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Abstract

Extending Merton’s portfolio problem to stochastic volatility models, it is not always
obvious which methods of stochastic control theory can be applied, and if a closed-form
solution can be found. Further, it is still unknown how the inclusion of early announced
discrete paid dividends influences optimality in the underlying market model. In
this thesis, we show that it is possible to apply the martingale approach to Heston’s
stochastic volatility model with power utility functions, and that both the optimal
portfolio, and the optimal dual process, can be derived explicitly. Incorporating early
announced dividend payments, the optimal expected utility from terminal wealth does
not change, but the optimal portfolio process does. To achieve optimality, an investor
must dedicate a larger fraction of his wealth to risky assets, hence take more risk than
in the dividend-free model.

Bei der Verallgemeinerung von Mertons Portfolio-Problem mittels stochastischer
Volatilitätsmodelle ist nicht immer ersichtlich, welche Methoden der stochastischen
Kontrolltheorie angewandt werden können und ob eine Lösung in geschlossener Form
ermittelt werden kann. Weiters ist ungeklärt, wie das Miteinbeziehen von vorzeitig
bekanntgegebenen Dividenden die Optimalität im zugrundeliegenden Modell beeinflusst.
Wir zeigen, dass die Martingalmethode auf Hestons stochastisches Volatilitätsmodell
mit Potenznutzenfunktion angewandt werden kann und sowohl der optimale Portfolio-
prozess als auch der optimale duale Prozess explizit bestimmt werden können. Die
Erweiterung von Hestons Modell mit vorzeitig bekanntgegebenen Dividendenzahlungen
bringt zwar keine Veränderung des Erwartungsnutzen durch Endvermögen mit sich,
sehr wohl aber eine Veränderung des optimalen Portfolioprozesses. In diesem Fall muss
ein Investor einen größeren Teil seines Geldes risikobehaftet veranlagen, um optimal zu
agieren.
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1 Introduction

Time-continuous portfolio optimization was led into a new direction as Merton (1969),
introduced the problem of optimizing expected utility from terminal wealth for both
finite and infinite time horizons. This famous problem was formulated and solved in the
framework developed by Black and Scholes (1973), the well-known Black-Scholes model.

Crucial assumptions made by Black and Scholes include the log-normal distribu-
tion of the stocks as well as a constant volatility parameter, but empirical data do not
support these premises. Those issues can be solved by the usage of stochastic volatility
models which use a stochastic process to describe the volatility of the stocks. This
approach, however, includes further sources of randomness. Hence, those models are
incomplete.

Heston’s stochastic volatility model, short Heston’s SV model, is one of the best-
known stochastic volatility models. Developed by Heston (1993), it consists of a
single risky asset and the volatility is modelled by a Cox-Ingersoll-Ross process, a
non-negative and mean-reverting stochastic process. Thus, the value of the assets is no
longer log-normally distributed nor is the volatility constant. Consequently, two major
drawbacks of the Black-Scholes model are removed.

The problem of optimizing utility from terminal wealth in Heston’s SV model with
power utility has already been solved by Kraft (2003). To obtain a solution, he used
stochastic dynamic programming, developed by Bellman (1958), for optimal decision
making under uncertainty. The main idea of this approach is, to solve the Hamilton-
Jacobi-Bellman equation, a non-linear partial differential equation. This equation is
necessarily solved by the optimal value function, but an additional verification process
has to be made, to guarantee the optimality of the derived candidate.

The second major path to solve a dynamic portfolio optimization problem is the
martingale approach, introduced by Pliska (1986), Karatzas, Lehoczky, and Shreve
(1987), and Cox and Huang (1989). This method exploits the martingale representation
theorem, hence the optimal portfolio process is only implicitly given and cannot always
be derived explicitly. In the case of incomplete markets, optimal processes can be
identified, via the solution of a dual optimization problem.

In this thesis, we will discuss the applicability of the martingale approach to Heston’s
SV model with power utility functions. Furthermore, we will study the solvability
of the corresponding dual optimization problem and wether a dual optimum can be
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1 Introduction

derived. To achieve this, we recapitulate some statements from probability theory and
stochastic analysis, where the focus lies mainly on affine processes and diffusion market
models. Furthermore, the martingale method to time-continuous portfolio optimiza-
tion is introduced, for both, complete and incomplete market models, including some
statements concerning the existence of dual optima. Finally, we apply this approach
to Heston’s SV model, in its parametrization used by Kraft (2003), with and without
early announced dividends.
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2 Probabilistic Basics and Affine
Processes

In this chapter, we will present some definitions and theorems which are the basis of our
further work. Firstly, we will recapture some probabilistic results, like the martingale
representation theorem and Girsanov’s theorem which are of utmost importance for the
martingale approach to portfolio optimization. For this, we will rely on Karatzas and
Shreve (1988) since the notation there suits perfectly with the notation of Karatzas and
Shreve (2003). Alternatively, one could see most of these well-known findings in Cohen
and Elliott (2015). Later, we will introduce the class of affine processes, which are not
needed for the theory of portfolio optimization but are helpful in the application onto
Heston’s market model. Here we will follow Filipovic (2009), who used affine processes
in the framework of term structure models.

2.1 Probabilistic Basics

Remark 2.1. For the rest of this thesis 1 d denotes the d-dimensional vector, consisting
only of 1s. Furthermore, for any vector b or matrix A we will write b> for the
corresponding transposed vector and A> for the transposed matrix, respectively. The
norm ‖b‖ denotes the Euclidean norm, if not mentioned differently.

Remark 2.2. For convenience, we will introduce ‘Permanent Assumptions’ which
are assumed to be in force until the end of the section, in which they were stated.
‘Assumptions’ are only in force if it is explicitly declared they are.

Permanent Assumption 2.3. We assume that there is some probability space
(Ω,F ,P) on which all processes and random variables of this chapter are defined. If
not mentioned differently, we further assume that the processes live on a finite time
interval [0, T ].

Definition 2.4. We say a function is càdlàg (làdcàg) if it is right-continuous (left-
continuous) and the left (right) limit exists in every point.

Remark 2.5. We call a process X càdlàg, làdcàg, continuous, of bounded variation or
bounded, if its sample paths satisfy the respective property almost surely.
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2 Probabilistic Basics and Affine Processes

Definition 2.6. Let N be the set, consisting of all subsets of zero sets of the measure

P, and
{
F̃t
}

be a filtration. The filtration defined by

Ft := σ
(
F̃t ∪N

)
,

is called augmention of the filtration {Ft}. Here σ (A) denotes the smallest σ-algebra
containing A, also known as σ-algebra generated by A.

We call
{
F̃t
}

complete, if for all t the equation

F̃t = Ft

holds true.

Definition 2.7. We call a filtration right-continuous, if

Ft =
⋂
s>t

Fs,

left-continuous if

Ft = σ

⋃
s<t

Fs


and continuous if it is both left and right continuous.

Definition 2.8. We say a filtration {Ft} satisfies the usual conditions if it is right-
continuous and complete.

Lemma 2.9. The augmented natural filtration of a d-dimensional Brownian motion is
continuous and satisfies the usual conditions.

Definition 2.10. A n-dimensional stochastic process X is called progressively mea-
surable with respect to a filtration {Ft} if the function

ι :
(
[0, t]× Ω,B([0, t])⊗Ft

)
→ (Rn,B(Rn)),

mapping (s, ω) to X(s, ω), is measurable for all t ≥ 0.

Proposition 2.11. Every left-continuous (or right-continuous) process X, adapted to
{Ft} is progressively measurable with respect to {Ft}.

Definition 2.12. A one-dimensional, {Ft}-adapted process ν on [0, T ], is called locally
bounded if there exists a monotone sequence of stopping times (τn)n≥1 and constants

(Kn)n≥1 such that τn
a.s→ T for n→∞ and for all n, the stopped process ντn defined by

ντn(ω, t) := ν(ω,min(t, τn)), P-almost surely satisfies

|ντn(t)| ≤ Kn ∀ t ∈ [0, T ].
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2.1 Probabilistic Basics

Lemma 2.13. Let ν be a one-dimensional, {Ft}-adapted, continuous process. Then ν
is locally bounded.

Proof. Since ν is continuous and {Ft}-adapted, the random times

τn := inf
{
T ≥ t ≥ 0 | |ν(t)| ≥ n

}
are {Ft}-stopping times. Then τn

a.s→ T and for all τn and t ∈ [0, T ] we have

|ντn(t)| ≤ n.

Definition 2.14. An one-dimensional, {Ft}-adapted process X, satisfying

E
[
|X(t)|

]
<∞

for all t, is said to be

• a submartingale, if E[X(t) |Fs ] ≥ X(s) holds for every 0 ≤ s ≤ t P-almost surely.

• a supermartingale, if E[X(t) |Fs ] ≤ X(s) holds for every 0 ≤ s ≤ t P-almost
surely.

• a martingale, if E[X(s)|Fs] = X(s) holds for every 0 ≤ s ≤ t P-almost surely.

Definition 2.15. A one-dimensional process X is a local martingale if there exists a
monotone increasing sequence of {Ft}-stopping times {τn}n∈N, with

P[ lim
n→∞

τn = T ] = 1,

such that for every n the stopped process Xτn is a martingale.

Lemma 2.16. Let X be a non-negative local martingale. Then X is a supermartingale.

Proof. Let X be a local martingale and {τn}n∈N the corresponding sequence of stopping
times. For 0 ≤ s ≤ t we get

E
[
X(t)−X(s) | Fs

]
= E

[
lim
n→∞

Xτn(t)−Xτn(s) | Fs
]
.

Fatou’s lemma and the martingale property of Xτn lead to

E
[
X(t)−X(s) | Fs

]
≤ lim

n→∞
E
[
Xτn(t)−Xτn(s) | Fs

]
= 0.

By using that X(s) is Fs measurable we have

E
[
X(t) |Fs

]
≤ X(s).
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2 Probabilistic Basics and Affine Processes

Definition 2.17. A one-dimensional process X is called continuous semimartingale
with respect to a filtration {Ft}, if there exists a continuous {Ft}-local martingale M ,
with M(0) = 0, a continuous {Ft}-adapted process of finite variation A, with A(0) = 0
and a F0 measurable random variable X0 satisfying almost surely

X(t) = X0 +M(t) + A(t), ∀ t ∈ [0, T ].

If A is assumed to be previsible, the decomposition is even unique.

Theorem 2.18. Let M and N be continuous, local martingales. Then there exists a
unique adapted, continuous process 〈M,N〉 of bounded variation, such that 〈M,N〉(0) =
0 and the process

MN − 〈M,N〉
is again a continuous local martingale.

Remark 2.19. In the case of non-continuous local martingales, there exists a similar
process which is no longer continuous, and uniqueness is only given if predictability is
assumed.

Definition 2.20. We call the process 〈M,N〉 of Theorem 2.18 cross-variation or
quadratic covariation process of M and N . We call 〈M,M〉 quadratic variation process
of M and write for short 〈M〉.

Theorem 2.21. (Itô’s Lemma)

Let X =
(
X(1), . . . , X(d)

)>
be a process, consisting of d continuous semimartingales

and f : [0, T ] × Rd → R a function which is continuously differentiable in the first
argument and twice continuously differentiable in the second argument. Then

f(t,X(t)) = f(0, X(0)) +

∫ t

0

∂

∂t
f(s,X(s)) ds+

d∑
i=1

∫ t

0

∂

∂xi
f
(
s,X(s)

)
dX(i)(s)

+
1

2

d∑
i=1

d∑
j=1

∫ t

0

∂2

∂xi∂xj
f
(
s,X(s)

)
d〈X(i), X(j)〉(s)

holds true almost surely. Here 〈X(i), X(j)〉 denotes the quadratic covariation process of
the semimartingales X(i) and X(j).

Theorem 2.22. (Integration by Parts)
Let X and Y be continuous semimartingales and let 〈X, Y 〉 denote the quadratic
covariation process of these processes. Then the equality

X(t)Y (t) = X(0)Y (0) +

∫ t

0

Y (s) dX(s) +

∫ t

0

X(s) dY (s) + 〈X, Y 〉(t)

holds true for all t.
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2.1 Probabilistic Basics

Corollary 2.23. Let F : [0, T ] → R be a continuously differentiable function, with
derivative f and X be a continuous semimartingale. Then for all t ∈ [0, T ], we have
the equality

F (t)X(t) = F (0)X(0) +

∫ t

0

F (s) dX(s) +

∫ t

0

X(s)f(s) ds.

Definition 2.24. We will call a process ψ, satisfying∫ T

0

‖ψ(t)‖2 dt <∞ a.s.,

square integrable.

Theorem 2.25. Let M be a one dimensional, càdlàg, {Ft}-local martingale, where
{Ft} denotes the augmented natural filtration of a Brownian motion B. Then there
exists a square integrable, progressively measurable processes ψ, such that

M(t) = M(0) +

∫ t

0

ψ(s)> dB(s).

Remark 2.26. This representation theorem is the basis of the martingale approach
to portfolio optimization. Even though this representation looks quite nice, we must
consider that ψ is generally not known and in many cases, there is no possibility to
determine it.

Corollary 2.27. If {Ft} is the augmented natural filtration of a Brownian motion,
then every {Ft}-local martingale has a continuous version.

Definition 2.28. Let B be a standard Brownian motion, {Ft} the augmention of its
natural filtration and H a {Ft}-progressively measurable, square integrable process.
Then we call the process

Z(t) := exp

(∫ t

0

H(s)> dB(s)− 1

2

∫ t

0

‖H(s)‖2 ds

)
stochastic exponential process. We sometimes call it stochastic exponential of X, where

X(t) :=

∫ t

0

H(s)> dB(s).

In this case, Z can be rewritten as

Z(t) = exp

(
X(t)− 1

2
〈X〉(t)

)
,

where 〈X〉 denotes the quadratic variation process of X.
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2 Probabilistic Basics and Affine Processes

Lemma 2.29. The stochastic exponential process of Definition 2.28 is a positive local
martingale, hence a supermartingale. Moreover, it solves the SDE

dZ(t) = Z(t)H(t)>dB(t), Z(0) = 1,

and has consequently the alternative representation

Z(t) = 1 +

∫ t

0

Z(s)H(s)> dB(s).

Proof. If we define

χ(t) :=

∫ t

0

H(s)> dB(s)− 1

2

∫ t

0

‖H(s)‖2 ds

and apply Itô’s lemma to the process Z(t) = exp
(
χ(t)

)
we get

dZ(t) = Z(t)dχ(t) +
1

2
Z(t)d〈χ〉(t)

= Z(t)H(t)>dB(t)− 1

2
Z(t)‖H(t)‖2dt+

1

2
Z(t)‖H(t)‖2dt

= Z(t)H(t)>dB(t).

Therefore, Z has a representation as

Z(t) = 1 +

∫ t

0

Z(s)H(s)> dB(s).

Since all stochastic integrals with respect to the Brownian motions are local martingales,
Z(t) is a local martingale and non-negative by definition. By Lemma 2.16, Z(t) is a
supermartingale.

Remark 2.30. The definition of stochastic exponential processes can easily be generalized
to processes of the form

X(t) =

∫ t

0

b(s) ds+

∫ t

0

H(s)> dB(s),

by the definition

Z(t) = exp

(
X(t)− 1

2
〈X〉(t)

)
.

The stochastic exponential of the process X is given by

Z(t) = exp

(∫ t

0

b(s) ds+

∫ t

0

H(s)> dB(s)− 1

2

∫ t

0

‖H(s)‖2 ds

)
.

Here b denotes an one-dimensional, integrable {Ft}-progressively measurable, process.
The stochastic exponential solves the SDE

dZ(t) = Z(t) dX(t).
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2.1 Probabilistic Basics

Theorem 2.31. (Girsanov’s Theorem)
Let B be a standard Brownian motion with respect to the measure P and {Ft} its
augmented natural filtration. Furthermore, let H be a {Ft}-progressively measurable,
square integrable process and Z be the stochastic exponential process

Z(t) = exp

(∫ t

0

H(s)> dB(s)− 1

2

∫ t

0

‖H(s)‖2 ds

)
.

Assume Z is a true martingale and define a new measure P̃ by

P̃ (A) = E
[
Z(T )1A

]
,

where the expectation is taken under the measure P and 1A denotes the indicator
function of the event A. Then the process

B̃(t) := B(t)−
∫ t

0

H(s) ds

is a standard Brownian motion with respect to the measure P̃ and the Filtration {Ft}.

Remark 2.32. The importance of Girsanov’s theorem is due to the usage of equivalent
measures for pricing purposes. Furthermore, the martingale method in incomplete
markets relies fundamentally on this representation of densities of equivalent measures,
since in diffusion market models all equivalent martingale measures are given by
Girsanov’s theorem. We will discuss this feature in Theorem 4.44.

Theorem 2.33. Let M be a continuous local martingale with respect to the filtration
{Ft} and define

Z(t) := exp

(
M(t)− 1

2
〈M〉(t)

)
.

If

E

[
exp

(
1

2
〈M〉(t)

)]
<∞

holds true for all t ∈ [0, T ], then E
[
Z(t)

]
= 1 for all t ∈ [0, T ].

Remark 2.34. The property E
[
exp

(
1
2
〈M〉(t)

)]
<∞ is often called Novikov’s condition,

and is a nice way to ensure that the local martingale Z is a true martingale. Especially
in combination with Girsanov’s theorem, this is a powerful tool, to guarantee the
existence of exponential measure changes, but it is only sufficient, hence there are
exponential martingales which do not satisfy this condition.
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2 Probabilistic Basics and Affine Processes

Lemma 2.35. 1 Let H be a left continuous, locally bounded process. For every sequence
of partitions of the interval [0, T ] satisfying

lim
n→∞

sup
0≤k<n

| tnk+1 − tnk | = 0,

the equality ∫ T

0

H(s)> dX(s) = lim
n→∞

∑
0≤k<n

H(tnk)>(X(tnk+1)−X(tnk))

holds true for every continuous semimartingale X. Here, the limit denotes convergence
in probability.

Remark 2.36. This lemma allows us, to interpret these stochastic integrals as a limit of
Riemann sums, which can be used to determine some properties of the integral.

Theorem 2.37. Let B be a standard Brownian motion with respect to the filtration
{Ft} and assume this filtration satisfies the usual conditions. Furthermore, let H be
a continuous, square integrable one-dimensional process which is {Ft}-adapted, but
independent of B. Then

E

exp

(
x

∫ T

0

H(s) dB(s)

)∣∣∣∣∣∣G
 = exp

(
x2

2

∫ T

0

H2(s) ds

)
,

where G is the σ-algebra generated by
{
H(s) | 0 ≤ s ≤ T

}
.

Proof. Due to its continuity, the process H is {Ft}-progressively measurable and locally
bounded, hence there exists a sequence of partitions of [0, T ], such that for n→∞

n−1∑
k=0

H(tnk)
(
B(tnk+1)−B(tnk)

) p→
∫ T

0

H(s) dB(s),

where
p→ denotes convergence in probability. Therefore, we get for the conditional

characteristic function

E

exp

(
ix

∫ T

0

H(s) dB(s)

)∣∣∣∣∣∣G
= lim

n→∞
E

exp

ix n−1∑
k=0

H(tnk)
(
B(tnk+1)−B(tnk)

)∣∣∣∣∣∣G
 .

If we fix n and take a look at the sum, we see that, conditioned on G, we sum
over independent normally distributed random variables with zero mean and variance

1Revuz and Yor 1999, p. 142.
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2.1 Probabilistic Basics

H2(tk)(t
n
k+1 − tnk), hence the sum is again normally distributed conditioned on G with

zero mean and variance
∑n−1

k=0 H
2(tnk)(tnk+1 − tnk). Since the characteristic function of a

normally distributed random variable is well known, we get

E

exp

(
ix

∫ T

0

H(s) dB(s)

)∣∣∣∣∣∣G
 = lim

n→∞
exp

−x2

2

n−1∑
k=0

H2(tnk)(tnk+1 − tnk)


= exp

(
−x

2

2

∫ T

0

H2(s) ds

)
,

which gives us that
∫ T

0
H(s) dB(s) conditioned on G is normally distributed with zero

mean and variance
∫ T

0
H2(s) ds. Hence, the conditional moment generating function is

E

exp

(
x

∫ T

0

H(s) dB(s)

)∣∣∣∣∣∣G
 = exp

(
x2

2

∫ T

0

H2(s) ds

)
.

Theorem 2.38. Let H be a {Ft}-adapted, continuous and square integrable process
and B be a Brownian motion with respect to the same filtration. Assume that H and
B are independent, then the local martingales

Z(t) = exp

(∫ t

0

H(s) dB(s)− 1

2

∫ t

0

H(s)2 ds

)
,

Z̃(t) = exp

(
−
∫ t

0

H(s) dB(s)− 1

2

∫ t

0

H(s)2 ds

)
,

are true martingales.

Proof. We will prove this for Z only because the property for Z̃ can be shown analo-
gously. Since Z is a positive local martingale, it is a supermartingale too. Therefore, it
is a martingale if and only if E

[
Z(T )

]
= 1. To show this we will use Theorem 2.37

and get

E
[
Z(T ) | G

]
= E

exp

∫ T

0

H(s) dB(s)

)∣∣∣∣∣∣G
 exp

(
−1

2

∫ T

0

H2(s) ds

)
= 1,

where G denotes the σ-Algebra generated by
{
H(s) | 0 ≤ s ≤ T

}
. It follows that

E
[
Z(T )

]
= E

[
E
[
Z(T ) | G

]]
= 1.
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2 Probabilistic Basics and Affine Processes

Corollary 2.39. Let B =

(
B1

B2

)
be a two-dimensional Brownian motion and {Ft}

the augmented, natural filtration of B. Furthermore, let H be a continuous, square
integrable, {Ft}-adapted process which is independent of B1 and f a continuous, bounded
function. Then for

νf (t) :=

(
H(t)

f
(
H(t)

))
the equation

E

exp

(∫ T

0

νf (s)
> dB(s)− 1

2

∫ T

0

‖νf (s)‖2 ds

) =

E

exp

(∫ T

0

f(H(s)) dB2(s)− 1

2

∫ T

0

f(H(s))2 ds

) ,
holds true.

Proof. Define

χ(t) :=

∫ t

0

f(H(s)) dB2(s)− 1

2

∫ t

0

f(H(s))2 ds,

and let G be the σ-algebra generated by
{
H(s) | 0 ≤ s ≤ T

}
and H the σ-algebra

generated by G and χ(T ). Using Theorem 2.38 and the independence of B1 and χ(T )
we get

E

exp

(∫ T

0

νf (s)
> dB(s)− 1

2

∫ T

0

‖νf (s)‖2 ds

) =

E

exp

(∫ T

0

H(s) dB1(s)− 1

2

∫ T

0

H(s)2 ds

)
exp

(
χ(T )

) =

E

E
exp

(∫ T

0

H(s) dB1(s)− 1

2

∫ T

0

H(s)2 ds

)∣∣∣∣∣∣H
 exp

(
χ(T )

) =

E

E
exp

(∫ T

0

H(s) dB1(s)− 1

2

∫ T

0

H(s)2 ds

)∣∣∣∣∣∣G
 exp

(
χ(T )

) =

E

exp

(∫ T

0

f(H(s)) dB2(s)− 1

2

∫ T

0

f(H(s))2 ds

) .

12



2.2 Affine Processes

Remark 2.40. This result is very important, since it allows the identification of martin-
gales, even if Novikov’s Condition is not satisfied.

2.2 Affine Processes

Remark 2.41. For the rest of this section, if not mentioned differently, the described
processes are defined on a filtered probability space

(
Ω,F , {Ft} ,P

)
, where the filtration

satisfies the usual conditions. Furthermore, they are living on a finite time interval
[0, T ] with some constant time horizon T ∈ (0,∞).

Definition 2.42. Let H ⊂ Rd be a closed subspace, W (t) a standard Brownian motion,
b : H → Rd a continuous function and σ : H → Rd×d a measurable function such
that a(x) = σ(x)σ(x)> is continuous. Furthermore, assume that the interior of H is
non-empty and the existence of a unique solution X of the SDE

dX(t) = b(X(t))dt+ σ(X(t)) dW (t), X(0) = x0 ∈ H.

We call H state space of X.

Definition 2.43. A stochastic process X like in Definition 2.42 is called affine if there
exists a complex valued function φ(t, u) and a function ψ(t, u) which takes values in
Cd, such that for all t ≤ T and u ∈ iRd

E

[
exp

(
u>X(T )

)∣∣∣∣Ft
]

= exp
(
φ(T − t, u) + ψ(T − t, u)>X(t)

)
.

Theorem 2.44. Let X be an affine process. Then the functions a(x) and b(x) of
Definition 2.42 are affine linear i.e. there exist matrices A,A1, . . . , Ad and vectors

b, b1, . . . , bd such that for every x =

x1
...
xd


a(x) = A+

d∑
i=1

Aixi and b(x) = b+
d∑
i=1

bixi.

Theorem 2.45. The functions ψ(t, u) =
(
ψ1(t, u), · · · , ψd(t, u)

)>
and φ(t, u) of Defi-

nition 2.43 solve the system of Riccati equations

∂

∂t
φ(t, u) =

1

2
ψ(t, u)>Aψ(t, u) + b>ψ(t, u), φ(0, u) = 0,

∂

∂t
ψi(t, u) =

1

2
ψ(t, u)>Aiψ(t, u) + b>i ψ(t, u), ψi(0, u) = ui.

13



2 Probabilistic Basics and Affine Processes

Theorem 2.46. Assume there is a process X like in Definition 2.42, whose coefficient
functions a and b are affine and the corresponding Riccati equations

∂

∂t
φ(t, u) =

1

2
ψ(t, u)>Aψ(t, u) + b>ψ(t, u), φ(0, u) = 0,

∂

∂t
ψi(t, u) =

1

2
ψ(t, u)>Aiψ(t, u) + b>i ψ(t, u), ψi(0, u) = ui 1 ≤ i ≤ d.

have a solution, satisfying R
(
φ(t, u) + ψ(t, u)>x

)
≤ 0 for all t ≥ 0, u ∈ iRd and

x ∈ H. Then X is affine. Here R(z) denotes the real part of the complex number z.

Definition 2.47. For m ≤ d ∈ N, we define the canonical state space by

H := Rm
≥0 × Rd−m.

Permanent Assumption 2.48. From now on we assume that the state space of our
affine processes is the canonical state space.

Definition 2.49. Let I = {1, . . . ,m} and J = {m+ 1, . . . , d}. We say the constants
b, b1, . . . bd ∈ Rd and A,A1, . . . , Ad ∈ Rd×d satisfy the admissibility conditions if

• A,A1, . . . , Ad are symmetric and positive semi-definite,

• A(ij) = 0 for all i, j ∈ I,

• Ai =0 for all i ∈ J ,

• Ai(lk) = 0 for k ∈ I \ {i} and all i, l,

• b ∈ Rm
≥0 × Rd−m,

• bj(i) = 0 for all i ∈ I and j ∈ J ,

• bi(j) ≥ 0 for all i, j ∈ I with j 6= i.

Here bi(j) denotes the j − th entry of the vector bi and A(ij) the entry in the i-th row
and j-th column of the matrix A.

Theorem 2.50. Let m ≤ d ∈ N, and X be a process on the canonical state space
H = Rm

≥0 × Rd−m. Then X is affine if and only if it satisfies the SDE of Remark 2.41
and the corresponding coefficients satisfy the admissibility conditions from Definition
2.49.

Remark 2.51. These admissibility conditions may seem artificial but are a direct
consequence of the fact that the process X must not leave the canonical state space.

Remark 2.52. With Theorem 2.50, we have a powerful tool which we can use to
identify an affine process on the canonical state space easily, without calculating its
characteristic function.

14



2.2 Affine Processes

2.2.1 Moment Generating Function of Affine Processes

Remark 2.53. One property of affine processes is that the corresponding moment
generating function can nicely be computed if it exists, since it has the same form as
the characteristic function.

Lemma 2.54. Consider the system of Riccati equations

∂

∂t
φ(t, u) =

1

2
ψ(t, u)>Aψ(t, u) + b>ψ(t, u), φ(0, u) = 0,

∂

∂t
ψi(t, u) =

1

2
ψ(t, u)>Aiψ(t, u) + b>i ψ(t, u), ψi(0, u) = ui 1 ≤ i ≤ d,

for some u ∈ Rd Then there exists a lifetime T (u) ∈ (0,∞], such that there exists a

unique solution F (·, u) =

(
φ(·, u)
ψ(·, u)

)
: [0, T (u))→ Rd+1. This lifetime is maximal, i.e.

either T (u) =∞ or limt↑T (u) ‖ψ(t, u)‖ =∞. In the second case we say ψ(·, u) explodes.

Definition 2.55. For t ≥ 0 we define

D(t) :=

{
u ∈ Rd

∣∣∣ t < T (u)

}
,

the set of initial points u, such that there exists a real valued solution to the system of
Riccati equations up to time t and

M(t) :=

u ∈ Rd

∣∣∣∣∣E
[
exp

(
u>X(t)

)]
<∞


the set of u, such that the moment generating function of X(t) exists.

Theorem 2.56. Let X be affine with corresponding affine parameter functions a(x)
and b(x). Then D(t) =M(t), i.e. the moment generating function of X(t) exists if
and only if the system of Riccati equations has a real valued solution up to time t.

Corollary 2.57. Let u ∈ Rd, and X be an affine process. If one side of the equation

E

[
exp

(
u>X(T )

)∣∣∣∣Ft
]

= exp
(
φ(T − t, u) + ψ(T − t, u)>X(t)

)
is well defined, the other is too and the equality holds true.

Theorem 2.58. Consider the one-dimensional Riccati equation

∂

∂t
ψ(t, z) = Aψ(t, z)2 +Bψ(t, z) + C, ψ(0, z) = z,

15



2 Probabilistic Basics and Affine Processes

with A 6= 0, z ∈ C and B2 − 4AC 6= 0. Choose ∆ to be either
√
B2 − 4AC or

−
√
B2 − 4AC and define A± := −B±∆

2A
. In the case z = A± the solution is given as

ψ(t, z) = z. For z 6= A± the solution is

ψ(t, z) = A− − ∆g(z)e−∆t

A(1− g(z)e−∆t)
,

with g(z) = z−A−
z−A+ . This solution is unique and exists until the first time t > 0 such

that 1− g(z)e−∆t = 0.

Corollary 2.59. Assume A± 6= 0. If z = 0, the solution can be rewritten as

ψ(t, 0) = −2C
e−∆t − 1

(B + ∆)e−∆t −B + ∆
.

Proof. The constant g(0) = A−

A+ can be rewritten as g(0) = B+∆
B−∆

. Since A± 6= 0, this is
well defined. If we use this in the representation of ψ(t) := ψ(t, 0) we get

ψ(t) = A− − A−1 ∆g(0)e−∆t

1− g(0)e−∆t
= − ∆(B + ∆)e−∆t

A(B −∆− (B + ∆)e−∆t)
− B + ∆

2A

= −(B + ∆)(B −∆− (B + ∆)e−∆t) + 2∆(B + ∆)e−∆t

2A(B −∆− (B + ∆)e−∆t)

= −B
2 −∆2 − (B + ∆)2e−∆t + 2∆(B + ∆)e−∆t

2A(B −∆− (B + ∆)e−∆t)

= −4AC −B2e−∆t − 2B∆e−∆t −∆2e−∆t + 2∆Be−∆t + 2∆2e−∆t

2A(B −∆− (B + ∆)e−∆t)

= −2C
e−∆t − 1

(B + ∆)e−∆t −B + ∆
.

Corollary 2.60. Let u ∈ R. The one-dimensional Riccati equation of Theorem 2.58,
with real parameters A,B and C has a real valued solution ψ(·, u) if B2 ≥ 4AC. This
solution is unique and exists until the first time t such that

1− g(u)e−∆t = 0,

where g is defined like in Theorem 2.58.
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2.2 Affine Processes

Example 2.1. A well-known example of an affine process is the Cox-Ingersoll-Ross
process, short CIR process, on [0, T ], defined by its SDE

dz(t) = κ
(
θ − z(t)

)
dt+ ς

√
z(t) dW (t), z(0) = z0 > 0.

Here κ, θ and ς are positive constants, and W (t) is a one-dimensional Brownian motion.
This process lives on the canonical state space H = R≥0 and, if the Feller conditions
2κθ > ς2 are satisfied, it stays almost surely positive.
The parameters are given by b = κθ, b1 = −κ, A = 0 and A1 = ς2 which satisfy the
admissibility conditions, hence this process is affine. For u ∈ R, the corresponding
Riccati equations are given by

∂

∂t
φ(t, u) = κθψ(t, u), φ(0, u) = 0,

∂

∂t
ψ(t, u) =

ς2

2
ψ2(t, u)− κψ(t, u), ψ(0, u) = u.

Since the solution

ψ(t, u) =
ze−κt

1− 2zτ(t)
,

with τ(t) =
ς2

4κ

(
1− e−κt

)
, does not explode, we can calculate the moment generating

function of z(t) for all t ≥ 0.

Example 2.2. Another example, where the theory of affine processes is useful, is the
calculation of the moment generating function of the process

X̃(t) =

∫ t

0

z(s) ds,

where z denotes the CIR process. This process is not affine but the two-dimensional

process X(t) =

(
z(t)

X̃(t)

)
is and the moment generating function of X̃(T ) in the point

ũ is equal to the moment generating function of the affine process X in the point

u =

(
0
ũ

)
. The affine coefficients of X are given by b =

(
κθ
0

)
, b1 =

(
−κ
1

)
, b2 = 0,

A = 0, A1 =

(
ς2 0
0 0

)
and A2 = 0, hence the corresponding Riccati equations in the

point u are

∂

∂t
φ(t, u) = κθψ1(t, u), φ(0, u) = 0,

∂

∂t
ψ1(t, u) =

ς2

2
ψ2

1(t, u)− κψ1(t, u) + ψ2(t, u), ψ1(0, u) = 0,

∂

∂t
ψ2(t, u) = 0, ψ2(0, u) = ũ.

17



2 Probabilistic Basics and Affine Processes

Since the differential equation of ψ2 is trivial, this system can be reduced to the
one-dimensional case

∂

∂t
φ(t, 0) = κθψ1(t, u), φ(0, u) = 0,

∂

∂t
ψ1(t, u) =

ς2

2
ψ2

1(t, u)− κψ1(t, u) + ũ, ψ1(0, u) = 0,

which has for ũ < κ2

2ς2
a real valued solution. For ũ ∈ (0, κ

2

2ς2
), we have that κ2 >

κ2 − 2ςũ > 0, hence κ > |∆| and consequently −κ+∆
κ+∆

< 0. This gives us

1− g(0)e−∆t = 1− −κ+ ∆

κ+ ∆
e−∆t > 0,

hence the real valued solution exists for all t ≥ 0 and so does the moment generating
function, which is of the form

E

[
exp

(
ũX̃(T )

)∣∣∣∣Ft
]

= exp
(
φ(T − t, u) + ψ1(T − t, u)z(t) + ũX̃(t)

)
.

Remark 2.61. We will also call such degenerated high-dimensional Riccati equations
one-dimensional since they are solved in the same way.
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3 Diffusion Market Models

Since we have now developed the probabilistic theory needed, we will introduce diffusion
market models. These well-known market models, often called Brownian market models,
are characterized by their special form consisting of two major parameters, the drift
term b and the diffusion matrix σ. Following Karatzas and Shreve (2003), we will further
specify important features of market models, like arbitrage freeness and completeness,
and specify when diffusion market models have these properties.

3.1 Market Models

Definition 3.1. Let (Ω,F ,P) be a probability space, T > 0 be a deterministic
time point, called terminal time and W (t) a d-dimensional Brownian motion on this
probability space with augmented filtration {Ft}. A market model consists of one
risk free asset, sometimes called bank account, with price process S0(t), and m ≤ d
risky assets, called stocks, with price processes Si(t). These price processes satisfy the
stochastic differential equations

dS0(t) = r(t)S0(t)dt, S0(0) = 1,

dSi(t) = Si(t)

bi(t)dt+
d∑
j=1

σij(t) dW j(t)

 , Si(0) = Si > 0 1 ≤ i ≤ m.

The coefficient processes r(t) , b(t) :=

 b1(t)
...

bm(t)

 and σ(t) =

σ11(t) · · · σ1d(t)
...

...
...

σm1(t) · · · σmd(t)

 are

assumed to be progressively measurable with respect to the filtration {Ft}. Furthermore,
they P-almost surely satisfy ∫ T

0

|r(t)| dt ≤ L ∈ R,

∫ T

0

‖b(t)‖ dt <∞.
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3 Diffusion Market Models

We sometimes write the combined price process of all m risky assets as S(t). This
process satisfies the m-dimensional stochastic differential equation

dS(t) = S(t)
(
b(t)dt+ σ(t) dW (t)

)
, S(0) =

S1
...
Sm

 .

Remark 3.2. For now, we will not further restrict the volatility process σ(t) since these
restrictions highly influence the properties of our market.

Remark 3.3. For convenience, we sometimes write almost surely instead P-almost surely.
If we want a property to hold almost surely with respect to some different measure,
this will be explicitly stated.

Definition 3.4. An absolute portfolio process (ϕ0, ϕ) consists of a R-valued, {Ft}-
progressively measurable process ϕ0 and a Rm-valued, {Ft}-progressively measurable
process ϕ satisfying almost surely∫ T

0

|ϕ0(t) + ϕ(t)>1m||r(t)| dt <∞,∫ T

0

|ϕ(t)>(b(t)− r(t)1m)| dt <∞,∫ T

0

‖σ(t)>ϕ(t)‖2 dt <∞.

Here, ϕi(t), the i-th entry of ϕ(t), can be interpreted as amount of money invested in
asset i at time t and ϕ0(t) is the money invested in the bank account.

Definition 3.5. For an absolute portfolio process (ϕ0, ϕ) and t ∈ [0, T ] we define the
gains process by

G(t) :=

∫ t

0

ϕ0(s)r(s) ds+

∫ t

0

ϕ(s)>b(s) ds+

∫ t

0

ϕ(s)>σ(s) dW (s).

Definition 3.6. The cumulative income process Γ is a semimartingale. The value Γ(t)
can be interpreted as the money received from an investor up to time t. The value Γ(0)
is called initial wealth or starting capital.

Remark 3.7. While an increase of Γ can be seen as further money invested, a decrease
can be interpreted as consumption of the original investor.

Definition 3.8. For an absolute portfolio process we define the wealth process by

X(t) = G(t) + Γ(t).

This means the wealth consists of the money we gained by investing, namely G(t), and
the money invested, Γ(t).
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Definition 3.9. An absolute portfolio process (ϕ0, ϕ) is called Γ-financed if the wealth
process satisfies

X(t) = ϕ0(t) + ϕ(t)>1m.

In this case, the dynamics of X are given by

dX(t) = dΓ(t) +X(t)r(t)dt+ ϕ(t)>
(
b(t)− r(t)1m

)
dt+ ϕ(t)>σ(t) dW (t).

Definition 3.10. We call an absolute portfolio process self-financed if it is financed by
the constant cumulative income process Γ(t) = x for some deterministic x ∈ R. This
means we get some initial capital, but after time 0 there is no further investment nor
consumption of wealth.

Remark 3.11. Our definition of self-financing slightly differs from the definition of
Karatzas and Shreve (2003) since we allow some initial capital x 6= 0.

Definition 3.12. An absolute portfolio process is called tame if there is a constant
K ∈ R, such that the discounted gains process satisfies almost surely

G(t)

S0(t)
≥ K.

Definition 3.13. An arbitrage opportunity is a self-financed, tame absolute portfolio
process, such that the corresponding wealth process satisfies

• X(0) ≤ 0 almost surely,

• X(T ) ≥ 0 almost surely,

• P[X(T ) > 0] > 0.

Remark 3.14. We explicitly allow borrowing and short selling.

Remark 3.15. Our market model is frictionless which means there are no taxes or fees.
Furthermore, we assume that there are no restrictions on the amount in which stocks
can be bought and sold.

Definition 3.16. We call a d-dimensional, {Ft} progressively measurable process θ
market price of risk if it satisfies

σ(t)θ(t) = b(t)− r(t)1m almost surely.

Theorem 3.17. If there is no arbitrage in our market model, then there exists a market
price of risk.

Theorem 3.18. If there exists a square integrable market price of risk which satisfies

E

exp

(
−
∫ T

0

θ(s)> dW (s)− 1

2

∫ T

0

‖θ(s)‖2 ds

) = 1,

then our market model is arbitrage free.
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3 Diffusion Market Models

Lemma 3.19. The matrix-valued process σ(t) is invertible for all t almost surely if
and only if there exists an almost surely unique market price of risk θ.

Proof. If σ(t) is invertible for all t almost surely then

θ(t) = σ(t)−1
(
b(t)− r(t)1m

)
is well defined and almost surely unique, since all processes on the right hand side
are. On the other hand if σ(t) does not have this property, either because m < d or
because there is some positive probability that there exists some t such that σ(t) is
not invertible, then there exists some process 0 6= ν in the kernel of σ. The process
θ̃ = θ + ν satisfies the equation which defines the market price of risk, hence it is not
unique.

Definition 3.20. Let Q be a probability measure equivalent to P. We call Q equivalent
martingale measure, or short martingale measure, if for all 1 ≤ i ≤ m, the discounted

price process
Si(t)

S0(t)
is a local martingale with respect to Q.

Theorem 3.21. The market model is arbitrage free if and only if there exists an
equivalent martingale measure Q.

Remark 3.22. If all assumptions of Theorem 3.18 are fulfilled, we have, by Girsanov’s
Theorem that there exists an equivalent measure with density

Z(t) = exp

(
−
∫ t

0

θ(s)> dW (s)− 1

2

∫ t

0

‖θ(s)‖2 ds

)
and the discounted price processes are local martingales under this measure.

Definition 3.23. A market model is called complete if for every FT measurable

random variable B, with
B

S0(T )
≥ K for some K ∈ R, there exists a tame, self-financed

absolute portfolio process such that the corresponding wealth process satisfies

X(T ) = B.

If this property is not satisfied, we say the market is incomplete.

Theorem 3.24. A market model is complete if and only if there exists a unique
equivalent martingale measure Q.

Theorem 3.25. An arbitrage free diffusion market model is complete if and only if
m = d and σ(t) is invertible for all t almost surely.

Remark 3.26. This property allows us to identify complete diffusion market models,
without calculating an equivalent martingale measure and proving its uniqueness.
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3.2 Relative Portfolio Processes

Definition 3.27. We define the relative portfolio process or short portfolio process
(π0, π) of a self-financing absolute portfolio process (ϕ0, ϕ) by

πi(t) =
ϕi(t)

X(t)
0 ≤ i ≤ m.

The value πi(t) can be interpreted as the fraction of total wealth invested in asset i.

Remark 3.28. We will now switch to relative portfolio processes, because of some nice
properties like the representation of the discounted wealth process which is determined
in Corollary 3.33.

Lemma 3.29. A portfolio process satisfies

π0(t) = 1− π(t)>1m.

In abuse of terminology, we sometimes denote a portfolio process just by π, which is
possible since π0 is uniquely determined by π.

Proof. Let (π0, π) be a portfolio process, and (ϕ0, ϕ) the corresponding absolute port-
folio process which is self-financing, hence the wealth process satisfies

X(t) = x+G(t) = ϕ0(t) + ϕ(t)>1m.

Therefore, we get

π0(t) + π(t)>1m =
1

X(t)

(
ϕ0(t) + ϕ(t)>1m

)
= 1.

Lemma 3.30. The dynamics of the wealth process of a portfolio process π are given by

dX(t) = X(t)
(
π0(t)r(t)dt+ π(t)>

(
b(t)dt+ σ(t) dW (t)

))
.

Proof. Let π be a portfolio process, with corresponding self-financed absolute portfolio
process (ϕ0, ϕ). Using the representation of Definition 3.9, and abusing the fact that
dΓ(t) = 0 we get

dX(t) = X(t)r(t)dt+ ϕ(t)>
(
b(t)− r(t)1m

)
dt+ ϕ(t)>σ(t) dW (t)

= X(t)
(
r(t)(1− π(t)>1m)dt+ π(t)>

(
b(t)dt+ σ(t) dW (t)

))
= X(t)

(
π0(t)r(t)dt+ π(t)>

(
b(t)dt+ σ(t) dW (t)

))
.
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3 Diffusion Market Models

Remark 3.31. To make identification of different wealth process easier, we will from
now on denote the wealth process of the portfolio process π by Xπ, or sometimes Xx,π

if we want to mention the starting capital x.

Lemma 3.32. Let π be a portfolio process with initial capital x > 0. The corresponding

discounted wealth process
Xx,π(t)

S0(t)
satisfies representation

x exp

(∫ t

0

π(s)>σ(s) dW (s)− 1

2

∫ t

0

‖σ(s)>π(s)‖2 ds+

∫ t

0

π(s)>
(
b(s)− r(s)1m

)
ds

)
.

In the case of an arbitrage free market this can be rewritten as

Xx,π(t)

S0(t)
= x exp

(∫ t

0

π(s)>σ(s) dW (s)− 1

2

∫ t

0

‖σ(s)>π(s)‖2 ds+

∫ t

0

π(s)>σ(s)θ(s) ds

)
,

where θ(t) denotes a market price of risk.

Proof. By Lemma 3.30, we get that the dynamics of
Xx,π(t)

S0(t)
are given by

d
(
Xx,π(t)S0(t)−1

)
= Xx,π(t)S0(t)−1

(
π(t)>

(
b(t)− r(t)1m

)
dt+ π(t)>σ(t) dW (t)

)
.

This is the equation of a stochastic exponential process, hence the solution
Xx,π(t)

S0(t)
is

given by

x exp

(∫ t

0

π(s)>
(
b(s)− r(s)1m

)
ds+

∫ t

0

π(s)>σ(s) dW (s)− 1

2

∫ t

0

‖σ(s)>π(s)‖2 ds

)
.

The result for arbitrage free markets is due to the equation

σ(t)θ(t) = b(t)− r(t)1m.

Corollary 3.33. The discounted wealth process has the representation

Xx,π(t)

S0(t)
= x exp

(∫ t

0

π(s)>σ(s) dW̃ (s)− 1

2

∫ t

0

‖σ(s)>π(s)‖2 ds

)
,

where W̃ (t) = W (t) +
∫ t

0
θ(t) dt.
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3.2 Relative Portfolio Processes

Proof. By Lemma 3.32 we get that

Xx,π(t)

S0(t)
= x exp

(∫ t

0

π(s)>σ(s) dW (s)− 1

2

∫ t

0

‖σ(s)>π(s)‖2 ds+

∫ t

0

π(s)>σ(s)θ(s) ds

)
,

which can be rewritten as

Xx,π(t)

S0(t)
= x exp

(∫ t

0

π(s)>σ(s) dW̃ (s)− 1

2

∫ t

0

‖σ(s)>π(s)‖2 ds

)
.

Example 3.1. One of the most basic examples of a diffusion market model is the
Black-Scholes market model, described by Black and Scholes (1973). In its easiest form
it consists of a bank account, with deterministic interest rate r ≥ 0 and starting value
1, i.e. its price process is given by

S0(t) = ert.

Furthermore, we have an one-dimensional Brownian motion W and a single risky asset,
with price process

dS(t) = S(t)
(
µdt+ σ dW (t)

)
, S(0) = S > 0,

where µ is a real constant, σ and S are positive constants. In this case, the process
S(t) can be explicitly written as

S(t) = S exp

(µ− σ2

2

)
t+ σW (t)

 .

The unique market price of risk is a deterministic constant and given by

θ =
µ− r
σ

.

Since Novikov’s condition is satisfied, we have by Girsanov’s theorem, the existence of
an equivalent measure Q, with density process

Z(t) = exp

(
−θW (t)− 1

2
θ2t

)
and the dynamics of the discounted price process of the risky asset are

d
(
S(t)S0(t)−1

)
= S−1

0 S(t)σ dW̃ (t),

where W̃ , defined by
W̃ (t) = W (t) + θt,

is a standard Brownian motion under Q. Therefore, the discounted price process is a
local martingale under Q. Since we have one Brownian motion, one risky asset and σ
is invertible and strictly positive, the market is, by Theorem 3.25, complete.
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3 Diffusion Market Models

Remark 3.34. Even though the Black-Scholes model has many advantages, for example
a closed formula for pricing European options, it has some major drawbacks, like the
constant volatility. This assumption stands in contrast to the volatility smiles observed
in real data. One way to fix this issue is, to replace the constant by a stochastic
volatility process.

Example 3.2. Another example of a diffusion market model is Heston’s stochastic
volatility model, or short Heston’s model, introduced by Heston (1993). We consider
two assets, where the bank account, again has the form S0(t) = ert for some constant
r ≥ 0. The risky asset has a price process satisfying the SDE

dS(t) = S(t)
((
λ̄z(t) + r

)
dt+

√
z(t) dŴ 1(t)

)
, S(0) = S > 0.

The slope parameter λ̄ is a real constant and the volatility process z is a so called CIR
process following the SDE

dz(t) = κ(θ − z(t))dt+ ς
√
z(t) dŴ 2(t), z(0) = z0 > 0,

with positive constants κ, θ and ς. Here the two processes Ŵ 1 and Ŵ 2 are dependent
Brownian motions with constant correlation ρ ∈ (−1, 1).
The main idea of this model is, to fix one of the main shortcomings of the Black-Scholes
model, namely the constant volatility. It assumes a stochastic, but observable volatility
modelled by the CIR process z. Since there is only one risky asset which is influenced
by two Brownian motions we can see that this model can never be complete, but it is
still arbitrage free.
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4 Time Continuous Portfolio
Optimization

In this chapter, we will establish the theoretical framework which we will use for the
expected utility maximization of terminal wealth in Heston’s market model. Our
approach will be based on the martingale method mainly introduced by Pliska (1986),
Karatzas, Lehoczky, and Shreve (1987), and Cox and Huang (1989).
The chapter roughly separates into two parts. Firstly, we will look at the utility theory
and some results for complete markets of diffusion type. Here we refer to Karatzas and
Shreve (2003), who in contrast to us do not restrict themselves to the optimization
of terminal expected utility, but also consider utility from consumption and expected
utility from both terminal wealth and consumption.
Since Heston’s model does not fulfil the assumption of completeness, we will further
show similar outcomes for incomplete markets in the second part. There we will follow
closely to Karatzas, Lehoczky, Shreve, and Xu (1991), who extended the existing theory
to incomplete markets of diffusion type. A compact summary of the most important
theorems is also given by Pham (2009).

4.1 Utility Theory

Definition 4.1. A utility function is a strictly monotone increasing, strictly concave
function U ∈ C1 which maps R+ onto R. Furthermore, U must satisfy the Inada
conditions1

lim
x↑∞

U ′(x) = U ′(∞) = 0,

lim
x↓0

U ′(x) = U ′(0) =∞.

Remark 4.2. Sometimes we will extend our utility function to a function U : R →
R ∪ {−∞,∞} without further mentioning. In this case, we set U(x) = −∞ for all
negative x and U(0) = limx↓0 U(x). Notice that this function might no longer be
continuous, but it is still concave and monotone increasing.

1Kramkov and Schachermayer 1999, p. 906.
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4 Time Continuous Portfolio Optimization

Lemma 4.3. Let U be a utility function. The function U ′ has a monotone decreasing,
continuous inverse function I : (0,∞)→ (0,∞) satisfying

I(0) := lim
x↓0

I(x) =∞,

I(∞) := lim
x↑∞

I(x) = 0.

Proof. The utility function U is strictly concave and continuously differentiable, and
consequently U ′ is strictly monotone decreasing and continuous. Accordingly, there
exists a monotone decreasing and continuous inverse function.
Since U is strictly monotone increasing, it follows that U ′(x) ∈ (0,∞) for all x > 0.
Hence I maps (0,∞) to (0,∞). The limits are an immediate consequence of the
corresponding limits of the function U ′.

Definition 4.4. For a convex function f : R→ R, the conjugate function is given as

f ∗(y) = sup
x∈R

(xy − f(x)).

For a utility function U we define the convex dual as

Ũ(y) = (−U)∗(−y).

Remark 4.5. Since U is concave, −U is convex. Hence, Ũ is well defined if we allow
values in the extended real numbers.
For positive y the convex dual of U has the form

Ũ(y) = sup
x∈R

(U(x)− xy),

whereas for negative y we have Ũ(y) =∞.

Lemma 4.6. The convex conjugate of a utility function U is lower semicontinuous
and convex.

Proof. All functions in the set B =
{
fx(y) := U(x)− xy |x ≥ 0

}
are affine linear, hence

convex, and continuous. Since U(x)− xy = −∞ for all x < 0, Ũ(y) is the point-wise
supremum of functions in B and consequently convex and lower semicontinuous.

Lemma 4.7. For all y > 0, the convex conjugate of a utility function has the repre-
sentation

Ũ(y) = U(I(y))− yI(y).
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4.1 Utility Theory

Proof. By the concavity and differentiability of U on R+ we have for all x, y > 0

U(x) ≤ U(y) + U ′(y) [x− y]

or equivalently

U(x)− U ′(y)x ≤ U(y)− yU ′(y).

For y > 0 we have that

U(x)− xy = U(x)− xU ′(I(y)) ≤ U(I(y))− I(y)y,

hence the supremum in the definition of the convex dual is attained in x = I(y). Since
U(x)− xy is a strictly concave function in x, the maximum is even unique.

Lemma 4.8. For every utility function U , the convex conjugate Ũ , restricted on (0,∞),
is in C1 and its derivative is given by

Ũ ′(y) = −I(y).

Consequently, Ũ is monotone decreasing.

Proof. Let ∂Ũ(y) denote the subdifferential of Ũ in y ∈ (0,∞). A convex function is
differentiable in a point if and only if the subdifferential in this point contains only
a single element. By Theorem 23.5. in Rockafellar (1997), we get that x ∈ ∂Ũ(y) if
and only if U(z) − zy attains its maximum over z in −x. By the proof of Lemma
4.7 we have that this function is uniquely maximized at z = I(y). It follows that Ũ
is differentiable in every point y and has derivative −I(y). The monotonicity is an
immediate consequence of the positivity of I.

Lemma 4.9. For all x ∈ R we have the relationship

U(x) = inf
y∈R

(Ũ(y) + xy).

In the case of x > 0 this supremum is attained at y = U ′(x) and the equation can be
rewritten as

U(x) = Ũ(U ′(x)) + U ′(x)x.

Proof. For any convex function f the equality f ∗∗ = f holds true2. It follows that

−U(x) = sup
y∈R

xy − (−U)∗(y) = sup
y∈R
−xy − (−U)∗(−y) = − inf

y∈R

(
Ũ(y) + xy

)
.

The second equality is due to Lemma 4.7 with y = U ′(x).

2Rockafellar 1997, p. 104.
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4 Time Continuous Portfolio Optimization

4.2 Portfolio Optimization in Complete Markets

Permanent Assumption 4.10. For this section, we assume that the market is
complete, and the market price of risk almost surely satisfies∫ T

0

‖θ(t)‖2 dt <∞.

Remark 4.11. The completeness of the market ensures the invertibility of our volatility
coefficient matrix σ(t) and the representation of the market price of risk as

θ(t) = σ(t)−1(b(t)− r(t)1 d).

We further define the positive local martingale

Z(t) = exp

(
−
∫ t

0

θ(s)> dW (s)− 1

2

∫ t

0

‖θ(s)‖2 ds

)
.

For convenience we will from now on denote the discounting factor as D(t) :=
1

S0(t)
.

Problem 4.12. Let U be a utility function and let A(x) denote the set of portfolio
processes π with starting capital x > 0 which satisfy E

[
U(Xπ(T ))−

]
< ∞, where

x− := max (0,−x). Then the value function of the portfolio optimization problem is
given as

V (x) = sup
π∈A(x)

E
[
U(Xπ(T ))

]
.

A portfolio process π̂ ∈ A(x) is called optimal or solution to our problem if it satisfies

V (x) = E
[
U(X π̂(T ))

]
.

Remark 4.13. Our problem is similar to the optimization problems in Karatzas and
Shreve (2003), who optimize over all admissible pairs consisting of a portfolio process
π and a consumption process c. This discrepancy is because we only consider utility
from terminal wealth. Since consumption reduces our wealth, a pair with c 6= 0 can
never be optimal to our problem which is why we can simply ignore consumption.

Definition 4.14. For a utility function U we define the function X which maps
(0,∞)→ (0,∞] by

X (y) := E
[
D(T )Z(T )I

(
yD(T )Z(T )

)]
.
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4.2 Portfolio Optimization in Complete Markets

Lemma 4.15. Assume there exist some α̂ ∈ (0, 1) and β̂ ∈ (1,∞) such that

U ′(β̂x) ≤ α̂U ′(x) ∀x > 0.

Then I(α̂y) ≤ β̂I(y) for all y > 0. Additionally it holds that for all α ∈ (0, 1) there
exists some β ∈ (1,∞) such that

U ′(βx) ≤ αU ′(x) ∀x > 0.

Proof. Substituting U ′(x) = y and applying I leads to the inequality I(α̂y) ≤ β̂I(y)
for all y > 0, since I is monotone decreasing.
For α > α̂ we have

αU ′(x) ≥ α̂U ′(x) ≥ U ′(β̂x).

Let α < α̂ then there exists a k ∈ N such that α > α̂k. Using this leads to

αU ′(x) ≥ α̂kU ′(x) ≥ U ′(β̂kx).

Remark 4.16. This property is satisfied by the power utility functions U(x) = 1
γ
xγ,

with parameter γ ∈ (0, 1) and the logarithmic utility function given by U(x) = log(x),
for x > 0.

Lemma 4.17. If there exist some constants α̂ ∈ (0, 1) and β̂ ∈ (1,∞) such that
α̂U ′(x) ≥ U ′(β̂x) for all x > 0 and there is some ŷ > 0 such that X (ŷ) < ∞, then
X (y) <∞ holds true for all y > 0.

Proof. By Lemma 4.15, we get that for all α ∈ (0, 1) there exist a β ∈ (1,∞) such that
I(αy) ≤ βI(y) for all y > 0. In the case y > ŷ, we get by monotonicity of I and the
expected value that

X (y) ≤ X (ŷ) <∞.

For y < ŷ it holds that y
ŷ
∈ (0, 1), and consequently there exists a β̃ ∈ (0, 1) satisfying

y
ŷ
U ′ (x) > U ′(β̃x). Consequently,

E
[
D(T )Z(T )I

(
yD(T )Z(T )

)]
= E

[
D(T )Z(T )I

(
y

ŷ
ŷD(T )Z(T )

)]
≤ β̃X (ŷ) <∞.

Permanent Assumption 4.18. From now on we will assume that X (y) <∞ holds
for all y > 0.

Proposition 4.19. The function X is monotone decreasing and continuous on (0,∞).
Moreover, there exists an a ∈ (0,∞] such that X is strictly monotone on (0, a).
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4 Time Continuous Portfolio Optimization

Remark 4.20. The strict monotonicity implies the existence of an inverse function Y of
X which maps the interval (X (∞),∞) to (0, a).

Proposition 4.21. For every π ∈ A(x) the process (D(t)Z(t)Xπ(t))t∈[0,T ] is a P-
supermartingale satisfying

E
[
D(t)Z(t)Xπ(t)

]
≤ x.

Proof. Using the representation of Lemma 3.32 and defining the process µ by

µ(t) =

∫ t

0

π(s)>σ(s) dW (s)− 1

2

∫ t

0

‖π(s)>σ(s)‖2 ds−
∫ t

0

θ(s)> dW (s)

− 1

2

∫ t

0

‖θ(s)‖2 ds+

∫ t

0

π(t)>σ(t)θ(t) dt

we get

D(t)Xπ(t)Z(t) = xeµ(t).

Since we can rewrite µ as

µ(t) =

∫ t

0

(
π(s)>σ(s)− θ(s)>

)
dW (s)− 1

2

∫ t

0

‖σ(s)>π(s)− θ(s)‖2 ds,

this is a positive local martingale, hence a supermartingale with

E
[
D(t)Xπ(t)Z(t)

]
≤ x.

Lemma 4.22. Let U be a utility function, I the inverse of its derivative, and X and
Y defined as before. Define

ξ(x) := I
(
Y(x)D(T )Z(T )

)
,

then ξ(x) satisfies the following properties

1. E
[
D(T )Z(T )ξ(x)

]
= x,

2. E
[
U(ξ(x))−

]
<∞,

3. E
[
U(Xπ(T ))

]
≤ E

[
U(ξ(x))

]
for all π ∈ A(x).

Proof. The first equality is an immediate consequence of the definition of Y , since we
have

E
[
D(T )Z(T )ξ(x)

]
= E

[
D(T )Z(T )I

(
Y(x)D(T )Z(T )

)]
= X (Y(x)) = x.
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4.2 Portfolio Optimization in Complete Markets

By concavity of U we get that

U(z) ≥ U(y) + U ′(z) [z − y] .

Using this property with z = ξ(x) and y = 1 leads to

U(ξ(x)) ≥ U(1) + Y(x)D(T )Z(T )
[
ξ(x)− 1

]
≥ −|U(1)| − Y(x)D(T )Z(T ).

For z ≤ y, we have −z ≥ −y and z− ≥ y−. Consequently, we get

U(ξ(x))− ≤ |U(1)|+ Y(x)D(T )Z(T ) ≤ Y(x)LZ(T ).

Taking expectations and exploiting the supermartingale property of Z(T ), leads to

E
[
U(ξ(x))−

]
<∞.

The last inequality is again a consequence of the property of concave functions we used
before. Let now π ∈ A(x) be arbitrary. Then we have

U(ξ(x)) ≥ U(Xπ(T )) +
[
Y(x)D(T )Z(T )ξ(x)− Y(x)D(T )Z(T )Xπ(T )

]
.

Again we simply take expectations and use a result of Proposition 4.21, namely that
E
[
D(t)Z(t)Xπ(t)

]
≤ x holds for every t ∈ [0, T ]. Combined with the first equality

shown in this Lemma, we get

E
[
U(ξ(x))

]
≥ E

[
U(Xπ(T ))

]
.

Remark 4.23. A direct consequence of the proof of the previous Lemma is that every
π̂ ∈ A(x) satisfying E

[
D(T )Z(T )X π̂(T )

]
= x is optimal for our problem. This

property ensures that if π̂ is optimal, D(T )Z(T )X π̂(T ) is even a true martingale.

Lemma 4.24. There exists a portfolio process π̂ ∈ A(x) such that

X π̂(T ) = ξ(x)

holds almost surely.

Proof. By the martingale representation theorem we have that there exists a {Ft}-
adapted, square integrable process ϕ(t) satisfying

M(t) := E
[
D(T )Z(T )ξ(x) | Ft

]
= x+

∫ t

0

ϕ(s)> dW (s).

Define now the processes X̂(t) :=
M(t)

D(t)Z(t)
and dW̃ (t) := dW (t) + θ(s) ds. By

Girsanov’s theorem we know that W̃ is a standard Brownian Motion with respect
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4 Time Continuous Portfolio Optimization

to our measure Q. Due to Lemma 4.22 we have that X̂(0) = x and X̂(T ) = ξ(x).
Furthermore, we get through Itô’s Lemma that

X̂(t) =
1

D(t)

(
x+

∫ t

0

1

Z(s)
(ϕ(s) +M(s)θ(s))> dW̃ (s)

)
.

Therefore, we have that X̂ is the wealth process of the portfolio process

π̂(t) :=
1

M(t)

(
σ(t)>

)−1

(ϕ(t) +M(t)θ(t)).

We still must show that π̂ ∈ A(x). To get this we have to show that

E
[
U(X π̂(T ))−

]
<∞,

which is holds true by Lemma 4.22.

Theorem 4.25. The portfolio process π̂ in Lemma 4.24 is a solution to our utility
maximization problem and

V (x) = E
[
U(ξ(x))

]
.

Proof. By Lemma 4.24 we have that there exists an admissible portfolio process π̂ with
X π̂(T ) = ξ(x). Lemma 4.22 shows us that for every π ∈ A(x) the inequality

E
[
U(Xπ(T ))

]
≤ E

[
U(ξ(x))

]
holds. Accordingly we have

E
[
U(ξ(x))

]
= E

[
U(X π̂(T ))

]
≤ sup

π∈A(x)

E
[
U(Xπ(T ))

]
≤ E

[
U(ξ(x))

]
.

Example 4.1. Consider a one-dimensional Black-Scholes model, consisting of the bank
account S0(t) = ert, with r ≥ 0 and a risky asset, whose price process is of the form

S(t) = S(0) exp

(µ− σ2

2

)
t+ σW (t)

 ,

with positive constants S(0) and σ, and a real valued constant µ. The unique risk
neutral measure is given by its density process

Z(t) = exp

(
−µ− r

σ
W (t)− 1

2

(µ− r)2

σ2
t

)
.
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4.3 Portfolio Optimization in Incomplete Markets

Furthermore, assume that the utility function is of the form U(x) = log(x), hence
U ′(x) = 1

x
and I(y) = 1

y
.

The function X is given by

X (y) = E
[
D(T )Z(T )I

(
yD(T )Z(T )

)]
=

1

y
,

and its inverse is Y(x) = 1
x
. The optimizer ξ(x) satisfies

ξ(x) = x
1

D(T )Z(T )
= x exp

µ− r
σ

W (T ) +

(
1

2

(µ− r)2

σ2
+ r

)
T

 .

Using the representation of Corollary 3.33, we easily see that the optimal portfolio
process is

π̂(t) =
µ− r
σ2

and the optimal expected utility from terminal wealth is

V (x) = log(x) +

(
1

2

(µ− r)2

σ2
+ r

)
T.

Remark 4.26. We see that in some markets, we get a closed form for the optimal
portfolio process. In the Black-Scholes market model, with logarithmic utility function,
it is even constant. Since π is a relative portfolio process, this means that the fraction of
total wealth invested into the stock is constant, but the absolute value changes, as the
total wealth does. This is also the case if we use power utility, defined by U(x) = 1

γ
xγ,

with a parameter γ ∈ (0, 1), which has already been shown by Merton (1969).

4.3 Portfolio Optimization in Incomplete Markets

Remark 4.27. If we want to use the martingale method in incomplete markets, we
have the problem that the risk-neutral measure is no longer unique, but there is even a
convex set of them. Roughly speaking, the main idea of this generalized approach is,
to formulate an optimality criterion for the change of measure and apply the results of
the previous chapter. Since it could be that no equivalent martingale measure satisfies
this optimality condition, we must extend the set over which we optimize slightly, to
guarantee the existence of a solution.

Permanent Assumption 4.28. Additionally, to the assumptions made in Chapter
3, we assume that

1. the market is incomplete i.e. m < d.
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4 Time Continuous Portfolio Optimization

2. the matrix σ(t) has full rank for every t almost surely, i.e. rank(σ(t)) = m for all
t almost surely.

Problem 4.29. Analogously to Problem 4.12 we consider a utility function U , the set
A(x) and define the value function of the portfolio optimization problem

V (x) = sup
π∈A(x)

E
[
U(Xπ(T ))

]
.

Again we will call any process π̂ ∈ A(x) optimal or solution if it satisfies

V (x) = E
[
U(X π̂(T ))

]
.

Lemma 4.30. The process

θ(t) = σ(t)>(σ(t)σ(t)>)−1(b(t)− r(t)1m),

is a market price of risk.

Proof. To prove the statement, we simply have to check that this process satisfies

σ(t)θ(t) = b(t)− r(t)1m
almost surely. Plugging in, leads to

σ(t)θ(t) = σ(t)σ(t)>(σ(t)σ(t)>)−1(b(t)− r(t)1m) = b(t)− r(t)1m.

Remark 4.31. Since σ(t) is assumed to have full rank for all t a.s., it follows that the
inverse of σ(t)σ(t)> is well defined for all t almost surely.

Remark 4.32. Even though we know that in the incomplete case the market price of
risk is not unique, we will from now on denote the process θ(t) defined in Lemma 4.30
as the market price of risk.

Permanent Assumption 4.33. From now on we assume that
∫ T

0
‖θ(t)‖2 dt < ∞

holds almost surely.

Definition 4.34. For i ∈ {m+ 1, . . . , d} we define the fictitious stocks as

dSi(t) = Si(t)

αi(t) dt+
d∑
j=1

ρij(t) dW (j)(t)

 , Si(0) = Si > 0.

Here the volatility coefficient process ρ(t) ∈ Rd−m×d is uniformly bounded, has or-
thonormal rows, full rank, is {Ft}-progressively measurable and satisfies σ(t)ρ(t)> = 0
almost surely.
The drift term α(t) ∈ Rd−m is {Ft}-progressively measurable too and

∫ T
0
‖α(t)‖ dt <∞

holds almost surely.
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4.3 Portfolio Optimization in Incomplete Markets

Remark 4.35. Even though the volatility coefficient process ρ(t) doesn’t have to be
unique we choose one process satisfying our needed properties and keep it fixed, whereas
we use the drift as a parameter which we use to change the assets we add to our market
model.

Lemma 4.36. The market price of risk of our completed market model is of the form

θcom(t) = θ(t) + ν(t).

Proof. Let σcom(t) and bcom(t) be the coefficients of the completed market. Using the
same steps as in the proof of Lemma 4.30 we can easily show that

θcom = σcom(t)>(σcom(t)σcom(t)>)−1(bcom(t)− r(t)1 d)

holds almost surely. Defining ν(t) = ρ(t)>(α(t) − r(t)1 d−m) and exploiting that
σ(t)ρ(t)> = 0 and ρ(t)ρ(t)> = 1 d−m×d−m leads directly to the desired decomposition
of θcom(t).

Remark 4.37. Every completed market model is, by its construction, complete, hence
the market price of risk is unique for every completion, but since ν is orthogonal on σ,
we can see that any market price of risk of a completed model, is a market price of risk
for the incomplete model too.

Lemma 4.38. The process ν is almost surely orthogonal on the market price of risk
θ(t) of the incomplete market. Consequently,

‖θcom(t)‖2 = ‖θ(t) + ν(t)‖2 = ‖θ(t)‖2 + ‖ν(t)‖2

holds almost surely.

Proof. Using the definition of θ in Lemma 4.30 and the equality σ(t)ρ(t)> = 0, we have

θ(t)>ν(t) = (b(t)− r(t)1m)>(σ(t)σ(t)>)−1σ(t)ρ(t)>(α(t)− r(t)1 d−m) = 0.

The equality of the norms is a direct consequence of the orthogonality.

Permanent Assumption 4.39. We assume that
∫ T

0
‖ν(t)‖2 dt < ∞ holds almost

surely.

Definition 4.40. For every completion of our market we can define the positive local
martingale

Zν(t) = exp

(
−
∫ t

0

(θ(s)> + ν(s)>) dW (s)− 1

2

∫ t

0

(‖θ(s)‖2 + ‖ν(s)‖2) ds

)
.
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4 Time Continuous Portfolio Optimization

Remark 4.41. Because we fixed ρ, the market completions can be parametrized by
square-integrable processes ν, which are connected to the risk-neutral measures of
our incomplete market. We will sometimes call a market to be ν-completed if it is
completed by assets with drift αν .

Definition 4.42. Like in Section 4.2 we define for every completion the function

Xν(y) := E
[
D(T )Zν(T )I

(
yD(T )Zν(T )

)]
.

Under the assumption of finiteness of Xν(y) we define the inverse function Yν(x).
Moreover, we set

ξν(x) := I
(
Yν(x)D(T )Zν(T )

)
.

Definition 4.43. For convenience we will denote the set of {Ft}-progressively mea-
surable, square integrable processes ν, taking values in Rd and satisfying σ(t)ν(t) = 0
for all t almost surely by K(σ).
Additionally we define the set K1(σ) :=

{
ν ∈ K(σ) | Xν(y) <∞ for all y > 0

}
.

Theorem 4.44. 3 Consider the set Km(σ) ⊂ K(σ) given by

ν ∈ Km(σ) ⇔ E
[
Zν(T )

]
= 1.

A measure Q is an equivalent martingale measure if and only of its density is given by
Zν for some ν ∈ Km(σ).

Remark 4.45. The set of equivalent martingale measures, represented by their density
processes is a subset of the set of our dual variables K(σ).

Definition 4.46. For ν ∈ K(σ) we define

Vν(x) = sup
π∈Aν(x)

E
[
U(Xπ(T ))

]
,

where Aν(x) is defined analogously to A(x), but for the ν-completed market.

Remark 4.47. A portfolio process π ∈ Aν(x), is allowed to invest money into the stocks
of our incomplete market, as well into the fictitious stocks of the ν-completed market.
Hence, every π ∈ A(x) is in Aν(x) for all completions ν. A consequence of this is
Corollary 4.48.

Corollary 4.48. For every ν ∈ K1(σ) we have

V (x) ≤ Vν(x) = E
[
U(ξν(x))

]
.

3Pham 2009, pp. 178f.
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4.3 Portfolio Optimization in Incomplete Markets

Proof. Every admissible strategy of our original market is also admissible in the
completed market. Therefore, the supremum over all admissible strategies of the
incomplete case is less or equal the supremum in any completion, which is why the
inequality hold. The equality Vν(x) = E

[
U(ξν(x))

]
is a direct consequence of Theorem

4.25.

Remark 4.49. The condition Xν(y) <∞ for all y > 0 is not necessary for the inequality
to hold but is only needed to ensure finiteness of Vν(x) and the representation according
to Theorem 4.25.

Lemma 4.50. For every ν ∈ K(σ) and π ∈ A(x) we have that D(t)Xπ(t) is a positive
local martingale with respect to the measure Pν, where Pν denotes the unique equivalent
martingale measure of the ν-completed market.

Proof. The proof is exactly like the proof of Proposition 4.21.

Permanent Assumption 4.51. From now on we will assume that the utility function
U satisfies U(0) > −∞.

Remark 4.52. This assumption is needed to guarantee the equivalence of the primal
and the dual problem, but it excludes some well-known examples of utility functions
like the logarithmic utility function, we have already seen in Example 4.1.

Theorem 4.53. 4 For ν̂ ∈ K1(σ) the following statements are equivalent:

1. There exists a portfolio process π̂ ∈ A(x) with X π̂(T ) = ξν̂(x) almost surely.

2. E
[
U(ξν̂(x))

]
≤ E

[
U(ξν(x))

]
for all ν ∈ K1(σ).

3. E
[
Ũ(Yν̂(x)D(T )Zν̂(T ))

]
≤ E

[
Ũ(Yν̂(x)D(T )Zν(T ))

]
for all ν ∈ K1(σ).

4. E
[
D(T )Zν(T )ξν̂(x)

]
≤ x for all ν ∈ K1(σ).

Theorem 4.54. 5 Let π̂ ∈ A(x) be a solution to our optimization problem and assume
there are some constants α ∈ (0, 1) and β ∈ (1,∞) such that U ′(βx) ≤ αU ′(x) holds
true for all x > 0. Then there exists a ν̂ ∈ K1(σ) satisfying X π̂(T ) = ξν̂(x) almost
surely.

Remark 4.55. Theorem 4.54 shows us, some similarities between the complete and the
incomplete case. By Theorem 4.25 we have X π̂(T ) = ξ(x) for the complete case which
can be seen as minimum over all ξν(x).

Theorem 4.56. If there exist some ν̂ ∈ K1(σ) and π̂ ∈ A(x) which satisfy X π̂(T ) =
ξν̂(x) almost surely, then π̂ is a solution to our optimization problem.

4Karatzas, Lehoczky, Shreve, and Xu 1991, pp. 716f.
5Karatzas, Lehoczky, Shreve, and Xu 1991, pp. 716f.
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Proof. By Corollary 4.48 we have that

E
[
U(X π̂(T ))

]
≤ V (x) ≤ E

[
U(ξν̂(x))

]
= E

[
U(X π̂(T ))

]
.

Consequently, π̂ is optimal.

Remark 4.57. The restriction, to K1(σ) is necessary, to ensure we can use the results
of the previous chapter, since we assumed the additional property Xν(y) < ∞ in
Permanent Assumption 4.18.

Remark 4.58. Theorem 4.54 and Theorem 4.56 allow us to avoid a direct optimization.
Instead, we can use a minimizing problem, since we know that under the right circum-
stances there is a relation between the two optimal values. The benefit is that we can
minimize over a set of nicely parameterized processes.

4.4 Dual Problem

Definition 4.59. For our primal problem

V (x) = sup
π∈A(x)

E
[
U(Xπ(T ))

]
∀x > 0,

we define the dual problem as

Ṽ (y) = inf
ν∈K(σ)

E
[
Ũ(yD(T )Zν(T ))

]
∀y > 0.

Assumption 4.60. Assume that Ṽ (y) <∞ for all y > 0.

Remark 4.61. Since the dual problem is a minimizing problem, it would be equivalent
to demand that for every y > 0 there exists a process ν ∈ K(σ) such that

E
[
Ũ(yD(T )Zν(T ))

]
<∞.

Lemma 4.62. For all x, y > 0, π ∈ A(x) and ν ∈ K(σ) we have

U(Xπ(T )) ≤ Ũ
(
yD(T )Zν(T )

)
+ yD(T )Zν(T )Xπ(T ),

and consequently also the inequality

E
[
U(Xπ(T ))

]
≤ E

[
Ũ(yD(T )Zν(T ))

]
+ xy

holds.
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4.4 Dual Problem

Proof. The convex dual for z > 0 is defined as Ũ(z) = supζ∈R
(
U(ζ)− zζ

)
, hence for

all ζ ≥ 0 we have the inequality

Ũ(z) + zζ ≥ U(ζ).

Using this with ζ = Xπ(T ) and z = yD(T )Zν(T ) leads to

U(Xπ(T )) ≤ Ũ(yD(T )Zν(T )) + yD(T )Zν(T )Xπ(T ).

Taking expectation and exploiting the supermartingale property of D(T )Zν(T )Xπ(T )
gives us

E
[
Ũ(yD(T )Zν(T ))

]
+ xy ≥ E

[
Ũ(yD(T )Zν(T ))

]
+ yE

[
D(T )Zν(T )Xπ(T )

]
and consequently

E
[
Ũ(yD(T )Zν(T ))

]
+ xy ≥ E

[
U(Xπ(T ))

]
.

Lemma 4.63. Assume there exist some x, y > 0, π̂ ∈ A(x) and ν̂ ∈ K(σ) which satisfy

E
[
U(X π̂(T ))

]
= E

[
Ũ(yD(T )Zν̂(T ))

]
+ xy.

Then π̂ is a solution to the primal problem V (x) and ν̂ is a solution to the dual problem
Ṽ (y).

Proof. By Lemma 4.62 we know that for all π ∈ A(x)

E
[
U(X π̂(T ))

]
= E

[
Ũ(yD(T )Zν̂(T ))

]
+ xy ≥ E

[
U(Xπ(T ))

]
holds. Consequently, π̂ must be optimal. Further we have for all ν ∈ K(σ)

E
[
Ũ(yD(T )Zν̂(T ))

]
+ xy = E

[
U(X π̂(T ))

]
≤ E

[
Ũ(yD(T )Zν(T ))

]
+ xy.

This proves the optimality of ν̂.

Lemma 4.64. Let y > 0 and assume there exists a solution νy ∈ K1(σ) to the dual
problem Ṽ (y). Additionally, let Assumptions 4.60 and 4.51 hold. Then there exists a
solution π̂ to the primal problem V (Xνy(y)). Furthermore, we have the equality

Ṽ (y) = sup
η>0

(V (η)− yη).
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4 Time Continuous Portfolio Optimization

Proof. By Theorem 4.53 we know there exists a portfolio process π̂ ∈ A(Xνy(y)) such
that X π̂(T ) = ξνy

(
Xνy(y)

)
almost surely. Due to Theorem 4.56, we have that π̂ is a

solution to the primal problem V (Xνy(y)). Lemma 4.7 gives us

E
[
Ũ(yD(T )Zνy(T ))

]
= E

[
U(X π̂(T ))

]
− yXνy(y),

hence by Lemma 4.62, we get

Ṽ (y) = E
[
Ũ(yD(T )Zνy(T ))

]
= E

[
U(X π̂(T ))

]
−Xνy(y)y = sup

η>0
(V (η)− yη).

Remark 4.65. The function V (x) is only defined for positive x. If we extend it in
a similar way as we did for our utility functions i.e. V (x) = −∞ for x < 0 and
V (0) = limx↓0 V (x), we can rewrite the last equation of the previous lemma as

Ṽ (y) = sup
η∈R

(V (η)− yη).

As we can see, if all requirements of the lemma are fulfilled, we can represent Ṽ as
convex dual of V for this particular y > 0, hence if this holds true for all y, then Ṽ is
convex.

Assumption 4.66. Assume for every y > 0 there exists an process νy ∈ K1(σ)
satisfying

Ṽ (y) = E
[
Ũ(yD(T )Zνy(T ))

]
.

Proposition 4.67. Let U be a utility function satisfying U(∞) =∞ and assume there
exist some constants α ∈ (0, 1) and β ∈ (1,∞) such that

U ′(βx) ≤ αU ′(x) ∀x > 0.

Additionally let all conditions of Lemma 4.64 and Assumption 4.66 hold. Then for
every x > 0 there exists a y > 0 such that

inf
η

(Ṽ (η) + xη) = Ṽ (y) + xy

This y satisfies the equality

x = Xνy(y) = E
[
D(T )Zνy(T )I

(
yD(T )Zνy(T )

)]
,

where νy denotes the optimal process of Assumption 4.66.

42



4.5 Existence of a Dual Solution

Proof. By Jensen’s Inequality and the monotonicity of Ũ we get that

E
[
Ũ(yD(T )Zν(T ))

]
≥ Ũ

(
yeLE

[
Zνy(T )

])
.

Using the fact that Zν(t) is a supermartingale leads to

Ṽ (y) ≥ Ũ(yeL),

hence Ṽ (0) = ∞. For x > 0 define the convex function gx(y) = Ṽ (y) + xy which
satisfies gx(0) = gx(∞) =∞. Therefore, gx attains a minimum at some y(x) ∈ (0,∞).

Defining Gy(η) := E
[
Ũ(ηyD(T )Zνy(T ))

]
and Dx(η) := ηxy(x) + Gy(x)(η) for η > 0,

one can derive that

D′x(η) = xy(x)− y(x)Xνy(x)
(
y(x)

)
= 0.

Thus the equality Xνy(x)
(
y(x)

)
= x holds true6.

Theorem 4.68. Suppose that all conditions of Proposition 4.67 hold. Then for every
x > 0, there exists a solution π̂ ∈ A(x) to our primal optimization problem.

Proof. Proposition 4.67 gives us that we can apply Lemma 4.64 to every x > 0.
Therefore, we get an optimizer for our primal optimization problem V (x).

Remark 4.69. Theorem 4.68 is the main result of this subsection but needs Assumption
4.66 to hold. Now we will discuss some circumstances under which this is always
fulfilled.

4.5 Existence of a Dual Solution

Permanent Assumption 4.70. Assume that the market price of risk satisfies∫ T

0

‖θ(t)‖2 dt <∞

almost surely.

Permanent Assumption 4.71. The mapping x→ xU ′(x) is monotone increasing.

Remark 4.72. We have already used Permanent Assumption 4.70 in previous chapters,
so it is no further restriction, but Permanent Assumption 4.71 considerably constrains
the choice of our utility functions.

6Karatzas, Lehoczky, Shreve, and Xu 1991, pp. 725f.
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Remark 4.73. If U is twice continuously differentiable, Assumption 4.71 is equivalent to

−xU
′′(x)

U ′(x)
≤ 1.

This can be derived by differentiating the function xU ′(x) and using that its derivative

has to be non-negative. The term −xU
′′(x)

U ′(x)
is called coefficient of relative risk aversion.

Lemma 4.74. It holds that U(∞) =∞.

Proof. The function xU ′(x) is monotone increasing so we have for x ≥ 1 that U ′(x) ≥
U ′(1)
x

. Integrating both sides from 1 to y > 1 leads us to

U(y)− U(1) ≥ U ′(1) log y.

The limit y →∞ gives us U(∞) =∞.

Lemma 4.75. If Assumption 4.51 holds, the mapping x→ Ũ(ex) is convex, Ũ(0) =∞
and Ũ(∞) > −∞.

Proof. To show the equalities we use the fact that

Ũ(y) = sup
η>0

(U(η)− ηy) ≥ U(x)− xy ∀x > 0.

If we let y tend to 0, we get Ũ(0) ≥ U(x) for all x > 0. Now, for x→∞ we see

∞ = U(∞) ≤ Ũ(0).

If we let x go to 0, we get
Ũ(y) ≥ U(0) > −∞,

hence by continuity
Ũ(∞) ≥ U(0) > −∞.

The function is continuously differentiable, since Ũ(y) and ex are, and has derivative

∂

∂x
Ũ(ex) = −I(ex)ex.

The function I is monotone decreasing, −I(ex)ex is increasing, hence Ũ(ex) convex.

Lemma 4.76. The set K(σ) is a closed, convex subset of the Hilbert space

H :=

ν : Ω× [0, T ]→ Rd

∣∣∣∣∣
∫ T

0

‖ν(t)‖2 dt <∞ a.s.

 ,

with inner product 〈ν, µ〉 := E
[∫ T

0
ν(t)>µ(t) dt

]
.
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4.5 Existence of a Dual Solution

Proof. Let ν, µ ∈ K(σ) and λ ∈ (0, 1) be arbitrary but fixed. The set{
ω ∈ Ω | ∃t ∈ [0, T ] such that σ(ω, t)ν(ω, t) 6= 0 or σ(ω, t)µ(ω, t) 6= 0

}
is a union of two zero sets and consequently again a zero set. For all ω which are not
in this set, we have for all t ∈ [0, T ]

σ(ω, t)
(
λν(ω, t) + (1− λ)µ(ω, t)

)
= λσ(ω, t)ν(ω, t) + (1− λ)σ(ω, t)µ(ω, t) = 0,

hence K(σ) is convex.
Let now (νn)n≥0 be a convergent sequence with νn ∈ K(σ) for all n and limn→∞ νn =
ν ∈ H. Define N :=

{
ω ∈ Ω |σ(ω, t)νn(ω, t) 6= 0 for some n ≥ 0 and t ∈ [0, T ]

}
. This

set is a countable union of zero sets and therefore, again a zero set. For all ω /∈ N we
have

σ(ω, t)ν(ω, t) = σ(ω, t) lim
n→∞

νn(ω, t) = lim
n→∞

σ(ω, t)νn(ω, t) = 0.

We can interchange the limit and σ(ω, t), due to the continuity of matrix multiplication.

Remark 4.77. K(σ) is even a closed subspace and consequently a Hilbert space itself,
but for the existence of a minimum, it is sufficient to show it is a closed and convex
subset.

Definition 4.78. For y > 0 we define a functional from H to R ∪ {∞} by

J̃y(ν) := E
[
Ũ
(
yD(T )e−χν(T )

)]
∀ν ∈ K(σ),

where

χν(s) =

∫ s

0

(θ(u) + ν(u))> dW (u) +
1

2

∫ s

0

(
‖θ(u)‖2 + ‖ν(u)‖2

)
du,

and

J̃y(ν) =∞ ∀ν /∈ K(σ).

Lemma 4.79. Let Assumption 4.60 hold. The functional J̃y is convex, lower semicon-
tinuous and proper. Moreover we have that

lim
‖ν‖→∞

J̃y(ν) =∞.

Here ‖ν‖ denotes the induced norm of the Hilbert space H.
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Proof. The lower semicontinuity is a direct consequence of Fatou’s lemma in combina-
tion of the continuity of Ũ and the exponential function. Assumption 4.60 gives us the
existence of a ν such that J̃y(ν) <∞. The function Ũ is monotone decreasing and by
Lemma 4.75 Ũ(y) > −∞ for all y ≥ 0, hence the function J̃y is proper. The convexity
is also due to Lemma 4.75.
By Jensen’s Inequality we get

J̃y(ν) ≥ Ũ

(
exp

(
E
[
log(y) + L− χν(T )

]))
.

We know that
∫ t

0
(θ(u) + ν(u))> dW (u) is a martingale with expectation 0. This leads

to

J̃y(ν) ≥ Ũ

(
exp

(
log(y) + L− 1

2
(‖θ‖2 + ‖ν‖2)

))
,

which tends to infinity for ‖ν‖ → ∞ by Lemma 4.75.

Theorem 4.80. Let Assumptions 4.51 and 4.60 hold. Additionally assume there are
some constants α ∈ (0, 1) and β ∈ (1,∞), such that αU ′(x) ≥ U ′(βx) holds for every
x > 0. Then for every y > 0 there exists a solution ν̂y ∈ K1(σ) to our dual problem.

Proof. The functional J̃y(ν) is proper, convex, lower semicontinuous and K(σ) is a
convex and closed subset of a Hilbertspace and therefore, of a reflexive Banach space.
Moreover, the functional tends to infinity as ‖ν‖ does. Therefore, it attains at least
one solution ν̂ ∈ K(σ)7. By monotonicity of Ũ we get

Ũ(z)− Ũ(∞) ≥ Ũ(z)− Ũ
(
z

α

)
.

Due to its convexity it follows that

Ũ(z)− Ũ
(
z

α

)
≥ I

(
z

α

)(
z

α
− z
)

= I

(
z

α

)(
z(1− α)β

αβ

)
≥ I(z)

z(1− α)

αβ
.

Combining these inequalities, choosing z = yD(T )Zν̂(T ) and taking expectations leads
to

Xν̂(y) ≤ αβ

y(1− α)
E
[
Ũ(yD(T )Zν̂(T ))− Ũ(∞)

]
<∞,

and therefore, ν̂ ∈ K1(σ).

Remark 4.81. We have now developed the theoretical framework, we need to apply
the martingale method in incomplete markets, but we still must check if Heston’s SV
market model satisfies all assumptions needed. Since this technique is highly restrictive,
it is also important to choose the right utility function.

7Ekeland and Temam 1999, p. 35.
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5 Portfolio Optimization in
Hestons Market Model

Now we will apply the martingale method to Heston’s market model with power
utility functions. The portfolio optimization problem itself has already been solved
through different approaches, for example by Kallsen and Muhle-Karbe (2010), who
used semimartingale characteristics to obtain a solution to the optimization problem.
Our notation of the optimization problem, and of some variables, is based on Kraft
(2003), who enhanced the findings of Zariphopoulou (2001) to achieve a representation
result, which allows identification of an optimal portfolio process in Heston’s market
model, derived by stochastic dynamic programming.

5.1 Power Utility

Definition 5.1. For γ ∈ (0, 1) we define the power utility function by

U(x) =
1

γ
xγ ∀x > 0.

Lemma 5.2. For every γ ∈ (0, 1) we have that the corresponding power utility function
U is a utility function.

Proof. The function U is continuously differentiable, and even in C∞. The first two
derivatives are given by

U ′(x) = xγ−1,

U ′′(x) = (γ − 1)xγ−2.

Since U ′ is strictly positive, U is strictly monotone increasing and the negativity
of U ′′ shows that U is strictly concave. The Inada conditions are fulfilled, because
γ − 1 < 0.

Lemma 5.3. Let U be the power utility function with parameter γ ∈ (0, 1). Then, the
functions U ′, I and Ũ are given by

U ′(x) = xγ−1,

I(y) = y
1

γ−1 ,

Ũ(y) =
1− γ
γ

y
γ
γ−1 .
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5 Portfolio Optimization in Hestons Market Model

Proof. The functions U ′ and I are derived by differentiating U and inverting respectively.
To determine Ũ we use Lemma 4.7 and conclude

Ũ(y) = U(I(y))− yI(y) =
1

γ
y

γ
γ−1 − yy

1
γ−1 =

1− γ
γ

y
γ
γ−1 .

Lemma 5.4. The coefficient of relative risk aversion is constant 1− γ < 1

Proof. The second derivative is given by U ′′(x) = (γ − 1)xγ−2, hence

−xU
′′(x)

U ′(x)
= −(γ − 1)xγ−1

xγ−1
= 1− γ.

Lemma 5.5. Let γ ∈ (0, 1) and U be the power utility function with parameter γ. For
all α ∈ (0, 1) there exists a β ∈ (1,∞) such that

αU ′(x) ≥ U ′(βx).

Proof. Let α ∈ (0, 1) be arbitrary and set β = α
1

γ−1 . The constant β is in (1,∞),
because 0 < γ < 1. With this choice we get

U ′(βx) = αxγ−1 = αU ′(x).

Lemma 5.6. Let U be a power utility function with parameter γ ∈ (0, 1). Then the
mapping x→ xU ′(x) is monotone increasing.

Proof. The function U is twice continuously differentiable hence xU ′(x) is continuously
differentiable with derivative

U ′(x) + xU ′′(x) = xγ−1 + (γ − 1)xγ−1 = γ.

Since γ ∈ (0, 1) it is positive hence xU ′(x) is even strictly monotone increasing.

Remark 5.7. An alternative way to prove this property, is to use Lemma 5.4 and
Remark 4.73 which give us the same result.

Remark 5.8. Lemma 5.5 and Lemma 5.6 are important, because they show that power
utility satisfies all assumptions we have made for a utility function, to guarantee the
existence of a unique solution in our space K1(σ).

Permanent Assumption 5.9. For the rest of this chapter, we will assume our utility
function to be of power utility type.
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5.2 Heston’s Stochastic Volatility Model

5.2 Heston’s Stochastic Volatility Model

Definition 5.10. We consider Heston’s Market model. It consists of a probability
space (Ω,F ,P), one risk free asset S0(t) given by

dS0(t) = rS0(t)dt, S0(0) = 1,

for some constant r ≥ 0 and a risky asset is given by the following SDE

dS(t) = S(t)
(

(λ̄z(t) + r)dt+
√
z(t) dŴ 1(t)

)
, S(0) = S > 0,

where λ̄ ∈ R. The process z(t) is a Cox-Ingersoll-Ross process

dz(t) = κ(θ − z(t))dt+ ς
√
z(t) dŴ 2(t), z(0) = z0 > 0,

where the constants κ, θ and ς are assumed to be positive. The processes Ŵ 1(t) and
Ŵ 2(t) are Brownian motions under the measure P with constant correlation ρ ∈ (−1, 1).

Permanent Assumption 5.11. For the rest of the chapter we will assume the Feller
conditions

2κθ > ς2

to hold. Additionally we assume

κ2

2ς2
>

γ

1− γ
λ̄

(
κρ

ς
+
λ̄

2

)
.

Remark 5.12. The Feller conditions ensure the existence of a strictly positive, unique
solution to the SDE of the CIR process, whereas the second inequality ensures the
existence of the moment generating functions of some affine processes, which will
appear later in this chapter.

Proposition 5.13. The CIR process is affine on the canonical state space R≥0 and,

defining τ(t) :=
ς2

4κθ
(1− e−tκ), the solution of the corresponding Riccati equations is

given by

ψ(t, z) =
ze−κt

1− 2zτ(t)
,

φ(t, z) = −2κθ

ς2
log(1− 2zτ(t)),

where log denotes the main branch of the logarithm.
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Proof. If we check the corresponding functions b(z) and A(z) are affine linear which is
the case since

b(z) = κθ − κz,

A(z) = ς2z.

we get b = κθ, b1 = −κ and A1 = ς2. These coefficients satisfy the admissibility
conditions, and consequently the characteristic function is given by the solution of the
one-dimensional Riccati equations

∂

∂t
ψ(t, z) =

ς2

2
ψ(t, z)2 − κψ(t, z), ψ(0, z) = z

∂

∂t
φ(t, z) = κθψ(t, z), φ(0, z) = 0.

Theorem 2.58 gives us

ψ(t, z) =
ze−κt

1− 2zτ(t)
,

and by γ(t) = 1− 2zτ(t) we get

φ(t, z) = κθ

∫ t

0

γ′(u)

γ(u)
du = −2κθ

ς2
log(1− 2zτ(t)).

The last equation holds only if γ(t) does not leave C \ R−, which is true for all
z ∈ iR.

Corollary 5.14. The random variable

Z =
z(t)

τ(t)

is noncentral Chi-squared distributed with
4κθ

ς2
degrees of freedom and non-centrality

parameter
z0e
−κt

τ(t)
, where τ(t) is given as in Proposition 5.13.

Proof. Let ϕY (x) denote the characteristic function of a random variable Y in the point
x. Since the process z(t) is affine we can calculate its characteristic function through
the Riccati equations like we did in Proposition 5.13. The characteristic function of

Z =
z(t)

τ(t)
is given by

ϕZ(x) = E
[
exp (ixZ)

]
= E

[
exp

(
i
x

τ(t)
z(t)

)]
= ϕz(t)

(
x

τ(t)

)
= exp

(
φ(t, xτ(t)−1) + ψ(t, xτ(t)−1)z0

)
.
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5.2 Heston’s Stochastic Volatility Model

If we use our functions φ and ψ we calculated in Proposition 5.13 we get

ϕZ(x) = exp

(
ixe−κt

τ(t)(1− 2ix)
z0

)
(1− 2ix)−

2κθ
ς2 .

This is the characteristic function of a noncentral Chi-squared distributed random

variable with
4κθ

ς2
degrees of freedom and non-centrality parameter

z0e
−κt

τ(t)
.

Remark 5.15. Most of the time we will consider the same model, but with respect to

a two-dimensional standard Brownian motion W =

(
W 1

W 2

)
instead of the correlated

ones. If we do this, we must change the SDEs which describe our processes into

dS(t) = S(t)

((
λ̄z(t) + r

)
dt+

√
z(t)

(√
1− ρ2 dW 1(t) + ρ dW 2(t)

))
, S(0) = S > 0,

dz(t) = κ(θ − z(t))dt+ ς
√
z(t) dW 2(t), z(0) = z0 > 0.

Lemma 5.16. The process λ̄z(t) + r satisfies∫ T

0

|λ̄z(t) + r| dt <∞ a.s.

Proof. We will not directly prove this property but show that

E

[∫ T

0

|λ̄z(t) + r| dt

]
<∞.

This implies almost sure finiteness by Markov’s inequality. To get this result we use
Tonelli’s theorem which tells us that, if we integrate a positive function, we may
interchange two integrals, hence here we may interchange expectation and integration.
Applying this leads to

E

[∫ T

0

|λ̄z(t) + r| dt

]
≤ rT + |λ̄|

∫ T

0

E[z(t)] dt.

Due to Corollary 5.14 we know that E[z(t)] =
4κθ

ς2
τ(t) + z0e

−κt. Therefore,

∫ T

0

E[z(t)] dt = θT + (z0 − θ)
∫ T

0

e−κt dt = θT + (z0 − θ)
1− e−κT

κ
<∞

holds true.
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Lemma 5.17. The diffusion matrix σ(t) =
√
z(t)

(√
1− ρ2 ρ

)
has full rank for all

t almost surely.

Proof. Since the Feller Conditions are assumed to hold, the CIR process z stays positive
almost surely. Therefore, also

√
z(t) > 0 for all t almost surely. Hence σ(t) has rank 1

for all t almost surely.

Proposition 5.18. The market price of risk is of the form

θ(t) = λ̄
√
z(t)

(√
1− ρ2

ρ

)

and satisfies ∫ T

0

‖θ(t)‖2 dt <∞ a.s.

Proof. To get the representation we use Lemma 4.30. Since σ(t)σ(t)> = z(t) we have

θ(t) = σ(t)>(σ(t)σ(t)>)−1[b(t)− r(t))] = σ(t)>λ̄.

For the integral we get ∫ T

0

‖θ(t)‖2 dt = λ̄2

∫ T

0

z(t) dt,

which is almost surely finite by the proof of Lemma 5.16.

Proposition 5.19. 1 Let λ ∈
[
−κ

ς
,∞
)

, then

E

exp

(
−λ
∫ T

0

√
z(t) dW 2(t)− λ2

2

∫ T

0

z(t) dt

) = 1.

Remark 5.20. This property is not strong enough to ensure that for all parametrizations
of the model the process

Z(t) = exp

(
−
∫ t

0

θ(s)> dW (s)− 1

2

∫ t

0

‖θ(s)‖2 ds

)

is necessarily a martingale, for this specific choice of the market price of risk θ(t).
Nevertheless, the model is always arbitrage free and incomplete.

Lemma 5.21. Heston’s market model is arbitrage free.

1Wong and Heyde 2006, p. 8.
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5.2 Heston’s Stochastic Volatility Model

Proof. To see this, we define the equivalent measure P̃ by its density

Z̃(t) = exp

(
−
∫ t

0

λ̄√
1− ρ2

√
z(s) dW 1(s)− 1

2

∫ t

0

λ̄2

1− ρ2
z(s) ds

)
.

This process is a true martingale by Theorem 2.38 which implies that the equivalent
measure exists. Hence, the process

B(t) = W (t) +

∫ t

0

λ̄√
1− ρ2

√
z(t)

(
1
0

)
ds

is a standard Brownian motion under P̃.

D(t)S(t)

(
λ̄z(t)dt+

√
z(t)

(√
1− ρ2 ρ

)
dW (t)

)
=

D(t)S(t)
√
z(t)

(√
1− ρ2 ρ

)dW (t) +
λ̄√

1− ρ2

√
z(t)

(
1
0

)
dt

 =

D(t)S(t)
√
z(t)

(√
1− ρ2 ρ

)
dB(t).

Therefore, we have that D(t)S(t) is a local martingale with respect to the equivalent
measure. Hence, the model is arbitrage free.

Lemma 5.22. Heston’s model is incomplete.

Proof. To prove this, we just must find a second martingale measure P2. Let ε be such
that λ̄ε ∈

[
κ

2σ2 ,∞
)

and define

ν̃(t) :=
ε− ρ√
1− ρ2

λ̄
√
z(t)

(
−ρ√
1− ρ2

)
.

Then

Z2(t) = exp

(∫ t

0

(θ(s) + ν̃(s))> dW (s)− 1

2

∫ t

0

‖θ(s) + ν̃(s)‖2 ds

)
is a true martingale, due to Corollary 2.39 and Proposition 5.19, hence there exists an
equivalent measure P2 such that

W̃ (t) = W (t) + λ̄

∫ t

0

√
z(s)

(
1−ρε√

1−ρ2

ε

)
ds

is a standard Brownian motion. By easy computations we get that the discounted
stock price satisfies

d
(
D(t)S(t)

)
= D(t)S(t)σ(t) dW̃ (t)

which implies that it is a local martingale under this measure. Therefore, the martingale
measure is not unique, and the market cannot be complete.
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5 Portfolio Optimization in Hestons Market Model

Remark 5.23. To prove the incompleteness of this market model, we can also use the
fact that the only risky asset depends on a two-dimensional Brownian motion. By
Theorem 3.25, Heston’s SV model is incomplete.

5.3 Portfolio Optimization in Heston’s SV Model

Remark 5.24. In the previous section, we have introduced Heston’s stochastic volatility
model and proved some of its main properties. Since it is our aim, to calculate the
optimal expected utility from terminal wealth in this model, using the main results of
Chapter 4, we must check if we can apply them.

Proposition 5.25. The set K(σ) is of the form

K(σ) =

ν(t) = ν̃(t)

(
−ρ√
1− ρ2

)∣∣∣∣∣∣ ν̃ : Ω× [0, T ]→ R,
∫ T

0

|ν̃(t)|2 dt <∞ a.s.

 .

Proof. Let ν ∈ K(σ) and ν(t) =

(
ν1(t)
ν2(t)

)
. The process must satisfy σ(t)ν(t) = 0 for

all t almost surely. If we look at the product we get

σ(t)ν(t) =
√
z(t)

(√
1− ρ2ν1(t) + ρν2(t)

)
!

= 0.

Since z(t) > 0 almost surely we can divide by
√
z(t) and get ρν2(t) = −

√
1− ρ2ν1(t)

for all t almost surely. By defining ν̃(t) := ν2(t) we get the proposed form. The square
integrability follows from the definition of K(σ).

Lemma 5.26. The functions Xν and Yν of Definition 4.42 have closed forms. They
are given by

Xν(y) = y
1

γ−1D(T )
γ
γ−1E

[
Zν(T )

γ
γ−1

]
,

Yν(x) = xγ−1D(T )−γE
[
Zν(T )

γ
γ−1

]1−γ
.

Proof. To prove this, we will use the fact that in the case of power utility we have that
I(xy) = I(x)I(y). Plugging in leads to

Xν(y) = E
[
D(T )Zν(T )

(
yD(T )Zν(T )

) 1
γ−1

]
= y

1
γ−1D(T )

γ
γ−1E

[
Zν(T )

γ
γ−1

]
.

Since this is a simple function in y it is easy to calculate its inverse function

Yν(x) = xγ−1D(T )−γE
[
Zν(T )

γ
γ−1

]1−γ
.
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5.3 Portfolio Optimization in Heston’s SV Model

Remark 5.27. This special form is a direct consequence of the choice of our utility
function U and the deterministic bank account. A stochastic interest rate would give
us

Xν(y) = y
1

γ−1E
[
D(T )

γ
γ−1Zν(T )

γ
γ−1

]
.

Even in this case, Yν has a closed form.

Theorem 5.28. If there exists some optimal process ν̂ ∈ K1(σ) to the dual problem
Ṽ (y), then it is independent of y. Moreover

Ṽ (y) = y
γ
γ−1 Ṽ (1).

Proof. Let y > 0 be arbitrary but fixed and assume there exists a ν̂ such that

E
[
Ũ(yD(T )Zν̂(T ))

]
≤ E

[
Ũ(yD(T )Zν(T ))

]
∀ν ∈ K1(σ).

By Lemma 5.3 we know that Ũ(y) = 1−γ
γ
y

γ
γ−1 . Therefore,

E
[
Ũ(yD(T )Zν(T ))

]
= y

γ
γ−1E

[
Ũ(D(T )Zν(T ))

]
.

Combined with the optimality of ν̂ we get

E
[
Ũ(D(T )Zν̂(T ))

]
≤ E

[
Ũ(D(T )Zν̂(T ))

]
.

This means that ν̂ is also optimal for Ṽ (1). On the other hand, is every solution to
Ṽ (1) a solution of Ṽ (y). This can easily be verified through multiplication with the

positive factor y
γ
γ−1 .

Remark 5.29. This feature is a direct consequence of the choice of U too, and does not
depend on the underlying market model.

Lemma 5.30. The process

Z0(t) := exp

(
−
∫ t

0

θ(s)> dW (s)− 1

2

∫ t

0

‖θ(s)‖2 ds

)
,

where θ(t) := λ̄
√
z(t)

(√
1− ρ2

ρ

)
denotes the market price of risk, satisfies the equation

E
[
Ũ
(
Z0(T )

)]
= E

[
Z0(T )

γ
γ−1

]
= eφ(T )+ψ(T )z0 <∞.

Here the functions ψ and φ are given by

ψ(t) = −2c
1− e−∆t

(b−∆)− (b+ ∆)e−∆t
,
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φ(t) = κθ

∫ t

0

ψ(s) ds

with constants a =
ς2

2
, b = −κ+

γ

1− γ
λ̄ρς, c =

γλ̄2

2(1− γ)2
and ∆ =

√
b2 − 4ac.

Proof. The random variable Z0(T )
γ
γ−1 can be rewritten as

Z0(T )
γ
γ−1 = exp

(
χ(T )

)
,

where

χ(t) :=
γ

1− γ

(∫ t

0

λ̄
√
z(s)

(√
1− ρ2 ρ

)
dW (s) +

λ̄2

2

∫ t

0

z(s) ds

)
.

The process X(t) =

(
z(t)
χ(t)

)
is affine with constants b =

(
κθ
0

)
, A = 0, b2 = 0, A2 = 0

and

b1 =

(
−κ
λ̄2γ

2(1−γ)

)
,

A1 =

 ς2 γ

1− γ
λ̄ρς

γ

1− γ
λ̄ρς

γ2

(1− γ)2
λ̄2

 .

So E
[
Z0(T )

γ
γ−1

]
can be rewritten as moment generating function of our affine process

in the point x =

(
0
1

)
. Additionally we have that the corresponding Riccati equations

simplify to the one-dimensional case, since b2 = 0 and A2 = 0, hence we have the ODEs

∂

∂t
ψ2(t, z) = 0, ψ2(0, z) = z2,

∂

∂t
φ(t, z) = κθψ1(t, z), φ(0, z) = 0

with trivial solutions ψ2(t, z) = z2 and φ(t, z) =
∫
t
0ψ1(s, z) ds, hence the differential

equation of ψ1 simplifies to

∂

∂t
ψ1(t, z) =

ς2

2
ψ1(t, z)2 +

(
γ

1− γ
λ̄ρςz2 − κ

)
ψ1(t, z)

+

(
λ̄2γ

2(1− γ)
+

λ̄2γ2

(1− γ)2
z2

)
z2, ψ1(0, z) = z1.
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5.3 Portfolio Optimization in Heston’s SV Model

Our Permanent Assumptions ensure ∆ ∈ R, hence by Theorem 2.58, we have a real

valued solution. Since |∆| < −b we have that
b+ ∆

−b+ ∆
< 0 and

1− g(0)e−∆t = 1− b+ ∆

−b+ ∆
e−∆t > 0.

Therefore, the solution does not explode and by Corollary 2.60, the expectation of
Z0(T )

γ
γ−1 is well defined and of the desired form.

Corollary 5.31. For every y > 0 there exists a process ν such that

E
[
Ũ(yD(T )Zν(T ))

]
<∞.

Proof. By Lemma 5.30 we have finiteness of E
[
Ũ(Z0(T ))

]
. Using Theorem 5.28, we

only have to show that E
[
Ũ(yD(T )Z0(T ))

]
<∞. Since y and D(T ) are deterministic

we get

E
[
Ũ(yD(T )Z0(T ))

]
= y

γ
γ−1D(T )

γ
γ−1E

[
Ũ(Z0(T ))

]
<∞.

Theorem 5.32. For all y > 0, there exists a solution ν̂ ∈ K1(σ) to the dual problem
Ṽ (y). This solution does not depend on y.

Proof. Since we consider power utility U(0) = 0 > −∞ is satisfied, and by Corollary 5.31
we have that Ṽ (y) <∞ for all y > 0. The function x→ xU ′(x) is monotone increasing
and the market price of risk is square integrable by Proposition 5.18. Furthermore,
we have by Lemma 5.5 the existence of constants α ∈ (0, 1), β ∈ (1,∞) such that
αU ′(x) ≥ U ′(βx) for all x > 0, so all conditions of Theorem 4.80 are satisfied. Hence, for
all y > 0 there exists a solution ν̂ ∈ K1(σ) to the dual problem Ṽ (y). The independence
of y is a consequence of Theorem 5.28.

Remark 5.33. Since the optimal process for the dual problem Ṽ (y) does not depend on
y, we will call it from now on the optimal dual process.

Proposition 5.34. Let x > 0 be arbitrary. There exists a solution π̂ ∈ A(x) to our
primal problem V (x).

Proof. By Theorem 5.32 we know a dual solution exists for every y > 0. Using Theorem
4.53 and Theorem 4.56 we get the existence of a solution to our primal problem.
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Remark 5.35. Now we have transferred all results from Chapter 4 to Heston’s SV
model. The remaining question is if we can explicitly calculate the optimal dual and
primal process of our market model. Since the martingale method does not provide any
mechanics which allow us to find optimal processes, but only gives us a way to verify
the optimality of a dual and a primal process, we have to guess the correct processes.
Since the discounted wealth process of the optimal portfolio must be a martingale, this
guess is not completely arbitrary.

Definition 5.36. For the constants c =
1− γ

1− γ + γρ2
, β := − λ̄2γ

2c(1− γ)
, a :=

√
κ̃2 + 2βς2

and κ̃ := κ− γ

1− γ
ρλ̄ς we define the functions

ψ̂(t) := 2β
eat − 1

eat(κ̃+ a)− κ̃+ a
,

φ̂(t) := κθ

∫ t

0

ψ̂(t) dt.

Remark 5.37. The functions ψ̂ is a solution to the one-dimensional Riccati equation i.e.

∂

∂t
ψ̂(t) = −ς

2

2
ψ̂(t)2 − κ̃ψ̂(t) + β.

Additionally φ̂(t) solves
∂

∂t
φ̂(t) = κθψ̂(t).

Together they solve a special kind of Riccati equations we already met in Lemma 5.30.

Definition 5.38. We define

ν̂(t) := c
√

1− ρ2ςψ̂(T − t)
√
z(t)

(
−ρ√
1− ρ2

)
∈ K1(σ),

where c is as in Definition 5.36.

Lemma 5.39. The function ψ̂(T − t) satisfies

∂

∂t
ψ̂(T − t) =

ς2

2
ψ̂(T − t)2 + κ̃ψ̂(T − t)− β.

Proof. We get this result, simply by differentiating and using the fact that ψ̂ solves

the Riccati equation with constants −ς
2

2
, −κ̃ and β.
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Lemma 5.40. The equality

ψ̂(T )z0 + φ̂(T ) +
ς2

2

∫ T

0

ψ̂(T − t)2z(t) dt+ (κ̃− κ)

∫ T

0

ψ̂(T − t)z(t) dt− β
∫ T

0

z(t) dt

+ ς

∫ T

0

ψ̂(T − t)
√
z(t) dW 2(t) = 0

holds true.

Proof. Integration by parts of the process ψ̂(T − t)z(t) and the fact that ψ̂(0) = 0
leads to

0 = ψ̂(T )z0 +

∫ T

0

∂

∂t
ψ̂(T − t)z(t) dt+

∫ T

0

ψ̂(T − t) dz(t).

Using dz(t) = (κθ − κz(t)) dt+ ς
√
z(t) dW 2(t) and the definition of φ̂(t), gives us the

equation.

Remark 5.41. Even though this equality holds we have to be careful if we use it,
while we are calculating something under a different measure as P since W 2(t) is not
necessarily a Brownian Motion under this new measure.

Theorem 5.42. Let ν̂ be the process from Definition 5.38. Then

E
[
Zν̂(T )

γ
γ−1

]
= exp

(
− c

1− γ
(φ̂(T ) + ψ̂(T )z0)

)
,

where the random variable Zν̂(T ) is given by

Zν̂(T ) = exp

(
−
∫ T

0

(
θ(t) + ν̂(t)

)>
dW (t)− 1

2

∫ T

0

(
‖θ(t)‖2 + ‖ν̂(t)‖2

)
dt

)
with

θ(t) + ν̂(t) =
√
z(t)

(
λ̄
√

1− ρ2 − c
√

1− ρ2ρςψ̂(T − t)
λ̄ρ+ (1− ρ2)cςψ̂(T − t)

)
and

‖θ(t)‖2 + ‖ν̂(t)‖2 = z(t)
(
λ̄2 + (1− ρ2)c2ς2ψ̂(T − t)2

)
.

Proof. To show this we want to apply our knowledge about affine processes and its
moment generating functions. The process Zν̂(T )

γ
γ−1 does not fulfil our definition

of such an affine process, since ν̂(t) depends on ψ̂(T − t), so we want to change the
measure in the right way, to obtain a suitable process.
Firstly we define

Z̃(t) := exp

(
− γ

1− γ

∫ t

0

ν̂1(t) dW 1(s)− γ2

2(1− γ)2

∫ t

0

ν̂1(t)2 dt

)
,
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where ν̂1(t) denotes the first component of the two-dimensional process ν̂(t). This
process is a martingale by Theorem 2.38, hence it is a density process of an equivalent
measure P̃ under which the process

W̃ (t) =

(
W 1(t) + γ

1−γ

∫ t
0
ν̂1(t) dt

W 2(t)

)
,

is a standard Brownian motion. So, we get

E
[
Zν̂(T )

γ
γ−1

]
= EP̃

[
exp

(
µ(T )

)]
.

The process µ(t) has the form

µ(t) =
γλ̄

1− γ

∫ t

0

√
z(s)

(√
1− ρ2 ρ

)
dW̃ (s) +

γ

2(1− γ)
λ̄2

∫ t

0

z(s) ds

+
1

2

γ

1− γ
c(1− ρ2)ς2

∫ t

0

ψ̂(T − s)2z(t) ds

+
γ

1− γ
c(1− ρ2)ς

∫ t

0

ψ̂(T − s)
√
z(s) dW 2(s)

− γ2

(1− γ)2
λ̄ρc(1− ρ2)ς

∫ t

0

ψ̂(T − s)z(s) ds.

The first two integrals are nice since they have the right form to ensure that µ(t)
and z(t) are affine. The other three are of different form, but pulling out the factor
γ

1−γ c(1− ρ
2) and using Lemma 5.40 leads us to

µ(T ) =
γλ̄

1− γ

∫ T

0

√
z(s)

(√
1− ρ2 ρ

)
dW̃ (s) +

γ

2(1− γ)
λ̄2

∫ T

0

z(s) ds

+
γ

1− γ
c(1− ρ2)

(
−φ̂(T )− ψ̂(T )z0 + β

∫ T

0

z(s) ds

)
.

Since ψ̂(T ), φ̂(T ) and z0 are constants we can simply pull them outside the expected
value. Rearranging the integrals, the definition of c and κ̃, and the observation that

γ

1− γ
c(1− ρ2)β +

γ

2(1− γ)
λ̄2 =

γ

2(1− γ)

(
−(1− ρ2)

γ

1− γ
λ̄2 + λ̄2

)
=

γ

2(1− γ)

(
1− γ + γρ2

1− γ
λ̄2 − λ̄

1− γ
+

(1− γ)λ̄2

1− γ

)

= −β − γ2

2(1− γ)2
λ̄2
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leads to the following equation

µ(T ) = − γ

1− γ
c(1− ρ2)

(
φ̂(T ) + ψ̂(T )z0

)
− β

∫ T

0

z(s) ds

+
γλ̄

1− γ

∫ T

0

√
z(s)

(√
1− ρ2 ρ

)
dW̃ (s)− γ2

2(1− γ)2
λ̄2

∫ T

0

z(s) ds.

The process

Z̄(T ) = exp

(
γλ̄

1− γ

∫ T

0

√
z(s)

(√
1− ρ2 ρ

)
dW̃ (s)− γ2

2(1− γ)2
λ̄2

∫ T

0

z(s) ds

)
,

is again a martingale and leads to a third equivalent measure Q. The martingale

property is due to Proposition 5.19 and the fact that κ̃ = κ − γ

1− γ
ρςλ̄ > 0, hence

− γλ̄ρ

1− γ
> −κ

ς
. The process

W̄ (t) =

(
W̄ 1(t)
W̄ 2(t)

)
,

with components

W̄ 1(t) := W 1(t) +
γ

1− γ

∫ t

0

(
ν̂1(s)−

√
1− ρ2 λ̄z(s)

)
ds,

W̄ 2(t) = W 2(t)− γ

1− γ
ρλ̄

∫ t

0

z(s) ds,

is now a Brownian motion under the new measure. By this, we have the equation

E
[
Zν̂(T )

γ
γ−1

]
= exp

(
− γ

1− γ
c(1− ρ2)

(
φ̂(T ) + ψ̂(T )z0

))
EQ
[
e−β

∫ T
0 z(t) dt

]
.

Since we have met this form of process in Example 2.2, we now know how to apply
the theory about affine processes, to calculate this expectation, but have to be careful,
since the dynamics of z(t) are different under our new measure Q. They are given by

dz(t) =
(
κθ − κ̃z(t)

)
dt+ ς

√
z(t) dW̄ 2(t).

The process

X =

(
z(t)

−β
∫ t

0
z(s) ds

)
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is affine with coefficients b =

(
κθ
0

)
, b1 =

(
−κ̃
−β

)
and A1 =

(
0 ς2

0 0

)
. All other

coefficients are 0. Since we are only interested in the moment generating function of

this process in x =

(
0
1

)
, we get as solution of our Riccati equations

ψ2(t) = 1,

ψ1(t) = −ψ̂(t),

φ(t) = −φ̂(t).

This leads us to

E
[
Zν̂(T )

γ
γ−1

]
= exp

(
−
(

1 +
γ

1− γ
c

)
(1− ρ2)

(
φ̂(T ) + ψ̂(T )z0

))

= exp

(
− c

1− γ

(
φ̂(T ) + ψ̂(T )z0

))
.

Remark 5.43. Instead of changing a second time we also could apply the theory of
affine processes to the expectation under the measure P̃. Here z(t) would still have its
original dynamics, since W 2(t) is a Brownian motion under P̃.

Theorem 5.44. The optimal expected utility from terminal wealth with initial capital
x > 0 has the form

V (x) = xγV (1) =
1

γ
xγE

[
Zν̂(T )

γ
γ−1

]1−γ
.

Proof. Let x > 0 be arbitrary but fixed. By Proposition 5.34 and Proposition 4.67, we
know there exists a solution to our primal optimization problem

V (x) := E[U(ξν̂(x))],

where ν̂ is the optimal dual process for some y(x). Lemma 5.26 and the definition of
ξν̂(x) leads to

V (x) = E

U (I (xγ−1D(T )1−γE
[
Zν̂(T )

γ
γ−1

]1−γ
Zν̂(T )

))
= xγE

[
U
(
ξν̂(1)

)]
= xγV (1).

The last equality holds since the optimal dual process is independent of y.
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Remark 5.45. As we can see, it is enough to calculate the optimal expected utility from
terminal wealth with initial capital 1 to determine V (x) for all x > 0.

Theorem 5.46. The optimal dual process is given by ν̂ of Definition 5.38, the optimal
portfolio process is given by

π̂(t) :=
1

1− γ
λ̄− 1

1− γ
cρςψ̂(T − t).

Proof. To prove the optimality of ν̂ and π̂ we have to show that

D(T )ξν̂(1) = D(T )X π̂(T )

holds true, where

ξν̂(1) = I
(
Yν̂(1)D(T )Zν̂(T )

)
= D(T )−1Zν̂(T )

1
γ−1E

[
Zν̂(T )

γ
γ−1

]−1

= D(T )−1Zν̂(T )
1

γ−1 exp

(
c

1− γ

(
φ̂(T ) + ψ̂(T )z0

))
,

and X π̂(T ) denotes the wealth process with initial capital 1. The discounted terminal
wealth D(T )X π̂ has, by Corollary 3.33, the representation

D(T )X π̂(T ) = exp

(∫ T

0

π̂(t)λ̄
√
z(t)

(√
1− ρ2 ρ

)
dB(t)− 1

2

∫ T

0

π̂(t)2λ̄2z(t) dt

)
,

where B denotes the process

dB(t) = dW (t) + λ̄
√
z(t)

(√
1− ρ2

ρ

)
dt.

We must be careful, since

Z0(t) = exp

(
−
∫ s

0

θ(s)> dW (s)− 1

2

∫ t

0

‖θ(s)‖2 ds

)
is not necessarily a martingale, hence it could be that there is no equivalent measure
such that B is a standard Brownian motion, but there is no need of this property in
our calculations.
We start with D(T )ξν̂(1) and use Lemma 5.40 to get

φ̂(T ) + ψ̂(T )z0 = −ς
2

2

∫ T

0

ψ̂(T − t)2z(t) dt− (κ̃− κ)

∫ T

0

ψ̂(T − t)z(t) dt

+ β

∫ T

0

z(t) dt− ς
∫ T

0

ψ̂(T − t)
√
z(t) dW 2(t).

63



5 Portfolio Optimization in Hestons Market Model

Moreover, we have

ς

∫ T

0

ψ̂(T − t)
√
z(t) dW 2(t) = ς

∫ T

0

ψ̂(T − t)
√
z(t) dB2(t)− ρςλ̄

∫ T

0

ψ̂(T − t)z(t) dt

and

−
∫ T

0

ν̂(t)> dB(t) + ςc

∫ T

0

ψ̂(T − t)
√
z(t) dB2(t) = ρςc

∫ T

0

ψ̂(T − t)σ(t) dB(t).

As we can see, the integrand of the above integral in no longer orthogonal on σ(t), but
instead in the range. Summing up the integrals leads finally to

D(T )ξν̂(1) = exp

(∫ T

0

1

1− γ

(
λ̂− ρςcψ̂(T − t)

)
σ(t) dB(t)

)

exp

(
− 1

2(1− γ)2

∫ T

0

(
λ̂− ρςcψ̂(T − t)

)2

dt

)
,

which is exactly the discounted wealth process of π̂ with initial capital 1. Since we now
have a dual process ν̂ and portfolio process π̂ with ξν̂(1) = X π̂(T ), we know that both
are optimal.

Remark 5.47. If we consider Heston’s SV model, with stock price

dS(t) = S(t)
((
λ̄z(t) + r

)
dt+

√
z(t) dŴ 1(t)

)
and treat z(t) as a constant, we end up in the Black-Scholes setting with µ = λ̄z(t) + r
and σ =

√
z(t). Using the solution of Merton’s portfolio problem, we see that the

optimal portfolio process, in this model is given by

π∗(t) =
µ− r

(1− γ)σ2
=

λ̄

1− γ
,

which is exactly the first term of the process

π̂(t) =
λ̄

1− γ
− cρς

1− γ
ψ̂(T − t).

Hence, the optimal portfolio process in Heston’s SV model, separates into two parts.
The first part, which is similar to the solution in the Black-Scholes model, and a second
term, compensating the additional uncertainty, caused by the correlation between the
Brownian motions Ŵ 1 and Ŵ 2.

Theorem 5.48. The optimal expected utility from terminal wealth with initial capital
x is given by

V (x) =
1

γ
xγ exp

(
−c
(
φ̂(T ) + ψ̂(T )z0

))
.
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Proof. We know that

V (x) = E[U(ξν̂(x)] = xγE[U(ξν̂(1)].

If we plug ξν̂(1) and use Theorem 5.42 in we get

V (x) =
1

γ
xγE

[
Zν̂(T )

γ
γ−1

]1−γ
=

1

γ
xγ exp

(
−c(φ̂(T ) + ψ̂(T )z0)

)
.

5.4 Including Discrete Dividends

The diffusion markets we introduced in the previous chapters, do not include any
dividend payments. Profit from stocks is only gained via the rise of the price itself,
but in reality most companies pay dividends to their shareholders. These payments
are naturally discrete, and the payment times are generally known in advance. To
model this, we will include the theory of early announced dividends, described by Grün
(2017), to Heston’s SV model and study how this extension influences the results we
already derived.

5.4.1 Basic Notation

Definition 5.49. For every dividend payment of a stock, there are four important
dates. The dividend is paid on the payment date. On the announcement date, the
exact worth of the dividend will be announced. This is naturally some days before the
payment date. The cum-dividend date or short cum-date is the last date on which a
buyer of a unit of the stock still receives the dividend. The ex-dividend date or ex-date
is the date after the cum-date, so everyone who buys a stock on the ex-date will not
receive the corresponding dividend.

Remark 5.50. Since everyone who buys the stock on cum-date gets the next dividend,
but the buyer on ex-date does not, there is usually a drop in the stock price on ex-date.

Permanent Assumption 5.51. The ex-date coincides with the payment date.

Permanent Assumption 5.52. There are deterministic time points 0 < T1 < . . . <
Tn ≤ T on which the dividends are paid. The amount of the dividend paid at Ti is
given by Di.

Permanent Assumption 5.53. The drop of the stock price at the ex-dividend date
for dividend i is exactly the amount of the dividend Di.
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5.4.2 Existing Results

Remark 5.54. Here, we will recapitulate some results regarding portfolio optimization
with early announced dividends in the Black-Scholes market, derived by Grün (2017).
Alternatively, a compact summary can also be found in Desmettre et al. (2018).

Definition 5.55. The market model consists of a risk-free asset B and a dividend
paying stock S. The corresponding price processes are given by

dBt = rB(t)dt, B(0) = B0 > 0

S(t) = SD(t) + SE(t), S(0) = S0 > 0,

where SD(t) denotes the price process of the dividend part of the stock and SE(t) is
the ex-dividend price process which is related to the a fictitious dividend free stock,
modelled by a geometric Brownian motion

dS̃(t) = S̃(t)
(
µdt+ σ dW (t)

)
, S̃(0) = S̃(0) > 0.

Here the constants satisfy r ≥ 0, µ ∈ R and σ > 0.

Problem 5.56. Again we want to solve the portfolio optimization problem

V (x) = sup
π∈A(x)

E
[
U(Xπ(T ))

]
,

where A(x) is defined as in Problem 4.12.

Model 1. We assume that all future dividends up to time T are already known at time
t = 0. The price process SD(t) is given as

SD(t) =
∑
i;t<Ti

e−r(Ti−t)Di.

Furthermore, the ex-dividend price is given by

dSE(t) = dS̃(t), SE(0) = S(0)− SD(0) > 0.

Theorem 5.57. Between two payment dates, the wealth process Xπ of a portfolio
process π in Model 1 can be rewritten as wealth process X π̃ of a different price process
π̃ in the standard Black-Scholes model, where

π̃(t) := π(t)
SE(t)

S(t)
.

Proof. The main idea of the proof is that, between two payment dates, the stock price
with dividends can be replicated by S̃ and the bank account B(t), hence every portfolio
process consisting of S and B can be reproduced by a portfolio process which invests
only in S̃ and B. For further details, we refer to Grün (2017).
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Theorem 5.58. The optimization problem with known dividends is equivalent to the
portfolio optimization problem without dividends in the sense that the optimal expected
utilities from terminal wealth coincide. The optimal portfolio processes are related by

π̂DIV (t) = π̂BS(t)
S(t)

SE(t)
,

where π̂BS(t) denotes the optimal portfolio process in the Black-Scholes market model
without dividends.

Proof. Because of Theorem 5.57 we know that between two payment times, the markets
evolve in the same way. Since the dividend payment at Ti does not change the wealth,
which is due to Permanent Assumption 5.53, we simply have to reinvest the paid
dividends like Korn and Rogers (2005) proposed. The relation between the optimal
portfolios is a result of the way S is replicated in the original Black-Scholes Market.
Again, we refer to Grün (2017) for more details.

Remark 5.59. Since naturally not all dividend payments are known at time t = 0,
we now replace this model for discrete dividends by a model which includes early
announcement. This means that the dividend payment Di is known at some time
T̃i < Ti but not necessarily at time t = 0.

Model 2. We assume the dividends are announced at some date T̃i < Ti and are
proportional to the stock price before the announcement, i.e. e−r(Ti−T̃i)Di = αiS(T̃i−).

Let N (t) :=

{
1 ≤ i ≤ n

∣∣∣ T̃i ≤ t < Ti

}
, then the price processes are given by

SD(t) =
∑
i∈N (t)

 ∏
j>i;j∈N (t)

(1− αj)

Die
−r(Ti−t),

SE(t) =
∏
i;T̃i≤t

(1− αi)S̃(t).

Lemma 5.60. Model 2 fulfils our permanent assumption only if every announcement
date is after all payment dates of previously announced dividends.

Remark 5.61. Even though in reality it is often the case that payments are paid before
new ones are announced, this model is not completely satisfactory, since it excludes
the possibility to announce multiple dividends at the same time.

Model 3. This model is like Model 2, but now we assume that the dividends are
proportional to the ex-dividend price process e−r(Ti−T̃i)Di = αiSE(T̃i−). The price
process can then again be separated into SD and SE but now

SD(t) =
∑
i∈N (t)

Die
−r(Ti−T̃i)
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SE(t) =
∏
i;T̃i≤t

(1− αi)S̃(t).

Lemma 5.62. Model 3 always satisfies Permanent assumption 5.53.

Theorem 5.63. The optimal utility from terminal wealth of Model 2 and Model 3
coincide and are equal to the optimal utility from terminal wealth in the standard
Black-Scholes market model.

Proof. In Model 3 we can express the dividend free stock S̃ by S and B via

S̃(t) =

∏
i;T̃i≤t

(1− αi)−1

S(t)−

∏
i;T̃i≤t

(1− αi)−1
∑
i∈N (t)

Di

B(Ti)

B(t).

So again we can express any portfolio process in this model by a portfolio process in
the dividend free model and vice versa. Hence, the portfolio optimization problems are
equivalent. The property for Model 2 can be proven analogously, but here we have

S̃(t) =

∏
i;T̃i≤t

(1− αi)−1

S(t)−

∏
i;T̃i≤t

(1− αi)−1
∑
i∈N (t)

∏
j>i;j∈N (t)

(1− αj)
Di

B(Ti)

B(t).

Theorem 5.64. The optimal portfolio process in Model 2 and Model 3 is given by

π̂(t) = π̂BS(t)
S(t)

SE(t)
,

where π̂BS(t) denotes the optimal portfolio process in the dividend free model.

Proof. Let π̂BS(t) denote the optimal portfolio process in the dividend free Black-
Scholes model. We know that we must invest this part of the money into S̃ to get our
optimal expected utility at T . If we rewrite S̃ by S and B, we get that the wealth
processes of π̂BS(t) in the dividend free market and π̂(t) = π̂BS(t) S(t)

SE(t)
in the market

model with dividends coincide. Since the optimal expected utilities from terminal
wealth are the same, we get that π̂(t) is optimal.

5.4.3 Application to Heston’s Stochastic Volatility model

Remark 5.65. We now want to include discrete dividends into the portfolio optimization
problem in Heston’s model. For this, we will work with the dividend models introduced
in the previous section and just change the dynamics of the fictitious dividend free
stock S̃.
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Definition 5.66. The market model consists again of a risk-free asset B and a dividend
paying stock S. The corresponding price processes are given by

dBt = rB(t)dt, B(0) = B0 > 0,

S(t) = SD(t) + SE(t), S(0) = S0 > 0,

where SD(t) like in Definition 5.55, but now the fictitious dividend free stock follows
the dynamics

dS̃(t) = S̃(t)

(
(λ̄z(t) + r)dt+

√
z(t)

(√
1− ρ2 dW 1(t) + ρ dW 2(t)

))
,

where the volatility process z(t) satisfies

dz(t) = κ(θ − z(t))dt+ ς
√
z(t) dW 2(t).

The constants are assumed to satisfy all assumptions of Section 5.2.

Theorem 5.67. The optimal expected utility from terminal wealth of Model 1, Model
2 and Model 3 does not differ from the optimal value of the same optimization problem
without dividends.

Proof. The proof is exactly like the corresponding proofs in the Black Scholes setting.
Again, we can express the dividend free stock by S and B and the dividend-paying
stock between the payment dates can be rewritten in terms of S̃ and B. Since the
wealth process, X does not jump at payment dates Ti, we can immediately reinvest the
paid dividend and continue our strategy. Hence, the portfolio optimization problems
are equivalent.

Theorem 5.68. The optimal portfolio process in the market model with dividends is
related, to the dividend free optimal portfolio by

π̂(t) = π̂HS(t)
S(t)

SE(t)
,

where π̂HS denotes the optimal portfolio process in Heston’s stochastic volatility model
without dividends.

Proof. Similar to the proofs before we take the optimal portfolio of the dividend free
model and rewrite S̃ in terms of S and B to get a portfolio process in the market with
discrete dividends which has almost surely the same terminal wealth. Since the optimal
values coincide, this portfolio process must be optimal.
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Remark 5.69. Surprisingly, the inclusion of early announced dividends does not change
the optimal expected utility from terminal wealth, although the stock price becomes
discontinuous. This is mainly due to the preserved continuity of the wealth process,
which allows replication through portfolio processes in the dividend free market model.
The only remarkable difference of the models with discrete dividends and the one
without is that we must invest a larger proportion of our wealth into the stock, hence
take more risk, to achieve optimality.
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6 Conclusion

In contrast to Merton’s problem, it is not always obvious how the expected utility
from terminal wealth in stochastic volatility models can be maximized. To apply the
martingale method of portfolio optimization to Heston’s stochastic volatility model,
we have to consider two major restrictions. Firstly, the coefficients of the squared
volatility process have to satisfy the Feller condition. This guarantees the positivity of
the Cox-Ingersoll-Ross process over the whole time period and subsequently the full
rank of the volatility process.

The second crucial assumption is

κ2

2ς2
>

γ

1− γ
λ̄

(
κρ

ς
+
λ̄

2

)
,

because it ensures, that the primal optimization problem is well defined for all finite
time horizons. If the inequality is satisfied, the optimal expected utility from terminal
wealth can be calculated, using the structure of the moment generating functions of
affine processes.

We demonstrate that under these conditions, for every positive y, the dual optimization
problem has a minimal value in the form of

Ṽ (y) =
1− γ
γ

y
γ
γ−1E

[(
D(T )Zν̂(T )

) γ
γ−1

]
,

where D(T ) denotes the discounting factor and ν̂ a dual process, which is independent
of y. The structure is a direct consequence of the usage of power utility functions.
These functions also ensure the existence and uniqueness of the optimal dual process

ν̂(t) := c
√

1− ρ2ςψ̂(T − t)
√
z(t)

(
−ρ√
1− ρ2

)
.

Using the relation between dual and primal optimization problem, the optimal expected
utility from terminal wealth with positive initial capital x can be determined as

V (x) = xγV (1) =
1

γ
xγ exp

(
−c
(
φ̂(T ) + ψ̂(T )z0

))
.
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6 Conclusion

In contrast to Merton’s portfolio problem, the optimal portfolio process

π̂(t) =
λ̄

1− γ
− cρς

1− γ
ψ̂(T − t)

is time dependent, but still non-random.

The theory of early announced dividends can be directly included into Heston’s SV
model. Like in the Black-Scholes setting, the optimal expected utility does not change
in any of the presented models, mainly because of the continuity of the corresponding
wealth processes. Similarly to the results derived by Grün 2017, the optimal portfolio
processes change and to achieve optimality, an investor must invest a greater proportion
of his wealth into the risky asset.
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