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Abstract

The operational capability of future nuclear fusion experiments and reactors relies heavily on the
durability of plasma facing components, especially the first wall and the divertor plates. Edge localized
modes (ELMs) as seen in high confinement (H-mode) plasmas stress these components even further by
applying large transient heat loads that are not tolerable in standard operation scenarios. Resonant
magnetic perturbations (RMPs) have been successfully applied to reduce or even eliminate ELMs
(mitigation, suppression) while maintaining the beneficial properties of H-mode. At small amplitudes
RMPs are usually shielded by the plasma, whereas at larger amplitudes they undergo a bifurcation
into an unshielded state where they significantly modify magnetic field topology. It is supposed that
ELM mitigation and/or suppression occurs in this second state.

In this thesis, a quasilinear, kinetic estimation of the bifurcation threshold which accounts for mode
coupling is presented. The interaction of RMPs with the plasma is covered on a basic level, especially
the application of ideal MHD to RMPs, tearing mode theory and some properties of magnetic islands.
The cylindrical Maxwell solver KiLCA which takes kinetic plasma response into account is described
and applied on test profiles. Finally, the physical and computational basics of the model as well as a
qualitative explanation of bifurcation is presented.

The model is applied to selected ASDEX Upgrade shots, where indications are found that the difference
between (1) ELM suppression, (2) ELM mitigation and (3) ELMy shots is due to the spatial location
of particular resonant modes which enter a bifurcated state. These modes are: (1) modes on top of the
pedestal, (2) modes further inside the plasma but still near the pedestal and (3) no bifurcated modes
at all. Further, qualitative studies on the dependency of the bifurcation threshold on the form of the
profiles and the amplitude of density and electron temperature are made.
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List of Abbreviations

Notation Description

ASDEX Axially Symmetric Divertor Experiment (predecessor of AUG).
AUG ASDEX Upgrade tokamak in Garching, DE.

BC Boundary Conditions.

CXRS Charge Exchange Recombination Spectroscopy (Diagnostics).

DIII-D Tokamak in San Diego, US.

ECRH Electron Cyclotron Resonance Heating.
ELM Edge Localized Mode.
EM Electromagnetic.

FKR The authors: Furth, Killeen and Rosenbluth.
FLRE Finite Larmor Radius Expansion.

GR The authors: Goldston and Rutherford.

H-mode High confinement mode.

ICRH Ion Cyclotron Resonance Heating.
ITER Next level tokamak currently built in Cadarache, FR (iter = latin "the way").

JET Joint European Torus tokamak in Culham, UK.

KiLCA Kinetic Linear Cylindrical Approximation.

L-mode Low confinement mode.

MHD Magnetohydrodynamics (i...ideal, r...resistive).

NBI Neutral Beam Injection.

ODE Ordinary Differential Equation.

RMP Resonant Magnetic Perturbation.

7



Chapter 1

Introduction

The future of nuclear fusion as an energy source strongly depends on the overall energy gain of the
fusion reaction. By the extended1 Lawson criterion [1, 2], the triple product of temperature T , density
n and energy confinement time τE must exceed a certain value to achieve a break even situation. For
practical use this triple product must be even higher to get a net energy gain. However, it should
not exceed the ignition criterion where the heating is self-sustained by the produced alpha particles to
maintain better control of the reaction.

Temperature is implicitly determined by the fusion reaction itself, i.e. by the maximum of the reaction
cross section. Density has operational limits due to magnetohydrodynamic instabilities2 and further
empirical limits linked to disruptions, for example the Greenwald limit [3]. Thus, energy confinement
time is the parameter to tune to achieve a net power gain. This quantity describes how well energy
is confined in the system. The higher the energy confinement time, the longer the energy stays inside
the plasma.

The most obvious way to increase τE is to increase the size of the configuration. This is why fusion
devices get bigger and bigger, reaching their temporary maximum with ITER3. The major radius of
this device is about twice the one of the JET tokamak (the largest experiment up to today) and should
be the first to demonstrate the possibility of a net energy gain out of the fusion reaction [4].

1.1 High Confinement Mode

The discovery of the High Confinement Mode (H-mode) in Neutral Beam Injection (NBI) experiments
[5] on the ASDEX tokamak provided a new possibility to increase τE . Previously (Low Confinement
Mode), profiles4 of density or temperature decreased steadily from the core to the edge of the plasma
(figure 1.1, blue curve). In H-mode (red), these profiles are “shifted upwards” (pedestal) resulting in
steep gradients in the edge region. This can be seen as a transport barrier preventing transport from
flattening the profiles again.

1The original Lawson criterion only considered the product of density and energy confinement time.
2Precisely it is pressure which is limited but due to the more or less fixed temperature ranges, it boils down to a

limit for the density.
3Tokamak currently built in Cadarache, FR.
4Profile means a 1D representation of a quantity along a certain axis in the cross section of a device. For example,

from the magnetic axis in the center to the separatrix (last closed flux surface) at the edge with an angle of θ = 0 (see
e.g. figure 3.1 in section 3.1 for a better geometrical view). Along these lines one can take the intersection with flux
surfaces of the configuration as a flux surface label ρ (usually normalized flux).

8



Chapter 1 – Introduction

n or T
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Barrier

Figure 1.1. Profiles of density or temperature for L- and H-mode. L-mode is characterized by a steady
decrease from the core to the edge. H-mode profiles are higher with a typical pedestal at the edge.

As implied by the name, H-mode plasmas have increased confinement time due to the edge transport
barrier. Typically this is about twice as high as in L-mode. In the above context of power gain, this
would mean a fair increase in perfomance. This is the reason why heavy research is undertaken to
make H-mode the standard operational mode on future nuclear fusion reactors.

There are certain negative effects that accompany H-mode. For example, uncontrolled density increase,
enhanced impurity confinement or decreased hydrogen recycling at the edge (→ α-particle build up in
the core) [6]. To quote Wesson on the H-mode:

“The ultimate usefulness of the H-mode depends on whether the benefits of improved con-
finement can be achieved under controlled conditions without detrimental effects [...].”

1.1.1 Edge Localized Modes

Although the already mentioned problems of H-mode are crucial, there is one particular instability
that is a possible game breaker. From the beginning of experiments the transition from L- to H-
mode (short LH-transition) was accompanied by Edge Localized Modes (ELMs) [5]. These instabilities
are characterized by periodic bursts that result in a degradation of confinement at the edge and
consequently a reduction in density and temperature [6]. The exact cause of ELMs is not fully known
but a magnetohydrodynamic origin is suspected [7].

One way to detect ELMs is the Hα-radiation5 emitted at the edge of the plasma. For deuterium plasmas
one also calls this Dα-radiation. This radiation is (mostly) a result from core electrons travelling
towards the edge and hitting neutral particles near the divertor plates [7]. During the event of an
ELM, this radiation is increased greatly. A second way is to detect particles that are ejected towards
the edge of the plasma. These will certainly hit the divertor plates or the first wall at some point.
Increased heat loads result in a thermoelectric current in the divertor plates that can be taken as an
indictor for ELMs [8]. Figure 1.2 shows both quantities, divertor current and Dα-radiation for an
“ELMy” AUG (tokamak) shot.

5First spectral line in the Balmer series for hydrogen.
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Figure 1.2. Divertor current and Dα-radiation for a typical ELMy AUG shot (33340). The LH-transition
occurs at about 1s which can be seen from the onset of ELMs. Their burst-like structure results in the visible
peaks.

The most problematic effect of ELMs is the large transient heat load released with each burst. For
large ELMs this could be up 3 − 10% of the total plasma energy, released in few microseconds. The
power load on the divertor of ITER can be estimated to be around 1−10 GW m−2 whereas acceptable
ones would be 1− 3 GW m−2 [9]. “Acceptable” hereby was taken to be about 3000 power cycles before
a needed exchange of the divertor plates. This may be tolerable for experimental devices but for future
nuclear fusion power plants this may not. Still, the expected heat load for ITER is too high, so there
are two possibilities: Find another operational mode without ELMs (e.g. stay in L-mode) or try to
mitigate or suppress ELMs (figure 1.3).

1.1.2 Resonant Magnetic Perturbations

One of the most promising ELM mitigation techniques are Resonant Magnetic Perturbations (RMPs).
These static and non-axisymmetric, small perturbations are produced by an arrangement of toroidally
distributed outer coils (called RMP or ELM coils) and are typically of the order 10−4B0, where B0 is
the equilibrium field. For example the coil configuration for the AUG tokamak can be seen in figure 1.4.
Non-axisymmetry is not only due to the discrete amount of coils in toroidal direction but furthermore
due to different currents driven in each coil. An example can be seen in figure 1.5.

The effect of RMPs can be generally explained in simple terms. The magnetic field produced by the
RMP coils penetrates into the plasma and hits resonant surfaces, located at positions where the plasma
safety factor has rational numbers. This creates magnetic islands [10]. By choosing a specific magnetic
field one can choose which resonances to stimulate. The safety factor profile is usually quite flat in
the center of the plasma and diverges towards the last closed flux surface (separatrix). This means

10
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(a)

(b)

(c)

Hurray!

Figure 1.3. Cartoon to illustrate (a) ELMs, (b) ELM mitigation and (c) ELM suppression. ELMs can be
viewed as avalanches (blue) that threaten a small mountain village (= first wall, divertor plates). Explosives
(red) can trigger many smaller avalanches or no avalanches at all (= mitigation or suppression). The suppression
could be anything, e.g. RMPs (section 1.1.2). Questions remain about the increased core impurity confinement
(rubble, green) which is greatly reduced by ELMs and enhances overall performance. This would vanish together
with suppressed ELMs.
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Figure 1.4. RMP coil configuration for the AUG tokamak. Shown are the upper and lower “B-coils” at
their true position relative to the plasma boundary (last closed flux surface). The numbering of the coils is
important as each one is driven with a different current in experiment.

Figure 1.5. Example for currents driven in AUG B-coils in a typical ELM suppression experiment (shot
34548). The amplitude of the total current for each coil is plotted against the toroidal position of the center
of the corresponding coil (points). Fits of cosines have been layed through the points to show the overall
non-axisymmetric effect of the different coils with different currents. Note that in general there can be a phase
shift between upper and lower coils.
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Figure 1.6. Divertor current, Dα-radiation and Bl6 coil current for a typical ELM suppression experiment
on AUG (shot 33348). The RMP coils are switched on at about 2 s. The ongoing ELMs (between 1 s and 2 s)
are consequently suppressed which can be seen by the disappearance of spikes in the Dα-radiation.

that rational surfaces for higher safety factor are closer in space than ones for lower safety factor.
Furthermore, resonances excited at the edge may lead to magnetic islands overlapping at some point
which can be used to create a stochastic region at the edge of the plasma. The stochastic region was
originally thought to cause ELM suppression or mitigation [11].

Experiments by Evans, et al. [11, 12] have first shown the effectiveness of RMPs in terms of ELM
suppression on the DIII-D tokamak. In favor for this technique was the fact that the transient ELM
impurity transport was not completely lost but replaced by steady-state transport through the stochas-
tic region at the edge6 whereas general properties of the density and temperature profiles remained.
An example for ELM suppression can be seen in figure 1.6. In AUG, ELM mitigation was first seen
in [13] and ELM suppression studies where summarized in [14]. The next section will deal with the
implications of RMPs in more detail.

6Transport parallel to magnetic field lines is easy in contrast to perpendicular transport. Thus, a stochastic region
replacing nested flux surfaces improves (radial) transport locally.
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1.2 Plasma Response to RMPs

Plasma is a self-consistent medium which means that EM fields determine the motion of charged
particles inside the plasma which in turn manifest themselves as currents that affect the EM fields.
Upon applying RMPs, the expectation in vacuum would be the onset of large islands at the position
of the corresponding resonant surface. The consideration of the plasma response to these external
fields manifests itself in localized shielding currents that diminish the external perturbation inside the
resonant surface and therefore the size of magnetic islands. In particular plasma rotation (or toroidal
flow) has a crucial effect on this shielding [15, 16, 17].

Although the formation of magnetic islands will be suppressed for most resonant surfaces, there exist so-
called locked modes which means that the RMP penetrates inside the plasma. These are characterized
by the formation of magnetic islands (full reconnection). One speaks of bifurcated states, where there
can be either locked modes or suppressed ones (unreconnected state). The transition between these
states is called bifurcation [18].

Both, the bifurcation as well as the effect of plasma rotation has been in seen in experiments at the
DIII-D tokamak [19].

1.2.1 Two-Fluid Estimation of the Shielding of RMPs

This simple model can be used to make qualitative explanations how the shielding current, produced
by the plasma response to RMPs, affects the magnetic field perturbation itself. We start with the
two-fluid momentum balance equation (e.g. [20])7,

mαnα [∂tvα + (vα · ∇)vα] = nαqα (E + vα ×B)−∇ · Pα +
∑
β

Rαβ , (1.1)

where m and q denote mass and charge of the fluid elements, respectively. This equation decribes the
conservation of momentum for each particle species α (i.e. Newton’s 2nd law). On the left hand side
we have inertial forces due to temporal or convective changes. On the right hand side we have forces
acting on the fluids. From left to right these are the Lorentz force, internal forces described by the
pressure tensor (pressure or viscosity) and a term which allows the momentum transfer from species
α to species β.

For simplicity we neglect all inertial forces8 (left hand side = zero) and assume isotropic pressure
without viscosity as well as an electrostatic field,

Pα = Ipα, (1.2)

E = −∇Φ. (1.3)

Thus, we get:

nαqα (−∇Φ + vα ×B)−∇pα +
∑
β

Rαβ = 0. (1.4)

Now we assume the plasma to be made of electrons and one species of ions. The term respecting
transfer of momentum to electrons by electron-ion collisions can be written as [20]

7Units are SI or gaussian natural units.
8The convective term (v · ∇)v can be estimated to be about 100 times smaller than the v × B term on the right

and the explicit time derivative is even about 105 times smaller than the convective term.
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Rei = −meneνei (ve − vi) . (1.5)

This momentum transfer is called friction force and scales with relative velocity ve−vi and electron-ion
collision frequency νei.

The electron version of (1.4) is then:

− nee (−∇Φ + ve ×B)−∇pe −meneνei (ve − vi) = 0. (1.6)

We now write the magnetic field as an equilibrium field which we perturb externally,

B = B0 + B̃. (1.7)

By multiplying (1.6) with B0 we can get rid of the gradient terms, since Φ and pe are flux functions
in 0th order (no perturbations), i.e. they are constant along a flux surface and thus, their gradient is
perpendicular to the equilibrium field,

− neeB0 · (ve ×B)−meneνeiB0 · (ve − vi) = 0. (1.8)

Evaluation of both terms individually yields

B0 · (ve ×B) = B0 ·
(
ve ×

[
B0 + B̃

])
= B̃ · (B0 × ve) = B̃ · erB0ve⊥ = B̃rB0ve⊥,

B0 · (ve − vi) = − 1

nee
B0 · J = − 1

nee
B0J‖,

where we used J = −nee (ve − vi) in the latter calculation. Finally we get

−neeB̃rB0ve⊥ +meneνei
1

nee
B0J‖ = 0,

or

J‖ = σve⊥B̃r, (1.9)

σ =
nee

2

meνei
. (1.10)

This equation links the parallel plasma response current to the radial perturbed magnetic field via the
Spitzer conductivity σ and the perpendicular electron flow velocity. Temperature dependence enters
through the collision frequency, whereas density dependence will drop out since νei ∼ neT

−3/2
e ln Λ

(where the Coulomb logarithm ln Λ ≈ const.) [20]. We can clearly see that for lower temperatures
the parallel current will decrease for fixed velocity and magnetic field perturbation.

15
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1.2.2 Physics of the Two-Fluid Estimation

Now we can make a qualitative physical picture of the effect of RMPs on the plasma. The radial
magnetic field perturbation from an RMP (which is driven by a current in the RMP coil) will produce
a parallel current in the resonant layer (due to plasma response). This parallel current creates a
magnetic field counteracting the external perturbation, thus annihilating the effect at the resonant
surface and further inside the plasma (shielding). Due to 1.9, the parallel current diminishes its own
driving mechanism but only to the point where it can be sustained by a very small magnetic field
perturbation due to the generally high conductivity inside the plasma.

There are two general mechanisms that weaken shielding. First, the temperature drop at the edge will
lead to increased collisionality and further to decreased conductivity (as mentioned before). Second, at
locations where the perpendicular electron flow direction changes (sign change, ve⊥ = 0), the shielding
current will become zero at all. This is called fluid resonance9. The screening of RMPs by flows as
well as the simple picture derived above has been treated in [22].

The whole analysis of section 1.2.1 is only valid at the resonant surface because only there the parallel
current can be constant along a field line (divergence-freeness can be fulfilled). Away from the resonant
surface, the perturbations in the electrostatic potential will become too large to be neglected. The
resulting parallel electric field will counteract the magnetic part of the Lorentz force, thus preventing
the occurence of a parallel current.

1.2.3 Other Mechanisms of Bifurcation

In our two-fluid estimation we discovered the fluid resonance, where the perpendicular electron flow
velocity was zero. We can decompose ve⊥ into the electron diamagnetic velocity ved10 and the E× B

drift velocity,

ve⊥ = ved + vE×B, (1.11)

ved =
c

enB
∂rpe, (1.12)

vE×B =
cEr
B

, (1.13)

to write the fluid resonance as the criterion

vE×B = −ved. (1.14)

In the early investigations of [15] as well as in newer models [21] there appears a second resonance11

at the point where the E× B drift velocity has a zero,

vE×B = 0. (1.15)

In other words, the zero of the radial electric field Er may be a crucial point when investigating the
bifurcation point.

9A linear kinetic treatment (like in [21] but in first order) will result in a slight shift of the fluid resonance away from
the point in two-fluid theory.

10Sometimes in literature this is also written as ve∗.
11In the fluid theory of R. Fitzpatrick [15], also a third resonance was seen at the point where the ion perpendicular

velocity was zero. This was not seen in investigations with the kinetic code KiLCA (private communication with S. V.
Kasilov in 2020).
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1.3 Content of this Thesis

In chapter 2 we investigate the effect of a sheet current in the framework of ideal magnetohydrody-
namics in simple slab geometry. This is way simpler than the two-fluid estimation from above and it
may become apparent that the model cannot handle currents that are concentrated in such narrow
regions as resonant layers are. The effect of resisitivity will “heal” the problems of the ideal model
which results in the growth of magnetic islands at the location of the current sheet. This chapter only
treats the effect of internal current sheets that may arise due to instabilities (tearing modes).

Chapter 3 will move on to more realistic geometry, i.e. the large aspect ratio approximation of a
tokamak. In this geometry, the equilibrium will be shortly analyzed, as well as the effect of an
external vacuum perturbation. For the plasma response the Maxwell solver KiLCA will be used to
demonstrate the effect of a kinetic plasma response.

A quasilinear estimation of the bifurcation threshold for RMPs will be given in chapter 4. It will
describe the physical and computational model based on earlier work [21] and the improvements made
in the scope of this thesis. It will include an application to experiments on the AUG tokamak and will
investigate the effect of density and electron temperature on this threshold.

Finally, chapter 5 will try to link all topics presented here together and summarize each chapter
individually. For the application on experiment, conclusions and suggestions for further improvements
will be given.
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Chapter 2

Linear Tearing Mode Theory

The aim of this chapter is to understand how the model called magnetohydrodynamics or MHD treats
the occurrence of sheet-currents that flow only in a single, narrow region around some surface. Initially
this was done by Furth, Killeen and Rosenbluth (FKR) [23] in a treatment including plasma resistivity.
However, we will start with an ideal static equilibrium, analyze it rigorously and move further in
complexity by including dynamics. In the end the effects of resistivity will be touched.

2.1 Ideal MHD Treatment

The model we use is commonly known as iMHD and essentially describes the plasma as a charged
single particle species fluid with zero resistivity. The system of 15 iMHD equations is given by (see
e.g. [24]): ∂ρ

∂t
+∇ · (ρv) = 0, (2.1)

ρ
dv

dt
− J×B +∇p = 0, (2.2)

d

dt

(
p

ργ

)
= 0, (2.3)

∇×E +
∂B

∂t
= 0, (2.4)

∇×B− 4πJ = 0, (2.5)

∇ ·B = 0, (2.6)

E + v ×B = 0. (2.7)

The set of equations consists of two conservation laws for mass and momentum (from fluid mechanics),
the energy equation (adiabatic evolution with γ = 5/3), three of the low-frequency Maxwell equations
and ideal Ohm’s law (in the limit of zero resistivity). The corresponding quantities are the mass density
ρ, flow velocity v, scalar pressure p, current density J, electric field E and magnetic field B. Gaussian
units with c ≡ 1 were chosen.

For now we will assume a static equilibrium where we can set time derivatives to zero. Thus, the only
interesting equations left are (2.6), (2.5) and (2.7) which can be combined to

∇p = J×B =
1

4π
(∇×B)×B =

1

4π

[
(B · ∇)B− 1

2
∇B2

]
. (2.8)
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This equation is the static pressure balance. The last equality sign used a standard decomposition into
magnetic tension and magnetic pressure given by simple vector identities1.

2.1.1 The Current Sheet

The configuration we are interested in is given in figure 2.1. The equilibrium magnetic field has a
y-component pointing towards positive y-direction on the side x > x0 and vice-versa on the other
side. Without loss of generality we can set x0 ≡ 0. Additionally we can include a field component in
z-direction. Thus we have

B0 = B0y (x) ey +B0z (x) ez. (2.9)

Ampères law (2.5) gives rise to a current2,

4πJ0 = −∂xB0zey + ∂xB0yez. (2.10)

By momentarily setting the z-component of the equilibrium field to zero we can make the following
inference: The equilibrium field as given in figure 2.1 is equally strong on both sides3 but differently
directed. Thus we can think of it as a Heaviside theta function. The current in z-direction is then
given as the derivative of this which can be viewed as a Dirac delta distribution. This means, the
current is only located on the sheet-like layer x = 0 which separates the left and right region. The
name Current Sheet is now apparent. In reality the field will not look like a Heaviside theta function
but differently. Still, the form will be similar in the way that the equilibrium field will be almost
constant outside a narrow region around x = 0 and the difference will only imply a broadening of the
current profile. We will then say the current is concentrated around the sheet-like layer.

Back to the general equilibrium field, the last quantitiy left in the iMHD equations is the equilibrium
pressure which can be easily calculated using (2.8)

4π∂xp0 = −1

2
∂xB

2
0 . (2.11)

Now we finished analyzing the equilibrium and will move on with stability considerations.

x = 0
B0y > 0B0y < 0

x        z

y

J0

Figure 2.1. Sketch of the current sheet configuration. Only the y-component of the equilibrium field and the
z-component of the equilibrium current is displayed.

1One can find a summary of basically all needed identities for plasma physics in [25]
2I will use the notation ∂x ≡ ∂/∂x for the rest of this work.
3The field strength B0y is the density of field lines that point in y-direction which is uniform in figure 2.1.
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2.1.2 Normal Mode Analysis

Since the equilibrium is fully known, the next logical step is to figure out if it is stable or not, or
to be precise, at which conditions it is stable or not. However, we are merely interested in the form
of perturbations rather than the stability of the equilibrium. No matter what aim our analysis has,
we can use a common technique in the MHD framework. We apply small perturbations which are
assumed to add up linearly to the equilibrium,

B = B0 + δB, (2.12)

p = p0 + δp. (2.13)

Because of this, we can always cancel out the equilibrium-only quantities by applying this form to the
MHD equations. We will also neglect terms of second order or higher. As an example, we can look at
the right side of the static pressure balance (2.8):

(B · ∇)B− 1

2
∇B2 = (B0 · ∇)B0 −

1

2
∇B2

0︸ ︷︷ ︸
part of equilibrium eq.

,

+ (B0 · ∇) δB− 1

2
∇ (B0 · δB) + (δB · ∇)B0 −

1

2
∇ (δB ·B0) ,

+ (δB · ∇) δB− 1

2
∇δB2︸ ︷︷ ︸

O(δ2)

.

Only the second line will be used in the perturbed version of the initial equation. We assume the form
of these perturbations to be described by Fourier modes containing no time dependence (since we
already restricted ourselves to make a static analysis using (2.8)),

δB = B̃ (x) eik·r, (2.14)

δp = p̃ (x) eik·r, (2.15)

k = kyey + kzez, (2.16)

were r = xex + yey + zez is the position vector. We already used the symmetry of the current
sheet configuration, as we wrote the perturbation only to depend on the x-direction. The modes
correspondingly evolve in the yz-direction. The quantity k is refered to as the wave-vector, although
the perturbation does not have to form waves necessarily. It rather describes spatial periodicity of
any perturbation. By taking typical scale lengths of the configuration, one can connect this to integer
mode numbers

ky =
m

Ly
, kz =

n

Lz
. (2.17)

Since the dimensions of the current sheet are considered to be infinite we will not need this integer
mode numbers here. Nevertheless, they will become important in the discussion of real geometries
which represent systems of finite size e.g. slab-like, cylindrical or toroidal ones.

Going back to the application of small perturbations in the form of normal modes, the static force
balance (2.8) becomes

4π (−i∂xp̃ex + kp̃) = F B̃− iB̃x∂xB0 + i∂x

(
B0 · B̃

)
ex − k

(
B0 · B̃

)
. (2.18)
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We already used the form of the equilibrium given by (2.9) and introduced the quantity4

F := k ·B0 = k · b̂0B0 = k‖B0. (2.19)

Note that the exponential of our Fourier mode assumption gives rise to the factor of ik (derivative)
and can be canceled afterwards because it appears in every term. The second equation we need, is the
divergence-freeness of the perturbation,

∇ · δB = 0. (2.20)

Now we take the x-component of the perturbed pressure balance (2.18) and the scalar product of it
with k. We write both equations together with the explicit form of (2.20) to arrive at the central set
of equations for this problem:

∂x

(
4πp̃+ B0 · B̃

)
= iFB̃x, (2.21)

k2
(

4πp̃+ B0 · B̃
)

= F
(
k · B̃

)
− iB̃x∂xF, (2.22)

∂xB̃x + ik · B̃ = 0. (2.23)

We get an additional equation by taking the scalar product of B0 with the perturbed pressure bal-
ance(2.18),

4πF p̃ = −iB̃x
1

2
∂2xB

2
0 . (2.24)

This set of equations can be solved for the three components of the perturbed field5.

First, we substitute (2.23) into (2.22) and the result into (2.21) to get

∂2xB̃x − B̃x
(
k2 +

∂2xF

F

)
= 0. (2.25)

By using the equilibrium pressure balance (2.11) in our fourth equation (2.24), we can relate the
perturbed and equilibrium pressure by F p̃ = iB̃x∂xp0. Inserted in (2.22) and further substituted
together with (2.23) in (2.21) this leads to

B̃z =
ikz∂xB̃x
k2

− ikyB̃x
{k×B0}x

(
∂xF

k2
+

4π∂xp0
F

)
. (2.26)

Now we got an ODE for B̃x which upon solving defines B̃z. The missing component is B̃y which can
be simply calculated using the perturbed divergence-freeness (2.20),

kyB̃y = i∂xB̃x − kzB̃z. (2.27)

If we look closely at these equations we can identify B̃x to be purely real and B̃y and B̃z to be purely
imaginary. For Fourier amplitudes this means a phase shift of π between the components.

4This is the projection of the perturbation parallel to the equilibrium field.
5This also holds for the perturbed pressure which we are not interested in here.
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2.1.3 Discontinuities

As has been shown in the previous section, the calculation of the perturbed magnetic field is more or
less reduced to the solution of (2.25). Even without a rigorous mathematical analysis of this equation
we can see that this equation does not have to necessarily behave well everywhere in x. Since the
quantity

F = k ·B0 = kyB0y + kzB0z, (2.28)

appears in the denominator we encounter singularities everywhere, where F = 0. Now thinking back
of the initial discussion of the current sheet, we can once again momentarily set the z-component of
the equilibrium field to zero. The problem is now apparent: since B0y points in different directions on
both sides of the sheet-like layer, there must be a zero exactly at this plane x = 0. The singularity
occurs at this point and our equation (2.25) breaks down. For the rest of the work we want to keep
this case, thus we assume the other term kzB0z to shift the functional form of F but not destroy the
appearance of the singularity (the x-value where this occurs will then shift). The result: we have to
concede with our use of iMHD.

We can still do some kind of restricted analysis, since we do not have singularities everywhere, instead
only at one point in x. We can avoid facing this by restricting our domain to x ∈ (0±,±∞). In this
so called Outer Region we can apply our iMHD model, whereas in the other part or Inner Region, we
have to find more suitable equations describing our configuration.

Since we split our domain into two distinct areas with two distinct solutions, we will later have to think
about how to glue these two together at the boundaries. We can derive some general properties of the
solutions by considering two small scenarios around the sheet-like layer which were done by Goldston
and Rutherford (GR) in their book[20].

We can integrate the divergence-freeness (2.23) over the volume of a small box with size x ∈ [0−, 0+],
y ∈ [y1, y2] and z ∈ [z1, z2] centered around the sheet-like layer and apply Gauss’ theorem,

ˆ
VBox

∇ · B̃dV =

‹
S=∂VBox

B̃ · ndS = 0. (2.29)

The margins y1,2 and z1,2 can be chosen arbitrarily, with ∆y = y2 − y1 and ∆z = z2 − z1. The closed
surface integral can be evaluated as a sum of integrals over the six enclosing surface planes (because
it is a box). The three positive directed ones are given in figure 2.2. As a result of the components of
the perturbed field to only have spatial dependence in x, this evaluates to

‹
S

B̃ · ndS =
∑
i

‹
Si

B̃ · nidSi,

=∆z∆y
[
B̃x
(
0+
)
− B̃x

(
0−
)]
, (2.30)

or with (2.29):

B̃x
(
0+
)

= B̃x
(
0−
)
. (2.31)

This means that the x-component of the perturbed field is continuous at the sheet-like layer.

In the second consideration we integrate the perturbed current density 4πJ̃ = ∇×B̃ over the xy-plane.
The left side yields the total current in z-direction,
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Figure 2.2. Positive oriented surfaces on the specified box around the sheet-like layer.

¨
S

dS · J̃ = Ĩz. (2.32)

On the other hand, we get a contour integral using Stokes’ theorem,
¨
S

dS · ∇ × B̃ =

˛
C=∂S

ds · B̃. (2.33)

Again, this can be split into different parts now given by the contours in figure 2.3. Our special
configuration leads to similar results as above:

˛
C

ds · B̃ =
∑
i

˛
Ci

B̃ · dsi,

= ∆y
[
B̃y
(
0+
)
− B̃y

(
0−
)]
. (2.34)

Further, because this time the left side of the equation is non-zero, we have

B̃y
(
0+
)
− B̃y

(
0−
)

=
4πĨz
∆y

. (2.35)

This means there is a discontinuity in the y-component of the perturbed field, that can be associated
with the total current in z-direction. This current is located in a thin region around the sheet-like
layer and therefore called a surface current6.

Because the divergence-freeness of the magnetic field (2.23) relates the x-derivative of B̃x with B̃y, a
discontinuity in this derivative is implied. This (relative) discontinuity is commonly defined as7

∆′ :=

[
∂xB̃x

B̃x

]0+
0−

=
∂xB̃x

B̃x

∣∣∣∣∣
x=0+

− ∂xB̃x

B̃x

∣∣∣∣∣
x=0−

. (2.36)

This quantity plays a central role and we will continue this section by finding solutions to the set of
equations (2.25)-(2.27) and consecutively calculating ∆′.

6One can see this for e.g. constant current density where Iz = jz∆x∆y. For the derived expression ∆y cancels and
the current flows only in the region ∆x which was taken to be infinitesimal small.

7This can also be seen as the discontinuity in the logarithmic derivative: ∂x ln (A) = 1
A
∂xA.
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Figure 2.3. Contours in the xy-plane around the sheet-like layer.

2.1.4 Solutions in the Outer Region

As has been indicated before, the only difficulty lies in solving the equation for the x-component of
the perturbed field. Once this has been done, all other quantities can be calculated. We start with B̃x
by rewriting (2.25) into a slightly different form:

∂2xB̃x − k2B̃x = q, (2.37)

q := B̃x
∂2xF

F
. (2.38)

Eq. (2.37) now has the form of a simple ODE with some perturbative term q (that is dependent on
the solution itself).

Short wavelength limit: First we want to consider the limit k � in which case we can neglect the
contribution by q. Then we have a simple ODE with solutions

B̃x = Ce−k|x|, (2.39)

where C is a constant and the absolute value in the exponent results from the fact that we already
applied boundary conditions on both sides of the sheet-like layer: B̃x (x→ ±∞) = 0. By the reason
of symmetry we implied the assumption that B̃x (−x) = B̃x (x). Using this solution in (2.36) we get
the discontinuity as

∆′ = −2k. (2.40)

This is due to the inner derivative of the absolute value of x giving an extra sign (x), making this
quantity non-zero.
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Long wavelength limit: In this case we have k � and one can expand the solution for B̃x in
terms of (2.39). This has been done by FKR [23] in their treatment of the outer region. We are only
interested in the k-dependence of the asymptotic solution for the discontinuity that is given by

∆′ ∼ 1

k
. (2.41)

One can see that for small k values we get positive ∆′ and for large k values negative ∆′. In a realistic
configuration only certain values of k are allowed as it will be linked to integer mode numbers, thus
some modes will have positive ∆′ and others will have negative ∆′. The implication of this fact will
become clear when advancing to the end of this section.

Full solution: We now treat the full ODE for the x-component of the perturbation given in (2.37).
We can consider the short wavelength solution (2.39) as the homogenious solution of the ODE leaving
us with the task to find a particulary solution. We can apply the method called Variation of Constants8

(on the solution without applied boundary conditions) using the ansatz

B̃x = C+ (x) ekx + C− (x) e−kx. (2.42)

The procedure is now to compute the first derivative, insert it into the ODE (2.37), obtain an expression
for ∂xC± (x) and integrate this to get C± (x) itself. Then, a particulary solution has been found and
we get the general solution by adding this to the homogenious one. This general solution is

B̃x =


ekx

2k

´ x
∞ dx′q (x′) e−kx

′
+ e−kx

(
C− − 1

2k

´ x
−∞ dx′q (x′) ekx

′
)
, x > 0+,

ekx
(
C+ + 1

2k

´ x
∞ dx′q (x′) e−kx

′
)
− e−kx

2k

´ x
−∞ dx′q (x′) ekx

′
, x < 0−.

(2.43)

Since the quantity q is dependent on B̃x itself this is an implicite solution for B̃x and must be solved
numerically in an iterative way. The same symmetry reasons that have been used for the homogenious
equation B̃x (−x) = B̃x (x), lead to the result that both constants are the same, i.e. C+ = C− ≡ C.

We can use this formal solution in (2.36) to get an analytical expression for the discontinuity,

∆′ = −2k − 1

B1

ˆ ∞
−∞

B̃x
F ′′

F
e−kx

′
d′x′, (2.44)

where B1 = B̃x

∣∣∣
x=0±

and d′ denotes that the integral has to be taken non-continously over x′ = 0.
This is the main result of FKR [23] in the outer region. Before giving an example calculation in the
next section, one can write the general solution given in (2.43) in a different way:

B̃x =


ekx

2k

´ x
∞ dx′q (x′) e−kx

′
+ e−kx

(
B1 + 1

2k

´∞
0

dx′q (x′) e−kx
′ − 1

2k

´ x
0
dx′q (x′) ekx

′
)
, x > 0+,

ekx
(
B1 + 1

2k

´∞
0

dx′q (x′) e−kx
′
+ 1

2k

´ x
0
dx′q (x′) e−kx

′
)
− e−kx

2k

´ x
−∞ dx′q (x′) ekx

′
, x < 0−.

(2.45)

This may look more complicated but it turned out that it is numerically more stable to solve this
iterative equation than (2.43). It also has the advantage to contain the perturbed field at the boundary
B1 instead of the constant C. This can be set to a typical perturbation strength which must be specified
anyway.

8Often also called Variation of Parameters.
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Figure 2.4. Chosen toy model for the equilibrium field configuration.

2.1.5 Application of a Toy Equilibrium

Solving the central iMHD equations we arrived at a solution that looks not so friendly but should
behave quite stable when implemented numerically. We will start exploiting this by choosing a “toy”
equilibrium and solve these equations. An analytically nice model to study is a hyperbolic tangent one
(figure 2.4)9,

B0y ≡ tanh (x) . (2.46)

Even at x = 0 there is an existing value for q ∼ F ′′/F . Parameters left to specify are the perturbation
strength and the wavevector respectively. The first one can be set by the following thought: by
the given form of (2.46) we have limiting amplitudes of ±1 for the equilibrium field. Because the
perturbation we apply must be small by assumption, a typical value that can be chosen is

B1 ≡ 10−4. (2.47)

For the latter quantity a pseudo-realistic approach is used. Despite the fact that we do not have a real
configuration, we use integer mode numbers and typical lengths. We associate the y-direction to be
poloidal and the z-direction to be toroidal,

ky =
m

Ly
, Ly ≡ 10 cm, (2.48)

kz =
n

Lz
, Lz ≡ 170 cm. (2.49)

The integers m and n are then the poloidal and toroidal mode numbers, respectively. Further, we
restrict the toroidal mode number to the single value

n ≡ 2, (2.50)

9This form implies the use of normalized units for the magnetic field strength.
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Figure 2.5. Solutions for the x-component of the perturbed magnetic field for different poloidal mode numbers
(real part).

and only vary the poloidal mode number m instead.

The field components are then calculated first, by using our general solution for B̃x (2.45) and second,
by afterwards applying (2.26) and the divergence-freeness (2.27). The solutions for different mode
numbers can be seen in figure 2.5, 2.6 and 2.7 respectively.

As has been discussed before, B̃x is purely real and B̃y and B̃z are purely imaginary10. The second
observation is the continuity of B̃x and the discontinuity of its derivative (kink of B̃x), together with
B̃y and B̃z (jump). It is nice to see the previous considerations match with the numerical results. The
third thing to discuss is the color-coding of the different considered mode numbers. This has been
done by calculating the discontinuity ∆′ using either (2.36) or (2.44) and checking its sign afterwards.
“Green-ish” corresponds to ∆′ > 0 and “red-ish” to ∆′ < 0. There is a slight color-gradient indicating
the magnitude of ∆′, but generally we are interested in its behaviour. The blue curve is a limiting
case, where beforehand the analytical model was solved for k with ∆′ = 0. It would not occur for our
choice of scale lengths because mode number m is not an integer for this curve.

The values for ∆′ for the different mode numbers can be seen in figure 2.8. Additionally to the
calculated values of ∆′ a solid red curve is shown which is the exact analytical solution for this model
that has been calculated by FKR [23]11.

The last thing to discuss is the functional form of the discontinuity ∆′. One can clearly see that for
large k it starts to be linearly decreasing, with an approximate slope of 2 which fits perfectly to our
limiting calculation (2.40) (it can be seen even better when advancing to higher mode numbers). For
small k it is harder to see, but there is a trend towards a singular behaviour at k = 0. This point can
clearly not be reached since our mode numbers are limited by the smallest positive integer which is
1. The plot even starts at a k value that corresponds to m = 3 which was chosen to be the smallest
mode considered, because of deeper reasons in real configurations12.

10This is the reason one only sees the corresponding non-vanishing components in the plots.
11The thin black line is called “stability criterion” which will be apparent when advancing to the end of this section

(section 2.2).
12In cylindrical or toroidal geometry it turns out that positions where such sheet currents arise are located where
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Figure 2.6. Solutions for the y-component of the perturbed magnetic field for different poloidal mode numbers
(imaginary part).
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Figure 2.7. Solutions for the z-component of the perturbed magnetic field for different poloidal mode numbers
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Figure 2.8. Calculated ∆′ corresponding to the solutions given in figure 2.5 together with the corresponding
analytical solution and the “stability criterion” described in the main text.

2.1.6 Magnetic Islands

With the solution given in (2.45), we can consider the problem in the outer region to be solved.
Nevertheless, there is still one thing remaining as we can look at the form of the magnetic field lines.
Since the perturbation is small we expect something similar to our equilibrium field shown in figure
2.1.

The following considerations can be found partially in the book of GR [20]. To look at lines of constant
magnetic field strength, one has to solve the field line equation (see e.g. the book of d’Haeseleer
[26]). In the xy-plane this reads as

dx

Bx
=

dy

By
. (2.51)

This can be rewritten and integrated giving
ˆ
Bydx−

ˆ
Bxdy = const. (2.52)

We want to consider the effect of a general perturbation to the equilibrium that still corresponds to
our given geometry (γ represents a potential growth rate),

δBα = B̃αeikyy+γt. (2.53)

Since the x-component consists only of the perturbation, the second integral (2.52) can be evaluated
immediatly, yielding

ˆ
δBxdy = −i

δBx
ky

. (2.54)

the safety factor q reaches rational numbers which are given by the fraction m/n. Because of basic iMHD stability
considerations we need q > 1 everywhere to avoid crucial instabilities. This means that m > n and i.e. for integers
m > 1.
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The phase of the solution can be chosen arbitrarily,

Im

(ˆ
B0ydx+

ˆ
B̃ydxeikyy+γt + i

B̃x
ky

eikyy+γt

)
= const. (2.55)

In this section we have already shown that B̃y is purely imaginary, i.e. B̃y = iIm
(
B̃y

)
which can be

used to give the general equation for this configuration13:

BE + cos (kyy) eγtBP = const., (2.56)

BE =

ˆ
B0ydx, (2.57)

BP =

ˆ
Im
(
B̃y

)
dx+

B̃x
ky
. (2.58)

This form has split the field line equation into an equilibrium part and a modification due to the
perturbation.

Ref. [20] treates the problem only in a narrow region around x = 0. This means one can approximate
the equilibrium field by its derivative and the perturbed field as constant,

By ≈ [∂xB0y]x=0 x, (2.59)

B̃x ≈ B1. (2.60)

Eq. (2.56) can then be solved explicitly to give

1

2
[∂xB0y]x=0 x

2 +
B1

ky
cos (kyy) eγt = const. (2.61)

As long as the region that is affected by the perturbation is small, it does not matter whether we
use (2.56) or (2.61). For example, we can plug in our previous numerical solutions for the perturbed
magnetic field into one of the field line equations and look at the resulting contour lines (figure 2.9). As
one can see immediately, the shape of our initial current sheet equilibrium has changed dramatically.
Near the sheet-like layer the topology of straight field lines14 has broken up and instead magnetic
islands have formed. The current sheet has split up into current filaments. Outside the separatrix
(last closed flux surface of the island) the field line topology has not changed, instead there are only
small perturbations to the “straightness” of the lines.

The main question that arises is related to the size of these magnetic islands. Do they become
macroscopically large, affecting the equilibrium and stability of our whole configuration or do they
stay small, maybe even infinitesimal?

13With i = ei
π
2 the term containing B̃x could be simplified by

Im
(

ieikyy
)

= Im
(

ei(kyy+
π
2 )
)

= sin
(
kyy +

π

2

)
= cos (kyy) .

14Which are nested flux surfaces in real configurations.
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Figure 2.9. Magnetic islands resulting for the given equilibrium field and the applied perturbation for mode
m = 3. The width of the island has been numerically calculated and included in the plot.
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Properties of magnetic islands: Either (2.56) or (2.61) indicate a periodic structure in y-direction
that leads consequently to a repetition of magnetic islands with period

h =
2π

ky
, (2.62)

which is refered as the height of the island. At the maximum of the cosine function (y = π/ky), the
island will have its largest extent in x-direction which is the island width w. To get this value one can
trace the corresponding field line (separatrix ) back to y = 0 where x = 0. At this point the cosine is 1

and the equation reads

B1

ky
eγt = const. (2.63)

It must hold for the same field line everywhere so back at the point y = π/ky and x = w we have

1

2
[∂xB0y]x=0 w

2 − B1

ky
eγt =

B1

ky
eγt. (2.64)

Solving for the width yields

w = 2eγt/2

√
B1

ky [∂xB0y]x=0

. (2.65)

This has been done using the analytically simpler form (2.61) instead of the general one (2.56)15.

These are basically all relevant properties of magnetic islands16. One can see that the island width
(which is basically the only relevant parameter) grows exponentially in time, given a positive real
growth rate.

2.1.7 Ideal Stability

Throughout most of this section we assumed static equations. However, discussing magnetic islands
we suddenly introduced a growth rate in our assumed form of the perturbation and discovered the
islands to possibly grow in time. For determining this growth rate we have to go back to the beginning
and change our initial equations to include dynamic effects.

Using dynamic equations will force us to use introduce the flow velocity in our equations. We will
assume zero flow in equilibrium:

v0 = 0, (2.66)

v = δv. (2.67)

15For the general case of (2.56), at x = 0 and y = 0 one has BE = 0 and cos (kyy) = 1:

eγtBP
∣∣
x=0

= const.

This results in an equation for w:

e−γtBE (w)−BP (w)− BP |x=0 = 0.

This is similar to the special case (2.65), but instead with a slightly distorted parabola.
16For the sake of completeness: the choice of phase will only affect the ±shift in y-direction.

32



Chapter 2 – Linear Tearing Mode Theory

Part of the dynamics will still be neglected, i.e. convective effects in the inertial terms of the pressure
balance. This means we replace the total by the partial time derivative of the velocity,

∇p =
1

4π

[
(B · ∇)B− 1

2
∇B2

]
− ρ∂tv. (2.68)

The temporal change of the magnetic field is then given by Faraday’s law (2.4) and is linked to the
velocity by ideal Ohm’s law (2.7),

∂tB = −∇×E = ∇× (v ×B) = (B · ∇)v − (v · ∇)B. (2.69)

The last equality used some vector calculus, the divergence-freeness of the magnetic field (2.6) and
additionally

∇ · v = 0. (2.70)

This equation describes what we know as incompressible flow, which is maybe not strictly true but in
good approximation useable. In our normal mode analysis we then use time dependent perturbations,

δf = f̃ (x) eik·r−iωt, (2.71)

where f is a scalar or vector quantity and ω is generally a complex number. For purely imaginary ω
we have exponential growth with growth rate

γ = Im (ω) , (2.72)

with γ > 0 meaning growth and γ < 0 decrease. For purely real omega these perturbations describe
waves. The goal of stability analysis is to identify the exact value of ω.

The application of linear perturbations to (2.69), keeping only linear terms results in the following
expression,

∂tδB = (B0 · ∇) δv − (δv · ∇)B0, (2.73)

or using normal modes

− ωB̃ = F ṽ + iṽx∂xB0. (2.74)

The last equation connects the magnetic field with the flow velocity and can be viewed as a the frozen
flux condition of Alfvén in some sense. Later we will need the x-component of this equation:

− ωB̃x = F ṽx. (2.75)
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Dynamic modifications: In the pressure balance (2.18) we have to add one term,

4π (∂xp̃ex + ikp̃) = iF B̃ + B̃x∂xB0 − ∂x
(
B0 · B̃

)
ex − ik

(
B0 · B̃

)
+ 4πiωρ0ṽ. (2.76)

The new set of central equations will then look like:

∂x

(
4πp̃+ B0 · B̃

)
= iFB̃x + 4πiωρ0ṽx, (2.77)

k2
(

4πp̃+ B0 · B̃
)

= F
(
k · B̃

)
− iB̃x∂xF + 4πωρ0 (k · ṽ) , (2.78)

∂xB̃x + ik · B̃ = 0, (2.79)

∂xṽx + ik · ṽ = 0. (2.80)

The last equation is simply the incompressibility of the perturbed flow velocity which is formally the
same as the divergence-freeness of the perturbed magnetic field. Our “simple” ODE for B̃x (left hand
side) is then modified by inertial terms introduced by the velocity perturbation (right hand side),

∂2xB̃x − B̃x
(
k2 +

∂2xF

F

)
= −4πω

F

(
∂x (ρ0∂xṽx)− k2ρ0ṽx

)
. (2.81)

This equation can be combined with the previously derived connection of B̃x and ṽx (2.75), to give
either an equation only for B̃x or ṽx. We will choose the latter one as it turned out to be much simpler
than the other one. Namely

∂x
([
F 2 − 4πω2ρ0

]
∂xṽx

)
− k2

[
F 2 − 4πω2ρ0

]
ṽx = 0. (2.82)

A slightly different form of this equation can also be found in the book of GR [20].

Stability analysis: We do not want to solve (2.82), instead we multiply it by the complex conjugate
of the velocity ṽ∗x and integrate it over the whole domain −∞ < x < ∞17. We can apply partial
integration since the perturbed flow velocity must vanish at the boundaries ṽx (x→ ±∞) = 0, to get

ˆ +∞

−∞
d′x
(
F 2 − 4πω2ρ0

) (
|∂xṽx|2 + k2 |ṽx|2

)
= 0. (2.83)

This equation is essential in our stability analysis. It gives a general condition for ω2:

ω2 =
F 2

4πρ0

(2.19)
=

B2
0

4πρ0
k2‖ = v2Ak

2
‖. (2.84)

Because the right side is purely positive, we can immediately see that ω must be purely real. This means
that we have oscillatory modes or waves (shear Alfvén waves) and our equilibrium configuration is
stable. Furthermore, this means that there are no macroscopic magnetic islands produced by the
current sheet in this particular iMHD treatment.

17Of course we must exclude the narrow region around the sheet-like layer.

34



Chapter 2 – Linear Tearing Mode Theory

2.2 Resistive MHD Treatment

It was already mentioned several times that the initial iMHD equations are not valid throughout the
whole domain of the current sheet. In the inner region we need to use different, non-singular equations
to investigate the stability of the current sheet. This could be any model that describes the plasma
more or less accurately, e.g. kinetic theory or resistive Magnetohydrodynamics. As has been stated
in the beginning, the latter one was used by FKR [23]. This section will connect their work to the
previous analysis (section 2.1) and will discuss some of the main results.

2.2.1 Resistive Modifications

We will use the same assumptions and the same configuration as in the section before. The main
difference lies in Ohm’s law which introduces a resistivity or equivalently inverse conductivity η = σ−1

in the equations:

E + v ×B = ηJ. (2.85)

This can now be applied to the remaining rMHD equations that coincide to the iMHD ones. The
procedure is exactly the same as in section 2.1.7. Resistive Ohm’s law (2.85) will link the magnetic
field perturbation with the velocity, but in a different way as the frozen flux condition has done,

− iωB̃x = iF ṽx +
η0
4π

(
∂2xB̃x − k2B̃x

)
. (2.86)

Slightly rewritten and put together with the perturbed momentum equation we arrive at the central
set of equations:

∂2xB̃x − k2B̃x = −4πi

η0

(
ωB̃x + F ṽx

)
, (2.87)

∂2xB̃x − B̃x
(
k2 +

∂2xF

F

)
= −4πω

F

(
∂x (ρ0∂xṽx)− k2ρ0ṽx

)
. (2.88)

These two equations correspond to the dimensionless equations (13, 14) derived by FKR18. At this
point we will end this resistive MHD treatment, because the complexity of the problem rises beyond
the expected reward of fully solving it. This is due to the fact that our interest will be more in the
difference of inner and outer region which has been already discussed and not in the growth rates and
resistive stability itself. For the sake of completeness a short summary of some of the main results of
the work of FKR is given in the next section.

18They included additionally x-dependent resistivity and gravitational effects and have the x and y axis switched.
Additionally their frequency ω corresponds to a growth rate γ in this notation.
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2.2.2 Discussion on the FKR Treatment

Solving the rMHD equations in the inner region of the current sheet is a tedious work. FKR assumed
many quantities almost constant in the narrow region except B̃x and ṽx. A solution for the latter one
could be found in terms of normalized Hermite functions, leaving only the first one to be identified.
In the end the “constant-ψ approximation”19 was used which means that B̃x is approximately constant
in the inner region. This can taken to be valid for almost all k, except for those which correspond to
wavelengths smaller than the size of the inner region20.

Given all these approximations FKR managed to find an analytical expression for the growth rate
(2.71), (2.72)21:

γ = 4Ω4/5

(
η30 |∂xF |

2
x=0

(4π)
4
ρ0

)1/5

. (2.89)

They used the abbreviation Ω for a quantity that can be connected to the discontinuity ∆′ we encoun-
tered in (2.36),

Ω ≈ 1

12
∆′ +O (η′) . (2.90)

The second term can be neglected because it only exists for non-constant resistivity which we do not
assume here22. Using this in the above expression for the growth rate (2.89) we find

γ ≈ 0.55

(
∆′4η30 |∂xF |

2
x=0

(4π)
4
ρ0

)1/5

. (2.91)

This is a remarkable result23 as all quantities on the right side are known and the growth rate is now
fully determined. One may legitimely ask where to get ∆′ from, but we already found it as a solution
in the treatment of the outer region. As this quantity was defined at the boundary of both regions it
must be the same in the whole domain, thus we can calculate it with (2.44).

The second thing which can be immediatly seen, is the fact that all quantities on the right side are
defined as positive except ∆′ which can be either positive or negative. For exponential growth we need
γ > 0 which leads us to the condition for the tearing instability to occur:

∆′ > 0. (2.92)

Last thing to mention is the resistivity dependency of the growth rate. As γ is proportional to some
power of η, the growth rate gets smaller the smaller the resistivity gets. At η → 0 we have γ → 0 and
we get stability back24.

Finally we can also state an expression for the sheet-like layer thickness which is analytically linked to
the growth rate and thus given by

19The name comes from the fact that in their notation ψ ≡ B̃x.
20This will hold for m = 1 modes in cylindrical and toroidal configurations.
21Equations were taken from the work of FKR and translated into the notation used here.
22Inclusion of this term leads to a quadratic equation in Ω which still can be solved and inserted in (2.89).
23Exactly the same result can be found in the book of GR [20] who did the treatment of the inner region in a different

(and simplified) way compared to FKR.
24This is somehow evident as η → 0 corresponds to the iMHD limit and thus to stability as has been shown in section

2.1.7. Of course we have to again exclude the inner region in that case.
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Figure 2.10. Cartoon to show the origin of the name tearing instability. One can think of the instability
tearing the original straight field line equilibrium apart, leaving room for magnetic islands to form.

d =

(
γη0ρ0

4 |∂xF |2x=0

)1/4
(2.91)
≈ 0.61

(
η20ρ0∆′

4π |∂xF |2x=0

)1/5

. (2.93)

This quantity only makes sense for the case of (2.92) to be true. Same as for γ, the thickness of the
sheet-like layer gets smaller for smaller resistivity, arriving at a single sheet for η0 → 0.

2.3 Summary on Tearing Mode Theory

In the previous sections we did a quite detailed iMHD treatment of the current sheet equilibrium.
From the basic equations we applied linear perturbations and did a normal mode analysis to find a
singular behaviour of the equations defining the perturbed magnetic field B̃x. We resolved this by
splitting the domain into inner and outer region. At the boundary a short analysis has shown that
the B̃y has a discontinuity and due to the divergence-freeness ∂xB̃x which was linked to the relative
discontinuity ∆′.

In the outer region we solved the equations to find all components of B̃ and a value for ∆′. A numerical
toy model was used to show all the features of the solution. Dependent on the wavevector (or mode
number) we got positive or negative values for ∆′. The first for small k and the latter for large ones.
An investigation of the magnetic field line structure has shown a potential development of magnetic
islands that would grow in time given a positive growth rate which was, however, not defined to that
point.

For this reason we did the whole analysis again for the dynamic case which gave us a slight modification
of our defining equations for B̃x, introducing the perturbed flow velocity component ṽx. We have
found an equation for the latter quantity that could be rewritten to show that the growth rate is in
fact imaginary (i.e. a frequency) giving us waves and stability.

Still having in mind that we did not solve anything in the inner region at all, we turned to the original
FKR treatment using rMHD to find a real growth rate that is linked to ∆′. For positive ones we have
the tearing instability that is characterized by exponential growth.

Combining both treatments we can summarize that small perturbation mode numbers may lead to
the equilibrium beeing tearing unstable, resulting in exponentially growing magnetic islands. At this
point one can imagine the origin of the name tearing instability: it can be viewed as the mechanism
that tears the equilibrium, i.e. the straight field line configuration apart, leaving room for magnetic
islands to form (figure 2.10) which lower the overall magnetic energy of the configuration.
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2.4 More on Tearing Modes and Magnetic Island Growth

This section shall provide a short overview of the basic works on tearing mode theory and furthermore
on magnetic island growth. In no way this should be considered a full list of all relevant publications.

The basic work on tearing mode theory starts with the work of FKR [23] treating the current sheet
configuration. An extension to cylindrical geometry and a more rigorous stability analysis for different
current profiles can be found in the subsequent work of Furth together with Rutherford and
Selberg [27]. Application to toroidal systems was made by Glasser, Greene and Johnson [28,
29].

Non-linear theories: A new area on this topic was opened by the work of Rutherford [30]
who did a non-linear treatment of the problem and could show that the exponential growth of the
tearing instability was replaced by algebraic (quadratic) growth of the perturbation as the size of the
magnetic island approaches the thickness of the sheet-like layer. He could write an ODE (now often
called Rutherford equation):

∂w

∂t
∝ ∆′η. (2.94)

for the time evolution of the island width that is linked to ∆′ as the source of the tearing instability.
The main cause of the weakened growth was found to be third-order non-linear forces that overcome
inertia as the main opposing mechanism in island growth.

Based on this work, White, et al. [31] could show in a quasi-linear analytical treatment that the island
size may saturate for weakly unstable modes (∆′ positive but not large). Technically, the Rutherford
equation is then modified

∂w

∂t
∝ [∆′ (w)− αw] η. (2.95)

This means that the driving term ∆′ is not constant for a given mode, but furthermore depends on
the actual size of the island. The growth itself is also decreased by a restraining term. The square
bracket may possess a zero for some width and therefore may saturate.

Magnetic Island Growth: The Rutherford equation was then applied to magnetic islands in
general without requiring them to be created by the tearing instability. For example, Hahm and
Kulsrud [32] studied the effect of a boundary perturbation on magnetic islands and Fitzpatrick [33]
the interaction with external structures in cylindrical geometry. Based on the first one, Fitzpatrick
and Hender [15] also considered the interaction of Resonant Magnetic Perturbations with the plasma,
which links this topic to RMPs.
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Neoclassical tearing modes: The work of Carrera, et al. [34], has shown that a kinetic treatment
of the island evolution can lead to different behaviour. Particulary the bootstrap current modifies the
dynamics of tearing modes. Further it was found that radial diffusion, finite orbit width effects,
electrostatic potentials, etc. do modify the evolution of islands as well. This has been summarized in
the term “Neoclassical Tearing Modes”. A discussion with more references of the stated effects can be
found in the overview paper by Wilson [35]. It is worth to note that all described effects do result in
a modification of the Rutherford equation discussed above.

Books on tearing modes: Often cited in this work is the book of GR [20] which treats the same
configuration as FKR although a bit differently in a simplified version. The book of White [36]
discusses tearing modes in cylindrical geometry (or equivalently a large aspect ratio tokamak) and
uses an approach with the helical flux instead of the perturbed field [27], simplifying equations a lot.
The same holds for the standard book tokamaks by Wesson [6] which additionally puts the topic in
a whole context of MHD instabilities.
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Linear Models in Cylindrical
Approximation

This chapter is dedicated to introduce the cylindrical approximation where we treat the tokamak as a
cylinder. After the initial considerations on geometry we will derive an equation similar to the “infinite
conductivity equation” of FKR in section 2.1. This equation will hold for the outer regions of our
boundary problem. For the inner region the Kinetic Linear Cylindrical Approximation is introduced.
At the end of the section, an existing code will be used to analyze perturbations from the view of
kinetics.

3.1 Large Aspect Ratio Limit / Cylindrical Tokamak

One of the most intuitive choices of a coordinate system to represent toroidal geometry are quasi-
toroidal coordinates, defined by the transformation laws

x =R cos (ϕ) ,

y =R sin (ϕ) , with R =R0 + r cos (θ) , (3.1)

z =Z, Z =r sin (θ) .

The transformation is made via an intermediate cylindrical coordinate system (R,ϕ,Z). The cylin-
drical R (large radius) and Z are represented by polar variables r, θ that have their origin on the
major radius R0. Hence we get a system (r, θ, ϕ) which we call quasi-toroidal1 (figure 3.1). The angles
θ ∈ [0, 2π] and ϕ ∈ [0, 2π] are called poloidal and toroidal respectively and r ∈ [0, a] is the small radius
(a is the minor radius). One can immediately see, that lines of constant r form nested tori, lines of
constant θ form ribbons and lines of constant ϕ form circles (cross sections).

In a tokamak (generally also in a toroidal device) we can define the aspect ratio as the ratio between
major and minor radius [24]:

A =
R0

a
. (3.2)

1The word quasi is used to distinguish this system from the ordinary torus coordinates.
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Figure 3.1. Sketch of quasi-toroidal coordinates. Blue represents the toroidal system.

For example spherical tokamaks have a very low aspect ratio (A→ 1) whereas conventional tokamaks
have typically larger ones A = 2 ∼ 10 [24]. The extreme case would be A→∞ which corresponds to
a cylinder (figure 3.2). In this case, the cylinder height2 z corresponds to the toroidal direction. The
physical component of the toroidal magnetic field B̂ϕ can then be approximated by the z-component
of a field in cylindrical geometry Bz3.

Technically we can approximate a tokamak with major radius R0 in large aspect ratio limit by a
cylinder with z ∈ [0, 2πR0] that must be periodically continued infinitely in the toroidal direction.
This is also known as the Cylindrical Tokamak.

The MHD equilibrium [24] of such a configuration will have nested flux surfaces in the form of concentric
circles around the magnetic axis which is located at R0. The combination of toroidal and poloidal
field will cause a winding of field lines around the cylinder which can be quantified by the rotational
transform ι/2π, or (more common for tokamaks) its inverse, the safety factor (see figure 3.3),

q =
r

R

Bz
Bθ

. (3.3)

This is a common definition as the ratio between toroidal (= z) and poloidal field. It is usually an
approximation for the exact q, but in fact, it is exact for circular cross sections [26]. Whenever a field
line closes upon itself after an integer amount of toroidal windings, one speaks of it beeing on a rational
surface which is written as4

x
y

R0

R→∞ (R≈R0)

cylinder-like

Bφ≈Bz ^

Figure 3.2. Sketch of large aspect ratio limit. Blue represents the toroidal system.

2The lower case letter z is chosen intentionally to not confuse it with Z from the cylinder system above.
3In the following, the hat on physical coordinates is omitted as long as no other coordinates are used (especially the

covariant ones).
4Absolute value of q because the sign is a matter of convention.

41



Chapter 3 – Linear Models in Cylindrical Approximation

Figure 3.3. Magnetic field lines for different safety factors and 200 toroidal (z) turns. (a, b) show low rational
field lines that close themselves after few toroidal transits. (c) shows a rather high rational field lines with 10
poloidal turns for 32 toroidal turns. (d) was taken twice the golden ratio φ (highly irrational) to represent
the effect of irrational field lines. Although the absolute numerical value is not so different from the lower left
figure, the irrational field line will map the whole cylinder surface whereas the other one will stay at a finite
amount of lines.

|q| = qr =
m

n
. (3.4)

The safety factor on this flux surface is a rational number of two integer numbers m and n which
characterize the amount of poloidal and toroidal windings done. For example m = 5 and n = 3 we
have three poloidal turns done upon five toroidal turns until the field line closes.

This should complete all the essential geometric considerations and allow the analysis of the configu-
ration in terms of iMHD in the next section.
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3.2 Ideal MHD in the Cylindrical Tokamak

Based on the already established geometric considerations we will first look at the equilibrium and at
the perturbation afterwards. In the end we will identify the locations of resonant regions, where we
have to use the split up of outer and inner region from chapter 2.

3.2.1 Cylindrical Equilibrium

The symmetry of the cylinder gives us no other choice as to consider the following general form for
the equilibrium magnetic field:

B0 = B0θ (r) eθ +B0z (r) ez. (3.5)

The divergence-freeness follows naturally and the current can be computed using Ampères law5,

4πJ0 = (−∂rB0z) eθ +

(
1

r
∂r [rB0θ]

)
ez. (3.6)

The static pressure balance gives us the pressure gradient:

4π∇p0 = −
(
B0z∂rB0z +B0θ

1

r
∂r [rB0θ]

)
er. (3.7)

We can see, that the magnetic field which has only poloidal and toroidal components gives rise to only
poloidal and toroidal currents. The pressure gradient points radially outwards and is perpendicular to
both current and magnetic field. The pressure decreases with radially increasing magnetic fields and
vice versa. Constant pressure surfaces, as well as the magnetic field and the current lie on the circular
cross sectioned flux surfaces (figure 3.4).

z

∆

p

y

x

r

θ

J0(r3)

B0(r3)

∆

p

J0(r2)

∆

p

J0(r1)

B0(r1)

B0(r2)

Figure 3.4. Sketch of the equilibrium situation. Three nested flux surfaces are drawn in cylindrical coordinates
in 3D (for better visibility they are “pulled out” of each other). Current and magnetic field lie on this flux
surface whereas the pressure gradient points outwards. For illustration purposes B0 and J0 are drawn with a
large angle between them. Usually they are almost parallel.

5Note that we have to use vector calculus in cylindrical coordinates, see ref. [25].
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3.2.2 Harmonic Perturbations

The perturbation of the equilibrium will be done in the same way as in the treatment in slab-geometry,
namely (2.12)

B = B0 + δB.

The decomposition into Fourier modes is a bit more tricky,

δB = B̃ei(mθ+kzz), (3.8)

with

k = kθeθ + kzez, (3.9)

kθ =
m

r
, (3.10)

kz =
n

R0
. (3.11)

As usual, we denote m and n as the poloidal and toroidal mode numbers respectively. The components
of the “wave vector” k are then given by the ratio of the mode number and the corresponding length
scale. As a result of kθ having a radial dependence, we will only use m instead of kθ in the exponential
(3.8). This is still convenient, as can be shown by calculating the divergence of the perturbed magnetic
field:

∇ · δB =
1

r
∂r (rδBr) +

1

r
∂θδBθ + ∂zδBz,

=

[
1

r
∂r

(
rB̃r

)
+ i
(
k · B̃

)]
ei(mθ+kzz).

In cylindrical coordinates we have to use the corresponding divergence operator which gives us a
prefactor of 1/r for the θ derivative. Applying this to the exponential we can write this as a scalar
product of k with the perturbed field. Generally we just have to keep in mind, that kθ and k have a
radial dependence.

The divergence-freeness can be written immediately using our sample calculation above:

1

r
∂r

(
rB̃r

)
+ i
(
k · B̃

)
= 0. (3.12)

The goal of this section is to use iMHD to derive an equation similar to (2.25). To achieve this, we
again start at the perturbed ideal static pressure balance,

4π∇δp = (B0 · ∇) δB + (δB · ∇)B0 −∇ (B0 · δB) +O
(
δ2
)
,

and apply our equilibrium (3.5) and our perturbation (3.8) to it. By defining the abbreviation

W ≡ (B0 · ∇) δB + (δB · ∇)B0, (3.13)

W = W̃ei(mθ+kzz), (3.14)

we get
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4π∇δp = W −∇ (B0 · δB) . (3.15)

The components of W are given by evaluation of (3.13) in cylindrical coordinates:

W̃r = iB̃r (k ·B0)− 2

r
B0θB̃θ, (3.16)

W̃θ = iB̃θ (k ·B0) +
1

r
B0θB̃r + B̃r∂rB0θ, (3.17)

W̃z = iB̃z (k ·B0) + B̃r∂rB0z. (3.18)

The trick is now to apply the curl operator on (3.15). Since two terms are given as gradients of a
scalar function, they vanish by a fundamental rule of vector calculus, leading to

∇×W = 0. (3.19)

We evaluate this curl to get

kθW̃θ − kzW̃z = 0, (3.20)

ikzW̃r − ∂rW̃z = 0, (3.21)
1

r
∂r

(
rW̃θ

)
− ikθW̃r = 0. (3.22)

This is now the central set of equations to solve. As for the slab-like case, one can extract an equation
for the radial component of the magnetic field perturbation,

∂r

( r
k2
∂rB̃r

)
− rB̃r

[
1− ∂r

(
1

rk2

)
+ Fp

]
= 0, (3.23)

with the quantity

Fp =
4π

F
r∂r

(
1

rk2
{k× J0}r

)
+

2

rk2F

(
4πk2z
F

∂rp0 + kz∂rB0z

)
, (3.24)

and the familiar scalar product

F = k ·B. (3.25)

This equation was first given by Furth, Rutherford and Selberg in [27]. The version found there
can be converted into this one by some algebra. Exactly this version can also be found in the work of
Heyn, et al. [37].

We can further evaluate (3.25):

F = kθB0θ + kzB0z =
m

r
B0θ +

n

R
B0z =

nB0θ

r

(
m

n
+
rB0z

RB0θ

)
.

The second term in the bracket is exactly our definition of the safety factor (3.3) in this geometry.
Since F is in the denominator of (3.24), we can write the condition for F = 0 as6

6Note that the exact relation depends on the sign of q which is defined by the convention used. This will determine
if positive or negative mode numbers are resonant.
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center
r0=3

interface
rp=67

antenna
ra=70

idealwall
rw=80

vacuum vacuum or plasma

r

Figure 3.5. Configuration as described in the main text. All values are given in cm.

qs = q|r=rs = −m
n

= −qr. (3.26)

This means that we encounter singularities at surfaces r = rs where q is rational. We call this
singularity surface resonance.

3.3 Kinetic Linear Model in Cylindrical Approximation

In the previous section we analyzed the perturbed equilibrium in terms of iMHD and found, as expected,
singularities in the equations. The locations of these singularities coincide with the location of rational
surfaces in terms of the safety factor. After the investigation of the slab-like case, the next logical step
would be to divide our domain into outer and inner regions.

Instead of iMHD we will apply a kinetic model to the configuration to get a more precise understanding
of the underlying physics. Furthermore we want to model static RMPs which we do by appliying
external perturbations to the system (antenna). At last, we will make our model more “realistic” by
using appropriate boundary conditions (BC). An ideal wall (σ →∞) is placed at the very edge of the
configuration. The used setup is shown in figure 3.57. We call the different regions in the configuration
zones.

3.3.1 RMP Modelling

The effect of static RMPs can be modeled by virtually putting a coil outside the plasma which we
call “antenna” [37]. In the antenna a sheet-like current will flow and create the external perturbation
field. The coil is modelled infinitesmal thin, which means that we only have poloidal and toroidal
components in a single sheet:

JA =
(
JAθ eθ + JAz ez

)
ei(mθ+kzz), (3.27)

JAθ = IAθ δ (r − ra) , (3.28)

JAz = IAz δ (r − ra) . (3.29)

7We exclude the most inner region near the magnetic axis because we have a singularity in our coordinate system
there. The solution there should be replaced by the analytical solution of (3.23) in plasma away from resonances. This
is similar to the vacuum solution that is shortly discussed in section 3.3.2.
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This current is also decomposed into Fourier modes since it is a perturbation to the equilibrium. It
has to be divergence-free (∇·JA = 0, RMPs are static), thus we get a relation between the components,

kθJ
A
θ + kzJ

A
z = 0. (3.30)

We include it into our analysis in Ampère’s law,

1

4π
∇× δB = δJ + JA, (3.31)

which modifies our central equation (3.19):

∇×W = 4πi
(
JAθ B0z − JAz B0θ

)
(kzeθ − kθez) ei(mθ+kzz). (3.32)

In the end (3.23) will get an additional inhomogeniety on the right hand side,

∂r

( r
k2
∂rB̃r

)
− rB̃r

[
1− ∂r

(
1

rk2

)
+ Fp

]
=

4πr

ikθ
JAz . (3.33)

3.3.2 Vacuum Solutions

First we want to consider solutions in vacuum which correspond to the standard case in the outer
zones and to no plasma in the innermost zone. There we can take the iMHD equation (3.33) and set
all “plasma-quantities” to zero. This means Fp = 0, since there is no current or pressure in vacuum
(the r-derivative of B0z is connected to a current via Ampère’s law). We do not consider the antenna
current directly in the equation but rather split the domain into “inside” and “outside” the antenna.
The solutions for the magnetic field in these regions are then connected by a jump condition at the
antenna due to the current. Thus, the equation for B̃r in vacuum is

∂r

( r
k2
∂rB̃r

)
− rB̃r

[
1− ∂r

(
1

rk2

)]
= 0. (3.34)

This equation is Bessel-like but does not have the standard form and to find a corresponding solu-
tion will be quite sophisticated. Thus we can make a shortcut by starting again from magnetostatic
Maxwell’s equations in vacuum,

∇× δB = 0, (3.35)

∇ · δB = 0. (3.36)

The first one yields three relations for all the field components:

kθB̃z − kzB̃θ = 0, (3.37)

ikzB̃r − ∂rB̃z = 0, (3.38)
1

r
∂r

(
rB̃θ

)
− ikθB̃r = 0. (3.39)

The second one can be combined with (3.37) and (3.38) to directly yield a modified Bessel equation
in standard form for B̃z in the variable kzr:

r2∂2r B̃z + r∂rB̃z −
(
m2 + r2k2z

)
B̃z = 0. (3.40)
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Solutions inside the antenna are given by e.g. ref. [38] (§10.25) and by (3.37) and (3.38):

B̃z = CIm (kzr) , B̃θ = C
kθ
kz
Im (kzr) , B̃r = −C i

kz
∂rIm (kzr) . (3.41)

The function Im is a modified Bessel function of first kind,

Im (kzr) =

(
1

2
[kzr]

)m ∞∑
k=0

(
1
4 [kzr]

2
)k

Γ (k + 1) Γ (k +m+ 1)
, (3.42)

with complex constant C which has to be identified to match the BCs. The last thing we want to
consider is the small argument limit8 that should hold approximately since kz is very small and r is
limited by the small radius a. Via recursion relations one can define the derivative of Im (see [38]
§10.29) as the sum of the two “neighbouring” (with next smaller and next larger m) modified Bessel
functions9. Keeping only the first terms of both series expansions (3.42) we get

B̃r ≈ C1r
m+1 +

C2

r
rm

kzr→0−→ ∝ rm−1. (3.43)

Both C1,2 are again complex constants. This shows that B̃r follows an approximate m−1 power-law in
vacuum. In the above treatment we implicitly assumed our domain inside the antenna. Outside, also
the modified Bessel functions of second kindKm are allowed10. In general these have an exponentially
decreasing behaviour.

By now we only considered the general structure of the solutions in vacuum. One can get the full
solution by matching BCs and splitting the domains. In plasma (3.34) can be solved outside the
resonances by reintroducing Fp. The exact details are not relevant for this work and will not be
sketched here.

3.3.3 Kinetic Plasma Response

The model that will be briefly described here was developed in [39, 40] and implemented in a code
with the name KiLCA (Kinetic Linear Cylindrical Approximation). A short overview shall be given.

The starting point is the plasma kinetic equation,

∂f

∂t
+ v · ∇rf +

e

m
(E + v ×B) · ∇vf =

(
∂f

∂t

)
col.

, (3.44)

for a particle distribution function f = f(r,v, t). In the round brackets, the Lorentz-force is consid-
ered to act on the particles. The left side corresponds to the total time derivative of f which can only
change by collisions, described by the right side. The collisions are commonly modeled by different
collision operators, (

∂f

∂t

)
col.

= Lcol.f, (3.45)

8This is especially good for large m modes, because the second term in the bracket of (3.40) can then be neglected
and we get an Euler ODE for B̃z .

9For completeness ∂rIm (kzr) = Im+1 (kzr) + m
kzr

Im (kzr) was used here.
10These would diverge at zero and thus are no solution inside the antenna.
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where the choice of the collision operator will generally affect the physics of the problem (whether the
operator conserves particle number, energy, momentum, etc. nor not).

The collision operator first used in KiLCA was the Krook collision operator that conserves neither
particles, energies or momenta (but it is simple) [39]. Especially it violates Galilean invariance which
turned out to be problematic because the code did calculations in a moving frame (reasons will follow).
In ref. [40] the operator was changed to a Fokker-Planck type collision operator which conserves
particle number and keeps Galilean invariance of the distribution function.

Solution of the Kinetic Equation: The kinetic equation (3.44) can be analytically solved in
linearized form to yield the perturbed distribution function defined by f = f0 + f̃ . The solution
includes a source term Q̃ = Q̃

(
Φ̃, Ã

)
that depends on the perturbed potentials. Using radiation

gauge, one can set Φ̃ = 0 and the electric field solely depends on the perturbed vector potential (which
is again decomposed into separated harmonics) by

Ẽ = iωÃ, (3.46)

Ã = Ã (r) ei(mθ+kzz−ωt). (3.47)

The external perturbations are static (ω = 0) which does not allow us to solve for the electromag-
netic fields. By reason of this, one can switch to a moving frame (in z) where the fields are again
time-dependent. This velocity is chosen non-relativistic, thus the transition is done by Galilean
transformation. In the end the current has to be transformed back to the laboratory frame which
forces the use of an Galilean invariant collision operator.

Given Ã, the formal expression for Q̃ contains Ẽ which can be expanded in terms of finite Larmor radii
(FLRE)11. Next, the perturbed distribution function can be found and the first moment in velocity
space12 yields the perturbed current density J̃ = J̃ (σ), where σ is the conductivity operator. KiLCA
will first compute the conductivity operator σ and then J̃.

Electromagnetic Field: Once the plasma response current has been evaluated, the remaining task
is to compute the EM field perturbation by using Maxwell’s equations (in Fourier space):

∇× Ẽ = iωB̃, (3.48)

∇× B̃ = −iωẼ + 4π
(
J̃p + J̃a

)
. (3.49)

The difference to the usual form of these equations is the extra term in Ampère’s law that now includes
the plasma response current J̃p and additionally the external antenna current J̃a. In the cylinder, these
equations boil down to ODEs for the single harmonics, dependent on r. They are solved together with
the BC at the antenna, ideal wall, center and at the interface between plasma and vacuum (last closed
flux surface).

11This is done to include effects that are perpendicular to the direction of the magnetic field. Otherwise the integration
over the gyrophase in the end would not include such effect when the position is evaluated at the gyrocenter only.

12The integration over the gyrophase has to be done by introducing a second FLRE. The result will contain two
expansions.
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3.4 Application of KiLCA to a Test Case

To investigate some general properties of the solutions in this configuration, a simple artifical test case
was constructed. This should exclude additional effects of real shots like the pedestal region or fluid
resonances. These will be used in the next section.

3.4.1 Profiles & Equilibrium

The profiles were generated as parabolic decreasing profiles for temperatures and density with real
magnitudes and geometric parameters for AUG shots. The following functional form was used,

n =n0

(
1−

(
r

r0

)2
)
, Te =Te0

(
1−

(
r

r0

)2
)
, Ti =Ti0

(
1−

(
r

r0

)2
)
, (3.50)

with n0 = 3.5 · 1013 cm−3, Ti0 = 5 keV, and Te0 = 7 keV (corresponding to values at the center). The
plasma radius is r0 = 67 cm, antenna radius ra = 70 cm, ideal wall radius rw = 80 cm and large torus
radius R0 = 170 cm. The safety factor has a quadratic increasing form (starting at 1) with overall
negative sign due to the used coordinate convention13,

q =−

(
1 + q0

(
r

r0

)2
)
, (3.51)

with q0 = 514. Radial electric field profile was set to zero everywhere and the equilibrium velocity
components were calculated by the code consistently with the other inputs. All profiles can be seen in
figure 3.6. The perpendicular electron velocity is given additionally, to show that no fluid resonances
(ve⊥ = 0) occur for our test profiles.

The equilibrium magnetic field and current density components can be seen in figure 3.7 and 3.8
respectively. The toroidal magnetic field magnitude at the center was chosen to be ≈ −1.7 · 104 G.
The sign matches the coordinate convention.

3.4.2 Vacuum Perturbations & Plasma Response

Now the antenna can be switched on. The configuration was chosen as in figure 3.5 and the total
current in the antenna I0 = 150 statA in units of c (1.5 kA). In the first run we want to consider
the case with vacuum in the most inner zone. Results for the magnetic field and current density
perturbations can be seen in figure 3.9 and 3.10 respectively.

Inside the antenna the perturbed magnetic field components increase by approximatly a power law
from the center up to the antenna (3.43). Since there is no plasma in these runs, there is no effect
of the resonance. At the outside of the antenna, B̃r falls off and matches the classical EM BC at the
ideal wall, namely the normal magnetic field must vanish. The other components have a discontinuity
at the antenna that is due to the current in the coils. These currents can be seen in figure 3.10. In the
rest of the vacuum regions, all components of the current can be seen as zero.

The situation changes when putting plasma inside the innermost zone (figure 3.11). Inside the antenna,
first all components fall off again (B̃θ and B̃z feel the transition between vacuum and plasma near

13This will lead to resonances appearing at q = +m
n
.

14The parameter q0 is linked to q at the plasma radius by: q0 = q (r0)− 1.
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Figure 3.6. test profiles used for KiLCA runs. Quantities were rescaled by their succeeding exponentials to
cover only one order of magnitude in the plot. Safety factor and perpendicular electron fluid velocity is shown
as its negative. Vertical lines show the positions of the main rational surfaces for n = 2 given the safety factor
profile.

Figure 3.7. Equilibrium magnetic field for given test profiles. Shown is the magnitude, the poloidal and
toroidal component of B0 respectively.
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Figure 3.8. Equilibrium current density for given test profiles. Shown is the magnitude, the poloidal and
toroidal component of J0 respectively.

the antenna15). Further inside, the magnetic field gets shielded by sheet-like currents on the resonant
surface (figure 3.12). The radial field stays continous whereas B̃θ and B̃z tend to have16 a discontinuity
there17. Inside the resonant surface there is hardly any effect of the external perturbation present.
The magnitude of the radial current is some orders smaller than the other components because it is
substantially harder to move particles against the (equilibrium) magnetic field lines than along them.

3.4.3 Analysis of Shielding in the Test Case

The previously described shielding is of great interest. For this test case we can make at least a
qualitative analysis by plotting both, the vacuum and plasma response radial fields for different modes
(figure 3.13). All calculated modes are shielded in this case. A better figure of merit is the form factor
evaluated at the position of the resonant surface,

Ts =

∣∣∣B̃plas
r

∣∣∣∣∣∣B̃vac
r

∣∣∣
∣∣∣∣∣∣
r=rs

. (3.52)

We can plot these values for different modes at the location where the resonance occurs (figure 3.14).
This confirms our initial observation that all modes are strongly shielded (factor 100 here). At the edge,
shielding decreases due to the higher collisionality. This matches to the simple two-fluid estimation we
did in the introduction (1.9).

15This is due to the rapid change of finite density to n = 0 in the vacuum.
16They cannot have a “real” discontinuity because the model of KiLCA is not iMHD and the current sheet has finite

width.
17There are some oscillations, probably due to Alfvén resonances near the surface resonance.
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Figure 3.9. Vaccum magnetic field perturbation for m = 3, n = 2. Shown is the absolute value of all
components (blue) and the location of the resonant region (pink).

Figure 3.10. Vaccum current density perturbation for m = 3, n = 2. Shown is the absolute value of all
components (blue) and the location of the resonant region (pink).
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Figure 3.11. Total magnetic field perturbation with plasma response for m = 3, n = 2. Shown is the absolute
value of all components (blue) and the location of the resonant region (pink).

Figure 3.12. Total current density perturbation with plasma response form = 3, n = 2. Shown is the absolute
value of all components (blue) and the location of the resonant region (pink). The plots for the poloidal and
toroidal components are zoomed in to see the rather smaller sheet currents.
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Figure 3.13. Absolute radial magnetic field perturbation in vacuum and with plasma response for different
poloidal modes and n = 2. The vertical line shows the location of the resonant surface.
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Figure 3.14. Form factors at the positition of the resonant surface for different poloidal modes and n = 2.
Strong shielding (about factor 100) can be observed.
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3.4.4 Poincaré Plots

These kind of plots represent cuts through real space where particles move along their trajectories.
The result are points where these trajectories cross the plane that is cut through. To do this, we put
test particles inside the cylinder and let them move along the magnetic field lines. Each time the
particle reaches the end of the cylinder z = 2πR0, we put it back at z = 0 and save the radial and
poloidal position of it as a point. We do this for different starting positions and map until a certain
number of turns is reached.

Mapping: To do the field line tracing, we start again with the equation of a magnetic field line
(section 2.1.6, [26]), now in cylindrical coordinates:

dr

Br
=

dθ

Bθ
=

dz

Bz
. (3.53)

Notice that we have to use the contravariant components of the vector field B since they do not coincide
with the physical ones as in slab-like geometry. They are related by

B̂r = Br, B̂θ = rBθ, B̂z = Bz. (3.54)

We can write two equations for the r- and θ-coordinate of the field line as

dr

dz
=
B̂r

B̂z
,

dθ

dz
=

B̂θ

rB̂z
. (3.55)

First we will consider only the equilibrium. In that case we have B̂r = 0 and we can write using the
definition of the safety factor (3.3),

dr

dz
= 0,

dθ

dz
=

1

qR0
. (3.56)

Integrated over z we get the equilibrium mapping as

r = r0, θ = θ0 + q−1
z

R0
. (3.57)

This means that the field line will stay on the same radius forever, and the poloidal angle will turn
with increasing z according to the toroidal winding number ι = 2πq−1. The Poincaré plot will only
contain nested circles. This fits perfectly with our expectations for the equilibrium.

Now we will treat the full magnetic field that consists of the equilibrium field and the perturbed field.
Our field line equations read:

dr

dz
=

δBr
Bz0 + δBz

,
dθ

dz
=

Bθ0 + δBθ
r (Bz0 + δBz)

. (3.58)

Formally we can write the mapping by integration as

r = r0 +

ˆ
dz

δBr
Bz0 + δBz

, θ = θ0 +

ˆ
dz

Bθ0 + δBθ
r (Bz0 + δBz)

. (3.59)

Practically we have to evaluate these integrals numerically. There are two important things to consider
when doing this. First, the perturbed field components are generally complex numbers where the
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imaginary part represents a phase shift between the quantities. When taking the physical fields as
written above, we have to choose a particular phase18,

Re (δBr) = Re
(
B̃re

i(mθ+kzz)
)

= Re
(
B̃r

)
cos (mθ + kzz)− Im

(
B̃r

)
sin (mθ + kzz) .

Second, all quantities in the mapping do have explicite z-dependence in the trigonometric functions
only. Naïvely integrating the field line equation (3.58) at once does result in the exact same plot as in
the equilibrium case. This is because the contributions from the trigonometric functions do cancel upon
integration over one full interval. The correct way to do this is considering the implicite z-dependence
of the quantities in (3.58). Since r and θ will change for each z-step according to (3.59), the fields
themselves have to be evaluated gradually when integrating along z. We have to follow the field line
and recalculate the map each time we reach a new point.

Application: Poincaré plots for both, vacuum and plasma response can be seen in figure 3.15 and
3.16 (z = 0). The magnetic field off all modes has been superposed together with the equilibrium field
for these calculations. Hence, we can see magnetic islands at different radii that can be counted along
the circles to get the corresponding perturbation mode number19. Since the magnetic field perturbation
increases radially outwards, the width of the islands does too (remember section 2.1.6, (2.65)). At the
border of the plasma, the perturbation gets so strong that field lines start to become ergodic.

For the case of a responding plasma, islands vanish. This is perfectly consistent with the shielding of
the perturbation found in the last section.

Toroidal Behaviour: The Poincaré plots shown before represent the cut-through of magnetic field
lines for a particular z-plane. The topology in the r, θ-plane was found to be nested circles with or
without magnetic islands in between. In 3D the nested circles will form nested cylinders. Magnetic
islands instead, will form “tubes” that wind around the cylinder with radius r = rs.

This can be seen in figure 3.17, where the test particles that trace the field lines are drawn in 3D.
For better visibility this was done only for a single mode m = 3, n = 2 starting from the resonant
surface r = rs

20. To see the toroidal behaviour, the islands at z = 0 have been fitted and combined
with a winding in z-direction. The resulting surfaces have been drawn, together with the described
underlying cylinder, additionally to the points. Note that a cut through any z = const. surface results
in an individual Poincaré plot.

18The last equality sign can be evaluated by writing both B̃r and the exponential in their complex form using real
and imaginary part.

19There is a detail concerning even mode numbers: it can be the case, that half of the islands are topologically
disconnected from the other ones. By putting only one particle per radius in, only half of the islands will be traced. To
get the other half one has to put in a second particle which is shifted by mπ

2
in angle. This has been done for these plots

to get all islands.
20To see only the effect of the equilibrium field, one can have a look at figure 3.3 which was used to show the meaning

of the safety factor (section 3.1).
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Figure 3.15. Poincaré plot for vacuum perturbation with modes m ∈ [3, 11] and n = 2 (3000 mappings).
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Figure 3.16. Poincaré plot for plasma response with modes m ∈ [3, 11] and n = 2 (3000 mappings).
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Figure 3.17. 3D plot of test particles tracing the magnetic field lines for a single mode m = 3, n = 2, starting
from the resonant surface. The underlying cylinder has been included, as well as the tubes described in the
main text. The size of the magnetic islands was amplified by a factor 100 for better visualization in this plot.

Figure 3.18. Same as figure 3.17 for m = 5, n = 2.
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Chapter 4

Estimation of the Bifurcation
Threshold

In previous unpublished work by M. F. Heyn and S. V. Kasilov it was seen that a ramp up of
the coil current in their quasilinear model causes a bifurcation at a level of the quasilinear diffusion
coefficient close to the anomalous diffusion coefficient, DQL

e22 ≈ 0.6Da
e22

1.

The rest of this thesis is dedicated to further investigate the occurence of bifurcations and to find a
criterion if bifurcation has happened or not. First, the physical as well as the computational model
will be discussed. Afterwards, it will be applied to experimental data on selected AUG shots.

4.1 Physical Model

The model presented here is based on a quasilinear approach previously done in [21]. Quasilinear
means, that the kinetic equation is expanded in terms of a small perturbation. The 0th order equation
coincides with the equilibrium equation which solution is (usally) taken as a drifting Maxwellian. In
the linear order, currents and charges are computed which are inserted into the Maxwell equations.
Finally, second order gives quasilinear equations which are of diffusive type and quadratic in amplitude
of the perturbation. Solving these yields the evolution of the equilibrium in time.

4.1.1 Transport Equations

Transport equations are conservation laws that link the time evolution of density, temperature and
other quantities with fluxes. The fluxes Ik can further be linked to the gradients of these quantities
by diffusion coefficients Dkj [41],

Ik = −n
∑
j

DkjAj , (4.1)

where Aj denote thermodynamic forces. If we are not interested in the parallel flow, we can write the
physical fluxes as

1Private conversation with S. V. Kasilov in 2019.
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I1 = Γ, I2 =
Q

T
, (4.2)

where Γ and Q are particle and heat flux respectively. The thermodynamic forces2 are:

A1 =
∂rn

n
− eEr

T
− 3

2

∂rT

T
, A2 =

∂rT

T
. (4.3)

Equations (4.1) are valid for both, electron and ion fluxes and thermodynamic forces. A quick view at
(4.2) and (4.3) tells us that the diffusion coefficient De22 links the electron heat flux with the electron
temperature gradient,

Qe ∼ nDe22∂rTe. (4.4)

We are interested in De22 in particular, because the electron temperature gradient profile determines
the electron diamagnetic velocity (1.12) which in turn changes the perpendicular electron fluid velocity
by (1.11).

According to (1.9), the perpendicular electron fluid velocity plays an important role in the shielding
of RMPs. The evolution of the temperature profile given by the transport equations may shift this
velocity further to a point of the fluid resonance where the shielding current breaks down.3

Total Diffusion Coefficents: In ref. [21], quasilinear diffusion coefficients are calculated from the
electromagnetic field. The diffusion coefficient De22 is written as the sum of a quasilinear and an
anomalous part:

Dtot
e22 = DQL

e22 +Da
e22. (4.5)

One of the main results of quasilinear theory is the link of the diffusion coefficient with the square of
the perturbed radial magnetic field amplitude:

DQL
e22 ∼ B̃2

r . (4.6)

The overall calculation can be sketched as follows: The EM fields are computed for given profiles by
KiLCA (section 3.3). This yields the quasilinear part of the total diffusion coefficients which adds
up to the total diffusion coefficient Dtot

e22 which furthermore is used in the transport equations for the
time evolution of the background profiles n, Te, Ti and vz. These in turn change the EM fields, which
change DQL

e22 again. This calculation can be resumed as long as the perturbations do not become too
large for the quasilinear approach to break down. The described process matches with the qualitative
picture that bifurcation occurs at a point where DQL

e22 ∼ Da
e22.

2Here we neglect the third thermodynamic force A3.
3Note that this is not the only mechanism that may happen according to section 1.2.3.
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4.1.2 How RMPs Cause Bifurcation

The effect of an RMP as modelled in the quasilinear analysis can essentially be divided into three
different phases. We assume that the RMP has been established and a shielding current has been
generated by the plasma to diminish the effect of the external field perturbation (unbifurcated state).
Governing relations for this are (1.9)

(
J‖ = σve⊥B̃r

)
, (4.6), (4.5) and ve⊥ ∼ ∂rTe, ∂rn, ∂rΦ (from (4.1)

for given profiles and fluxes). The three phases of bifurcation are:

a) In the ramp up phase, the current in the RMP coils is ramped up from its initial value. Because
there is still no bifurcation, this has very limited effect on the perturbed magnetic field. The
quasilinear diffusion coefficient is very small compared to the anomalous one, thus the total
diffusion coefficient stays approximately constant.

b) At some point the feedback phase starts. The quasilinear diffusion coefficient becomes comparable
to the anomalous one and the total diffusion coefficient starts to grow. This leads to decreased
gradients, which in turn decrease the perpendicular electron fluid velocity. Because the shielding
current stays approximately constant in this phase, the decrease in ve⊥ results in an positive
feedback loop as of 1.9, the perturbed field can increase further. This mechanism can shortly
become very strong thus leading to an abrupt transition to the bifurcated state (one can imagine
that ve⊥ is brought closer to the fluid resonance in each turn of the feedback loop).

c) Finally, the non-linear phase starts as the shielding current will break down and magnetic islands
grow to a size comparable to the resistive layer width.

The non-linear phase limits the applicability of our model, thus we can only describe the set on of the
bifurcation (phase (a) + (b)). A flow chart summarizing both relevant phases is given in figure 4.1.

ve┴
 ↓Br ↑ Dtot ↑ ∂rT, ∂rn, ∂rϕ ↓

b) Feedback phase: Br > Bcrit , DQL
 ~ Da  

a) Ramp-up phase: 

J‖ ≈ const.

Icoil ↑ J‖ ↑ Br ↑ DQL ↑ Dtot ≈ const.
DQL

 << Da

Figure 4.1. Flow chart describing phase (a) and (b) of the bifurcation.

4.1.3 Bifurcation Threshold

We can describe the abrupt change from the ramp up phase to the feedback phase (the bifurcation)
by the following model for the perpendicular electron fluid velocity:

ve⊥ = ve⊥0
Da
e22

Da
e22 +DQL

e22

. (4.7)

For DQL
e22 � Da

e22 (ramp up phase), this stays approximately constant whereas for DQL
e22 ≥ DQL

e22 it
starts to decrease. With the quasilinear result of (4.6) we can rewrite this model in terms of the radial
magnetic field perturbation,
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ve⊥ = ve⊥0
1

1 +
(

B̃r
Bcrit

)2 , (4.8)

where Bcrit gives a critical amplitude for bifurcation to occur. In our simple two-fluid estimation (1.9),
this links the magnetic field perturbation of two succeeding time steps k by

B̃(k+1)
r =

J‖

σve⊥0

1 +

(
B̃

(k)
r

Bcrit

)2
 . (4.9)

For the ramp up phase, succeeding time steps will change B̃r only marginally, thus we can assume
B̃

(k+1)
r ≈ B̃(k)

r and write:

br =
B̃r
Bcrit

, (4.10)

β =
Bcritσve⊥0

2J‖
, (4.11)

0 = b2r − 2βbr + 1. (4.12)

The quadratic equation has the following solutions:

br = β

(
1±

√
1− 1

β2

)
. (4.13)

We have two asymptotic solutions as β →∞, namely

br = 2β →∞, (4.14)

br = 0. (4.15)

These correspond to the initial phase (4.15) and the fully penetrated phase (4.14). At the point β = 1

we obtain the connection point of the two different branches of the solution. A sketch of the solutions
are given in figure 4.2.4

4To get the behaviour at this point, we can expand the square root into a Laurent series,√
1−

1

β2
≈ 1−

1

2β2
+O(β−3).

Then we get

br = 2β −
1

2β
, br =

1

2β
,

for the feedback phase and the ramp up phase respectively.
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Figure 4.2. Solutions of the quadratic equation (4.13) with arrows indicating the evolution in time by a
ramp up of the current in the RMP coils. The bifurcation point is the border between two qualitative different
solutions. The limit for the breakdown of the quasilinear treatment has been indicated though its position was
set arbitrarily.

4.2 Computational Model

The base for the computational model is previous work in [21] that can be sketched as

1. Calculation of the antenna field.

2. Field line integration and calculation of Fourier modes for the vector potential A.

3. Profile preprocessing.

4. Run of the balance code5 with Maxwell solver KiLCA. Calculation of quasilinear diffusion
coefficients.

5. Rescaling DQL
e22 with form factors (ratio of antenna field and vacuum field).

6. Comparison of DQL
e22 with the anomalous diffusion coefficient Da

e22 ≈ 104 cm s−1.

This thesis introduces some changes to the model. Most important is the rescaling to toroidal geometry
which is changed to include effects of mode coupling. So far this is done with the help of the code
GPEC [42, 43, 44] which computes perturbed iMHD equilibria in toroidal geometry. Doing so, step 1
of the list above is not necessary anymore, since the information of the RMP coils goes straight into
this code. Second, the anomalous coefficient is estimated via consideration of heating power. Third,
profiles do not necessarily have to come already preprocessed as it is now possible to fit experimental
data on our own using the AUG tool AUGPED. Additionally, the whole computational model has been
automated (except for the hand fitting with AUGPED and the run of the code GPEC since both have
an external origin). This brings the possibility to make extensive studies on the effects of different
profiles, equilibria, parameters, etc..

The whole model is sketched in figure 4.3, the profile preprocessing is quite sophisticated and given
in figure 4.4. All parts of the computational model will be successively described in the following
subsections.

5The name comes from a different nomenclature, where transport equations where referred as balance equations.
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KiLCA
(+ Balance Code)

Profile
Preprocessing

Biot-Savart
Code

Fieldline Integration
Fouriermodes of A

MAW
IBl1..8, IBu1..8

Equilibrium

(g-file)

AUGPED

Data from
VTA, CEZ

ne, Te, Ti, vt

(on ψ)

n, Te, Ti, vz, q, vθ, Er

(on r)

r, q, 
ψ

Amn

GPEC

Scale-
factors

Bifurcation
Threshold
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De22
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1m²/sI||

Estimation of the Bifurcation Threshold:
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I||
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a

Figure 4.3. Flow chart describing the full computational model for the estimation of the bifurcation threshold.
Grey boxes are not necessary anymore but where used in the old model.
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Figure 4.4. Flow chart describing the profile preprocessing routines.
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4.2.1 Equilibrium Preprocessing

In this part of our computational model, the equilibrium poloidal flux on an RZ-grid (intermediate
cylindrical system in figure 3.1) as well as the major radius and the toroidal magnetic field in the
center is read from an “g-file” (computed by a 2D-equilibrium code, e.g. EFIT). The full magnetic field
is reconstructed as well as the poloidal and toroidal fluxes. The field lines are integrated to calculate
the safety factor q.

This basic information is used to calculate the “effective radius” for our cylindrical model. The definition
of the poloidal flux is [26]:

Ψtor =

¨
S

B · dS, (4.16)

Ψtor = 2πψtor. (4.17)

The quantitiy S is the toroidal cross section area limited by the flux surface. The effective radius is
defined as the radius of a circle with area S = r2π. In simple terms, we get for the toroidal flux

Ψtor ≈ BrefS,

where Bref is the toroidal field at the magnetic axis. Finally, the definition of the effective radius is:

r =

√
2ψtor

Bref
. (4.18)

4.2.2 Profile Preprocessing

The experimental profiles our model needs as input are density ne, electron and ion temperature
Te, Ti as well as toroidal rotation velocity vt6. Because of quasi-neutrality we can assume ni ≈ ne,
thus we need only one density. The electron quantities ne and Te are measured with Thomson
scattering diagnostics that have lines of sight in the core and at the edge of the plasma7. In this
method, laser light is scattered by the plasma resulting in a broadening of the spectrum from which
the electron temperature can be obtained. The density is related through the scattered power [6]. The
ion quantities Ti and vt can be measured by charge exchange recombination spectroscopy (CXRS).
One uses the fact that neutral beam atoms can exchange their electrons with impurities in the plasma,
leaving the latter one in an excited state, measuring the photons emitted afterwards [45].

These diagnostics give single measurements distributed in time which have to be translated into profiles
over any flux surface label. This is done with a free-knot-spline fit over the measured data from a time
interval symmetric around the time we want to consider. The tool used for this at AUG is called
AUGPED. The result are four profiles given on the normalized poloidal flux radius ρpol, which can be
used for further modelling (figure 4.5). The quantity ρpol is defined by the poloidal flux as

ρ2pol =
Ψpol −Ψa

Ψs −Ψa
, (4.19)

where Ψa is the poloidal flux on the magnetic axis and Ψs the poloidal flux on the separatrix. Thus,
we call ρpol the normalized poloidal flux radius and ρ2pol the normalized poloidal flux. Both quantities

6This quantity is usually given as an angular velocity in rad s−1 and has to be translated into a usual velocity by
vz = R0vt, where R0 is the big torus radius.

7There are other diagnostics for the electron quantities as well but for simplicity only Thompson scattering is
considered here.
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Figure 4.5. Example for raw input profiles given on ρpol. In this case, data is for AUG shot 33353 at 2325ms.

are 0 at the magnetic axis and 1 at the separatrix. For profile preprocessing we will use ρ2pol.

“Profile Magic”: In order to use the profiles in the code KiLCA, they have to be continued outside
the separatrix up to the position of the antenna (coil)8. This process we call “profile magic”. Figure 4.6
shows an example how “profile magic” is applied on an ion temperature profile. The idea is as follows:
inside the separatrix we want to use the initial profile whereas outside we want to set it to a reasonable
value. To ensure a smooth transition we can use the function “ExpCut” which is a smoothed step
function,

ExpCut(x) =
1

1 + e
x−xc
d

, (4.20)

with parameters xc, which defines the location where the value of the function is 1/2, and d which
gives the characteristic width of the function. By weighting the initial profile with ExpCut(x) and the
end value with 1− ExpCut(x), we get the desired result. The parameters xc and d have to be chosen
carefully to not modify the profile too strongly.

The whole process of “profile magic” may seem a bit questionable. Our justification is that only the
very edge of the profiles is affected. The cylindrical approximation used by KiLCA approaches its end
of validity at the edge anyways, so we only have to consider results for modes which are sufficiently
far away from the edge.9

Safety Factor Profile Extension: The next profile KiLCA needs as an input is the safety factor
q. The general behaviour of q is that it diverges at the separatrix which makes it hard to continue
outside. Therefore, this has to be done in a more sophisticated way that includes the calculation of
the magnetic field. Thus, we start with the radial force balance in cylindrical coordinates (3.7),

4π∂rp = −B
2
θ

r
− 1

2
∂rB

2, (4.21)

where the first term describes magnetic stress and the second one magnetic pressure. With the ex-
pression for the safety factor (3.3),

q =
rBz
RBθ

,

we can write the absolute magnetic field as

8Because the antenna is already outside the separatrix it is better to do this in our effective radius variable defined
by (4.18).

9In most cases this means that (m,n) modes (9, 2) and (10, 2) are not considered and the effect of mode (8, 2) may
be questioned.
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Figure 4.6. Example on the application of “profile magic” on an ion temperature profile. The initial profile
is given up to ρ2pol = 1 (r ≈ 65.6 cm, separatrix) and has to be continued up to the position of the antenna
(ra = 70 cm). Normalized poloidal flux > 1 in this figure is calculated by linear extrapolation from the inside
of the separatrix up to the antenna.

B2 = B2
θ +B2

z ,

= B2
θ

[
1 +

(
Rq

r

)2
]
. (4.22)

Now we rewrite the term representing magnetic stress in (4.21),

B2
θ

r
=

B2

r

[
1 +

(
Rq
r

)2] =
rB2

R2q2
[
1 +

(
r
Rq

)2] =
rB2

R2q2g
,

where we introduce an abbreviation for the last brackets,

g = 1 +

(
r

Rq

)2

. (4.23)

Re-inserted into (4.21) we obtain the following ODE for the absolute square of the magnetic field:

∂rB
2 +

2r

R2q2g
B2 = 8π∂rp. (4.24)

Equation (4.24) is solved with a Runge-Kutta 113 solver, giving B2 and further B2
θ through (4.22).

Bz is then obtained using the safety factor.

After the magnetic field has been calculated, the currents are obtained via Ampéres law (3.6). Now
“profile magic” is again applied. Our physical arguments are that outside the separatrix there is almost
vacuum and we can assume the currents to go to zero (vacuum → no particles → no currents). Thus,
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we extend the currents continously to zero up to the position of the antenna, integrate them to get
the magnetic field, and further calculate the new safety factor. The result contains a “smooth kink”10

in q as one can see in figure 4.7.

Poloidal Velocity & Radial Electric Field: These quantities complete the set of input profiles
for KiLCA and are taken from neoclassical theory [21, 41] 11:

V θ =
ckBϕ
e
√
gB2

dTi
dr

, (4.25)

Er =
1

en

dpi
dr

+

√
gBθ

c

(
V ϕ − qV θ

)
. (4.26)

The quantity k is a neoclassical coefficient that links the poloidal flow with the ion temperature
gradient12 which is calculated for each shot and time with the code NEO-2 [41, 46, 47]. These formulas
are for general geometry and contain the covariant component of the toroidal field Bϕ, the contravariant
component of the poloidal field Bθ and both flow velocities V ϕ, V θ as well as the metric determinant
√
g. We have to apply them to our large aspect ratio system defined in section 3.1 where B̂ϕ ≈ Bz.

The metric tensor is diagonal with components

grr = 1, gθθ = r2, gϕϕ = R2, g = r2R2. (4.27)

Thus, we get the physical components as

Bϕ = RB̂ϕ ≈ RB̂z, Bθ =
Bϕ

q
≈ 1

qR
B̂z,

V ϕ =
1

R
V̂ϕ ≈

1

R
V̂z, V θ =

1

r
V̂θ.

By insertion into (4.25), we get the poloidal flow velocity:

V̂θ =
ckB̂z
eB2

dTi
dr

. (4.28)

≈ ck

eB

dTi
dr

. (4.29)

In the second line one can make an approximation that the magnetic field is dominated by the toroidal
component B̂z ≈ B. The next step is to rewrite the electrical field. The last two terms in (4.26) are

√
gBθ

c

(
V ϕ − qV θ

)
=
rB̂z
qc

(
1

R
V̂z −

q

r
V̂θ

)
,

=
rB̂zV̂z
Rqc

− B̂zV̂θ
c

.

This can be inserted back into (4.26) to obtain an expression for Er (and an approximation for B̂z ≈ B):

10The possible effects of this kink are coming from the current that is needed to produce it. For real safety factor
profiles up to the separatrix (q → ∞) the current needed to sustain such a q-profile in cylindrical geometry would be
infinite too. This means that the electron flow velocity becomes larger than the thermal velocity which would lead to
many unphysical features. Therefore one has to “saturate” the growth of q near the separatrix. Therefore, q in KiLCA
is different to the one in reality.

11To avoid mistakes in calculations we write c (speed of light) again.
12We take ion quantities because our measured toroidal rotation vt is given for ions.
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Er =
1

en

dpi
dr
− kB̂2

z

eB2

dTi
dr

+
rB̂zV̂z
R0cq

, (4.30)

≈ 1

en

dpi
dr
− k

e

dTi
dr

+
rBV̂z
R0cq

. (4.31)

After this exercise in coordinate transformations, we again only use physical coordinates and omit the
hat on all quantities. Additionally we switch back to our notation,

vθ ≡ V̂θ, vz ≡ V̂z. (4.32)

Examples for both, vθ and Er profiles can be seen in figure 4.7.

Figure 4.7. Calculated profiles of safety factor q, poloidal velocity vθ and radial electric field Er for AUG
shot 33353 at 2325ms.

4.2.3 Accounting for Effects of Toroidal Geometry

Our straight cylinder model completely neglects effects of toroidal geometry, especially the coupling
of toroidal modes which can change amplitudes of resonant magnetic fields and thus the quasilinear
diffusion coefficients. To account for these factors, the previous model in [21] used so-called spectral
factors13 Wmn for rescaling of the diffusion coefficients,

Dtor
e22 = Dcyl

e22 |Wmn|2 , (4.33)

Wmn =
Arealistic
θ,mn

Avac
θ,mn

, (4.34)

Avac
θ,mn =

rR0

n
Bvac
r . (4.35)

The index mn indicates that each quantity is separately computed for each mode number. The
perturbed poloidal vector potential for vacuum is calculated from the radial magnetic field in vacuum
(KiLCA) whereas the realistic one was taken from the Fourier decomposition of the vacuum field of
the RMP coil14.

In the new improved model we introduce rescaling coefficients Cmn to account for mode coupling in
toroidal geometry. We do this by taking parallel currents in cylindrical geometry and divide them

13These are the absolute squared of the earlier mentioned form factors (3.52).
14This was done over the angles of symmetry flux coordinates associated with the realistic unperturbed equilibrium

field.
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by parallel currents from an iMHD code in toroidal geometry. Because iMHD cannot handle singular
currents (chapter 2), these currents are usually added externally in the equations to achieve ideal
shielding.

We take the former from KiLCA and the latter ones from the code GPEC [42, 43, 44]. The new
rescaling of the diffusion coefficients is then:

Dtor
e22 = Dcyl

e22 |Cmn|
2
, (4.36)

Cmn =
IGPEC
‖,mn

IKiLCA
‖,mn

. (4.37)

The scaling is chosen according to (4.37), because due to linear theory we have B̃r ∼ I‖ and due to
quasilinear theory B̃2

r ∼ DQL
e22. Together we then have the influence of I2‖ in the diffusion coefficients.

With (4.36) we scale out the factor of the parallel currents by KiLCA and weight the amplitudes for
the different modes by the parallel currents of GPEC15.

Calculation of the total resonant parallel current within KiLCA: Since in KiLCA the geom-
etry is given by nested cylinders, all we have to do is to integrate the parallel current over an annulus
centered at the location of the resonant surface rs,mn (defined by (3.4)):

IKiLCA
‖,mn = 2π

ˆ rs,mn+dmn

rs,mn−dmn
rJ‖,mn (r) dr. (4.38)

The quantity dmn is the resonant layer width which has to be estimated. This is done by doing a
nonlinear fit with a gaussian centered around rs,mn and taking five times the standard deviation σs
(figure 4.8),

dmn ≈ 5σs. (4.39)

This works well because the parallel current is quite small throughout the whole plasma, whereas near
resonant surfaces it gets locally concentrated (sheet current). The only limitation on this is at the
very edge where the resonant current may overlap with the current in the antenna. This is not really
a problem since our model is in trouble anyways at these locations.

4.2.4 Estimation of the Anomalous Diffusion Coefficient

By now the bifurcation criterion was always estimated by using the “universal constant” Da
e22 ≈

104 cm s−1 for the anomalous diffusion coefficient. To make this more realistic we introduce an esti-
mation based on heat fluxes in the plasma.

The plasma is heated with NBI and electron/ion cylclotron resonance heating E/ICRH (on AUG only
NBI + ECRH). The input power in the plasma is then the difference between the total heating power
and the power lost by radiation:

Pinp = Pheat − Prad. (4.40)

The total heat flux in the plasma is then given by the power going through a flux surface,

15This assumes, that the coefficients linking B̃r with I‖ and DQL
e22 stay almost the same in cylindrical as well as

toroidal geometry.
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Figure 4.8. Estimation of resonant layer width by fitting a Gaussian through the parallel current. The figure
is just a sketch and does not belong to a real experimental shot.

Qe =
Pinp

S
, (4.41)

where the flux surface can be either roughly estimated by concentric tori with circular cross sections,

S ≈ 4π2R0r, (4.42)

or calculated from the flux tube volume16,

S =
dV

dr
. (4.43)

Now we assume the heat flux comes from diffusion done by electrons (4.4),

Qe ≈ −nDa
e22

dTe
dr

, (4.44)

where Da is the anomalous diffusion coefficient we are searching for. Consequently we get our final
estimation by distributing the input power to electrons and ions evenly:

Da
e22 ≈ −

Pe,inp

SndTe
dr

, (4.45)

Pe,inp ≈
1

2
(Pheat − Prad) . (4.46)

An example can be seen in figure 4.9. This model is still not perfect as it completely neglects convective
heat transport and distributes the heat evenly to ions and electrons.

16This is calculated in our field line integration method described above (section 4.2.1).
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Figure 4.9. Example for the estimation of the anomalous diffusion coefficient for AUG shot 33353 at 2900ms.
The new estimation is always higher than the previously used “universal constant” of 104 cm s−1.

4.3 Application on AUG Shots

Here we will apply the model described in the previous sections to some selected AUG shots. In
particular we will use shot 33120 which investigated ELM mitigation at low collisionality and shot
33353 which was used for the optimisation of ELM suppression. The corresponding time traces for
the divertor current, Dα-radiation and coil currents can be seen in figure 4.10 and 4.11. For both
shots we select two different time slices which have qualitative different behaviour. For shot 33120,
5500 ms is ELM suppression and 5635 ms is ELMy (bifurcation back to unreconnected state). For shot
33353, 2325 ms is ELM mitigation and 2900 ms is ELM suppression (bifurcation forward to reconnected
state)17.

The data for these time slices was gathered as follows: Equilibria were of type EQH, which is auto-
matically computed by the code CLISTE at AUG. Coil currents come from the MAW diagnostics and
were used in GPEC. Profiles were handfitted with free-knot-spline fits by us using the tool AUGPED
at AUG. Raw data came from CXRS for Ti and vt18, and from core and edge Thompson scattering
for Te and ne. The preprocessed profiles we used for all four time slices can be seen in figures 4.12-4.15.
All computations in this thesis have been done for toroidal mode number n = 2 which dominates the
coil spectrum in all AUG shots considered here.

4.3.1 Investigation of Bifurcation Thresholds

The main results of the application of our model on the specified AUG shots can be seen in figure
4.16 and 4.17. Time slices where we see suppression in the time traces, are linked with a bifurcation
on mode m = 6 which is roughly on top of the pedestal of the total pressure profile. Modes in the
core (m = 4, 5) seem to have only little effect, whereas modes at the edge (m = 7, 8) are always
below the threshold19. For the ELMy case (shot 33120, 5635 ms), all modes are below the threshold
for bifurcation whereas for the ELM mitigation case (shot 33353, 2325 ms), only mode m = 5 is in a
bifurcated state.

17The labelling of the time slices was done according to comments of W. Suttrop
18CXR Box Spectroscopy NI Box 1 and Toroidal edge CXRS.
19Mode m = 9 as well, but we do not trust this mode because it is too close to the edge. Already mode m = 8 may

be questioned.
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Figure 4.10. Divertor current, Dα radiation and the coil current for the Bl6 coil for AUG shot 33120. Dashed
lines show the time slices considered.

Figure 4.11. Divertor current, Dα radiation and the coil current for the Bl6 coil for AUG shot 33353. Dashed
lines show the time slices considered.
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Figure 4.12. Profiles used for shot 33120 at time 5500 ms. Colored lines correspond to the location of
resonances for modes m = 4, 5, 6, 7, 8, 9.

Figure 4.13. Profiles used for shot 33120 at time 5635 ms.
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Figure 4.14. Profiles used for shot 33353 at time 2325 ms.

Figure 4.15. Profiles used for shot 33353 at time 2900 ms.
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This could indicate a difference between ELM suppression, ELM mitigation and ELMy: In the first
case, we have a bifurcated mode at the pedestal top, in the second one the bifurcated mode is further
away from the pedestal top but still in its vicinity and finally for the third one, no mode is bifurcated.

Furthermore, if one looks carefully at the profiles (figures 4.12-4.15) on can see a link between the
location of the zero of the electric field (vE×B resonance) and the bifurcation of mode m = 6. At
time slices where ELM suppression is observed, the electric field has its zero very close to the purple
line (m = 6 resonance). This may indicate that the vE×B resonance is more important than the fluid
resonance in these experiments.

Regarding the rescaling of the quasilinear diffusion coefficients, these computations have also been
done without the account of mode coupling. Generally, the cylindrical model overestimates the effect
of modes at the edge by a factor of 10 − 100, whereas for modes in the core there are only slight
corrections. The usage of an estimated anomalous diffusion coefficient makes it harder for modes to
reach the bifurcation threshold in our model but still we see that the threshold can be exceeded.

4.3.2 Effect of Different Profiles

In the implementation of the whole model it became very clear that the exact form of the input profiles
have a great impact on the overall outcome. To investigate this further, we decided to qualitatively
study the effect of a change in the input profiles for one particular shot and time. Therefore we took
the input profiles from a run with the old model (reference) and compared them with the profiles
used in this thesis for AUG shot 33353 at time 2900 ms (new, figure 4.15). The equilibrium was taken
the same and in the preprocessing we did exactly the same for both sets of profiles. The difference
between the two sets of input profiles can be seen in figure 4.18. We then chose to exchange all profiles
individually as well as a combination of the profiles from Thompson scattering (Te, n) and from CXRS
(Ti, vt). This gives a total of eight different runs, which results can be seen in figure 4.19.

First we can discuss the differences in the two sets of profiles. In general we have very similar profiles
for the temperatures and the density. The toroidal velocity in contrast is similar at the edge but
approaches a value about twice as high as in the new case. Additionally, both temperature profiles
from the reference run have unphysical behaviour at the magnetic axis. By using this profiles one
usually assumes poloidal symmetry along each direction in the tokamak which does not allow for a
kink in the center. Apart from these differences, there are many local differences at the positions of
the resonance, especially different gradients in all quantities. Out of this alone, one can expect strong
dependencies of the quasilinear diffusion coefficients on the exact form of the profile.

By looking at the result one can indeed see great differences from the toroidal velocity profiles, especially
for modes which are further inside the plasma where the difference in vt is larger. This has been
investigated, and we found out that the change in toroidal velocity profile incidentally shifted the
location of the fluid resonance very close to mode m = 6. This fits with the enormous increase of the
quasilinear diffusion coefficient for this mode. The other profiles have little impact on modes m = 4, 5

further inside and on mode m = 8 at the very edge (remember: we do not trust mode m = 9). The
biggest impact can be seen for modes m = 6, 7 which are of particular interest for the bifurcation
threshold as already mentioned.
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Figure 4.16. Resonant diffusion coefficients De22
(
≡ DQL

e22,mn

)
weighted with the corresponding estimated

anomalous diffusion coefficients Dest
a

(
≡ Da

e22,mn

)
(left y-axis) together with the bifurcation threshold (dashed

line). The total pressure profile is given on the right y-axis to show where modes are located relative to the
pedestal. Each subplot corresponds to AUG shot 33120 but is given on a different time slice. A comment on
the type of the shot is given in the title.
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Figure 4.17. Resonant diffusion coefficients De22
(
≡ DQL

e22,mn

)
weighted with the corresponding estimated

anomalous diffusion coefficients Dest
a

(
≡ Da

e22,mn

)
(left y-axis) together with the bifurcation threshold (dashed

line). The total pressure profile is given on the right y-axis to show where modes are located relative to the
pedestal. Each subplot corresponds to AUG shot 33353 but is given on a different time slice. A comment on
the type of the shot is given in the title.
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Figure 4.18. Comparison of both sets of preprocessed input profiles from experiment for AUG shot 33353 at
time 2900 ms.

Figure 4.19. Ratio of quasilinear diffusion coefficient De22
(
≡ DQL

e22,mn

)
and Dest

a

(
≡ Da

e22,mn

)
for different

combinations of the input profiles from figure 4.18 (AUG shot 33353 at time 2900 ms). The total difference
between the set of profiles is given by both black lines.
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Figure 4.20. Calculation for AUG shot 33353 at time 2900 ms with different densities. Plotted is the ratio
of De22

(
≡ DQL

e22,mn

)
and Dest

a

(
≡ Da

e22,mn

)
. Density variation was made by scaling the initial density by the

factor indicated in the legend. Colors reappear for the different runs but the order is strictly monotonically
decreasing from top to bottom with higher density.

4.3.3 Density Scaling

One particular behaviour of interest is the dependence of the bifurcation threshold on density. We study
this by a qualitative calculation: We only scale the density after postprocessing by a certain factor and
do recomputations of the quasilinear diffusion coefficients. The dependence on the fluid resonances is
not affected as the density appears in both, numerator and denominator of the diamagnetic velocity
(1.12) and thus scales out.

The result can be seen in figure 4.20. Based on this plot, one can clearly see a threshold in density for
the bifurcation of mode m = 6 to occur. This will be further discussed in the next section.

4.3.4 Combined Density and Electron Temperature Scaling

Based on the crude calculation in the previous section (and inspired by fig. 15 in [14]), we did these
calculations again but with a scan over density and electron temperature20 combined. We calculated
the pedestal density and electron temperature by simply taking these values from the profiles where
the total pressure profile has a minimum near the pedestal. The results for the most interesting mode
(m = 6) can be seen in figure 4.21.

One can clearly see that the density threshold for the bifurcation still exists. Additionally, there are
effects of the elcetron temperature which would let us expect to still find ELM suppression at high
pedestal densities with very low pedestal electron temperatures and vice versa. Further, empirical
limits for the pedestal density and electron temperature from [14] are shown. The density limit is
represented very well by this qualitative calculation whereas the temperature limit is far off. This

20The effect of temperature on the bifurcation is more peculiar as for the density and cannot be described as easily.
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Combined n and Te Study for Shot 33353 @2900ms, mode (6,2)
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Figure 4.21. Calculation for AUG shot 33353 at time 2900 ms for different pedestal densities and electron
temperatures. The triangle (N) indicates the original runs, small black dots (•) show the calculated points.
Based on this, contour lines where calculated by 2D interpolation. The line “0” shows the threshold for
bifurcation. In white, empirical pedestal density and electron temperature limits from [14] have been included
as dashed lines. The notation in the plot slightly differs from the text by: De22

(
≡ DQL

e22,mn

)
and Dest

a(
≡ Da

e22,mn

)
.

can be seen especially when looking at the initial point of ELM suppression which is outside of the
empirical limits. However, this has a very simple explanation. In [14], also profiles where shown
and one can see that the electron temperature used there is smaller by around 0.2 keV which would
shift the initial point back inside the empirical bounds but furthermore would completely change the
temperature scaling of figure 4.21 as the scale is based on this value.
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Conclusion

5.1 Summary

One of the main goals of this thesis was to present an overview of the theory of the interaction of
RMPs with plasma. This has been done by starting with the effect of an internal formation of a
current sheet that results in the breakdown of the iMHD equations at the inner layer, the location of
the sheet current. The inclusion of resistivity in this inner layer “heals” the problem but introduces a
finite growth rate for the so-called tearing instability that leads to the formation of magnetic islands.

Further, the large aspect ratio limit for a tokamak was presented and the same theory was applied to
this cylindrical system. In contrast to tearing mode theory, external magnetic perturbations produced
by an antenna outside the plasma were included (instead of an internal current sheet). This external
perturbations in vacuum produce resonances at positions where the safety factor has a rational value
given by the ratio of the integer toroidal and poloidal mode numbers. These resonant layers were not
treated with a resistive model but with a more advanced kinetic treatment with the code KiLCA. The
application of KiLCA resulted in a plasma response that suppressed the growth of magnetic islands at
the resonant layers, the external perturbation was shielded by the plasma.

Finally, the quasilinear kinetic estimation of the bifurcation threshold was introduced. The bifurcation
of a resonant mode from the shielded state to an unshielded state was qualitatively explained and
the effect of resonances was emphasized. A bifurcation criterion based on the ratio of the quasilinear
electron heat diffusion coefficient and the corresponding anomalous diffusion coefficient was established.
The former model of [21] was discussed and the novelty of this work was presented. This includes the
accounting for poloidal mode coupling and a better estimation of the anomalous diffusion coefficient.
Finally, applications on experimental AUG shots were made.
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5.2 Discussion and Further Suggestions

The application of the new quasilinear kinetic model in cylindrical geometry with accounting of mode
coupling indicates that ELM suppression can be linked to bifurcated modes only on top of the pedestal.
For further confidence, more experimental shots have to be processed. Nevertheless, it became a bit
more unlikely that other modes (especially inside the pedestal) may be important. Recent work of Hu,
et al. [48], used a similar approach but with a nonlinear resistive two-fluid model instead of our kinetic
one (both in cylindrical geometry). They also applied the code GPEC to compute the plasma response
in toroidal geometry but used the magnitude of the perturbed field at the plasma edge together with
transport coefficients from the code TRANSP for the nonlinear resistive evolution. Based on that,
they computed what we called the critical perturbation magnitude (4.8) as a bifurcation criterion.
Upon application on experimental shots on the DIII-D tokamak they came to a similar conclusion
that bifurcated modes on top of the pedestal may be important for ELM suppression. Regarding the
evolution of profiles their model is more advanced as it includes nonlinear evolution which we can
only plan for the future. Regarding plasma response, we use a more complete model with the kinetic
treatment.

Even though the results for the bifurcation threshold look promising, they must be taken with care.
The study on the effect of different profiles has qualitatively shown that the result depends strongly on
the form of the input profiles. Thus, only a big enough statistical basis, based on a variety of different
shots and time slices can improve the confidence in our model.

The qualitative results of the effect of density and electron temperature scaling, show that there is a
clear upper threshold in density for the bifurcation to occur. For the electron temperature the situation
is more complicated but there is also an indication that an upper threshold exists. This is in agreement
with [14], except for the overall shift in electron temperature caused by different profiles. The main
reason for both, density and electron temperature dependence is something that still has to be found.

Although this thesis presented some improvements of the initial model in [21], there is still a lot of
room for further sophistications. An even better estimation of the anomalous diffusion coefficient
which takes the exact placement of heat by NBI and ECRH as well as a better distribution to ions
and electrons is in progress. The effect of different profiles must be further investigated in detail, as
well as the effect of different equilibria, which has not been included in this thesis. The used equilibria
were of type EQH which were automatically calculated and thus lack of the overall features of the
pedestal (knee in safety factor profile). The influence of using other, hand fitted equilibria must be
studied. Finally, the calculation of parallel currents to account for toroidal geometry by GPEC could
be replaced with a recently developed code at our institute [49]. This will give us the possibility to
further improve our model, as this code can be fully integrated into the chain of computations.

Overall, the presented model in this thesis has shown that it correlates with experiment and that it
can (with further refinement and verification) be used to find parameters in which ELM suppression
is possible.
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