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Abstract
The formation of cracks is an intentional phenomenon in reinforced concrete structures because
they are essential for the activation of the reinforcement. In unreinforced mass concrete this
phenomenon is rather unwanted. Although small cracks are not a hazard for the dam safety,
they still bear the potential of developing larger crack patterns. In concrete dams, extending
crack patterns can then lead to seepage which influences the structural integrity and the
serviceability of the dam. Various material models exist which are capable of the simulation of
non-linear material behaviour caused by these crack patterns. However, there is few calibration
data available regarding non-linear behaviour of concrete with large grain sizes, e.g. as used
for the construction of dams.

The aim of this thesis is the application and evaluation of the available microplane models
that are implemented in the commercial finite element software Ansys Mechanical as well as
their applicability to represent non-linear material behaviour during seismic loading of concrete
dams.

After a brief introduction, the following two chapters focus on the fundamentals of fracture
mechanics and structural dynamics. They summarize the required knowledge and applied
methodology for this thesis, Furthermore, they give an inside on the available alternatives for
modelling certain aspects. Chapter four is designated to the development of an understanding
for the applied material model by presenting performed numerical analyses on a small scale.
The final chapter consists of linear and non-linear investigations on Pine Flat Dam followed
by a comparison with an analysis done on this dam performed during an ICOLD Benchmark
Workshop. Finally, an alternative, analytical way to investigate partial dam safety by a Newmark
deformation analysis is presented.
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Kurzfassung
Die Bildung von Rissen ist eine gewollt auftretende Erscheinung bei bewehrten Konstruktionen
in Beton, da es die Voraussetzung für die Tragwirkung der Bewehrungsstäbe ist. In unbewehrten
Massebetonbauwerken ist dieses Phänomen jedoch unerwünscht. Obwohl kleine Risse keine
Gefahr für die Sicherheit der Staumauer darstellen, können sich daraus größere Rissmuster
entwickeln. Bei Betonmauern können diese sich ausdehnenden Rissmuster dann zu unerwün-
schten Wassereintritten führen. Dadurch werden die Standsicherheit und Gebrauchstauglichkeit
der Staumauer nachteilig beeinflusst. Es stehen verschiedene Materialmodelle zur Verfügung
welche das, durch diese Rissmuster verursachte, nichtlineare Materialverhalten abbilden können.
Es sind jedoch nur wenige Daten für die Kalibrierung solcher Modelle verfügbar welche sich
auf das nichtlineare Verhalten der Betone mit großen Korndurchmessern beziehen, wie sie zum
Beispiel beim Bau von Staumauern Verwendung finden.

Ziel dieser Arbeit ist die Anwendung und Bewerten der verfügbaren Microplane-Modelle, die
in der kommerziellen Finite-Elemente-Software Ansys Mechanical implementiert sind. Weiters
wird deren Anwendbarkeit zur Darstellung des nichtlinearen Materialverhaltens während der
seismischen Belastung von Staumauern betrachtet werden.

Nach einer kurzen Einführung konzentrieren sich die folgenden beiden Kapitel auf die
Grundlagen der Bruchmechanik und der Strukturdynamik. Sie fassen das erforderliche Wissen
und die angewandte Methodik für diese Arbeit zusammen. Darüber hinaus geben sie einen
Einblick in die verfügbaren Alternativen zu bestimmten Themen. Das vierte Kapitel dient
dem Ausbau des Verständnisses für das angewandte Materialmodell, indem es durchgeführte
numerische Analysen in kleinem Maßstab beschreibt. Das letzte Kapitel besteht aus lin-
earen und nichtlinearen Untersuchungen der Pine-Flat-Talsperre. Darauf folgend, werden
die erhaltenen Ergebnisse mit denen einer Analyse dieser Staumauer im Zuge eines ICOLD
Benchmark Workshops verglichen. Abschließend wird eine alternative, analytische Methode
zur Untersuchung der Teilsicherheit von Staumauern mit einem Newmark-Verschiebeverfahren
vorgestellt.
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1 Introduction
Finite Element Analysis of massive concrete structures - such as dams - is a challenging task,
especially for earthquake excitation or seismic events. This arises not only from the complex
behaviour of involved materials like concrete, water, rock and their interaction, as well as
discontinuities need to be considered [1]. For example, the opening and closing of a discrete
joint between the dam’s base and the foundation rock due to variation of loading. Or the change
of the structure’s natural frequencies depending on the water level in the reservoir due to the
principle of fluid structure interaction (FSI) respecting the compressibility of water together
with hydrodynamic forces acting onto the structure during a seismic event. Furthermore, their
interaction at the reservoir boundaries due to reflection needs to be considered.

Another aspect is the temperature loading on the dam that are part of high head hydro
power schemes. There, dams are situated in mountainous regions to maximize their potential
energy capacity [2]. Another example is presented from the 14th ICOLD Benchmark Workshop
in Sweden [3], where the response of a very slender concrete dam to very low temperature
is investigated. The dam’s surface temperature can significantly vary based on daily or
seasonal impacts. This can lead to major crack patterns which may locally influence the
structural integrity. Therefore, special attention must be given to material behaviour of
concrete considering structural attributes as well as the performance due to thermal loading.

The most common form of numerical modelling the material behaviour are continuum
models. These models formulate a high-order tensorial relationship between an input (i.e.
strain) and the response (i.e. stress) of the material. Although these models work perfectly
for linear-elastic materials, their non-linear capabilities are limited. In contrary to continuum
models the so-called microplane model uses a different approach. This is, that the constitutive
material laws are applied on various oriented planes forming a unit-sphere instead on a definite
cube.

The aim of this thesis is the application and evaluation of the available microplane models
that are implemented in the commercial finite element software Ansys Mechanical as well as
their applicability to represent non-linear material behaviour during seismic loading of concrete
dams. The performed analyses use the massless rock approach in order to limit the scope of
this work.

After a brief introduction, the following two chapters focus on the fundamentals of fracture
mechanics and structural dynamics. They summarize the required knowledge and applied
methodology for this thesis, Furthermore, they give an inside on the available alternatives for
modelling certain aspects. Chapter four is designated to the development of an understanding
for the applied material model by presenting performed numerical analyses on a small scale.
The final chapter consists of linear and non-linear investigations on Pine Flat Dam followed
by a comparison with an analysis done on this dam performed during an ICOLD Benchmark
Workshop. Finally, an alternative, analytical way to investigate partial dam safety by Newmark’s
sliding block is presented.
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2 Fracture Mechanics

2.1 Fundamentals

Initially, the theory of fracture mechanics was developed to describe the ductile response of steel
bars during tensile failure. Simply using these already developed procedures was not suitable
for describing the fracturing of concrete. First, concrete undergoes strain softening during its
post-peak behaviour in contrary to the hardening observed on steel bars (2.2). Second, in
aggregate materials like concrete the zone involved in the cracking process is much larger than
in brittle (e.g. glass) or ductile materials (e.g. steel), see figure 2.1.

Fig. 2.1: Material behaviour close to crack tip: E...linear elastic behaviour, N...non-linear behaviour
and R...Fracture Process Zone for (a) brittle materials, (b) ductile materials and (c)

quasi-brittle materials [4]

The main parameter describing the concrete’s resistance against forming of crack is its tensile
strength. The resulting crack pattern displayed in figure 2.2, obtained from uni-axial test done
on cubic specimens, show that even under uni-axial compressive loading the resulting stress
perpendicular to the loading direction leads to tensional cracking parallel to the specimen’s
axis.

This part is following Shah’s description of crack forming [5]: If the tensional strength
is exceeded locally, micro cracks are forming within the concrete structure. Due to the
heterogeneity of the material itself, these cracks can form with any orientation inside the
so-called fracture process zone (FPZ). Further increase of loading leads to the connection of
these micro cracks and the forming of a macroscopic crack feature. However, this newly formed
crack can still transfer stresses due to friction or connecting aggregates (see figure 2.3) until
the complete separation of the material.

3



2 Fracture Mechanics

Fig. 2.2: Macroscopic failure modes acc. to [6] for uni-axial compression (left) and uni-axial tension
(right)

Some of the lasting stress inside the fracture process zone (FPZ) gets redistributed within
the fracture zone (FZ) in the intact material (see figure 2.4a). Is a crack loaded in normal
to the crack plane - i.e. plane where the material separates, the tensional strength forms the
boundary between the intact material and the softening happening in the FPZ.

Fig. 2.3: Toughening mechanics in the Fracture Process Zone: (a) crack shielding, (b) crack
deflection, (c) aggregate bridging, (d) crack surface roughness-induced closure, (e) crack tip

blunted by void and (f) crack branching [5]
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2.1 Fundamentals

(a)

(b)
Fig. 2.4: (a) Fracture Process Zone (FPZ) ahead of macro crack, (b) stress distribution normal to

the crack within the Fracture Zone [6, 5]

2.1.1 Size Effects
The size effect of concrete can be described as the dependence of material properties on the
specimen size. How it was shown in various studies [8, 9, 7], material properties like strength
or fracture energy obtained from testing geometrically similar specimens of different sizes, vary
significantly.

Baẑant showed, that this behaviour follows a so-called size-effect law. A detailed description
and explanation can be found in [10]. Furthermore, he names 6 reasons for the size effect on
structural strength:

• Boundary layer effect: It is also known as Wall Effect. Three different types exist
involving the strength differences arising from the smaller relative content of larger
aggregate pieces and a larger relative content of cement and mortar in the layer adjacent
to the wall than in the interior of the member. The second arises from transverse stresses
in the interior during normal stress parallel to the surface, while the stress on the surface
is zero. The third one arises from the Poisson effect or lateral expansion, which causes
the surface layer nearly to be in plane stress while the interior is nearly in plane strain.

• Diffusion phenomena: Diffusion processes like heat conduction or pore water transfer
changes the material properties and lead to residual stress producing inelastic strains
and cracking.

• Hydration: Hydration heat during concrete curing leads to an increase in volume of the
structural member. As a result a non-uniform temperature distribution along the cross
section can lead to thermal cracking and even alter the material properties.

• Statistical size effect: It is caused by the randomness of material strength. This is believed
to be the cause of most size effects in concrete structures.

• Fracture mechanics size effect: It arises from the stored energy released into the fracture
front. As shown in figure 2.5 for a constant ratio of specimen size D and crack length
a0, the energy released due a crack extension of ∆a - represented through the area of
the densely cross-hatched strip - rises as the specimen size increases. Furthermore, hf
represents the constant crack band width and the cross-hatched area marks the area
where the strain energy density is reduced to zero.
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2 Fracture Mechanics

Fig. 2.5: Sketch of geometrical size effect for a blunt crack band [10]

• Fractal nature of crack surfaces: As it is for the measurement of the length of coastlines,
closer observation enlarge the observed length of the coastline until it becomes infinite
(see Coastline Paradox). Baẑant points out that this kind of effect may be hypothetical.

2.1.2 Fracture Energy

The softening behaviour of concrete is governed by multiple factors. Its heterogeneous composi-
tion, characterized by aggregates, mortar mix, pores, voids and flaws, as well as the pre-existence
of micro cracks play a major role. These micro cracks form during the hardening process due to
the differences in stiffness of the various components. Furthermore, the differences in stiffness
lead to unequally distributed stress fields.

If the concrete locally exceeds its tensional strength, damage starts to grow and available
deformation energy is dissipated by the fracture process. However, development of a single crack
is hindered by the concrete’s heterogeneity. Instead, pre-existing micro cracks are extended
until they connect each other forming a macroscopic crack. The energy which is dissipated
during this process is called fracture energy. It is defined as energy dissipated within the
Fracture Zone per unit area in units [J/m2] or [N/m]. The Fracture Zone covers the material
involved in the exchange of deformation energy and its release due crack formation inside the
Fracture Process Zone. The Fracture Process Zone is situated ahead of the tip of a macro
crack. In this zone, microcracking leads to the growth of this macro crack.

The easiest way for determination of Mode-I fracture energy is directly from an uni-axial
tension test. There, the fracture energy equals the area below the load-deformation curve (see
figure 2.7). However, discussion about the boundary conditions and the minimum specimen
size are still ongoing.

Alternatively, if special equipment for uni-axial testing is unavailable, fracture energy can
be determined indirectly through three-point-bending test or Brazilian tests. Although some
things should kept in mind if using these testing methods: (i) energy dissipation outside the
fracture zones should be negligible and (ii) concrete compressive strength should be much larger
than tensile strength to avoid energy dissipation in the compressive zone of the specimen.
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2.1 Fundamentals

Fig. 2.6: The three opening modes of cracks, Mode I: due normal stress perpendicular to the
fracture plane, Mode II: due shear stresses on the fracture plane and Mode III: due

stresses resulting from a tearing load [10]

For normal concrete, the typical value lies between 50 and 200 [N/m], for dam concrete
values up to 500 [N/m] are possible. This results mainly from the much larger aggregate sizes
used for dam concrete, which is up to 150 mm according to The Concrete Society. In contrary,
normal concrete mostly contains maximum aggregate sizes of 20 or 32 mm.

Fracture Energy from Uni-Axial Tensile Testing

Mode-I fracture energy can be obtained in different ways from uni-axial tension tests. Three
of them will be described here. They differ due to the measured quantities and may be more
suitable for experiments or numerical material models.
The data used is taken from the same modelled tensile test described in chapter 4.2.1.

From Force-Displacement-Curve: Commonly used in laboratory experiments. The
specimen - usually in cylindrical form - is attached with epoxy attached to the machine ring.
This ring is displacement controlled and feasible to record the applied tensile force. Therefore,
a force displacement curve is obtained. The area below this curve represents the work done
by the applied force until complete fracture of the specimen (see Us at figure 2.7). This work
divided by the fractured area (ligament area A0) results into the fracture energy as an energy
dissipated per unit area - GF . The ligament area is the cross section area normal to the main
stress axes.

A0 = 0.49 [m2] (2.1)

Us =
∫
Fdu = 122.04 [J ] (2.2)

Gfdc
F = Us

A0
= 249.05 [N/m] (2.3)
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2 Fracture Mechanics
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Fig. 2.7: Example of force displacement curve, blue coloured area represents work done by the
applied force

From Fictitious Crack Opening: This method introduced by Hillerborg in 1978 [11] is
based on a force-displacement-curve. From this curve a fictitious crack opening width (see w
at figure 2.7) is calculated. The axial stress is then plot over this width. The fracture energy
equals then the area under the obtained curve (see figure 2.8).
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Fig. 2.8: Example of stress crack opening curve, red area represents fracture energy per unit area
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2.1 Fundamentals

Advantage of this representation is its independence from the specimen size, therefore
experimental results can be easily compared. Fundamental equations are:

w = u− F · l
E · A

(2.4)

Gfcw
F = 1

A

∫
Fdw =

∫
σdw = 250.39 [N/m] (2.5)

Where E is the Young’s modulus, A is the cross section area and l the length of the
specimen.

Stress-Strain-Curve: In case of an uniformly distributed strain field, the fracture energy
can also be determined from a stress strain curve. At normal tensile test, the epoxy attachment
from the specimen to the machinery results in hindered radial deformation in this region.
In order to avoid this fixation, glued and spaced rods can be used for this attachment - as
described by Baẑant in [12].

The area under this stress-strain curve represents the energy dissipated during the fracture
process per unit volume (see Ws at figure 2.9). The relation between this fracture energy per
unit volume to the desired fracture energy per unit area is given by the characteristic length
lch. For a non-notched specimen this characteristic length equals its dimension.

Gssc
F = Ws · lch = 249.05 [N/m] (2.6)
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Fig. 2.9: Example of stress strain curve, green area represents fracture energy per unit volume
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2 Fracture Mechanics

Fracture Energy from Three-Point-Bending Test

Determining fracture energy that way is more suitable for laboratory testing. First, support
areas have less influence to the result, i.e. no fixed support is needed as in tensile tests. Second,
no special manipulation of the specimen and machinery is necessary, e.g. epoxy attachments.
Furthermore, much larger specimens can be tested as in uni-axial tensile tests [13]. On the
downside, the self-weight plays has to be reconsidered while evaluating the results. Perersson
[14] shows two ways to compensate self-weight during the testin procedure itself by enlarging
the specimen beyond the supports or due applying additional weight at the outcrops (see figure
2.10).

Fig. 2.10: Self-weight compensation due (a) enlargement of specimen and (b) additional weight on
outcrops

Alternatively, he shows a way to reconsider self-weight directly in the formula where the
fracture energy is obtained:

GF = W +M · g · δ0

b(d− a) (2.7)

Where W is the area below the load-deflection curve (= total work done by force applied to
the beam), M is the weight of the specimen between the supports, δ0 is the final deflection of
the beam, b is the beam width, (d− a) is the ligament length above the notch.

For numerical modelling, self-weight is usually not reconsidered. Therefore, fracture energy
can be calculated by:

GF = W

b(d− a) (2.8)

Because measurement of deflection is highly dependent on the test set-up, spurious de-
flections are sometimes obtained. In order to avoid these erroneous measurements, the crack
mouth opening displacement (CMOD) can be used. CMOD is measured horizontally at the
start of the notch. Fracture energy can be obtained from the area below the force-CMOD
WCMOD curve by:

GCMOD
F = WCMOD

b(d− a) (2.9)

Fracture Energy from Brazilian Test

A Brazilian test is indirect testing method for tensional strength and is also capable of
recording post-peak softening effects. It is mostly used when large specimen sizes are required

10



2.1 Fundamentals

for testing and ordinary direct tension test are not feasible. The required specimen size to
obtain representative results are depending on the concretes grain size. Larger aggregate sizes
(like it is the case for dam concrete) require larger size of the specimen to be tested. As a
rule of thump, the minimum dimension of the specimen should be at least three times the
maximum aggregate size [8].

The most commune variants a cylindrical specimen which is compressed in radial direction
(see figure 2.11a). The material’s uni-axial tensile strength is then obtained by:

fut = 2 · P
πd · t

(2.10)

Where P is the maximum compressive force applied, d is the diameter and t the depth of the
specimen. Alternatively, this kind of test can be transferred to a notched block (see figure
2.11b).

Fracture energy related parameters can be obtained from both procedures. The fracture
energy related to a unit volume GV and to a unit area GF are given by:

GV = W

Vf
(2.11)

GF = W

Af
(2.12)

Where W is the are below the load deflection curve or load crack-widening curve respectively,
Vf is the volume involved in the fracture process and Af is the ligament area. This alignment
area is given by notch length a the specimen thickness t:

Af = Hf · t = (H − a) · t (2.13)

The involved volume is related to the width of the fracture process zone h:

Vf =
∫ Hf

0
hFPZ(z)dz (2.14)

Size Effect on Fracture Energy

Fracture energy - although it is widely seen as a material constant - also undergoes a size effect
due to the same reasons as mentioned in section 2.1.1.

2.1.3 Modelling of Cracks
In order model fracture process or crack stability different models can be used. Roughly, they
can be distinguished either they are following the discrete crack approach, where the crack is
modelled as a gap between two bodies or the smeared crack approach, where the cracks are not
modelled explicitly but, as a reduction of material strength inside an inflicted range.

Depending on the problem to be modelled - either a stationary crack problem or a crack
growth simulation - both approaches have their advantages and disadvantages:

Discrete crack approach: One disadvantage of some available models (e.g. Linear Elastic
Fracture Mechanics) is, that the location and propagation direction of the crack need to be
known in advance. On the contrary, extended finite element models are capable of modelling
crack propagation by formulating a crack criterion (e.g. in Abaqus a form of the J-integral)
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(a)

(b)

Fig. 2.11: Experimental setups for a Brazilian test for (a) cylindrical specimen and (b) block
designed for dam concrete [8]

which leads to a partition of mesh elements. This means, the modelled area needs to be
re-meshed every time the crack criterion is reached, leading to a high computational demand.
Furthermore, contact formulations need to be defined if closured of the crack is considered.

Smeared crack approach: One advantage of this approach is its simplicity and its
effectiveness in terms of computational demands, because topology of the mesh remains
unaltered. On the other hand, these kinds of models posses a high dependency on the used
mesh.

The following sections should provide a short overview on the various model types and
links to available literature.

Linear Elastic Fracture Mechanics [10]

Linear elastic fracture mechanics (LEFM) is used to determine the stability of a single discrete
crack. Its origin lies in the modelling of cracks in metals and other ductile materials. However,
it can also be used to describe fracture in quasi-brittle materials like concrete, if the FPZ in
relation to the structure size is small. LEFM is used by Linsbauer for evaluating stationary
crack problems. E.g. he used it to determine damage potential of a crack in an gravity dam
subjected to impact loading [15]. Furthermore, he used it to determine stability of cracks on
the downstream side of Kölnbrein arch dam in Austria [16]. There he could verify that these
cracks could have been formed only to dead load and grouting of the block joints. Also, he
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2.1 Fundamentals

found that these downstream cracks were formed during construction process and that filling
of the reservoir will lead to the closure of the cracks.

Fig. 2.12: Cross section with found cracks at the Kölnbrein arch dam [16]

However, the linear elastic approach does not represent perfectly the behaviour close to
the crack tip. For a crack width tend to be zero, the stress at crack tip becomes infinite,
which results into an unrealistic stress distribution inside the fracture zone (see figure 2.13(a)).
Therefore, linear plastic fracture mechanics (LPFM) additionally takes into account the stress
degradation in the fracture zone (see figure 2.13(b)).

(a)
(b)

Fig. 2.13: Stress distribution at crack tip according to linear elastic and linear plastic fracture
mechanics [10]

Rice’s J-Integral [17] is derived from the general energy balance of the fracture process
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(for a plane structure):

δW︸︷︷︸
External work

= δU︸︷︷︸
Elastic energy

+ G · b · δa︸ ︷︷ ︸
Energy release due fracture

(2.15)

Where δW is the external work in its infinitesimal form, δU is the stored elastic energy and
G is the energy release rate. Furthermore, b is the width of the plane structure and δa is the
indefinite distance at which the crack advances. The J-integral is then given as:

J = G︸ ︷︷ ︸
Energy released

=
∫

Γ

 U · n1︸ ︷︷ ︸
Elastic energy

− ti ·
dui
dx1︸ ︷︷ ︸

External work

 ds (2.16)

Where U is the elastic energy density (=energy per unit volume), n1 is the normal vector to
the contour Γ, ds is the differential arc-length along the contour, ti components of the surface
traction vector (=resultant of stress acting) and ui are the components of the displacement
vector.

The J-integral is an expression for the energy released due variation of stored elastic energy
due to crack propagation (see figure 2.14). However, this is also true for non-elastic situations
if the non-elastic zone reduces to a point inside the contour and the body is subjected to
monotonic loading. This is used e.g. to determine the stress intensity factor at crack tip for
determination of crack stability.

Fig. 2.14: Determination of the variation of elastic energy by the J-integral [10]

Stress intensity factors KI , KII , KIII close to the crack tip are used to determine
whether the crack will propagate or not. This factors can be derived from the J-integral for
the three known crack modes - normal (I), shear (II) and tearing shear (III) (see figure 2.6).
The fracture toughness or critical stress intensities KIc, KIIc, KIIIc are used as an local
fracture criterion.

Following pure mode I fracture, the critical stress intensity can be obtained from the
Young’s modulus E and the mode I fracture energy GI :

KIc =
√
E ·GI (2.17)

With this definition, it is possible to formulate the so-called index fracture criterion in local
approach:
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• if KI < KIc: No crack growth (stable)

• if KI = KIc: quasi-static crack growth

• if KI > KIc: dynamic crack growth (unstable)

The same is true for the other two crack modes. Following relationship is given in order to
connect mode dependent fracture energy release rates and therefore the stress intensity to
Rice’s J-integral:

J = G = GI +GII +GIII (2.18)

Crack Band Model

The crack band model introduced by Baẑant in 1973 can be seen as a less general concept
of a non-local continuum model. The basic concept of this model is that the constitutive
stress-strain relation is coupled with a certain crack band width. This width is stated to be a
material property.

Fig. 2.15: Comparison between a linear crack model and the crack band theory [18]

Fictitious Crack Model

Fig. 2.16: Comparison between actual stress-strain degradation and linear, bilinear and exponential
models (taken from [4] and modified)

Based on Hillerborg’s idea to introduce a fictitious crack width in order to obtain a fracture
energy from a (tensile) stress-strain curve (see 2.1.2). He also introduced a characteristic
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length lch by combining the material properties tensional strength, fracture energy and Young’s
modulus. This length is a material constant without physical meaning, but it enables the
possibility to compare between different concrete mixtures.

lch = E ·GF

f 2
t

(2.19)

(a) (b)
Fig. 2.17: Comparison between (a) fictitious crack model and (b) crack band theory [4]

Extended Finite Element Method

The extended finite element method is capable of modelling crack-growth due to feasible change
of mesh topology. Therefore, it defines a crack criterion - most likely a form of J-integral.
Elements which reach this criterion undergo a partition depending on the resulting crack plane.
When quasi-brittle materials are to be modelled, some stresses can still be transferred after
crack initiation. There the fictitious crack approach can be used after the partition took place.

A short introduction to the Extended Finite Element Method and links to in-depth literature
can be found in [19].

Damage

In continuum mechanics damage represent the reduction of the internal integrity of the material
due to formulation of cracks or similar defects. Various damage models are available using a
so-called damage value. However, the definition of this value depends on the used model and
general description of the damage value is difficult. Most commonly, the damage value is used
as a linear stiffness reduction of the in the cracking process afflicted elements. As a simple
example, the resulting stress of a damaged element may be formulated as (see also figure 2.18):

Edamaged = (1− d) · E (2.20)

Usually damage is defined as a positive value between zero - representing undamaged state -
and one - representing fully damaged state.
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2.1 Fundamentals

However, all models need a damage initiation or yield criterion. This criterion may be strain
or stress depending. Commonly used are invariant based criterion like the Drucker-Prager or
the Mises-Hencky-Huber criterion. Then, a damage evolution law has to be defined to receive
the damage value. This is usually an exponential law with a tangent at one in order to avoid
negative values. Finally, the resulting stress can be calculated.

Softening Plasticity

Plasticity models do not reduce the element stiffness but decrease the lasting elastic strains.
Simply show, the total strain is a combination of its elastic and plastic part:

ε = εel + εpl (2.21)

The resulting stress is only evaluated based on the elastic strain:

σ = E · εel (2.22)

Therefore, softening can be modelled by decreasing the share of elastic strain on the total
strain afflicted to the element (see figure 2.18).

Furthermore, plasticity and damage models can be coupled. This is the case for the
microplane model provided by Ansys Mechanical and is described in chapter 2.2.3.

Fig. 2.18: Comparison of the stress-strain relationship of damage and plasticity models in a one
dimensional case [20]
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2.2 Microplane Material Model
2.2.1 Development
The microplane model has a long history. It was first proposed in 1983 by Baẑant [21]. The
aim was to describe the elastic and non-elastic behaviour of heterogeneous aggregate materials.
For example concrete, rock or sea ice, which can exhibit strain-softening, i.e. declining stress at
increasing strain, resulting from a progressive micro-cracking. The model is based on an idea
of Taylor [22] from 1938, who described the material behaviour independently on planes with
various orientations - the so-called microplanes. Since then, the model was enhanced multiple
times in order to adapt new features or to overcome numerical problems. On top of that, the
enormous increase of available computational power since the 1980s, overcame the performance
problems in comparison with the classical tensorial models.

macrosopic strain ε

strain components
on each microplane
εN , εT , εV , εD, ...

stresses acting on
each microplane
σN , σT , σV , σD, ...

macroscopic stress σ

kinematic constraint

constitutive laws

principle of virtual work

tensorial models

Fig. 2.19: Initial concept of the microplane model

At the beginning the model only considered tensile failure on the microplanes, this concept
experienced further improvements over the years. Due to this, various different model types
can be distinguished. In the following part, a short overview of the development and different
approaches of this model.

The microplane model M1 [23] was only able to represent multi-directional tensile cracking
and the post-peak tensile softening of concrete. Acting micro strains are separated into their
normal and tangential parts (N-T-split). Next the uni-axial behaviour of the tensile failure
is described by using the scalar relation between normal stress and strain. In combination
with the crack band model [24] this model was able to simulate size effect on notched concrete
specimens.

The model M2 [25] included compressive failure by introducing a volumetric-deviatoric split
of the normal strain component acting on the microplanes. This V-D-T-split was necessary due
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2.2 Microplane Material Model

to the triaxial phenomenon of a compression failure, which is triggered by lateral expansion as
well as by slip on inclined planes. However, it lead to a bunch of other problems. Especially,
excessive lateral expansion and stress locking in far post-peak uni-axial tension as well as
unrealistic unloading and reloading.

The model M3 [26, 27] introduced the concept of stress-strain boundaries (or softening
strain-dependent yield limits) in order to avoid difficulties by the modelling of cyclic loading
and the handling of the transition from reloading to virgin inelastic loading.

Model M4 [28, 29] improved formulations of boundary surfaces, frictional yield limits and
damage, sequential identification of material parameters by data fitting, and a capability to
control various response features by material parameters. Furthermore, a work-conjugate
definition of the volumetric-deviatoric split was applied. A modified model M4 was introduced
which removed the tensile volumetric boundary and the V-D-split of the normal component
for dominant tensile failure. This neutralized the difficulties resulting from lateral expansion
and stress locking, which were present since model M3.

The latest modification of Baẑant’s model, model M7, appended the V-D-split of the normal
component for bearing tensile failure, however, it remains in case of compression still using the
concept of strain-stress boundaries. A detailed description of this model can be found in [30].

In 2018 Zreid and Kaliske [31] formulated another variant for applying the constitutive
laws onto the microplanes. They used a coupled plasticity and damage model with a smooth
cap yield function, i.e. a microplane version of the Drucker-Prager yield function. Furthermore,
an implicit gradient enhancement eliminated mesh sensitivity and numerical instabilities. This
approach also seems to be very rewarding due to the reduced number of material depended
parameters, from 29 for model M7 to 12 for the coupled one, a reduced number of history
variables per microplane, from 6 to 2.

The microplane model and their variants were based on 3 hypotheses formulated by
Baẑant. First the macroscopic stress is sum of a purely elastic macrostress, untouched by
inelastic processes on the microplanes, and an inelastic macrostress which represents the stress
relaxations from these microplanes. Second the macroscopic strain tensor can be decomposed
into normal and tangential microstrain vectors acting on any microplanes, i.e. kinematic
constraint. This is the opposite of Taylor’s Slip Theory of Plasticity, where microstresses
are resolved compounds of the macrostress tensor, i.e. static constraint. Using a kinematic
constraint gives the advantage that, in case of strain-softening, only one stress corresponds to a
given strain. For a static constraint, on the other hand, two possible strains result from a given
stress. The final hypothesis was the existence of an unrelated strain-stress relation on each
microplane. These hypotheses lead to multiple advantages. It was now possible to formulate
the material constitutive laws for each microplane independently. Hence, there was only a
scalar strain-stress relationship rather than the tensorial one from a macroscopic continuum.
Furthermore, this approach is capable of describing the fracture formation during rotating
principal stress, e.g., during seismic events. Additionally, this gave the possibility to represent
multi-surface plasticity with several vectorial limit surfaces. This captured the vortex effect,
i.e. the existence of inelastic strain increments by loading to the side (for a more detailed
explication of the vertex effect see [32]).

The principle of virtual work is finally used to obtain the acting macroscopic stresses in the
continuum. Then as now, this is accomplished by using numerical integration on the surface of
a (hemi-)sphere, where the used Gauss points and their weights represent the microplanes.

Because it is already implemented in the Ansys Mechanical software, this master thesis
will focus on Zreid and Kaliske’ coupled model which seems to be the most advanced with
significant enhancements compared to its predecessors.
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(a) (b)
Fig. 2.20: (a) microplane normal vector; (b) microplane strain components [30]

2.2.2 Mechanical Background
Kinematic Constraint

The kinematic constraint - in relation to the microplane model - means that the imaginary
microplanes experience the same strain as the material point on a macroscopic level. For the
purpose of this work, these material points are chosen to be equal to the integration points of
the finite element. Then, an evaluated strain tensor ε is projected onto a microplane. For this,
it is necessary, to introduce the unit normal vector n of the microplane. Now it is possible to
generate the normal strain vector εN .

εN = Nijεij (2.23)

with

Nij = ninj (2.24)

The subscript i refers to the global Cartesian coordinates xi (i = 1, 2 and 3). Furthermore,
the volumetric-deviatoric split of the normal component for the damage softening model under
compression need to be computed:

εV = εkk/3 (2.25)
εD = ε− 1 · εV (2.26)

Where εV as the scalar volumetric strain is the same for all microplanes generated from
one integration point. The deviatoric strain tensor εD is unique for each microplane is
subordinated on the microplane normal vector. Repeating subscripts kk implies summation
over i = 1, 2 and 3.

Constitutive Laws

Constitutive laws describe the material behaviour by giving a relationship between stress and
strain. The simplest form would be a purely elastic relations given by Hook’s law σ = E · ε,
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which is used in linear FEM simulations. For concrete this linear relationship exists only within
a small range of strain, as it can be seen in Fig. 2.21. Outside this range other phenomenons
have to be considered. First, the occurrence of plastic, irreversible deformation (plasticity) by
passing the materials yield limit. Second, the reduction of the material’s strength after reaching
its ultimate stress limits (damage). Additionally, under compression, concrete undergoes a
strain-hardening effect (or work hardening), where it deforms plastically with an increase of
strength. Under Tension, concrete experience damage as soon it passes its ultimate tensile
limit. Furthermore, after the material reaches its ultimate stress limits, the responding stress
reduces. This behaviour is called strain-softening (or work softening).

This non-linear material behaviour needs now to be computed into (non-linear) FEM
simulation. This happens either through multi-dimensional tensorial models on the macroscopic
level, or, a way simpler, by formulating the constitutive laws directly onto microplanes.

Direct Stress-Strain Relationship

If only a uni-axial tension failure on the microplane is reconsidered, a direct stress-strain
relationship can be formulated.

Stress-Strain Boundaries

Baẑant introduced the concept of stress-strain boundaries into a microplane material model
in his model M4 [28]. The underlying idea is, that a stress-strain state either lies inside the
boundaries and in the elastic area, or it will be returned onto the stress-strain boundary.
Following Fig. 2.22 shows the current strain on a microplane as ε0mic and its resulting stress
σ0
mic. If now the strain is further increased with ∆εmic, the corresponding elastic strain σelmic

would lie outside the boundaries. This stress is now reduced by the value ∆σ”mic onto the
boundary. In the model M4 a total of 5 stress-strain boundaries were formulated - normal,
deviatoric, volumetric tension, volumetric compression and plastic-frictional. In the model
M7, the volumetric and deviatoric boundaries were only applied in compression. Therefore, 4
stress-strain boundaries are remaining.

The calibration of a model using this kind of boundary bears difficulties. In total a number

(a)
(b)

Fig. 2.21: typical behaviour of concrete under (a) uni-axial compression and (b) uni-axial tension
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Fig. 2.22: 2-D case of the vertical return to the stress-strain boundary in the case of its exceedance
[28]

Fig. 2.23: Smooth three-surfaced Drucker-Prager cap yield function [31]

of 29 numerical constants needed to be found. Although Baẑant gives 22 constant as fixed in
case of concrete, various test data needs to be fitted in order to obtain satisfying results.

Smooth Drucker-Prager Cap Yield Function

The initial yield surface (see Fig. 2.23) limits the elastic behaviour of the material. If the current
stress state crosses this limit the hardening process begins. This means plastic deformations
occur but the area of elastic behaviour is expanded until it equals the hardened yield surface.
This new limit shall not be passed by a further increased stress state. It represents the
maximum bearable stress state of the material. In a model without damage, the returned stress
state would follow the yield surface. With damage on the other hand, the material strength
reduces and softening begins.
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The Drucker-Prager yield function in terms of microplane stresses defines as follows

fmic =
√

3
2σD · σD + ασV −

(
σ0 +Hκmic

)
. (2.27)

Where H is the hardening stiffness and κmic the hardening variable. Furthermore, α represents
the friction coefficient and σ0 the initial yield stress.

Thermodynamic Consistency

Two main principles can be used in order to determine equilibrium conditions within the
connection of the micro- and macroscopic level. The aim of both is to formulate the overall
macroscopic stress in terms of the microscopic strains or stress components onto the microplanes.
However, the principle of virtual work was shown to be more costly due to the handling of
fourth-order tensors. This is why nowadays the approach with Helmholtz’ free energy is used.

Principle of Virtual Work

The virtual work caused by a virtual strain tensor δε is given by

δW = 4
3πσ

macδε =
∫

Ω
σmicδεdΩ. (2.28)

Where σmac is the overall macrostress and σmic are the microscopic stresses onto the microplanes,
σ represents the surface of the sphere. Following [33], further computing leads to a fourth order
tensor, the so-called tangent stiffness. Although this tensor only has 6 independent values, a
numerical integration over the surface of a sphere has to be carried out 6 times in order to
obtain them. It seems obvious why this approach was dropped for the formulation through the
free energy.

Helmholtz’ Free Energy

Helmholtz’ free energy Ψ (also F or A is used) is defined from the internal energy of the system
U , its absolute temperature T and its entropy S.

Ψ = U − TS (2.29)

It measures the obtainable work from a closed thermodynamic system at constant volume. In
order to obtain a thermodynamically consistent model, the macroscopic free energy needs to
be computed as an integral of microplane free energies over the surface of a sphere. Due to the
constant temperature on micro- and macroscopic level the entropy terms cancels out and only
the inner energy remains:

Ψmac = 3
4π

∫
Ω

ΨmicdΩ (2.30)

where, the free energy at each microplane including plasticity (see [34]) is

Ψmic = 1
2K

mic
(
εV − εplV

)2
+Gmic

(
εD − εplD

)
·
(
εD − εplD

)
(2.31)
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with

Kmic = 3K = E

(1− 2ν) (2.32)

Gmic = G = E

2(1 + ν) (2.33)

Where εD is the deviatoric strain tensor, εV the volumetric strain within the elastic range and,
with the superscript pl, their plastic counterparts. The elastic microplane material constants
are related to the macroscopic bulk and shear moduli K and G (as shown in [31]). Furthermore,
they can be expressed through Poisson’s ratio ν and Young’s modulus E.

The stress components on the microplane derivatives from this expression for the free energy
as follows

σV = ∂Ψmic

∂εV
(2.34)

σD = ∂Ψmic

∂εD
(2.35)

Then integration of the stresses over all microplanes leads to the homogenized stress as

σ = 3
4π

∫
Ω

[
KmicV

(
εV − εplV

)
+ 2GmicDevT ·

(
εD − εplD

)]
dΩ (2.36)

Integration of a (Hemi-)Sphere

Numerical integration of microscopic stresses σmic over the surface of a unit sphere Ω leads to
the macroscopic quantity σmac times its unit volume through:

4π
3︸︷︷︸

unit volume

σmac =
∫

Ω
(σmic)dΩ (2.37)

Because an analytical solution is not available, a numerical integration scheme has to be used:

3
4π

∫
Ω

(•)dΩ =
n∑

mic=1
(•)wmic (2.38)

where n is the number of microplanes and wmic their numeric weight respectively. Needless to
say that this integration has to be very efficient, because this process must be done for every
integration point in the macroscopic model. Baẑant published a study regarding efficiency of
numerical integration schemes [35]. The study compared resulting stress response for uni-axial
stress applied in various directions using different integration schemes. As a result stress-strain
curves are plotted and compared. Baẑant recommended the usage of the 21-integration point
set fully symmetric (representing a total of 42 microplanes due symmetry). However, another
recommendation of [30] favoured the usage of the 37-integration point set fully symmetric
(equals 74 microplanes) due to the better accuracy in far post peak softening. Both point sets
were derived from Taylor expansion of the analytical sphere integral until the 9th grade. The
results from Baẑant’s study is shown in figure 2.24
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(a)

(b)

Fig. 2.24: Resulting stress-strain curves obtained by different integration schemes of a hemisphere.
The scheme uses the (a) 42-point set and (b) 72-point set with symmetric formula [35]

2.2.3 Microplane Models in Ansys Mechanical
Two different microplane models are avaiable in Ansys Mechanical. However, both are only
accessible through console commands and don’t show up in the graphical user interface. Also,
solution quantities like damage variables are not available in the GUI, although they can be
accessed via APDL scripting.

This part should give an overview on the input parameters needed. Calibration attempts
are presented in detail in chapter 4.3.

Elastic Microplane Model considering Damage

This model is available for elements of type: three-dimensional SOLID65, SOLID185, SOLID186
and SOLID187 as well for two-dimensional PLANE182, PLANE183 and PLANE185.

A simplified work-flow is displayed in figure 2.25. A transformation matrix (kinematic
constraint) links the macroscopic strain in a point with the microscopic strains on each
microplane. Onto each plane the strain is split into its volumetric and deviatoric part. For
this variant, the yield criteria is formulated in terms of the first and second invariant of the
obtained strains. This yield criteria defines the elastic range and when damage initiates.

The exponential damage law itself is controlled by the equivalent strain energy obtained
from the strain invariants. In combination with Hook’s law, the microplane stress is calculated.
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Finally, integration of all microplane stresses over the unit sphere leads to macroscopic
stress, where the reaction force for the Newton-Raphson solver can be obtained.

Fig. 2.25: Simplified work-flow of the elastic microplane based on the description in Ansys Help
System under Microplane Model formulation

Parameter Subtype Parameter Description

Elasticity
E Modulus of elasticity
ν Poisson’s ration

Damage
k0 Damage function constant
k1 Damage function constant
k2 Damage function constant
γmic Critical equivalent strain
αmic Maximum damage parameter
βmic Scale for rate of damage

Tab. 2.1: Elastic microplane model parameters

The elasticity material parameters can be obtained from uniaxial test. The Drucker-Prager
criterion defines the form of the damage function by giving values for k0 > 0, k1 = 0 and
k2 = 1. Alternatively, the Mises-Hencky-Huber criterion for brittle materials can be used with
k0 = k1 = 0 and k2 = 1.

Coupled Damage-Plasticity Microplane Model

This variant was developed from Zreid in cooperation with Ansys Corporation. A detail
description of the model can be obtained from [31]. Aim was the introduction of a non-local
interaction in order to gain mesh independent results.

The model is only available with coupled pore-temperature elements like: three-dimensional
CPT214, CPT215, CPT216 as well for two-dimensional CPT211, CPT212 and CPT213.
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However, downside of the two-dimensional elements is that they are only capable of modelling
in plane strain.

As for the simple elastic model before, figure 2.26 gives an overview from the model’s work-
flow. Again a transformation matrix is used to determine the volumetric and deviatoric parts
of the macroscopic strain lasting onto each microplane. As the yield criteria, a Drucker-Prager
function is implemented. Because for this model it is formulated in terms of stress, a stress
return algorithm is necessary. However, a detailed description of this algorithm can be obtained
in the model’s paper [31].

The volumetric plastic strain rate is calculated from the strain of the previous step. These
rates are used to obtain an equivalent strain, one representing compressive loading during
the step and the other one tensile loading. From these equivalent strains the mean over all
microplanes is calculated. This mean serves as an input for the implicit gradient regularization.
From this regularization the non-local counterpart of the equivalent strains is obtained.

Linear combination of the equivalent strain’s local and non-local part leads to the modified
equivalent strains. These modified versions then control the exponential damage laws - still
split into compressive and tensile fragments.

In order to represent crack closure during compressive loading, a weighting factor calculated
from the principle microplane strains is introduced. This factor governs the intensity of the
tensile damage.

The overall damage leads then in combination with Hook’s law to the microplane stresses.
Finally, integration of all microplane stresses over the unit sphere leads to macroscopic stress,
where the reaction force for the Newton-Raphson solver can be obtained.

Fig. 2.26: Simplified work-flow of the coupled damage-plasticity microplane based on the description
in Ansys Help System under Microplane Model formulation
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Parameter Subtype Parameter Description

Elasticity
E Modulus of elasticity
ν Poisson’s ration

Plasticity
Drucker-Prager yield function fuc Uniaxial compressive strength

fbc Biaxial compressive strength
fut Uniaxial tensile strength

Compression cap σCV Intersection point abscissa between compres-
sion cap and Drucker-Prager yield function

R Ratio between the major and minor axes of
the cap

Hardening D Hardening material constant
RT Tension cap hardening constant

Damage
γt0, γc0 Tension and compression damage thresholds
βt, βc Tension and compression damage evolution

constants
Nonlocal

c Nonlocal interaction range parameter
m Over-nonlocal averaging parameter

Tab. 2.2: Coupled damage-plasticity model parameters

Elastic parameters, Poission’ ratio and Young’s modulus, define the linear elastic be-
haviour of the model. They can be obtained from common test performed on concrete, e.g.
uni-axial compressive or uni-axial tension test. They can also be obtained from literature.
Plastic parameters define the used Drucker-Prager yield function onto the microplanes.
Although it is recommended to obtain parameters for uni-axial compression strength, uni-axial
tension strength and bi-axial compression strength directly from testing, some relationships can
be shown for concrete :

fbc = 1.15fuc (2.39)
fut = 1.4(fuc/10)2/3 (2.40)

Due to the linear range of the Drucker-Prager function is only defined by the compressive
entities fuc and fbc, dilation angle and cohesion can be obtained by:

α =
√

3(fbc − fuc)
2fbc − fuc

(2.41)

σ0 =
(
1/
√

3− α/3
)
fuc (2.42)

The intersection point between the compression cap and the Drucker-Prager function can
be obtained from triaxial testing. If this test is unavailable, the point can be set directly after
the bi-axial strength point:

σCV = 2
3fbc (2.43)
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2.2 Microplane Material Model

Although a well described procedure exists for the calibration of this model variant, obtaining
the necessary data to represent dam concrete is difficult. Firstly, the minimum required data
for a fit, i.e. uni-axial tension and uni-axial compression test data, could not be obtained from
literature. This kind of data exists very sparely for large aggregate concrete. One reason for
this may be that the required specimen size for a representative test should be at least 10
times the maximum grain size. The maximum grain size for dam concrete is up to 150 mm
(acc. to The Concrete Society) which results in a minimum specimen size of 1.5 m. It may not
be difficult to imagine that the performance a test on such a large specimen longs for special
machinery which inflicts high costs. Another problem is the determination of the non-linear
interaction range parameter. This parameter results from the effective width of the fracture
process zone, which, according to Baẑant [12], can be approximated as:

l ≈ 2.7 ·Dmax (2.44)

This formulation depends only on the maximum grain size Dmax and was only obtained from
tests performed on normal sized concrete. However, it still lacks the validation for large grain
sizes. Damage Evolution Law The damage in this model is split into compressive and
tensile damage. The total damage dmic on each microplane is then given by:

(1− dmic) = (1− dmicc ) · (1− rwdmict ) (2.45)
(2.46)

Where dc, dt are the damage variables and rw is the split weight factor. The exponential damage
evolution law is then given separately as:

dmict = 1− exp(−βtγmict ) (2.47)
dmicc = 1− exp(−βcγmicc ) (2.48)

Where βt, βc are the damage evolution parameters and γt0, γc0 are equivalent strains controlling
the damage development. The splitting factor rw is given from the positive part of the strain
tensor principle values 〈εI〉 and the absolute principle strain |εI |:

rw =
∑3
I=1〈εI〉∑3
I=1 |εI |

(2.49)

Figure 2.27 shows a complete hysteresis loop starting with tensile loading obtained from
the microplane model. Figure 2.28 follows the total damage evolution during this loop. It can
be seen that the weighting factor rw needs time to reach its maximum during uni-axial tensile
loading. It stays fully active until compressive loading initiates leading to a harsh degradation
below 40% although it never becomes zero. After the compressive peak, the factor starts
growing again until it reaches again its maximum when tensile loading begins.
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Fig. 2.27: Hysteresis loop obtained by the coupled damage-plasticity microplane model
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Fig. 2.28: Damage evolution while undergoing a cyclic deformation

Non-Local Gradient Enhancement The used non-local gradient enhancement modifies
the equivalent strains which control the damage evolution. The resulting strains are then the
weighted sum of the non-local strains η and the local one η. The non-local strains are obtained
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2.2 Microplane Material Model

from the Helmholtz equation with Neumann boundary conditions:

η − c∇2η = η (2.50)
∇η · nb = 0 (2.51)

The local strain, obtained at every integration point i given by the integral over a unit sphere:

η = 1
4π

∫
Ω
ηmicdΩ (2.52)

Then the modified strain η̂ at any microplane is given by:

η̂mic = m · η + (1−m) · ηmic (2.53)

Where m is a numerical parameter which controls the influence of the non-local interaction
(normally m = 2.5). Finally, the equivalent strain, which serves as an input to the damage
evolution law, is:

γmic = { η̂
mic − γ0 η̂mic > γ0

0 η̂mic ≤ γ0
(2.54)

This procedure is applied to the compressive and tensile behaviour. Therefore, two additional
degrees of freedom are needed to be provided. These two DoFs are the non-local enhanced
strain for tension and compression ηt and ηc. The results for these DoFs are accessible in Ansys
Mechanical via the non-local-field values (GFV).
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3 Structural Dynamics
The following chapter is based on Fundamentals of structural dynamics [36] by R. R. Craig
and Dynamics of structures: theory and applications to earthquake engineering [37] by A. K.
Chopra.

(a)

(b)
Fig. 3.1: Example of (a) single degree and (b) multiple degree of freedom system [36]

3.1 Single Degree of Freedom Systems (SDoF)
The governing differential equation for a damped single degree of freedom system is given by:

mü+ cu̇+ ku = f(t) (3.1)

3.1.1 Physical properties of the System
. Mass
It represents the mass of the system. It can be discrete or continuous.
. Stiffness
It represents the resistance of the system against deformation. It can be discrete (e.g. springs)
or continuous (e.g. bending beam).
. Undamped natural frequency
Undamped natural frequency or fundamental frequency is one of the two key parameters for
dynamic analysis of a system.

ωn =
√
k

m
[rad/s] fn = ωn

2π [Hz] (3.2)
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3 Structural Dynamics

. Viscous damping factor
The viscous damping factor is the second key parameter. It is defined as the ratio between the
system’s damping factor c and the critical damping factor cr

ζ = c

cr
[-] (3.3)

where:

cr = 2mωn = 2
√
km (3.4)

The magnitude of the damping factor can be distinguished in three cases: underdamped
(0 < ζ < 1), critically damped (ζ = 1) or overdamped (ζ > 1). The final two cases lead to
an extinction without oscillation. Structural analysis normally only deals with underdamped
systems.
. Damped natural frequency
For damping factors smaller than 5% - like it is the case for most structures - it can be seen as
equal to the undamped natural frequency. Otherwise, it is determined through:

ωd = ωn
√

1− ζ2 [rad/s] (3.5)

. Natural period
The natural period can either be undamped or damped. Can be determined directly from the
natural frequency.

Tn = 1
fn

[s] (3.6)

(3.7)

They represent the physical properties of the system and are determined at the beginning of
the calculation. For linear systems, mass and stiffness are constant over time. For non-linear
systems, stiffness and/or mass changes with time.

3.2 Multiple Degrees of Freedom Systems (MDoF)
MDoF systems cover multiple lateral and rotational movements of the discretized system.
In FE-analysis, the number of degree of freedoms depend on the number of nodes and the
individual freedom of the nodes. E.g. a discretized system consisting of n nodes which allows
only horizontal and vertical movement, has a total of 2 · n degrees of freedom. The governing
differential equation for a damped multiple degree of freedom system is given by:

M ü +Cu̇ +Ku = f(t) (3.8)

Where u, u̇, ü are the displacement vector and its time derivatives of size m × 1 with m is
the number of degree of freedoms. The mass matrix M is usually a diagonal matrix of size
m×m The stiffness matrixK is usually a spares matrix with entries close to its main diagonal.
Because the damping matrix C cannot be derived directly from the physical and geometrical
properties of a system, different approaches have to be taken. Some of them are presented in
the following section. On the right hand side, the force vector f describes the external loading.
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3.2 Multiple Degrees of Freedom Systems (MDoF)

3.2.1 Damping of MDoFS
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Fig. 3.2: Response of a SDoF system to an initial displacement with different damping ratios

There are various ways to determine a damping matrix. If it is formulated in the physical
domain, it is called physical damping matrix. To obtain it in the domain of principal coordinates,
this physical damping matrix must be transformed into the generalized one using system’s
modal matrix.

3.2.2 Modal Damping
Modal damping is only applicable on linear systems using modal superposition. The damping
ratio is defined for every decoupled system separately so that:

C = ΦTCΦ = diag(cj) = diag(2ζjωjmj) (3.9)

Where j is the index for the decoupled degree of freedom.

3.2.3 Non-proportional Damping
Non-proportional damping is also only applicable on linear systems using modal superposition.
It couples the undamped normal modes leading to the generalized damping matrix will not
become diagonal. It appears e.g. as shock absorbers in automotive vehicles. It usually not
occurs in structural analysis.

3.2.4 Proportional Damping
Proportional damping is the simplest way to assume damping matrix C. It is stated to be
directly proportional either to the mass matrix or the stiffness matrix.

C = a0K C = a1M (3.10)

35



3 Structural Dynamics

The mass-proportional variant leads to very high damping in the lower frequency range and
almost zero damping at higher frequencies. The stiffness-proportional variant leads to a linear
increasing damping ratio (see Fig. 3.3a).

3.2.5 Rayleigh Damping

(a)

(b)
Fig. 3.3: Determination of Rayleigh damping constants [37]

Rayleigh damping is a combination of mass-proportional and stiffness-proportional damping.

C = a0K + a1M (3.11)

The underlying idea is the definition of the damping ratio on two different natural frequencies
of the system. The dependency on mass and stiffness matrices leads the damping ratio for
frequencies lower than ωi to follow nearly mass proportional damping and for frequencies higher
than ωj stiffness damping respectively. Frequencies in between undergo damping lower than
the chosen damping ratio ζ.

ζ = 1
2

(
a0

ωn
+ a1ωn

)
(3.12)

a0 = ζ
2ωiωj
ωi + ωj

a1 = ζ
2

ωi + ωj
(3.13)

Due its simplicity and the applicability in mode superposition it is the most common way to
assume a damping matrix.
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3.3 Excitations

3.2.6 Caughy Damping

Fig. 3.4: Determination of Caughy damping constants [37]

Caughy damping is a modification of the Rayleigh damping so that the damping ratio can be
defined in more than two modes.

C = M
n−1∑
k=0

ak
(
m−1K

)k
ζn = 1

2

n−1∑
k=0

akω
2k−1
n (3.14)

where n specifies the number of selected modes and ζ is the modal damping ratio.

3.3 Excitations
The most common form of excitations are either forces, movement or acceleration. Depending
on their type, different solution options are available. They can then separated into following
types:
Free vibration: If no excitation is given in any form, the system enters the state of free
vibration. Its response only depends on the given initial conditions, e.g. displacement.
Harmonic excitation: Main type of excitation for simple models, it is always the goal
to transform more complex types of excitation into a harmonic ones. Excitation follows a
sinusoidal path. Resonance occurs when excitation frequency equals the natural frequency of
the system.
Periodic excitation: Excitation repeats itself after a defined time period. Because there is
no restriction to the length of the period, even a whole time-history record of an earthquake
can be seen as one period.
Non-periodic excitation: Excitation which does not repeat after a certain amount of time
(e.g. impulses, earthquakes).

For seismic analysis of dam structures mainly non-periodic excitations are used. Depending
on the problem to be modelled, they should be representative for the site’s seismic conditions
and in tone with local regulations. Also, it is common to expose a model to specific recorded
or artificial signals in order to compare results obtained by different models (so the case in
15th ICOLD benchmark workshop on numerical analysis of dams in Milan 2019 [38]).
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3 Structural Dynamics

3.3.1 Recorded Signals
One type of excitation used for seismic analysis is a recorded signal of an actual earthquake.
However, these signals vary drastically in their duration, maximum excitation and distribution
in the frequency domain. For a first comparison between systems, the system’s response to one
of those signals can be used. As an example, the response of a single degree of freedom system
to two famous earthquakes - El Centro 1940, which is the first recorded earthquake in history
and Friuli 1976, which is close to the Austrian border - with various damping ratios are shown
in the figures below.
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Fig. 3.5: Recorded acceleration time history a response spectra for various damping ratios of El
Centro earthquake in Central Valley (Mexico, USA) of May 18, 1940
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Fig. 3.6: Recorded acceleration time history spectra for various damping ratios of earthquake in
Friuli (Italy) of May 06, 1976

3.3.2 Design Response Spectrum
The American Society of Civil Engineers (ASCE) and the Structural Engineer Institute (SEI)
defines in their standard to the minimum design loads for buildings and other structures
ASCE/SEI 7-10 [39] a so-called design spectra, depending on seismic design category of the
building and site class (see figure 3.7). The peak ground acceleration for pseudo static analysis
- corresponding to the natural frequency of the system - are obtained from this design spectra.
Furthermore, artificial earthquakes can be generated and serve as an input for a time history
analysis.
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3.3 Excitations

Fig. 3.7: Design spectrum according to ASCE/SEI 7-10 [39]

The earthquake produced from ASCE’s design spectra represents the Maximum Cred-
ible Earthquake (MCE). However, there are more types of design earthquakes based on
probability of occurrence to be considered:

Safety Evaluation Earthquake (SEE): Maximum level of ground motion the structure
should be designed for and no uncontrolled water loss takes place. The corresponding return
period is 10,000 years.

Operation Basic Earthquake (OBE): Level of ground motion at which dam and
appurtenant structures retain their functionality. The corresponding return period is 145 years
(equals a 50% probability of occurrence during lifespan of 100 years).

Reservoir Triggered Earthquake (RTE): Maximum level of ground motion triggered
due filling and draw-down of the reservoir.

3.3.3 Endurance Time Record
Endurance Time Analysis (ETA) is a dynamic pushover procedure which estimates the seismic
performance of the dam when subjected to a pre-designed intensifying excitation. A detailed
explanation and a numerical study done on arch dams can be found here [40].

Fig. 3.8: Endurance time acceleration function (ETAF) as time acceleration history and
corresponding response spectra for various sample length [38]
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3.4 Solving an Equation of Motion
It follows a short overview on different solution techniques for single and multiple DoF-systems.
Although there are many ways to theoretical solve an equation of motion, FE-analyses almost
exclusively use numerical methods.

3.4.1 Theoretical Solution
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Fig. 3.9: Steady state and transient response of a damped SDoF system with initial displacement
and harmonic excitation

Theoretical solutions are only applicable on SDoF systems undergoing free vibration. By
adding a steady state term this can be extended to harmonic excited systems - i.e. excitations
with a fixed amplitude U following a sinusoidal path with a frequency of Ω and a phase shift α.
The total response is then a combination of an expiring transient and a steady state response.

u(t) = Ucos(Ωt− α)︸ ︷︷ ︸
steady state respone

+ e−ζωnt(Acosωdt+Bcosωdt)︸ ︷︷ ︸
transient response

(3.15)

where constants A and B have to be determined from the initial conditions. A visualization of
this Combination is given by figure 3.9.

3.4.2 Convolution Integral Method (Duhamel Integral Method)
The Duhamel Integral is derived from the system response to a unit impulse function, where
the duration of the impulse is smaller than the system’s natural period:

h(t) = 1
mωd

e−ζωntsinωdt (3.16)
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3.4 Solving an Equation of Motion

The underlying idea is now to see the excitation function as assembled from finite number of
responses to unit impulses:

up(t) =
∫ t

0
f(τ)h(t− τ)dτ (3.17)

For a viscous underdamped system the solution is then given by:

u(t) = 1
mωd

∫ t

0
f(τ)e−ζωn(t−τ)sinωd(t− τ)dτ + e−ζωnt (Acosωdt+Bsinωdt) (3.18)

where constants A and B have to be determined from the initial conditions.

3.4.3 Mode Superposition
Mode superposition or modal analysis is a method for solving the response of linear system
undergoing forced excitation. After gathering the physical properties of the system - stiffness
and mass - its natural frequencies ωr and their natural modes (Eigenvectors φr) are determined.
The assembly of these Eigenvectors form the so-called modal matrix Φ.

{φ1, φ2, .., φr} = Φ (3.19)

This matrix is then used to diagonalize (= decouple) stiffness and mass matrix leading to the
equation of motion in principal coordinates η:

Mη̈ + Cη̇ + Kη = ΦTp(t) (3.20)

where

K = ΦTKΦ = diagonal modal stiffness matrix
C = generalized damping matrix
M = ΦTMΦ = diagonal modal mass matrix

As a result N-number of independent SDoFs equations of motions are obtained which can then
be solved separately. Where N is the number of natural frequencies - or respectively DoFs of
the whole system. The final solution is then obtained by superposition:

u =
N∑
r=1

φrηr = Φη (3.21)

Due to this decoupling, the generalized damping matrix K also has to be diagonal. Modal
damping or Rayleigh damping full-fills this necessity. Therefore, only damping methods can be
used which relate to mass and/or stiffness matrix e.g. modal damping or Rayleigh damping.

3.4.4 State Space
Another possibility for solving linear system is transforming the given equation of motion into
state space. This is done by introducing a state vector consisting of the displacement and
velocity variable of the original system. The aim is to reduce the given second order differential
equation to a first order one, where further solutions techniques exist.
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3.4.5 Direct Time Integration
If non-linearities are present in the system, the only way to solve is due direct time integration.
The basic idea is to extrapolate known quantities from a time ti to a time ti+1. For an exact
solution, the underlying equilibrium equation if full-filled at both time steps. Since a numerical
solution always introduces a slight error, this equilibrium can only be formulated either at the
present time step ti or the following one ti+1. If the elected method formulates the equilibrium
at the present time step it is called implicit. On the other hand, if it is formulated at the
following time step it is called explicit. Explicit methods are used for systems where high shifts
at accelerations are present, e.g. simulation of an impact or a detonation. Implicit methods
are commonly used for structural dynamics.

Figure 3.10 shows a comparison of different time integration method with and without
numerical damping. Approximated problem is the response of a damped SDoF system to an
initial displacement undergoing free vibration. The following section points out the different
performances of the applied methods.

Central Difference Method

The central difference method was introduced by the English mathematician Brook Taylor
in 1715. Till today, it is the most widely used integration scheme from the explicit methods.
Although it was initially meant as an approximation method for derivatives of continuous
functions.

The fundamental idea is to proximate the derivative of the desired, discrete function value
by their discrete neighbours and their interval (in the time domain this interval equals the time
step ∆t). The accuracy can be enhanced by increasing the number of neighbours involved or by
reducing the interval length. Furthermore, if only values related to ti−j, j = 1, 2, 3· are used,
the formulation is called Backward Differences. If only values related to ti+j, j = 1, 2, 3 · · ·
are used, it is called Forward Differences. If both values are used, it is called Central
Differences .

One simple way to derive this approximation is by Taylor series expansion:

T1 : ui−1 = ui −∆t
(
∂u

∂t

)
+ ∆t2

2

(
∂2u

∂t2

)
− ∆t3

6

(
∂3u

∂t3

)
+ · · · (3.22)

T2 : ui+1 = ui + ∆t
(
∂u

∂t

)
+ ∆t2

2

(
∂2u

∂t2

)
+ ∆t3

6

(
∂3u

∂t3

)
+ · · · (3.23)

Subtraction and addition of these two series lead to the approximated first and second derivatives
of ui:

T2 − T1 : u̇i = ui+1 − ui−1

2∆t +O(∆t)2 (3.24)

T1 + T2 : üi = ui+1 − 2 · ui + ui−1

∆t2 +O(∆t)2 (3.25)

The caused truncation error is represented by the order of the excluded terms from the Taylor
series. Furthermore, this method is conditionally stable. This requires that the selected time
step must full-fill the following criterion:

∆t
Tn

<
1
π

(3.26)

Where Tn is the period of the highest natural frequency of the discretized system which is not
directly involved in the system’s response.
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3.4 Solving an Equation of Motion

Newmark-β Method

The Newmark method was developed in 1959 from the US-American civil engineer Nathan
M. Newmark. Based on the known displacement ui, velocity u̇i and acceleration üi at time
t, it computes their unknown quantities at time t+ ∆t. It is a one step method due to only
quantities at one time step are used to solve the following one. This implicit method is based
on the following equations:

u̇i+1 = u̇i + [(1− γ) üi + γüi+1]︸ ︷︷ ︸
weighted average

∆t (3.27)

ui+1 = ui + u̇i∆t+
[(1

2 − β
)
üi + βüi+1

]
︸ ︷︷ ︸

weighted average

∆t2 (3.28)

Depending on the selected values for beta and γ, this method equals to the average or
linear acceleration method. The difference between these methods lies within their stability
criterion. While for the linear acceleration method (β = 1

6 and γ = 1
2) is conditionally stable

depending on the system’s natural period Tn for ∆t
Tn
≤ 0.551, the averaged acceleration method

(β = 1
4 and γ = 1

2) is unconditionally stable and therefore independent of the selected time
step ∆t. As can be seen in figure 3.10, both methods undergo slight numerical damping and
an enlargement of the responding period. An example to implement the algorithm to solve the
response of a SDoF system can be seen at [37].

Wilson-θ Method

The underlying idea of the Wilson-θ Method is that each component of the acceleration vector
ü varies linearly with time over the extended time step s = θ∆t. It is an implicit method. An
example is given by [36]. As can be observed in figure 3.10, this method performs slightly worse
- at same time step size - than its counterparts. Therefore, its usage in numerical analysis is
limited.

Hilber-Hughes-Taylor-α Method (HHT-α-Method)

Hilber-Hughes-Taylor Method is based on the Newmark-β Method from 3.4.5, but it adds
numerical damping to the processed equilibrium equation. This damping is controlled by the
parameter α defined between

[
−1

3 , 0
]
. The smaller this value, the larger is the introduced

numerical damping. Note that if alpha is set to zero, this methods equals Newmark’s averaged
acceleration method. A step-for-step implementation can be seen at [41]. The outcome of
numerical damping can be observed in figure 3.10.

Due to the formulation of equilibrium at time t + 1, this method is explicit. This is
the standard method for time integration in transient analysis in FEM software like Ansys
Mechanical or Abaqus.
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Fig. 3.10: Response of a damped SDoF system to initial displacement solved through various
integration schemes with and without numerical damping

3.4.6 Effective Modal Mass
The compression of effective modal masses between modes, can be seen as method for judging
the mode’s significance. The more effective mass results at a mode, the more the system excite
by excitation at this frequency. Furthermore, as a rule of thumb of how many modes should
be extracted during modal analysis: The sum of effective modal masses of the extracted modes
should be at least 90% of the system’s total mass.

The effective modal mass is obtained for any mode i and any degree of freedom j as follows:

meff
i,j =

L2
ij

Mii

(3.29)

where

M = ΦTMΦ (3.30)
L = ΦTMr (3.31)
r = static influence matrix (3.32)

The influence matrix r represents the displacements of masses resulting from static application
of unit displacements and rotations. The sum over all modes of one degree of freedom results
in the system’s total mass involved:

mtotal =
max∑
n=1

meff
n,j (3.33)

Effective mass can be used to find appropriable modes for determination of Rayleigh damping
factors.
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3.5 Seismic Analysis of Concrete Dams

3.5 Seismic Analysis of Concrete Dams
This section should provide a brief overview on the current praxis of seismic modelling of
dams. Furthermore, it lists the common assumptions taken during these analyses. This part
is oriented on the guideline Evaluation of non-linear material models in concrete dam finite
element Analysis [1] by the U.S. Bureau of Reclamation and the guideline provided by R. Malm
which summarizing the most import aspects for FE-analyses of dams [42].

Fig. 3.11: Boundary conditions applied on foundation model

Two and three-dimensional models are both common for FE-analyses of concrete das. Two
dimensional models with plane strain conditions are in most cases sufficient for modelling of
gravity dams with straight axes. For arch dams on the other hand, only three-dimensional
analyses are representative. A Modal analysis can be performed to obtain Eigenfrequencies
and mode shapes if using linear material models and linear contact formulations. Furthermore,
mode superposition or time history analysis can be used to obtain the model’s response to a
specific excitation. If using non-linear material models or if non-linear contacts are present,
time history analysis can be performed.

3.5.1 Model Boundary Condition
The boundary condition are usually applied only onto the foundation’s outer boundaries. Their
displacement is constrained in the normal direction to the faces of the foundation block.

3.5.2 Massless Foundation Approach
Representative modelling of the foundation behaviour while subjected to an earthquake is
difficult. This mainly arises from the complexity of the foundation and its influence on the
dynamic behaviour - e.g. orientation and spacing joint sets, position of failure zones. Also,
modelling these kinds of structures is very computational costly and does not always lead
to satisfying results when using commercial codes. Furthermore, determining the damping
coefficient of the foundation is difficult because of the described features. Therefore, the
massless foundation approach is chosen to reduce influence of the foundation on the dam model.
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3.5.3 Maximum Element Sizes
The maximum edge size L of the used mesh depends on the largest frequency of interest fmax
to be obtained by the model. According to the guideline, as a rule of thumb the following
criterion should be fulfilled:

L <
c

nmin · fmax
(3.34)

Where nmin is the minimum number of points to approximate a sinus wave (usually taken as
10) and c is the shear wave velocity of the modelled material. Furthermore, in relation the
used time step ∆t the Courant-Friedrichs–Lewy Condition must be fulfilled:

C = u ·∆t
L
≤ 1 (3.35)

Where u is the wave velocity in the material. The expression on the left hand side equals the
so-called Courant number C. Also, when non-linear material models are used, the following
criterion should be fulfilled:

L <
E ·Gf

f 2
t

(3.36)

Where E is the Young’s modulus, Gf the fracture energy and ft the materials tensile strength.
This criterion relates from the approximated length of the fracture process zone.
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4.1 Getting started with Ansys Mechanical
This chapter provides an overview of the essential processes and parts of the finite element
software Ansys Mechanical.

4.1.1 Solution Procedure
For solving structural and transient problems, Ansys Mechanical provides two different solution
procedures. The most common is the Newton-Raphson procedure, which is capable of solving
geometrical and material non-linear problems until a certain extant. Depending on the type of
convergence (displacement or force) it is also capable of solving problems including material
softening behaviour. However, more complex problems, e.g. highly non-linear geometries,
are longing for a more powerful solver. One example is the arc-length method, which is also
described here.

(a) One iteration (b) Next iteration

Fig. 4.1: Iteration procedure of the Newton-Raphson Method [43]

Newton-Raphson Procedure

The Newton-Raphson Procedure is an iterative process of solving non-linear equilibrium
equations. It was initially developed in the 17th century by the English mathematicians Sir
Isaac Newton and Joseph Raphson to find an approximation to the roots of a given function.
The procedure itself did not change over the years: in the one-dimensional case, it starts with
an initial guess for the location of the roots x0 (this guess can also be the value from a previous
iteration step). Knowing the function value and its first derivative in this point, it is then
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possible to approximate one desired root. As shown in 4.1, this process can be repeated until a
certain accuracy is reached.

x1 = x0 −
f(x0)
f ′(x0) (4.1)

xn+1 = xn −
f(xn)
f ′(xn) (4.2)

In structural analysis, this procedure can be applied on non-linear systems of equilibrium
equations. There the stiffness matrix K is a function of the unknown displacement values u
and its derivatives. A non-linear stiffness matrix may result from non-linear material laws or
non-linear geometry effects of the structure.

Ku = Fa (4.3)
(4.4)

where

K = stiffness matrix (4.5)
u = displacement vector (4.6)

Fa = vector of applied loads (4.7)

The iterative Newton-Raphson process applied on the equation above, can be written as:

Ki∆u = Fa − Fnr
i (4.8)

ui+1 = ui + ∆ui (4.9)

where

K = tangent stiffness matrix (Jacobian matrix) (4.10)
Fnr = force vector calculated from the element stresses (4.11)
i = subscript of the current iteration step (4.12)

The solution procedure itself can be either load or displacement driven. This means, a load
or displacement increment is defined by the user and the other entity is iteratively solved by
the procedure from above. This procedure is repeated until convergence is reached. As a
convergence criterion serves the difference of outer and inner forces of the structure, called
residual force. The value of the residual can be increased to achieve faster convergence but on
the costs of accuracy. Additionally, a displacement criteria can be chosen as a convergence
indicator. This eases the achieving of convergence for non-linear material behaviour.

Although this procedure is a fast and accurate way to solve non-linear problems on systems
with reducing stiffness, it has its limits. For the load driven procedure (see Fig. 4.2a), the
stiffness matrix become singular in B and L, meaning that the solution in this point is not
unique. Furthermore, it is clear that softening behaviour cannot be simulated with this setup.
The displacement driven procedure (see Fig. 4.2b) on the other hand doesn’t allow negative
displacement increments, as from point T to point T.
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(a) load driven procedure (b) displacement driven procedure

Fig. 4.2: Limits for Newton-Raphson procedure for solving non-linear equilibrium equations [43]

Arc-length Method

The arc-length method is a modification of the Newton-Raphson procedure. It causes the
Newton-Raphson equilibrium iterations to converge along an arc, which often helps to prevent
divergence, even when the slope of the load becomes zero or negative (see points L and T in
figure 4.3). Therefore, both, displacement and load increments, are modified each iteration.
The arc length itself depends on the applied load and displacement increments and remain
constant while they are varied to obtain equilibrium.

Fig. 4.3: Graphical interpretation of the arc-length method [43]

Although there are different variants of arc-length or continuation methods, they all consist
of two phases. In the first phase - prediction phase -, an estimation for the next equilibrium
point is established starting from a known converged solution point. In the second phase -
correction phase -, Newton-iterations are employed to find a new point on the equilibrium
curve.
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4.1.2 Element Types
Structural Elements

They are the most basic element type for structural elements. They are available as one
dimensional BEAM elements, two-dimensional PLANE elements and thee dimensional SOLID
elements. Various material models are available which are able to represent elastic or inelastic,
isotopic or anisotropic as well as linear or non-linear behaviours. Available degree of freedom
depend on the element type. Basically, elements have three displacement and three rotational
DoFs per node. Additionally, some types are capable of modelling a temperature DoFs and
pressure DoFs, e.g. coupled pore-pressure and temperature elements (CPT ). Furthermore,
user-defined DoFs (Generic Field Variables GFV ) can be applied to the elements. Material
properties can be defined depending on the material model used, e.g. for linear elastic behaviour,
Young’s modulus and Poisson ratio are sufficient. Other material properties may be shear and
bulk modulus, temperature expansion coefficient or density.

All element types are available with linear and quadratic order. If changing the element
type - e.g. how it is required for the microplane model - the element order of the pre-defined
mesh and the element type must be the same. For static structural analysis, the governing
differential equation is given from the balance of internal and external forces:

Fint(t) = Fext(t) (4.13)

For transient structural analysis, the governing differential equation is given by the equation of
motion:

M ü(t) +Cu̇(t) + Fint(t) = Fext(t) (4.14)

Acoustic Elements

In Ansys Mechanical, acoustic elements are available in linear and quadratic order (FLUID30
and FLUID220 ). They pose two formulations of degree of freedoms. The first considers
pressure DoF and three displacement DoFs and the second one only considers pressure DoF.
The first formulation is used to model fully reflective surfaces or fluid structure interactions
(FSI). The second one is used to model fluid elements inside the domain, where no BCs are
present. Required material properties to be defined are fluid density and sonic speed in media.
The governing differential equation is the acoustic wave equation given by:

∇ ·
(

1
ρ0
∇p

)
+ 1
ρ0 · c2

∂2p
∂t2

= 0 c =
√
K

ρ0
(4.15)

where ρ0 is the mean density, p the fluid pressure and c the sound velocity in the media
obtained from the Bulk modulus. However, the acoustic wave equation is derived from the
linearized Navier-Stokes equation and the linearized continuity equation for a fluid, under the
following assumptions:
� the fluid is compressible
� the fluid is irrotational
� no body forces are acting
� small pressure distribution of the fluid
� no mean flow

Additionally, following assumptions are taken in order to model dynamic behaviour of water:
◦ no mass source is present
◦ dynamic viscosity of water is neglected
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Miscellaneous Elements

Ansys Mechanical uses automatically generated elements in order to define boundary conditions
like forces, contacts or interaction surfaces (e.g. FSI). If using the GUI-workbench these
elements are created before user-defined APDL-scripts are run. Redefining element types via
APDL using geometrical defined instances (CMSEL), may also redefine these elements which
then lead to a major error. This should be kept in mind if the selection algorithm is created.

4.1.3 Contact Modelling

Fig. 4.4: Schematic examples for contacts to be encountered when modelling an arch dam

This chapter should give an overview on how to model contact behaviour between two bodies.
Although it is oriented on available option in Ansys Mechanical [44], the principles shall be the
same for all commercial finite element software.

Contact vs. Target

Fig. 4.5: Increasing penetration when changing contact with target surfaces for asymmetric
behaviour type [45]
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To model contact, two additional element types have to be added. One type is applied
to the contact surface (a.k.a. master) and the other one on the targeted surface (a.k.a.
slave). In Ansys Mechanical, target surfaces are modelled with either TARGE169 (line) or
TARGE170 (surface) elements. Available contact surface elements are CONTA171 (linear
line), CONTA172 (quadratic line), CONTA173 (linear surface) or CONTA174 (quadratic
surface). Also, contact between linear and surface elements is possible by using CONTA175
elements. Furthermore, node-to-node contact is possible, although it is not recommended due
bad convergence performance in 2D- or 3D-contacts.

Selecting the correct surfaces as contact and target can be highly important for asymmetric
behaviour types (see figure 4.5).

Symmetric Behaviour Contact and target geometries are constrained from penetrating
each other. It is the default behaviour. However, it is more computational costly than the
asymmetric behaviour. Also interpreting results can be more difficult because they are reported
in both, contact and target geometries. Asymmetric Behaviour Only contact geometry is
constrained from penetrating target geometry. As mentioned above, it is important which
geometry to be selected as target or as contact. This may influence the results tremendously.
Also, results are only reported on contact geometry.

Contact Behaviour Types

Various behaviour types exist to model different problems like sliding and separation including
and excluding friction. Table 4.1 lists the available behaviour types in Ansys Mechanical.

(a) (b) (c)

(d) (e)

Fig. 4.6: Overview of available contact behaviour types showing submitted forces and movement: (a)
bounded, (b) rough, (c) no separation, (d) frictionless and (e) frictional

The displayed behaviour types are additionally described below:
(a) Bounded: This type of behaviour allows for linear solution, gaps are closed and initial

penetration is ignored. This type leads to the same results as due to a node merge inside the
contact region.

(b) Rough: This type doesn’t allow sliding and corresponds to a joint with an infinite
friction coefficient. However, gaps openings and closing can take place. In case of separation
the normal pressure is reduced to zero. This type leads to a non-linear solution.
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(c) No Separation: Here the separation of the geometries is not allowed, although
frictionless sliding is enabled.

(d) Frictionless: Geometries can open and close gaps. In case of separation the normal
pressure is reduced to zero. Sliding happens frictionless. This type leads to a non-linear
solution.

(e) Frictional: Geometries can open and close gaps. In case of separation, the normal
pressure is reduced to zero. The contact can submit shear stresses up to a certain magnitude
defined by the friction coefficient and the contact pressure. After exceeding this shear stress
limit, geometries begin to slide relative to each other. This type leads to a non-linear solution.

Name Gap can open/close Sliding allowed

Bounded NO NO
Rough YES NO, µs =∞

No Separation NO YES, µs = 0
Frictionless YES YES, µs = 0
Frictional YES YES, µs 6= 0

Tab. 4.1: Overview on the contact behaviour types available in Ansys Mechanical

Contact Formulations

Choosing the right contact formulation for the right problem can save a lot of computational
power and may lead to faster convergence. Following, the different types are briefly described
and application examples are given. Furthermore, the table in figure 4.8 shows pros and cons
of the different formulation types.

• Pure Penalty

Fnormal = knormal · xpenetration (4.16)

This method uses the concept of contact stiffness where the finite contact force Fnormal and the
reaction force resulting from the geometrical penetration of the two bodies. It is valid for all
behaviour types. It has a good convergence behaviour, although it is sensitive to the selected
contact stiffness. Furthermore, penetration is always present even if the contact stiffness is
very high. Therefore, results should be checked carefully.

• Augmented Lagrange
This method is an iterative series of pure penalty methods where the contact pressure and
frictional stress are increased during the equilibrium iteration until the final penetration is
smaller than the allowed tolerance. Although this method requires additional iterations, it
tends to be less sensitive to the selected normal stiffness.

• Normal Lagrange or Pure Lagrange

Fnormal = DoF (4.17)

This method adds contact traction (pressure and frictional stress) as an additional degree of
freedom. It is valid for all types of contact behaviours. If the contact is closed, it enforces zero
penetration and during sticking it enforces zero slip. This often leads to the so-called chattering.
If no penetration is allowed the contact statues is represented through a step function (see
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figure 4.7 left) which cause convergence difficulties. Slight penetration, on the other hand,
may help the solution to converge faster (see figure 4.7 left). Furthermore, it should be noted
that only direct solver can handle normal or pure Lagrange formulations and only asymmetric
penetration behaviour is allowed.

Fig. 4.7: Chattering effect [44]

• Multi-Point Constraint (MPC)
This method uses kinematic constraint equations, defined on contact pairs. For small defor-
mation problems, this results into linear contact behaviour. If large deformation is present,
constraint equations are updated during every iteration. This method doesn’t need normal
stiffness as an input and lead to zero penetration. But it is only valid for bounded and no
separation behaviour types. Furthermore, it only supports asymmetric penetration behaviour.

Fig. 4.8: Pros and cons of various contact formulation types [44]

Contact Detection

There are two ways to detect of contact between geometries depending on the used formulation.
Pure Penalty and Augmented Lagrange use integration point detection. This leads to more
detected points resulting in less unaccounted penetration at a full body contact. Normal
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Lagrange and MPC uses nodal point detection. This leads to less detected points but may
handle contact on edges slightly better.

Concept of Normal Stiffness

Aim is to establish an equilibrium between the finite contact force Fnormal and the reaction force
resulting from the geometrical penetration of the two bodies times the contact normal stiffness
knormal. Regarding Ansys Mechanical, the normal stiffness is calculated automatically but can
be adjusted by the normal stiffness factor (FKN). This factor simply multiplies the calculated
normal stiffness. Depending on the problem to be solved, following inputs for the factor are
recommended: for bounded and no separation behaviours FKN = 10, for bulk-dominated
problems FKN = 1 and for bending dominated problems FKN = 0.01 to 0.1.

However, there are certain things to be considered by the use of contact stiffness. First of
all, higher contact stiffness lead to more accurate results, but also the problem become more
difficult to converge. This means there will be more iterations needed to reach convergence or
it won’t even be reached at all. Furthermore, too high contact stiffness may cause the contact
surfaces to bounce off each other, they may start oscillating.

Tangential Stiffness

Ftangential = ktangential · xslip (4.18)

If the contact behaviour type is bounded, rough or frictional, an additional friction force has to
be balanced with a finite tangential force Ftangential. The friction force or tangential force is the
product of tangential stiffness and geometrical slip. Tangential stiffness ktangential is calculated
depending on the contact normal stiffness and friction coefficient. As an alternative, tangential
stiffness can be calculated due contact normal pressure, friction coefficient and a maximum
allowable elastic slip.
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4.2 Studies - Microplane Model Parameters
Aim of this chapter is to get a better understanding of the microplane model’s input parameter.
Therefore, the following analyses were performed:

• Cube
Tension and compression failure was simulated on a simple cube while varying different
input parameters. It shows that the uni-axial compressive strength has no influence one the
macroscopic tensile behaviour while the tensile damage evolution parameter influences the
macroscopic compressive behaviour quite strong. The Variation of the Poisson ratio also seems
to have little influence during uni-axial deformation. Furthermore, the non-local range has no
influence due to the equally distributed strain field of the cube. Finally, both - compressive
and tensile - uni-axial strength defined for each microplane were not reached on a macroscopic
level. Also, the macroscopic strength is influenced by the damage evolution parameter.

• Cylinder
Cylinders with various diameters were exposed to uni-axial tension. They were fixed on both
ends and all possessed the same height. Then, the radial stress distribution was investigated.
Furthermore, fracture energy was calculated from the resulting stress-strain curves. Although
the material parameters remained unaltered, calculated fracture energy is found to depend on
the cross-section area. This may be explained due to the used non-local regularization and the
unequally distributed strain field due to the fixed ends.

• Vertex
First curve fitting attempted in order to calibrate material model parameters. Aim was the
replication of the so-called vertex effect, i.e. rotation of principal stress axis leading to a too stiff
response when using ordinary FEM methods compared to experimental data. The experiment
was set-up in two steps. First, a cylinder is undergoing uni-axial compression until softening
initiates. Second, compressive displacement is kept and the cylinder is rotated around its main
axes. The microplane parameters were calibrated to fit only the compressive stress-strain curve.
The obtained initial stiffness response from the rotational step fits closely the experimental
data. Additionally, the parameter influence on the stress-strain and torque-rotation curves
were investigated. However, radial stress distribution shows uniform distribution in the elastic
range and increased stress at the edges in the post-peak softening range - like it was expected
from theoretical descriptions.

• L-Shaped Plate
A simple L-shaped geometry was meshed with different element sizes and orientation. Then, the
unsupported side was displaced and the damage growth at the inner corner was observed. This
process was carried out with two models: one with a non-local regularization and the second
one without. For the non-regularized model, results clearly show an influence of element size
and element orientation on the resulting damage pattern as well as on the overall performance
in the force-displacement curve. On the other hand, an active non-local regularization delivers
almost identical results independent of mesh size and orientation.
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4.2.1 Cube
A parameter study was performed to receive a better understanding of the influence of the
input parameters on the material behaviour. Therefore, two cubes with an edge length of 0.1
m, consisting of 100 linear hexahedral CPT215 elements was modelled. Displacement boundary
conditions were applied on three adjacent faces, each locking a different spatial direction. A
displacement controlled setup was used. Therefore, the displacement was applied on of the free
faces. One of the cubes was then exposed uni-axial compression and the other one uni-axial
tension. The resulting force was recorded at the same nodes where the displacement was applied.
Then, microplane model input parameters were varied and the resulting stress strain curves
were plotted. From analysing these results, the following could be shown: First, non-local
range parameter has an overall influence on the non-linear behaviour – in tension as well as in
compressive regime. Second, linear elastic range remain uninfluenced by Drucker-Prager and
non-local parameters. In contrary, Poisson’ ratio show little to no influence on non-linear range.
Furthermore, tension damage parameters have a significant influence on compressive behaviour.
Vice versa compressive damage parameter show no influence on tensional behaviour. Last,
defined uni-axial compressive and tensional strength were not reached in the model (deviation
of about 5%).

Fig. 4.9: Model setup and cube mesh

Input parameters for the microplane model were varied one after another and the results
were plotted in respect to the ones obtained by the parameters in table 4.3.

Geometry and Mesh

The mesh consists of 1000 linear hexahedral CPT215 elements with an edge length of 0.01 m.
The same mesh was used for compressive and tensional testing.

57



4 Numerical Analyses

Mesh properties

Form Cube
Edge length 100 mm

Area 0.01 m2

Nodes 1331
Elements 1000

Element length 0.01 m

Tab. 4.2: Mesh properties

Parameters

E 25000 MPa
ν 0.2

fuc 40 MPa
fut 3.53 MPa
c 0.0004

γt0 0
βt 6000
γc0 0.003
βc 2500

Tab. 4.3: Material model input
parameters

The faces of the cube were locked in one direction each, see figure 4.9. Namely, face (a)
was locked in X-direction, face (b) in Y-direction and face (c) in Z-direction. Compressive and
tensional displacement was applied in Z-direction on the opposite face of (c). Displacement
was applied ramped to a maximum value of 0.0002 m for tension and -0.001 m for compression.

Results

Normal reaction force was recorded on face (c) and displacement was recorded on the other
opposite face. Then, stress-strain curves were plotted.
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Fig. 4.10: Cube: parameter variation of uni-axial compressive strength
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Fig. 4.11: Cube: variation of tensional damage evolution parameter
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Fig. 4.12: Cube: parameter variation of Young’s modulus
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Fig. 4.13: Cube: parameter variation of Poisson ratio
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Fig. 4.14: Cube: variation of non-local interaction parameter
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4.2.2 Cylinder
Aim of this analysis was to find a convergence value of the determined fracture energy by
only varying a cylinder’s diameter. As can be seen in figure 4.16, although the length of
the cylinder remain unaltered, the softening evolution decreases with larger cross sections.
Also, the responding stress value at the maximum displacement seems to increase with larger
diameter sizes. Although the fracture energy seems to approach a certain value in figure 4.17,
these values need to be corrected due to the previously described stress value at the maximum
displacement. This correction was done with an exponential fit due through the post-peak
softening curve and the determination of the inflected area.

Fig. 4.15: Model setup and mesh for cylindrical specimen

Additionally, the stress distribution along the cylinders cross-section was obtained. Figures
4.18 and 4.19 shows a quadratic stress distribution with higher stresses at the boundaries
during the post-peak regime and a linear stress distribution in the elastic one. These two
observation fit the theoretical expectations. Input parameters for the microplane model are
listed in table 4.5.

Geometry and Mesh

The mesh consists of linear hexahedral CPT215 elements with an edge length of 0.1 m.

Mesh properties Cylinder 1 Cylinder 2 Cylinder 3 Cylinder 4 Cylinder 5
Radius 100 200 500 750 1000 mm
Height 1000 1000 1000 1000 1000 mm
Area 0.031 0.126 0.785 1.76 3.14 m2

Area Elements 0.028 0.122 0.780 1.76 3.14 m2

Nodes 121 418 1155 2519 4312
Elements 60 290 880 2040 3590

Tab. 4.4: Mesh properties
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Face (a) was fixed in all three spacial directions. A ramped displacement of 0.0005 m was
applied on face (b) in axial direction. Meanwhile, the displacements on face (b) in the normal
directions kept zero.

Input Parameters

Young’s modulus E 28300 MPa
Poisson ratio ν 0.18

Uni-axial compressive strength fuc 44.7 MPa
Uni-axial tensional strength fut 2.10 MPa

Tension cap parameter Rt 1
Hardening parameter D 10000

Compression cap parameter R 2
Non-local range c 0.01

Non-local interaction parameter m 2.5
Tensional damage threshold γt0 0

Tensional damage evolution parameter βt 8000
Compressive damage threshold γc0 0.001

Compressive damage evolution parameter βc 1000

Tab. 4.5: Material model input parameters

Results

An APDL-script was created to obtain the fracture energy using a fictitious crack width
w. Therefore, the axial reaction force F on one the fixed end of the cylinder (a) and the
displacement u on face (b) were recorded on 50 equally spaced time points. The fictitious crack
width w was calculated by:

w = u− F ·
(
h

EA

)
(4.19)

where

w . . . fictonal crack width
u . . . displacement
F . . . axial force
A . . . cross section area
h . . . cylinder height
E . . . Youngs modulus

Then fracture energy was calculated as integral of the axial force over the crack width:

GF = 1
A

∫
Fdw ≈ 1

A

50∑
n=1

Fn−1 + Fn
2 · (wn−1 − wn) (4.20)

Finally, the obtained fracture energy was plotted over radius of the cylinder.
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Fig. 4.18: Force displacement curve of linear and non-linear material model
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Fig. 4.19: Stress distribution in cross section for non-linear material models
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4.2.3 Vertex Test
One of the advantages of the microplane model is its capability to reproduce effects hardly
covered by invariant models, where constitutive laws are described by invariants of the stress
and strain tensor. An example for such effects is presented by Baẑant and Caner in 2002
[32], the so-called vertex effect. The consequence of this effect can be shown by an simple
experiment: a compressive deformation is applied on a cylindrical specimen until the stress
response shows softening behaviour. Then the axial deformations is stopped and an additional
rotational deformation is started. The axial deformation, the rotational angle and the required
force and torque for the deformations are recorded and plotted in charts. From these charts
the initial stiffness for both, axial deformation and rotation, are determined. If the results from
the experiment are then compared to the numerical ones, it is shown that the initial rotational
stiffness for post peak rotation is lower than the one resulting invariant based material models.
On the other hand the microplane material model is able to reproduce the degradation of the
initial stiffness quite well.

Fig. 4.20: Model setup and load application for the vertex test [32]

The idea was now to use the coupled damage-plasticity microplane model from Ansys
Mechanical to replicate these results. Therefore, the cylindrical specimen was modelled using 784
linear, hexagonal element mesh with a fixed support on bottom. On the top, the deformations
were applied in two loadsteps, i.e. an axial deformation up to −9.144× 10−4 mm followed by
an axial rotation up to −0.2865◦(= 5 rad) (see figure 4.20). Resulting torque and force were
obtained at the bottom of the specimen. Deformation and rotation were obtained at the top of
it. Only the loading change at post-peak were modelled, because then the vertex effect is at its
high.

The necessary input parameters for the new model were obtained from the input for the
invariant model (grain size, Young’s modulus, Poisson’s ratio, uni-axial strengths) and by
fitting the stress-strain curve of the experiment. The parameters of the microplane model
M4 from the paper could not be reused due to the different constitutive laws on used on the
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microplane level, i.e. stress-strain boundaries in model M4 and a Drucker-Prager yield function
in the coupled Ansys Mechanical model.

Input parameters for the microplane model as well as element size were varied one after
another and the results were plotted in respect to the ones obtained by the parameters in table
4.6.

Input Parameters

Young’s modulus E 36900 MPa
Poisson ratio ν 0.18

Uni-axial compressive strength fuc 38 MPa
Uni-axial tensional strength fut 3.23 MPa

Tension cap parameter Rt 1
Hardening parameter D 7800

Compression cap parameter R 2
Non-local range c 0.000812

Non-local interaction parameter m 2.5
Tensional damage threshold γt0 0

Tensional damage evolution parameter βt 400
Compressive damage threshold γc0 0.000287

Compressive damage evolution parameter βc 600

Tab. 4.6: Material model input parameters

Geometry and Mesh

The mesh consists of 784 linear hexahedral CPT215 elements with an edge length of 0.015 m.

Fig. 4.21: Cylindrical mesh for vertex test
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Mesh properties

Form Cylinder
Diameter 101.6 mm

Height 203.2 mm
Area 0.032 m2

Nodes 1035
Elements 784

Element length 0.015 m

Tab. 4.7: Mesh properties

Face (a) was fixed in all three spacial directions. Displacement was applied in two loadsteps
on face (b). The first loadstep consists of a ramped compressive displacement up to a maximum
of -0.0009144 m in axial direction. Meanwhile, the displacements on face (b) in the normal
directions kept zero. In the second loadstep, a ramped axial rotation of 0.2865 degrees (=0.005
radiant) was applied. Displacements on face (b) were kept the same as in the end of the first
loadstep.
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Fig. 4.22: Stress-strain and moment-rotation curves obtained from the experiment and numerical
analysis

Results - Parameter Study

Two types of plots were created. One displays axial stress over axial strain and the other one
shows reaction torque over rotation.
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Fig. 4.23: Vertex-test: parameter variation of uni-axial tension strength
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Fig. 4.24: Vertex-test: parameter variation of compression damage threshold
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Fig. 4.25: Vertex-test: variation of hardening parameter
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Fig. 4.26: Vertex-test: variation of tensional damage evolution parameter
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Fig. 4.27: Vertex-test: variation of compression damage evolution parameter
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Fig. 4.28: Vertex-test: variation of non-local interaction parameter
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4.2.4 Mesh Dependency (L-Shaped Plate)
Aim of this parametric study was to show the sensitivity of damage models the used element
size and shape. Furthermore, the effects of non-local strain interaction should be presented.
The test geometry is a L-shaped profile in plane strain. A skew and structured mesh in
two different refinements were created. First the simulation was computed without non-local
interaction. Afterwards it was repeated with an active non-local interaction. Both material
models used the same input parameters.

The final damage distribution was compared (see figure 4.30 and 4.31) and a force displace-
ment curve was created (see figure 4.2.4). It is clearly shown that the mesh size as well as the
mesh skewness has a significant influence on the results obtained from a local model. The model
with non-local regularization on the other hand remains untouched by the different mesh types.

Fig. 4.29: L-shape geometry

Parameters

E 31600 MPa
ν 0.18

fuc 44.7 MPa
fut 2.10 MPa
Rt 1
D 1
R 2
c 0.02
m 2.5
γt0 0
βt 5000
γc0 0.0001
βc 1000

Tab. 4.8: Material model input
parameters

Geometry and Mesh

Four different meshes were created.A structured, orthogonal one with quadratic-shaped elements
an edge length of 0.10 m and 0.05 m. The other one with skew elements with a diagonal of
0.10 m and 0.05 m. All meshes were created from two-dimensional, linear CPT213 elements.

The model was locked in vertical and horizontal direction on the bottom. A displacement
of 0.001 m was applied in upwards direction on the left face of the model (see figure 4.29). Due
to the used CPT elements, the model was computed in plane strain.

Input parameters for the microplane model are listed in table 4.8. The material model was
applied on four different meshes with and without non-local interaction. This interaction was
controlled with the parameter c. For c = 0 the non-local interaction is deactivated and only
local strains are taken into account.

Results

Reactional force was computed at the support. Only the vertical part was used in the force
displacement curves. Vertical displacement was obtained from the left face (see figure 4.29).

The plotted damage variable represent the maximum tensional damage from all microplanes
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at the integration points. Due to the used CPT elements, values at integration points are
written directly as nodal results (no extrapolation is computed).

Figures 4.30 and 4.31 show the damaged area at time of the maximum displacement. Size
and shape of this area is quite similar for the model with non-local regularization independent
of mesh element sizes or orientation. On the other hand, the model without regularization
shows a clear dependency on the used mesh.

(a) (b)

(c) (d)

Fig. 4.30: Damage distribution for skewed and structured meshes with non-local interaction (see (c)
and (d)) and without non-local interaction (see (a) and (b))
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(a) (b)

(c) (d)

Fig. 4.31: Damage distribution for refined skewed and structured meshes with non-local interaction
(see (c) and (d)) and without non-local interaction (see (a) and (b))
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Figure 4.2.4 shows the performance of the model as the reaction force versus the applied
displacement. It can be seen that the model using non-local regularization delivers similar
results independent of the used mesh. Also, it should be noticed that the reached peak value
is larger than the one from the model without non-local regularization. This needs to be
considered for the calibration of the non-local model.
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4.3 Calibration of a Microplane Model
As mentioned in chapter 2.2.3, various ways are provided to calibrate the non-local range of
the given microplane model, e.g. calibration on tensile test data [12], crack roughness [46] or
due size effect [9]. However, due to the lack of specific test data on dam concrete, none of
these calibration procedures seemed to be feasible. Another problem is the model size itself.
In order to appropriately represent the interaction inside the fracture process zone the used
element size is restricted to the selected non-local range. Although dam concrete possesses
large grain sizes - which is according to Baẑant [12] the main factor for estimation of the size
of the FPZ - the ratio between FPZ’ size and the model of the dam is quite small. This leads
to very fine meshes consisting of a tremendous amount of elements.

The aim was to calibrate the material model on a small scale and verify it on a dam scaled
model. Therefore, three calibration attempts are presented in this chapter. A first verification
of these calibrations is a comparison of displacement and hydrodynamic pressure data from
FE analyses of the Pine Flat Dam done by the 15th International Benchmark Workshop on
Numerical Analysis of Dams, 2019 in Milan. These results are then presented in chapter 5.5.
� Brazilian Test: Force displacement curves of Brazilian test were encountered in a

Doctoral thesis done by Trunk [8]. The curves were obtained from various specimen sizes and
concrete types. Especially the tests done on dam concrete were from high interest.
Two different calibration attempts were performed. First, the influence of the non-local
parameter was evaluated. The aim was to vary only the non-local range to fit the force-
displacement curves from different sized specimens, while the other material parameters were
kept constant. However, this was not even achieved for fitting the peak force only4.35. Second,
the non-local range was determined from the used maximum grain size. Then, the curve of the
largest specimen was fitted. However, the model’s response was much stiffer than expected
4.37. Therefore, the stress distribution along the crack line was examined and compared with
a theoretical reference. From there it was concluded, that the singularity at the notch tip leads
to a kind of stress looking. This may be the cause of the much stiffer response. However, these
numerical difficulties weren’t overcome during this master thesis.
Finally, it can be stated that the calibration of the tested model on Brazilian tests is not
feasible due the substantial influence of the boundaries on the non-local regularization.
� On Single Element: Because the damage evolution law is defined due plastic strains,

a length scale is needed to derive a fracture energy. Therefore, a characteristic length was
used. Initially, this length was determined by the theoretic length of the fracture process zone,
thus this leads to very damage evolution parameters. In order to avoid convergence problems
resulting from these high values, the width of the FPZ was used instead. Also, a formula for
the direct determination of the tension damage evolution parameter βt from fracture energy
could be derived.
However, for coupled damage-plasticity model the influence of the non-local regularization
couldn’t be determined.
� Three-Point Bending Test: This testing procedure was thought to consider the

non-local influence on a mode-I crack. This seems to be the principle crack mode for gravity
dams during seismic loading. There two calibration steps are involved. First, single elements
are calibrated to represent the desired fracture energy. Then these elements were used in a
crack band to model an oversized three point bending test. Second, the non-regularization
model is calibrated to fit the force-displacement curve or simply the fracture energy obtained
from the previously done model.
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4.3.1 Brazilian Test
The Brazilian Test is a laboratory test for indirect measurement of tensile strength of rocks
or rocks. Usually, it is performed on cylindrical specimens where their size depends on the
maximum grain size of the concrete. Due to the large grain sizes used in dam concretes and
the lack of the therefore required testing machinery, the test is performed on notched blocks
(see figure 4.33).

(a)

(b)

Fig. 4.33: Brazilian test: (a) experimental setup [8] and (b) model setup in Ansys Mechanical

Input parameters for the microplane model are listed in table 4.5.

Input Parameters

Young’s modulus E 28300 MPa
Poisson ratio ν 0.18

Uni-axial compressive strength fuc 44.7 MPa
Uni-axial tensional strength fut 2.10 MPa

Non-local range c 0.01
Non-local interaction parameter m 2.5

Tensional damage threshold γt0 0
Tensional damage evolution parameter βt 8000

Compressive damage threshold γc0 0.001
Compressive damage evolution parameter βc 1000

Tab. 4.9: Material model input parameters
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Geometry and Mesh

The mesh consists of linear hexahedral CPT215 elements with an edge length of 0.05 m.

Fig. 4.34: Meshes for small, medium and large sized Brazilian test

In point (B), along the whole depth, the vertical displacement in Z-direction was fixed,
rotation was permitted. Displacement in Y-direction was fixed along face (d) to ensure a
sufficient constrained model. The alignment area (c) serves also as symmetry area to reduce
specimens’ dimensions. For loading, a horizontal displacement was applied in point (A).

Mesh properties

Form Small Middle Large
Height H 800 1600 3200 mm
Width 800 1600 3200 mm
Depth t 400 400 400 mm
Notch s 100 100 100 mm

k 100 100 100 mm
Ligament HL 375 775 1575 mm

Area 0.15 0.31 0.63 m2

Nodes 1602 5184 19584
Elements 1208 4208 16624

Element length 0.05 0.05 0.05 m

Tab. 4.10: Mesh properties
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Results

Displacements and horizontal forces along (A) were recorded. A script was created to determine
maximum diverting force, diverting force at maximum displacement and fracture energy.
Fracture energy was calculated from fracture work divided by the crack area - idealized equal
to alignment area (c). Fracture work is obtained by integration of the horizontal diverting
force over its covered way. Due to symmetry, this way is equal to the double displacement
obtained from point (A).

GF = 1
A

∫
Fdu ≈ 1

A

50∑
n=1

(Fn−1 + Fn) · (un−1 − un) (4.21)

Where

u . . . displacement in (A)
F . . . diverting force
A . . . alignment area
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Fig. 4.35: Calibration attempt on peak force due varying of non-local range parameter

This calibration attempt is based on experimental data from Brazilian test carried out on
dam concrete from [8]. There the splitting force and the crack opening width were measured.
The fracture energy released during the process was calculated as the integral of the splitting
force F over the crack opening width w divided by the ligament area AL. This area represents
the projection of the fractured surface into the ideal fracture plane.

Gref
F = 1

AL

∫
Fdw (4.22)
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The first attempt to calibrate the parameters for the microplane model was to repeat the
experiment numerically and fit the resulting force displacement curve to the one obtained from
the experimental data. However, various parameters could be obtained directly from the data
such as uni-axial compressive, Young’s modulus and Poisson ratio as well as the maximum
grain size of the concrete. Furthermore, compressive behaviour is assumed to remain linear
during the whole process. This is proven due to no compressive damage resulted in any point
(i.e. compressive strength limit is never reached) in the model test (see figure 4.37). Because of
this assumption, parameters regarding post-peak compressive behaviour - compressive damage
parameters, hardening parameter and compressive cap parameter - were taken from normal
concrete given by the paper the model is based on [31]. The same applies for other parameters
like non-local interaction range, bi-axial compressive strength and tensional damage threshold
value. Those were calculated according to the presented paper. Finally, the only remaining
parameters for the fit were the tensile damage progression parameter and uni-axial tensile
strength. Although a uni-axial tensile strength was contained in the experimental data, a fit
with this strength leads to a very high maximum fore and thus it was only considered as a
reference. This is also reasonable because this strength was obtained from a direct tensile test
and not from the experiment which was tried to be model.

Fig. 4.36: Reference of the normal stress distribution along the crack line [8]

In the simulation, 3D and 2D models with and without symmetry were used. First, a
complete three-dimensional one in order to verify results from a three-dimensional model
with a symmetry plane (using linear or quadratic order elements). Second, two-dimensional
model also using quadratic or linear elements. Horizontal force and horizontal displacement
were obtained at attachment point of the applied force. This obtained displacement was then
doubled to represent the crack opening width.
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Fitting attempts - as the one in figure 4.37 - lead to very low tensile strength (lower than
30% of the reference value) and very high damage values. Besides the obtained fits were far from
being satisfying, this high damage values also resulted into convergence problems. To overcome
these problems the convergence criteria was altered from a combined force-displacement one
to a pure displacement one. However, Instabilities in the softening area were not overcome.
Following, the stress distribution normal to the fracture plane was obtained and compared
with the reference from the experimental data set in figure 4.36.
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Fig. 4.37: Fitting attempts on the force displacement-curve

In figure 4.38, the normal stress distribution along the crack line depending on the crack
opening width is plotted. Firstly, it can be stated that the shown distribution resemble the one
from the reference (see figure 4.36). It overshoots the maximum tensile strength (given with 2
MPa) tremendously. Secondly, in close range to the crack tip, no softening behaviour happens
at all. However, these results are obtained from various mesh sizes, 3D- and 2D-analysis.

Taken a closer look to the behaviour at the crack tip, figure 4.39 shows the directional
stresses plotted over the crack opening width. Results are obtained from 2D-analysis. It can
be seen, that the stress pointing outwards of the model plane (σZ) starts to decrease after the
elastic yield limit was reached. This leads to high compressive stresses (forming horizontal
tangent at nearly -10 MPa) acting. This results from the plane stress model configuration. The
stress normal to the crack line (σX = σN ) increase over the double of the actual tensile strength
and forms a horizontal tangent. The stress in crack direction (σY ) reaches a maximum and
then declines again until another horizontal tangent is reached. The shear stress (σXY ) remains
quasi zero, with small variation most likely depending on a numerical error. Furthermore, the
damage variables can be seen. Both - tensional and compressive - remain zero. This, together
with the clearly displayed reaching of the yield limit due stress behaviour, leads to following
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conclusion: The equivalent strain, which controls the damage development and therefore the
softening behaviour of the model, is the responsible factor for the obtained solution.
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Fig. 4.38: Development of normal stress distribution along crack line with non-local interaction
(m = 2.5 and c = 0.1)
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Fig. 4.39: Development of normal stress at crack tip with non-local interaction (m = 2.5 and c = 0.1)
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4.3.2 Fracture Energy: Single Element
Material damage models - like the microplane coupled damage-plasticity model - often describe
the growing damage variable in terms of an equivalent strain and a damage variable β > 0:

d(η) = 1− e−β·η (4.23)

This strain η results from the volumetric strain rate and a threshold value. In case of uniformly
increased uni-axial tensional strains, this threshold value for concrete is zero and the equivalent
strain η equals the volumetric strain ε reduced by the elastic yield limit εe. The resulting stress
on a microplane is given by:

σmic = (1− d(η)) ·
[
Kmic · (εV − εpV ) + 2Gmic · (εD − εpD]

)
(4.24)

Because this formulation is a representation of Hook’s Law it must reduce in the one dimensional
case to:

σmicelastic = E · ε ε < εe (4.25)
σmicpost−peak = (1− d(ε− εe)) · E · εe︸ ︷︷ ︸

=fut

ε > εe (4.26)

The volumetric fracture energy is then given as the integral of the resulting stress on the
microplane over the strain. For a material model with damage-plasticity formulation where the
elastic strains remain constant after the yield limit (= uni-axial tensile strength fut) is reached,
this integral can be written as:

Wmic
s =

∫ ∞
0

σdε = f 2
ut

2 · E︸ ︷︷ ︸
elastic deformation

+
∫ ∞

0
(1− d(η)) futdη︸ ︷︷ ︸
strain softening

(4.27)

This results for the given, exponential damage evolution law in:

Wmic
s = f 2

ut

2 · E + fut
β

(4.28)

Though, the uni-axial tensile strength fut, the Young’s modulus E and the damage variable β
are direct input variables for the used microplane model, the volumetric fracture energy for
each microplane can be calculated directly.

The relation to the fracture energy per unit area is then again given by the characteristic
length. For the given case, the characteristic length equals the length of the specimen, therefore:

Gmic
F = Wmic

s · lch (4.29)

This Gmic
F now represents the fracture energy for each microplane. Howerever, substitution

from eq. 4.29 in eq.4.28 and solving for β leads to:

β = 2 · E · fut · lch
2 · E ·Gmic

F − f 2
ut · lch

(4.30)

From this expression the fracture energy can be calculated for any given damage variable, or
more useful, if a certain fracture energy and element size are given, the necessary damage
variable can be obtained.

For finite element modelling the actual fracture energy per element depends on the elements
size. Therefore, unstructured and unequal sized meshed may produce areas where more or
less energy is dissipated. This causes a strong dependency on the used mesh for these kind of
models. In order to overcome such dependency, a non-local interaction is introduced.
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4.3 Calibration of a Microplane Model

Geometry and Mesh

The cubical mesh consists of 1 linear hexahedral CPT215 elements with an edge length of 0.3
m. The edge length was chosen to fit the characteristic element length representing the width
of the fracture process zone. As a reference, a two-dimensional element linear square CPT213
element was used. The edge length remained unaltered.

Fig. 4.40: Model setup and cube mesh

Mesh

Form Cube Square
Edge length 0.3 0.3 m

Nodes 8 4
Elements 1 1

Tab. 4.11: Mesh properties

Input Parameters

Young’s modulus E 22.41 GPa
Poisson ratio ν 0.2

Uni-axial compressive strength fuc 28 MPa
Uni-axial tension strength fFITut 2.15 MPa

Non-local interaction range c 0
Non-local averaging parameter m 2.5

Tension damage threshold γt0 0
Tension damage parameter βFITt 3200

Compression damage threshold γc0 0.0001
Compression damage parameter βc 2133

Tab. 4.12: Material model input parameters

Input parameters for the microplane model are given in table 4.11. Uni-axial tensional
strength fFITut and tensional damage evolution parameter βFITt were varied so element’s fracture
energy equals to GF = 250 [N/m].
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Results
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4.3 Calibration of a Microplane Model

4.3.3 Fracture Energy: 3-Point-Bending Test

Fig. 4.43: Overview of the calibration procedure for the non-local range using three point bending
test

As shown in chapter 4.3.2, it is possible to determine the dissipated energy from an element
with a certain side length during the fracture process. Therefore, elements without non-local
interaction are calibrated to represent the desired fracture energy - in this case GF = 250N/m,
taken from the Benchmark Workshop. Then a three-point-bending test is performed, using the
calibrated elements in the fracture zone. The input parameters for the actual microplane model
with non-local interaction will then be fitted to the resulting force-displacement curve from
the three-point-bending test. In order to verify the obtained results, the stress distribution
along the crack line was compared with a reference obtained from literature, see [14]. Model
parameters for the model with active non-local interaction are then obtained by fitting the
force-displacement curves or total fracture energy.

Input parameters for the three distinct fitting attempts are given in table 4.13. Where REF
refers to the fitting of the fracture energy on a 3D cube under plane stress conditions. FIT1
and FIT2 refer to the fitting of force displacement curves in 2D plane strain conditions using
the Root of Sum of Squares (RSS) as indicator. Uni-axial tensional strength fFITut and tensional
damage evolution parameter βFITt were adapted during fitting process. Other parameters are
taken directly from the Benchmark example or assumed according to chapter 2.2.3.
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4 Numerical Analyses

Input Parameters REF FIT1 FIT2

Young’s modulus E 22.41 22.41 22.41 GPa
Poisson ratio ν 0.2 0.2 0.2

Uni-axial compressive strength fuc 28 28 28 MPa
Uni-axial tensional strength fFITut 2.00 2.00 2.15 MPa

Non-local range c 0 0.05 0.10
Non-local interaction parameter m 2.5 2.5 2.5

Tensional damage threshold γt0 0 0 0
Tensional damage evolution parameter βFITt 3200 4950 6100

Compressive damage threshold γc0 0.0001 0.0001 0.0001
Compressive damage evolution parameter βc 2133 3300 4066

Tab. 4.13: Material model input parameters

Parts of the model are using the simple linear-elastic material law if they are situated close
to the supports and the applied displacement (as displayed in figure 4.44a). This is to avoid
damage development due to high stresses caused by these singularity points.

(a)

(b) (c)
Fig. 4.44: (a) geometry of the 3-point-bending test model (red area with linear-elastic material

model), (b) final damage state for model with crack band and (c) final damage state for
fitted material model with non-local interaction

As can be seen in figure 4.45, the stress distribution represent quite well the theoretical
one from literature. That the maximum normal stresses are higher than the uni-axial tensile
strength, results from the model being in plane strain conditions.
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0 1 2 3 4 5 6 7 8
−3

−2

−1

0

1

2

3

E
L
A
ST

IC
E
L
E
M
E
N
T
S

fut

DISTANCE FROM TIP (GLOBAL Y) [m]

ST
R
E
SS

σ
X
=
σ

N
(G

L
O
B
A
L
X
)
[M

P
a]

Step 30: duy = 3 mm
Step 50: duy = 5 mm
Step 70: duy = 7 mm
Step 90: duy = 9 mm

Fig. 4.45: Normal stress distribution along crack - Reference from Microplane model with c=0 for
plane strain conditions

Figure 4.47 shows the resulting force displacement curve from the reference, two fits for
different non-local ranges as well as the force displacement curve obtained under plane stress
conditions.

0 1 2 3 4 5 6 7 8
−3

−2

−1

0

1

2

3
E
L
A
ST

IC
E
L
E
M
E
N
T
S

fut

DISTANCE FROM TIP (GLOBAL Y) [m]

ST
R
E
SS

σ
X
=
σ

N
(G

L
O
B
A
L
X
)
[M

P
a]

Step 10: duy = 1 mm
Step 20: duy = 2 mm
Step 20: duy = 3 mm
Step 30: duy = 3 mm
Step 50: duy = 5 mm
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The stress distribution given by plane stress conditions, is displayed in figure 4.46. It shows
the initiation of softening close to the yield strength. Furthermore, the lines seems not so
smooth than from the two-dimensional model test. This may be explained due the way Ansys
Mechanical averages results onto paths in three-dimensional space.
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Fig. 4.47: Force displacement curves for three-point-bending beam

The following figures show the stress distribution for a non-local range of c = 0.05 (see 4.48)
and c = 0.10 (see 4.49). Close to the boundaries of the model - i.e. distance from tip is zero -
the stress distribution shows a residual value which declines slower than their neighbours. This
may result from the way the non-local interaction is computed as shown in chapter 2.2.3.
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4.3 Calibration of a Microplane Model

However, these problems can be overcome by increasing the element size in the affected
boundary areas (see figure 4.50).
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Fig. 4.49: Stress distribution along crack with a non-local range parameter c of 0.1 and an element
length of 0.3 m
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5 Investigations on Pine Flat Dam

(a) Downstream view on Pine Flat Dam from
(b) Pine Flat Lake overview

5.1 Pine Flat Dam

The Pine Flat Dam is a concrete gravity dam situated in Central Valley in California, USA. It
impounds the Kings River and forms the Pine Flat Lake. It was built by the US Army Corps
of Engineers between 1947 and 1954. First only sought for flood retention proposes, from 1984,
three Francis turbines enabled electricity production with an annual generation of almost 390
GWh. The reservoir contains up to 55.9 million cubic metres of water and has a catchment are
of about 4000 square kilometres. The dam itself is 130 meters in height and follows a straight
axis crossing the river valley. Its spillway consists of six bays with a maximum capacity of
11,100 m3/s. However, the maximum discharged yet to be released was 480 m3/s in 1969
during an inflow from Kings River of 2,300 m3/s. The maximum inflow in the reservoir reached
so far was in 1955 with 3,200 m3/s. During this flood event, the dam ensures a maximum
discharge downstream of 135 m3/s [47].

5.2 Pine Flat Dam Model

The given Pine Flat Dam is designed as a gravity dam with an inclined upstream face and a
flat base abutment. The upstream side is inclined with ratio of 1 : 0.05 and the downstream
side with ratio 1 : 0.77. Due to the block width of 15.24 m, plane strain condition are assumed.
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5 Investigations on Pine Flat Dam

Fig. 5.2: Geometry of the Pine Flat Dam (units in [m])

The model extends upstream and downstream about 300 m each, which is roughly three
times the base width (95.80 m). This is to reduce the influence of reflections from the reservoir’s
backside onto the dam body. The height of the rock foundations is 122 m and water level
varies depending on the performed analysis. The displacement in horizontal direction is locked
at the u/s and d/s side of the foundation. At the lower side of the foundation displacement in
vertical direction is locked. At the backside of the reservoir an impedance boundary condition
is applied representing full absorption of arriving pressure waves. Furthermore, a zero pressure
condition is applied at the top of the reservoir.

Fig. 5.3: Boundary conditions for Pine dam model
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5.3 Linear Analysis: Determination of Damping

5.3 Linear Analysis: Determination of Damping
A modal analysis was performed to determine the first 10 natural frequencies. Then Rayleigh
damping values were calculated using 1st and 5th mode with a supposed damping ratio of 10%.
Relevant modes were determined by the effective mass involved in the motion in direction of
the valley (X-direction).

Mesh

The model consists of 13556 elements with 33827 nodes. The reservoir is modelled by linear
fluid elements. Dam body and foundation consist of quadratic elements under plane strain
conditions. The same mesh is also used for non-linear analysis regarding the influence of the
non-local range.

Fig. 5.4: Pine dam mesh for linear analysis

Material Parameters

The table below 5.1 lists the material parameters used for the linear modal analysis.

Results

From the modal analysis, the first 20 natural frequencies and the effective mass in respected to
the degree of freedom of movement were obtained. Figure 5.5 shows the resulting damping from
the Rayleigh approach and the effective mass involved. Here the effective mass is normalized
due to the mass of the dam body only. It can be seen that the additional mass punned onto
the dam from the fluid elements is about 55% of the dam’s total mass. Furthermore, at about
10 Hz, over 99% total effective mass is reached. This means that higher frequencies have nearly
no influence on the dam movement.

The Rayleigh damping values results 0.788 for the mass proportional damping and 0.00302
for the stiffness proportional damping. These damping values are then applied on the system
for the following non-linear analysis.
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5 Investigations on Pine Flat Dam

Material Parameter Unit

Dam body
Density %c 2400 kg/m3

Dynamic Young’s modulus Ec,dyn 31.6 GPa
Poisson ratio νc 0.18
Foundation
Density %f 1 · 10−10 kg/m3

Dynamic Young’s modulus Ef,dyn 20.0 GPa
Poisson ratio νf 0.25
Reservoir
Density %w 1000 kg/m3

Sonic celerity csonic 1440 m/s
Tab. 5.1: Material parameters for elastic and plastic (microplane) material models for dam body and

massless foundation, as well as input parameters for reservoir (fluid elements) - Pine dam
model
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5.4 Non-Linear Analysis: Parametric Non-Local Range
Variation

In order to test the influence of the non-local regularization of the used microplane material
model on a bigger scale, a non-linear analysis was carried out involving three non-local ranges.
There the relative displacement of the dam crest and the resulting damage pattern were
compared. Furthermore, the relative displacement and relative acceleration at the dam crest
were compared for different contact types at the base joint. Results from a linear elastic model
serves as reference.

It was found that the size of the non-local range has a significant influence on the dam
performance. First, by setting the non-local range to zero, a mesh depending crack propagation
could be observed. Second, smaller non-local ranges lead to failure of convergence below half of
the time of the simulated earthquake. Third, for non-linear material model, maximum relative
acceleration for a frictional contact are higher than the one obtained from the bounded one.
Although, a higher damping behaviour can be observed.

Excitation

The excitation was the NS-acceleration time history from the 1940 El Centro Earthquake at
the Imperial Valley in Southern California. It was applied in downstream direction onto the
whole model (Ansys Mechanical specific).

A performed Fast Fourier Transformation shows the major acceleration peaks below a
frequency of 6 Hz. This is in the range of the first five natural frequencies of the dam and
should lead to amplifications causing a maximum amount damage to the model.
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Material Parameters

Material Parameter Unit

Dam body (non-linear)
Density %c 2400 kg/m3

Dynamic Young’s modulus Ec,dyn 31.6 GPa
Poisson ratio νc 0.18
Uni-axial tensile strength fut 2.1 MPa
Uni-axial compressive strength fuc 44.7 MPa
Bi-axial compressive strength fbc 51.4 MPa
Compressive cap parameter σCV -34.3 MPa
Tensile damage threshold γt0 0
Compressive damage threshold γc0 0.001
Tensile damage evolution parameter βt 5000
compressive damage evolution parameter βc 1000
Tensile cap parameter RT 1
Compressive cap parameter R 2
Hardening parameter D 1000
Non-local range c 0 | 0.10 | 0.33 m2

Non-local averaging parameter m 2.5
Foundation (linear)
Density %f 1 · 10−10 kg/m3

Dynamic Young’s modulus Ef,dyn 20.0 GPa
Poisson ratio νf 0.25
Reservoir
Density %w 1000 kg/m3

Sonic celerity csonic 1440 m/s
Damping
Mass proportional damping αmass 0.788
Stiffness proportional damping βstiffness 0.00302

Tab. 5.2: Material parameters for elastic and plastic (microplane) material models for dam body and
massless foundation, as well as input parameters for reservoir (fluid elements) - Pine dam

model

Mesh

The same mesh as in the linear analysis was used.

Results

The relative displacement at the dam crest is computed as the difference between absolute
displacement at the crest and at the heel of the model:

urel = uabscrest − uabsheel (5.1)
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For the relative acceleration, the difference between absolute acceleration at the crest and the
excitation was computed:

arel = aabscrest − aELCentro (5.2)

The analysis performed with a non-local range lost convergence after 2.62 s. The on with a
non-local range of 0.1 only performed little better and reached 3.59 s. The analysis with a
non-local range of 0.33 completed the whole 10 s of excitation’s duration.
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(a) c=0.00 (b) c=0.10 (c) c=0.33

Fig. 5.8: Final damage pattern at weak point of the dam for various non-local ranges

The additional performed analyses with a bounded contact type in the base joint lead to
the following changes in relative displacement and acceleration at the crest.
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5.5 Non-Linear Analysis: Verification of Microplane Model
This section is about a possible verification of the calibration processes described in the
chapters before. As a reference serves the seismic analyses done on the Pine Flat dam for the
ICOLD Benchmark Workshop 2018 in Milan [38]. Aim was to compare the results for case
E, considering the Endurance Time Acceleration Function (ETAF) obtained by the workshop
with the ones obtained by the calibration attempts. As a drawback, the final report of this
conference wasn’t published to the day this thesis was submitted. Therefore, it was only
possible to check some results taken from a summery published earlier.

For the procedure itself, the two microplane models given by Ansys Mechanical - coupled
damage-plasticity (CDP) and elastic - are calibrated to represent the desired concrete properties.
The elastic model was calibrated according to the procedure described in chapter 4.3.2. The
size of the cube on which the fracture energy was determined was given by the edge length of
the mesh. The CDP-model was calibrated in two ways: First, the three-point bending test
from chapter 4.3.3 was used. Second, the calibration was only done on a single element 4.3.2.
There the size of the calibration element was given by the width of the fracture process zone.

Using fracture energy as a calibration input for a non-local model (as the CDP) is challenging.
This is, because the softening behaviour of the given model is described depending on plastic
strains. Therefore, in order to obtain an energy, a length scale is required. For models without
a non-local regularization, this scale is simply the edge length of the elements themselves.
Using a non-local regularization leads to a redistribution of the plastic strains onto a limited
range. This range also depends on the lasting strain distribution itself - i.e. for a uniformly
distributed strain field like at the tested cube, this regularization doesn’t cause any changes of
the final strain state.

Material Parameters

Table 5.3 lists parameters describing the linear behaviour of the Pine dam.

Material Parameter Unit

Dam body
Density %c 2483 kg/m3

Young’s modulus Ec,dyn 22.41 GPa
Poisson ratio νc 0.2
Foundation
Density %f 1 · 10−10 kg/m3

Young’s modulus Ef,dyn 22.41 GPa
Poisson ratio νf 0.2
Reservoir
Density %w 1000 kg/m3

Sonic celerity csonic 1439 m/s
Damping
Mass proportional damping αmass 0.750
Stiffness proportional damping βstiffness 0.0005

Tab. 5.3: Material parameters for dam body and massless foundation, as well as input parameters
for reservoir (fluid elements) - Pine dam model according to the Benchmark workshop
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A total of five different calibrations were tested. An explanation can be taken from table
5.4. All of them are calibrated to represent the desired fracture energy for 250 N/m. For
the regularized model, the compressive damage parameter is obtained from the recommended
relation of βt = 1.5 · βc (see [31]).

ID Model lelem[m] βt[−] βc[−] Calibration Method

ELAsgl35 elastic 0.35 - - Single element
CDPtri70 regularized 0.70 4910 3273 Three point-bending test
CDPtri35 regularized 0.35 4910 3273 Three point-bending test
CDPsgl35 regularized 0.35 2590 1727 Single element
CDPsgl35(DC) regularized 0.35 2590 1727 Single element(only displacement-

convergence criterion)
Tab. 5.4: Calibration attempts for the Benchmark example with a given fracture energy of 250 N/m

Table 5.5 lists parameters of the non-linear material model remaining unaltered for the
calibration attempts.

Material Parameter Unit

Elastic Microplane

Uni-axial tensile strength fut 2 MPa
Uni-axial compressive strength fuc 28 MPa
Strength ratio k 14
Scaling factor f 1.56
Yield function parameter k0 0.795
Yield function parameter k1 0.795
Yield function parameter k2 0.095
Tensional strain limit η 8.92 · 10−5

Damage residual value α 0.9 %
Damage evolution parameter β 9200

Coupled Microplane

Uni-axial tensile strength fut 2 MPa
Uni-axial compressive strength fuc 28 MPa
Bi-axial compressive strength fbc 32.2 MPa
Compressive cap parameter σCV -18.7 MPa
Tensile damage threshold γt0 0
Compressive damage threshold γc0 0.0001
Tensile cap parameter RT 1
Compressive cap parameter R 2
Hardening parameter D 1000
Non-local range c 0.1 m2

Non-local averaging parameter m 2.5
Tab. 5.5: Parameters for elastic and coupled damage-plasticity microplane models
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Mesh

Fig. 5.11: Pine Flat Dam mesh for analysis with ETAF

Two different mesh size were used. One with a mean edge size at the dam body of 0.70 m and
the other with a mean mesh size of 0.35 m. The coarse mesh consists of 28, 532 elements with
71, 768 nodes. The fine mesh consists of 74, 413 elements with 194, 959 nodes. For both types,
the foundation and dam body are modelled by quadratic elements. The reservoir consists of
linear elements.

Both meshes were modelled so that the elements at the dam body’s boundaries are oriented
normally to the edge over a certain depth (see figure 5.12).

Fig. 5.12: Element orientation close to boundaries

Computation time for the simulation of the first 6 secs with the ETAF was for the coarse
mesh 3:44:15 h (7 cores @ 3.40GHz) with a total allocated memory of 9,280 MB. The fine
mesh required 15:50:04 h (13 cores @ 3.40GHz) computational time with a maximum allocated
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memory of 20,767 MB. Furthermore, the amount of data written/read from the hard drive was
4,951/6,620 GB for the coarse mesh and 24,520/32,524 GB for the fine mesh. The produced
output files were in sizes between 15 and 60 GB depending on the variables requested and
the output rate. Usually, the output rate was equal to the temporal resolution of the input
acceleration. For analysis done on the fine mesh, the output rate was 10 times this resolution.
This was necessary in order to reduce the size of the result files to a reasonable amount.

Results

In order to compare the obtained results from the performed analysis with the ones from
the Benchmark Workshop, the so-called ETA curves were computed. First, the engineering
demand parameters (EDP) were obtained from transient analysis. Second, the cumulative
absolute value was calculated (see figure 5.13).
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Fig. 5.13: Procedure to obtain endurance time analysis (ETA) curve: EDP from transient analysis
(left) and its cumulative absolute value (right)

In this case the desired EDPs were: Displacement at the dam’s heel at point A, displacement
at the crest point C and the dynamic pressure at point A (see figure 5.2).

Furthermore, the ratio over time between damaged length and total base length as well as
damaged area to total dam cross section area were calculated.
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Cumulative displacement in point A shows no significant difference between the two
calibration attempts for the regularized model and the elastic model. But all achieved values
are smaller (maximum of 7 mm) than the ones obtained from the Benchmark workshop which
are between 20 and 400 mm after 6 seconds of run time. This may be caused by the singularity
at point A.
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Cumulative displacement in point C shows no significant difference between the two
calibration attempts for the regularized model and the elastic model. Achieved values up to
160 mm are in range of the ones obtained from the Benchmark workshop which are between 10
and 450 mm.
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Fig. 5.15: Comparison between resulting cumulative displacement at point A obtained from (a)
performed analysis and (b) results obtained by Benchmark workshop
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5.5 Non-Linear Analysis: Verification of Microplane Model

Cumulative dynamic pressure shows no significant difference between the two calibration
attempts for the regularized model. Achieved values up to 0.38 MPa are in range of the ones
obtained from the Benchmark workshop which are between 0.2 and 1.8 MPa.
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Fig. 5.16: Comparison between resulting cumulative dynamic pressure at point A obtained from (a)
performed analysis and (b) results obtained by Benchmark workshop
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Fig. 5.17: Damage patterns of analyses done at the Benchmark Workshop for models which do not
reach the end of the ETAF

Damage patterns which are presented in the pre-report of the workshop (see figure 5.17)
couldn’t be reproduced. Furthermore, the damage development over time is calculated from
the ratio between elements with damage and number of total elements. It shows no significant
difference between the two calibration attempts for the regularized model, neither for smaller
element sizes or results by using displacement convergence only. The elastic microplane model
delivers much faster damage development. It can be stated that the critical moment for
convergence loss lies about 10 % damaged length of the base joint. Displacement convergence
only can last for almost 18 % damaged length (see figure 5.18).
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Fig. 5.18: Damage ratio during analysis with ETAF until model failure for different material models,
dam body areal damage (solid lines) and damage along base joint (dashed lines)

Figure 5.19 shows a comparison between the regularized and the elastic microplane model.
The first was calibrated using an artificial three point bending test and the second was calibrated
on a single element to have the desired fracture energy. The damage distribution and the
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duration time until convergence loss shows that these two attempts lead to critical different
results.

(a) (b)

Fig. 5.19: Final tensile damage distribution: (a) regularized model, calibrated on 3-point-bending
test (Tfail = 6.35s) and (b) elastic model calibrated on a single element (Tfail = 3.65s)

Figure 5.20 shows the tensile damage distribution at time of convergence failure for two
calibration attempts for the regularized microplane model using different convergence criteria.

(a) (b)
Fig. 5.20: Final tensile damage distribution for regularized model calibrated on a single element with

(a) force (Tfail = 6.35s) and (b) displacement convergence (Tfail = 7.20s)
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5.6 Numerical Problems

Here are shown numerical or material model based problems which couldn’t be overcome during
this thesis.

Figure 5.21 shows the maximum main principle stress over time for the given seismic
excitation. It can be seen that the maximum stress exceeds the parametric defined tensile
strength of 2 MPa by up to 20% along the downstream side of the dam. At the upstream side
of the base joint, the values are exceeded even up to 50% and at the joint dip up to a multiple.
This may be explained from the singularity caused by the sharp edge between dam body and
foundation. The same effect was already explored by modelling the Brazilian test.

(a) (b)
Fig. 5.21: Distribution of the maximum first principle stress over time for (a) regularized model

fitted to the three point bending test and (b) elastic model fitted to a single element

The same behaviour was observed by usage of the elastic microplane model without
regularization (see figure 5.22). Although, there the overall maximum remained much lower.

Another phenomenon encountered was the volume increase of highly damaged elements,
which leads to unreasonable deformation displays (see figure 5.23a). Furthermore, numerical
scattering was observed (see figure 5.23b). This may be caused due the regularization in
combination with very small time step close to 1e− 7 seconds.
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(a) (b)

Fig. 5.22: Distribution of the maximum first principle stress over time for the regularized model
calibrated on one element using (a) force convergence (failed at 6.35s) and (b)

displacement convergence (failed at 7.20s)

(a) (b)

Fig. 5.23: Numerical errors encountered during analyses (a) volume increase in plastic zones (b)
numerical scattering may caused to failure in non-local interaction
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5.7 Rigid Block Analysis: Partial Stability

Fig. 5.24: Block geometry of the Pine Flat Dam [38]

A rigid block analysis was performed on two blocks forming from elongation of the crack
trajectories obtained by the non-linear analysis (see figure 5.25). The following assumptions
were made:

(1) Blocks are sliding on an infinite plane surface
(2) Friction angle of the joint is 45◦
(3) No cohesive forces are acting
(4) No water is present in the cracks during seismic excitation
(5) No frictional forces are transferred on vertical faces of the block: Block joints are open
(6) Uniform stress distribution along sliding plane
(7) Static water force does not change over time: block sliding into the reservoir is neglected
(8) Hydrodynamic pressures modelled with added mass approach according to Westergaard,

only horizontal acceleration considered

(a)
(b)

Fig. 5.25: (a) resulting damage from non-linear analysis and (b) identified crack trajectories
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5.7 Rigid Block Analysis: Partial Stability

This seismic deformation analysis follows the most common approach in practice developed
by Newmark for a rigid block sliding on a plane [48].

5.7.1 Newmark Block A - Horizontal Sliding Plane

(a) Block sliding along horizontal crack line

(b) Simplified block model A (horizontal crack) on
infinite sliding plane

The equation of equilibrium for the block displayed in figure 5.26b is:

F in = R (5.3)

Where

R = W ∗ · tan(ϕ) W ∗ = m · (g + ay) F in = m · ax

Because the block only starts moving if this equilibrium limit is exceeded, the yield acceleration
can then be formulated as:

ayield = (g + ay) · tan(ϕ) (5.4)

The effective acceleration aeff (see figure 5.27), which actually moves the block has to be
greater than the obtained yield acceleration. As the sliding plane is horizontal, the movement
can happen in downstream and upstream direction.

Figure 5.28 shows the horizontal displacement according to Newmark in the downstream
and upstream direction, as well as the sum of these two. However, the installed waterstops in
the block joints can usually bear a displacement of about half a meter. The calculated final
displacement up to four meters clearly exceeds this limit. Therefore, the sealing of the block
joint is not sustained and water may enter the opened joint in case of a refilling of the reservoir.
This may cause a failure of the separated block although a danger of tipping is not given as
shown in section 5.7.3.
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Fig. 5.27: Effective acceleration on block over time for horizontal block sliding
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Fig. 5.28: Displacement according to Newmark method over time for horizontal block sliding

112



5.7 Rigid Block Analysis: Partial Stability

5.7.2 Newmark Block B - Inclined Sliding Plane

(a) Block sliding along inclined crack line (30 degrees)

(b) Simplified block model B (on inclined crack)
on infinite sliding plane

The equation of equilibrium for the block with the length l = 15.24m displayed in figure 5.29b
is:

F in · cos(α) +W ∗ · sin(α)− F stat
w − F dyn

w = R (5.5)

Where

R =
[
W ∗ · cos(α)− F in · sin(α)

]
· tan(ϕ)

W ∗ = m · (g + ay) F in = m · ax

F stat
w = 1

2 · ρw · g · l · h
2 · cos(α)

F dyn
w = ax ·

7
12 · ρw · l ·

√
H · h3 · cos(α)

The total added mass is calculated according to Westergaard for a water depth h and a
water level of H measured from the heel of the dam. This added mass is then multiplied by
the horizontal acceleration ax. The part of the resulting force which is parallel to the crack
trajectory is named F dyn

w .
The yield acceleration (see figure 5.27) for the block with an inclined sliding plane results

to:

ayield = F stat
w −W ∗ · (sin(α)− cos(α) · tan(ϕ))

m · (cos(α)− sin(α) · tan(ϕ))− 7
12 · ρw · l ·

√
H · h3 · cos(α)

(5.6)

Figure 5.28 shows the horizontal displacement according to Newmark in the upstream direction.
The calculated final displacement is roughly 4.5 meter. However, because the installed
waterstops in the block joints can only bear a displacement up to about half a meter, the
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sealing of the block joint is not sustained. Therefore, water may enter the opened joint in case
of a refilling of the reservoir. This may cause a failure of the separated block although a danger
of tipping and sliding is not given as shown in section 5.7.3.
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Fig. 5.30: Yield acceleration over time for inclined block sliding

0 2 4 6 8 10 12 14
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

TIME [s]

H
O
R
IZ
O
N
TA

L
D
IS
PL

A
C
EM

EN
T

[m
]

Block B - Sliding u/s
Failure of water stops

Fig. 5.31: Displacement according to Newmark method over time for inclined block sliding
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5.7.3 Factor of Safety
A remaining factors of safety after excitation can be calculated regarding sliding stability and
hazard of tipping. It should be stated that these obtained values are purely theoretical: If the
block moves more than the waterstop’s bearable distance (usually up to half a meter), the
block has to be already considered as failed because without proper sealing uncontrolled water
release may occur.

For both blocks, centre of gravity were computed by approximating their area by triangular
defined by three vectors a, b and c. The area of these triangles was computed by:

A = 1
2 | (b− a)× (c− a) | (5.7)

The centre of gravity of each was then obtained by:

x = 1
3 (a + b + c) (5.8)

Each block’s centre of gravity is then calculated by:

C = Σ A · x
ΣA (5.9)

The results are listed in table 5.6. The origin of the used coordinate system is the upstream
heel of the dam.

X [m] Y [m]

Block A 11.42 107.21
Block B 10.81 105.43

Tab. 5.6: Geometric centre of gravity of the two investigate blocks

Then, the factor of safety against tipping was calculated as the ratio of the horizontal
distance from the tipping point to the block’s centre of gravity and the final horizontal
displacement obtained from the Newmark method (see figure 5.32):

FoS = Xc

Xc − d
(5.10)

Fig. 5.32: Factor of safety against tipping

The factor of safety against sliding was computed by the equilibrium of static forces. The
FoS was evaluated for a steady water level in the reservoir as follows:

FoS = W · cos(α) · tan(ϕ)
W · sin(α)− F stat

(5.11)
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For the case after a possible lowering of the water table in the reservoir:

FoS = cos(α) · tan(ϕ)
sin(α) (5.12)

Results are summarized in table 5.7.

Factor of Safety

Block A - tipping 1.83
Block B - tipping 1.46
Block B - sliding, steady reservoir level 1.84
Block B - sliding, lowered reservoir level 1.30

Tab. 5.7: Factor of safety for blocks A and B
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6 Conclusion and Summary
Modelling the behaviour of large structures, e.g. dams, remains a challenging task. This
includes the selection of suitable model assumption for the damping factor of foundation and
dam as well as material or base joint properties. Also, the application of boundary conditions
desires high attention especially in terms of absorption and reflection abilities. Furthermore,
the final results and their computational time depend on the creation of an appropriate mesh.

The main contributor to dealing with these tasks is the International Commission on Large
Dams (ICOLD). Their regularly held benchmark workshops [3, 49] and publications e.g. ICOLD
Bulletins [50] represent the state of the art of dam analysis and related topics. Today, non-
linear modelling becomes a necessity if structural failure cannot be excluded in linear analyses.
This may be the case for unusual and extreme loading cases, e.g. extraordinary earthquakes.
The enduring effort to improve reliable concepts hand in hand with the ongoing increase of
computational power leads to new possibilities of modelling these structures. However, the
selection of representative parameters for the involved material models of concrete, water and
rock must be done with care.

Lifelong monitoring of existing dams delivers lots of data for the calibration of seismic
properties and linear material behaviour. This data can then be used for the determination of
dynamic material properties, e.g. dynamic stiffness or dynamic Poisson ratio, as shown in [51].
In contrary, calibration data for material models is still rare if they are supposed to simulate
non-linear behaviour, e.g. strain-softening. Also, the validation of the used model requires
data of non-linear behaviour of the whole dam structure. This data - usually - can only be
recorded if the structure is close to its failure. However, it is necessary to reconsider dynamic
material properties due to high strain rates, especially for seismic excitation.

Regarding the modelling of the cracking behaviour, the used material model should be
selected according to the given task. Linear or Plastic Fracture Mechanics and Crack Band
Models can be used if the stability of a single, existing crack should be monitored. Plasticity
models and Extended Finite Element Method are most suitable if the overall performance of a
structure with multiple fracture zones is of interest. These two methods are also adapted for
the formation of new cracks. Commercial software like Ansys Mechanical supports all these
kinds of models. It is up to the investigating engineer to select the most suited method.

Material models with non-local regularization are capable of replicate the material behaviour
caused by the concrete specific Fracture Process Zone. A very fine mesh and therefore higher
computational power is required if the width of this zone is very small compared to the size of
the entire structure. Furthermore, the selection of the parameter defining the range of this
zone is crucial. Although various ways to its determination exist, not all of them are practical
or economical applicable on dam concretes due to the large required specimen sizes. However,
it should be kept in mind that the influence of this parameter on the material model behaviour
is significant.

To summarize the results of the performed analyses, the tested model - in its current
form - is only conditional qualified to predict crack forming in large scale structures. It has
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advantages over tensorial damage models like mesh independence, multiple shear planes and
easy convergence behaviour. Yet, the lack of validation on large structures and its failure to
model crack initiation at singularity points cannot be ignored. Therefore, a practical application
of the investigated model cannot be ensured.

For the future, more material tests on dam concrete with its large grain sizes is needed to
be performed. These shall provide a solid data base for the calibration of non-linear concrete
material models used to simulate large scale structures. Furthermore, this thesis should serve as
an inducement to improve non-linear material models in order to overcome existing difficulties
in relation with the modelling of large, unreinforced concrete structures.

Finally, the pros and cons of the coupled damage-plasticity model provided by Ansys
Mechanical on their application on large scale structures undergoing seismic loading encountered
during this thesis, are summarized as follows.

⊕ Reduced mesh dependency: with active non-local regularization orientation and size variations
of mesh elements do not influence the overall behaviour as harsh as for tensorial damage models.

⊕ Damage healing: this is essential for simulation of seismic loading. Due to the separation of
tensile and compressive damage, the forming and re-closing of cracks can be modelled. For
simple damage models, damage occurring during tension also affects compressive response in
the same manner.

⊕ Enhanced convergence: the non-local regularization leads to redistribution of plastic strains
which prevent localized strain peaks from causing convergence problems.

⊕ Representation of FPZ: a fracture process zone rather then a single crack is modelled, which
represents better the cracking behaviour of aggregate materials like concrete.

⊕ Additional represented effects: multiple damage planes leads to the capability of representing
e.g. the vertex effect described in chapter 4.2.3.

⊕ Physical parameters: most of the parameters used in this model have a direct physical
meaning like strength or stiffness, others also describe independent physical behaviour like
damage development or thresholds.

⊕ Full stress degradation: exponential damage development enable possibility to model almost
zero stress by high strains, no residual value is needed.

⊕ Hysteresis loop: modelling of a full hysteresis loop is possible.

	 Computational effort: due to the microplane model itself, more state variables need to be
calculated and stored as in ordinary damage models, this requires a higher amount of physical
memory during the solving process as well as to store the results, furthermore this leads to a
larger computational time.

	 Fine mesh size vs large geometry: depending on the chosen non-local range, the required
mesh size tends to be very small compared to the afflicted geometry, therefore an enormous
amount of elements are needed to model the dam properly, this leads to larger computational
time and required memory.

	 Singularity: the non-local regularization has shown to be in-consisted by dealing with sharp
edges where forces are submitted, e.g. Brazilian test or base joint of the dam model. Such
geometries should definitely be avoided in order to obtain reasonable results.
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	 Dynamic stiffening: the influence of the loading speed and loading duration on the material
responses, e.g. stiffness, can only be represented in terms of an alternated dynamic modulus
Edyn but not in terms of a rate dependent material law.
	 Calibration: small scale experimental data of non-linear material behaviour is rarely available
for dam concrete using grain sizes larger than the ordinary concrete.
	 Validation: the lack of data of dam structures on their behaviour during a seismic event,
e.g. detailed material data, tensile tests, introduced crack patterns due the shaking, makes a
validation of the material model when used at a large scale difficult.
	 Accessibility: microplane material laws and their results are accessible only through scripting
commands (at least for Ansys Mechanical).
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