearance.

For the frames for which our model had the largest problems with, we

additionally search for the nearest neighbors in the training set. We find

the nearest neighbors based on the average joint distance between the cor-

responding ground truth annotations (after shifting the annotations to the

origin to ignore translations). Figure 5.8 shows the nearest neighbors for

some selected test samples. We find that for some samples there are no

close nearest neighbors in the training set, and we hypothesize that for such

”blob-like“ structures it is especially difficult to obtain valuable feedback

from the view prediction objective. Also note, that the model we are ana-

lyzing was trained on only 100 labeled real samples and the labels for the

nearest neighbors shown in Figure 5.8 were not used.

5.3.5 Latent space analysis

In a final set of experiments we investigate the learned latent representation.

We are especially interested in how the introduced method affects the shared

latent space of real and synthetic data.
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Figure 5.5: Qualitative results. Left: ground truth. Middle: baseline trained
with labeled data (synthetic and 100 real). Right: our result from training with
the same labeled samples and additional unlabeled real data. We find that our
method improves results especially for highly distorted images and difficult poses.
Best viewed in color.

Visualization We compute the latent representations of corresponding

real and synthetic samples from the validation set and visualize the repre-

sentations using t-SNE (van der Maaten and Hinton, 2008). From the t-SNE

visualization in Figure 5.9 we can see that the real and synthetic data is well

aligned and that the aligned data points correspond to similar poses. This

is illustrated by the depth images for exemplary parts of the representation.

Nevertheless, such visualizations have to be interpreted with caution (c.f .,
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Figure 5.6: Frames with largest mean error. Test samples overlaid with ground
truth (top row) and the predictions of our model (bottom row). Note, 90 of the
100 frames with the largest mean error are variations of the leftmost three frames.

Figure 5.7: Frames with largest maximum error. Test samples overlaid with
ground truth (top row) and the predictions of our model (bottom row). The errors
are mainly due to strongly distorted samples and annotation errors (e.g ., left most
sample). Note, 79 of the 100 frames with largest maximum error are variations of
the three leftmost frames.

e.g ., (Wattenberg et al., 2016)). Hence, in the following, we try to get more

insights from analyzing the distances directly.

Distance distributions To better investigate how our contributions af-

fect the latent space distributions, we again make use of the fact that we

have corresponding real and synthetic validation samples. We compute the

distances of the latent representations of corresponding real and synthetic

samples and compare the distribution of these distances for different ex-

periments. In Figure 5.10 we compare the distance distribution for: (i) a

baseline experiment which was trained jointly with synthetic and 100 la-

beled real samples, and (ii) our approach, which was trained with the same

labeled data but additionally employs unlabeled data. We can see, that de-

spite the weak supervision from the unlabeled data, i.e. correspondence is
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Figure 5.8: Nearest neighbors in training set. The test samples with largest
error (c.f ., Figure 5.6 and Figure 5.7) and their (pose based) nearest neighbors in
the training set. Leftmost column shows the test sample, the remaining columns
show the corresponding nearest neighbors from the training set. Note, the training
samples were used unlabeled only.

not known and only the additional loss terms described in Sec. 5.2.3 can be

used to match the data, the distance between the corresponding validation

samples are clearly smaller.

Example view predictions Finally, we compare examples for view pre-

dictions of our method given input from either real or synthetic data. This

is interesting, since a possible drawback of the view prediction objective is

that the generator g might try to discriminate between real and synthetic

data in order to predict the appearance accurately, as has been discussed in

Sec. 5.2.3. However, by looking at the predicted views (c.f ., Figure 5.11) we

see that this is not the case. We rather find that the predictions are nearly

equivalent for real and synthetic samples with the same pose, again indicat-

ing that similar poses are close together in the latent space – independent

of the domain – which was the intention of the contributions introduced in

this chapter.

5.4 Conclusions

In this chapter we focused on the exploitation of synthetic data for the

task of 3D hand pose estimation from depth images. Most importantly,

we showed that the existing domain gap between real and synthetic data,

which hampers the exploitation, can be reduced using mainly unlabeled real

data. To this end, we introduced two auxiliary objectives, which ensured

that input images exhibiting similar poses are close together in a shared
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Figure 5.9: Visualization of latent representations. t-SNE visualization of the
learned latent representation of real (green; 6) and synthetic (orange; :) samples
from the validation set. Simultaneously, real and synthetic samples as well as
similar poses are aligned in the latent representation, while only 100 corresponding
real and synthetic images are employed during training. Note, if necessary, we
moved the visualized depth images slightly apart, so, that they do not overlap.
Best viewed in color with zoom.

latent space – independent of the domain they are from. We showed that

our method outperforms many recent state-of-the-art approaches using a

surprisingly small fraction of the labeled real samples they use.
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Figure 5.10: Distributions of latent space distances between correspond-
ing real and synthetic samples. Comparison of the distance distributions for
our method (blue) and a baseline (yellow). The higher peak for lower distances
shows that our method moves corresponding real and synthetic data closer together.
See text for details.

Figure 5.11: Example view predictions for real and synthetic input. Top:
Three corresponding synthetic (left) and real (right) validation images. Bottom:
Predicted views for synthetic (left) and real (right) input.
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In this thesis we introduced several distinct methods to learn to estimate

the hand pose – all of which yield competitive results despite requiring

only a subset of the labels, implying a significantly reduced labeling effort.

After providing the relevant background for such an endeavor, we started

by pointing out a way to combine a learned model with prior knowledge

about the target object in an analysis-by-synthesis manner. Subsequently,

we introduced a method to exploit unlabeled data by requiring the model

to learn about the relations between different views of the hand. Finally,

we showed how synthetic data can be better exploited by mitigating the

domain gap.

In the first of our technical contributions we introduced a way to exploit

prior knowledge about the hand by employing a 3D hand model. We devised

a hybrid approach, combining a data-driven with a 3D hand model-based

part. In this method we fit the hand model to the output of the data-driven

part. Naturally, by fitting the hand model, the system can always provide an

anatomically valid solution. Additionally, we designed the data-driven part

to output a distribution over possible locations for each joint. We showed

that the model-based part can further improve the results by considering this

distribution and thus implicitly considering for which estimates the data-

driven part is certain and for which it is uncertain. While a smaller training

113
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dataset immediately leads to an increased error of the learned data-driven

approach, we showed that by employing the model-based optimization in

this way we are able to partly overcome this issue.

The combination of a data-driven part with a model-based part yields

improved results but is still significantly impaired when the training set for

the data-driven part becomes substantially smaller since the model-based

optimization is not able to fix gross errors. Such errors usually occur for

samples, which are too far from the distribution of the training set. That is,

while the labeling effort can be reduced with this method, still a reasonably

large amount of labeled training data is required for many applications.

With the goal to have the model learn from a large training set without

increasing the labeling effort we developed a method to exploit unlabeled

data. We showed that by learning to predict how the hand would look from

a different view and thus learn about the relations of the appearance of the

same pose in different viewpoints the model learns to extract information,

which is closely related to the pose of the hand. Being able to learn such a

pose specific representation from unlabeled data, we also pointed out a way

to use the unlabeled data in combination with some labeled data. Employing

labeled and unlabeled data together we showed that we can achieve similar

accuracy when training with one order of magnitude less labeled data.

Finally, to obtain more supervision for the still complex mapping from

a pose specific latent representation to the desired targets (i.e., joint posi-

tions), we exploited labeled data from a different domain; namely synthetic

data. Employing synthetic data provides a possibility to circumvent the

requirement for large datasets of labeled real data. Nevertheless, models

trained solely on synthetic data show a significant drop in performance

compared to models trained on real data. This is due to the domain gap,

i.e., the difference between the distribution of the synthetic training and

the real test data. To mitigate the domain gap without requiring a large

amount of labeled real data, we enforced that the feature distributions of

real and synthetic data are aligned and simultaneously ensured that simi-

lar poses are mapped to similar locations in the latent feature space. We

showed that using our method we can reach a similar performance to the

baseline without our contributions using only about 10 to 100 labeled real

samples compared to more than 70,000 for the baseline.

6.1 Discussion

We have set an ambitious goal for this thesis: to develop a method, which

is able to learn to estimate the pose of the human hand without requiring

manual supervision. There are obvious flaws in this formulation of our
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quest. To state whether a system has learned a task or not, we naturally

need to define a criterion based on which we can make such a decision.

It is, however, not straightforward to define such a criterion. We could

even argue that in many cases it might be impossible to come up with a

universal criterion to decide whether a system has solved a task or not. This

is because such a criterion always depends on the actual application. For

example, the current state-of-the-art approaches for hand pose estimation

might be readily sufficient for applications where the range of poses is known

a priori, the occurring occlusions are limited, other objects in the scene do

not pose any difficulties for segregating the hand and computational power

is not a real issue. Hence, while the task can be considered solved for a

range of applications it is rather easy to imagine conditions under which

they would fail; e.g ., computational constraints can be virtually arbitrarily

aggravated. Hence, to judge our contributions we followed a more practical

way, which is still generically applicable to any specific application. We

studied how far we can reduce the manual labeling effort without sacrificing

accuracy.

We showed that using a combination of methods we can achieve results

close to the current state-of-the-art with only a fraction of the labeled real

samples. Moreover, in Chapter 5 we were able to show that with the pro-

posed adaptations of the baseline it is possible to even improve the results,

while discarding 99.9% of the labeled real data and using unlabeled data

instead.

Nevertheless, despite the improved results, the introduced methods ex-

hibit limitations. In general, all the introduced methods still require some

number of labeled real samples in order to perform well. While, for the

method introduced in Chapter 5, this is a comparably low number, the

labeled real samples still enable a significant improvement of the results

and are thus crucial for its success. Furthermore, the intuition that we can

exploit synthetic data by enforcing the latent distributions of real and syn-

thetic data to be aligned, is inherently based on the assumption that the

pose distribution of real and synthetic data is similar. A requirement, which

has to be considered when capturing the real data or generating synthetic

data. For the hybrid approach we introduced in Chapter 3 we assumed to

know the size of the hand in advance and used a model with fixed distances

between the joint positions. Hence, the model has to be specifically adapted

to each actor. This is a prominent problem for related approaches and has

been tackled in various ways. A common example is to require a calibration

phase for each user in advance (Tan et al., 2016; Taylor et al., 2014), but also

approaches to adapt the model during test time have been proposed (Makris

and Argyros, 2015; Tkach et al., 2017). Moreover, to compare to related
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work we focused our experiments on existing datasets, which provide labels

for all samples. That is, to study the effect when only a fraction of the

training data is labeled we used the labels only for a subsample of the full

set and used all remaining samples without labels. In practice, however,

one would of course use all labeled samples which are available and capture

additional unlabeled samples using the target setup to better cover the pose

space. To this end, it is still unclear how the methods would behave if more

labeled and unlabeled data would be provided. That is, it would be inter-

esting how effective the methods would be in cases where there is already a

large number of labeled data and additionally several orders of magnitude

more unlabeled data can be exploited. Note, while studies showed the ef-

fectiveness of evermore data for other tasks – even if it has noisy labels or

is unlabeled (Goyal et al., 2019; Sun et al., 2017a) – this question is open

to be investigated for the methods we proposed in this thesis.

6.2 Future directions

This thesis clearly failed to achieve its ultimate goal to develop a method

which is able to learn systems without any manual labeling effort for a broad

range of applications. Still, there is clearly no need to worry that no further

improvements are possible, which can bring us closer to the ambitious goal.

One option is to incorporate temporal information. For our work we

excluded temporal information on purpose. The system should not require

to have temporal information available. It should rather be able to estimate

a pose given a single frame. In this way the system can be straightforwardly

employed for initialization at the beginning of a sequence and to re-initialize

after, e.g ., the hand was outside the camera view. However, temporal in-

formation naturally provides a cue for cases, which are otherwise difficult

to solve at all. For example, at test time short temporary occlusions during

movement can often be reasonably resolved when employing information

from neighboring frames in time. Furthermore, being able to estimate the

pose from a single frame does not necessarily preclude the system from being

able to exploit temporal information as soon as it is available.

Such temporal information can also be exploited during training time.

For example, again following the idea of self-supervised learning, a model

can be trained from unlabeled data to associate corresponding parts of the

hand over neighboring frames in time (c.f . Section 2.3.3). Employing such

ideas, we might be able to learn a more robust model without increasing

the labeling effort.

Another option is to incorporate a 3D hand model in the training phase.

The 3D hand model provides an opportunity to obtain feedback for training
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a data-driven model. The realization of such an approach can be similar to

the way a model-based step can refine the results of a data-driven part at

test time; but in this case it would be used to obtain feedback for training

the data-driven part. Initial works following such an approach have been

published recently (c.f . Section 2.3.5 and 2.5.3).

Finally we want to mention that the discussed ideas could also be

adapted to work with color images. While working solely with color inputs

poses different challenges (e.g ., additional variations due to lighting or

skin color, foreground segmentation is usually a larger issue than with

depth images, and depth information eases accurate 3D estimates), it also

bears several advantages. For example, when the hand is interacting with

objects it can be easier to segregate the hand and objects as they often

exhibit a different color. Additionally, the cameras are usually significantly

cheaper and consume less energy making them also more applicable for

mobile devices.

However, obtaining accurate 3D pose labels for arbitrary color images is

usually an even larger issue than for depth images. The difficulty is further

aggravated if the hand is interacting with objects or other hands, as the

factors of variation are again significantly increased in this case. Hence, the

ideas to reduce the labeling effort, which we introduced in this thesis, are

of large interest for this direction.

In line with this, we believe that pose estimation systems which work

with a largely reduced labeling effort, will be much easier applicable to novel

tasks. Reducing the effort to the effort which is needed to capture data

will make such systems much more accessible. Researchers and engineers

which are unable to invest in extensive labeling would still be able to foster

technological progress.
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List of acronyms

AUC area under the curve

CCA Canonical Correlation Analysis

CNN Convolutional Neural Network

CoM center of mass

DoF degree of freedom

DPM Deformable Part Model

FS frame-based success rate

GAN Generative Adversarial Network

JS joint-based success rate

LSTM Long Short-Term Memory

ME mean joint error

NCE Noise Contrastive Estimation

PCA Principal Component Analysis

PSO Particle Swarm Optimization

RF Random Forest

ToF Time-of-Flight

VAE Variational Autoencoder

125





BIBLIOGRAPHY 127

Bibliography

Abdi, M., Abbasnejad, E., Lim, C. P., and Nahavandi, S. (2018). 3d hand

pose estimation using simulation and partial-supervision with a shared

latent space. In Proc. British Machine Vision Conf. 93, 94, 101, 104, 105

Albrecht, I., Haber, J., and Seidel, H.-P. (2003). Construction and anima-

tion of anatomically based human hand models. In Proc. Eurographics

Symposium on Computer Animation. 34, 47, 72, 81

Amit, Y. and Geman, D. (1994). Randomized inquiries about shape; an

application to handwritten digit recognition. Technical Report 401, De-

partment of Statistics, University of Chicago, IL. 45

Andrew, G., Arora, R., Bilmes, J. A., and Livescu, K. (2013). Deep Canon-

ical Correlation Analysis. In Proc. Int’l Conf. on Machine Learning. 22

Arjovsky, M. and Bottou, L. (2017). Towards principled methods for train-

ing generative adversarial networks. In Proc. Int’l Conf. on Learning

Representations. 30

Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein GAN. ArXiv

e-prints, abs/1701.07875. 101

Baak, A., Müller, M., Bharaj, G., Seidel, H.-P., and Theobalt, C. (2011).

A data-driven approach for real-time full body pose reconstruction from

a depth camera. In Proc. IEEE Int’l Conf. on Computer Vision. 42

Baek, S., Kim, K. I., and Kim, T.-K. (2019). Pushing the envelope for

rgb-based dense 3d hand pose estimation via neural rendering. In Proc.

IEEE Conf. on Computer Vision and Pattern Recognition. 25

Ballan, L., Taneja, A., Gall, J., Van Gool, L., and Pollefeys, M. (2012).

Motion capture of hands in action using discriminative salient points. In

Proc. European Conf. on Computer Vision. 35, 38, 44

Becker, S. and Hinton, G. E. (1992). Self-organizing neural network that

discovers surfaces in random-dot stereograms. Nature, 355:161–163. 22

Berthelot, D., Carlini, N., Goodfellow, I. J., Papernot, N., Oliver, A., and

Raffel, C. (2019). Mixmatch: A holistic approach to semi-supervised

learning. ArXiv e-prints, abs/1905.02249. 13

Blum, A. and Mitchell, T. M. (1998). Combining labeled and unlabeled data

with co-training. In Proc. Conf. on Computational Learning Theory. 22



128

Bouchacourt, D., Mudigonda, P. K., and Nowozin, S. (2016). DISCO nets :

Dissimilarity coefficients networks. In Proc. Neural Information Process-

ing Systems. 105

Boukhayma, A., Bem, R. d., and Torr, P. H. (2019). 3D hand shape and

pose from images in the wild. In Proc. IEEE Conf. on Computer Vision

and Pattern Recognition. 25, 38, 39

Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32. 45

Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., and Shah, R. (1993).
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