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Kurzfassung

Eine überzeugende Einschließung von Nutzer_innen in eine virtuelle Real-
ität setzt die Ermöglichung echtzeitfähigen interaktiven Hörens in dreidimen-
sionalen Klangszenen voraus. Für ein realitätsnahes Hörerlebnis muss sich
die akustische Perspektive und Orientierung in Echtzeit variabel durch die
körpereigenen Bewegungen steuern lassen. Diese Arbeit befasst sich damit,
virtuellen Hörer_innen eine Klangszene aus einer interpolierten variablen Per-
spektive zu präsentieren, während die ursprüngliche Szene lediglich an weni-
gen gleichzeitig aufgenommenen statischen Einzelperspektiven vorliegt. Für
die variabelperspektivische Interpolation wird die Klangszene in mehrper-
spektivisch lokalisierbare Klangobjekte und einen Rest zerlegt. Die Infor-
mation über lokalisierbare Objekte entspringt einer Wahrscheinlichkeitsland-
karte, die aus der Zusammenfassung der Richtungsdetektionen aller einzelnen
Perspektiven hervorgeht. Diese Arbeit schlägt einen Partikelfilter-Ansatz zur
laufenden Lokalisierung von Klangobjekten in der Klangszene vor. Dieser
findet in der Wahrscheinlichkeitslandkarte einen geeigneten, zeitlich zusam-
menhängenden Positionspfad pro Klangobjekt. Zur Wiedergabe wird für
jedes Klangobjekt seinem Positionspfad gemäß ein Klang aus der Aufnahme
extrahiert und relativ zum virtuellen Subjekt in das Restsignal eingebettet.



Abstract

Convincing immersion in virtual reality requires to enable the user to engage
in interactive listening within three-dimensional audio scenes. To achieve a
realistic listening experience, the acoustic perspective and orientation has to
be real-time controlled with the own body movements. This thesis addresses
the task of presenting an interpolated variable perspective to an interacting
listener, while the original audio scene is recorded simultaneously at only
a few static perspectives. The scene is decomposed into localizable sound
objects and a residual signal for the variable-perspective interpolation. Infor-
mation regarding localizable objects is extracted from a probability map that
is composed from the directions detected by the collective of the available
single perspectives. This work proposes a particle-filter-based approach for a
continuous position estimation of sound objects. The particle filter uses the
probability map to estimate a continuous trajectory for each sound object in
the scene. The rendering approach extracts signals from the recording for
each localized sound object according to its estimated trajectory and embeds
it relative to the virtual listener into the residual signal.
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Chapter 1

Introduction

The number of possibilities in the digital virtual world is growing thanks to recent devel-
opments that boost availability and affordability of virtual reality hardware. The entertain-
ment industry, in particular the growing gaming market, is responsible for a big part of the
recent push to bring virtual reality to the masses. Due to the demand of high quality con-
tent for VR including high quality and immersive audio playback, rendering algorithms
for audio in VR is an emerging area of research.

An application of this technology is approached in this work, namely the recording and
playback of entire sound scenes. The information of spatiality is vital to facilitate play-
back featuring naturalness that holds true for 6DoF rendering. Therefore, a method to
record, analyse and re-synthesise is necessary. This thesis focuses on the development
and evaluation of such a method.

1.1 Overview

The basic motivation of this work is to formulate an approach which is able to analyse a
sound scene from multiple perspectives and recreate it for an interacting virtual listener.
This requires a method which allows the listener to move freely between these static
perspectives by facilitating some way of interpolation.

The use of interpolation on Binaural Room Impulse Responses (BRIRs) for auralisation
in interactive virtual spaces has notable research such as [NK17,NKKK17,NR18] as well
as [Mül20] or a simpler approach using other auditory cues such as [Dep17].

This work however will not use BRIRs. Instead, the perspectives are represented by sur-
round recordings that would allow to switch playback between multiple perspectives. Re-
search on how to interpolate these recordings for a variable-perspective playback has been
approached by interpolation of surround signals in the Ambisonics domain in [TDTH13,
PP15,TC16,AK17,TC19,Tyl19]. Further methods are proposed and analysed in [GZS+18,
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8 Chapter 1 - Introduction

CJ20, ZFSH20, RZF17].

The aforementioned recording perspectives are captured by microphone arrays that are
located at multiple static positions. As adopted in this work, each of the recording per-
spectives could be captured by a tetrahedral microphone array, which is compact and
has four cardioid microphones directed outwards. The 4 microphone look directions are
gathered in the array direction matrix V as the unit length Cartesian vectors θci denoted
as

V =

 | |
θc1 · · · θci

| |

 . (1.1)

Each of those perspectives contributes some information about the spatial distribution
of sound objects seen from the respective perspective position, contained in its array sig-
nals. Since for general signals, a single-perspective recording by tetrahedral arrays mainly
provides directional information, it requires additional distance data for object localisa-
tion, as obtained by projection on a convex hull, for instance, in [PST+18]. However, a
multi-perspective approach can provide object distance by intersecting single-perspective
directional information. This idea is topic of works such as [BOS08, BOS10, Hac15]

Based on this idea, this work establishes a system consisting of particle filters is employed
to track sound objects in the sound scene. Particle filters are a proven method of tracking
peaks in unknown probability functions and generate a continuous spatial trajectory in
time when following moving objects. Particle filters are used in acoustic source track-
ing in [WLW03b, KG18, VMR07] and a non-exhaustive list of fundamental literature on
particle filters is [Efr93, LC95, Fea98, Kit96, LC98, Kit96, CCF99, DdFG01, Sär13].

The information retrieved by the particle filtering on time-varying object locations enables
signal extraction of the object sound and variable-perspective rendering thereof. For each
sound object, a direct signal is approximated using beam-forming and perspective merg-
ing to minimize signal cross contamination. Encoding these signals with direction and
amplitude attenuation according to spatial constellation of the objects and with regards
to the listener perspective yields a spatially accurate reconstruction of the major sound

Figure 1.1: Example of a tetrahedral microphone array. (Oktava MK-4012. Image Credit:
[Okt19])
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Figure 1.2: The goal of this work is to record spatially diverse scenes and facilitate play-
back for virtual listeners with full freedom of movement and accurate spatial reproduction.

objects in the scene. In addition the enveloping room response and those sounds whose
location features are not salient enough to be tracked by the particle filters remain as
residual signals. To preserve there residuals as important background cues, they are ren-
dered with less precise reproduction methods, which are nevertheless suitable to render
consistently with the listener perspective. The residual signal reproduction method, as
introduced in this thesis, is based on the approach described in [GZS+18, ZFSH20].

1.2 Thesis Outline

Chapter 2 describes the concept of direction-of-arrival estimation and the computation
of directional distributions. Further, perspective combination is explained yielding the
acoustic activity map.

Chapter 3 delves into details about the particle filter system, the peak picking proce-
dure and a probabilistic birth-death algorithm for object detection.

Chapter 4 explains the concepts behind the proposed rendering algorithm using the
analysis data acquired by the detection and tracking procedure.

Chapter 5 is the extensive summary of (1) a numerical evaluation of the proposed
detection and tracking algorithm and (2) a listening evaluation assessing scene playback
by the rendering algorithm.

Chapter 6 concludes on the research tasks accomplished in this thesis, answers the
major questions, and states suggestions for future research on the topics at hand.
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Chapter 2

Acoustic Activity Map

The acoustic activity map characterizes the measured sound object activity in a three-
dimensional space. Starting from perspective recordings from P microphone arrays lo-
cated at positions pp in an acoustic scene, the procedure consists of computing directional
distributions for all and combining these into one three-dimensional map. This activity
map is furthermore used to locate sound objects in the scene as peaks.

The underlying concept of this map, which is an expansion of the ones in [BOS08,BOS10,
Hac15], is explained in this chapter.

2.1 Perspective Directional Distribution

Direction-of-arrival (DOA) refers to the direction from which a propagating wave arrives
at a measurement setup, which is usually a sensor array and, as in this case, a tetrahedral
microphone array. The estimation of the DOA is not a novel concept and has been topic
of research and applied in a multitude of ways, e.g. MUSIC [Sch86], ESPRIT [RK89],
beamformer-based approaches as found in [KV96,TH13] or instantaneous estimates such
as in [WVHK06, PDPM15, PDP15a, Pol16, Wil16]. Related methods are used in acoustic
algorithms like [PF06, Pul06, PTP18, BB10, WEJ12].

In this section, a practice-proof algorithm for DOA estimation based on [PDP15b,Wil16]
is explained and subsequently applied to compute direction estimates and further direc-
tional distributions using the transformation into the spherical harmonic domain.

2.1.1 Direction of Arrival Estimation

The smoothed magnitude sensor response as proposed in [Wil16] is a method which su-
perposes the directions of the array microphones according to the magnitudes of the mi-
crophone signals in the frequency domain. The enhancement compared to the original

11



12 Chapter 2 - Acoustic Activity Map

magnitude sensor response [PDP15b] is a separation into signal and noise subspace for
better estimation results.

Assuming microphones with identical directivity patterns, the resulting vector is an es-
timation of the DOA. However, the condition for this method to work is a balanced di-
rectional layout and microphone directivity pattern that monotonically decreases with the
angle enclosed with the direction of each microphone. This condition is fulfilled by tetra-
hedral sensor arrays with a first order cardioid pattern.

The time-domain array microphone signals

s(t) =
[
s1(t) s2(t) s3(t) s4(t)

]T

are transformed into frequency-time signals

S(k)[m] =
[
S

(k)
1 [m] S

(k)
2 [m] S

(k)
3 [m] S

(k)
4 [m]

]T

and used to calculate a running estimate of the covariance matrix Σ(k)(m) over M time
frames. The frequency bin index and time frame index are denoted k and m respectively.
The estimation for a time instant m is done as an average over M frames

Σ (k)(m) =
1

M

m+M/2−1∑
m′=m−M/2

S(k)[m′] · S(k)[m′]H. (2.1)

Note that the time frame index m is dropped from the explanations below for readability,
so keep in mind that the subsequent steps are applied at all time steps m.

The first step is the decomposition of the estimated covariance matrix for all k into the
4× 4 column matrix of eigenvectors U (k) and the diagonal eigenvalue matrix Λ(k):

Σ (k) = U (k)Λ(k)U H(k). (2.2)

The eigenvalues on the diagonal are ordered from largest to smallest (λ1 ≥ λ2 ≥ ... ≥
λi). Now, separating the signal and noise subspace requires the selection of relevant
eigenvalues and corresponding eigenvectors. Assuming one incoming signal, the largest
eigenvalue and its eigenvector is the best candidate. However, this estimation can also
be applied to arrays with more microphones and the introduction of methods, facilitating
eigenvalue selection, such as SORTE [HCXC10] can be useful. Depending on the method,
different numbers of selected eigenvalues per frequency bin k can appear which will be
denoted as L.

For all frequency bins k, regardless of the selection method, each four-dimensional eigen-
vector u(k)

∗l is recombined into a three-dimensional direction estimate by matrix multipli-
cation with the array directions V, see Eq. (1.1), and normalized to unit length. This
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becomes

θ̂
(k)
l =

V|u(k)
∗l |

‖V|u(k)
∗l |‖

for l = 1...L (2.3)

where |u(k)
∗l | denotes the element-wise complex magnitude of the vector u(k)

∗l .

2.1.2 Spherical Harmonics Directional Distribution

Following the selection of the L relevant eigenvalues λ(k)
l and the calculation of the di-

rection estimates θ̂(k)
l (cf. Eq. (2.3)), they are used to compute a directional distribution

based on directional energy histograms. For a strictly defined, smooth resolution of this
histogram, it is composed in the spherical harmonics domain. A further advantage of SHs
are the straightforward procedures for the discrete spherical harmonic transform (DSHT)
and its inverse (IDSHT).

The fully normalized spherical harmonic functions for any order N and their derivation
are available in literature, e.g. [ZF19]. The definitions used there is

Y m
n (ϕ, ϑ) = N |m|n︸︷︷︸

norm-
alization

P |m|n (cosϑ)︸ ︷︷ ︸
assoc.

Legendre
functions

Φm(ϕ)︸ ︷︷ ︸
azimuth

harmonics

.

Numerous implementations for computations are available 1 2. For readability they will
be denoted as Y m

n (θ). The (N + 1)2 transformation coefficients for n = 0...N and
m = −n...n for any direction vector θ are defined as

y(θ) =
[
Y 0

0 (θ) Y −1
1 (θ) ... Y N

N (θ)
]T
.

With this, the L direction estimates θ(k)
l are transformed into the SH domain using the

appropriate DSHT coefficients y(θ
(k)
l ). These transformed direction-spread functions are

linearly combined using a function L(k, λ
(k)
l ) to define a directional distribution

χ =
K∑
k=1

L∑
l=1

y(θ
(k)
l )L(k, λ

(k)
l ). (2.4)

The eigenvalue-dependent and frequency-dependent function L(k, λ
(k)
l ) can be defined

arbitrarily, but in this case a useful definition was found in a combined frequency-domain

1. MATLAB R© implementation Spherical-Harmonic-Transform by Archontis Politis available at
https://github.com/polarch/Spherical-Harmonic-Transform

2. Pure Data externals iem_ambi, iemmatrix

https://github.com/polarch/Spherical-Harmonic-Transform
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(a) Example 1 (b) Example 2

Figure 2.1: Two examples of directional distributions of perspectives in a scene with 2
active sound objects. Depending on distance and loudness more ore less distinct patterns
are visible. For visualization, the SH distribution has been decoded to 2000 equally dis-
tributed directions and normalized to a maximum value of 1.

attenuation and compression function:

L(k, λ) =

{
k
√
λ if k

K
fs > 200Hz

0 else
. (2.5)

Here, fs is the sampling rate. Such a distribution χ is generated to map the observed
directional energy distribution of each perspective microphone array p = 1...P .

2.2 Perspective Combination

Similar to the proposed approaches in [BOS08, BOS10, Hac15], the directional distribu-
tions captured at multiple, single-perspective recording positions are combined into the
three-dimensional acoustic activity map. In order to explain the procedure involved, we
want to define a set of arbitrary positions si in addition to the known perspective positions.
The new set represents points on the acoustic activity map. To calculate the map values
for these positions, an algorithm of perspective merging is introduced. The procedure
involves the mapping of the aforementioned positions to the single-perspective SH direc-
tional distributions values and a subsequent additional weighting thereof. It is explained
in the following sections.
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Figure 2.2: The three-dimensional space is sampled at an arbitrary set of points si whose
positions can be evaluated for acoustic activity by the perspective merging procedure.

2.2.1 Direction-Position Mapping

The set of positions intended to be evaluated for their acoustic activity has to be mapped to
SH directional distribution values. This is done by the calculation of perspective-position
directions θp,i as visualized in Fig. 2.2 and using SH sampling decoding matrices. Such
a matrix consists of the coefficients of the inverse discrete SH transformation for the
directions pointing from perspective to the sample points:

θp,i =
si − pp
‖si − pp‖

. (2.6)

The directions for p and all i = 1...G are computed and gathered in the direction matrix

Θp =

 | | |
θp,1 θp,2 · · · θp,G
| | |

 .
Next, a DSHT sampling decoder Ỹp of order N is calculated from the direction matrix
Θp:

Ỹp(Θp) =

 | | |
y(θp,1) y(θp,2) ... y(θp,G)

| | |

 .
The directional distribution values of the sample positions si mapped from a single per-
spective are denoted as ŵp of size G× 1. This vector is yielded by the mapping step

w̃p = Ỹpχp. (2.7)
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Gathering the decoding matrices into the columns of a larger matrix

Υ̃ =
[
Ỹ1(Θ1) Ỹ2(Θ2) ... ỸP (ΘP )

]
(2.8)

and arranging the single-perspective SH distributions χp as a block diagonal matrix

X =

χ1

. . .
χP

 (2.9)

permits the joint mapping step mapping of all perspectives yielding a G× P perspective
activity map

W̃ =

 | |
w̃1 ... w̃P

| |

 = Υ̃X (2.10)

holding the acoustic activity values for each sample point and perspective.

The unweighted linear combination W̃ 1P×1 of the columns yields a set of activity values
for the sample positions. Figure 2.3 shows cross sections of such an activity map.

3.5 4 4.5 5 5.5 6 6.5

x [m]

3.5

4

4.5

5

5.5

6

6.5

y
 [
m

]

(a) z = 1.0m

3.5 4 4.5 5 5.5 6 6.5

x [m]

3.5

4

4.5

5

5.5

6

6.5

y
 [
m

]

(b) z = 1.4m

(c) View of evaluated horizontal
planes in spatial context.

(d) View of evaluated vertical
planes in spatial context.

Figure 2.3: The acoustic activity map evaluated at equidistant grids on different planes in
the scene at a time frame. Here 2 sound object peaks are visible.
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2.2.2 Perspective Weighting

The perspective activity values are combined into merged activity values γi for all points
i = 1...G. The single perspective values in W̃ are weighted according to distance as
proposed in [Hac15] with small modifications.

Distance Weighting

Perspectives are assigned higher or lower importance depending on the distance between
perspective position and the point to be evaluated, ‖si − pp‖. The distance function is
decreasing exponentially limited by a factor δd starting from a minimum distance d0. It is
defined as

D(p, i) = exp

(
−f (‖si − pp‖)2

δd

)
, (2.11)

f(d) = max {0, d− d0} .

The distance map D is the arrangement ofD(p, i) evaluated for all sample points i = 1...G

and perspectives p = 1...P .

D =

D(1, 1) . . . D(P, 1)
... . . . ...

D(1, G) . . . D(P,G)

 . (2.12)

The distance map D is applied to W̃

W = W̃ ◦ D. (2.13)

The denotation "◦" describes the Hadamard product which is the element-wise mul-
tiplication of two M × N matrices, e.g. C = A ◦ B where Cij = AijBij for all
i = 1...M, j = 1...N .

Acoustic Activity Value Computation

Row-wise computation of l-norms of the distance weighted activity map W

γi =

[
P∑
j=1

(Wij)
l

] 1
l

for i = 1...G (2.14)

yields the acoustic activity values for all sample positions as the G × 1 vector γ. In
practice, norms close to one, 0� l ≤ 1, proved to be best suitable.
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(c) Effect of the distance map with
δd = 12 and d0 = 0m shown on
horizontal planes.
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(d) Effect of the Distance map with
δd = 12 and d0 = 0m shown on
vertical planes.
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(e) Effect of the distance map with
δd = 2 and d0 = 0m shown on hor-
izontal planes.
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(f) Effect of the Distance map with
δd = 2 and d0 = 0m shown on ver-
tical planes.

Figure 2.4: The distance map is applied and results in more focused peaks for sound ob-
jects. The distance factor δd should be chosen with regards to the perspective distribution
in use. All data visualized here is normalized to a maximum of 1.



Chapter 3

Sound Object Tracking

Objects in the scene are tracked by particle filters, which are a proven method of temporal
object tracking from noisy observations of various types of measurement such as distance
measurements in robotics or in this case directional information of the perspectives.

Derived from [VMR07] and [KG18], the observations are evaluated by applying transi-
tional probabilities to already tracked source positions as well as the probabilities of new
sources and false positive observations. The particle filters for tracking are managed by a
probabilistic birth-death algorithm.

The algorithm and particle-filter tacking of sound objects are explained in detail in this
chapter.

3.1 Observations of Acoustic Activity

Multiple particle filters are used to track sound objects via peaks detected in the acoustic
activity map. However, it is necessary to introduce a method to initialize and remove
particle filters depending on observations of detected sound objects. Objects can appear
or disappear in a dynamic sound scene over time, thus an algorithm is introduced to detect
such events.

The acoustic activity map introduced in Sec. 2.2 represents the instantaneous sound object
activity in the scene and it is used by a probabilistic birth-death algorithm that detects the
number of potential sound objects and determines the number of required particle filters.

The concept of particle filter application in this work will be explained in Sec. 3.3.

The target space is sampled by an equidistant grid in three dimensions, yielding the grid
positions gi =

[
gx,i gy,i gz,i

]T
where i = 1...G is the number of grid points. Along

this grid, the activity map is evaluated and used subsequently. Since grid and perspective
positions are static, decoding matrices of Eq. (2.7) that are required for the activity map

19
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(a) X-Y (b) X-Z

Figure 3.1: The relevant parts of the sound scene is sampled by a equidistantly spaced
three-dimensional grid.

can be pre-computed for all perspectives. Furthermore, the grid-direction mapping and
distance is static as well, so also the distance map of Sec. 2.2.2 can be pre-computed.

3.1.1 Activity Peaks

The acoustic activity values γi after Eq. (2.14) have to be analysed for peaks. Due to the
changing map whenever a detected peak is to be removed, there is no analytical solution
to the problem of finding global and local maxima. Therefore a different strategy has to
be employed. The procedure introduced here is a greedy sequential algorithm involving a
grid search for the global maximum and a successive deletion of components associated
with each peak detection.

The index j of the maximum of all γi is used to get the grid position gi. j is the argument
of the maximizer

j = arg max
i
γi, for i = 1...G. (3.1)

The grid position and the activity values will be denoted as oq = gj and Γq = γj respec-
tively. Due to this, a sequential method of de-emphasizing and peak picking is applied,
resulting in a set of Q observations per time instant m, denoted as O =

[
o1 ... oQ

]
.

For each observed time frame m, the procedure is repeated unless the successive peaks
are unable to stay within a certain threshold of Lo,dB compared to the first observation
Γ

(m)
1 .
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p3

p2

p1

Ghost peaks
s1

s2

True peaks

Figure 3.2: Combining perspective directional information, here simplified as one line per
sound object and perspective, can yield incorrect peaks in addition to the true peaks. This
is alleviated with (1) the distance map from Sec. 2.2.2 and (2) the peak deletion procedure
from Sec. 3.1.2

.

3.1.2 Peak Deletion

Ghost peaks appear when multiple sound objects and perspectives are in such positions
that the combination of directional information gives more peaks than objects, best ex-
plained by Fig. 3.2. To avoid such peaks, in addition to the distance map (cf. Sec. 2.2.2),
a peak deletion algorithm is introduced.

Once a maximum has been picked, the directional distributions χp for all perspectives are
modified to exclude directional values corresponding to this maximum. A similar concept
is described in [BOS08, BOS10] and especially [Hac15] which uses discrete directional
histograms and Gaussian filters for the removal of peaks. Here, the method relies on peak
deletion in the SH domain.

To achieve the removal of SH components corresponding to a direction pointing to a se-
lected grid position gi, a subtraction from the corresponding distribution χ has to happen
for each perspective. To fully remove the directional information belonging to the peak,
the distribution χ has to be zeroed at the direction associated with the peak. Doing this
in the SH domain requires an evaluation of the initial value regarding that direction and
subtracting correspondingly. The idea is outlined in the subsequent derivation.

Directional Peak Deletion

In a continuous-direction pattern, here denoted as x(θ), we want to zero the value for a
certain direction θ0 by subtracting another pattern g(θ) yielding a modified directional
pattern x̃(θ),

x̃(θ) = x(θ)− x(θ0)g(θ).
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The modified pattern x̃(θ) has to vanish for θ0

x̃(θ0) = x(θ0)− x(θ0)g(θ0) = 0. (3.2)

This is satisfied whenever the pattern g(θ) is 1 at θ0,

g(θ0) = 1.

To further look at this, the arbitrary directivity pattern G is introduced and the following
transformations into the SH domain are performed:

x̃(θ) = y(θ)Tχ̃, (3.3)

x(θ) = y(θ)Tχ, (3.4)

g(θ) = y(θ)TG. (3.5)

The orthogonality of the SHs gives the identity,∫
θ∈S2

y(θ)y(θ)Tdθ = I.

The subtraction of the patternG from the original χ can be denoted as

χ̃ = χ− x(θ0)G,

and using Eq. (3.4), x(θ0) can be substituted and results in the modification step of the
directional distribution χ:

χ̃ =
(
I−Gy(θ0)T)χ. (3.6)

Since the pattern G to suppress the peak is arbitrary, it can be chosen to be an order-
weighted version of y(θ0), G = diag {ã}y(θ0) to adjust its width. With this weighting,
Eq. (3.6) turns into the application of a peak deletion matrix

χ̃ =
(
I− diag {ã}y(θ0)y(θ0)T)χ. (3.7)

Normalization: Due to the condition Eq. (3.2) for zeroing at θ0, now written as

y(θ0)T ((I− diag {ã}y(θ0)y(θ0)T)χ) = 0

we can see that there is a restriction on ã. Simplifying this yields

y(θ0)Tdiag {ã}y(θ0)
!

= 1,
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(a) Original (peak at -45,-40) (b) After peak deletion (peak at 45,0)

Figure 3.3: The SH deletion function removes parts of the SH directional distribution.
On the left it shows a 8th order SH directional distribution. 3 distinct peaks from sound
sources are visible. The values are normalized to a maximum value of 1. The right depicts
two remaining peaks after deletion with θ0 towards a peak direction and a constant order
weight of ai = 4π

N
, i = 1...(N+1)2 and re-normalization. Both are Mollweide projections

[Sny87] decoded to 1000 equally distributed sample directions for visualization.

which prompts that any ã can be normalized to be satisfactory by normalization as fol-
lows:

a =
ã

y(θ0)Tdiag {ã}y(θ0)
. (3.8)

Whilst this deletion function assures a value of zero at the direction θ0, negative values
can result from this operation at neighbouring locations θ 6= θ0, depending on a, i.e. the
width of the deletion pattern. These negative values generally do not pose an issue when
the a-order-weighted SH pattern is kept narrow enough. Furthermore, negative values
do not affect the result in any impeding way, as the combination of perspectives stays
monotonically increasing towards peak values.

Algorithm Summary

A complete run of the activity peak picking procedure in an observed time frame m is
summarized in Algorithm 3.1. The sequential peak picking and deletion yields global and
local maxima.
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Algorithm 3.1: Peak picking and deletion

Data: Perspective directional distributions χ(m)
p , grid points gg, level threshold

Lo,dB, maximum number of observations Q
Result: Set of observation coordinates O (m) =

[
o1 ... oQ

]
and observation

values Γq

(3) while Γq ≥ Γ1 · 10
Lo,dB
20 AND q ≤ Q do /* as long as above level

threshold and max. number of observations not reached */

(1) Combination of directional information into map according to Eq. (2.14):

γi =
[∑P

j=1 (Wij)
l
] 1

l
for i = 1...G.

(2) Pick the maximum and get grid position (Sec. 3.1.1):
Γq = max

i
γ

(m)
i , for i = 1...G.

oq = gj, where j = arg max
i
γ

(m)
i , for i = 1...G.

foreach p = 1...P do /* Peak deletion for all perspectives */
(a) Calculate direction vector θp from perspective pp to the observation oq.
(b) Apply peak deletion to χp in direction θp (Eq. (3.7)).

end

end

3.2 Validation and Detection Algorithm

The instantaneous observations from the sequential peak picking procedure have to be
evaluated for their viability. This is achieved by assigning transitional probabilities be-
tween observations and probabilistic hypotheses for each possible state including current
tracked sound objects, new objects as well as false detections. This probabilistic proce-
dure is modified from [VMR07, KG18], while the basic concept is related to the field of
Signal Detection Theory (cf. [MC04]). Fig. 3.4 gives a simplistic overview.

3.2.1 Transitional Probabilities

All instantaneous observations that are potential sound object locations for time instant m
are denoted as O (m) =

[
o1 ... oQ

]
. The set of all observations up until the current time

is denoted as O(m). To express how likely an observation is a true sound object and not a
false detection, the probability Pq is introduced.
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1

2

Tracked sound objects
(Hypotheses)

Observations

Transitions
(probabilities)

False Detection
(Hypothesis)

New Sound Object
(Hypothesis)

1 2

FA N

N

FA

Figure 3.4: Illustration of transitional probabilities. The instantaneous observation magni-
tudes express probability values controlling their potential of getting instantiated or con-
tinued as sound object or on the other hand getting identified as a false detection. The
sum over all classification probabilities has to fulfil

∑
P = 1.

This value is dependent on the observed peak magnitude relative to the largest, first peak
Γ1 (cf. Algorithm 3.1) via the following definition:

Pq =
Γq
Γ1

(3.9)

The probability of observing at the position o(m)
q at the time instant m is modelled by a

multivariate Gaussian distribution around a known sound object position

p(oq|x̂s) = N (oq, x̂s,Σ s). (3.10)

This known position is the estimate x̂s of a particle filter and the distribution is dependent
on the covariance matrix Σ s, which is estimated from a sequence of particle positions (cf.
Sec. 3.3)

Σ s = µCov {xi} . (3.11)

The factor µ allows the covariance to be scaled. This gives us the possibility to change
the detection radius of a tracked sound object on the observation algorithm. A larger
detection radius means that observations in proximity of a tracked source are more likely
to be regarded as associated with it and vice versa. Also, for further description of the
transitional probabilities, we define the following hypotheses:

Hfa: The observation is a false detection.
Hnew: The observation is an untracked/new sound object.
Hs: The observation belongs to an already tracked sound object s.



26 Chapter 3 - Sound Object Tracking

These hypotheses, represent a mapping between observations and detected sound objects,
false detections, and new objects. The mapping is expressed as association functions
which are defined as

fr(q) =


−2, Hfa

−1, Hnew

s, Hs

. (3.12)

This mapping is done in a probabilistic sense, so that the conditional probability of a con-
sistent mapping from the given observations O(m) is denoted as P (fr|O(m)). These asso-
ciation probabilities are given in greater detail below. All possible observation-hypothesis
mapping combinations have to be evaluated for the marginal probabilities of the hypothe-
ses. With S currently tracked sound objects and Q observations for the time instant m,
this results in r = (S + 2)Q possible combinations to be evaluated. The marginals, as
transitional probabilities, are defined as the sum over all possible combinations

Pq(Hfa) =
∑
r

δ−2,fr(q) P (fr|O(m)), (3.13)

Pq(Hnew) =
∑
r

δ−1,fr(q) P (fr|O(m)), (3.14)

Pq(Hs) =
∑
r

δs,fr(q) P (fr|O(m)). (3.15)

Their sum is one, Pq(Hfa) + Pq(Hnew) +
∑

S Pq(Hs) = 1. The Kronecker delta denotes
the selection from P (fr|O(m)) for the specific result of the association function fr(q)

that numerically represents the hypothesis. To illustrate this, Fig.3.5 shows a minimal
example.

For all mapping combinations r, all the existing association probabilities P (fr|O(m)) are
defined by Bayes’ rule

P (fr|O(m)) ∝ p(O(m)|fr)P (fr) (3.16)

with omitted denominator as normalization can be done later on.

Assuming conditional independence of the observations for all q, the probability densities
p(O(m)|fr) for a specific hypothesis fr given the particular probabilities of the individual
Q observations is

p(O(m)|fr) =

Q∏
q=1

p(o(m)
q |fr(q)), (3.17)

with p(o(m)
q |fr(q)) =


Pfalse(o

(m)
q ) if fr(q) = −2

Pnew(o
(m)
q ) if fr(q) = −1

use Eq. (3.10) else

. (3.18)



3.2 - Validation and Detection Algorithm 27

Pfalse(o
(m)
q ) and Pnew(o

(m)
q ) represent knowledge of probable sound object locations prior

to this whole process, for example the exclusion of or emphasis on certain volumes, be it
physical obstacles or a more frequented stage area. In general, if there is no knowledge,
the probability is assumed to be an equal distribution over the entire room volume, they
are consequently Pfalse(o

(m)
q ) = Pnew(o

(m)
q ) = 1

G
. G is the number of grid locations being

used to select observations.

Further, the prior probabilities for the association functions are calculated by using the
ratio Pq (cf. Eq. (3.9))

P (fr) =

Q∏
q=1

p(fr(q)), (3.19)

with p(fr(q)) =


Passoc,false(1− Pq) if fr(q) = −2

Passoc,newPq if fr(q) = −1

PqP
(m)
obs (fr(q)|O(m−1)) else

. (3.20)

This introduces a new set of probabilities:

Passoc,new and Passoc,false are empirically set to 0.2 and 0.8 respectively and are basically
parameters that fine-tune the impact of the observation viability Pq, as defined by Eq. (3.9),
which in turn is dependent on acoustic activity map peak values.

The expression Pobs(fr(q)|O(m−1)) = Pobs(s|O(m−1)) is the probability of a sound object
s being observable at the time instant m. This is defined as the product of the existence
probability and the activity probability, which represents the probability of the sound
object being active regardless of being observed or not.

This existence probability is defined recursively as proposed in [VMR07] as

P
(m)
exist(s|O(m−1)) = P (m−1)

q + (1− P (m−1)
q )

P0P
(m−1)
exist (s|O(m−2))

1− (1− P0)P
(m−1)
exist (s|O(m−2))

. (3.21)

Here, P0 = 0.5 is the prior probability that a sound object is not observed even if it exists.
This recursion evaluates the probability of existence at time instant m using the value
P

(m−1)
exist (s|O(m−2)) of the previous time instant as well as the observation viability Pq.

In practice, whenever the existence probability reaches a certain threshold of 0.98, it is set
to 1 and will not be updated further, since the existence of the sound object is considered
sufficiently certain.

The activity probability is calculated involving past and current sets of observations. First,
the instantaneous activity probability P (m)

active is defined as the sound object probability of
the last time frame,

P
(m)
active(s|O(m−1)) = P (m−1)

s . (3.22)
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Σ Σ Σ

δ
δ

δ

Π

q=1 q=2

r=1

r=(S+2)
Q

-2,fr(q)

-1,fr(q)
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Figure 3.5: The set of mapping functions fr is applied to all observations in all combina-
tions of hypotheses. The r = (S+2)Q possible combinations are evaluated by computing
the probabilities p(o(m)

q |fr(q)), see Eq. (3.18) and the priors p(fr(q)), see Eq. (3.20) for all
q = 1...Q and multiplication per combination. This yields probability values P (fr|O(m))
in Eq. (3.16) for the r combinations. At this point, the previously omitted normalization
happens in discrete form through division by the sum. Then, the Kronecker deltas are
used to compute a selective sum.

Secondly, an activity state model is defined as a first-order Markov process using proba-
bilities for transitioning from (1) active state to active state and (2) from inactive state to
active state again (cf. [VMR07]):

P
(m)
active(s|O(m−1)) = P (active|active)P

(m−1)
active (s|O(m−1)) (3.23)

+ P (active|inactive)
[
1− P (m−1)

active (s|O(m−1))
]
. (3.24)

These state transition probabilities are set to P (active|active) = 0.95 and P (active|inactive) =

0.05. For equiprobable active and inactive states, the probability for the current set of ob-
servations is provable to be

P
(m)
active(s|O(m)) =

1 +

[
1− P (m)

active(s|O(m−1))
] [

1− P (m)
active(s|O(m))

]
P

(m)
active(s|O(m−1))P

(m)
active(s|O(m))

−1

. (3.25)

Finally, the algorithm described in this section yields the following values:

P
(m)
q (Hfa) is the probability that the observation o(m)

q is a false detection.

P
(m)
q (Hnew) is the probability that the observation o(m)

q is a new sound object.

P
(m)
s =

∑Q
q=1 P

(m)
q (Hs) is the probability that the sound object s has been observed at

time instant m.
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3.3 Object Tracking

The procedure introduced in Sec. 3.1 yields a set of observations O and the algorithm from
Sec. 3.2 maps these to existing sound objects, detects new and false object observations
and yields transitional probabilities for all these hypotheses. The probabilities will be
used to manage a set of particle filters, by instantiating and removal, as explained later in
Sec. 3.3.2.

First however, since the observations are instantaneous for m, most certainly noisy and
do not necessarily yield time-continuous trajectories for sound objects, particle filters are
introduced to track objects. Moreover, these particle filters do not use the set of obser-
vations for estimation but instead directly use the acoustic activity map, as introduced in
Sec. 2.2.

3.3.1 Particle Filters

Particle filtering is a method of numerical integration to track objects from noisy obser-
vations. It is part of the Monte-Carlo type analysis methods which replace closed form
computation of statistical quantities with drawing samples from distributions and estimat-
ing by sample averages. Important literature on the basic concepts is [Efr93,LC95,Fea98,
Kit96, LC98, Kit96, CCF99, DdFG01, Sär13].

When a probability density function is not known directly then calculation of statistical
quantities is not possible. In the context of this application, the density function is the
three-dimensional probability density of sound objects pobj(x) and unknown. However,
the acoustic activity map can be used to compute approximations of such statistical quan-
tities, e.g. the mean. For now, assume exactly one active sound object and therefore one
maximum in the acoustic activity map.

We represent the sound object as a set of N particles, each represented by a state vector
holding position xi and velocity ẋi

si =
[
xi yi zi ẋi ẏi żi

]T
=

[
xi
ẋi

]
. (3.26)

To approximate the density function, the particle set S(m) =
[
s1 ... sN

]
is introduced

as well as and the weights q(m) =
[
q1 ... qN

]T
, which express the importance of each

particle. The particles are sampled from a known distribution, e.g. a uniform distribution.
Each particle si represents a hypothesis of sound object. The likelihood of this hypothesis
is expressed by its weight qi, which is calculated in the importance sampling (IS) step. For
a complete derivation of the probabilistic framework behind this step, refer to [Sär13]. For
this application, the computation is done by evaluating the acoustic activity, as defined by
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Eq. (2.14), at the N particle positions si followed by the normalization of the sampled
activity values

qi =
γi∑N
j=1 γj

for i = 1...N. (3.27)

The weighted sum over the set of N particles S is

ŝ =

[
x̂
ˆ̇x

]
= Sq. (3.28)

The position x̂ is the estimate of the mean of the probability density of sound objects
pobj(x). Since we assumed one active sound object for now, this holds true, however if
more object peaks are present in the acoustic activity map then this does not represent
a valuable estimation. This problem is addressed by limiting particle sampling to local
maximums. This concept is visualized in Figure 3.6b.

In case prior knowledge of sound object distribution is available, the sampling of particle
positions can be more intricate. This is the case when a new object is detected by the
algorithm introduced in Sec. 3.2. Whenever this happens, a multivariate Gaussian distri-
bution with the mean at the observation position oq is used to sample the initial particle
state vectors

si ∼ N (oq,Σinst). (3.29)

The covariance matrix of this distribution is defined depending on the grid spacing dgrid

of the observation picking algorithm

with Σinst = diag
{[
d2

grid d2
grid d2

grid 0 0 0
]}

Since this initial distribution of particles is now centred around this new presumed sound
object, the approximation is not representing the entire object density function but just
sampling the local maximum. The mean x̂ yields now a good estimation of this local
maximum position and further allows us to estimate multiple of those.

If a physical sound object moves then the estimation loses accuracy as the activity peak
moves away from the high but static sampling density. Therefore a state-space model is
introduced. We can predict the state of a particle from its previous state

s
(m)
i = Ms(m−1)

i
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by applying the system matrix

M =



1 0 0 ∆t 0 0

0 1 0 0 ∆t 0

0 0 1 0 0 ∆t

0 0 0 adyn 0 0

0 0 0 0 adyn 0

0 0 0 0 0 adyn


.

However, the unpredictability of real dynamic systems requires the addition of process
noise which is modelled as a multivariate Gaussian distribution

Q(m) ∼ N (0,Σprocess) (3.30)

to the model which becomes

s
(m)
i = Ms(m−1)

i + Q(m). (3.31)

This process noise only affects the velocities of particles, as seen in the definition of the
covariance matrix

with Σprocess =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 bdyn 0 0

0 0 0 0 bdyn 0

0 0 0 0 0 bdyn


.

This model is called the excitation-damping dynamical model [WLW03a] and uses two
factors defined as

adyn = e−αdyn∆t, (3.32)

bdyn = βdyn

√
1− a2

dyn. (3.33)

They factors for αdyn and βdyn can be defined for different dynamic scenarios. The first
factor influences the damping of the velocity of existing particles, the second one the
variance of the process noise. For the given problem, the chosen values were αdyn = 2

and βdyn = 0.04. The time step ∆t is the time between prediction steps which is the length
of a time frame in seconds. Each time instant m, the prediction is done first before weight
computation. This procedure is called sequential importance sampling (SIS) in literature
such as [Sär13].

Finally, importance resampling, the replacement of low-weight particles with high-weight
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particles, is introduced. This is necessary to solve the degeneracy problem which can
lead into situations where almost all particles have zero or close to zero weights. The
resampling can be done by methods such as multinomial (cf. [Efr93, CCF99]), residual
(cf. [Whi98,LC98]), stratified (cf. [Kit96,Fea98]) and systematic resampling (cf. [Whi98,
CCF99]) which is the approach which proved effective for this application.

A simplified one-dimensional example of the entire procedure being, in literature referred
to as sequential importance resampling (SIR), is shown in Figure 3.6a and applied to this
application listed in Algorithm 3.2.

The end result and purpose of applying particle filters in this work is a set of S position
estimates which are the Cartesian coordinates x̂s gathered in the weighted particle mean
computed using Eq. (3.28) for each detected sound object.

Algorithm 3.2: Sequential importance resampling

On particle filter initialization, draw N samples si, Eq. (3.29):

si ∼ N (oq,Σinst), i = 1, ..., N ;

set q(0)
i = 1

N
.

for m = 1 to M do /* for all time steps M */
(2) Process noise, Eq. (3.30):

Q(m) ∼ N (0,Σprocess)

(2) Prediction step, Eq. (3.31):

s
(m)
i = Ms(m−1)

i + Q(m), i = 1, ..., N.

(3) Acoustic map evaluation, Eq. (2.14) / weight calculation:

qi = γi∑N
j=1 γj

for i = 1...N.

(4) Particle mean / position estimation, Eq. (3.28):

ŝ = Sq

(5) Systematic particle resampling, [Whi98, CCF99].
end
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Figure 3.6: (a) The process of SIR as explained in Sec. 3.3. The steps pictured are repeated
for each time frame m. (b) The weighted particle means of locally limited sample groups
(2) are good estimates of local peaks in a density function compared to global sampling
(1).

3.3.2 Particle Filter Management

As described in the previous section, the particle filter tracks single sound objects using
the acoustic activity map. Therefore, increasing the number of sound objects to track
requires the same increase in the number of particle filters which in turn necessitates a
management system for particle filters. For each time instant m, a set of observations
and transition probabilities is computed as described in Sec. 3.2.1. These probabilities de-
scribe the association between observations and tracked sound objects. The probability of
an observation being a new sound object P (m)

q (Hnew) is used to instantiate a new particle
filter when certain conditions are met. Similarly, particle filters that are tracking sources
with a low probability for continuation P (m)

s are removed from calculations.

Instance Pool

To manage the resources of the systems, a pool of particle filters is used. This entails
a set number of pre-allocated particle filters to be used when necessary. When a new
instance is required, the first free space in the pool is selected. In case no pre-allocated
instances are available, the request is ignored. The size of the pool should therefore be
chosen so it roughly reflects the maximum number of sound objects expected to be active
concurrently.
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Initialization

Whenever the transitional probability P (m)
q (Hnew) of an instantaneous observation reaches

a certain threshold, e.g. 0.8, a new particle filter is requested from the instance pool. The
particles of the filter are initially sampled from a three-dimensional Gaussian distribution
with its mean at the observation oq and a variance in relation to the grid spacing as was ex-
plained in Sec. 3.3.1. The sound object probability P (m)

s is set to P (m)
q (Hnew). The sound

object is marked as active when the sound object probability P (m)
s is above a threshold for

a certain duration tactive, e.g. 0.1 seconds, to avoid spurious detections.

Deletion

Inversely to the activation, when P
(m)
s stays or falls below the threshold for a certain

duration tinactive, e.g. 0.5, it is regarded as inactive and the particle filter is deactivated and
its resources in the instance pool are freed.

3.4 Anti-causal Processing of Onsets

Since the algorithm needs to ensure certainty of object existence before beginning track-
ing, it can happen that objects are detected a few frames later that they actually appear.
This could mean that important transients or onsets would be lost. Therefore, parts of
the process are repeated as an anti-causal process. This restores the timely tracking of
sound objects right from the moment on they physically appear in the scene and therefore
improves the audio quality in playback. The acoustic activity map values of the causal
processing can be stored and reused to save computation time.

For each detected sound object in the scene being analysed, the anti-causal processing
starts in frames in which a new particle filter becomes active. For the anti-causal process-
ing, the sequence of time instants m is reversed from (m)→ (m+ 1) to (m)→ (m− 1)

and the detection algorithm as well as the dynamic system require some changes outlined
below.

3.4.1 Anti-causal Detection Algorithm

The algorithm is executed in the anti-causal time direction of acoustic map values in the
same manner as on the causal direction, with the notable change of switching the durations
tactive and tinactive. Since this is used for the continuation of sound object trajectories which
have been detected already, the decision operation for the detection of new sound objects
is deactivated and P (m)

q (Hnew) remains unused.
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(1)

(2)

(3)

(4)

Figure 3.7: Causal and anti-causal processing. (1) A sound object is active. (2) Causal
processing which yields one object detection event (◦) and one object inactivation event
(♦). (3) The detection event determines the starting frame of the anti-causal processing,
which is active until the objects is considered inactive. The anti-causal processing interval
is marked with a dotted red line. (4) This greatly improves the detection of object signals
in regards to onsets.

This leads to the possibility that anti-causal computation only occurs whenever necessary.
Hence, only time instants are considered at which detection events are located by the
causal processing, and the anti-causal processing indicates that the sound objects is still
active. This is visualized in Figure 3.7 as a dotted red line.

3.4.2 Anti-causal Particle Filter Prediction

The prediction step of the particles dynamic model, as defined by Eq. 3.31, can simply
be reversed in time by changing the sign of the frame time ∆t in the system matrix M.
The prediction, computation of particle weights and position estimation are only done for
times instants m at which the causal processing has not instantiated the object as active
yet.
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Figure 4.1: The sound objects have to be encoded regarding their relative position to
the listener perspective. This happens through the concept of Ambisonics which enables
easy methods of rotation and decoding to different playback devices. The listeners head
position and rotation is tracked and used to compose the presented perspective.

After analysis of the sound scene using the perspective recordings, the information re-
trieved is used to recreate the sound scene for a virtual listener as closely to the original
as possible. A listener should be able to move freely in all three dimensions including a
free rotation of their perspective. This is facilitated by composing a listener perspective
in the Ambisonics domain. The sound objects are encoded and attenuated depending on
the relative position to the virtual listener.

To facilitate audio rendering, the virtual listener head position and head rotation is re-
quired. First one, further referred to as listener position and denoted as the three dimen-
sion column vector pl, as well as the 3× 3 head rotation matrixRl can be made available
through a data stream of various kinds. Numerous types of devices such as dedicated head
trackers or head-mounted displays of commercial VR hardware are capable of delivering

37
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this data.

The target auditory perspective is represented as a fifth-order Ambisonics signal rendered
for the listener position. This perspective is rotated to fit the listeners head rotation and
decoded to a binaural listening device, i.e. headphones.

4.1 Sound Object Encoding

The main non-audio information characterizing sound objects in the sound scene is its
trajectory. Its analysis and tracking was described above. Since the audio information is
available only at the perspective positions in form of the microphone recordings of the
tetrahedral arrays, signals to be embedded as sound objects have to be extracted.

This is done via a minimum-variance distortionless response (MVDR) beamformer using
available positional information to separate the sound object signals.

The following sections explain the method to extract perspective-wise sound object sig-
nals

sobj,s(t)

from the array microphone signals
sp,i(t)

and combine them into the approximated direct signals

s̄s(t).

4.1.1 Object Signal Extraction with Mixed MVDR

The mixed MVDR approach is a beamforming technique that is based on a combination
of minimizing the overall energy of the beam towards a steering vector and minimizing

pp

θ1

θ2

θ3

θ4

x4

x3

x2

x1
^

^

^

^

Figure 4.2: One perspective and four sound objects.
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the influence of certain disturbing signals whose directions are known.

Taking into account only one of the perspectives indexed as p with its position pp, we can
calculate unit direction vectors for the estimated sound object positions x̂i (cf. Eq. (3.28)),
as shown in Fig. 4.2, as

θi(t) =
x̂i(t)− pp
‖x̂i(t)− pp‖

. (4.1)

We assume four distinct sobj,i(t) arriving at the microphone array from the directions θi,
both with i = 1...4. The SH domain lets us describe this as the following:

ψ(t) =
4∑
i=1

y(θi)sobj,i(t) = Ysobj(t). (4.2)

However, since the object signals are unknown, they have to be extracted from the SH
signals which are first-order Ambisonics in our case, and which are characterized by the
four array microphone signals sp,j(t), j = 1...4 for perspective p, encoded in their array
directions θci (cf. Eq. (1.1)), which can be denoted as

ψ(t) =
4∑
j=1

y(θci)sp,j(t). (4.3)

Now, trying to extract the object signal arriving from the direction θ1, we define a signal
estimation by left multiplication of a combination vector g1 with Eq. (4.2):

sobj,1(t) ≈ gT
1 Ysobj(t). (4.4)

To find the weights in this vector, we formulate a minimization problem:

minimize a gT
1g1 + b gT

1 YYTg1, subject to g1y(θ1) = 1. (4.5)

For the subsequent steps the SH weights y(θ1) are simply denoted as y1.
Eq. (4.5) denotes a mixed problem which is best explained per the following two cases:

a = 1, b = 0 : The minimization of
gT

1g1

results in a minimum-energy directivity pattern of the entire beamformer.

a = 0, b = 1 : Minimizing
gT

1 YYTg1

or equivalently ∥∥gT
1y(θ2)

∥∥2
+
∥∥gT

1y(θ3)
∥∥2

+
∥∥gT

1y(θ4)
∥∥2
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reduces the influence of the signals sobj,2(t),sobj,3(t) and sobj,4(t) on the approximation of
sobj,1(t) (cf. Eq. (4.4)) and thus the cross talk. A composite cost function for this mixed
minimization problem becomes

Ĵg1 = gT
1

(
aI + bYYT) g1, subject to g1y1 = 1. (4.6)

Using Lagrange multipliers to implicate the constraint leads to the new cost function

Jg1 = gT
1

(
aI + bYYT) g1 + λ (g1y1 − 1) , (4.7)

(4.8)

which can be differentiated regarding gT
1 as well as λ and zeroed,

∂

∂gT
1

Jg1 = 2
(
aI + bYYT) g1 + λy1 = 0, (4.9)

∂

∂λ
Jg1 = g1y1 − 1 = 0. (4.10)

Solving Eq. (4.9) for g1 results in

g1 = −λ
2

(
aI + bYYT)−1

y1, (4.11)

and substituting this in Eq. (4.10) lets us solve for the Lagrange multiplier yielding

λ = − 2

yT
1

(
aI + bYYT)−1

y1

. (4.12)

Further, re-substituting Eq. (4.12) into Eq. (4.11) gives us g1, being the solution to the
minimization problem for the approximation of signal sobj,1(t). Expanding this to all
signals yields a matrix G

g1 =
(
aI + bYYT)−1

y1

[
yT

1

(
aI + bYYT)−1

y1

]−1

, (4.13)

G =
(
aI + bYYT)−1 Y diag diag

{
YT (aI + bYYT)−1 Y

}−1

. (4.14)

The approximation of the desired object signal can now be calculated by Eq. (4.4).

In case that less than 4 sound object positions are concurring at a time, the remaining
directions have to be selected systematically for good conditioning so that the inversions
in Eq. (4.13) and Eq. (4.14) are possible.

In practice, the case where 0� a ≤ 1 and 0 ≤ b� 1 is better suited for signal extraction
in this application, since it has a stable directional pattern not dependent on the 4 signal
directions. Other cases can lead to instabilities in gains when non-optimal conditioning
of the directions appears. e.g. when all four sound objects lie close together seen from
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a perspective. This can lead to strong interference of unwanted signals in environments
such as reverberant rooms or more generally diffuseness in perspective recordings.

4.1.2 Triplet-Based Signal Extraction

Extraction of direct signals, as explained in the previous section, is done for three perspec-
tives spanning the smallest triangle around the sound object location to get the best SNR.
It is to note that since the perspective positions are not necessarily distributed on a plane, a
projection of these positions onto the horizontal plane by omitting the z or more generally
the upward coordinate is necessary for this. All subsequent explanations are expandable
to three dimensions introducing tetrahedrons instead of triangles.

The triplets in question can be determined by algorithms pre-computing all smallest trian-
gle combinations for a set of perspective positions or can be done manually for small sets.
Selecting three perspectives obviously implies that three extracted signals are available
and have to be combined reasonably.

First, the areal coordinates are introduced, cf. [Hil82]. This type of coordinates is best
explained by partitioning the area of the triangle into three sub triangles, as Fig. 4.3 shows
for vertex p = 1. The relation of areas

Area sub triangle
Area whole triangle

defines the weight or in this case gain of the vertex. The concept is explained for the two
dimensional case only as expanding to three is straightforward.

Given the sound object position x̂s and the triplet perspectives p with i = 1...3, the areal
coordinates superimposing the signals from the perspectives are denoted as gtri,s,i here. If
the object position is within the triangle then gtri,i ∈ [0, 1]. The calculation is as follows:
By inverse multiplication we get from[

p2 − p1 p3 − p1

]
gs,23 = (x̂s − p1) ,

to
gs,23 =

[
p2 − p1 p3 − p1

]−1
(x̂s − p1) .

Then the remaining gain for the first perspective is simply

gtri,s,1 = 1− gTs,2312×1,

gtri,s =

[
gtri,s,1

gs,23

]
=

gtri,s,1

gtri,s,2

gtri,s,3

 .
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p3

p2

p1

xs

θop,2
θop,3

θop,1
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^

Figure 4.3: The three perspectives forming the smallest triangle around the sound object
position are used for signal extraction. These signals are combined by a mixed weighting
procedure. First the aerial coordinates provide preliminary gains for the perspectives by
relating the sub triangles opposite of the perspective, as e.g. indicated by the grey area for
p = 1, to the entire area spanned by p1,p2,p3 (cf. Eq. (4.15)). Secondly, these gains are
multiplied with a directional gain as introduced by Eq. (4.19) using the unit length vectors
θol,s and θop,i.

These gains are continuous for all cross-triplet transitions. However, to consider the direc-
tional radiation of the sound object, the areal coordinates approach is expanded. Fig. 4.3
shows the object-listener direction and distance

θol,s =
plist − x̂s
‖plist − x̂s‖

(4.15)

dol,s = ‖plist − x̂s‖ (4.16)

and object-perspective directions and distances

θop,i =
pi − x̂s
‖pi − x̂s‖

(4.17)

dop,i = ‖pi − x̂s‖ (4.18)

for the detected sound object s. The expansion considers the alignment between the
directionally radiated sound that should arrive at the listener and the recording perspective
that is best aligned with this direction. This is done a cardioid function in the form of

gdir,s,i =

[
1

2

(
θT

op,iθol,s + 1
)]α

(4.19)

which is a straightforward way to acquire a measure for this alignment. The exponent
α facilitates control over the cardioid order and influence of the directional alignment of
the recording perspectives with the radiation direction to the listener. Finally, perspective-
wise multiplication of the corresponding values obtained by combining both methods and
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normalizing the result to a sum of 1 yields the squared single signal gains for sound object
s and triplet perspective i

gs,i =

√
gtri,s,i gdir,s,i∑3
j=1 gtri,s,j gdir,s,j

. (4.20)

The approximated direct signal is now a combination of the extracted object signals
sobj,i(t) after Eq. 4.4. Before combination, the signals are shifted to compensate the
delayed arrival of sound at the triplet perspectives using the differences of the object-
perspective distances ∆ti ∝ ∆dop,i

s̄s(t) =
3∑
i=1

gs,i sobj,i(t−∆ti) (4.21)

The sound object gain gs for encoding is now calculated according to the distance law
∝ 1

d
. The individual gains gs,i are taken into consideration to ensure consistency with

Eq. (4.21). The values are limited to a maximum of 4 to avoid complications at the edge
case dol,s → 0:

gs = min

{
4,

1

dol,s

3∑
i=1

gs,i dop,i

}
. (4.22)

4.1.3 Encoding

The direction and amplitude are dependent on the relative position of the sound object
to the listener perspective, previously introduced as the object-listener direction θol,s in
Eq. 4.15. The Ambisonics signals are computed by multiplication of the approximated
direct signals s̄s(t) with the appropriate encoder yN(−θol,s). The sum of all encoded
sound object signals yields the direct signal part of the virtual listener perspective

χdirect(t) =
S∑
s=1

yN(−θol,s) s̄s(t) gs. (4.23)

Additional signal delay proportional to the object-listener distance dol,i could be intro-
duced in Eq. (4.23) to ensure time-exact reconstruction, however this showed no audible
improvement compared to the non-compensation approach. Rather, it could yield a time-
varying delay and thus Doppler shifts while the virtual listener is moving fast, which
makes its omission the more robust variant.
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4.2 Residual Signals

The extracted signals are an approximation of the direct signals of the sound objects at
the estimated positions. Under ideal conditions, this implies the absence of room infor-
mation in those object signals. As however, room acoustic information is an important
background information, it has to be considered in the the playback algorithm separately.
The high-order encoding of the direct signals ensures a high definition in auditory local-
ization while the residual signal is necessary to convey the room impression and support
externalization. The computation of the residual signal is explained subsequently.

4.2.1 Perspective Residual Signals

In [GZS+18, ZFSH20] an approach for rendering multi-perspective recordings of scenes
by using Virtual Loudspeaker Objects (VLO) was proposed. In practice, this approach
proved well in terms of object localisation, as shown in [RZF17] but more importantly
yields an appropriate room impression.

Assuming the virtual listener is located at a microphone array center position and only
considering this one recording perspective for now, the approach is best described as a
virtual surround setup with the array microphone signals sp,i(t) as virtual loudspeakers,
see Fig.4.4a. These virtual loudspeakers are located at a finite distance R in the array
microphone directions θci (from Eq. (1.1)). The distance R permits a shift of the listener
perspective off the array center position and the encoding of the VLOs must therefore
happen according to the shifted distance and directions

rp,i = ‖ (pp +Rθci)− plist‖ (4.24)

φp,i =
(pp +Rθci)− plist

rp,i
(4.25)

Before encoding, each signal of the array microphones i = 1...4 is attenuated according to
a gain function incorporating the distance to the VLO and directivity therefore of. Using
the relative distance rp,i

R
ensures unit gain for all array microphones for a centered listener

but needs an extension to avoid gains above unity which is realised as the inverse function.
Therefore the distance gain becomes

gdis,p,i(r, R) =

{
R
rp,i
, for rp,i > R

rp,i
R
, for rp,i ≤ R

. (4.26)

Assuming the location is shifted outside of the radius R, additional attenuation is neces-
sary to avoid incorrect directional mapping when being positioned behind a VLO. There-
fore, the VLOs are modelled with a cardioid radiation pattern resulting in a directional
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(a) Virtual Loudspeaker Objects of one perspective p

p1

p2

x1

x2

^
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(b) Direct signal de-emphasis
of two perspectives and two
sound objects

Figure 4.4: The VLO approach is used as a basis for the residual signals. (a) Virtual
loudspeaker objects are placed around the perspective position and attenuated according
to cardioid radiation patters (blue) and relative listener direction (yellow). (b) The gain
patterns after direct signal de-emphasis are shown in grey.

gain,

gdir,p,i(r) =
(

1− α

2

)
+
α

2
θT

ciφp,i, (4.27)

α =
rp,i

rp,i +Rdir
. (4.28)

While the object direct signals should not contain room information, the residuals should
in turn not contain object direct signals. When object signals cross-talk to the residual
signals, their VLOs would yield multiple instances of the object and hereby deteriorate
their spatial definition. Therefore the approach above is expanded. We apply de-emphasis
to the object signals contained in each perspective to approximate the residuals. Each
extracted sound object signal is used to suppress the perspective signals by attenuation
proportional to the signal strength coming from the object towards the perspective. This
is achieved by computing a moving RMS measure over a time period of ∆tRMS, e.g. 5ms,
of the object signal ss(t) determined as

sRMS,s(t) =

√
1

∆tRMS

∫ t

t−∆tRMS

s̄s(τ)2dτ . (4.29)

Now, a de-emphasis directivity pattern is constructed. This entails the aforementioned
RMS signal values of the detected sound objects and their estimated positions x̂s for the
corresponding time frame. The directional attenuation pattern is computed as the product
of single cardioid patterns directed towards the estimated object positions.
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In order to scale these single directional attenuation patterns, the moving RMS signal
value is compared to a threshold value RMSs. This value is determined manually, empir-
ically, or as the maximum moving RMS value of the extracted signal beforehand. The
attenuation factor ap,s(t) is introduced dependent on the RMS ratio and a distance factor
analogue to Eq. (4.26) but using the object-perspective distance dop,p (cf. Eq. (4.18)) and
the reference distance Rde,

ap,s(t) =
sRMS,s(t)

RMSs
gdis(dop,p, Rde). (4.30)

The unit vector indicating the direction from perspective to sound object is the inverted
directed object-perspective direction −θop,p (cf. Eq. (4.17)). The combination of patterns
now becomes

Gp(t,θ) = 1−
S∏
s=1

ap,s(t)

[
1

2
(1− θop,p(t)θ)

]β
(4.31)

with an exponent β for higher order directivity. Now, this allows us to calculate attenu-
ation factors for arbitrary directions. In our application, this is done with the array mi-
crophone directions for the perspective p, θci (cf. Eq.(1.1)) yielding the final attenuation
factors for the array microphone signals. Combined with the factors from Eq. (4.27) and
Eq. (4.26) this becomes

s̃p,i(t) = sp,i(t)Gp(t,θci) gdis,p,i gdir,p,i. (4.32)

These signals are the attenuated VLO signals which have to be encoded accordingly. Fig-
ure 4.4b visualises the idea of the resulting directivity patterns.

4.2.2 Residual Signal Encoding

The now appropriately attenuated 4 array microphone signals s̃p,i(t) are then multiplied
with the fifth-order Ambisonics encoder [ZF19] for the VLO directions y(φp,i) (cf. Eq. (4.25)).
This yields the residual Ambisonics signals of one microphone perspective from the per-
spective of the listener

χp(t) =
4∑
i=1

y(φp,i) s̃p,i(t). (4.33)

Applying this single-perspective procedure to the recorded perspectives and summation
of the resulting Ambisonics signals delivers the total residual signals for the listener per-
spective

χresidual(t) =
P∑
p=1

χp(t). (4.34)
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Encoding of time-delays to the listener can be omitted to avoid Doppler shifts or interfer-
ence varying with the listener position.

4.2.3 Dynamic Binaural Rendering

As the final step, the direct signal perspective χdirect(t) (Eq. (4.23)) and residual signal
perspective χresidual(t) (Eq. (4.34)) are merged into the complete virtual listener perspec-
tive χ. Using gain values 0 ≤ adirect ≤ 1 and 0 ≤ aresidual ≤ 1 to balance the two partial
perspectives gives control over the effects of both direct and residual part on the listening
experience. The merging is simply done as

χ(t) = adirectχdirect(t) + aresidualχresidual(t). (4.35)

These Ambisonics signals can now be used for any decoding operation, such as binaural
rendering. At this point, the head rotation of the listener has to be taken into account.
Ambisonics signals can be rotated with a (N + 1)2 × (N + 1)2 listener head rotation
matrix Rl(ϕl, ϑl, γl) calculated from the Euler angles ϕl, ϑl, γl being azimuth, elevation
and roll respectively (cf. Fig. 4.1) as

χR(t) = χ(t)Rl(ϕl, ϑl, γl). (4.36)

This can be done in the time or frequency domain. Since the methods to acquire Am-
bisonics rotation matrices from given angles or quaternions are well known, they will not
be further explained, if necessary refer to literature such as [IR96, ZF19]. The rendering
of the Ambisonics signals to a binaural signal is done by an existing MagLS binaural
decoder [SZH18, ZF19] implemented as the IEM BinauralDecoder 1 [Rud19].

4.3 Implementation

The rendering is realized as an application in Pure data [Puc16], which allows users to cre-
ate signal processing algorithms using a graphical object oriented programming language.
The application is the real-time implementation of the signal processing procedures in-
troduced and explained in the previous sections and uses the stored time frame-based
analysis data from the object tracking algorithm introduced in earlier chapters.

1. https://plugins.iem.at/

https://plugins.iem.at/
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Figure 4.5: The user interface of the Pure data application exposes the main features and
controls.

The implementation of a real-time analysis system is not in the scope of this work. How-
ever, a real-time rendering system is necessary for the interactive perceptual evaluation
of the proposed method of rendering. Therefore the analysis procedure introduced in
Chapter 3 as well as the direct signal extraction is done beforehand and the information is
stored for repeated use in the playback algorithm. The gathered trajectory information is
stored as the frame-wise estimated positions of the detected sound objects. Direct signal
extraction is not required to be real-time computable either, as it is only dependent on ob-
ject position. The storage of the extracted audio data is done as .wav files. In a playback
situation, the necessary object and audio data is loaded on-demand.

Analysis Synthesis

This separated implementation still satisfies all requirements for a working prototype of a
rendering application used for evaluation purposes.



Chapter 5

Evaluation

To assess the performance and usability of the proposed method, evaluation steps have
been taken. First, a numerical one performs error measurements in regards to tracking
and detection accuracy. Further, a listening evaluation consisting of 2 experiments on
aspects of the quality of the audio playback algorithm has been conducted. The following
sections introduce the methods and errors measurements used and discuss the results.

5.1 Numerical Evaluation of Object Tracking

5.1.1 Method

The effectiveness of the object tracking algorithm is evaluated by analysing simulated sce-
narios with changing variables, more specifically the noise contamination of the record-
ings and the SH order of the directional distributions in the analysis. A 10m by 10m by
3.5m room is simulated with the MATLAB R© library MCRoomSim 1 [WEJvS10] using the
standard parameters for reflection and attenuation.

An exemplary arrangement of perspectives is used, this being a 4 by 4 by 3 grid at the
center of the room with 1 meter grid spacing as pictured in Fig. 5.1. Illustrated as well
are the four sound object positions used in the static scenario whose positions are listed in
Tab. 5.1. The sound objects are speaker signals from the EBU SQAM collection (Track Nr.
49, 50, 51, 52) [EBU08]. The simulation computes error measures to compare different
noise situations and the influence of the SH order used for the directional distributions.

1. available at https://github.com/Andronicus1000/MCRoomSim

49

https://github.com/Andronicus1000/MCRoomSim
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(a) X-Y view (b) X-Z view

Figure 5.1: The perspective microphone and sound object positions for the analysis. Mi-
crophone arrays are located at 1m intervals ranging from 3.5m to 6.5m on the x and y
coordinate. On the z coordinate axis, the are spaced at 1m as well from 0.5m to 2.5m this
results in 48 virtual microphone arrays. The room dimensions are marked dashed black.

5.1.2 Error Measures

The analysis yields estimated position trajectories for the sound objects which are then
compared to the ground truth employing the following measures.

Mean Distance Error: This measure is defined as the mean distance between the
ground truth to the nearest sound object. Only 1-to-1 mappings are allowed, therefore if
an object is already in use for calculation then the next-nearest will be used if existent.
The measure is computed for every sound object j = 1...4. The distance to the ground
truth is averaged over Ntrial trials and M time frames, if active detected sound objects are
present:

MDEj =
1

Ntrial

Ntrial∑
n=1

1

M

M∑
m=1

min
i

∥∥∥s(m,n)
j,true − ŝ

(m,n)
i

∥∥∥ . (5.1)

Combined Mean Distance Error: This defines the sum of the mean distance errors
over all J = 4 sound objects:

CMDE =
J∑
j=1

MDEj. (5.2)
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Object number X Y Z
1 5.25 m 5.50 m 1.75 m
2 6.00 m 4.75 m 1.50 m
3 5.25 m 4.00 m 1.50 m
4 3.75 m 5.25 m 1.00 m

Table 5.1: The true sound object positions.

Activation Error Time: The detected sound object activity is the time where false
positives or false negatives in sound object activity appear. This is done by summation
of time frame lengths where there is no nearest sound object existent or the sound object
probability is not 1. This measure is potentially harsh as the object detection algorithm
for the rendering has more relaxed thresholds but should nevertheless help assess the
responsiveness of the sound object detection depending on variables such as SNR and SH
order:

AETj =
M∑
m=1

φj,active(m)∆t. (5.3)

φj,active(m) =

{
A

(m)
j,truth if no nearest unassociated sound object existent,

|P (m)
s − A(m)

j,truth| else, s is nearest sound object.
(5.4)

The truth A(m)
j,truth is defined by manual analysis of the sound object signals.

5.1.3 Parameters

The simulation uses a set of parameters listed in Table 5.2 and additionally references
their definitions.
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Parameter Reference Value
Nr. grid points G Sec. 3.1 1521
Grid spacing Sec. 3.1 0.25 m
SH order N Sec. 2.1.2 15
Distance factor δd Sec. 2.2.2 5
Reference distance d0 Sec. 2.2.2 0
SH subtraction weights a Sec. 3.1.2 maxRE

Observation threshold Sec. 3.1.2 -20 dB
SFTF length Sec. 2.1.2 2048 samples
Hopsize Sec. 2.1.2 1024 samples
Smoothing size M Sec. 2.1.2 16
Activation time Sec. 3.3.2 0.1 s
Disable time Sec. 3.3.2 0.7 s
Passoc,false Sec. 3.2.1 Eq. 3.19 0.6
Passoc,new Sec. 3.2.1 Eq. 3.19 0.1
P0 Sec. 3.2.1 Eq. 3.21 0.5
P (active|inactive) Sec. 3.2.1 Eq. 3.23 0.05
P (active|active) Sec. 3.2.1 Eq. 3.23 0.95
µ Sec. 3.2.1 Eq. 3.10 4
Particles N Sec. 3.3.1 100
Damping αdyn Sec. 3.3.1 Eq. 3.32 2
Process noise factor βdyn Sec. 3.3.1 Eq. 3.33 0.04

Table 5.2: The simulation parameters.
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5.1.4 Results

Robustness to Noise

To evaluate the robustness of the sound object tracking to uncorrelated noise, trials are
run for variable noise levels. Ntrial = 20 are run for each SNR in the set of SNRn ∈
{9, 12, 15, 18} dB which has been identified as representative since higher and lower val-
ues yield no significant increase or decrease in results. White noise with normal distribu-
tion is generated independently for each array microphone. The noise has equal energy
on all microphone as the SNR taken into account for noise level generation is measured
between noise and the loudest signal only. The effectiveness of the algorithm is affected
by increased noise level. The results in terms of positional accuracy are relatively constant
up until a SNR between 15dB and 12dB.
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Figure 5.2: MDE of the sound objects 1 to 4 and the CMDE. The decrease of error with
increasing SNR is clearly visible. SNRs larger than the picture maximum do not increase
accuracy further, although a decrease in trial error spread can be seen comparing 15dB
and 18dB. SNRs of 12dB and below are not feasible, as the detection becomes unreliable,
and the position accuracy suffers greatly since the estimates start jumping heavily which
the large 95% confidence intervals suggest.
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(a) Object 1 X-Y (b) Object 1 X-Z (c) Object 1 Y-Z

(d) Object 2 X-Y (e) Object 2 X-Z (f) Object 2 Y-Z

(g) Object 3 X-Y (h) Object 3 X-Z (i) Object 3 Y-Z

(j) Object 4 X-Y (k) Object 4 X-Z (l) Object 4 Y-Z

Figure 5.3: The 95% confidence ellipses of the misalignment between estimated and true
sound object positions after 20 numerical simulation trials for different noise levels. The
increase of spread and therefore decrease in accuracy is observable with decreasing SNR.
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Figure 5.4: As expected, the AET of the sound objects decreases with higher SNR. The
confidence intervals suggest again a strong variation in results indicative of jumping mea-
surements at lower SNRs. Pictured are median, and 95% confidence intervals.
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Figure 5.5: The number of objects being considered active is determined by counting the
tracked objects with Ps > 0.8. Comparing that to the ground truth shows the degrading
effect of lower SNRs (a). Mean activity over all trials of the sound objects 1 and 2 shows
the activity detection working well at higher SNRs. The mean activities jumping between
zero and one as seen at lower SNRs indicates that activity detection stops working prop-
erly and falls to the randomness introduced by the noise.
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Dependency on Order of Spherical Harmonics

The error measures are computed for different orders of spherical harmonics used in the
directional distribution calculation. Here, Ntrial = 20 trials are run to compute the mea-
surements. While higher orders bring more positional accuracy, the effect is not as strong
as seen in case of SNR.
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Figure 5.6: The medians of the MDE and 95% confidence intervals depending on the SH
order shows a decrease towards higher orders. The low spread is indicative of consistent
location detection with more or less constant error distance.
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Figure 5.7: The AET of the sound objects does seem to be affected by the order of SHs,
but is in conjunction with the object location, as e.g. a comparison of object 1 and 3
suggests.
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(a) Object 1 X-Y (b) Object 1 X-Z (c) Object 1 Y-Z

(d) Object 2 X-Y (e) Object 2 X-Z (f) Object 2 Y-Z

(g) Object 3 X-Y (h) Object 3 X-Z (i) Object 3 Y-Z

(j) Object 4 X-Y (k) Object 4 X-Z (l) Object 4 Y-Z

Figure 5.8: The 95% confidence ellipses of the misalignment between estimated and true
sound object positions after 20 numerical simulation trials for different orders of spherical
harmonics. The spread does not increase drastically, however the mean distance appears
to be jointly dependent on order and object-microphone constellation.
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(c) Mean activity of object 2

Figure 5.9: The number of objects being considered active is determined by counting the
tracked objects with Ps > 0.8. Comparing that to the ground truth shows the degrading
effect of lower SH orders (a). Mean activity over all trials of the sound objects 1 (b) and
2 (c) shows the activity on one hand fitting very well over all noise levels. On the other,
looking at sound object 2, shows stronger influence of SH order.

5.1.5 Discussion

The numerical analysis provides insight into the algorithms dependency on noise in the
scene and the order of SHs used for the computation of directional distributions. The
results prove good performance up to 15 dB SNR and showed the necessity of SH order
higher than 8.

The effectiveness of the proposed method seems not to have a linear dependency on SNR
but rather a sharp drop off between 15dB and 12dB with further decrease at 18dB. This
leads to the assumption that a quadratic or exponential dependency on the overall SNR
lies at hand. This could be due to the similar degradation of the directional accuracy of all
microphone perspectives concurrently and the combination thereof through perspective
merging. Further, the non-linearity of the detection algorithm in regards to observation
validation could be a possible cause of the jump in error rates between 12dB and 15dB
SNR.

The order of SH directional distributions is equivalent to the directional resolution with
which the DOA detection of the individual first-order perspectives is considered and in-
tersected in space. It only affects the accuracy of objects in certain positions. Assuming
DOA estimation of the microphone perspective is accurate and without disturbance, then
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large errors due to low-order directional distributions could be assumed to occur when-
ever the intersecting angles of the different directions enclose angles close to 0◦ or 180◦.
Further, multiple object in close proximity to each other influence single object detection
accuracy. Possible quieter objects get pulled towards louder ones especially when direc-
tional resolution is not good enough and smaller peaks are masked by a larger ones. It can
be assumed that the detections of object 2 are pulled towards the center by objects 1 and
3 as observed in Figure 5.8.

5.2 Listening Evaluation

In order to understand how the proposed method compares to selected existing ones, a
MUSHRA-like [ITU15] comparative evaluation was conducted. This method of evalu-
ation presents conditions to a listener while allowing to switch between them and rate
them on a scale of 0 to 100 comparing them to a reference and with each other. For this
particular evaluation, two major parts containing a number of trials were used. The first
part presented static, while the second one dynamic listener perspectives.

Because of the COVID-19 pandemic at the time of authoring this thesis, experimentation
was done using static binaural rendering. Also an initial design of the evaluation using
visualization and interfacing with a head-mounted display was skipped to allow the par-
ticipants to do the test at home. Nevertheless, there is the strong believe that despite this
small inconvenience, all the major characteristics that stem from user-interactive real-time
manipulation were enclosed and could be covered representatively in the evaluation.

5.2.1 Experiment Setup

The evaluation uses a virtual recorded sound scene simulated by the MCRoomSim [WE-
JvS10] library. A 6m by 6m room with a microphone array grid of a 1m spacing, as
shown in Fig. 5.11a, is set up using the default room settings. The array microphone
signals are simulated by using cardioid-type receivers at positions equivalent to Oktava
MK-4012 arrays. A mono recording of a male speaker of the EBU SQAM collection
(Track-Nr. 50) [EBU08] was convoluted with the simulated RIRs for all array micro-
phones and ARIRs of the reference perspectives. A MUSHRA application (cf. Fig. 5.10)
was used to present the conditions to the participant while Reaper 2 provided the audio
playback. The communication between programs was facilitated by OSC 3. The setup
of the evaluation was designed to allow distribution over the internet and participation
at home. A requirement for participation was a high-quality set of headphones and the

2. https://www.reaper.fm/
3. http://opensoundcontrol.org

https://www.reaper.fm/
http://opensoundcontrol.org
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Figure 5.10: The user interface of the listening experiment.

experiment was pre-rendered for the most common high-end AKG and Beyerdynamic
headphone models.

Conditions

The four selected conditions were presented randomly to avoid learning effects or fatigue.
The reference was always visible and not doubled by a hidden reference. All conditions
were pre-rendered binaural signals using the following rendering methods:

Reference: Using a sphharm-type receiver of fifth order in the MCRoomSim library, a
perspective using ARIRs was simulated and rendered to a binaural signal using the IEM
BinauralDecoder.

Proposed: The condition was rendered following the method of analysis and synthesis
as described in this work. The Pure Data application implemented for interactive listening
with head tracking was sent simulated head position and rotation data to ensure consis-
tency with the reference.

An audio scene involving two sound objects was analysed by the detection algorithm.
However, for rendering, only one sound object was used, while still using the object track-
ing data. This should the effect multiple sound objects have on the object tracking and
therefore scene playback assessable, while keeping the listening experiment at minimal
audible complexity for the participants.

VLO: This robust scene rendering approach was proposed in [GZS+18, ZFSH20] and
introduced in Sec. 4.2.1.
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VBIP: The condition is a binaural rendering of a linear combination of the perspective
FOA signals using areal coordinates to linearly mix the signals of the triplet perspectives
that surround the listener position. The microphone signals of the perspectives are mixed
corresponding with their respective microphone directions. The 4 resulting combined sig-
nals are encoded as third order Ambisonics signals using the microphone array directions
projected onto the horizontal plane and rendered to a binaural signal.

Anchor: This condition is the VBIP binaural signal merged into a mono signal played
on both headphone channels. The purpose of this anchor is to provide a low-rating refer-
ence to listeners.

Experiment 1 - Static Perspectives

To assess the playback algorithm in terms of quality of reconstruction of the sound scene,
a set of static perspectives was selected. There are 4 positions in this set, 2 exactly at a
microphone array position and 2 at triplet centers, each being a pair of small and large
distance to the speaker. These perspectives, as shown in Fig. 5.11a, are all facing the
speaker. Each position is rated twice, giving 4×2 = 8 trials for this part of the experiment.

Before the start of the rating experiment, the participants were given the following task
description:

You are tasked to rate the presented stimuli regarding the similarity of their spatial im-
pression when compared to a reference. You are presented a virtual listening perspective
facing a male speaker. When rating the stimuli, please take into consideration the follow-
ing aspects: Is the speaker clearly locatable? Does the distance perception fit? Does the
room impression fit?

The rating scale was labelled with very different as the lower scale end and very similar
as the upper scale end.

Experiment 2 - Dynamic Perspectives

To assess the playback algorithm in terms of quality of reconstruction of the sound scene,
the virtual listener perspective was moved along a trajectory in the scene with varying
look directions {A, B, C, D} (cf. Fig. 5.12). Each look direction is rated twice providing
4× 2 = 8 trials for this part of the experiment.

Before the start of the rating experiment, the participants were given the following task
description:

You are tasked to rate the presented stimuli regarding the similarity of their spatial im-
pression when compared to a reference. You are presented a virtual listening perspective
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Position x [m] y [m] z [m]
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(b) Position coordinates

Figure 5.11: The static perspectives used in the first experiment.
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Figure 5.12: The trajectory and defined look directions A,B,C,D of the virtual listener
perspective in the evaluation scene as presented by the experiment.

moving on the trajectory seen on the handout. Several look directions are present in
trials and given in the trial headline. When rating the stimuli, please take into consid-
eration the following aspects: Is the distance and the direction as well as the movement
of the speaker fitting? Is the room impression fitting? Also take into account the stabil-
ity/smoothness/linearity of these aspects.

The rating scale was labelled with very different as the lower scale end and very similar
as the upper scale end.
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5.2.2 Results

6 expert listeners aged between 26 and 39 (average age: 29) took part in the listen-
ing experiment taking 34 minutes on average to complete it. A Wilcoxon signed rank
test [Wil45] with Bonferroni-Holm correction [Hol79] was used to assess the statistical
significance of pairs-wise comparisons of conditions. Each condition has 12 data points
by itself, so merging data over positions in experiment 1 and look directions in experi-
ment 2 yields 4× 12 = 48 data points for each experiment overall. The data proved to be
consistent enough to be merged.

Experiment 1 - Static Perspectives

The single position ratings are visualized in Figure 5.13a (Median and 95% confidence
intervals). It shows that participants rated the proposed approach higher than the other
conditions, with statistical significance (p < 0.001) at positions 1 to 3.

One exception to this is position 4: The VLO rendering shows significant higher rating
(p < 0.001) than the same approach at the other positions and shows no significant dif-
ference to the proposed one (p = 0.1963). The comparison of merged VLO data from
Position 1&3 on the one hand and 2&4 on the other shows a weak advantage (p = 0.0049)
of the direct perspectives over interpolated.

The ratings of the VBIP show a decrease with distance, as seen in Fig. 5.11. The difference
is significant when comparing the farthest and closest position (p < 0.001).

To assess the overall ratings, the datasets of positions 1 to 4 were merged and are pictured
in Fig. 5.13b (Median and 95% confidence intervals). The proposed approach is rated
higher (p < 0.001) than all other conditions. No notable difference between VLO and
VBIP (p = 0.4764) in overall rating although unsurprisingly both show strong difference
to the anchor (p < 0.001).

Experiment 2 - Dynamic Perspectives

The rating for all conditions is very similar over the look directions, as Fig. 5.14a shows.
The proposed and the VLO methods are consistently rated higher (p < 0.001) than the
VBIP condition and unsurprisingly the anchor (p < 0.001). Between proposed and VLO
conditions, the difference is statistically not provable or weak at all look direction A (p =

0.5332), B (p = 0.9766), C (p = 0.0596) or D (p = 0.3320).
The merged data conveys a similar picture, as Fig. 5.14b shows. The results from the
static-perspective experiment would imply a pronounced mean difference between overall
rating of proposed and VLO, but ultimately, only a weak advantage (p = 0.0624) could
be determined in the dynamic scenario.
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Figure 5.13: The results of the first experiment comparing static perspectives for (a) single
position data and conditions as well as the (b) merged-position data. Pictured are median,
95% confidence intervals and notable statistical significance is marked.
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Figure 5.14: The results of the second experiment comparing dynamic perspectives for
(a) single look direction data and conditions as well as the (b) merged-look-direction
data. Pictured are median, 95% confidence intervals and notable statistical significance is
marked.
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5.2.3 Discussion

Despite the relatively small number of participants, some of the statistical results were
significant. The listening evaluation confirms the effectiveness of the proposed method
by providing comparative ratings to references and established methods. The evaluated
aspect is the overall similarity to a reference. The first experiment, presenting static per-
spectives facing a speaker in a room shows significant improvement over existing methods.
The second experiment, evaluating the same aspect but with moving perspectives, did not
turn out as conclusive but supports the results of the first.

The proposed method is rated consistently very close to the reference and consistently
better than the alternatives under test under various settings. We can observe a slight drop
off at the farthest position but this is most likely due to the very high rating of the VLO
approach as it is a comparative evaluation with a limited scale.

VBIP shows some effectiveness at locations close to the sound object, and its rating de-
teriorates at larger distance. This is mostly due to the fact that this approach delivers a
recording of the sound object that subjectively appears to be too dry and auditory cues for
the room impression such as reverberation and early reflections are not prominent enough.
Moreover, the directional diversity of the VBIP approach is not very high, as only 4 virtual
playback directions are used.

The VLO approach shows ratings seemingly depending on the listener position. The sig-
nificant increase in rating at position 4 is due to the fact that this position is a direct
microphone array position and far from a source. The direct signal is accurately encoded
by the surround perspective of the microphone position, just as in VBIP with additional
cues from the other perspectives providing a better room impression. The interpolated
positions have lower rating as the spatial reproduction suffers. The excellent rating for lis-
tening positions that are far away from the source might owe to the rich diversity of VLOs
and their directions, which appear to be capable of rendering a convincing envelopment
from the low-resolution single-perspective recordings.

The dynamic experiment shows a stark increase in ratings for the VLO approach as the
interpolation is perceived smoother and is rated almost as high as the proposed method.
The residual signals of the proposed approach are based in the concept VLO therefore the
smoothness and general impression appears similar. However the direct signal extraction
provides better object localisation for the listener and hereby achieves the improvement
intended.
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Chapter 6

Conclusion

In this work, an approach to analyse acoustic scenes and extract data for interactive play-
back for virtual listeners was developed. The goal was to detect and track sound objects
in-scene so that their positional information can be used for signal extraction and com-
position of a virtual listener perspective. The strength of the proposed approach is that it
was shown to already operate well with a frequency-independent signal conditioning for
the real-time rendering.

The first step of analysis, using in-scene perspective surround (FOA) recordings to cal-
culate directional distributions of acoustic activity in the spherical harmonics domain,
was established by expanding on existing research. This was achieved using direction-of-
arrival estimation and weighted cumulation of directional signal energy. Following this, a
method of merging perspective-directional information into a three-dimensional acoustic
map was developed. The method is based on the inverse spherical harmonics transfor-
mation and perspective weighting to compute acoustic map values at positions between
perspective positions.

The acoustic map leads to the introduction of the concept of particle filters to track acous-
tic activity. The well-known method uses acoustic map values for the computation of
particle weights and proved effective in delivering trajectories for detected sound objects.

Additionally, a probabilistic birth-death algorithm was introduced to detect the emergence
and disappearance of sound objects in the acoustic scene. The algorithm performs the
inverse SH transform on the directional distributions as well as perspective merging to
evaluate an equidistant grid of positions and a sequential peak picking algorithm to ex-
tract frame-based observations of acoustic activity. These observations feed probabilistic
estimations by calculating transitional probabilities to hypotheses of object existence and
activity. This lays ground for the management of particle filter instances, such as creation
and removal, which was described in detail.

To counteract the unreliably detected onsets of emerging sound objects, the concept of

67
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anti-causal tracking was introduced. Since the prediction step of a particle filter system is
easily adapted to operate along the anti-causal time direction and the birth-death algorithm
is applicable anti-causal as well, this was adopted as an effective solution.

The effectiveness of the object detection algorithm was assessed by conducting a numeri-
cal evaluation, focusing on positional accuracy and object activity detection.

The first component of the 6DoF rendering algorithm, the object direct signal extraction,
was developed based on a composite minimum-variance-distortionless-response (MVDR)
beamformer and perspective merging. This allows to renderer direct sound with high
definition in terms localization. Additionally, a method to approximate the residual signal
was developed, which is necessary to preserve and convey the room information, e.g. for
distance perception , immersion, and envelopment.

Both components in tandem proved to be working well in providing a convincing expe-
rience to listeners when they are moving in the virtual reconstruction of the sound scene.
This was evaluated by listening experiments assessing the perception of static and moving
listener perspectives in terms of naturalness and using a comparison to a reference.

In combination, both experiments suggest that the proposed method is a viable alternative
to the known methods to interpolate multi-perspective recordings, supporting improved
spatial definition and therefore a superior listening experience.

Outlook

The analysis of sound scenes is not an efficient task as of now, therefore a possible continu-
ation of this research could be the optimization of procedures and a faster implementation.
Moving from MATLAB to more effective ways of achieving computation could speed up
the process. Real-time analysis seems to be a unrealistic goal but suggests itself anyway.

The method, as described in this work, is effective for broadband signals. As another
possible continuation, research on band-wise operations suggests itself. This could lead
to improved object detection in dense acoustic scenes.

The algorithm currently makes no attempt in estimating the room geometry, which could
prove useful for future work for better estimation of the object positions or the residual
signal by including wall-reflections into estimation techniques.

Lastly, due to the ongoing COVID-19 pandemic at the time of authoring this thesis and
the resulting problems in availability of university facilities and equipment, an experiment
part of the listening evaluation had to be scrapped. A setup using the commercial VR hard-
ware HTC VIVE was developed to evaluate the listening experience in a fully interactive
virtual environment. A strong suggestion for future work would be to pursue and conduct
of the evaluation in question.
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