
Fabian Schenk

Edge-based Simultaneous Localization
and Mapping

DOCTORAL THESIS

to achieve the university degree of

Doktor der technischen Wissenschaften

submitted to

Graz University of Technology

Supervisor

Prof. Dr. Friedrich Fraundorfer

Institute for Computer Graphics and Vision

Assoc. Prof. Dr. Torsten Sattler

Chalmers University of Technology

Graz, Austria, March 2020

Abstract

Simultaneous Localization and Mapping (SLAM) and Visual Odometry (VO) are two of

the longest-standing problems in robotics and computer vision and still heavily researched

today. Both are of great importance for autonomous transportation, UAV navigation,

augmented and virtual reality and 3D reconstruction since all these applications ask two

basic questions: ”Where is the robot?” and ”How does its environment look like?”. SLAM

tries to answer both of these questions by simultaneously estimating the robot’s position

while mapping the environment around it. VO can be considered a building block for

SLAM and focuses on estimating the robot’s motion within a local area, while SLAM

operates on a global map.

The release of light-weight and cheap RGBD sensors, which can record a scene’s ge-

ometry and texture in real-time, has opened up many new possibilities for SLAM and

VO. While the classical indirect approaches that extract features, establish correspon-

dences and optimize a reprojection error still exist, new direct methods that maximize

the photo-consistency between two images have emerged in recent years. They do not

rely on features but work directly on intensity values, which makes them susceptible to

illumination changes and dependent on an initialization close to the minimum. Other

direct methods that align the dense point clouds from the sensor directly are typically

constrained to small areas and require a distinct geometric structure.

In this thesis, we propose a novel direct method for RGBD sensors that aligns edges

to estimate the camera motion. Edges have many favorable qualities since they are more

robust than intensity values, are fast to compute and greatly reduce the image information

due to their sparse representation. We first show how to formulate the edge-based camera

motion estimation problem and how to solve it efficiently. To improve the robustness in

indoor scenes with many texture-less surfaces, e.g. white walls, floors or ceilings, we then

propose to jointly align edges and the dense point clouds. Finally, we present the first

edge-based RGBD SLAM system, which runs a local mapper to refine camera poses, the

depth of the edges and the camera intrinsics and a global mapper to perform loop closure

and relocalization.

iii

iv

Since edge detection is a crucial part of our edge-based methods, we present an ex-

tensive comparison between traditional and machine-learned edge detectors, where the

latter show a stable performance even under severe motion blur and in scenes with low

illumination. Then we demonstrate the capabilities of our VO and SLAM methods on

various benchmark datasets covering a wide variety of camera motions and scenes. Our

edge-based VO methods outperform state-of-the-art approaches on most of the datasets

and also our SLAM system performs in the range of other popular systems, many of which

are computationally far more expensive.

Keywords: computer vision, robotics, simultaneous localization and mapping, SLAM,

visual SLAM, visual odometry, VO, edge-based, direct method

Kurzfassung

Simultanes Lokalisieren und Kartieren (SLAM) und Visuelle Odometrie (VO) sind zwei der

ältesten Probleme der Robotik und Bildverarbeitung und werden auch heute noch intensiv

erforscht. Beide sind von enormem Interesse für das autonome Transportwesen, die UAV

Navigation, sowie augmentierte bzw. virtuelle Realität und 3D Rekonstruktion, da alle

diese Anwendungen zwei grundlegende Fragen aufwerfen: ”Wo ist der Roboter?” und ”Wie

sieht dessen Umgebung aus?”. SLAM versucht beide dieser Fragen zu beantworten, indem

es die Position eines Roboters bestimmt und gleichzeitig dessen Umgebung kartiert. VO

kann als ein Baustein für SLAM angesehen werden und beschäftigt sich mit der Schätzung

der Roboterposition in einer lokalen Umgebung, während SLAM auf einer globalen Karte

arbeitet.

Das Erscheinen von leichten und kostengünstigen RGBD Sensors, welche die Geometrie

und Textur einer Szene in Echtzeit aufnehmen können, hat zahlreiche neue Möglichkeiten

für SLAM und VO eröffnet. Während klassische indirekte Ansätze, die interessante

Punkte finden, Korrespondenzen herstellen und anschließend den Rückprojektionsfehler

optimieren, immer noch verwendet werden, wurden in den letzten Jahren direkte Meth-

oden basierend auf der Photokonsistenz entwickelt. Diese Methoden sind nicht auf inter-

essante Punkte angewiesen, sondern arbeiten direkt auf den Intensitätswerten des Bildes,

was sie aber anfällig auf Beleuchtungsunterschiede macht und eine Initialisierung nahe

dem Minimum erfordert. Eine weitere Art von direkten Methoden ist, die dichten Punkt-

wolken vom RGBD Sensor direkt aufeinander zu registrieren, was aber typischerweise nur

für kleine Bereiche funktioniert und ausgeprägte geometrische Strukturen erfordert.

In dieser Arbeit, präsentieren wir eine neuartige direkte Methode für RGBD Sen-

soren, die Kanten aufeinander registriert um die Kamerabewegung zu bestimmen. Kanten

haben die Vorteile, dass sie deutlich robuster als Intensitätswerte sind, schnell berechnet

werden können und zusätzlich die Bildinformation reduzieren. Zuerst zeigen wir, wie man

die Kamerapositionsbestimmung für unsere kanten-basierte Methode formulieren und ef-

v

vi

fizient lösen kann. Um die Robustheit in Innenräumen mit zahlreichen beinahe texturlosen

Flächen, z.B. weiße Wände, Böden oder Decken, zu erhöhen, präsentieren wir danach eine

gemeinsame Registrierung von Kanten und dichten Punktwolken. Zum Abschluss, stellen

wir das erste kanten-basierte RGBD SLAM System vor, welches eine lokale Optimierung

enthält, um Kamerapositionen, die Tiefe der einzelnen Kanten und die Kameraparameter

zu verfeinern, aber zusätzlich auch eine globale Karte nutzt um Schleifenschließungen und

Relokalisierung zu ermöglichen.

Da Kantendetektion eine wesentliche Rolle für unsere kanten-basierten Methoden

spielt, präsentieren wir einen umfangreichen Vergleich zwischen traditionellen

und gelernten Kantendetektoren, wobei letztere deutliche bessere Ergebnisse bei

Bewegungsunschärfe und geringer Beleuchtung aufweisen. Anschließend zeigen

wir die Fähigkeiten unserer VO und SLAM Methoden anhand verschiedenster

Benchmarkdatensätze, welche eine Vielzahl von Bewegungen und Szenen umfassen.

Unsere kanten-basierte VO Methode übertrifft andere moderne Methoden auf beinahe

allen Datensätzen und auch unser SLAM System liegt im Bereich anderer populärer

Systeme, die oftmals deutlich mehr Rechenleistung erfordern.

Schlüsselwörter: Bildverarbeitung, Robotik, simultanes Lokalisieren und Kartieren,

SLAM, visuelle Odometrie, VO, kanten-basiert, direkte Methode

Affidavit

I declare that I have authored this thesis independently, that I have not used other than

the declared sources/resources, and that I have explicitly indicated all material which has

been quoted either literally or by content from the sources used.

Place, Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als

die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich

und inhaltlich entnommene Stellen als solche kenntlich gemacht habe.

Ort, Datum Unterschrift

Acknowledgments

Pursuing my PhD at the ICG was the most interesting but also the most challenging time

of my life. I am so grateful for the exciting years at the ICG, the many incredible people

I have met and the numerous conferences and seminars I attended.

I would like to pay my special regards to my supervisor Friedrich Fraundorfer for the

trust he put in me, the many fruitful research meetings and paper discussions, his guidance

and support throughout the past years. I will always remember our exciting trips to our

partners in France, where we tried our first snails. Further, I would also like to thank

Torsten Sattler for being my second supervisor.

This PhD thesis would not have been possible without my colleagues at the ICG, who

helped me through difficult times with their input, new insights or sometimes just with

an after-work beer. I want to specifically thank the active and former members of the 3D

Vision Group and Robot Vision Group: Michael Maurer, Jesùs Pestana Puerta, Rafael

Weilharter, Christian Sormann, Christian Mostegel, Thomas Holzmann, Markus Bergen,

Ludwig Mohr, Gernot Riegler, David Ferstl and Christian Reinbacher. I also would like to

thank Alexander Tscharf, Alexander Bornik and Johannes Höller for the joint publications

and their great collaboration on various challenging projects. A special thanks to Martin

Urschler, who encouraged me to pursue a PhD after my Master’s thesis, and to Horst

Bischof and Matthias Rüther for giving me the opportunity to start at the ICG.

Finally, I wish to express my deepest gratitude to my friends, and family members

for their support, love, and encouragement. I am deeply indebted to my mother, who is

always there for me and without her, I would not be where I am today. In particular,

I would like to thank my girlfriend Marie for being at my side for the past years and

especially for her patience and love even during the many work-intensive days and nights.

ix

Contents

1 Introduction 1

1.1 Challenges and Limitations in SLAM . 5

1.2 Applications for SLAM and VO . 7

1.3 Contributions . 8

1.4 Thesis Outline . 9

2 Related Work 11

2.1 Indirect Methods . 13

2.2 Direct Methods . 17

2.3 Semi-Direct Methods . 22

2.4 Conclusion . 23

3 Direct Methods - Theory and Background 27

3.1 Notations and Conventions . 27

3.2 Camera Model and 3D Rigid Body Motions 28

3.2.1 Euler Angles . 33

3.2.2 Unit Quaternions . 34

3.2.3 Lie Group for 3D Rigid Body Motions 36

3.3 Direct Image Alignment . 39

3.4 Robust Parameter Estimation . 41

3.4.1 The Gauss-Newton Method . 42

3.4.2 The Levenberg-Marquardt method 44

3.4.3 Iteratively Reweighted Linear Least Squares 44

3.5 Conclusion . 46

4 Edge-based Simultaneous Localization and Mapping 47

4.1 Camera Motion Estimation . 48

xi

xii

4.1.1 Direct Edge-based Camera Motion Estimation 49

4.1.2 Edge-based Pose Estimation in SE(3) 53

4.1.3 Edge- and ICP-based Relative Pose Estimation 58

4.1.4 Optimizing the Geometric Error on SE(3) 62

4.2 Edge-based Quality Assessment . 64

4.3 Keyframe Management . 67

4.3.1 Keyframe Management for VO . 67

4.3.2 Keyframe Management for SLAM 67

4.4 Local Mapper . 71

4.4.1 Optimization on Spatially Close Keyframes 71

4.4.2 Local Bundle Adjustment . 72

4.4.2.1 Building the Factor Graph 73

4.4.2.2 Windowed Optimization Problem 76

4.4.2.3 Marginalization . 79

4.5 Global Mapper . 81

4.5.1 Fern-based Place Recognition . 82

4.5.2 Relocalization . 85

4.5.3 Loop Closure . 86

4.6 Conclusion . 89

5 Edge Detection 91

5.1 Edge Detection on Multiple-Scales . 92

5.1.1 Multi-Level Edge Detection with Edge Enhancement (MLD+EE) . . 93

5.1.2 Single Level Edge Detection (SLD) 93

5.2 Evaluation of Edge Detectors . 95

5.2.1 Qualitative Evaluations . 96

5.2.2 Quantitative Evaluations . 102

5.3 Conclusion . 103

6 Experiments and Results 107

6.1 Experimental Setup . 107

6.1.1 Benchmark Datasets . 107

6.1.2 Evaluation Metrics . 109

6.1.3 Implementation Details . 110

6.2 Comparison of our Contributions . 111

6.3 Visual Odometry Evaluations . 115

6.4 SLAM Evaluations . 122

6.5 Conclusion . 128

xiii

7 Conclusion 129

7.1 Summary . 129

7.2 Outlook . 130

A List of Acronyms and Symbols 133

B List of Publications 135

B.1 Publications related to this Thesis . 135

B.2 Other Publications . 137

C Appendix 141

C.1 Efficient Jacobian and Hessian computations 141

C.2 Additional Mathematical Definitions . 142

C.2.1 The Iverson Bracket . 142

C.2.2 The vec Operator . 142

C.2.3 The Skew-symmetric Matrix . 143

C.2.4 The Kronecker Product . 143

C.2.5 Matrix Derivatives . 143

C.2.6 General Conversion of a Quaternion to a Rotation Matrix 144

C.2.7 Rotate a 3D Vector by a Quaternion 145

Bibliography 147

List of Figures

1.1 SLAM is a chicken-and-egg problem . 2

1.2 Map of the environment as sparse point cloud 3

1.3 Overview of a typical VO and SLAM system 4

1.4 Challenges in SLAM . 6

2.1 Indirect and direct methods . 12

2.2 Different selection strategies for interesting regions 13

3.1 Camera obscura and pinhole camera model 29

3.2 The projection function, its inverse and the full reprojection 31

3.3 Euler angle and axis-angle representation 34

3.4 Challenges in SLAM . 40

3.5 Robust error norms, influence and weight functions 46

4.1 Overview of the SLAM system and its individual components 48

4.2 Input from an RGBD sensor . 49

4.3 Edge-based camera motion estimation . 50

4.4 Distance transform and gradients . 51

4.5 Distance Transform compared to Nearest Neighbor Fields 52

4.6 Edge-based alignment over several iterations 54

4.7 Motion initialization . 58

4.8 Scarcely textured indoor scenes with little geometric structure 59

4.9 Geometric point-to-point and point-to-plane error 60

4.10 Colored point cloud and surface normals . 62

4.11 Evaluation of the balancing factor λ . 63

4.12 Edge-based quality assessment pipeline . 65

4.13 Edge-based assessment of the tracking quality 68

xv

xvi LIST OF FIGURES

4.14 Marginalization procedure for edges and keyframes 70

4.15 Local optimization strategies . 72

4.16 Jacobian and Hessian structure in bundle adjustment 74

4.17 Edge point activation process . 75

4.18 Schur Complement . 77

4.19 Marginalization of arbitrary rows and columns 82

4.20 Marginalization of edges and keyframes . 83

4.21 Global mapper overview . 84

4.22 Random Fern computation pipeline . 84

4.23 Estimate and verify loop closure and relocalization candidates 86

4.24 Estimate and verify loop closure and relocalization candidates 87

4.25 Pose graph with keyframes and constraints 88

5.1 Edge enhancement algorithm . 94

5.2 Single and multi level edge detection with and without edge enhancement . 94

5.3 Converting a probability map into an edge detection 96

5.4 Qualitative Experiment 1: Edge detectors under severe illumination changes 98

5.5 Qualitative Experiment 2: Edge detectors under severe illumination changes 99

5.6 Qualitative Experiment 3: Edge detectors under mild motion blur 100

5.7 Qualitative Experiment 4: Edge detectors under severe motion blur 101

5.8 Experiment 5: Edge repeatability under varying illumination conditions . . 104

6.1 Overview of the benchmark datasets . 108

6.2 Difficult TUM RGBD sequences . 113

6.3 TUM RGBD reconstructions with RESLAM 116

6.4 TUM RGBD trajectories computed with our methods 117

6.5 ICL-NUIM trajectories computed with our methods 118

6.6 ICL-NUIM reconstructions with REVO+ICP 118

6.7 Reconstructions of low texture scenes . 120

6.8 Loop closure for large-scale sequence . 122

6.9 TUM RGBD trajectories computed with various VO methods 123

6.10 Problematic sequences in ETH3D . 126

List of Tables

1.1 Contributions of this thesis . 9

2.1 Overview of VO and SLAM systems. 24

3.1 List of notations used in this thesis . 28

3.2 Cost, influence and weight functions for robust estimation 45

4.1 Computational complexity of edge-based residual evaluations 52

4.2 Difference between the number of KFs before and after culling 70

5.1 Quantitative Experiment 6: ATE and RPE with various edge detectors . . 103

6.1 Comparison of our methods on the TUM RGBD dataset 114

6.2 Comparison of our methods on the ICL-NUIM dataset 119

6.3 Comparison of VO methods on the TUM RGBD dataset 121

6.4 Comparison of VO methods on the ICL-NUIM dataset 122

6.5 SLAM evaluations on the TUM RGBD dataset 125

6.6 SLAM evaluations on the ICL-NUIM dataset 126

6.7 SLAM evaluations on the ETH3D dataset 127

xvii

1
Introduction

Contents

1.1 Challenges and Limitations in SLAM 5

1.2 Applications for SLAM and VO 7

1.3 Contributions . 8

1.4 Thesis Outline . 9

The technological advances of the last decades have paved the way for autonomous

robots that can perform many elaborate tasks without the need for human supervision

or interference. In households, robots assist humans in their everyday life by vacuuming

or wiping floors, cleaning swimming pools or mowing the lawn. They can also perform

exploratory tasks in areas that are difficult to reach such as air, underground, underwater

or even hazardous environments, e.g. outer space, nuclear power plants or mines. Another

huge area of application is the inspection of critical infrastructure such as bridges, roads,

and power lines. Finally, autonomous robots in the form of self-driving cars, buses, trucks,

and trains will completely change the transportation of goods and people. The many

practical applications are discussed in greater detail in Section 1.2.

Even after decades of research, robots only work autonomously in constrained envi-

ronments, e.g. in the garden, and true autonomy in complex environments such as urban

areas is still a topic of intensive research. One of the key requirements for true autonomy

is the robot’s ability to perceive and interact with an unknown environment, which intro-

duces two major questions: (1) ”Where is the robot?”, i.e. what is the current position of

the robot in the map, and (2) ”How does the environment look like?”, i.e. generate a map

of the environment. When looking at these questions individually, (1) can be solved by

localizing the robot against a known map, while (2) boils down to generating a map from

the measurements at known robot positions (see Fig. 1.1). However, in nearly all practical

applications neither the map nor the positions are known beforehand, which leads to a

joint problem of generating a map of an unknown environment, while simultaneously lo-

1

2 Chapter 1. Introduction

calizing within it. What makes this so difficult is that it is in its essence a chicken-and-egg

problem since localization, i.e. the estimation of the robot’s position, requires a map, while

the creation of the map requires the robot’s position (see Fig.1.1). In the literature, this

problem is known as Simultaneous Localization and Mapping or Structure and Mapping

(SaM) and is considered one of the major challenges in robotics.

Figure 1.1: Simultaneous Localization and Mapping (SLAM) is a classical chicken-and-egg prob-
lem posing two questions (1) ”Where is the robot?” and (2) ”How does the environment look like?”.
To solve this problem, it is necessary to have an accurate map to localize against, i.e. estimate
the robot’s current pose, but at the same time the robot’s pose is required to generate an accurate
map.

The goal of SLAM [15, 31] is to estimate a global and consistent path of the robot,

which is often referred to as trajectory (see Fig. 1.2). When the robot explores the environ-

ment, SLAM obtains the trajectory incrementally since it estimates the current position

with respect to one or several previous positions. With each new estimate, an error, albeit

small, is introduced into the trajectory, which accumulate and cause drift, a difference

between the real and the estimated trajectory. During continuous exploration, it is only

possible to reduce drift through, e.g. optimizing over the last N positions in a sliding

window or windowed Bundle Adjustment (BA). In order to correct the drift, SLAM has

to keep track of a global map to detect when places are revisited, even when the map itself

is not required for the robot’s task. The global map is typically represented as a sparse

point cloud (see Fig. 1.2), as a pose graph (see Fig. 4.25) with or without landmarks,

or as dense model. Returning to a previously visited place corresponds to a loop in the

trajectory, which makes it possible to measure the global drift as the difference between

the current position and the position at the previous visit (see Fig. 1.3 and 4.24). With

the information gained from the detected loop, the global drift in the trajectory and the

map can be greatly reduced via loop closure. Detecting already visited scene parts and

how to efficiently and accurately integrate the corresponding loop constraint are two key

challenges in SLAM .

3

Figure 1.2: Map of the environment as sparse point cloud.

Even though this thesis focuses on SLAM , it is important to discuss the distinction to

Visual Odometry (VO) [120, 131], which essentially addresses the same problem. Scara-

muzza and Fraundorfer [51, 131] describe the difference in the sense that VO cares about

local consistency, while SLAM focuses on global consistency. Local consistency in this

context means that VO tries to create a locally accurate trajectory and map but does

not have any way of detecting already visited places. In contrast, SLAM aims to reach

a globally consistent trajectory and map, i.e. the same places should be at the same

position after revisiting. Figure 1.3 visualizes the connection between SLAM and VO ,

where VO incrementally estimates the poses and is an inherent part of SLAM . In the

literature [131, 149], this connection is typically defined as:

SLAM = Visual Odometry + Global Mapper, (1.1)

where the Visual Odometry estimates the relative camera motions between frames and

optimizes a local map and the Global Mapper maintains and refines a global map, while

also handling loop closure and relocalization.

Since VO and SLAM each have their advantages and disadvantages, the choice is

often not trivial and additionally depends on the application, the available computational

resources. Due to the additional constraints introduced by the loop closure, SLAM is

potentially more accurate but not necessarily more robust. Even one wrong loop closure

due to outliers, e.g. mismatch in a highly redundant scene, can greatly reduce the overall

accuracy of the trajectory and map or even lead the whole system to fail. Another issue is

that the drift caused by incremental pose estimation varies depending on the visible parts

of the scene, i.e. pose estimation is often much more accurate in highly textured areas than

in scarcely textured or cluttered parts. Since loop closure distributes the drift over the

4 Chapter 1. Introduction

Figure 1.3: A typical VO system comprises motion estimation between frames and a local mapper
to additionally optimize poses within a window. VO is an integral part of SLAM but SLAM
additionally has a global mapper to handle loop closures and relocalization.

whole trajectory, this can decrease the quality in well-estimated areas. The computational

resources are another point to consider, specifically for mobile robots. VO only considers

a local area, which keeps the overall problem constrained and much easier to solve than

optimizing over potentially thousands of frames as in SLAM . Thus, many systems follow

the policy introduced by Klein and Murray [84] and run a VO system at frame-rate and

a global optimization or mapping in the background. While the VO system keeps an

accurate trajectory over a small area, the mapping system optimizes for global consistency

in the background. Due to the huge amount of image data, the global mapper typically

only processes specific frames, the Keyframes (KFs), and all the non-KFs are discarded.

Over the past decades, SLAM has been addressed by a wide variety of algorithms and

systems equipped with different sensors. In the beginning, the systems were rather basic

with just a wheeled robot moving in a planar scene and reconstructing the environment

from laser range or sonar measurements. With the technological advances, vision-based

sensors or cameras have become smaller, faster and more energy-efficient such that have

found their way onto mobile robots and even smartphones. Cameras have opened a com-

pletely new research area for SLAM since they provide access to much more information

than laser range finders or sonar. When solving the SLAM problem with vision-based

sensors, the procedure is sometimes also called visual SLAM or vSLAM.

1.1. Challenges and Limitations in SLAM 5

1.1 Challenges and Limitations in SLAM

Since SLAM has been researched for decades, many people in the robotics and vision

community ask the question: ”Is SLAM solved?” [15]. During decades of research also

SLAM has evolved and contains so many different topics that no universal answer can be

given. Some parts such as SLAM in small, static and constrained indoor environments are

well-understood and might be considered ”solved” but with the ever-evolving technologies,

e.g. Unmanned Aerial Vehicle (UAV) or RGBD sensors, new challenges arise and state-of-

the-art systems still suffer from many limitations. In this section, we will jointly discuss

the limitations and remaining challenges for SLAM in indoor environments and focus on

the robustness to outliers and poor visual input, the computational efficiency, and ease of

use. For a broader discussion, we refer to the extensive survey by Cadena et al. [15] also

covering limitations for outdoor, long-term and semantic SLAM .

Current SLAM systems typically rely on an iterative estimation with a robust cost

function and can detect tracking losses in cases of aggressive motions or partially covered

sensor. However, they are still susceptible to outliers for two reasons: (i) outlier detection

and the down-weighting depends on the initial guess and (ii) even one single outlier influ-

ences future estimations by introducing a wrong linearization point, thus slowly corrupting

the system. This type of slowly progressing error is extremely hard to detect until it is

too late to recover from it. Fail-safe or at least failure-aware SLAM remains an open

problem and is especially critical for practical applications.

There is another set of problems arising from the sensor mounted on the robot. Monoc-

ular SLAM inherently suffers from various limitations since depth is not observable in one

single image. Typical problems are that (i) the map and trajectory are only known up

to scale, which can result in scale drift in longer trajectories, (ii) the initialization of the

depth values is difficult and error-prone because it highly depends on the first few camera

motions and finally (iii) camera motion estimation fails under (nearly) pure rotations since

points cannot be triangulated. With the release of RGBD sensors such as the Microsoft

Kinect [61, 163], the Orbbec Astra and the Intel RealSense [82], which can record a scene’s

texture as RGB image and its geometry as depth map (see Fig. 4.2a), all of these issues

can be solved. However, there are still many challenges for visual SLAM :

• Motion blur is one of the most common problems in practice since it occurs even at

high frame rates of around 60 fps and causes a significant loss of image information.

• Scarcely textured areas, e.g. white walls, ceiling or floors, do not contain any valuable

information and make motion estimation very unreliable.

• Illumination conditions can vary considerably even within the same scene (see

Fig. 1.4c and 1.4d), which leads to the problem that even successive images

sometimes do not match.

• Large motions caused by fast camera movements or a low-frame rate introduce prob-

6 Chapter 1. Introduction

lems when estimating the relative motion since the optimization starts far away from

the minimum.

RGBD sensors deliver depth maps, which might have invalid measurements due to re-

flective surfaces or glass (see Fig. 1.4g and 1.4h). Figures 1.4e and 1.4f depicts another

common issue, where sunlight renders the infrared pattern of RGBD sensors unusable.

Due to the hardware developments in the past years, sensors today have a high res-

olution and frame rate, which means that a huge amount of data has to be processed in

real-time. Many SLAM systems rely on a strong Graphics Processing Unit (GPU) to pro-

cess the data, which is typically not possible in mobile robots with limited resources, e.g.

a UAV flying with one battery and an onboard CPU. For such robots, computationally

inexpensive methods running on a CPU are of great importance and heavily researched

at the moment.

(a) Motion blur (b) Motion blur (c) Illumination
changes

(d) Illumination
changes

(e) RGB with sunlight (f) Depth with sunlight (g) RGB Image (h) Depth with on glass

Figure 1.4: General challenges in visual SLAM are motion blur (a) and (b) and illumination
changes within the same scene (c) and (d). RGBD sensors often have problems in sunlight (e) and
(f) or on reflective or glass surfaces (g) and (h).

Probably the most crucial limitation of SLAM systems for practical applications is that

they do not work in a simple plug-and-play manner but require expert knowledge. First,

the intrinsic calibration of the sensor and the calibration with respect to a robot are non-

trivial problems. Second, nearly all systems have a set of thresholds, which are scene- or

sensor-specific and greatly influence the overall accuracy. Thus, current methods require

in-depth knowledge of the pose estimation algorithm and the implementation. SLAM

system that automatically choose the correct parameters for each sensor and arbitrary

scenes are still an open topic.

To summarize, there are still many open topics in SLAM and similarly in VO and both

problems are far from ”solved”. Therefore, both remain among the most active research

1.2. Applications for SLAM and VO 7

areas in computer vision and robotics. With the introduction of new sensor such as event

cameras, affordable Lidar sensors and the abundance of cameras in mobile devices, this

is not likely to change anytime soon. In this thesis, we address some of the discussed

limitations with a novel edge-based approach, show how to increase robustness in difficult

scenes and present a very fast real-time capable system.

1.2 Applications for SLAM and VO

SLAM and VO have an abundance of practical applications and a complete overview

would exceed the context of this thesis. Thus, we will focus on indoor applications, where

RGBD sensors can be used, such as augmented reality, UAVs, 3D reconstruction but also

discuss the booming field of autonomous transportation or driving.

Augmented Reality (AR) With the ever-present mobile phone and wearable devices

such as the Microsoft HoloLens or Daqri SmartGlass, augmented reality is now a rapidly

progressing field. At the core of each Augmented Reality (AR) application is typically

either a SLAM or VO system, since the device has to localize itself within an unknown

environment. While most of the wearables have an integrated depth sensor, smartphones

and tablets with depth-sensing capabilities start to emerge.

Unmanned Aerial Vehicles (UAVs) In the last years, UAVs have gotten smaller

and are frequently used in indoor environments for tasks like autonomous stocktaking in

warehouses [110]. Since there is no GPS signal available in enclosed environments, the

UAVs have to rely on vision-based systems. On such mobile platforms, RGBD sensors are

a popular choice since no onboard depth map computation is necessary and they allow

for easy obstacle avoidance. Real-time SLAM and VO algorithms are key ingredients for

robust and accurate indoor navigation.

3D Mapping Mapping the 3D world we live in is a long-standing challenge in computer

vision. An accurate and dense map of the environment is valuable for documentation, e.g.

for the construction industry, for crime scenes. Nowadays, building information model-

ing, where every building has a digital twin, which is maintained throughout the whole

life-cycle of the building, is one of the most promising applications in the construction

industry. Another application is generating 3D models of objects to incorporate them into

augmented and virtual reality visualizations. Dense models take very long to compute

with image-based methods and often suffer from shortcomings in uniformly textured ar-

eas. However, with modern RGBD sensors, it is possible to generate a globally consistent

3D map in real-time.

Autonomous Transportation This is probably the area, which is going to influence

our everyday life the most. Autonomous cars and buses will transport people in and

8 Chapter 1. Introduction

between cities and promise to reduce car accidents, traffic jams and the necessity for

individual cars. To transport goods, fleets of autonomous cars and trucks have been

launched in recent years and drones are starting to deliver packages to remote or difficult

to reach areas. SLAM and VO are the core components to drive all those autonomous

vehicles but for true autonomy, new challenges such as moving objects in a scene, changing

weather and illumination conditions have to be solved. Thus, SLAM and VO will continue

to be an important research field for the coming years or even decades.

1.3 Contributions

This thesis summarizes three publications [132–134] in the fields of VO and SLAM , where

I am the first author. These publications can be interpreted as a step-by-step development

of a novel edge-based RGBD SLAM system, which was the first of its kind upon its initial

publication. The complete SLAM system is also the main outcome of this thesis.

In [133], we developed REVO, an edge-based VO algorithm, which significantly outper-

formed state-of-the-art edge-based methods. We proposed an edge-based quality measure,

which is used for both, KF selection and tracking loss detection. Further, we evaluated

modern machine-learned edge detectors and demonstrated that even though not trained for

the VO task, they can improve robustness and accuracy. Finally, we showed the favorable

qualities of edge-based methods under rapid motion, where photometric and point-cloud

based methods often fail. REVO is available as open-source, runs at around 50-60 fps on

a CPU and has been well received by the community.

The second publication [132], focused on the robustness of VO in challenging indoor

scenes. A common problem especially indoors are large untextured scene parts such as

white walls, ceilings or floors. Since we work with an RGBD sensor, we aim to utilize all

the available data and proposed to combine our REVO [133] with a geometric cost term in

an Iterative Closest Point (ICP) point-to-plane formulation. We then jointly optimize both

errors, which gives increased stability in texture-less areas, since depth is still observable

there. Additionally, we include a way to refine the current KF pose with respect to N

spatially close KFs to close small loops and increase accuracy. We also implemented a

method to enhance edge detections with detections from higher-resolution levels.

These developments culminated in RESLAM [134], the first edge-based RGBD SLAM

system. REVO [133] with the enhancements presented in [132] served as basis for the

edge-based relative motion estimation. Instead of optimizing only with respect to N

spatially close frames, we perform a full local BA in a sliding window over all involved

model parameters. These include the initial depth of the edges, the camera poses, and the

camera intrinsics. To increase the speed and facilitate the use of more sophisticated edge

detectors, we propose to only detect edges on the highest resolution and to down-scale

the Distance Transform (DT) instead of detecting edges on all scale levels. This method

shows similar results to the edge enhancement [132] but is significantly faster. Another

integral part is the detection of already visited places, which allows for loop closure and

1.4. Thesis Outline 9

Publication Motion Local Global Year Conference Code
Estimation Mapper Mapper

REVO [133] ✓ ✗ ✗ 2017 IROS ✓

REVO+ICP[132] ✓ ✓ ✗ 2017 BMVC part of [133]
RESLAM [134] ✓ ✓ ✓ 2019 ICRA ✓

Table 1.1: The contributions from each publication to the individual components of a SLAM
system (see Fig. 1.3), the year of publication, the conference and if the code is open-source.

relocalization after a system pause or tracking loss. Like REVO, also RESLAM is available

as open-source software.

Throughout the last years, we significantly contributed to the field of VO and SLAM

specifically in the recent area of direct edge-based methods. To encourage further re-

search, we released two of our systems as open-source to the community. Table 1.1 shows

an overview of all the publications and their respective contributions to the various com-

ponents of SLAM , the year of publication, the conference and if the code is available as

open-source.

1.4 Thesis Outline

This thesis is structured into six chapters as follows. Chapter 2 introduces different types

of SLAM and shows an overview of the most important publications in the fields of SLAM

and VO . Chapter 3 lays out the mathematical notations and theoretical foundations to

understand direct methods and the algorithms presented in this thesis. Our contributions

are described in great detail in Chapter 4, which is divided according to the typical SLAM

components motion estimation, local mapper and global mapper. We start with the basic

edge-based VO , discuss how to incorporate an additional geometric term and explain the

steps to make it a full SLAM system. Edge detection is a central point in this work

and discussed in Chapter 5 alongside quantitative and qualitative evaluations. Chapter 6

contains qualitative and quantitative experiments on standard benchmark datasets as well

as qualitative results on various RGBD recordings. We conclude this thesis in Chapter 7

and discuss future research directions.

2
Related Work

Contents

2.1 Indirect Methods . 13

2.2 Direct Methods . 17

2.3 Semi-Direct Methods . 22

2.4 Conclusion . 23

This thesis presents our contributions to the fields of Visual Odometry (VO) and

Simultaneous Localization and Mapping (SLAM) and therefore we will review both. In

this chapter, we jointly present the related work since they are closely intertwined with

VO being an integral part of SLAM (see Fig. 1.3) Further, many state-of-the-art works

follow a publication process similar to ours and start as VO approach and culminate in

full SLAM system.

SLAM and VO have been an integral part of computer vision and robotics since

the beginnings and a vast body of publications exists. Since a complete review would

exceed the scope of this thesis, we only discuss seminal works, recent developments, and

all the methods that are part of the experiments (see Chap. 6). For a comprehensive

introduction to the history and early works in SLAM , we refer to the surveys by Durrant

and Bailey [5, 31] and for more recent surveys to [149, 162]. In [15], Cadena et al. discuss

future research directions and problems in SLAM . Similarly, we point to the tutorials by

Scaramuzza and Fraundorfer [51, 131] for the area of VO .

We classify SLAM systems in two different ways not specific to any type of sensor or

robot: (1)map-centric or frame-based and (2) indirect, direct and semi-direct. Map-centric

SLAM systems align new frames against a local or global map, which is either sparse or

dense (often referred to as model). While visually pleasing maps can be created this way,

errors in the map are very problematic since all the new frames are aligned against the

erroneous map. Feature-based [36, 116] methods and volumetric fusion systems [78, 79,

117] follow a map-centric paradigm. Alignment involves either reprojecting features into

11

12 Chapter 2. Related Work

(a) Classical indirect methods extract and match features and then minimize a reprojection error.

(b) Direct methods either images, point-clouds or edges directly without correspondence matching.

Figure 2.1: (a) Classical indirect methods extract features, thereby reducing the image to sparse
interesting points, then match those features to a global map and finally estimate the pose by
minimizing a reprojection error. In contrast, (b) direct methods do not rely on feature matching
but align images, point-clouds or edges directly.

the current frame or rendering a view from the model to align against. In contrast, frame-

based methods align with respect to a previously estimated frame(s), e.g. one or more

Keyframes (KFs) [37, 38, 132, 133]. From a computational point of view, this is cheaper

than aligning against a global map, since in SLAM there is typically a significant overlap

with the last KFs and neither a costly rendering nor a search through an abundance of

features is necessary. Another benefit is that the estimates between the frames are highly

accurate and the accumulated drift in the global map can be corrected by loop closure.

The related work review is structured into indirect, direct and semi-direct methods

covered in Sections 2.1 - 2.3. Each section starts with a short history and overview of

publications followed by a detailed description of the most important works. Figure 2.1

visualizes indirect and direct methods with their sub-categories. One interesting property

to distinguish between methods is the image information involved in the pose estimation,

which can be sparse, dense, semi-dense or edge-based (see Fig. 2.2). Section 2.4 summarizes

most of the discussed SLAM and VO publications.

2.1. Indirect Methods 13

2.1 Indirect Methods

Indirect or feature-based methods have been studied since the early days of computer

vision and form the basis of many SLAM [26, 36, 84, 116], VO [84, 85, 92, 120] and

Structure from Motion (SfM) [1, 67, 135] systems. Figure 2.1a shows the typical processing

pipeline, feature extraction and correspondence matching followed by a minimization of

a reprojection error. The core principle is the reduction of the image to a few interesting

keypoints (see Fig. 2.2f) with one of the many detectors such as SIFT [102], SURF [7],

ORB [127] or corner detectors [63, 126]. Then each keypoint is described in terms of a

descriptor to match correspondences with local or global map features (see Fig. 2.1a).

One of the major pitfalls in indirect methods is the error-prone correspondence matching,

which even with a robust RANSAC [47] step still often fails, especially whenever repetitive

structures occur. After establishing the correspondences, the camera motion is estimated

with a reprojection error, which minimizes the distance between a detected feature pi and

its reprojected correspondence pj [65, 150]:

E =
∑

pi,pj∈P

d(pi,pj)
2, (2.1)

where P is the set of correspondences and d(.) a distance function. Note that (2.1) is a

purely geometric error containing no appearance information.

(a) RGB Image (b) Dense Alignment (c) Edge-based Alignment

(d) Depth Map (e) Semi-Dense Alignment (f) Sparse Alignment

Figure 2.2: Different selected pixel regions for dense, semi-dense, sparse and edge-based alignment
with color-coded selected pixels.

A known problem of feature-based approaches is that due to the sparse selection of

14 Chapter 2. Related Work

points (see Fig. 2.2f), the spatial distribution of the extracted features influences the pose

estimation, which is a significant limitation in practice. For example, indoor scenes consist

of areas, where many features are detected, e.g. posters, keyboards, and nearly feature-

free parts, e.g. ceilings or walls. This often introduces a bias in the motion estimation

since areas with many feature points contribute more to the reprojection error than areas

with very few points.

Early monocular systems address the SLAM problem by filtering [21, 25, 26, 34, 112],

also referred to as Kalman filtering. The basic idea is to update a joint probability distri-

bution over all the involved model parameters with each new frame and to marginalize old

state variables to keep the optimization bounded. The current state-of-the-art filtering-

based method is MSCKF, which was originally published by Mourikis et al. [112] and then

continuously improved over the next years [54, 94, 95, 113]. Strasdat et al. [146] conclude

that optimization-based approaches have a higher accuracy than filtering-based ones at

the same computational cost. Further, they show that to improve the accuracy of SLAM

it is better to increase the number of features since more frames only add robustness to

the system due to their highly redundant nature.

Since then, (non-linear) optimization-based approaches maintaining a sparse graph

of KFs with their associated landmarks have become very popular [36, 84, 85, 92, 114,

116]. One of the earliest approaches, which also coined the term Visual Odometry, was

the seminal work by Nistér et al. [120]. Shortly afterward, Klein and Murray proposed

PTAM [84], the first system to separate tracking and mapping, which has since become

the conceptual standard for most state-of-the-art systems. Leutenegger et al. [92] also

include an IMU and introduce many improvements to the windowed optimization to keep

it accurate and computable in real-time. Instead of keypoints, Eade and Drummond [34]

rely on edge features, which are also used as an alternative or addition to keypoints in

other approaches [85, 105].

The release of RGBD sensors was quickly followed by indirect SLAM systems such

as [73] and [68], which assign the depth values from the sensor to features detected in the

RGB image. While [73] applies a classical indirect pipeline with RANSAC and reprojection

error minimization, [68] uses GICP [138] to align the images and set up a pose graph.

In [36], Endres et al. presented RGBDSLAM, which increased accuracy and robustness

compared to previous systems and was released as open-source implementation. One of

the most popular and versatile systems is ORB-SLAM [114, 116], which runs in real-time

on a CPU with a wide variety of sensors. In the following, we will describe selected

works [36, 84, 85, 105, 116] in more detail.

Parallel Tracking and Mapping (PTAM) [84]: In their seminal work PTAM, Klein

and Murray introduce several paradigms, which are still heavily used in many state-of-the-

art systems. One of their key paradigms is to decouple the SLAM problem into separate

tracking and mapping components, which makes it possible for both to run in separate

threads and without the need to share any data association. Tracking assumes that the

2.1. Indirect Methods 15

map is fixed and estimates the relative camera pose in relation to the map. Mapping

maintains, extends and refines the map but only processes KFs to reduce the highly

redundant information from every single frame. PTAM uses FAST-10 [126] corners with

their surrounding patches as features and defines their depth in terms of the KF they

were first observed in. The tracking module estimates the current pose by first projecting

3D points from the map into the current frame under a motion model and then searching

for corresponding matches in a two-step process. First, the initial pose is refined with

50 coarse matches and then reestimated with a total of 1000 matches. PTAM initializes

the map in a semi-supervised manner with specific motion patterns in the beginning and

continuously extends it by new KFs. A new KF is selected after either N frames or a

certain distance between cameras. To estimate the depth of new points, PTAM performs

an epipolar line search. While exploring, PTAM only refines a local portion of the map but

switches to global refinement once the environment is well-explored and no new KFs are

needed. One of the major downsides of PTAM [84, 85] is that it works only in relatively

small areas such as desktop scenes since the size of the map quickly becomes too large for

global Bundle Adjustment (BA) to handle. Further, it lacks loop closing capabilities and

has problems with scarcely textured or repetitive surfaces present in most office scenes.

PTAM with edgelets (PTAM-e) [85]: In [85], Klein and Murray propose to use short

straight lines, so-called edgelets [33, 34], in addition to keypoints in PTAM Tracking only

short line segments has many favorable properties compared to the complete line, since

they can deal with partially occluded and broken edges and even curves can be divided into

many segments. To compute edgelets, PTAM-e extracts Canny [16] edges in each KF and

breaks the edge chains at high curvature points to get straight edges. Through an epipolar

search, PTAM then finds correspondence in a nearby KF for triangulation and rejects the

correspondence if it cannot be verified in a third KF . The distance between corresponding

lines is computed at two points at a distance of 5px from the edgelets projected center along

the normal vector. Further, PTAM-e estimates the depth in a frame-to-frame manner by

searching for correspondences along the edgelet’s normal vector also taking motion blur

into account [86]. Even with these improvements, PTAM-e suffers from the same problems

as PTAM such as no loop closing capabilities and the restriction to small spaces.

ORB-SLAM [114, 116]: The current state-of-the-art feature-based system is ORB-

SLAM2 [116], which extends the purely monocular ORB-SLAM [114] to stereo setups and

RGBD sensors. Both systems [114, 116] rely on the same ORB features [127] for pose

estimation, mapping and place recognition. ORB features are faster to extract than, e.g.

SIFT [102], are invariant to scale and offer certain robustness against auto-gain, auto-

exposure, and illumination changes. At its core, ORB-SLAM2 [116] only distinguishes

between monocular and stereo camera setups. To process RGBD and stereo data identi-

cally, ORB-SLAM2 first extracts features in the RGB image, which is considered the left

image, and then computes a virtual right coordinate like [145]. Similar to [123], they clas-

16 Chapter 2. Related Work

sify a stereo point as close if its depth is smaller than 40 times the stereo or RGBD baseline

and as far otherwise. Close keypoints can be immediately triangulated safely, while far

ones offer accurate rotation information and are triangulated once they are supported by

multiple viewpoints. All points without valid depth from the depth map are considered

a monocular keypoint and are also triangulated over multiple viewpoints. ORB-SLAM2

has a place recognition module [52] for relocalization in case of errors or to continue in an

already mapped scene and loop closure. The complete pipeline comprises three separate

components (1) localizer, (2) local and (3) global mapping, which run in parallel thread.

For every new frame, the localizer tries to estimate the world position with respect to

matched features by optimizing the reprojection error. Whenever the number of matches

drop beneath a threshold, a new KFs is created and inserted into a covisibility graph,

where nodes are KFs and edges in between represent shared observations. ORB-SLAM

initially creates many KFs but removes redundant ones later. The local mapper then

optimizes over a set of covisible KFs and their shared points. Finally, after loop closure

and Pose Graph Optimization (PGO), the global mapper runs a full BA over all the KFs

and points. ORB-SLAM2 is a very popular system since it is easy to run, versatile in

terms of scenes and sensors, and also runs in real-time on the CPU of decent computer.

However, scarcely textured areas are challenging since most feature detections come from

noise and wrong correspondence matching often occurs. Highly redundant textures pose

another problem since the same feature is detected multiple times and tracking often fails

RGBDSLAM [36]: At the time of its initial release, RGBDSLAM was one of the first

feature-based SLAM systems designed for RGBD sensors. Its primary components are

analogous to standard feature-based systems as they extract and match features. Since

many feature-based approaches have difficulties with wrong correspondences and the re-

sulting wrong pose estimates, RGBDSLAM penalizes non-occluding transformations via

an environment measurement model. The idea is to reproject a 3D point from one depth

map to the other, finding the corresponding point via projective data association and

classifying the points into inliers, outliers, and occlusions. This is closely related to the

Iterative Closest Point (ICP) point-to-point formulation with projective data association

discussed in Section 4.1.3. RGBDSLAM searches for local loop candidates among the last

N and spatially close KFs as well as K randomly sampled KFs from the pose graph with

a bias towards older frames. To close large loops, RGBDSLAM maintains a set of very

few distinct KFs from which again several KFs are randomly drawn.

Edge SLAM [105]: The idea of Edge SLAM is closely related to standard feature-

based systems in the sense that it detects features and establishes correspondences with

an optical flow tracker. The main difference to other systems [84, 116] is that it relies on

edge points as features. Loop closure is based on image moment invariants [72], where

every KF is divided into 16 quadrants and then each quadrant is matched to another KF

based on the edge detections and intensities. The threshold to consider a KF a match is

2.2. Direct Methods 17

given as the minimum matching computed to the five previous KF but it is only considered

a loop candidate if three successive KFs are above the threshold.

2.2 Direct Methods

In recent years, direct methods that avoid correspondence matching have become very

popular. They can be further divided into image-, point cloud - and edge-based alignment

as depicted in Figure 2.1b. While processing the complete image information [22, 80]

avoids bias to spatial distribution, the computational burden is significant and low-gradient

regions do not carry valuable information for the optimization. Thus, the selection of the

residuals is a critical point for direct methods. Figure 2.2 shows an overview of the

different selection strategies, where dense selects the complete image, semi-dense high-

gradient regions, edge-based points corresponding to edge detections and sparse only a

few interesting points.

Image alignment methods are probably the most intuitive, as they simply align two

images trying to minimize their intensity differences, which is equal to maximizing their

photo-consistency. Thus, such methods are often referred to as photo-consistency-based.

Comport et al. [22] proposed a very early dense VO method, which aligns subsequent

stereo image pairs. In [40], Engel et al. present a semi-dense VO system for a monocular

camera. This served as the foundation for the well-received LSD-SLAM [38, 153], which

has been extended in several follow-up works [18, 39]. Recently, Engel et al. proposed

DSO [37], which relies on a sparse formulation and shows better accuracy than LSD-SLAM

even without loop closure.

The introduction of RGBD sensors has had a significant impact on VO and SLAM

research since the depth map offers the possibility to compute a dense point cloud for

image and/or point cloud alignment. Due to the readily available depth information,

many works that generate dense models in real-time have been published. One of the

most influential work for real-time point cloud alignment was KinectFusion by Newcombe

et al. [75, 117], which aligns incoming depth maps against a dense volumetric model with

a geometric error based on a point-to-plane ICP formulation. KinectFusion has since

inspired works such as the extension Kintinuous [157, 158], a full SLAM system based on

combined image and point cloud alignment, and systems for large-scale scenes such as the

very fast InfiniTAM [78, 79] or [119]. All of these approaches require a strong Graphics

Processing Unit (GPU) to process the dense model-to-frame alignment. Around the same

time, Whelan et al. [156] presented an RGBD VO approach for image alignment, which

also generates a dense volumetric reconstruction but requires a GPU . ElasticFusion [159]

is a SLAM system based on surfels instead of a dense volumetric model and combines a

photometric- and ICP -based error. Dai et al.’s BundleFusion [24] applies a coarse feature-

based approach followed by a photometric and geometric alignment, thereby implicitly

closing loops. Recently, BAD-SLAM [136] showed how to incorporate a full BA in a

surfel-based model. All of those approaches require at least one strong GPU to be able

18 Chapter 2. Related Work

to run in real-time.

Since robots are mobile and often have to work on constrained hardware, other ap-

proaches that run in real-time on a CPU but do not generate a dense 3D model are of

great interest. The first direct approaches that use the depth map to compute a dense 3D

point cloud for image alignment are [4] and [143] followed by Tykkälä et al.[151], who ad-

ditionally incorporate a geometric error in the motion estimation. Building upon [4, 143],

Kerl et al. [81] introduced the dense DVO, which includes a robust sensor model and

runs in real-time on a CPU. Shortly afterward, they added a global mapper and an ad-

ditional geometric error in DVO-SLAM [80]. RGBDTAM [23] combines also photometric

and geometric errors, computes a sparse map and performs loop closure all on a CPU.

The downside of geometric errors with an ICP -based formulation is that they typically

only work in areas with geometric structure and often fail in indoor scenes with many flat

surfaces such as walls and floors. Methods that align images face a similar issue whenever

areas are not sufficiently textured, e.g. white walls. Further, when working with raw

intensity values, illumination changes and motion blur are critical points requiring special

handling. Another disadvantage of both methods is that they easily run into local minima

whenever the initialization is not close to the global minimum as shown in [89, 133], which

can only be partially addressed by a coarse-to-fine optimization scheme.

Instead of intensity values, many recent methods use the more robust edges to align

two frames (see Fig. 2.1b). Tarrio and Pedre [76] detect Canny edges [16] and try to match

them between images by searching along the normal direction, which is computationally

expensive and error-prone. In their direct edge-alignment (D-EA), Kuse and Shen [89]

instead pre-compute the distance to the closest edge at each pixel position with a distance

transform (DT) [44] and optimize with a subgradient method. Wang et al. [154] jointly

minimize edge distance and a photometric error at high-gradient pixels.

Most robust systems do not rely on just one error but a combination of either photo-

metric and ICP [24, 80, 99, 136, 158, 159] or photometric and edge-based [154] or ICP

and edge-based [132] error. A combination of multiple errors proves to be more robust

but is computationally more demanding.

DVO-SLAM [80, 81]: Kerl et al. introduced DVO [81], one of the first real-time capa-

ble VO systems to directly minimize a dense photometric error. DVO uses the complete

image information and does not reduce it to high-gradient regions, which has some positive

effects on robustness but adds significant computational burden to the whole system. In

their follow up work DVO-SLAM [80], they extend DVO to a full SLAM system and esti-

mate motion by a combination of geometric and photometric error. DVO-SLAM proposes

an entropy-based KF selection algorithm, which computes an entropy ratio between two

relative motions: (i) from the last KF to the current frame and (ii) from the last KF to

very next one. If this ratio is below a threshold, it takes the previous frame, i.e. the last

good one, as a new KF . For loop closure, DVO-SLAM relies on metrically nearest neigh-

bor search in a sphere centered at the most recent KF position, which typically cannot

2.2. Direct Methods 19

detect large-scale loop closures after drift. While this method might work in small indoor

environments, loop closures are more important in large-scale scenes, where DVO-SLAM

can show significant drift. Another issue of DVO is that even though its implementation

uses parallelized operations, the extensive computations restrict DVO to ”half” resolution

of 320× 240, thereby sacrificing accuracy.

RGBDTam [23]: RGBDTam combines a semi-dense photometric and dense geometric

error for relative pose estimation. Instead of high-gradient regions, they select pixels at

Canny edges [16]. The main difference to other approaches is that RGBDTAM incorpo-

rates multi-view constraints with uncertainties. This makes it possible to refine the initial

depth measurements or even estimate depth for regions with invalid depth measurements

from the RGBD sensor. Similar to [116], RGBDSLAM runs a standard bag-of-words ap-

proach [52] based on ORB features for loop closure. Additionally, they aim to reduce the

number of newly generated keyframes by re-activating old ones.

Elastic Fusion (EF) [159]: Whelan et al. [159], proposed Elastic Fusion, a surfel-

based dense SLAM system. Similar to [78, 117, 156], EF performs a dense frame-to-

model tracking and combines photometric and geometric errors. EF splits the model into

an active part, which is used for pose estimation and data fusion, and an inactive part

containing parts no longer in the field of view. In each frame, EF tries to register the

associated inactive with the active part and if it is successful, a loop closure is detected.

To close the loop, the model is non-rigidly deformed into the current frame and the inactive

part is re-activated since it is visible again. However, this procedure only works for small-

scale loops and in order to detect large-scale loops, EF applies a Fern-based bag-of-words

approach [55]. If a large-scale loop is found, EF proceeds similar to the small-scale loop

closure case. EF heavily relies on the GPU due to the rendering of the depth and intensity

image for their frame-to-model tracking. While for desktop-scale environments the 3D

models are appealing and consistent, in larger scenes, EF suffers from inaccurate camera

pose estimation, which can easily cause tracking losses.

Bundle Fusion (BF) [24]: BF employs a sparse-then-dense global pose optimization,

where a coarse alignment is computed from a set of sparse feature correspondences as

an initialization for a dense alignment. The dense alignment comprises a photometric

error evaluated on the gradient of the luminance and a geometric error based on point-

to-plane ICP . One of the major differences to other approaches is that BF optimizes over

the complete hierarchy of RGBD frames, thereby implicitly closing loop and performing

relocalization. In order to process the complete hierarchy efficiently, the authors propose

to first locally align short sequences of consecutive frames, followed by a global alignment

in relation to each other in a second run. Similar to [78, 159], BF also creates a dense

volumetric model of the scene in real-time but with the key difference that already inte-

grated data can be updated or removed from the model. By deleting at an old pose and

20 Chapter 2. Related Work

integrating at an updated one, the model stays consistent after pose refinements and even

after loop closure. The optimization over the whole trajectory makes BF one of the most

accurate system available but it comes at the high computational cost of two GPUs.

KinectFusion [117] and Kintinuous [156]: The seminal work KinectFusion [117]

by Newcombe et al. was one of the first to use the depth map from a Microsoft Kinect

and sparked a new branch of research. KinectFusion generates a dense volumetric model

directly from the depth maps and aligns incoming depth maps to the model according to a

geometric point-to-plane ICP error. However, KinectFusion has several shortcomings such

as the relatively small model size restricting it to desktop scenes and its fragile tracking

system. In [156], Whelan et al. addressed many of these limitations with theirKintinuous

system. Instead of a fixed-sized model, it relies on a rolling buffer, which only keeps the

most recent part of the model, to enable tracking arbitrarily long sequences. KinectFusion

also introduces an improved pose estimation based on a combination of photometric and

geometric error.

BAD-SLAM [136] In contrast to previous direct SLAM systems, BAD-SLAM intro-

duces a novel direct BA formulation. BAD-SLAM is a map-centric approach based on

surfels because they are easy to update, fuse and deform after a loop closure. The surfels

are parametrized by the depth of the KF they were first observed in and can be interpreted

as landmarks similar to feature-based approaches [116]. Compared to voxel-based repre-

sentations [79, 117, 119], surfels can represent details of arbitrary scale and also very thin

surfaces. Similar to most state-of-the-art approaches, BAD-SLAM selects KFs and only

processes the non-KFs to estimate the pose to the next KF . Since BAD-SLAM is a map-

centric approach, instead of aligning the individual frames [23, 80, 134], it projects each

surfel into each frame and minimizes a geometric point-to-plane error and a photometric

error. The difference to [159] is that BAD-SLAM works with gradients of images instead

of raw intensity values. On most benchmark sequences, BAD-SLAM shows impressive re-

sults in terms of accuracy due to their global BA. Even though the BA runs only on KFs,

the problem quickly becomes too large to compute it in real-time. Thus, BAD-SLAM runs

an optimization scheme, which alternates between cost optimization and surfel updates.

The authors also study properties of various SLAM systems and demonstrate that most

systems are highly sensitive to rolling shutter, and the RGBD sensor’s calibration and

synchronization.

InfiniTAM [78, 79] Kähler et al. [79] proposed InfiniTAM, a fast volumetric fusion

framework, which builds upon the ideas of KinectFusion [117]. In addition to speed,

the main contribution was a memory-efficient model, which stores volumetric data only in

areas with a surface instead of simply allocating a fixed volume as in KinectFusion. In their

follow-up work, Kähler et al. [78] added loop closure and relocalization capabilities with

a random-fern based bag-of-words approach [55]. The key difference to earlier works [79,

2.2. Direct Methods 21

117, 156] is that [78] splits the model into small locally accurate submaps of around 50

KFs, which remain fixed throughout the sequence. Once a loop is detected, only the

relative transformations between the submaps has to be corrected instead of correcting

all the frames, which greatly reduces the computational burden and does not require any

changes to the model.

RKSLAM [99]: RKSLAM first performs a fast dense photometric and geometric align-

ment [81] to get a coarse estimate of the transformation. This is followed by an accurate

sparse feature-based alignment to additionally increase the robustness. Individual features

are tracked by estimating a global homography, which can also handle strong rotations

and fast motions but is restricted to planar surfaces or pure rotations. For loop closure,

RKSLAM extracts ORB features [127] and matches them against a database with the bag-

of-words approach presented in [115]. The main contribution is an efficient incremental BA

with several speed-ups such as only partly recomputing the Hessians and Jacobians instead

of building them from scratch. RKSLAM also maintains a dense volumetric model [79]

and updates it, whenever poses are corrected or updated, e.g. in the case of loop closure.

Similar [24, 155], after loop closure or BA, the volumetric model is updated through a

reintegration step.

Large-Scale Direct-SLAM (LSD-SLAM) [38]: LSD-SLAM is one of the most pop-

ular direct SLAM systems for monocular cameras and an extension of [40]. It is KF -

based and estimates the relative motion by minimizing a semi-dense photometric error

(see Fig. 2.2e). Once the camera moves a certain distance from the last KF , a new KF

is created and its depths are initialized from the estimates of the last KF . Non-KFs are

only used to refine the current KF in a filtering-based approach as presented in [40]. The

global map consists of a pose graph, where KFs are nodes and relative transformations

between them are edges. LSD-SLAM searches for loop closure candidates among the last

10 KFs as well as in a database [56].

Direct Sparse Odometry (DSO) [37]: Following up on the successful LSD-SLAM,

Engel et al. [37] developed a novel VO system for a monocular camera called DSO. In

contrast to semi-dense methods [38], DSO selects a sparse set of high-gradient points

(compare Fig. 2.2f to 2.2e) and 7 pixels from their neighborhood. DSO estimates the

relative motion between a KF , where the depths of the sparse points are known, and a

current frame. It also maintains a local sliding window of KFs, where all involved model

parameters, namely the camera intrinsics, camera poses, brightness terms and the inverse

depths of points are optimized in a fully direct formulation. This direct BA is the main

difference to hybrid approaches such as SVO [49, 50] or [91], which require an indirect

method for such optimizations. Whenever the local window becomes too large, a KF is

marginalized [92] instead of simply dropped from the system (see Sec. 4.4.2.3 for more

22 Chapter 2. Related Work

details). DSO shows very promising results and even models the full photometric cali-

bration of the camera, including lens attenuation, gamma correction and known exposure

times. However, its accuracy greatly suffers under rolling shutter cameras and it lacks

loop closure capabilities. Both issues were addressed in follow-up papers by Gao et al. [53]

and Schubert et al. [137].

Direct Edge Alignment (D-EA)[89]: D-EA is a direct VO method, which aligns the

edge detections of two frames instead of the images. The goal is to minimize a geometric

error given as the distance between the edge detections in a current frame and the repro-

jected edges from KF . Kuse and Shen [89] propose to pre-compute the distance to the

closest edge in form of a Distance Transform (DT) instead of performing the costly search

for the closest edge (see Sec. 4.1.1).The authors argue that, while direct methods work well

in practice, their cost functions are not differentiable and convergence is not guaranteed.

Thus, instead of applying the popular Gauss-Newton (GN) or Levenberg-Marquardt (LM)

algorithms, they propose to apply the less efficient sub-gradient [12] method instead. D-

EA builds upon DVO [81] and similarly runs on 6 pyramid levels at a maximum resolution

of 320× 240, which again reduces the accuracy. In the experiments, Kuse and Shen show

that the convergence basin of D-EA is larger than that of DVO [81] by simply skipping

every 2nd, 3rd or 4th frame to simulate larger motions. While this work presents some in-

teresting contributions, D-EA suffers from many problems such as slow convergence speed

due to the subgradient method and the requirement to compute the DT for every frame,

and inaccurate pose estimates mainly caused by the low resolution.

Canny-VO [165] and [164]: In [164], Zhou et al. compute a semi-dense pixel region

in each frame by thresholding the gradient’s norm. Then the current frame and a KF

are aligned by reprojecting the KF ’s curve to the current frame. The alignment is closely

related to the ICP -based formulation in [88] and edge-based errors [89, 133, 154]. The

authors argue that the problem of a standard DT is that the residual is always positive,

thus the GN method is not applicable. To address this problem they propose two alterna-

tive formulations: (1) approximate Nearest Neighbor (NN) fields (ANNFs) [164] and (2)

oriented nearest neighbor fields (ONNFs) [165]. Instead of storing the Euclidean distance

like the DT , ANNFs keep the x- and y-coordinates of the NN and ONNFs are divided into

separate distance fields according to the edge orientation. The different formulations are

discussed in detail in Section 4.1.1. One of the downsides of Canny-VO is the increased

computational burden when computing eight separate DTs.

2.3 Semi-Direct Methods

Direct methods are potentially more accurate in frame-to-frame relative motion estimation

but lack the capabilities to reuse the map or to efficiently perform global optimization.

Thus, combinations of direct and indirect methods have emerged in recent years [14, 49,

2.4. Conclusion 23

50, 91, 97]. We will focus on the most interesting works by Forster et al.[49, 50] and Lee

and Civera [91].

Semi-Direct Visual Odometry (SVO)[49, 50]: Similar to PTAM [84], SVO also

decouples mapping and pose estimation but instead of relying on features for both compo-

nents, the pose estimation is based on a direct method. SVO extracts corner features [84]

and in scarcely-textured areas also pixels along high-gradient regions, i.e. edges, similar

to [33]. For pose estimation, SVO initializes by a sparse image alignment, which minimizes

the photometric error at reprojected pixel positions of features seen in the last frame. The

initialization is followed by a refinement step, which aligns with respect to the oldest pos-

sible frame instead. This is followed by another alignment step with the oldest possible

frame to establish feature correspondences. These correspondences are then jointly re-

fined in a BA and the depths updated with a filtering-based method. SVO is still widely

used for mobile robots like Unmanned Aerial Vehicles (UAVs) due to its speed and low

computational cost. Since it is in its essence only a KF -based VO system and does not

perform any local or global refinement, it cannot compete with systems such as DSO [37]

and ORB-SLAM [114].

Loosely-Coupled Semi-Direct SLAM [91]: Thus, in a recent publication Lee and

Civera [91] proposed to combine DSO [37] and ORB-SLAM [114] in a loosely-coupled

way. DSO is responsible for estimating camera poses and optimizing KF poses, sparse

depth and camera intrinsics in a full local BA. Once DSO marginalizes a KF , the already

initialized frame is passed on to ORB-SLAM. ORB-SLAM maintains a full global map

and performs loop closure and relocalization. The main difference to SVO [49, 50] and

other semi-direct approaches [14, 97] is that this system maintains two separate maps, one

for DSO and one for ORB-SLAM. One of the most interesting points of this work is that

the two methods complement each other very well. For example, DSO can still estimate

relative poses in scarcely textured or highly repetitive scenes, where ORB-SLAM often

fails and ORB-SLAM increases overall accuracy due to loop closures and also provides

relocalization capabilities.

2.4 Conclusion

This chapter first established several classifications for VO and SLAM , then provided a

short historical overview for indirect, direct and semi-direct methods and finally discussed

seminal works and recent publications with a focus on RGBD-based systems.

There are still many challenges in state-of-the-art systems and echo of the methods

suffers from its own limitations. Indirect methods contain an error-prone correspondence

matching step and have problem in scarcely textured or repetitive scenes. In contrast,

photometric direct formulations require an initialization close to the minimum and are

24 Chapter 2. Related Work

Visual Odometry Systems

System

P
h
ot
o

S
el
ec
ti
on

IC
P

E
d
ge
-b
as
ed

F
ea
tu
re

In
p
u
t
D
at
a

C
P
U
/G

P
U

L
o
ca
l
O
p
t.

G
lo
b
al

O
p
t.

M
ap

C
en
tr
ic

L
o
op

C
lo
su
re

R
el
ea
se

O
p
en

-S
ou

rc
e

DVO [81] ✓ D RGBD C 2013 ✓

FOVIS [73] ✓ RGBD C ✓ 2011 ✓

D-EA [89] ✓ RGBD C 2016 ✓

SVO [50] ✓ Mono C ✓ ✓ ✓ 2016 ✓

ICPCUDA [158] ✓ Depth C ✓ ✓ 2015 ✓

Zhou et al. [164] ✓ RGBD C ✓ 2017

DSO [37] ✓ S Mono C ✓ 2017 ✓

REVO [133] ✓ RGBD C ✓ 2017 ✓

REVO+ICP [132] ✓ ✓ RGBD C ✓ 2017

Canny-VO [165] ✓ RGBD C ✓ 2019

Simultaneous Localization and Mapping Systems

PTAM [84] ✓ Mono C ✓ ✓ ✓ - 2008 ✓

LSD-SLAM [38] ✓ SD Mono C ✓ ✓ [56] 2014 ✓

DVO-SLAM [80] ✓ D ✓ RGBD C ✓ ✓ Own 2013 ✓

Kintinuous [156] ✓ D ✓ RGBD G ✓ ✓ ✓ 2013 ✓

RGBDSLAM [36] ✓ RGBD C ✓ ✓ Own 2014 ✓

ORB-SLAM2 [116] ✓ RGBD C ✓ ✓ ✓ [115] 2016 ✓

BundleFusion [24] ✓ SD ✓ ✓ RGBD G ✓ ✓ ✓ 2016 ✓

Elastic Fusion [159] RGBD G ✓ ✓ ✓ [55] 2016 ✓

RGBDTAM [23] ✓ E ✓ RGBD C ✓ ✓ [115] 2017 ✓

InfiniTAMv3 [78] ✓ D ✓ Depth G ✓ ✓ ✓ [55] 2017 ✓

BAD-SLAM [136] ✓ D ✓ RGBD G ✓ ✓ [115] 2019 ✓

Lee et al. [91] ✓ S ✓ Mono C ✓ ✓ ✓ [115] 2019 ✓

RESLAM [134] ✓ RGBD C ✓ ✓ [55] 2019 ✓

Table 2.1: A list of different VO and SLAM systems with their respective properties. Our
contributions are depicted in bold.

2.4. Conclusion 25

susceptible to illumination changes, while point cloud-alignment is computationally de-

manding due to the dense formulation and needs geometric structure. Edge-based ap-

proaches have many favorable qualities such as a larger convergence basin and a certain

robustness to illumination changes but edge detection can be costly compared to using raw

intensity values and the distribution of the edges can introduce a bias in the estimation.

Table 2.1 provides separate overviews of SLAM and VO systems discussed in this chap-

ter with our contributions highlighted in bold. For each system, Table 2.1 lists the error

type, the input data, whether it runs a CPU or GPU, the contained components, the release

date and the availability of the code as open-source software. Note that ICPCUDA [158]

is not explicitly discussed in this chapter, since it is not a publication but simply a fast

implementation of geometric frame-to-model alignment similar to [79, 118, 158].

3
Direct Methods - Theory and Background

Contents

3.1 Notations and Conventions . 27

3.2 Camera Model and 3D Rigid Body Motions 28

3.3 Direct Image Alignment . 39

3.4 Robust Parameter Estimation . 41

3.5 Conclusion . 46

For many decades indirect methods have dominated the field and are still in use today.

However, due to their favorable qualities, direct formulations have largely replaced feature-

based methods in most of the Visual Odometry (VO) and Simultaneous Localization and

Mapping (SLAM) systems. This chapter aims to give the reader a compact overview of

the mathematical tools and formulations required to understand direct methods and the

algorithms presented in this thesis. The notations and terminologies presented in this

chapter are in line with most state-of-the-art literature.

Section 3.2 starts with the basic camera model, then shows how to compute, transform

and reproject 3D points and then gives a concise overview of 3D rigid body motions also

discussing their advantages and disadvantages. In Section 3.3, we present direct image

alignment, which is the building block for many state-of-the-art direct algorithms [37, 38].

Edge-based and point cloud-based direct methods are discussed in Sections 4.1.1 and 4.1.3

in the next chapter. Finally, Section 3.4 derives various parameter estimation techniques

and shows how to set up a robust optimization.

3.1 Notations and Conventions

Before describing the methods and algorithms, we introduce the mathematical notations

used throughout this thesis. Additional definitions and mathematical tools such as the

vec operator, the skew-symmetric matrix and the Kronecker product are described in

27

28 Chapter 3. Direct Methods - Theory and Background

Entity Notation

Scalar a, ci

Vector in 2D, e.g. position in image space p = (x, y)T

Vector in 3D P = (X,Y, Z)T

Homogeneous vector in 2D p̃ = (x, y, w)T

Homogeneous vector in 3D P̃ = (X,Y, Z,w)T

Matrix, Image M =




a b

c d





Vector Space R
3

Mapping Function π : R3 → R
2

Sets L, E

Table 3.1: List of notations used in this thesis.

Appendix C.2. Scalars are depicted in italic fonts, e.g. x or ci. Vectors in 2D and 3D

are written as a single lowercase or uppercase bold letter, respectively, e.g. v or V. Their

homogeneous versions have an additional ˜ symbol on top, e.g. ṽ or Ṽ. Matrices and images

are represented as a single uppercase bold letter, e.g. M, and indexed in column-major

order M(x, y) = M(p), where p = (x, y)T . We denote the N × N identity matrix as IN
and the zero matrix as 0N . Vector spaces are given in double-lined upper case letters and

the mapping functions between different spaces in small Greek letters, e.g. π : R3 → R
2.

Sets are represented as calligraphic letters, e.g. E or K. Table 3.1 summarizes the notations

described above.

3.2 Camera Model and 3D Rigid Body Motions

In this section, we describe the image formation process and underlying camera model to

map the 3D world onto the 2D image space. We rely on the pinhole camera model, which

is widely used to model digital cameras due to its simplicity and linearity. For details

about other camera models such as affine or non-central models, we refer the reader to

[65].

Probably the best way to visually explain the pinhole camera model is the camera

obscura (see Fig. 3.1a), a dark room or box with an infinitesimal small hole, the pinhole,

in one of the walls. Objects outside the box reflect light from an external source, then

light rays pass through the pinhole and project a top-down image of the scene onto the

3.2. Camera Model and 3D Rigid Body Motions 29

opposite wall. Figure 3.1b and 3.1c show the pinhole camera model viewed from different

angles. The distance between the pinhole and the image plane is called the focal length

f , the position of the hole in the wall is given by the principal point c and the hole itself

is the camera center C. The only difference to Figure 3.1a is that the image plane lies in

front of the camera center and not behind it so that the image is not projected top-down.

However, a real camera has a complex lens system and an aperture, which introduces

several physical limitations such as vignetting, chromatic aberration and only has limited

depth of field. For a detailed description of these limitations alongside other problems

specific to digital cameras, we refer to [148]. Even though a real camera is quite different

(a) Camera obscura (taken from [152]) (b) The pinhole camera model

(c) Projection of 3D points P into image space p with projection function π.

Figure 3.1: The camera obscura (a) lets light pass through a pinhole such that it is projected
onto the opposite wall. (b,c) depict the pinhole camera model viewed from different angles and (c)
additionally demonstrates the projection of a 3D point P onto the image plane p.

from a pinhole camera, this model is used in nearly all state-of-the-art image processing

pipelines and many of these problems can be addressed or at least mitigated by intrinsic

camera calibration [11, 45, 65]. The intrinsic parameters of the camera, i.e. the focal

lengths fx, fy and the principal point [cx, cy], are typically encoded as 3×3 camera matrix

30 Chapter 3. Direct Methods - Theory and Background

K:

K =






fx 0 cx
0 fy cy
0 0 1




 , (3.1)

with its corresponding inverse camera matrix K−1:

K−1 =






1
fx

0 − cx
fx

0 1
fy

− cy
fy

0 0 1




 . (3.2)

From a point p = (px, py)
T in image space, the corresponding 3D point P = (X,Y, Z)T

can be computed via K−1 as:

P = K−1p̃Z, (3.3)

where p̃ = (px, py, 1)
T and Z its depth. When a depth map Z is available, e.g. from an

RGBD sensor, Z is simply given as Z = Z(p). For ease of notation, we define an inverse

projection function π−1, which computes a 3D point P from a pixel position p and its

corresponding depth in the respective camera frame:

P = π−1(p, Z) =

(
px − cx

fx
Z,

py − cy
fy

Z,Z

)T

= (X,Y, Z)T . (3.4)

While K−1 computes a 3D point P, the camera matrix K projects a point from 3D to

homogeneous coordinates p̃:

p̃ = (p′x, p
′
y, w)

T = KP. (3.5)

A dehomogenization, i.e. dividing the first two elements by the third, transforms p̃ back

to the image plane:

p =

(
p′x
w
,
p′y
w

)T

. (3.6)

Similar to (3.4), we also define a projection function π to unify (3.5) and (3.6):

p = π(P) =

(
Y fx
Z

+ cx,
Xfy
Z

+ cy

)

. (3.7)

Figure 3.2 depicts the use of π−1 to compute the 3D point Pi from pi and π to project the

3D point to p′
i. The inverse projection function π−1 only computes a point in the local

camera coordinate system and analogously the projection function π only projects a 3D

point to the image plane if it is defined in the local camera coordinate system.

However, VO and SLAM typically deal with multiple cameras with respective coordi-

nate systems. To reference individual cameras and points in one system, its essential to

describe them with respect to a common world coordinate system as shown in Figure 3.2

with the origin at W. While the choice of the position of the world coordinate system’s

3.2. Camera Model and 3D Rigid Body Motions 31

3 2

1

Figure 3.2: The relation between points in the image pi, the corresponding 3D points Pi and
the reprojected points p′

i, which are computed by the projection functions π, its inverse π−1 and
the full reprojection function τ . The camera center Ci is related to the world coordinate system
by a transformation Tiw and Tji is the transformation between Ci and Cj .

origin is arbitrary, we always choose the camera center of the first frame C0 as origin,

i.e. C0 = [0, 0, 0]. A 3D rigid body motion between different cameras preserves distance

and orientation. It is defined as a transformation matrix on the special Euclidean group

T ∈ SE(3) comprising a 3× 3 rotation matrix R ∈ SO(3) and a 3× 1 translation vector

t = [tx, ty, tz]
T :

T4×4 =

(

R t

0T 1

)

=








r00 r01 r02 tx
r10 r11 r12 ty
r20 r21 r22 tz
0 0 0 1








, (3.8)

where 0 = [0, 0, 0]T . The rotation matrixR is from the special orthogonal group SO(3) and

satisfies (i) RRT = RTR = I3 and (ii) det(R) = 1. Since R−1 = RT , the corresponding

inverse transformation T−1 is given as:

T−1
4×4 =

(

RT −RT t

0T 1

)

, (3.9)

The matrix T can be decomposed into translations along the x-, y- and z-axis as:

Tx =








tx
I3 0

0

0T 1







, Ty =








0

I3 ty
0

0T 1







, Tz =








0

I3 0

tz
0T 1








, (3.10)

and rotations about the x-axis by an angle φ, about the y-axis by an angle θ and about

32 Chapter 3. Direct Methods - Theory and Background

the z-axis by an angle ϕ:

T (φ) =

(

Rφ 0

0T 1

)

, T (θ) =

(

Rθ 0

0T 1

)

, T (ϕ) =

(

Rϕ 0

0T 1

)

. (3.11)

The individual rotation matrices are:

Rφ =






1 0 0

0 cφ −sφ
0 sφ cφ




 , Rθ =






cθ 0 sθ
0 1 0

−sθ 0 cθ




 , Rϕ =






cϕ −sϕ 0

sϕ cϕ 0

0 0 1




 (3.12)

where sθ = sin(θ) and cθ = cos(θ) and analogously for φ and ϕ. A 3D point P defined

in one coordinate system can be transformed into another by a simple vector-matrix

multiplication:

P̃′ = TP̃. (3.13)

The last entry of P̃′ is always equal to 1, thus the last line of T is typically dropped such

that:

P′ = T3×4P̃. (3.14)

Homogeneous coordinates can be avoided altogether by splitting T into a rotation matrix

R and a translation vector t:

P′ = RP+ t. (3.15)

Since the camera center C in the local coordinate frame is at the origin C = [0, 0, 0]T , the

position of the camera center in the world coordinate system CW can be computed from

C = [0, 0, 0]T = RCW + t, (3.16)

as

CW = −RT t. (3.17)

In this thesis, we denote the relative transformations between coordinate systems by sub-

scripts similar to [38, 144], e.g. Tij , where camera j is the origin and i is the target. Tij

can be also be interpreted in the way that it transforms a 3D point from camera j to

camera i (see Fig. 3.2). The transformation Tji from camera i to j is the inverse of Tij

Tji = T−1
ij . (3.18)

All relative transformations Tji between any two cameras i and j can be computed from

their respective camera to world transformations Twi and Twj , which we refer to as

camera poses throughout this thesis:

Tji = T−1
wjTwi = TjwTwi. (3.19)

3.2. Camera Model and 3D Rigid Body Motions 33

In this notation, the transformation matrices must be written in a way such that their

subscripts align, e.g. in (3.19) the two ws representing the world coordinate system are

next to each other. (3.15) already shows how to transform a 3D point from one coordinate

system into another but in practice, it is often necessary to reproject from one image plane

to the other directly:

p̃′ = K[R|t]
︸ ︷︷ ︸

Projection Matrix

P̃, (3.20)

where [R|t] are referred to as external or extrinsic parameters as opposed to the intrinsic

parameters in K. Both are typically jointly expressed as projection matrix. The complete

reprojection from one image plane to another (see Fig. 3.2) can be written as:

p̃′ = K(RK−1p̃Z + t) = KRK−1p̃Z +Kt. (3.21)

or in terms of the inverse depth ρ = 1
Z [21]:

p̃′ = K(RK−1p̃+ tρ) = KRK−1p̃+Ktρ, (3.22)

followed by a dehomogenization to compute the coordinates in the image plane (3.6). For

ease of notation, we define the full warping function τ to reproject from one image plane

to another under a transformation T:

p′ = τ(T,p, Z) = π(Rπ−1(p, Z) + t), (3.23)

where π and π−1 are defined as in (3.7) and (3.4). Figure 3.2 illustrates the connection

between π, π−1 and τ by the example of three 3D points and their respective reprojections.

Since a 3 × 3 rotation matrix has nine entries but only three Degrees of Freedom

(DOF) it is over-parameterized, which makes optimization difficult and computationally

more expensive than necessary. This has lead to alternative representations with fewer

parameters such as Euler angles and unit quaternions [27]. We will discuss these rotation

representations in the following sections and then continue with the representation of the

complete six DOF rigid body motion in the Lie algebra.

3.2.1 Euler Angles

A rotation from one orthogonal coordinate system to another can be described with three

successive rotations parameterized by the Euler angles (θ, φ, ϕ). Each one of the three

angles describes a rotation about a single coordinate axis. While there are as many as

12 rotation orderings [27], we explain it by the example of the popular ZY Z, Y , or 323

convention (see Fig. 3.3), which transforms a coordinate system xyz via the following

sequence of rotations:

• Rotate around the z-axis by an angle ϕ to x′, y′, z′.

34 Chapter 3. Direct Methods - Theory and Background

• Rotate around the y′-axis by an angle φ to x′′, y′′, z′′.

• Rotate around the z′′-axis by an angle θ.

Multiplying the individual rotation matrices results in the complete rotation matrix R ∈
SO(3):

R = Rϕ,zRφ,y′Rθ,z′′

R =






cϕcφcθ − sϕsθ −cϕcφsθ − sϕcθ cϕsφ
sϕcφcθ − cϕsθ −sϕcφcθ + cϕcθ sϕsφ

−sφcθ sφsθ cφ




 ,

(3.24)

where sϕ = sin(ϕ) and cϕ = cos(ϕ) and analogously for the angles θ and φ. From R the

angles (θ, φ, ϕ) can be computed by the inverse mapping:






θ

φ

ϕ




 =









arctan
(
r12
r02

)

arctan

(√
r2
02
+r12

r22

)

arctan
(

− r21
r20

)

)









, (3.25)

with rij being the matrix elements of the i-th row and j-th column. One of the fundamental

problems of Euler angles is the gimbal lock, a state where one of the rotations does not

have any effect, e.g. angles φ = 0 or φ = kπ induce a double rotation around the z-axis

This problem can only be addressed by different representations such as axis-angle or

quaternions.

(a) Euler angle representation (ZYZ or Y-convention)
(b) Axis-angle
(b) Axis-Angle

Figure 3.3: (a) The Euler angle representation defines three successive rotations around one of
the main coordinate axes. (b) The axis-angle representation defines the rotation as an axis given
by a unit vector v and a rotation angle θ around it.

3.2.2 Unit Quaternions

Quaternions are a popular rotation representation due to their simplicity and mathemati-

cal elegance, while not suffering from singularities like the Euler angle representation (see

Sec. 3.2.1). In this section, we give a rough overview over the most important properties

of quaternions and refer to [27, 57, 130] for more details. A quaternion q ∈ H is defined

3.2. Camera Model and 3D Rigid Body Motions 35

as:

q = q0 + q1i+ q2j+ q3k, qi ∈ R. (3.26)

Typically, more compact notations as 4D vector or as a pair consisting of the real part q0
and the imaginary components (q1, q2, q3) are used:

q = [q0, q1, q2, q3]
T = [q0, (q1, q2, q3)]

T . (3.27)

For a quaternion it must hold that i2 = j2 = k2 = ijk = −1. Its adjoint q∗, norm ||q||
and inverse q−1 are:

q∗ = [−q0, q1, q2, q3]
T , (3.28)

||q|| =
√

q20 + q21 + q22 + q23 , (3.29)

q−1 =
q∗

||q||2 . (3.30)

In case of a unit quaternion, i.e. ||q|| = ||q∗|| = 1, the corresponding inverse simplifies to

q = q∗. A common interpretation of a unit quaternion is as rotation by an angle θ around

an axis defined by a vector v = (vx, vy, vz)
T ∝ (q1, q2, q3): The four components of the

quaternion and θ and v are related as follows:

q0 = cos

(
θ

2

)

, q1 = sin

(
θ

2

)

vx, q2 = sin

(
θ

2

)

vy, q3 = sin

(
θ

2

)

vz. (3.31)

If q is a unit quaternion, the rotation matrix R can be computed as:

R(q) =






1− 2(q22 + q23) 2(q1q2 − q0q3) 2(q0q2 + q1q3)

2(q1q2 + q0q3) 1− 2(q21 + q23) 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q0q1 + q2q3) 1− 2(q21 + q22)




 . (3.32)

Note that if q is not a unit quaternion, the inhomogeneous expression (3.32) is no longer

an orthogonal matrix and the homogeneous expression (C.15) has to be used. For the

derivation of the inhomogeneous from the homogeneous expression, we refer the reader to

Section C.2.6. The rotation matrix R can be converted to a quaternion q as described

in [130]:








q0
q1
q2
q3







=

1

2








√
1 +R00 +R11 +R22

sgn(r21 − r12)
√
1 + r00 − r11 − r22

sgn(r02 − r20)
√
1− r00 + r11 − r22

sgn(r10 − r01)
√
1− r00 − r11 + r22







. (3.33)

(3.33) only holds up to a certain threshold and other formulations have to be used [57, 130].

Two rotations given as unit quaternions rji = r0+ r1i+ r2j+ r3k and qik = q0+ q1i+

36 Chapter 3. Direct Methods - Theory and Background

q2j + q3k are combined by multiplication:

tjk =rjiqik

=(r0 + r1i+ r2j + r3k)(q0 + q1i+ q2j + q3k)

=(r0q0 − r1q1 − r2q2 − r3q3) + i(r0q1 + r1q0 + r2q3 − r3q2)

+ j(r0q2 − r1q3 − r2q0 − r3q1) + k(r0q3 + r1q2 − r2q1 + r3q0).

(3.34)

A 3D vector v in camera i can also be written as a quaternion qv without a real part:

qv = 0 + xi+ yj + zk. (3.35)

qv can be rotated from camera i to j with the rotation given as unit quaternion qji [111]:

q′
v =qjiqvq

∗
ji

=(q0 + q1i+ q2j + q3k)(xi+ yj + zk)(q0 − q1i− q2j − q3k).
(3.36)

The complete expansion is given in [111] and Appendix C.2.7. Compared to rotation

matrices, more operations are needed to rotate a vector by a unit quaternion. However,

all these operations are performed on real numbers and no costly trigonometric functions

are involved.

Apart from not suffering from singularities, e.g. the gimbal lock, and their simplicity,

quaternions have several other advantages over rotation matrices. With quaternions it is

easy to sample and interpolate in the space of rotations in a systematic way, e.g. uniform

sampling distance, and it is possible to find closed-form solutions to some problems since

the unit length condition can be applied through re-normalization. In contrast, due to

their non-linear conditions, such problems are challenging to solve with rotation matrices.

Further, less multiplications are required when multiplying two quaternions compared to

two rotation matrices but more operations are need to rotate a vector by a unit quaternion.

We refer to [70] for a broader discussion about advantages of quaternions.

3.2.3 Lie Group for 3D Rigid Body Motions

Since the rotational part R ∈ SO(3) of the transformation T is a 3 × 3 matrix with 9

entries but only has 3 DOF , it is over-parameterized. Reducing the 9 + 3 parameters of

a transformation matrix to only 6 parameters for the 6 DOFs is essential for numerical

optimization methods. In this section, we first introduce the Lie-algebra for orthogonal

rotation matrices so(3) and then continue with the Lie-algebra se(3) for the minimal

representation of 3D rigid body motions. The group SO(3) has an associated Lie algebra

so(3) defined by three skew-symmetric matrices G
so(3)
1 ,G

so(3)
2 and G

so(3)
3 corresponding to

infinitesimal rotations along each axis. The infinitesimal step along an axis is the derivative

3.2. Camera Model and 3D Rigid Body Motions 37

of (3.12) with respect to the angles φ, θ and ϕ evaluated at 0:

G
so(3)
1 = [e1]× =

Rφ

∂φ

∣
∣
∣
∣
φ=0

=






0 0 0

0 0 −1

0 1 0




 , e1 =






1

0

0






G
so(3)
2 = [e2]× =

Rθ

∂θ

∣
∣
∣
∣
θ=0

=






0 0 1

0 0 0

−1 0 0




 , e2 =






0

1

0






G
so(3)
2 = [e2]× =

Rϕ

∂ϕ

∣
∣
∣
∣
ϕ=0

=






0 −1 0

1 0 0

0 0 0




 , e3 =






0

0

1






(3.37)

The operator [.]× generates a skew-symmetric matrix from a vector and is defined in (C.7).

Similarly, the group SE(3) has an associated Lie algebra se(3) formed by six 4×4 generator

matrices Gi, i = 1..6. G1,G2 and G3 correspond to an infinitesimal rotation and G4,G5

and G6 correspond to an infinitesimal translation along each axis. Gi, ∀ i = 1..6 can be

computed by differentiating with respect to the individual components and evaluating at

0. G
se(3)
1,2,3 are simply 4× 4 versions of (3.37):

G
se(3)
1,2,3 =

(

G
so(3)
1,2,3 0

0T 0

)

, (3.38)

and G4,G5 and G6 are defined as:

G4 =
∂Tx

∂tx

∣
∣
∣
∣
tx=0

=

(

03 e1
0 0

)

G5 =
∂Ty

∂ty

∣
∣
∣
∣
ty=0

=

(

03 e2
0 0

)

G6 =
∂Tz

∂tz

∣
∣
∣
∣
tz=0

=

(

03 e3
0 0

)

(3.39)

An arbitrary element in se(3) comprises six coordinates represented as a vector in R
6,

where each coordinate multiplies with a generator matrix to form the 4× 4 matrix M:

M(ξ) =
6∑

i=1

Giξi = G1ω1 +G2ω2 +G3ω3 +G4ν1 +G5ν2 +G6ν3

=

(

[ω]× ν

0 0

)

=








0 −ω3 ω2 ν1
ω3 0 −ω1 ν2
−ω2 ω1 0 ν3
0 0 0 0








.

(3.40)

38 Chapter 3. Direct Methods - Theory and Background

Thus, ξ ∈ se(3) is the minimal representation as twist coordinates of the associated Lie-

algebra comprising two separate 3-vectors, the angular velocity ω = (ω1, ω2, ω3)
T ∈ so(3)

and the linear velocity ν = (ν1, ν2, ν3)
T :

ξ =

(

ω

ν

)

= (ω1, ω2, ω3, ν1, ν2, ν3)
T . (3.41)

The mapping se(3) 7→ SE(3) from ξ to a transformation matrix T (ξ) is then given by the

matrix exponential:
exp :se(3) 7→ SE(3)

ξ 7→ T(ξ)
(3.42)

T (ξ) = eM(ξ) =

(

e[ω]× Vν

0T 1

)

=

(

R t

0T 1

)

. (3.43)

e[ω]× is equivalent to the axis-angle representation and can be computed by the Rodrigues’

formula [148]:

e[ω]× = R = I3 +
sin(||ω||)

||ω|| [ω]× +
1− cos(||ω||)

||ω||2 [ω]2×, (3.44)

Since θ = ||ω||, 1
θ [v]× is a normalization, we can simplify (3.44) to:

R = I3 + sin(θ)[ω]× + (1− cos θ)[ω]2×, (3.45)

where θ = ||ω|| and ω being a unit vector. For the rotational part there also exists a direct

mapping to a unit quaternion [59]:

eωq =







(1, 0, 0, 0)T , if ω = (0, 0, 0)T
(

cos ||ω||
2 , sin(||ω||)ω

2||ω||

)

otherwise
(3.46)

The matrix V of the translational part t = Vν is given as:

V = I3 +
1− cos(||ω||)

||ω||2 [ω]× +
||ω|| − sin(||ω||)

||ω||3 [ω]2×. (3.47)

These derivations of the exponential map are based on different power series and described

in great detail in [10, 32, 148] The logarithm map is the inverse of the exponential map

(3.42) and maps from SE(3) to se(3):

log :SE(3) 7→se(3)

T(ξ) 7→ξ
(3.48)

3.3. Direct Image Alignment 39

The angular velocity ω can be computed from the rotation matrix R as:

ω = [log(R)]∨ =
θ

2 sin(θ)






r21 − r12
r02 − r20
r10 − r01






θ = arccos

(
1

2
(trace(R)− 1)

)

,

log(R) =
θ

2 sin(θ)
(R−RT)

,

(3.49)

and linear velocity ν ca the translation t as:

ν =V−1t

V−1 =I3 −
1

2
[ω]× +

1

θ2

(

1− θ cos(θ2)

2 sin(θ2)

)

[ω]2×
(3.50)

The operator [.]∨ is the inverse of [.]× and defined in (C.8). Finally, we define an operator

◦ to concatenate poses analogously to multiplying the transformation matrices (3.19):

ξij = ξiw ◦ ξwj = ξ−1
wi ◦ ξwj = log (exp(ξiw) exp(ξwj)) , (3.51)

and also extend the full warping function τ presented in (3.23) to the Lie Group:

p′ = τ(ξij ,p, Z). (3.52)

This section introduced all the mathematical tools necessary to describe transforma-

tions in 3D space. Starting with the pinhole camera model, we showed how to compute

the 3D representation of a point in its respective camera. To handle multiple cameras, we

defined a 3D rigid body motion to transform points in 3D space. Finally, we discussed

various rotation representations such as axis-angle and quaternions and derived the Lie

Algebra in 3D space, which is essential for camera pose estimation.

3.3 Direct Image Alignment

Probably the most intuitive way to estimate the relative motion between two cameras is to

align their images directly. The basic idea of direct image alignment is that the intensity

of a 3D point observed in an image I0 is the same as in I1, i.e. intensities are consistent

between I0 and I1, which also coined the term photo-consistency-based methods. The two

images are aligned, when their intensity differences are minimal or in other terms, their

photo-consistency is maximized. The goal is to find a relative motion ξ01 between two

40 Chapter 3. Direct Methods - Theory and Background

images, which minimizes the photometric error Ephoto:

Ephoto =
∑

i

(I0(p
′)− I1(p))

2 =
∑

i

r2i,photo, (3.53)

where p′ = τ(ξ01,p, Z), Z is the depth at p and ri,photo is the photometric residual. This

cost function can be directly evaluated on the intensity image I. Nearly all state-of-the-

art methods minimize (3.53) with an iterative optimization method, which requires the

intensity gradients of I in x- and y-direction, respectively Ix and Iy, to compute the step

δ in each iteration. The optimization problem is essentially the same as for edge-based

methods and will be discussed in Section 4.1.1 in more detail. Figures 3.4a, 3.4b and

3.4c show an intensity image with its gradients, where it can be seen that in texture-less

regions the gradients are very close to zero. With the gradients being close to zero, the

residuals in those areas carry no valuable information for the minimization problem and

can even reduce accuracy and convergence speed. Thus, only selecting areas with high

information content such as high-gradient regions [23, 38, 40] or sparse points [37] instead

of just the dense image [80, 81] increases both accuracy and convergence speed of the

optimization. There are several shortcomings of photo-consistency-based direct methods

(a) Gray image I (b) Image gradient Ix (c) Image gradient Iy

(d) Gradient magnitude
√

I2x + I2y
(e) Zoomed area

Figure 3.4: (a) Gray-scale image I and the respective gradients in (b) x- and (c) y-directions
computed as central differences from the TUM RGBD dataset [147]. (d) Gradient magnitude
√

I2x + I2y of (a) with gradients sampled over the image and a (e) zoomed part.

3.4. Robust Parameter Estimation 41

to be aware of. One major practical challenge is that due to illumination changes, the

photo-consistency assumption is often not fulfilled or only valid in parts of the scene To

mitigate this problem, [23, 37, 38] increase the model parameters in the optimization by

additional brightness terms. Further, motion blur can smooth textured regions thereby

reducing the number of pixels carrying valuable information. Another critical point is

the initialization of photo-consistency-based methods since the image gradients only rep-

resent local information (see Fig. 3.4d). When starting too far away from the minimum,

the algorithms often converge to a local minimum or do not converge at all. Thus, the

convergence basin of such methods is small and the coarse-to-fine scheme applied in most

approaches only partially addresses this problem as shown in [89, 133].

3.4 Robust Parameter Estimation

Most computer vision problems can be formulated as minimization of an energy function

E over a set of parameters x to find the optimal values x∗:

x∗ = argminE(x). (3.54)

Such an energy minimization is at the core of all the methods presented in this thesis

as well as of problems like camera calibration, VO , SLAM or Bundle Adjustment (BA).

For example, VO estimates the unknown 6 DOF camera motion between two frames by

minimizing an error measure such as the photo-consistency or reprojection error. These

energy functions typically take a non-linear least-squares form:

E(x) =
∑

i

ri(x)
2, ri(x) = ŷi − f(x, yi) (3.55)

where x are the parameters to be estimated and ri is a non-linear function, which computes

the difference between observations ŷi and a model function f(x,yi). In the literature,

the residual functions ri are often stacked in a residual vector r to write E conveniently

as:

E(x) = ||r(x)||22 = r(x)T r(x). (3.56)

Most state-of-the-art SLAM and VO systems solve such problems in an iterative fash-

ion. Sections 3.4.1 and 3.4.2 introduce the widely used iterative Gauss-Newton (GN) and

Levenberg-Marquardt (LM) methods. Since all practical applications suffer from noise

and outliers, it is necessary to weight individual residuals differently. Section 3.4.3 de-

scribes the Iteratively Reweighted Least-Squares (IRLS) method to tackle these problems

and shows different weighting and influence functions.

Connection to Maximum-Likelihood: There is a connection between the maximum

likelihood and the least-squares formulation [121]. In many practical cases, we can as-

42 Chapter 3. Direct Methods - Theory and Background

sume a Gaussian distribution with constant standard deviation and zero-mean for the

discrepancy ǫi between model and observations:

ǫi = ŷi − f(x,yi) ∼ N (0, σ2) (3.57)

The maximum likelihood is given as:

L(y|x, σ) =
N∏

i=1

1√
2πσ2

exp

(

− ǫ2i
2σ2

)

= (2πσ2)−N/2 exp

(

−
∑N

i=1 ǫ
2
i

2σ2

)

(3.58)

Since the ln is a strictly increasing function, (3.58) can be simplified as log-likelihood:

l(y|x, σ) = ln(L(y|x, σ))

= −N

2
ln(2πσ2)−

∑N
i=1(ŷi − f(x,yi))

2

2σ2
.

(3.59)

Maximizing (3.59) yields the optimal estimate xML:

xML =argmax
x

l(y|x, σ)

= argmax
x

−
(
N

2
ln(2πσ2) +

∑N
i=1(ŷi − f(x,yi))

2

2σ2

) (3.60)

Maximizing a negative function is the same as minimizing a positive function, thus chang-

ing argmax to argmin and dropping the constants N
2 ln(2πσ2) and 1

2σ2 leads to:

xML =argmin
x

(
N

2
ln(2πσ2) +

∑N
i=1(ŷi − f(x,yi))

2

2σ2

)

=argmin
x

N∑

i=1

(ŷi − f(x,yi))
2

(3.61)

Since the measurement errors are independent and follow a Gaussian distribution with

constant standard deviation, the least-squares formulation (3.55) is equal to the maximum

likelihood estimation of the parameters.

3.4.1 The Gauss-Newton Method

The GN method is a well-known algorithm to minimize non-linear least squares prob-

lems by iteratively solving quadratic approximations of the energy function E [104, 121].

It is derived by linearly approximating the residual function r with a first-order Taylor

expansion around x0:

r(x) ≈ r(x0) + Jr(x0)(x− x0), (3.62)

3.4. Robust Parameter Estimation 43

or using x = x0 + δ, (3.62) can be written as:

r(x0 + δ) ≈ r(x0) + Jr(x0)δ. (3.63)

The Jacobian Jr(x0) is given as:

Jr(x0) =
∂r(x)

∂x

∣
∣
∣
∣
x=x0

=
∂r(x0 + δ)

∂δ

∣
∣
∣
∣
δ=0

(3.64)

From the linearized residual (3.63), the GN method iteratively solves a quadratic approx-

imation to an energy function (3.55):

E(x0 + δ) ≈ ||r(x0) + Jrδ||22 = r(x0)
T r(x0) + 2δT JT

r r(x0)
︸ ︷︷ ︸

b

+δT JT
r Jr
︸ ︷︷ ︸

HGN

δ (3.65)

In contrast to Newton’s method, where the full Hessian (3.67) is required, HGN is an

approximation of the Hessian by the outer product of the Jacobians HGN ≈ 2JT
r Jr. This

approximation can also be easily derived from the full Hessian by assuming the residual

is linear. Then the second derivative r(x)′′T in (3.67) is equal to 0 and can be dropped.

∂E(x)

∂x
=

∂r(x)T r(x)

∂x
= 2r(x)′T r(x) = 2JT

r r(x) (3.66)

∂E(x)2

∂2x
= r(x)′′T r(x) + 2r(x)′T r(x)′ = r(x)′′T r(x) + 2JT

r Jr (3.67)

The next step is to find the increment δ, which minimizes (3.65). Taking the first derivative

with respect to the increment δ of (3.65) and setting it equal to 0 yields:

0 = 2b+ 2HGNδ,

−b = HGNδ.
(3.68)

The update δ is then given as:

δ = −H−1b = −(JT
r Jr)

−1JT
r r(x0) (3.69)

The estimate xk+1 at iteration k + 1 can be computed from the previous estimate xk via

an update-step:

xk+1 = xk + δ, (3.70)

until convergence, e.g. δ is below a threshold.

In practice, it is often required to weight the residuals differently to cope with outliers

or noise. This can be achieved by introducing a weight factor to (3.55),:

E(x) =
∑

i

wiri(x)
2 = ||r(x)||2W , (3.71)

44 Chapter 3. Direct Methods - Theory and Background

where wi is a constant, non-negative weight and W the respective diagonal weight matrix,

which can be directly incorporated into the updates:

H = JT
r WJr, b = JT

r Wr(x0) (3.72)

The performance of the GN algorithm strongly depends on its initialization. While

it offers quadratic convergence close to the minimum, it can become unstable when the

initialization is far away from the minimum. In such cases, gradient descent is more reliable

since it guarantees a decrease of the cost function.

3.4.2 The Levenberg-Marquardt method

The LM method [93, 104, 107, 121] introduces a non-negative dampening factor λ to the

GN method (3.69) to interpolate between GN and gradient descent algorithm:

δ = −(JT
r Jr + λI)−1JT

r r(x), (3.73)

where I is the identity matrix. One LM iteration solves (3.73) repeatedly with different

values for λ until the cost function decreases. If it is close to the minimum, λ is set to

a small value such that the algorithm is closer to GN . In contrast, if the cost function

does not decrease, λ is increased to bring the algorithm closer towards gradient descent.

However, if λ is very large, inverting (JT
r Jr + λI)−1 approaches I 1λ and the Hessian is

ignored. To still benefit from the Hessian in such cases, I is replaced by the diagonal

entries of H diag(JT
r Jr):

δ = −(JT
r Jr + λ diag(JT

r Jr))
−1JT

r r(x). (3.74)

The diagonal entries scale along the curvature to move further in directions with smaller

gradients.

3.4.3 Iteratively Reweighted Linear Least Squares

As shown in Section 3.4, a least-squares formulation assumes a Gaussian distribution of the

residuals. In nearly all practical cases, the residuals are not Gaussian distributed and there

also exist outliers with large residual values. These outliers have a significant influence

on the accuracy, convergence basin and speed of the optimization. To approximate other

distributions and reduce the influence of outliers, the energy is re-written as M-estimator

with a robust error norm ρ:

E(x) =
∑

i

ρ(ri(x)), (3.75)

3.4. Robust Parameter Estimation 45

M-Estimator Robust norm ρ(r) Influence ϕ(r) Weight w(r)

L2
1
2r

2 r 1

Huber

{

|r| < θH

|r| ≥ θH

{
r2

2

θH(|r| − k
2)

{

r

θH sign(r)

{

1
θH
|r|

Tukey

{

|r| < θT

|r| ≥ θT

{
θ2T
6 (1− (1− (r

θT
)2)3)

θ2T
6

{

r(1− (r
θT

)2

0

{

(1− (r
θT

)2

0

Cauchy
θ2C
2 log(1 + (r

θC
)2) r

1+(r
θC

)2
1

1+(r
θC

)2

Table 3.2: Various robust error norms ρ(r), influence functions ϕ(r), and weight functions w(r)
for a scalar residual r with θH , θT and θC being constants.

where ri is the residual and x are the estimated parameters. The minimization requires

to find a zero-crossing of the derivative:

0 =
∂E(x)

∂x
=
∑

i

∂ρ(ri)

∂ri

∂ri(x)

∂x
, (3.76)

with an influence function ϕ(ri):

ϕ(ri) =
∂ρ(ri)

∂ri
. (3.77)

Plugging (3.77) into (3.75) and expanding by ri, we can write:

0 =
∑

i

w(ri)ri
∂ri(x)

∂x
=
∑

i

ϕ(ri)

ri
ri
∂ri(x)

∂x
=
∑

i

ϕ(ri)
∂ri(x)

∂x
(3.78)

with the weight function w(ri):

w(ri) =
ϕ(ri)

ri
. (3.79)

Table 3.2 and Figure 3.5 show an overview of different norms, influence, and weight func-

tions. Writing (3.75) in the classical least-squares formulation with a residual dependent

weight w yields:

EIRLS(x) =
1

2

∑

i

w(ri(xk))ri(x)
2, (3.80)

where xk is considered constant and set to the most recent estimate of x. Thus, the weight

changes in every iteration instead o f being fixed as in (3.71).

46 Chapter 3. Direct Methods - Theory and Background

Figure 3.5: Visualizations of various robust error norms ρ, influence functions ϕ and weight
functions w(r).

3.5 Conclusion

This chapter introduced the mathematical tools and notations required to understand the

algorithms in this thesis. Further, the discussed fundamentals and concepts are essential to

understand state-of-the-art literature and modern SLAM systems. Starting from the basic

pinhole camera model, we described how to compute, transform and reproject 3D points

in multi-camera systems. Then we defined a 3D rigid body motion with its associated Lie

algebra and discussed various rotation representations. The final part gives an overview

of parameter estimation techniques and shows how to solve problems in the presence of

outliers and noise.

4
Edge-based Simultaneous Localization and Mapping

Contents

4.1 Camera Motion Estimation . 48

4.2 Edge-based Quality Assessment 64

4.3 Keyframe Management . 67

4.4 Local Mapper . 71

4.5 Global Mapper . 81

4.6 Conclusion . 89

In this chapter, we will present the Visual Odometry (VO) and Simultaneous Localiza-

tion and Mapping (SLAM) algorithms developed and published over the past years [132–

134]. The main contribution of this thesis is RESLAM, a fully edge-based SLAM sys-

tem [134] and this chapter is divided according to the components of the SLAM system as

shown in Figure 4.1a. Section 4.1.1 builds the foundation of this chapter by introducing

the edge-based camera motion estimation as an energy minimization problem as proposed

in [133] and demonstrating how to solve it efficiently. To deal with challenging scenes in

scarcely textured environments, Section 4.1.3 shows how to incorporate and minimize an

additional geometric error term in an Iterative Closest Point (ICP) point-to-plane formu-

lation [132]. One of the key improvements of [132, 134] compared to [133] is an additional

local refinement in the form of a Local Mapper covered by Section 4.4.2. While in [132] the

Local Mapper only refines the pose of the most recent Keyframe (KF), in [134] it refines all

the involved model parameters such as world poses of the KFs, the depth of the individual

edges and the intrinsic camera parameters. The Global Mapper is the last and probably

most crucial part of the RESLAM as it builds a globally consistent map. Section 4.5 de-

scribes the Global Mapper and how its place-recognition module works, which is essential

for loop closure and relocalization. Figure 4.1a depicts an overview of RESLAM and vi-

sualizes the connection between VO and SLAM . The individual components of the Local

Mapper and Global Mapper and their respective interactions are shown in Figure 4.1b.

47

48 Chapter 4. Edge-based Simultaneous Localization and Mapping

(a) SLAM system with its key components

(b) Individual components of the Local Mapper and the Global Mapper.
Figure 4.1: (a) Overview of the complete SLAM system comprising three main modules: (1)
Motion Estimation, (2) Local Mapper and (3) Global Mapper. Motion Estimation and Local
Mapper can be considered as part of VO , while SLAM requires an additional Global Mapper. (b)
The Local Mapper and the Global Mapper with their respective components. Since loop closure
and relocalization are both a place-recognition problem, they access the same database of Fern
descriptors.

4.1 Camera Motion Estimation

The problem at the core of all VO and SLAM systems is the estimation of the camera

motion. Figure 4.3 shows the typical setup of KF -based motion estimation, which aligns

the current frame with a KF to estimate a rotation R and a translation t. Since R and

t only have 6 Degrees of Freedom (DOF), a minimal representation as twist-coordinates

ξ is used (see Sec. 3.2.3). The estimation of the motion ξij between two cameras i and j

can be formulated as an energy minimization problem:

ξ∗ij = argmin
ξij

E, (4.1)

where E is an arbitrary energy term. Most direct methods address this problem either with

a photo-consistency-based [23, 37, 38], a geometric [78, 79, 117] or a combined approach [80,

81, 156, 159].

4.1. Camera Motion Estimation 49

However, since the earliest days of computer vision, edges have been recognized as

important visual cues in images. They have many favorable qualities such as robustness

to illumination changes compared to raw intensity values and a certain invariance to scale

and orientation. While early edge-based SLAM systems treat and process edges similar

to features [35, 85, 142], a new direct edge alignment paradigm has emerged.

In this section, we will extensively discuss this new paradigm in Section 4.1.1 and later

show how to combine it with a geometric error in an ICP point-to-plane formulation (see

Sec. 4.1.3). We further demonstrate how to efficiently solve the edge-alignment problem

and provide all the mathematical derivations necessary to implement both approaches.

4.1.1 Direct Edge-based Camera Motion Estimation

The input to the system is a sequence of RGBD frames as depicted in Figure 4.2, where a

frame at time t is denoted as Ft and comprises an RGB image It, a depth map Zt and an

edge detection Et. The edges in Et are detected with an arbitrary edge detector denoted

as edge:

Et = edge(It), (4.2)

where It is either an RGB or intensity image depending on the type of edge detector.

(a) Depth (b) RGB (c) Edges

(d) Distance Transform D (e) Dx (f) Dy

Figure 4.2: (a,b) RGBD input recorded with an Orbbec Astra Pro, (c) the extracted edges , (d)
the computed Distance Transform (DT), (e,f) gradients in x- and y-direction the Dx and Dy.

We want to estimate the minimal representation of the relative camera motion ξij

between the edge detections Ei and Ej of two cameras i and j. Figure 4.3 shows this

estimation, where the KF is in camera i and the current frame in camera j. Each frame

50 Chapter 4. Edge-based Simultaneous Localization and Mapping

Figure 4.3: Estimating the camera motion between the current frame and the last KF is based
on aligning their respective edge detections to compute a relative rotation R and translation t
representing a 6 DOF rigid body motion.

F contains a set of edges Et with a valid depth in Zt. Aligning edges corresponds to

minimizing a distance function d(.) between an edge pj detected in Ej , which is reprojected

to Ei as p
′
j = τ(ξij ,pj ,Zj(pj)), and the closest edge in Ei:

Eedge =
∑

pj∈Ej

d(n(p′
j),p

′
j)

2. (4.3)

The function n(.) returns the nearest neighbor in Ei depending on p′
j and is defined as:

n(p′
j) = arg min

pi∈Ei

||pi − p′
j ||. (4.4)

Note that (4.3) is closely related to the reprojection error (2.1) computed in indirect

methods [36, 84, 116], but instead of feature points, it uses individual edge points. Even

though there are some indirect edge-based approaches that compute edge correspon-

dences [33, 35, 85, 105], we focus on a direct formulation without correspondences. This

direct formulation poses the challenge of finding the distance to the closest edge efficiently.

A naive approach solves (4.4) by an exhaustive search through all the edge detections and

keeping track of the minimum distance. This corresponds to a complexity of O(N) to find

a neighbor for one reprojected p′ and O(NM) to minimize (4.3), where N and M are the

number of edges in Ei and Ej , respectively. Another option is to search in image space

for the nearest-neighbor in a window w×w around p′ [76]. This reduces the complexity of

one nearest neighbor search to O(c) and to O(cN) for the whole algorithm, where c = w2

and c << N . Note that, while c is a constant, with reasonable search window size this

still greatly affects the speed of the algorithm.

Since the edges are detected once and do not change afterward, there is a faster option

4.1. Camera Motion Estimation 51

Figure 4.4: Distance transform of the edge detections from Figure 3.4a and the gradient vectors
given by the derivatives of the DT in x- and y-direction and computed as in (4.17). It is clearly
visible that the gradient vectors point towards the closest edge even in untextured areas as opposed
to the photometric gradients presented in Figure 3.4.

to implicitly assign the nearest neighbor. We can compute a representation called DT [42,

125] containing at each pixel position the distance to the closest edge. Figures 4.2c and 4.4

show the detected edges and the DT , where bright values represent a large distance and

bright values a small distance to an edge. With the DT of an edge detection E denoted

as D, we can reformulate (4.3) as:

ξ∗ij = argmin
ξij

Eedge, (4.5)

with the energy Eedge defined as:

Eedge =
∑

p∈Ej

ΘHr2edge

=
∑

p∈Ej

ΘHD(τ(ξij ,p, Zj(p)))
2.

(4.6)

This reduces the complexity for a single evaluation to O(1) and for the whole set of edges

to O(M). There are fast algorithms to compute the DT in O(N) such as the two-pass

algorithm by Felzenszwalb and Huttenlocher [44]. Further, the KF -based setup has the

great benefit that the costly DT computation has to be performed only once, whenever a

new KF is created. As depicted in Figure 4.5, the DT is not smooth due to the spatial

discretization, which could cause problems during the optimization. We address this by bi-

linearly sampling the residual value redge in (4.6) from the DT at the typically non-integer

position of p′. Since the DT contains positive values, it provides only the magnitude of

the residual but no sign or direction like the photometric residual. Intending to provide

52 Chapter 4. Edge-based Simultaneous Localization and Mapping

Figure 4.5: (left) Distance Transform of a 6× 6 image for an edge (red) in comparison to (right)
a Nearest Neighbor Field represented as column and row index as proposed in [88, 165].

Single Edge All Edges Pre-Computation

Image O(N) O(NM) -
Window O(c) O(cN) -
DT O(1) O(M) O(MN)
NNF O(1) O(M) O(MN)

Table 4.1: The computational complexity for the nearest neighbor search for a single edge repro-
jection (Single Edge) and for all the edge reprojections (All Edge). A naive approach performs an
exhaustive search in the whole image or within a window c, while the DT and NNF pre-compute
the distance to the closest edge at each position and only require a constant lookup time.

a signed residual, Zhou et al. [164, 165] proposed Nearest Neighbor Fields (NNF) [164]

and Oriented NNF (ONNF) [165]. The main difference to the DT is that instead of stor-

ing the distance to the closest edge, the NNF store the row and column indices of the

closest edge as depicted in Figure 4.5. This makes NNFs identical to the reprojection

error since there are x- and y- coordinates and not just a single distance. ONNF contain

8 different NNF, where each contains only edges falling into a certain range of angles.

The angle of an individual edge point is computed from the image gradients. According

to Zhou et al. [165], this increases the convergence basin but ONNF are computationally

more expensive since they require the computation of eight individual NNF instead of

just one. Table 4.1 shows the complexity for different edge-alignment approaches, where

Single Edge refers to searching for the nearest neighbor of a single reprojected edge and

All Edges for the whole set of edges. In our edge-based optimizations, we solve this prob-

lem with a Levenberg-Marquardt (LM) algorithm in a coarse-to-fine scheme. Thus, the

computational complexity is a critical point since all the edge reprojections have to be

evaluated for different λ values repeatedly in each iteration and on each scale level.

4.1. Camera Motion Estimation 53

4.1.2 Edge-based Pose Estimation in SE(3)

The edge-based energy minimization presented in (4.5) aims to find the relative 6 DOF

motion ξ∗ij that minimizes Eedge. Our algorithms solve (4.5) with an iteratively-reweighted

LM algorithm (see Sec. 3.4.2). This section discusses several formulations of the image-

and edge-alignment and presents the derivation of the LM algorithm for SE(3) including

the update steps and the Jacobian computations.

In the literature [6, 87], there are three main formulations for the image alignment

problem: Forward Additive, Forward Compositional and Inverse Compositional. While [6,

87] study these formulations for image alignment:

rphotoi = Ikf (p
′
i)− I(pi), (4.7)

we can convert it to a similar form for edge-based case by aligning two distant transforms:

redgei = Dkf (p
′
i)−D(pi). (4.8)

Since the set of edges E is selected from the current frame, i.e. D(pi) = 0, ∀ pi ∈ E , redgei

simplifies to:

redgei = Dkf (p
′
i). (4.9)

The main benefits of the Forward Compositional and Inverse Compositional approaches

are that large parts of the Jacobian stay constant, avoiding the costly re-computation

of the Jacobian in each iteration. However, the computationally most efficient Inverse

Compositional formulation is not applicable since the gradients of the DT are computed

in the frame, where the edges are selected, and therefore always equal to 0. In the Forward

Compositional formulation, the Jacobians of the projection Jτ have to computed only once

for each edge in the KF and remain fixed afterward. Since the residuals are evaluated onD

the part of the Jacobian related to the gradients, JI for image alignment and JD for edge

alignment, change in every iteration. We instead rely on the popular Forward Additive

approach also used by many state-of-the-art systems [37, 38, 80, 81] due to its simplicity.

The main difference to the Forward Compositional is that all parts of the Jacobian are

recomputed in each iteration. In our experiments, the complete recomputation only adds

little overhead compared to the Forward Additive.

In the following, we will define the update rule for SE(3) and then derive the Jacobians

by the example of one edge residual redgei , which is analogous to rphotoi except for the

gradients in the image plane. We rewrite the update step for the LM algorithm given in

(3.69) in terms of the incremental in δξ ∈ SE(3) as:

xk+1 = xk + δx → ξk+1 = ξk ⊞ δξ, (4.10)

54 Chapter 4. Edge-based Simultaneous Localization and Mapping

(a) Iteration 0 (b) Iteration 5 (c) Iteration 10 (d) Iteration 15 (e) Iteration 20 (f) Iteration 25

(g) Iteration 0 (h) Iteration 5 (i) Iteration 10 (j) Iteration 15 (k) Iteration 20 (l) Iteration 25

Figure 4.6: Visualization of edge alignment process over 25 iterations starting from an initial
motion T = I4. The edge energy Eedge is minimized on the DT (first row) with bright image parts
corresponding to large residuals. The second row is just for visualization purposes and shows the
progress on the RGB image.

where the ⊞ operator is a manifold group operation in a left-compositional way:

ξk ⊞ δξ −→ exp(δξ)ξk. (4.11)

Note that we only discuss the left-compositional formulation in this thesis since we use

in our algorithms and refer to [10] for right-compositional formulation. Using (4.10), the

residual r(ξk+1) at iteration k + 1 is defined as:

r(ξk+1) = Dkf (τ(pi, ξ
k+1,Z(pi))) = Dkf (τ(pi, ξ

k
⊞ δξ,Z(pi))). (4.12)

At each iteration r(ξk+1) is linearized around the last estimate ξk using the Taylor expan-

sion similar to (3.62):

r(ξk+1) ≈ r(ξk+1)
∣
∣
ξ=ξk

= r(ξk)
︸ ︷︷ ︸

Dkf (τ(pi,ξk,Z(pi)))

+Ji(ξ
k)δξ (4.13)

Figure 4.6 shows the edge-based motion estimation between two frames over 25 iterations

with the DT and the RGB image (only for visualization purposes). Sections 3.4.2 and

3.4.1 already cover the optimization scheme, Thus, we will focus on the computation of

the full Jacobian Jr for a single residual r. Jr is evaluated at the current estimate ξk and

4.1. Camera Motion Estimation 55

can be split into four individual Jacobians as:

Jr(ξ
k) =

∂redge
∂ξ

Jr(ξ
k) = JDJτ

= JDJπJTJξ

=
∂D2(p

′)

∂p′

∣
∣
∣
∣
∣
p′=π(P′)

∂π(P′)

∂P′

∣
∣
∣
∣
∣
P′=T(ξ)P

∂T(ξ)P

T(ξ)

∣
∣
∣
∣
∣
P=Pi

∂T(ξ)

∂ξ

∣
∣
∣
∣
∣
ξ=ξk

.

(4.14)

For ease of notation, the evaluation point is ξk is omitted from now on.

Jacobian JD of the DT : The derivative in the image plane at a point p′ is given by

the gradients in x-/y-direction Dx and Dy:

JD(p
′) = [Dx(p),Dy(p)]

T . (4.15)

Dx and Dy are computed as the central differences of D in the respective direction (see

Fig. 4.2e and 4.2f):

Dx(p
′) =

1

2

(
D(p′ + [1, 0]T)−D(p′ − [1, 0]T)

)
, (4.16)

Dy(p
′) =

1

2

(
D(p′ + [0, 1]T)−D(p′ − [0, 1]T)

)
. (4.17)

Typically, p′ is not an integer coordinate and the exact gradients are computed by bilinear

interpolation.

Jacobian Jπ of the projection function π: The projection of the 3D point P′ is

defined as:

p′ = π(P′) =

(
fxX

′

Z ′
+ cx,

fyY
′

Z ′
+ cy

)T

. (4.18)

Its derivative with respect to P′ = [X ′, Y ′, Z ′]T is the Jacobian Jπ:

Jπ =
∂π(P′)

∂P′
=

(
fx
Z′ 0 −fxX′

Z′2

0
fy
Z′ −fyY ′

Z′2

)

. (4.19)

Jacobian JT of the transformation T: The derivative of the transformation T with

respect to a 3D point P = [X,Y, Z]T can be computed in terms of the Kronecker product

56 Chapter 4. Edge-based Simultaneous Localization and Mapping

and the matrix derivative (see Sec. C.2.4 and C.2.5):

JT =
∂TP

∂T

∣
∣
∣
∣
∣
T=T (ξk),P=Pi

=
(

XI3 Y I3 ZI3 I3

)

= PT ⊗ I3

=






X 0 0 Y 0 0 Z 0 0 1 0 0

0 X 0 0 Y 0 0 Z 0 0 1 0

0 0 X 0 0 Y 0 0 Z 0 0 1






(4.20)

Jacobian of the exponential map Jξ: For infinitesimal motions, where ξi << 1, there

is a linear approximation to the exponential map:

exp([ξ]×) = I4 +
6∑

i=1

Giξi = I4 + [ξ]× (4.21)

Since the last row is by definition always equal to 0, it is typically dropped. We can

formulate the expression vec([ξ]×) in terms of a matrix-vector product as:

exp([ξ]×) = Mξ =








03 −[e1]×
03 −[e2]×
03 −[e3]×
I3 03








ξ, (4.22)

where e1 = [1, 0, 0]T , e2 = [0, 1, 0]T and e3 = [0, 0, 1]T . Using (4.21) and (4.22), the

derivative of the exponential map linearized at the origin ξ = 0 can be written as:

∂e[ξ]×

∂ξ

∣
∣
∣
∣
∣
ξ=0

=
∂I4 + [ξ]×

∂ξ
=

∂[ξ]×
∂ξ

=
∂Mξ

∂ξ
= M (4.23)

To generalize to arbitrary transformations T(ξ) given ξ 6= 0, it is linearized around a

different point on the manifold.

Jξ =
∂e[δξ]×T(ξ)

∂ξ
(4.24)

Applying the chain-rule and using (C.12) and (4.23) yields:

Jξ =
∂e[δξ]×T(ξ)

∂e[δξ]×
︸ ︷︷ ︸

(C.12)

∂e[δξ]×

∂δξ

∣
∣
∣
∣
δξ=0

︸ ︷︷ ︸

(4.23)

=
(
T(ξ)T ⊗ I3

)
M

(4.25)

4.1. Camera Motion Estimation 57

The final result is a 12× 6 matrix:

Jξ =








03 −[r1]×
03 −[r2]×
03 −[r3]×
I3 [t]×








(4.26)

The full Jacobian Ji(ξ): The full Jacobian for the edge-based error function (4.6) is

then:

Jr = JDJπJgJG

=
(

Dx Dy

)




fx

1
Z′ 0 −fx

X′

Z′2
−fx

Y ′X′

Z′2
fx

(

1 + X2
′

Z′2

)

−fx
Y ′

Z′

0 fy
1
Z′ −fy

Y ′

Z
′2

−fy

(

1 + Y 2
′

Z
′2

)

fy
Y ′X′

Z
′2

fy
X′

Z′





(4.27)

The final Jacobian is of dimension 6 × 1 and the Hessian H = JT
r Jr is 6 × 6. Note that

for the well-known reprojection error the direction in image space is computed directly

from the residual but the edge-based residual is only an unsigned distance value. Thus,

we rely on the Jacobian JD to compute the direction to the closest edge in image space

as depicted in Figure 4.4.

The photometric case: The Jacobian for the photometric residual is the same as (4.27)

except that the gradients are computed on the intensity image as Ikf,x and Ikf,y instead of

the DT D. Figure 3.4 shows an example intensity image and the corresponding gradients.

Jr = JIJπJgJG

=
(

Ix Iy

)




fx

1
Z′ 0 −fx

X′

Z
′2

−fx
Y ′X′

Z
′2

fx

(

1 + X2
′

Z
′2

)

−fx
Y ′

Z′

0 fy
1
Z′ −fy

Y ′

Z
′2

−fy

(

1 + Y 2
′

Z
′2

)

fy
Y ′X′

Z
′2

fy
X′

Z′





(4.28)

Motion Initialization A crucial point for the minimization of (4.5) is the initialization

of the relative motion ξ0ji. In the KF -based setting, we always estimate the motion from

a current frame Fc to the KF Fkf (see Fig. 4.3 and 4.7a). Especially, when the cameras

are farther apart, simply starting with zero motion ξ0ji = [0, 0, 0, 0, 0, 0]T can result in slow

convergence speeds, convergence to a local minimum or low accuracy. To start with an

initialization close to the minimum, we use the already estimated motion of the current

frame’s predecessors Fc−1 and Fc−2 and sample several different initializations from various

motion models (see Fig. 4.7b-4.7f). We compute the cost of each initialization on the DT

(4.6) and choose the one with the lowest. Our purely VO-based approaches [132, 133]

58 Chapter 4. Edge-based Simultaneous Localization and Mapping

Figure 4.7: (a) shows the KF -based setup and (b) - (f) the various motion initializations. (b)
zero motion from the last KF is often problematic and can cause slow convergence or convergence
to a local minimum. Alternative initializations such as (c) constant motion, (d) no motion, (e)
half motion and (f) double motion from the last frame address these issues.

only sample constant motion (see Fig. 4.7b):

ξ0kf,c = ξkf,c−1 ◦ ξc−2,c−1, (4.29)

where ξc−2,c−1 = ξ−1
kf,c−2 ◦ξkf,c−1, and no (zero) motion from the last KF (see Fig. 4.7(c)):

ξ0kf,c = [0, 0, 0, 0, 0, 0]T . (4.30)

These two initializations work well with smooth motions and high frame-rates but might

slow down convergence speed when the initialization does not correspond to actual motion.

Thus, RESLAM [134] considers three additional motion models (see Fig. 4.7d-f): (1) Zero

motion from the last frame

ξ0kf,c = ξkf,c−1, (4.31)

and (2) decelerated (half) motion:

ξ0kf,c = ξkf,c−1 ◦ exp(0.5 log ξc−2,c−1), (4.32)

(3) accelerated (double) motion

ξ0kf,c = ξkf,c−1 ◦ ξc−2,c−1 ◦ ξc−2,c−1. (4.33)

These additional motion models used in RESLAM improve convergence speed, robustness

and accuracy compared to REVO.

4.1.3 Edge- and ICP-based Relative Pose Estimation

Indoor scenes with texture- and structure-less surfaces like walls, floors or ceilings are

one of the main error sources for common VO and SLAM methods. Figure 4.8 shows

4.1. Camera Motion Estimation 59

an excerpt of some challenging indoor sequences from our own recordings (see Fig. 4.8a

and 4.8b) two public benchmark datasets [62, 147]. Further, illumination changes and

flickering lights can cause additional problems as already discussed in Section 1.1.

(a) Orbbec RGBD recording (b) Orbbec RGBD recording

(c) Office scene [62]. (d) Texture-less office scene [147].

Figure 4.8: Typical indoor scene parts such as walls, ceilings and floors are scarcely textured
and therefore challenging for image-based methods. In contrast, point cloud alignment methods
require geometric structures and suffer when planes are dominant in the scene.

In [132], we increase the robustness of our edge-based method by additionally incor-

porating the depth map from the RGBD sensor directly into the motion estimation. We

propose to align the point clouds generated from the depth maps with an ICP algorithm

and extend (4.6) by a geometric error Egeo:

ξ∗ij = argmin
ξij

Eedge + λEgeo, (4.34)

where λ is a balancing factor between the two energy terms. Eedge is defined equal to (4.6)

60 Chapter 4. Edge-based Simultaneous Localization and Mapping

and Egeo can also be written in a similar least-squares formulation:

Egeo =
∑

i∈Z

wtri,geo(ξij)
2. (4.35)

where wt is a Tukey weight (see Tab. 3.2) and the residual ri,geo(ξij) is given as the point-

to-plane distance between the two point clouds. We minimize (4.34) again in a coarse-to-

fine scheme over three pyramid levels with an iteratively reweighted LM method. There

exist several ICP formulations of the geometric error [128] and if correspondences are

known, there are also closed-form solutions [48, 69]. However, for most practical cases

the correspondences or data associations are unknown and matching two point sets is a

computationally expensive operation, which might be required in each iteration. There are

approaches to compute the correspondences such as matching points according to certain

properties like surface normals, colors or curvature, or relying on local descriptors, e.g.

Point Feature Histograms [129]. Another option is to look for the closest point in terms

of space, which involves either an exhaustive search or a costly pre-processing step to

generate a kd lookup tree. Blais et al. [9] proposed projective data association, a very fast

alternative used in most state-of-the-art systems [78, 117, 159]. Projective data association

assigns correspondences by reprojecting a point pi from Zi to Zj and taking the point at

p′ = τ(ξji,Z(p),p) as correspondence. It does not require any additional data structure

or search in 3D space, which makes it very fast and also easily parallelizable. The 3D

correspondences Qj for a point P′
i = RjiP+ tji can then be computed as:

Qj = π−1(p′
i, Zi(p

′
i)). (4.36)

After computing the correspondence, there are two different ways to define the residual

rgeo: (i) point-to-point distance or a (ii) point-to-plane distance. Figure 4.9a visualizes

the difference between the two formulations.

(a) The point-to-point (pt2pt) and point-to-plane (pt2pl)
metric of the ICP method [8, 20].

(b) Two points with the same tangent
plane have equal costs.

Figure 4.9: Geometric error when aligning two surfaces with point-to-point dpt2pt and point-to-
plane distance dpt2plane. (b) shows that the point-to-plane formulation allows to slide along flat
surfaces.

4.1. Camera Motion Estimation 61

Point-to-Point Distance: The point-to-point distance is simply defined as the vector

dp2p between the transformed point P′
i = RjiP+ tji from Zi and its associated point Qj

in Zj :

rp2p = ||dd2p||2 = ||P′
i −Qj ||2. (4.37)

As depicted in Figure 4.9b, aligning planar surfaces by minimizing the point-to-point

error is problematic when the initialization is not close to the minimum since it cannot

slide along surfaces. In practice, these are crucial drawbacks because the initialization

is typically not ideal and indoor scenes mainly contain planar surfaces. Thus, there are

several alternatives to tackle this problem [128].

Point-to-Plane Distance: The most popular alternative is to project the point-to-

point distance vector dp2p = P′
i −Qj along the direction of the surface normal such that

all points lying on the same planar surface have equal distance to points on another planar

surface (see Fig. 4.10c). The point-to-plane error is defined as:

rp2pl =
〈
dp2p,nr

〉
, (4.38)

where dp2p is again the same is in (4.37) and nr is the surface normal. With this for-

mulation, sliding along surfaces does not increase the cost opposed to the point-to-point

metric (4.37). However, it is necessary to compute the surface normal vector n at each

point p from its local neighborhood as visualized in Figure 4.10c. The normal vector n at

p is the cross-product of vx and vy:

nr = vx × vy, (4.39)

where the vectors vx and vy are computed from the unprojected 3D points adjacent to p

as:

vx = π−1(px1, Z(px1))− π−1(px2, Z(px2)), (4.40)

vy = π−1(py1, Z(py1))− π−1(py2, Z(py2)). (4.41)

The adjacent pixel px1 and px2 are [px±1, py] respectively and py1 and py2 are [px, py±1].

Figure 4.10b visualizes the computed surface normals on a typical indoor scenes with the

respective x-, y- and z-components of the normal vectors shown Figures 4.10d- 4.10f.

Balancing Factor λw: Jointly optimizing two energy terms requires a balancing factor

λ [106]. This is especially challenging when combining energies with completely different

metrics, e.g. edge distance in pixels and point-to-plane error in meters, or density, e.g.

rather sparse edges compared to the dense geometric term. The choice of the λ value is

not straightforward and has not been investigated for the combination of an edge and a

geometric error term. We study the influence of λ by evaluating the Relative Pose Error

62 Chapter 4. Edge-based Simultaneous Localization and Mapping

(a) Colored Point Cloud (PCL) (b) PCL with surface normals (c) Surface normal computation

(d) Normal x-component (e) Normal y-component (f) Normal z-component

Figure 4.10: The colored PCL (a) and the corresponding surface normals (b). (c) The surface
normals at a point are computed from its neighborhood. (d,e,f) are the respective x-,y- and z-
components of the surface normals.

(RPE) and Absolute Trajectory Error (ATE) on three sequences from the TUM RGBD

benchmark dataset [147] (see Sec 6.1.1 for a detailed description) . Figure 4.11 depicts

the RPE and ATE for ”fr1/xyz”, ”fr1/rpy”, ”fr1/desk” and the average of the errors

over a range of λ values from 0.5 to 18. The evaluation indicates that the correct choice

of λ depends on the dataset because the errors stay nearly constant for ”fr1/xyz” and

”fr1/rpy”, while there are huge jumps for ”fr1/desk”. However, Figure 4.11 shows that

the simple choice of λ = 1 gives reasonable results, which we also verified by several other

experiments (see Sec 6.1.1). The intuition behind the choice of λ = 1 is that when there

are many edge detections in the image, they highly influence the optimization since the

edge distance in pixels is typically orders of magnitudes higher than the geometric error

in the millimeter range. In contrast, with only a few edge detections the geometric term

is emphasized.

4.1.4 Optimizing the Geometric Error on SE(3)

This section discusses the optimization of the combined error function (4.34) and presents

the derivations of the Jacobians. To solve (4.34), we again apply an iteratively re-weighted

LM optimization method in a coarse-to-fine scheme. While it is necessary to compute an

additional normal map N for the geometric error, in the KF -based setup, N has to be

computed - similar to the DT - only when inserting a new KF . Before discussing the

combined optimization (4.34), we first focus on the optimization of the Egeo (4.35) with

its residual:

rp2pl =
〈
dp2p,nr

〉
=
〈
RjiP+ tji −Q,nr

〉
, (4.42)

4.1. Camera Motion Estimation 63

Figure 4.11: Evaluation of pose and alignment errors with varying balancing or trade-off factor
λ on three sequences of the TUM RGBD benchmark [147]. The choice of λ is scene-specific but
λ = 1 shows a good overall performance.

For very small rotations, the exponential matrix of ω can be approximated analogously

to the edge-based case as given in (4.21):

R = I3 + [ω]× =






1 −ω3 ω2

ω3 1 −ω1

−ω2 ω1 1




 (4.43)

Substituting (4.43) into (4.42) and expanding, rp2pl becomes:

rp2pl =(P′ −Q)Tn+ tTn+

ω1(Y
′nz − Z ′ny) + ω2(Z

′nx −X ′nz) + ω3(X
′ny − Y ′nx),

(4.44)

where n = [nx, ny, nz]
T and P′ = [X ′, Y ′, Z ′]T . Using the cross-product c = P′×n, (4.44)

simplifies to:

rp2pl = (P′ −Q)Tn+ tTn+ ωT c. (4.45)

The derivatives with respect to ω and t are:

∂rp2pl
∂ω

= c

∂rp2pl
∂t

= n

.

(4.46)

64 Chapter 4. Edge-based Simultaneous Localization and Mapping

The Jacobian Jgeo for the ICP optimization is then:

Jp2pl = (cT ,nT)T . (4.47)

Finally, for the joint optimization, we again set up an equation system of the form

Hδ = b, (4.48)

where
H = JT

edgeWedgeJ
T
edge + λJT

geoWgeoJ
T
geo

b = JT
edgeWedgeredge + λJT

geoWgeorgeo.
(4.49)

In this form, the computations of the Jacobians are easily parallelizable and can be im-

plemented as shown in Section C.1.

4.2 Edge-based Quality Assessment

One of the central problems in SLAM is to assess the quality or validity of an estimated rel-

ative motion. In this section, we propose a fully Edge-based Quality Assessment (EBQA),

which was successfully used in REVO [133], and show how our method classifies estimates

into valid and poor. Figure 4.12 visualizes the complete three-step EBQA pipeline with

the intermediate results. Algorithm 1 summarizes the computation steps and relates them

to the corresponding equations. Our EBQA is based on the idea that the estimated world

pose ξWj of a frame Fj to be assessed has to be consistent with previous estimates, i.e.

the estimate must align the respective edge detections to previous frames. The first step

is to reproject edges with valid depth from N previous frames denoted as Ei ∈ P to the

current frame Fj as depicted in Fig. 4.12(1). Each individual set Ei is reprojected to a

related hit map Mi in Fj :

∀ Ei ∈ P : Mi(p
′) = 1, p′ = ⌊τ(p, ξji,Zf (p))⌋ ∀ p ∈ Ei, (4.50)

with ⌊.⌋ being the floor operation. Due to rounding, multiple reprojected edges of a single

frame can map to the same coordinates. When large scale differences occur, this could

lead to all the edges of one image falling on a tiny fraction of another image, e.g. Fj

shows a whole chair and the other images close-ups of the chair’s legs. Thus, coinciding

reprojections only count once by setting Mi(p
′) = 1 as described in (4.50). The second

step sums up the individual hit maps Mi to a joint hit map M containing values [0, 1, .., N]

(see Fig. 4.12 (2)):

M =
∑

i

Mi. (4.51)

A value of N at a certain position p means that edges from all N previous frames were

reprojected to it. Figure 4.12(3) shows a color-coded hit map, where orange, yellow and

4.2. Edge-based Quality Assessment 65

Figure 4.12: Three-step edge-based quality assessment pipeline to classify estimates into valid
and poor. (1) reprojects edge detections from N previous frames to the frame to be assessed Fi

and stores the reprojections in separate hit maps Mi. (2) sums up all the individual hit maps to M
and (3) computes a histogram of hits and non-hits. This can also be visualized as color-coded hit
map, where red are the non-hits and orange, yellow and green are reprojections with N = [1, 2, 3]
hits. An estimate is considered poor if the weighted hit score Sh is greater than the non-hit score
Snh.

green represent that N = [1, 2, 3] reprojections are close to an edge and red shows non-hits.

The third step evaluates if the reprojected are close to edge detections in Fj and generates

a histogram H with N + 1 bins as follows:

H(n) =
∑

p∈Q

JM(p) == nK
︸ ︷︷ ︸

selection

JDj(p) ≤ θqaK
︸ ︷︷ ︸

distance

JZj(p) > 0K
︸ ︷︷ ︸

geometry

; ∀n ∈ [0, N], (4.52)

where Q is the set of pixel positions p of all reprojected edges, M(p) the number of

reprojections at p with a maximum value of N , Dj the DT and Zj the depth map. J.K

is the Iverson bracket defined in Section C.2.1. In the following, we describe the three

individual terms of (4.52)). For bin n, the selection term is only true if at point p

there are n reprojected edges. The distance term is true if there is an edge detection

nearby, which corresponds to the DT being smaller than a threshold θqa. Note that in

[132, 133], we avoid computing the DT for Fj and compare directly on the edge detection

JEj(p) == 1K. The geometry term restricts the edge comparison only to valid depths in

both images, thereby introducing a geometric similarity constraint, which is crucial for

robust loop closure candidate detection. Since the terms are joined by multiplication,

they evaluate to 1 only if all three individual terms are true. The final step of our EBQA

classifies the estimates into valid and poor. It follows the intuition that when the pose

estimation or the loop candidate is valid, edge detections should strongly overlap, i.e. high

66 Chapter 4. Edge-based Simultaneous Localization and Mapping

Algorithm 1: Edge-based Quality Assessment

M = 0
// Compute the distribution map M
for Ei ∈ P do

Mi = 0
p′ = floor

(
τ(p, ξji,Zi(p))

)

if isInImage
(
p′
)
then

Mi(p
′) = 1 // Equation 4.50

M = M+Mi

// Compute the histogram H
for each point p in M do

if Zc(p) > 0// Check if depth is valid

then
if DTc(p) < θqa// Check if close to an edge

then
n = M(p)// Number of reprojections

H(n) = H(n) + 1

// Compute the scores Sn and Snh
w =weights for each bin
Snh = 0 // Non-hit score

Sh = 0 // Hit score

for n ∈ [1..N] do
Sh = Sh +w(i)H(i) // Equation 4.53

Snh = w(0)H(0)// Equation 4.53

isV alid = Sh > Snh// Equation 4.54

number in H(N − 1) and H(N) but low number of non-overlaps in H(0). This can be

described in the form of a hit score Sh and non-hit score Snh:

Sh =
N∑

n=1

w(n)H(n),

Snh =w(0)H(0),

(4.53)

where w(n) is the weight for bin n. Since its better to have multiple reprojections hitting an

edge, the weights are higher for higher bin numbers, e.g. w = [1, 1, 1.25, 1.5] corresponding

to the bins [0, 1, 2, 3]. The estimate is considered valid if the hit score Sh is higher than

the non-hit score Snh and poor otherwise:

Sh > Snh. (4.54)

In this section, we proposed an fast and reliable method for quality assessment, which

4.3. Keyframe Management 67

integrates smoothly into REVO [132, 133] and RESLAM [134] due to its edge-based nature.

Our EBQA is versatile in the sense that it can assess the quality of pose estimates [132, 133]

in the VO setting and it is also capable to verify loop closure and relocalization candidates

in SLAM [134]. Another possible application of our EBQA is the generation of ground

truth data to train neural networks for the task of edge detection, which we will discuss

in Chapter 5.

4.3 Keyframe Management

Keyframe management comprises the creation, removal or marginalization of KFs and is

one of the central topics in VO and SLAM . The choice of a good KF is not trivial and

typically often not the same in both cases. VO systems that only consider the last KF

such as our systems [132, 133] and [81, 89], the distance to the KF should be kept large

to reduce the drift. In contrast, systems that have access to multiple KFs, e.g. through

a local or global map, often add an abundance of KFs and remove redundant or less

useful ones later [37, 116, 134]. Common approaches for KF selection are to simply take

every nth KF [89] or insert a new KF after a particular threshold is reached based on

angle or distance [38], number of features [116] or an entropy-based ratio [80, 81]. In the

following, we will discuss the KF selection strategies of our VO systems REVO [132, 133]

and RESLAM [134].

4.3.1 Keyframe Management for VO

The pure VO case only requires the last KF (see Fig. 4.3). While REVO [133] simply

discards an old KF once a new one is created, [132] stores old KFs with a fixed camera

poses to use them at a later stage. Creating a new KF is a computationally demanding

task since it involves computing the DT [133] and the normal map [132], which takes

significantly longer than the rather fast relative pose estimation. Thus, the goal is to create

as few KFs as possible, which at the same time keeps the distance to the last KF large to

reduce drift. Figures 4.13b-4.13e show how to determine when to create a new KF . After

estimating the relative pose of a new frame, the EBQA presented in Section 4.2 computes

a hit-score and a non-hit score. As long as the hit-score is higher than the non-hit score as

in Figures 4.13b-4.13c, no new KF is required. Once, the EBQA determines an estimate to

be poor, i.e. the non-hit score is higher than the hit-score (see Fig. 4.13d), a new KF has

to be created. Instead of simply taking the current frame as KF , we instead take the last

frame with a valid estimate, i.e. the previous one, and use it as KF . Finally, the relative

motion is re-estimated and re-assessed, resulting in a valid estimate (see Fig. 4.13e).

4.3.2 Keyframe Management for SLAM

In contrast to pure VO , systems with a local map [37, 92] and a global one [116] often

create many KFs and cull them later. RESLAM [134] also follows this strategy and

68 Chapter 4. Edge-based Simultaneous Localization and Mapping

(a) Camera trajectory with non-KFs, old KFs and the most recent (active) KF .

(b) Relative motion estimation Tkf,c−2, where the computed hit-score is above the non-hit-score.

(c) Relative motion estimation Tkf,c−1, where the computed hit-score is above the non-hit-score.

(d) Relative motion estimation Tkf,c, where the computed hit-score is below the non-hit-score.
Thus, create a new KF such that the quality criteria is again fulfilled.

(e) Convert the previous frame, i.e. the last one fulfilling the quality criteria, into a new KF and
re-estimate the relative transformation Tkf,c. Then the quality criteria should hold again.

Figure 4.13: (a) The camera trajectory for our purely VO-based systems [132, 133]. The KF
creation and tracking quality assessment process is shown for several frames. After each relative
motion estimation, we assess the tracking quality with the method presented in Section 4.1.1. (b,
c) As long as the score of edge-hits stays above the non-hits, pose estimation continues and no
new KF is created. (d) Once the computed hit score is below the non-hit score, (e) the last valid
non-KF is converted into a new KF and the relative camera motion re-estimated such that the
resulting score is again above the non-hit score.

4.3. Keyframe Management 69

distinguishes between two main types of KFs as depicted in Figure 4.14a: (i) Active KFs

are refined in the local window and (ii) Marginalized KFs are removed from the local

window to keep it constrained. Independent of their type, there are also map KFs, which

build the global map and are marked by a black border in Figure 4.14a. In the following,

we will discuss the life cycle of the KFs in RESLAM, i.e. creation, marginalization and

removal of non-map KFs.

Keyframe Creation: RESLAM creates a new KF and adds it to the local window

based on three different metrics: (i) the mean square optical flow Cfov, (ii) the mean flow

without rotation Cocc and (iii) an edge alignment criteria. The (i) mean square optical

flow Cfov describes changes in the field of view:

Cfov =

√

1

n

∑

||p− p′||22 , (4.55)

and the (ii) mean flow without rotation Cocc measures occlusions by only considering the

displacement t:

Cocc =

√

1

n

∑

||p− pt||22 , (4.56)

where p′ = π(Rπ−1(p,Zp) + t) and pt = π(π−1(p,Zp) + t). Similar to the the EBQA

presented in Section 4.2, RESLAM also counts (iii) the number of edge reprojections close

and not close to an edge detection denoted as Nin and Nout, respectively:

Nin =
∑

p∈Ec

JDc(τ(ξ,p,Zc(p))) ≤ θinK,

Nout =
∑

p∈Ec

JDc(τ(ξ,p,Zc(p))) > θinK,
(4.57)

where θin is a threshold and J.K is the Iverson bracket (see Sec. C.2.1). Finally, RESLAM

creates a new KF if at least one of the two criteria is fulfilled:

Cfovθfov + Cocc ∗ θocc > 1 or Nin < 2Nout, (4.58)

where θfov and θocc are empirically determined factors. Whenever RESLAM creates a

new KF , it additionally computes the similarity to all other KFs in the place-recognition

database. If the KF is distinct enough from all the others, it is added to the database,

i.e. becomes part of the global map.

Keyframe Marginalization Since the local window is constrained, RESLAM

marginalizes old KFs whenever a new KF is added. In order to keep the KFs

well-distributed in the local map, we apply the marginalization strategy proposed in [37].

This strategy follows three main points: (1) always keep the newest two KFs F1, F2,

70 Chapter 4. Edge-based Simultaneous Localization and Mapping

Seq. Number of Frames Created KF KF After Culling
fr1/desk 573 223 90
fr1/desk2 620 299 69

Table 4.2: Creating an abundance of KFs increases the robustness of the system and culling the
KFs later reduces the complexity of Pose Graph Optimization (PGO) after loop-closure.

(2) marginalize KF with less than 5% visible points in F1 and (3) if no KF fulfills (2),

marginalize the frame with the lowest distance score. The distance score si measures the

spatial distribution of the KFs:

si =
√

d(i, 1)
∑

j∈[3,n]\i

(d(i, j) + ǫ)−1, (4.59)

where d is the Euclidean distance between two KFs d(i, j) = ||tij ||2 and ǫ a small constant

to prevent division by 0. When we marginalize a map KF , we store it along all its

relative transformations to the other map KFs within the local window (see Fig. 4.14b).

In contrast, when marginalizing a KF not in the map, we simply link it to the closest map

KF and convert it to a non-KF (see Fig. 4.14c). This is essentially the culling procedure

to remove the KF from the global map, thereby reducing the number of KF in the global

map by a factor 2 − 4 compared to the created KFs. Table 4.2 compares the number

of created KFs and database KFs on two fast-paced sequences, where this difference is

clearly visible.

(a) Active KFs in the local window before marginalization.

(b) Marginalization of KF 3 stored in the Fer-
nDB.

(c) Marginalization of KF 5 not stored in the
FernDB

Figure 4.14: (a) Once the active window K becomes too large, we marginalize an oldKF whenever
a new KF is added. We propose two different strategies shown in (b) and (c) after marginalization
depending on whether the KF is stored in the place-recognition database or not. (b) A KF not
stored in the place-recognition database is linked to the closest map KF and converted to normal
frame. (c) For a KF stored in the database, all its relative transformation to other map KFs in K
are stored to be incorporated in the PGO .

4.4. Local Mapper 71

4.4 Local Mapper

In contrast to taking only the last KF into account [81, 89, 133], typically referred to

as pure VO , it is beneficial for accuracy and robustness to also refine with respect to N

previously estimated KFs. There exist several strategies for this task:

• Refine the most recent KF with respect to N temporally close or last KFs

• Refine the most recent KF with respect to N spatially close KFs

• A full local Bundle Adjustment (BA) refines the pose estimates of all the active KFs

within the window

Figure 4.15 shows a visualization of these strategies with the current KF in green, the

other involved KFs in orange. Refining with respect to N temporally close KFs suffers

from the problem that the overlap between the KFs is often small. This might even reduce

the overall accuracy since the refinement focuses only on the small overlapping part. Thus,

we will focus on the two other strategies, which are also used in our publications [132, 134].

Section 4.4.1 describes the refinement on spatially close KFs [132] and Section 4.4.2 the

full local BA, which refines all the involved model parameters such as camera intrinsics,

camera poses and depth of the edges [134].

4.4.1 Optimization on Spatially Close Keyframes

Instead of refining with respect to the last N KFs, we propose to optimize on KFs seeing

similar scene parts, i.e. they are close in space and not necessarily in time. After initial

relative motion estimation (see Sec. 4.1.1), we refine the current KF ’s world pose with

respect to N spatially close KFs (see Fig. 4.15b). This also has the benefit to implicitly

close small loops without the need of any database. To find candidate KFs, we search

through all previously estimated KFs and select the ones with camera centers close to the

KF to be refined and a similar orientation. The distance dc and rotation angle α between

two frames Fi and Fj can be computed from their relative translation tij and rotation

Rij :

dc = ||tij ||2, α = arccos
1

2
(trace(Rij)− 1). (4.60)

We first search through all estimated candidates and select potential candidates fulfilling

dc < θd and α < θα and then take the N KFs with lowest distance dc. Then, we set up

an optimization problem similar to (4.34) to refine the world pose of the current KF ξjW

with respect to a set S of spatially close KFs:

ξ∗jW = argmin
ξjW

∑

ξWi∈S

Eedge(ξji)) + λEicp(ξji), ξji = ξjW ◦ ξWi. (4.61)

Note that (4.61) only refines the world pose of the current KF and all other poses remain

fixed.

72 Chapter 4. Edge-based Simultaneous Localization and Mapping

(a) Refine with last N KFs (b) Refine with N spatially close frames KFs

(c) Full local BA over all N KFs in a window.

Figure 4.15: Visualization of different local optimization strategies. (a) Classical refinement with
the last N KFs and our proposed methods: (b) refinement on spatially close KFs and (c) full local
bundle adjustment over all KFs in a sliding window.

In our experiments, we found that this method shows definite improvements especially

in smaller scenes but is no replacement for global loop closure. In longer sequences, drift

can cause a problem since the estimate to older KFs can be poor and refining with respect

to those can even degrade the overall accuracy in some cases. Further, this method

degenerates into refining only over the last N KFs in purely exploratory trajectories,

i.e. when not revisiting previously seen areas. New measurements have the potential to

improve old estimates but in this formulation, only the most recent estimate is refined.

Thus, the next step is to rely on a full local BA to refine all involved model parameters.

4.4.2 Local Bundle Adjustment

Instead of refining only the pose of the most recent KF as discussed in the previous section,

in RESLAM [134], we set up a full local BA system in a sliding window similar to [37, 92].

Figure 4.15c shows this BA setup with four active KFs, where the current one is depicted

in green and the others in orange. Within this sliding window K, we jointly refine the

depths of all the active edges, the camera poses and the camera intrinsics. Further, we

marginalize old KFs poses and edges to keep the windowed optimization at a bounded

4.4. Local Mapper 73

complexity.

BA is a well-known technique and at the basis of most feature-based Structure from

Motion (SfM) [65, 150], VO and SLAM [92, 114] systems. Such systems build a factor

graph, where individual features are assigned to the KF they were first detected in and

then linked to their correspondences or measurements in other KFs. Figure 4.16a shows

the factor graph of a toy problem with three KFs and four points (or edge points in our

case). Edge points are associated with their host KF , i.e. the KF they were first detected

in (red), and parametrized by the depth di in this KF . An edge point can only have one

host KF but is typically visible in multiple KFs as depicted by the blue arrows. From the

factor graph, the full energy for the sliding window K can be written as:

EK =
∑

i∈K

∑

pe∈Ai

∑

j∈K,j 6=i

Epe,j (4.62)

where Ai the set of active edge points in each KF and Epe,j represents the energy of

one single edge point from KF i reprojected to KF j. Note that this graph is simple

to build when correspondences are known as is the case for feature-based approaches.

However, for the direct formulation this process is not straightforward and requires special

consideration. In this section, we first describe how to build and maintain a factor graph

in the direct formulation and discuss when to activate, drop and marginalize edge points

within the window. We then present how to optimize all the model parameters and finally

discuss the marginalization of KFs and edge points.

4.4.2.1 Building the Factor Graph

We build a factor graph for the windowed optimization by maintaining an active set of

edges Ai for each KF within the window, which is inspired by [37]. In contrast to the

feature-based approaches, where the depth of a point is defined in the world coordinate

system, in our factor graph, the depth depends on the world pose of the edge point’s

host KF (see Fig. 4.16a). Apart from that, the factor graph is basically the same as in

feature-based methods and can be solved similarly to [77, 145]. Each KF in the window

has a set of around 10k - 20k detected edge pixels with valid depth Ei. Due to the depth

initialization provided by the RGBD sensor, this set is significantly larger than the number

of points in monocular approaches [37, 92], where only points with already estimated depth

are of interest. However, optimizing all detected edge points from each KF in K is not

possible in real-time on a CPU. Thus, strategies to maintain a computable number of edge

points are of great importance. Unlike [37], we do not limit the size of the active edges

but only the number of KFs in K. Similar to the KFs (see Sec. 4.3.2), also the edge points

follow a certain life-cycle: (1) activation, (2) marginalization and (3) removal, which will

be discussed in the following.

74 Chapter 4. Edge-based Simultaneous Localization and Mapping

(a) Factor graph of a toy problem with three KFs and four edges.

(b) Jacobian Structure (c) Hessian Structure

Figure 4.16: The structure of the Jacobian (left) and the Hessian (right) for the toy problem
presented in Figure 4.16a, where KF1 - KF3 are the KFs, Ptj the edge points and Mij are the
measurements, i.e. where the edge points are observed. Red blocks represent that this is the edge’s
host frame, while blue ones are observations.

Edge Activation: Whenever edge points are marginalized or removed, new ones are ac-

tivated to replace them. To keep the edge points spatially well-distributed over the image,

RESLAM maintains a distance map Mf for KF4. It reprojects all active edge points Ai

from KF1 - KF3 to KF4 and inserts them into the activation map (see Fig. 4.17b-4.17d).

Active edge points which are still visible and valid are depicted as colored circles in their

host KFs, e.g. two for KF1, three for KF2 and four for KF3, and their respective obser-

vations in other KFs as ×. RESLAM activates a new edge point if it fulfills the following

conditions: (i) it is visible in KF4, (ii) its reprojection p′ is close to an edge detection in

KF4:

D4(p
′) < ΘA, (4.63)

4.4. Local Mapper 75

(a) Edge point activation for a sliding window with 4 KFs, where KF4 is the newest.

(b) Reproject the valid edges points A1 (blue) from KF1 to KF4 and insert them into M4.

(c) Reproject the active edges points A2 (green) from KF2 to KF4 and insert them into M4.

(d) Try to activate new edges points A3 (orange) for KF3 by reprojection to the act. map M4.

Figure 4.17: The edge activation procedure for a window of size N = 4, where the most recent
KF4 maintains an activation map M4, which is essentially a DT . Active edges are depicted as
filled circles in their respective host frames, e.g. KF 1 has 2 active edge points, while the respective
observations are depicted as ×. (a, b) Already active edge points in KF1 and KF2 are projected
into the activation map M4 and subsequently updated, i.e. a new observation is added. With
every new KF new scene parts become visible and previously active edge points can fall out of
view. (c) The second newest KF 3 has no active edge points yet, thus we reproject all edges with
valid depth to M4 and activate an edge point if it fulfills the three activation criteria. The edge
points depicted as stars are either not sufficiently far away from already active edge points or not
close enough to an edge detection to be activated.

76 Chapter 4. Edge-based Simultaneous Localization and Mapping

and (iii) it is not close to an already activated edge point:

M(p′) > ΘM , (4.64)

where ΘA and ΘM are thresholds and D is the DT computed from the edge detections.

Figures 4.17b and 4.17d visualize edges that do not fulfill these criteria as triangles, e.g.

for KF1 one edge is not visible in KF4 and for KF3 there are already activated edge

points close by. Once a new edge point is activated, RESLAM adds it to M and searches

for observations in the other KFs to build up a factor graph with sufficient connections.

Edge Marginalization: To keep the number of active edges at an amount, which allows

processing in real-time, we aim to marginalize edges not contributing information to the

currently visible scene part. RESLAM marginalizes an edge in either one of two cases: (i)

its host KF is marginalized or (ii) it is not visible in the newest two KFs. For instance, one

edge in Figure 4.17b (gray) is not visible in KF3 and KF4 and is therefore marginalized.

Edge Removal: Whenever RESLAM marginalizes a KF , it also removes all its observa-

tions (see Fig. 4.20b). Thus, active edge points only visible in their host KF and the just

marginalized KF end up without observations. Since these edge points do not contribute

to the local BA, RESLAM also removes them from the system and all activation maps to

make space for new edge points to be activated.

4.4.2.2 Windowed Optimization Problem

Within the local window, we aim to optimize all the involved model parameters, namely

the camera intrinsics, the KFs poses and the depth of all the active edges. In this section,

we denote all the model parameters as x ∈ SE(3)n × Rm and formulate the windowed

optimization problem in terms of the sliding window energy EK (4.62) as:

x∗ =argmin
x

EK(x)

= argmin
x

∑

i∈K

∑

pe∈Ai

∑

j∈K,j 6=i

Epe,j(x).
(4.65)

Since the estimates from the Motion Estimation (see Sec. 4.1.1) are typically already

close to the minimum, we solve (4.65) with an iteratively reweighted Gauss-Newton (GN)

scheme instead of applying the slower LM damping. The parameter update can be written

in terms of the current estimate xk and the δ-update:

xk+1 = xk
⊞ δ, (4.66)

4.4. Local Mapper 77

where we generalize the ⊞ operator such that it is defined as in (4.11) for SE(3) and as

conventional addition for Euclidean space. We then set up a GN equation system:

Hδ = b, (4.67)

where H = JTWJ and b = −JTWr with W being a weight-matrix. Even for the local

window, the size of H is typically quite large and since solving (4.67) involves inverting H,

this would take too long for real-time processing. However, H has a special block structure

(see Fig. 4.16) with the KFs in the top-left corner, the edge points in the bottom-right

corner and the rest are the measurements or observations of the edge points in the KFs.

By taking advantage of this special structure, we can efficiently solve (4.67) with the Schur

complement [65, 150]. This is a well-known trick used in many SfM systems to reduces

the complexity of classical BA. The Schur complement (SC) reduces the complexity of

inverting an O((m + n)3) matrix to O((m + n)2). For example, often large parts of a

matrix are sparse and can be inverted faster than dense parts. For the SC , we divide H,

Figure 4.18: The Schur complement reduces the computational complexity by splitting the Hes-
sian H into four blocks and treating them separately. Instead of inverting the complete matrix H,
first only the top left block is computed to get δkf and then δρ can be computed by resubstitution.

δ and b into blocks as follows:
(

H11 H12

H21 H22

)(

δ1

δ2

)

=

(

b1

b2

)

(4.68)

where H11 corresponds to the KFs, H22 to the edge points and H12 = HT
21 to the obser-

vations (see Fig. 4.18). Computing b1 and b2 yields:

b1 = H11δ1 +H12δ2, b2 = H21δ1 +H22δ2. (4.69)

Re-arranging for δ1 and δ2:

δ1 = H−1
11 (b1 −H12δ2), δ2 = H−1

22 (b2 −H21δ1). (4.70)

78 Chapter 4. Edge-based Simultaneous Localization and Mapping

Solving (4.70) for δ1 gives:

(H11 −H12H
−1
22 H21)δ1 = b1 −H12H

−1
22 b2,

H∗
11δ1 = b∗

1.
(4.71)

This formulation only requires inverting H−1
22 instead of the larger H matrix. The other

δ2 can be easily obtained by re-substituting into (4.70). In the following, we will explain

the various steps of the optimization and to keep it simple, only focus on a single residual

and its corresponding row in the Jacobian. In each iteration, we evaluate the residual

around the current estimate xk similar to the motion estimation (see Sec. 4.1.1). The

energy Epe,j(x
k) from (4.65) for two KFs i and j is defined as:

Epe,j(x
k) = ΘHr2k(x

k), (4.72)

with ΘH the Huber weight function. The residual rk is defined as:

rk(x
k) = D(p′

j(TiW ,TjW , C, ρ)), (4.73)

where p′
j is the reprojection of pe intoKF j. Note that in contrast to the motion estimation

(see Sec. 4.1.1), (4.73) relies on the inverse depth ρ [21] defined in the host KF i. The

Jacobian is defined with respect to an increment δ already discussed in Section 3.4.1:

Jk =
∂rk(δ ⊞ x)

∂δ

∣
∣
∣
∣
∣
δ=0

. (4.74)

Jk comprises two parts, the derivatives of the DT denoted as JDj
and the geometric

parameters Jgeo containing the world posesTiW , TjW , the inverse depth ρ and the intrinsic

camera parameters C:

Jk =

[

∂Dj

∂p′

∂p′(δ ⊞ x)

∂δgeo

]

,

= [JDj
Jgeo.]

(4.75)

When all the involved Jacobians are evaluated at the current estimate in each iteration

like in the relative motion estimation (see Sec. 4.1.2) also the tangent space moves to

this new evaluation point. However, once marginalization is introduced into the system,

the evaluation points require special consideration. Marginalization essentially fixes the

evaluation point x0 on which its future δ-updates are accumulated. In the case of the

non-linear nullspace of the world poses, adding linearizations around different points can

have the effect of eliminating the nullspaces. This problem has been extensively discussed

in the literature [37, 71, 74, 92]. We tackle this problem by First Estimate Jacobians

introduced by Huang et al. [74], which has also been successfully applied in [37, 92]. The

First Estimate Jacobians technique evaluates the Jacobians for the marginalized terms

4.4. Local Mapper 79

not at the current estimate x but applies the δ to the fixed linearization point x0:

Jgeo =
∂p′(δ ⊞ x0)

∂δ

∣
∣
∣
∣
∣
δ=0

. (4.76)

Even though the linearization points for the Jacobians are suboptimal and could lead to

errors, this approximation works well in practice since the Jacobian Jgeo is smooth and

the increment very small. The other Jacobian JDj
is much less smooth but in contrast

to Jgeo does not affect the nullspaces. Thus, we evaluate it at the current estimate x. As

visualized in Figure 4.16a, a single residual (4.73) depends on the world pose of its host

KF and the pose of the KF it is reprojected to. To reduce the computational burden by

the increased number of dependencies, the Jacobians with respect to the two KFs can be

linearly related through the adjoint of their relative pose [32, 37, 144].

4.4.2.3 Marginalization

Since a robot or agent continuously explores the environment, the size of the state vector

x increases over time. This introduces the problem that at some point the state vector

is too large to be computed in real-time, which happens in practice after only a small

number of around 10 KFs. In this section, we describe our marginalization process, which

closely follows the ideas presented by Engel et al. [37, 41] and Leutenegger et al. [92] and

refer to [30, 124, 140] for further reading. The basic idea of marginalization is to divide x

into three separate state vectors:

x = (xm,xa,xn), (4.77)

where xm contains marginalized states, xa active states and xn new states. The cost

function E(x) in terms of the three state vectors is then:

E(x) = E(xm,xa,xn). (4.78)

Since the marginalized states xm are only linked to the active ones xa but do not participate

in any new measurements xn, it is straightforward to separate the cost function:

E(x) = E(xm,xa,xn) = En(xa,xn) + Em(xm,xa). (4.79)

En(xa,xn) is equal to the window energy EK (4.62) and depends on terms that either

involve only xa, only xn or both. In contrast, Em(xm,xa) does not involve any terms from

xn but depends on terms that either involve only xm or both, xm and xa. The marginalized

cost function Em is simply added to En in all subsequent optimization. We compute the

part of the energy Em containing all residuals that depend on state variables, which

should be marginalized and add it to the cost function EK in all following optimization

and marginalization operations. For Em we compute one GN approximation around a

80 Chapter 4. Edge-based Simultaneous Localization and Mapping

current estimate x0 (the evaluation point of the residual rk) with b = J(x0)Wr(x0) and

H = J(x0)
TWJ(x0):

Em(δ ⊞ x0) ≈ ||r(x0) + J(x0)(x− x0)||22,
= r(x0)

T r(x0) + 2(x− x0)
Tb+ (x− x0)

TH(x− x0),

= r(x0)
T r(x0) + xT

0 Hx0 − xT
0 b

︸ ︷︷ ︸

= const

+2xT (b−Hx0) + xTHx.
(4.80)

Dropping the constant terms yields a quadratic function on x:

Em ≈ 2xT (b−Hx0)
︸ ︷︷ ︸

=b′

+xTHx. (4.81)

where b′ is a linearization of b, which is also written in this manner in [92]. Computing

the derivative of Em (4.81) with respect to x:

∂Em

∂x
= Hx+ b′ = 0, (4.82)

results in a typical GN -system (3.68) of the form:

Hx = −b′. (4.83)

We marginalize variables with the SC similar to [37, 41, 92] and drop any terms that

would influence the sparsity pattern of H. To apply the SC , we rewrite (4.83) in terms

of the states we would like to marginalize xm and the ones we would like to keep xa and

also split H and b accordingly:

[

Haa Ham

Hma Hmm

][

xa

xm

]

=

[

b′
a

b′
m

]

. (4.84)

We then apply the SC to arrive at:

(Haa −HamH−1
mmHma)

︸ ︷︷ ︸

H∗
aa

xa = b′
a −HamH−1

mmb′
m

︸ ︷︷ ︸

b′∗
a

, (4.85)

and write in short form:

H∗
aaxa = b′∗

a , (4.86)

By plugging (4.86) into (4.81), the final energy Em around the current evaluation point

xa can be written as:

Em(xa) = 2xT
a b

′∗
a + xT

aH
∗
aaxa, (4.87)

where (4.87) only depends on b′∗
a , H

∗
aa and the states xa remaining in the window but

not on any of the marginalized states xm. Thus, we can discard all the marginalized

4.5. Global Mapper 81

states xm and just store b′∗
a and H∗

aa after marginalization. In all subsequent GN and

marginalization steps, we add the energy Em to the overall edge-based window energy

EK, which also requires the tangent space of the linearization x0 to stay the same for all

variables in Em. Note that the SC is an exact representation and the only approximation

comes from linearization in (4.80).

In the following, we will explain how the marginalization process works in practice for

arbitrary rows and columns and then describe it for edge points and KFs. When working

with a standard GN system Hx = b, the rows and columns we want to marginalize are

typically at arbitrary positions in H, b and x as shown in green in Figure 4.19a. In such

cases, we move the respective elements to the lower right part of H and to the bottom of

x and b (see Fig. 4.19b) and split them into blocks according to the states we want to

keep and to marginalize. Before we marginalize a KF , we marginalize all its active edge

points, then all the edge points not visible in the last two KFs, then remove all the KF ’s

observations completely from the system and finally marginalize the KF . Figure 4.20 shows

the marginalization of KF2 and its active edge point E2. To marginalize E2, we follow

the scheme presented in Figure 4.19 and move the respective row and column such that it

can be marginalized. This marginalization also includes E2’s observations and reduces the

matrix size to (N−1)×(N−1). Marginalizing a KF2 and including its observations would

corrupt the sparsity of the lower right block by introducing off-diagonal blocks. Thus, we

first drop all the observations to keep the sparsity pattern (see Fig. 4.20b) Similar to an

edge, we follow the marginalization procedure (see Fig. 4.19) and shift the KF2’s row and

column to the end. Then we split into blocks and marginalize to reduce the matrix size

to (N − 2)× (N − 2) compared to the original matrix.

4.5 Global Mapper

The main difference between SLAM and VO is that the former keeps a global map of

the scene (see Fig. 4.1). RESLAM [134] implements a global mapper, which represents

the global map in the form of a pose graph, where the nodes are KFs and the edges in

between are relative constraints. One of the central challenges for the global mapper is to

find and verify potential candidates for loop closure and relocalization. It comprises the

following three components:

• Fern-based place recognition, which computes, matches and keeps a list binary de-

scriptors for KF .

• Relocalization to continue after a stopping the system

• Loop closer to reduce the global drift when a place is revisited

In the next sections, we will describe these three components in greater detail.

82 Chapter 4. Edge-based Simultaneous Localization and Mapping

(a) Marginalize two arbitrary rows and columns.

(b) Shift to the end and divide into blocks.

Figure 4.19: The typical GN system Hx = b. (a) To marginalize the rows and columns depicted
in green, (b) they are moved to the lower right part of H and the bottom of b and x.

4.5.1 Fern-based Place Recognition

The Fern database is the central point of the global mapper and accessed by both, the

relocalizer and loop closing modules. In RESLAM [134], we follow the place-recognition

approach presented by Glocker et al. [55], which is also used in many state-of-the-art

systems [78, 159] and based upon Random Ferns [122]. There are many alternative place

recognition approaches and we refer to [103, 160] for a detailed survey.

To compute a Fern descriptor, we first sample at Nf random image coordinates, then

evaluate if the value at this coordinate is below a threshold θf and finally combine all those

evaluations into a binary string. Figure 4.22 visualizes the Fern descriptor computation

with one code block at one position. For each KF , we compute a Fern code block at these

Nf randomly sampled image coordinates separately for the red, green and blue channel

and optionally for the depth image (see Fig. 4.22(2)). Note that the Nf image coordinates

are randomly chosen once in the beginning and remain constant throughout the sequence.

The n-th code block bp at a position p for a frame’s f RGB image is computed as depicted

in Figure 4.22(2) and can be mathematically described as:

bf,n(i) = JIi(p) < θf K; i = 0, 1, 2, (4.88)

4.5. Global Mapper 83

(a) Marginalize Pt 2.

(b) Drop all measurements of KF 2.

(c) Marginalize KF 2.

Figure 4.20: Marginalization of Pt 2 and KF 2: (a) Marginalize Pt 2, then (b) drop all the
measurements (observations) of KF 2 by setting them equal to 0 and finally (c) marginalize KF
2.

where the binary nature of the Fern descriptor comes from the Iverson bracket J.K (see

Sec. C.2.1) and Ii, i = 0, 1, 2 represents the RGB channels. In practice, we choose Nf =

500 and evaluate on a down-sampled 40×30 RGB image and optionally also on the depth

map. One code block is depicted in Figure 4.22(3), where the channels are marked in

their respective colors. Finally, the complete Fern descriptor bf is the concatenation of

the individual blocks bp, n:

bf = bp,0...bp,Nf
. (4.89)

From this compact representation, the similarity between two KFs i and j is given by the

block-wise Hamming distance [55]:

BlockHD(bi,bj) =
1

Nf

Nf∑

k=1

bi,k ≡ bj,k, (4.90)

where ≡ returns 0 if there is a difference between two blocks and 1 otherwise. (4.90) counts

84 Chapter 4. Edge-based Simultaneous Localization and Mapping

Figure 4.21: Relocalization and Loop Closing are two closely related task in the as both have a
Find and Verify KF step. Loop Closing additionally requires PGO and one EBQA step.

Figure 4.22: (1) Each KF is sampled at N positions separately for the red, green and blue
channel and optionally for the depth image (2) If the sampled value is below a threshold θ, the
computed binary descriptor is 0 and otherwise 1 at the respective position. (3) This descriptor is
then be matched to all descriptors in the database.

4.5. Global Mapper 85

the number of different blocks and then normalizes it by the total number of blocks Nf

to map it to a similarity score in the range [0, 1], i.e. a percentage. The higher the score,

the greater the similarity between the two KFs.

Instead of keeping all the KFs ever created, we instead aim to maintain a database

of distinct KFs to keep the global map optimizable in real-time. For each new KF , we

compute the similarity score to each KF already stored in the database using (4.90) and

add it if all the scores are smaller than the harvest threshold θh. In our experiments, we

found that θh = 0.2, i.e. 20 % difference to all KFs in the database, is a reasonable choice

to maintain the KFs well-distributed in the scene. Table 4.2 shows the difference between

the number of stored KFs and the total number of created KFs, where a typical office

scene has only 90 - 100 KFs.

Speed is one of the greatest advantages of the Fern-based method [55]. Computing

the similarity score between two KFs is a very fast process and going through a database

of thousands of KFs is possible within several milliseconds. Further, the descriptor only

involves thresholding intensity values, which is computationally far less expensive than

more sophisticated descriptors such as ORB [127] used in [115]. Another benefit of [55] is

that it adapts to the environment since the database is built based on the current scene

and does not require any pre-trained vocabulary as others [56, 115]. Further, the generated

Fern database can be easily stored and reloaded to enable map relocalization at a later

stage. One downside of the discussed method is that the location accuracy varies with the

random choice of sample positions in each run and the ideal sampling pattern is specific

to the scene. In practice, we found this to be a negligible problem because our number of

sampled positions Nf is roughly 40% of the downscaled 40× 30 image.

4.5.2 Relocalization

Our proposed methods are very robust on the benchmark datasets but in practice, several

situations can occur that cause relative motion estimation to fail. Section 1.1 already

discusses some potential problems and Figure 1.4 depicts some typical causes, where large

parts of a scene do not have sufficient texture for edge detection or depth information is

missing, e.g. due to sunlight (see Fig. 1.4f), or the sensor is fully or partially covered or the

environment is are not static, e.g. a person walks in front of the scene. For the system to

continue in such cases, relocalization capabilities are essential. However, relocalization is

not only relevant in failure cases but also during tasks such as 3D reconstruction, e.g. for

a person it is difficult to record a scene and while simultaneously inspecting the generated

global map. Thus, the capability to stop and continue at a later point in time is critical

for practical use.

Due to the lack of a global mapper in our VO systems, RESLAM is the only one

with relocalization capabilities. RESLAM [134] considers the pose estimation as failed if

either the average reprojection error is higher than θreloc and/or the number of reprojected

edges that are inliers is lower than Ninlier. Relative pose estimation follows a coarse-to-

86 Chapter 4. Edge-based Simultaneous Localization and Mapping

fine scheme and whenever it fails on one of the lower levels, it restarts the estimation on

the next higher level with the previous initialization. Only if it fails on the highest level,

RESLAM considers it as failed and processes the next frame. In case the pose estimation

fails again, the system switches to relocalization mode (see Fig. 4.1). Since the motion

estimation typically does not fail from one frame to the next but rather degrades over

several frames, it is also required to remove all the frames in the local window. If the

system is paused, no frames are removed.

Relocalization proceeds in three steps as shown in Figure 4.21. (1) At the core of the

loop closure is the Fern-based place-recognition introduced in Section 4.5.1. The main

difference between our implementation and [55, 78, 159] is that they find a global world

pose associated with the most similar KF and utilize it as initialization for global model

alignment, while we query the database to find a candidate KF Fcand (see Fig. 4.21(1)).

A KF is a potential candidate if the similarity score is below θlc and in case multiple

KFs fulfill the criteria, we select the top match. (2) We then estimate the relative motion

Tcurr,cand by minimizing the edge-based error (4.6) presented in Section 4.1.1 starting from

Tcurr,cand = I4 (see Fig. 4.23a) (3) To reduce wrong matches from the Fern database, we

immediately assess the motion quality using the adjacent KFs to Fcand and apply the

EBQA introduced in Section 4.2. Only if the estimate is valid, relocalization is considered

successful. We then apply the EBQA introduced in Section 4.2 and only continue if the

estimate is valid (see Fig. 4.23b).

(a) Relative camera motion estimation (b) EBQA verification

Figure 4.23: For a candidate KF from the Fern database, (a) estimate the relative camera motion
between the currentKF (green) and the candidateKF (orange) and (b) verify the estimated camera
motion with our EBQA using the candidate and its adjacent KFs.

4.5.3 Loop Closure

Even with the additional local BA drift still accumulates over the whole sequence intro-

ducing a difference between estimated and real trajectory (see Fig. 4.24a). Thus, it is

necessary to correct the drift through loop closure, whenever a previously seen scene part

is revisited (see Fig. 4.24b). Loop closure is a long-standing problem in SLAM and in this

section, we describe how we address loop closure in RESLAM [134] with an edge-based

algorithm. Figure 4.21 shows our five-step loop closure pipeline, which (1) finds a candi-

date KF in the database, (2) then estimates the relative motion between the candidate

and query KF , (3) assess the quality of the estimate, (4) performs PGO and (5) again

assesses the quality. Since the first three steps are identical to the relocalization, we refer

to Section 4.5.2 for a detailed description. In (4), we set up a pose graph, where the KFs

4.5. Global Mapper 87

(a) Global drift without loop closure (b) Trajectory after loop closure

Figure 4.24: Whenever we find a candidate KF in the Fern database, (a) we estimate the relative
camera motion between the current KF (green) and the candidate KF (orange). (b) Is the edge-
based verification using the EBQA method presented in Section 4.2 with the candidate and its
adjacent KFs.

with their world poses are the nodes and the edges are relative transformations between

KFs. PGO is a well-studied problem and discussed in many publications [17, 60, 64, 144].

Figure 4.25a shows the pose graph for a toy problem, with the current KF (green), the

candidate KF (orange), other KFs (blue) and the relative transformations from local BA

(black) and loop closure constraints (orange). In practice, the pose graph is typically

many times larger with hundreds of KFs and thousands of connections (see Fig. 4.25b).

The PGO optimization aims to distribute the drift to all the KF such that their refined

world poses minimize the relative transformations. For two KFs i and j we aim to refine

their world poses T̂wj and T̂wi. The constraint or constant measurement is a relative

transformation Tji between them coming either from a loop closure or from the windowed

optimization (see Sec. 4.4.2). In the ideal case, the measurements and world poses are

identical:

I4 = TijT̂
−1
wj T̂wi (4.91)

Moving Tij to the other side yields:

T−1
ij = T̂−1

wj T̂wi

T−1
ij =

[

R̂wj twj

0T 1

]−1 [

R̂wi twi

0T 1

]

T−1
ij =

[

R̂T
wj −R̂T

wjtwj

0T 1

][

R̂wi twi

0T 1

]

T−1
ij =

[

R̂T
wjR̂wi R̂T

wj(twi − twj)

0T 1

]

[

RT
ij −RT

ijtij
0T 1

]

=

[

R̂ji R̂T
wj(twi − twj)

0T 1

]

(4.92)

88 Chapter 4. Edge-based Simultaneous Localization and Mapping

We can rewrite the rotational part of (4.92) as:

RT
ij = R̂ji

I3 = RT
jiR̂ji

(4.93)

and the translational part as:

−RT
ijtij = R̂T

wj(twi − twj)

0 = R̂T
wj(twi − twj) +RT

ijtij
(4.94)

Since the rotation matrices are over-parametrized, we rely on a unit quaternion

parametrization (see Sec. 3.2.2). Following [64], we define the residual errors as:

[

θ

d

]

=

[

2q−1
ji q̂ji

R̂T
wj(twi − twj) +RT

ijtij

]

, (4.95)

where the rotation matrices are computed from the quaternion as shown in Section 3.2.2.

We solve the PGO with the Ceres [2] using a LM scheme [93, 107, 121], a sparse Cholesky

factorization [19] and a robust Huber-loss function. In contrast to other approaches that

keep the first one or two KFs fixed, we instead fix the world poses of the KFs that are

currently active in the local window.

Since even one wrong loop closure can seriously degrade the overall quality of the

map, it is crucial to again assess the quality of the loop candidate identical to step (3).

Only after this final assessment considers the loop closure as valid, the global map is

updated with the refined world poses. Throughout our experiments, we found that two

EBQA verifications before and after loop closure is very successful in preventing wrong

loop closures.

(a) Simple Pose Graph (b) Complete Pose Graph

Figure 4.25: (a) A simple pose graph with 6 KFs, where the KFs are the nodes and the edges
are the relative motions from either the local map (black) or from a loop closure (orange). (b) The
pose graph created from the fr1/desk sequence from the TUM RGBD dataset [147].

Loop closure is one of the most important components of a SLAM as it is able to greatly

reduce the global drift, which improves overall map quality and consistency. However, one

4.6. Conclusion 89

of the downside of loop closure is that it distributes the drift or error over all theKFs, which

might reduce the quality in well-estimated scene parts. This problem can be mitigated by

incorporating measurements from other sensors, e.g. an IMU, as an additional constraint

in the PGO . Chapter 6 presents the influence of the loop closure on the accuracy of

RESLAM.

4.6 Conclusion

This chapter summarizes our most important contributions to the field of VO [132, 133]

and SLAM [134]. At the beginning of this chapter, we propose a direct edge-based relative

motion estimation, which aligns the edge detections of two frames (see Section 4.1.1).

In contrast to direct methods based on photo-consistency, edges are less influenced by

illumination changes compared to raw intensity values and the sparse representation offers

a large convergence basin. A great advantage over classical feature-based methods is that

no costly descriptor computation is necessary and the direct nature of our method requires

no error-prone matching step. We formulate the edge-based relative motion estimation

as an energy minimization problem on the DT , which allows the evaluation of a single

residual in O(1) time making the whole system able to run at around 50 - 60 fps on a laptop

computer. Section 4.1.2 describes how to efficiently solve this energy minimization with an

Iteratively Reweighted Least-Squares (IRLS) method including also the derivations of the

Jacobians. Relying solely on edges can be problematic in indoor scenes, since they often

contain scarcely textured areas, e.g. walls and ceilings, where no or only very few edges are

detected. However, the RGBD sensor still records a dense depth map in these cases. Thus,

we propose to additionally utilize the depth map in the form of a geometric error for relative

motion estimation (see Section 4.1.3). The geometric error is formulated as point-to-plane

distance between the surfaces of two depth maps and minimized with an ICP algorithm.

In Section 4.1.4, we again derive the Jacobians and then show to jointly optimize and

edge-based and geometric error. This joint optimization greatly increases accuracy and

robustness in difficult scenes mainly for two reasons: (1) the geometric term typically

produces dense residuals over the whole image, thereby enforcing structural consistency

when edges are concentrated in one part of the image and (2) if there are mostly planar

surfaces, moving along planes is nearly cost-free for the geometric error but costly for

edge-based term.

One of our central contributions is the Edge-based Quality Assessment presented in

Section 4.2, which classifies relative motion estimates into valid and poor. It reprojects

edges from previously estimated frames into the current frame with the motion estimate

be assessed and generates a histogram of overlapping edges. Whenever many more edges

overlap than not, the estimate is considered valid and otherwise poor. While the idea is

simple, our EBQA proved to be very robust, fast and versatile, e.g.in [134] it verifies loop

closure and relocalization candidates and in [132, 133] it decides when to insert a new

KF . The creation and management of KFs are critical points in most system and we

90 Chapter 4. Edge-based Simultaneous Localization and Mapping

propose two different approaches for our VO (see Sec. 4.3.1) and SLAM (see Sec. 4.3.2)

systems. For VO , we aim to keep a KF as long as possible to reduce the drift and also

avoid too many costly KF creations. In contrast, for SLAM refines all the KFs within

a local window and many close KFs increase accuracy and stability. Therefore, initially

many KFs are created and culled later.

Section 4.4 proposes edge-based local mapping, which greatly improves accuracy and

consistency over the whole trajectory. It estimates the relative motion with respect to

several KFs and not just the last frame or KF as in the pure VO setting. We first discuss

the optimization of the most recent KF with respect to spatially close KFs, which closes

small loops and is successfully used in [132]. However, since it only refines the most recent

KF , new measurements cannot improve old estimates. Thus, in Section 4.4.2, we propose

a sliding window BA over all model parameters, including camera intrinsics, KF poses

and the depth of the individual edge points. We first show how to build up a factor

graph for a direct edge-based method without known correspondences on the example of

a toy problem. Then, we demonstrate how to efficiently solve the rather large but sparse

equation system with a GN method and the SC . Since a robot or agent continuously

explores new areas, the number of states in the window increases quickly. To keep it at

a size, which is still computable in real-time, we marginalize old KF and edge points,

while keeping the sparsity of the equation system. We discuss the individual steps of the

marginalization process and derive the respective equations.

The main difference between VO and SLAM is the capability of the latter to recognize

previously visited areas, close loops and perform relocalization. Section 4.5 describes all

three tasks in the form of a global mapper as implemented in [134]. A Fern-based place

recognition [55] (see Sec. 4.5.1) computes a binary descriptor from an RGB image and

optionally a depth map. These descriptors can be matched for thousands of frames within

a few milliseconds to find similar KFs, which are then candidates for loop closure or

relocalization (see Sec. 4.5.1). Similar frames are candidates for relocalization or loop

closure and both work nearly identical. Relocalization estimates a relative motion between

the candidate and the current frame and verifies with the previously discussed EBQA.

This step is identical to the first part of the loop closure procedure. After verifying the

candidate, the global mapper generates a pose graph containing KFs as nodes and relative

constraints from the local mapping, previous loop closures and the current estimate as

edges. PGO distributes the accumulated drift over the graph and refines all the KF

poses. Since even one wrong loop closure often destroys the complete model, we propose

to again verify the result after PGO with the EBQA and only incorporate the loop closure

if the estimate is valid.

5
Edge Detection

Contents

5.1 Edge Detection on Multiple-Scales 92

5.2 Evaluation of Edge Detectors . 95

5.3 Conclusion . 103

Edge detection is one of the most fundamental challenges in computer vision and has

been extensively researched for the past decades. While humans can easily find meaningful

or natural edges such as object boundaries, this is still a very challenging task for a

computer and several techniques exist. There are several requirements for an edge detector:

robustness to (i) illumination changes, (ii) motion blur and (iii) noise, as well as (iv)

repeatability, i.e. detecting the same edges in consecutive frames. Of course, for real-time

systems the computation speed is the deciding factor.

The choice of the appropriate edge detector for our proposed edge-based methods is still

an open topic. This chapter will give a brief overview of various edge detection methods

and we refer to the surveys [58, 166] for a broader overview. Since our proposed edge-

based methods typically run in a coarse-to-fine scheme, we first show why simply detecting

edges on every scale level can lead to problems. To tackle this problem, we propose edge

enhancement, which transfers edges from higher pyramid levels to lower ones to improve

edge detections and then introduce an even faster but equally robust technique, which only

requires the costly edge detection on the highest scale and then down-scales the Distance

Transform (DT). We conclude this chapter with qualitative and quantitative evaluations

of various edge detectors.

Edge detectors can be roughly divided into traditional methods, learning- and deep-

learning-based methods. Traditional methods such as Sobel [83], zero-crossings [108],

Pb [109], gPb [3] or Canny [16] detect edges based on intensity, color or texture changes

and typically require careful threshold setting. These detectors find an abundance of

edges in highly textured regions, which often do not correspond to object boundaries

91

92 Chapter 5. Edge Detection

but to fine-grained texture and can bias pose estimation. Even though Canny [16] has

some shortcomings, it is still one of the most used edge detectors mainly due to the widely

available implementations, its fast speed of around 400 fps and the reasonable performance.

Another type are learning-based detectors that rely on supervision and hand-crafted

features. Dollar and Zitnick [28, 29] introduced Structured Edges (SE) that delivered state-

of-the-art results in terms of meaningful edge detection while being relatively fast (around

12 fps on a CPU). SE comprise (i) a large number of manually designed features, (ii) the

fusion of multi-scale responses and (iii) the incorporation of structural information. While

SE’s results were impressive at the time, the manually designed features make it difficult

to adapt to new problems and require expert knowledge for in-depth modifications.

Deep learning has revolutionized many fields of computer vision and has also found

its way into edge detection. Xie et al. [161] showed impressive improvements with their

Holistically-Nested Edge Detection (HED), which combines (i) holistic image training and

prediction and (2) nested multi-scale feature learning performing deep layer supervision to

guide early classification results. They proposed an RGB model trained on BSDS500 [3]

and an RGBD model with an additional depth input channel trained on NYUv2 [141].

Even with the recent advances in hard- and software the inference speed still is far below

real-time In Deep Contour (DC) [139], Shen et al. divide the Ground Truth (GT) from

the BSDS500 [3] dataset into different shape classes and train a Convolutional Neural

Network (CNN) to predict those classes. They divide an image into small 45 × 45 RGB

patches and pass them through the CNN , which is computationally expensive and renders

this approach unusable for real-time application. Bi-Directional Cascade Network for

Perceptual Edge Detection (BDCN) [66] employs a shallow CNN structure making it one

of the fastest method. With its bi-directional cascade structure, it enforces each layer to

learn edges specific to a scale. To also exploit cues on multiple scales with their shallow

CNN structure, there is a scale enhancement mode, which comprises multiple parallel

convolutions with various dilation rates. Richer Convolutional Features for Edge Detection

(RCF) [100, 101] is an accurate and fast method running at up to 30 fps. RCF applies

a novel deep structure, which encapsulates semantic and fine detail features from all the

convolutional layers instead of just the last ones. Even though deep learning methods do

not require hand-crafted features like SE, the network architecture still has to be carefully

designed and probably the biggest disadvantage is the huge amount of annotated data

to train the model. Another issue is that these methods are often too slow for real-time

applications even when using a GPU.

5.1 Edge Detection on Multiple-Scales

Direct methods typically optimize in a coarse-to-fine scheme over several pyramid levels to

cope with large inter-frame motions. Most edge-based methods [89, 154, 165] follow this

approach and detect edges on each pyramid level, which we refer to as Multi-Level Edge

Detection (MLD).While typically an abundance of edges is detected at the highest level of

5.1. Edge Detection on Multiple-Scales 93

the image pyramid, fine-grained parts are smoothed over in lower levels and do not produce

edge responses anymore. Figure 5.1 shows that even in scarcely textured areas edges are

detected on the highest resolution, i.e. Level 0 at a resolution of 640 × 480. However,

after down-scaling to the next lower resolution, i.e. Level 1 at a resolution of 320 × 240,

there is already a significant decline in the number of detected edges. Large edge-less areas

introduce a bias in the motion estimation since only the areas with edge detections are

aligned. In indoor scenes, edge detectors rely on fine texture in areas with little intensity

differences, e.g. walls, floors. While some of the machine-learned edge detectors discussed

in this chapter suffer to a much lesser degree, this is still an important topic. In this

section, we propose two methods to address this problem: (1) Edge Enhancement (EE) to

transfer edge detections from a higher to a lower resolution [132] and (2) Single-Level Edge

Detection (SLD) [134], which only requires an edge detection on the highest resolution,

then computes the DT and finally down-scales it.

5.1.1 Multi-Level Edge Detection with Edge Enhancement (MLD+EE)

The goal of EE is to transfer edges from a higher pyramid level to a lower one to compensate

for edges lost due to smoothing. Figure 5.1 shows our proposed algorithm [132], which first

computes a covering image and then copies edges from a higher resolution into insufficiently

covered region. One of the key components is to find such regions on all but the highest

resolution level. For this purpose, we split the image into a discrete grid of N ×N patches

and count the number of edge detections in each patch. A patch is insufficiently covered if

the number of edge detections within it is below ΘE . The result is a covering image, which

represents the spatial distribution of edges in terms of sufficiently (green) and insufficiently

covered areas (see Fig. 5.1). If a patch is insufficiently covered, we enhance the edge image

by transferring detections from a higher resolution image into the lower resolution image.

A comparison between MLD with and without EE in Figures 5.1 and 5.2 demonstrates

the increase in the number of detected edges.

5.1.2 Single Level Edge Detection (SLD)

Detecting edges on each pyramid level (MLD) does not just introduce problems regarding

robustness but also comes at significant computational cost. While the computational

cost is very low for fast edge detectors such as Canny [16], modern machine-learned edge

detectors are far more complex and often barely work in real-time. Other computations

such as DT for the Keyframes (KFs) and EE for every single frame additionally slow down

the system. We propose a novel Single-Level Edge Detection, which is significantly faster

than MLD and MLD+EE and simultaneously addresses the robustness issue. Instead of

detecting edges on each pyramid level separately, SLD only detects edges and explicitly

computes the DT on the highest level. For edge-based motion estimation (see Sec. 4.1.1),

the edges are then reprojected to lower levels via the intrinsic camera parameters, i.e. to

go from highest to second highest, divide the intrinsic camera parameters by a factor of

94 Chapter 5. Edge Detection

Figure 5.1: Edge enhancement improves the spatial distribution of the detected edges by com-
puting a covering image to find insufficiently covered regions (depicted in red). These regions are
then enhanced by transferring edge detections from a higher to the lower resolution level.

Figure 5.2: Edges and DT for Multi-Level Edge Detection (MLD), MLD + Edge Enhancement
(EE) [132] and Single-Level Edge Detection (SLD) [134]. The edges of SLD are just for visual-
ization purposes and never computed since the DT is down-scaled directly (see Sec. 5.1.2). The
improvement reached by MLD + Edge Enhancement (EE) over MLD is evident since many more
regions have edge detections even on the lower resolution levels. The most recent SLD shows nearly
the same results as MLD + Edge Enhancement (EE) while being significantly faster.

5.2. Evaluation of Edge Detectors 95

2 in the projection function π. To avoid processing an abundance of edges on the lower

levels, only every second edge is used on the lower levels.

Further, SLD avoids the costly explicit re-computation of the DT on each pyramid

level Dn by down-scaling it from a higher resolution level Dn−1. Assuming three scale

levels N = 3, the DT at the highest resolution level D0 is simply computed from the edge

detection: For the lower levels n = 1, 2, Dn can be computed as the mean over a pixel

patch of size Np from Dn−1:

Dn(x, y) = 0.5
1

Np

1∑

i=0

1∑

j=0

Dn−1(2x+ i, 2y + j), n = 1, 2 (5.1)

where Np is the size of the patch at the higher resolution level and 0.5 an additional scale

factor since the pixel distances halve between levels. To avoid processing an abundance of

edges on the lower levels, we only use every second edge on the lower levels and process

all of them on the highest.

Figure 5.2 shows a comparison between classical MLD , i.e. edge detection on every

pyramid level, MLD + EE and SLD . The difference between MLD and our proposed

methods is easily recognizable in the DT and the edge detections. Note that for SLD the

edge detections on the lower levels are just for visualization purposes and never computed.

It is interesting to see that there is hardly any difference in the DT between MLD+EE

compared to our recent SLD , even though the latter comes at much lower computational

cost. The strength of our method to only detect edges on one level becomes apparent,

when computationally more expensive machine-learned edge detectors are used.

5.2 Evaluation of Edge Detectors

In this section, we show qualitative and quantitative results for various edge detectors

We select the still popular Canny [16] as an example of a traditional edge detector. It

is also used in our proposed methods whenever real-time processing is required. From

the vast amount of learning-based detectors, we choose SE [28, 29] since it was the best

performing detector before the advent of deep learning, and RCF [100, 101], BDCN [66],

HED [161] and DC [139] from the field of deep learning. A typical edge detection is binary,

i.e. edge and not edge, but all the learning-based methods compute a probability map (see

Fig. 5.3b). Since this probability map is unusable for our proposed edge-based methods,

we first perform non-maximum suppression as depicted in Figure 5.3c to get a reduced

probability map with values between 0 and 1. We then threshold the map at a probability

value Θml = 0.2 to get binary edge detections, remove objects smaller than 5 px and

finally apply a thinning algorithm [90] (see Figure 5.3d).

The Canny implementation is the one released in OpenCV [13]. Throughout our

experiments, we run with a kernel size of 3 and lower and upper hysteresis threshold of

100 and 150 , except for Table 5.1, where we also run with 60 and 80. For the learning-based

96 Chapter 5. Edge Detection

(a) RGB Image (b) Probability map (c) Non-max suppres-
sion

(d) Thresholding and
thinning

Figure 5.3: (a) Input RGB image from which learning-based edge detectors such as HED [161]
(b) compute a probability map of edges. This probability map is refined (c) by non-maximum
suppression and (d) thresholding to a binary image followed by thinning to remove very small edge
detections.

detectors, we rely on the implementations published alongside the respective publications

but run the RGB-only models to enable a fair comparison.

5.2.1 Qualitative Evaluations

In this section, we show qualitative results to study the strengths and weaknesses of the

various edge detectors. For this purpose, we present a total of four qualitative experiments,

where Experiment 1 and Experiment 2 show the influence of illumination changes on

the edge detections and Experiment 3 and Experiment 4 study the effects of motion

blur. In the following, we will describe and discuss Experiment 1 and Experiment 2

as well as Experiment 3 and Experiment 4 jointly.

For Experiment 1, we sample four images with various levels of illumination from the

flicker sequence in HDRFusion dataset [96] (see Fig. 5.4). It is a synthetic dataset with

high dynamic range, which makes it suitable for illumination evaluations. In Experiment

2, we set up a standard desktop scene, record with a statically mounted Orbbec Astra Pro

sensor and vary illumination with dimmable light source. Illumination smoothly decreases

over a second while the sensor records at 30 fps. We again sample four images at different

illuminations and present the results in Figure 5.5. In Figures 5.5 and 5.4, the first row

shows the RGB images, which change from bright to very dark, and the other rows depict

the detections of the respective edge detectors. Canny performs well for the first three

images in Experiment 1 but only detects a reasonable amount of edges for the first image

in Experiment 2 and fails for the others. The main reason for the poor performance

in the darker images is that Canny is susceptible to threshold settings, which are kept

fixed throughout both experiments. Adapting the thresholds to the current illumination

of the scene is not straightforward and slows down edge detection [43]. Similarly, HED

and DC work well in the first three images but also suffer greatly once the illumination is

low (see column 4). In Experiment 2 their edge detections on all but the first image can

also be considered unusable. For these cases, more variation in the training data could

help the networks to learn a more robust edge detection. The best performing algorithms

5.2. Evaluation of Edge Detectors 97

in both experiments are SF, BDCN, and RCF, which detect edges in all the images in

Experiment 1 and also for the first three images in Experiment 2. The last and darkest

image in Experiment 2 is difficult for all methods because its signal-to-noise ratio is very

low.

Experiment 3 is based on the basement sequence of the NYUv2 dataset [141] with

only mild motion blur and a slowly moving person in the background (see Fig. 5.6) Quali-

tatively, there are not many differences and all detectors cope well with light motion blur.

It is interesting to see that SE, HED, and DC all have problems in the left part of the

image (see column 1-3). All three are not able to detect the corner, while Canny, RCF,

BDCN have edge detections for the complete room geometry. Further, SE and DC have

problems with segmenting the person standing on the left side behind the column. The

problems with the left side of the image most likely stem from the low illumination in

this part of the scene. Our final Experiment 4 comprises a sequence of four images the

fast-paced fr1/desk sequence from the TUM RGBD dataset [147]. Figure 5.7 depicts the

selected RGB images in the first row and the results of the respective edge detectors in the

other rows. Throughout the sequence, motion blur continuously increases from no motion

blur in column 1 until heavy motion blur in column 4, where object borders are nearly

unrecognizable. The significant impact of motion blur on the edge detections becomes

apparent when comparing column 1 and column 2 to the others. While all detectors show

reasonable performance in column 1 without motion blur, Canny, SE, and DC greatly

suffer as depicted in column 4. For example, the of the screens completely disappear for

Canny in column 3 and column 4, and one side of the screen in the back for DC and

SE. Not only do they detect very few edges, they also elongate edges along the motion

directory. This is because edges that are oriented close to the motion direction are not

blurred as much as the ones oriented normal to it, e.g. the sides of the screens. Elongated

edges could lead to problem during motion estimation, since it is difficult to align them

with edges from non-blurred images, e.g. aligning column 1 with column 3. Another prob-

lem is that motion blur can introduce double detections at object borders, which makes

alignment in these regions ambiguous. However, the state-of-the-art machine-learned edge

detectors RCF, BDCN and the older HED show far more stable detections (see column

2-4).

Throughout our experiments, we observed that Canny is prone to detecting fine-grained

structures that can clutter the scene and influence motion estimation. In Experiment 1

column 1-3, Canny detects an abundance of edges on the front page of the magazine and

the paintings and in column 4 even the individual keys of the keyboard. In contrast, the

other detectors mostly find the outlines of objects, which is desirable for motion estimation.

98 Chapter 5. Edge Detection
R
G
B

Im
ag

e
C
an

n
y
[1
6]

S
E

[2
8,

29
]

H
E
D

[1
61

]
D
C

[1
39
]

B
D
C
N

[6
6]

R
C
F
[9
9,

10
0
]

Figure 5.4: Four different RGB images from the HDRFusion dataset [96] with varying illumination
and the corresponding edge detections. While all methods work well for the first three images, only
SE, RCF, and BDCN deliver relatively constant edge detections even with varying illumination.

5.2. Evaluation of Edge Detectors 99
R
G
B

Im
ag

e
C
an

n
y
[1
6]

S
E

[2
8,

29
]

H
E
D

[1
61

]
D
C

[1
39
]

B
R
C
D

[6
6]

R
C
F
[1
00
]

Figure 5.5: Four different RGB images with varying illuminations and the corresponding edge
detections. The setup is a static desktop scene with a dimmable light source, which reduces the
illumination over several seconds. While all methods work well for the first image images, only SE,
RCF, and BDCN deliver relatively constant edge detections even for the second and third image.
All detectors fail in the very dark last image.

100 Chapter 5. Edge Detection
R
G
B

Im
ag

e
C
an

n
y
[1
6]

S
E

[2
8,

29
]

H
E
D

[1
61

]
D
C

[1
39
]

B
D
C
N

[6
6]

R
C
F
[1
0
0
]

Figure 5.6: The basement sequence of the NYUv2 dataset [141] with no motion blur for columns
1-2 and mild motion blur in columns 3-4. While all the detectors are not influenced by the motion
blur, SE and DC have problems with the dark left half of the image (see columns 2-4).

5.2. Evaluation of Edge Detectors 101
R
G
B

Im
ag

e
C
an

n
y
[1
6]

S
E

[2
8,

29
]

H
E
D

[1
61

]
D
C

[1
39
]

B
D
C
N

[6
6]

R
C
F
[1
00
]

Figure 5.7: Four images from the fr1/desk sequence of the TUM RGBD dataset [147] starting
with no motion blur and increasing until the object boundaries are nearly unrecognizable. All
detectors deliver good results for the first two images but the performance of Canny already
declines in column 3. In column 4, Canny, DC and SE detect mostly elongated lines along the
motion direction, which are difficult to align. In contrast, HED, RCF, and BDCN are still able to
find edges in this difficult situation.

102 Chapter 5. Edge Detection

5.2.2 Quantitative Evaluations

In this section, we present a qualitative analysis of the same six edge detectors as in

Section 5.2.1. We design two experiments: Experiment 5 evaluates the repeatability of

the edge detections under varying illumination conditions and Experiment 6 compares

the Absolute Trajectory Error (ATE) and Relative Pose Error (RPE) on a few sequences.

For Experiment 5, we again use the same dataset as in Experiment 2 with a static

camera and a dimmable light source. It is crucial for edge-based motion estimation that

the number of detected edges remains relatively constant between consecutive frames.

With a static camera, a perfect edge detector should always detect the same amount of

edges independent of the illumination of the scene. In this experiment, we count the

number of detected edges over a full light-dark-light cycle with a fixed camera. Figure 5.8

shows a sequence of 100 frames with a few sampled images along the x-axis and the

curves represent the number of detected edges at a certain frame. From frame30 until

frame75 illumination is so low that all the image-based edge detectors only detect noise

and are completely unusable. However, in the other sequence parts, there are significant

differences between the various edge detectors. For example, the number of edges for

Canny drops rapidly starting at frame 10 and only recovers around frame 80 − 85.

We already qualitatively showed Canny’s poor performance under illumination changes

in Experiment 1 and Experiment 2. Similar to Canny, DC and HED only remain

stable for the first few frames, which is an expected result given their poor performance

in previous experiments. SE has by far the lowest edge detections of all methods even in

the beginning of the scene but remains fairly stable until frame 30, then drops to 0 and

returns around frame 75. Finally, BDCN and RCF are by far the best edge detectors

since they detect around 8000 edges up near-complete darkness at frame30 and return

quickly to that number even with low illumination.

Our final Experiment 6 evaluates the performance in terms of the ATE and RPE

of all the edge detectors on nine selected sequences of the RGBD TUM dataset [147]. We

refer to Section 6.1.1 for a detailed description of the metrics and the dataset. To evaluate

solely the performance of the different edge detectors, we run only REVO with 3 pyramid

levels without local or global optimization. Since the threshold settings greatly influence

Canny, we run it twice but with different upper and lower values for the hysteresis, 60/80

and 100/150, respectively. Table 5.1 presents the results of the different edge detectors

with the ATE and RPE in separated. The results indicate that the threshold settings for

Canny influence the accuracy but are specific to the scene since Canny 2 is better than

Canny 1 in only six out of nine sequences for the ATE . The overall performance of Canny is

surprisingly high given its poor performance in some of the qualitative experiments. This is

mostly because the robustness to illumination is not so important in the well-illuminated

office scenes of the TUM RGBD benchmark [147]. All detectors except Canny 2 have

problems in the fast motion scene fr1/desk2, which contains a short part with highly

blurred frames. The difference in accuracy comes from these few images and depends

5.3. Conclusion 103

Comparison of the Absolute Trajectory Error (ATE) [cm]

Traditional Learning-based

Seq. Canny 1 Canny 2 SF [28, 29] HED [161] RCF [100, 101] BDCN [66] DC [139]

fr1/xyz 5.09 6.78 6.72 6.67 5.16 5.51 7.19

fr1/rpy 5.16 4.95 7.28 4.55 6.64 6.72 5.99

fr1/desk 7.53 6.09 7.32 6.61 18.31 45.4 7.10

fr1/desk2 20.31 8.22 14.88 15.98 35.94 19.67 17.68

fr1/plant 7.17 6.71 4.66 5.34 5.39 5.41 7.51

fr1/room 33.22 30.36 27.62 25.10 22.62 21.37 31.95

fr2/desk 3.06 8.86 8.54 16.96 7.10 13.39 6.4

fr2/xyz 1.38 0.89 1.00 0.89 1.44 1.07 0.87

fr3/long off hous 5.1 7.83 11.49 28.53 15.94 20.00 11.79

Comparison of the Relative Pose Error (RPE) in [cm/s]

fr1/xyz 2.14 3.04 2.45 2.70 2.11 2.82 3.22

fr1/rpy 3.55 3.56 4.35 3.84 3.63 3.44 3.28

fr1/desk 3.67 3.33 3.48 3.70 11.77 23.43 3.92

fr1/desk2 11.76 6.33 11.30 11.62 20.75 14.77 11.97

fr1/plant 2.68 2.83 2.81 2.77 2.82 3.19 2.97

fr1/room 4.85 5.09 5.77 5.64 5.33 5.87 5.17

fr2/desk 1.44 1.43 1.27 1.66 1.02 1.25 1.16

fr2/xyz 0.39 0.40 0.44 0.40 0.45 0.45 0.44

fr3/long off hous 1.29 1.42 1.26 2.26 1.37 1.49 1.33

Table 5.1: Comparison of the ATE in [cm] and the RPE in [cm
s
] achieved with REVO with the

traditional Canny and various learning-based edge detectors. For Canny, we run two different
lower and upper threshold settings for the hysteresis computation: Canny 1 with 60 and 80 and
Canny 2 with 100 and 150.

mainly on the choice of the KF , i.e. whether a KF is created directly before the critical

part or not. Apart from this sequence, the learned detectors show reasonable results on

most of the other sequences. The RPE in Table 5.1 differs only in the mm range between

the methods, which is likely below the accuracy of the ground truth.

5.3 Conclusion

In this chapter, we studied traditional and learning-based edge detection methods and

presented qualitative and quantitative experiments. One of the most important features

of an edge detector is its repeatability, i.e. detecting the same edges in consecutive frames,

under difficult conditions. Experiment 1 and Experiment 2 show the superiority of

the learned edge detectors under varying illumination conditions. Even in very dark con-

ditions, RCF and BDCN can detect edges, where Canny, SE, HED and DC fail. In the

104 Chapter 5. Edge Detection

Figure 5.8: The number of detected edges over a sequence of 100 frames in which illumination
first decreases and then increases for various edge detectors. For better visualization, sampled
images from the sequence are depicted along the x-axis. While the number of edges rapidly drops
for Canny [16] and HED [161] when the illumination of the scene is reduced, SF [28], RCF [100],
and BDCN [66] are still able to detect edges until near darkness.

related quantitative Experiment 5, BDCN and RCF also demonstrate their exceptional

performance, detect a rather stable amount of edges up until near-complete darkness.

Robustness under motion blur is another quality criteria for an edge detector. In Exper-

iment 3 and Experiment 4, we show that all evaluated methods are can cope with mild

motion blur as depicted in Figure 1.4a. However, during the fast motions in Experiment

5, Canny, SE and DC elongate edges along the motion direction but are unable to find

edges in other directions. In contrast, RCF, BDCN, and also HED detect all the edges

even under heavy motion blur (see Fig. 1.4b). In the last Experiment 6, we evaluate

all the edge detectors on nine sequences of the TUM RGBD dataset [147] in terms of the

ATE and RPE and present the results in Table 5.1. Due to the rich texture and stable

illumination, all the detectors show a strong performance.

To summarize, we showed that Canny works well in standard scenes with sufficient

texture and stable illumination but that its repeatability greatly suffers under motion blur

and low illumination. Further, Canny requires careful threshold settings depending on the

scene and the sensor. Our experiments indicate that modern machine-learned detectors

are a promising alternative due to their robustness even in very difficult conditions. They

show an impressive performance regarding repeatability, which is the most crucial part

for edge-based motion estimation. The learned detectors can cope with heavy motion

blur as depicted in Figures 5.6 and 5.7 and as shown in Figure 5.8 remain stable even

5.3. Conclusion 105

in low illumination conditions, where Canny fails very early on. However, for standard

scenes, the benefits of learned detectors are currently minor since none have been trained

for the motion estimation task. Training an edge detector specifically for edge-based

motion estimation is an important step to increase the accuracy and stability even further.

However, when working under real-time constraints on a single CPU, there is no way

around fast traditional detectors. Currently, RCF and BDCN already run at around 25

fps on a strong GPU and with the rapid development of dedicated hard- and software,

learned detectors definitely become an option for real-time applications in the future.

6
Experiments and Results

In this thesis, we proposed several contributions to the fields of RGBD edge-based Visual

Odometry (VO) and Simultaneous Localization and Mapping (SLAM) as discussed in

Chapter 4. On the VO side, our contributions are the purely edge-based REVO [133]

(see Sec. 4.1.1) and its extension REVO+ICP [132], which adds a geometric term to

the motion estimation (see Sec. 4.1.3). Our major contribution to the area of SLAM is

RESLAM [134], which uses edges for motion estimation, local and global mapping (see

Sec. 4.4-4.5). We already studied the influence of various edge detectors on the edge-based

motion estimation in the previous Chapter 5 but a broader comparison of our systems to

state-of-the-art works is still missing. In this chapter, we present extensive qualitative and

quantitative evaluations of all our contributions and compare them to well-known VO

and SLAM methods. Throughout the evaluations, we rely on a multitude of benchmark

datasets and challenging sequences recorded with our RGBD sensors. We introduce the

datasets and evaluation metrics in Section 6.1.1. In Section 6.2, we first compare all our

contributions and study the influence of the individual components such as loop closure or

Bundle Adjustment (BA). We then compare our systems to state-of-the-art VO methods

in Section 6.3 and complete the experiments by an extensive SLAM evaluation.

6.1 Experimental Setup

This section introduces the datasets and evaluation metrics used for quantitative and

qualitative evaluations and then summarizes all the thresholds and other implementation

details for our methods.

6.1.1 Benchmark Datasets

Since the release of RGBD sensors, many benchmark datasets have been released and

we refer to [46] for an extensive summary. However, only very few have gained enough

popularity to be interesting for comparing RGBD VO and SLAM systems. In this section,

107

108 Chapter 6. Experiments and Results

we will discuss the popular TUM RGBD [147], the synthetic ICL-NUIM [62] and the

recent ETH3D [136] benchmark datasets. These datasets cover a wide variety of scenes

and camera motions and all of the relevant state-of-the-art methods are evaluated on at

least one of them. Figure 6.1 shows example RGB images and depth maps from all three

datasets. Additionally, we recorded RGBD sequences to show large-scale loop closure

capabilities and robustness in scarcely textured scenes.

T
U
M

R
G
B
D

IC
L
-N

U
IM

E
T
H
3D

O
rb
b
ec

A
st
ra

P
ro

Figure 6.1: Excerpts from the benchmark sequences evaluated in this thesis. The TUM
RGBD [147] dataset recorded with a Microsoft Kinect, the synthetic ICL-NUIM [62] dataset with
perfectly synchronized RGB image and depth map and the recent and well-calibrated ETH3D [136]
dataset. In the last row, our recording setup with an Orbbec Astra Pro RGBD sensor mounted on
a laptop and the recorded data.

TUM RGBD The TUM RGBD dataset [147] is the most widely used dataset for quan-

titative evaluations of RGBD VO and SLAM systems. It comprises indoor RGBD se-

quences with the corresponding ground truth poses from a motion capture system. The

sequences are recorded with a Microsoft Kinect at 30 fps with a resolution of 640 × 480

for RGB images and depth maps, while the ground truth poses are obtained at 100 Hz.

The individual sequences in this dataset vary in length and difficulty and are divided into

6.1. Experimental Setup 109

three groups freiburg 1 (fr1), freiburg 2 (fr2) and freiburg 3 (fr3). What makes this dataset

so interesting is the wide variety of indoor scenes, the convenient evaluation framework

and the ground truth from the motion capture system. However, downsides are the rela-

tively low image resolution, the inaccurate calibration, the rolling shutter camera, the poor

synchronization between depth and RGB camera and the lack of large-scale recordings.

ICL NUIM The ICL NUIM dataset [62] is a synthetic dataset with noise-free images

and exact ground truth poses. The dataset itself is small and covers only two rooms, an

office and a living room, both depicted in Figure 6.1. It uses the same data format and

evaluation metrics as the TUM RGBD dataset and can therefore be smoothly integrated

in existing evaluation frameworks and systems. Due to synthetic nature, it does not suffer

from synchronization or calibration issues like the TUM dataset. This makes it well-

suited to test methods or new features under perfect conditions without issues caused by

the sensor but it is difficult to predict the performance under real conditions from just

synthetic experiments.

ETH3D The very recent ETH3D dataset as published together with BAD-SLAM by

Schöps et al. [136]. It is a novel, well-calibrated and synchronized benchmark dataset

comprising stereo and depth images alongside Inertial Measurement Unit (IMU) mea-

surements. The authors built a setup with synchronized global shutter cameras and the

infrared emitter from an Asus Xtion Live Pro. Through active stereo, they computed the

depth map from the recorded infrared pattern, thereby solving the synchronization issue

present in most RGBD sensors. The sequences are recorded at a framerate of 30 fps, a

resolution of 739 × 458 and without auto-exposure. Two example RGBD pairs from this

dataset are shown in Figure 6.1. For the indoor scenes, the Ground Truth (GT) trajectory

comes from a motion capture system and for outdoor scenes from an offline Structure from

Motion (SfM) method. The dataset is divided into training and test sequences, where the

ground truth is only publicly available for the training part.

Orbbec Astra Pro Recordings To cover even more motions and scenes, we recorded

additional RGBD sequences with an Orbbec Astra Pro sensor. We mounted it onto a

laptop computer (see Fig. 6.1) and recorded while running a live viewer showing recon-

struction and trajectory. Depth maps and RGB images are both recorded at a resolution

of 640× 480. Resolution and image quality of the Orbbec Astra Pro is comparable to the

Microsoft Kinect but the depth map is denser and contains measurements up to around a

distance of 8 m.

6.1.2 Evaluation Metrics

Alongside their TUM RGBD dataset, Sturm et al. [147] propose two metrics to evaluate

the performance of VO and SLAM systems. For VO system, they propose to measure the

110 Chapter 6. Experiments and Results

drift over a fixed time interval δt between a set of poses Q from the GT trajectory and

a set of poses P from the estimated trajectory. They refer to this error as Relative Pose

Error (RPE) and define it at a time step i as:

RPEi = (Q−1
i Qi+δt)

−1(P−1
i Pi+δt) (6.1)

where δt is the time distance between poses. Computing (6.1) over a sequence with N

estimated poses has, gives M = N − δ individual RPEs . Following [147], we compute the

Root Mean Squared Error (RMSE) over the translational component:

RMSE(RPE1:n, δt) =

√
√
√
√ 1

M

M∑

i=0

||trans(RPEi)||2 , (6.2)

where trans(RPEi) is the translational part of the RPE in (6.1). The RPE is well-suited

to measure accuracy in a local area but cannot give a global accuracy estimate.

To assess the global consistency, Sturm et al. [147] propose to measure the absolute

distance between the estimated and the ground truth trajectory. Since the coordinate

systems of the two trajectories are arbitrary, they are first aligned by a rigid body trans-

formation S computed with Horn’s method [69]. The Absolute Trajectory Error (ATE)

at time step i is defined as:

ATEi = Q−1
i SPi, (6.3)

where Q and P are again the set of poses of the GT and estimated trajectory. Like for

the RPE , again the RMSE of the translational component is evaluated:

RMSE(ATE1:n) =

√
√
√
√ 1

N

N∑

i=0

||trans(ATEi)||2 . (6.4)

6.1.3 Implementation Details

Like all state-of-the-art systems, also ours depend on various thresholds and only show

their best performance with certain configurations. In this section, we give all the values

and details to reproduce the results presented in this chapter. Throughout all the evalua-

tions, REVO detects edges with the Canny algorithm from the OpenCV [13] with a kernel

size of 3 and a hysteresis thresholds depending on the sensor input. For the TUM RGBD

dataset [147], the lower and upper thresholds are 100 and 150 and for the ICL-NUIM

dataset [62] 20 and 40. The relative pose estimation runs over three pyramid levels with

the highest resolution being the resolution of the dataset. On each pyramid level, edges

are considered outliers, when they are 10, 20 or 30 pixels away from the closest edge detec-

tion and the inliers in Eedge (4.1.1) weighted by a Huber weight function with ΘH = 0.3.

REVO selects Keyframes (KFs) based on the Edge-based Quality Assessment (EBQA)

proposed in Section 4.2 running it on the second pyramid level with histogram weights

6.2. Comparison of our Contributions 111

w = [1, 1, 1.25, 1.5]. In the combined motion estimation REVO+ICP 4.1.3, the edge-based

optimization and KF selection are identical to REVO including the hysteresis thresholds.

The only difference in the edge-based part is the Edge Enhancement (EE) for the edge

detections discussed in Section 5.1.1. We choose patch sizes of N = [20, 10, 5] px for each

respective pyramid level and consider a patch insufficiently covered when less 5% of its

area are edge detections. The geometric term is weighted with a Tukey weight function

with θT =
√
1.5 (see Tab. 3.2). The local mapper refines over N = 4 spatially close KFs

within a search range of Θd < 0.1m and Θα < 30◦.

The relative pose estimation in RESLAM is again identical to REVO with three pyra-

mid levels, a Huber weight function with ΘH = 0.3 and outlier rejection at 10, 20 and 30

pixels. We found that for RESLAM, good choices for lower and upper thresholds are: 60

and 80 for the TUM RGBD datasets [147], 20 and 40 for the ICL-NUIM dataset [62], 20

and 40 for the ETH3D [136]. New KFs are selected with an optical flow criteria instead

of EBQA with the constant thresholds θfov = 0.15 and θocc = 0.1. In the local mapper,

edges are activated if they are within a maximum distance of ΘA = 5 px to an edge de-

tection and at least ΘM = 5 px away from the closest activated edge. The global mapper

adds KFs to the database if their block-wise Hamming distance (4.90) to all the KFs in

the database is above θh = 0.2. It considers a KF as potential LC candidate if at least

one similarity is below θlc = 0.25. To verify a loop, again the same histogram weights

w = [1, 1, 1.25, 1.5] are used and a loop constraint has three times the weight of a relative

constraint from local bundle adjustment.

All the systems are real-time capable on a laptop CPU for a typical RGBD recording

at 30 fps with a resolution of 640x480. However, there are differences due to the increased

number of computations for REVO+ICP and RESLAM. Further, other factors such as the

number of detected edges, the inter-frame motion and of course the hardware influence the

speed. For the TUM RGBD sequences, REVO runs at around 40 - 60 fps, REVO+ICP

at 20-30 fps and RESLAM at 25-30 fps.

6.2 Comparison of our Contributions

In this section, we focus on the methods proposed in this thesis and show the influence of

the individual components to highlight the continuous development throughout the last

years. The first part of this section presents quantitative evaluations on several sequences

from the popular TUM RGBD and ICL-NUIM datasets as well as qualitative results in

the form of trajectories and reconstructions (see Tab. 6.1 and 6.2). The second part is a

purely qualitative evaluation and shows reconstructions of difficult scenes recorded with

an Orbbec Astra Pro RGBD sensor.

The methods in this thesis can be grouped together in three different systems. Our

most basic edge-based VO system REVO (see Sec. 4.1.1), the extension to include also

a geometric term in the pose estimation REVO+ICP [132] and finally the RESLAM,

a complete SLAM system with a full local BA and LC capabilities. By the example of

112 Chapter 6. Experiments and Results

REVO, we show the benefits of KF -based VO over frame-to-frame VO (see Sec. 4.1.1). For

REVO+ICP, we evaluate edge-based motion estimation with the proposed EE (E+EE) as

presented in Section 5.1.1. We then study the Iterative Closest Point (ICP)-only version,

the combined relative pose estimation (E+ICP) (see Sec. 4.1.3) and the optimization with

respect to spatially close KFs (Opt) as shown in Section 4.4.1. RESLAM runs in four

different configurations: edge-based motion estimation and Single-Level Edge Detection

(SLD) (E+SLD) (see Sec. 5.1.2), with full local BA (E+BA) presented in Section 4.4.2,

with LC but without BA and finally as full SLAM system with LC and BA. All modules

in REVO, REVO+ICP, and also E+SLD and BA of RESLAM fall into the VO category

but only LC and SLAM in RESLAM can be considered SLAM systems. In Tables 6.1

and 6.2 the results are given in terms of the ATE in [cm] and RPE in [cm/s]. The best

overall result is depicted in bold, the best VO result is underlined and tracking losses or

sequences with an ATE above 80 cm are marked as failed (✗).

From the TUM RGBD dataset, we select 15 sequences from all three groups and

summarize the results Table 6.1 When looking at the REVO evaluations, it is evident that

the KF -based setting is superior to the frame-to-frame setting. Overall REVO performs

well in all the sequences and even achieves the best RPE for fr1/desk and fr1/360, which

is surprising considering that it only optimizes with respect to the last KF . However,

without a local or global optimization it cannot compete with the other methods in terms

of the ATE . The TUM RGBD dataset is mostly well-textured and therefore there is no

significant improvement of EE and SLD over the traditional edge detection on multiple

scales. In contrast to the edge-based methods, the ICP -only method performs poorly in

all sequences except fr1/xyz and fr1/desk and even fails for fr2/dishes, fr3/large-cabinet

and fr3/cabinet (see Fig. 6.2). One reason for failure in fr2/dishes is that large parts of the

depth map are unusable, either due to invalid values caused by reflection on the table or

unreliable far away measurements on the back wall. Another problem is that the mostly

planar structures in fr3/large-cabinet and fr3/cabinet render the alignment ambiguous.

The combined pose estimation (”E+ICP”) does not improve the accuracy compared to

only the edge-based term but increases the robustness. The largest improvement comes

from the local refinement on spatially close KFs, which improves the results significantly

in short sequences such as fr1/xyz, fr1/rpy, fr1/desk, and fr1/plant. RESLAM shows

impressive overall results and scores the best ATE and RPE for 10 out of the 15 sequences.

As mentioned before, the SLD does not show any improvement over EE or traditional

edge detection. The evaluations show that the greatest improvement comes from the full

local BA presented in Section 4.4.2. Especially in the longer fr2 sequences, the local

optimization improves the ATE by up to a factor 2 − 3 in some cases, while loop closure

(”LC”) is only significantly better in the heavy rotation scene fr1/rpy. Due to the nature

of the TUM sequences, where start and endpoints are not the same or have different

viewpoints, the LC mostly closes loops rather on the small than the large scale. Thus,

the LC degenerates to a local mapping with very few KFs, which is less accurate than the

refinement over spatially close KFs or the local BA. Finally, the complete SLAM system

6.2. Comparison of our Contributions 113

shows a consistent performance over all sequences and it is either the best or very close

to the best throughout the evaluations. A common problem for edge-based methods is

when edge detections are concentrated on object borders only, e.g. the cabinet depicted

in Figure 6.2. Then the depth measurements for the edges can be invalid or inaccurate,

e.g. the depth measurement corresponds to the distance to the back wall instead of the

cabinet. This is problematic for the alignment, especially when no additional geometric

term or local BA is used.

(a) fr2/dishes (b) fr3/large cabinet (c) fr3/cabinet

Figure 6.2: Example images from three different TUM RGBD sequences that caused problems
during the evaluations. fr2/dishes is especially challenging for the ICP-only method since parts
of the depth map on the table are invalid and the distance to the back wall is above the range in
which depth measurements are considered valid. In fr3/large-cabinet the ICP-only method suffers
from a similar problem on its back wall. For the other methods, the challenges in fr3/large-cabinet
and fr3/cabinet are that most edges are on the cabinet’s boundaries, where depth measurements
are unreliable.

Figure 6.3 shows six point clouds reconstructed with RESLAM from the TUM RGBD

dataset. Since all the edge points are handled and optimized as individual points without

any knowledge of their surroundings, the point clouds are not as regular as the ones directly

from the RGBD sensor. However, in Figures 6.3 (a),(b) and (c) the borders of the tables

114 Chapter 6. Experiments and Results

Comparison of the Absolute Trajectory Error (ATE) [cm]

REVO [133] REVO+ICP [132] RESLAM [134]

Seq. FF KF E+EE ICP E+ICP Opt E+SLD BA LC SLAM

fr1/xyz 13.31 6.78 5.81 3.25 4.86 1.55 7.26 2.45 1.92 2.25

fr1/rpy 12.30 4.95 5.21 16.72 5.55 2.26 6.18 7.32 2.25 2.82

fr1/desk 10.54 6.09 6.09 7.20 5.67 2.96 5.04 3.17 4.11 3.15

fr1/desk2 16.87 8.22 7.53 16.97 7.68 5.99 7.09 4.91 5.57 4.91

fr1/plant 7.30 6.71 7.75 20.95 6.62 3.87 6.53 5.78 5.42 5.76

fr1/360 21.32 13.56 14.60 22.10 13.82 16.18 12.04 13.61 12.04 13.60

fr2/desk 32.90 8.86 8.90 16.77 9.28 9.51 3.49 2.36 2.31 2.08

fr2/xyz 7.90 0.89 0.89 13.48 1.92 1.71 0.87 0.44 0.70 0.54

fr2/rpy 4.24 1.68 0.98 24.09 1.36 0.98 0.88 0.62 0.55 0.61

fr2/desk w pers 16.45 10.49 10.69 78.34 8.33 7.10 8.57 2.83 7.54 3.56

fr2/dishes 14.87 6.77 6.92 ✗ 6.60 7.21 8.58 3.74 6.22 3.75

fr3/large-cabinet 50.89 56.88 53.33 ✗ 35.60 50.16 ✗ 35.82 ✗ 35.82

fr3/cabinet ✗ 19.75 27.57 ✗ 24.19 27.48 29.21 11.81 29.21 11.81

fr3/str-ntex-far 21.89 9.40 7.21 24.33 5.55 2.18 7.35 6.41 7.35 6.41

fr3/long off hous 48.93 7.83 7.49 52.31 14.89 9.38 15.24 9.81 4.46 4.23

Comparison of the Relative Pose Error (RPE) in [cm/s]

fr1/xyz 4.23 3.04 2.89 2.86 2.49 2.25 3.52 2.27 2.85 2.61

fr1/rpy 4.06 3.56 3.49 9.08 3.56 3.30 3.46 3.86 3.24 3.89

fr1/desk 4.80 3.33 3.38 5.58 3.46 3.44 4.31 3.38 3.98 3.40

fr1/desk2 7.47 6.33 6.34 7.69 6.04 6.30 5.87 4.63 5.36 4.93

fr1/plant 3.58 2.83 3.04 7.34 2.82 2.82 2.82 2.64 3.00 2.63

fr1/360 8.11 6.79 6.82 15.58 8.54 12.60 7.89 7.74 7.89 7.75

fr2/desk 2.17 1.43 1.48 3.05 1.50 1.83 1.00 0.92 1.11 1.30

fr2/xyz 1.13 0.40 0.40 1.09 0.49 0.55 0.32 0.36 0.37 0.49

fr2/rpy 0.93 0.50 0.38 3.21 0.39 0.41 0.30 0.37 0.30 0.37

fr2/desk w pers 3.41 2.73 2.74 5.97 1.74 1.62 1.40 1.05 1.40 1.21

fr2/dishes 3.28 2.06 2.54 ✗ 2.49 3.01 1.82 1.05 1.77 1.04

fr3/large-cab ✗ 22.89 21.95 ✗ 16.11 15.22 ✗ 23.80 ✗ 23.80

fr3/cabinet 9.30 5.97 6.89 ✗ 5.71 7.06 7.38 4.53 7.38 4.53

fr3/str-ntex-far 7.40 4.08 3.78 7.39 2.29 2.17 4.77 4.91 4.77 4.91

fr3/long off hous 3.04 1.42 1.42 3.11 2.02 4.20 1.38 1.04 1.27 1.10

Table 6.1: Comparison of our methods with their individual components on the TUM RGBD
dataset: REVO in a frame-to-frame (FF) and KF -based setting, REVO+ICP with edge enhance-
ment ”E+EE”, ”ICP” only, a combination of both (REVO+ICP) and REVO+ICP and refinement
on spatially close KFs (”Opt”). RESLAM in the VO setting with single level edge detection
(”E+SLD”), with local mapping (BA), with global mapping (LC) and the full SLAM system with
LC and BA. Best VO result underlined and best overall result in bold.

6.3. Visual Odometry Evaluations 115

are still clearly visible and also Figure 6.3 (d) and (f) give a good impression of the scene.

The second evaluation compares our contributions on the synthetic ICL-NUIM

dataset, which covers two different rooms, a living room and an office. We select the

first two sequences kt0 and kt1 from each and summarize the results in Table 6.2. In

general, the ICL-NUIM sequences are low textured scenes without noise, which poses a

challenge for edge- and image-based methods. For REVO, again the KF -based setting

is superior for icl/living room-kt1, icl/office-kt0, and icl/office-kt1. REVO with the

standard multi-scale edge detection fails for icl/living room-kt0 but the new EE and

SLD both manage to track the sequence. In contrast to the previous evaluation, due to

the perfectly synchronized and noise-free depth map REVO+ICP outperforms the other

methods in 3 out of 4 sequences. For icl/living room-kt1, the ICP-only version shows

very high accuracy, which can be explained by the presence of major planes on the floor,

wall and ceiling throughout the sequence. The spatial refinement increases the accuracy

especially in the icl/office-kt1 sequence, which contains many small loops. RESLAM

only shows the highest accuracy for icl/living room-kt0, where the loop closure gives the

biggest improvement. One interesting finding is that with very few edge detections, the

overlap between the KFs is concentrated in specific areas and the local BA can even

decrease the accuracy as shown for icl/living room-kt1 and icl/office-kt1.

Figure 6.5 visualizes the trajectories for the icl/living room-kt0 and icl/office-kt1 se-

quence, where REVO+ICP is always very close to the ground truth. Qualitative results

achieved by REVO+ICP are depicted in Figure 6.6, where the walls in (a) area aligned

correctly at a right angle and even the tiles on the ceiling in (b) are visible.

For the Orbbec Astra Pro recordings, we present purely qualitative results. Fig-

ure 6.7 demonstrates the capabilities of REVO+ICP, which in (a) accurately reconstructs

a room with many white walls and in (b) manages to track movements in front of scarcely

textured walls. Sample images from the respective sequences are shown on the left of the

reconstructions. To illustrate the LC capabilities, we record a trajectory with a length of

approximately 150 m with the same start and endpoints (see Fig. 6.8) Due to the many

invalid depth values caused by far away surfaces, the drift is large and start and endpoints

are not in the same area. With the loop closure, we can correct the drift and correctly

estimate the trajectory.

6.3 Visual Odometry Evaluations

In this section, we benchmark our VO methods and state-of-the-art RGBD VO systems

on TUM RGBD [147] and ICL-NUIM [62] sequences and visualize trajectories of selected

sequences. Our VO methods are REVO in the KF -based setting, REVO+ICP with re-

finement of spatially close KFs, and RESLAM with the full local BA, to state-of-the-art

RGBD VO systems. Since there is an abundance of VO systems, we select six popu-

lar ones: an ICP-only implementation called ICPCUDA [157], DVO [81] with a com-

116 Chapter 6. Experiments and Results

(a) Sequence fr1/desk (b) Sequence fr1/xyz

(c) Sequence fr1/plant (d) Sequence fr2/desk

(e) Sequence fr2/dishes (f) Sequence fr3/long off household

Figure 6.3: Six point clouds computed by RESLAM covering all three groups of the TUM RGBD
dataset, with (c) viewed from the top and the rest from the side.

6.3. Visual Odometry Evaluations 117

(a) 2D trajectory of fr2/dishes (b) 3D trajectory of fr2/dishes

(c) 2D trajectory of fr2/desk (d) 3D trajectory of fr2/desk

(e) 2D trajectory of fr3/long office household (f) 3D trajectory of fr3/long office household

Figure 6.4: A variety of 2D and 3D trajectories from longer TUM RGBD sequences, where the
starting point of all the trajectories is marked by a grey dot and their respective endpoints by
colored dots. In all the visualized trajectories, RESLAM (turquoise) is closest to the ground truth
(blue).

bined photometric and geometric error but without KFs, FOVIS [73] with FAST features,

ORB-SLAM2 [116] running in VO mode and two edge-based methods with nearest Ap-

proximate Nearest Neighbor Fields (ANNF) [164] and Oriented Nearest Neighbor Fields

(ONNF) [165] discussed in 4.1.1. ICPCUDA is a publicly available high-speed implemen-

tation1 of the point-to-plane ICP algorithm to estimate the relative pose between two

consecutive frames. We use it without any algorithmic changes but adapt the intrinsic

1https://github.com/mp3guy/ICPCUDA

118 Chapter 6. Experiments and Results

(a) 2D trajectory of icl/living room kt0 (b) 3D trajectory of icl/living room kt0

(c) 2D trajectory of icl/office kt1 (d) 3D trajectory of icl/office kt1

Figure 6.5: 2D and 3D trajectories from two ICL-NUIM sequences, where the starting point of
all the trajectories is marked by a grey dot and their respective endpoints by colored dots. In all
the visualized trajectories, REVO+ICP performs best due to the perfect depth map.

(a) Sequence icl/living room kt0 (b) Sequence icl/office kt0

Figure 6.6: Point clouds from the ICL-NUIM dataset reconstructed with REVO+ICP and re-
finement on spatially close KFs. (a) For icl/living room-kt0, the walls of the room are accurately
reconstructed shown by the right angle between them and in (b) icl/office-kt0, the office furniture
and even the tiles on the ceiling are reconstructed.

6.3. Visual Odometry Evaluations 119

Comparison of the Absolute Trajectory Error (ATE) [cm]

REVO [133] REVO+ICP [132] RESLAM [134]

Seq. FF KF E+EE ICP E+ICP Opt E+SLD BA LC SLAM

icl/living room-kt0 ✗ ✗ 8.82 12.31 6.33 5.46 6.96 3.99 2.06 3.36

icl/living room-kt1 7.33 2.16 2.47 0.07 2.26 1.23 1.01 1.40 0.86 1.47

icl/office-kt0 7.39 1.80 1.91 22.77 0.72 0.66 6.39 4.65 1.49 2.22

icl/office-kt1 5.84 1.05 3.53 12.25 5.85 0.75 1.92 2.38 1.84 2.72

Comparison of the Relative Pose Error (RPE) in [cm/s]

icl/living room-kt0 ✗ ✗ 2.41 3.45 2.21 1.89 1.79 1.53 1.54 1.98

icl/living room-kt1 2.22 0.86 0.88 0.05 1.23 1.36 0.58 0.86 0.57 0.89

icl/office-kt0 1.98 0.58 0.63 6.32 0.48 0.51 1.25 1.03 1.06 2.45

icl/office-kt1 1.93 0.69 2.00 6.24 2.75 0.53 0.59 1.01 0.73 1.09

Table 6.2: Comparison of our methods with their individual components on the TUM RGBD
dataset: REVO in a frame-to-frame (FF) and KF -based setting, REVO+ICP with edge enhance-
ment ”E+EE”, ”ICP” only, a combination of both (REVO+ICP) and REVO+ICP and refinement
on spatially close KFs (”Opt”). RESLAM in the VO setting with single level edge detection
(”E+SLD”), with local mapping (BA), with global mapping (LC) and the full SLAM system with
LC and BA. Best VO result underlined and best overall result in bold.

camera parameters for the respective datasets. For DVO [81] and FOVIS [73] we run

the evaluation framework2 without any modifications. We take the TUM evaluations for

ORB-SLAM2 in VO mode from [165] and compute the missing results for two ICL-NUIM

sequences by setting mbOnlyTracking = true (marked by ∗ in Tab. 6.4). There is no pub-

licly available implementation for ANNF and ONNF, thus we copy the results from [165].

In Tables 6.3 and 6.4, we again show the ATE in [cm] and the RPE in [cm/s]. The best

overall score is marked in bold, the best score from an edge-based method is underlined

and tracking failures are shown as an ✗.

We evaluate on the same 15 TUM RGBD sequences [147] as in the previous section

and visualize the trajectories for three longer sequences in Figure 6.9. Regarding the ATE

in Table 6.3, our methods show the highest accuracy in 9 out of 15 sequences and are the

best in 12 out of 15 for the edge-based methods only. Our proposed local optimizations

reduce the overall drift, which lowers the ATE , but as expected increases the RPE . This is

evident from Table 6.3, where our methods have the overall lowest error on three sequences

and when considering only edge-based systems on seven sequences. However, even in the

cases where ANNF or ONNF are the best, e.g. in the fr2 sequences, the difference to

our methods is in the [mm] range, while the difference in the ATE can be several [cm],

e.g. fr2/desk with person. Feature-based methods such as ORB-SLAM2 and FOVIS work

best, when there is little motion and the same features are seen throughout the sequence

2https://github.com/mpizenberg/rgbd-tracking-evaluation

120 Chapter 6. Experiments and Results

(a) 360◦ RGBD sequence in a low-texture environment.

(b) RGBD sequence recorded in front of a white wall.

Figure 6.7: Two dense reconstructions computed with REVO+ICP. (a) is a 360◦ sequence
recorded in a room with many scarcely textured walls and (b) primarily contains movements
in front of a white wall. On the left side are sample images from the respective sequences.

like in fr1 xyz, fr2 xyz, and fr2 rpy but both suffer when the scene changes. The ICP-only

method fails frequently since it only aligns with respect to the last frame and does not

use a frame-to-model alignment like KinectFusion [117] or InfiniTAM [79]. DVO does not

fail but without KFs the drift is significant and even problematic the short time range

of 1s used for RPE computation. This is can also be seen in the trajectories depicted

in Figure 6.9, where especially for fr2/dishes DVO drifts significantly compared to the

others.

We benchmark on four sequences from the synthetic ICL-NUIM dataset and present

the results in Table 6.4. Again our methods show high accuracy and perform best in three

out of four sequences for both, the ATE and the RPE . In the scarcely textured ICL-NUIM

sequences, FOVIS [73] fails and ORB2-SLAM [116] performs significantly worse than our

methods. The ICP-only method and the combined geometric and photometric DVO both

run in the frame-to-frame setting and show a very high drift.

6.3. Visual Odometry Evaluations 121

Comparison of the Absolute Trajectory Error (ATE) [cm]

Features Features Edge-based Our methods [134]

Seq. ICP DVO FOVIS ORB2 NNF REVO R+ICP RESLAM

Seq. D RGBD Fast VO ANNF ONNF KF Opt BA

fr1/xyz 4.17 9.34 4.68 0.90 13.70 4.30 6.78 1.55 2.45

fr1/rpy 10.74 6.97 8.59 6.60 20.50 4.70 4.95 2.26 7.32

fr1/desk 14.39 6.05 27.94 6.50 21.20 4.40 6.09 2.96 3.17

fr1/desk2 27.27 7.77 15.44 9.30 38.10 18.70 8.22 5.99 4.91

fr1/plant 41.12 4.68 16.26 6.70 13.30 5.90 6.71 3.87 5.78

fr1/360 28.00 29.64 14.19 13.90 31.50 24.20 13.56 16.18 13.61

fr2/desk ✗ 42.69 10.75 27.40 3.90 3.70 8.86 9.51 2.36

fr2/xyz 21.95 24.75 1.42 0.80 1.00 0.80 0.89 1.71 0.44

fr2/rpy 24.51 25.49 1.36 0.40 0.70 0.70 1.68 0.98 0.62

fr2/desk w pers 66.05 18.83 11.60 13.5 4.70 6.90 10.49 7.10 2.83

fr2/dishes ✗ 40.91 16.97 10.40 3.40 3.30 6.77 7.21 3.74

fr3/large-cabinet ✗ 58.66 30.21 15.40 34.90 31.70 56.88 50.16 35.82

fr3/cabinet 75.62 67.12 59.56 5.70 10.30 5.70 19.75 27.48 11.81

fr3/str-notex-far 17.07 35.41 18.23 0.80 2.60 3.10 9.40 2.18 6.41

fr3/long off hous ✗ 34.25 20.93 27.60 9.00 8.50 7.83 9.38 9.81

Comparison of the Relative Pose Error (RPE) in [cm/s]

fr1/xyz 3.14 3.22 2.71 1.40 4.50 1.90 3.04 2.25 2.27

fr1/rpy 11.45 3.34 5.41 3.70 6.30 3.40 3.56 3.30 3.86

fr1/desk 10.01 3.78 5.20 5.10 7.50 3.10 3.33 3.44 3.38

fr1/desk2 16.42 5.79 5.60 7.40 15.60 13.10 6.33 6.30 4.63

fr1/plant 16.62 2.56 6.72 4.40 5.00 3.60 2.83 2.82 2.64

fr1/360 14.33 16.01 8.15 6.50 21.10 12.10 6.79 12.60 7.74

fr2/desk ✗ 2.43 1.41 3.00 0.80 0.80 1.43 1.83 0.92

fr2/xyz 2.68 1.31 0.44 0.50 0.30 0.40 0.40 0.55 0.36

fr2/rpy 5.16 1.55 0.46 0.40 0.30 0.40 0.50 0.41 0.37

fr2/desk w pers 9.85 3.01 3.11 5.60 0.80 0.90 2.73 1.62 1.05

fr2/dishes ✗ 3.93 3.88 3.50 1.60 1.20 2.06 3.01 1.05

fr3/large-cab ✗ 21.45 9.89 10.00 19.00 16.70 22.89 15.22 23.80

fr3/cabinet 16.97 14.83 11.39 7.10 5.80 3.60 5.97 7.06 4.53

fr3/str-ntex-far 10.98 11.71 9.32 1.30 14.40 2.70 4.08 2.17 4.91

fr3/long off hous ✗ 2.29 1.46 1.90 1.40 1.00 1.42 4.20 1.04

Table 6.3: VO evaluation on the TUM RGBD dataset for: an ICP implementation [157] and
DVO [81] in a frame-to-frame setup, the feature-based FOVIS [73] and ORB-SLAM2 [116] (in VO
mode), two other edge-based methods using ANNF [164] and ONNF [165] compared to our REVO
(KF), REVO+ICP with all optimizations and RESLAM with the full local BA. The best overall
results in bold and the best result of edge-based methods is underlined.

122 Chapter 6. Experiments and Results

Figure 6.8: Reconstruction of a long sequence with significant drift before and after loop closure.
The drift is mainly caused by the many invalid values in the depth map. Two problematic RGBD
frames are depicted with their locations in the sequence marked by orange and blue dots.

Comparison of the Absolute Trajectory Error (ATE) [cm]

Features Edge-based Our methods [134]

Seq. ICP DVO FOVIS ORB2 NNF REVO R+ICP RESLAM

Seq. D RGBD Fast VO ANNF ONNF KF Opt BA

icl/living room-kt0 69.74 21.17 ✗ 4.30 7.40 3.50 ✗ 5.46 3.99

icl/living room-kt1 4.54 23.40 ✗ 8.20 11.90 2.30 2.16 1.23 1.40

icl/office-kt0 30.31 43.19 ✗ 13.09∗ - - 1.80 0.66 4.65

icl/office-kt1 27.52 47.77 ✗ 6.63∗ - - 1.05 0.75 2.38

Comparison of the Relative Pose Error (RPE) in [cm/s]

icl/living room-kt0 15.77 9.01 ✗ 3.00 4.70 1.40 ✗ 1.89 1.53

icl/living room-kt1 1.77 9.14 ✗ 2.20 5.90 0.90 0.86 1.36 0.86

icl/office-kt0 16.91 10.67 ✗ 3.74∗ - - 0.58 0.51 1.03

icl/office-kt1 16.06 19.04 ✗ 3.11∗ - - 0.69 0.53 1.01

Table 6.4: VO evaluation on the ICL-NUIM dataset for: an ICP implementation [157] and
DVO [81] in a frame-to-frame setup, the feature-based FOVIS [73] and ORB-SLAM2 [116] (in VO
mode), two other edge-based methods using ANNF [164] and ONNF [165] compared to our REVO
(KF), REVO+ICP with local refinement and RESLAM with the full local BA. The best overall
results in bold, the best results of edge-based methods are underlined and ORB2 results achieved
with the available implementation are marked by ∗.

6.4 SLAM Evaluations

In this section, we present an extensive evaluations of RGBD SLAM systems and demon-

strate their performance on the well-known TUM RGBD and ICL-NUIM datasets as

6.4. SLAM Evaluations 123

(a) 2D trajectory of fr2/desk (b) 3D trajectory of fr2/desk

(c) 2D trajectory of fr2/dishes (d) 3D trajectory of fr2/dishes

(e) 2D trajectory of fr3/long office household (f) 3D trajectory of fr3/long office household

Figure 6.9: 2D and 3D trajectories from three TUM RGBD sequences, where the starting point
of all the trajectories is marked by a grey dot and their respective endpoints by colored dots.

well as on the recently released ETH3D dataset (see Sec. 6.1.1 for more details). For

the TUM RGBD dataset, we select nine different RGBD SLAM systems and compare

them to RESLAM with LC and with LC and BA. The selected systems are the feature-

based RGBDSLAM (RS) [36] and ORB-SLAM2 [116], the combined direct and indirect

approaches RKSLAM (RK) [99] and BundleFusion (BF) [24], and five direct RGBD meth-

ods DVO-SLAM [80], Kintinuous (Kint) [157], BAD-SLAM (BS) [136], ElasticFusion

(EF) [159] and RGBDTAM (TAM) [23]. BAD-SLAM and RGBDTAM do not present

results for ICL-NUIM in their papers [23, 136], thus we do not list them but show scores

124 Chapter 6. Experiments and Results

for InfiniTAM (ITM) [79] instead. A detailed review of the various works is given in

Section 2. To avoid any threshold bias for the other systems, we copy the results from

the respective papers and where not available, mark the sequence by a −. The only ex-

ception is ORB-SLAM2, where we run the system with the provided config files for the

missing sequences in TUM RGBD and all the sequences in ICL-NUIM. Due to random

component introduced by RANSAC, we run ORB-SLAM2 five times and take the median

result. Those sequences are marked by ∗ in Tables 6.5 and 6.6. Since most state-of-the-art

systems only provide results for the four living-room sequences, we additionally evaluate

icl/living room-kt2 and icl/living room-kt3 with our methods.

Table 6.5 shows scores on 15 TUM RGBD sequences. ORB-SLAM2 [116] and RGB-

DTAM [23] show an impressive overall performance, which stems mainly from their ability

to generate points even without an initialization from the RGBD sensor and to refine the

depth of the points. Especially in sequences, where there is one central object and far away

background with mostly invalid depths, e.g. fr2/dishes, fr2/desk, this increases the overall

accuracy. However, ORB-SLAM2 fails in the three nearly feature-less fr3 scenes, where

RESLAM still manages to estimate the trajectory. Even though RESLAM is not the most

accurate method on the TUM RGBD datasets it is in the range of other state-of-the-art

methods and shows convincing results on a wide variety of sequences.

Table 6.6 summarizes the ATE achieved on six different sequences from the synthetic

ICL-NUIM dataset. Due to the perfect synchronization and noise free depth maps, meth-

ods that also process depth and align against a model such as InfiniTAM (ITM) [79],

BundleFusion (BF) [24], and ElasticFusion (EF) [159] show a higher accuracy than purely

vision based methods, e.g. ORB-SLAM2 or RESLAM. However, RESLAM again achieves

accuracies comparable to other state-of-the-art methods, while relying solely on visual

information and only using the depth map for initialization.

For the recent ETH3D dataset, we select 17 datasets from the training set and use the

results for BAD-SLAM [136], DVO-SLAM [80], ElasticFusion (EF) [159], BundleFusion

(BF) [24] and ORB-SLAM2 [116] as given by Schöps et al. in [136] and on their website3.

We only run RESLAM with LC and BA but additionally present results achieved with two

machine-learned edge detectors BDCN [66] and RCF [100, 101]. In general, the ETH3D

sequences are more difficult than the TUM RGBD sequences due to the low illumination

and and often uniform texture, e.g. the sofa in sofa 1. Judging from the evaluations

scores in Table 6.7, BAD-SLAM is the best overall method but RESLAM also performs

well on all of the sequences. It is interesting to see that the RESLAM with the machine-

learned detectors shows higher accuracy than Canny for most of the sequences. While

einstein 1, mannequin 3-4 and sofa 1-2 fail with Canny even after adapting the threshold

for this specific scene, RESLAM manages to estimate the trajectory with the learned

detectors. Some of those sequences also fail with other methods and only RESLAM and

ORB-SLAM2 work for mannequin 4. This is mainly due to the increased robustness in low

3https://www.eth3d.net/slam_benchmark

6.4. SLAM Evaluations 125

Comparison of the Absolute Trajectory Error (ATE) [cm]

RS ORB RK BF DVO Kint BS EF TAM RESLAM

Seq. Features RGBD+Feat. Direct - RGBD LC SLAM

fr1/xyz 1.4 1.0∗ 0.7 1.6 1.1 1.7 1.6 1.1 1.0 1.9 2.3

fr1/rpy 2.6 2.5∗ 3.7 - 2.0 2.8 - 2.5 2.1 2.3 2.8

fr1/desk 2.3 1.6 2.1 - 2.1 3.7 - 2.0 2.7 4.1 3.2

fr1/desk2 4.4 2.2 2.4 - 4.6 7.1 - 4.8 4.2 5.6 4.9

fr1/plant 9.1 1.4
∗ 3.8 - 2.8 4.7 - 2.2 2.5 5.4 5.8

fr1/360 - 18.6∗ 10.9 - 8.3 - - 10.8 10.1 12.0 13.6

fr2/desk 5.7 0.9 7.1 - 1.7 3.4 - 7.1 2.7 2.3 2.1

fr2/xyz 0.8 0.4 1.2 1.7 - 2.9 1.1 1.1 0.7 0.7 0.5

fr2/rpy - 0.3∗ 0.6 - - - - 1.5 0.2 0.6 0.6

fr2/desk w pers - 0.8
∗ 4.5 - - - - - - 7.6 3.6

fr2/dishes - 5.6∗ 7.9 - - - - - 3.6 6.2 3.8

fr3/large-cabinet - ✗
∗ 14.8 - - - - 9.9 7.0 ✗ 35.8

fr3/cabinet - ✗
∗ 7.9 - - - - - 5.7 29.2 11.8

fr3/str-ntex-far - ✗
∗ - - - - - 7.4 2.6 7.4 6.41

fr3/long off hous 3.2 1.0 2.8 2.2 3.5 3.0 1.7 1.7 2.7 4.5 4.2

Table 6.5: SLAM evaluations on the TUM RGBD dataset for the feature-based RGBDSLAM
(RS) [36] and ORB-SLAM2 [116], the combined approaches RKSLAM (RK) [99] and BundleFusion
(BF) [24], and five direct RGBD methods DVO-SLAM [80], Kintinuous (Kint.) [157], BAD-SLAM
(BS) [136], ElasticFusion (EF) [159] and RGBDTAM (TAM) [23] compared to our RESLAM with
LC and with LC and BA. Results computed with publicly available code are marked by ∗ and best
results in bold.

illumination scenes and stability during fast-paced motions as depicted for mannequin 2

and plant scene 2 in Figure 6.10. Another strength of the learned detectors is that they

focus on object borders and not on every little texture detail like Canny. For example, in

the planar 2 sequence depicted in Figure 6.10, Canny detects an abundance of edges, while

RCF and BDCN detect significantly less. A high number of edges not just increases the

time required for optimization but can also introduce a bias into the motion-estimation,

whenever the detections are concentrated in specific scene parts.

126 Chapter 6. Experiments and Results

Comparison of the Absolute Trajectory Error (ATE) [cm]

RS ORB RK BF DVO Kint EF ITM RESLAM

Seq. Features RGBD+Feat. Direct - RGBD ICP LC SLAM

icl/living room-kt0 2.6 0.7∗ 1.8 0.6 10.4 7.2 0.9 0.9 2.1 3.4

icl/living room-kt1 0.8 13.8∗ 1.6 0.4 2.9 0.5 0.9 0.3 0.9 1.5

icl/living room-kt2 1.8 2.3∗ 3.2 0.6 19.1 1.0 1.4 0.9 2.1 2.0

icl/living room-kt3 43.3 1.4∗ - 1.1 15.2 35.5 10.6 4.1 11.7 10.8

icl/office-kt0 - 2.8∗ - - - - 0.6 1.5 2.2

icl/office-kt1 - 68.8∗ - - - - 2.8 1.8 2.7

Table 6.6: SLAM evaluations on the ICL-NUIM dataset for the feature-based RGBDSLAM
(RS) [36] and ORB-SLAM2 [116], the combined approaches RKSLAM (RK) [99] and BundleFusion
(BF) [24], and four direct RGBD methods DVO-SLAM [80], Kintinuous (Kint.) [157] ElasticFusion
(EF) [159], and ICP-only InfiniTAM (ITM) [79] compared to our RESLAM with LC and with LC
and BA. Results computed with publicly available code are marked by ∗ and best results in bold.

m
a
n
n
eq
u
in

2
p
la
n
t
sc
e
2

p
la
n
a
r
2

p
la
n
a
r
2

RGB image Canny [16] RCF [100, 101] BDCN [66]

Figure 6.10: Sample images from the ETH3D sequences mannequin 4,plant scene 2 and planar 2
with edge detections from Canny [16] and state-of-the-art learned detectors RCF [100, 101] and
BDCN [66]. The learned detectors are more robust against the motion blur and low illumination
as shown for mannequin 4 and plant scene 2. In planar 2, the learned detectors focus on object
boundaries instead of the fine-grained textures as Canny.

6.4. SLAM Evaluations 127

Comparison of the Absolute Trajectory Error (ATE) [cm]

BS [136] DVO [80] EF [159] BF [24] ORB-SLAM [116] RESLAM

Seq. Geometric+Photometric Features Canny BDCN RCF

cables 1 0.68 0.44 1.18 2.24 0.74 0.93 1.18 1.13

cables 2 0.51 ✗ 1.51 9.61 0.80 0.63 0.59 0.87

einstein 1 0.30 0.51 2.83 2.89 0.40 0.97 1.23 1.78

einstein 2 0.58 1.54 ✗ ✗ ✗ ✗ 9.00 4.19

ein g l c 2 0.29 0.86 1.11 1.62 0.86 0.89 0.83 1.06

mann 3 0.55 2.05 ✗ ✗ 1.52 ✗ 14.13 7.87

mann 4 ✗ ✗ ✗ ✗ 4.98 ✗ 7.93 14.85

mann face 1 0.39 0.52 ✗ 1.34 0.37 3.19 0.69 0.39

mann face 2 0.10 0.34 1.00 0.91 1.00 0.38 0.37 0.16

planar 2 0.30 0.24 1.06 0.34 0.52 19.99 1.46 0.38

plant scene 1 1.09 2.72 ✗ 3.35 ✗ 6.70 2.11 3.24

plant scene 2 1.52 4.04 ✗ ✗ 1.59 15.1 5.93 1.90

sofa 1 0.22 0.67 8.36 2.59 ✗ ✗ 5.11 3.63

sofa 2 0.36 0.82 ✗ ✗ ✗ ✗ 9.65 8.38

table 3 0.24 0.82 ✗ 1.73 0.56 1.92 2.47 2.42

table 4 0.22 1.82 1.25 ✗ 0.83 2.64 3.04 2.25

table 7 0.28 0.69 ✗ 1.02 0.69 1.51 1.67 1.29

Table 6.7: SLAM evaluations on the ETH3D dataset for four direct RGBD methods BAD-
SLAM (BS), DVO-SLAM (DVO) [80], ElasticFusion (EF) [159] and BundleFusion (BF) [24], and
the feature-based ORB-SLAM2 [116] compared to our RESLAM with LC and with LC and BA.
Best results in bold and best edge-based result underlined.

128 Chapter 6. Experiments and Results

6.5 Conclusion

In this chapter, we presented extensive quantitative and qualitative experiments on three

different benchmark datasets covering a wide variety of scenes and camera motions. In the

first part, we study the difference between all our proposed methods and the improvements

given by each of their individual components. The results show that by far the biggest

boost in accuracy comes from switching from frame-to-frame VO to a KF -based setting.

The additional geometric term increases robustness but only has negligible effects on the

overall accuracy, while introducing local optimization strategies either on spatially close

KFs or a full local BA, greatly reduces the local drift. In our most recent work, we

additionally perform loop closure to also correct drift on a larger scale (see. Fig. 6.8).

In the second part, we demonstrate that edge-based methods generalize well to various

scenes and that they are a viable choice for the VO task. The results show that our edge-

based methods can deal with fast-paced motions, e.g. fr1/desk and fr1/desk2, and also

the scarcely textured environments icl/living room 0 - 1. Our methods outperform several

well-known systems such as DVO [81] or FOVIS [73], while running at a high frame rate

on a CPU.

In the final part of this chapter, we compare our recent RESLAM to various well-known

SLAM systems. Even though RESLAM does not achieve the best overall accuracy, it

performs in the range of other state-of-the-art methods. In the case of the new and

challenging ETH3D datasets, RESLAM even works, where many well-established systems

fail. The results on ETH3D indicate that there is a huge potential for machine learned

edge detectors especially in scenes with low illumination or during fast-paced motions.

Compared to the traditional Canny, these new methods are far more robust even though

they were not trained for the SLAM task.

Throughout the experiments, our edge-based methods showed impressive results for

the VO task and performed comparable to other state-of-the-art systems for SLAM . All

our methods run in real-time one a CPU, while the best performing SLAM systems require

one [78, 136, 157, 159] or even two [24] GPUs.

7
Conclusion

Modern technologies such as autonomous driving, Unmanned Aerial Vehicles (UAVs) and

Augmented Reality (AR) drive the demand for new, fast and robust algorithms to solve

the Simultaneous Localization and Mapping (SLAM) or Visual Odometry (VO) problem.

While most state-of-the-art approaches either apply an indirect formulation using features

or a direct formulation based on a photometric and/or geometric error, we focused on a

new family of direct algorithms in this thesis. We propose several novel direct edge-based

algorithms to tackle the challenges of VO and SLAM with an RGBD sensor in indoor

environments.

7.1 Summary

Our first contribution is REVO, one of the first edge-based RGBD VO algorithms, which

is faster and more accurate than previous ones [89]. We show how to formulate the

edge-based relative pose estimation problem and demonstrate how to solve it efficiently,

including all the derivatives and optimization tricks. Since our main focus is on indoor

scenes, which often contain nearly edge-less areas, we increase the robustness by combining

our edge-based relative pose estimation with an additional geometric term, thereby using

all the information from the RGBD sensor. This combination is the first of its kind

and manages to even work in nearly texture-free scenes without any problems. With an

additional local refinement on spatially close Keyframes (KFs), we manage to increase the

accuracy even further.

These ideas culminated in RESLAM, which was to the best of our knowledge the first

edge-based RGBD SLAM at the time of its release. While at its core, there is still the

relative pose estimation presented in REVO, it contains several enhancements to make it

more robust and to reduce the computational effort of edge detection. Instead of just refin-

ing the pose of the most recent KF , RESLAM introduces a full local Bundle Adjustment

(BA) to refine the poses, initial depth of edge points and camera intrinsics within a sliding

window. RESLAM also runs a global mapping module to handle relocalization and loop

129

130 Chapter 7. Conclusion

closure, relying solely on the Edge-based Quality Assessment (EBQA) as a verification

step.

The evaluations show that our methods are the most accurate compared to many

well-established state-of-the-art algorithms for the VO problem. Further, RESLAM also

achieves convincing results for the SLAM task, performing similar to well-known systems,

while only requiring a CPU instead of one or two GPUs as other approaches. This is

especially promising since it is the first system of its kind and the others follow well-

studied techniques often known for decades. Another important point is that for difficult

scenes with low illumination or fast-paced motions, RESLAM with machine-learned edge

detectors even runs in sequences, where others fail.

7.2 Outlook

In this thesis, we focused on edge-based algorithms, which are relatively new in the field

of VO and SLAM . Thus, there are still many open questions to be addressed in future

research on edge-based methods as well as for VO and SLAM in general. To facilitate

progress in the area of edge-based VO and SLAM , REVO and RESLAM are available as

open-source software.

Robust Edge Detection

Throughout the past years, machine-learning algorithms have fundamentally changed all

areas of computer vision. As shown in our experiments in Chapter 5 and Section 6.4,

there is huge potential for learned edge detectors especially in scarcely textured or low

illumination scenes, where classical Canny has severe problems. A possible future research

direction is the training of an edge detector specifically for edge-based relative pose es-

timation. Our proposed EBQA counts the number of overlapping edges by reprojecting

between multiple frames, where strong edges are likely to be seen in all the frames, while

weak edges are only present in one or very few frames. This implicitly generates a score

for the individual edges, which can then be used to create training data to learn a robust

edge detector.

Depth Estimation

While RGBD sensors work reasonably well in small rooms, they have problems with reflec-

tive and far away surfaces and glass (see Fig. 1.4). Currently, our algorithms do not use

edges without a valid depth initialization, which can lead to problems in certain scenes.

Adding the capability to estimate the depth of these edges by triangulating between dif-

ferent views, would add stability and accuracy to the overall system. This could even

be taken one step further, by completely abandoning RGBD sensors and switching to a

monocular camera, which is available in all common handheld devices such as smartphones

or tablets. The high frame rates even on a single CPU make our methods well-suited to

7.2. Outlook 131

run even on devices with limited resources. Instead of abandoning the initial depth com-

pletely, learned single image depth estimation is a very interesting alternative because it

could also work for degenerated motions, e.g. pure rotation, where a purely monocular

setup fails.

Loop Closing Strategy

The only part of RESLAM that is currently not edge-based but uses Random Ferns [55], is

the search for potential loop closure or relocalization candidates (see Sec. 4.5.3). Develop-

ing an edge-based descriptor or even a direct matching approach would be an interesting

research area. Using the edges directly would avoid the additional computations for the

Random Fern descriptor and edges also have the benefit of also encoding the geometric

properties of the scene.

Optimization Algorithm

In their recent works, Liu et al. [98, 99] proposed several potential speed-ups for local and

global BA. While their most recent work [98] relies on features, the underlying simplifi-

cations in the optimization can also be applied to our full local BA and potentially also

to the Pose Graph Optimization (PGO). This could make our direct edge-based methods

even faster and might facilitate the use in low-cost or onboard devices.

Additional Sensor Information

Some of the RGBD sensor released in the last two years such as the Intel RealSense D435i

and T265 come with an integrated, calibrated and synchronized Inertial Measurement

Unit (IMU). A logical next step is to integrate the IMU into RESLAM to improve the

overall accuracy. Further, the IMU measurements are a good prior to initialize the relative

motion between consecutive frames especially during fast-paced movements but can also

be used to skip frames without sufficient motion to save computation time. Apart from

the initialization, IMU measurements can prevent the incorporation of potentially wrong

loop closures, which would otherwise pass a purely image-based verification step.

A
List of Acronyms and Symbols

AR Augmented Reality

ATE Absolute Trajectory Error

BA Bundle Adjustment

CNN Convolutional Neural Network

DOF Degrees of Freedom

DT Distance Transform

EBQA Edge-based Quality Assessment

EE Edge Enhancement

GN Gauss-Newton

GPU Graphics Processing Unit

GT Ground Truth

ICP Iterative Closest Point

IMU Inertial Measurement Unit

IRLS Iteratively Reweighted Least-Squares

KF Keyframe

LM Levenberg-Marquardt

MLD Multi-Level Edge Detection

NN Nearest Neighbor

133

134 Chapter A. List of Acronyms and Symbols

PCL Point Cloud

PGO Pose Graph Optimization

RMSE Root Mean Squared Error

RPE Relative Pose Error

SC Schur complement

SfM Structure from Motion

SLAM Simultaneous Localization and Mapping

SLD Single-Level Edge Detection

UAV Unmanned Aerial Vehicle

VO Visual Odometry

B
List of Publications

During my work at the Institute for Computer Graphics and Vision, I had the opportunity

to work on various topics, which led to the following peer-reviewed publications. The

publications and their respective abstracts are listed in chronological order starting with

the most recent work.

B.1 Publications related to this Thesis

RESLAM: A robust edge-based SLAM System

Fabian Schenk, Friedrich Fraundorfer

In: International Conference on Robotics and Automation (ICRA)

May, 2019, Montreal, Canada

Accepted for poster presentation

Abstract: Simultaneous Localization and Mapping is a key requirement for many practi-

cal applications in robotics. In this work, we present RESLAM, a novel edge-based SLAM

system for RGBD sensors. Due to their sparse representation, larger convergence basin

and stability under illumination changes, edges are a promising alternative to feature-

based or other direct approaches. We build a complete SLAM pipeline with camera pose

estimation, sliding window optimization, loop closure and relocalization capabilities that

utilizes edges throughout all steps. In our system, we additionally refine the initial depth

from the sensor, the camera poses and the camera intrinsics in a sliding window to increase

accuracy. Further, we introduce an edge-based verification for loop closures that can also

be applied for relocalization. We evaluate RESLAM on wide variety of benchmark datasets

that include difficult scenes and camera motions and also present qualitative results. We

show that this novel edge-based SLAM system performs comparable to state-of-the-art

methods, while running in real-time on a CPU. RESLAM is available as open-source

software.

135

136 Chapter B. List of Publications

Combining Edge Images and Depth Maps for Robust Visual Odometry

Fabian Schenk, Friedrich Fraundorfer

In: British Machine Vision Conference (BMVC)

September 2017, London, United Kingdom

Accepted for poster presentation

Abstract: In this work, we propose a robust visual odometry system for RGBD sensors.

The core of our method is a combination of edge images and depth maps for joint camera

pose estimation. Edges are more stable under varying lighting conditions than raw inten-

sity values and depth maps further add stability in poorly textured environments. This

leads to higher accuracy and robustness in scenes, where feature- or photo-consistency-

based approaches often fail. We demonstrate the robustness of our method under chal-

lenging conditions on various real-world scenarios recorded with our own RGBD sensor.

Further, we evaluate on several sequences from standard benchmark datasets covering a

wide variety of scenes and camera motions. The results show that our method performs

best in terms of trajectory accuracy for most of the sequences indicating that the chosen

combination of edge and depth terms in the cost function is suitable for a multitude of

scenes.

Robust Edge-based Visual Odometry using Machine-Learned Edges

Fabian Schenk, Friedrich Fraundorfer

In: International Conference on Intelligent Robots and Systems (IROS)

September 2017, Vancouver, Canada

Accepted for oral presentation

Abstract: In this work, we present a real-time robust edge-based visual odometry frame-

work for RGBD sensors (REVO). Even though our method is independent of the edge

detection algorithm, we show that the use of state-of-the-art machine-learned edges gives

significant improvements in terms of robustness and accuracy compared to standard edge

detection methods. In contrast to approaches that heavily rely on the photo-consistency

assumption, edges are less influenced by lighting changes and the sparse edge representa-

tion offers a larger convergence basin while the pose estimates are also very fast to compute.

Further, we introduce a measure for tracking quality, which we use to determine when to

insert a new key frame. We show the feasibility of our system on real world datasets and

extensively evaluate on standard benchmark sequences to demonstrate the performance

in a wide variety of scenes and camera motions. Our framework runs in real-time on the

CPU of a laptop computer and is available online.

B.2. Other Publications 137

B.2 Other Publications

Globally Consistent Dense Real-Time 3D Reconstruction from RGBD

Data

Rafael Jakob Weilharter, Fabian Schenk, Friedrich Fraundorfer

In: Austrian Association for Pattern Recognition (OAGM) Workshop

June 2018, Hall, Austria

Accepted for oral presentation, Best Paper

Abstract: In this work, we present a dense 3D reconstruction framework for RGBD data

that can handle loop closure and pose updates online. Handling updates online is essential

to get a globally consistent 3D reconstruction in real-time. We also introduce fused depth

maps for each keyframe that contain the fused depths of all associated frames to greatly

increase the speed for model updates. Furthermore, we show how we can use integration

and de-integration in a volumetric fusion system to adjust our model to online updated

camera poses. We build our system on top of the InfiniTAM framework to generate a

model from the semi-dense, keyframe based ORB-SLAM2. We extensively evaluate our

system on real world and synthetic generated RGBD data regarding tracking accuracy

and surface reconstruction.

Automatic Muck Pile Characterization from UAV Images

Fabian Schenk, Alexander Tscharf, Gerhard Mayer, Friedrich Fraundorfer

In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sci-

ences

June, 2019, Enschede, Netherlands

Accepted for oral presentation

Abstract: In open pit mining it is essential for processing and production scheduling to

receive fast and accurate information about the fragmentation of a muck pile after a blast.

In this work, we propose a novel machine-learning method that characterizes the muck pile

directly from UAV images. In contrast to state-of-the-art approaches, that require heavy

user interaction, expert knowledge and careful threshold settings, our method works fully

automatically. We compute segmentation masks, bounding boxes and confidence values

for each individual fragment in the muck pile on multiple scales to generate a globally

consistent segmentation. Additionally, we recorded lab and real-world images to generate

our own dataset for training the network. Our method shows very promising quantitative

and qualitative results in all our experiments. Further, the results clearly indicate that

our method generalizes to previously unseen data.

138 Chapter B. List of Publications

Guided Sparse Camera Pose Estimation

Fabian Schenk, Ludwig Mohr, Matthias Rüther, Friedrich Fraundorfer, Horst Bischof

In: Proceedings of the OAGM Workshop

May 2016, Wels, Austria

Accepted for oral presentation

Abstract: In this paper, we present an idea for a sparse approach to calculate camera

poses from RGB images and laser distance measurements to perform subsequent facade

reconstruction. The core idea is to guide the image recording process by choosing dis-

tinctive features with the laser range finder, e.g. building or window corners. From these

distinctive features, we can establish correspondences between views to compute metri-

cally accurate camera poses from just a few precise measurements. In our experiments, we

achieve reasonable results in building facade reconstruction with only a fraction of features

compared to standard structure from motion.

Automated Segmentation of the Walkable Area from Aerial Images for

Evacuation Simulation

Fabian Schenk, Matthias Rüther, Horst Bischof

In: Proceedings of the 2nd International Conference on Geographical Information Systems

Theory, Applications and Management (GISTAM)

May 2016, Rome, Italy

Accepted for oral presentation

Abstract: Computer-aided evacuation simulation is a very import preliminary step

when planning safety measures for major public events. We propose a novel, efficient and

fast method to extract the walkable area from high resolution aerial images for the purpose

of evacuation simulation. In contrast to previous work, where the authors only extracted

streets and roads or worked on indoor scenarios, we present an approach to accurately

segment the walkable area of large outdoor areas. For this task we use a sophisticated

seeded region growing (SRG) algorithm incorporating the information of digital surface

models, true-orthophotos and inclination maps calculated from aerial images. Further,

we introduce a new annotation and evaluation scheme especially designed for assessing

the segmentation quality of evacuation maps. An extensive qualitative and quantitative

evaluation, where we study various combinations of SRG methods and parameter settings

by the example of different real-world scenarios, shows the feasibility of our approach.

B.2. Other Publications 139

Automated Walkable Area Segmentation from Aerial Images for Evacu-

ation Simulation

Fabian Schenk, Matthias Rüther, Horst Bischof

In: International Conference on Geographical Information Systems Theory, Applications

and Management (GISTAM)

Accepted for Journal presentation

Abstract: In this paper, we propose a novel, efficient and fast method to extract the

walkable area from high-resolution aerial images for the purpose of computer-aided evac-

uation simulation for major public events. Compared to previous work, where authors

only extracted roads and streets or solely focused on indoor scenarios, we present an ap-

proach to fully segment the walkable area of large outdoor environments. We address this

challenge by modeling human movements in the terrain with a sophisticated seeded region

growing algorithm (SRG), which utilizes digital surface models, true-orthophotos and in-

clination maps computed from aerial images. Further, we propose a novel annotation and

scoring scheme especially developed for assessing the quality of the extracted evacuation

maps. Finally, we present an extensive quantitative and qualitative evaluation, where we

show the feasibility of our approach by evaluating different combinations of SRG methods

and parameter settings on several real-world scenarios.

C
Appendix

C.1 Efficient Jacobian and Hessian computations

The speed of our method depends largely on the performance of the optimization back-

end. Apart from the residual evaluation, the computation of the Jacobians J and the

approximation of the Hessian H ≈ JTJ are the most computationally demanding parts.

We will discuss their efficient implementations by the example of an equation system for

the relative motion estimation problem:

H6×6x6×1 = b6×1 = J6×NrN×1, (C.1)

where r is a vector of stacked residuals, J the corresponding Jacobians and H the approx-

imated Hessian.

In a toy example, we assume 3 residuals and 2 variables:

J =






a b c

d e f




 =

(

J0 J1 J2

)

JT =









a d

b e

c f









=









J0

J1

J2









.

(C.2)

Stacking all residuals together and computing one large matrix is neither memory

141

142 Chapter C. Appendix

efficient nor easy to parallelize. Instead, we split (C.3) into several computations:

H =






a b c

d e f














a d

b e

c f









=






a

d






(

a d

)

+






b

e






(

b e

)

+






c

f






(

c f

)

=






a2 ad

ad d2




+






b2 be

be e2




+






c2 cf

cf f2






=






a2 + b2 + c2 ad+ be+ cf

ad+ be+ cf a2 + b2 + c2






(C.3)

With this formulation, we can compute Hi = JT
i Ji for all ri separately and finally the

overall Hessian H as:

H =
∑

i

Hi. (C.4)

This makes it easily possible to distribute the computations to several threads and then

sum up the resulting Hessians. Since Hi = JT
i Ji is symmetric, it suffices to only compute

the upper triangular part.

C.2 Additional Mathematical Definitions

C.2.1 The Iverson Bracket

The Iverson bracket J.K is very useful to describe Boolean evaluations mathematically. It

is defined as:

JCK =

{

1 if C is true,

0 otherwise.
(C.5)

C.2.2 The vec Operator

The vec operator expands a matrix into a vector by stacking all columns of an N × M

matrix into an NM × 1 vector. For a matrix A, the vec operator gives:

A =






a b

c d




 ≡ vec(A) = (a, c, b, d)T (C.6)

C.2. Additional Mathematical Definitions 143

C.2.3 The Skew-symmetric Matrix

The operator [.]× generates a 3× 3 skew-symmetric or cross-product matrix from a vector

x = [x, y, z]T as:

[x]× =









x

y

z









×

=









0 −z y

z 0 x

−y −x 0









(C.7)

Its inverse operator [.]∨ generates a vector from a skew-symmetric matrix:









0 −z y

z 0 x

−y −x 0









∨

=









x

y

z









(C.8)

C.2.4 The Kronecker Product

The Kronecker product or operator, sometimes also matrix direct product, is denoted by

⊗ and gives the tensor product of two matrices A⊗B:

KAB = A⊗B =






aB bB

cB dB




 =












ae af be bf

ag ah bg bh

ce cf de df

cg ch dg dh












. (C.9)

where KAB is of dimensions NAMB × NAMB, where N and M are the respective rows

and columns. A special case is the Kronecker product with an N ×N identity matrix IN :

A⊗ I2 =












a 0 b 0

0 a 0 b

c 0 d 0

0 c 0 d












. (C.10)

C.2.5 Matrix Derivatives

For simpler notation, some derivations in this thesis are written in terms of a derivative

with respect to matrix. We follow the assumption of [10] that whenever derivatives of

144 Chapter C. Appendix

matrices occur, they are implicitly expanded via the vec operator.

AB =






ae+ bg af + bh

ce+ dg cf + dh






≡ vec(AB) = (ae+ bg, ce+ dg, af + bh, cf + dh)T

(C.11)

∂AB

∂A
≡ ∂vec(AB)

∂vec(A)
=












e 0 g 0

0 e 0 g

f 0 h 0

0 f 0 h












(C.12)

For example, the first column of (C.12) corresponds to:

∂(ae+ bg, ce+ dg, af + bh, cf + dh)T

∂a
= (e, 0, f, 0)T . (C.13)

The result in (C.12) can also be expressed in terms of the Kronecker product [10]:

∂M1M2

∂M1

= M2
T ⊕ IN , (C.14)

where M1 and M2 are N ×N matrices and IN is the N ×N identity matrix.

C.2.6 General Conversion of a Quaternion to a Rotation Matrix

The homogeneous expression of the rotation matrix R from a quaternion

q = [q0, q1, q2, q3]
T is given as:

R =









q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q0q2 + q1q3)

2(q1q2 + q0q3) q20 − q21 + q22 − q23 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q0q1 + q2q3) q20 − q21 − q22 + q23









. (C.15)

If q is a unit quaternion, we can simplify the expression R in (C.15). Since ||q|| = 1,

||q||2 = (q20 + q21 + q22 + q23) = 1 and we can rewrite r00 as:

q20 + q21 − q22 − q23 = q20 + q21 + q22 + q23 − q22 − q23 − q22 − q23 = 1− 2(q22 + q23) (C.16)

The same simplification for r11 and r22 gives a much simpler inhomogeneous expres-

sion (3.32) for R.

C.2. Additional Mathematical Definitions 145

C.2.7 Rotate a 3D Vector by a Quaternion

A 3D vector in camera is represented as quaternion qv = 0 + xi + yj + zk and rotated

from camera i to j by a unit quaternion qji as given in [111]:

q′
v =qjiqvq

∗
ji

=(q0 + q1i+ q2j + q3k)(xi+ yj + zk)(q0 − q1i− q2j − q3k)

=(x(q20 + q21 − q22 − q23) + 2y(q1q2 − q0q3) + 2z(q0q2 + q1q3))i+

(2x(q0q3 + q1q2) + y(q20 − q21 + q22 − q23) + 2z(q2q3 − q0q1))j+

(2x(q1q3 − q0q2) + 2y(q0q1 + q2q3) + z(q20 − q21 − q22 + q23))k.

(C.17)

All the involved operations are performed only on real numbers and do not require any

costly trigonometric functions.

BIBLIOGRAPHY 147

Bibliography

[1] Agarwal, S., Furukawa, Y., Snavely, N., Simon, I., Curless, B., Seitz, S. M., and

Szeliski, R. (2011). Building rome in a day. Communications of the ACM, 54(10):105–

112. (page 13)

[2] Agarwal, S., Mierle, K., et al. (2012). Ceres solver. http: // ceres-solver. org .

(page 88)

[3] Arbelaez, P., Maire, M., Fowlkes, C., and Malik, J. (2010). Contour detection and

hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine

Intelligence (TPAMI), 33(5):898–916. (page 91, 92)

[4] Audras, C., Comport, A., Meilland, M., and Rives, P. (2011). Real-time dense

appearance-based slam for rgb-d sensors. In Australasian Conference on Robotics and

Automation, volume 2, pages 2–2. (page 18)

[5] Bailey, T. and Durrant-Whyte, H. (2006). Simultaneous localization and mapping

(slam): Part ii. IEEE Robotics & Automation Magazine, 13(3):108–117. (page 11)

[6] Baker, S. and Matthews, I. (2004). Lucas-kanade 20 years on: A unifying framework.

International Journal of Computer Vision (IJCV), 56(3):221–255. (page 53)

[7] Bay, H., Tuytelaars, T., and Van Gool, L. (2006). Surf: Speeded up robust features.

In Proceedings of European Conference on Computer Vision (ECCV), pages 404–417.

(page 13)

[8] Besl, P. J. and McKay, N. D. (1992). Method for registration of 3-d shapes. In

Sensor Fusion IV: Control Paradigms and Data Structures, volume 1611, pages 586–

606. (page 60)

[9] Blais, G. and Levine, M. D. (1995). Registering multiview range data to create 3d

computer objects. IEEE Transactions on Pattern Analysis and Machine Intelligence

(TPAMI), 17(8):820–824. (page 60)

[10] Blanco, J.-L. (2010). A tutorial on se (3) transformation parameterizations and on-

manifold optimization. University of Malaga, Technical Report, 3. (page 38, 54, 143,

144)

[11] Bouguet, J.-Y. (2004). Camera calibration toolbox for matlab. http://www. vision.

caltech. edu/bouguetj/calib doc/index. html. (page 29)

[12] Boyd, S., Xiao, L., and Mutapcic, A. (2003). Subgradient methods. Lecture notes of

EE392o, Stanford University, Autumn Quarter, 2004. (page 22)

[13] Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Journal of Software Tools.

(page 95, 110)

148

[14] Bu, S., Zhao, Y., Wan, G., Li, K., Cheng, G., and Liu, Z. (2017). Semi-direct

tracking and mapping with rgb-d camera for mav. Multimedia Tools and Applications,

76(3):4445–4469. (page 22, 23)

[15] Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I.,

and Leonard, J. J. (2016). Past, present, and future of simultaneous localization and

mapping: Toward the robust-perception age. IEEE Transactions on Robotics (T-RO),

32(6):1309–1332. (page 2, 5, 11)

[16] Canny, J. (1986). A computational approach to edge detection. IEEE Transactions

on Pattern Analysis and Machine Intelligence (TPAMI), (6):679–698. (page 15, 18, 19,

91, 92, 93, 95, 98, 99, 100, 101, 104, 126)

[17] Carlone, L., Tron, R., Daniilidis, K., and Dellaert, F. (2015). Initialization techniques

for 3d slam: a survey on rotation estimation and its use in pose graph optimization.

In Proceedings of the International Conference for Robotics and Automation (ICRA),

pages 4597–4604. (page 87)

[18] Caruso, D., Engel, J., and Cremers, D. (2015). Large-scale direct slam for omnidi-

rectional cameras. In Proceedings of the International Conference on Intelligent Robots

and Systems (IROS), pages 141–148. (page 17)

[19] Chen, Y., Davis, T. A., Hager, W. W., and Rajamanickam, S. (2008). Algorithm

887: Cholmod, supernodal sparse cholesky factorization and update/downdate. ACM

Transactions on Mathematical Software (TOMS), 35(3):22. (page 88)

[20] Chen, Y. and Medioni, G. (1992). Object modelling by registration of multiple range

images. Image and Vision Computing, 10(3):145–155. (page 60)

[21] Civera, J., Davison, A. J., and Montiel, J. M. (2008). Inverse depth parametrization

for monocular slam. IEEE Transactions on Robotics (T-RO), 24(5):932–945. (page 14,

33, 78)

[22] Comport, A. I., Malis, E., and Rives, P. (2007). Accurate quadrifocal tracking for

robust 3d visual odometry. In Proceedings of the International Conference for Robotics

and Automation (ICRA), pages 40–45. (page 17)

[23] Concha, A. and Civera, J. (2017). Rgbdtam: A cost-effective and accurate rgb-

d tracking and mapping system. In Proceedings of the International Conference on

Intelligent Robots and Systems (IROS), pages 6756–6763. (page 18, 19, 20, 24, 40, 41,

48, 123, 124, 125)

[24] Dai, A., Nießner, M., Zollöfer, M., Izadi, S., and Theobalt, C. (2017). Bundlefusion:

Real-time globally consistent 3d reconstruction using on-the-fly surface re-integration.

ACM Transactions on Graphics (TOG). (page 17, 18, 19, 21, 24, 123, 124, 125, 126,

127, 128)

BIBLIOGRAPHY 149

[25] Davison, A. J. (2003). Real-time simultaneous localization and mapping with a sin-

gle camera. In Proceedings of International Conference on Computer Vision (ICCV),

volume 3, pages 1403–1410. (page 14)

[26] Davison, A. J., Reid, I. D., Molton, N. D., and Stasse, O. (2007). Monoslam: Real-

time single camera slam. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence (TPAMI), (6):1052–1067. (page 13, 14)

[27] Diebel, J. (2006). Representing attitude: Euler angles, unit quaternions, and rotation

vectors. Matrix, 58(15-16):1–35. (page 33, 34)

[28] Dollár, P. and Zitnick, C. L. (2013). Structured forests for fast edge detection. In

Proceedings of International Conference on Computer Vision (ICCV), pages 1841–1848.

(page 92, 95, 98, 99, 100, 101, 103, 104)

[29] Dollár, P. and Zitnick, C. L. (2015). Fast edge detection using structured forests. IEEE

Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 37(8):1558–1570.

(page 92, 95, 98, 99, 100, 101, 103)

[30] Dong-Si, T.-C. and Mourikis, A. I. (2011). Motion tracking with fixed-lag smoothing:

Algorithm and consistency analysis. In Proceedings of the International Conference for

Robotics and Automation (ICRA), pages 5655–5662. (page 79)

[31] Durrant-Whyte, H. and Bailey, T. (2006). Simultaneous localization and mapping:

part i. IEEE Robotics & Automation Magazine, 13(2):99–110. (page 2, 11)

[32] Eade, E. (2013). Lie groups for 2d and 3d transformations. http: // ethaneade.

com/ lie. pdf . (page 38, 79)

[33] Eade, E. and Drummond, T. (2006a). Edge landmarks in monocular slam. In Pro-

ceedings of British Machine Vision Conference (BMVC), pages 7–16. (page 15, 23,

50)

[34] Eade, E. and Drummond, T. (2006b). Scalable monocular slam. In Proceedings of

Computer Vision and Pattern Recognition (CVPR), pages 469–476. (page 14, 15)

[35] Eade, E. and Drummond, T. (2009). Edge landmarks in monocular slam. Image and

Vision Computing, 27(5):588–596. (page 49, 50)

[36] Endres, F., Hess, J., Sturm, J., Cremers, D., and Burgard, W. (2014). 3-d mapping

with an rgb-d camera. IEEE Transactions on Robotics (T-RO), 30(1):177–187. (page 11,

13, 14, 16, 24, 50, 123, 125, 126)

[37] Engel, J., Koltun, V., and Cremers, D. (2018). Direct sparse odometry. IEEE

Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 40(3):611–625.

(page 12, 17, 21, 23, 24, 27, 40, 41, 48, 53, 67, 69, 72, 73, 78, 79, 80)

150

[38] Engel, J., Schöps, T., and Cremers, D. (2014). Lsd-slam: Large-scale direct monocular

slam. In Proceedings of European Conference on Computer Vision (ECCV), pages 834–

849. (page 12, 17, 21, 24, 27, 32, 40, 41, 48, 53, 67)

[39] Engel, J., Stückler, J., and Cremers, D. (2015). Large-scale direct slam with stereo

cameras. In Proceedings of the International Conference on Intelligent Robots and Sys-

tems (IROS), pages 1935–1942. (page 17)

[40] Engel, J., Sturm, J., and Cremers, D. (2013). Semi-dense visual odometry for a

monocular camera. In Proceedings of International Conference on Computer Vision

(ICCV), pages 1449–1456. (page 17, 21, 40)

[41] Engel, J.-J. (2017). Large-Scale Direct SLAM and 3D Reconstruction in Real-Time.

PhD thesis, Technische Universität München. (page 79, 80)

[42] Fabbri, R., Costa, L. D. F., Torelli, J. C., and Bruno, O. M. (2008). 2d euclidean dis-

tance transform algorithms: A comparative survey. ACM Computing Surveys (CSUR),

40(1):2. (page 51)

[43] Fang, M., Yue, G., and Yu, Q. (2009). The study on an application of otsu method

in canny operator. In Proceedings of the International Symposium on Information Pro-

cessing (ISIP), page 109. (page 96)

[44] Felzenszwalb, P. F. and Huttenlocher, D. P. (2012). Distance transforms of sampled

functions. Theory of Computing, 8:415–428. (page 18, 51)

[45] Ferstl, D., Reinbacher, C., Riegler, G., Rüther, M., and Bischof, H. (2015). Learning

depth calibration of time-of-flight cameras. In Proceedings of British Machine Vision

Conference (BMVC). (page 29)

[46] Firman, M. (2016). Rgbd datasets: Past, present and future. In Conference on Com-

puter Vision and Pattern Recognition (CVPR) – Workshops, pages 19–31. (page 107)

[47] Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus: a paradigm for

model fitting with applications to image analysis and automated cartography. Commu-

nications of the ACM, 24:381–395. (page 13)

[48] Fitzgibbon, A. W. (2003). Robust registration of 2d and 3d point sets. Image and

Vision Computing, 21(13-14):1145–1153. (page 60)

[49] Forster, C., Pizzoli, M., and Scaramuzza, D. (2014). Svo: Fast semi-direct monoc-

ular visual odometry. In Proceedings of the International Conference for Robotics and

Automation (ICRA), pages 15–22. (page 21, 22, 23)

[50] Forster, C., Zhang, Z., Gassner, M., Werlberger, M., and Scaramuzza, D. (2016). Svo:

Semidirect visual odometry for monocular and multicamera systems. IEEE Transactions

on Robotics (T-RO), 33(2):249–265. (page 21, 23, 24)

BIBLIOGRAPHY 151

[51] Fraundorfer, F. and Scaramuzza, D. (2012). Visual odometry: Part ii: Matching,

robustness, optimization, and applications. IEEE Robotics & Automation Magazine,

19(2):78–90. (page 3, 11)

[52] Gálvez-López, D. and Tardos, J. D. (2012). Bags of binary words for fast place

recognition in image sequences. IEEE Transactions on Robotics (T-RO), 28(5):1188–

1197. (page 16, 19)

[53] Gao, X., Wang, R., Demmel, N., and Cremers, D. (2018). Ldso: Direct sparse odom-

etry with loop closure. In Proceedings of the International Conference on Intelligent

Robots and Systems (IROS), pages 2198–2204. (page 22)

[54] Geneva, P., Maley, J., and Huang, G. (2019). An efficient schmidt-ekf for 3d visual-

inertial slam. In Proceedings of Computer Vision and Pattern Recognition (CVPR),

pages 12105–12115. (page 14)

[55] Glocker, B., Shotton, J., Criminisi, A., and Izadi, S. (2015). Real-time rgb-d camera

relocalization via randomized ferns for keyframe encoding. IEEE Transactions on Vi-

sualization and Computer Graphics, 21(5):571–583. (page 19, 20, 24, 82, 83, 85, 86, 90,

131)

[56] Glover, A., Maddern, W., Warren, M., Reid, S., Milford, M., and Wyeth, G. (2012).

Openfabmap: An open source toolbox for appearance-based loop closure detection. In

Proceedings of the International Conference for Robotics and Automation (ICRA), pages

4730–4735. (page 21, 24, 85)

[57] Goldman, R. (2010). Rethinking quaternions. Synthesis Lectures on Computer Graph-

ics and Animation, 4(1):1–157. (page 34, 35)

[58] Gong, X.-Y., Su, H., Xu, D., Zhang, Z.-T., Shen, F., and Yang, H.-B. (2018). An

overview of contour detection approaches. International Journal of Automation and

Computing, 15(6):656–672. (page 91)

[59] Grassia, F. S. (1998). Practical parameterization of rotations using the exponential

map. Journal of Graphics Tools, 3(3):29–48. (page 38)

[60] Grisetti, G., Kummerle, R., Stachniss, C., and Burgard, W. (2010). A tutorial

on graph-based slam. IEEE Intelligent Transportation Systems Magazine, 2(4):31–43.

(page 87)

[61] Han, J., Shao, L., Xu, D., and Shotton, J. (2013). Enhanced computer vision with

microsoft kinect sensor: A review. IEEE Transactions on Cybernetics, 43(5):1318–1334.

(page 5)

152

[62] Handa, A., Whelan, T., McDonald, J., and Davison, A. J. (2014). A benchmark for

rgb-d visual odometry, 3d reconstruction and slam. In Proceedings of the International

Conference for Robotics and Automation (ICRA), pages 1524–1531. (page 59, 108, 109,

110, 111, 115)

[63] Harris, C. and Stennett, C. (1990). Rapid-a video rate object tracker. In Proceedings

of British Machine Vision Conference (BMVC), pages 1–6. (page 13)

[64] Hartley, R., Trumpf, J., Dai, Y., and Li, H. (2013). Rotation averaging. International

Journal of Computer Vision (IJCV), 103(3):267–305. (page 87, 88)

[65] Hartley, R. and Zisserman, A. (2003). Multiple View Geometry. Cambridge University

Press. (page 13, 28, 29, 73, 77)

[66] He, J., Zhang, S., Yang, M., Shan, Y., and Huang, T. (2019). Bi-directional cascade

network for perceptual edge detection. In Proceedings of Computer Vision and Pattern

Recognition (CVPR), pages 3828–3837. (page 92, 95, 98, 99, 100, 101, 103, 104, 124,

126)

[67] Heinly, J., Schonberger, J. L., Dunn, E., and Frahm, J.-M. (2015). Reconstructing the

world* in six days*(as captured by the yahoo 100 million image dataset). In Proceedings

of Computer Vision and Pattern Recognition (CVPR), pages 3287–3295. (page 13)

[68] Henry, P., Krainin, M., Herbst, E., Ren, X., and Fox, D. (2012). Rgb-d mapping:

Using kinect-style depth cameras for dense 3d modeling of indoor environments. The

International Journal of Robotics Research (IJRR), 31(5):647–663. (page 14)

[69] Horn, B. K. (1987). Closed-form solution of absolute orientation using unit quater-

nions. Journal of the Optical Society of America A, 4(4):629–642. (page 60, 110)

[70] Horn, B. K. (2001). Some notes on unit quaternions and rotation. Lecture Handouts.

(page 36)

[71] Hsiung, S.-C. J. (2018). Toward invariant visual-inertial state estimation using in-

formation sparsification. Master’s thesis, Carnegie Mellon University Pittsburgh, PA.

(page 78)

[72] Hu, M.-K. (1962). Visual pattern recognition by moment invariants. IRE Transactions

on Information Theory, 8(2):179–187. (page 16)

[73] Huang, A. S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., and Roy,

N. (2017). Visual odometry and mapping for autonomous flight using an rgb-d camera.

In The International Journal of Robotics Research (IJRR), pages 235–252. Springer.

(page 14, 24, 117, 119, 120, 121, 122, 128)

BIBLIOGRAPHY 153

[74] Huang, G. P., Mourikis, A. I., and Roumeliotis, S. I. (2009). A first-estimates jacobian

ekf for improving slam consistency. In Experimental Robotics, pages 373–382. (page 78)

[75] Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton,

J., Hodges, S., Freeman, D., Davison, A., et al. (2011). Kinectfusion: real-time 3d

reconstruction and interaction using a moving depth camera. In Proceedings of ACM

Symposium on User Interface Software and Technology, pages 559–568. (page 17)

[76] Jose Tarrio, J. and Pedre, S. (2015). Realtime edge-based visual odometry for a

monocular camera. In Proceedings of International Conference on Computer Vision

(ICCV), pages 702–710. (page 18, 50)

[77] Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J. J., and Dellaert, F.

(2012). isam2: Incremental smoothing and mapping using the bayes tree. The Interna-

tional Journal of Robotics Research (IJRR), 31(2):216–235. (page 73)

[78] Kähler, O., Prisacariu, V. A., and Murray, D. W. (2016). Real-time large-scale

dense 3d reconstruction with loop closure. In Proceedings of European Conference on

Computer Vision (ECCV), pages 500–516. (page 11, 17, 19, 20, 21, 24, 48, 60, 82, 86,

128)

[79] Kähler, O., Prisacariu, V. A., Ren, C. Y., Sun, X., Torr, P., and Murray, D. (2015).

Very high frame rate volumetric integration of depth images on mobile devices. IEEE

Transactions on Visualization and Computer Graphics, 21(11):1241–1250. (page 11, 17,

20, 21, 25, 48, 120, 124, 126)

[80] Kerl, C., Sturm, J., and Cremers, D. (2013a). Dense visual slam for rgb-d cameras. In

Proceedings of the International Conference on Intelligent Robots and Systems (IROS),

pages 2100–2106. (page 17, 18, 20, 24, 40, 48, 53, 67, 123, 124, 125, 126, 127)

[81] Kerl, C., Sturm, J., and Cremers, D. (2013b). Robust odometry estimation for rgb-d

cameras. In Proceedings of the International Conference for Robotics and Automation

(ICRA), pages 3748–3754. (page 18, 21, 22, 24, 40, 48, 53, 67, 71, 115, 119, 121, 122,

128)

[82] Keselman, L., Iselin Woodfill, J., Grunnet-Jepsen, A., and Bhowmik, A. (2017). Intel

realsense stereoscopic depth cameras. In Conference on Computer Vision and Pattern

Recognition (CVPR) – Workshops, pages 1–10. (page 5)

[83] Kittler, J. (1983). On the accuracy of the sobel edge detector. Image and Vision

Computing, 1(1):37–42. (page 91)

[84] Klein, G. and Murray, D. (2007). Parallel tracking and mapping for small ar

workspaces. In Proceedings of the International Symposium on Mixed and Augmented

Reality (ISMAR), pages 1–10. (page 4, 13, 14, 15, 16, 23, 24, 50)

154

[85] Klein, G. and Murray, D. (2008). Improving the agility of keyframe-based slam.

In Proceedings of European Conference on Computer Vision (ECCV), pages 802–815.

(page 13, 14, 15, 49, 50)

[86] Klein, G. S. and Drummond, T. W. (2004). Tightly integrated sensor fusion for robust

visual tracking. Image and Vision Computing, 22(10):769–776. (page 15)

[87] Klose, S., Heise, P., and Knoll, A. (2013). Efficient compositional approaches for real-

time robust direct visual odometry from rgb-d data. In Proceedings of the International

Conference on Intelligent Robots and Systems (IROS), pages 1100–1106. (page 53)

[88] Kneip, L., Yi, Z., and Li, H. (2015). Sdicp: Semi-dense tracking based on iterative

closest points. In Proceedings of British Machine Vision Conference (BMVC), pages

100–1. (page 22, 52)

[89] Kuse, M. P. and Shen, S. (2016). Robust camera motion estimation using direct edge

alignment and sub-gradient method. In Proceedings of the International Conference for

Robotics and Automation (ICRA). (page 18, 22, 24, 41, 67, 71, 92, 129)

[90] Lam, L., Lee, S.-W., and Suen, C. Y. (1992). Thinning methodologies-a comprehen-

sive survey. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),

14(9):869–885. (page 95)

[91] Lee, S. H. and Civera, J. (2018). Loosely-coupled semi-direct monocular slam. IEEE

Robotics and Automation Letters (R-AL), 4(2):399–406. (page 21, 23, 24)

[92] Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., and Furgale, P. (2015). Keyframe-

based visual–inertial odometry using nonlinear optimization. The International Journal

of Robotics Research (IJRR), 34(3):314–334. (page 13, 14, 21, 67, 72, 73, 78, 79, 80)

[93] Levenberg, K. (1944). A method for the solution of certain non-linear problems in

least squares. Quarterly of applied mathematics, 2(2):164–168. (page 44, 88)

[94] Li, M. and Mourikis, A. I. (2012). Improving the accuracy of ekf-based visual-inertial

odometry. In Proceedings of the International Conference for Robotics and Automation

(ICRA), pages 828–835. (page 14)

[95] Li, M. and Mourikis, A. I. (2013). High-precision, consistent ekf-based visual-inertial

odometry. The International Journal of Robotics Research (IJRR), 32(6):690–711.

(page 14)

[96] Li, S., Handa, A., Zhang, Y., and Calway, A. (2016). Hdrfusion: Hdr slam using a

low-cost auto-exposure rgb-d sensor. In International Conference on 3D Vision (3DV),

pages 314–322. (page 96, 98)

BIBLIOGRAPHY 155

[97] Li, S.-p., Zhang, T., Gao, X., Wang, D., and Xian, Y. (2019). Semi-direct monocular

visual and visual-inertial slam with loop closure detection. Robotics and Autonomous

Systems, 112:201–210. (page 23)

[98] Liu, H., Chen, M., Zhang, G., Bao, H., and Bao, Y. (2018). Ice-ba: Incremental,

consistent and efficient bundle adjustment for visual-inertial slam. In Proceedings of

Computer Vision and Pattern Recognition (CVPR), pages 1974–1982. (page 131)

[99] Liu, H., Li, C., Chen, G., Zhang, G., Kaess, M., and Bao, H. (2017a). Robust

keyframe-based dense slam with an rgb-d camera. arXiv preprint arXiv:1711.05166.

(page 18, 21, 98, 123, 125, 126, 131)

[100] Liu, Y., Cheng, M.-M., Hu, X., Bian, J.-W., Zhang, L., Bai, X., and Tang, J.

(2019). Richer convolutional features for edge detection. IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI). (page 92, 95, 98, 99, 100, 101, 103, 104,

124, 126)

[101] Liu, Y., Cheng, M.-M., Hu, X., Wang, K., and Bai, X. (2017b). Richer convolutional

features for edge detection. In Proceedings of Computer Vision and Pattern Recognition

(CVPR), pages 3000–3009. (page 92, 95, 103, 124, 126)

[102] Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. In-

ternational Journal of Computer Vision (IJCV), 60(2):91–110. (page 13, 15)

[103] Lowry, S., Sünderhauf, N., Newman, P., Leonard, J. J., Cox, D., Corke, P., and

Milford, M. J. (2015). Visual place recognition: A survey. IEEE Transactions on

Robotics (T-RO), 32(1):1–19. (page 82)

[104] Madsen, K., Nielsen, H. B., and Tingleff, O. (1999). Methods for non-linear least

squares problems. In Informatics and Mathematical Modelling. (page 42, 44)

[105] Maity, S., Saha, A., and Bhowmick, B. (2017). Edge slam: Edge points based

monocular visual slam. In Proceedings of International Conference on Computer Vision

(ICCV), pages 2408–2417. (page 14, 16, 50)

[106] Marler, R. T. and Arora, J. S. (2010). The weighted sum method for multi-objective

optimization: new insights. Structural and multidisciplinary optimization, 41(6):853–

862. (page 61)

[107] Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear

parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2):431–

441. (page 44, 88)

[108] Marr, D. and Hildreth, E. (1980). Theory of edge detection. Proceedings of the Royal

Society of London. Series B. Biological Sciences, 207(1167):187–217. (page 91)

156

[109] Martin, D. R., Fowlkes, C. C., and Malik, J. (2004). Learning to detect natural

image boundaries using local brightness, color, and texture cues. IEEE Transactions

on Pattern Analysis and Machine Intelligence (TPAMI), (5):530–549. (page 91)

[110] Maurer, M., Puerta, J. P., Fraundorfer, F., and Bischof, H. (2018). Towards an

autonomous vision-based inventory drone. In International Conference on Intelligent

Robots and Systems (IROS)–Workshop on Robotics for Logistics. (page 7)

[111] Mordechai, B.-A. (2014). A tutorial on euler angles and quaternions. Weizmann

Institute of Science, Tutorial, 1. (page 36, 145)

[112] Mourikis, A. I. and Roumeliotis, S. I. (2007). A multi-state constraint kalman filter

for vision-aided inertial navigation. In Proceedings of the International Conference for

Robotics and Automation (ICRA), pages 3565–3572. (page 14)

[113] Mourikis, A. I., Trawny, N., Roumeliotis, S. I., Johnson, A. E., Ansar, A., and

Matthies, L. (2009). Vision-aided inertial navigation for spacecraft entry, descent, and

landing. IEEE Transactions on Robotics (T-RO), 25(2):264–280. (page 14)

[114] Mur-Artal, R., Montiel, J., and Tardós, J. D. (2015). Orb-slam: a versatile and

accurate monocular slam system. IEEE Transactions on Robotics (T-RO), 31(5):1147–

1163. (page 14, 15, 23, 73)

[115] Mur-Artal, R. and Tardós, J. D. (2014). Fast relocalization and loop closing in

keyframe-based slam. In Proceedings of the International Conference for Robotics and

Automation (ICRA), pages 846–853. (page 21, 24, 85)

[116] Mur-Artal, R. and Tardós, J. D. (2017). Orb-slam2: An open-source slam system

for monocular, stereo, and rgb-d cameras. IEEE Transactions on Robotics (T-RO),

33(5):1255–1262. (page 11, 13, 14, 15, 16, 19, 20, 24, 50, 67, 117, 120, 121, 122, 123,

124, 125, 126, 127)

[117] Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A. J.,

Kohli, P., Shotton, J., Hodges, S., and Fitzgibbon, A. (2011a). Kinectfusion: Real-time

dense surface mapping and tracking. In Proceedings of the International Symposium on

Mixed and Augmented Reality (ISMAR), pages 127–136. (page 11, 17, 19, 20, 21, 48,

60, 120)

[118] Newcombe, R. A., Lovegrove, S. J., and Davison, A. J. (2011b). Dtam: Dense track-

ing and mapping in real-time. In Proceedings of International Conference on Computer

Vision (ICCV), pages 2320–2327. (page 25)

[119] Nießner, M., Zollhöfer, M., Izadi, S., and Stamminger, M. (2013). Real-time 3d

reconstruction at scale using voxel hashing. ACM Transactions on Graphics (TOG),

32(6):169. (page 17, 20)

BIBLIOGRAPHY 157

[120] Nistér, D., Naroditsky, O., and Bergen, J. (2004). Visual odometry. In Proceedings

of Computer Vision and Pattern Recognition (CVPR), volume 1, pages I–652. (page 3,

13, 14)

[121] Nocedal, J. and Wright, S. J. (2006). Numerical Optimization. Springer, New York,

NY, USA, second edition. (page 41, 42, 44, 88)

[122] Ozuysal, M., Calonder, M., Lepetit, V., and Fua, P. (2009). Fast keypoint recognition

using random ferns. IEEE Transactions on Pattern Analysis and Machine Intelligence

(TPAMI), 32(3):448–461. (page 82)

[123] Paz, L. M., Piniés, P., Tardós, J. D., and Neira, J. (2008). Large-scale 6-dof slam

with stereo-in-hand. IEEE Transactions on Robotics (T-RO), 24(5):946–957. (page 15)

[124] Ranganathan, A., Kaess, M., and Dellaert, F. (2007). Fast 3d pose estimation

with out-of-sequence measurements. In Proceedings of the International Conference on

Intelligent Robots and Systems (IROS), pages 2486–2493. (page 79)

[125] Rosenfeld, A. and Pfaltz, J. L. (1968). Distance functions on digital pictures. Pattern

Recognition, 1(1):33–61. (page 51)

[126] Rosten, E. and Drummond, T. (2006). Machine learning for high-speed corner

detection. In Proceedings of European Conference on Computer Vision (ECCV), pages

430–443. (page 13, 15)

[127] Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. (2011). Orb: An efficient

alternative to sift or surf. In Proceedings of International Conference on Computer

Vision (ICCV), pages 2564–2571. (page 13, 15, 21, 85)

[128] Rusinkiewicz, S. and Levoy, M. (2001). Efficient variants of the icp algorithm. In

3-D Digital Imaging and Modeling, pages 145–152. (page 60, 61)

[129] Rusu, R. B. (2009). Semantic 3D Object Maps for Everyday Manipulation in Human

Living Environments. PhD thesis, Computer Science Department, Technische Univer-

sität Muenchen, Germany. (page 60)

[130] Sarabandi, S. and Thomas, F. (2018). Accurate computation of quaternions from

rotation matrices. In International Symposium on Advances in Robot Kinematics, pages

39–46. (page 34, 35)

[131] Scaramuzza, D. and Fraundorfer, F. (2011). Visual odometry [tutorial]. IEEE

Robotics & Automation Magazine, 18(4):80–92. (page 3, 11)

[132] Schenk, F. and Fraundorfer, F. (2017a). Combining edge images and depth maps for

robust visual odometry. In Proceedings of British Machine Vision Conference (BMVC).

(page 8, 9, 12, 18, 24, 47, 57, 59, 65, 67, 68, 71, 89, 90, 93, 94, 107, 111, 114, 119)

158

[133] Schenk, F. and Fraundorfer, F. (2017b). Robust edge-based visual odometry using

machine learned edges. In Proceedings of the International Conference on Intelligent

Robots and Systems (IROS), pages 1297–1304. (page 8, 9, 12, 18, 22, 24, 41, 47, 57, 64,

65, 67, 68, 71, 89, 107, 114, 119)

[134] Schenk, F. and Fraundorfer, F. (2019). Reslam: A robust edge-based slam system.

In Proceedings of the International Conference for Robotics and Automation (ICRA),

pages 154–160. (page 8, 9, 20, 24, 47, 58, 67, 71, 72, 81, 82, 85, 86, 89, 90, 93, 94, 107,

114, 119, 121, 122)

[135] Schonberger, J. L. and Frahm, J.-M. (2016). Structure-from-motion revisited. In

Proceedings of Computer Vision and Pattern Recognition (CVPR), pages 4104–4113.

(page 13)

[136] Schops, T., Sattler, T., and Pollefeys, M. (2019). Bad slam: Bundle adjusted direct

rgb-d slam. In Proceedings of Computer Vision and Pattern Recognition (CVPR), pages

134–144. (page 17, 18, 20, 24, 108, 109, 111, 123, 124, 125, 127, 128)

[137] Schubert, D., Demmel, N., Usenko, V., Stuckler, J., and Cremers, D. (2018). Di-

rect sparse odometry with rolling shutter. In Proceedings of European Conference on

Computer Vision (ECCV), pages 682–697. (page 22)

[138] Segal, A., Haehnel, D., and Thrun, S. (2009). Generalized-icp. In Robotics: Science

and Systems (RSS), volume 2, page 435. (page 14)

[139] Shen, W., Wang, X., Wang, Y., Bai, X., and Zhang, Z. (2015). Deepcontour: A

deep convolutional feature learned by positive-sharing loss for contour detection. In

Proceedings of Computer Vision and Pattern Recognition (CVPR), pages 3982–3991.

(page 92, 95, 98, 99, 100, 101, 103)

[140] Sibley, G. (2006). Sliding window filters for slam. Technical Report CRES-06–004,

University of Southern California, Center for Robotics and Embedded Systems. (page 79)

[141] Silberman, N., Hoiem, D., Kohli, P., and Fergus, R. (2012). Indoor segmentation

and support inference from rgbd images. In Proceedings of European Conference on

Computer Vision (ECCV), pages 746–760. (page 92, 97, 100)

[142] Smith, P., Reid, I., and Davison, A. (2006). Real-time monocular slam with

straight lines. Proceedings of British Machine Vision Conference (BMVC), pages 17–26.

(page 49)

[143] Steinbrücker, F., Sturm, J., and Cremers, D. (2011). Real-time visual odometry

from dense rgb-d images. In International Conference on Computer Vision (ICCV) –

Workshops, pages 719–722. (page 18)

BIBLIOGRAPHY 159

[144] Strasdat, H. (2012). Local accuracy and global consistency for efficient visual SLAM.

PhD thesis, Department of Computing, Imperial College London. (page 32, 79, 87)

[145] Strasdat, H., Davison, A. J., Montiel, J. M., and Konolige, K. (2011). Double window

optimisation for constant time visual slam. In Proceedings of International Conference

on Computer Vision (ICCV), pages 2352–2359. (page 15, 73)

[146] Strasdat, H., Montiel, J. M., and Davison, A. J. (2012). Visual slam: why filter?

Image and Vision Computing, 30(2):65–77. (page 14)

[147] Sturm, J., Engelhard, N., Endres, F., Burgard, W., and Cremers, D. (2012). A

benchmark for the evaluation of rgb-d slam systems. In Proceedings of the International

Conference on Intelligent Robots and Systems (IROS), pages 573–580. (page 40, 59, 62,

63, 88, 97, 101, 102, 104, 108, 109, 110, 111, 115, 119)

[148] Szeliski, R. (2010). Computer vision: algorithms and applications. (page 29, 38)

[149] Taketomi, T., Uchiyama, H., and Ikeda, S. (2017). Visual slam algorithms: a survey

from 2010 to 2016. IPSJ Transactions on Computer Vision and Applications, 9(1):16.

(page 3, 11)

[150] Triggs, B., McLauchlan, P. F., Hartley, R. I., and Fitzgibbon, A. W. (1999). Bundle

adjustment–a modern synthesis. In International Workshop on Vision Algorithms, pages

298–372. (page 13, 73, 77)

[151] Tykkälä, T., Audras, C., and Comport, A. I. (2011). Direct iterative closest

point for real-time visual odometry. In International Conference on Computer Vision–

Workshops, pages 2050–2056. (page 18)

[152] Unknown Author, W. C. (2020). Camera obscura. https: // commons. wikimedia.

org/ wiki/ File: 001_ a01_ camera_ obscura_ abrazolas. jpg . (page 29)

[153] Usenko, V., Engel, J., Stückler, J., and Cremers, D. (2016). Direct visual-inertial

odometry with stereo cameras. In Proceedings of the International Conference for

Robotics and Automation (ICRA). (page 17)

[154] Wang, X., Wei, D., Zhou, M., Li, R., Zha, H., and Beijing, C. (2016). Edge enhanced

direct visual odometry. In Proceedings of British Machine Vision Conference (BMVC).

(page 18, 22, 92)

[155] Weilharter, R. J., Schenk, F., and Fraundorfer, F. (2018). Globally consistent dense

real-time 3d reconstruction from rgbd data. In OAGM Workshop 2018: Medical Image

Analysis. (page 21)

160

[156] Whelan, T., Johannsson, H., Kaess, M., Leonard, J. J., and McDonald, J. (2013).

Robust real-time visual odometry for dense rgb-d mapping. In Proceedings of the Inter-

national Conference for Robotics and Automation (ICRA), pages 5724–5731. (page 17,

19, 20, 21, 24, 48)

[157] Whelan, T., Kaess, M., Fallon, M., Johannsson, H., Leonard, J., and McDonald,

J. (2012). Kintinuous: Spatially extended kinectfusion. In RSS Workshop on RGB-D:

Advanced Reasoning with Depth Cameras, Sydney, Australia. (page 17, 115, 121, 122,

123, 125, 126, 128)

[158] Whelan, T., Kaess, M., Johannsson, H., Fallon, M., Leonard, J. J., and McDonald, J.

(2015). Real-time large-scale dense rgb-d slam with volumetric fusion. The International

Journal of Robotics Research (IJRR), 34(4-5):598–626. (page 17, 18, 24, 25)

[159] Whelan, T., Salas-Moreno, R. F., Glocker, B., Davison, A. J., and Leutenegger, S.

(2016). Elasticfusion: Real-time dense slam and light source estimation. The Interna-

tional Journal of Robotics Research (IJRR), 35(14):1697–1716. (page 17, 18, 19, 20, 24,

48, 60, 82, 86, 123, 124, 125, 126, 127, 128)

[160] Williams, B., Cummins, M., Neira, J., Newman, P., Reid, I., and Tardós, J. (2009).

A comparison of loop closing techniques in monocular slam. Robotics and Autonomous

Systems, 57(12):1188–1197. (page 82)

[161] Xie, S. and Tu, Z. (2015). Holistically-nested edge detection. In Proceedings of

International Conference on Computer Vision (ICCV), pages 1395–1403. (page 92, 95,

96, 98, 99, 100, 101, 103, 104)

[162] Yousif, K., Bab-Hadiashar, A., and Hoseinnezhad, R. (2015). An overview to vi-

sual odometry and visual slam: Applications to mobile robotics. Intelligent Industrial

Systems, 1(4):289–311. (page 11)

[163] Zhang, Z. (2012). Microsoft kinect sensor and its effect. IEEE Multimedia, 19(2):4–

10. (page 5)

[164] Zhou, Y., Kneip, L., and Li, H. (2017). Semi-dense visual odometry for rgb-d

cameras using approximate nearest neighbour fields. In Proceedings of the International

Conference for Robotics and Automation (ICRA), pages 6261–6268. (page 22, 24, 52,

117, 121, 122)

[165] Zhou, Y., Li, H., and Kneip, L. (2019). Canny-vo: Visual odometry with rgb-d

cameras based on geometric 3-d–2-d edge alignment. IEEE Transactions on Robotics

(T-RO), 35(1):184–199. (page 22, 24, 52, 92, 117, 119, 121, 122)

[166] Ziou, D. and Tabbone, S. (1998). Edge detection techniques-an overview. Pattern

Recognition and Image Analysis, 8:537–559. (page 91)

	Introduction
	Challenges and Limitations in SLAM
	Applications for SLAM and VO
	Contributions
	Thesis Outline

	Related Work
	Indirect Methods
	Direct Methods
	Semi-Direct Methods
	Conclusion

	Direct Methods - Theory and Background
	Notations and Conventions
	Camera Model and 3D Rigid Body Motions
	Euler Angles
	Unit Quaternions
	Lie Group for 3D Rigid Body Motions

	Direct Image Alignment
	Robust Parameter Estimation
	The Gauss-Newton Method
	The Levenberg-Marquardt method
	Iteratively Reweighted Linear Least Squares

	Conclusion

	Edge-based Simultaneous Localization and Mapping
	Camera Motion Estimation
	Direct Edge-based Camera Motion Estimation
	Edge-based Pose Estimation in SE(3)
	Edge- and ICP-based Relative Pose Estimation
	Optimizing the Geometric Error on SE(3)

	Edge-based Quality Assessment
	Keyframe Management
	Keyframe Management for VO
	Keyframe Management for SLAM

	Local Mapper
	Optimization on Spatially Close Keyframes
	Local Bundle Adjustment
	Building the Factor Graph
	Windowed Optimization Problem
	Marginalization

	Global Mapper
	Fern-based Place Recognition
	Relocalization
	Loop Closure

	Conclusion

	Edge Detection
	Edge Detection on Multiple-Scales
	Multi-Level Edge Detection with Edge Enhancement (MLD+EE)
	Single Level Edge Detection (SLD)

	Evaluation of Edge Detectors
	Qualitative Evaluations
	Quantitative Evaluations

	Conclusion

	Experiments and Results
	Experimental Setup
	Benchmark Datasets
	Evaluation Metrics
	Implementation Details

	Comparison of our Contributions
	Visual Odometry Evaluations
	SLAM Evaluations
	Conclusion

	Conclusion
	Summary
	Outlook

	List of Acronyms and Symbols
	List of Publications
	Publications related to this Thesis
	Other Publications

	Appendix
	Efficient Jacobian and Hessian computations
	Additional Mathematical Definitions
	The Iverson Bracket
	The vec Operator
	The Skew-symmetric Matrix
	The Kronecker Product
	Matrix Derivatives
	General Conversion of a Quaternion to a Rotation Matrix
	Rotate a 3D Vector by a Quaternion

	Bibliography

