CO - MODULAR

Nachhaltige Wiederverwendung von Container zur Erschaffung von neuen Schülerwohnheimen

Jaka Sušnik, BSc

CO-MODULAR

Nachhaltige Wiederverwendung von Container zur Erschaffung von neuen Schülerwohnheimen

MASTERARBEIT

zur Erlangung des akademischen Grades Diplom-Ingenieur Masterstudium Architektur

eingereicht an der

Technischen Universität Graz

Betreuerin Assoc.Prof. Dipl.-Ing. Dr.techn. Milena Stavric

Institut für Architektur und Medien

Graz , April 2020

EIDESSTATTLICHE ERKLÄRUNG

angegebenen Quellen/Hilfsmittel inhaltlich entnommenen Stellen a	n die vorliegende Arbeit selbstständig verfasst, andere als die nicht benutzt, und die den benutzten Quellen wörtlich und Is solche kenntlich gemacht habe. Das in TUGRAZonline der vorliegenden Masterarbeit identisch.
 Datum	Unterschrift

GENDER ERKLÄRUNG

Aus Gründen der besseren Lesbarkeit wird in dieser Diplomarbeit die Sprachform des generischen Maskulinums angewendet. Es wird an dieser Stelle darauf hingewiesen, dass die ausschließliche Verwendung der männlichen Form geschlechtsunabhängig verstanden werden soll.

für meine Eltern

VORWORT

"Lernen ist wie Rudern gegen den Strom.

Hört man damit auf, treibt man zurück."

- Laozi

Jedes Leben hat eine begrenzte Zeit auf dieser Welt, in welcher Höhen und Tiefen zu durchleben sind. Durch diese Erfahrungen, ob gut oder schlecht, können Menschen lernen und wachsen. Mit dieser Arbeit schließt sich ein Kapitel in meinem Leben. Das Studium hat mir vieles beigebracht, nicht nur über die Architektur, sondern auch über das Leben, weil das ganze Leben ein Lernprozess ist, welcher uns bildet und zu dem macht, wer wir sind. Mit diesem Wissen beginne ich jetzt mein nächstes Kapitel.

DANKSAGUNG

Zuerst möchte ich mich bei Frau Professor Milena Stavric für ihre menschliche und immer geistreiche Betreuung bedanken. Ihre Tipps und Hinweise haben mir bei dieser Arbeit sehr geholfen und werden mir auch in Zukunft immer wieder von Nutzen sein.

Mein Dank geht auch an Ines, die mir schon das ganze Studium über zur Seite steht. Danke für deine Unterstützung und dein Verständnis in all den Nächten, in denen du nicht in Ruhe schlafen konntest, weil mein Computer zu laut war.

Zu guter Letzt geht mein Dank den wohl wichtigsten Personen in meinem Leben. Danke Mama und Papa, dass ihr mich schon seit meiner Geburt immer unterstützt und geliebt habt. Ohne eure Unterstützung wären viele Dinge im meinem Leben nicht möglich gewesen, dazu gehört auch das Architekturstudium. Deshalb widme ich euch diese Arbeit als ein kleines Dankeschön für alles.

ABSTRACT

Der theoretische Teil dieser Arbeit soll einen Überblick über das Thema ermöglichen und die Grundlage für den Entwurf bilden. Die ausgewählten Projekte sollen dazu dienen, die Richtung darzustellen, in welche sich der Entwurf bewegt. Das gesamte Konzept beruht auf der Idee des gemeinschaftlichen Wohnens der Mittelschüler in einem Schülerwohnheim. Der Entwurf besteht aus alten Containern, die als präfabrizierte Module wiederverwendet werden sollen. Er soll dem ausgewählten, leeren Standort einen Verwendungszweck geben und eine verbesserte Verbindung zwischen dem Gebiet hinter dem Hauptbahnhof in Ljubljana und der Stadt herstellen.

INHALTSVERZEICHNISS

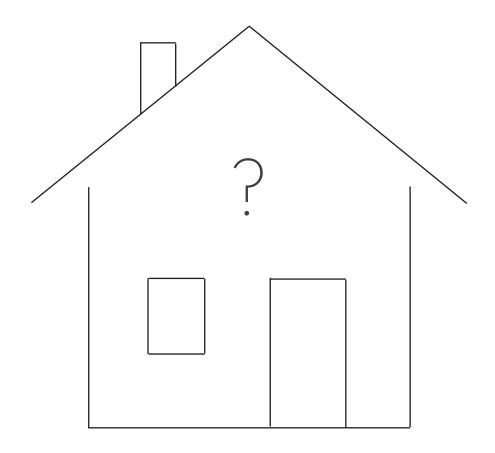
1.	EIN	LEITUNG	19
2.	REC	CHERCHE	21
	2.1	Ein Heim ist nicht nur ein Haus	23
	2.2	Minimalismus in der Architektur	25
	2.3	Wie klein können wir Wohnen ?	27
	2.4	Japanischer Minimalismus	29
	2.5	Flexibles Wohnen	31
	2.6	Strukturalismus in der Architektur	33
	2.7	Funktionen von Schülerwohnheimen	35
	2.8	Versandbehälter	37
	2.9	Versandbehälterabmessungen	38
	2.10	Arten von Versandbehältern	44
	2.11	Geschichte von Versandbehälter	52
3.	REF	ERENZPROJEKTE - STATE OF THE ART	57
	3.1	Smart City Süd	58
	3.2	Hope Gardens	60
	3.3	Cité a Docks	62
	3.4	Urban Rigger	64
	3.5	Container guest house	66
	3.6	EBA51	68
	3.7	Keetwonen	70
	3.8	Genussregal Vinofaktur	72
	3.9	Roglab	74
	3.10	Hostel Dock Inn	76
	3.11	Drivelines Studios	78
	3.12	Superkilen	80
	3.13	Park `n` Play	82

4.	DAS	CONTAINERWOHNHEIM	85
	4.1	Umweltfreundlichkeit	86
	4.2	Zeit- und Kosteneffektivität	87
	4.3	Haltbarkeit und giftige Materialien	88
	4.4	Wärmedämmung	89
	4.5	Mobilität	90
	4.6	Statik	91
	4.7	Fundament	92
	4.8	Energieversorgung	93
5.	STA	NDORT LJUBLJANA	95
	5.1	Umgebungsfotos	96
	5.2	Projekt Emonika	118
6.	ZIEI	LGRUPPEN	121
	6.1	Tagesablauf der Schüler	128
7.	CO-	MODULARE WOHNGEMEINSCHAFT	137
	7.1	Modul - Varianten	146
	7.2	Projekt Pläne	176
8.	KON	NSTRUKTION / DETAIL	195
9.	MA	ΓERIALITÄT	211
10.	FLÄ	CHENBERECHNUNG	218
11.	VISU	UALISIERUNGEN - EXTERIOR	225
12.	LITE	ERATURVERZEICHNISS	232
13.	ABB	SILDUNGSNACHWEIS	236

1. EINLEITUNG

Mit der steigenden Nachfrage nach verschiedenen Arten und Sorten von Waren aus der ganzen Welt ist auch der Bedarf an Transportmitteln enorm gestiegen. Die meist genutzten Mittel für den Transport von Waren sind Container, auch Versandbehälter genannt. Viele davon werden, nachdem sie ihre Nutzung erfüllt haben, einfach irgendwo am Straßenrand stehen gelassen.

Diese Arbeit beschäftigt sich mit der Wiederverwendung dieser Container, um präfabrizierte Module zu erschaffen. Diese Module sollen verschiedene Funktionen erfüllen, die zur Erschaffung eines Schülerwohnheims benötigt werden. Die Zielgruppen sind Schüler, welche die Mittelschule besuchen und auch Jugendliche, die zu wenig Aufmerksamkeit und Unterstützung erhalten. Diese befinden sich in einem Kapitel ihres Lebens, in welchem sie wichtige Entscheidungen treffen müssen und deshalb gute Betreuung und Rat benötigen.


Die Idee hinter dieser Arbeit ist es, eine Konstruktion aus präfabrizierten Teilen zu erschaffen, die leicht erweitert und auch abgebaut werden kann. Diese könnte dann auch an andere Standorte gebracht werden.

Als erster Standort, an welchem dieses modulartige Wohnheim aufgebaut werden soll, wurde eine Grünfläche in der Hauptstadt Sloweniens ausgewählt. Dieser befindet sich hinter dem Hauptbahnhof von Ljubljana und liegt geografisch ungefähr im Zentrum zwischen allen Mittelschulen. Der Hauptbahnhof stellt mit seinen Schienen auch eine Barriere zwischen der Stadt und dem Vorort dar. Ziel dieser Arbeit ist auch eine Verbesserung der Verbindung zwischen diesen zwei Seiten.

2. RECHERCHE

2.1 Heim ist nicht nur ein Haus 2.2 Minimalismus in der Architektur Wie klein können wir Wohnen? 2.3 2.4 Japanischer Minimalismus 2.5 Flexibles Wohnen Versandbehälter 2.6 2.7 Arten von Versandbehälter Die Geschichte von Versandbehälter 2.8

2.1 EIN HEIM IST NICHT NUR EIN HAUS

Gemäß der Definition ist ein Heim ein Ort bzw. eine Wohnung oder ein Haus, in dem ein oder mehrere Menschen leben. Ein Haus ist nur ein Gebäude, in dem die Menschen leben. Ein Heim ist jedoch viel mehr als nur eine bestimmte Art von Gebäude. Ein Heim kann auch etwas sein, was eine Person als den Ort ansieht, an dem sie lebt und der ihr gehört. Der Mensch hat zu diesem Ort eine emotionale Verbindung. Es könnte also gesagt werden, das Heim ist bei jeder Person etwas anderes und bezieht sich mehr auf einen psychologischen Zustand als auf einen physischen. Ein Heim kann zum Beispiel auch ein Zelt, ein Boot, eine unterirdische Höhle oder einfach ein Seecontainer sein.

Abb.1_ Jeroen Peters: Spatial Interactions

2.2 MINIMALISMUS IN DER ARCHITEKTUR

Minimalismus ist ein bewusster Verzicht auf etwas, um Platz für das Wesentliche zu schaffen. Es ist so gesehen ein Lebensstil für Menschen, welche gegen den Konsum der modernen Welt kämpfen. Die Idee dahinter ist es, Dingen und Angewohnheiten, die nicht lebenswichtig sind und unglücklich machen, loszulassen, um weniger Sorgen zu haben und Zeit zu sparen, die für geliebte Aktivitäten verwendet werden kann und nicht bei der Arbeit verschwendet werden soll.

Minimalismus wird aber nicht nur als Lebensstil bezeichnen, sondern auch als Stilrichtung in der Kunst. Dieser wird in der Architektur erkannt als eine Richtung mit geometrisch klaren Grundformen, mit rechteckigen Winkeln und paralleler Linienführung.

"Galt 1920 "Wie viel Platz und Energie können wir uns finanziell leisten?" stellt sich heute die Frage "Wie viel Platz und Energie können wir uns verantwortungsvoll leisten?" Suffizenz erfordert, dass wir unser Wohnverhalten überdenken und neu gestalten." [1]

Tiny House Workshop – Wie klein können wir wohnen?, https://www.historisches-museum-frankfurt.de/node/54455, 22.01.2020.

2.3 WIE KLEIN KÖNNEN WIR WOHNEN?

Im heutigen modernen Zeitalter tappen wir immer mehr in die Konsumfalle, dass wir für ein glückliches Leben immer die neuesten Produkte brauchen. Folglich denken wir auch, dass wir immer mehr Platz brauchen, an dem wir diese Dinge aufbewahren können. Stattdessen brauchen wir jedoch eine neue Vorstellung von Zuhause. Wir müssen das Geheimnis des Komforts für uns selbst neu entdecken. Mit dieser Idee müssen wir in Bezug auf unsere Häuser nicht danach fragen, wie viel wir uns leisten können oder wie groß sie sein können, sondern im Gegenteil, es stellt sich die Frage, mit wie wenig Platz wir leben können, um Zeit für die wichtigen Dinge zu haben und mehr Platz für die Natur und uns selbst zu lassen.

Abb.2_ japanische Wohntradition

2.4 JAPANISCHER MINIMALISMUS

In der japanischen Architektur ist das Prinzip des Minimalismus ein zentraler Bestandteil. Ein offener, leerer Raum ist ein wichtiger Teil der Baukultur. Eine Tradition, die mehr als tausend Jahre alt ist, hat die japanische Architektur beeinflusst und zu einem stillen und aufgeräumten Stil geführt. Inspiriert vom traditionellen japanischen Zen-Buddhismus widerspricht die minimalistische Bewegung dem modernen Konsumismus und hält das Leben einfach und übersichtlich, indem sie sich an das Nötigste hält. In der japanischen Ästhetik spiegelt sich ein sauberes, übersichtliches Leben mit der Liebe zur natürlichen Schönheit wider. Diese Einfachheit der Form und Funktion hat sämtliche Aspekte der traditionellen japanischen Kultur, Kunst und Lebensweise geprägt.

In den letzten Jahren hat sich der Trend dieser Innenraumgestaltung auch außerhalb Japans durchgesetzt. Ein wichtiger Aspekt der minimalistischen Innenraumarchitektur ist die Widerspiegelung der Natur durch die Nutzung von natürlichen Materialien wie Holz. Ein Fußboden aus Holz prägt die Einfachheit des Raumes und die Textur gewährleistet dessen Wärme. Zusätzlich zum Holz werden auch andere natürliche Elemente wie Bäume und Pflanzen hinzugefügt, um die Verbindung zur Natur noch stärker hervorzuheben. Mit einer neutralen Farbpalette aus Beige, Braun, Schwarz, Grau und verschiedenen Weißtönen werden Möbel und Dekorationselemente auf ein Minimum reduziert und sich nur auf das Wesentliche konzentriert. Infolgedessen bieten minimalistische Räume viel Platz, welche oft ein leichtes und luftiges Gefühl verursachen. [2]

² Vgl. The Art of Less is More: Japanese Minimalism and its influence on Western Design Aesthetics, https://www.sapporo.co.uk/news/the-art-of-less-is-more-japanese-minimalism-and-its-influence-on-western-design-aesthetics/, 22.01.2020.

Abb.3_ Compact Living:: IKEA and Ori Living Propose Flexible Solution for Tiny Homes

2.5 FLEXIBLES WOHNEN

Traditionell betrachten wir das Wohngebäude als etwas Stabiles und Festes. Wir sind es gewohnt, dass unsere Häuser und Wohnungen fixiert sind, die Wände massiv sind und in ihrer Endposition stehen. Das Einzige, woran wir gewohnt sind, ist es, das Sofa zu drehen oder den Schrank in eine andere Wandecke zu positionieren. Die Bedürfnisse der Menschen ändern sich mit der Zeit und die limitierten Nutzungsmöglichkeiten in einem Raum stellen ein Problem dar, weshalb sich in weiterer Folge viele auf die Wohnungssuche begeben.

In den letzten Jahren haben viele Architekten und Designer zu experimentieren begonnen , um Räumen Flexibilität zu verleihen. Mit diesen Modulen sind dann auch die Begriffe "Flexible housing" und "Flexible living" entstanden. Die Grundidee ist es, den Bewohnern bzw. Nutzern die Kontrolle über den Raum zu verleihen. Ein flexibler Raum ist im Prinzip ein Raum, welcher sich an die sich ändernden Anforderungen sowohl sozialer als auch technischer Art anpassen kann.

Abb.4_ Stayokay Hostel Rotterdam

2.6 STRUKTURALISMUS IN DER ARCHITEKTUR

Strukturalismus is eine Stilrichtung und eine Bewegung die in Architektur und Stadtplanung im 2O. Jahrhunderts entstanden ist. Es war ein widerspruch gegen den Funktionalismus, der die Kultur der Stadt ignoriert hat und zu einer Identitätslosen Stadtplanung geführt hat. Er betont, dass die Identität und Kultur der Bewohner sowie der Stadt in Elementen der Struktur ablesbar sein muss. In Europa gilt diese Richtung als eine Parallelbewegung zur amerikanischen Postmoderne. Im Strukturalismus wird aber nicht nur der architektonische Stil behandelt, sondern auch andere Aspekte der Architektur und Stadtplanung.^[3]

³ Vgl. Strukturalismus in der Architektur, https://www.hisour.com/de/structuralism-in-architecture-28616/, 21.04.2020.

Abb.5_ Gruppe von Schülern die zusammen lernen

2.7 FUNKTIONEN VON SCHÜLERWOHNHEIMEN

Wohnheime werden meistens von Schülern bewohnt, die nicht in der Umgebung der von ihnen ausgewählten Schulen wohnen. Für viele wäre die tägliche Anreise zu zeit- und kostenintensiv. Mit einem Leben in Wohnheimen können sie die Zeit und das Geld für ihre Ausbildung nutzen. Ein Wohnheim ist aber viel mehr als nur ein kleines Zimmer. Es ist eine Wohngemeinschaft von Schülern und Erziehern bzw. Pädagogen, da die Schüler, die noch nicht volljährig sind, einen Erwachsenen bzw. einen Pädagogen brauchen, welcher auf sie während des Schuljahrs aufpasst und sie motiviert. Die Arbeit eines Pädagogen ist verantwortungsvoll und umfangreich. Er erstellt einen jährlichen Arbeitsplan für die Schülergruppe, organisiert Unterrichtshilfen, führt Interessensaktivitäten in der Gruppe oder auf der Ebene des Wohnheims durch. Der Pädagoge organisiert und begleitet Schüler bei Konzerten, Ausstellungen, professionellen Exkursionen, verschiedenen Spielen und Veranstaltungen. Dabei befindet er sich immer in einer Zusammenarbeit mit Eltern, Schule und anderen. Er überwacht die Ereignisse im Wohnheim und löst die besonderen Bildungs- und Lernprobleme der Schüler, berät sie und motiviert sie, Schwierigkeiten zu bewältigen. Darüber hinaus ermutigt er die Schüler, in der Heimbibliothek zu arbeiten und Bücher zu verwenden, er bietet ihnen einen gesunden Lebensstil, führt Gesundheitsvorsorgen und -kontrollen durch, sorgt für Hygiene, Ordnung und Sauberkeit in den Räumen sowie für persönliche Ordnung. Gemäß den Vorschriften ist ein Erzieher für 28 Schüler zuständig. [4]

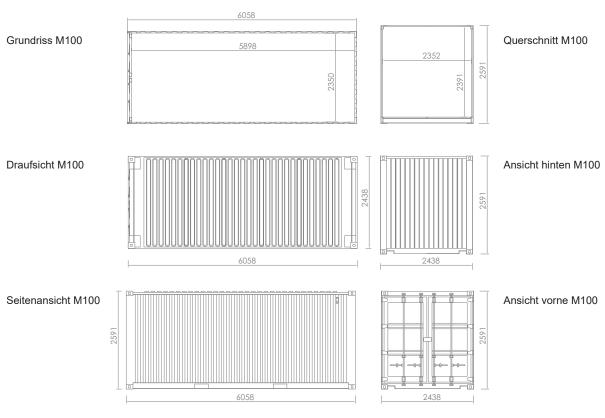
⁴ Vgl. Berufsbeschreibung, https://www.ess.gov.si/ncips/cips/opisi_poklicev/opis_poklica?Kljuc=572&Filter=, 01.03.2020

Abb.6_ Versandbehälter

2.8 VERSANDBEHÄLTER

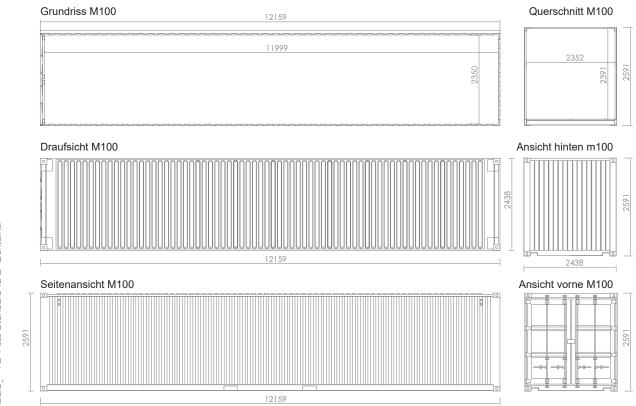
In Versandbehältern, auch als Seecontainer bekannt, werden täglich Millionen an Tonnen von Produkten auf den Seewegen transportiert. Mehr als 90 Prozent der Produkte des Meereshandels werden weltweit in Versandbehältern verschickt. Der Schifffahrts- und der Meeresverkehrssektor befinden sich ständig im Wandel. Aufgrund der Digitalisierung und ständigen Änderungen von Umweltschutzgesetzen sowie Containerdimensionen werden oft neue Vorschriften hinzugefügt. Unterschiedliche Versandbehälter werden je nach Ladungsart verwendet.

Heute sind bereits mehr als 40 Millionen TEU im Einsatz, im Vergleich zu lediglich etwas weniger als fünf Millionen TEU im Jahr 1979. Ein TEU (= Twenty-foot Equivalent Unit) entspricht dabei einem 20-Fuß-Container. Die Versandbehälter werden nur in Betrieb genommen, wenn sie gemäß den Spezifikationen der Internationalen Organisation für Normung (ISO) hergestellt und geprüft wurden, um sicherzustellen, dass diese für mehrere Transportarten von Waren geeignet sind. Bei der Herstellung eines Versandbehälters werden Materialien wie Aluminium oder Stahl verwendet. Der Vorteil bei der Verwendung von Aluminium besteht darin, dass es eine etwas größere Nutzlast aufweist. [6]


⁵ Vgl. Container Investment: Lohnt sich die Kapitalanlage? https://www.financescout24.de/wissen/ratgeber/container-investment, 21.04.2020.

⁶ Vgl. Anish, A Guide to Shipping Container Dimensions, O2.10.2019, https://www.marineinsight.com/maritime-law/guide-shipping-container-dimensions/, O9.01.2020.

Abb.7_20 Fuss Standard-ISO Container


2.9 VERSANDBEHÄLTERABMESSUNGEN

Ein Standard-ISO-Container von 20 Fuß ist der meistgenutze und wird von Schiffen aller Größen verwendet. Er kann das maximale Bruttogewicht von 30.480 kg für Allzweckcontainer und bis zu 45.000 kg für flache Gestelle tragen. Ein 20-Fuß-Kühlcontainer hat eine Nutzlast von 27.400 kg. [7]

⁷ Vgl. Anish, A Guide to Shipping Container Dimensions, O2:10.2019, https://www.marineinsight.com/maritime-law/guide-shipping-container-dimensions/, 09:01.2020

40-Fuß-Container bieten doppelt so viel Volumen wie 20-Fuß-Container, kosten nur 15-25% mehr und wiegen 4.020kg. Damit ist der 40-Fuß-Container der kostengünstigste Versandbehälter. Er kann das maximale Bruttogewicht von 30.480 kg für Allzweckcontainer, bis zu 60.000 kg für flache Gestelle und 35.000 kg für Kühlcontainer tragen. [8]

8 Vgl. Anish, A Guide to Shipping Container Dimensions, O2.10.2019, https://www.marineinsight.com/maritime-law/guide-shipping-container-dimensions/, O9.01.2020

Die Angaben und Bemaßungen beziehen sich auf die üblicherweise verwendeten Versandbehälter. Genauere Versandbehälterabmessungen und Versandbehälterkapazität der ISO-Behälter können je nach Hersteller, Alter des Behälters sowie Eigentümer des Behälters variieren. Es gibt auch verschiedene Versandbehälter mit anderen Maßen, die hauptsächlich für den Straßen- und Schienentransport verwendet werden, wie: 8 Fuß, 10 Fuß, 53 Fuß und 60 Fuß.

Auf jedem Versandbehälter befinden sich wichtige Informationen an der Türseite. Die Norm für die Kodierung und Kennzeichnung von Behältern ist die DIN EN ISO 6346 vom Januar 1996, welche folgende Punkte vorschreibt:

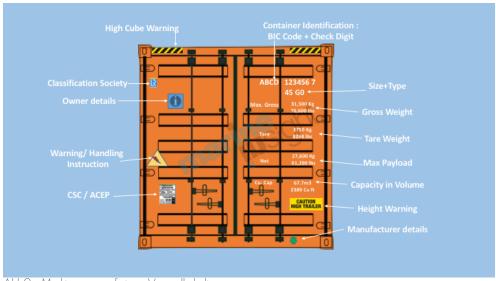


Abb.9_ Markierungen auf einem Versandbehälter

1) Containernummer:

Die Containermarkierung ist die primäre Identifikationsmarkierung am Türende eines ISO-Containers. Sie besteht aus sieben Ziffern und vier Buchstaben, die von der ISO vergeben werden, um jeden Container seinem Besitzer zuzuordnen.

2) Logo des Eigentümers:

Das Logo / der Name der Reederei oder des Containerverkäufers befindet sich an der Endtür.

3) ISO-Code:

Der ISO-Containercode ist unter der Containeridentifikationsnummer mit einer Schablone versehen und gibt die Einzelheiten des Containertyps an, d. h. GP (für allgemeine Zwecke), DV (für einen trockenen Van) usw., sowie die Größe des Containers. Wenn beispielsweise der ISO-Code unter der Behälteridentifikationsnummer 45 GO ist, bezeichnet die erste Zahl, d. h. "4", die Codelänge (40 ft) und die zweite Zahl, d. h. "5", den Breitencode. Die letzten beiden alphanumerischen Zeichen geben den Typ und den Untertyp des ISO-Containers an.

4) Gewichte und Nutzlast:

Sämtliche Angaben zu Containergewicht und Frachtgewicht sind ebenfalls an der Endtür vermerkt.

- Gewicht des Versandbehälters: Das tatsächliche Gewicht eines leeren Behälters, das der Hersteller nach dem Herstellungsprozess zur Verfügung gestellt hat.
- Nutzlast: Dies ist das maximale Frachtgewicht, das ein zugelassener ISO-Container tragen kann.
- Bruttogewicht: Das Gesamtgewicht von Container und Fracht innerhalb der Sicherheitsgrenze.

5) Anerkanntes Klassifikationssiegel:

Bevor der Container von einer Reederei zum Umladen verwendet wird, wird er von einer anerkannten Klassifikationsgesellschaft auf Seetüchtigkeit und Einhaltung der ISO-Normen geprüft. Das Etikett der Klasse befindet sich ebenfalls an der Endtür des Containers.

6) Kubik oder Volumen:

Der Hubraum oder das Volumen des Containers ist an der Endtür angegeben.

7) Warn- und Betriebszeichen:

Der Container kann je nach Typ und Ladung mit verschiedenen Warnschildern und Warnsymbolen versehen sein. Ein erhöhter Behälter enthält z. B. die Höhen- oder Warnstreifen am oberen Teil. In ähnlicher Weise trägt ein Container, der gefährliche Ladung befördert, ein Warnzeichen hinsichtlich der Art der Gefahr oder der damit verbundenen Ladung.

8) Zertifizierungen:

Unterschiedliche Zertifikate, über welche der Container verfügt, müssen mittels Schildern angezeigt werden, wie z. B.:

-CSC-Kennzeichen: Das Kennzeichen der Container Safety Convention besagt, dass der ISO-Container von den zugelassenen Behörden geprüft und getestet wurde.. Es enthält auch Details zu den Eigentümern und andere technische Spezifikationen.

-ACEP: Die Abkürzung steht für Approved Continuous Examination Program und ist am Container angebracht. Hierbei handelt es sich um ein Sicherheitsprogramm für Versandcontainer, bei welchem der Container alle 30 Monate einer umfassenden Inspektion in einem Containerdepot unterzogen wird. Der Containerbesitzer erneuert das ACEP alle zehn Jahre.

2.10 ARTEN VON VERSANDBEHÄLTERN

Versandbehälter sind ein wichtiger Bestandteil der gesamten Schifffahrt, des Handels und des Transportwesens. Sie bilden die Strukturen, in denen verschiedene Arten von Produkten gelagert werden, welche von einem Teil der Welt in einen anderen transportiert werden müssen. Die Behälter schützen den Inhalt auf langen Strecken und sorgen dafür, dass er in einem Stückam Zielort ankommt.

Abhängig von der Art der zu versendenden Produkte oder den von ihnen benötigten speziellen Dienstleistungen können die Container hinsichtlich Dimension, Struktur, Material und Konstruktion variieren. Heutzutage werden verschiedene Arten von Versandbehältern verwendet, um Anforderungen aller Art zu erfüllen.

1. Trockenlagerbehälter

Die Trockenlagerbehälter sind die am häufigsten verwendeten Versandbehälter. Sie sind in verschiedenen, von der ISO genormten Abmessungen erhältlich. Sie kommen beim Versand von trockenen Materialien zum Einsatz und sind in den Größen 20 Fuß, 40 Fuß und 10 Fuß erhältlich.

Abb.10_ Trockenlagerbehälter

2. Flachgestellbehälter

Bei Flachgestellbehältern handelt es sich um einfache Lagerbehälter, bei welchen die Seiten zusammengeklappt werden können, um ein flaches Gestell für den Versand verschiedenster Waren zu bilden

Abb.11_ Flachgestellbehälter

3. Open-top Behälter

Diese Behälter sind mit einem Dach ausgestattet, das vollständig entfernt werden kann, um ein offenes Verdeck zu erhalten, sodass Materialien jeder Höhe problemlos transportiert werden können.

Abb.12_ Open_top Behälter

4. Tunnelbehälter

Hierbei handelt es sich um Container-Lagereinheiten, welche an beiden Enden des Containers mit Türen versehen sind. Diese sind äußerst hilfreich beim schnellen Be- und Entladen von Materialien.

Abb.13_ Tunnelbehälter

5. Seitlich öffenbare Behälter

Diese Lagereinheiten sind mit Türen versehen, die sich in vollständig offene Seiten verwandeln lassen, wodurch ein viel größerer Raum zum Laden von Materialien geschaffen wird.

Abb.14_ Seitlich öffenbare Behälter

6. Behälter mit Doppeltüren

Es handelt sich um Lagereinheiten mit Doppeltüren, welche einen größeren Raum zum Beund Entladen von Materialien bieten. Zu den Baumaterialien gehören Stahl, Eisen usw. in standardisierten Größen von 20 Fuß und 40 Fuß.

Abb.15_ Behälter mit Doppeltüren

7. ISO-Kühlcontainer

Hierbei handelt es sich um temperaturgeregelte Versandbehälter, welche stets eine sorgfältig kontrollierte, niedrige Temperatur aufweisen. Sie werden ausschließlich für den Transport von leicht verderblichen Waren, wie Obst und Gemüse, über große Entfernungen verwendet.

Abb.16_ ISO-Kühlcontainer

8. Isolierte oder thermische Behälter

Diese Versandbehälter werden mit einer geregelten Temperatur geliefert, die es ihnen ermöglicht, eine höhere Temperatur aufrechtzuerhalten. Die Materialauswahl erfolgt auf solch eine Art, dass sie eine lange Lebensdauer haben, ohne durch die ständige Einwirkung hoher Temperaturen beschädigt zu werden. Sie eignen sich am besten für den Ferntransport von Produkten.

Abb.17 thermischer Behälter

9. Tank

Tanks sind Container-Lagereinheiten, welche hauptsächlich für den Transport von flüssigen Materialien verwendet werden, sie werden für einen großen Teil der Schifffahrtsindustrie eingesetzt. Sie bestehen zumeist aus starkem Stahl oder anderen korrosionsbeständigen Materialien, wodurch sie eine lange Lebensdauer haben und Schutz für die Materialien bieten.

Abb.18_ Tank

10. Laderollenbehälter

Als faltbarer Container ist dies eine der spezialisierten Containereinheiten zum Transport von Sets oder Materialstapeln. Sie sind aus dickem und starkem Drahtgeflecht zusammen mit Rollen hergestellt, die ihre leichte Bewegung ermöglichen. Die Verfügbarkeit von einer Reihe an farbigen Drahtgittern macht diese Versandcontainereinheiten ein wenig ansehnlicher.

Abb.19_Laderollenbehälter

11. Container mit halber Höhe

Eine andere Art von Versandbehältern umfasst halbhohe Behälter. Diese meist aus Stahl gefertigten Container sind halb so hoch wie Container voller Größe. Sie werden besonders für Güter wie Kohle, Steine usw. verwendet, die leicht be- und entladen werden müssen.

Abb.20 Container mit halber Höhe

12. Autotransporter

Autotransporter sind Container-Lagereinheiten, welche speziell für den Transport von Autos über große Entfernungen hergestellt wurden. Sie sind mit zusammenklappbaren Seiten ausgestattet, damit ein Auto bequem in die Container passt, ohne dass die Gefahr besteht, dass dieses beschädigt wird oder sich von der Stelle bewegt.

Abb.21_ Autotransporter

13. Zwischenbehälter

Hierbei handelt es sich um spezialisierte Lagerversandbehälter, die ausschließlich zum Zweck des Zwischenversands von Waren hergestellt werden. Sie sind für den Umschlag großer Materialmengen ausgelegt und für den Versand von Materialien an einen Bestimmungsort vorgesehen, an welchem sie weiter verpackt und an den endgültigen Bestimmungsort versandt werden können.

Abb.22 Zwischenbehälter

14. Behälter für besondere Zwecke

Hierbei handelt es sich um keine gewöhnlichen Behälter, sondern um für spezielle Zwecke maßgeschneiderte Behältereinheiten. Meist werden sie für hochkarätige Dienste wie den Versand von Waffen und leicht entzündlichen Materialen verwendet. Daher hängen ihre Konstruktion und ihre Materialzusammensetzung von dem speziellen Zweck ab, welchen sie erfüllen müssen. In den meisten Fällen hat die Sicherheit jedoch weiterhin höchste Priorität.

Abb.23 Behälter für besondere Zwecke

15. Swap body

Dies ist eine besondere Art von Behältern, die hauptsächlich in Europa verwendet wird. Sie sind zwar nicht nach den ISO-Normen gefertigt, weshalb sie keine genormten Versandcontainereinheiten, aber dennoch äußerst nützlich sind. Sie sind mit einem stabilen Boden und einem Verdeck versehen, sodass sie für den Versand vieler Arten von Produkten geeignet sind. [9]

Abb.24_ Swap body Container

⁹ Vgl. Smita, 16 Types of Container Units and Designs for Shipping Cargo, O4.10.2019, https://www.marineinsight.com/know-more/16-types-of-container-units-and-designs-for-shipping-cargo/, O9.01.2020

2.11 GESCHICHTE VON VERSANDBEHÄLTER

Der Transport in Versandbehältern ist die optimalste Methode, um Produkte auf dem Seeweg zu befördern. Das Aufkommen der Containerisierung, die für die Art des Meeresverkehrs von großer Bedeutung ist, hat diesen in bisher unerreichte Höhen getrieben. [10]

Die Geschichte der Containerisierung ist eine Entwicklung, die bis zur Mitte des 2O. Jahrhunderts verfolgt werden kann. Die Frachtcontainer wurden von dem in den USA ansässigen Transportunternehmer Malcolm Mclean entworfen, um die langwierigen Prozesse beim Transport von Produkten über Meereswege zu vereinfachen. Die extrem langen Vorgänge erforderten in erster Linie, dass die Ladung in geeigneter Weise zerlegt oder getrennt werden musste, bevor sie in die Schiffe geladen werden konnte. Dies bedeutete, dass bei der anfänglichen Demontage und den späteren Montageprozessen effektive Arbeitskräfte benötigt wurden und enorme Mengen an Fracht lediglich aus technischen Gründen aufgeteilt werden mussten und es dabei keinerlei Standardisierung in den gesamten Versandprozessen gab. Malcolm Mclean umging dieses langwierige Problem des Güterverkehrs, indem es die grundlegende Struktur eines Tankschiffs aus dem Zweiten Weltkrieg änderte. Die anfänglichen Frachtcontainer, die im Schiff verwendet wurden, wurden ebenfalls modifiziert. Dabei handelte es sich um radlose Lastwagen. Der gesamte Erfolg einer solchen neuartigen Initiative hing jedoch davon ab, ob die mit Fracht beladenen, modifizierten Lastwagen erfolgreich in das Schiff gebracht und damit zum erforderlichen Bestimmungsort transportiert werden konnten. [11]

¹⁰ Vgl. KaranC, The History Of Containerization In The Shipping Industry, 20.10.2019, https://www.marineinsight.com/maritime-history/the-history-of-containerization-in-the-shipping-industry/, 09.01.2020

¹¹ Ebda.

Wesentliche Merkmale der Containerisierung:

- Durch die Eliminierung der unerwünschten Prozesse konnten die Transitkosten für die zu verschiffende Ladung drastisch gesenkt werden.
- Es konnte eine große Menge an Fracht transportiert werden, was bedeutete, dass die Transportunternehmen von den Größenvorteilen profitierten.
- Die Realisierbarkeit von Schiffscontainern stellte auch sicher, dass die wasserschiffbaren Kanäle für den internationalen Güterverkehr genutzt werden konnten.
- Gleichzeitig mit der Verbreitung des qualitativen Wertes der Containerschifffahrt wurden auch die Hafenanlagen ausgebaut.

Eine bemerkenswerte Entwicklung in der Geschichte der Containerschiffe erfolgte, als die großen Seeverkehrsorganisationen die Einzigartigkeit erkannten, welche die Seecontainer der Schifffahrt boten. Diese Bestätigung wurde auch durch die Festlegung von Regeln und Vorschriften für die Dimensionierung der Container gekennzeichnet. Um allen Containern eine gemeinsame Plattform zu bieten, legte die International Standardizing Authority (ISO) Folgendes fest:

- Container, die in Längsrichtung 20 Fuß messen. Diese Container wurden bald als TEUs (Twenty-foot Equivalent Units) bezeichnet.
- Container mit einer Länge von 40 Fuß. Solche Container wurden bald als FEUs (forty-foot equivalent unit) oder häufiger als Zwei-TEU bezeichnet.^[12]

¹² Vgl. KaranC, The History Of Containerization, 09.01.2020

Schädliche Auswirkungen auf die Containerschifffahrt

Obwohl die Containerisierung einen Durchbruch im globalen Schifffahrtssektor darstellte, waren aufgrund der durchgeführten Änderungen mehrere nachteilige Auswirkungen zu erkennen:

- Die Arbeitskräfte, die vor der Entwicklung der Frachtcontainer für den Abbau und die Montage am Fließband eingesetzt wurden, wurden allmählich entlassen.
- Motorisierte Betriebsverbindungen bedeuteten, dass eine geringere Anzahl von Arbeitskräften in das Befördern und Entladen der zu verschiffenden Fracht einbezogen werden musste.
- Auch angelernte Arbeitskräfte und sogar Fachkräfte, welche nur eine Art von Tätigkeit in Hafenanlagen ausübten, wurden beeinträchtigt.^[13]

¹³ KaranC, The History Of Containerization, 09.01.2020

Gegenwart: Containerschifffahrt

In den über 50 Jahren seit der Einführung von Containerschiffen in den regulären Seefrachtverkehr wurden große Fortschritte erzielt. Heute hat sich das weltweite Frachtschifffahrtsspektrum enorm erweitert und gleichzeitig mehreren neueren Schifffahrtskonglomeraten und sogar Ländern geholfen, in die konkurrenz zu steigen. Angesichts der Tatsache, dass der Umfang des Containerbetriebs und die technologischen Entwicklungen fast täglich zunehmen, ist es nicht falsch zu sagen, dass die Frachtbewegung in der heutigen Zeit ohne Containerschifffahrt nicht realisierbar wäre. [14]

¹⁴ KaranC, The History Of Containerization, 09.01.2020

3. REFERENZPROJEKTE - STATE OF THE ART

- 3.1 SMART CITY SÜD
- 3.2 HOPE GARDENS
- 3.3 CITE A DOCKS
- 3.4 URBAN RIGGER
- 3.5 CONTAINER GUEST HOUSE
- 3.6 EBA51
- 3.7 KEETWONEN
- 3.8 GENUSSREGAL VINOFAKTUR
- 3.9 ROGLAB
- 3.10 HOSTEL DOCK INN
- 3.11 DRIVELINES STUDIOS
- 3.12 SUPERKILEN
- 3.13 PARK N PLAY

3.1 SMART CITY SÜD

Architekten : Pentaplan ZT GmbH

Ort : Österreich, Graz

Fertigstellung : Bezugsfertik ab September 2020

Nutzung : Wohngebäude

Abb.25_ Smart City Süd - Exterior

Abb.26_ Smart City Süd - Laubengang

Im Graz, wo sich früher das alte Industrieviertel befindet hat, soll die erste Smart City in Graz entstehen. Für den Architekturwettbewerb My Smart City Süd, bei dem das Gebiet Südlich der Helmut List Halle zum entwerfen war, hat sich das Architekturbüro Pentaplan beworben und den auch gewonen. An den Fassaden wo sich die Laubengangerschliessungen befinden stapeln sie Container auf einer Stahlkonstruktion. Bei diesem Projekt haben die Container eine Sekundärnutzung. Die werden als Boxen vor der Haustür in den Laubengängen gestelt und dienen als Räume für Lager und Arbeitsbereiche. [15]

¹⁵ Übersicht der Projekte in der My Smart City, http://www.smartcitygraz.at/moretext-news-5-wettbewerbsergebnisse/, 21.04.2020.

3.2 HOPE GARDENS

Architekten: ISO SPACES

Ort : London; UK

Fertigstellung : 2017

Nutzung : Wohngebäude

Abb.27_ Hope gardens Fassade

Der aus mehreren Containern zusammengesetzte Wohnkomplex wurde gebaut, um Familien in Not zu helfen und ihnen eine Unterkunft zu bieten. Das Projekt sollte auf das Problem der Wohnsituation in London hinweisen und versuchen, dieses teilweise zu lösen.



Abb.28_ Hope gardens Exterior

3.3 CITÉ A DOCKS

Arcitekten : Cattani Architects

Ort : Le Havre, Frankreich

Fertigstellung : 2010

Nutzung : Studentenwohnheim

Abb.29_ Cite a docks

Das Studentenwohnheim Cité a Docks ist ein wichtiger Teil des Requalifizierungsprojektes der Umgebung der Stadt Le Havre. Um die Container dabei nicht lediglich aufeinanderzustapeln, wurde eine unabhängige Primärstruktur konstruiert. Das Gehäuse besteht aus 110 alten Containern.^[16]

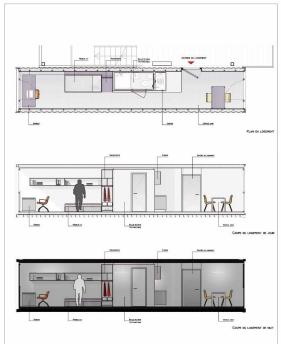


Abb.30_ Grundriss und Schnitt von einem Container

¹⁶ Vgl. Kramer 2015, 37.

3.4 URBAN RIGGER

Arcitekten : Bjarke Ingels Group

Ort : Kopenhagen, Dänemark

Fertigstellung : 2016

Nutzung : Studentenwohnunheim

Abb.31_ Urban Rigger

Abb.32 Urban Rigger_Innenhof

Die Struktur besteht aus zwölf Containern, welche in den Häfen von Kopenhagen schwimmen. Das Projekt soll auch in anderen Städten zum Einsatz kommen, um der Wohnungskrise der Studenten entgegenzuwirken.^[17]

¹⁷ Vgl. Celso Filho: Bjarke Ingels Group and Urban Rigger Bring Student Housing to Copenhagen's Harbor, 20.10.2018, https://www.scandinaviastandard.com/bjarke-ingels-group-and-urban-rigger-bring-student-housingto-copenhagens-harbor/, 17.02.2020

3.5 CONTAINER GUEST HOUSE

Architekten: Poteet Architects

Ort : south Texas, USA

Fertigstellung : 2010

Nutzung : Wohnhaus

Abb.33_ Container guest house / Exterior

Abb.34_ Container guest house / Interior

Das bereits fertig umgesetzte Projekt dient als Gästehaus für Künstler. Der Schwerpunkt lag dabei auf nachhaltigen Strategien und insbesondere auf dem Recycling eines Containers für eine neue und dauerhafte Nutzung. Die Glasschiebetür und die Glasfenster öffnen sich zum Garten. Die Materialien, welche für den Innenausbau verwendet wurden, sind innovativ und angemessen im industriellen Stil. [18]

⁸ Vgl. Kramer 2015, 139.

3.6 EBA51

Architekten: Holzer Kobler Architekturen

Ort : Berlin, Deutschland

Fertigstellung : 2015

Nutzung : Studentenwohnheim

Abb.35_ EBA51 Exterior

Das Projekt EBA51 ist als Antwort auf das Studentenwohnungsproblem in Berlin entstanden. Es befindet sich im äußersten Südosten Berlins und bietet den Studenten gute Bus- und Zugverbindung. Sämtliche Studentenzimmer wurden aus gebrauchten Seecontainern gebaut. Die Konstruktion des Gebäudes basiert auf einem ausgesteiften Fachwerkträger aus Stahl. Durch die Fassade und Konstruktion erhält das Projekt das industrielle Erscheinungsbild.

Abb.36 EBA51 Erschliessung

3.7 KEETWONEN

Architekten: JMW Architekturbuero

Ort : Amsterdam, Niederland

Fertigstellung: 2005

Nutzung : Studentenwohnheim

Abb.38_ KEETWONEN / Interior

Aufgrund einer Wohnungskrise in Amsterdam wurde ein Wohnkomplex aus 1.000 Containern für Studenten erbaut. Hierbei handelt es sich um das größte Wohnbauprojekt aus Containern. Der erste Teil mit 215 Wohnungseinheiten wurde in den ersten drei Monaten gebaut. Die Fertigstellung dauerte insgesamt neun Monate. [19]

 $^{19 \}hspace{0.2cm} VgI.\hspace{0.1cm} A \hspace{0.1cm} THOUSAND \hspace{0.1cm} STRONG; \hspace{0.1cm} AMSTERDAM'S \hspace{0.1cm} KEETWONEN \hspace{0.1cm} STUDENT \hspace{0.1cm} HOUSING \hspace{0.1cm} DESIGNED \hspace{0.1cm} AND \hspace{0.1cm} BUILT \hspace{0.1cm} BY \hspace{0.1cm} TEMPOHOUSING, 16.09.2014, \hspace{0.1cm} https://www.livinspaces.net/projects/architecture/a-thousand-strong-keetwonen-amsterdam-student-housing/, 17.02.2020 \hspace{0.1cm}$

3.8 GENUSSREGAL VINOFAKTUR

Architekten : BMW Architekten

Ort : Vogau, Österreich

Fertigstellung : 2011

Nutzung : Bistro, Handel, Ausstellungshalle

Abb.39_ Genussregal Vinofaktur Exterior

Architekten haben zwischen der Straße und der Firma Vinofaktur ein "Genussregal" entwickelt. Die Verwendung von Containern soll dem Marketing durch die Ausstellung von Produkten dienen. Die Container wurden auch als Gestaltungselemente verwendet, die zwischen der Stahlkonstruktion liegen.

Abb.40_ Genussregal Vinofaktur Exterior

3.9 ROGLAB

Architekten : Architektura Jure Kotnik

Ort : Ljubljana, Slowenien

Fertigstellung : 2011

Nutzung : Kreativlabor für Kunsthandwerk

Abb.41_ RogLab Exterior

RogLab ist das erste öffentliche Herstellungslabor in Slowenien, das Künstlern aller Generationen einen Zutritt zur Verwendung von 3D-Technologie ermöglicht. In dem Container finden auch viele Workshops und Ausbildungseinheiten für Erwachsene und Kinder statt. Ziel ist es auch, die Inhalte und Betriebsarten, die nach der Renovierung der ehemaligen Fabrik im neuen Rog Center fortgesetzt und aufgewertet werden könnten, in kleinem Maßstab zu entwickeln und zu testen. [20]

Abb.42_ RogLab Interior

²⁰ Vgl. Prvi slovenski izdelovalni laboratorij, http://roglab.si/sl/o-nas/, 17.02.2020

3.10 HOSTEL DOCK INN

Architekten : Holzer Kobler Architekturen, Kinzo

Ort : Rostock, Deutschland

Fertigstellung: 2017

Nutzung : Hostel und Hotel

Abb.43_ Dock Inn Exterior

Bei diesem Projekt wurden 63 Container in ein Hostel umgewandelt. Die Container wurden in vier verschiedenen Farben gehalten, welche sich auch in den Innenräumen widerspiegeln. Das Hostel umfasst insgesamt 64 Räume mit 188 Betten. Es wurden auch zwei Container miteinander verbunden, in denen sich Vier- und Acht-Betten-Schlafsäle befinden. [21]

Abb.44_ Dock Inn Interior

²¹ Vgl. Paula Pintos, Design Hostel / Holzer Kobler Architekturen + Kinzo, 15.07.2019, https://www.archdaily.com/920874/design-hostel-holzer-kobler-architekturen-plus-kinzo-architekten, 10.03.2020

3.11 DRIVELINES STUDIOS

Architekten : LOT-EK

Ort : Johannesburg, Südafrika

Fertigstellung: 2017

Nutzung : Wohngebäude

Abb.45_ Drivelines Studios Exterior

Das Gebäude besteht aus 14O wiederverwendbaren Containern. Auf dem dreieckigen Grundstück liegt das Gebäude mit zwei Volumen jeweils an der Straßenkante, was auch einen dreieckigen Innenhof erzeugt. Die zur Straßenseite ausgerichtete Fassade besteht rein aus Containern, deren Außenhülle in der Form von Parallelogrammen ausgeschnitten worden ist, was eine große Fensteröffnung ergibt. Die Straßenfassade spiegelt sich auch im Innenhof wider, in welchem die abgeschnittenen Teile der Container als Gestaltungselemente im Erschließungsbereich genutzt wurden. [22]

Abb.46_ Drivelines Studios Erschliessungsbereich

 $^{22 \}qquad \text{Vgl. Fernanda Castro, Drivelines Studios / LOT-EK, O 9.11.2018, https://www.archdaily.com/905460/drivelines-studios-lot-ek, 20.03.2020}$

3.12 SUPERKILEN

Architekten : Topotek 1, BIG Architects, Superflex

Ort : Kopenhagen, Dänemark

Fertigstellung : 2012

Nutzung : Öffentliches Park

Abb.47_ Superkilen park

Superkilen ist ein urbaner Raum, welcher sich durch eines der ethnisch vielfältigsten und sozial am stärksten benachteiligten Vierteln Dänemarks zieht. Der Park besteht aus drei Bereichen: the Red Square, the Black Market und the Green Park. Die Idee war es, im Park verschiedene Objekte zu positionieren, welche eine Beziehung zu den mehr als 60 im Viertel vertretenen Nationalitäten haben. Bei jedem Objekt findet sich auch eine Beschreibung vom Objekt auf Dänisch und in der Sprache des Landes, aus dem das Objekt stammt. Es ist eine Sammlung globaler städtischer Vielfalt, die die wahre Natur der Nachbarschaft widerspiegelt.^[23]

Abb.48_ Superkilen park_2

²³ Vgl. Superkilen / Topotek 1 + BIG Architects + Superflex 25.10.2012, https://www.archdaily.com/286223/superkilen-topotek-1-big-architects-superflex?ad_medium=widget&ad_name=recommendation, 20.03.2020

3.13 PARK 'N' PLAY

Architekten : JAJA Architects

Ort : Kopenhagen, Dänemark

Fertigstellung : 2016

Nutzung : Öffentliches Park



Abb.49 Park 'n' Play

Bei dem Wettbewerb für das neue Parkhaus in Kopenhagen war es eine der Bedingungen, dass die Dachfläche ebenfalls mitgenutzt wird. Die JAJA-Architekten haben das Dach in einen Spielplatz umgewandelt, von welchem sich eine großzügige Aussicht bietet. Der Boden besteht aus einem Fallschutzbodenbelag, der in Rot- und Brauntönen beschichtet ist. [24]

Abb.50 Park 'n' Play_2

²⁴ Vgl. Park 'n' Play / JAJA Architects, 0712.2017, https://www.archdaily.com/884956/park-n-play-jaja-architects?ad_source*-search&ad_medium*search_result_all, 2003.2020

4. DAS CONTAINERWOHNHEIM

Die Wiederverwendung von alten Containern, nachdem sie ihre Nutzung als Versandbehälter erfüllt haben, wird in den letzten Jahren immer mehr weltweit als Architekturtrend genutzt. Container wurden bereits in verschiedene Häuser, Hotels, Geschäfte, Restaurants, Schulen, Bibliotheken usw. umgewandelt. Der Begriff Containerhaus bezeichnet den Umbau von alten oder auch neuen Versandbehältern zu voll ausgestatteten Wohnräumen. Mehr als 15 Millionen Container liegen weltweit in den Häfen und warten nur auf ihre nächste Nutzung. [25]

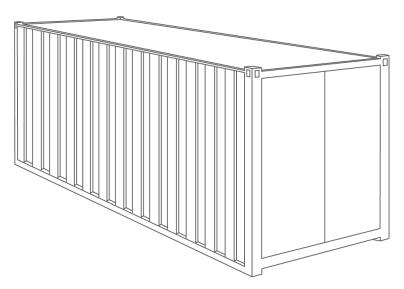


Abb.51 Container 3D skizze

²⁵ Vgl. Dörries / Zahradnik 2016, 21.

4.1 UMWELTFREUNDLICHKEIT

Energieeffizienz und ökologische Verträglichkeit sind wichtige Aspekte in der heutigen modernen Architektur. Durch die Wiederverwendung von Versandbehältern und ihre Umwandlung zu Gebäuden, kann die Verwendung von Ziegeln und Zement reduziert werden. Bei der Herstellung von Zement wird eine enorme Menge an CO2 produziert, weshalb sich bereits hierbei mit einer Wiederverwendung Vorteile hinsichtlich der Umweltfreundlichkeit zeigen..^[26]

²⁶ Vgl. Irmak Aktan, REUSING SHIPPING CONTAINERS: WHAT ARE THE ADVANTAGES AND CHALLENGES?, O9.10.2017, https://www.morethanshipping.com/reusing-shipping-containers-advantages-challenges/, 23.01.2020

4.2 ZEIT- UND KOSTENEFFEKTIVITÄT

Einer der größten Vorteile der Wiederverwendung von Versandbehältern sind die Kosten, welche im Vergleich zur traditionellen Bauweise günstig ausfallen. Für ein normales Einfamilienhaus können die Kosten weit über 100.000 Euro betragen, wobei ein Containerhaus schon ab 15.000 Euro erworben werden kann. Nach oben gibt es bei den Preisen keine Grenzen, welche auch von der Anzahl der Container sowie der Innen- und Außenausstattung abhängig sind. [27] Die Container können auch äußerst schnell angefertigt werden. Wo das Bauen eines normalen Hauses mehrere Monate dauern kann, werden bei der Herstellung von Containern lediglich ein paar Wochen benötigt.

²⁷ Vgl. Containerhaus – ein neuer Bautrend?, https://www.bauratgeber-deutschland.de/hausbauplanung-von-a-z/08-die-hausvarianten/containerhaus-ein-neuer-bautrend/, 23.01.2020

4.3 HALTBARKEIT UND GIFTIGE MATERIALIEN

Versandbehälter sind äußerst kompakt und haben eine lange Haltbarkeit, weil sie gebaut wurden, um schlechten, unvorhersehbaren Wetterbedienungen standzuhalten und schwere Ladungen zu tragen. Aufgrund der Stahlkonstruktion und des Leichtgewichts im Vergleich zu Beton- oder Ziegelbauten sind die Container gut gegen Erdbeben geschützt, was sie auch sicherer macht.

Es ist wichtig, vor dem Umbau eines Containers zu wissen, ob dieser verschiedenen Insektiziden beim Import und Export ausgesetzt war. Diese können bei der erneuten Verwendung zu toxischen Ausdünstungen führen. Um sicher zu gehen, ist es besser, den Holzboden zu entfernen.

4.4 WÄRMEDÄMMUNG

Wärmedämmung ist schon bei den konventionellen Gebäudenein zentraler Aspekt und bei einem Containerhaus noch wichtiger, da diese nicht mit der Absicht gebaut wurden, als Wohnraum zu dienen. Weil der Container aus Stahl konstruiert ist, bedeutet dies, dass er leicht die Temperaturen ins Innere lässt. Im Winter könnte es somit sehr kalt und im Sommer sehr warm werden, deswegen ist es beim Umbau eines Containers äußerst wichtig, die Wärmedämmung richtig zu planen.

4.5 MOBILITÄT

Abb.53_ Transport am LKW

Besteht das Containerhaus aus einem einzelnen Containermodul, kann es einfach auf einem Lkw transportiert werden, auch wenn es aus mehreren besteht, ist es möglich, das Haus in Teile zu zerlegen und diese einzeln zu transportieren. Bei der letzteren Variante muss lediglich darauf geachtet werden, dass die offenen Bereiche beim Transport gut geschützt werden.

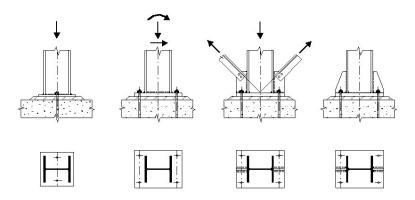
4.6 STATIK

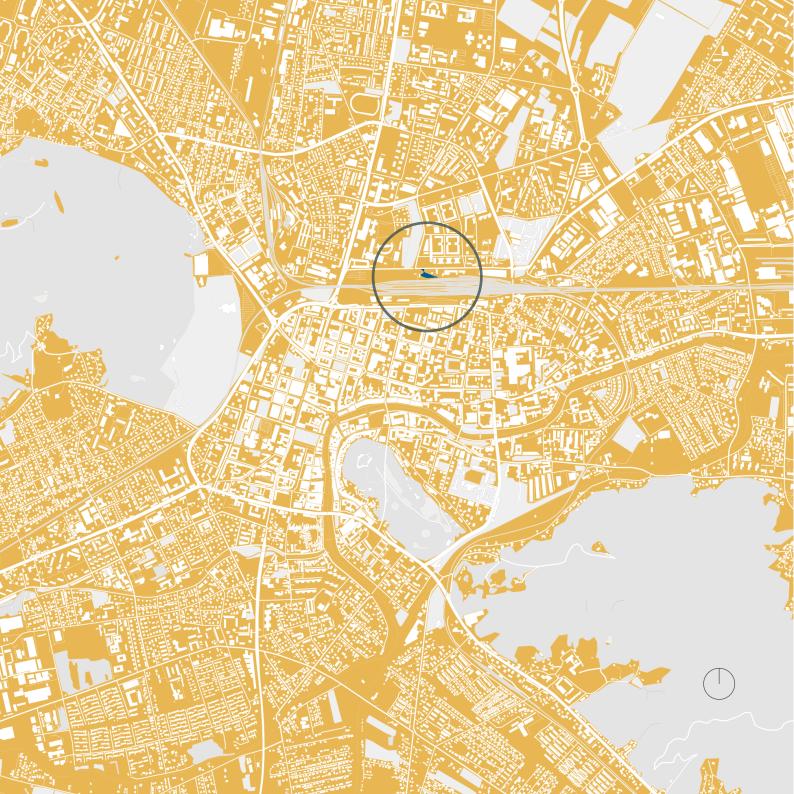
Versandbehälter haben eine hohe Stabilität und können schwere Lasten aufnehmen, wofür jedoch die Hauptträger in ihrer Lage bleiben müssen. Beim Herausschneiden wegen Konstruktions- oder Gestaltungsentscheidungen müssen im Innenraum Stahlträger zur Unterstützung geplant werden. Die Anforderungen werden mit einer Stahlkonstruktion reduziert, wobei jeder Container einzeln auf die Konstruktion montiert wird und damit keine Stapelung der Container erfolgt.

4.7 FUNDAMENT

Um die Lasten eines Containerhauses zu tragen, ist ein Streifenfundament oder ein Punktfundament erforderlich. Die Grundfläche wird 3O Zentimeter tief ausgehoben, wobei bei den vier Ecken einen Meter tiefe Löcher gegraben werden. Den nächsten Schritt bildet die Ausschalung mit Schalbrettern, danach folgt das Aufschütten von Kies, Verlegung einer isolierenden PE-Folie und als letztes das Auffüllen mit bewehrtem Beton. Erst nach zwei Wochen darf der Container auf das Fundament gesetzt werden. [28]

Bei einem Rahmen aus einer Stahlkonstruktion werden Punktfundamente verwendet, wobei jede Stahlstütze ein Punktfundament benötigt, um die vertikalen Lasten weiterzuführen.




Abb.54_ Verbindung zwischen Stütze und Fundament

²⁸ Vgl. Containerhaus – ein neuer Bautrend?, https://www.bauratgeber-deutschland.de/hausbauplanung-von-a-z/O8-die-hausvarianten/containerhaus-ein-neuer-bautrend/, 23.01.2020

4.8 ENERGIEVERSORGUNG

Um aufwändige Gas- oder Ölleitungsanschlüsse zu vermeiden bietet sich für Containerhäuser eine elektrische Infrarotheizung an. In Kombination mit der entsprechenden Wärmedämmung und einer Luft-Wärmepumpe lassen sich auch für ein Containerhaus thermische Passivhausstandards erfüllen. Für die Stromversorgung kann auch eine Photovoltaikanlage zum Einsatz kommen. Die Versorgung mit Wasser kann auch eine Wasseraufbereitungsanlage für Regenwasser ermöglichen.

²⁹ Vgl. Containerhaus – ein neuer Bautrend?, 23.01.2020

5. STANDORT LJUBLJANA

Der Standort des Projektes liegt in Ljubljana, der Hauptstadt von Slowenien. Das Grundstück befindet sich hinter dem Hauptbahnhof, an der Straße "Vilharjeva cesta". Das Grundstück ist während der Anfertigung dieser Arbeit noch unbebaut. Es ist vom Bahnhof, einem privaten Parkplatz, der Straße, einem Restaurant und einer Eingangszone, welche durch eine unterirdische Verbindung zum Hauptbahnhof führt, umgeben.

Abb.56_ Grundstücksflächenaufteilung

5.1 UMGEBUNGSFOTOS

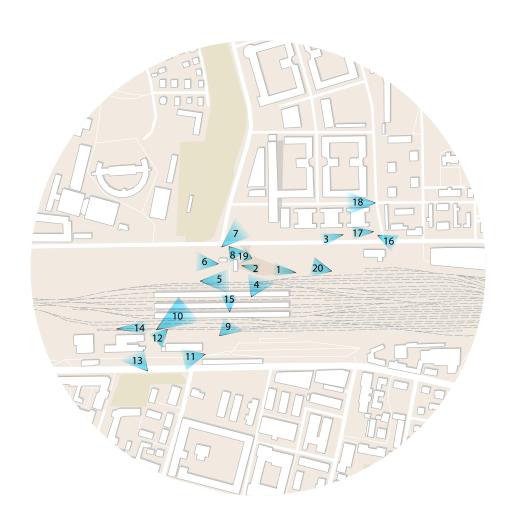
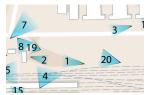
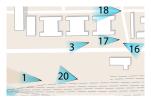



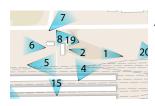
Abb.57_ Diagram/Umgebungsfoto Lage

GRUNDSTÜCK ANSICHT OST

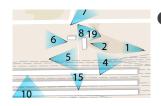

Abb.58_ Umgebungsfoto_1

7 6 8 19 2 1 20 5 4

GRUNDSTÜCK ANSICHT WEST


Abb.59_ Umgebungsfoto_2

ANSICHT DER ZUGANGSSTRASSE


Abb.60_ Umgebungsfoto_3

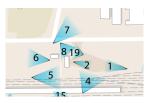
ANSICHT AUS DER BAHNHALTESTELLE

Abb.61_ Umgebungsfoto_4

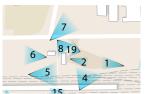
GRUNDSTÜCK ANSICHT SÜD-WEST

Abb.62 Umgebungsfoto_5

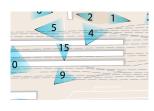
ANSICHT PARKFLÄCHE / GRUNDSTÜCKSFLÄCHE FÜR DAS ZUKÜNFTIGE EMONIKA PROJEKT


Abb.63_ Umgebungsfoto_6

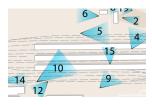
ANSICHT NACHBARGEBÄUDEN


Abb.64_ Umgebungsfoto_7

ANSICHT PLATZ VOR DER UNTERIRDISCHEN VERBINDUNG


Abb.65_ Umgebungsfoto_8.1

ANSICHT PLATZ VOR DER UNTERIRDISCHEN VERBINDUNG


Abb.66_ Umgebungsfoto_8.2

ANSICHT AUS DER BAHNHALTESTELLE

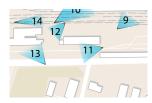


Abb.67_Umgebungsfoto_9

ANSICHT AUS DER BAHNHALTESTELLE

ANSICHT HAUPTBAHNHOF

Abb.69_ Umgebungsfoto_11

ANSICHT PLATZ YOR DEM HAUPTBAHNHOF

Abb.70_ Umgebungsfoto_12

ANSICHT HAUPTBAHNHOF

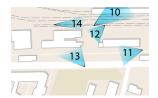


Abb.71_ Umgebungsfoto_13

ANSICHT BAHNHALTESTELLE

Abb.72_ Umgebungsfoto_14

ANSICHT UNTERIRDISCHEN VERBINDUNG

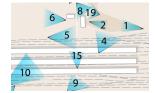


Abb.73_ Umgebungsfoto_15

ANSICHT NACHBARGEBÄUDE

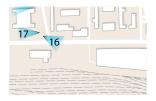


Abb.74_Umgebungsfoto_16

ANSICHT ÖFFENTLICHE FLÄCHE VOR DEN NACHBARGEBÄUDEN

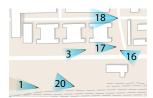
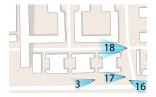
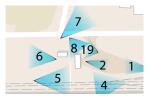
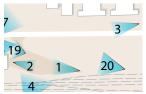


Abb.75_ Umgebungsfoto_17

ANSICHT ÖFFENTLICHE FLÄCHE VOR DEN **NACHBARGEBÄUDEN**


Abb.76_Umgebungsfoto_18

ANSICHT LIEFERUNGS ZUFAHRTSSTRASSE

Abb.77_ Umgebungsfoto_19

ANSICHT OSTEN - PRIVATPARKLATZ

Abb.78_ Umgebungsfoto_20

5.2 PROJEKT EMONIKA

Das Projekt Emonika, welches den Bau eines neuen Bahnhofs und einer Busstation sowie die Errichtung eines Hotels, eines Bürogebäudes und eines Einkaufszentrums im Zentrum von Ljubljana umfasst, wurde erstmals 2007 der Öffentlichkeit vorgestellt. Der internationale Wettbewerb für die Neugestaltung des Bahnhofs und der Busstation von Ljubljana wird seit 2002 von der Stadtverwaltung von Ljubljana organisiert. Das ungarische Unternehmen Trigranit trat 2007 erstmals in das Projekt ein und dieses sollte damals voraussichtlich Ende 2010 fertiggestellt sein. Das Projekt wurde mehrmals verschoben, es soll jedoch nach den neuesten Auskünften Ende 2021 mit dem Bau begonnen werden und mit der Fertigstellung sei Ende 2023 zu rechnen. Am Standort ist im Jahr 2019 ein weiterer Parkplatz entstanden, welcher bis zum Beginn der öffentlichen Arbeiten verwendet wird, wie das Unternehmen mitteilte. Rund um den Hauptbahnhof gibt es jetzt zwei Parkplätze, auf denen insgesamt 950 Fahrzeuge Platz finden. [30]

Abb.79_ Modell-Projekt Emonika

³⁰ Vgl. Rok Atelšek, Nov zamik: Emoniko naj bi začeli graditi šele konec leta 2021, 13.11.2019, https://siol.net/novice/slovenija/nov-zamik-emoniko-naj-bi-zaceli-graditi-sele-konec-leta-2021-511522, 29.02.2020

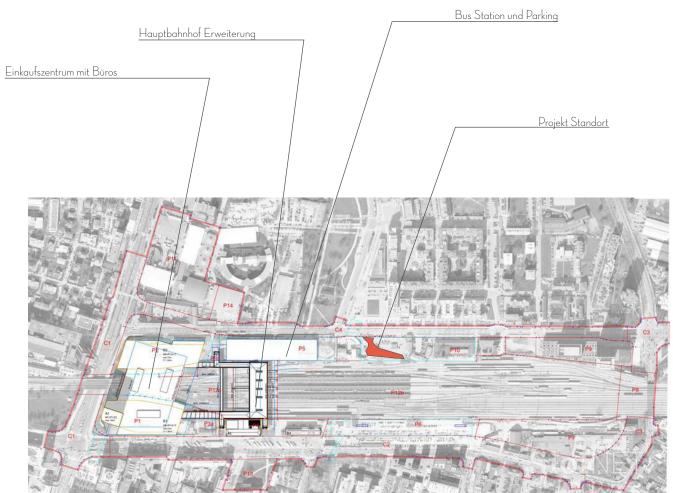


Abb.80_ Lageplan-Projekt Emonika

6. ZIELGRUPPEN

Mittelschüler sind eine Zielgruppe in unserer Gesellschaft, die zu wenig Aufmerksamkeit bekommt. Es ist eine Gruppe von jungen Menschen, welche noch nicht selbständig sind, gleichzeitig aber schon an ihre Zukunft denken müssen und mit ihren Entscheidungen die Zukunft von uns allen beeinflussen.

Die Wahl der Ausbildung ist ein entscheidender Punkt im Leben eines jeden Jugendlichen. Viele Familien sind aufgrund finanzieller Schwierigkeiten nicht in der Lage, alle Kosten auf dem Weg zu ihrer gewünschten Ausbildung angemessen zu decken. In Slowenien werden jedes Jahr Tausende von Stipendien an Mittelschüler und Studenten verliehen. Trotz dieser Hilfe ist jedoch der Kostenaufwand für viele Familien noch immer zu hoch.

Aus diesem Grund wurden in Slowenien viele Organisationen gegründet, um diesen Familien die Ausbildung ihrer Kinder zu ermöglichen. Ein Beispiel ist das Projekt Botrstvo, welches einen speziellen Schülerfond gebildet hat, aus dem die Unterbringung in den Internaten und andere Schulkosten wie Schulmaterialien, Ausflüge, Schulkleidung und Uniformen finanziert werden.

Tabela 1: Štipendije, podeljene za študij v Sloveniji in tujini in višina povprečne mesečne štipendije po vrstah štipendije, Slovenija, 2014/2015

	Število štipendij			Povprečna štipendija (EUR)			
	SKUPAJ	dijaki	študenti	neznano	SKUPAJ	dijaki	študenti
Vrsta štipendije - SKUPAJ	57.335	34.318	22.707	310	151	109	210
Kadrovske štipendije - skupaj	3.303	1.258	2.043	2	328	250	377
kadrovske štipendije, sofinancirane posredno	1.004	372	632	-	302	205	359
kadrovske štipendije, sofinancirane neposredno	381	139	240	2	362	287	405
kadrovske štipendije, nesofinancirane	1.918	747	1.171	-	336	265	380
Državne štipendije	44.739	28.017	16.608	114	129	100	177
Zoisove štipendije	8.598	4.948	3.628	22	152	113	204
Štipendije za Slovence v zamejstvu in po svetu	196	-	196	-	195	-	195
Druge 1)	499	95	232	172	916	526	1.166
- ni nojava							

Abb.81_Stipendien, Slowenien, 2014/2015

Stipendien für ein Studium in Slowenien und im Ausland sowie die Höhe des durchschnittlichen monatlichen Stipendiums nach Art des Stipendiums, Slowenien, Schuljahr 2014/15

Anhand dieser Tabelle ist ersichtlich, dass ungefähr um ein Viertel mehr Stipendien an die Mittelschüler gehen, diese bekommen aber im Vergleich zu den Studenten weniger Geld.

¹⁾ Med druge štipendije so zajete štipendije sklada Ad futura, ki vključujejo tudi del šolnine.

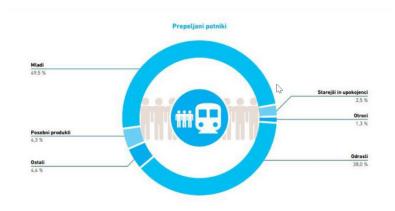
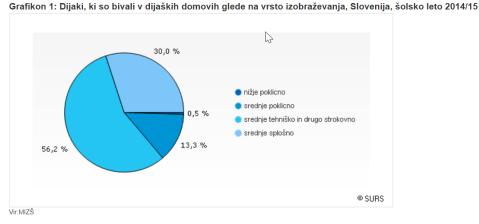
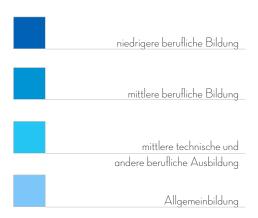




Foto: Letno poročilo sž Abb.82_ Jahresbericht der Slowenischen Eisenbahnen 2019

Gemäß dem Jahresbericht der slowenischen Eisenbahnen für das Jahr 2019 ist bekannt, dass die Jugendlichen mit 49,5% die Gruppe bilden, welche am häufigsten öffentliche Verkehrsmittel (Eisenbahn) nutzt. Dies spricht für die angemessene Lage für die Umsetzung dieses Projekts, da sich in unmittelbarer Umgebung der Hauptbahnhof und die zukünftig geplante große Busstation befinden wird.

Schüler, die nach Art der Ausbildung in Internaten bleibten, Slowenien,



Schuljahr 2014/15

Schüler, die nach Ausbildungsjahr in Internaten bleibten, Slowenien, Schuljahr 2014/15

In einem Radius von drei Kilometern befinden sich alle Mittelschulen der Stadt Ljubljana. Sämtliche Schulen sind mit öffentlichen Verkehrsmitteln erreichbar. Der Standort befindet sich gleich hinter dem Hauptbahnhof, was den Schülern ihre Ankunft und Abfahrt erleichtert.

6.1 TAGESABLAUF DER SCHÜLER

Schülerin Sandra

Sandra ist 18 Jahre alt und besucht das Gymnasium Šiška in Ljubljana. Sie ist im vierten Schuljahr der Oberstufe und bereitet sich für ihre Matura vor. In ihrer Freizeit macht sie Sport und trifft sich mit ihren Freunden.

ob.86_ Schülerin 2

06:00 - 06:30	_Bad
06:30 - 07:00	_Frühstück
07:00 - 07:20	_Weg zur Schule

07:20 - 15:00 _Unterricht

15:00 - 15:30 _Mittagsessen

15:30 - 17:30 _Lernen

17:30 - 20:00 _Freizeit / Aktivitäten

20:00 - 22:00 _Lernen / Zimmer

22:00 - 22:30 _Bad

22:30 - 06:00 _Schalfen

Schüler Luka

Luka ist 17 Jahre alt und besucht das Gymnasium Bežigrad in Ljubljana. Er ist im dritten Schuljahr der Oberstufe in einer Sportklasse. Jeden Nachmittag und zweimal pro Woche in der Früh hat er Fußballtraining. In seiner begrenzten Freizeit trifft er sich mit seinen Freunden.

Abb.87_ Schüler 2

06:30 - 07:00 _Bad

07:00 - 07:30 _Frühstück

07:30 - 07:50 _Weg zum Training

07:50 - 10:00 _Fußballtraining

10:00 - 10:10 _weg zur Schule

10:10 - 15:00 _Unterricht

15:00 - 15:30 _Mittagsessen

15:30 - 18:00 _Fußballtraining

18:00 - 19:30 Freizeit

19:30 - 21:30 _Lernen / Zimmer

21:30 - 22:00 _Bad

Schülerin Sara

Sara ist 17 Jahre alt und besucht die Mittelschule für Medizin in Ljubljana. Sie ist im dritten Schuljahr der Oberstufe und hat dreimal pro Woche Praxis am Universitätsklinikum Ljubljana. In ihrer Freizeit hat sie Tanzstunden und trifft sich mit ihren Freunden.

Abb.88 Schülerir

VARIANTE 1_	SCHULTAG	VARIANTE 2_	PRAXIS
06:30 - 07:00	_Bad	06:30 - 07:00	_Bad
07:00 - 07:30	_Frühstück	07:00 - 07:30	_Frühstück
07:30 - 08:00	_Weg zur Schule	07:30 - 08:00	_Weg zur Praxis
08:00 - 14:00	_Unterricht	08:00 - 15:00	_Praxis
14:00 - 14:30	_Mittagsessen	15:00 - 16:00	_Freizeit, Mittagsessen
14:30 - 18:00	_Freizeit / Aktivitäten	16:00 - 18:30	_Freizeit / Aktivitäten
18:00 - 21:30	_Lernen	18:30 - 21:30	_Lernen
21:30 - 22:00	_Bad	21:30 - 22:00	_Bad
22:00 - 06:30	_Schlafen	22:00 - 06:30	_Schlafen

Schüler Peter

Peter ist 16 Jahre alt und besucht die elektrotechnische Mittelschule in Ljubljana. Er ist im zweiten Schuljahr der Oberstufe und hat einmal pro Woche Praxis bei einem Kleinunternehmer in Ljubljana. In seiner Freizeit spielt er Computerspiele, macht Sport und trifft sich mit seinen Freunden.

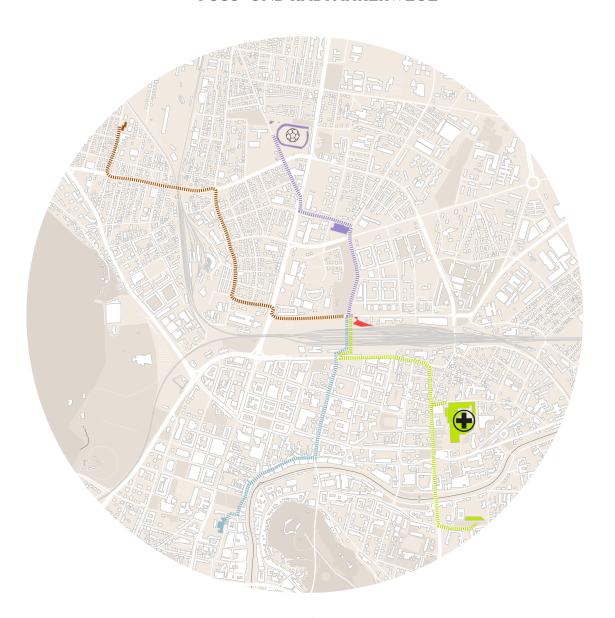


Abb.89_ Schüler 1

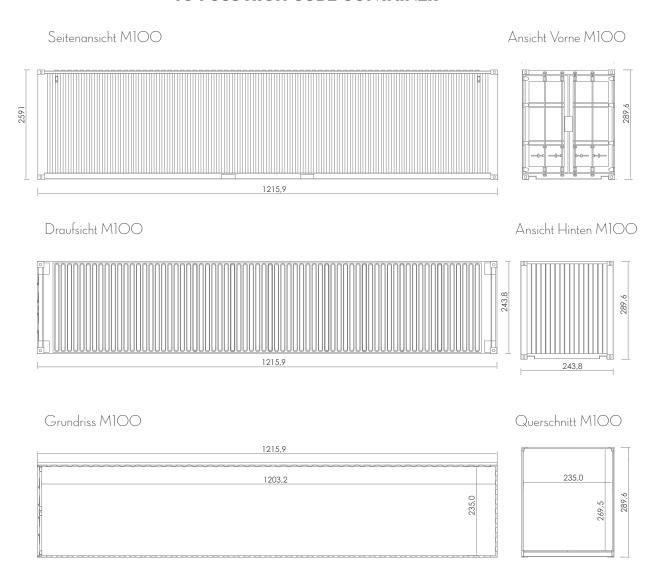
VARIANTE 1_	SCHULTAG	VARIANTE 2_	PRAXIS
06:00 - 06:30	_Bad	06:00 - 06:30	_Bad
06:30 - 07:00	_Frühstück	06:30 - 07:00	_Frühstück
07:00 - 07:15	_Weg zur Schule	07:00 - 07:30	_Weg zur Praxis
07:15 - 14:30	_Unterricht	07:30 - 15:30	_Praxis
14:30 - 15:30	_Mittagsessen	15:30 - 16:00	_Mittagsessen
15:30 - 18:30	_Freizeit / Aktivitäten	16:00 - 18:30	_Freizeit / Aktivitäten
18:30 - 20:30	_Lernen	18:30 - 20:30	_Lernen
20:30 - 22:00	_Freizeit / Zimmer	20:30 - 22:00	_Freizeit / Zimmer
22:00 - 22:30	_Bad	22:00 - 22:30	_Bad
22:30 - 06:00	_Schalfen	22:30 - 06:00	_Schalfen

Abb.90_ Dlagramm Verbindung / Fuss- und Radfahrerwege

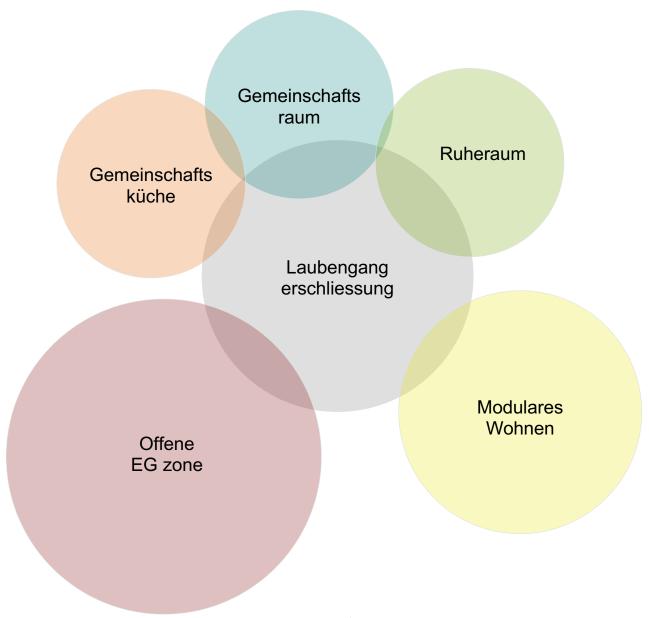
VERBINDUNG ZWISCHEN STANDORT UND MITTELSCHULEN FUSS- UND RADFAHRERWEGE

- -Gymnasium Šiška 2,4 km und ungefähr 30 Minuten zu Fuss
- -Gymnasium Bežigrad 750 m und ungefähr 9 Minuten zu Fuss -Fussballverein Olimpija - 1,5 km und ungefähr 20 Minuten zu Fuss
- -Mittelschule für Medizin 2,1 km und ungefähr 28 Minuten zu Fuss -Universitätsklinikum - 1,3 km und ungefähr 18 Minuten zu Fuss
- -Elektrotechnische Mittelschule 1,8 km und ungefähr 24 Minuten zu Fuss

VERBINDUNG ZWISCHEN STANDORT UND MITTELSCHULEN ÖFFENTLICHE VERKEHRSMITTEL



- -Gymnasium Šiška 700 m und ungefähr 9 Minuten zu Fuss zu Bushaltestelle 5 min mit Bus - 400 m und ungefähr 4 min zu Fuss zur Schule
- -Gymnasium Bežigrad zu Fuss
 - -Fussballverein Olimpija 750 m und ungefähr 10 Minuten zu Bushaltestelle 4 min mit Bus
 - 450 m und ungefähr 5 minuten zum Fussballverein
- -Mittelschule für Medizin 500 m und ungefähr 8 Minuten zu Fuss zu Bushaltestelle 6 min mit Bus - 700 m und ungefähr 8 min zu Fuss zur Schule
 - -Universitätsklinikum 500 m und ungefähr 8 Minuten zu Fuss zu Bushaltestelle 6 min mit Bus - 50 m und ungefähr 1 min zu Fuss zur Universitätsklinikum
- -Elektrotechnische Mittelschule 1,8 km und ungefähr 24 Minuten zu Fuss


7. CO-MODULARE WOHNGEMEINSCHAFT

Im Vergleich von Preis und Fläche ist ein 4O-Fuß-High-Cube-Container für den Umbau am besten geeignet. Der Container wird auch als HQ bezeichnet, was für "High-Quantity" steht. Im Rohbau verfügt der Container über rund 29m2 Fläche und eine Höhe von 2,90 m, was genügend Platz für einen Decken- und Bodenaufbau bietet und dabei noch genügend Raumhöhe verbleibt. Im Internet werden viele alte Container zum Verkauf angeboten, wobei der Preis ungefähr zwischen 1.500 und 3.000 Euro liegt. Ob neu oder gebraucht spielt keine große Rolle, solange die Konstruktion nicht beim Transport beschädigt wurde. Optische Mängel wie Kratzer können später wieder mit Farbe beseitigt werden.

AUSGEWÄHLTER CONTAINER 40 FUSS HIGH CUBE CONTAINER

FUNKTIONSDIAGRAMM

SONNENVERLAUF_JULI

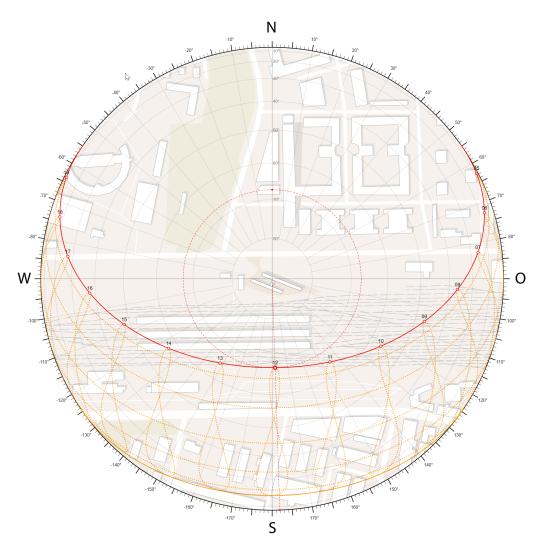


Abb.94_Sonnenverlauf_Juli

SONNENVERLAUF_DEZEMBER

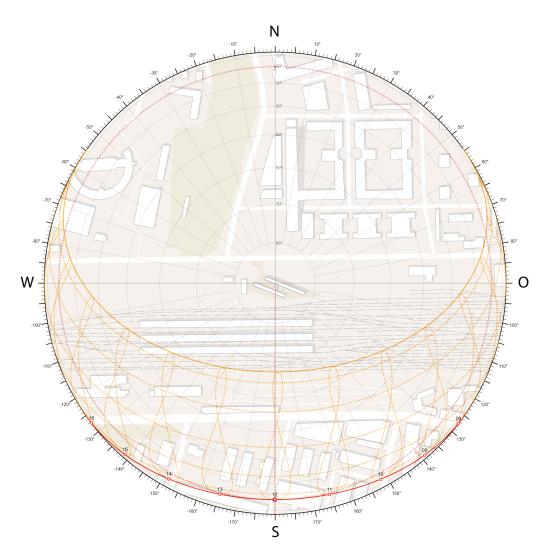



Abb.95_ Sonnenverlauf_Dezember

Abb.96_Diagramm Nutzungen

NUTZUNGEN IM UMGEBUNGSGEBÄUDEN DIAGRAMM

GESCHOSSANZAHL DER UMGEBUNGSGEBÄUDEN DIAGRAMM

Abb.97_Diagramm Geschossanzahl der Umgebungsgebäude

1-2 Geschosse

5 und mehr Geschosse

3-4 Geschosse

Abb.98_ Diagramm Strassenverlauf

STRASSENVERLAUF DIAGRAMM

Haupstrassen Strassenverbindungen

ÖFFENTLICHES VERKEHR DIAGRAMM

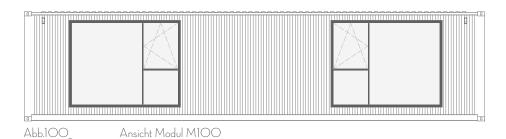
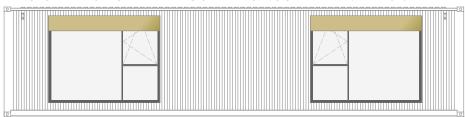


Abb.99_ Diagramm öffentliches Verkehr

Buslinien Bushaltestellen


7.1 MODUL - VARIANTEN

ANSICHT M100

Auf dem Modul werden Beschattungselemente aus Aluminium angebracht, um Sonnenschutz zu gewährleisten. Die Elemente werden am Außenrahmen der Fenster angebracht und sind auch abmontierbar, was den Transport der Module erleichtert.

ANSICHT MODUL MIT BESCHATTUNGSELEMENT MIOO

 ${\sf Abb.1O1_Ansicht\ Modul\ mit\ Beschattungselementen\ M1OO}$

ANSICHT HINTEN M100

Abb.102_ Modul Ansicht hinten M100

Für dieses Projekt sind sechs verschiedene Module geplant. Das erste ist ein Zweizimmer-Wohngemeinschaftsmodul, das für zwei Mittelschüler vorgesehen ist. Das zweite Modul ist ein Büro für die Angestellten. Die nächsten drei dienen der öffentlichen Nutzung, hierfür sind eine Gemeinschaftsküche, ein Ruheraum und ein Gemeinschaftsraum geplant. Das letzte Modul soll als Empfangs- und Anmeldungsbereich für die Schüler und Gäste fungieren.

Abb.104_Modul Visualisierung Beschattungselemente eingefahren

AUTOMATISCHE BESCHATTUNGSELEMENTE

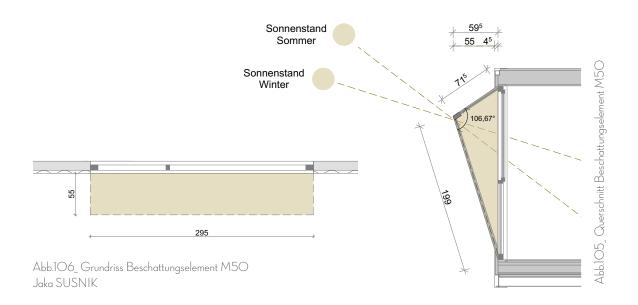
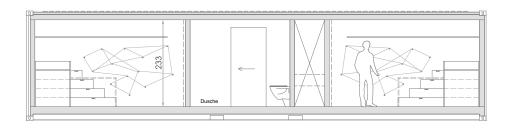

BESCHATTUNGSELEMENTE EINGEFAHREN

Abb.103_ Modul Visualisierung Beschattungselemente eingefahren


BESCHATTUNGSELEMENTE AUSGEFAHREN

Auf die Module werden an den Fenstern Elemente montiert, welche der Beschattung der Innenräume dienen sollen. Diese Elemente bestehen aus zwei Teilen: Der erste Teil ist fixiert und an das Modul beim Fensterrahmen montiert. Er soll aus gelb-braunem Blech vorgefertigt werden und ist so dimensioniert, dass im Sommer, wenn die Sonne am höchsten steht, weniger Sonnenstrahlen eintreten, die den Raum erhitzen, und im Winter, wenn die Sonne niedriger steht, die natürliche Wärme der Sonne genutzt wird, um die Innenräume zu wärmen. Der zweiter Teil wird an den ersten Teil von der Innenseite montiert. Es wird sich dabei um eine vollautomatische Beschattungsmarkise handeln die sich abhängig von der Raumtemperatur, dem Sonnenstand und der Sonnenstrahlung ausrichtet. Diese Elemente sollen verhindern, dass die Schüler, wenn sie am Abend von der Schule zurückkommen, in überhitzte Räume kommen. Diese Beschattungsvariante soll auch dem Energiesparen dienen.

MODUL 1 - ZWEI-ZIMMER-WG

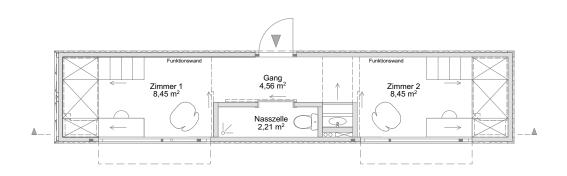
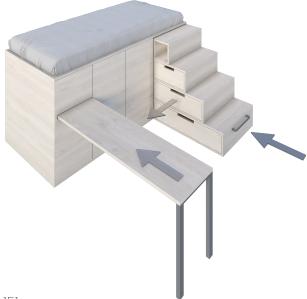


Abb.107_ Längsschnitt und Grundriss Zweizimmer Modul

Abb.108 Flexibles Möbel

Das Modul wurde für zwei Schüler geplant, wobei jeder sein eigenes Zimmer mit 8,45m2 hat und sie gemeinsam den Toilettenbereich und den Gang benutzen. Jedes Zimmer ist mit flexiblen Möbeln ausgestattet. Auf 12Ocm Höhe befindet sich das Bett und unterhalb Stauraum für die Schüler. Die Treppen zum Bett sind flexibel, können herausgezogen und seitlich auch als Stauraum mit ausziehbaren Regalen benutzt werden. Der Tisch ist ebenfalls ausziehbar. Wenn der Tisch und die Treppen versteckt sind, entsteht ein offener Raum, der den Bewohnern Platz für verschiedene Aktivitäten bietet.

Im Gang gibt es eine Schiebewand, hinter der sich das Waschbecken und Regale für persönliche Toilettenartikel befinden. In jedem Zimmer ist auch ein Gestaltungselement an der Wand, mit der Möglichkeit, verschiedene Gegenstände aufzuhängen.



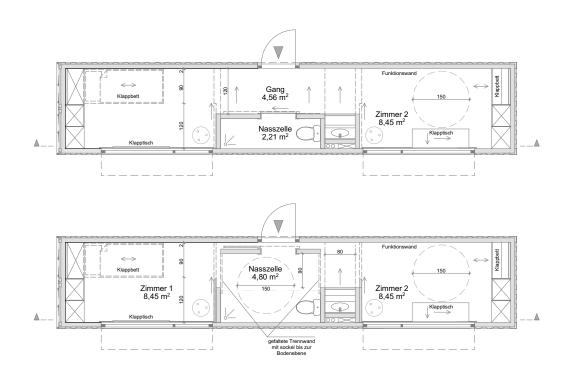
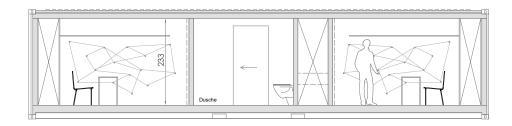


Abb.109_ Visualisierung 2 Zimmer WG_1

Abb.110_ Visualisierung 2 Zimmer WG_2

MODUL 1 - 2 ZIMMER WG-BARRIEREFREI



Bei Bedarf kann sich jedes Zimmer in ein barrierefreies Umwandeln. Das Möbel mit dem erhöhtem Bett wird mit einem flexiblen Schrank ausgetauscht. Das Bett ist klappbar und kann sich in dem Schrank verstecken. Auf die Wand bei der Fensterseite kommt eine Wandschiene montiert worauf sich der Tisch schieben kann. Für eine barrierefreie Nasszelle, wird ermöglicht, dass sich die Ganze Wand längs der Nasszelle zu dem Gang verschiebt. Wegen dem gleichen Bodenbelags ist es auch gegen die Nässe geschützt. Bodenbelag ist aus PVC der Wasserdicht und Rutschfest ist. Die gefaltete Trennwand verschiebt sich gleichzeitig mit der Wand. Die Leuchte auf der Decke im Gang wird mit einer ausgetauscht die an die wand montiert wird.

Abb.112_ Visualisierung Zimmer WG_barrierefreie Variante

MODUL 2 - BÜRO

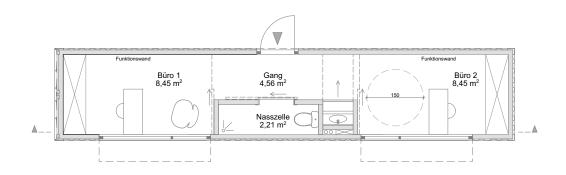


Abb.113_ Längsschnitt und Grundriss Büro Modul

Das Modul funktioniert wie das Wohngemeinschaftsmodul. Es verfügt über zwei Zimmer, einen Gang und eine Nasszelle. Der Unterschied ist, dass die Zimmer dieses Moduls als Büros für die Erzieher benutzt werden.

Ein solches Modul soll vier Erziehern Raum bieten, den sie sich teilen. Es gibt zwei Erzieher in der Frühschicht und zwei in der Spätschicht. Das Modul soll den Erziehern einen eigenen Raum anbieten, an dem sie einen Teil ihrer Aufgaben erledigen können, wie zum Beispiel Privatgespräche mit den Schülern oder ihren Eltern, und auch die formalen Angelegenheiten durchführen können.

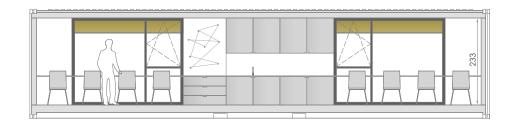


Abb.114_ Visualisierung Büro_1

Abb.115_ Visualisierung Büro_2

MODUL 3 - GEMEINSCHAFTSKÜCHE

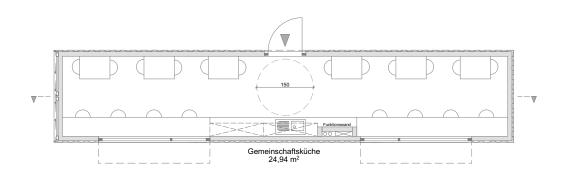


Abb.116_ Längsschnitt und Grundriss Gemeinschaftsküche Modul

Modul 3 soll als Gemeinschaftsküche für die Schüler dienen. Weil die Schüler meistens zu Mittag in den Schulen essen, wird die Küche des Öfteren nur in der Früh und am Abend benutzt. An der Wand des Installationsschachts soll das Gestaltungselement eine Möglichkeit darstellen, an der die Schüler ihre Rezepte aufhängen und anderen zur Verfügung stellen können. In dem Modul soll auch einmal pro Woche ein Kochkurs stattfinden, in dem die Schüler selbständig kochen lernen und auch zum Thema gesundes Essen Informationen erhalten.

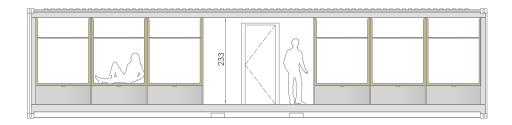


Abb.117_ Visualisierung Gemeinschaftsküche_1

Abb.118_ Visualisierung Gemeinschaftsküche_2

MODUL 4 - RUHERAUM

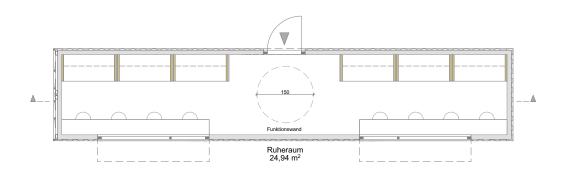


Abb.119_ Längsschnitt und Grundriss Ruheraum Modul

Dieses Modul soll den Schülern einen Raum bieten, an dem sie sich entspannen und in Ruhe lernen oder ein Buch lesen können. Der Raum soll Abwechslung ermöglichen, es soll ein Ort sein, an dem sie auch in Stille sein können, wenn sie in ihren Zimmern nicht die benötigte Motivation zum Lernen finden.

Abb.12O_ Visualisierung Ruheraum_1

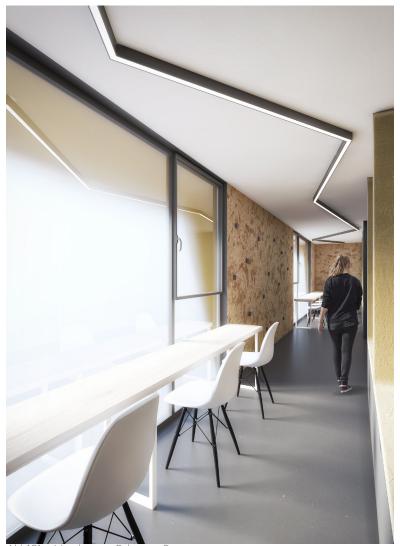
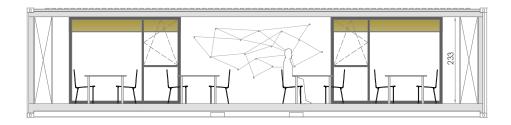



Abb.121_ Visualisierung Ruheraum_2

MODUL 5 - GEMEINSCHAFTSRAUM

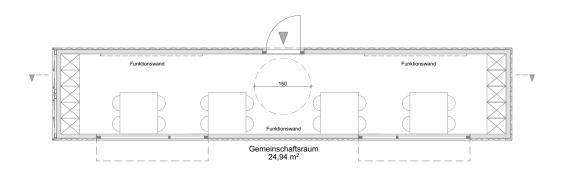


Abb.122_ Längsschnitt und Grundriss Gemeinschaftsraum Modul

Dieses Modul soll den Schülern einen geschlossenen, öffentlichen Raum anbieten, an dem sie zusammen lernen und Gemeinschaftsspiele spielen können. Das Modul soll auch mit zwei Wandtafeln ausgestattet sein, auf welchen sie schreiben und ihre Plakate aufhängen können.

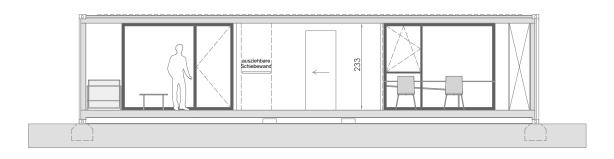


Abb.123_ Visualisierung Gemeinschaftsraum_1

Abb.124_ Visualisierung Gemeinschaftsraum_2

MODUL 6 - EMPFANG

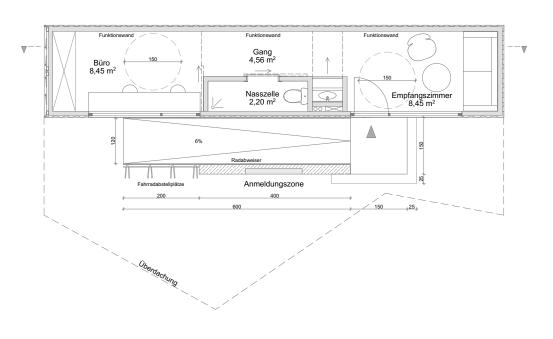
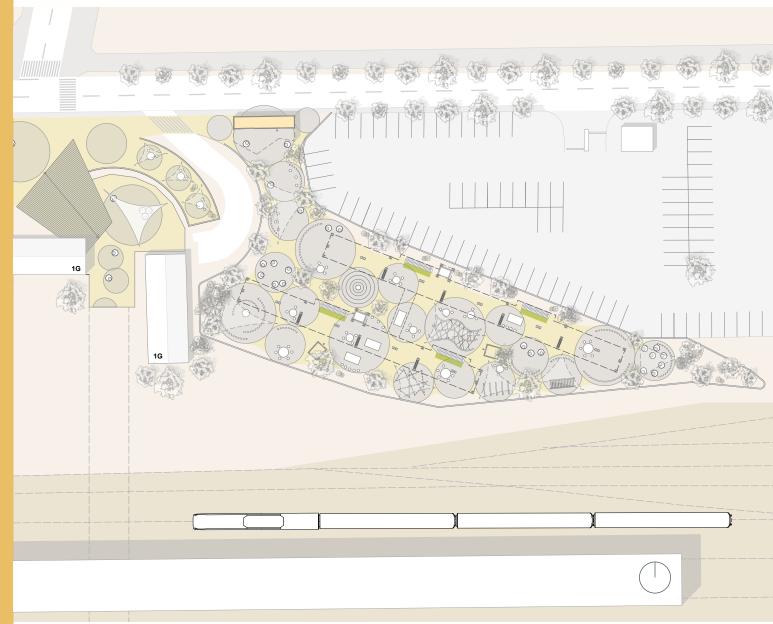


Abb.125_ Längsschnitt und Grundriss Empfang Modul

Das Modul soll als eine Anmeldungszone fungieren, wo sich die Schüler und Gäste anmelden können. Ein wichtiger Aspekt bei Schülerwohnheimen ist die Sicherheit und mit diesen Anmeldungen sollen die Wächter und Betreuer immer wissen, wer sich zur Zeit auf dem Gebiet befindet. Im Sommer, wenn die Schüler Zuhause bei ihren Eltern sind, werden die Module zur Vermietung bereitgestellt, beispielsweise für Touristen, die eine Unterkunft suchen, für die Zeit, in der sie in der Stadt sind. Das Empfangsmodul soll auch als Anmeldungszone dienen, wo diese sich anmelden und die Schlüssel übernehmen können.

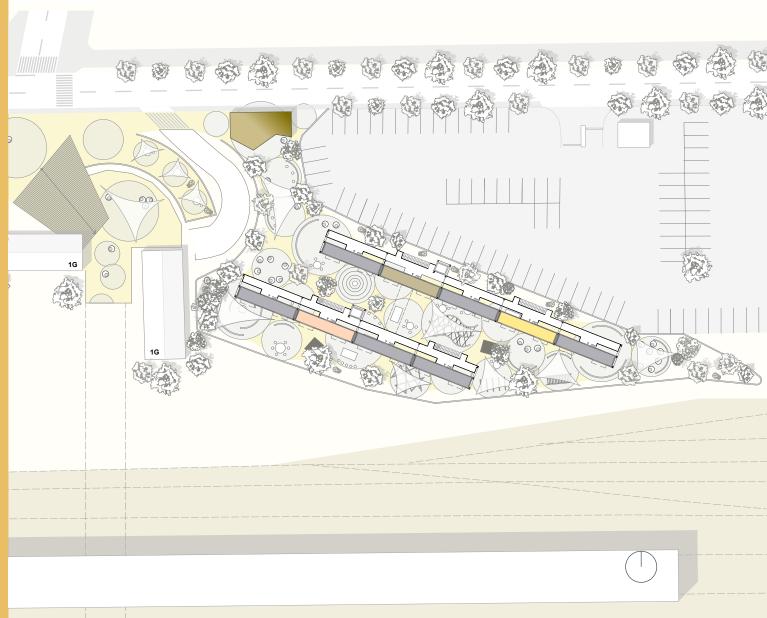
Abb.126_ Visualisierung Empfang_1

Abb.127_ Visualisierung Empfang_2


7.2 PROJEKT PLÄNE

VISUALISIERUNG_ANSICHT EINGANGSBEREICH

GRUNDRISS ERDGESCHOSS M750

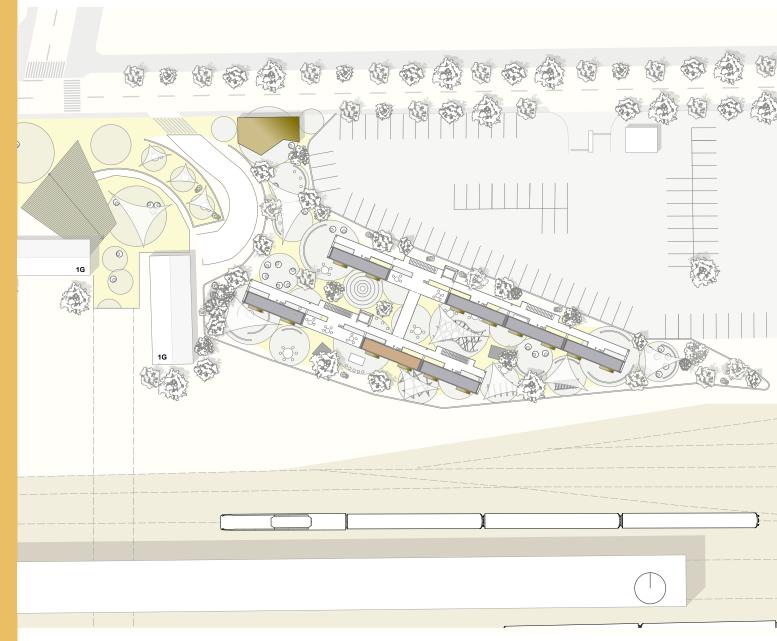


Im Erdgeschoss befindet sich die öffentliche Aufenthaltszone für Freizeitaktivitäten. Der Platz ist aus hellgrau gefärbtem EPDM-Belag in Kreisformen gestaltet. Auf diesen Kreisen befinden sich verschiedene Sitzmöglichkeiten für unterschiedliche Gruppengrößen. Die Plätze vor dem Stiegenbereich sollen als Fahrradabstellplätze genutzt werden. Gelbgefärbter Asphalt verbindet alle Kreise. Die Idee der Gestaltung zieht sich auch nach außen und durch den unterirdischen Durchgang bis zum Hauptbahnhof. Der Hauptbahnhof stellt in Ljubljana, wie auch öfters an anderen Orten weltweit, eine Barriere zwischen der Stadt und dem Vorort dar. Diese Gestaltung soll die Verbindung zwischen dem Hauptbahnhof und dem Bereich hinter dem Hauptbahnhof, dem Vorort, verstärken.

Bei der Straße, auf welcher der Zugang ist, befindet sich eine Empfangszone mit dem Empfangsmodul, welches das einzige Modul ist, das auf dem Boden mit Punktfundamenten liegt und nicht auf einem Fachwerkträger aus Stahl. Der Bereich vor dem Modul ist überdacht mit gelbbrauem Aluminium.

Empfang Fahrradabstellplätze

GRUNDRISS 1. OBERGESCHOSS M750

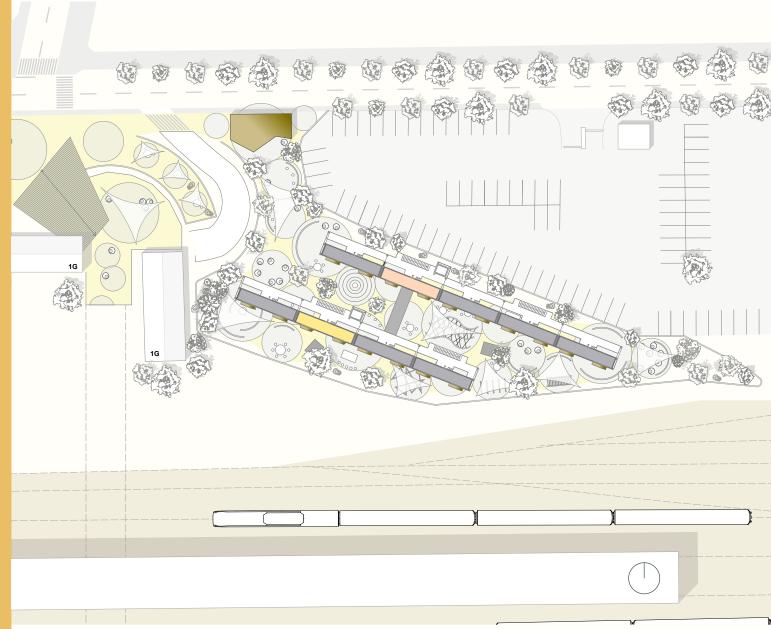


Imersten Obergeschossbefindensich die ersten Module. Das Projekt besteht aus zwei Gebäudet eilen, die als ein Gebäude funktionieren. Beide verfügen über eine Laubengangerschließung mit einer Breite von 120cm. Der erste, nordöstliche Teil hat fünf Obergeschosse und der zweite, südwestliche Teil drei Obergeschosse.

Das erste Obergeschoss hat sechs Module, die für die Schüler-Wohngemeinschaft ausgestattet sind. In dem Geschoss befindet sich auch ein Modul, das als Büro für die Erzieher genutzt werden soll. Die letzten zwei Module stellen einen Ruheraum und einen Gemeinschaftsraum dar.

2 Zimmer WG Gemeinschaftsraum 2 Zimmer Büro Ruheraum

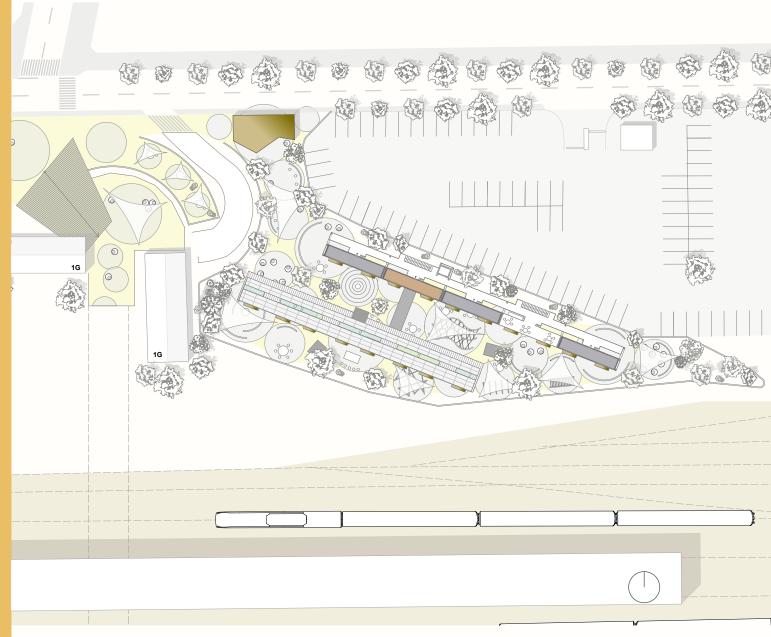
GRUNDRISS 2. OBERGESCHOSS M750



Im zweiten Obergeschoss befinden sich sechs Wohngemeinschaftsmodule und ein Modul, das für die Gemeinschaftsküche genutzt wird. In diesem Geschoss werden auch die zwei Gebäudeteile miteinander verbunden. Als Verbindung wird ein 4O-Fuß-High-Cube-Container genutzt, der auf den Trägern liegt, welche die zwei Stahlkonstruktionen verbinden. Der Container wird an beiden Seiten abgeschnitten, sodass er die genaue Länge der Verbindung bekommt. Die zwei Restteile werden im Erdgeschoss liegen gelassen, damit die Schüler hinaufklettern und darauf liegen können. In die zwei Restteile werden auch Löcher geschnitten, worauf noch Türen montiert werden. Der Raum im Container kann dann als Lager genutzt werden. Im Lager wird dann das Zubehör für verschiedene Aktivitäten gelagert und auch der Stoff, der für die teilweise Beschattung des Außenraums benutzt wird.

2 Zimmer WG

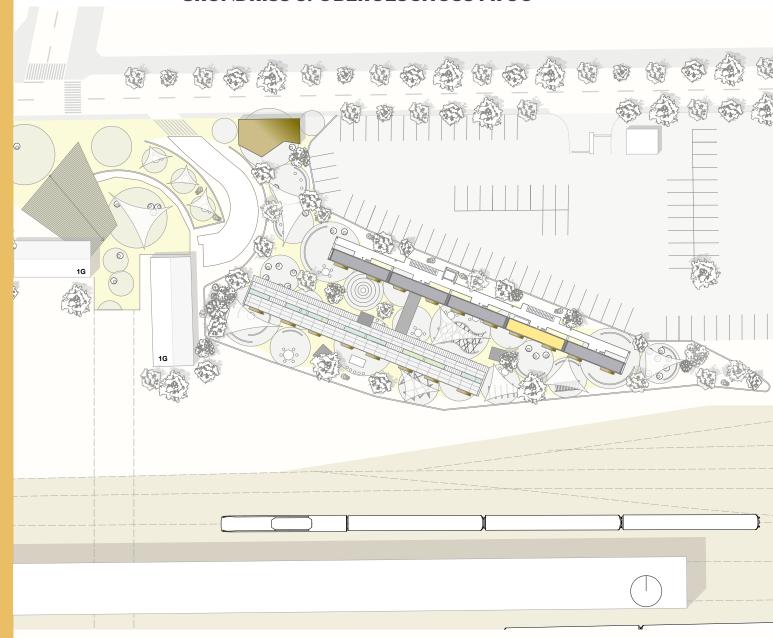
Gemeinschaftsküche


GRUNDRISS 3. OBERGESCHOSS M750

Im dritten Obergeschoss befinden sich sieben Wohngemeinschaftsmodule und ein Modul mit Ruheraum im ersten Gebäudeteil und Gemeinschaftsmodul im zweiten Teil.

2 Zimmer WG Gemeinschaftsraum Ruheraum

GRUNDRISS 4. OBERGESCHOSS M750

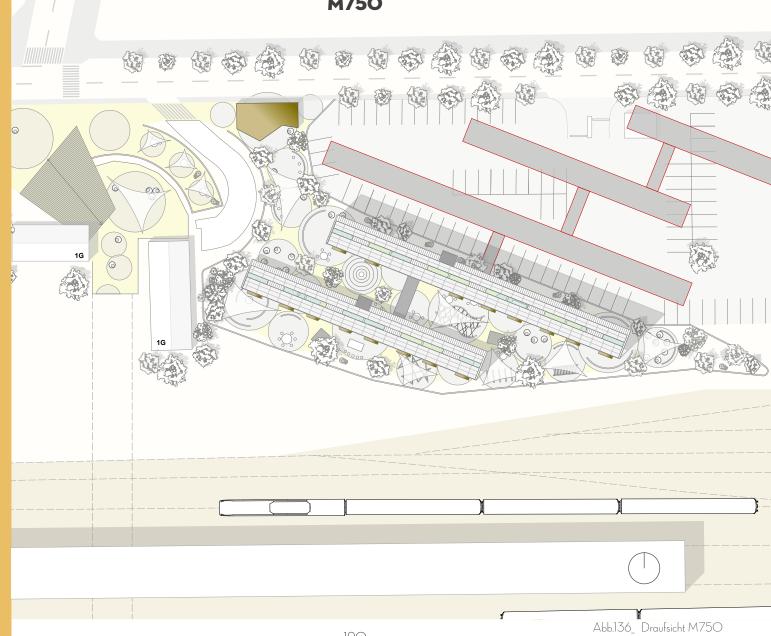


Im vierten Obergeschoss befinden sich drei Wohngemeinschaftsmodule und ein Modul mit Gemeinschaftsküche. Auf dem Dach des zweiten Gebäudeteils werden Photovoltaik-Anlagen montiert, die zur teilweisen Energieselbstversorgung beitragen sollen.

2 Zimmer WG

Gemeinschaftsküche

GRUNDRISS 5. OBERGESCHOSS M750



Im fünften Obergeschoss befinden sich vier Wohngemeinschaftsmodule und ein Ruheraum-Modul. Dieses ist auch das letzte Geschoss und hierbei werden neben den Installationsschächten Leitern angebracht, welche auf das Dach führen. Diese werden abgeschlossen sein und nur vom Hausmeister oder Techniker für die Pflege und Erhaltung des Daches genutzt werden.

2 Zimmer WG

Ruheraum

DRAUFSICHT MIT ERWEITERUNGSMÖGLICHKEIT M750

In der Draufsicht ist das Dach des ersten Gebäudeteils zu sehen, das auch mit Photovoltaik-Anlagen ausgestattet wird. Eine Erweiterungsmöglichkeit bei Bedarf ist geplant. Das Projekt könnte sich auf das Nachbargrundstück, wo sich ein Privatparkplatz zur Zeit der Planung befindet, weiterziehen.

ANSICHT SÜD-WEST M500

Abb.137_ Ansicht Süd-West M500

ANSICHT SÜD-OST M500

Abb.138_ Ansicht Süd-Ost M500

8. KONSTRUKTION / DETAIL

Um die benötigte Tragkonstruktion herzustellen werden HEB3OO-Stahlträger verwendet, welche ein Rahmentragwerk bilden. Die Träger nehmen die Lasten auf und übertragen sie vertikal nach unten zu den Punktfundamenten. Zur Aussteifung der Konstruktion werden Zugstäbe horizontal und vertikal verwendet. Zur zusätzlichen Aussteifung werden auch Wandscheiben aus Stahlbeton zwischen den Stützen auf der Seite, wo die Module liegen, aufgebaut. Diese steifen das Tragwerk durch ihre Schub- und Biegefestigkeit aus. Alle diese Konstruktionsteile wie Stahlträger, Stahlbetonwand, Erschließungspodest, Dach und auch die Module werden präfabriziert und mit einem Lkw an den Standort geliefert, wo diese anschließend mit der Hilfe eines Kranes heruntergehoben und montiert werden.

Abb.139_ Visualisierung Stahlrahmenkonstruktion

KONSTRUKTIONSAUFBAU - ABLAUF

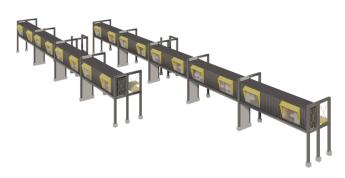
SCHRITT-1

Der Aufbau der Konstruktion beginnt mit der Erstellung der Punktfundamente. Nach der Erhärtung der Fundamente werden HEB300-Stahlträger angebracht.

SCHRITT - 2

Im zweiten Schritt wird die Konstruktion mit Hilfe präfabrizierter Stahlbetonwände und horizontaler Zugstäbe ausgesteift.

Abb.141 Konstruktion Ablauf Schritt 2


SCHRITT - 3

Im nächsten Schritt werden Elemente, welche vertikal angebracht werden, montiert, die Stahlbetonwände auf die von dem EG aufeinandergelegt und fixiert. Die Stahlträger werden ebenfalls mit vertikalen Zugstäben an den Seiten ausgesteift.

SCHRITT - 4

Im vierten Schritt werden die ersten Module und Erschließungspodeste angebracht und fixiert.

SCHRITT - 5 Im letzten Schritt wer Stahlträger montier

Im letzten Schritt werden die horizontalen Stahlträger montiert. Damit ist die Konstruktion für das erste Obergeschoss abgeschlossen.

Nach dem letzten Schritt wiederholt sich der ganze Ablauf ab dem zweiten Schritt, bis das letzte Geschoss fertig ist. Ganz am Ende wird dann noch das präfabrizierte Dach mit dem Kran auf die Konstruktion aufgelegt und montiert.

Abb.145_ Konstruktions_ende

GRUNDRISS TRAGKONSTRUKTION M200

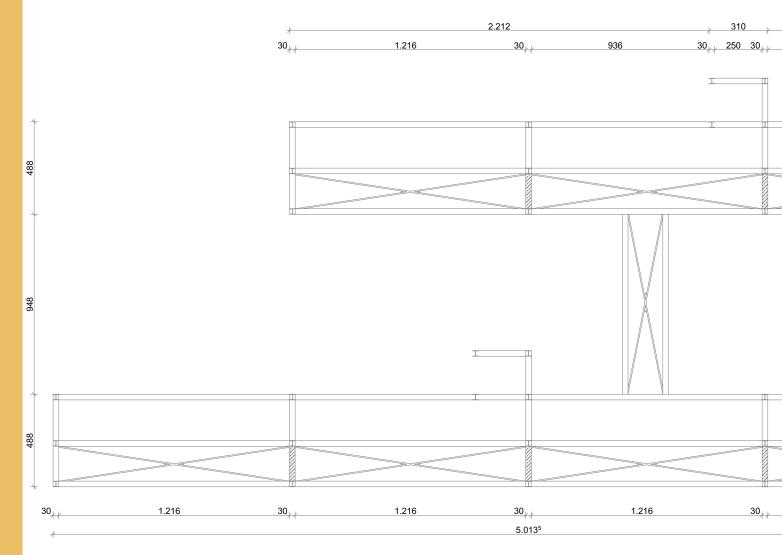
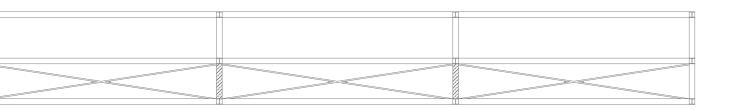
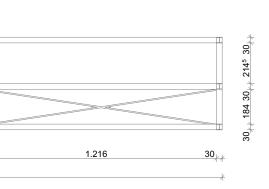
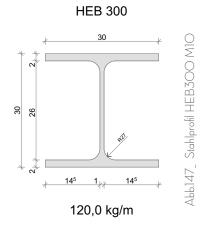
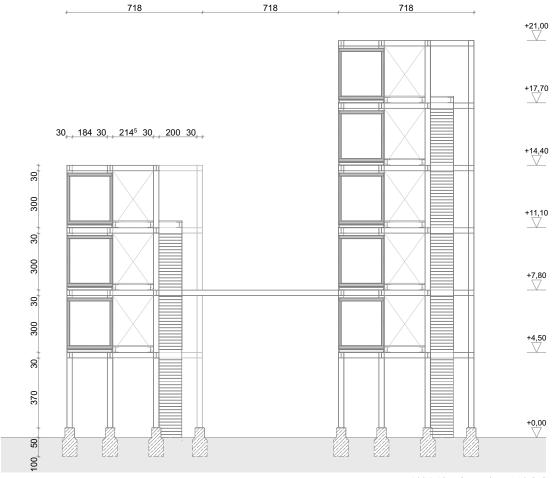
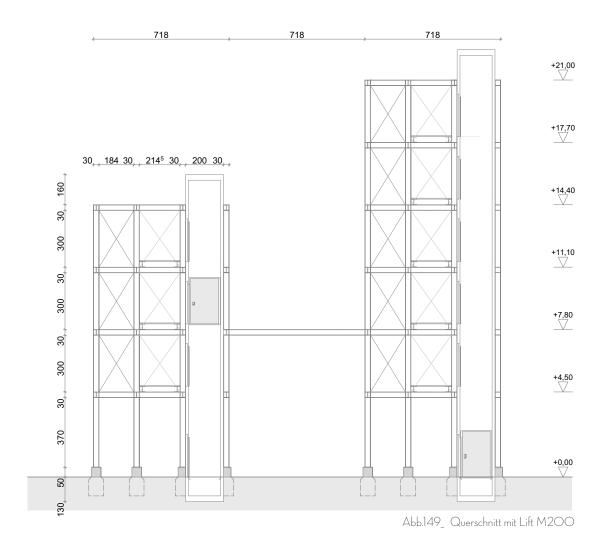
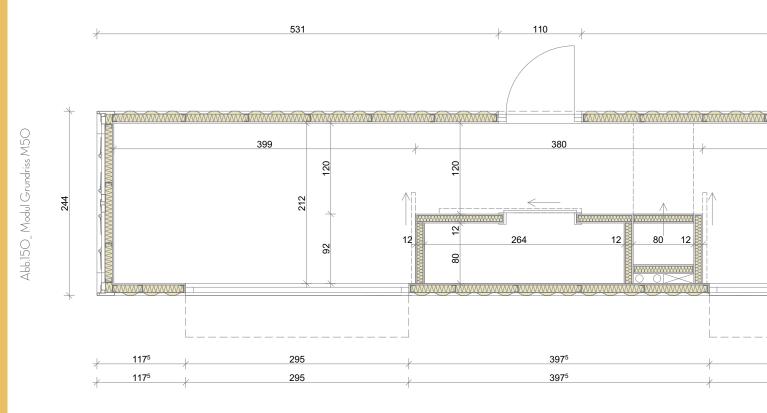
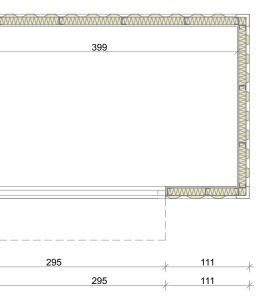





Abb.146_ Grundriss Tragkonstruktion M200 Jaka SUSNIK






QUERSCHNITT TRAGKONSTRUKTION MIT MODULEN M200


QUERSCHNITT TRAGKONSTRUKTION MIT LIFT M200

GRUNDRISS UND QUERSCHNITT MODUL M50

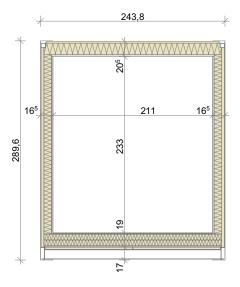
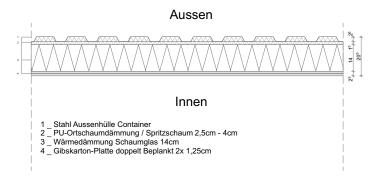



Abb.151 Modul Querschnitt M50

AUFBAUTEN M20

Deckenaufbau

Wandaufbau

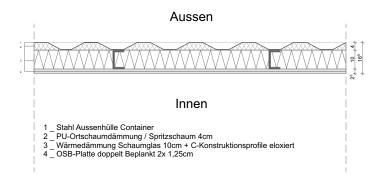
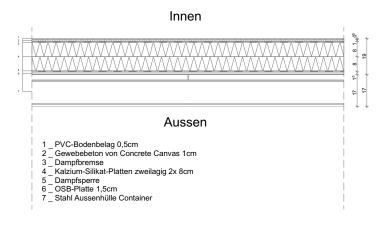
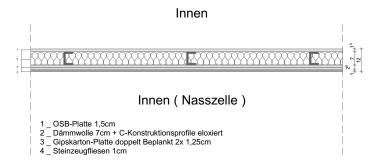




Abb.153_ Wandaufbau M20

Bodenaufbau

Trockenwand

LEITUNGSFÜHRUNG GRUNDRISS UND QUERSCHNITT M50

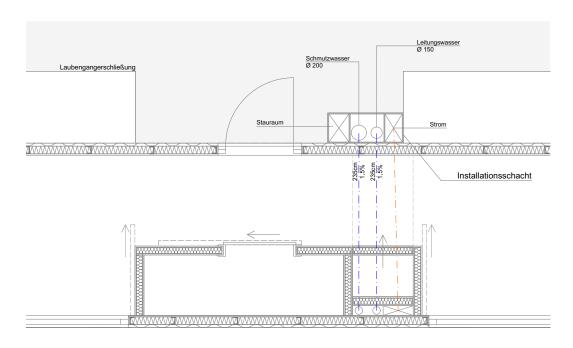
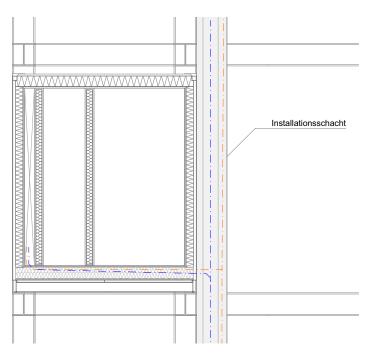
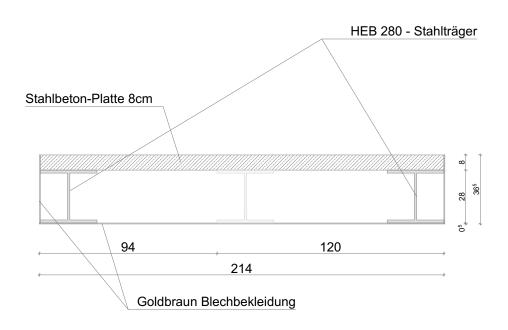
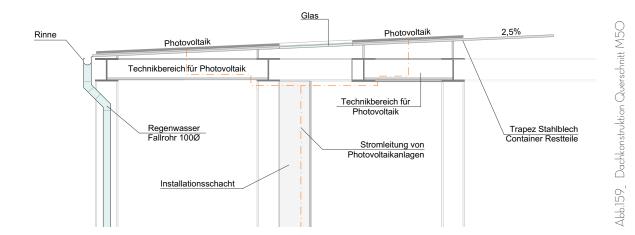


Abb.156_ Installationsschacht Grundriss M50


Abb.157_ Installationsschacht Querschnitt M50

Wasserleitung Stromleitung

ERSCHLIESSUNGSPODEST QUERSCHNITT M20

DACHKONSTRUKTION QUERSCHNITT M50

Das gesamte Gebäude wird mit einer Konstruktion übedacht, die aus den Restteilen von Container besteht. Diese sind die welche rest geblieben sind bei der Montage von Fenstern und Türen. Auf dieses Trapezblechedach werden Photovoltaik-Anlagen angebracht. Das Dach hat eine Neigung von 2,5%. Die Traufe befindet sich an der Seite wo die Module liegen. Der Fallrohr wird in den Zwischenbereich der Stahlstütze geleitet, somit versteckt sich der und bleibt nicht sichtbar auf der Fassade.

9. MATERIALITÄT

Abb.160_OSB-Platte

Abb.161_ PVC Grau

OSB-PLATTE

In den Innenräumen soll an die Wände kein Putz oder Ähnliches kommen. Das Konstruktionselement OSB-Platte soll sichtbar sein und das rohe Aussehen von außen nach innen widerspiegeln.

PVC-BODENBELAG

Graues PVC soll den Bodenbelag der Innenräume bilden. Es soll ein glattes und gleichmäßiges Erscheinungsbild ergeben. Das Material ist Wasser- und schmutzabweisend und leicht zu reinigen.

Blech Goldbraun

Abb.162 Stahl Farbe RAL 7016

BLECH

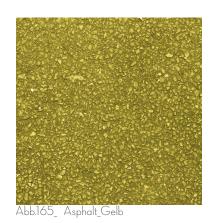
Blech in goldbraunem Farbton wird für verschiedene Elemente benutzt. Die Beschattungselemente der einzelnen Module, die Überdachung des Empfangsmoduls, die Verkleidung des Erschließungspodestes und die Haltegriffe des Geländers sind die wichtigsten Elemente, für welche das Material verwendet wird.

STAHL

Das Material Stahl ist ein Grundmaterial bei diesem Projekt. In anthrazitgrauem Farbton wird er für die Stahlkonstruktion benutzt. Es werden HEB300-Profile verwendet. Für die Erschliessungspodeste werden auch HEB28O-Profile verwendet.

HOLZ

Das helle Holz aus Eiche wird in den Innenräumen für Möbel verwendet, wie für die Tische und die flexiblen Möbel


Abb.164_ Holz Eiche hell

EPDM-BELAG

EPDM ist ein weiches Material aus Kunststoff. Es wird für den Bodenbelag in grauem Farbton in den Kreisen im Erdgeschoss, wo verschiedene Aktivitäten stattfinden verwenden. Wegen den Materialeigenschaften bleibt es hochbelastbar und rutschfes.

Abb.163_ EPDM_Belag

ASPHALT

Gelbgefärbter Asphalt soll die Kreise aus EPDM-Belag umgeben. Er soll eine harte Zwischenzone zwischen dem weichen EPDM-Belag und der Erde bilden.

Abb.166_ FurnierFarbe RAL 7016

FURNIER

Furnier in anthrazitgrauer Farbe wird für die Schränke sowie für die Küche benutzt.

POLYURETHANSCHAUM

Der PU-Schaum wird für die Dämmung zwischen den Höhlröumen bei dem Trapetzblech verwendet. Es hat einen sehr guten Dämmwert wenn es im verbindung mit diffusionsdichten Deckschichten angebracht wird. Es ist Schimmel- und Fäulnisresistent, sowie auch unverrotbar.

Abb.167_ PU-schaum

SCHAUMGLAS

Diese Dämmplatten werden beim Aufbau der Aussenwände und Decke verwendet. Die haben gute Wärmedämmeigenschaften und sind unempfindlich gegen Feuchtigkeit. Sind Wasser- und Dampfdicht. Wegen der Materialstruktur haben die eine eingebaute Dampfsperre. Das Material ist nicht brennbar (A1).^[31]

Abb.168_ Schaumglas-Platte

³¹ Vgl. Institut für Architekturtechnologie 2011, 24-28

Abb.169_ Kalzium-Silikat-Platten

KALZIUM-SILIKAT-PLATTEN

Diese Platten werden im Bodenaufbau angewendet. Sind sehr feuchtigkeitsbeständig und schwerentflammbar (A1). Sind Druckfest und Formstabil, was sich für eine anwendung im Bodenaufbau gut eignet.^[32]

Abb.170_Beton_Farbton Grau

STAHLBETON-PLATTEN

Der Beton ist sehr Druckfest und nicht brennbar (A1). Mit einer Stahlbewehrung ergibt sich auch eine hohe Zugfestigkeit. Es werden zwei Varianten von vorgefertigten Platten verwendet. Eine 3Ocm breite für die vertikale Aussteifung der Konstruktion und eine 8cm breite für den Erschliessungspodest.

³² Vgl. Institut für Architekturtechnologie 2011, 26.

GEWEBEBETON

Das Gewebebeton wird im Bodenaufbau verwendet. Es wird anstelle eines Estichs benutzt. Ein 8mm ersetzt 10-15cm beton und somit ein Ersparnis bei der Raumhöhe. Er ist Wasserdicht und auch nich brennbar.^[33]

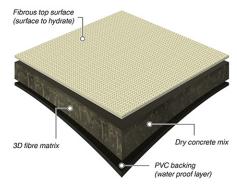
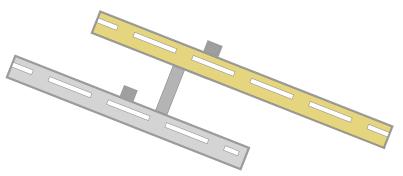



Abb.171_ Gewebebeton

³³ Vgl. GEWEBE BETON CC UND CC HYDRO, https://www.stonepack.at/baustoffe-kunststein-geopietra-ziegel-%C3%B6sterreich/, 22.04.2020.

10. FLÄCHENBERECHNUNG

FLÄCHENBERECHNUNG FÜR GEBÄUDE_1

1 ()	haro	220	hoss	
	Deig	Cac	11033	۰

Erschliessungfläche: 11	4,87m²
-------------------------	--------

 $70.98 \, \text{m}^2$ - privat Raumfläche:

- Fläche von Räumen mit öffentlicher Nutzung: $49,88 \, \text{m}^2$

3. Obergeschoss:

- Erschliessungfläche:

- privat Raumfläche :

- Fläche von Räumen mit öffentlicher Nutzung:

- Erschliessungfläche :

- privat Raumfläche :

öffentlicher Nutzung:

Abb.172_ Flächenberechnung G1

 $24,94m^2$

114.87m²

 $94.64 \, \text{m}^2$

2.Obergeschoss:

- Erschliessungfläche: 158.77m²

 $94.64 \, \text{m}^2$ - privat Raumfläche :

- Fläche von Räumen mit öffentlicher Nutzung:

 Om^2

4.Obergeschoss:

145,04m²

 $70,98m^2$

- Fläche von Räumen mit

 $24,94m^2$

5.Obergeschoss:

- Erschliessungfläche: 114,87m²

- privat Raumfläche : 94,64m²

- Fläche von Räumen mit

öffentlicher Nutzung: 24,94m²

Insgesamt:

- Erschliessungfläche: 648,42m²

- privat Raumfläche : 425,88m²

- Fläche von Räumen mit

öffentlicher Nutzung: 124,70m²

Menschenanzahl für Gebäude_1:

Erzieher:

Schüler: 36

FLÄCHENBERECHNUNG FÜR GEBÄUDE_2

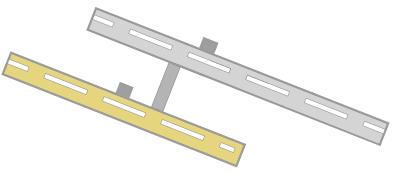


Abb.173_ Flächenberechnung G2

1.Obergeschoss:

- Erschliessungfläche: 92,91m²

- privat Raumfläche : 70,98m²

- Fläche von Räumen mit öffentlicher Nutzung: 24,94m²

2.Obergeschoss:

- Erschliessungfläche: 133,24m²

- privat Raumfläche : 47,32m²

- Fläche von Räumen mit öffentlicher Nutzung: 24,94m²

3.Obergeschoss	
----------------	--

_	Erschliessungfläche :	92,91m ²
	Liscillessoriquacite.	/, / !!!!

Insgesamt:

- Erschliessungfläche: 31	9,06m²
---------------------------	--------

- Fläche von Räumen mit

öffentlicher Nutzung: 74,82m²

Menschenanzahl für Gebäude_2:

Erzieher: C

Schüler: 16

FLÄCHENBERECHNUNG FÜR GESAMTE PROJEKT

- Erschliessungfläche: 967,48m²

- privat Raumfläche: 615,16m²

- Fläche von Räumen mit

öffentlicher Nutzung: 199,52m² + 23,66m² Empfangsmodul aus EG

Menschenanzahl für gesamte Projekt:

Erzieher: 4

Schüler: 52

Wächter: 5

11. VISUALISIERUNGEN - EXTERIOR

1. VISUALISIERUNG-ANSICHT NORD-WEST

Abb.174_ Visualisierung Ansicht NW

2. VISUALISIERUNG-ANSICHT OFFENE ERDGESCHOSSZONE

Abb.175_ Visualisierung Ansicht offene Erdgeschosszone

3. VISUALISIERUNG-ANSICHT EMPFANGSMODUL

Abb.1/6_ Visualisierung Ansicht Emplang

4. VISUALISIERUNG-ANSICHT ERSCHLIESSUNGSBEREICH

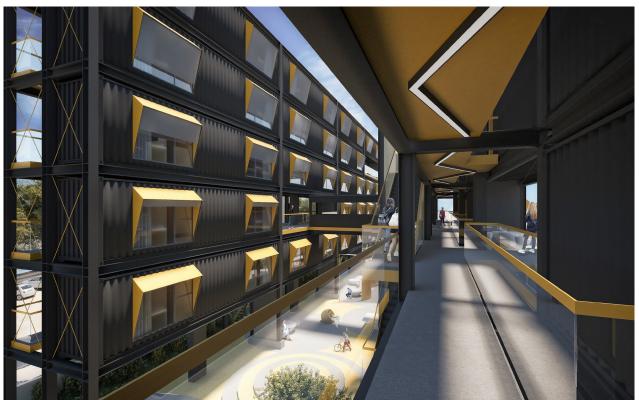


Abb.177_ Visualisierung Ansicht Erschliessung

5. VISUALISIERUNG-WEITERFÜHRUNG DER GESTALTUNGSIDEE

Abb.178_ Visualisierung Ansicht Weiterführung der Gestaltungsidee

6. VISUALISIERUNG-ANSICHT SÜD-OST

Abb.179_ Visualisierung Ansicht SO

12.LITERATURVERZEICHNISS

- -Anish, A Guide to Shipping Container Dimensions, O2.10.2019, https://www.marineinsight.com/maritime-law/guide-shipping-container-dimensions/, O9.01.2020.
- -A THOUSAND STRONG: AMSTERDAM'S KEETWONEN STUDENT HOUSING DESIGNED AND BUILT BY TEMPOHOUSING, 16.09.2014, https://www.livinspaces.net/projects/architecture/a-thousand-strong-keetwonen-amsterdam-student-housing/, 17.02.2020
- -Berufsbeschreibung, https://www.ess.gov.si/ncips/cips/opisi_poklicev/opis_poklica?Kljuc=572&Filter=, O1.O3.2O2O
- -Celso Filho: Bjarke Ingels Group and Urban Rigger Bring Student Housing to Copenhagen's Harbor, 20.10.2018, https://www.scandinaviastandard.com/bjarke-ingels-group-and-urban-rigger-bring-student-housingto-copenhagens-harbor/, 17.02.2020
- -Container Investment: Lohnt sich die Kapitalanlage? https://www.financescout24.de/, 21.04.2020.
- -Containerhaus-einneuer Bautrend?, https://www.bauratgeber-deutschland.de/hausbauplanung-von-a-z/08-die-hausvarianten/containerhaus-ein-neuer-bautrend/, 23.01.2020
- -Cornelia Dörries / Sarah Zahradnik : Container- und Modulbauten. Entwurfshilfe und Projektsammlung, DOM publishers 2016, Seite 21.
- -Fernanda Castro, Drivelines Studios / LOT-EK, O9.11.2018, https://www.archdaily.com/905460/drivelines-studios-lot-ek, 20.03.2020

- -GEWEBE BETON CC UND CC HYDRO, https://www.stonepack.at/baustoffe-kunststein-geopietra-ziegel-%C3%B6sterreich/, 22.04.2020.
- -Institut für Architekturtechnologie : Materialität. Baustoffkunde, Technische Universität Graz 2011, Seite 24-28.
- -Irmak Aktan, REUSING SHIPPING CONTAINERS: WHAT ARE THE ADVANTAGES AND CHALLENGES?, O9.10.2017, https://www.morethanshipping.com/reusing-shipping-containers-advantages-challenges/, 23.01.2020
- -KaranC, The History Of Containerization In The Shipping Industry, 20.10.2019, https://www.marineinsight.com/maritime-history/the-history-of-containerization-in-the-shipping-industry/, 09.01.2020
- -Sibylle Kramer : The Box. Architectural Solutions with Containers, Braun 2015, Seite 37, Seite 139.
- -Park 'n' Play / JAJA Architects, 07.12.2017, https://www.archdaily.com/884956/park-n-play-jaja-architects?ad_source=search&ad_medium=search_result_all, 20.03.2020
- -Paula Pintos, Design Hostel / Holzer Kobler Architekturen + Kinzo, 15.07.2019, https://www.archdaily.com/920874/design-hostel-holzer-kobler-architekturen-plus-kinzo-architekten, 10.03.2020
- -Prvi slovenski izdelovalni laboratorij, http://roglab.si/sl/o-nas/, 17.02.2020

- -Rok Atelšek, Nov zamik: Emoniko naj bi začeli graditi šele konec leta 2021, 13.11.2019, https://siol.net/novice/slovenija/nov-zamik-emoniko-naj-bi-zaceli-graditi-sele-konec-leta-2021-511522, 29.02.2020
- -Smita, 16 Types of Container Units and Designs for Shipping Cargo, O4.1O.2O19, https://www.marineinsight.com/know-more/16-types-of-container-units-and-designs-for-shipping-cargo/, O9.01.2O2O
- -Strukturalismus in der Architektur, https://www.hisour.com/de/structuralism-in-architecture-28616/, 21.04.2020.
- -Superkilen / Topotek 1 + BIG Architects + Superflex 25.10.2012, https://www.archdaily.com/286223/superkilen-topotek-1-big-architects-superflex?ad_medium=widget&ad_name=recommendation, 20.03.2020
- -The Art of Less is More: Japanese Minimalism and its influence on Western Design Aesthetics, https://www.sapporo.co.uk/news/the-art-of-less-is-more-japanese-minimalism-and-its-influence-on-western-design-aesthetics/, 22.01.2020.
- -Tiny House Workshop Wie klein können wir wohnen?, https://www.historisches-museum-frankfurt.de/node/54455, 22.01.2020.
- -Übersicht der Projekte in der My Smart City, http://www.smartcitygraz.at/moretext-news-5-wetbewerbsergebnisse/, 21.04.2020.

13.ABBILDUNGSNACHWEIS

Abb.l_ Jeroen Peters: Spatial Interactions https://www.itsnicethat.com/articles/jeroen-peters-architectural-photography-O3O217?utm_source=pinterest&utm_medium=social&utm_campaign=intsocial

Abb.2_ japanische Wohntradition https://www.sapporo.co.uk/news/the-art-of-less-is-more-japanese-minimalism-and-its-influence-on-western-design-aesthetics/

Abb.3_ Compact Living:: IKEA and Ori Living Propose Flexible Solution for Tiny Homes https://visuall.net/2019/06/10/compact-living-ikea-and-ori-living-propose-flexible-solution-for-tiny-homes/

Abb.4_ Stayokay Hostel Rotterdam
https://www.booking.com/hotel/nl/stayokay-rotterdam.de.html

Abb.5_ Gruppe von Schülern die zusammen lernen https://www.pxfuel.com/en/free-photo-xnumg

Abb.6_ Versandbehälter http://gtgtechnologygroup.com/wp-content/uploads/2016/07/AdobeStock_50048132. jpeg

Abb.7_ 20 Fuss Standard-ISO Container Jaka SUSNIK

Abb.8_ 40 Fuss Standard-ISO Container Jaka SUSNIK

Abb.9_ Markierungen auf einem Versandbehälter https://www.marineinsight.com/maritime-law/guide-shipping-container-dimensions/

Abb.10_ Trockenlagerbehälter

https://www.marineinsight.com/know-more/16-types-of-container-units-and-designs-for-shipping-cargo/

Abb.11_ Flachgestellbehälter

https://www.marineinsight.com/know-more/16-types-of-container-units-and-designs-for-shipping-cargo/

Abb.12_ Open_top Behälter

https://www.marineinsight.com/know-more/16-types-of-container-units-and-designs-for-shipping-cargo/

Abb.13 Tunnelbehälter

https://www.marineinsight.com/know-more/16-types-of-container-units-and-designs-for-shipping-cargo/

Abb.14_ Seitlich öffenbare Behälter

https://www.marineinsight.com/know-more/16-types-of-container-units-and-designs-for-shipping-cargo/

Abb.15 Behälter mit Doppeltüren

https://www.marineinsight.com/know-more/16-types-of-container-units-and-designs-for-shipping-cargo/

Abb.16 ISO-Kühlcontainer

https://www.marineinsight.com/know-more/16-types-of-container-units-and-designs-for-shipping-cargo/

Abb.17_ thermischer Behälter

https://www.marineinsight.com/know-more/16-types-of-container-units-and-designs-for-shipping-cargo/

Abb.18_ Tank

https://www.marineinsight.com/know-more/16-types-of-container-units-and-designs-for-shipping-cargo/

Abb.20_ Container mit halber Höhe

https://www.marineinsight.com/know-more/16-types-of-container-units-and-designs-for-shipping-cargo/

Abb.19 Laderollenbehälter

https://www.marineinsight.com/know-more/16-types-of-container-units-and-designs-for-shipping-cargo/

Abb.21_ Autotransporter

https://www.marineinsight.com/know-more/16-types-of-container-units-and-designs-for-shipping-cargo/

Abb.22_ Zwischenbehälter

https://www.marineinsight.com/know-more/16-types-of-container-units-and-designs-for-shipping-cargo/

Abb.23 Behälter für besondere Zwecke

https://www.marineinsight.com/know-more/16-types-of-container-units-and-designs-for-shipping-cargo/

Abb.24_ Swap body Container

https://cimcl.en.alibaba.com/product/1089864726-219236833/25ft_Swap_Body_Dry_Cargo_Container.html

Abb.25_ Smart City Süd - Exterior

https://www.mysmartcitygraz.at/projekt/smartcity-sued/

Abb.26_ Smart City Süd - Laubengang

https://www.mysmartcitygraz.at/projekt/smartcity-sued/

Abb.27_ Hope gardens Fassade

https://isospaces.com/case_study/hope-gardens/#close

Abb.28_ Hope gardens Exterior

https://www.qedproperty.com/qed-projects/hope-gardens-ealing-interim-strategies

Abb.29_ Cite a docks

https://www.contemporist.com/cite-a-docks-student-housing-by-cattani-architects/

Abb.30 Grundriss und Schnitt von einem Container

https://www.contemporist.com/cite-a-docks-student-housing-by-cattani-architects/sh 29091018/

Abb.31_ Urban Rigger

https://www.scandinaviastandard.com/bjarke-ingels-group-and-urban-rigger-bring-student-hous-ing-to-copenhagens-harbor/

Abb.32_ Urban Rigger_Innenhof

https://inhabitat.com/floating-dorms-made-from-shipping-containers-offer-cheap-student-housing-in-copenhagen/urban-rigger-by-big-13

Abb.33_ Container guest house / Exterior

https://www.archdaily.com/12757O/container-guest-house-poteet-archi-

 $tects/5014032628 ba Od3b45000 be 5-container-guest-house-poteet-architects-photo? next_project=no$

Abb.34_ Container quest house / Interior

https://www.archdaily.com/12757O/container-guest-house-poteet-archi-

tects/5014031328ba0d3b45000be1-container-guest-house-poteet-architects-photo

Abb.35_ EBA51 Exterior

https://www.howoge.de/wohnungsbau/neubauprojekte/eba-berlin-eichbuschallee.html

Abb.36_ EBA51 Erschliessung

https://www.wg-gesucht.de/1-zimmer-wohnungen-in-Berlin-Treptow.5987946.html

Abb.37_ KEETWONEN / Exterior

https://www.livinspaces.net/projects/architecture/a-thousand-strong-keetwonen-amsterdam-student-housing/attachment/keet5/

Abb.38_ KEETWONEN / Interior

https://www.pinterest.com/pin/168181367309700728/

Abb.39_ Genussregal Vinofaktur Exterior

https://bwm.at/de/projects/genussregal-vinofaktur-vogau/

Abb.40_Genussregal Vinofaktur Exterior

https://bwm.at/de/projects/genussregal-vinofaktur-vogau/

Abb.41_ RogLab Exterior

https://www.ljubljana.si/sl/moja-ljubljana/ljubljana-zate/pregled-vseh-projektov/roglab-3/

Abb.42 RogLab Interior

https://www.ljubljana.si/sl/moja-ljubljana/ljubljana-zate/pregled-vseh-projektov/roglab-3/

Abb.43 Dock Inn Exterior

https://www.archdoily.com/920874/design-hostel-holzer-kobler-architekturen-plus-kinzo-architekten/5d27322e284ddlcld20000bb-design-hostel-holzer-kobler-architekturen-plus-kinzo-architekten-photo?next_project=no

Abb.44_ Dock Inn Interior

https://www.archdaily.com/920874/design-hostel-holzer-kobler-architekturen-plus-kinzo-architekten/5d2731c5284dd1f390000179-design-hostel-holzer-kobler-architekturen-plus-kinzo-architekten-photo?next_project=no

Abb.45_ Drivelines Studios Exterior
https://www.archdaily.com/905460/drivelines-studios-lot-ek/5be335c108a5e5f7ac-0007cf-drivelines-studios-lot-ek-photo

Abb.46_ Drivelines Studios Erschliessungsbereich https://www.archdaily.com/90546O/drivelines-studios-lot-ek/5be3378308a5e-5f7ac0007d7-drivelines-studios-lot-ek-photo?next_project=no

Abb.47_ Superkilen park https://www.archdaily.com/286223/superkilen-topotek-1-big-architects-superflex/5088ce-3528baOd752aOOOeO-superkilen-topotek-1-big-architects-superflex-photo

Abb.48_ Superkilen park_2 https://www.archdaily.com/286223/superkilen-topotek-1-big-architects-superflex/5088cdc-c28baOd752aOOOdc-superkilen-topotek-1-big-architects-superflex-photo?next_project=no

Abb.49_ Park 'n' Play https://www.archdaily.com/884956/park-n-play-jaja-architects/5a272e-5Ob22e388eefOOO39d-park-n-play-jaja-architects-image Abb.50_ Park 'n' Play_2 https://www.archdaily.com/884956/park-n-play-jaja-architects/5a272342b22e38ce-d10001ad-park-n-play-jaja-architects-photo?next_project=no

Abb.51_ Container 3D skizze https://www.pikpng.com/downpngs/hxRRihh_4Oft-standard-shipping-container-container-4O-ft-png/

Abb.52_ Recycling logo https://www.gasanbieter.com/gas-umwelt.html

Abb.53_ Transport am LKW http://www.dmcontainerhouse.com/news_view-21O.html

Abb.54_ Verbindung zwischen Stütze und Fundament http://fgg-web.fgg.uni-lj.si/~/pmoze/ESDEP/master/wg11/10500.htm

Abb.55_ Strukturplan Ljubljana M25000 Jaka SUSNIK

Abb.56_ Grundstücksflächenaufteilung https://gis.iobcina.si/gisapp/Default.aspx?a=ljubljana

Abb.57_ Diagram / Umgebungsfoto Lage Jaka SUSNIK

Abb.58_ Umgebungsfoto_1 Jaka SUSNIK

Abb.59_ Umgebungsfoto_2 Jaka SUSNIK Abb.60_ Umgebungsfoto_3 Jaka SUSNIK

Abb.61_ Umgebungsfoto_4 Jaka SUSNIK

Abb.62_ Umgebungsfoto_5 Jaka SUSNIK

Abb.63_ Umgebungsfoto_6 Jaka SUSNIK

Abb.64_ Umgebungsfoto_7 Jaka SUSNIK

Abb.65_ Umgebungsfoto_8.1 Jaka SUSNIK

Abb.66_ Umgebungsfoto_8.2 Jaka SUSNIK

Abb.67_ Umgebungsfoto_9 Jaka SUSNIK

Abb.68_ Umgebungsfoto_10 Jaka SUSNIK

Abb.69_ Umgebungsfoto_11 Jaka SUSNIK

Abb.7O_ Umgebungsfoto_12 Jaka SUSNIK Abb.71_ Umgebungsfoto_13 Jaka SUSNIK

Abb.72_ Umgebungsfoto_14 Jaka SUSNIK

Abb.73_ Umgebungsfoto_15 Jaka SUSNIK

Abb.74_ Umgebungsfoto_16 Jaka SUSNIK

Abb.75_ Umgebungsfoto_17 Jaka SUSNIK

Abb.76_ Umgebungsfoto_18 Jaka SUSNIK

Abb.77_ Umgebungsfoto_19 Jaka SUSNIK

Abb.78_ Umgebungsfoto_20 Jaka SUSNIK

Abb.79_ Modell-Projekt Emonika https://siol.net/galleries/gallery-228286/?image=7

Abb.80_ Lageplan-Projekt Emonika https://siol.net/galleries/gallery-228286/?image=4

Abb.81_ Stipendien, Slowenien, 2014/2015 https://www.stat.si/StatWeb/News/Index/5476 Abb.82_ Jahresbericht der Slowenischen Eisenbahnen 2019 https://siol.net/novice/slovenija/nov-zamik-emoniko-naj-bi-zaceli-graditi-sele-konec-le-ta-2021-511522

Abb.83_ Diagramm Schüler/Art der Ausbildung https://www.stat.si/StatWeb/News/Index/5665

Abb.84_ Diagramm Schüler/Ausbildungsjahr https://www.stat.si/StatWeb/News/Index/5665

Abb.85_ Internate und Mittelsculen in Ljubljana M25000 Jaka SUSNIK

Abb.86_ Schülerin 2

https://www.pexels.com/photo/woman-sitting-next-to-table-and-right-hand-on-ear-1326946/

Abb.87_ Schüler 2

https://www.pexels.com/photo/man-in-blue-and-yellow-jacket-standing-on-sidewalk-3706938/

Abb.88_ Schülerin 1

https://www.pexels.com/photo/woman-standing-in-hallway-while-holding-book-1462630/

Abb.89 Schüler 1

https://www.pexels.com/photo/selective-focus-photo-of-man-using-laptop-1438081/

Abb.90_ Dlagramm Verbindung / Fuss- und Radfahrerwege Jaka SUSNIK

Abb.91_ Dlagramm Verbindung / öffentliche Verkehrsmitt Jaka SUSNIK

Abb.92_ 40 Fuss HC Container pläne Jaka SUSNIK

Abb.93_ Funktionsdiagramm Jaka SUSNIK

Abb.94_ Sonnenverlauf_Juli Jaka SUSNIK

Abb.95_ Sonnenverlauf_Dezember Jaka SUSNIK

Abb.96_ Diagramm Nutzungen Jaka SUSNIK

Abb.97_ Diagramm Geschossanzahl der Umgebungsgebäude Jaka SUSNIK

Abb.98_ Diagramm Strassenverlauf Jaka SUSNIK

Abb.99_ Diagramm öffentliches Verkehr Jaka SUSNIK

Abb.100_ Ansicht Modul M100 Jaka SUSNIK

Abb.101_ Ansicht Modul mit Beschattungselementen M100 Jaka SUSNIK

Abb.102_ Modul Ansicht hinten M100 Jaka SUSNIK

Abb.104_	Modul Visualisierung Beschattungselemente eingefahren
Jaka SUSNIK	

Abb.103_ Modul Visualisierung Beschattungselemente eingefahren

Jaka SUSNIK

Abb.106_ Grundriss Beschattungselement M50

Jaka SUSNIK

Abb.105_ Querschnitt Beschattungselement M50

Jaka SUSNIK

Abb.107_ Längsschnitt und Grundriss Zweizimmer Modul

Jaka SUSNIK

Abb.108_ Flexibles Möbel

Jaka SUSNIK

Abb.109_ Visualisierung 2 Zimmer WG_1

Jaka SUSNIK

Abb.110_ Visualisierung 2 Zimmer WG_2 Jaka SUSNIK

Abb.111_ Grundriss Zimmer WG_barrierefreie Variante Jaka SUSNIK

Abb.112_ Visualisierung Zimmer WG_barrierefreie Variante Jaka SUSNIK

Abb.113_ Längsschnitt und Grundriss Büro Modul Jaka SUSNIK Abb.114_ Visualisierung Büro_1 Jaka SUSNIK

Abb.115_ Visualisierung Büro_2 Jaka SUSNIK

Abb.116_ Längsschnitt und Grundriss Gemeinschaftsküche Modul Jaka SUSNIK

Abb.117_ Visualisierung Gemeinschaftsküche_1 Jaka SUSNIK

Abb.118_ Visualisierung Gemeinschaftsküche_2 Jaka SUSNIK

Abb.119_ Längsschnitt und Grundriss Ruheraum Modul Jaka SUSNIK

Abb.12O_ Visualisierung Ruheraum_1
Jaka SUSNIK

Abb.121_ Visualisierung Ruheraum_2 Jaka SUSNIK

Abb.122_ Längsschnitt und Grundriss Gemeinschaftsraum Modul Jaka SUSNIK

Abb.123_ Visualisierung Gemeinschaftsraum_1 Jaka SUSNIK

Abb.124_ Visualisierung Gemeinschaftsraum_2 Jaka SUSNIK Abb.125_ Längsschnitt und Grundriss Empfang Modul Jaka SUSNIK

Abb.126_ Visualisierung Empfang_1 Jaka SUSNIK

Abb.127_ Visualisierung Empfang_2 Jaka SUSNIK

Abb.129_Visualisierung Ansicht Eingangsbereich Jaka SUSNIK

Abb.128_ Lageplan M5000 Jaka SUSNIK

Abb.130_ Grundriss Erdgeschoss M750 Jaka SUSNIK

Abb.131_ Grundriss 1.0G M750 Jaka SUSNIK

Abb.132_ Grundriss 2.0G M750 Jaka SUSNIK

Abb.133_ Grundriss 3.0G M750 Jaka SUSNIK

Abb.134_Grundriss 4.0G M750 Jaka SUSNIK

Abb.135_ Grundriss 5.0G M750 Jaka SUSNIK Abb.136_ Draufsicht M750 Jaka SUSNIK

Abb.137_ Ansicht Süd-West M500 Jaka SUSNIK

Abb.138_ Ansicht Süd-Ost M500 Jaka SUSNIK

Abb.139_ Visualisierung Stahlrahmenkonstruktion Jaka SUSNIK

Abb.140_ Konstruktion Ablauf Schritt 1
Jaka SUSNIK

Abb.142_Konstruktion Ablauf Schritt 3 Jaka SUSNIK

Abb.141_ Konstruktion Ablauf Schritt 2 Jaka SUSNIK

Abb.144_Konstruktion Ablauf Schritt 5 Jaka SUSNIK

Abb.143_Konstruktion Ablauf Schritt 4 Jaka SUSNIK

Abb.145_ Konstruktions_ende Jaka SUSNIK

Abb.146_Grundriss Tragkonstruktion M200 Jaka SUSNIK Abb.147_Stahlprofil HEB3OO M1O Jaka SUSNIK

Abb.148_ Querschnitt M200 Jaka SUSNIK

Abb.149_ Querschnitt mit Lift M200 Jaka SUSNIK

Abb.150_ Modul Grundriss M50 Jaka SUSNIK

Abb.151_ Modul Querschnitt M50 Jaka SUSNIK

Abb.152_ Deckenaufbau M2O Jaka SUSNIK

Abb.153_ Wandaufbau M2O Jaka SUSNIK

Abb.154_ Bodenaufbau M2O Jaka SUSNIK

Abb.155_ Trockenwand M2O Jaka SUSNIK

Abb.156_ Installationsschacht Grundriss M50 Jaka SUSNIK

Abb.157_ Installationsschacht Querschnitt M50 Jaka SUSNIK Abb.158_Erschliessungspodest Querschnitt M2O Jaka SUSNIK

Abb.159_ Dachkonstruktion Querschnitt M50 Jaka SUSNIK

Abb.160_ OSB-Platte

https://www.ceratrends.com/bodenfliese-osb-style-natural-60x60-cm-matt.html

Abb.161 PVC Grau

https://www.baunetzwissen.de/boden/tipps/news-produkte/linoleum-in-grautoenen-4966250

Abb.162 Stahl Farbe RAL 7016

https://www.z-e-d.eu/produkt/letterbox-anthracite-flush-mount-ral-7016-b3

Abb.164 Holz Eiche hell

http://www.eurostyleflooring.ca/laminate-flooring/eurostyle-aspen-oak-classic-laminate/

Abb.163 EPDM Belag

https://www.exporters india.com/choudhary-plastics-company 5695494/abs-lemon-yellow-granules-4542302.htm

Abb.165_Asphalt_Gelb

https://pixabay.com/de/photos/asphalt-stra%C3%9Fenbelag-hintergrund-338886/

Abb.166 FurnierFarbe RAL 7016

https://www.z-e-d.eu/produkt/letterbox-anthracite-flush-mount-ral-7016-b3

Abb.167 PU-schaum

https://www.sprayfoam.com/gear-guides/nexseal-2O-spray-foam-insulation-ses-foam-/81

Abb.168_Schaumglas-Platte

https://www.glapor.de/en/

Abb.169_ Kalzium-Silikat-Platten https://kalziumsilikatplatten.com/shop/einzelplatten/kalziumsilikatplatten-50mm-weiss-1000x500

Abb.17O_ Beton_Farbton Grau https://www.ramboeck.at/terrassen-platten/seetaler-betonplatte/551:paragraphs:553:572:bild

Abb.171_ Gewebebeton https://www.stonepack.at/baustoffe-kunststein-geopietra-ziegel-%C3%B6sterreich/

Abb.172_ Flächenberechnung G1 Jaka SUSNIK

Abb.173_ Flächenberechnung G2 Jaka SUSNIK

Abb.174_ Visualisierung Ansicht NW Jaka SUSNIK

Abb.175_ Visualisierung Ansicht offene Erdgeschosszone Jaka SUSNIK

Abb.176_ Visualisierung Ansicht Empfang Jaka SUSNIK

Abb.177_ Visualisierung Ansicht Erschliessung Jaka SUSNIK

Abb.178_ Visualisierung Ansicht Weiterführung der Gestaltungsidee Jaka SUSNIK

Abb.179_ Visualisierung Ansicht SO Jaka SUSNIK