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Abstract

The trend of utilizing deep learning techniques to tackle difficult signal processing problems has
not spared the scope of single-channel source separation, and modern systems based on neural
networks have indeed reached unprecedented levels of separation quality.

However, harnessing the power of these large-scale models in typical audio production en-
vironments, which frequently offer only limited computing resources while demanding quasi
real-time processing, remains challenging. In order to utilize the power of deep neural networks
on resource-constrained infrastructures, strategies and architectures have to be considered that
ensure low computational requirements and memory footprint, while at the same time preserve
(or even improve) accuracy.

This thesis sets out to examine viable solutions to both aspects of the problem within the
context of musical audio mixtures, with a particular focus on singing-voice extraction. Various
approaches to improve the performance of a state-of-the-art baseline system, the multi-scale
multi-band DenseNet, are presented and discussed. These include architectural refinements
regarding the multi-band structure, different training objectives, such as mask approximation,
multi-task learning and deep clustering, as well as the exploitation and estimation of phase
information, which allows for optimization in the time-domain. Specifically, instead of direct
spectrogram estimation, experiments prove that using a deep clustering loss to approximate
spectral masks results in a considerable performance increase over the baseline implementation.

Subsequently, the resource-efficiency of this system is addressed. It is shown that a signif-
icant reduction of the model size and its computational requirements can be achieved via an
effective use of bottleneck layers and the inference of Mel-scaled masks. In addition, apply-
ing parameterized structured pruning of convolutional weights results in a further increase in
efficiency.

Based on these findings, a high-quality source separation system can be obtained which is
roughly 1.6 times smaller and 7.3 times more efficient than the state-of-the-art baseline while
maintaining its separation performance. Moreover, on a 2018 Mac mini machine (i7 core), CPU
inference times as low as 4 milliseconds were measured. Since this is well within the range of
typical audio buffer block sizes, the real-time capability of this approach is thus confirmed.
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Kurzfassung

Schwierige Fragestellungen der digitalen Signalverarbeitung werden immer häufiger mittels Deep
Learning bewältigt. Nicht anders verhält es sich im Bereich der einkanaligen Quellentrennung
(single-channel source separation), und in der Tat ist die erreichte Qualität von modernen Syste-
men, die auf neuronalen Netzwerken basieren, beispiellos. Es bleibt jedoch eine Herausforderung
diese mächtigen und großen Modelle in üblichen Audioproduktionsumgebungen zum Einsatz zu
bringen, da hier einerseits Echtzeitverarbeitung verlangt wird, andererseits aber nur begrenzte
Rechenressourcen zur Verfügung stehen.

Um sich die Stärke neuraler Netzwerke auf ressourcenschwachen Infrastrukturen zu Nutze zu
machen, müssen Strategien und Architekturen erörtert werden, die niedrige Rechenanforderun-
gen sowie geringen Speicherbedarf aufweisen, gleichzeitig aber die Qualität des Systems nicht
einschränken.

Diese Arbeit beschäftigt sich mit praktikablen Lösungen für beide Aspekte dieses Problems.
Insbesondere liegt der Fokus auf der Extraktion der Gesangsstimme aus einem gegebenen Stück
Musik. Aufbauend auf einem System auf dem neuesten Stand der Technik, dem multi-scale
multi-band DenseNet, werden verschiedene Ansätze zur Steigerung dessen Performance präsen-
tiert und diskutiert. Diese beinhalten Verbesserungen bezüglich der Architektur sowie hin-
sichtlich unterschiedlicher Trainingszielvorgaben. Ebenso wird die Nutzung und Schätzung von
Phaseninformation behandelt, welche eine Optimierung im Zeitbereich ermöglichen. Exper-
imente belegen dass der Einsatz von Deep Clustering in Kombination mit Masken- anstatt
Spektrogrammschätzung zu beträchtlichen Leistungssteigerungen gegenüber dem Basismodell
führt.

Anschließend wird die Ressourceneffizienz dieses Systems untersucht. Es wird gezeigt dass
mit Hilfe von sogenannten Bottleneck Layern und Mel-skalierten Ein- und Ausgängen Größe
und Rechenanforderungen des Modells signifikant verringert werden können. Außerdem kann
die Effizienz durch strukturiertes Pruning der Gewichte weiter gesteigert werden.

Auf Grundlage dieser Ergebnisse kann ein qualitativ hochwertiges Quellentrennungssystem
erzielt werden, welches um den Faktor 1.6 kleiner und um den Faktor 7.3 effizienter als das Aus-
gangssystem ist, ohne nennenswerten Einbußen hinsichtlich der Performance. Weiters werden
auf einem Mac mini Rechner (i7 core, Late 2018) Inferenzzeiten auf der CPU von weniger als
4 Millisekunden gemessen. Dies ist durchaus im Bereich von üblichen Audiobuffer-Blockgrößen
und bestätigt somit die Echtzeitfähigkeit dieses Ansatzes.
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1
Introduction

1.1 Motivation

Given a mixture of source signals, how can these sources be isolated and recovered? This is
the question that source separation systems try to answer. While the problem in general may
arise in various domains, it is especially common with audio signals. Speech, music as well
as environmental sounds frequently comprise a multitude of distinct acoustic components that
are blended together, sometimes also extending between these three categories, yet in many
situations only one of these components is of particular interest. Similarly, we sometimes might
as well be interested in listening to the individual sources one by one. The concept behind music
source separation is depicted in Fig. 1.1.

Figure 1.1: Illustration of the concept of music source separation [1].

Successful deployment of source separation methods plays a key role for a variety of tasks.
Most importantly, many real-world applications depend on pre-processing via source separation,
such as robust automatic speech recognition systems and music information retrieval tasks like
chord or melody estimation. However, the usefulness of a stand-alone source separation system is
evident: considering music signals alone, possible applications include creative content creation
and remixing, automatic karaoke, audio post-production and remastering, upmixing e.g. stereo
sounds to 5.1 surround as well as denoising.

Humans are notoriously good at solving this problem and the canonical example of a func-
tional source separation system is what is called the cocktail party effect: the human brain’s
ability to distinguish a specific sound source against many others. The term stems from the
exemplary scenario of chatting with one person at a cocktail party while not being distracted
from other interfering conversations and/or overall high noise levels. A similar phenomenon can
be identified in the case of musical signals, as it is possible to listen to a mix and focus only
on a particular instrument. It is also probably due to this very circumstance that laypersons
tend to underestimate the level of difficulty involved in finding ways to automate this task with
computers. In fact, the separation of source signals poses an extremely hard problem to the
digital signal processing community.
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But what is it that makes this problem so challenging? In general, it is highly underdeter-
mined, in the sense that usually the set of available mixture signals is smaller than the set of
constituent source signals (with the latter therefore determining the overall system’s number
of degrees of freedom). For example, the majority of music mixtures is still limited to either
one or two channels (mono or stereo), while most music typically features many more active
contributing sources at a time. Underdetermined systems imply that the method used to unmix
the signals has to be a non-linear one, and that it is typically hard to find a useful solution.
Accordingly, hearing impairments in one ear significantly reduce the ability to solve the cocktail
party problem. Additionally, acoustic signals may exhibit strong correlation, which makes it
especially hard to distinguish between sources. For instance, the interplay between different
musical instruments is usually based on a common tuning, key, tempo and rhythm, resulting in
synchronous onset and offset times as well as strong overlaps in frequency. Moreover, profession-
ally produced music mixtures are specifically designed to yield a coherent sound, and often are
subject to heavy processing (e.g. via non-linear dynamic compression, equalization, reverbera-
tion, time-varying filters, etc.), complicating the source separation process even further. Finally,
noise in the recordings may cause additional problems.

Nevertheless, over the course of several decades of research, much effort has gone into the
development of source separation systems, and various approaches providing working solutions
have been determined. More recently, with the advent of modern deep learning, new standards
in performance have been set. Today, models based on deep neural networks (DNNs) attain
extraordinary separation quality. Production-ready systems are already available and indeed
the problem of source separation appears to be essentially solved.

This breakthrough in performance comes at a cost though, since modern DNNs involve an
enormously large number of both parameters and computations. Hence environments that we
would like to equip with high-quality source separation algorithms must be able to cope with the
tough requirements such large models entail, and preferably include highly parallel processing
capabilities like those provided by graphics processing units (GPUs). Clearly this is not feasible
in many situations. For instance, hearing devices serve as a good example of such a platform
with extremely limited computing resources. While it is generally possible to avoid on-device
inference via cloud-computing based solutions, operating an internet connection may pose similar
problems, not to mention the impracticality of real-time applications and the increased security
risk. Typical audio production environments do not feature sufficient computational capacities
to manage large-scale source separating DNNs either. For multi-track arrangements, which
represent the vast majority of audio productions, available resources have to be shared across
multiple audio tracks. Usually these tracks are also subject to individual processing such as
dynamic range compression and equalization. Additionally, the audio callback is merciless and
demands a buffer containing valid values at all times. If the audio buffer could not be filled
in time, audible glitches may occur, possibly damaging the audio production or recording, the
playback equipment or in the worst case a human ear. Since digital audio workstations are
commonly run on consumer-grade desktop computers, employing overly expensive algorithms
like DNNs on one or more audio tracks is basically infeasible, with respect to both memory and
computing requirements. This is true even if a GPU is available, since it will usually be occupied
with actual graphics rendering tasks or otherwise not feature enough RAM to fit both model
and data.

However, taking advantage of the high separation quality offered by DNNs remains appealing
nonetheless. The question arises whether these models are capable of resource-friendly real-
time signal extraction within this context, while at the same time maintaining their separation
performance.

– 10 –
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1.2 Scope of the thesis

Over the last few years, the problem of utilizing the power of parameter-heavy DNNs within
embedded systems has received much attention from the deep learning community. The funda-
mental question in this field of research revolves around the trade-off between performance and
resource consumption in terms of computation, memory and energy. Much in the same spirit,
this work is concerned with the practicality of deep learning for efficient source separation of
music mixture signals within resource-constrained environments. The aim of this thesis is to
find a good trade-off by separately exploring both aspects of the problem, performance and
efficiency, in order to answer whether DNNs are capable of high-quality real-time music source
separation on infrastructures with limited resources.

In particular, this thesis mainly focuses on recovering the singing voice. Vocals are complex
in nature, exhibiting both harmonic and percussive signal components. For this reason it seems
reasonable to conclude that solutions which work well for singing voice extraction will also
generalize nicely to other musical source types.

Moreover, only the single-channel case is considered. In contrast to mixture signals which
typically are available in multi-channel formats, musical instruments are frequently recorded
using only one microphone. Though targeted on a single instrument, these recordings often
capture additional sounds such as background noises or spill from accompanying instruments,
and thus call for post-processing via source separation methods. On the other hand, microphone
positions of multi-channel music signals are usually unknown and will also vary between different
recordings, in addition to exhibiting sometimes severe phase issues. This prevents any pre-
processing via beamforming techniques and also makes it hard for data-driven models to properly
exploit multi-channel information. Another reason for limiting the scope of this work to the
single-channel case is the very straightforward extension of DNNs to handle multi-channel inputs
and outputs.

Additionally, many situations require real-time processing of audio signals. As outlined in
the previous section, processing of audio during playback is time-critical and, sticking to the
example of audio production environments, is necessary for on-the-fly editing. This requirement
is especially hard to reconcile with the increased computational demands of large-scale neural
networks.

1.3 Organization of the thesis

Following this introduction, Chapter 2 discusses characteristic differences between speech and
music signals, and gives a comprehensive overview of various approaches to tackle the problem,
including a section on how to evaluate the performance of source separation algorithms as well
as a section on frequently used pre- and post-processing methods. In addition, a summary of
related work is provided, with regard to both more traditional model-based as well as recent deep
learning based approaches towards music source separation, including considerations concerning
the architectural design, training objectives and also efficiency.

Rather than starting out from scratch, this work takes a rather experimental approach and
uses a state-of-the-art baseline model, the so-called multi-scale multi-band DenseNet (MM-
DenseNet), as a sound starting point. After discussing details of the MMDenseNet topology
and the experimental setup in Chapter 3, Chapter 4 considers the efficacy of several possible
extensions in order to improve upon this baseline with regard to performance. These include
both architectural alterations as well as modifications relating to the optimization. Since they
are not necessarily disjoint, the approaches are covered in a successive manner and results are
presented intermittently.
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Continuing from the insights gained in Chapter 4, measures towards reducing the compu-
tational requirements and the memory footprint of the model are subsequently investigated
in Chapter 5. Again, the particular modification’s concept and the corresponding results are
presented alternatingly.

Finally, Chapter 6 concludes the thesis with a summary and a discussion of the findings. Also,
interesting open questions to be answered in the course of future work are addressed.
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2
Overview and Related Work

After the general introduction to the problem of source separation and the statement of motives
and intentions of the thesis in Chapter 1, this chapter provides the reader with a comprehensive
overview of how one can go about solving the task. A thorough understanding of the mixture and
target signals’ nature is crucial for the design of a source separation algorithm. The characteristic
structure of musical sources as well as the interplay between them have to be utilized in order
to enable successful separation, and are described in Section 2.1.

Additional prerequisites for the development of a source separation system include a formal
description of the problem and a way to evaluate an algorithm’s separation performance, which
are given in Sections 2.2 and 2.3, respectively.

Although this work focuses on data-driven methods derived from deep learning and their
usefulness when computing resources are limited, it is nevertheless sensible to review other, more
traditional approaches since these can provide valuable insights and outline desirable properties
for a source separation algorithm. A comprehensive overview of some model-driven systems is
provided in Sections 2.5.1 up to 2.5.3.

Subsequently, Section 2.5.4 discusses some of the recent advances in (music) source separation
based on DNNs with regard to used architectures as well as training procedures, and equips us
with the necessary information to choose a suitable baseline model as a starting point for this
work.

2.1 Characteristics of music signals

Music signals contain a lot of distinct structure that distinguishes them from speech and en-
vironmental sounds, but also serves to differentiate between various instruments or instrument
groups. Clearly, the separation of a target source depends on successfully exploiting these char-
acteristic patterns in a reasonable manner. To this effect, the target signal must of course be
properly identified. It is important to point out that a musical source may be defined in different
ways, including single instruments, groups and families of instruments (e.g. a choir, or string
and wind instruments) and more abstract categories, for example functions in a particular piece
of music, such as the rhythm section or a division between lead and accompaniment. The char-
acteristics of four different musical sources - singing-voice, electric bass, drum kit and electric
guitar - are exemplified in Fig. 2.1 via their spectrograms. Another important issue in music
source separation that is frequently overlooked is the bias towards western (pop) music. Other
genres of music may benefit from different descriptors and criteria, and structural aspects may
be more or less pronounced depending on the type of musical material. In general though, the
following characteristics can be attributed to musical signals and may be exploited by source
separation algorithms.

Harmonicity In the context of source separation, harmonicity corresponds to the notion of
a sonic event’s acoustic periodicity. Considering the magnitude spectrogram of a musical sig-
nal, harmonicity describes the strength and the relation between its ”horizontal” components.

– 13 –



2 Overview and Related Work

0 0.5 1 1.5 2 2.5 3 3.5 4
Time (s)

0

2000

4000

6000

8000

10000

12000

14000

Hz

Vocals

0 0.5 1 1.5 2 2.5 3 3.5 4
Time (s)

0

2000

4000

6000

8000

10000

12000

14000

Hz

Other

0 0.5 1 1.5 2 2.5 3 3.5 4
Time (s)

0

2000

4000

6000

8000

10000

12000

14000

Hz

Bass

0 0.5 1 1.5 2 2.5 3 3.5 4
Time (s)

0

2000

4000

6000

8000

10000

12000

14000

Hz

Drums

0 0.5 1 1.5 2 2.5 3 3.5 4
Time (s)

0

2000

4000

6000

8000

10000

12000

14000

Hz

Linear Mixture

Figure 2.1: Magnitude spectrograms of the 4 different musical sources constituting the first 4 seconds of the
song ’Music Delta - Beatles’, taken from the musdb18 corpus, and their linear mixture. The
source titled ”Other” corresponds to an electric guitar in this case.

These components are highly structured and follow similar trajectories - a property which is
often called the common fate. The lowest frequency, usually termed the fundamental frequency
or f0, determines the pitch of a musical source. The pitch itself can already be quite useful for
identifying certain instruments. For instance, the size of an instrument is normally inversely
proportional to the pitch it produces. Similarly, variations in pitch convey a lot of information,
e.g. bowed string instruments typically exhibit a characteristic ”jitter” in terms of pitch. But
more information can be deduced from the related horizontal components with higher frequen-
cies, which are called overtones, partials or harmonics. The latter term usually implies that
these components are close to integer multiples of the fundamental frequency, which results
in very clear and unambiguous tones as well as pitch perception (hence the name harmonics).
Note that the pitch thus may also be derived from the distance between the harmonics: the
brain may perceive a certain pitch even if the corresponding fundamental frequency is not at all
present in the audio signal. Western music also frequently plays ”in harmony”, meaning that
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the ratios of f0s of notes played at the same time are close to small integer ratios. For instance,
a C-major chord consists of the concurrent notes C, E and G, whose f0 have a relationship
of C : E : G = 4 : 5 : 6. This leads to a large overlap in frequency across each of the notes,
but often also across multiple sources, which makes the separation process even more difficult.
Inharmonic, and thus non-integer, relationships between partials produce less clean sounds, how-
ever the results may still be predominantly tonal. Typical examples of inharmonicity are sounds
produced by oscillating bells, tubes, rods and also strings (for example bass strings of pianos).
The location, relation and relative strength of partials, which may be summarized by the notion
of a spectral envelope, strongly determines what is known as the ”timbre” of a sound (although
the word timbre has no useful definition, except for describing a ”perceptual quality in addition
to loudness, pitch and duration” [2]). As such it is a very salient feature for the recognition of
a particular instrument.

Percussivity In addition to horizontal components, spectrograms of musical sources may ex-
hibit vertical components, indicating that a wide range of frequencies is active at the same time.
These are associated with percussive sounds, which typically show highly transient behavior
and can be localized in time fairly accurately. While containing little or no pitch and harmonic
content, percussive sounds may nonetheless feature distinct patterns in their spectral envelopes,
for instance due to prominent resonances, that carry valuable information about an instrument’s
nature. The spectrogram of the drum track presented in Fig. 2.1 illustrates the character of 3
different percussive sounds very clearly, with a bass drum sound after 2 seconds, a snare drum
after approximately 1.125 seconds, and a tambourine hit shortly before second 1.5.

Most signals however are actually a combination of both harmonic and percussive elements.
Sounds from a singing voice serve as primary examples of this category. The vocal folds determine
the pitch and carries voiced, predominantly harmonic, speech sounds. On the other hand, many
consonants like the plosives /p/ and /t/ or fricatives such as /s/ and /f/ have a percussive
nature. In addition, all sounds are given a distinct frequency pattern via the adaptive filtering
caused by resonances in the vocal cavity. An example can be seen in the vocal spectrogram
of Fig. 2.1, which exhibits a glottal stop followed by the voiceless and strikingly percussive
consonant /k/ shortly after 1 second of the song have passed. Furthermore, this behavior is
especially prominent during the attack of many musical sources. Most instruments have a kind
of noisy onset. For instance, these may be caused by the hammer of a piano beating the strings,
the initial airy sounds stemming from wind instruments, or the plucking, picking or strumming
of strings. Indeed, the attack transient is extremely important for humans in order to identify
various isolated musical sources [3]. Initial percussive sounds as well as the absolute and relative
rise times of partials and their evolution over time are crucially informative when distinguishing
instrumental sounds.

Repetition Music needs repetition to be comprehensible. Many forms of repetition in music
can be discovered, for example repeating long-term structures of arrangements that divide musi-
cal parts into e.g. chorus and verse or exposition and recapitulation. But also shorter harmonic,
melodic and rhythmic structures are essential to an enjoyable and understandable musical piece,
such as motifs, hooks, themes, phrases, riffs and grooves. Many genres of music, e.g. electronic
dance music, draw heavily on repetitive elements.

Sparsity Another characteristic of music signals is that they are particularly sparse in the
sense that the majority of time-frequency (TF) bins carry very little energy. Though at first
this does not seem overly beneficial in detecting particular sources, separation models may take
advantage of this property by introducing e.g. sparse priors in order to overcome indeterminacies
of the problem description (see Section 2.2).
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2.1.1 Difference to speech signals

Although music and speech share a range of common audio processing tasks, such as source
separation and automatic transcription, the two domains of sound are fundamentally different
in several aspects. One key difference results from the restrictions that naturally come into
effect in the case of speech sound production. The vocal apparatus operates a fixed set of
speech producing organs, which is also subject to physiological limits: the vocal tract length, for
example, stays within certain bounds across all human beings, albeit slightly varying dimensions
for different people. Similarly, the set of formants (combinations of resonance frequencies within
the vocal tract) is limited and follows a certain distribution - common languages would not even
be conceivable if this was not the case. Of course, this is also true independently of any specific
language. Music on the other hand has an extremely wide range of origins and thus may contain
manifold and inconsistent content. Different types of instruments exhibit distinct structure in
the time-frequency domain. The variable importance of frequency areas e.g. can be seen in
Fig. 2.1, with the bass containing no energy at all above 5 kHz, the snare drum hit occupying
the whole spectral range, and the emphasis of the singing-voice on the frequency bands changing
with each phone and note. Moreover, the variance of a sound’s character within a certain class of
instruments may be significantly high too, and although the concept of e.g. a piano instrument
imposes constraints on its design, these are much more relaxed compared to the biological and
physiological limitations for the vocal apparatus.

In fact, the origin of a musical sound may be much more diverse and might even be hard to
determine. While the properties described so far are inherent to music signals, musical sources
may experience heavy transformation or manipulation, completely changing the original sound’s
character and structure. An electric guitar signal running through a multitude of effects (like e.g.
a fuzz, wah, chorus, reverse delay, vibrato, and a pitch-shifting reverb, to name a few), captured
through a particular microphone which has been precisely positioned in front of the speaker of
a certain amplifier and mixed with a modified version of its direct-input (DI) signal, may serve
as an excellent example. Other (maybe less drastic) examples showcasing the wide variety of
musical sources include the recording of an instrument in a room with distinct acoustics or an
entirely software based instrument. Additionally, the mixing process frequently imposes heavy
modifications onto the sources, usually in order to account for this diversity and to obtain a
coherent mixture signal. All of this is not very typical for speech sounds.

Another difference between speech and music signals is their different objective. While speech
usually aims for intelligibility, the general objective of music is to evoke a certain aesthetic
quality. This is also reflected in the frequency ranges both types of sounds are usually associated
with. Accordingly, traditional telephone transmission technology offers only about 4 kHz of
bandwidth (roughly 300 Hz - 3.4 kHz) which suffices for most voice applications, whereas music
typically occupies the full audible range from 20 Hz to 20 kHz - even if it is an a-capella spoken-
word performance. The human voice plays an integral part in many music cultures, however,
the singing-voice fundamentally differs from spoken language. Although both may exhibit e.g.
integer harmonic relationships, the usual goal for the singing-voice is to have a pronounced pitch,
and very clear and clean harmonic structure, often in a polyphonic context and in consonance
with other instruments. By contrast, the structure of speech is governed by a plethora of
linguistic features, ranging from articulatory and grammatical to semantic and pragmatical
considerations.

Finally, differences in loudness and intensities can be determined. For example, the vocal
tract is highly damped, resulting in a rather low crest factor around the order of 12 dB [4].
Depending on the source type, the crest factor of music signals can be quite a lot higher and
more unsteady.
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2.2 Formal description of the problem

Blind source separation can be described using the notion of a mixture system. The task is then
to estimate the N unknown source signals sn(t) given M observed mixture signals denoted by
xm(t) which have been mixed via some mixture system A. In the most simple form of linear
instantaneous mixtures with time-invariant gains amn, xm(t) =

∑N
n=1 amnsn(t), the problem

can be conveniently expressed as a linear system

xt = A · st + nt (2.1)

with A ∈ RM×N denoting the mixing system, xt = [x1(t) · · · xM (t)]T and st = [s1(t) · · · xN (t)]T

containing the mixture and source signals at time t, respectively, and nt = [n1(t) · · · nM (t)]T

corresponding to an optional noise term introduced by the sensors capturing the mixtures.

However, a mixture system may not only describe time-invariant gains and can be more
intricate. Input signals may be composed of attenuated and time-delayed sources

xm(t) =
N∑
n=1

amnsn(t− tmn) (2.2)

or of sources convolved with a certain time-invariant transfer function or filter:

xm(t) =
N∑
n=1

∞∑
k=−∞

amnksn(t− tmnk) =
N∑
n=1

amn(t) ∗ sn(t) (2.3)

This convolution filter could even be time-variant. The exact formulation depends on the ap-
plication, which - along with the formulation of the evaluation, see Section 2.3.1 - defines the
different forms of distortion that are allowed between the estimated and the true source. For
instance, extracting clean signals from moving sources in a reverberant room would require a
description using a time-variant source-to-microphone convolutive filter, though it might be ex-
tremely hard or even impossible to identify the original sources. Short observation durations
in combination with long mixing filters, for example, raise serious technical difficulties. In the
noiseless determined case, xt = A · st with M = N , the task can be framed as the search for
the linear time-invariant demixing system W = A−1 which is able to recover the sources simply
using st = W · xt. However, this is not possible in the underdetermined case (M < N), which
has infinitely many solutions forming an affine space.

Irrespective of the description though, sources can in general only be recovered up to a per-
mutation and arbitrary gains. The problem always suffers from inherent indeterminacies, which
cannot be overcome without introducing prior knowledge or assumptions about the intrinsic
properties of the source signals and/or the mixing system. In this sense, source separation is
never truly ”blind”.

Although the spatial (e.g. stereo) image carries a lot of useful information with regard to
the separation of the sources, many practical scenarios and applications require a restriction to
single-channel mixtures (M = 1). This work is concerned with the single-channel case which is
always underdetermined (since at least 2 sources are necessary for the problem to be relevant). In
particular, the vocal and accompaniment sources act as the desired target signals. Furthermore,
the focus of this thesis is to tackle this problem using a data-driven supervised deep learning
method, and the considered mixture model is thus limited to the instantaneous linear model of
the used dataset (see Section 3.3.1).
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2.3 Performance evaluation

Finding adequate criteria for describing the quality of a source separation algorithm is an active
field of research, and perceptual impressions often do not correlate well with objective evaluation
procedures that strive to represent performance using one or more numeric metrics [5], [6]. It is
clear though that a simple calculation of quality metrics, which ideally incorporate perceptual
information, is highly desirable and eases the process of algorithm development by alleviating
the need to perform cumbersome subjective listening tests. Additionally, it is not obvious how
to design such perceptual evaluations [7]. Other interesting different directions of research are
concerned with the issue of how to evaluate separation quality without references [8], and how
to successfully crowdsource the evaluation process [9].

One perceptually motivated framework to objectively evaluate performance is PEASS [10].
However, the so-called BSS Eval metrics [11], despite facing some criticism from the research
community (e.g. [12]), still remain the most widely used criteria in the source separation litera-
ture, which, for the sake of comparability to other work, have also been adopted in this thesis.
These offer a rather interpretable and well established quantitative set of energy-based measures
- though this very fact makes it hard to overcome or improve them. However, it is important to
keep in mind that these measures do not guarantee a totally fair comparison between different
source separation systems and neither do impeccably reflect their performance power.

2.3.1 BSS Eval metrics

The underlying reasoning behind the BSS Eval metrics is that the estimated source signal
ŝn = [ŝn(t1) · · · ŝn(tT )]T , with tT denoting the last time step of the series, can be decomposed
into several distinct terms, either corresponding to sounds associated with the true source sn =
[sn(t1) · · · sn(tT )]T , sounds from other interfering sources einterfn , components due to filtering

or spatial errors efiltn , or artifacts eartifn such as ”gurgling” noise possibly introduced by the
algorithm:

ŝn = sn + efiltn + einterfn + eartifn (2.4)

For simplicity and notational convenience, channel indices have been discarded since only the
single-channel case is of interest to this thesis. The decomposition into these distinct signal
components is based on orthogonal projections of the estimate ŝn onto subspaces spanned by
the respective signals corresponding to these components. Additionally, the signals used to
form these subspaces may allow some kind of distortion introduced by the estimate. In the
simplest case of time-invariant gains as a form of allowed distortion, the error due to the presence
of other sources, einterfn , can be obtained by projecting the estimate ŝn onto the subspace
spanned by all source signals sn′ 6=n other than the target source sn. This is done by finding the
corresponding projector Pn′, usually via a least squares solution. However, for the calculation of
this projector the intercorrelations between the sources have to be accounted for as well. After
the decomposition has been found, energy-based ratios can be formed which represent the actual
evaluation criteria.

The concept of the BSS Eval metrics is thus to compute the actual metrics after matching the
estimates to the references considering some formed of allowed distortion. In the music source
separation community, convolutive mixtures are the most common case, and allowing linear
distortion filters provides some robustness against linear mismatches. As pointed out in [12] and
[13] though, this kind of matching can significantly overestimate an algorithm’s performance if
the distortion filters are assumed to be time-varying. Therefore, only time-invariant filters have
been considered in this thesis.
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Implementations of the BSS Eval criteria typically assume such distortion filters to have a
finite impulse response (FIR) of tap-length L = 512. Thus, in order to find the error term efiltn ,
the estimated source is projected onto the subspace spanned by delayed versions of the target
reference signal sτn = [sn(t1 − τ) · · · sn(tT − τ)]T , with τ ∈ [0, L − 1] and P L

n denoting the
corresponding least-squares projector:

efiltn = P L
n ŝn − sn (2.5)

Similarly, the error term associated with the interference of other sources may be decomposed
using the projector P L

N , which projects onto the subspace spanned by delayed versions of all
references sτn, with n ∈ [1, N ] and τ ∈ [0, L− 1].

einterfn = P L
N ŝn − P L

n ŝn (2.6)

The amount of artificial noise eartifn may then be thought of as a residual signal.

eartifn = ŝn − sn − efiltn − einterfn

= ŝn − P L
N ŝn

(2.7)

Now separate performance criteria in the style of the signal-to-noise ratio can be defined using
energy ratios of the distinct components: the source-to-interference ratio (SIR), the source-to-
artifacts ratio (SAR) and the image-to-spatial-distortion Ratio (ISR). Note that the ISR in-
corporates filter distortions of the target source and although the expression ”image-to-spatial-
distortion” is rather meaningless in the single-channel case, it is kept for consistency with the
usual terminology. The relationships of the BSS Eval signal components is represented graph-
ically in Fig. 2.2. Additionally, the overall error in the estimate is quantified in the source-
to-distortion Ratio (SDR), which includes all error components. These ratios are expressed in
decibels (dB):

SDRn = 10 log

(
‖sn‖2

‖efiltn + einterfn + eartifn ‖2

)
(2.8)

ISRn = 10 log

(
‖sn‖2

‖efiltn ‖2

)
(2.9)

SIRn = 10 log

(
‖sn + efiltn ‖2

‖einterfn ‖2

)
(2.10)

SARn = 10 log

(
‖sn + efiltn + einterfn ‖2

‖eartifn ‖2

)
(2.11)

Evaluations are usually performed for a whole audio track, which also ensures that the distor-
tion filter stays time-invariant. Nonetheless, the power of the sources typically varies over time.
This can be taken into account by windowing the signal components sn, efiltn , einterfn and eartifn

before building the final local performance measures. Finally, the median value over all window
frames can be computed in order to yield a single numeric value for each of the metrics for each
track.
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Figure 2.2: Illustration of the relationships of the BSS Eval metrics with i and j denoting the channel and
source index, respectively [14].

2.4 Standard pre- and post-processing procedures

The vast majority of methods operate on time-frequency (TF) representations of audio, as music
signals in the TF-domain exhibit a clearer structure, sparsity and less overlap. In addition,
spectral analysis may be seen as a type of pre-whitening: a time-domain audio waveform has
a rather dense covariance, while the covariance matrix of the complex spectrum exhibits an
approximately diagonal structure. This pre-whitening effect depends on the chosen frame-length
though, because long frames break the stationarity assumption while short frames yield low
frequency resolution and thus more correlation. Typically the short-time Fourier transform
(STFT) is used, which is a computationally efficient, invertible, and linear operation and hence
very well suited to the task. However, other transformations such as the constant-Q transform
[15], [16] are also applicable and can be a sensible choice as well.

After estimates Yn of the sources have been found1, most approaches take the route of spec-
tral masking or filtering instead of outputting the estimates directly, and use the estimates
to construct masks. The STFT of the source signal may then be recovered by applying its
corresponding mask Mn to the STFT of the mixture signal using

Ŝn = Mn �X (2.12)

where � represents the element-wise Hadamard product.

This filtering operation may be considered as a form of dynamic equalization, quickly changing
with the frame rate. If the masks are constructed appropriately, the estimates are guaranteed to
be properly scaled in the sense that they are bounded by the input and their linear sum perfectly
reconstruct the mixture signal. There are basically two types of masks: the binary mask assigns
each TF-bin of the mixture to belong exclusively to one of the sources by either setting it to
0 or 1, and ratio or soft masks, which may take on any value on the bounded interval [0, 1]
and typically produce smoother, more perceptually pleasing estimates that are less interspersed
by artifacts (i.e. musical noise). The mask is commonly constructed as a Wiener filter [17],
since it turns out to be the minimum mean-squared-error (MMSE) estimator if the sources are
assumed to be uncorrelated, zero-centered and wide-sense stationary [18]. Spectral masking as a
post-processing step is thus also able to significantly enhance the separation quality. In essence,
Wiener filters estimate the true source by first normalizing the model source by the mixture
model, before scaling it by the true mixture. In practice, real-valued masks are commonly

1 Unless otherwise specified, variables in capital letters refer to time-frequency representations.
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computed via generalized Wiener filtering (GWF) [19] as

Mn =
|Yn|α∑N
n=1 |Yn|α

(2.13)

since most methods typically operate on magnitude spectrograms only and this generalized
formulation includes the classical Wiener filter with α = 2. Fractional power spectrograms have
been found to better fit the additivity assumption for the mixture model [19]. This general
formulation models the underlying stochastic processes as locally stationary and alpha stable
distributions instead of Gaussian distributions, which seems to be better suited for audio signals
because of their inherently large dynamic range and the resulting large deviation from the mean.
Interestingly, the choice of α also appears to influence the perceptual quality of the resulting
source estimates, and smaller values of α tend to be more appropriate in the case of music signals
[19], [20]. In addition, [21] demonstrates that this spectral magnitude exponent is dominated by
the phase information and also argues for a value of α slightly above 1, regardless of the source
distribution.

After calculating the mask, the magnitude spectrogram of the source can be obtained. Most
methods subsequently simply apply the original phase of the mixture for inverse transformation
to the time-domain in order to yield a waveform representation of the source estimate, since
phase information is often considered irrelevant [22]. Indeed, utilizing the mixture phase works
well in practice and is known to be optimal in the MMSE sense for speech signals [23], however
only under certain statistical assumptions which in general do not apply to real-world speech or
music signals. Therefore, phase reconstruction has gained a lot of attention from researchers,
and is considered to be particularly relevant to perception [24], [25].

2.5 Related work

In the following, a short introduction to the most common approaches to source separation is
given. Although this thesis deals with data-driven methods based on deep learning, it may
nevertheless be valuable to gain some insights in more traditional model-based concepts in
Sections 2.5.1-2.5.3, before turning to the review of some state-of-the-art DNNs in Section 2.5.4.

2.5.1 Pitch-based models

As already stated, the problem of source separation typically suffers from several indeterminacies,
that have to be overcome by exploiting intrinsic properties of the mixture and source signals.
Model-driven approaches achieve this by explicitly integrating prior knowledge about the nature
of the sources into their description of the target signal.

One rather intuitive way of decomposing musical mixtures is to exploit the harmonic structure
that is widely present in many sources. Sources associated with lead melodies or also just chords
may be explicitly assumed to be of a harmonic nature most of the time. If the fundamental
frequency of such a source can be tracked over time and the energy distribution at its integer
multiples, its harmonics, can be estimated at each time frame, this description should suffice to
either filter out or resynthesize the source. Successful pitch detection is thus a necessary and
crucial requirement for such an approach to work. However, this might turn out to be very
difficult in the context of polyphonic mixtures due to large frequency overlaps, and multi-pitch
estimation alone poses a challenging problem [26]. But also for e.g. lead and accompaniment
separation pitch estimation is non-trivial, since the common assumption that the loudest har-
monic corresponds to the lead signal does not apply in general, and silences, for instance, have to
be handled properly. Also, the lead signal typically includes non-harmonic components - vocals
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Figure 2.3: The concept of the source-filter model, illustrated in the frequency domain [28].

may be unvoiced, and even whispered or screamed - which break the underlying assumption
of the algorithm and have to be accounted for [27]. After estimating which harmonics of the
source are present, an estimate of the spectral envelope determines their relative strengths or
amplitudes. In a multi-pitch scenario with frequency overlaps, this may include some type of
soft-masking in order to distribute the energy of one harmonic present in the mixture properly
to the sources. The segregation between excitation and spectral envelope is often accounted for
by means of the source-filter model, which is especially popular in speech processing. In this
case, the voiced excitation signal from the vocal folds is often modeled using a harmonic comb
or impulse trains, and noise is used to simulate the airflow of unvoiced sounds. This excita-
tion signal is then convolved with a filter corresponding to the vocal tract, which modifies the
slowly varying spectral envelope of the resulting signal according to its frequency response. The
source-filter model is depicted in Fig. 2.3.

Pitch and spectral envelope are additive and thus clearly separable in the so-called cepstrum,
which therefore is often employed to disentangle their effects [29]. For instance, Mel-frequency
cepstral coefficients (MFCCs) are able to represent the spectral envelope, but other yet similar
representations might be more useful in the context of music source separation [30]. Spectral
envelopes can e.g. also be represented using models obtained by clustering harmonic structure
features [31]. In order to generate realistic sounding estimates with sinusoidal models, detailed
knowledge about the the target source is necessary, which might be hard to extract from the
mixture. Usually pitch-based models include assumptions about the number and type of the
sources [32], but there are many ways of inducing priors, e.g. by considering typical melody
lines for a particular source [33]. In practice, consistent source estimates are desired, and pitch
estimation and timbre modeling will usually have to be considered jointly. For instance, grouping
cues such as time-frequency proximity have to be utilized in order to allocate the right pitches
to the right sources in a polyphonic scenario.

2.5.2 Spectrogram factorization

Non-negative Matrix Factorization - NMF

Given a 2-dimensional input V that has rows corresponding to the feature dimension and
columns containing different data samples (or time steps), factorization methods try to find
a good approximation

V ≈ V̂ = W H (2.14)

by decomposing it into a dictionary W of recurring patterns that are characteristic for the
data, and a matrix H whose columns hold so-called activations which determine the relative
composition of the dictionary’s building blocks for the approximation of each column of V .
The number of dictionary entries (which is equal to the common dimension of W and H), is
often referred to as the factorization’s rank K. In the case of audio source separation, V usually
corresponds to the mixture’s magnitude or power spectrogram. After an approximation has been
found, the source may subsequently be identified by clustering (in an unsupervised setting)
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Figure 2.4: Power spectrogram of a short piano sequence composed of four notes and its corresponding low-
rank approximation obtained by applying non-negative matrix factorization with rank K = 5
[38].

or selecting (supervised setting) the entries in the dictionary that correspond to the target
source. There are various ways to obtain such a factorization, for example by applying the well-
known principal component analysis (PCA) and optimizing the approximation with regard to the
minimum mean square error [34]. Independent component analysis (ICA) is a related method
that estimates an unmixing matrix based on the statistical independence of the sources [35].
However, ICA is a rather unreliable approach, because music sources are highly correlated both in
time (common onset / offset times) and frequency (e.g. due to overlap of harmonics). Arguably
the most popular low-rank approximation method for blind source separation is non-negative
matrix factorization (NMF). In contrast to simple PCA which allows real-valued decomposition
components and produces holistic representations well-suited for compressing the entire given
data, NMF constrains optimization to non-negative values for W and H, ensuring that the
obtained dictionary entries are additive and parts-based building blocks [36], [37]. This turns
out to be very useful in the context of audio signal separation, yielding an elegant, flexible and
most importantly interpretable framework for source modeling. Since the input V will usually
be non-negative as well, methods based on NMF may be very straightforwardly applied to the
mixture magnitude or power spectrogram. The concept is illustrated in Fig. 2.4.

Measures of fit for the optimization of NMF based algorithms for audio signals are typically
part of the family of β-divergences, which include the Itakuro-Saito divergence (β = 0), the
Kullback-Leibler divergence (β = 1) as well as the quadratic cost (β = 2) as special cases [39],
and also allow for a smooth interpolation between these cases by adjusting the value of β. The
choice of the objective function indeed has a significant impact on the approximation’s behavior:
while the Itakuro-Saito divergence precisely models lower energy (usually high-frequency) TF-
bins, the Kullback-Leibler divergence relies more on large data values (usually lower-frequency
TF-bins). In fact, considering an equivalent probabilistic formulation of NMF [40], both cost
functions respectively act as the optimum estimator in the maximum-likelihood sense for different
underlying probabilistic assumptions [41]. Using a value of β = 0.5 appears to be a sensible trade-
off in the case of music signals [42]. Most non-negative matrix factorizations are optimized using
the Majorization-Minimization algorithm, which iteratively proceeds by minimizing a convex
auxiliary function that forms an upper bound of the original cost for the current estimate.
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It turns out that the decomposition of a β-divergence into a sum of a convex and a concave
component allows to construct a majorized auxiliary function that has a closed-form minimizer
[39]. Following a block-coordinate descent procedure, the resulting simple multiplicative updates
can then be applied alternatingly for W and H by assuming the respective other component to
be fixed. Since W and H are interchangeable by transposition V T ≈ HT ·W T , the updates
are essentially the same for both components. Note that this algorithm strongly depends on
initialization and is not guaranteed to converge to a global (or even local) minimum.

After the optimization problem has been solved, unsupervised source separation via NMF can
be accomplished by clustering dictionary components or analyzing activation events e.g. accord-
ing to their duration. However, real-world audio signals exhibit highly complex behavior and
comprise a large number of varying components, and vanilla unsupervised NMF without inte-
gration of prior information only works well on toy-data. However, it is very straightforward to
employ NMF in a supervised setting, by learning a dictionary W from training data, discarding
its accompanying trained activation matrix H, and re-estimating H from the test signal with
the fixed dictionary [43]. For source separation in particular, several source-specific dictionaries
Wn may be learned from clean signals for N different sources and concatenated into one large
matrix W = [W1 · · · WN ]. Upon factorization of the test signal, the source estimates Yn may
then be clearly determined by extracting the associated fixed dictionary entries Wn along with
their corresponding (re-estimated) activations Hn, for instance via Wiener-filtering:

Yn =
WnHn

W H
� V (2.15)

Semi-supervised approaches proceed in a very similar way, the main difference being that only a
subset of the source dictionaries is assumed to be fixed while the remaining ones are estimated
from the test signal directly [44]. Alternatively, instead of computing dictionaries, the training
data itself might be used Wn = Vn as the dictionary matrix (if it is not too large), or clustered
and averaged versions of its spectral samples / columns [45].

A variety of extensions to NMF algorithms with applications to audio source separation have
been proposed in the literature. For instance, instead of incorporating only one spectral com-
ponent per column in the dictionary, one dictionary entry might contain a patch of components
each of which corresponds to the same single activation row-vector hk. A single column or time
frame of the approximation then computes as vt =

∑K
k=1

∑L
l=1wklhkt, which can be referred

to as a convolutive approach to NMF [46]. Similarly, it is possible to enforce certain structures
that are characteristic of musical sources by representing dictionary elements, for instance, as
a weighted sum of narrowband spectral patterns (either corresponding to narrowband noise or
pitched harmonic series), or by reproducing the source-filter model as a product of excitation
and filter spectra, which might bring along favorable conditions to tackle singing-voice separa-
tion [47]. These types of modifications can be conveniently described in more general terms by
extending NMF to multi-dimensional arrays [48], [49]. A different way of incorporating prior
knowledge is by explicitly inducing sparsity into the factorizing components [50], [51]. This
is especially appropriate when speech or vocals are to be separated, as these sounds typically
feature less active frequency bins, less redundancy and complex harmonic structure. Also, NMF
with a large rank K but without additional constraints can lead to trivial, indiscriminate spec-
tral bases. Encouraging sparsity may be able to alleviate this issue. In particular, H can be
forced to only activate few dictionary entries at a time by adding a penalty term to the objec-
tive function. Typically the `1-norm ‖H‖1 is chosen, but different sparsity promoting penalties
exist. In a similar manner, sparsity may be induced in terms of groups, for instance in order to
simultaneously activate several dictionary elements that jointly account for a certain phoneme,
note or source [52]. Another type of NMF is the so-called projective NMF, which has been used
to explicitly capture the musical concepts of harmonicity and percussivity [53]. Finally, NMF
based algorithms may take into account the temporal dynamics of a source [54], [55]. For ex-
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ample, a penalty for largely dissimilar neighboring activations may be added, ensuring temporal
smoothness which is useful for overly harmonic sources. Similarly, such dynamic models are able
to factor in time-varying activations, e.g. with regard to typical attack-time envelopes.

Robust Principal Component Analysis - RPCA

As stated above, most TF-bins of music mixtures may be assumed to belong to the accompani-
ment which exhibits repeating structures and recurring similar sounds, while vocals are sparse
and show high variation. Robust principal component analysis (RPCA) is a method somewhat
related to NMF, which makes use of these properties and assumes that the mixture is a com-
position of underlying sparse (e.g. vocals) and low-rank (e.g. accompaniment) components. It
solves the convex optimization problem

minimize ‖L‖∗ + λ‖S‖1 subject to L + S = V (2.16)

where ‖ · ‖∗ denotes the nuclear norm (the sum of singular values) which is often employed to
find low-rank matrices, and λ > 0 corresponds to a trade-off parameter between the rank of
L and the sparsity of S. RPCA has been successfully applied to singing-voice separation [56].
Analogous to NMF, this approach is highly interpretable and hence lends itself to a variety of
extensions, for instance by introducing harmonic and regularization constraints as in [57]. Music
structure analysis such as vocal activity detection prior to source separation has also proven to
boost performance and is in general very helpful for methods based on spectrogram factorization
[58].

2.5.3 Kernel-based models

Repeating Pattern Extraction Technique - REPET

While the previous sections discussed methods that explicitly parameterize the target source’s
power spectral density, a different group of non-parametric methods exploits only local regu-
larities, which may be summarized as kernel-based models. A notable representative of these
methods is the so-called repeating pattern extraction technique (REPET) [59]. REPET is used
for foreground/background separation and is based on the simple assumption that the musical
background has an underlying repeating structure and is thus more redundant than the overlying
foreground (e.g. vocals or lead instrument). To this effect, it should be possible to infer a mask
that extracts the background sources by distinguishing between roughly periodically repeating
and non-repeating TF-bins. The technique bears resemblance to background subtraction meth-
ods in computer vision. The concept of the algorithm is depicted in Fig. 2.5 and in general
proceeds as follows: after analyzing the given musical mixture with regard to repeating struc-
tures, for instance by computing a beat spectrum [60], these repeating patterns can be identified
in the input mixture and combined to yield a smooth representation of the repeating segment
via median filtering. This segment may then be used to construct a TF-mask for background
extraction.

The degrees of freedom of this method mainly consist in the different ways of identifying
repeating patterns. For instance, to account for varying structures (such as verse and chorus of
a song), one might apply REPET on individual windowed and possibly overlapped segments in
order to extract the local repeating background, or use an adaptive version that computes a beat
spectrogram instead of a global beat spectrum. Another extension, REPET-SIM, generalizes
the previous approaches and takes into account repeating yet non-periodic patterns by utilizing
a similarity matrix to identify these repeating patterns. Additionally, variants of REPET well-
suited for on-line processing do exist.
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Harmonic/Percussive Separation using Median Filtering

A different kind of kernel-based method deals with the separation of harmonic and percussive
components of musical mixtures [61]. The idea behind this approach is simple yet extremely
effective: since percussive and harmonic sounds are highly localized in time and frequency,
respectively, they can be conveniently separated using median filters across successive frames
(for harmonic components) and across successive frequency bins (for percussive events).

Kernel Additive Models - KAM

Both of these methods regard interference from unwanted sources as outliers, and rely on median
filtering as an estimator which is robust with regard to these outliers. Similarly, both algorithms
exploit local features which are observable in the mixture spectrogram. The framework of Kernel
Additive Modelling (KAM) generalizes these methods by introducing the notion of proximity
(in terms of e.g. repetition, continuity, stability, self-similarity, common fate, etc.), and proposes
that a certain TF-bin associated with the target source may be determined from other TF-bins
of the mixture by applying a so-called proximity kernel [62]. REPET-style algorithms and the
harmonic/percussive median filtering algorithm thus are versions of KAM for different choices
of the proximity kernel, as illustrated in Fig. 2.6. Additionally, [62] introduces a method to
find suitable kernels using the iterative kernel-backfitting algorithm. The KAM framework has
been subject to modifications too, for example with regard to its efficiency [63] and the kernel-
backfitting optimization procedure [64].

Figure 2.5: Visualizazion of the original REPET approach for foreground/background separation [59].

Figure 2.6: Different proximity kernels of KAM-methods [62]. w denotes the frequency-axis, t the time-
axis. Red bins correspond to the current TF-bin in question for a particular target source j.
Black bins are part of the neighborhood or proximity Ij, which are TF-bins for the source j
that are assumed to be approximately constant in the mixture spectrogram. In this illustration,
(a) and (b) represent proximity kernels of the median harmonic/percussive filtering algorithm,
(c) is associated with REPET-style algorithms, and (d) might correspond to a kernel for vocal
separation since it operates both on the time- and frequency-axis.
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Of course, different ideas from all of the approaches to source separation that have been
discussed may be combined in order to obtain a more robust system, and many examples can
be found in the literature. To mention a few examples, NMF and RPCA may be combined with
pitch-based methods in order to ignore or weigh TF-bins in the mixture that correspond to the
harmonics of a lead melody, such that mainly the accompaniment is subject to factorization [65],
[66], whereas [67] uses a pitch-based method in combination with the REPET-SIM approach. In
a similar manner, it is possible to cascade multiple algorithms [68], [69], or yield the final result
from an estimate of an ensemble of different methods [70].

2.5.4 Deep Neural Networks

Although many of the aforementioned methods are also suitable for supervised training settings,
they enforce certain desired properties on the source signals, which makes them prone to failure
if the sources do not exhibit these properties or do not obey their signal model. The problem of
source separation has seen dramatic improvements in performance since the advent of modern
deep learning, as did many other fields of research in signal processing and computer science
in general. Despite the fact that DNNs are usually referred to as models as well, they do
not introduce assumptions on the signals and are less restrictive in the sense that they act as
universal function approximators [71], [72]. If enough representative training data is available
to train the network’s parameters on the minimization of some reconstruction loss, the need to
explicitly model the spectral characteristics of a source is eliminated.

Figure 2.7: Illustration of the basic concept of source separation in the time-frequency domain using a simple
feed-forward DNN [73]. In this case spectrograms are inferred directly, but mask estimation is
possible and common as well.

Most source separation algorithms based on deep learning take the mixture signal as input
and output the target source signal, as shown in Fig. 2.7, or a corresponding mask. Usually one
model per source is employed for the decomposition of a given mixture. This is reasonable with
regard to the efficiency objective of this thesis, as compute power is not unnecessarily spent
on estimating extraneous sources. However, estimating only one source spectrogram or mask
prevents utilization of the well-established and indeed highly beneficial post-processing step of
Wiener filtering, which requires an estimate of the entire mixture model in the denominator.
Interestingly, the supposedly first application of DNNs to music source separation addresses
this problem, by jointly computing representations of all sources and using fixed deterministic
layers to directly infer masks from the network [74]. Another contribution of this work is the
usage of recurrent hidden layers, which allows for an extremely reduced context size of 3 frames.
After investigating the use of fully-connected feed-forward neural networks (FNNs) for music
source separation in [75], [76] showed that the use of bi-directional long short-term memory
networks (Bi-LSTMs) are better suited to the task, and that an ensemble of both methods
consistently produces improved estimates. Moreover, [76] also demonstrates the effectiveness of
data augmentation techniques: although mixing sources from different parts of different songs
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and applying random gains generates incoherent and unrealistic mixtures, the expanded amount
of training data (which is particularly scarce in the case of music signals due to copyright
protection) helps the network to generalize better.

In general, encoder-decoder topologies dominate the literature of deep learning for music
source separation. The encoder transforms the input mixture to a compact representation that
is useful for separation of the target source, and the decoder generates the desired target from this
encoding. An encoder-decoder architecture based on gated recurrent units has been proposed in
[77] and has seen extensions in [78] and [79], which feature a denoising highway-network after the
encoder-decoder masking network for artifact reduction. However, the recurrent inference, the
parameter-heavy model and the intricate training procedure paired with the moderate separation
performance compared to other state-of-the-art methods, let this approach appear less attractive.
Another, more recent model that also relies on recurrent layers is called open-unmix (UMX) [80],
and employs 3 hidden Bi-LSTM layers as well as fully-connected layers at the input and output.
While the main intention of the authors was to provide a baseline model with an open-source
reference implementation, UMX achieves state-of-the-art separation quality. Instead of RNNs,
systems based on convolutional neural networks (CNNs) can also be very successfully applied
to the problem of music source separation (e.g. [81], [82], [83], [84]), prevalently in the form
of U-Nets, which will be discussed in the following. Despite the stateless system architecture,
crucial temporal dependencies in the audio material may still be exploited by simply aggregating
contextual information and passing this ”context data window” as input to the network. [85]
even advocates the use of CNNs in the context of music source separation as opposed to RNNs.
Unsurprisingly though, a combination of the strengths of both approaches yields even higher
separation quality [86], [87], by extracting abstract local features via convolutional filters and
capturing long-term structure through subsequent recurrent layers. At this point it should be
noted that architectures based on attention-mechanisms [88] have recently been applied to the
task of music source separation and showed state-of-the-art results [89], [90], however, these
methods are not discussed any further in the context of this thesis.

U-Nets

U-Net structures [91] have proven to be particularly effective and have become arguably the
most used CNN configuration in audio source separation and similar regression tasks [81]. The
rationale behind the U-Net topology depicted in Fig. 2.8 is that the network does not have to
operate entirely at the full resolution. Instead activations may be downsampled or pooled at
several intermediate stages and subsequently upsampled accordingly, e.g. via transposed con-
volutions, to recover the target scale. While capturing and preserving fine detail and local
information at higher resolutions, layers at lower scales can benefit from an extended spatio-
temporal context as well as large receptive fields and may learn to produce more general, global
and abstract features. Note that this architecture resembles typical denoising auto-encoders,
and the problem of audio source separation may indeed be reformulated as the task of denoising
a corrupted version of the desired target source. Additional skip-connections between encoding
and decoding layers of the same scale allow to keep both kinds of information (local and global)
at once. The effect of skip-connections has been studied in depth in [92], and has been found
to encourage auto-encoder-like networks to learn non-trivial mapping functions, especially if the
network’s input and output are skip-connected. Additionally, residual- or skip-connections are
known to tremendously help the optimization procedure since they alleviate the vanishing/ex-
ploding gradient problem [93], [94]. Many successful source separation systems build on the
U-Net architecture, such as [83], [84], [86], [95], [96] and [87].
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Figure 2.8: Network architecture of the U-Net used for singing-voice separation [81].

Time-domain DNNs

Since the introduction of the audio synthesis model Wavenet [97], methods that are capable of op-
erating in the waveform-domain have become increasingly popular due to their inherent ability
of exploiting and modeling phase information, and the on-going pursuit of truly end-to-end -
trainable models. Instead of explicitly imposing a time-frequency representation, time-domain
DNNs learn task-specific representations using their own set of basis functions. However, the
performance of time-domain models for music source separation such as [98], which builds on the
Wavenet, and the Wave-U-Net [96], albeit yielding decent results, initially lagged behind meth-
ods that relied on explicit spectral analysis. This changed with the introduction of Conv-TasNet,
a time-domain model originally proposed for speech separation [99] that obtains state-of-the-art
separation performance on various types of sounds [100] including music signals: [87] uses an
adapted Conv-TasNet as a baseline model, points out potential shortcomings of the architecture
and proposes a different U-Net-style waveform model called Demucs, which produces similar
though slightly more perceptually pleasing results. [101] conducted an in-depth empirical study
of the architecture and provides insights into its generalization capabilities which also apply
to music source separation. Recent work conducted in [102] also applied and extended Conv-
TasNet for music source separation. The authors used a meta-learning approach by employing
a masking extractor specific to each source and a parameter generator that predicts the param-
eters of the extractor conditioned on a one-hot encoded input vector of the source. In doing
so, they also address interesting issues such as parameter-efficiency, multi-samplerate stages and
the use of the STFT as an additional parallel feature extractor to the learned basis functions of
the 1D-convolutional kernels.

Training objectives

Apart from finding appropriate network architectures, the deep learning literature specific to
audio source separation deals with exploring different training procedures and, in particular, ob-
jective functions. As far as models in the TF-domain are concerned, most methods simply take
the mean squared error between the estimate and the target as a measure of fit. Despite being
simple and effective, the use of the Euclidian distance is not very well motivated from a percep-
tual viewpoint, as TF-bins do not contribute equally to a certain sonic sensation. We are rather
interested in correctly learning the ”distribution” of the target’s TF-bins. Therefore divergences
such as the Kullback-Leibler (KL) divergence seem like a more reasonable and appealing choice
[103], [104]. However, the resulting performance appears to be model-dependent. Simple MSE
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loss functions tend to be more popular because they work very well in practice, and are also
used by recent state-of-the-art methods (e.g. [86], [89]). A different loss function for spectral
speech estimates that essentially optimizes the signal-to-noise ratio (SNR) has been proposed
in [105]. Another promising idea for measuring the quality of the estimates is to compute the
pixel-wise difference to the target in a high-level feature space instead of the TF-domain. This
can readily be achieved by feeding the spectrograms (or masks) to another DNN, which may
have been trained on e.g. audio or even image classification tasks, and computing a loss term
from the features extracted by one or more hidden layers of this network. [106] investigated
this approach and showed that it consistently improves the separation performance for music
signals. In the case of time-domain methods, it is natural to train the end-to-end model directly
on performance based cost functions, such as the SDR or the scale-invariant SDR (SI-SDR)
[107]. However, the `1-loss is an equally valid objective function for time-domain DNNs and has
also been utilized to yield state-of-the-art performance, as demonstrated by [87].

A different kind of training objective is offered by the deep clustering framework [108], which
aims at generating high-dimensional embeddings that allow for convenient clustering of TF-bins
with respect to the sources. Deep clustering has been originally proposed in order to facilitate
speech source separation and the accompanying permutation problem, and has since been exten-
sively used for this purpose (see e.g. [109] for a recent state-of-the art speech source separation
system), but can also be applied to music source separation [110]. Section 4.6 discusses this type
of loss function in greater detail.

Training data

Neural networks reduce the need for rigorous constraints on the signal model by directly learning
from training examples and in doing so pushed the boundaries of source separation performance.
However, this data-driven approach can pose potential shortcomings if the DNN is not able to
properly generalize due to a lack of training examples. Compared to speech separation, ”labeled”
multi-track music mixture data with clean source signals is particularly scarce due to copyright
protection, and previous datasets such as iKala [111], ccmixter [112] and medleydb [113] are
deemed to be insufficient. This circumstance is also evident from the timeline of successes in the
field of deep learning based music source separation, which moved forward in leaps alongside
the release of adequate datasets such as DSD100 [114] and its extension musdb18 [115], which
has become the most popular and widely used dataset for music source separation. The recently
introduced database slakh [116], which is based on rendered MIDI data, will certainly further
contribute to this development. Furthermore, effectively utilizing deep learning despite little
available training data is an active field of research. The most common way of dealing with this
issue is by artificially expanding the available dataset via augmentation methods that generate
new training examples by applying some kind of transformation on the original data [76], [117].
Data augmentation techniques have become standard components of DNN training procedures,
and are also subject to research that tries to better understand the mechanisms behind their
effectiveness [118]. Another strategy, termed transfer learning, transfers a network that has
been pre-trained on a large dataset from a different but related domain to the target domain
by re-training it on the smaller in-domain data [119], [120]. Additionally, [121] states that deep
neural networks are indeed capable of generalizing on smaller datasets as well.

Resource efficiency

There is a great demand for the deployment of deep learning based systems in resource-constrained
environments in general. Transferring DNNs from scientific and cloud-based environments with
virtually unlimited computing power to consumer-grade electronic hardware for on-device infer-
ence is among the major challenges of modern machine learning. Additional real-time require-
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ments make this task even more difficult. Solutions to this problem are required to find a sensible
trade-off between the model’s performance and its efficiency, which is determined by its memory
footprint, inference speed and energy efficiency. A comprehensive overview about resource-
efficient approaches to deep learning is given in [122], [123]. These can essentially be categorized
into 3 different classes: quantization methods, that try to represent weights and/or activations
using less precision than the typically used 32-bit floating point values; pruning methods, which
remove parts of the network architecture during or after training; and approaches that strive
to improve the network’s efficiency at a structural level, for instance via weight sharing, special
matrix structures and lightweight building blocks, knowledge distillation and neural architecture
search. The literature concerning efficient deep learning based music source separation is rather
limited. One convolutional method which focuses on low latency has been proposed in [124]. It
adheres to the encoder-decoder approach, however, it uses several decoders in order to simulta-
neously estimate multiple sources. While the work conducted in [124] is of special relevance to
this thesis, the slimness of the model paired with the shared representation of multiple sources
limits the expressive power of the model. Strategies to meet efficiency requirements will be dealt
with in greater detail in Chapter 5.
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3
Baseline system and experimental setup

This chapter describes the foundations for the experiments, before the results are presented
in the following chapters. First, Section 3.1 considers relevant properties that an appropriate
baseline system with regard to a balanced trade-off between performance and efficiency should
comply with, and justifies the choice of the state-of-the-art MMDenseNet architecture, which
will be explained in greater detail in Section 3.2. Details regarding the experimental setup,
which relate to the used dataset, data pre-processing, the optimization procedure and additional
hyperparameters, are presented in Section 3.3.

3.1 Determining a baseline

Determining an appropriate baseline system for this work not only depends on its capability of
producing high quality separation estimates. Since the same model should also work as a foun-
dation for considerations towards efficiency, it is of equal importance whether the model obtains
these results in an inherently resource-friendly, computationally effective and fast manner.

Recurrent vs. convolutional units

While the use of recurrent neural networks (RNNs), and Bi-LSTMs in particular, may seem like
a suitable choice given the sequential nature of audio data, they are computationally expensive
and parameter heavy - even more so as they are often used in conjunction with fully connected
layers. In addition, switching from bi-directional to causal units for utilization in on-line set-
tings may lead to serious performance degradations. CNNs on the other hand are much more
lightweight (e.g. due to shared weights) and have a clear advantage over RNNs in terms of
efficiency. In contrast to sequential RNNs, the stateless kernel-based processing of CNNs allows
for much better utilization of parallel hardware, which is available in virtually any of today’s
computing devices and thus encourages the use of CNNs in resource-constrained environments.
In addition, recent research towards the development of more efficient DNNs mainly concen-
trates on convolutional architectures, due to their ubiquitous presence within image processing
applications (see Section 2.5.4 and Section 5.4). As outlined in Section 2.5.4, hybrid models are
able to combine the strengths of both topologies. However, the main concern of this thesis is the
efficiency of source separation systems based on deep learning, since it is not clear whether it is
at all possible to implement a modern large-scale DNN given the rigorous real-time requirements
of small, real-world embedded systems with limited computing powers. Additionally, the incor-
poration of recurrent units into hybrid architectures is considered to be rather straightforward
(cf. [84], [86]), and may be added after the feasibility of a certain fully convolutional model has
been confirmed in this context.

Time vs. time-frequency domain

DNNs operating in the waveform-domain have advanced to the field of music source separation
by now and indeed generate impressive results. However, a few aspects of time-domain models
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raise some considerations with regard to their appropriateness for the objective of this thesis.
First of all, the algorithm for calculating the fast Fourier transform (FFT) is highly optimized
and requires only negligible computation cost on general purpose processors. In contrast, trans-
forming the input from the time-domain to the learned representation of the network is likely
to be significantly less computationally effective, while the transformation might be very similar
to that of a plain STFT. And although incorporating phase information as well as employing a
task-specific representation appears to be highly beneficial, there are some reasons to doubt the
effectiveness of learned basis functions. For instance, [100] used the Conv-TasNet architecture
to compare the performance of learned features with that obtained using STFTs, and discovered
that the latter works better in certain cases. The Meta-Tasnet [102] extracts features using both
learned basis functions as well as an STFT, but the relative contribution of each of the trans-
formations to the result is not clear from the paper. Furthermore, very recent attention-based
neural networks [89], [90] currently outperform all other state-of-the-art methods, while esti-
mating magnitude spectrograms purely in the TF-domain and simply using the original mixture
phase for inverse transformation. For these reasons, this thesis focuses on fully convolutional
neural networks that operate in the TF-domain, in particular the MMDenseNet introduced by
Takahashi and Mitsufuji [84].

3.2 Multi-scale Multi-band DenseNets

DenseNets

The increase in performance as well as popularity of neural networks, in particular CNNs,
roughly correlates with the increase of their depth [125], [126]. Presumably, the advantage of
deeper models lies in their capability of modeling hierarchies of increasingly complex features or
concepts. However, the propagation of information both backward and forward is impeded as
networks grow in depth and managing the training of deeper models is difficult due to problems
like vanishing or exploding gradients. In fact, many popular strategies for training DNNs tackle
this problem in different ways, e.g. via better initialization, alternate optimizers, pre-training
schemes or well designed activation functions.

Another effective and groundbreaking method that enabled the training of extremely deep
CNNs is to employ residual- or skip-connections that act as shortcut identity functions be-
tween layers, which improves information flow inside the network and explicitly allows to learn
residual instead of direct mappings [127], [128]. One variant of such an approach is the well
known DenseNet [129], originally proposed for image classification tasks: the basic idea behind
DenseNets is to construct the input to one layer by concatenating (in the channel direction) the
feature maps produced by all preceding layers, and the corresponding output activations of the
layer are again fed to all subsequent layers, as illustrated in Fig. 3.1.

This ”dense” connectivity not only avoids the vanishing gradient problem but also encourages
the reuse of features generated by previous layers and thus ensures parameter efficiency. This
architecture attains great results, with the only disadvantage being the rather large memory
consumption of DenseNets, since the number of feature maps each layer has to process increases
linearly in proportion to the number of kernels per layer (which for this reason is also called the
growth rate parameter, usually denoted by k). The intuition behind utilizing densely connected
CNNs for audio source separation is that source spectrograms buried in interference signals
can be recovered more easily by frequently referring back to the mixture and intermediate
representations, hence exploiting the feature reuse property of DenseNets.
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Figure 3.1: The concept of dense connectivity as used in the original DenseNet paper [128].

Multi-scaled DenseNets

In order to adapt the idea of DenseNets to regression tasks, the desired time-frequency resolution
(usually matches that of the input spectrogram) has to be maintained at the output. However,
simply stacking multiple densely connected layers results in infeasible memory requirements, as
outlined above. Instead, [84] adopts the popular U-Net structure described in Section 2.5.4,
which explains the ”multi-scale” attribute. The authors also validate the U-Net structure by
investigating the `2 norm of weights at different scales, corresponding to either the upsampling or
the skip-connection path, which turn out to exhibit a quite balanced distribution and therefore
should roughly contribute equally to the result (as depicted in Figure 5 in [84]). The parameter
s indicates the number of different scales used throughout the network architecture.

Multi-band processing

Music extends over a broad range of frequencies and different spectral areas exhibit distinct
characteristics. Since the training of convolutional kernels will be dominated by signal compo-
nents of higher energy, this may lead to a poor representation of high frequency content which is
typically less prominent. The MMDenseNet tries to compensate for that by employing several
networks in parallel dedicated to different frequency bands. The separate outputs can then be
concatenated in the frequency direction to retain the full resolution feature maps. This estimate
is combined (via concatenation along the channel dimension) with the output of an additional
network that covers the entire spectral range, to account for both local and global patterns. In
addition to reducing and clearing up the search space for the separate convolutional filters, this
method allows for a non-uniform distribution of computational power across frequency bands of
varying significance (by adjusting the individual network sizes) and therefore benefits the overall
computational efficiency.

Summary of the MMDenseNet architecture

In summary, the MMDenseNet uses three U-Net-like networks assigned to different frequency
regions, with one network covering the full spectral range and a higher and lower band associated
with the other two (spectrogram is simply split in half at the center of its vertical axis). Following
an initial input convolution, the basic processing unit between pooling and upsampling layers
of each of those U-Nets is the so-called dense block, which itself consists of L densely connected
layers. These layers, in turn, are essentially pre-activation convolutions - a composite function
made up of a sequence of 2D Batch Normalization (BatchNorm), a Rectified Linear Unit (ReLU )
and a convolutional unit employing k (corresponding to the growth rate of the respective dense
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Figure 3.2: Model architecture of the MMDenseNet [84]. Each green block consists of densely connected
composite function units composed of BN, ReLU and a 2D convolutional layer. These are ar-
ranged in a U-Net-like fashion, forming a single MDenseNet. The MMDenseNet is then made
up by operating several MDenseNets in parallel on different frequency regions, plus one dense
block in order to gather the individual parallel outputs.

block) 2D kernels of size 3x3. The downsampling layer is defined by a 1x1 convolutional operation
(preserving the number of feature maps) followed by an average pooling layer of size 2x2. The
upsampling layers consist of 2D transposed convolutions, with the filter size corresponding to
that of the pooling operation. After the outputs of all separate networks are gathered and
combined, they are passed through a final dense block in order to yield a consistent output. The
model architecture is illustrated in Fig. 3.2.

Each source is modeled individually by one MMDenseNet. The final estimates of the original
paper are obtained by applying a multi-channel Wiener Filter (see Section 2.4 and e.g. [19]),
which requires the availability of all source estimates at once. Although this post-processing
scheme considerably enhances the quality of the results, this condition can hardly be met con-
sidering that a single model already poses difficulties for real-time scenarios with limited com-
putational resources. Instead, the remainder of this work will neglect the post-processing step
and directly takes the output of one MMDenseNet as its corresponding magnitude spectrogram
source estimate. This spectrogram may then be transformed to the time-domain using the
inverse STFT with the original mixture phase.

3.2.1 Implementation details

All parameters of the MMDenseNet, including the growth rate k, the number of layers L and
the scale parameter s are given in Table 1 of the reference paper [84]. A few open questions
remain unanswered though, since the implementation has not been made publicly available.
This section gives a concise overview about the choices made during the implementation of the
baseline system within the PyTorch framework [130].

Bias

One detail about the model that is not addressed directly is whether the convolutional layers of
the MMDenseNet include bias terms. These are usually omitted by large CNNs which typically
are interspersed by Batch Normalization layers and naturally incorporate bias terms that way.
We therefore follow this proceeding. However, it is crucial to include a bias term at the output
convolution, since failing to do so would unnecessarily condition the previous parameters on the
scale of the target output. A similar point can be made for the input layer: although the original
DenseNet for the ImageNet dataset employs BatchNorm as its very first operation, this seems
not to be the case for the MMDenseNet. For this reason it is wise to decouple the subsequent
layers to some extent by including a bias term in the input convolution.
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Dense Block Output

Arguably the key component of DenseNets is the concatenation of feature maps across blocks
and the unobstructed propagation of data: the output of one composite function, also called
dense layer, is concatenated with all previous dense layer outputs inside the same dense block,
plus the initial input to the block. The output of one dense block, as proposed in the original
DenseNet paper [129], is constructed analogously - it is the concatenation of all feature maps
that were generated inside it with its input. In contrast, though not clearly stated in text, Figure
1 of [84] indicates that the output of a dense block of the baseline system simply corresponds
to the output of the last dense layer of the block. Thus all activations are squeezed through
the last composite function, with the resulting output channel dimension equaling the growth
rate. As the original version would come with an immense increase of computational cost, our
implementation adopts the latter, modified approach concerning dense block outputs.

Multi-band concatenation

Before going into the final dense block, the activations of the independent network components
associated with different frequency bands have to be joined. But since different growth rates
k are used in each case the output feature map dimensions will not align properly for simple
concatenation. In particular, this concerns the features corresponding to the higher and lower
frequency regions, since their combination has to yield the full frequency resolution before being
concatenated along the channel axis with the output of the full-band network.

While there are several different ways to do this, the authors do not give details about their
implementation concerning this matter. One may synchronize the number of kernels used in
the final dense layer of the last parallel dense blocks. However, since the disjoint network
parts are not equally relevant as outlined previously, this procedure requires a tradeoff between
an unnecessary increase in computational inefficiency and a negative impact on the model’s
capacity to represent a particular band. Another method of handling this issue would be to
add a subsequent 1x1 convolution and map all outputs to the same feature map dimension.
While somewhat compensating for differing feature representations, this approach is subject to
a similar tradeoff problem and additionally hurts efficiency by introducing a new convolutional
layer. The most straightforward way, however, is to simply zero-pad the missing dimensions.
Though lacking an explicit alignment of the different feature representations, it has to be learned
by the network anyway. Furthermore, this method is efficient, avoids the outlined tradeoff and
is therefore adopted for this implementation.

3.3 Experimental setup

3.3.1 Dataset

All experiments presented in this thesis have been conducted using the musdb18 dataset [13],
which consists of roughly 10 hours of western pop music with stems for vocals, drums, bass
sources as well as one source that groups all other occurring sources. It comprises 150 full-length
tracks in total and has dedicated train and test sets composed of 100 and 50 songs, respectively.
All songs are stereophonic and encoded at 44.1 kHz. A validation set has been determined by
randomly selecting 20 of the 100 songs in the training set. To avoid over-representing longer
tracks during training, we extract 150 seconds from each of the remaining 80 songs based on
the activity of all sources. This is done with the help of a tool provided by the creators of
musdb18, which approximates the confidence of source activity as a function of time by applying
a logistic function to the respective signal after half-wave rectifying, compressing, smoothing
and down-sampling it (as described in [131]). The dedicated test data set holds 50 songs.
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3.3.2 Pre-processing

In order to reduce computational cost, all data is downsampled from 44.1 kHz to 32 kHz and
converted to mono, as we are only considering the single-channel case. Note that the down-
sampling causes the frequency, that corresponds to the bin halfway on the spectral range and
therefore also to the crossover point of the multi-band model, to shift from approximately 11
kHz to 8 kHz. Since relevant information above 11 kHz is considered to be rather scarce any-
way, this can be thought of as an enhancement of the baseline system. Training examples are
constructed such that nearly all available training data is seen approximately once during one
epoch. We generate training examples by mixing sources from random chunks of different songs
and applying random gains in the interval [0.25, 1.25]. While this data augmentation scheme
generates incoherent and unrealistic mixtures, it has been found to improve generalization [76].
The same technique, plus a random swap of the stereo channels which has to be neglected in
this case, is also used in the MMDenseNet reference paper.

Spectrograms are obtained by stacked sequences of the short-time Fourier transform (STFT)
using a frame and hop size of 2048 and 512 samples, respectively. The transformed STFT
representation of the whole musdb18 audio corpus has been pre-computed and stored on disk
to avoid unnecessary recalculations during training. It is not clear from the paper how many
frames are fed to the MMDenseNet per pass. The follow-up paper [86] (MMDenseLSTM),
however, states an effective context window size of 356 frames. As this work is supposed to
consider resource-constrained environments and quasi real-time settings, we necessarily have to
deal with rather small context sizes: each training example contains either 64 or 8 time frames,
with the latter corresponding to experiments with reduced context size (176 ms). As the DC
component of spectrograms carries no exploitable information, can simply be set to zero for
the source magnitude estimates and smaller feature map sizes directly translate into reduced
computational loads, it is discarded before being fed to the neural network.

3.3.3 Training

Although the original MMDenseNet trains with RMSProp, the follow-up MMDenseLSTM [86]
utilizes the Adam optimization algorithm [132]. Since conformity with the latter framework is
desirable as we want to maintain the option of inserting recurrent units at a later stage, and due
to Adam being more stable in general, we stick to this scheme. Additionally, both adaptive op-
timization methods draw on similar ideas and the update rule of Adam essentially differs from
that of RMSprop only by an additional exponentially decaying average of the past gradients
(similar to momentum). In other words, while RMSprop does (uncentered) variance normal-
ization of the gradient, Adam also accounts for the mean and therefore tends to accelerate the
search in direction of the minima. We use the updated algorithm, termed AdamW [133], which,
in contrast to the original version that accumulates L2 regularization terms in the calculation
of the moving averages, properly applies weight decay only in the actual update step.

The training objective (for the baseline system at least), is to minimize the mean squared
error (MSE) on the vocals linear magnitude spectrogram. The best model is chosen based on
the minimal loss on the validation set. It is also possible to use the previously introduced
BSSEval metrics (SDR, SIR, SAR) and use a possibly weighted combination to select the best
performing model. However, calculating these ratios on the whole validation set is costly and
doing so every epoch significantly extends the training process. Moreover, the loss probably
represents a better overall and more interpretable measure than a weighted combination of the
BSSEval metrics. Naturally these are used in the testing stage though, with the help of the
provided museval python tool. The measures are calculated based on a time window of 1 s and
allow a time-invariant distortion filter.

– 38 –



3.3 Experimental setup

3.3.4 Hyperparameters

While the paper reports on parameters with regard to the network configuration, it omits hy-
perparameter settings such as values for the learning rate, batch size or the number of training
epochs. Therefore a random search (rather than a grid search [134]) was conducted. As it is
impractical to show the outcomes of all experiments in numbers and some of the parameters
are also subject to additional theoretical and/or other practical considerations, the findings are
presented in the following. A summary of the chosen hyperparameters is presented in Tab. 3.1.

Unlikely settings were ruled out after few epochs of training, before increasing the training time
in order to fine-tune the parameters. Training in general took quite long, which made it hard
to properly infer settings for e.g. early stopping. Rather than expensive parallel calculations
on the GPU like e.g. backpropagation, the computational bottleneck was due to slow disk read
data fetching operations, arguably caused by a slow filesystem. Because of the more or less
heavy baseline system and the relatively long context needed, GPU memory lacked the space
to transfer the entire dataset onto it, which would have rectified the problem. Therefore it was
decided to simply choose a fixed number of 100 epochs before selecting the best model, since
the validation loss has been found to converge sufficiently well over this period.

Traditionally one of the crucial parameters is the learning rate, even though modern adaptive
optimization algorithms are designed to alleviate the need for elaborate tuning. The default value
of Adam, 0.001, works well, however a minor increment up to 0.002 showed similar results yet
faster convergence. Additionally, a schedule was employed to decay the learning rate by a factor
of 0.1 when the validation error plateaus.

Being closely connected to the learning rate parameter, there is currently much debate about
whether larger or smaller values for the batch size ought to be preferred [135], [136]. While
the ultimate truth remains to be found, the existence of a generalization gap in favor towards
smaller batch sizes is generally agreed upon [137], [138]. Adhering to smaller mini batches thus
is certainly not detrimental to training. Additionally, Adam averages out noisy gradients in any
case. Considering that the computational bottleneck corresponds to the loading of data and not
the GPU, the batch size should not be too low either. A moderate size of 32 is used, which is
also the maximum batch size of training data we could fit onto GPU memory.

It is less common to tune the value of the ε term added to the denominator of the Adam
update step to improve numerical stability. However, large values of ε cause Adam to approach
a behavior similar to standard stochastic gradient descent, and the overall stability of the opti-
mization process increases as a trade-off for training speed (due to the smaller updates). In our
case, it was observed that a slightly larger value of 1× 10−6 yielded better performance than
the default 1× 10−8.

The results of the hyperparameter search furthermore showed that the MMDenseNet is rather
sensitive to regularization. Specifically, Dropout [139] almost completely prevents the model
from learning except for small probabilities below 0.05 and has thus been rejected as regulariza-
tion strategy. This behavior is expected though since the model makes extensive use of Batch
Normalization: while the beneficial effect of BatchNorm is still not well understood [140], it
is clear that Dropout causes an undesirable variance shift of neural units when turning from
training to testing, since the fixed BatchNorm statistics are conditioned on slightly different
activation distributions [141]. Furthermore, the dataset is rather small compared to others that
are typically used in the field of image processing and therefore zeroing out activations, al-
though intended to prevent overfitting, might as well have a detrimental effect. While strong
weight decay is not appropriate either, the model is less sensitive to this regularization method
and a moderate value of 1× 10−5 showed satisfying results. Note that weight decay is not ap-
plied to bias terms (which are only used for the input and output layer) nor to the learnable
parameters γ and β of BatchNorm layers. For insights concerning the interaction between Batch-
Normalization layers and weight decay, see e.g. [142], [143], [144]. In essence, the regularizing
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effect of weight decay is reduced when used in combination with BatchNorm, but it is still
beneficial as it helps to prevent the effective learning rate from decaying too fast.

Similarly, the paper does leave out the used initialization scheme. However, for residual
networks with ReLU activations like DenseNets, it is common to use the so-called normally-
distributed Kaiming-initialization scheme [145], which has been adopted for all experiments
conducted throughout this work.

Table 3.1: Hyperparameters used for experiments throughout this work.

Parameter Value

Epochs 100

Initial learning rate η 2× 10−3

Batch size 32

ε (numerical stability for Adam) 1× 10−6

Weight decay 1× 10−5
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4
Performance

After introducing initial baseline results, this chapter considers the efficacy of several possible
extensions in order to improve upon this baseline with regard to performance. Since these
are not necessarily disjoint, they are presented in a successive manner with results presented
intermittently. A concise summary of this chapter’s findings is given in Section 4.7.

4.1 Baseline

Before building the eventual baseline system that should serve as the basis for this work, it is
preferable to rule out additional potential shortcomings of the architecture first.

4.1.1 Input layer kernel size

Since the first layer is the most interpretable, it is interesting to tune its parameters as we can
draw parallels between convolutional layers and kernel additive modelling techniques discussed
in Section 2.5.3. The size of the initial convolution kernel is 3x3 in the reference paper. Because
information in spectrograms is non-local and tends to be spread across both time and frequency,
increasing the kernel size seems to be a natural choice.

However, it turns out that smaller filters work slightly better in practice. The experimental
results shown in Tab. 4.1 indicate that models using smaller input kernels tend to produce better
results while exhibiting comparable objective function costs. As features progress into the CNN,
the receptive field increases and global concepts are captured in deeper layers of the model - the
scale of the initial local features seems to have a minor impact in the process. Considering that
the computational cost increases with employing larger convolutional kernels, it is clear that
smaller kernels constitute a better overall choice for our purposes.

Table 4.1: Results for models using different kernel sizes in the input convolutional layer. Values correspond
to the median value in dB over the musdb18 test set for the SDR, SIR and SAR and to the mean
squared error for the objective function loss. Additionally, the number of model parameters and
the number of multiply-and-accumulate operations (MACs) during inference for a single input
example (batch size equal to 1) is given. K and G refer to the power-of-ten multipliers 103 and
109, respectively.

Kernel size Loss SDR SIR SAR Parameters MACs

19x19 0.360 5.04 9.68 6.04 289.569K 5.746G
7x7 0.363 5.07 9.59 6.10 259.617K 4.437G
3x3 0.364 5.14 9.61 6.29 255.777K 4.270G
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4.1.2 Output non-linearity

The paper does not state whether the output comes directly from the last convolutional layer or if
positive values are enforced, e.g. via a non-linear output function like a ReLU. Interestingly, the
initial setup without any output function gives reasonable results, although bins with negative
values are simply mirrored around zero to yield a valid magnitude spectrogram estimate for
signal reconstruction. However, using a ReLU to enforce a positive output improves the results
as expected, see Tab. 4.2. Thus, it has been decided that all networks that directly estimate
spectrograms use a ReLU at the output throughout this work.

Table 4.2: Results for models using different output functions. Values correspond to the median value in
dB over the musdb18 test set for the SDR, SIR and SAR and to the mean squared error for the
objective function loss.

Output function Loss SDR SIR SAR

None 0.374 5.24 10.46 5.84
Absolute value 0.362 5.23 10.63 5.68
ReLU 0.360 5.27 11.02 5.61

4.1.3 Baseline performance

A detailed performance analysis of the baseline system is shown in Tab. 4.3. It is hardly possible
to compare the result to the reference paper, which uses a slightly different data set (DSD100),
a different sample rate, probably a different context size, considers the multi-channel case, and
enhances its results using a post-processing multi-channel Wiener filter. However, it is notewor-
thy that the performance of this single-channel baseline implementation of the MMDenseNet
achieves a median signal-to-distortion ratio which is approximately only 0.5 dB less than what
is stated in the original publication, by directly estimating spectrogram magnitudes without ad-
ditional post-processing steps and using a rather small context size. The corresponding training
and validation error curves are depicted in Fig. 4.1, examples of magnitude spectrograms are
shown in Fig. 4.2.

Table 4.3: Performance metrics yielded using source estimates from the baseline system with long context
size (64 frames). Values correspond to the median, the median absolute deviation (MAD), the
mean µ and the standard deviation σ in dB over the musdb18 test set. Additionally, the objective
function loss is presented.

Metric median MAD µ σ

SDR 5.46 3.67 0.26 19.41
SIR 11.71 4.97 3.89 23.59
SAR 5.87 3.64 5.65 4.72
Loss 0.319
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Figure 4.1: Training and validation objective function loss of the baseline system.

0 1.5 3 4.5 6 7.5 9
Time (s)

0

64

128

256

512

1024

2048

4096

8192

Hz

0 1.5 3 4.5 6 7.5 9
Time (s)

0

64

128

256

512

1024

2048

4096

8192

Hz

0 1.5 3 4.5 6 7.5 9
Time (s)

0

64

128

256

512

1024

2048

4096

8192

Hz

0 1.5 3 4.5 6 7.5 9
Time (s)

0

64

128

256

512

1024

2048

4096

8192

Hz

0 1.5 3 4.5 6 7.5 9
Time (s)

0

64

128

256

512

1024

2048

4096

8192

Hz

0 1.5 3 4.5 6 7.5 9
Time (s)

0

64

128

256

512

1024

2048

4096

8192

Hz

0 1.5 3 4.5 6 7.5 9
Time (s)

0

64

128

256

512

1024

2048

4096

8192

Hz

(a) Mixtures
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Figure 4.2: Spectrograms for the mixture (a), true vocals (b) and the baseline model’s estimate (c) of 10
second extracts from 3 different tracks taken from the musdb18 test set. The frequency axis is
scaled logarithmically.
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4.1.4 Effect of logarithmic scaling

Human perception in general is proportional to the logarithm of a stimulus’ actual intensity, as
described by the Weber-Fechner law. The human ear is no exception: it is capable of processing
stimuli over a large range of several orders of magnitudes (both in terms of amplitude as well
as frequency), which are also perceived logarithmically. Hence the transformation of audio
data onto the logarithmic scale is natural as well as convenient, since the large dynamic range
can be represented on a more compact and reasonable numeric scale. Logarithmic magnitude
spectrograms thus show a smoother distribution in contrast to their linear counterparts, which
typically exhibit values very close to zero and large spikes in active frequency regions. In the case
of data-driven source separation systems, training a model to produce reasonably distributed
outputs seems desirable, as the corresponding representation might be easier to learn.

However, our experiments did not confirm that the baseline benefits from logarithmically
scaled magnitude spectrograms. On the contrary, they prove to severely hurt the neural net-
work’s performance and occasionally prevent it from converging altogether. Many different
setups have been considered to validate this claim and possible sources of errors have been
carefully excluded. Tab. 4.4 presents the results that underpin these findings. Specifically, the
training procedure is extremely sensitive if logarithmic target spectrograms are used (rather
than logarithmic inputs and linear outputs). For this configuration, successful training was only
possible using a very limited amount of training data, and including more data would prevent
models producing logarithmically scaled outputs to converge. For this reason, Tab. 4.4 only
shows experiments that overfit the model on a single training example. In addition, multiple
training runs yielded wildly varying results for logarithmic source estimation, as can be seen in
Tab. 4.4. This indicates that the initialization of the network parameters plays a crucial role.

Table 4.4: Results for overfitting the baseline model with different configurations for input and output scales.
The train and test data set in this case consisted of the same single example: an excerpt from
the musdb18 track ”Music Delta - Beatles”. The excerpt is 2 seconds long and during this time
all sources are active. The ”shift” parameter controls how much temporal variation is introduced
when constructing a batch of training examples, each of length context size (which is 1.072 seconds
in this case, or 64 spectrogram frames). A value of zero therefore implies that every epoch the
exact same 64 frames are extracted from the 2 seconds multi-track recording. Higher values
allow for more random variation from these static boundaries during data loading. No data
augmentation is applied. To account for negative values due to the logarithm, no output non-
linearities are employed, except when mask approximation is considered - in this case a final
sigmoid layer is used. If the network is trained to approximate spectral masks while its output
should be scaled logarithmically, an explicit conversion onto the linear scale is performed before
applying the sigmoid non-linearity.

Input/Output scale Epochs Shift Loss SDR SIR SAR

log/lin 10 0 3.16 3.36 3.87 6.95

lin/log 10 0 1.25 -184.93 -22.12 -4.83

lin/lin 600 0 0.01 11.91 16.68 13.78

log/lin 600 0 0.01 11.94 16.79 13.81

log/log 600 0 0.09 7.42 16.77 10.54

lin/lin 500 1/4 0.25 10.69 15.66 11.95

log/log 500 1/4 3.87 -32.91 -9.17 -9.65

log/log 500 1/4 0.55 5.96 14.75 6.74

lin/lin (mask) 500 1/4 0.37 9.70 14.57 11.59

log/log (lin mask) 500 1/4 0.71 7.63 8.57 8.03
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While the MMDenseNet’s use of ReLUs may seem incapable of properly propagating features
derived from logarithmically scaled magnitude spectrograms (which contain negative values in
particular), this is not true since the ReLUs are paired with BatchNorm layers, that include
learnable bias terms capable of shifting the distribution accordingly. Besides, possibly discarded
information can easily be recovered due to the dense connectivity inside the network. Experi-
ments using various activation functions (not included in Tab. 4.4) did not behave differently.

The poor training behavior can be explained by recognizing that the network is finitely accu-
rate, and that noise in the estimate has a much larger impact in the logarithmic domain than
the same noise in the linear domain. The larger error in the logarithmic domain thus may signif-
icantly impede optimization. This also explains the strong dependence on the initial conditions
- if the network has a slightly disadvantageous configuration to begin with, the initially noisy
estimate will have a stronger impact on the training if operated on the logarithmic scale.

Another way to look at this problem is to consider the contribution of the error between
estimates and a target magnitude spectrograms for both domains. Assuming that an initial
estimate roughly corresponds to normally distributed noise centered around zero - a reasonable
assumption given the normally-distributed Kaiming-initialization scheme [145] - the error signal
will be dominated by the large peaks of the linear target spectrogram’s active time-frequency
bins rather than its inactive bins with values close to zero. Therefore, in order to minimize the
spectral distance, updates to the parameters of the estimator will rather force it to make better
predictions for relevant regions than for unimportant ones. However, the logarithmic target
spectrogram does not exhibit signal peaks as distinct as in the linear case. Magnitudes are
represented on a more compact scale and the dynamic range between insignificant and relevant
parts of the signal is reduced. It follows that the direction of the gradient will be less sharply
oriented, since a larger number of (possibly irrelevant) bins contribute more to the error signal.

Note that while the results in Tab. 4.4 indicate that logarithmically scaled inputs work well,
they have not been adopted as the default for the remainder of this work. Firstly, the network
would have to learn an additional transformation without gaining any particular advantage. Sec-
ondly, the performance obtained from further experiments using logarithmic mixture magnitude
spectrograms was not as satisfying as sticking entirely to the linear scale.

4.1.5 Mean-Variance normalization

It is common practice to rescale input features to have a mean of zero and unit-variance, which
often leads to more stable training behavior and faster convergence. While the audio wave-
form is normalized on the interval [−1, 1], the dynamic range of music signals and especially
vocals is inherently very large. However, with large convolutional neural networks data normal-
ization seems to be less of an issue since BatchNormalization layers assure well-behaved data
distributions.

Indeed, experiments presented in Tab. 4.5 showed that mean-variance normalization along
the frequency axis (per frequency bin) does neither benefit the performance nor the convergence
speed. Apart from the effect of BatchNorm, another possible reason for this result could be
that the original structure between different frequency bins is lost. The network should be able
to resolve this effect though. Additionally, the hyperparameter search has been conducted for
the configuration lacking the normalization, but we wouldn’t expect the hyperparameters (e.g.
learning rate and weight decay) to have a signficant impact on these findings. The best results
are thus still attained with simple linear to linear spectrogram training.
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Table 4.5: Results for the baseline system with and without mean-variance normalization of the input data
for each frequency bin. Statistics are computed only on the training mixture data and kept fix
during inference. Training targets are linear spectrograms in both cases, the model trained on
normalized data however includes learnable parameters at the output to account for the scaling.
BSSEval metrics correspond to median values in dB.

Mean-Var. Norm. SDR SIR SAR Loss

yes 5.35 11.12 5.91 0.343
no 5.46 11.71 5.87 0.319

4.2 Mask estimation

As discussed in Section 2.4, sources are separated by treating the audio mixture as wide-sense
stationary and applying a time-varying filter or mask, typically only on the magnitude spectro-
gram. If source magnitude spectrograms are inferred directly from a DNN, the network itself
can be considered as the filter, though the quality of the obtained results usually significantly
benefits from a post-processing mask estimation step in this case. Indeed, [146] shows that
mask-based DNNs are superior, at least with regard to speech separation, which may be at-
tributed to the reduced search space during optimization and the presumably simpler structure
of masks in comparison with spectrograms.

By contrast, a counterexample to this commonly accepted practice is presented as a prelim-
inary experiment in [147], which shows that estimating magnitude spectrograms directly by a
DNN more accurately describes the target source magnitude spectrogram in terms of MSE than
its post-processed Wiener filtered version. While one has to acknowledge that the MSE is not
a very good evaluation metric, especially with regard to perception, this result does nonethe-
less implicate that the best approach could be model dependent. Wiener filter masks are also
bound to predict non-optimal estimates, since the assumption of additive power-spectrograms
without destructive interferences does not hold in general, and the optimal magnitude exponent
for the generalized Wiener filtering is unknown (see Section 2.4 or [19]). Additionally, as already
addressed in Section 2.5.4, typically only one estimate per DNN is obtained. Wiener filtering
requires an estimate of the mixture model though - that is, at least one estimate describing all
accompanying sources - in order to produce non-trivial solutions, and employing an entire sec-
ond DNN model only for better post-processing is computationally infeasible with regard to the
efficiency objective of this thesis. While an estimate of the accompaniment could be obtained via
spectral subtraction [18], this method usually only works well if target and accompaniment are
approximately uncorrelated and have a mean of zero, and is thus more common for enhancing
noisy speech.

But there are also other masks one could estimate. Naturally, the best mask for estimating
the target source S in the TF-domain is the ideal complex (IC) mask M IC = S

X . The ideal

amplitude (IA) mask M IA = |S|
|X| only works well if the phase of the target source and the

mixture is the same, which is generally not true. Interestingly, [149] takes into account that the
majority of source separation algorithms only estimates the magnitude and applies the original
mixture phase for reconstruction. If target and mixture phase are far apart from each other,
estimating only the target magnitude without incorporating phase information can lead to large
errors, as depicted in Fig. 4.3. Hence, the phase-sensitive (PS) mask MPS = |S|

|X| cos(∠S−∠X)
yields optimal results if the mixture phase is to be applied to the estimated source magnitude.
Note that all of these three masks are unbounded, and thus do not exhibit the desired property
of a constrained optimization space. Nonetheless, [149] shows that a truncated phase-sensitive
mask (i.e. constrained to the interval [0, 1]) still produces favorable results, both as an oracle
mask as well as a training target.
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Figure 4.3: Illustration of the effect of using the ideal amplitude mask (IA), the phase-sensitive mask (PS)
or the truncated phase-sensitive mask (TPS) for the estimation of ŝ, when the mixture phase
is applied for reconstruction [148]. The mixture and the true target are denoted by x and s,
respectively.

Furthermore, [149] states that minimzing the loss function between the target and the masked
estimate (spectrogram approximation), is superior to directly optimizing for a particular mask
(mask approximation). Thus, another intuitive and promising alternative, is to leverage the
DNNs learning capabilities and let the network learn an appropriate mask itself, without explic-
itly specifying the mask. This idea has been already investigated in [79] and [80], and [92] also
proved that this approach helps denoising auto-encoders (such as U-Nets) to learn non-trivial
mapping functions. Only a minimal architectural change is required to accomplish this: a sim-
ple multiplication of the output of the DNN’s last layer with the input mixture spectrogram.
Additionally, it is possible to first prime the network by pre-training on a particular mask before
inserting the multiplication, and afterwards discard the explicit conditioning on the mask and
re-train on approximating the spectrogram with a learned mask. Both approaches have been
explored in the following experiments.

4.2.1 Results

Separate spectrogram estimating models for vocals (Baseline, vocals) and accompaniment (Base-
line, accomp.) serve as the basis for these experiments and have been trained according to the
setup described in Section 3.3. The estimates obtained from these two models are used to calcu-
late a traditional Wiener filter as a post-processing step as discussed above, for the singing-voice
target (Wiener filter, vocals). Models that were trained on a mask approximation objective em-
ploy a sigmoid output non-linearity, instead of the ReLU function used for the models trained to
approximate spectrograms, in order to match the output range to those of the mask values. The
models are trained on pre-computed oracle masks, in particular the Wiener filter (WF-mask) or
the truncated phase-sensitive mask (TPS-mask). Experiments that allow the DNN to learn a
mask itself also feature the sigmoid output function, but the sigmoid output is multiplied with
the input mixture in order to yield a masked spectrogram estimate (learned mask). Pre-training
is achieved by training the model on the Wiener filter (WF) or truncated phase-sensitve (TPS)
oracle masks for 40 epochs, before skip-connecting the input to the output and re-training on
the target magnitude spectrogram for 60 epochs.

As expected, the post-processing Wiener filter yields significantly better results and is es-
pecially effective in reducing interfering noise. It also exhibits the lowest value for the signal-
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Table 4.6: Results for experiments investigating the effect of different mask-based approaches. BSSEval
measures correspond to the median value in dB over the test set.

Method Output operation Pre-Training SDR SIR SAR MSE

Baseline, vocals ReLU - 5.46 11.71 5.87 0.319
Baseline, accomp. ReLU - 12.95 17.44 15.27 0.281
Wiener filter, vocals - - 5.62 14.38 5.42 0.357

WF-mask sigmoid - 5.24 12.82 5.51 0.071
TPS-mask sigmoid - 5.22 11.11 5.96 0.076

learned mask sigmoid (+ mult.) - 5.48 10.87 6.17 0.323

learned mask sigmoid (+ mult.) WF 5.57 11.48 6.08 0.316

learned mask sigmoid (+ mult.) TPS 5.63 11.17 6.45 0.321

to-artifacts ratio though. Moreover, the claim made by [147], that direct estimation is more
”accurate” than Wiener filtering, can be verified in terms of the MSE of the magnitude spec-
trograms. However, we see that the spectral Euclidian distance is not a good measure in this
case and, as expected, the positive effect of the Wiener filter can be observed from the objective
evaluation metrics.

The enhanced suppression of interfering signals through the Wiener filter objective can also
be observed when training the network on the corresponding oracle mask. However, explicitly
enforcing a mask approximation training scheme does not generally improve the separation
performance, neither in the Wiener filter nor in the phase-sensitive case.

Given that the network configuration is essentially the same except for a single multiplication,
it is not too surprising that the performance of the learned mask is rather similar to that of the
spectrogram estimation approach. It is nevertheless surprising that the optimization procedure
does not really benefit from the constrained search space, since the performance of both methods
is rather similar. While the largest difference is the better SIR of the direct spectrogram filtering
model, one could argue that the learned mask obtains estimates of superior signal quality, which
is expressed in the SDR and the SAR.

However, the experiments clearly demonstrate that pre-training on oracle masks does indeed
benefit the performance of mask estimation networks. Compared to the other models, both
the WF- and TPS-pretrained models perform very well across all metrics. The latter even
outperforms the Wiener filter, which is calculated using estimates from two distinct DNNs, in
terms of signal quality (SDR + SAR). This result simultaneously shows the usefulness of the
phase-sensitive mask as well as the advantage of not being too restrictive with regard to the
learned mask. Furthermore, it demonstrates that making use of only one DNN model, instead
of several ones in the post-processing Wiener filter case, is definitely competitive in terms of
performance.

4.3 Multi-task training

The standard training objective usually only specifies to minimize the error between the target
and the estimate. Considering the goal of source separation though, it would be desirable to
enforce that the estimate should not only be close to the target source but also to be dissimilar to
all other sources in order to facilitate source separation. However, an additional discriminative
loss term that penalizes similarities between the accompaniment and the estimate will not be
very beneficial, since there are many possible unmusical signals that satisfy this property (such
as white noise or silence). For this reason, another strategy may be better suited.
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With regard to the encoder-decoder structure of the network, it is clear that the model should
learn some general representation of the audio material that lends itself to convenient separation.
Thus, it seems reasonable to employ a second output section for the simultaneous estimation
of the accompaniment, similar to [74], [124] and [150]. Doing so also allows for optimizing the
additional discriminative cost as explained above, since the joint latent representation of the
sources hints the gradients of the contrasting loss terms in the right direction (see e.g. also
[74]). Estimating the accompaniment in a multi-task training fashion therefore should act as a
regularization for the target source estimation, and also reduce interfering accompanying sources.

For the MMDenseNet architecture there are basically two choices for where to branch off
the separate source outputs from a joint representation. One could either split right after the
encoding path of the U-Net and use two distinct decoders for each of the sources, or share the
decoder of the U-Net across both sources and only employ two separate output Dense-Blocks.
In the latter case, which is depicted in Fig. 4.4, the regularization also effects the decoder and
the joint representation is preserved almost over the entire network. Although this might seem
to limit the DNN’s capability to model a particular source, it intuitively makes sense that the
acoustic model of one source should be able to at the same time represent an acoustic model of
the corresponding accompaniment, only by changing - or essentially inverting - the weights of
the output layer.

Of course, estimating two complementary sources opens up the possibility of using a Wiener
Filter for post-processing, or to incorporate deterministic output layers into the network struc-
ture and jointly compute Wiener Filter-like masks for this purpose [74]. However, keeping the
computational overhead in mind, it seems more appropriate to utilize the network output head
of the accompaniment only as a regularizer during training, and discard it during inference.
Nevertheless, Tab. 4.7 includes experiments that employ the explicit Wiener filter-style output
structure (denoted by joint mask comp.). Similarly, it is also possible to train each output
section using a mask-based approach, as discussed in Section 4.2.

Figure 4.4: Illustration of the system configuration with separate output blocks for experiments concerning
multi-task objectives. The blocks denoted DenseBlock correspond to the last densely connected
block of the MMDenseNet. Dashed lines are optional and correspond either to mask-based exper-
iments as done in Section 4.2 (red), or to explicit Wiener filter-like mask computation (blue).

4.3.1 Results

Comparing the baseline model with the model that uses two distinct decoding paths for esti-
mating the two sources in Tab. 4.7, we can see that their performance is almost equal. Quite
surprisingly though, the SIR is slightly worse in the case of the multi-task objective, but the
differences are rather insignificant. Despite the significant increase of the model size in the case
of two separate decoders, not even a combination of their outputs using the Wiener filter-like
joint mask computation clearly improves the result, especially when compared to the single-task
learned mask methods. For this reason, further experiments only focused on multi-task configu-
rations that segregate right before the output Dense-Block. One interesting observation for both
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Table 4.7: Results for different multi-task training configurations on singing-voice separation. The evaluation
metrics for the accompaniment are omitted, since they are not of concern for this analysis. The
first four systems correspond to the baseline system as well as the three systems using learned
masks from the previous section Section 4.2.1. ”Split” denotes which point the network is branched
off into two separate output heads, after the U-Net encoding path or before the last dense block
(as shown in Fig. 4.4). SA and MA denote spectrogram approximation and mask approximation,
respectively.

Split Target Output op. Pre-Training SDR SIR SAR MSE

- SA ReLU - 5.46 11.71 5.87 0.319

- SA sigmoid (+ mult.) - 5.48 10.87 6.17 0.323

- SA sigmoid (+ mult.) WF 5.57 11.48 6.08 0.316

- SA sigmoid (+ mult.) TPS 5.63 11.17 6.45 0.321

Decoder SA ReLU - 5.49 11.28 6.01 0.296

Decoder SA ReLU + joint mask comp. - 5.55 11.77 6.14 0.312

Out-Block SA ReLU - 5.45 10.74 6.18 0.303

Out-Block SA ReLU + joint mask comp. - 5.47 11.74 5.90 0.329

Out-Block MA, WF sigmoid - 5.32 12.28 5.68 0.083

Out-Block MA, TPS sigmoid - 5.02 12.55 5.49 0.085

Out-Block SA sigmoid (+ mult.) WF 5.54 11.02 6.22 0.287

Out-Block SA sigmoid (+ mult.) TPS 5.54 11.55 6.13 0.293

Out-Block SA ReLU + joint mask comp. SA 5.63 12.37 5.92 0.316

multi-task configurations can be made though: comparing only the non-mask-based approaches
(only ReLU output), the SAR is increased in both multi-task cases. This is expected as the
shared general representation across the network should be more robust to introducing artifacts
compared to the single-task models.

However, the multi-task training objective does not seem to be very beneficial in general,
with maximum improvements over the single-task systems in the range of 0.1 dB. The baseline
model even performs slightly better than the model with a shared decoder, and also shows
a higher SIR. Additionally, analogous to the single-task case discussed in Section 4.2, direct
mask approximation methods underperform, while pre-training schemes with learned masks
work quite well. For the multi-task configuration it is also possible to pre-train on spectrogram
approximation, and subsequently re-train using joint mask computation with a Wiener Filter-
structured output. While this method yields decent performance, specifically in terms of SIR, its
usage over the single-task model pre-trained on phase-sensitive masks is hardly justified, given
the better SAR of the latter model and the increased computational cost for the estimation of
the accompaniment source in the multi-task Wiener Filter-style model.

4.4 Redesigning the multi-band structure

A key contribution of the MMDenseNet paper [84] is the investigation towards utilizing multi-
band structures instead of equally processing the full-resolution input all at once. It tries to com-
pensate for the fact that different frequency bands exhibit different patterns in the spectrogram.
The low-frequency regions of a singing-voice, for instance, will be dominated by components of
the fundamental frequency, the first few harmonics as well as formants caused by resonances in
the vocal tract, while less overall energy will be present in higher frequencies. Similarly, bass
instruments contain virtually no information at all above a certain frequency, except for pos-
sible noise-like transients (e.g. noises from plucked strings). In addition, the spacing between
harmonics increases along the frequency range, independently of the considered source. Since
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convolutional kernels are shared across the entire input but are applied locally on different re-
gions, frequency-dependent patterns may impede the performance of full-band CNNs. For this
reason, the MMDenseNet comprises 3 distinct MDenseNets - one conditioned on the lower fre-
quency band, one learning the spectral patterns of the higher frequency region, and another one
for the full band in order to roughly model the global structure as well. Nevertheless, patterns
in the TF-domain are still closely related to each other. Excellent examples are again harmonic
components, which experience a so-called common fate, since they have strong affinities across
frequency bands as well as with regard to their temporal development. Thus, patterns do show a
certain amount of translation, and the strict segregation of the MMDenseNet structure does not
seem optimal. Furthermore, the comparison between the single-band and the multi-band models
conducted in [84] is not completely fair, since the number of parameters between them - and
thus their respective potential expressiveness - is not well-balanced. The original MDenseNet
uses only about 121× 103 parameters, which is roughly 45 % of the amount of parameters that
its multi-band counterpart has available (269× 103).

Several potential flaws of the architecture can be identified. First, no information is shared be-
tween the distinct band-limited components of the MMDenseNet. While it makes sense to train
kernels only on locally constrained frequency regions, ignoring information about the global
structure when doing so appears to be a limiting factor. Second, the band-limited outputs
are combined through a single Dense-Block before the final output layer. Although the three
separate MDenseNets are trained to jointly produce reasonable and consistent outputs, recon-
structing a full-band feature map as input to this ”merging” Dense-Block is done by simply
concatenating the single-band activations along the frequency dimension, which seems like a
representational bottleneck. Third, the band limits appear to be chosen according to implemen-
tational convenience rather than prior knowledge about the musical sources, since a ”cutoff”
frequency of 8 kHz or even 11 kHz (for sampling rates of 32 kHz and 44.1 kHz, respectively) may
split the spectrogram into two equally sized parts, but does not account for the fact that the
higher frequency band will carry virtually no relevant information about the musical source.
Splitting the spectrogram into two bands would be much more appropriate in the range of
1− 4 kHz for most music signals and would also correspond better to the human auditory per-
ception of frequencies. In addition, only hard boundaries without any frequency overlap are
considered. In fact, re-scaling the baseline spectrogram estimates of Fig. 4.1 onto a linear fre-
quency axis reveals the effects of the MMDenseNet’s rigid band-limited processing, as shown in
Fig. 4.5, which exhibits slight boundary discontinuities at the cutoff frequency.

Although the multi-band idea seems sensible in general, its realization could be improved. Two
approaches for re-designing the multi-band structure of the architecture have been investigated
and are outlined in the following.
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Figure 4.5: The 3 baseline estimates from Fig. 4.1 rescaled onto a linear frequency axis. By taking a closer
look, thin horizontal lines at 8 kHz (cutoff frequency) can be detected.
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4.4.1 Multi-band Channels

One possible approach is to arrange the band-limited spectrogram components in the channel
direction and feed this ”multi-channel” input to a MDenseNet (MBC). This way, information
about all frequency bands can be captured and exploited by a single network, which is able
to model the bands individually at the same time. This configuration is depicted in Fig. 4.6.
However, this configuration suffers from one serious flaw: convolutional kernels operate on fea-
tures that are local across the channel direction. Splitting the input spectrogram into several
parts and putting them on top of each other destroys the spatio-spectral relationships between
these individual components. Information about several frequency bands collapses into a single
bin of a feature map and, in turn, cannot be be straightforwardly restored. An additional 2D-
convolutional layer with a kernel size of 3× 3 is employed for this reason that is supposed to be
able to segregate feature maps according to the frequency bands.

Figure 4.6: Illustration of the MDenseNet adapted for incorporating multi-band information along the chan-
nel direction (MBC). The last DenseBlock inside the MDenseNet is removed and instead corre-
sponds to the last DenseBlock depicted here.

4.4.2 Multi-band Dense-Blocks

A different and apparently better approach would be to restrict kernels to certain bands but
interchange information between them through shared activations. In practice, sharing feature
maps is thus only possible between convolutional layers assigned to one particular band and
that of the full band, since other layers will be assigned to other frequency regions (except for
potential overlaps). Sticking to the general network MDenseNet architecture, this can be ac-
complished by turning each layer inside a densely connected block into a parallel multi-band
processor. The layers still consist of functions consisting of the composite operation of Batch-
Norm+ReLU+2DConv, but now there are several of these composite functions per layer, and
each one operates on a certain frequency region. The idea is depicted in Fig. 4.7, for the case of 2
bands. First, the input is split, or filtered, into several frequency bands, including the full-band.
Then, the composite functions are applied to the band-limited input components. These can

Figure 4.7: Illustration of a single composite function inside a densely connected block adapted for multi-band
processing (MBDB). BC stands for bottleneck compression.
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then be concatenated along the frequency axis to yield full-band sized feature maps, which can
in turn be concatenated along the channel axis with the full-band activations coming from the
input. This way, the following full-band convolutional kernels can incorporate information from
the band-limited ones. In an attempt to let the band-limited kernels learn separate represen-
tations in an unobstructed way, their outputs first pass a 2D-convolutional layer of kernel size
1× 1 (point-wise convolution) in order to transform these different activations onto a common
representation before they are concatenated and fed into the full-band function. These 1 × 1-
convolutions only act in the channel direction and can thus also be used to ”bottleneck-compress”
(BC) the activations in order to reduce the computational load, by effectively compressing the
number of feature maps. This seems reasonable given that the following full-band layer will be
rather computationally expensive. The output of this multi-band unit is then constructed by
concatenating the full-band function’s output with that of the band-limited ones. This output
concatenation operation ensures not only that the full-band function of the next multi-band
unit has access to all (both band-limited and full-band) activations produced in the previous
multi-band unit, but also that the band-limited functions in the next unit have access to both
the band-limited and the full-band activations of the previous unit. This guarantees proper ex-
change of information across global and local frequency regions and enables fine-grained dense
connectivity between the corresponding composite functions. Similar to the MMDenseNet, this
model makes it possible to model different frequency regions with different detail and compute
power, by changing the number of kernels to learn per band.

This multi-band framework is rather flexible. For instance, one may decide whether only full-
band features are passed to the next (down- or up-sampled) densely connected block, or if the
band-limited feature maps propagate through the whole network. The former approach allows
to change the cutoff frequencies and the number of bands that is considered at different scales
of the network, which may also be useful in terms of computational efficiency. Low-resolution
activations at lower scales in the network do not need to be processed with a lot of different
band-limited kernels, for example.

4.4.3 Results

In order to conduct a fair comparison between the models, it has been taken care of that all
models in total have approximately the same number of parameters as the baseline system.
Tab. 4.8 sums up all different tested model configurations with regard to systems that use
multi-band dense blocks. ”BC kernels” denotes the number of bottleneck-compression kernels
(of point-wise convolutional layers), which are used to transform different feature maps onto
similar representations before concatenation, and therefore also describe how many feature maps
are shared between full-band and band-limited kernels. Feature maps can either be shared at
the input of a DenseBlock, at its output, or at all intermediate multi-band layers. Additionally,
a dense block’s output may be forced to a full-band representation with a dedicated full-band
layer which all feature maps have to pass, as described in the previous paragraph. The number
of overlapping bins is simply calculated by a multiplication of the cut-off bin’s index with an
overlapping factor. The weight given to overlapping bins of a band decreases linearly. Since
these models are a bit more memory-demanding during training, the batchsize has been scaled
down from 32 to 8. The parameters for the model with multi-band channels (MBC) is given in
Tab. 4.9. The results are shown in Tab. 4.10.

Differences in performance between the various multi-band models are within a very narrow
range of approximately ±0.2 dB, only the interference reduction seems to fluctuate a little more.
While previous experiments did not exhibit highly pronounced performance peaks either, in
contrast to the reference paper [84] this result indicates that multi-band processing is not overly
relevant for the separation of musical signals.
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Table 4.8: Different configurations for experiments with multi-band dense blocks (MBDB). The model is built
symmetrically, which means that the given parameters apply both to the encoding as well as the
decoding path of the network.

Model s bands k # input kernels L overlap
shared feat.-maps,

# BC kernels
Forced full-band output,

# kernels

output
block

input internal output k L

MBDB-1

1
0− 8 kHz 10 32

3 0.1 - 4 8 10

6 2

8− 16 kHz 4 32
full 6 32

1
2

0− 8 kHz 10
- 4 0.1 - 4 8 108− 16 kHz 4

full 6

1
4

0− 8 kHz 10
- 4 0.1 - 4 8 108− 16 kHz 4

full 6

1
8

0− 8 kHz 10
- 4 0.1 - 4 8 108− 16 kHz 4

full 6

MBDB-2

1

0− 250 Hz 5 14

3 0.1
-

4 8 10

6 2

250− 1000 Hz 9 18
1− 4 kHz 9 18
4− 16 kHz 5 12

full 6 20

1
2

0− 1 kHz 7

- 4 0.1 - 4 8 10
1− 4 kHz 7
4− 16 kHz 4

full 6

1
4

0− 8 kHz 7
- 4 0.1 - 4 8 108− 16 kHz 4

full 6

1
8 full 6 - 4 - - - - -

MBDB-3

1
0− 8 kHz 10 32

4 - - 2 - -

4 2

8− 16 kHz 4 32
full 6 32

1
2

0− 8 kHz 10
- 4 - - 2 - -8− 16 kHz 4

full 6

1
4

0− 8 kHz 10
- 4 - - 2 - -8− 16 kHz 4

full 6

1
8

0− 8 kHz 10
- 3 - - 2 - -8− 16 kHz 4

full 6

MBDB-4

1

0− 1 kHz 10 20

3 - - 4 - -

6 2

1− 4 kHz 10 20
4− 16 kHz 5 18

full 6 20

1
2

0− 1 kHz 9

- 4 - - 4 - -
1− 4 kHz 10
4− 16 kHz 5

full 6

1
4

0− 1 kHz 9

- 4 - - 4 - -
1− 4 kHz 9
4− 16 kHz 5

full 6

1
8

0− 1 kHz 9

- 4 - - 4 - -
1− 4 kHz 9
4− 16 kHz 5

full 6
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Table 4.8: (continued)

Model s bands k # input kernels L overlap
shared feat.-maps,

# BC kernels
Forced full-band output,

# kernels

output
block

input internal output k L

MBDB-5

1
0− 8 kHz 14 16 4

- 3 - 5 -

4 2

8− 16 kHz 13 16 3
full 8 16 3

1
2

0− 8 kHz 14
-

4
- 3 - 5 -8− 16 kHz 13 3

full 8 3

1
4

0− 8 kHz 14
-

4
- 3 - 5 -8− 16 kHz 12 3

full 8 3

1
8

0− 8 kHz 14
-

4
- 3 - 5 -8− 16 kHz 12 3

full 8 3

MBDB-6

1

0− 1 kHz 14 16 4

0.1 3 - 5 -

4 2

1− 4 kHz 14 16 3
4− 16 kHz 8 12 2

full 6 16 3

1
2

0− 1 kHz 9

-

4

0.1 3 - 5 -
1− 4 kHz 10 3
4− 16 kHz 5 2

full 6 3

1
4

0− 1 kHz 9

-

4

0.1 3 - 5 -
1− 4 kHz 9 3
4− 16 kHz 5 2

full 6 3

1
8

0− 1 kHz 9

-

4

0.1 3 - 5 -
1− 4 kHz 9 3
4− 16 kHz 5 2

full 6 3

MBDB-7

1

0− 1 kHz 10 16 4

0.1 5 - - -

4 2

1− 4 kHz 12 16 4
4− 16 kHz 6 12 2

full 7 16 3

1
2

0− 1 kHz 10

-

4

0.1 5 - - -
1− 4 kHz 12 4
4− 16 kHz 6 2

full 7 3

1
4

0− 1 kHz 10

-

4

0.1 5 - - -
1− 4 kHz 12 4
4− 16 kHz 6 2

full 7 3

1
8

0− 1 kHz 10

-

4

0.1 5 - - -
1− 4 kHz 12 4
4− 16 kHz 6 2

full 7 3

Table 4.9: Configuration of the MDenseNet exploiting multi-band patterns in the channel direction (MBC).
The values of k and L are used on each scale of the network. All other parameters follow the
configuration of the baseline model. Note that this model does not use a full-band channel.

Cutoff # input kernels k L
2D-conv assigning channels to bands,

# kernels per band

8 kHz 96 16 4 16
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Table 4.10: Results for experiments investigating alternative multi-band designs.

Model SDR SIR SAR

Baseline 5.46 11.71 5.87
MBDB-1 5.44 11.23 5.98
MBDB-2 5.34 11.24 5.93
MBDB-3 5.40 10.74 6.12
MBDB-4 5.32 11.49 5.82
MBDB-5 5.34 10.83 6.04
MBDB-6 5.26 10.88 5.86
MBDB-7 5.34 11.27 5.83
MBC 5.53 11.59 5.90

None of the MBDB configurations performs better than the baseline system (except some-
times in SAR), although different aspects such as overlapping bands, intermediate sharing of
information, and consistent full-band output representations have been considered, for instance
in MBDB-1. MBDB-2, a configuration which makes heavy use of multi-band information with
adaptive band-limits across different scales and varying emphasis on different bands, even per-
forms a little worse than MBDB-1 which only uses fixed band-limits in combination with the
remarkably high cutoff at 8 kHz. Both of these models enforce a full-band output representation
with a separate composite function at the end of each dense block. From looking at the perfor-
mance of these two models alone, it might seem as if their capabilities in modeling the distinct
frequency bands is too limited. In particular, the variation of band limits (cutoff frequencies)
across different scales in the case of the MBDB-2 might appear to be unfavorable, and learning
many different band-limited kernels seems to hamper performance. However, using fixed bands
and allowing the band-limited feature maps to propagate through the whole network, as done
in MBDB-3 and MBDB-4, does not appear to be beneficial either.

In an attempt to tackle this circumstance, experiments using MBDB-5,6 and 7 investigate
another approach to share features between band-limited kernels. Possibly the increased feature
flow inside densely connected blocks prevent the individual layers from exclusively modeling a
certain frequency pattern in detail. These configurations only share features at the input and/or
at the output of a dense block. This also allows to use a different number of layers L for each
frequency band in each scale. Nonetheless, these models even tend to perform a little bit worse.

Given the small differences in performance and the inconsistent results of the MBDB configu-
rations, interpreting the results according to multi-band processing capabilities does not appear
to be very conclusive. The results may be explained much better by considering how the differ-
ent models distribute computational power to certain parts in the network. As stated above, the
number of parameters of all models has been tuned to be approximately equal. However, while
this was done in order to enable a fair comparison between the models, the necessary changes
of the model configurations in turn affect the structure and the relative expressiveness of the
models. For instance, the configurations MBDB-2,4,5,6 and 7 use fewer input kernels per band,
and exhibit a lower average signal-to-distortion ratio. The number of input kernels per band
therefore may be significant with regard to the performance of the model. Similarly, MBDB-2
and 4 only use 3 layers for the full-resolution dense blocks, while for instance MBDB-3 employs
4 layers. Different growth rates per block and per scale also seem to be very important for
the network’s performance. These structural differences make it very hard to properly compare
the different models, especially because the MBDB configurations have many different tunable
parameters. A thorough comparison between the models would thus be extremely time- and
resource-consuming, and has not been conducted for these reasons. Another, albeit less con-
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vincing explanation of the results is that all other hyperparameters are tuned for the original
MMDenseNet and have been directly applied to the derived models, without explicit tuning.

Nevertheless, the results do indeed indicate that multi-band processing may not be very
important with regard to music sources. This conclusion is also backed by experiments with the
MBC model which, quite surprisingly, obtains the best overall performance measured via SDR,
although the model destroys the spatio-spectral relationship between the TF-bins. Either the
MBC model is able to separate between different frequency bands along the channel direction
by learning to constrain the weights of kernels to certain input channels, or the limited weight
sharing scheme according to different frequency bands is not particularly beneficial. In order to
resolve this matter, the distribution of the kernel weights can be investigated. The additional 2D-
convolution - which is used before grouping the channels into different bands via a concatenation
of the feature maps along the frequency axis - may be particularly informative. If the kernels of
this layer can be grouped according to the input channels, it is clear that the network learns to
separate different frequency bands into different channels. Because the way the output feature
maps of this layer are grouped and concatenated is known, it is also possible to assign a layer
to each kernel. Fig. 4.8 depicts a principal component analysis (PCA) performed over the `2-
norms of all 3× 3 weight matrices connected to particular input channels for each output kernel
of the layer. It turns out that these kernels can not be straightforwardly clustered, indicating
that the MBC configuration does not learn band-limited kernels at all, while still obtaining a
slightly better performance. Of course, the increased SDR could also stem from the relatively
high number of input and output kernels on the full resolution scale, as discussed above. Despite
the slightly better performance, this model has not been investigated in further experiments,
not only because of the weak theoretical justification but also due to its increased memory
consumption and inference times.

Figure 4.8: PCA performed over norms of weights of the kernels from the additional convolutional layer used
to reconstruct the different frequency bands from the channels, corresponding to different input
channels.

4.5 Exploiting and estimating phase information

Considering that phase information seems to be particularly relevant to perception [24], [25],
simply applying the mixture phase for reconstruction does seem like a very limiting factor.
Moreover, this entails limitations with regard to the accurate estimation of the source magnitude,
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as already explained in the discussion of the phase-sensitive mask in Section 4.2 and illustrated
in Fig. 4.3.

As demonstrated by the very renowned Griffin-Lim algorithm [151], a phase estimate can be
reconstructed directly from a magnitude spectrogram by enforcing consistency and exploiting
the redundancy of the STFT. While the original algorithm is an iterative one, the approach has
been extended to be efficient and applicable in on-line processing environments [152], [153]. But
there are also other non-iterative and real-time capable methods that obtain phase estimates
from STFT magnitudes [154]. Such phase reconstruction techniques may be applied in a post-
processing step, but significant and objectively measurable improvements in separation quality
will in general not be expected from these methods. Rather than promoting a slightly more
consistent and better explainable result from the unaltered magnitude estimate, it is desirable
to directly include information about the clean phases in a data-driven way to get a better
overall source estimate in the first place. An estimate of the target phase also allows to directly
minimize e.g. the `1-norm in the waveform domain or a performance-based cost function such
as the scale-invariant SDR. In this context, it also seems reasonable not to discard but to utilize
the mixture phase information in some way to get a better separation.

DNNs operating in the time-domain have become increasingly popular and are able to achieve
good separation quality, which may at least be in part attributed to their implicit ability of
capturing phase information. But, as already stated in Section 3.1, time-domain models learn
transformations that bear strong resemblance to the Fourier Transform, but can in general not
be calculated as efficiently.

Utilizing complex values seems like a very natural way in order to both exploit and estimate
phase information. [155] has taken a first step in this direction by estimating the real and
the imaginary components as separate training targets and uses these to construct a complex
ratio mask. While this approach uses a real-valued neural network, fully complex-valued neural
networks with complex-valued activations, weights and gradients, also have been investigated for
source separation and related tasks [156], [157], [158]. However, the performance improvements
caused by complex-valued DNNs are not substantial, and the increased amount of operations
as well as the additional effort regarding implementation do not seem to justify their use. A
similar argument against complex-valued DNNs is made by [159].

The cyclic nature of the phase makes it hard to directly use it as an input feature or training
target. An unwrapped phase is not very useful, since the increasing values over time prevent
the construction of a meaningful and practical representation for pattern recognition. On the
other hand, the discontinuities of a wrapped phase, with values in the interval [−π, π), destroy
its structure and let phase information appear to be rather random. A more useful, alternative
representation of the phase (denoted by φ) may be obtained by means of its gradient with
respect to time and frequency. The instantaneous frequency ∂

∂tφ and the group delay ∂
∂f φ can

be successfully utilized as input features for music source separation, as shown in [160]. The
gradient can be readily computed from the properly unwrapped phase spectrogram via finite
differences along the time- and frequency-axis. Naturally, the phase is sensitive to shifts of the
signal. With respect to the discrete Fourier transform of length N , this property is expressed
by the shift theorem

DFT {x(n− n0)} = ei
2π
N
kn0X(k) (4.1)

which states that a shift n0 in the time-domain corresponds to a linear phase term in the
frequency domain for each frequency indexed by k. In order to yield compact and comparable
feature distributions along the different frequency axis, the instantaneous frequencies (phase
derivatives with respect to time) have to be corrected according to the phase shift caused by
the hopsize of the STFT (i.e. n0 = hopsize). Additionally, both [154] and [160] point out that
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for a continuous-time STFT obtained with a real-valued Gaussian window of time-frequency
ratio support γ, the log-magnitude log(|X(ω, t)|) and the phase φ(ω, t) are related through their
gradients via the following relationships:

∂

∂ω
φ(ω, t) = −γ ∂

∂t
log(|X(ω, t)|) (4.2)

∂

∂t
φ(ω, t) =

1

γ

∂

∂ω
log(|X(ω, t)|) + 2πω (4.3)

This indicates that features derived from phase information may help to estimate the magnitude,
and vice versa, magnitude estimation may be useful to estimate values of the target phase. Thus
it seems reasonable to share features between computational units, when each of these is assigned
to only one of the two tasks.

While this representation could in general also be used as a training target of a phase es-
timation network, it seems to be unnecessarily indirect. Instead, [147] and [148] explored the
use of a classification approach with discretized phase values as classes for each TF-bin. The
output of a (real-valued) network then corresponds to probability vectors for each TF-bin, in-
dicating which class is likely to give a good estimate of the target phase. The classes or,
more specifically, the pre-defined discrete values on the unit circle (also called codebook) may
simply be constructed from uniform sampling on the unit circle, but [148] also explores the
use of other, in particular learned codebooks. Additionally, instead of simply picking the sin-
gle most likely phase value (”arg-max”), [148] proposes to obtain continuous phase estimates
through a weighted sum over the codebook, where the weights correspond to the probabilities
of the respective discrete value: if P denotes the size of a codebook PP = {φ0 . . . φP−1}, and
zt,f = {w0 . . . wP−1 ∈ RP |

∑P−1
i=0 wi = 1; 0 ≤ wi ≤ 1 ∀ i} denotes the soft-max probability

output vector of the network corresponding to the time-frequency bin indexed by t and f , then
this summation can be given as

φ̂t,f = ∠
P−1∑
i=0

zt,fi eiφi (4.4)

Since this ”interpolation” is done in the complex plane, this method, apart from gaining a
continuous representation of the estimate, elegantly allows to interpolate along the unit circle,
and hence introduces a grouping of the probability vector’s elements according to the proximity
of their codebook entries on the unit circle without any discontinuity. It is also straightforwardly
applicable to mask estimation and provides a generalization of classical sigmoid activations.

4.5.1 Results

The concept of the following experiments is based on these considerations and is illustrated in
Fig. 4.9. Instead of jointly modeling magnitude and phase in an intertwined manner (as is the
case for complex-valued networks), an additional separate phase estimation DNN is employed.
This also enables to balance computational power according to the relative relevance of the
magnitude and phase estimators - denoted ”MagNet” and ”PhaseNet” - e.g. by reducing the
size of the phase estimating model. The MDenseNet architecture is used as the basis for the
PhaseNet, operating on only 3 different scales, each with L = 3 and k = 4 and only 16 kernels in
the input layer. Its input is a concatenation of the instantaneous frequency ∆t,φ and the group
delay ∆f,φ, calculated using centered finite differences from the unwrapped phase spectrogram,
and pre-processed as outlined in [160] (except for a twice as large phase shift compensation
of 4π

N kn0 to account for the used centered differences). Bearing the relations of Eq. (4.2) and
Eq. (4.3) in mind, the two networks exchange information before their respective output layers
by a concatenation of feature maps in order to aid the estimation process. Specifically, the last
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densely connected output block of the PhaseNet gets the estimated target magnitude scaled

by the mixture magnitude log
(

ˆ|S|
|X|

)
as input, a procedure that draws inspiration from [147]

and aims at providing the PhaseNet with information about which of the mixture phase input
values might be dominated by the target source and which by interfering sources. The task is
formulated as a classification problem and a codebook of size P = 8, with discretized values
uniformly spaced on the unit circle in the interval [−π, π), is used with the interpolation method
as described above.

Because an estimate of the true phase is now available, it is advisable to use the ideal amplitude
mask M IA = |S|

|X| as training target for the magnitude network. Note that the values for this

mask are not bounded to the interval [0, 1], and a simple sigmoid output non-linearity is not
appropriate in this case. While a ”stretched” sigmoid f(x) = Rmax

1+e−x or a ”truncated” ReLU
f(x) = min(max(0, x), Rmax) may be used, where Rmax denotes the maximum estimated mask
value, it is intuitive to use the classification formulation in combination with interpolation over a
codebookM also for the magnitude part of the system, since it generalizes the other approaches.
Similar to [148], the codebook M = {0, 1, Rmax = 2} is used for the following experiments.

Another advantage of having an estimate of the phase is the broadened range of possible
loss functions. Since the inverse STFT (iSTFT) can be formulated using real-valued operations
using a basis matrix that incorporates stacked real and imaginary components of the synthesis
window. This can then be implemented using a transposed 1D-convolutional layer, where the
stride parameter is equal to the hopsize, which allows to calculate gradients of a TF-domain
network through back-propagation from a time-domain loss. See [161] for details. For the
following experiments, a weighted combination of the MSE in the complex domain (LcMSE),
the time-domain `1-loss (L`1) and the weighted SDR (LwSDR) is jointly minimized, resulting in
the used overall loss function

Ltot = 0.1LcMSE + 0.2L`1 + 0.7LwSDR. (4.5)

The weighted SDR loss has been defined in [157] and is calculated as

LwSDR(x, s, ŝ) = −β 〈 s, ŝ〉
‖s‖ · ‖ŝ‖

− (1− β)
〈x− s, x− ŝ〉
‖x− s‖ · ‖x− ŝ‖

(4.6)

where β is the energy ratio between the clean source and the accompaniment x− s:

β =
‖y‖2

‖y‖2 + ‖x− y‖2
(4.7)

Figure 4.9: Illustration of the MagNet-PhaseNet approach in order to exploit and estimate phase informa-
tion.
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Before the network is trained on this composite loss, it seems reasonable to bootstrap the
individual magnitude and phase networks: first, the MagNet can be trained on directly esti-
mating the ideal amplitude mask without any information from the PhaseNet, using a standard
MSE loss. In order to prevent the PhaseNet from solely relying on information coming from
the MagNet, it is first pre-trained on minimizing the MSE on the target phase spectrogram
only using the input features ∆t,φ and ∆f,φ, before it is subsequently re-trained to include the
estimated source magnitude of the (fixed) MagNet. After this bootstrapping process, the whole
system may be jointly optimized on Ltot.

Tab. 4.11 sums up the results. It shows the baseline performance, the MagNet trained on the
ideal amplitude mask using the classification formulation, a MagNet-PhaseNet model trained
directly on minimizing Ltot, one that follows the bootstrapping procedure but is only trained
on the complex MSE in the TF-domain, and another bootstrapped model that is subsequently
optimized on the Ltot. Unfortunately, the MagNet-PhaseNet approach performs rather poorly
compared to the baseline. Without a bootstrapping process, the model does not even outperform
the baseline. The results also indicate that the PhaseNet actually hurts the performance, since
the combined approach trained on the LcMSE is actually less accurate than the MagNet alone.
This may be attributed to the very small model size of the PhaseNet, however, increasing it would
counteract the intention behind the design and decrease the system’s efficiency. Additionally,
although the bootstrapped model trained on the Ltot achieves a slightly better performance,
it is surprising that this performance increase is most prominently reflected in the interference
reduction (which is roughly 1.5 dB higher), rather than in the SDR. At this point, it is important
to note that the experiments with regard to time-domain objectives took an extremely long
time to compute, which was probably caused by a computational bottleneck in the data-loading
pipeline in combination with a disadvantageous cluster filesystem. While the planned number of
epochs for re-training on the time-domain loss was 70 epochs, the training had to be manually
killed after 30. Subsequently, the MagNet-PhaseNet approach has not been pursued any further.
In general, it seems not very usable within the context of this thesis. Nevertheless, it is interesting
from a theoretical and technical viewpoint, and further experiments with better tuning may be
able to use this framework in a more successful way.

Table 4.11: Results for experiments investigating the use of exploiting and estimating phase information.

Model SDR SIR SAR

Baseline 5.46 11.71 5.87
MagNet, IAM 5.19 11.25 5.72
Ltot, no bootstrapping 5.44 11.37 5.78
LcMSE , bootstrapped, 5.06 11.45 5.38
Ltot, bootstrapped 5.49 12.93 5.47

4.6 Deep clustering

This section discusses the utilization of a deep clustering objective [108] in order to improve upon
the baseline model. Complying to the concept of binary masking, the deep clustering framework
assumes that each TF-bin of the mixture is exclusively associated with a certain source. But
instead of estimating the target directly, DNNs are used to generate high-dimensional features
or embeddings for each TF-bin. The embedding space ideally offers a representation that is
convenient for the clustering of the TF-bins with respect to the partitions, or rather sources,
they are associated with. After the spectral clusters have been found (e.g. via the simple and
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efficient k-means algorithm), a binary mask may be constructed in order to separate the sources.
Therefore, the deep clustering objective is to minimize the distance between embeddings of bins
belonging to the same source, while maximizing the distance between embeddings for elements
of different sources. The outputs of the network are K-dimensional vectors for each TF-bin,
where K denotes the dimension of the embedding space, and the vectors are normalized to have
unit-length. These are gathered in an embedding matrix V ∈ RTF×K . Likewise, Y ∈ RTF×N
is a label matrix that holds one-hot encoded row vectors indicating which of the N sources
dominates the corresponding TF-bin. With the help of the estimated and the ideal affinity
matrix denoted by V V T and Y Y T , respectively, which indicate the affinity of one TF-bin to all
other TF-bins in terms of source labels, the deep clustering objective can then be conveniently
formulated as:

LDC(V ,Y ) = ‖V V T − Y Y T ‖2F = ‖V TV ‖2F + ‖Y TY ‖2F − 2‖V TY ‖2F (4.8)

Note that the right hand side of Eq. (4.8) is an equivalent formulation of the clustering loss,
yet it is more computationally efficient since it does not require the computation of the entire
TF × TF affinity matrices, which will typically be large.

Alternative cost functions for deep clustering have been proposed in [162], including one that
resembles linear discriminant analysis (LDA), for instance. Additionally, [162] recommends
to reduce the influence of low-energy TF-bins, which have somewhat arbitrary labeling and
have no strong correlation with a certain source, by adding a weight matrix W , with weights
corresponding to magnitude ratios of the mixture X at a certain TF-bin indexed by t, f over the

sum of the magnitudes over all bins wt,f =
|Xt,f |∑
t,f Xt,f

, yielding the weighted cluster loss LwDC :

LwDC(V ,Y ) = ‖W
1
2 (V V T − Y Y T )W

1
2 ‖2F (4.9)

In practice, LwDC can be calculated as efficiently as the standard cluster loss, by simply scaling
the elements of V and Y with the corresponding weights wt,f before applying Eq. (4.8).

The deep clustering framework has proven to be effective and flexible. For instance, an
interesting approach has been proposed in [163], which jointly represents all music sources in
an embedding space and uses an auxiliary network conditioned on the one-hot encoding of the
sources for generating the parameters of a Gaussian mixture model (GMM) that parameterizes
the embedding space for each source. Mask estimation can then be achieved by estimating the
posterior distribution over the classes given the network embeddings. The auxiliary network is
trained along with the original one using the Expectation-Maximization (EM) algorithm. While
this is a promising approach to have a single multi-source network, the joint modeling of all
sources seems inefficient with respect to the aim of this thesis.

One particularly popular extension is the Deep Attractor Network [164]. It tries to incorporate
the deep cluster approach while at the same time remaining conditioned on a mask inference
objective by calculating masks with the help of so-called attractors A ∈ RK×N , which can be
thought of as source centroids in the embedding space. During training, the attractor points are
calculated as

ak,n =

∑
tf vtf,k · ytf,n∑

tf ytf,n
(4.10)

and can subsequently be used to obtain a mask

MAttr.
n = softmax(V ·A) (4.11)

which enables the ”end-to-end” training on the actual mask-estimation loss. This matching on
the actual desired separation objective has been shown to increase the quality of the results on
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speech separation tasks, but certainly also holds for music sources. For instance, [165] made use
of deep attractor networks for joint separation and activity detection of music sources.

Another approach that explores the use of the deep clustering loss for music source separation
has been performed in [110]. It uses a multi-task training objective with two separate network
output sections or ”heads”, hence it is referred to as the chimera architecture. While one output
section is trained on mask-inference, the other head is used to generate the embeddings for a
clustering objective. The second output head only acts as a regularizer for the network and can
be dropped during training, an approach that is similar to what has been discussed in Section 4.3.
The combination of the weighted clustering loss with a standard mean-squared error LMSE on
the spectrogram- or mask-inference head then simply amounts to a weighted sum of both terms

LwDCChim = αLwDC + (1− α)LMSE (4.12)

with 0 ≤ α ≤ 1. The chimera method has shown to consistently improve the separation
performance. It has also been adopted for experiments conducted in [162], which showed that
the mask-inference head should not directly branch off from the embedding layer and that the
network benefits from a split of the outputs at an earlier hidden layer.

4.6.1 Results

The following experiments investigated the use of the chimera framework applied to the MM-
DenseNet. The concept uses two output heads, similar to the multi-task training setup, but
in this case one head is used for spectrogram approximation while the second head is used to
minimize the weighted cluster loss LwDC instead of accompaniment estimation. The embed-
dings have a dimension of K = 20 and are calculated using a single composite-function-layer
(BatchNorm + ReLU + 2D-conv) with 20 convolutional kernels of size 3 × 3. Of course, the
number of input channels for this layer depends on the location of the split for the two heads.
Again, it is possible to branch off the second network output right after the encoder, but this
did not yield good results in the multi-task experiments and also does not comply with [110]
or [162]. Thus, only two splitting locations are considered in a preliminary experiment: a split
before the last densely connected block (similar to Fig. 4.4), or before the actual output layer
of the MMDenseNet, the very last convolutional layer. Tab. 4.12 shows the results for LwDCChim

with a weight of α = 0.2. Unsurprisingly, the tight coupling of magnitude estimation with the
embeddings in the post-DenseBlock scenario reduce the expressiveness of the model with regard
to the actual desired goal. By contrast, introducing the auxiliary regularization mechanism of
the deep clustering objective in an earlier hidden layer before the output densely connected
block of the MMDenseNet seems to be a working strategy.

In order to match the spectrogram approximation (SA) and the deep clustering objective,
it seems reasonable to use an attractor loss with mask estimation as in Eq. (4.11) in order to
learn a suitable embedding space. The cluster loss is then effectively formulated using a MSE
between the estimated masked mixture and the target magnitude. Similarly, another strategy
is to estimate masks instead of spectrograms. Since, the deep clustering loss takes inspiration
from binary masking schemes, using a phase-sensitive mask as the second target could cause
a mismatch and impede learning. The results, given in Tab. 4.13, investigate the use of WF-
masks (WF-MA) instead. It is clear from the results that the regularizing effect of the deep
clustering objective is able to improve the overall performance of the MMDenseNet measured
in SDR, but even more significantly helps the interference reduction. This regularizing effect
turns out to be relatively small in the case of the attractor-style loss function, which likely
stems from the condition of both heads on similar training objectives. The chimera approach
works particularly well for the WF-MA configuration. Though the training objectives in this
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Table 4.12: Results of the chimera approach for different splitting locations of the output sections (α = 0.2).

Split SDR SIR SAR

post-DenseBlock 5.28 11.20 5.77
pre-DenseBlock 5.58 11.65 6.03

Table 4.13: Results for different (pre-DenseBlock) configurations of the chimera approach, with different
values for the weight α.

Method α SDR SIR SAR

Baseline - 5.46 11.71 5.87
SA 0.2 5.58 11.65 6.03
SA, Attractor loss 0.2 5.43 11.44 5.89
WF-MA 0.2 5.63 13.05 5.79
WF-MA 0.5 5.82 13.81 5.69
WF-MA 0.8 5.68 14.12 5.54

case are also somewhat similar (both heads are able to obtain a mask), the network is able to
benefit from the explicit formulation of the auxiliary clustering loss using affinity matrices in the
embedding space. An interesting observation can be made when the relative importance of both
objectives is considered: as the value of α increases and more weight is given to the clustering
loss, the interference reduction significantly increases while the SAR decreases. This effect can
be attributed to the binary masking properties of the clustering objective, which introduces
characteristic musical noise. A value of α = 0.5 seems to be a good sweet-spot. To demonstrate
the effectiveness of the clustering loss, Fig. 4.10 shows a principal component analysis of the
embeddings for a batch of samples taken from test set.

Figure 4.10: Plot of embeddings calculated from a batch of mixture signals of the musdb18 test set, depicted
using the first 3 principal components. The embeddings associated with TF-bins of the vocal
source are displayed in red, those associated with the accompaniment in blue.
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4.7 Summary

This section gives a concise recap of the results presented in this chapter. The evaluation metrics
for the best-performing model of each of the discussed approaches are summarized in Tab. 4.14.

The performance of the best-performing models for each approach are summarized in Tab. 4.14.
Initial experiments were concerned with details related to the baseline architecture, the MM-
DenseNet. The use of the rather small kernel size of 3 × 3 for the spatial convolutions has
been validated in the context of music signals, both in terms of performance as well as effi-
ciency. Also, constraining the range of the output to positive values with an additional ReLU
non-linearity yields more interpretable results and slightly better performance due to the con-
strained search space. Furthermore, different scalings of input features and training targets on
the performance have been investigated in Sections 4.1.4 and 4.1.5. Specifically, it has been
shown that logarithmically-scaled target magnitude spectrogram destabilize training, which can
be explained by the increased impact of irrelevant (logarithmically scaled) TF-bins on the loss
and the network’s finite accuracy. The effect of different scalings (logarithmic and mean-variance
normalization) of input features is less sensitive on the performance, however, simple linear mag-
nitude spectrograms have been found to work best.

Section 4.2 discusses the benefits of mask estimation and shows that further constraining the
search space via mask-based objectives facilitates training and obtains better separation quality.
In particular, learned masks trained directly on the source spectrogram can be advantageous over
explicitly formulated and possibly sub-optimal ones, but this only applies if the MMDenseNet
has already been pre-trained on mask estimation.

The value of multi-task training objectives has been investigated in Section 4.3. The moti-
vation for these experiments was to teach the network a consistent representation of the audio
material that is convenient for separation and induce regularization through joint modeling of the
singing-voice and accompaniment sources. Additionally, estimating the complementary sources
in parallel allows for different mask computation approaches. However, significant performance
gains over the single-task procedure were missed, and could only be achieved with slight de-
creases in efficiency and an explicit Wiener filter-style mask formulation with the additional
source during inference time.

Two alternative designs that aim to improve the crude multi-band approach of the MM-
DenseNet have been proposed in Section 4.4, transferring the processing of different frequency
bands into channels and dense blocks, respectively. While the multi-band dense blocks enable
an effective and flexible framework with enhanced information flow for multi-band processing
in contrast to the multi-band channel approach which destroys the spectral correlation between
bands, extensive experiments showed contrary results. In fact, upon inspection of kernel weights
of the multi-band channel configuration, it may be concluded that band-limited kernel sharing
for distinct pattern modeling may not be overly important in terms of separation performance.
Moreover, additional cost-intensive experiments are necessary to do a fair comparison and proper
evaluation of the different models. For these reasons and the slightly disappointing results for
the multi-band designs both in terms of performance and efficiency, multi-band processing ap-
proaches have not been further explored. It should nevertheless be pointed out that, while the
MMDenseNet represents a good trade-off between performance and efficiency, further experi-
ments with the multi-band dense framework might be able to yield more sound and superior
models, especially considering the rather high and hard cutoff at 8 kHz and the restricted infor-
mation sharing of the baseline architecture.

So far, phase information has been entirely ignored with respect to both input and output
of the network. Section 4.5 discusses ways to address this issue, since it appears to be a very
limiting factor. Problems with the cyclical nature of the phase can be bypassed by leveraging the
instantaneous frequency and group delay of the phase. These have been used to construct useful
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input features, which can be fed to a parallel network that classifies discretized values of the
phase for each TF-bin and interpolates between them in order to obtain a continuous estimate.
Since magnitude and phases are directly related via their gradients, the respective magnitude and
phase estimation networks are also designed to exchange intermediate features. The resulting
complex short-time spectrogram are transformed to the waveform domain, which allows to
jointly train the networks e.g. on a performance-based metric. However, this approach only
minimally improves the performance, which neither justifies the rather tedious bootstrapping
process nor the increased computational demands of the phase estimation. The results indicate
that the used phase estimation network has been constructed too small. Though better results
may be obtained by increasing the model size (apart from longer training routines), this is not
compatible with the efficiency objective of this thesis.

Finally, a clustering objective with magnitude-ratio weighting is employed as an auxiliary task
during training of the MMDenseNet, similar to the Chimera++ approach [110], [162], which has
proven to work very well, especially in combination with Wiener Filter mask estimation. Since
considerations relating to the efficiency objective presented in the next chapter will introduce
changes with regard to the architecture as well as the feature representation, a combination of
the mask-based and deep clustering approaches, which have been identified as beneficial in terms
of performance and may also be conveniently used in combination, has not been discussed thus
far, and will be explored later on in Section 5.2.2.

Table 4.14: Summary of the findings relating to performance improvements. Median BSSEval scores in dB
over the test set for the best performing models of each method are presented.

Model SDR SIR SAR

Baseline 5.46 11.71 5.87
Learned mask, PSA-mask pre-training 5.63 11.17 6.45
Joint vocal and accomp., joint mask comp. 5.63 12.37 5.92
Multi-band channels 5.53 11.59 5.90

Multi-band dense blocks (MBDB-1) 5.44 11.23 5.98
MagNet + PhaseNet, Ltot, bootstrapped 5.49 12.93 5.47
Deep clustering, α = 0.5 5.82 13.81 5.69
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5
Efficiency

The previous chapter addressed several methods regarding performance improvements, and es-
tablished a solid foundation of a source separation system. Continuing from the previous insights,
this chapter pursues a seemingly contrary aim by investigating strategies to decrease inference
times as well as model size and increase the DNN’s overall resource efficiency. Naturally, we
strive for solutions that find a good trade-off between both aspects and are able to offer efficient
inference without sacrificing the separation quality. Because the resulting system should ideally
be applicable in real-time scenarios, the practical consequences of algorithmic latency require-
ments are discussed first. Subsequently, the effects of compressed feature map representations
and structural efficiency through effective use of bottleneck layers and a pruning method are
discussed in Section 5.2, Section 5.3 and Section 5.4, respectively.

5.1 Dealing with a small context size

The baseline model is part of the family of convolutional neural networks which share weights to
compute activations only locally and are thus much more lightweight than other neural network
architectures. Despite the calculation of local features, CNNs are able to capture and model
long-term dependencies because the effective receptive field of the feature maps grows with
the number of layers, as depicted in Fig. 5.1. However, CNNs are stateless in the sense that
no information is retained over successive forward passes. Consequently, the degree to which
temporal information may be maximally exploited depends on the given input. Since audio
data, and music in particular, exhibits strong temporal dependencies, the target source can only
be accurately described and modeled if the context size of the input to the CNN is sufficiently
large. For this reason, CNNs for audio tasks typically receive a large context window, which
is limited in length only by practical considerations such as GPU memory. For instance, the
effective context size of the MMDenseLSTM [86] is roughly 8.3 seconds.

Figure 5.1: Receptive fields of 3 successive convolutional layers for a kernel size of 3× 3 [166]. One element
in the third layer has access to information of a 5× 5 receptive field in the first layer (yellow).

– 67 –



5 Efficiency

However, when time-critical processing is required, which is frequently the case for audio
applications, the algorithmic latency has to be kept adequately low. In on-line processing en-
vironments the input sequence to a CNN can essentially be constructed in two ways. One
straightforward way is to wait for the context size buffer to fill up, perform the inference pass,
and write out all processed samples at once. Assuming that the model is able to execute the
forward pass in a reasonable amount of time - less than the context buffer length or an external
callback period - the algorithmic latency is exactly equal to the context size.

The alternative approach tries to retain a large context size and yet keep the latency low
by performing an inference pass for smaller sub-sequences of the buffer and writing out only
the corresponding amount of newly processed samples. In theory, the context window may
then be made arbitrarily long by aggregating context over time and re-using samples from the
past. This algorithm may be operated at the lower latency bound, which is determined by the
STFT frame-length for systems based in the TF-domain. In this case, an inference pass is done
for every new incoming frame - which also implies that the compute load will be higher by a
factor equal to the context size. This is of course the extreme case and designs using larger
sub-sequences of frames may be more appropriate in practice. Also, dilated convolutions (as
used e.g. in [167]) offer great potential in handling larger context sizes and receptive fields in an
efficient manner. Additionally, instead of only retaining input frames to keep the context size
large, parts of network activations may also be saved, shifted on the time axis, and re-applied for
the processing of the next sub-sequence. Thus, only the parts of the feature maps that actually
benefit from the new input would be calculated. However, an implementation of this approach
could turn out to be very difficult to realize in practice and may result in rather messy solutions.
But in general, this method of using larger context sizes is only feasible if the network is already
resource-efficient enough and can offer a sufficient throughput.

Another and much more natural way to capture long-term temporal dependencies is to make
use of hidden states through additional recurrent units and thus relax the dependency on a
sufficiently long context window. The MMDenseLSTM [86] demonstrates how to efficiently
construct such a hybrid network from the MMDenseNet architecture. However, as already
stated in Section 3.1, recurrent layers are much more compute intensive and parameter-heavy,
and are also frequently coupled with fully connected layers.

As it hard to assess a-priori whether either of the last two methods can be made efficient
enough at all for real-world scenarios, simply working with a reduced context size seems to be
a more ”reliable” way towards efficiency for now. The reduction of the feature map sizes along
the time axis will directly translate to faster inference times and lower memory footprints, even
if the efficiency of the algorithm itself has not changed of course. Keeping in mind that other
strategies may still be investigated at a later stage, lowering the context size seems to be a viable
path if the reduced temporal information at the input does not cause disproportionally large
degradations in separation quality.

5.1.1 Baseline results

The maximum allowed algorithmic latency is application dependent, but should stay as low as
possible in order to maintain an appropriate overall response time of the application. In the case
of Plug-Ins for digital audio workstations, delay times of 100− 200 milliseconds are considered
as rather large, but still acceptable. In order to have consistent down- and up-sampling in
combination with concatenation from skip-connections to the encoder to the decoder of the
MMDenseNet, it is convenient to have input spectrograms that are powers of 2 in size, on both
the time- and the frequency-axis. Using an FFT-length of L = 2048 samples, a hop-size of
H = 512 samples and a sampling rate of R = 32 kHz, these requirements are fulfilled with a
context size C = 8 frames, which corresponds to (C−1)∗H+L

R = 176 ms.
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Table 5.1: Results using the baseline system configuration for various context sizes used in training and
during testing.

Context size

Training Testing SDR SIR SAR

64 64 5.46 11.71 5.87
64 16 4.57 11.15 5.58
64 8 4.24 8.75 5.41
8 8 4.93 10.05 5.61

Although CNNs can handle inputs of varying size, drops in performance may be expected if
the context size used in the inference stage is smaller than the context size used during training.
Convolutional kernels of deeper layers are trained to rely on and produce features of a certain
receptive field size. If the input is smaller than the expected context size, the model simply
reaches the boundaries of what can be deduced from the data. Tab. 5.1 shows that avoiding
such a mismatch of context sizes is indeed highly beneficial for the separation performance:
therefore, a model trained directly using shorter context performs better in this scenario. More
importantly though, Tab. 5.1 demonstrates that, despite the exceptionally small effective context
size of 176 ms - orders of magnitudes less than commonly used CNN context lengths - the model
is still able to successfully perform source separation with a loss of only 0.53 dB in SDR and
roughly 1.6 dB in interference reduction. However, it has to be acknowledged, that the small
context size seems to evoke a slight tremolo effect, with fluctuating amplitudes in the resulting
vocal estimates. However, since the effect is not excessively prominent, it has not been further
dealt with.

A summary of the effect of different context sizes with regard to performance and efficiency
is given in Tab. 5.2. It shows the number of multiply-accumulate operations (MACs) that the
network performs during the execution of a forward pass for a single input sample. This measure
roughly correlates with the expected inference time. The model’s performance is summed up in
the SDR, given in dB. Additionally, the respective relative changes are stated, denoted by ∆.
Since the model is the same for both experiments and only the spectrogram sizes change, the
number of parameters is the same for both models. Rather unsurprisingly, the number of MACs
is directly proportional to the feature map size: in light of the tremendous reduction of MACs
by a factor of 8, the loss in objective separation quality appears to be quite acceptable.

Table 5.2: The effects of different input context sizes on separation quality (SDR given in dB) and the
number of Multiply-Accumulate operations (MACs) needed to perform a forward pass for a single
sample input. ∆ denotes the relative change in percent. The number of parameters is the same
for both models.

MACs SDR

Context size Value ∆ Value ∆

64 4.168× 109 - 5.46 -

8 0.521× 109 −87.5 % 4.93 −9.7 %
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5.2 Mel-scaled representations

Since reduced feature map sizes directly translate to shortened inference times, a compression
of the feature representation along the frequency axis, in addition to the decreased context
sizes along the time axis, is clearly a sensible strategy in order to increase the computational
efficiency of the algorithm. Using a different frequency scaling also allows to dismiss the linear
frequency resolution of Fourier magnitude spectra, which does not correlate well with the human
perception of pitch. Thus, the perceptually motivated Mel-scale seems to be particularly suited
for these purposes. The input of the mixture is run through a Mel filter bank before being fed
to the network input, and the DNN outputs a Mel-scaled estimate.

However, the compression introduced by the Mel filters is a lossy procedure. Fully operating
the network at the Mel scale raises the question of how the output can be converted in order to
recover a magnitude spectrogram estimate suited for inversion with the iSTFT. Of course it is
possible to learn an appropriate inverse filter jointly with the network weights during optimiza-
tion (the same actually also applies to the input transform). But a much more straightforward
and efficient way is to use the filter weights for linear interpolation of the frequency bins with the
corresponding Mel bins. While direct interpolation of Mel-spectrogram estimates will likely fail
in producing high-quality results, this method should work reasonably well for the reconstruc-
tion of spectral masks. Thus, instead of converting source magnitude spectrograms directly,
using a Mel-scaled mask for reconstruction and applying it to the original input mixture allows
to retain fine-grained information of the original linear frequency resolution. If the Mel filter
bank is formulated as a matrix of filter weights FMel ∈ RP×L with P denoting the number of
filters used and L denoting the number of Fourier components, a Mel spectrogram input can be
easily obtained from the STFT mixture magnitude spectrogram |X| as

|XMel| = FMel · |X| . (5.1)

The reconstruction of a mask M̂ of the original TF-representation from Mel-scaled masks M̂Mel

using linear interpolation therefore has an analogous formulation

M̂ = F T
Mel · M̂Mel (5.2)

where F T
Mel is simply the transpose of the Mel filter bank FMel. The implementation of the

librosa toolbox [168] is used to calculate the Mel filter bank. It uses the formula proposed in
[169] to convert from Hertz to Mel, with a linear scale below and a logarithmic scale above
a corner frequency of 1 kHz. The filters have triangular shape with uniformly spaced center
frequencies on the Mel scale, and are depicted in Fig. 5.2. They are not normalized, so that
each filter aims for a peak value of 1, which enables convenient linear interpolation.

0 2000 4000 6000 8000 10000 12000 14000 16000
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Figure 5.2: The used 128 triangular Mel filters, each aiming for a target value of 1, displayed over the linear
frequency axis given in Hz.
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5.2.1 Preliminary experiments using oracle masks

In order to evaluate the effect of employing Mel-scaled mask estimates on performance, a prelim-
inary experiment using oracle masks is conducted first. Wiener filter-style masks are obtained
from both linear magnitude spectrograms and Mel-spectrograms of the true target sources, cal-
culated per track over the whole training set according to Eq. (2.13) with a value of α = 2
for the exponent. Note that due to the collapse of multiple bins along the frequency axis into
single values and the absence of a Mel-scaled phase estimate, the use of phase-sensitive masks
is not recommended in this case. Tab. 5.3 shows the resulting upper bounds in performance for
different Mel filter bank sizes. The oracle experiment proves that linearly interpolated 128-bin
Mel-scaled masks are able to produce estimates of satisfactory separation quality, while gaining
a theoretical increase in efficiency by a factor of 8. Although more aggressive compression of
the frequency scale is conceivable as well, the performance gradually decreases with smaller
numbers of Mel bins. Since a reduction by a factor of 8 should yield good performance in com-
bination with significant speed-ups, using 128 Mel filters seems to be an adequate choice for
further experiments. The effect of the recovered Mel-scaled mask is represented graphically in
Fig. 5.3. Although the Mel-mask introduces slight smearing effects along the frequency axis of
the spectrogram, the general structure of the two estimates is very much the same.

Table 5.3: Oracle performance of Mel-scaled Wiener filter-like masks reconstructed using interpolation to
linear-scaled masks. Values correspond to the median value in dB over the whole musdb18 training
set (100 songs).

Mask type SDR SIR SAR

STFT, 1024 bins 9.74 20.97 9.90
Mel, 128 bins 8.41 18.65 8.75
Mel, 96 bins 7.94 17.93 8.35
Mel, 64 bins 7.14 16.77 7.68

(a) Using linear STFT-mask (b) Using 128-bin Mel-mask

Figure 5.3: Log-Magnitude spectrograms of oracle source estimates, obtained via a linear-scaled STFT mask
(a) and a Mel-mask of 128 bins (b) applied to a 10-second of a 10-second mixture extract.
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5.2.2 Results

The use of the Mel-scale questions the efficacy of the baseline model’s multi-band structure.
Naturally, the Mel filters introduce a blur along the frequency axis. Additionally, it also takes
into account the roughly logarithmic perception of frequencies of the auditory system. Though
this does not change the fact that different frequency bands exhibit different spectral patterns,
the Mel-scale might help to reduce the differences between such patterns, since music is composed
for the human ear. Hence, a full-band MDenseNet-based model might be better suited for this
task. In order to enable a fair comparison between the two models, the number of parameters
has been adjusted to be approximately equal. For this reason, the full-band model features
growth rates of k = 18 and the number of layers within each densely connected block is L = 4.
All other parameters are the same for both models. While the multi-band input is originally split
at a frequency of 8 kHz, the cutoff frequency for the 2-band input of the Mel-MMDenseNet has
been lowered to 2 kHz, since the balance between the individual sub-networks would otherwise
be broken as the MDenseNet associated with the higher frequency band would otherwise receive
a very small number of Mel-bins compared to the other one. Since the 2 kHz split cuts the Mel-
spectrogram directly in two halves, this method again complies with the original linear scale
version in this regard.

The shorter context size of 8 frames is used for both training and testing in all following
experiments. Thus, input and output dimension of the network are of size 128 × 8. Since
the Mel-scaled output should represent a spectral mask for subsequent linear interpolation and
multiplication with the original linear STFT mixture magnitude, both networks are trained on
Wiener filter-like masks computed from the true target Mel-spectrograms.

Tab. 5.4 shows the performance of the different model configurations using Mel-scaled inputs
and outputs in comparison to the standard approach using STFTs. With a drop in overall
SDR performance of roughly only 0.2 dB, the results seem to encourage the usage of Mel-
scaled representations for efficient source separation. Moreover, Tab. 5.4 seems to indicate that
networks operating on Mel-scaled features are even able to achieve better interference reduction.
However, this effect most likely stems from the mask-based training with Wiener filter targets,
which generally obtains higher SIRs compared to direct spectrogram approximation as used for
the baseline system. Additionally, the full-band model indeed exhibits a slight advantage in
performance compared to the multi-band model.

Table 5.4: Performance of multi- and full-band networks with Mel-scaled inputs and a context size of 8
frames, trained to estimate Wiener filter-style masks computed from Mel-spectrograms. The out-
put Mel-mask is linearly interpolated with the Mel filter weights to create a linear scale mask,
which is applied to the original mixture to obtain the source estimate.

Model SDR SIR SAR

MMDenseNet 4.93 10.05 5.61
Mel-MMDenseNet 4.70 11.22 4.87
Mel-MDenseNet 4.73 11.37 5.05

Leveraging an auxiliary deep clustering objective

It has already been established in Chapter 4 that, in addition to a Wiener filter mask approxi-
mation objective, the weighted deep clustering loss may be utilized as an effective regularization
scheme. By simply formulating the affinity matrices with the corresponding Mel-scaled represen-
tations, the method can straightforwardly be applied in this context. Just as in the linear-scale
case, the additional network output section is branched off before the last densely connected
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Figure 5.4: Overview of the used system for Mel-mask estimation with linear interpolation and the deep
clustering objective. Parts denoted by dashed lines are used during training only.

block and the two objectives equally contribute with a factor of 0.5 to the overall loss, which
has shown favorable results in Section 4.6. The overall system is illustrated in Fig. 5.4. The re-
sults, obtained using the advantageous full-band Mel-MDenseNet, are summarized in Tab. 5.5.
Additionally, the effect of a re-training on the true magnitude spectrograms with regard to
performance is investigated: instead of optimizing the Wiener filter mask directly, we can use
Eq. (5.2) to obtain the linear-scaled mask, directly apply it to the original mixture magnitude,
and use the resulting estimate to calculate a spectrogram approximation loss. This way, the
network should learn to generate a Mel-scaled mask that is amenable to linear interpolation and
separation on the linear scale, without explicitly specifying how the mask should look like. The
re-training may optionally include a deep clustering objective as well. For the results shown in
Tab. 5.5, the re-training procedure has been conducted for 20 additional epochs.

The auxiliary deep clustering objective significantly improves the separation performance,
also in the case of Mel-scaled representations. In particular, all 3 evaluation metrics experience
an improvement compared to the Mel-MDenseNet trained on a single-task mask optimization
task. Surprisingly, a re-training using the true linear-scaled source spectrograms decreases the
performance, despite the better conceptual match with the actual evaluation objective. Re-
training schemes that also include the deep cluster loss seem to work better than only minimizing
the MSE to the true source. This indicates that the condition of the original training objectives
is strong, and that the re-training leads the models out of an already quite good minimum.
Naturally, longer re-training might be able to solve this issue, but would render the original
training unnecessary. For this reason, this has not been investigated any further in the context
of this thesis. Due to the deficient effect of re-training and the significantly higher SIR of the
originally trained model, further experiments in the next sections build upon the latter approach.

Table 5.5: Performance of different full-band Mel-MDenseNet configurations trained to jointly minimize
the deep clustering loss (DC) in addition to WF-style Mel-mask approximation (WF-MA) with
equal weights. The models are optionally retrained on minimizing the Euclidian distance to the
corresponding linear-scale source magnitudes (SA).

Target Re-Training SDR SIR SAR

WF-MA - 4.73 11.37 5.05
WF-MA + DC - 4.87 11.68 5.12
WF-MA + DC SA 4.79 9.81 5.77
WF-MA + DC 0.8 SA + 0.2 DC 4.84 9.90 5.75
WF-MA + DC 0.5 SA + 0.5 DC 4.87 10.27 5.61
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Efficiency

The benefit of exploiting and inferring Mel-scaled spectrograms and masks, respectively, is
summarized in Tab. 5.6. While the theoretical increase in inference-time efficiency by a factor
of 8 is not met - due to the slight architectural changes for the full-band Mel-MDenseNet -
the reduction of total multiply-accumulate operations is substantial. Additionally, the full-band
Mel-MDenseNet uses a similar yet less number of parameters compared to the multi-band model,
and thus facilitates a slightly lighter memory footprint. Furthermore, this increase in efficiency
comes only with a very small cost in performance, since the use of the deep clustering objective
keeps the relative loss of −1.22 % in SDR with regard to the baseline favorably small.

Table 5.6: The effects of Mel-scaled representations on separation quality (SDR given in dB) and the number
of Multiply-Accumulate operations (MACs) needed to perform a forward pass for a single sample
input. ∆ denotes the relative change in percent.

MACs Parameters SDR

Model Value ∆ Value ∆ Value ∆

Baseline 521.012× 106 - 255.481× 103 - 4.93 -

Mel-MDenseNet + DC 108.862× 106 −79.11 % 238.517× 103 −6, 64 % 4.87 −1.22 %

5.3 Structural efficiency through point-wise convolutions

A particularity of DenseNets is the linear growth of the number of feature maps (along the
channel axis) with the number of layers in the densely connected blocks. Although the dense
connectivity increases the information flow and allows to keep the number of kernels per layer
k small compared to other architectures, given that the number of outputs per layer typically
increases the number of inputs, the successively increasing feature map sizes appear to be com-
putationally ineffective. The authors of the original DenseNet paper [129] address this issue with
point-wise convolutions. These convolutional layers of kernel size 1 × 1, also called bottleneck
layers, precede each of the layers in a dense block and can be used to reduce the number input
feature maps flowing into the layer. This kind of bottleneck compression allows for substantial
improvements with regard to efficiency, and thus seems like a natural extension to the baseline
MMDenseNet which does not leverage the technique.

As pointed out in [170], residual architectures - and DenseNets in particular - greatly benefit
from a pre-activation structure, meaning that the normalization and activation layer (in this
case BatchNorm and ReLU) precede the convolutional layer. This way the composite layer
may normalize its input individually. This is important, because the result of a concatenation
of feature maps coming from different previous layers is likely to exhibit large variations in
its distribution. Therefore, the typical bottleneck compressed layer as used in [129] has the
structure depicted in Fig. 5.5a, with an additional normalization and activation layer.

For efficient inference, BatchNorm layers can usually be folded into convolutional layers if
the normalization follows after the convolution. However, pre-activation structures prevent
such a fusion of operations, since folding the first normalization layer of a composite function
into the 3x3 convolution of the previous one would break the pre-activation advantage for all
succeeding densely connected layers. The structure illustrated in Fig. 5.5b addresses this issue by
simply removing the additional BatchNorm and ReLU operations introduced by the bottleneck
compression, rendering the composite function to a sequence of Conv (1x1) - BN - ReLU -
Conv (3x3). Since the point-wise convolutions only learn to compress the feature maps and the
composite unit primarily remains a pre-activation structure, the increase in efficiency caused
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(a) (b)

Figure 5.5: Two different composite functions of a densely connected block with bottleneck compression and
pre-activation structures. Structure (b) allows to fuse the BatchNorm layer into the point-wise
convolution for efficient inference.

by the elimination of BatchNorm layers should outweigh the effect of dropping the additional
layers. Additionally, it is possible to include the BatchNorm layer at the output of the composite
function and therefore apply the normalization before the feature maps are sent to subsequent
layers. However, since initial results without the additional output normalization proved to work
quite well, this method has not been investigated since the bias terms also introduce additional
operations. At this point it is worth recalling that the beneficial effect of BatchNorm does not
necessarily stem from its ability to reduce internal covariate shift, but rather from a smoother
loss landscape and hence more stable gradient directions [140]. The single normalization layer
in Fig. 5.5b might be sufficient for this purpose.

Although the MMDenseNet does not make use of point-wise convolutions in densely con-
nected blocks, it does utilize them at transition layers, namely the average pooling layers. This
compression technique is also used in the original DenseNet, but, as pointed out in [171], this
kind of feature map reduction hurts performance. Since the activations already experience a
”spatial” reduction along the TF-axes, the additional compression along the channel dimension
seems to overcharge the change in representation. Interestingly though, the MMDenseNet does
not actually use these layers for compression, but keeps the number of feature maps before and
after the 1x1 convolutions the same. The contribution of these layers is uncertain, even if no
compression is applied, which is why the point-wise convolutions in transition layers may be
dropped entirely.

5.3.1 Results

The experiments presented in this section build upon the best previous model, which is trained
using the chimera-style deep clustering objective (Mel-MDenseNet-DC). First, the effect of dis-
carding the point-wise convolutions in pooling layers is assessed. As shown in Tab. 5.7 the model,
termed Mel-MDenseNet-DC-NoDSConvs, is indeed able to obtain a slightly better performance
with regard to SDR and SAR, while removing spurious parameters.

Next, the use of bottleneck compression inside densely connected blocks is investigated. In-
terestingly, the amount of compression in [129] is set to a fixed value of 4 times the growth rate
of the following convolutional layer, which in many cases would actually correspond to an ex-
pansion instead of a reduction of feature maps, and accordingly increase the computational cost.
The model termed Mel-MDenseNet-DC-NoDSConvs-BC reduces all incoming feature maps by
a factor of 2 and adheres to the structure shown in Fig. 5.5b. Despite the significant reduction
of feature maps, the model essentially maintains the separation performance.

Tab. 5.8 reveals the tremendously positive effects of using proper bottleneck compression on
computational efficiency. While the number of operations as well as the model size can be
reduced by a factor of more than 1.4, the separation quality measured in SDR is not affected at
all by bottleneck layers, and even increases due to the removal of spurious point-wise convolutions
in the downsampling path.
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Table 5.7: Results for experiments investigating the effect of point-wise convolutions and bottleneck compres-
sion on the performance.

Model SDR SIR SAR

Mel-MDensenet-DC 4.87 11.68 5.12
Mel-MDenseNet-DC-NoDSConvs 4.96 11.51 5.30
Mel-MDenseNet-DC-NoDSConvs-BC 4.91 11.51 5.22

Table 5.8: The effect of bottleneck compression on the number of model parameters, separation quality (SDR
given in dB) and the number of Multiply-Accumulate operations (MACs) needed to perform a
forward pass for a single sample input. ∆ denotes the relative change in percent.

MACs Parameters SDR

Model Value ∆ Value ∆ Value ∆

Mel-MDenseNet-DC 108.862× 106 - 238.517× 103 - 4.87 -

Mel-MDenseNet-DC-NoDSConvs-BC 76.677× 106 −29.57 % 169.095× 103 −29, 11 % 4.91 +0.82 %

5.4 Structured Pruning

Resource-efficiency for Deep Neural Networks has emerged into one of the most important and
most actively addressed research topics among the deep learning community, and essentially
evolves around three different principal yet non-disjoint directions of research. Naturally, a
strategy that strives to improve a networks efficiency ideally encompasses concepts from all of
these.

Structural efficiency Of course, the structure of the DNN architecture should preferably
pursue an inherently efficient design. The previous Section 5.3 addresses considerations relating
to structural efficiency in a fairly straightforward way through the use of point-wise convolutions
in order to compress the number of feature maps that have to be processed onto a more compact
representation. For convolutional neural networks in particular, a large number of design choices
has been devised in this vein. Prominent representatives of this group are for instance the
works of [172], [173] and [174], which are based on factorizations of the convolutional operator.
Another branch in this field of research is associated with automated machine learning (AutoML)
[175], which has brought forward very exciting findings recently, e.g. [176]. Automatic search
routines can be successful in obtaining very efficient architectures, usually if the search space
is constrained accordingly to meet certain related criteria. Popular neural architecture search
procedures have been proposed in [177] and [178], for instance.

Quantization Since smaller bit-widths are able to yield significant savings in model size and
memory footprint, and speed-up computations, quantization is also considered to play a crucial
role for the deployment of DNNs in resource-constrained environments. Many different strategies
have been developed in order to perform quantization for deep neural networks. For example,
network weights may be quantized with or without their corresponding activations, using fixed or
adaptive codebooks during or after training. Further particularities include e.g. the sensitivity
of BatchNorm layers to coarse quantization. An overview of methods in this field is given in
[179]. Interestingly, it has been shown that it is possible to maintain high accuracy even in spite
of extreme quantization onto binary weights - a survey of recent methods employing binary
weights and/or activations is given in [180].
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Weight pruning Whereas quantization methods leverage the redundancy in the number of
bits, weight pruning leverages redundancy in the number of network parameters. Modern deep
neural networks are usually heavily over-parameterized, which also seems to be the reason for
their excellent learning abilities. In general, the aim of pruning techniques is to identify some
sub-network within the parameter space of the model that performs comparably or equally well
as the original one (see e.g. [181]), by evaluating the importance of the network weights according
to a certain relevance metric. One simple yet effective metric is for example the magnitude of
the corresponding weights, but a variety of different pruning methods has been explored in the
literature [182], [183], [184]. As demonstrated for example in [185], it is certainly possible to
combine quantization and pruning methods, also on highly structural efficient backbones [186]
and may even be optimized jointly in a unified framework [187], [188], [189]. Nevertheless, while
quantization significantly reduces the computational complexity of DNNs, pruning methods
allow to spare expendable computations entirely and are thus prioritized in the context of this
thesis. In addition, compression techniques are commonly evaluated on (image) classification
tasks and it is not completely clear how well the discussed methods, and quantization methods
in particular, translate to tasks that are required to retain high-resolution features such as music
source separation algorithms.

Determining convenient and hardware-friendly sparsity structures

Although the fine-grained, unstructured pruning of weight connections achieves impressive com-
pression rates, several practical drawbacks are often ignored: reported memory savings typically
do not include space requirements of additional indices, load imbalance may lead to poor perfor-
mance on parallel processors and randomness in memory access patterns caused by unstructured
sparsity may prevent successful caching mechanisms from working effectively. These shortcom-
ings can be avoided by constraining pruning methods to well-defined, hardware-friendly sparsity
structures. Thus, as far as real-world settings are concerned, structured pruning methods should
be preferred for resource-efficient inference. [190] even discourages the use of unstructured prun-
ing altogether, since specialized hardware does not seem to benefit from these methods either.

2D-convolutions (also called spatial convolutions) are usually implemented as dense matrix
multiplications, as shown in Fig. 5.6 and described in more detail in [191]. Without resorting
to specialized sparse matrix multiplications, which are neither well supported by deep learn-
ing libraries nor hardware accelerators, the choice of sparsity structures that allow for actual
inference speed-ups and convenient implementation is rather limited and corresponds to very
coarse-grained structures. Apart from pruning whole layers, sparsity structures that map con-
veniently to hardware and benefit the execution of dense matrix multiplications are essentially
input channels, output channels and filter ”columns”, meaning the columns of the flattened
weight tensor Fm shown in Fig. 5.6. In combination with the removal of the corresponding row
in the reshaped data matrix Dm, pruning these columns results in direct efficiency increases.
However, the accompanying implementation of this approach has to be performed using the
low-level matrix representation of the convolutional operation, which might pose difficulties
with regard to different frameworks and target environments. While the pruning of single con-
volutional kernels (output channels, i.e. the rows of the flattened convolutional weight tensor)
may be performed on a higher level, a change in the number of output channels of a layer also
causes a change in the number of input channels for subsequent layers, and thus also calls for
painstaking implementation procedures, especially with residual architectures. This leaves input
channels as hardware-friendly sparsity structures, which can be straightforwardly implemented
in combination with a removal of the corresponding input feature map. This method seems
to be a bit ineffective though, because each layer produces a certain amount of feature maps
which might not even be leveraged by subsequent layers. However, keeping in mind that the
target architecture of concern is based on the DenseNet and encourages heavy feature re-use,
this method seems to be adequate. .
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Figure 5.6: Lowering of a spatial 2D-convolutional operation to a dense matrix multiplication [191]. The
input is a single 3× 3 (H ×W ) ”RGB-image” with C = 3 channels and a batch size of N = 1.
The convolutional layer consists of K = 2 output kernels, of size 2×2 (R×S). The operation is
reformulated as a matrix multiplication of the flattened convolutional layer Fm ∈ RK×CRS and a
re-arranged data matrix Dm ∈ RCRS×NPQ, where P and Q denote height and width of the target
output tensor O ∈ RN×K×P×Q which has the intermediate representation Om ∈ RK×NPQ.

5.4.1 Parameterized Structured Pruning

However, jointly pruning whole weight structures of a deep neural network is more sensitive to
accuracy degradations than the unstructured pruning of individual connections. In this thesis,
the effect of the recently introduced Parameterized Structured Pruning is investigated [192].
It is a regularization-based pruning method that explicitly parameterizes a certain sparsity
structure j, and jointly optimizes so-called structure parameters αj together with the network
weights. The relevance of structure j then corresponds to the magnitude of its assigned structure
parameter, |αj |. A penalty - such as a `1 regularization or weight decay - is used to push
the parameters towards zero, enabling a clear distinction between important and unimportant
structures.

In order to learn the parameters together with the 4-dimensional weight tensors W of con-
volutional layers, the sub-tensors wj that make up structure j are substituted by the tensor
qj = wjνj during the forward pass, where νj denotes the associated sparse structure parame-
ters. These are obtained by evaluating the dense structure parameters αj with the help of a
threshold function

νj(αj) =

{
0 |αj | < ε

αj |αj | ≥ ε
(5.3)

where ε corresponds to a tunable pruning threshold. Since the threshold function is not differen-
tiable at ±ε and the gradient of the sparse parameters νj is zero on the pruning interval [−ε, ε],
their gradient is defined using a straight-through-estimator [193]

∂E

∂νj
=
∂E

∂αj
=

M∑
m=1

∂E

∂wj,m
, (5.4)

where wj,m corresponds to the mth weight of structure j, which has M weights in total. E
represents the objective function. Thus, αj is updated in accordance with the predominant
direction of the weights. Accordingly, in the case of channel input pruning, the gradient of the
parameters can be expressed as follows:

∂E

∂αc
=

K∑
k=1

R∑
r=1

S∑
s=1

∂E

∂Wk,c,r,s
(5.5)
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Since the dense instead of the sparse parameters are updated, improperly pruned structures
are allowed to reappear during training, which yields a more stable training behaviour. Weight
decay is employed to push the weights below the threshold while taking their magnitude into
account. Although `1-regularization may seem more natural for sparsity induction as it decays
parameters exactly to zero, weight decay has been found to yield clearer distinctions between
important and unimportant structures. For efficient inference, the additional parameters may
simply be fused into the weight structure.

5.4.2 Results

Parameterized structured pruning (PSP) is performed on the input channels of all convolutional
kernels (point-wise as well as 3x3 convolutional layers), except for the potentially sensitive output
and input layers. The structure parameters are initialized using a uniform distribution in the
interval [-1, 1], since the Gaussian distribution proposed in the original paper lead to convergence
problems and effectively prevented the network from learning. The value of 1× 10−5 for decaying
the weight tensors is the same as in previous experiments, however, the penalty for all αj has
been increased to 1× 10−2 in order to ensure sufficient regularization of the sparsity-inducing
structure parameters. Since the training is conducted with the Adam optimizer, it is important
to decouple the weight decay from the optimization steps [133]. Also note that while PSP has
been originally developed for standard stochastic gradient descent, the adaptive learning rates
should not interfere with the general pruning algorithm, since the gradients for the structure
parameters and the weights are equivalent. The sparsity threshold ε is set to zero initially and is
gradually increased when training has saturated. After each threshold increase, the network is
fine-tuned for a short training round of 2 epochs. The experiments are based on the best previous
model, termed Mel-MDenseNet-DC-NoDSConvs-BC, which uses bottleneck compression.

In order to assess the effect of the used pruning technique, Fig. 5.7 presents the SDR as an
overall performance measure and the amount of induced sparsity in percent, measured as the
proportion of pruned to non-pruned parameterized weight structures, as a function of the pruning
threshold ε. The plot clearly shows the inverse relationships between these two objectives.
Exemplary results for different pruning thresholds are displayed in Tab. 5.9.
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Figure 5.7: Overall performance measured in the median SDR in dB over the test set and the amount
of induced sparsity across all parameterized weight sub-tensors in percent for various pruning
thresholds ε.
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Unfortunately, the performance starts to degrade quite early and collapses before reaching
a sparseness of around 15 %, at a pruning threshold of roughly ε = 0.2. This rather poor be-
haviour may be attributed to several aspects. First, music source separation is a high-resolution
regression task and the network will thus be in general much more susceptible to small changes
of the weights compared to classification tasks that arguably measure more global and coarse
features. Secondly, the combination of bottleneck compression for structural efficiency and PSP
is sub-optimal, since the former method significantly limits the effectiveness of the latter one: as
bottleneck compression is based on a significant reduction of feature maps, an additional prun-
ing of input channels for convolutional kernels is very likely to constrain the network’s learning
capabilities too much. Applying the pruning method on the original computational units might
even be able to further reduce the number of operations and parameters. While assessing this
hypothesis would be interesting, this experiment has been left open to future investigations.
Moreover, further experiments would be necessary in order to thoroughly evaluate the impact of
different optimization routines on PSP. While the individual learning rate of the used adaptive
optimization procedure should not affect the relation between the structure parameters and the
corresponding weights (since they receive the same gradients), the pruning technique might still
be more robust with standard stochastic gradient descent. In addition, though the PSP paper
[192] considers modern and large CNN architectures that make heavy use of batch normaliza-
tion, the interaction between weight decay and BatchNorm is rather intricate [142], [143], [144]
which might also lead to difficulties for this regularization-based pruning technique.

Nevertheless, it should be pointed out that the pruning method is certainly successful in the
removal of at least some of the structure, without hurting the performance too much. Tab. 5.10
shows the efficiency improvements due to pruning with a threshold of ε = 0.18, which yields
a reasonable balance between the overall performance and the amount of induced sparsity.
Compared to the prior model configuration, a relative improvement of roughly 6.5 % and 5.2 %
for the number of multiply-accumulate operations and the number of parameters, respectively,
certainly justifies the relative loss in performance of only 1.02 %.

Table 5.9: Results for experiments investigating the effect of parameterized pruning on the performance.
Sparsity denotes the amount of pruned to non-pruned parameterized structures.

Model SDR SIR SAR Sparsity

Mel-MDenseNet-DC-NoDSConvs-BC 4.91 11.51 5.22 -

. . . + PSP ε = 0.14 4.87 11.69 5.13 7.57 %

. . . + PSP ε = 0.18 4.86 11.22 5.14 11.53 %

. . . + PSP ε = 0.22 4.72 9.78 5.73 17.75 %

Table 5.10: The effect of Parameterized Structured Pruning (PSP) (ε = 0.18) on the number of model param-
eters, separation quality (SDR given in dB) and the number of Multiply-Accumulate operations
(MACs) needed to perform a forward pass for a single sample input. ∆ denotes the relative
change in percent.

MACs Parameters SDR

Model Value ∆ Value ∆ Value ∆

Mel-MDenseNet-DC-NoDSConvs-BC 76.677× 106 - 169.095× 103 - 4.91 -

. . . + PSP ε = 0.18 71.680× 106 −6.52 % 160.228× 103 −5.24 % 4.86 −1.02 %
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5.5 Summary

The findings of this chapter are summarized in Tab. 5.11. As the main goal of the thesis is to
obtain a system that ideally suits real-time, resource-constrained online inference in a block-
processing fashion, a discussion of the accompanying limitations and appropriate methods for
this purpose is presented first. In particular, the system is required to handle reduced input
context windows. Initial results showed that, despite a very small context size of 8 frames, the
system is capable of separating music with relatively little degradation in separation quality. If
the network is efficient enough, recurrent units can always be added at a later stage. Similarly,
the context may always be augmented with past input frames, to improve the temporal modeling
abilities of the convolutional architecture. For these reasons, the thesis proceeds by considering
a small context scenario of 176 ms.

As reduced feature map sizes directly correlate with increased computational efficiency, Sec-
tion 5.2 deals with the compression of feature representations along the frequency axis. The
perceptually motivated Mel-scale has proven to be expedient for this purpose. The network
infers a Mel-scaled mask from a Mel input magnitude spectrogram, from which the linear-
scaled mask can subsequently be reconstructed via simple linear interpolation with the filter
weights. While the separation performance stays largely unaffected, this approach naturally has
a tremendously positive impact on the computational efficiency, The utilization of the Mel scale
also questions the multi-band structure of the model, and a comparable full-band architecture
of roughly the same number of parameters does indeed show slight advantages over the original
one. Additionally, analogous to the linear scale case, an auxiliary deep clustering objective is
formulated from the true Mel-spectrogram sources and successfully leveraged to refine the gener-
alization and thus performance of the network. Rather surprisingly though, the incorporation of
the linear mask reconstruction as part of the optimization procedure and the direct re-training
on the spectrogram approximation objective were not able to improve upon the explicit Wiener
Filter-like mask estimation.

Section 5.3 addresses the structural efficiency of the network by incorporating bottleneck lay-
ers in densely connected blocks in order to compress intermediate feature maps along the channel
direction while maintaining an efficient pre-activation structure. In combination with a removal
of redundant convolutions in pooling layers, the system is able to preserve the separation perfor-
mance, while significantly decreasing the compute load, measured as the number of forward-pass
operations and parameters of the network, by a factor of approximately 1.4.

Finally, Section 5.4 considers the parameterized pruning of weight structures that conveniently
map to hardware, such as input channels of convolutional kernels. While the obtained compres-
sion ratio is rather small - which may be attributed to the nature of the high-resolution regression
task, the already reinforced compactness of the model and the sub-optimal interaction with the
explicit bottleneck compression in particular - the pruning technique positively contributes to
the system’s efficiency.

Table 5.11: Summary of the findings relating to efficiency improvements. Median BSSEval scores in dB
over the test set as well as the number of multiply-accumulate operations and the number of
parameters for the best performing models of each method are presented.

Model SDR SIR SAR MACs Parameters

Baseline, 64 frames 5.46 11.71 5.87 4.168× 109 255.481× 103

Baseline, 8 frames 4.93 10.05 5.61 0.521× 109 255.481× 103

Mel-MDenseNet-DC 4.87 11.68 5.12 108.862× 106 238.517× 103

Mel-MDenseNet-DC-NoDSConvs-BC 4.91 11.51 5.22 76.677× 106 169.095× 103

. . . + PSP, ε = 0.18 4.86 11.22 5.14 71.680× 106 160.228× 103
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5.5.1 Real-time capability of the approach

In order to assess the real-time capability of the resulting model, the Mel-MDenseNet-DC-
NoDSConvs-BC pruned with a threshold of ε = 0.18, the average execution time of a forward
pass on the Intel Core i7-8700B 6-core CPU of a Mac Mini 8.1 (”Late 2018”) is measured. The
PyTorch framework [130] allows for convenient serialization of the model graph using the Torch-
Script Just-in-time compiler. This serialized representation of the network can subsequently
be exported into the open exchange neural network format ONNX [194] for interfacing with
various frameworks on a wide range of platforms. Additionally, this offers the usage of a highly
optimized run-time library [195] for efficient inference, which has been utilized in combination
with the Intel DNNL hardware accelerator [196] for the measurements. perf counter ns of the
built-in Python library time has been used to obtain a measurement of the single-batch forward
pass execution time with a context size of 8 frames (176 ms at a sampling rate of 32 kHz) over
the full musdb18 test set.

On average, the model takes about 4 milliseconds to complete the forward pass. This is an
effective improvement by a factor of 6.5 over the baseline, which takes about 26 milliseconds
to process a single example with reduced context size. While it has to be acknowledged that
the measurement platform is a rather modern one, this is well within the range of typical audio
buffer block-sizes, and thus validates the real-time capability of the proposed approach.
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6
Conclusion

This final chapter sums up the previous findings and points out the usefulness as well as the
caveats of the proposed approach.

In general, the described approach towards a real-time capable, resource-friendly deep neural
network for music source separation yields a reasonable trade-off between separation performance
and computational efficiency. A key strategy that allowed to accomplish this goal was the
reduction of feature map sizes, which substantially decreased the computational requirements.
In particular, operating the algorithm on the Mel-scale proved to work extremely well. While the
subjective impression with the corresponding reconstructed linearly-scaled masks may slightly
change, the effect on the separation quality is deemed insignificant. Although the reduced input
context size is of course a major limiting factor, it admittedly also plays a crucial role for the
fast run-time performance of the system, without actually contributing to the efficiency of the
algorithm. Nevertheless, it is interesting that the performance of the convolutional network can
be kept sufficiently high, in spite of the little temporal information it receives as input.

Most of the discussed methods that strive to improve the system’s performance unfortunately
lack remarkable outcomes. Only rather small changes in the overall performance, indicated by
the SDR, have been attained, with maximum differences in the range of ±0.5 dB. However,
the beneficial effect of the deep clustering framework [110], [162] has proven to be practical and
reliable, as it is applicable to convolutional, U-Net-based architectures such as the MMDenseNet,
and results in zero computational overhead during inference time. Additionally, though the
results with regard to (fine-tuned) learned masks confirm the advantage of input-to-output skip-
filtering connections for denoising auto-encoders [92], in combination with Mel-scaled outputs
and a deep clustering approach, the direct Wiener Filter estimation tends to work slightly better
in practice.

The results also somewhat discourage the utilization of phase information for inference in
resource-constrained environments. In practice, purely magnitude based processing tends to
be simpler and more efficient, and the plain application of the mixture phase for signal recon-
struction from the TF-domain is still backed by state-of-the-art source separation systems [86],
[83], [89], [90]. To this regard, rather than an estimation of the target phase via cost-intensive
DNN-based algorithms, in certain circumstances it might be more appropriate to use efficient
phase reconstruction techniques, e.g. [197], as a post-processing step. However, it has to be
pointed out that the phase-estimation network considered in this thesis has been of deliberately
small scale and was difficult to train.

Moreover, a successful re-design of the architecture for multi-band processing has not been
attained, especially also with regard to the efficiency. The MMDenseNet seems to be a rather
robust architecture, and serves as a good source separation backbone throughout most conducted
experiments. Although the results question the effectiveness of the multi-band processing and
the eventually used model employs a full-band structure, further experiments with the proposed
multi-band dense blocks may still be helpful in finding better designs.
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6.1 Outlook

As already stated above, the reduced context size represents a major limiting factor for convo-
lutional architectures since it determines their temporal modeling abilities. It also introduces
slight tremolo effects for the models developed in this thesis. The inclusion of uni-directional
additional recurrent units similar to [86], for example efficient variants of gated recurrent units
(GRUs), may be very well suited to alleviate this problem. Additionally, the use of dilated
convolutions may also be investigated in order to leverage increased context sizes in an efficient
way. Furthermore, an investigation of the increasingly popular attention-based neural networks,
which recently have been very successfully applied to music source separation [89], [90], would
be very interesting in this context, especially with regard to the efficiency objective.

Apart from methods for improved temporal modeling, future work will probably want to focus
on increasing the efficiency of the model even further, since a more efficient system also allows
for larger context sizes, which in turn might deliver greatly improved overall performance. Us-
ing point-wise convolutions for bottleneck compression of feature maps is a known technique
to improve computational efficiency, and helps to effectively reduce the computational load for
the DenseNet-based architecture. However, this method is only moderately compatible with
subsequent pruning algorithms, which are expected to yield higher compression rates as they
induce sparsity in a more adaptive and flexible way. To this end, efficiency improvements might
be obtained by discarding bottleneck compression in favor of releasing the full potential of prun-
ing algorithms. Additionally, one might also be interested in exploring alternative (structured)
pruning methods for this purpose, e.g. [198], or considering more fine-grained sparsity structures.

Still, maintaining a structural efficient architecture should not be ignored. In particular, the
memory footprint of the model has largely been omitted in this work. Since the number of
feature maps grows linearly with the number of layers in a densely connected block, the size
of all intermediate feature maps is order of magnitudes larger than the model itself, especially
for high-resolution regression tasks like audio source separation. The DenseNet requires a lot of
data caching and, despite its parameter efficiency, consumes a considerable amount of energy,
as shown in [199]. This also directly affects inference times, since limited DRAM bandwidths
may decrease the system’s efficiency, which is especially problematic for GPU processing. [200]
addresses this issues with the DenseNet and provides a more carefully designed dense architecture
design, which should be very beneficial in this context. Additionally, a re-design may draw more
heavily from the idea of factorized convolutional operations (e.g. [172]) in order to increase
structural efficiency.

Less memory consumption may also be achieved through quantization methods, which should
also lead to significant improvements in resource-efficiency. While the use of binary neural net-
works will probably not be applicable to the task of music source separation, quantization aware
training procedures for 8-bit integers may be able to preserve performance while significantly
shrinking the computational requirements of an ideally already efficient model.

Finally, it has to be noted that the used evaluation metrics are only partly suited to represent
the separation quality of the estimated sources obtained using the proposed approach, and
that subjective listening tests are necessary in order to properly evaluate the source separation
system.
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[123] F. Pernkopf, W. Roth, M. Zöhrer, L. Pfeifenberger, G. Schindler, H. Fröning,
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