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Abstract

Computational lung sound analysis provides a more objective and standardized way of diag-
nosing lung diseases. For the development of a multi-channel lung sound recording device the
software used for the audio recording plays an integral role. In this thesis, a modern audio
software application specifically designed to be used in conjunction with such a recording de-
vice was developed. The requirements for the software have been analyzed to choose the most
applicable technology for the development. The state-of-the-art audio development frameworks
JUCE and Tracktion Engine are introduced and the software’s architecture was designed for
testability and future extensibility. The final implementation of the software is described in
detail, including a manual for the end user. Furthermore, the hardware device consisting of an
audio interface, the microphones inside stethoscope heads as lung sound transducers and the
auscultation pad holding the sensors, is introduced. Additionally, different deep neural network
models for multi-channel lung sound classification were re-implemented and evaluated in the
machine learing framework Keras. The aim was to classify subject’s breathing cycles as either
healthy or pathological (patients suffering from idiopathic pulmonary fibrosis). A multilayer
perceptron (MLP) model was used as the baseline model. A bidirectional gated recurrent neu-
ral network (BiGRNN) was implemented for exploiting temporal information and additionally
provided with a convolutional front-end (ConvBiGRNN) to make use of spatial information.
Furthermore, for comparison with these three models a dense convolutional neural network was
implemented. The best performance was achieved with the BiGRNN model with a F -Score of
F1 = 88.0%.
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1
Introduction

This thesis has its origin in Elmar Messner’s dissertation ”A Holistic Approach to Multi-Channel
Lung Sound Classification” [1] in which he developed a multi-channel recording device. This
was used to build up a lung sound database to train neural networks for classifying subjects
as either healthy or suffering from idiopathic pulmonary fibrosis. The need for such a device
is also apparent in the lack of commercially available multi-channel lung auscultation devices.
Traditionally lung auscultation is a very subjective assessment procedure, which relies heavily
on the examiner’s experience and auditory capabilities. The examination is not subject to a
standardized method and thus can not be easily reproduced and compared against previous
examinations. The above device tries to allow for a more objective and standardized assessment
technique with multiple stethoscope heads fixed to predetermined positions and the recording
of the lung sounds for later examination. With a dedicated recording software the physician is
able to not only hear individual sensor positions, as with a traditional stethoscope, but also see
the waveforms of all 16 sensors at once. The fact that the recordings of each examination of
a patient are available, allows for an improved analysis of the development of the disease over
time. In order to optimize the usability and portability and to allow the widespread deployment
of such a device for the diagnosis of pulmonary diseases the auscultation pad was redesigned to
house the recording hardware. As part of this thesis the accompanying recording software was
developed to provide the physician with an easy to use tool for the multi-channel recording of
lung sounds and the visual examination of the waveforms and spectrograms.

1.1 Computational Lung Sound Analysis

A systematic review of articles about the automatic adventitious respiratory sound analysis was
performed in [2]. The authors describe the automatic detection and classification of adventitious
sounds as a useful tool to help physicians in diagnosing and monitoring lung diseases. Although
this has recently been the objective of a growing number of studies, there is no standardized
approach and comparison for the detection and classification of adventitious sounds. The data
to perform the detection and classification tasks is collected using different instrumentation,
including microphones, stethoscopes and accelerometers, or obtained from online repositories
and CDs. The algorithms used, span a wide range of methods from empirical rule based meth-
ods to complex machine learning techniques. The overall goal is to detect and classify abnormal
respiratory sounds, as these are characteristic of serious lung diseases. Normal and abnormal res-
piratory sounds can be heard by performing auscultation. Auscultation is the medical term used
to describe the process of listening to sounds from inside the human body using a stethoscope or
other tools. Normal respiratory sounds can be categorized according to where they are heard or
originate into vesicular sounds (most of the lung fields), bronchial sounds (near the second and
third intercostal space), broncho-vesicular sounds (posterior chest between the scapulae/center
of the anterior chest), tracheal sounds and mouth sounds [2]. Vesicular sounds are low pitched,
low-pass filtered (due to the chest wall), noise-like sounds in the range of 100− 1000Hz and can
be heard during inspiration and early expiration. Bronchial sounds are high pitched, loud and
hollow sounds in the range of 100− 5000Hz and occur during both inspiration and expiration.
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1 Introduction

Broncho-vesicular sounds are pitch- and frequency-wise in between the vesicular and bronchial
sounds. Tracheal sounds cover a similar range of frequencies as the bronchial sounds but with
a higher pitch and a very loud and harsh sound quality. Mouth sounds cover a frequency range
of 200 − 2000Hz with a white-noise like quality. Because of the different sound characteristics
of normal respiratory sounds at different auscultation locations, the analysis can become more
complex for multi-channel signals. Abnormal respiratory sounds include adventitious sounds,
which are superimposed on normal respiratory sounds and can be categorized into continuous
adventitious sounds (CAS) and discontinuous adventitious sounds (DAS). Abnormal respiratory
sounds also include normal breath sounds occurring in abnormal areas and the lack or reduced
intensity of sounds during breathing. CAS are sounds with a duration of more than 250ms
and contain wheeze sounds (sibilant/musical, duration > 80ms, high pitch > 400Hz), rhonchi
sounds (sibilant/musical, duration > 80ms, low pitch < 200Hz), stridor (sibilant/musical, du-
ration > 250ms, high pitch > 500Hz), squawks (short musical/non-musical, duration ±80ms,
low pitch 200 − 300Hz) and gasps (whoop, duration > 250ms, high pitch). DAS are sounds
with a very short duration of less than 25ms and include fine crackles (non-musical/explosive,
duration ±5ms, high pitch 650Hz), coarse crackles (non-musical/explosive, duration ±15ms,
low pitch 350Hz) and pleural rub sounds (non-musical/rhythmic, duration > 15ms, low pitch
< 350Hz).

As stated in [2], there exist a number of devices for the automated lung sound analysis using
different approaches. Most of these have in common, that they are large and complex and thus
there is still a need for portable non-intrusive devices for monitoring lung sounds. The algo-
rithms and methods used by the studies summarized in [2] include machine learning classifiers
such as Multilayer Perceptron Models (MLP), Support Vector Machines (SVM), Gaussian Mix-
ture Models (GMM), k-Nearest Neighbor (k-NN), Hidden Markov Models (HMM) and Logistic
Regression. An important consideration in developing new and improved algorithms for detec-
tion and classification tasks is the choice of feature extraction method that is used, because this
greatly influences the performance. Additionally, it is essential to obtain the data from a number
of different patients, in order to get a better generalization and avoid over-fitting, under-fitting
and patient specific results.

1.2 Scope of the Thesis

The goal of this thesis was to develop a modern audio software application for multi-channel
lung sound recordings. The first step was to gather the softwares requirements by analyzing
the pre-existing Matlab application from [1] and to see which of the features to keep or to
extend. With this set of requirements the choice was made to develop a cross-platform C++
application using the frameworks JUCE and Tracktion Engine. The next step was to understand
the two frameworks and how to deploy them for development. After that an overall module
based architecture for the software was created including a build infrastructure which can be
automated for continuous integration and supports all platforms. The main part of the thesis
consisted of the implementation of the different requirements, including a real-time spectrum
analyzer and level meter, calculating and plotting spectrograms of the recordings, implementing
filters for the audio data as well as for the decimation process and the design of a modern user
interface which is easy to use and logically arranged. Independently of the recording software,
deep neural networks from [1] have been implemented in Keras and achieve similar performance.
This was done with the lung sound database from [1].

10
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1.3 Chapter Outline

The thesis is structured as follows:

• Chapter 2: This chapter is a collection of the requirements that had to be met by the
software. The requirements itself are subdivided into functional and non-functional re-
quirements representing the behavioral aspects and technical aspects of the application,
respectively.

• Chapter 3: With regards to the gathered requirements the technology to use for the de-
velopment of the software is chosen. The chapter also introduces the most important
functionalities of the JUCE and Tracktion Engine frameworks that were used for develop-
ment and describes the build tools and infrastructure of the project.

• Chapter 4: This chapter explains the underlying architectural concept used by the JUCE
framework and the application. A high-level overview of the software architecture and the
JUCE module format is presented.

• Chapter 5: At the beginning of this chapter important concepts and design patterns used
for the software development are explained. Then the details of the implementation are
described for the different modules of the application.

• Chapter 6: An overview of the software’s functions and how to utilize them from a user’s
point of view is given. This includes some screenshots of the application.

• Chapter 7: This chapter gives a short overview of the hardware the software was developed
for, including a description of the audio interface, the microphones, the stethoscope heads
and the auscultation pad.

• Chapter 8: For this chapter, the deep neural network models from [1] were re-implemented
in the high-level machine learning API Keras to see if the same results could be achieved.
The implementation of the models and the classification results are shown.
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2
Software Requirements

One of the first steps in developing a software application is to collect all necessary requirements.
This includes all aspects from the end-users perspective, as well as technical requirements. This
chapter is an outline for all requirements that have to be fulfilled by the multi-channel lung sound
recording software. The requirements are partly derived from the Matlab GUI-application from
[1], to maintain existing features. Additionally some new requirements were added, to extend
the applications feature set.

2.1 Functional Requirements

R.1 Multi-Channel recordings: The main feature of the application is to be able to choose a
number of up to 16 input channels for simultaneous recording. Per default all 16 channels
should be recorded, but the user should be able to choose a subset of the available channels.

R.2 Input gain control: There has to be a control to set the input gain for each channel
individually, as well as for all channels at once. This control should be hidden per default
and only be accessible through an elevated mode of operation (expert/admin mode).

R.3 Input high-pass filter: There has to be a high-pass filter on each channel with adjustable
cutoff frequency. The original recording software did not contain an adjustable high-pass
filter but instead used a Bessel high-pass filter with a cutoff frequency of fc = 80Hz and a
slope of 24dB/oct inside the recording hardware [1]. Because of the new hardware a filter
before the analog-to-digital conversion was not possible and instead a digital filter with
adjustable cutoff frequency and a slope of 24dB/oct is used. The cutoff frequency should
also be adjustable for all channels individually with an option to apply the same cutoff
frequency to all channels. This control is hidden by default and only accessible through
the expert mode.

R.4 Sensor visualization: There has to be a visualization of the 16 sensors of the lung sound
recording device, which resembles the arrangement of the sensors on the auscultation
pad. The individual sensors can be selected and enabled/disabled. Each sensor gets a
corresponding track, which contains the recorded audio clips. The 16 tracks are arranged
underneath each other, such that a distinct point in time of each sensor recording is aligned
vertically, with a timeline display at the top. Selecting a track or clip in this view also
selects the corresponding sensor in the sensor view.

R.5 Input level meter and frequency analyzer: The input level has to be displayed in real-time
as a bar meter for the selected sensor. This can be used to fine tune the input gain of the
channel and to make sure there is no clipping occurring during recording. Different colors
indicate different input levels (green for levels up to −12dB, yellow for levels up to 0dB
and red for levels above 0dB). The frequency spectrum of the input signal is displayed
in real-time for the selected sensor. Additionally the frequency and phase response of the
high-pass filter has to be plotted alongside the spectrum.

13
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R.6 Audio waveform visualization: The recorded audio clips have to display the waveform of
the recording. While recording the waveform of the input signal should be displayed in
real-time. The selected area of a recording has to be displayed in a separate, more detailed
view including a timeline and a playhead. The detail view allows to zoom in and out of
the audio waveform.

R.7 Spectrogram of a selected region: Underneath the detail view the spectrogram of the se-
lected region has to be displayed. It is possible to configure the most important settings of
the spectrogram (window, overlapping, FFT size). The default values for the spectrogram
are taken from the audio processing framework from [1] with a Hamming window of 512
samples length and an overlap of consecutive frames of 37.5%.

R.8 Metadata of subject: It is possible to store some subject related metadata. Upon creating a
new project, the user has to enter an unique subject code, the subjects first and last name,
the subject’s gender and date of birth. These metadata elements cannot be changed
later on but can be viewed in the settings pane alongside the automatically generated
examination number and examination time.

R.9 Selection behavior: It is possible to select whole audio clips of a recording, as well as parts
of it by clicking and dragging over the desired range. The selected part is highlighted on the
clip and the corresponding sensor is selected in the sensor view and displayed in the detail
view. The playhead jumps to the beginning of the selection and the corresponding track
is solo isolated. The user should be able to activate a looping mode and the loop range
should automatically span the selection range. Input monitoring is enabled automatically
for the selected sensor. Only one sensor can be monitored at the same time. Additionally,
the selected part can be played back and listened to.

R.10 Saving recordings: A recording session can be saved, including the recorded audio data
and subject metadata. This session can be loaded and listened to later on.

R.11 Modern look and feel: The application has to follow a modern user interface and user
experience (UI/UX) design. The colours and shapes are derived from some well established
design guidelines. The handling of the software has to be intuitive from a user’s perspective.
All major controls and information has to be visible and accessible at the same time.
Proportions between different elements of the user interface can be changed by the user.

2.2 Non-Functional Requirements

R.12 ”Infinite” length recording: The length of the recordings are not limited by the application
but only by the available storage on the computer running the software.

R.13 Cross-platform compatibility: The software should be compatible with all major operating
systems (Windows, Mac OS X, Linux).

R.14 Exporting the audio data: When exporting the audio files the sample rate of the audio
data is reduced to fs = 16kHz, as is the case in [1]. Additionally the high-pass filters are
applied on the audio data.

R.15 File structure: The structure of one recording project follows the same structure as in [1].
The main folder is named: subjectCode firstname lastname. Inside the main folder a
subfolder for each examination is created containing a project file named: examination-

Number DD MM YYYY.mclsproject. Alongside the project file there is an audio folder with
subfolders for the raw audio data and the exported/downsampled audio data.
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3
Technology Stack

Considering all requirements of the software, a choice has to be made on which technologies
to use. General considerations when selecting a certain technology are, how well it is adopted
and maintained and which license it is covered with. Additionally for an audio application
with 16-channel recording capability performance is of the essence, which already rules out a
lot of technologies. With these criteria and the cross-plattform capability in mind, there are
two possibilities for the type of software, a cross-platform native desktop application or a cross-
platform web application with a local server as the backend and a web page as the frontend.
The problem with the latter is the lack of support for multi channel audio recordings. When
dealing with audio in web applications we are limited to the Web Audio API [3], which is
not flexible enough for working with external multi channel audio interfaces. Despite the fact
that the development of a web application may be more flexible with regards to the software
architecture and lose coupling of user interface and logic, the performance of a native desktop
application can hardly be met. For these reasons, the choice was to develop the application
as a cross-platform native desktop application in C++ with the JUCE framework [4] and the
Tracktion Engine audio engine [5], which is based on JUCE. This chapter is an introduction to
JUCE and the Tracktion Engine and outlines the build tools and infrastructure.

3.1 JUCE

Jules’ Utility Class Extensions (JUCE) is a partially open-source cross-platform C++ application
framework for desktop and mobile application development. JUCE was originally part of the
code base of the Tracktion Digital Audio Workstation (DAW), before the creator Jules Storer
decided to extract it as a framework. The fact that it was created for an audio application
lends JUCE its main feature, the large set of audio functionality. JUCE supports audio devices
on all major platforms (e.g. CoreAudio, ASIO, ALSA, JACK, WASAPI, DirectSound) and
contains readers for audio file formates (e.g. WAV, AIFF, FLAC, MP3) [6]. Besides that, JUCE
contains classes for user interface elements, graphics, XML and JSON parsing, multi-threading
and other useful features [6]. All these features make JUCE a standard in audio application
development [6]. This section is used to explain the most important classes and concepts of
the JUCE framework used in the development of the Multi-Channel Lung Sound Recording
(MCLSR) software. If not specified otherwise, all text in monospaced font in this chapter refers
to class and method names that are part of the JUCE framework.

3.1.1 JUCE Application, Window and Components

The JUCEApplication class represents the entry point to a JUCE application and is used to
specify the initialization and shutdown code of the application [7]. This class is derived from
the JUCEApplicationBase class and provides default implementations of some pure virtual
base class methods. An application that wants to run an event loop needs to subclass the
JUCEApplication or JUCEApplicationBase classes and implement the pure virtual methods
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3 Technology Stack

[7]. The START JUCE APPLICATION macro is used to define the platform-specific boilerplate code
to launch the application as well as the main function, which is the entry point of the application
[7]. Typically the JUCEApplication derived class holds a pointer to the main window, which in
turn holds a pointer to the main content component.

A subclass of the DocumentWindow class is used as the main window of the application. The
DocumentWindow is derived from ResizableWindow, so it can be resized, minimized and max-
imized. The window’s titlebar can show the application’s name or any other text and an icon
can optionally be specified with the setIcon() method [8]. As it is not advisable to add child
components directly to the DocumentWindow, it typically holds a pointer to the main content
component, where all child components can be added [8].

The Component class represents the base class for all user interface objects. With the addAnd-
MakeVisible() method child components can be added to parent components, which is used to
build a hierarchical graph of the user interface. The most important methods of a component
are the paint() and resized() methods. The paint() method can be overridden to draw the
content of the component inside the current Graphics context handed to it. It gets called when
parts of the component needs redrawing, either because it is marked ”dirty” by a call to the
repaint() method, or because something occurred on the screen that caused a section of the
window needing to be redrawn [9]. The resized() method gets called when the components
size changes and is used to layout its child components. This way, when a parents size changes,
it resizes itself and all its children accordingly. Because this gets called synchronously it is not
advisable to perform long lasting calculations inside this method, to avoid blocking the entire
message thread (the thread running the JUCE applications event-dispatch loop, essentially the
main thread of a JUCE application) and thus rendering the application unresponsive [9].

3.1.2 Multithreading

JUCE provides a couple of classes for multithreading and thread synchronization like the Thread
class, which encapsulates a thread. To create a thread, a subclass of the Thread class, which
implements the run() method, has to be created. To start the thread (execute the run() method
on its own thread) the startThread() method is called, specifying the threads priority (0 =
lowest, 10 = highest) [10]. The Thread additionally provides static thread-related methods, such
as sleep(), yield() and wait() [10].

According to [11], the ThreadPool class is a managed set of threads that will run a list of
ThreadPoolJob objects. This class provides methods to interact with these jobs (add, remove,
search for job, get number of jobs, etc.).

A ThreadPoolJob represents a task, that needs to be run on its own thread. In contrast
to the direct implementation of the Thread class, the ThreadPoolJob is not responsible for
the creation and lifetime of its thread (this is managed by the ThreadPool). A task can be
created by subclassing ThreadPoolJob and implementing the runJob() method. This method
should periodically check if the thread should exit (shouldExit() method) and return if the
method returns true [12]. The runJob() method returns a JobStatus, which can be either
jobHasFinished or jobNeedsRunningAgain, depending on wether the job needs to execute the
runJob() method again or not.

The AsyncUpdater is used to handle a callback asynchronously. The handleAsyncUpdate()

method needs to be implemented, containing the callback. A call to triggerAsyncUpdate()

(save to call from any thread, but can potentially block real-time threads) posts a message to
the message thread, which in turn calls the handleAsyncUpdate() method as soon as possible
[13]. This class is for example useful when collecting multiple updates into a single callback.
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3.1.3 Data Model

The JUCE documentation [14] describes the ValueTree as a powerful tree-like structure to hold
data and execute undo and redo actions for changes to this data. A ValueTree contains a list
of named properties as var (see next paragraph) objects and any number of sub-trees. They
are a lightweight reference to a shared object, which acts as the data container. This makes
ValueTree creatable on the stack and copyable without performance impacts, as this simply
creates a new reference to the same shared object. The ValueTree is analogous to the XML
format [15] (with the exception of text elements), where the type name maps to an XML tag
and the properties map to an XML attribute. This makes XML a good serialization format for
ValueTree. Listing 3.1 shows an abbreviated example of a serialized ValueTree like it is used
for storing and loading of a te::Edit (see Section 3.2.2). If needed, ValueTree can also be
serialized to a compact binary format very quickly. Additionally the ValueTree provides the
option to pass an UndoManager to the methods that change the tree’s data. This UndoManager

is used to track any changes to the object and is an easy way of undoing and redoing changes.
Listeners can be registered to a ValueTree to be notified when a property changes and when
sub-trees are added or removed. These listeners are stored with the ValueTree and not with
the shared object, which eliminates the need to unregister as a listener if the callbacks were
registered to a copy of the ValueTree which goes out of scope once the notifications are no
longer needed. All the above properties of the ValueTree make it a good fit as the underlying
data structure for the data model of an application. Combined with the ConstrainedValue

class (see Section 5.2) it is easy to follow an MVC-type architectural paradigm (see Section 4.1),
where the ValueTree takes care of the model and controller aspects.

The var class is a variant type analogous to a Javascript var [16]. It can be used to store
primitive types (int, int64, bool, double), JUCE types (String, MemoryBlock), a Array<var>,
a ReferenceCountedObject or a DynamicObject. It can be serialized to JSON [17] and converts
between types using the appropriate operators [16].

The Identifier class acts like an enum, representing a string for accessing properties of a
ValueTree by name. The comparison of Identifier is a very fast pointer comparison, but
creating an Identifier can be slow because it is actually a globally pooled String (O(log(n))),
where n is the number of existing strings in the pool) [16]. The best way to declare them is
statically, in order for them to be created at application startup [16].

1 <?xml version="1.0" encoding="UTF -8"?>

2
3 <EDIT appVersion="Unknown" projectID="0/883 fd9" creationTime="1579867568819"

4 modifiedBy="Johannes Wolfgruber" lastSignificantChange="16 fd7c72c3b">

5 <TRANSPORT recordPunchInOut="0" position="0.0" loopPoint1="0.0"

loopPoint2="7.321428571428571"/>

6 <MACROPARAMETERS id="1001"/>

7 <MASTERVOLUME >

8 <PLUGIN type="volume" volume="0.6376281380653381" id="1003" enabled="1">

9 <MACROPARAMETERS id="1005"/>

10 <MODIFIERASSIGNMENTS/>

11 </PLUGIN >

12 </MASTERVOLUME >

13 <INPUTDEVICES >

14 <INPUTDEVICE name="2- Scarlett 18i20 USB"/>

15 <INPUTDEVICE name="Mic 1" targetTrack="1012" targetIndex="0" armed="1"/>

16 ...

17 </INPUTDEVICES >

18 <VIEWMODEL DetailViewTimeLeft="0.0" DetailViewTimeRight="7.321428571428571"

19 DetailTimeResolution="1"/>

20 <PROJECTMODEL EditName="1_Test_Test"

21 ProjectFolder=".\ Documents\MCLS\1 _Test_Test"

22 ExaminationFolder=".\ Documents\MCLS\1 _Test_Test \001 _24_01_2020"

23 AudioFolder=".\ Documents\MCLS\1 _Test_Test \001 _24_01_2020\Audio"/>

24 <SPECTROGRAMSETTINGSMODEL/>

25 <METADATAMODEL TimeOfExamination="20200124 T130608 .868+0100" SubjectCode="1"

26 FirstName="Test" LastName="Test" ExaminationNumber="1"
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27 DateOfBirth="19900101 T000000 .000+0100"

28 Gender="0"/>

29 <TRACK id="1012" midiVProp="0.28125" midiVOffset="0.359375" name="Sensor1"

30 mute="0" InputGain="12.0" Frequency="8317.0" solo="1">

31 <MACROPARAMETERS id="1014"/>

32 <MODIFIERS/>

33 <AUDIOCLIP name="Sensor1 Recording 1" start="0.0"

length="7.321428571428571"

34 offset="0.0" id="1004"

35 source="001 _24_01_2020\Audio\Raw\1 _Render_Test_Sensor1_Take_2.wav"

36 sync="0" elastiqueMode="0" pan="0.0" colour="ffff0000">

37 <LOOPINFO rootNote="-1" numBeats="14.64285714285714" oneShot="0"

denominator="4"

38 numerator="4" bpm="0.0" inMarker="0" outMarker="-1"/>

39 </AUDIOCLIP >

40 <PLUGIN type="highpass" id="1230" enabled="1" frequency="8317.0">

41 <MACROPARAMETERS id="1231"/>

42 <MODIFIERASSIGNMENTS/>

43 </PLUGIN >

44 <PLUGIN type="volume" id="1017" enabled="1" remapOnTempoChange="1">

45 <MACROPARAMETERS id="1018"/>

46 <MODIFIERASSIGNMENTS/>

47 </PLUGIN >

48 <PLUGIN type="level" id="1021" enabled="1">

49 <MACROPARAMETERS id="1022"/>

50 <MODIFIERASSIGNMENTS/>

51 </PLUGIN >

52 <OUTPUTDEVICES >

53 <DEVICE name="(default audio output)"/>

54 </OUTPUTDEVICES >

55 </TRACK >

56 ...

57 </EDIT >

Listing 3.1: Example of a XML serialized ValueTree.

3.2 Tracktion Engine

The Tracktion Engine is partially open-source since November 2018. As JUCE developed out
of Tracktion, the engine is tightly integrated with the framework and is provided as a JUCE
module (see Section 4.3). The Tracktion Engine provides a high-level document object model
(DOM) and application programming interface (API) for audio applications [5]. Some key
features include cross-platform support, fast audio file playback via memory mapping and audio
recording [5]. In this section the most important features of the Tracktion Engine that are used
in the MCLSR software are explained. If not specified otherwise, all text in monospaced font in
this chapter refers to class and method names that are part of the Tracktion Engine codebase.

3.2.1 The Engine

The Engine class is the central class of the Tracktion Engine [18]. It is implemented as a
singleton, so there exists only one instance. The Engine class needs to be created before any
Edit (see Section 3.2.2) and performs the initialization and shutdown of the Tracktion Engine.
To customize the user interface behavior or the engine behavior, subclasses of UIBehaviour

and EngineBehaviour can be passed to the Engine, otherwise the Engine will use the de-
fault behaviors. The Engine class is used to hold and retrieve all Tracktion Engine objects
that need to be unique per session, such as the DeviceManager, BackgroundJobManager, the
AudioFileManager, the RenderManager etc.
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3.2.2 Data Model

The Edit class [19] represents a session containing objects such as tracks, input devices or the
undo manager. Sub-objects of the Edit hold a reference to it, so they know to which Edit

they belong. To create an Edit, an Edit::Options instance with an Engine, the Edit’s state
in the form of a juce::ValueTree and a ProjectItemID have to be provided. The Edit class
represents the entire model of the Tracktion Engine. The Edit state juce::ValueTree can be
serialized and deserialized to XML and used as a project file format.

An Edit contains a list of Track objects. There are a number of different kinds of Track types,
e.g. a AudioTrack for audio output [20]. The AudioTrack class is derived from ClipTrack and
contains a list of all WaveAudioClip objects of this track. A Track also holds a list of Plugin (see
Section 3.2.3) objects, which by default has a VolumeAndPanPlugin and a LevelMeterPlugin

for controlling the track volume and metering it respectively. For audio input and output a
AudioTrack contains pointers to a TrackOutput which is a representation of the output device
for the track, and to a WaveInputDevice, a virtual input device representing a mono or stereo
input channel.

A Clip object lives inside of a Track. As with Tracks, there exist different kinds of Clip

types, e.g. a WaveAudioClip, which holds a reference to an audio file [20]. The WaveAudioClip

class is derived from the AudioClipBase class. This class is amongst other things responsible
for creating proxy objects of the clips audio file. Proxy objects are essentially copies of the
corresponding audio files, which are held in memory to optimize playback and manipulation of
the files contents (memory access is faster than loading the file from disk every time it is needed).

The SelectionManager is used to hold a list of selected objects (of base type Selectable)
[21]. It is used to select and deselect certain objects, and to notify listeners if the selection
changed in order to handle the event accordingly. The SelectionManager allows the selection
of single objects as well as a list of objects at the same time.

3.2.3 Plugin System

The Plugin class represents the Tracktion Engine’s internal plugin format, which can be used
as insert effect on Tracks or Clips. The applyToAudioBuffer() method can be overridden to
do the audio processing on the incoming audio buffer of the track or clip on which the plugin
was inserted. The Plugin itself does not contain any user interface, but can be accessed from
the owning track via its PluginList to control the plugin’s parameters.

3.2.4 Audio Graph

The underlying idea of the Tracktion Engine is to build up the entire signal path as a graph.
The Tracktion Engine audio graph consists of AudioNode instances. The AudioNode class is the
base class for all nodes. It defines, amongst others, the renderOver() and renderAdding() pure
virtual methods, which both accept a reference to the AudioRenderContext and are called inside
the audio callback. The AudioRenderContext contains the destination audio buffer including
information about the number of channels, number of samples inside the buffer and the index of
the starting sample. With this AudioRenderContext the subclasses of the AudioNode are able
to do their processing inside the above mentioned methods. There exist a number of node types
in the Tracktion Engine, e.g.:

• SingleInputAudioNode: Contains a pointer to a single input AudioNode and passes it on.

• WaveAudioNode: Plays back an audio file.

• MixerAudioNode: Mixes together a set of parallel input nodes.
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• PluginAudioNode: Applies a Plugins processing to the AudioRenderContext.

The audio graph is organized inside the EditPlaybackContext class, which contains methods
for creating the graph. The Edit::TreeWatcher is used to monitor all properties of the Edit

state that require a rebuilding of the graph and triggers the rebuild, if one of the properties
changes. As this happens automatically, it is generally not needed to rebuild the audio graph
manually.

The DeviceManager class is responsible for managing the audio devices and the audio call-
back. This class is essentially a wrapper around the juce::AudioDeviceManager class. The
juce::AudioDeviceManager holds a set of juce::AudioIODeviceTypes (representing the type
of audio driver, such as ASIO, CoreAudio or ALSA) and one currently active juce::Audio-

IODevice. The juce::AudioIODevice class is subclassed to implement the different audio pro-
tocols. It is used to set the juce::AudioIODeviceCallback, which will be called repeatedly
on a high-priority audio thread with the data from the specific implementation of the audio
protocol. The DeviceManager acts and adds itself as a juce::AudioDeviceIOCallback to the
juce::AudioDeviceManager and thus receives the audio data from the selected input device.
The audio buffer is then pumped into the active EditPlaybackContexts, which in turn dis-
tributes it over the audio graph.

3.3 Build Infrastructure

JUCE includes a project generation tool named Projucer, that can be used to generate projects
for several different IDEs (Integrated Development Environments) [22]. The Projucer is not ideal
for continuous integration and automated builds. Because of that and for a seamless integration
with the unit testing framework GoogleTest [23], the choice fell on CMake as the project creation
tool [24]. FRUT is a tool that allows to build JUCE projects with CMake [25].

3.3.1 CMake configuration

CMake can be configured with CMakeLists.txt files. The MCLSR repository is structured
into one top-level CMakeLists.txt file in the root folder, and one CMakeLists.txt file for each
project that outputs an executable in the respective subfolder. The top-level CMakeLists.txt
file sets the path for the JUCE framework, includes FRUT and the corresponding tools, config-
ures googletest to pull the latest commit and build it into the specified directory and includes
the subfolders for the MCLSRApp and MCLSRTests. In the CMakeLists.txt files for the two
applications, all JUCE related options can be configured, e.g. which modules to include, which
source files to include and which project types to create.

3.3.2 Build scripts

In order to automate the build process and testing for continuous integration (CI) two build
scripts are provided (a Powershell script for Windows and a Shell script for Unix). The following
parameters are available inside the scripts:

• build: Builds the project files and copies the executables to the bin folder.

• clean: Removes the build and binary directories.

• config: The build configuration, either ”Debug” (default) or ”Release”.
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• create: Creates the project files (Visual Studio 2019 solution on Windows, Xcode project
on Mac OSX, makefile on Linux) inside the build folder. Overwrites the project files if
they already exist.

• generatedoc: Runs doxygen to generate the HTML and LATEX documentation from the
comments in the code.

• rebuild: Runs clean and build, including a rebuild of FRUT.

• recreate: Runs clean and create, including a rebuild of FRUT.

• test: Runs the Unit Tests if the project was previously built.

The script can for example be called from the command line via ./build.sh --config Release

--rebuild (Unix) or ./build.ps1 -config Release -rebuild (Windows). For continuous
integration an Azure Pipeline was configured, so that with every commit to the repositories
master branch, the build server pulls the commit and runs the build script and tests for all three
operating systems, reporting errors and warnings.
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Software Architecture

This chapter shows the considerations regarding the architecture of the application. The first
section describes the Model-View-Controller architectural pattern and how it is used and adapted
in JUCE. Additionally some key architectural concepts concerning JUCE are explained. The
second section describes the project structure that underlines the architecture and parts of the
software with different responsibilities. The last section shows the JUCE module format and
how it was used to create the different modules.

4.1 MVC and JUCE architecture

The Model-View-Controller (MVC) architectural pattern defines three roles that are assigned
to objects in the application: model, view and controller [26]. The pattern additionally defines
how these roles interact with each other, as can be seen in Figure 4.1.

View

Controller

Model

User
Action

Update Notify

Update

Figure 4.1: The MVC architectural pattern.

According to [26], Model objects contain the data of the application and the logic that manip-
ulates and processes the data. Model objects can have one-to-one or one-to-many relationships
with other model objects, and thus consists of one or several object graphs [26]. The persis-
tent state of the application should be held inside model objects after loading the data into
the application [26]. Model objects should have no direct connection to view objects and the
communication happens across the controller object [26].

View objects are objects that can be seen by the user, contain the logic to draw themselves
and respond to user actions [26]. They display the data from the model layer and allow the
editing of that data.

As stated in [26], Controller objects coordinate the communication between one or more view
objects and one or more model objects. They can also execute setup and coordinating tasks
for the application and manage the lifetime of other objects [26]. Upon a change from the view
layer via some user action that creates or changes data, the controller creates or updates the
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corresponding model object. When a model object changes, it notifies the controller, which in
turn updates the view object.

The MVC pattern ensures a clean separation of the user interface, the application logic and
the domain logic. The JUCE framework is mostly developed with the MVC pattern in mind
but with a less strict separation of the view and controller roles. The juce::Component base
class acts as both the view and the controller. All user interface elements are derived from
the juce::Component class and contain the logic to paint and layout themselves and their child
components. Additionally they contain all of the application logic for their respective use. Model
objects contain underlying juce::ValueTree encapsulating persistent data as well as runtime
state information. Components can subscribe to changes of the tree and update their view
accordingly. Conversely the model object is updated upon user actions that modify the state or
data of the application.

4.2 Multi-Channel Lung Sound Recording Software Architecture

To ensure a better separation between the different parts of the architecture and make the code
reusable and testable, four JUCE modules (see Section 4.3) were defined and assigned different
responsibilities. The core module encapsulates classes and functionality that are shared across all
other modules like constants, binary data, helper and wrapper classes. The model module holds
all model objects and accompanying logic. The domain module includes domain specific logic,
e.g. for spectrogram calculation, sample rate conversion, input device and track management.
The application module depends on all modules and contains the UI components and application
logic, look and feel classes and the application state. Figure 4.2 shows an overview of the
architecture and the module dependencies. As can be seen, the main application depends on all
modules. The module format allows to reuse the same modules for the test application with the
additional dependency to the test framework GoogleTest [23].

4.3 JUCE modules

The JUCE code base is divided into JUCE modules according to responsibilities and function-
ality. A JUCE module is a collection of header and source files, that can easily be added to
a project if the corresponding classes or libraries are needed [27]. This way only the necessary
parts of JUCE are included into the project and it does not bloat the project size and com-
pilation time. The JUCE module format [27] states the things that need to be done in order
to implement a user module. This includes naming conventions for files and a header file that
acts as the module definition with a predetermined comment section at the top of the file with
information about the author, module name and dependencies. This header file includes all
header files of the module, the corresponding source file includes all source files.
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Figure 4.2: High level architectural overview of the MCLSR software.
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Software Implementation

This chapter is a detailed description of the implementation of the Multi-Channel Lung Sound
Recording software. Some important software design patterns and best practices that were used
during development are explained alongside the implementation details of the core, domain,
model and application modules. The last section of this chapter describes the design and imple-
mentation of the user interface. Additionally a class documentation is available in HTML and
LATEX format alongside the source code.

5.1 Design Patterns and Best Practices

A software design pattern offers generic solutions to commonly occurring problems, such that
they can be applied in a multitude of different situations [28, p. 2]. This section shows some
important design patterns that are used throughout the application and how they are imple-
mented.

5.1.1 Singleton Pattern

The singleton pattern is, according to [28, p. 127], a creational pattern with the intent to enforce
that only one instance of a certain class can be created and accessed from one global point. The
singleton encapsulates its sole instance and can therefore control creation and access of it. To
ensure a unique instance, the singleton class normally hides the operation that creates the
instance behind a static or class method, that ensures that only one instance is created.

A variation of this pattern is the juce::SharedResourcePointer, which was used for several
classes in the MCLSR software. This class template is a smart-pointer that internally creates
and manages the lifetime of a shared static instance of a class [29]. The implementation differs
compared to a singleton, because it counts the references to the shared object to make sure that
it is created and deleted correctly [29].

5.1.2 Observer Pattern

The observer pattern is a behavioral pattern that defines a dependency between one object
acting as the broadcaster and a number of different objects acting as listeners, so that when the
broadcaster object changes state, all its listener objects are notified [28, p. 293].

This pattern is used extensively in JUCE with their broadcaster/listener system. The listener
defines a callback function that can be invoked by the broadcaster after the listener registers with
the broadcaster [30]. With juce::ValueTree this functionality is further abstracted and allows
to subscribe to any changes in a tree. This tree is encapsulated inside the ConstrainedValue

class (see Section 5.2.3), which subscribes itself as an observer and gets notified on any changes.
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5.1.3 Abstract Factory Pattern

As stated in [28, p. 87], the abstract factory pattern provides a way of instantiating related or
dependent objects without stating their concrete classes.

This pattern is used for creating different objects of the same base type at runtime and encap-
sulates the logic of creation of related objects. An example usage of the factory pattern can be
seen in Listing 5.1. Although the RecordingClipComponent and SpectrogramComponent are not
direct derivatives of the ClipComponent, but are contextually related to it, the ClipComponent-
Factory contains factory methods to create instances of these two classes as well as the different
ClipComponent types.

1 ClipComponent* Create(ClipComponentType type , te::Clip::Ptr clip)

2 {

3 switch (type)

4 {

5 case TypeOfClipComponent:

6 return new ClipComponent(clip);

7 case TypeOfAudioClipComponent:

8 return new AudioClipComponent(clip);

9 case TypeOfAudioDetailClipComponent:

10 return new AudioClipDetailComponent(clip);

11 default:

12 throw;

13 }

14 }

15
16 RecordingClipComponent* CreateRecordingClipComponent(te::Track ::Ptr track)

17 {

18 return new RecordingClipComponent(track);

19 }

20
21 SpectrogramComponent* CreateSpectrogramComponent(te::Clip::Ptr clip)

22 {

23 return new SpectrogramComponent(clip);

24 }

Listing 5.1: The ClipComponentFactory class.

5.1.4 Best Practices in Audio Development

This section lists some best practices to consider when developing an audio software application:

• Avoid the new and delete operators for object instantiation to prevent memory leaks.
Modern C++ code should instead make use of the Resource Acquisition Is Initialization
(RAII) pattern, which ensures that the life-cycle of a resource, which must be acquired
before use, is tied to the lifetime of the owning object [31]. This is done using stack
allocations wherever possible and instead of raw pointers switch to smart pointers from
the C++ standard library (std::unique ptr and std::shared ptr). Smart pointers
underline the scope of the pointers and get automatically deleted once they go out of
scope or the reference count is zero.

• Complex or long lasting calculations should not be done on the UI thread to keep it from
blocking for a longer period of time, which would render the user interface unresponsive.
Instead these calculations should be pushed to their own dedicated background threads,
notifying and updating the UI asynchronously when finished. Wherever needed, a progress
indicator can be used to let the user know about a background activity.

• There should be no locking on the audio thread. The audio thread itself is a high-priority
thread, which gets called regularly from the audio driver with the new audio buffer. Lock-
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ing can lead to deadlocks and priority inversion of threads, which in turn leads to audio
dropouts. This rule also means, that there should not be any memory allocations done on
the audio thread, because they can also cause a locking internally. Additionally it should
be considered which data structures to use on the audio thread, because operations like
resizing a std::vector also lock the executing thread. Another source of hidden locks are
logging operations or calls to the operating system and they should be avoided from the
audio thread.

• Real-time audio processing has to be as performant as possible. This entails, that all
calculations happening inside one audio callback need to be finished before the next call
to avoid dropouts in the audio stream. The available time is controlled by the buffer size
of the audio device. A buffer size of e.g. 128 samples at a sampling rate of fs = 48kHz
allows a time of τ = 2.67ms until the next call.

• To allow for easier extensibility of the application and to keep the separation of concerns
as high as possible, the data model of the application should be kept separated from the
user interface code. This is enforced by the MVC architectural pattern (Section 4.1).

5.2 Core Module

The core module contains binary data (fonts and vector graphics), constants, wrapper classes
and helper functions that all other modules need to use. Additionally it holds classes for han-
dling application state, application commands and managing the Tracktion Engine te::Edit

(Section 3.2.2) class. Figure B.1 shows the file structure of the core module.

5.2.1 Constants and Identifiers

The file Constants.h contains global (inside the mclsr namespace) constants for user interface
element’s dimensions. This way, without any hard coded values for the dimensions, there is
only one place to define and change these values, which can be accessed from everywhere in the
application. Changes to the user interface can be applied quickly without the need to refactor
code in several places.

The file CommandIDs.h contains an enumeration with identifiers for the application commands.
The range of this enumeration starts with 0x300000 to avoid interference with predefined com-
mands from JUCE and Tracktion Engine, and ends with lastCommandIDEntry to get the number
of commands defined. Application commands are application wide commands which are assigned
to keyboard shortcuts. This includes shortcuts for saving, toggling playback and for creating
new examinations.

The file Identifiers.h contains definitions of juce::Identifiers that represent a whole
juce::ValueTree or a property of one.

5.2.2 Utilities

The file Utilities.h contains static helper functions that can be used throughout the applica-
tion. Listing 5.2 shows the function’s signatures of the helper functions, divided into namespaces
for general helper functions and Tracktion Engine related helper functions. The Helper names-
pace contains a function to add an array of child components to the provided parent component,
which is useful for components with a lot of child components. The Tracktion Engine helper
functions provide quick and easy ways to access transport and track input features, such as
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looping around a clip, checking if a track is armed and arming a track for recording, check if
input monitoring is enabled and enabling it and checking wether a track has an input or not.

1 namespace Helpers

2 {

3 static void AddAndMakeVisible(Component& parent ,

4 const Array <Component*>& children);

5 }

6
7 namespace EngineHelpers

8 {

9 template <typename ClipType >

10 typename ClipType ::Ptr LoopAroundClip(ClipType& clip);

11
12 void ArmTrack(te:: AudioTrack& t, bool arm , int position = 0);

13
14 bool IsTrackArmed(te:: AudioTrack& t, int position = 0);

15
16 bool IsInputMonitoringEnabled(te:: AudioTrack& t, int position = 0);

17
18 void EnableInputMonitoring(te:: AudioTrack& t, bool im , int position = 0);

19
20 bool TrackHasInput(te:: AudioTrack& t, int position = 0);

21 }

Listing 5.2: Definitions of the utility functions.

5.2.3 Wrapper Classes

The class FlaggedAsyncUpdater is derived from juce::AsyncUpdater (see Section 3.1.2) and
allows handling an asynchronous update depending on wether a flag is set to true or false.

The Delegate class is a templated wrapper around std::function<void(Args...)>. The
class wraps the check if the std::function<void(Args...)> is null, effectively only executing if
it is not null. This allows for less verbose code when dealing with callback functions. Listing 5.3
shows an example for using the Delegate class with a lambda function. The function call in
line 8 does not need a null check because it is done internally inside the Delegate class.

1 Delegate <int , int , int > exampleCallback;

2
3 exampleCallback = [](int a, int b, int c)

4 {

5 // callback code

6 };

7
8 exampleCallback (1, 2, 3);

Listing 5.3: Example usage of the Delegate class.

The ConstrainedValue class wraps around a property of a juce::ValueTree. The Delegate
class is used to register lambda functions to the callbacks of the juce::ValueTree. For better
performance the value of the property is cached and can be filled with a default value in case
the property does not preexist in the provided tree. Additionally a templated Constrainer

class can be provided in order to constrain the underlying property to a certain range. This
Constrainer defaults to not constraining the value.

30



5.2 Core Module

5.2.4 Progress and Progress List

The Progress class represents a named progress, which can be cancelled and is used by the
ProgressList class. It contains a std::atomic<float> for the current progress (between 0.0
and 1.0), and a std::atomic<bool> indicating wether it was cancelled or not. The Progress-

List class manages a list of Progress objects. It includes a method to get the cumulated
progress from all tasks and a callback called when the list changes. These classes are used for
reporting the progress when exporting and downsampling the audio files.

5.2.5 Rendering Task Runner

The RenderingTaskRunner class is derived from the juce::Thread (see Section 3.1.2) class
and takes a te::Renderer::RenderTask and a Progress as input arguments. It spins up a
background thread, running the rendering job until finished and reporting the current progress
via the Progress object during execution.

5.2.6 Application Commands

The ApplicationCommandHandler class is derived from juce::ApplicationCommandTarget

and is used to set up all application wide commands and expose them via Delegate callbacks.
Inside the overridden getCommandInfo() method the commands are associated with keypresses
and additional information (command name and description). In total there are three applica-
tion wide commands defined: New Examination, Save Examination and Play/Pause. These can
be invoked via Ctrl+N, Ctrl+S and Space respectively. The perform() method is overridden
to execute the corresponding Delegate callback.

5.2.7 Edit Manager and Application State

The EditManager class is one of the key parts of the application. There is only one in-
stance of the EditManager, which can be accessed by declaring a juce::SharedResource-

Pointer<EditManager>. The main functionality of the EditManager is to manage the creation
and lifetime of te::Edit (see Section 3.2.2) objects. Additionally the class provides methods
from the current te::Edit object. Because the EditManager has basically the same lifetime as
the application itself, it also creates the juce::ValueTree for the applications runtime state.
The EditManager provides access to the current samplerate, blocksize, the UIBehaviour, the
te::DeviceManager and can rebuild the audio graph if needed.

The ApplicationState class uses the EditManager to get the application state and provides
all properties that do not need to be persisted and callbacks for when those properties change.
The properties of the application state include the current state of the project creation (or
loading), wether the expert mode is on or off, wether the te::Edit has changed since it was last
saved and wether the track view should follow the playhead during playback.

The EditCreationState enum represents the current state of the te::Edit creation or load-
ing and is necessary to trigger the appropriate callbacks in a defined and comprehensible way.
At first the state is in the InitialState. When CreateNewEdit or LoadEdit is called, the
state switches to BeginCreation, which can be used to clean up anything possibly open from a
previously loaded te::Edit. After the te::Edit object is created, the BindValues state signals
that the juce::ValueTree of the te::Edit exists and can be used to bind all properties. The
UpdateModel state stores all new user input into the model, the FinishCreation state is used
to clean up the creation process. The final state is the EditLoaded state which signals that
everything is set up and the application is ready.
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5.3 Domain Module

The domain module contains the logic that solves the softwares problem domain. In software
engineering this is often called the business logic as compared to the application logic. The
latter is concerned with the softwares behavior without touching the problem domains as such.
The business logic on the other hand contains everything to solve the problem domains. In
the case of the MCLSR application this includes the algorithms and signal processing that are
needed to record and save the audio, calculate spectrograms, convert the samplerate, the high-
pass filter and frequency analyzer. Figure B.2 shows the file structure of the domain module.
This section describes the signal processing used in each of the problem domains as well as their
implementation.

5.3.1 Tracks and Inputs Manager and Transport Manager

Recording and playback of audio files are a large part of the Tracktion Engine. The TracksAnd-

InputsManager and TransportManager classes extract and wrap the important parts for han-
dling tracks and audio inputs and the transport respectively. The class diagrams are shown in
Figure C.1. The TracksAndInputsManager provides methods to add and delete tracks, retrieve
tracks and input devices and to assign inputs. The high-pass filters are added to all tracks and
can be retrieved individually. The cutoff frequency and gain can be set for an individual track or
all tracks at once. The TransportManager can be used to interact with the te::PlayHead (get
and set the current position, set a looping range) or call methods on the te::TransportControl
(toggle recording and playback, check if the engine is playing or recording).

5.3.2 Highpass Filter Plugin

The HighpassFilterPlugin (requirement R.3) is derived from the te::Plugin class. The
class diagram can be seen in Figure C.4. In the initialise() method, which is called on all
te::Plugin objects by the Tracktion Engine, the sample rate is set, the filter state is reset and
the FrequencyAnalyzer (see Section 5.3.3) is set up. The UpdateFilter() method is used to
calculate and set the filter coefficients if the filters cutoff frequency has changed. The filter is
implemented as a cascade of Biquad filters using the juce::dsp::IIR::Filter class and the
juce::dsp::FilterDesign::designIIRHighpassHighOrderButterworthMethod() method.

The JUCE IIR filter is implemented with the transposed Direct Form II, which can be seen
in Figure 5.1. The designing method calculates the Q-factor for each stage i of the cascade as
follows:

Qi =
1

2cos((2i+ 1) · π
2N )

, for i = 0, 1, (5.1)

where N = 4 is the filter order to get the desired slope of 24dB/oct (two cascaded second order
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Biquad filters). The coefficients are then calculated by:

n = tan

(
πfc
fs

)
, (5.2)

b0 =
1

1 + 1/Qi · n+ n2
, (5.3)

b1 = −2 · b0, (5.4)

b2 = b0, (5.5)

a0 = 1, (5.6)

a1 = 2 · b0 · (n2 − 1), (5.7)

a2 = b0 · (1− 1/Qi · n+ n2). (5.8)

The plugin’s applyToBuffer() method is called regularly from the audio callback with the next
buffer that needs processing. The te::AudioRenderContext passed to the callback contains
the buffer, the index of the start sample and the number of samples that should be processed.
Figure 5.4 shows the audio callback of the HighpassFilterPlugin. After the filter coefficients
are updated (line 5), the buffer’s channels are cleared (line 7), except for the first one, which
holds the relevant audio data. The for-loop iterates over all samples and processes each one
with the filter cascade (lines 16-21). Because the input is a mono signal it is just copied to the
right channel. After the filter is applied, the buffer values are clipped if they are not in the range
−3 ≤ x ≤ 3 (line 24). Then the buffer is added to the FrequencyAnalyzer to get the spectrum
after applying the high-pass filter (line 26).

1 if (renderContext.destBuffer != nullptr)

2 {

3 SCOPED_REALTIME_CHECK;

4
5 UpdateFilter ();

6
7 te:: clearChannels (* renderContext.destBuffer , 1, -1,

renderContext.bufferStartSample , renderContext.bufferNumSamples);

8
9 for (int sample = renderContext.bufferStartSample; sample <

renderContext.bufferNumSamples; ++ sample)

10 {

11 auto input = renderContext.destBuffer ->getReadPointer (0, sample);

12
13 auto outputL = renderContext.destBuffer ->getWritePointer (0, sample);

14 auto outputR = renderContext.destBuffer ->getWritePointer (1, sample);

15
16 *outputL = static_cast <float >( _filter[0]-> processSample (*input));

17 for (int i = 1; i < _filter.size(); ++i)

18 {

19 *outputL = static_cast <float >( _filter[i]->processSample (* outputL));

20 }

21 *outputR = *outputL;

22 }

23
24 te:: sanitiseValues (* renderContext.destBuffer ,

renderContext.bufferStartSample , renderContext.bufferNumSamples ,

3.0f);

25
26 Analyzer.AddAudioData (* renderContext.destBuffer);

27 }

Listing 5.4: The applyToBuffer method of the HighpassFilterPlugin.
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Figure 5.1: Transposed Direct From II.

5.3.3 Frequency Analyzer

The FrequencyAnalyzer class (requirement R.5) is used to calculate the spectrum of the input
buffer and fill a juce::Path to be drawn inside a component. It is derived from juce::Thread

in order to execute the calculations on a background thread. The FIFO buffer of the analyzer
is filled with a call to the AddAudioData() method. The background thread checks periodically
if enough samples of the FIFO are ready to compute the FFT, if not the case the thread
waits. Otherwise, the data is copied into the FFT buffer, multiplied with a Hann window
and transformed into the frequency domain with performFrequencyOnlyForwardTransform().
This method computes the magnitude frequency spectrum [32] and stores it inside the FFT
buffer. The length of the FFT is fixed to N = 4096 to get a reasonably good frequency resolution.
In order to smooth the spectrum, it is averaged over 4 frames. This happens with the help of
a second buffer, with 5 channels, where the first channel contains the spectrum to plot, and
the rest contains the spectra of 4 consecutive frames. The smoothed spectrum is calculated as
follows:

|X[k]| = 1

4

4∑
i=1

1

N
|X[k + i]|, (5.9)

where |X[k]| is the magnitude spectrum of the k-th frame and N is the number of frequency
bins of the FFT. The CreatePath() method takes the smoothed spectrum and adds a line
between each of the data points.

5.3.4 Spectrogram

A spectrogram is used as a tool for the spectral analysis of the audio signals. It is defined
as an intensity plot (usually in dB) of the Short-Time Fourier Transform (STFT) magnitude.
The STFT is a sequence of FFTs of windowed data frames, which are allowed to overlap. The
mathematical definition of the STFT uses the Discrete Time Fourier Transform (DTFT) and
looks according to [33] as follows:
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Xm(ω) =
∞∑

n=−∞
x[n]w[n−mR]e−jωn

= DTFTω {x · SHIFTmR(w)} , (5.10)

where x[n] is the input signal at time n, w[n] denotes the window function of length M , Xm(ω)
is the DTFT of the windowed data centered at time mR, and R is the hopsize (in samples)
between successive DTFTs.

In practice, the theoretical definition is implemented using a succession of FFTs of windowed
data frames in the Spectrogram class (requirement R.7). A for-loop iterates over the frames
of the audio signal, where the total number of frames is the total number of samples divided
by the hopsize R. A juce::AudioFormatReader is used to extract the correct frame from
the audio file (where the length of the frame is the FFT length and the starting sample for
the reader is mR). The frame gets multiplied by the window and a FFT is performed with
performFrequencyOnlyForwardTransform(). For plotting the spectrogram, the values of the
FFT are mapped onto a grey scale and set as pixels inside juce::Image with dimensions (w ×
h) = (number of frames× N

4 ), where N is the size of the FFT.

5.3.5 Sample Rate Conversion

The sample rate conversion to a sample rate of fs = 16kHz (requirement R.14) is done in a
two step process. The first step is the filtering of the input signal with a steep FIR filter to
avoid aliasing after the decimation. For calculating the filter coefficients JUCE provides the
static method designFIRLowpassKaiserMethod() which accepts the cutoff frequency, sample
rate, the normalized transition width and the stop band attenuation in dB. Internally the
filter is designed using the windowing method with a Kaiser window. The calculations of the
β-parameter and the size of the window follow the design formulas from [34]:

β =


0.1102 · (α− 8.7), if α > −50,

0.5842 · (α− 21)0.4 + 0.07886 · (α− 21), if 21 ≤ α ≤ 50,

0, otherwise,

(5.11)

where −α is the relative sidelobe attenuation (in negative dB). The filter order can then be
calculated with:

N =
α− 7.95

2.285 · 2π∆f
, (5.12)

where ∆f is the transition width between pass band and stop band. To avoid aliasing for a
target sampling frequency of fs = 16kHz the stop band has to start at the Nyquist frequency
fN = fs

2 = 8kHz. A transition width of ∆f = 400Hz and a sidelobe attenuation of α = 60dB
is chosen, which results in a cutoff frequency of fc = 7.6kHz (same as in [1]), a filter order of
N = 436 and β = 5.6533. The frequency response of the anti-aliasing low-pass filter can be seen
in Figure 5.2.

The second step is a linear interpolation between fractional buffer positions. The conversion
ratio is computed from the difference in size of the input and output buffer. For a decimation
from fSin = 48kHz to fSout = 16kHz and an input buffer size of Nin = 512, a output buffer of

size Nout = Nin ·
fsout
fsin

= 512 · 1648 = 170.67 ≈ 171 is used, which results in a conversion ratio of

r = 512
171 = 2.9942. The interpolated value y at the fractional buffer position ξ of the input x is
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then computed as:

y = x[u] · (ξ − l) + x[l] · (1.0− (ξ − l)), (5.13)

where l = bxc and u = l + 1. The next fractional buffer position to compute is ξn+1 = ξn + r.
The samples in between are skipped, which results in the decimated signal.
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Figure 5.2: Frequency response of the anti-aliasing filter.

5.4 Model Module

The model module contains all model classes related to persistent storage as well as the logic
for validating user input and converting between objects and juce::ValueTree properties. Fig-
ure B.3 shows an outline of the file structure of the model module.

5.4.1 The Model Classes

The basic idea of a model class is, to hold a juce::ValueTree, which is a child of the te::Edit’s
juce::ValueTree. This juce::ValueTree contains all properties specific to the responsibility
of the model class. All model classes are derived from the ModelBase class, which exposes some
methods that can be overridden and holds the juce::ValueTree (protected state member),
the application state (protected appState member) and the EditManager instance (protected
editManager member). The ModelBase class registers a callback on the OnEditCreationState
Delegate<EditCreationState> from the application state, which calls the OnEditCreation()

method. This way, by overriding the OnEditCreation() method, the model class can decide
what happens during the different stages of the te::Edit creation. The default implementation
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of the base class calls the BindValues() method. The BindValues() method has to be overrid-
den to refer the model’s properties to the corresponding juce::ValueTree and add callbacks.
It is important to call this method once the te::Edits juce::ValueTree is created (in the
BindValues state of the EditCreationState enum). Figure C.6 shows the class diagram of the
different model classes. The MetaDataModel holds the subject’s metadata, the ProjectModel

provides all project specific data like filepaths. The SpectrogramModel stores the parameters of
the spectrogram and the ViewModel encapsulates all view specific data like track width or time
resolution.

5.4.2 Converters and Validation Services

The Converters.h file contains the DateConverter and FftSettingsConverter classes. The
Date Converter provides methods to convert juce::Time objects to integers which are used as
indices for the juce::ComboBoxes of the metadata. The FftSettingsConverter holds meth-
ods to convert juce::ComboBox indices to a double (for the overlap) and a juce::dsp::-

WindowingFunction<float>::WindowingMethod (for the window), which are needed for the
spectrogram calculation.

5.5 Application Module

The application module contains all components that make up the user interface and interact
with the model and domain. Additionally the module provides some classes summed up un-
der the term infrastructure, with the application logic that is not inherent to the components
themselves. This includes classes for handling the runtime state of tracks, track headers and
user interface object selection, as well as a juce::Viewport derivative, icon names and helper
functions and a subclass of te::UIBehaviour. Figures B.4 to B.7 show the folder structure of
the application module.

5.5.1 Components

Figure 5.3 shows a dependency graph of all components of the application. Every component
needs to have a parent component and can contain multiple child components. The top level
component is the MainWindow, which owns and is completely filled by the MainComponent.
All components are derived from the ComponentBase class, which is in turn derived from the
juce::Component class. The ComponentBase class provides access to the ApplicationState,
ViewModel, SelectionState and EditManager and makes it necessary for the subclass to im-
plement the paint() and resized() methods. Additionally some ColourIds are defined that
affect all components of the application. The components are grouped into subfolders by their
purpose as follows:

• Clips: This subfolder contains all components representing te::Clip objects as well as
the ClipComponentFactory class for creating clip component objects. The ClipComponent
class is a base class, defining some colors for the clips and a te::Clip::Ptr member, that
holds a reference to the represented clip. The AudioClipComponentBase class is derived
from the ClipComponent and adds functionality to draw audio waveforms (requirement
R.6). This class is subclassed to implement the AudioClipComponent, which defines the
selection logic for the audio clips, and the AudioClipDetailComponent, which contains a
TimelineComponent and a PlayheadComponent as well as the logic to zoom in and out
of the audio waveform. The RecordingClipComponent represents a clip during recording.
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The Spectrogram- Component displays the spectrogram of the selection underneath the
corresponding Audio- ClipDetailComponent.

• MetaData: The MetaDataComponent and CoreMetaDataComponent are both subclasses
of the MetaDataComponentBase and represent the available metadata of the patient (re-
quirement R.8). The base class contains the logic to setup the comboboxes and update
the model. The CoreMetaDataComponent is used before project creation to enter all the
necessary data of the subject, the MetaDataComponent is used to represent the data inside
the settings pane.

• Recorder: This folder contains the MainComponent and its child components related with
the audio recording process. The HeaderComponent represents the header bar at the top
of the window and contains the TransportComponent including the widgets to control the
application’s transport, the ProjectControlsComponent for controlling project related
functions, the settings button to open and close the settings pane, and the TransportClock
to display the current time of the playhead. The RecorderComponent contains the Micro-
phoneComponent, the TrackToolsContainerComponent and the TrackViewComponent.
The MicrophoneComponent is a visual representation of the auscultation pad with its
sensors and lets the user enable or disable sensors depending on their individual use case
(requirement R.4). The TrackToolsContainerComponent contains a level meter, a spec-
trum analyzer and the high-pass filter frequency and phase response, as well as controls
to adjust the input gain and filter frequency of the selected track (requirements R.2, R.3,
R.5). The TrackViewComponent contains a time-based representation of the sensors. Each
sensor is represented by a track containing the recorded audio clips (requirement R.4). A
TimelineComponent at the top shows the time axis, the PlayheadComponent shows the
current position of the playhead. When selecting a clip or parts of it, the selected area is
shown as a clip with corresponding spectrogram underneath the RecorderComponent. The
detail view can be enlarged or reduced by dragging the upper edge up or down respectively.

• Settings: The settings contain the metadata, the spectrogram settings (FFT size, hopsize
and window) and controls for selecting and configuring the audio device and driver. The
SettingsComponent holds all settings and can be shown or hidden via the settings button
on the right edge of the HeaderComponent.

• Tracks: This folder contains the components representing te::Track objects. The Track-
Component represents the time-based view of one sensor and holds an audio clip (re-
quirement R.4). All TrackComponents are stacked vertically inside the TrackContainer-

Component. This component is in turn condensed together and made scrollable with the
corresponding TrackLabelComponents. The TrackHeaderComponent contains the logic
to enable or disable the recording of the corresponding track, the TrackToolsComponent

contains, as stated above, several tools concerning the track.

• Widgets: The IconPushButton and IconToggleButton are derived from the juce::Text-
Button and can be used with an icon instead of text. The TransportClock displays the
current time of the playhead. The ProgressBarComponent is a progress bar overlay cover-
ing the whole window used for displaying the progress during exporting and conversion of
audio files. The LevelMeterComponent and the FrequencyResponseComponent are used
inside the TrackToolsComponent and display the current input level as a bar graph and
the frequency/phase response as well as the spectrum of the input signal.
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5.5.2 Infrastructure

The Infrastructure folder contains classes related to the applications runtime state and behavior,
which are used by the components. The following is a list with a description for each of the
classes:

• NotifyingViewport: The NotifyingViewport class is derived from juce::Viewport and
is used as a container class for components that are bigger than the container and need
scrolling. It provides callbacks for when the horizontal or vertical scroll position changes
providing the new scroll position. This class is mainly used to automatically synchronize
the scrolling of the timeline and track labels with the track view.

• SelectionState: The SelectionState class (requirement R.9) is a wrapper for the te::-

SelectionManager class. It contains a singleton te::SelectionManager instance and
provides methods to interact with it, e.g. GetSelectedObject(), IsSelected() and
NotifyOfSelectionChange(). The SelectionState subscribes to changes of the te::-

SelectionManger and notifies listeners via the OnObjectSelected and OnObjectDeselec-

ted Delegates. It also contains the logic to enable input monitoring for the selected track
and to solo it.

• TrackState: The TrackState class represents the runtime state of the TrackComponent. It
provides callbacks for when clips are added, removed or change and when the te::Trans-

portControl changes state (for recording).

• TrackToolsState: The TrackToolsState class represents the runtime state of the Track-

ToolsComponent and provides methods to set the input gain and filter frequency of the
corresponding track.

• UIBehaviour: The UIBehaviour class is a subclass of the te::UIBehaviour class which
describes the Tracktion Engine behavior related to UI. It uses the default implementations
for all methods except the runTaskWithProgressBar() methods, which is used to overlay
a progress bar during rendering and downsampling of the audio files.

5.6 User Interface

The main requirements for the user interface are a modern look and feel and an intuitive control
experience. To achieve these requirements the Google Material Design Guidelines and Color
Tool were used for designing the user interface of the application. The Google Material Design
Guidelines are a set of guidelines, components and tools for user interface design, made for
Android and web applications and utilized in a lot of modern applications [35,36].

5.6.1 Look and Feel

The juce::LookAndFeel class defines the appearance of all JUCE user interface elements and
can be subclassed to create a custom look and feel for the entire application or parts of it
[37]. The JUCE user elements define an abstract base class with their look and feel methods,
which are then implemented by the juce::LookAndFeel base class. Over time the default look
and feel of JUCE widgets changed and with every major change a new juce::LookAndFeel Vx

class inheriting the previous one was created. For the MCLSR software the MCLSRLookAndFeel

class (requirement R.11) subclasses juce::LookAndFeel V4 and defines the applications colour
scheme and font. Figure C.7 shows the class diagram of the look and feel class and all virtual
methods that have been overridden to create the applications design.
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5.6.2 Grid and FlexBox Layout

The layouting of a component is done in its resized() method. There are a number of ways to
create layouts but for this application mostly the juce::Grid and juce::FlexBox classes (imple-
menting the CSS Grid and FlexBox layout specification [38,39]) were used. These classes provide
containers for layouts using declarative rules [40], which are easy to use and allow responsive
layouts for the application. Grids are used for fixed column and row layouts, whereas FlexBoxes
are used for more flexible layouts. Listing 5.5 shows an example usage of the juce::Grid class in
the resized() method of the HeaderComponent. The juce::Grid object is instantiated inside
local scope and the layout of rows and columns is defined. This can be done like in this case
with fractional integers (1 fr etc.), which is just a short form of defining a fraction of the whole
width or height of the grid. Afterwards the grid items are defined in the desired order and with
additional informations such as the alignment or justification of the item inside the grid. With
the call to performLayout() the grid is layed out within the given rectangle.

1 auto r = getLocalBounds ().reduced(Margin , 0);

2
3 Grid grid;

4 using Track = Grid:: TrackInfo;

5
6 grid.templateRows = { Track(1_fr) };

7 grid.templateColumns = { Track(6_fr),

8 Track (10_fr),

9 Track (12_fr),

10 Track (10_fr),

11 Track(6_fr) };

12
13 grid.items =

14 {

15 GridItem(_mclsLogoLabel),

16 GridItem(_transportComponent),

17 GridItem(_clock),

18 GridItem(_projectControlsComponent),

19 GridItem(_settingsButton).withJustifySelf(GridItem :: JustifySelf ::end)

20 };

21
22 grid.performLayout(r);

Listing 5.5: Example usage of the juce::Grid class.

5.6.3 Icons and Icon Helper

The icons used in the application are also part of Googles Material Design. They are embedded
into an open-source icon font [41]. To allow easy access to the various icons, the Icons.h file
includes an Icons namespace, in which the icon names are defined with their respective UTF-8
codes. The IconHelper class provides some useful methods to get, transform and draw icons.
The icon can then be drawn within a graphics context by setting the contexts font to the icon font
and then using the drawFittedText() method of the juce::Graphics class with the specified
icon name as the text parameter.
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6
User Manual

This chapter aims to give a high-level overview of the functions of the software and how to use
them from a users point of view. The description follows the use case of a patient with no prior
recordings getting her/his first examination.

Upon application startup the user is greeted with the screen shown in Figure 6.1. The header
bar at the top of the window will be explained in detail later, because at this stage most of
the functionality is disabled without a loaded examination. The middle of the screen shows
input fields for creating a new examination or loading an existing one. The text input fields are
underlined in red as long as their content is empty or incorrect (e.g. names containing numbers
or the subject code containing special characters) and the button to create the examination is
disabled until all fields have been filled. It is important to enter all data correctly as this cannot
be changed after the examination is created. Figure 6.2 shows the input fields with wrong and
correct values respectively.

Figure 6.1: The application’s startscreen.

Clicking on the load button opens a file dialog window, where the user can choose previously
saved sessions (*.mclsproject-files) to load. After clicking on the button to create a new
examination, the user is asked to select a containing folder for the examination. In this step, the
software checks, if there already exists a subject with the same code and name inside this folder.
If all values match, a new examination with a consecutive examination number is created inside
the subjects subfolder. If the subject code already exists, the user is warned and has to change
the code in order for it to be unique. If the values do not exist, a new subject folder with a
subfolder for the first examination is created inside the selected folder.
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(a) Validation error in the subject code input field. (b) Correct inputs.

Figure 6.2: Subject meta data input.

After creating the examination, the user is presented with the screen shown in Figure 6.3. The
largest part of the screen is occupied by the time-based track view of the 16 channels. On the
top left the visualization of the sensors with the same layout as the auscultation pad can be seen.
The input meter and frequency analyzer are located underneath the sensor view. The header
bar at the top remains, but is now active. The timestamp of the current playhead position is
displayed in the middle of the bar. The buttons for controlling playback and recording are on
the left side of the bar, with their functions from left to right:

• Play: Start the playback from the current position or stop it at the current position if the
software is already playing. Playback can also be started and stopped using the Space key
on the keyboard.

• Pause: Pause the playback at the current position.

• Stop: Stop the playback at the current position if audio is playing, reset the current
position to the beginning if playback is inactive.

• Record: Start recording from the current position or stop recording if the software was
recording. This button is disabled if there already exists a recording, because only one
recording per examination is allowed.

• Loop: Loops around the current selection if active.

• Follow: If active, the track view will follow the playhead so the current position is always
in the middle of the screen.

The buttons for project related functions are on the right side of the bar, from left to right:

• New subject: This button reveals the input fields for creating a new subject similar to the
start screen in Figure 6.1. A second click switches back to the currently loaded examina-
tion.

• New examination: This button is used to create a new examination for the currently
loaded subject. A subfolder with a consecutively numbered examination is created. The
keyboard shortcut for this feature is Ctrl+N.

• Save examination: Save the current examination. This button is only enabled if there
have been changes to the examination. The keyboard shortcut for saving is Ctrl+S.

• Export audio: This button is used to export all audio files with the currently selected filter
settings applied and a downsampling to fs = 16kHz afterwards. This is best done once a
suitable filter setting is found. The recordings only need to be exported again, if the filter
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settings changed after the last export. Depending on the length of the recording this can
take a while and the software can not be used during the operation. A progress bar with
the current progress is displayed over the window.

• Load examination: Opens a dialog to choose an examination to load. Examination files
have the fileending *.mclsproject and are located inside the examination subfolders.

• Open containing folder: Reveals the containing folder of the active examination in the
operating systems file manager for quick access.

Figure 6.3: The initial screen of a new project.

The rightmost button is used to expand or collapse the settings panel as shown in Figure 6.4.
The button at the top of the settings panel is used to enable/disable the expert mode, which
reveals additional functionality as can be seen in Figure 6.5. This includes controls to set the
input gain and cutoff frequency of the high-pass filter and a button to apply the current settings
to all tracks. Additionally there are buttons for soloing and muting of tracks and a track settings
button to change the input ordering. These functions were mainly used during development for
debugging purposes and should be left as it is.

The next segment of the settings panel displays the subject meta data of the currently loaded
examination. This includes the subject code, the subjects name, the examination number, the
time of the examination and the subjects gender and date of birth.

Underneath the meta data the settings for the spectrogram can be found. This includes
settings for the size of the FFT, the window to use and the overlapping factor. Changing one
of these settings will cause a recalculation of the spectrogram.

The last segment of the settings can be used to select audio input and output devices (depend-
ing on the audio driver and platform there are separate options for input and output (Mac OS
X with CoreAudio and Linux with ALSA) or one combined option (Windows with ASIO)) and
configure the active channels as well as the sampling rate and blocksize of the audio callback.
Depending on the operating system and how many audio devices are detected on the computer,
this could be set to the wrong device by default. To make sure the correct device is used, the
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audio device settings can be checked and changed to the correct device before creating or loading
an examination.

Figure 6.4: The initial screen of a new project with expanded settings panel.

Figure 6.5: Additional functionality with expert mode enabled.

On the left side of the window the user has access to the sensor visualization, shown in
Figure 6.6a, as well as some input meters displaying the level and spectrum of the current
input signal or played back audio as can be seen in Figure 6.6b. The sensor visualization
mimics the sensor placement on the hardware. Individual sensors can be enabled or disabled
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for recording by clicking on the microphone symbols. Clicking on a sensor number selects
the sensor and the corresponding track on the right side. The bar on the left side of the
TrackToolsComponent displays the current input level. The black horizontal line represents
0dB, the bar is displayed in green up to −12dB, in yellow from −12dB < x < 0dB and in red
above 0dB. The spectrum of the signal is displayed in real-time on the right side, along with the
high-pass filters frequency (blue) and phase (green) response. The vertical black line indicates
the filters cutoff frequency. When hovering the mouse over the level meter or the spectrum a
tooltip with additional information pops up. On the level meter the tooltip displays the current
input level in dB in real-time, on the spectrum the mouse positions corresponding frequency,
level and phase angle are displayed.

(a) The MicrophoneComponent. (b) The TrackToolsComponent.

Figure 6.6: The sensor and input signal visualizations.

Clicking the record button starts a recording from the current position (the beginning by
default). The recordings are visualized by red clips (spanning from the start of the recording
up to the current recording position) on each track with enabled microphone, as shown in
Figure 6.7. The current position is indicated by the black vertical line, the playhead. After
clicking the record button again or the stop button, the recording is stopped. The clip’s colour
changes to blue as shown in Figure 6.8 and the examination, including the raw audio data, is
automatically saved. Every track corresponds to a sensor in the sensor view on the left side.
Clicking on the sensor number selects the track and the corresponding sensor. Above the tracks
a timeline is used to display a time grid in seconds. Clicking anywhere inside the timeline causes
the playhead to jump to that position. Additionally the playhead can be dragged to a desired
position.

By clicking on one of the recorded clips or by clicking and dragging the mouse over a part of
the clip the detail view will be opened up on the bottom of the window, shown in Figure 6.9.
This view consists of a larger display of the selected area including a timeline and a playhead
with the same functionality as in the track view, as well as the corresponding spectrogram of
the selected part. The waveform can be zoomed in and out with the mouse wheel or by clicking
left and right respectively. The whole detail view can be resized by clicking and dragging up or
down between detail view and track view, as shown in Figure 6.10.

Once the recording was finished successfully and the cutoff frequency of the high-pass filter
was set as needed, the recordings can be exported via the export button. This applies the filter
settings and downsamples the audio data. While rendering the audio files, a progress bar is
displayed as an overlay, as can be seen in Figure 6.11. A new examination for the same subject
can now be created by simply clicking the corresponding button in the header bar. This will
create the new examination and increase the examination number of this patient.
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Figure 6.7: Recording the subjects lung sounds.

Figure 6.8: Finished recording session.
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Figure 6.9: Detail view and spectrogram.

Figure 6.10: Resized detail view and spectrogram.
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Figure 6.11: Progress bar during audio file export.
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7
Hardware

This chapter describes the hardware for which the Multi-Channel Lung Sound Recording Soft-
ware was developed. The hardware was developed alongside the software at the SPSC Labora-
tory but not as part of this thesis. Although the software can be used with any audio interface
with the correct drivers, it was particularly developed for this hardware. The hardware is based
on the Multi-Channel Lung Sound Recording Device developed by Elmar Messner for his PhD-
Thesis [1] shown in Figure 7.1. The main motivation for further development of the existing
hardware was to increase usability and portability. Ideally all of the needed hardware is housed
inside the foam pad and only one USB cable is used to connect and power the audio interface
inside. To fulfill these requirements a 16-Channel audio interface with a small form factor and
the capability to draw its power solely from the USB connection is needed. This also entails
that the microphones that are used need to have a small form factor and a low power consump-
tion. The choice fell onto the miniDSP MCHStreamer Multi-Channel Multi-Protocol USB audio
interface [42] in conjunction with Infineon IM69D120 MEMS microphones [43]. The following
sections are an outline of the parts and their specifications.

Figure 7.1: Multi-Channel Lung Sound Recording Device. Source: [1].
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7.1 Audio Interface

Originally the idea was to use the 16-channel USB 2.0 soundcard with MEMS microphones
developed by Andreas Wöhrer during his masters thesis [44]. Due to some technical problems
with this board the miniDSP MCHStreamer (Figure 7.2), which also uses the XMOS XCore 200
chipset, was chosen. With dimensions of 13× 40× 62mm (H ×W ×D) it is small enough to fit
inside the auscultation pad.

Figure 7.2: The miniDSP MCHStreamer Multi-Channel USB audio interface. Source: [45].

As described in the MCHStreamer manual [42] it includes a number of features like a pair
of optical ports for TOSLINK or ADAT input and output, a pair of headers for SPDIF input
as well as headers for logic-level input and output data formats such as I2S, TDM, PDM and
DSD. The different modes can be used by loading the corresponding firmware provided by the
manufacturer. The audio interface can be connected and powered via a single USB Type A
to USB Type B cable. In order to use the board with 16 input channels, the PDM firmware
was chosen. This firmware supports sampling rates of fs = 8kHz, 11.025kHz, 12kHz, 16kHz,
32kHz, 44.1kHz and 48kHz. The PDM input data is received on J3 supplying two channels
per physical data line. The channels are mirrored in I2S and sent to the computer over USB.
There is a single PDM clock which is duplicated onto two output lines. The data for the left
channel of each PDM line is taken on the falling edge and the data for the right channel is taken
on the rising edge of the PDM clock as shown in Figure 7.3. The computer receives input data
always in the form of a 24-bit word. The audio interface acts as a USB Audio class 2.0 device,
which is supported by Mac OS X (CoreAudio) and Linux (ALSA) natively without the need
for a dedicated driver. For Windows an ASIO driver is provided, including a control panel to
configure sampling rate, clock, buffer size and volumes.

Figure 7.3: PDM timing. Source: [42].
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7.2 MEMS Microphones and Stethoscope Heads

Because of their small form factor, the integrated ADC and the fact that they provide a PDM
signal the digital MEMS microphones IM69D120 by Infineon were chosen as microphones for
the recording hardware. According to the datasheet [43] the IM69D120 was designed for appli-
cations that require a high SNR, a wide dynamic range and low distortions. It features a SNR of
69dB(A), a dynamic range of 95dB and a sensitivity of −26dBFS. The microphone’s Applica-
tion Specific Integrated Circuit (ASIC) contains a low-noise preamplifier and a high-performance
sigma-delta ADC (latency at 1kHz: τ = 6µs) providing the PDM output [43]. The microphone
package dimensions are 4×3×1.2mm and it is soldered onto a small PCB providing the connec-
tions to the audio interface. This PCB is mounted at the rear of the newly designed stethoscope
head (see Figure 7.5) such that the microphone lines up with the hole drilled through the head.
For pressure equalization with the surrounding a venting hole (d = 0.4mm) is drilled perpen-
dicular to the rotation axis of the stethoscope head. The fully assembled stethoscope head can
be seen in Figure 7.4, including a protection cap with a tension relief for the microphone cable.

Figure 7.4: Fully assembled stethoscope head.

Figure 7.5: Stethoscope head with MEMS PCB mounted at the back.
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7.3 Auscultation Pad

The auscultation pad (see Figure 7.6) follows the same sensor layout as in [1]. The bottom of the
pad consists of a rigid foam pad which houses the audio interface inside an aluminium enclosure
and the cables connecting the stethoscope heads with the interface. On top of the rigid foam pad
a softer foam is used that adapts to the subject’s physique. The foams are covered by artificial
leather. Instead of the heavy multi-core microphone cable only one USB cable comes out of the
pad to connect to the computer.

Figure 7.6: Auscultation pad.
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8
Multi-Channel Lung Sound Classification with

Keras

Keras [46] is one of the most popular and fastest growing deep learning frameworks [47]. It is a
high-level deep learning API, which can run with TensorFlow, CNTK or Theano as backends.
The idea behind Keras is to allow for easy and fast prototyping, to support both convolutional
and recurrent neural networks and to run seamlessly on CPU and GPU. The first public version
of Keras was published on March 28, 2015 by François Chollet [48].

In this chapter Keras was used to implement and evaluate the proposed models from [1] and
examine if the performance can be met or even increased. Additionally the dataset is used to
evaluate the performance of a Keras implementation of a DenseNet [49], which is used as a
front-end to the bidirectional gated recurrent neural network [1].

8.1 Multi-Channel Lung Sound Classification

In [1], Messner et al. present an approach to multi-channel lung sound classification with
convolutional recurrent neural networks. The aim is to classify breathing cycles as either normal
or abnormal from patients with idiopathic pulmonary fibrosis (IPF). Together with their recently
developed 16-channel lung sound recording device they conducted a clinical trial with lung
healthy subjects and patients with IPF. Their proposed convolutional recurrent neural network
achieves a F -Score of F1 ≈ 92%. The processing framework consists of a 16-channel recording of
a full breathing cycle with a sampling frequency of fs = 16kHz, which is zero-padded according
to the longest recording in each set. Each recording is then processed with a STFT to extract
spectral information of the lung sounds. This results in 257-bin log magnitude spectrograms
and leads to a [4× 4× 257]-dimensional1 or if stacked 4112-dimensional feature vector for each
frame. The features are then processed by the neural network and a frame-wise classification
is performed. Details of the models, such as layers, loss, etc. can be found in [1]. The outputs
from all frames are summed up for each of the three classes (healthy, pathological and no signal)
and the maximum value of the sums determines the final class, ignoring the no signal class.

8.1.1 Multilayer Perceptron Model

The Multilayer Perceptron model (MLP) is used as a baseline model. MLPs are also called
feedforward neural networks (FNN) and are the simplest type of artificial neural networks. In
an MLP the information flows forward through the fully connected layers without feedback
connection. It consists of an input layer, followed by hidden layers and an output layer, as can
be seen in Figure 8.1. For a frame-wise processing with frame index f ∈ {1, . . . , F} and the

1 4×4=̂16-channels, corresponds to the grid of microphones from the multi-channel lung sound recording device,
257 corresponds to the bins of the log magnitude spectrogram.
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index of the hidden layers l ∈ {1, . . . , L− 1} the MLP can be described mathematically as [1]:

hlf = g
(
Wl

xx
l
f + blh

)
(8.1)

yf = m
(
Wyh

L−1
f + by

)
. (8.2)

The hidden states, which are used as inputs for the next hidden layer, are computed by applying
a non-linear activation function g(·) to the sum of the bias term blh and the dot product of the
input weight matrix Wl

x and the input vector xlf [1]. The output yf is computed by applying
a non-linear function m(·) to the sum of the output bias and the dot product of the output
weights and the hidden states of the last hidden layer [1].

The best performing MLP in this case consists of an input layer, which receives the stacked
4112-dimensional feature vector of each timestep, followed by one hidden layer with 300 neurons
and an output layer with softmax activation and three outputs.

Figure 8.1: Flow graph of an MLP with two hidden layers. Source: [1].

8.1.2 Bidirectional Gated Recurrent Neural Network

More suitable for processing sequential input data are recurrent neural networks (RNN) [50].
There is a plethora of different architectures of RNNs, including vanilla RNNs, gated recurrent
neural networks (GRNN) and long short term memory networks (LSTM), of which the last two
are more suited to model longer temporal dependencies [1]. A GRNN is chosen here, because
it is computationally more efficient than a LSTM model but achieves comparable performance.
In a bidirectional model the sequence is processed in the forward layer from the first to the
last frame and additionally in the backward layer from the last to the first frame, as shown
in Figure 8.2. Both hidden state sequences are stacked and fed to the next hidden layer and
from the last hidden layer to the output layer with softmax activation and three outputs. The
advantage of bidirectional RNNs over a vanilla RNNs is that they not only use past information
(forward layer) but also future information (backward layer) [1].

The best model consists of an input layer which receives sequences of 4112-dimensional feature
vectors, followed by 4 bidirectional hidden layers and the output layer.
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Figure 8.2: Bidirectional recurrent neural network. Source: [1].

8.1.3 Convolutional Bidirectional Gated Recurrent Neural Network

Convolutional neural networks (CNNs) are feedforward neural networks used primarily for grid-
like data such as images (2-D grid of pixels) or time-series (1-D grid of samples at regular time
intervals) [50]. CNNs are comprised of convolutional layers, subsampling (pooling) layers and
fully connected layers. The concept of a convolutional layer and a subsampling layer is shown
in Figure 8.3. Each convolutional layer consists of multiple feature maps K and performs an
image convolution of the input layer with a m×m kernel (filter), which results in a feature map
of size (N −m+ 1)× (N −m+ 1), if a stride of one is used [1]. After the convolutional layer,
a subsampling layer (size n × n) can be applied, which uses a summary statistic (maximum,
average, L2-norm) to replace the outputs in the vicinity of a certain location and reduce the
size to (N−m+1)/n × (N−m+1)/n [1]. Mathematically the operation to obtain the feature map
k ∈ {1, . . . ,K} in layer l is described as [1]:

hklij = g
(
Wkl ∗Xl

ij + blk

)
. (8.3)

The output hklij is computed by applying a non-linear activation function to the sum of the

bias term blk and the convolution of a size m × m section of the input image Xl at position
i, j ∈ {1, . . . , N −m+ 1} and the filter Wkl.

Figure 8.3: Illustration of a convolutional layer (with K = 5 feature maps) and a pooling layer. Source: [1].

In [1], Messner et al. choose a CNN as a front-end to the BiGRNN model. One image is
the 4 × 4-microphone grid with a depth of 257 channels. The first convolutional layer uses a
kernel size of 1 × 1 to reduce the channels to 30 feature maps. The second convolutional layer
uses a kernel size of 3× 3 and a stride and padding of 1 and generates 30 feature maps as well.
Every convolutional layer needs to be applied to every timestep individually. The output of the
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CNN is then flattened and fed to the BiGRNN model as sequences of features. The complete
processing framework, including the convolutional front-end and the fully connected recurrent
layers, is shown in Figure 8.4.

Figure 8.4: Frame-wise multi-channel lung sound processing framework with a recurrent neural network and
a convolutional neural network front-end. Source: [1].

8.1.4 The Dataset

The dataset consists of recordings of 387 breathing cycles (252 healthy and 135 IPF) conducted
from 23 subjects (16 healthy and 7 IPF). The sounds were recorded over the posterior chest
at different airflow rates. For each subject two 16-channel recordings with shallow and deep
breathing over several breathing cycles were recorded. Each breathing cycle is labeled frame-
wise as either healthy, pathological and no signal. Further details are provided in [1].

8.1.5 Expected Results

The implementation in [1] uses the precision (P+), Sensitivity (Se) and the F-Score (F1) as
evaluation metrics. The precision score indicates how many of the samples labeled as pathological
are actually true. The sensitivity score provides information on how many of the pathological
samples are actually labeled as pathological. The F-Score is the weighted average of these two
scores and is used as a metric for the overall performance due to the uneven class distribution.
Messner uses a 7-fold cross-validation with the recordings of each IPF patient appearing once
in the test set. Because of the small size of the dataset and the class imbalance the scores are
micro-averaged. The obtained scores in [1] are shown in Table 8.1.

Model P+(%) Se(%) F1(%)

MLP 75.0 37.8 50.2
BiGRNN 93.1 80.0 86.1
ConvBiGRNN 100.0 85.9 92.4

Table 8.1: Evaluation of the three models.

8.2 Introduction to Keras

8.2.1 Sequential and Functional API

The main data structure of Keras is a model. There are two ways to develop a model with Keras.
The sequential and the functional model API. The sequential model is a linear stack of layers.
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The model is defined first, then the layers are added to it sequentially. Only models with a
linear architecture can be built with the sequential API [51]. For more complex and non-linear
models Keras offers the functional API. With the functional API every layer is defined on its
own and an input tensor is assigned to it as argument. After all the layers and connections are
defined, the model is instantiated and only needs references to the input and output layers. The
connections in between are already defined and can be arbitrary. This allows for example for
multi-input and output models or shared layers [52].

8.2.2 Training

When the model is defined, it needs to be compiled in both APIs in order to configure the
learning process. In the compilation step the loss function, optimizer and the metrics to display
during training are defined. Training a model is done via a call of the fit function. The function
takes the training inputs and labels as numpy arrays, as well as the validation inputs and labels.
It also takes the number of epochs to train, the batch size and a list of callbacks (see section
8.2.5). It returns a dictionary containing the history of training, that is the loss, accuracy,
validation loss and validation accuracy for every epoch [51].

8.2.3 Prediction

After finishing the training process, the predict function is used to generate predictions on the
test data [53]. The obtained activations can then be used to evaluate the performance of the
model.

8.2.4 Layers

The main building blocks for neural networks are layers. Keras offers a range of predefined layers
and wrappers to use to design the neural network. Additionally own layers can be written, which
inherit from Keras’ Layer class. In this project, the focus was to test the performance of models
that consist entirely of Keras layers. All layers have methods in common, that allow to get and
set the weights of a layer and to obtain a dictionary of the configuration of the layer, which can
be used to reinstantiate the layer [54].

8.2.5 Callbacks

Callbacks in Keras are functions that are called during training at the end of every epoch [55].
This is for example used to save the model after every epoch, to apply early stopping, to log the
losses and accuracies to TensorBoard for visualization and to schedule the learning rate across
epochs.

8.3 Implementation of Deep Neural Networks in Keras

8.3.1 Project Structure

The project structure follows an object-oriented programming paradigm and is based on [56].
It is built upon base classes for data access, models, training, evaluating, visualizing and object
creation. The DataProvider class provides functions to obtain the data from file and reshape
it. The Model class represents a neural network model and provides functionality to save and
load models to and from file and to build a model for training. Every model has its own class
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derived from the base class and implements the function to build the model. The Trainer

class takes in a model instance and provides the functionality to train it. The Evaluator class
is used to evaluate the performance of the previously trained model. The Visualizer class
provides functions for the visualization of data and training history. To keep object creation
manageable and in one place the Factory class provides functions to instantiate objects of each
of the previously mentioned classes.

8.3.2 Configuration

In order to configure the different models and training scenarios, the most important parameters
are stored in human-readable configuration files (either as .yaml-file or .json-file).

1 model:

2 name: "convbigrnn"

3 input_shape: !! python/tuple [!! null , 4, 4, 257]

4 merge_mode: "concat"

5 feature_maps: 30

6 optimizer: "adam"

7 learning_rate: 0.00001

8 epochs_drop: 10.0

9 momentum: 0.8

10 dropout_rate: 0.5

11 hidden_units: 200

12 output_units: 3

13
14 data:

15 number_of_folds: 7

16 data_path: "data"

17
18 trainer:

19 history_path: "model_history"

20 epochs: 400

21 batch_size: 32

22
23 callbacks:

24 checkpoint_directory: "model_checkpoints"

25 tensorboard_directory: "logs"

26 patience: 50

27
28 logging:

29 logging_filepath: "convbigrnn.log"

Listing 8.1: Configuration file for the ConvBiGRNN model.

Listing 8.1 shows the configuration of the ConvBiGRNN model. This provides a quick way of
changing parameters and keeping track of the used values.

8.3.3 The MLPModel Class

The MLPModel class is inherited from the ModelBase class. As this is the most basic of the
three models, the Sequential API is used for the implementation. Listing 8.2 shows the code
to build the baseline MLP model, discussed in Section 8.1.1. The model consists of one Dense

layer, followed by a Dropout layer and the dense output layer. All layers are wrapped in
TimeDistributed layers, to duplicate the model across all frames of the sequence. The first
layer needs to define the input shape of the stacked 4112-dimensional feature vectors. The
weights are initialized with orthogonal matrices as suggested in [1].

1 def build_model(self):

2 self.model = Sequential ()
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3 init = Orthogonal(gain =1.0, seed =42)

4
5 self.model.add(TimeDistributed(Dense(units=self.hidden_units ,

6 activation=’relu’,

7 kernel_initializer=init),

8 input_shape=self.input_shape ,

9 name=’MLP_Dense_1 ’))

10 self.model.add(TimeDistributed(Dropout(self.dropout_rate),

11 name=’MLP_Dropout_1 ’))

12 self.model.add(TimeDistributed(Dense(units=self.output_units ,

13 activation=’softmax ’,

14 kernel_initializer=init),

15 name=’MLP_Output_Layer ’))

16
17 opt = self.get_optimizer ()

18
19 self.model.compile(loss=’categorical_crossentropy ’,

20 optimizer=opt ,

21 metrics =[’accuracy ’])

Listing 8.2: Function to build the MLP model with the sequential API.

8.3.4 The BiGRNNModel Class

The BiGRNNModel class inherits from the ModelBase class. This model is more complex and
uses the functional API. Listing 8.3 shows code for the BiGRNN described in Section 8.1.2.
For the gated recurrent units CuDNNGRU layers are used. These layers are optimized for use
with Nvidia-GPUs and speed up the training time significantly. The GRUs are wrapped in
Bidirectional layers, which are used for recurrent neural networks and create a forward- and
a backward-pass on the timeaxis of the recurrent layer supplied to it. Between the recurrent
layers are again Dropout layers, which are wrapped in TimeDistributed layers. The layers use
the same orthogonal initializer as the MLP model.

1 def get_bigrnn_layers(self , inputs , initializer):

2 bigrnn = Bidirectional(CuDNNGRU(units=self.hidden_units ,

3 return_sequences=True ,

4 kernel_initializer=initializer),

5 merge_mode=self.merge_mode ,

6 name=’BiGRNN_1 ’)(inputs)

7 bigrnn = TimeDistributed(Dropout(self.dropout_rate),

8 name=’BiGRNN_Dropout_1 ’)(bigrnn)

9 bigrnn = Bidirectional(CuDNNGRU(units=self.hidden_units ,

10 return_sequences=True ,

11 kernel_initializer=initializer),

12 merge_mode=self.merge_mode ,

13 name=’BiGRNN_2 ’)(bigrnn)

14 bigrnn = TimeDistributed(Dropout(self.dropout_rate),

15 name=’BiGRNN_Dropout_2 ’)(bigrnn)

16 bigrnn = Bidirectional(CuDNNGRU(units=self.hidden_units ,

17 return_sequences=True ,

18 kernel_initializer=initializer),

19 merge_mode=self.merge_mode ,

20 name=’BiGRNN_3 ’)(bigrnn)

21 bigrnn = TimeDistributed(Dropout(self.dropout_rate),

22 name=’BiGRNN_Dropout_3 ’)(bigrnn)

23 bigrnn = Bidirectional(CuDNNGRU(units=self.hidden_units ,

24 return_sequences=True ,

25 kernel_initializer=initializer),

26 merge_mode=self.merge_mode ,

27 name=’BiGRNN_4 ’)(bigrnn)

28 bigrnn = TimeDistributed(Dropout(self.dropout_rate),

29 name=’BiGRNN_Dropout_4 ’)(bigrnn)

30 return bigrnn

Listing 8.3: Function to get the BiGRNN layers with the functional API.
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8.3.5 The ConvBiGRNNModel Class

The ConvBiGRNNModel class inherits from the BiGRNNModel class in order to reuse the bidirec-
tional recurrent layers from Listing 8.3. The convolutional frontend of this model consists of
two Conv2D layers with kernel sizes of 1×1 and 3×3 respectively, both with stride and padding
of 1. The Conv2D layer is a 2D convolutional layer, e.g. for spatial convolution over images. In
this case an ”image” corresponds to the 4 × 4 microphone grid with a depth of 257 channels.
The convolutional layers need to be wrapped in TimeDistributed layers in order to process the
sequences. To connect the convolutional frontend to the bidirectional recurrent network, the
output of the second convolutional layer needs to be flattened by a Flatten layer. This stacks
the [4× 4× 30]-dimensional features to a [480]-dimensional feature vector. All layers are again
initialized with the orthogonal initializer. The ConvBiGRNNModel is shown in Listing 8.4.

8.3.6 Evaluation

The Evaluator class is used for the post processing of predictions and evaluation of the perfor-
mance of the models. The models output layer has three outputs for every timestep (no signal,
healthy, pathological). In order to get one class per sample, the predicted values are summed
over all timesteps and the ’no signal’-class is ignored. The processed predictions and test data
labels from all folds are concatenated in lists and the micro averaged scores are calculated.

1 def build_model(self):

2 self.inputs = Input(shape=self.input_shape , name=’ConvBiGRNN_Input_Layer ’)

3 init = Orthogonal(gain =1.0, seed =42)

4
5 conv_bigrnn = TimeDistributed(Conv2D(filters=self.feature_maps ,

6 kernel_size =(1, 1),

7 kernel_initializer=init ,

8 strides=1,

9 padding=’same’,

10 activation=’relu’),

11 name=’ConvBiGRNN_Conv2D_1 ’)(self.inputs)

12 conv_bigrnn = TimeDistributed(Conv2D(filters=self.feature_maps ,

13 kernel_size =(3, 3),

14 kernel_initializer=init ,

15 strides=1,

16 padding=’same’,

17 activation=’relu’),

18 name=’ConvBiGRNN_Conv2D_2 ’)(conv_bigrnn)

19 conv_bigrnn = TimeDistributed(Flatten (),

20 name=’ConvBiGRNN_Reshape_Layer ’)(conv_bigrnn)

21
22 conv_bigrnn = self.get_bigrnn_layers(conv_bigrnn , init)

23 self.output = TimeDistributed(Dense(units=self.output_units ,

24 activation=’softmax ’,

25 kernel_initializer=init),

26 name=’ConvBiGRNN_Output_Layer ’)(conv_bigrnn)

27
28 self.model = Model(inputs=self.inputs , outputs=self.output)

29
30 opt = self.get_optimizer ()

31
32 self.model.compile(loss=’categorical_crossentropy ’,

33 optimizer=opt ,

34 metrics =[’accuracy ’])

Listing 8.4: Function to get the BiGRNN layers with the functional API.
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8.4 Introduction to DenseNet

The main idea behind Dense Convolutional Networks (DenseNets) is, that convolutional neural
networks can be significantly deeper, more accurate, and more efficient to train, if layers close to
the input and close to the output have shorter connections [49]. Standard convolutional networks
with L layers have one connection between each layer and its following layer (L connections in
total). In DenseNets, each layer uses the feature maps from all previous layers as inputs and its
own feature maps are the inputs to all succeeding layers, which leads to L(L+1)/2 connections [49].
The advantages of DenseNets are a mitigation of the vanishing gradient problem, they encourage
feature reuse, they propagate features more strongly and reduce the number of parameters [49].

8.5 DenseNet Implementation in Keras

In general a DenseNet consists of dense blocks and transition blocks. The dense blocks consist of
a number of so called composite functions Hl(·). This function consists of three consecutive oper-
ations: a batch normalization, a rectified linear unit and a 3×3 convolution. The composite func-
tion receives the concatenation of all preceding feature maps as input: xl = Hl([x0, x1, . . . , xl−1]).
The transition blocks are needed because the concatenation is not feasible when the size of fea-
ture maps changes [49]. They consist of batch normalization, a rectified linear unit and a 1× 1
convolution. The 2× 2 average pooling layer proposed in [49] is not used here. The growth rate
k is the number of feature maps produced by Hl. Due to the fact that each layer has access
to the previous feature maps, the DenseNet can have very narrow layers, e.g. k = 12 [49]. To
reduce the number of input feature maps and improve computational efficiency the bottleneck
layer introduces a 1 × 1 convolution before each 3 × 3 convolution [49]. The bottleneck layer
produces 4k feature maps. Additionally a compression factor θ with 0 < θ ≤ 1 can be used in
transition blocks to further reduce the number of feature maps. When θ = 1, the number of
feature maps stays unchanged [49].

The implementation of DenseNet is based on [57]. The DenseNetBiGRNNModel class inherits
from the BiGRNNModel class and reuses the bidirectional recurrent network. This model es-
sentially replaces the convolutional frontend from the ConvBiGRNNModel class with a DenseNet
frontend. The create dense net method creates this DenseNet depending on the parameters
given. The depth parameter defines the number of dense blocks, the layers per block de-
termines how many composite functions to use per block. All layers are again initialized with
orthogonal weights and wrapped in TimeDistributed layers. In order to connect to the re-
current network the output of the DenseNet needs to be flattened by a Flatten layer. The
build model method of the DenseNetBiGRNNModel is shown in Listing 8.5.

1 def build_model(self):

2 self.inputs = Input(shape=self.input_shape)

3 init = Orthogonal(gain =1.0, seed =42)

4
5 densenet_bigrnn = self.create_dense_net(

6 classes=self.output_units ,

7 input=self.inputs ,

8 include_output_layer=False ,

9 initializer=init ,

10 depth=self.depth ,

11 filters=self.feature_maps ,

12 layers_per_block=self.layers_per_block ,

13 dropout_rate=self.dropout_rate ,

14 bottleneck=self.bottleneck ,

15 reduction=self.reduction ,

16 weight_decay=self.weight_decay ,

17 use_bias=self.use_bias)

18 densenet_bigrnn = TimeDistributed(Flatten ())(densenet_bigrnn)

19
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20 densenet_bigrnn = self.get_bigrnn_layers(densenet_bigrnn , init)

21 self.output = TimeDistributed(Dense(units=self.output_units ,

activation=’softmax ’))(densenet_bigrnn)

22
23 self.model = Model(inputs=self.inputs , outputs=self.output)

24
25 opt = self.get_optimizer ()

26
27 self.model.compile(loss=’categorical_crossentropy ’,

28 optimizer=opt ,

29 metrics =[’accuracy ’])

Listing 8.5: Function to build the DenseNetBiGRNN model with the functional API.

8.6 Results

Table 8.2 shows the results for the Keras implementation of the different models. The scores
are the micro-average scores of the seven folds. Figures 8.5-8.8 show the corresponding losses
over epochs for the different models. Compared to the results in Table 8.1 the performance of
the different models deviates from the expected results.

Model P+(%) Se(%) F1(%)

MLP 100.0 48.1 65.0
BiGRNN 95.7 81.5 88.0
ConvBiGRNN 88.9 83.0 85.8
DenseNetBiGRNN 78.2 50.4 61.3

Table 8.2: Evaluation of the four models.

MLP Model

The best performance for the MLP baseline model was achieved with a learning rate of 10−5 and
a batch size of 32. The rest of the parameters was taken from [1]. This implementation slightly
outperforms the implementation from [1]. The precision score of 100% is not really significant
because often the network predicted all subjects as healthy. The training and validation loss is
shown in Figure 8.5.
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Figure 8.5: Training and validation loss of the MLP model.

BiGRNN Model

The best BiGRNN model uses a learning rate of 10−6 and a batch size of 32. The forward
and backward paths of the bidirectional recurrent layers are concatenated. Other parameters
are taken from [1]. The training process is shown in Figure 8.6. This model also slightly
outperforms the model from [1]. The small differences in performance could be resulting from
internal implementation differences of the Keras layers compared to the implementation in [1].
Also this model uses the Cuda optimized layers, which internally uses a hyperbolic tangent
activation function instead of the rectified linear unit.
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Figure 8.6: Training and validation loss of the BiGRNN model.

ConvBiGRNN Model

The ConvBiGRNN uses a learning rate of 10−5 and a batch size of 32. The bidirectional recurrent
part is the same as for the BiGRNN model, the other parameters are taken from [1]. Conversely
this model performs significantly worse than the model in [1], and even worse than the BiGRNN
model. The training process is shown in Figure 8.7. The validation losses of fold 3 and fold
6 are increasing again very early on. Although the models with the lowest validation loss for
each fold are used for the evaluation, the performance could not be met. Experiments with
different activations, optimizers and learning rates could also not improve the performance. The
performance gap could be connected to implementation errors and is most likley tied to the
Conv2D layers, as the rest of the model is identical to the BiGRNN model.
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Figure 8.7: Training and validation loss of the ConvBiGRNN model.

DenseNetBiGRNN Model

The DenseNetBiGRNN model uses a learning rate of 10−5 and a batch size of 32. The DenseNet
frontend consists of three dense blocks with three layered composite functions in each dense
block. The dense blocks are connected via transition blocks. The initial number of feature maps
is 30, the growth rate is k = 12 and bottleneck layers are enabled. The training and validation
losses are shown in 8.8. The performance of this model could not meet the performance of the
other three models. This is most likely because the parameters were not obtained via a proper
grid search and thus the optimal set of parameters was not found. However, it is questionable if
a model architecture like this could achieve better results with the given data. The image size
of the data is only 4 × 4, which does not leave much space for pooling operations and a really
deep network like the DenseNet.
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Figure 8.8: Training and validation loss of the DenseNetBiGRNN model.
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9
Conclusion

For this thesis a modern audio software application was developed using the state-of-the-art
C++ frameworks for cross-platform audio applications, JUCE and Tracktion Engine. The re-
search for this thesis included the in depth study of those two frameworks, which encompassed
a lot of source code analysis because of the Tracktion Engine’s lack of documentation. Fol-
lowing the core architectural concepts of the JUCE framework, a module based structure was
derived for the software. Each module has its own responsibilities and a robust system for inter-
object communication based on the JUCE data structure ValueTree was implemented. The
multithreading capabilities of JUCE were used to push calculations onto background threads
wherever possible to keep the application responsive to the user. The JUCE DSP module was
used extensively in various places for FFT calculations and filter design and implementations.
The overall project structure and UML class diagrams for individual classes were presented. A
brief overview of the newly developed hardware including the audio interface, the microphones
and the auscultation pad was given. Furthermore, the deep neural network models for multi-
channel lung sound classification developed in [1] were re-implemented in the machine learning
framework Keras and the performance was compared to the original low-level implementations.
Additionally, an attempt was made to use a dense convolutional neural network architecture for
the lung sound classification.
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A
Abbreviations

ADAT Alesis Digital Audio Tape
ALSA Advanced Linux Sound Architecture
API Application Programming Interface
ASIC Application Specific Integrated Circuit

ASIO Audio Stream Input/Output
BiGRNN Bidirectional Gated Recurrent Neural Network
CI Continuous Integration
CNN Convolutional Neural Network
ConvBiGRNN Convolutional Bidirectional Gated Recurrent Neural Network
DAW Digital Audio Workstation
DenseNet Dense Convolutional Network
DOM Document Object Model
DSD Direct Stream Digital
DSP Digital Signal Processing
DTFT Discrete Time Fourier Transform
FFT Fast Fourier-Transform
FIFO First In First Out
FIR Finite Impulse Response
FNN Feedforward Neural Network
GRNN Gated Recurrent Neural Network
GRU Gated Recurrent Unit
I2S Inter-IC Sound
IC Integrated Circuit
IPF Idiopathic Pulmonary Fibrosis
JUCE Jules’ Utility Class Extensions
LSTM Long Short-Term Memory
MCLSR Multi Channel Lung Sound Recorder
MEMS Micro-Electrical-Mechanical System
MLP Multilayer Perceptron
MVC Model-View-Controller
PCB Printed Circuit Board
PDM Pulse Density Modulation
RNN Recurrent Neural Network
SNR Signal to Noise Ratio

SPDIF Sony/Philips Digital Interface
SPSC Signal Processing and Speech Communications
STFT Short-Time Fourier-Transform
TDM Time Domain Multiplexing
te tracktion engine, namespace of the Tracktion Engine
TOSLINK TOShiba LINK
UML Unified Modeling Language
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B
Folder and File Structure

mcls core

mcls core.cpp

mcls core.h

BinaryData

MCLSBinaryData.cpp

MCLSBinaryData.h

Core

ApplicationCommandHandler.h

ApplicationState.cpp

ApplicationState.h

CommandIDs.h

Constants.h

ConstrainedValue.h

Delegate.h

EditManager.cpp

EditManager.h

FlaggedAsyncUpdater.h

Identifiers.h

Progress.h

ProgressList.h

RenderingTaskRunner.h

Utilities.h

Figure B.1: File structure of the core module
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mcls domain

mcls domain.cpp

mcls domain.h

Domain

FrequencyAnalyzer.h

HighPassFilterPlugin.cpp

HighPassFilterPlugin.h

SampleRateConversionScheduler.cpp

SampleRateConversionScheduler.h

SampleRateConverter.cpp

SampleRateConverter.h

Spectrogram.cpp

Spectrogram.h

SpectrogramScheduler.cpp

SpectrogramScheduler.h

TracksAndInputManager.cpp

TracksAndInputManager.h

TransportManager.cpp

TransportManager.h

Figure B.2: File structure of the domain module

mcls model

mcls model.cpp

mcls model.h

Model

Converters.cpp

Converters.h

MetaDataModel.cpp

MetaDataModel.h

MetaDataValidationService.cpp

MetaDataValidationService.h

ModelBase.h

ProjectModel.cpp

ProjectModel.h

SpectrogramSettingsModel.cpp

SpectrogramSettingsModel.h

ViewModel.cpp

ViewModel.h

Figure B.3: File structure of the model module
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mcls application

mcls application.cpp

mcls application.h

Components

Clips

AudioClipComponent.cpp

AudioClipComponent.h

AudioClipComponentBase.cpp

AudioClipComponentBase.h

AudioClipDetailComponent.cpp

AudioClipDetailComponent.h

ClipComponent.cpp

ClipComponent.h

ClipComponentFactory.h

RecordingClipComponent.cpp

RecordingClipComponent.h

SpectrogramComponent.cpp

SpectrogramComponent.h

MetaData

CoreMetaDataComponent.cpp

CoreMetaDataComponent.h

MetaDataComponent.cpp

MetaDataComponent.h

MetaDataComponentBase.cpp

MetaDataComponentBase.h

Recorder
...

Settings
...

Tracks
...

Widgets
...

ComponentBase.h

Infrastructure
...

LookAndFeel

MCLSLookAndFeel.cpp

MCLSLookAndFeel.h

Figure B.4: File structure of the application module
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mcls application

mcls application.cpp

mcls application.h

Components

Clips
...

MetaData
...

Recorder

HeaderComponent.cpp

HeaderComponent.h

MainComponent.cpp

MainComponent.h

MicrophoneComponent.cpp

MicrophoneComponent.h

PlayheadComponent.cpp

PlayheadComponent.h

ProjectControlsComponent.cpp

ProjectControlsComponent.h

RecorderComponent.cpp

RecorderComponent.h

ResizerComponent.cpp

ResizerComponent.h

TimelineComponent.cpp

TimelineComponent.h

TransportComponent.cpp

TransportComponent.h

Settings

DeviceSelectorComponent.cpp

DeviceSelectorComponent.h

SettingsComponent.cpp

SettingsComponent.h

SettingsContainerComponent.cpp

SettingsContainerComponent.h

SpectrogramSettingsComponent.cpp

SpectrogramSettingsComponent.h

Tracks
...

Widgets
...

ComponentBase.h

Infrastructure
...

LookAndFeel

MCLSLookAndFeel.cpp

MCLSLookAndFeel.h

Figure B.5: File structure of the application module
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mcls application

mcls application.cpp

mcls application.h

Components

Clips
...

MetaData
...

Recorder
...

Settings
...

Tracks

TrackComponent.cpp

TrackComponent.h

TrackComponentFactory.h

TrackContainerComponent.cpp

TrackContainerComponent.h

TrackHeaderComponent.cpp

TrackHeaderComponent.h

TrackHeaderWithButtonsComponent.cpp

TrackHeaderWithButtonsComponent.h

TrackLabelComponent.cpp

TrackLabelComponent.h

TrackLabelsContainerComponent.cpp

TrackLabelsContainerComponent.h

TrackToolsComponent.cpp

TrackToolsComponent.h

TrackToolsContainerComponent.cpp

TrackToolsContainerComponent.h

TrackViewComponent.cpp

TrackViewComponent.h

Widgets
...

ComponentBase.h

Infrastructure
...

LookAndFeel

MCLSLookAndFeel.cpp

MCLSLookAndFeel.h

Figure B.6: File structure of the application module
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mcls application

mcls application.cpp

mcls application.h

Components

Clips
...

MetaData
...

Recorder
...

Settings
...

Tracks
...

Widgets

FrequencyResponseComponent.cpp

FrequencyResponseComponent.h

IconPushButton.cpp

IconPushButton.h

IconToggleButton.cpp

IconToggleButton.h

LevelMeterComponent.cpp

LevelMeterComponent.h

ProgressBarComponent.cpp

ProgressBarComponent.h

TransportClock.cpp

TransportClock.h

ComponentBase.h

Infrastructure

IconHelper.cpp

IconHelper.h

Icons.h

NotifyingViewport.h

SelectionState.cpp

SelectionState.h

TrackState.cpp

TrackState.h

TrackToolsState.cpp

TrackToolsState.h

UIBehaviour.h

LookAndFeel

MCLSLookAndFeel.cpp

MCLSLookAndFeel.h

Figure B.7: File structure of the application module
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C
Class Diagrams

TracksAndInputsManager

- _editManager: juce::SharedResourcePointer<EditManager>

- _projectModel: ProjectModel

- _renderingProgressList: ProgressList

+ CreateTracksAndAssignInputs(): void

+ SetInputGainInDbForTrack(): void

+ SetInputGainInDbForAllTracks(): void

+ ApplyGainAndFrequencyToAllTracks(): void

+ GetHighPassFilterPluginForTrack(): HighpassFilterPlugin*

+ GetAllTracks(): juce::Array<te::Track*>

+ GetAudioTracks(): juce::Array<te::AudioTrack*>

+ GetOrInsertAudioTrackAt(): te::AudioTrack*

+ EnsureNumberOfAudioTracks(): void

+ RemoveAllClips(): void

+ RenderAllTracks(): void

+ GetEditInputDevices(): te::EditInputDevices&

+ GetAllInputDevices(): juce::Array<te::InputDeviceInstance*>

+ GetRenderingProgressList(): ProgressList&

- SetupInputs(): void

- AssignInputs(): void

- AddHighpassToAllTracks(): void

- AddHighpassToTrack(): void

TransportManager

- _editManager: juce::SharedResourcePointer<EditManager>

+ AddChangeListener(): void

+ RemoveChangeListener(): void

+ GetTransport(): te::TransportControl&

+ SetUserDragging(): void

+ SetCurrentPosition(): void

+ GetCurrentPosition(): double

+ GetCurrentPlayhead(): te::PlayHead*

+ SetLoopRange(): void

+ GetLoopRange(): te::EditTimeRange

+ SetLooping(): void

+ IsLooping(): bool

+ GetTimeWhenStarted(): double

+ GetRecordingPunchInAndOut(): bool

+ IsRecording(): bool

+ IsPlaying(): bool

+ TogglePlay(): void

+ TogglePause(): void

+ ToggleStop(): void

+ ToggleRecord(): void

Figure C.1: Class diagram of the TracksAndInputsManager and TransportManager classes
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C Class Diagrams

EditManager

- _appState: juce::ValueTree

- _currentEdit: std::unique_ptr<te::Edit>

- _currentEditCreationState: ConstrainedValue<EditCreationState>

- _hasChangedSinceSaved: ConstrainedValue<bool>

+ GetCurrentEdit(): te::Edit&

+ CreateOptions(): te::Edit::Options

+ CreateNewEdit(): bool (+ 1 overload)

+ LoadEdit(): bool

+ HasChangedSinceSaved(): bool

+ SaveEdit(): void

+ DeleteEdit(): void

+ AddListener(): void

+ RemoveListener(): void

+ GetOrCreateChildWithName(): juce::ValueTree

+ GetChildWithName(): juce::ValueTree

+ GetApplicationState(): juce::ValueTree

+ GetCurrentEditFile(): juce::File

+ GetUndoManager(): juce::UndoManager&

+ GetTransport(): te::TransportControl&

+ GetRecordingThumbnailManager(): te::RecordingThumbnailManager&

+ GetPluginManager(): te::PluginManager&

+ GetDeviceManager(): te::DeviceManager&

+ GetBackgroundJobManager(): juce::ValueTree

+ GetSampleRate(): double

+ GetBlockSize(): int

+ GetNumWaveInDevices(): int

+ GetWaveInDevice(): te::WaveInputDevice*

+ GetTemporaryFileManager(): te::TemporaryFileManager&

+ GetUIBehaviour(): te::UIBehaviour&

+ RebuildAudioGraphAndRestart(): void

+ ContainsRecording(): bool

- CreateDefaultEdit(): void

- valueTreePropertyChanged(): void

ApplicationState

- _editManager: juce::SharedResourcePointer<EditManager>

- _state: juce::ValueTree

- _currentEditCreationState: ConstrainedValue<EditCreationState>

- _expertMode: ConstrainedValue<bool>

- _shouldFollowPlayhead: ConstrainedValue<bool>

- _hasChangedSinceSaved: ConstrainedValue<bool>

- _createNewExamination: ConstrainedValue<bool>

+ OnEditCreationStateChanged: Delegate<EditCreationState>

+ OnExpertModeChanged: Delegate<bool>

+ OnShouldFollowPlayheadChanged: Delegate<bool>

+ OnHasChangedSinceSaved: Delegate<bool>

+ OnCreateNewExamination: Delegate<>

+ GetCurrentEditCreationState: EditCreationState

+ SetExpertMode: void

+ GetExpertMode: bool

+ SetShouldFollowPlayhead: void

+ GetShouldFollowPlayhead: bool

+ SetHasChangedSinceSaved: void

+ GetHasChangedSinceSaved: bool

+ SetCreateExamination: void

+ GetCreateExamination: bool

+ SetCurrentEditCreationState: void

+ AddListener(): void

+ RemoveListener(): void

+ GetOrCreateChildWithName(): juce::ValueTree

+ EditLoaded(): bool

- BindValues(): void

juce::ValueTree::Listener

...

EditCreationState (Enum)

InitialState

BeginCreation

BindValues

UpdateModel

FinishCreation

EditLoaded

Figure C.2: Class diagram of the EditManager and ApplicationState classes
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Spectrogram

- _model: SpectrogramSettingsModel

+ CalculateSpectrogram(): std::unique_ptr<juce::Image>

SpectrogramScheduler

- _editManager: juce::SharedResourcePointer<EditManager>

- _viewModel: ViewModel

- _reader: std::unique_ptr<juce::AudioFormatReader>

- _currentProgress: atomic<float>

- _finished: bool

+ SpectrogramImage: std::unique_ptr<juce::Image>

+ InitializeAudioFormatReader(): void

+ AddJob(): void

+ RemoveJob(): void

+ runJob(): juce::JobStatus

+ getCurrentTaskProgress(): float

+ IsFinished(): bool

te::ThreadPoolJobWithProgress

- manager: te::BackgroundJobManager

+ getCurrentTaskProgress(): float

+ canCancel(): bool

+ setManager(): void

+ setName(): void

+ prepareForJobDeletion(): void

juce::ThreadPoolJob

+ runJob(): juce::JobStatus

...

Figure C.3: Class diagram of the Spectrogram and SpectrogramScheduler classes
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C Class Diagrams

HighpassFilterPlugin

- _filter: juce::juce::OwnedArray<dsp::IIR::Filter<double>>

- _currentFilterFrequency: double

- _frequency: ConstrainedValue<double, FrequencyConstrainer>

+ xmlTypeName: const char* 

+ Analyzer: FrequencyAnalyzer<float>

+ getPluginName(): const char*

+ Create(): ValueTree

+ getName(): juce::String

+ getPluginType(): juce::String

+ getShortName(): juce::String

+ getSelectableDescription(): juce::String

+ needsConstantBufferSize(): bool

+ initialise(): void

+ deinitialise(): void

+ getNumOutputChannelsGivenInputs(): int

+ applyToBuffer(): void

+ SetFrequency(): void

+ GetFrequency(): double

- UpdateFilter(): void

FrequencyAnalyzer<T>

- _waitForData: juce::WaitableEvent

- _pathCreationLock: juce::CriticalSection

- _sampleRate: T

- _fft: juce::dsp::FFT

- _window: juce::dsp::WindowingFunction<T>

- _fftBuffer: juce::AudioBuffer<T>

- _averager: juce::AudioBuffer<T>

- _averagerPtr: int

- _abtractFifo: juce::AbstractFifo

- _audioFifo: juce::AudioBuffer<T>

- _isNewDataAvailable: std::atomic<bool>

+ AddAudioData(): void

+ SetupFrequencyAnalyzer(): void

+ Clear(): void

+ run(): void

+ CreatePath(): void

+ CheckForNewData(): bool

- IndexToX(): float

- BinToY(): float

te::Plugin

...

FrequencyConstrainer

+ operator(): double

juce::Thread

...

Figure C.4: Class diagram of the HighpassFilterPlugin and FrequencyAnalyzer classes
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SampleRateConverter

- _editManager: juce::SharedResourcePointer<EditManager>

- _filter: juce::dsp::FIR::Filter<float>

+ Process(): void

+ LinearInterpolate<FloatingPointType>(): FloatingPointType

- CreateLowPass(): void

- ApplyFilter(): void

SampleRateConversionScheduler

- _editManager: juce::SharedResourcePointer<EditManager>

- _tracksManager: juce::SharedResourcePointer<TracksAndInputsManager>

- _projectModel: ProjectModel

- _currentProgress: atomic<float>

- _index: int

- _total: int

- _firstRun: bool

+ AddJob(): void

+ RemoveJob(): void

+ runJob(): juce::JobStatus

+ getCurrentTaskProgress(): float

- ConvertSampleRate(): void

te::ThreadPoolJobWithProgress

- manager: te::BackgroundJobManager

+ getCurrentTaskProgress(): float

+ canCancel(): bool

+ setManager(): void

+ setName(): void

+ prepareForJobDeletion(): void

juce::ThreadPoolJob

+ runJob(): juce::JobStatus

...

Figure C.5: Class diagram of the SampleRateConverter and SampleRateConversionScheduler classes
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C Class Diagrams

MetaDataModel

- _subjectCode: ConstrainedValue<juce::String>

- _firstName: ConstrainedValue<juce::String>

- _lastName: ConstrainedValue<juce::String>

- _examinationNumber: ConstrainedValue<int>

- _timeOfExamination: ConstrainedValue<juce::Time>

- _gender: ConstrainedValue<Gender>

- _dateOfBirth: ConstrainedValue<juce::Time>

+ GetDateOfBirth(): juce::Time

+ SetDateOfBirth(): void

+ SetGender(): void

+ GetGender(): Gender

+ GetTimeOfExamination(): juce::Time

+ SetTimeOfExamination(): void

+ GetExaminationNumber(): int

+ SetExaminationNumber(): void

+ GetLastName(): String

+ SetLastName(): void

+ GetFirstName(): String

+ SetFirstName(): void

+ GetSubjectCode(): String

+ SetSubjectCode(): void

+ GetExaminationFolderName(): juce::String

+ FormatIntWithPrecedingZeros(): juce::String

- BindValues(): void

- OnEditCreation(): void

juce::ValueTree::Listener

...

ModelBase

# _state: juce::ValueTree

# _appState: ApplicationState

# _editManager: juce::SharedResourcePointer<EditManager>

+ AddListener(): void

+ RemoveListener(): void

# BindValues(): void

# OnEditCreation(): void

# valueTreeChanged(): void

# valueTreePropertyChanged(): void

# valueTreeChildAdded(): void

# valueTreeChildRemoved(): void

# valueTreeChildOrderChanged(): void

# valueTreeParentChanged(): void

# valueTreeRedirected(): void

ProjectModel

- _editName: ConstrainedValue<juce::String>

- _projectFolder: ConstrainedValue<juce::String>

- _examinationFolder: ConstrainedValue<juce::String>

- _audioFolder: ConstrainedValue<juce::String>

+ GetAudioFolder(): String

+ SetAudioFolder(): void

+ GetExaminationFolder(): String

+ SetExaminationFolder(): void

+ GetProjectFolder(): String

+ SetProjectFolder(): void

+ GetEditName(): String

+ SetEditName(): void

- BindValues(): void

- OnEditCreation(): void

SpectrogramSettingsModel

- fftOrder: ConstrainedValue<int>

- window: ConstrainedValue<int>

- overlap: ConstrainedValue<int>

+ OnStateChanged: Delegate<>

- BindValues(): void

- OnEditCreation(): void

+ SetFftOrder(): void

+ GetFftOrder(): int

+ SetWindow(): void

+ GetWindow(): int

+ SetOverlap(): void

+ GetOverlap(): int

ViewModel

- _viewTimeLeft: ConstrainedValue<double>

- _detailViewTimeLeft: ConstrainedValue<double>

- _viewTimeRight: ConstrainedValue<double>

- _detailViewTimeRight: ConstrainedValue<double>

- _viewY: ConstrainedValue<double>

- _trackWidth: ConstrainedValue<double>

- _timeResolution: ConstrainedValue<TimeGridResolution>

- _detailTimeResolution: ConstrainedValue<TimeGridResolution>

+ OnStateChanged: Delegate<>

+ OnTrackLengthChanged: Delegate<int>

+ OnTimeResolutionChanged: Delegate<TimeGridResolution>

+ OnDetailTimeResolutionChanged: Delegate<TimeGridResolution>

--- Getters and Setters for the ConstrainedValues ---

+ TimeToX(): int (+ 1 overload)

+ XToTime(): void (+ 1 overload)

+ GenerateTimeGrid(): juce::Array<double>

+ GetTotalHeightOfTracks(): int

+ IncreaseTrackLength(): void

- BindValues(): void

- OnEditCreation(): void

Gender (Enum)

Male

Female

TimeGridResolution (Enum)

TenthSeconds

FifthSeconds

HalfSeconds

Seconds

Minutes

Figure C.6: Class diagram of the model classes
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juce::LookAndFeel_V4

...

MCLSRLookAndFeel

- _icons: juce::SharedResourcePointer<IconHelper>

+ drawLabel(): void

+ fillTextEditorBackground(): void

+ drawTextEditorOutline(): void

+ drawTooltip(): void

+ drawButtonBackground(): void

+ drawButtonText(): void

+ drawTickBox(): void

+ positionComboBoxText(): void

+ drawComboBox(): void

+ drawPopupMenuBackground(): void

+ getPopupMenuBorderSize(): int

+ drawPopupMenuSectionHeader(): void

+ drawPopupMenuItem(): void

+ drawScrollbar(): void

+ getSliderThumbRadius(): int

+ drawLinearSlider(): void

+ drawRotarySlider(): void

+ GetRobotoLightFont(): Font

+ GetRobotoRegularFont(): Font

+ GetRobotoMediumFont(): Font

+ GetRobotoBoldFont(): Font

+ getLabelFont(): Font

+ getPopupMenuFont(): Font

+ getTextButtonFont(): Font

+ getAlertWindowMessageFont(): Font

Figure C.7: Class diagram of the MCLSLookAndFeel class
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