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Abstract

Augmented reality (AR) has been demonstrated to be an effective way of presenting many types
of tutorials and user guide handbooks. However, creating 3D content for AR is usually costly
and requires specially trained technical authors. The research in this thesis aims to accelerate the
authoring process of AR instructions by providing interactive authoring techniques for retargeting
conventional, two-dimensional content into three-dimensional AR tutorials. Unlike previous work,
we do not simply overlay images or video but synthesize 3D-registered motion from the 2D input.
Since the information in the resulting AR tutorial is registered to 3D objects, the user can freely
change the viewpoint without degrading the experience. Our approaches can be applied to many
styles of video tutorials. In this work, we concentrate on assembly and disassembly tutorials, body
motion, and tutorials which show tools with surface contact, e.g. painting instructions.

In addition to offline authoring, we also show an approach for instant AR instruction authoring
in a remote assistance use case. Spontaneous provisioning of remote assistance requires an easy,
fast, and robust approach for capturing and sharing of unprepared environments. In this thesis,
we make a case for utilizing interactive light fields for remote assistance. We demonstrate the
advantages of object representation using light fields over conventional geometric reconstruction.
Moreover, we introduce an interaction method for quickly annotating light fields in 3D space
without requiring surface geometry to anchor annotations. We present results from a user study
demonstrating the effectiveness of our interaction techniques, and we provide feedback on the
usability of our overall system.

AR instruction systems require dedicated interaction methods to fully develop their potential.
Therefore, we present novel interaction methods for AR on handheld devices, as well as for head-
mounted displays. Handheld Augmented Reality commonly implements some variant of magic
lens rendering, which turns only a fraction of the user’s real environment into AR while the rest
of the environment remains unaffected. Since handheld AR devices are commonly equipped with
video see-through capabilities, AR magic lens applications often suffer from spatial distortions,
because the AR environment is presented from the perspective of the camera of the mobile device.
In this thesis, we present a resource-efficient method for user perspective rendering by applying
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lightweight optical flow tracking and an estimation of the user’s motion before head tracking is
started. For HMDs we present TrackCap, a novel approach for 3D tracking of input devices, which
turns a conventional smartphone into a precise 6DOF input device for an HMD user. The device
can be conveniently operated both inside and outside the HMD field of view, while it provides
additional 2D input and output capabilities. Evaluations show that TrackCap competes favorably
against common input devices for mobile HMDs.



Kurzfassung

Augmented Reality (AR) hat sich als effektive Methode zur Präsentation vieler Arten von Tutorials
und Handbüchern erwiesen. Das Erstellen von 3D-Inhalten für AR ist jedoch normalerweise kost-
spielig und erfordert speziell geschulte technische Autor*innen. Die Forschung in dieser Arbeit
zielt darauf ab, die Erstellung von AR-Anleitungen zu beschleunigen, indem interaktive Autoren-
tools bereitgestellt werden, um konventionelle zweidimensionale Inhalte in dreidimensionale AR-
Tutorials umzuwandeln. Im Gegensatz zu früheren Arbeiten überlagern wir nicht einfach Bilder
oder Videos, sondern synthetisieren 3D-registrierte Bewegungen aus den 2D Eingangsdaten. Da
die Informationen in der resultierenden AR-Anwendung auf 3D-Objekte registriert sind, können
die Nutzer*innen den Standpunkt frei wählen, ohne die Visualisierung zu beeinträchtigen. Un-
sere Ansätze können auf viele Arten von Video-Tutorials angewendet werden. In dieser Arbeit
konzentrieren wir uns auf Montage- und Demontage-Tutorials, Körperbewegungen und Tutorials,
die Werkzeuge mit Oberflächenkontakt zeigen, wie zum Beispiel Malanleitungen.

Neben der Offline-Erstellung zeigen wir auch einen Ansatz für die Erstellung von
AR-Anweisungen in einem Anwendungsszenario für Remoteunterstützung. Die spontane
Bereitstellung von Remoteunterstützung erfordert einen einfachen, schnellen und robusten
Ansatz für die Erfassung und Augmentierung unvorbereiteter Umgebungen. In dieser
Arbeit demonstrieren wir die Vorteile der Objektdarstellung mit Lichtfeldern gegenüber
der herkömmlichen, geometrischen Rekonstruktion. Darüber hinaus führen wir eine
Interaktionsmethode zum schnellen Annotieren von Lichtfeldern im 3D-Raum ein, ohne dass eine
3D Oberflächengeometrie zum Verankern von Annotationen erforderlich ist. Wir präsentieren
Ergebnisse einer Nutzer*innenstudie, die die Wirksamkeit unserer Interaktionstechniken
demonstriert, und geben Feedback zur Benutzungsfreundlichkeit unseres Gesamtsystems.

AR Anleitungen erfordern spezielle Interaktionsmethoden, um ihr Potenzial voll
auszuschöpfen. Daher präsentieren wir neuartige Interaktionsmethoden für AR auf
Handheld-Geräten sowie für Head-Mounted-Displays. Handheld Augmented Reality
implementiert normalerweise eine Variante des Renderings von so genannten „Magic Lenses“,
bei der nur ein Bruchteil der realen Umgebung der Nutzer*innen in AR umgewandelt wird,
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während der Rest der Umgebung davon nicht betroffen ist. Da mobile AR-Geräte üblicherweise
mit einer Video-See-Through Funktion ausgestattet sind, leiden AR-Magic-Lens-Anwendungen
häufig unter räumlichen Verzerrungen, da die AR-Umgebung aus der Perspektive der Kamera des
mobilen Geräts dargestellt wird. In dieser Arbeit stellen wir eine ressourceneffiziente Methode
für das Rendern von Inhalten aus der Benutzerperspektive vor, bei der wir eine effiziente Variante
des Optical Flows verwenden, um die Bewegung der Nutzer*innen zu schätzen. Für HMDs
präsentieren wir TrackCap, einen neuartigen Ansatz zum 3D-Tracking von Eingabegeräten, der
ein herkömmliches Smartphone in ein präzises 6DOF-Eingabegerät für HMD-Benutzer*innen
verwandelt. Das Gerät kann bequem sowohl innerhalb als auch außerhalb des HMD-Sichtfelds
bedient werden und bietet zusätzliche 2D-Eingabe- und Ausgabefunktionen. Auswertungen
zeigen, dass TrackCap durchaus mit gängigen Eingabegeräten für mobile HMDs verglichen
werden kann.
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xvii



xviii LIST OF FIGURES

1.4 Comparing points of view for effective visual guidance. (a) We present motion
instructions using the AR mirror visualization technique. We use a split-screen
setup on the AR mirror providing a top-down and front view. (b) We provide visual
instructions for key poses and motions between these poses. In this example, we
show body instructions using a simple stick-figure for key poses. (c) 3D motions
are visualized by the corresponding 3D path using a set of 3D arrows. (d) We used
a virtual setup to provide the user with a large field of view in all conditions. . . 6

1.5 Hand Interaction in Device and User Perspective Augmented Reality. (a) Device
perspective rendering directly augments the video stream of the handheld device.
Objects outside and inside the augmentations appear disconnected. Notice the
hand inside the AR device. (b) User perspective rendering estimates the user’s
head pose in order to adapt the AR rendering as seen from the head position.
Therefore, objects outside and inside the AR display visually connect. Notice the
fingers visually connect to the hand of the user. . . . . . . . . . . . . . . . . . . 7

1.6 Traditional approaches to magic lens rendering for handheld AR. (a) Device per-
spective rendering provides augmentations from the point of view of the camera.
(b) User perspective rendering uses 3D head tracking to provide augmentation
from the user’s point of view. (c) Fixed point of view user perspective rendering
does not require 3D head tracking. Instead, it assumes a static spatial relationship
between the user’s head and the display surface. . . . . . . . . . . . . . . . . . . 8

1.7 Augmented Reality Documentation on a Handheld Device. In a typical usage
scenario, the user moves the handheld device from one position (a) to another (b)
to view different AR instructions. The resulting transition of the user’s head pose,
in relation to the device, requires updating the viewing frustum. . . . . . . . . . . 9

1.8 Using Smartphones for 3D Interaction on Mobile Head-Mounted Displays. The
high input and output fidelity of the smartphone can also be used to display detail
of the selected objects and to enable high precision interactions with them. . . . . 10

2.1 Early Augmented Reality Tutorial Systems. (a) The KARMA (Knowledge-based
Augmented Reality for Maintenance Assistance) [41] system is a testbed system
for exploring the automatic generation of maintenance and assembly tasks. Head
tracking was achieved using magnetic and ultrasonic sensors. Figure adapted from
[41]. (b) DuploTrack system [50]. The instruction animations are shown in real
time on a screen in front of a user. The system supports an authoring as well as a
guidance mode. It uses a first-generation Kinect depth sensor to detect the Lego
Duplo assemblies. Figure adapted from [50]. . . . . . . . . . . . . . . . . . . . 16

2.2 Active Assembly Guidance system by Wang et al. [168]. (a) The analysis of a
YouTube assembly tutorial video yields a valid assembly sequence (red). (b) The
system provides a basic user assistance visualization, which shows the current
state, errors and next possible parts on a monitor. Figure adapted from [168]. . . 17



LIST OF FIGURES xix

2.3 Augmented Reality remote collaboration systems. (a) Handheld remote assistance
using panoramic views by Young et al. [180]. The local user sends their camera
stream to the remote user, who in turn can stream segmented hand poses back,
which are shown in the local user’s view. Figure adapted from [180]. (b) Holopor-
tation system by Microsoft [114]. The system allows real-time 3D reconstructions
of an entire space using multiple depth cameras. The reconstruction can be trans-
mitted in real-time, enabling the users to interact with each other using AR glasses.
Figure adapted from [114]. (c) World-stabilized annotations in a remote collabo-
ration scenario by [43]. The remote user can place markers in their view, which
are transmitted to the local user (top). The remote user also sees a registered live
camera stream of the local user’s view. Figure adapted from [43]. . . . . . . . . . 18

2.4 Authoring instructions for mixed reality. (a) Explosion Diagram in Augmented
Reality. Kalkofen et al. [74] displace real-world information using a phantom ren-
dering method. The connecting lines help the user to understand spatial object
placement as well as a hierarchical grouping. Figure adapted from [74]. (b) Aug-
mented reality instructions automatically generated from 2D printed manuals. (c)
The rotation of the coffee machine’s door and the removal of the brewing unit are
automatically generated to match an illustration in the printed manual [104]. . . . 22

2.5 Light field capture guidance and rendering. (a) Active user guidance for light field
capture using smartphones [18]. The visualizations in the bottom illustration show
the capturing path over time. (b) Unstructured light fields [36]. The illustration
shows the poses of all captured images for this single light field using a common
handheld camera. (c) The resulting rendering of the light field using the images
captured in (b). Figures adapted from [18, 36]. . . . . . . . . . . . . . . . . . . . 25

2.6 Interaction with AR content. (a) Grasping virtual objects with instrumented
gloves. Figure adapted from [19]. (b) ManoMotion VR glove with multiple
bend sensors for each finger. The rotation of the wrist is tracked with a gyro /
accelerometer combination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.7 Retargeting combined diagrams. (a) Two input images illustrate multiple assem-
bly steps. (b) We derive a difference image from the inputs, which indicates where
changes occurred. (c) Our analysis yields a set of motions and corresponding
parts, in this example indicated by red arrows. The key frames show the anima-
tion generated from the computed motions. c©2014 The LEGO Group, used with
permission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.8 Various examples. c©IKEA Chair Herman and Table Lack, used with permission.
LEGO Boat, c©2014 The LEGO Group, used with permission. . . . . . . . . . . 41



xx LIST OF FIGURES

4.1 (a) 3D object motion is extracted by tracking known model features in the video
and relating them to corresponding points on a 3D model. (b) The 3D model is
created at runtime by deforming a similar 3D model. (c) The motion is retargeted
in the AR scene by registering it to an object like the teapot. (d) The motion is,
instead, registered to the cup. Motion instructions are overlaid as soon as a real
cup is detected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 To extract object motion, we need to provide the system with a 3D model of the
target object. (a) We model the object by deforming a template mesh, which we
rig in 3D. (b) The user interactively specifies the 2D projections of bones. (c)
This allows transforming the template to coarse resemble the target and to subse-
quently relate vertices on the template’s silhouette to the target’s silhouette. (d)
The deformed template can be used for camera pose detection of the target. . . . 48

4.3 Extracting motion with surface contact. We convert the 2D trajectory in the input
video to a 3D trajectory by back-projecting the video data to a 3D model of the
object of interest, in this case, a face. From the 3D model, we furthermore create
a texture atlas which we use to track and record the path of the tool-tip. . . . . . 49

4.4 Planar objects. (a) Example frames from the input video showing a hot air solder-
ing tutorial. (b) Tracking results. The green outline shows the user selection of the
planar object. The selection is automatically rectified and the contained image fea-
tures are used to calculate a homography for each frame. The red marking shows
the selected tool-tip, which is tracked relative to the planar object throughout the
video, resulting in a tool path (shown in yellow). . . . . . . . . . . . . . . . . . 50

4.5 Generating 3D body poses from monocular 2D video. (a) We track interactively
selected joint positions in consecutive frames to compute an animated skeleton in
2D image space. (b) Since the projection of a bone can result from two 3D poses,
we interactively provide the system with the one seen in the picture. However, we
only need to provide the system with a single solution between two maxima of the
length of a bone in 2D. (c) We provide the system with the correct 3D poses by
capturing the user’s skeleton in 3D, while he is demonstrating 3D key poses. (d)
Feedback is presented by posing an avatar with the selected 3D skeleton. . . . . . 53

4.6 Combined motion types in a knife skills tutorial. (a) example frames from the
input video. The knife should be moved in a fluent elliptical motion. (b) Morphing
of a stock knife template to the actual knife used in the video. (c) Illustration of
the combined tracking results for the knife and also the hand skeleton. . . . . . . 54

4.7 Temporal segmentation of motion with surface contact. (a) We segment the tuto-
rial into a set of actions (b) by analyzing the sum of absolute differences f (D)).
We detect starting and ending frames of segments where its derivative is 0. (c)
This results in a set of actions, which we use to compute a set of image layers in
order to further edit the tutorial. . . . . . . . . . . . . . . . . . . . . . . . . . . 55



LIST OF FIGURES xxi

4.8 For mixing several painting tutorials, we split the source videos (a, b) into a set
of actions (c). Each action represents a single layer in the painting. (d) For each
layer, we compute an alpha mask, that allows us to compose layers into a new
tutorial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.9 The video retargeting user interface. (a) Detail view showing the retargeting pro-
cess of a watercolor painting tutorial. (b) The system automatically detects faces
in tutorial videos and uses the deformable face model. . . . . . . . . . . . . . . 58

5.1 Overview. (a) Scene capture: The local user shares the environment by capturing
a local light field. The sampling process is visually guided by a 3D sphere that
surrounds the object of interest. The sphere color encodes the current sampling
density per subtended angle, allowing to identify those regions of the light field
that require more sampling. The target sampling density is automatically specified
by the system but may be adjusted by the remote user on demand. (b) Scene explo-
ration: The remote user explores the light field using image-based rendering tech-
niques. (c, d) Scene annotation: Once a suitable viewpoint has been reached, the
remote user places a plane in 3D and starts annotating it with drawings sketched
on the touchscreen of the mobile device. (e) AR visualization: The visual instruc-
tions are sent to the local user and presented within the 3D coordinate system that
was used for capturing the light field. Therefore, the visual instructions naturally
appear as 3D-registered augmentation in the local user’s environment. . . . . . . 63

5.2 Spatial user guidance: (a) The local user initiates the session by taking one or more
pictures of the scene. The pictures are spatially registered in AR and automatically
labeled to simplify communication. Note the label “View 0” in this example.
(b) The 3D registered images are immediately sent to the remote user to enable
coarse scene exploration. The remote user can then guide the local user to different
locations by drawing hints on a world-registered, virtual ground plane. (c) The
annotations are sent to the local user and visualized as a registered AR overlay.
Once a satisfactory location has been found, the remote user can place a highlight
on the correct picture frame. The local user then starts capturing a local light field
as outlined in Figure 5.1(a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Auto-focus estimation via synthetic focal stack rendering and interpretation: (a)
Camera image for the current view position. The point we want to focus on is
denoted as u. (b) The search window N defines the reference image for our focus
metric ε . (c) A synthetic focal stack is generated, proving test images at regular
intervals along Z−1. In this example, the aperture size a = 3 and window size
N = 15 has been used. (d) The minimum of our focus metric ε denotes the best
match in the focal stack, from where the depth of u can be determined. . . . . . . 66



xxii LIST OF FIGURES

5.4 Interface of the remote expert user. (a) We provide a simple set of three buttons
to initialize canvas placement and drawing, to undo the last action and to send
visual instructions. (b) The remote user is able to refine an initial placement. The
red circle indicates the user’s focus selection. By pressing and sliding from one
of the two buttons in the center of the screen, the user can rotate the canvas. (c)
The rotated canvas after refinement; note the yellow arrow. (d) After sending the
instructions, the local user’s application shows the instruction as AR annotation. . 68

5.5 Evaluation scenes. (a) The light field used for training, (b-e) four light fields for
measuring user performance. Each scene has been prepared with five different
target points (marked with a green circle). . . . . . . . . . . . . . . . . . . . . . 70

5.6 Results from experiment 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.7 Following AR instructions. We tested the effectiveness of our system despite the
added registration error in two step-by-step instruction tasks. (a) Two steps of a
calibration procedure. (b) A participant following the instructions. (c) A computer
maintenance procedure used in the second task. . . . . . . . . . . . . . . . . . . 71

6.1 Interaction. (a) The relation between 2D image elements and 3D structure allows
us to manipulate the 3D visualization with 2D interactions. The selection of the
brewing unit triggers the highlighting of the corresponding 3D object. If the se-
lected object in the real-world is occluded, we provide the user with a ghosted view
x-ray visualization. (b) We allow to replicate an optimized object overview con-
figuration in a 2D image by computing the steps for transforming the real-world
object into the one depicted in the 2D documentation (e.g., opening the service
door). (c) The optimized object configuration is most effective from the point of
view used in the 2D documentation. We extract the point of view from which the
2D image was generated and present it to the user by showing an avatar. This
example shows the user navigating to the extracted point of view. . . . . . . . . 79

6.2 User evaluation. (a) To compare ego-centric visualizations to an AR mirror setup,
we present 3D body motions that are registered to the user’s skeleton. For ego-
centric visualization the 3D point of view is attached to the user’s head position.
By tracking head motion, the user can control the orientation of the viewpoint by
natural head movements. In our experiment, we asked the users to follow the 4
motion paths which are illustrated in this figure. (a) We present motion instruc-
tions using the AR mirror visualization technique. To provide the user with the
same hardware setup in both conditions, we render a virtual AR mirror in front
of the user in a virtual environment. The user is wearing an Oculus Rift display
in both setups (see Figure 1). We use a split-screen setup on the AR mirror pro-
viding a top-down and front view. (b) (top) (bottom) Mean values and standard
deviations of (left) task completion time in seconds and (right) euclidean distance
to the target path (in mm). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



LIST OF FIGURES xxiii

6.3 System overview. (a) We extract object and user motions by tracking known model
features in the 2D video. Here, tracked features are used to record the path of the
brush and to align a face model in each frame. (b) After validating and possibly
editing the extracted motion, we retarget the motion data to real-world 3D objects.
This requires registering the same 3D model as used in the extraction stage, in
this case, a face model, to the live camera image. By tracking the model in 3D,
we are able to relate video data to the real world. In this example, we present the
recorded path of the brush directly on the user’s face. (c) Since we retarget the
extracted motion data in 3D, we can choose an arbitrary point of view. To provide
effective visual instructions, we generate dynamic glyphs (here: timed arrows) and
we indicate the position of the brush over time using a red circle. . . . . . . . . 83

6.4 First revision of AR path visualization. (a) The combination of visualization tech-
niques provides an overview first, before the user can follow the exact motion. (b)
At runtime, we use the arrows to provide a preview of the motions. To minimize
occlusion, the arrow is replaced by the border of the tool’s trajectory. The red dot
shows the extracted tool position over time. . . . . . . . . . . . . . . . . . . . . 84

6.5 (a) We generate path illustrations from motion capture data. (b) The extracted path
data is analyzed and simplified. In particular, we remove zig-zag overdraw along
the trajectory by clustering and detect turning points (marked in green). (c) We
generate arrows in-between turning points, the start point and endpoint. . . . . . 85

6.6 Experiment setup for a retargeted make-up tutorial. (a) Input video tutorial. (b)
We showed the resulting AR tutorial using an AR mirror, which consisted of a
camera and a USB display. (c) Participants could use the AR mirror and the video
which we placed next to the mirror. . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.7 Retargeted Kanji tutorial and final revision of AR visualization. (a) The AR visu-
alization is presented using an Optical See-Through HMD (Microsoft Hololens)
and a handheld clicker that the user is holding in one hand. (b) The video tuto-
rial is shown on a tablet mounted right above the drawing area. This reduced the
influence of head motion. (c) Our final glyph design encodes the direction of the
stroke on its border using arrowheads. The system presents one glyph at a time
next to a full preview of the final drawing. This picture shows the six instructions
presented to the user in AR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.8 Kanji study results. Stars indicate significant differences. . . . . . . . . . . . . . 90



xxiv LIST OF FIGURES

7.1 System overview. In a typical usage scenario, the user moves the handheld de-
vice from one position (a) to another (c) to view different AR instructions. The
resulting transition of the user’s head pose, in relation to the device, is illustrated
in the upper row of (b) showing single images from the front camera of the mobile
device. The diagram in (b) shows a symbolic graph of the CPU usage during our
approach (AAUPR) compared to UPR. During user motion, the head position is
updated depending on the current threshold value. Once the user has moved to the
desired point of view, the head pose is refined for this position (last peak in the
graph). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.2 User Experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.1 Interaction space. The HMD’s camera is usually forward-facing (indicated in red),
limiting the possible tracking space. By using the smartphone’s front camera
(blue), the device can be operated conveniently at e.g. hip level. The smart-
phone itself provides an additional high-resolution screen that can be used for
non-situated data. 6DOF tracking enables direct scene interaction next to a pick
ray metaphor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8.2 Designs. We designed a set of 3D printable parts to mount TrackCap to a variety
of HMDs (STL files will be made publicly available). (a) Microsoft HoloLens.
Note that the cap was designed not to obstruct the view of the scene understanding
sensors, so the marker was bent upwards. (b) HTC Vive and (c) Google Daydream
designs use a flat marker instead. Note that we use the HTC Vive only for measur-
ing precision of TrackCap, since the HTC Vive already comes with a precise hand
tracking system. (d) We provide additional illumination for the marker to com-
pensate for strong back-lighting from the ceiling. (e) The additional light source
illuminates the marker (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8.3 Study setup to measure performance during the selection of distant objects. (a)
Fitts’s law test on a virtual plane in front of the user. (b) Variation of the Fitts’s
law test in 3D. The targets are located in a circle around the user, with varying
heights. (c) User with HMD during the task. The user sees a virtual picking ray
and a virtual target sphere. The virtual picking ray is shown for demonstration. . 104

8.4 Direct selection. Using the 6DOF pose generated by TrackCap, the user can select
virtual objects by simply touching them with the physical device. . . . . . . . . 107

8.5 Complex object manipulation - AR wire game. (a) Illustration of the AR game
used to measure the performance of TrackCap in complex object manipulation.
(b) Screenshot through the HoloLens as seen by a user. Upper row: training tasks.
Lower row: Tasks used during the experiment. . . . . . . . . . . . . . . . . . . . 110



LIST OF FIGURES xxv

8.6 AR Squash. We implemented a squash game for evaluating the performance of
TrackCap in the complementary operation with a model-free tracking solution.
(a) Illustration of the interaction. Blue and red balls are thrown towards the user,
who has to hit them with the matching side of the virtual paddle (indicated by blue
and red colors). (b) Screenshots captured through the HoloLens while playing the
game. Balls explode when they are hit. . . . . . . . . . . . . . . . . . . . . . . . 112

8.7 Application scope. TrackCap can not only be used to select objects, as it also
provides a device with high input and output fidelity, it can also be used to display
detail of the selected objects and as an interface for manipulating part of that details.116





List of Tables

3.1 Assessed test cases. We list the number of parts involved, as well as the length of
the input documentation material and runtimes for retargeting. . . . . . . . . . . 42

4.1 Tool tracking accuracy measurements. . . . . . . . . . . . . . . . . . . . . . . . 52

6.1 Measurements of Kanji study (mean (sd), median). . . . . . . . . . . . . . . . . 89

7.1 Performance of different UPR implementations measured in milliseconds. . . . . 94
7.2 Study results. Mean and standard deviation of time and error, and SEQ and TLX

results. The last row indicates the number of participants preferring the interface.
Three participants did not state a clear preference, except for not choosing DPR. . 96

8.1 Tracking precision and latency of the TrackCap system . . . . . . . . . . . . . . 102
8.2 Results of Experiments 1-3. Mean and standard deviation of time and error, SEQ

results, and TLX results. Last row indicates the number of participants preferring
the interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

xxvii





CHAPTER 1

Introduction

Assembly and disassembly procedures are essential elements in many tasks. Popular examples
include the assembly of new furniture and the maintenance of household appliances that requires
knowledge of both assembly and disassembly procedures: disassembly to reach parts in need
of service, and assembly to rebuild them. The necessary assembly and disassembly actions are
traditionally communicated using textual descriptions that are often combined with a series of
images for illustrating motions in printed manuals [98]. We use handbooks to understand how
things work and manuals to learn how to assemble or maintain them.

Most documentation still exists on paper. However, the use of printed manuals arguably intro-
duces a cognitive seam, since users have to infer actions from a sequence of 2D images, which can
be a mentally demanding task. Complex motions are difficult to visualize in a series of images,
why illustrations are more and more complemented with 3D animations [162]. With the success of
video-sharing platforms, the production and distribution of homemade video tutorials are rapidly
increasing, why also a large body of video tutorials is available for nearly every aspect of life.
Similar to 3D animations, videos allow the demonstration of complex actions required to solve a
certain task why video tutorials became a powerful tool for communicating motions.

However, precisely following the instructions can be very challenging. The separation of task
locations between the real environment and images or the video screen requires complex hand-eye
coordination [22]. Users have to match objects in the video with corresponding objects in their
real environment. They must infer 3D motion paths, speed and velocity only from 2D video cues.
In addition, object appearances in the video may differ from the real world, making it difficult to
identify matching landmarks. The problem is exacerbated by the fact that the user’s viewpoint
often deviates from the one in the video.

1



2 Chapter 1. Introduction

Augmented Reality (AR) overcomes this seam by presenting the documentation directly regis-
tered to the object in the user’s real environment [115]. It has been shown that this can reduce the
cognitive load [56]. However, authoring, visualizing and interacting with AR documentation
requires careful design choices. The remainder of this section discusses the major problems of AR
documentation and how this thesis addresses them.

1.1 Authoring Augmented Reality Documentation

Authoring augmented reality documentation is often a complex and time-consuming process. It
requires skills with 3D modeling and animation tools and additional expertise with AR require-
ments such as registration and tracking. Consequently, few AR documentations exist today.

1.1.1 Authoring from Existing Image Documentations

Meanwhile, a large amount of traditional documentation exists on paper (or in two-dimensional
digital form), but remains mostly unusable for AR applications. To close this gap, we propose a
system capable of automatically transferring traditional printed documentation to AR. We demon-
strate our approach on several graphical elements commonly found in traditional documentations.
Specifically, we present the transfer of annotations labeling parts of the object, arrows indicating
motions, explosion diagrams revealing an object’s internal structure, and structural diagrams con-
veying the assembly or disassembly, translation and rotation of parts. Together, these illustrative
elements cover the most frequent documentation styles. The conventions kept by illustrators allow

Figure 1.1: Augmented Reality documentation from 2D input images. (a) The input documentation con-
sists of an annotated explosion diagram and a sequence of images presenting disassembly instructions. (b)
From analyzing the 2D explosion diagram, our system is able to generate a 3D explosion diagram presented
in AR. Moreover, our system generates 3D annotations in AR based on the input 2D documentation. (c) In
addition, our system is able to analyze image sequences in order to create 3D animations from it, allowing
the presentation of animated 3D documentation in AR. Here we show six key-frames from the resulting AR
animation.
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to automatically interpret the images with only minimal help from the user. Thus, it becomes fea-
sible to produce AR applications from existing image-based documentation at only a fraction of
the effort it would take with conventional 3D modeling and animation software. Figure 1.1 shows
an example of an annotated explosion diagram, which we successfully retargeted to AR.

1.1.2 Authoring from Existing Video Tutorials

To furthermore make use of existing video documentation, this thesis presents a novel system
capable of retargeting homemade video tutorials to AR. We concentrate on a class of tutorials
showing tools operating on object surfaces. This kind of tutorial describes actions that alter the
surface of an object. Common examples are painting, calligraphy, soldering or isolating circuits,
make-up, and decorating, e.g., a teapot as shown in Figure 1.2.

Unlike previous work [48, 118], we do not simply overlay the video on the real object. Over-
laid videos are efficient to produce, but not as effective as 3D tutorials, if the action is view-
dependent or if the object in the video slightly differs from the one available to the user. In
addition, a video overlay may clutter and occlude the real object, especially in surface manipula-
tion tutorials, and animation in the video may distract the user while following the tutorial [162].
Therefore, our system extracts 3D motions from the video and registers the results to the 3D
objects in the user’s environment. This enables the user to freely change the viewpoint without
degrading the quality of the AR experience. Moreover, this allows the presentation of instructions
using effective illustrative visualizations, such as dynamic glyphs [110]. Illustrative visualizations
are able to convey important information in an effective way with minimal clutter and, if necessary,
without showing an animation. They also enable quick previews of arbitrary aggregate actions.

Figure 1.2: Retargeting a ’henna decoration’ video tutorial to a teapot decoration scenario in the user’s
workspace. (left) The user extracts relevant motion from the video, (middle) scales it and aligns the result
to a 3D scan of a teapot in the current workspace. With our editing tools, the user can quickly alter the
original tutorial to meet their requirements. In this example, the original video tutorial shows a decoration
consisting of dots, which requires a special henna pen. The user chooses to connect the dots into lines that
can be drawn with a ceramic pen on the teapot. The user also scales down the entire ornament to better
fit the desired aesthetics. (right) Using augmented reality, the user validates the result directly on the real
teapot.
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Furthermore, extracting 3D motions allows the editing of the tutorial’s temporal structure. This
may involve changing or adding actions or mixing multiple video tutorials into a novel one. For
example, the tutorial in Figure 1.2 demonstrates drawing thick dots. However, a very specific tool
is required to create thick dots, which the user might not have. Therefore, our system allows the
connection of these dots into continuous lines representing the overall shape of the decoration. The
result can be reproduced with a conventional drawing pen commonly used to decorate ceramics.

1.1.3 Remote Authoring of AR Instructions

One particularly important application that uses AR documentation emerges from the combina-
tion of Augmented Reality and and Augmented Virtuality (AV) is remote assistance, where an
expert (remote user) helps a worker (local user) in operating or repairing a physical object on
location. AV provides the remote user with a live representation of the local user’s physical en-
vironment in addition to tools for exploring and annotating the shared environment with visual
instructions [44, 65, 111]. The local user’s AR display overlays the physical environment with the
visual instructions that were generated by the remote user.

Implementing a remote assistance application faces two key challenges. First, the remote user
requires a virtual representation of the local user’s environment, which must be provided on the
fly and allows for identifying all details necessary to complete the task. Second, both local user
and remote user require intuitive interaction techniques for exploring and annotating the shared
environment. Therefore, exploration and annotation must be performed in a 3D space to register
the information correctly in the local user’s environment.

Figure 1.3: Live Authoring of AR Instructions. Two parties using our system in a tele-collaboration session.
(a) The remote user generates visual instructions on a high-quality light field representation, which has been
captured and shared by the local user. Our system supports guided capturing of the light field using off-
the-shelf mobile devices. Subsequently, it enables annotating the representation using simple gestures on a
mobile touch screen. (b) The local user follows the visual instructions in Augmented Reality.
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We are particularly interested in mobile scenarios, as those are free of spatial constraints that
encumber spontaneous use on stationary hardware. However, existing approaches relying on mo-
bile devices for remote assistance are often restricted to 2D representations [180], provide 3D
representations of limited visual quality [44] or rely on additional stationary equipment [114].
Moreover, we experienced that, in addition to the limited visual quality, existing approaches strug-
gle to create proper virtual representations of featureless, transparent or shiny objects.

To address these challenges, we propose a new approach to remote assistance, which does not
require a geometric model, but, instead, purely relies on an image-based representation in the form
of an unstructured light field [36], i.e., a database of images registered in 3D space, which repre-
sent a sampling of the light rays emitted from the local user’s workspace. Light fields offer many
advantages over previous approaches. For example, no depth sensor is required, and reconstruc-
tion is not adversely affected by textureless, shiny or transparent surfaces. This robustness is an
essential advantage of light fields over traditional reconstruction approaches, for instance, when
considering industrial environments with lots of metallic surfaces. This enables our approach to
work in many more environments compared to existing AR remote assistance systems. Figure 1.3
shows an example of this on a metallic engine, which would be challenging for traditional recon-
struction methods commonly used in AR [45]. While light fields offer high visual quality, they
also face challenges complicating their use in remote assistance applications. Creating light fields
can be time-consuming, which is critical for remote assistance applications. Furthermore, a naive
light field implementation results in a large number of images, which easily exceeds what can be
transmitted, stored or rendered on mobile devices.

Finally, light fields lack explicit 3D geometry, making them difficult to interact with or mod-
ify [69]. Common tasks, such as placing graphical annotations on object surfaces captured as
light fields, are not trivial without depth or surface information. The Mixed Reality Light Fields
presented in this thesis address these issues. In particular, we provide a practical approach for
utilizing unstructured light fields in AR on mobile devices. To demonstrate capturing, processing
and annotation of light fields, we chose a challenging application, namely, remote assistance. In
this application, we use light fields as a robust, high-fidelity representation of challenging scenes
containing transparent, thin and shiny objects. Using Mixed Reality Light Fields, we do not only
support a novel form of instant exploration of reconstructed objects, but we also support collab-
oration in the shared space through a novel interface for the navigation and annotation of remote
scenes.

1.2 Visualizing Augmented Reality Instructions

A major part of an AR documentation is providing instructions. To visually communicate in-
structions we need to generate graphical elements based on known 3D motion. However, these
graphical elements need to be comprehensible and they need to fit into the real environment so that
the user can easily follow the indicated motion. This requires carefully designing the graphical
elements and their integration into the user’s workspace.
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Figure 1.4: Comparing points of view for effective visual guidance. (a) We present motion instructions
using the AR mirror visualization technique. We use a split-screen setup on the AR mirror providing a top-
down and front view. (b) We provide visual instructions for key poses and motions between these poses.
In this example, we show body instructions using a simple stick-figure for key poses. (c) 3D motions are
visualized by the corresponding 3D path using a set of 3D arrows. (d) We used a virtual setup to provide
the user with a large field of view in all conditions.

In order to provide an effective design of the AR visualization, this thesis contributes two user
experiments. The first experiment is investigating dynamic glyphs [110] to be used for commu-
nicating motion paths in AR. The second experiment is comparing first person to an AR mirror
point of view visualizations for communicating body motions. Figure 1.4 provides an illustration
of this experiment.

1.3 Interacting with Augmented Reality Documentations

The technique for interacting with AR documentations highly depends on the AR display used for
visualizing the augmentation. While a variety of different AR displays exist, this thesis focuses
on widely available mobile handheld devices, and optical see-through displays, which allow for
natural hand interactions.

1.3.1 Interaction with AR Documentations on Mobile Devices

Handheld AR typically employs smartphone- or tablet-sized screen formats. The commonly ap-
plied Magic Lens metaphor, turns only a fraction of the user’s real field-of-view into an augmented
scene, while the rest of the environment remains unaffected. Furthermore, AR magic lens appli-
cations on video see-through displays often suffer from spatial distortions, because the AR en-
vironment is presented from the perspective of the camera of the device. The camera is usually
located in a corner on the back of the device and captures the scene with a camera-dependent field
of view. This is commonly defined as device-perspective rendering (DPR). The mismatch between
the camera’s and the user’s point and field of view results in mismatching visualizations inside and
outside of the magic lens (and is also called dual-view problem [167]). The visualization inside
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the magic lens depends on the camera parameters while the user’s perception outside is based on
his or her natural vision (Figure1.6(a)). This misalignment is especially confusing when virtual
content inside the magic lens has to be visually connected to real objects outside the magic lens,
and during interactions with the AR environment through the magic lens, i.e., when the user sees
its own hand inside and outside the lens.

This is demonstrated in Figure 1.5 (a), showing a user interacting with an AR game through the
magic lens of the handheld device. In the game, the user has to rotate a small physical marker in
order to align a virtual mirror with a laser beam to control reflections of the beam. The interaction
requires grasping the physical marker and subsequently rotating it. While the rotations may be
performed entirely inside the AR magic lens, manipulating the marker involves moving the hand
from the outside into the view inside the magic lens. When rendering the AR scene from the
camera’s point of view (Figure 1.5(a)) the visual mismatch between parts of the hand, which are
outside, and other parts of the hand which are inside, make precisely grasping the marker difficult.
User perspective rendering (UPR) has been proposed to overcome this problem [Baričević et al.].
It aligns the AR view inside the magic lens to the view of the user outside of the magic lens, to
create the illusion of looking through a transparent glass frame (Figure1.6(b)). In fact, it has been
shown that users, who were never exposed to handheld AR before, expect UPR as the default
view [167]. Current approaches targeting typically implement UPR by computing the user’s head
position in each frame before they align the AR view based respectively. Figure 1.5(b) shows
the AR view with UPR. Notice that the fingers inside the magic lens visually connect to the hand
outside. This potentially makes selection tasks easier [Baričević et al.].

Implementations of UPR have often been explored using head tracking systems in laboratory
setups. They either include stationary external camera tracking [135] or additional hardware setups
such as depth sensors [Baričević et al.]. On mobile devices, UPR has been implemented using 3D
face tracking based on the video feed of the front camera of modern mobile devices [141]. While

(a) Device Perspective Rendering (b) User Perspective Rendering

Figure 1.5: Hand Interaction in Device and User Perspective Augmented Reality. (a) Device perspective
rendering directly augments the video stream of the handheld device. Objects outside and inside the aug-
mentations appear disconnected. Notice the hand inside the AR device. (b) User perspective rendering
estimates the user’s head pose in order to adapt the AR rendering as seen from the head position. Therefore,
objects outside and inside the AR display visually connect. Notice the fingers visually connect to the hand
of the user.
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(a) Device Perspective Rendering (b) User Perspective Rendering (c) Approximated User Perspective
Rendering

Figure 1.6: Traditional approaches to magic lens rendering for handheld AR. (a) Device perspective ren-
dering provides augmentations from the point of view of the camera. (b) User perspective rendering uses
3D head tracking to provide augmentation from the user’s point of view. (c) Fixed point of view user
perspective rendering does not require 3D head tracking. Instead, it assumes a static spatial relationship
between the user’s head and the display surface.

this approach works in theory, implementations suffer from the computational demands of the
additional head tracking. Based on our experience, this results in overall low performance of
the application, which can also be traced down to the devices’ entering thermal throttling mode
to prevent overheating. As a result, the usability of UPR applications can be substantially be
reduced in real-world settings. A computationally less demanding alternative for mobile devices
has been proposed by Pucihar et al. [166]. Instead of tracking the user’s head pose the authors
manually measure the distance of the head to the device once at the beginning of the application,
and they assume the user looking perpendicular through the center of the device over the entirety
of the application (Figure1.6(c)). This approach is called the Fixed Point of View user perspective
rendering (FUPR). It avoids the computational effort required to continuously track the user’s head
pose.

However, FUPR fails to generate user perspective graphics for large interaction spaces. For
example, Figure 3(a) shows a maintenance scenario, which requires touching switches and buttons
at the top and the bottom of a large electric cabinet. In such a scenario, the spatial relationship
between the user’s head position and the handheld device frequently changes, which in turn will
eventually render FUPR ineffective.

In this thesis, we combine the resource-friendly approach of FUPR with continuously effec-
tive UPR. We achieve this by adding a lightweight Kanade-Lucas-Tomasi (KLT) tracker [70, 96]
to the head-tracking pipeline of traditional UPR systems. We use KLT-tracking to estimate head
motion in image space, which we use to subsequently decide whether the parameters of FUPR
need to be refreshed. Since simple thresholding of user motion will eventually introduce a certain
amount of error, we present the idea of dual thresholding which incorporates temporal and spatial
thresholding in order to derive a more precise 3D head pose when head motion stops. By auto-
matically updating the parameters based on a 3D head tracker, we furthermore do not require any
manual initialization. Since our approach incorporates fewer updates of the head pose, it is also
more stable and more robust in environments where visual tracking is difficult.
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(a) (b)

Figure 1.7: Augmented Reality Documentation on a Handheld Device. In a typical usage scenario, the
user moves the handheld device from one position (a) to another (b) to view different AR instructions. The
resulting transition of the user’s head pose, in relation to the device, requires updating the viewing frustum.

1.3.2 Enabling Smartphones for 3D Interaction on Mobile HMDs

In non-instrumented environments, such an entry-level HMD offers only very limited natural inter-
action, as tracking of hands or handheld devices for a spontaneous and direct interaction is not sup-
ported. Instead, interaction typically relies on gamepads or orientation-only controllers [58, 128]
that do not support direct spatial references to the real world. Re-using HMD tracking for gaze
input [157] leads to a Midas touch problem and performance deficiencies at larger distances [34].
Magnetic tracking, as used by the MagicLeap ML1, suffers from magnetic interference problems.
Finally, outside-in tracking, such as the VIVE Lighthouse system, requires a prepared environment
with a stationary infrastructure [140].

Hand tracking has the potential to support natural interaction and it is conceptually straight-
forward to implement on an HMD using inside-out looking sensors. However, any practical im-
plementation of this concept faces several challenges. First, the integration of hand tracking adds
to the technical complexity of the HMD and increases its hardware cost, computational load, and
power consumption. Second, the user would have to keep the hands in the field of view of the
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Figure 1.8: Using Smartphones for 3D Interaction on Mobile Head-Mounted Displays. The high input and
output fidelity of the smartphone can also be used to display detail of the selected objects and to enable high
precision interactions with them.

HMD sensors (see the black outline on the HMD in Figure 8.1). This may be natural for pointing
gestures, but keeping one’s hands permanently raised to chest level quickly leads to fatigue. Third,
fine-grained manipulation in free space is difficult to perform and lacks the passive force feedback
provided by a touchscreen or other surface.

In this thesis, we propose a different approach where we use a conventional smartphone as a
6DOF tracked handheld companion device for a mobile HMD. We call our approach TrackCap,
as the phone tracks a "cap"-like structure which is mounted on an HMD. The inside-out tracking
is turned around by using the smartphone’s camera (rather than the HMD camera) to determine
the relative pose from HMD to the device. This approach avoids all the pitfalls listed above. First,
the technical requirements of the HMD remain unchanged, while an existing smartphone can be
re-purposed as an inexpensive 6DOF input device. Second, the tracking only depends on a line
of sight from the smartphone to the HMD and not vice versa. In other words, the smartphone can
be operated outside of the forward-looking area of the HMD, for example, at hip level, as long
as its camera is facing towards the HMD which we will show is a feasible assumption in most
cases. Third, the smartphone can be translated and rotated with high precision, and the passive
haptic feedback of the touchscreen allows for even more precise input when required. Finally,
TrackCap benefits from the independence of HMD and smartphone, which enables retrofitting an
existing HMD with an affordable 6DOF input device and allows to freely mix and match devices
and interaction styles.
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1.4 Publications and Contribution Statement

This thesis is based on multiple publications. In the following, all contributing publications are
listed in chronological order.

• Peter Mohr, Bernhard Kerbl, Michael Donoser, Dieter Schmalstieg, and Denis Kalkofen.
2015. Retargeting Technical Documentation to Augmented Reality. In Proceedings
of the 33rd Annual ACM Conference on Human Factors in Computing Systems
(CHI ’15). Association for Computing Machinery, New York, NY, USA, 3337-3346.
DOI:https://doi.org/10.1145/2702123.2702490

Abstract: We present a system which automatically transfers printed technical documen-
tation, such as handbooks, to three-dimensional Augmented Reality. Our system identifies
the most frequent forms of instructions found in printed documentation, such as image se-
quences, explosion diagrams, textual annotations and arrows indicating motion. The analy-
sis of the printed documentation works automatically, with minimal user input. The system
only requires the documentation itself and a CAD model or 3D scan of the object described
in the documentation. The output is a fully interactive Augmented Reality application, pre-
senting the information from the printed documentation in 3D, registered to the real object.

Author’s Contribution: The author was the main contributor to the system design and
implementation of the object registration, label extraction, visualization and animation gen-
eration as well as the interactive AR components.

• Peter Mohr, David Mandl, Markus Tatzgern, Eduardo Veas, Dieter Schmalstieg, and Denis
Kalkofen. 2017. Retargeting Video Tutorials Showing Tools With Surface Contact to Aug-
mented Reality. In Proceedings of the 2017 CHI Conference on Human Factors in Com-
puting Systems (CHI ’17). Association for Computing Machinery, New York, NY, USA,
6547-6558. DOI:https://doi.org/10.1145/3025453.3025688

Abstract: A video tutorial effectively conveys complex motions, but may be hard to fol-
low precisely because of its restriction to a predetermined viewpoint. Augmented reality
(AR) tutorials have been demonstrated to be more effective. We bring the advantages of
both together by interactively retargeting conventional, two-dimensional videos into three-
dimensional AR tutorials. Unlike previous work, we do not simply overlay video, but syn-
thesize 3D-registered motion from the video. Since the information in the resulting AR
tutorial is registered to 3D objects, the user can freely change the viewpoint without degrad-
ing the experience. This approach applies to many styles of video tutorials. In this work, we
concentrate on a class of tutorials which alter the surface of an object.

Author’s Contribution: The author was the main contributor to the system design and
implementation of the object registration, visualization and parts of the user interface. The
author designed and performed the user studies, the co-authors contributed to the concept
and performed parts of the user studies.
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• Peter Mohr, Markus Tatzgern, Jens Grubert, Dieter Schmalstieg and Denis Kalkofen. 2017.
Adaptive User-Perspective Rendering for Handheld Augmented Reality. In Proceedings of
the 2017 IEEE Symposium on 3D User Interfaces (3DUI), Los Angeles, CA, 2017, 176-181.
DOI:https://doi.org/10.1109/3DUI.2017.7893336

Abstract: Handheld Augmented Reality commonly implements some variant of magic
lens rendering, which turns only a fraction of the user’s real environment into AR while
the rest of the environment remains unaffected. Since handheld AR devices are commonly
equipped with video see-through capabilities, AR magic lens applications often suffer from
spatial distortions, because the AR environment is presented from the perspective of the
camera of the mobile device. Recent approaches counteract this distortion based on estima-
tions of the user’s head position, rendering the scene from the user’s perspective. To this
end, approaches usually apply face-tracking algorithms on the front camera of the mobile
device. However, this demands high computational resources and therefore commonly af-
fects the performance of the application beyond the already high computational load of AR
applications. In this paper, we present a method to reduce the computational demands for
user perspective rendering by applying lightweight optical flow tracking and an estimation
of the user’s motion before head tracking is started. We demonstrate the suitability of our
approach for computationally limited mobile devices and we compare it to device perspec-
tive rendering, to head tracked user perspective rendering, as well as to fixed point of view
user perspective rendering.

Author’s Contribution: The author was the main contributor to the system design and
implementation. The author co-designed and performed the user studies, the co-authors
contributed to the study concept and the evaluation of the results.

• Peter Mohr, Markus Tatzgern, Tobias Langlotz, Andreas Lang, Dieter Schmalstieg, and
Denis Kalkofen. 2019. TrackCap: Enabling Smartphones for 3D Interaction on Mobile
Head-Mounted Displays. In Proceedings of the 2019 CHI Conference on Human Factors
in Computing Systems (CHI ’19). Association for Computing Machinery, New York, NY,
USA, Paper 585, 1-11. DOI:https://doi.org/10.1145/3290605.3300815

Abstract: The latest generation of consumer market Head-mounted displays (HMD) now
include self-contained inside-out tracking of head motions, which makes them suitable for
mobile applications. However, 3D tracking of input devices is either not included at all or
requires to keep the device in sight, so that it can be observed from a sensor mounted on
the HMD. Both approaches make natural interactions cumbersome in mobile applications.
TrackCap, a novel approach for 3D tracking of input devices, turns a conventional smart-
phone into a precise 6DOF input device for an HMD user. The device can be conveniently
operated both inside and outside the HMD’s field of view, while it provides additional 2D
input and output capabilities.
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Author’s Contribution: The author was the main contributor to the system design and
implementation. The author co-designed and performed the user studies, the co-authors
contributed to the study concept and the evaluation of the results.

• Peter Mohr, Shohei Mori, Tobias Langlotz, Bruce Thomas, Dieter Schmalstieg, and
Denis Kalkofen. 2020. Mixed Reality Light Fields for Interactive Remote Assistance.
In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems
(CHI ’20), Association for Computing Machinery, New York, NY, USA, to appear.
http://dx.doi.org/10.1145/3313831.3376289

Abstract: Remote assistance represents an important use case for mixed reality. With the
rise of handheld and wearable devices, remote assistance has become practical in the wild.
However, spontaneous provisioning of remote assistance requires an easy, fast and robust
approach for capturing and sharing of unprepared environments. In this work, we make a
case for utilizing interactive light fields for remote assistance. We demonstrate the advan-
tages of object representation using light fields over conventional geometric reconstruction.
Moreover, we introduce an interaction method for quickly annotating light fields in 3D
space without requiring surface geometry to anchor annotations. We present results from
a user study demonstrating the effectiveness of our interaction techniques, and we provide
feedback on the usability of our overall system.

Author’s Contribution: The author was the main contributor to the system design and
implementation. Shohei Mori contributed the light field renderer. The author co-designed
and performed the user studies, the co-authors contributed to the study concept and the
evaluation of the results.
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1.5 Organization

This thesis presents visualization, authoring and interaction techniques for AR instructions. It is
structured as follows:

Chapter 2 presents background and related work. This includes illustrative visualization, cogni-
tive psychology and augmented reality.

Chapter 3 presents an authoring approach which re-uses existing printed documentation to gen-
erate interactive AR documentation with minimal user input.

Chapter 4 presents methods for retargeting tutorial videos to AR. Several types of the most com-
mon video content are analyzed and approaches for data extraction are presented. This
includes rigid object motion, motion with surface contact, deformable objects and human
body motion.

Chapter 5 presents an online authoring system for creating ad-hoc augmented reality instructions
in arbitrary environments. The chapter introduces a fast light field capturing method as well
as an authoring interface that supports light fields. The chapter closes with a user study
evaluating the modules of the system an the discussion thereof.

Chapter 6 discusses several visualization aspects of augmented reality instructions. This includes
rendering techniques suited for AR, the indication of optimal viewpoints in 3D, user guid-
ance and tool guidance. The section also includes several user studies evaluating tutorial
systems for motion and tool guidance.

Chapter 7 presents interaction techniques for AR documentation using smartphones. A novel,
resource-efficient method for adaptive user perspective rendering on mobile devices is pre-
sented and evaluated in a user study.

Chapter 8 introduces an interaction system for head-mounted displays. It introduces a method for
utilizing an off-the-shelf smartphone as a 6DoF tracked controller for HMDs. The chapter
also provides a performance analysis as well as an extensive user study evaluating the benefit
of the controller.

Chapter 9 discusses the developed AR documentation systems and summarizes the main contri-
butions and answers to the main research questions. It closes this thesis with directions for
future work.



CHAPTER 2

Related Work

This chapter will put our contributions to 3D authoring systems, Augmented Reality visualization
and interaction in context with existing approaches. In addition, we will address the limitations
of current approaches in relation to our work and point out our improvements in the areas of
authoring, visualization and interaction. The chapter is thematically divided into three main parts:
Augmented Reality tutorial systems and remote assistance systems, authoring AR tutorial content,
and visualization and interaction aspects for instructions in Augmented Reality.

2.1 Mixed Reality Tutorial Systems

Mixed Reality tutorial systems have been discussed as early as the systems introduced by Caudell
et al. [27] and Feiner et al. [41], for the purpose of maintenance and assembly. Reiners et al. [127]
introduce an augmented reality system that guides the assembly of a door lock in a car door but
admit that the tracking capabilities at that time introduce difficulties for novice users. Zauner et al.
[182] deal with furniture assembly, using fiducial markers and RGB cameras for tracking. Their
work introduces both an authoring and a guidance module, but also mention the limitations of the
used tracking technologies.

2.1.1 Assembly Tutorial Systems

The spatial nature of assembly instructions makes them be a suitable application for AR. A user
trying to comprehend where and how to place missing components can benefit not only from the
locality of AR, but also from the freedom that the virtual content offers in terms of visualization
techniques. Moreover, advances in 3D pose estimation and tracking [122, 126, 160, 177] open
new possibilities for scene understanding, and therefore, enable the design of more sophisticated
and efficient AR assembly tutorials. These AR systems, in comparison to traditional media, have

15
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Figure 2.1: Early Augmented Reality Tutorial Systems. (a) The KARMA (Knowledge-based Augmented
Reality for Maintenance Assistance) [41] system is a testbed system for exploring the automatic generation
of maintenance and assembly tasks. Head tracking was achieved using magnetic and ultrasonic sensors.
Figure adapted from [41]. (b) DuploTrack system [50]. The instruction animations are shown in real time
on a screen in front of a user. The system supports an authoring as well as a guidance mode. It uses a
first-generation Kinect depth sensor to detect the Lego Duplo assemblies. Figure adapted from [50].

been shown to relieve mental workload and improve task performance [154]. Henderson et al.
[56] argue that AR documentation helps users to localize tasks more quickly, as well as perform
fewer head movements. This is one of the main advantages of augmented reality systems, as the
instructions are already registered to the real world and the user does not have to switch mentally
and physically between a 2D written handbook and the actual scene.

More recent approaches include the one proposed by Wu et al. [178]. The authors introduce
an AR instruction system with markerless tracking from an RGBD input, assuming that the 3D
models of the objects and the disassembly graph are known. The instructions are then displayed
on a computer screen using line and circular arrows. The lines and arrows are registered in the
live videos of the manipulated object from an overhead perspective. This is a more indirect form
of augmented reality, as the user still has to switch between the display and the real object.

A similar system by Wang et al. [168] aims to provide real-time user feedback during an object
assembly procedure but without special capturing hardware. Instead, they are using only common
RGB cameras as input to their system. To ensure tracking and detection are robust enough, they
propose a probabilistic model to compute the most likely assembly configuration given the de-
tected state. The visualization consists of showing the assembly graph with the selected next con-
figuration on an external screen. Alternatively, a registered animation of a movement of the next
possible added component is also shown. Similar to the previous discussed work, the instructions
are visualized in an indirect way.
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Figure 2.2: Active Assembly Guidance system by Wang et al. [168]. (a) The analysis of a YouTube
assembly tutorial video yields a valid assembly sequence (red). (b) The system provides a basic user
assistance visualization, which shows the current state, errors and next possible parts on a monitor. Figure
adapted from [168].

The DuploTrack approach [50] introduces a live setup providing an assembly tutorial for Du-
plo blocks configurations. The instruction animations are shown in real-time on a screen in front
of a user by orthogonal movements of missing pieces. The system supports an authoring as well
as a guidance mode, but is limited by assumptions about the structure of the Duplo components,
as for example the orthogonality of the assembly steps’ direction.

All three aforementioned approaches demonstrate their capabilities on toy-like objects, which
are usually chosen because of their availability and simplicity. Furthermore, they are quite easy to
track, even with only RGB input.

Some of the already mentioned systems rely on markers, which need to be placed in the scene
or on the manipulable objects, to be able to track the part positions relative to the camera(s). While
this approach is most robust and simple, it is often unpractical or impossible to place additional
markers. The solution is the so-called markerless tracking. Here, usually, the 3D geometry of
trackable parts is required beforehand. Alvarez et al [7] also propose an approach for markerless
tracking of object parts for an assembly tutorial with RGB input. Assuming the availability of
a 3D model of the target object, they implement their own disassembly planning module. The
focus of their paper is on a method for real-time 3D markerless tracking and not so much on the
instructions or AR visualization themselves.
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Figure 2.3: Augmented Reality remote collaboration systems. (a) Handheld remote assistance using
panoramic views by Young et al. [180]. The local user sends their camera stream to the remote user, who in
turn can stream segmented hand poses back, which are shown in the local user’s view. Figure adapted from
[180]. (b) Holoportation system by Microsoft [114]. The system allows real-time 3D reconstructions of
an entire space using multiple depth cameras. The reconstruction can be transmitted in real-time, enabling
the users to interact with each other using AR glasses. Figure adapted from [114]. (c) World-stabilized
annotations in a remote collaboration scenario by [43]. The remote user can place markers in their view,
which are transmitted to the local user (top). The remote user also sees a registered live camera stream of
the local user’s view. Figure adapted from [43].

VR training setups also have the power to improve the rehab process for patients [79]. Fur-
thermore, it can monitor and supervise the user’s motion, reducing the amount of supervision by
medical personnel needed by a single patient.[171] also showed that a similar system could be
used to evaluate and train professional personnel automatically. A Kinect driven system was used
to track professional nurses’ skeleton while performing a sheet pulling motion. This could be used
to give better and more consistent training to nurses to reduce the load and strength needed to
perform the sheet pull task.

2.1.2 Remote Assistance Systems

In the following, we look into related work in the area of remote assistance systems, with a specific
focus on model representations and interaction in Mixed Reality remote assistance and interactive
light field processing. Mixed Reality remote assistance has been successfully demonstrated using
hand gestures performed by the remote user and spatially registration to the local user’s environ-
ment [5, 64, 180]. Previous approaches rely on dedicated sensing hardware, such as a Microsoft
Kinect [66, 145] or Leap Motion sensor [76].
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Visual remote instructions have also been implemented by adding interactive annotations to
the shared representation of the local user’s environment. Drawing into the live video stream
is a simple way to point the attention of the remote user to important objects and places [106].
However, such 2D overlays can only work from a static point of view [2].

Consequently, other research has explored the use of annotations registered in 3D [40]. Early
systems use marker tracking to identify planes in the remote environment, where the remote user
can place AR annotations [43]. Later work considered various forms of online 3D reconstruction
to place AR annotations with respect to the 3D structure [44, 45, 112]. All these annotation tech-
niques are intimately tied to the characteristics and geometric quality of the shared environment
reconstruction.

Arguably the simplest form of sharing an environment is by transmitting a live camera stream
captured from a single point of view [155], which today is the standard approach for video chat
applications, such as Skype. These approaches commonly use static cameras and do not offer
the remote conversation partner an independent point of view into the environment [151]. Since
a static viewpoint limits the feeling of presence [106, 180], telepresence research using mobile
devices has focused on view control. For example, on-the-fly panorama stitching allows remote
users to freely rotate their view in an otherwise static environment [43, 106, 180]. Other work has
considered robotic camera control. For example, Kratz et al. [82] introduced a robotic arm for
letting the remote user control the position and orientation of the remote camera.

Obviously, a full 3D representation of the environment overcomes most of the issues concern-
ing view independence. A common shortcut is to expect that the environment is scanned before
the actual collaboration begins. Since this defeats the goal of spontaneous remote assistance in the
field, we limit the following discussion to approaches that generate reconstructions spontaneously
when required.

Kasahara et al. [76] presented an approach that creates a sparse 3D model on the fly by render-
ing spatially aligned keyframes from a simultaneous localization and mapping (SLAM) system.
Sparse SLAM maps have also been converted into textured polygonal meshes [44, 145], yet, of
general low visual quality. With advancements in depth cameras, casual scanning [39, 129] is now
much more feasible than even a few years ago. However, real-time scanning with high geometric
and photometric fidelity still requires better sensors and more computational power than typically
available on a mobile device. Moreover, the quality of geometric reconstruction is often severely
degraded for texture-less, shiny, thin or transparent objects even when high-quality scanning sys-
tems are employed, which is a major gap addressed later in this work.
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2.2 Authoring Mixed Reality Tutorials

Documentations can exhibit a large variety of graphical elements, but they usually follow estab-
lished conventions. In the course of research for this work, we identified the most frequent ele-
ments – in the following called diagrams – appearing in books [98], online databases of popular
products12 and scientific publications [4, 55, 88].

A number of different strategies have been proposed to author Augmented Reality manuals.
The two most common methods define behavior either directly by using commercially available
3D animation and modeling software, such as Maya 3 or 3DStudio MAX4, or by scripting all
actions and transitions between actions using specialized script languages [24, 85]. In both ap-
proaches, the user must define the manual from scratch. Generating computer-based tutorials
traditionally involves the creation of dynamic glyphs, i. e., graphical elements, to present the path
and direction of motions [110].

In AR, arrows are commonly used for this purpose. For instance, Barakonyi et al. [12] use an-
imated arrows to convey actions in an assembly application. However, manual animation and reg-
istration is very time and cost-intensive, research has aimed at automating the authoring process.
The automatic generation of AR instructions goes back to the pioneering work on KARMA [41],
which uses rules to derive graphical representations, as proposed by Seligman and Feiner [142].
However, KARMA requires a manually created knowledge database to derive instructions from.

Script languages, drawing from similar inspiration, have been proposed by multiple authors,
such as Butz [24] or Ledermann et al. [85]. However, authoring by scripting always requires both
a formal knowledge about the procedure and programming skills.

Therefore, systems that require less user input have drawn attention. Agrawala et al. [4], Li et
al. [88], Kalkofen et al. [74] and Kerbl et al. [77] showed the automatic generation of disassembly
instructions for rigid objects. Mohr et al. [104] demonstrated the automatic generation of 3D
animations from images depicting an assembly sequence. All these systems derive a sequence
of removing parts from a CAD model with straight motions. Unfortunately, these methods are
unsuitable for content that involves complex motions or deformable objects, such as for sports or
dancing.

The authoring of more complex actions has been proposed by capturing the necessary steps.
For example, Grabler et. al demonstrate the generation of photo manipulation tutorials [49] from
recorded actions in a photo-manipulation tool, and Chi et. al mixed 2D images and video material
to generate tutorials [29]. The works in this thesis follow the idea of recording and replaying
actions and lift it to 3D AR environments.

1http://service.lego.com/en-us/buildinginstructions
2http://www.ikea.com/ms/en_US/customer_service/

assembly_instructions.html
3www.autodesk.com/maya
4http://www.autodesk.com/products/3ds-max/overview
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AR tutorials that involve complex motions typically rely on some sort of specialized 3D motion
capture. Examples include assembling furniture [182], assembling Lego toy sets [50] or gestural
commands [172]. While 3D motion capture is the obvious way of providing input, these systems
handle rather simple motions. For complex motions, the process can be tedious and requires
expensive capturing hardware (e. g., Vicon or Optitrack). More recent approaches make use of
deep learning methods to estimate human skeletal poses from single or multiple 2D camera inputs,
such as OpenPose [26]. The limitations of these approaches manifest themselves usually when
confronted with atypical poses or occlusions. Most of them also do not work on partially visible
human shapes.

The very recent work from Chi et al. [30] captures complex motions from which the system
generates illustrative step-by-step diagrams. While the generated drawings are optimized for ef-
fective communication, the system presents the results in 2D, rather than registered in 3D AR.
Similarly, AR instruction systems often make use of the idea of a 2D mirror to show the in-
structions. Examples include AR instructions for physiotherapy [156] and dance [8] applications.
While this concept has been demonstrated to be effective, it is limited to body-centric instructions.

An alternative approach is to build AR manuals from recorded videos. Several works [35, 48,
84, 118] forgo the use of 3D capturing and, instead, overlay recorded 2D video directly in the
AR display. This allows to author complicated manuals without additional knowledge about any
programming language or animation tool. Using 2D video has the advantage that the richness of
the original demonstration is preserved without requiring any spatial or semantic interpretation.
However, an AR experience playing back registered 2D video does not allow a truly free choice
of viewpoint, and the video occupies substantial screen space. Furthermore, if the video is viewed
from a different point of view than the one it was recorded from, it has to be warped to the new
point of view, which is prone to rendering artifacts. These limitations severely restrict the practical
value of this approach. In contrast, the system of Damen et al. [35] provides the video tutorial using
a heads-up display which allows clearly seeing all objects. However, no direct augmentation is
given why the user has to mentally match landmarks between real objects and video data.

One of the approaches discussed in this thesis is inspired by the work of Li et al. [89], who
generate an animated 2D explosion diagram from a single image. Their system requires the user to
manually define all parts and all animations in the diagram. However, this is clearly not practical
for more complex structures or multiple images in a sequence.

Recently, Shao et al. [143] presented a system that derives simple animations from interpret-
ing 2D sketches. This reduces the effort required to generate animations between two images.
However, this approach only works for simple structures. Since the user has to generate proxy
geometry for every single part of the object, this system can handle only objects which consist of
a small number of parts. Furthermore, the user has to re-create the 3D model for every image.
Therefore, this approach does not scale easily to image sequences and large product databases.
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Figure 2.4: Authoring instructions for mixed reality. (a) Explosion Diagram in Augmented Reality.
Kalkofen et al. [74] displace real-world information using a phantom rendering method. The connecting
lines help the user to understand spatial object placement as well as a hierarchical grouping. Figure adapted
from [74]. (b) Augmented reality instructions automatically generated from 2D printed manuals. (c) The
rotation of the coffee machine’s door and the removal of the brewing unit are automatically generated to
match an illustration in the printed manual [104].

Bergig et al. [16] present a system that is able to automatically generate 3D reconstructions
of simple 2D sketches. Even though this system does not require any interaction to derive 3D ge-
ometry, it is limited by the capabilities of the sketch reconstruction approach. Their approach can
handle only a few simple shapes. In contrast, our work aims at the transfer of 2D documentation
of complex structures, which may even be presented in multiple different configurations.

In some cases, it is required to extract an animated 3D representation of the scene from the
video data. High-quality approaches exist [32]. However, they require expensive capturing hard-
ware in specially prepared environments. Scene modeling for interactive AR is commonly done
by the registration of phantom models, i. e., a 3D model that represents an object in the scene [73].
Depending on the required accuracy, 3D models may either be carefully prepared offline or inter-
actively generated at run-time [28, 152, 164, 183].

In this thesis, we present an approach to author instructions including human motion, which is
also related to computer animation research, which extracts 2D motion from video data and uses
it for illustration [33, 78]. However, in contrast to these works, we will interpret all motion in
3D. The generation of 3D motion capture data from video sequences has been a topic of research
in computer vision [103]. Most purely vision-based approaches provide solutions for specifically
learned motions [3], such as walking or running. Few approaches, such as the work by Wei and
Chai [169], are able to capture 3D skeletal motion from monocular video data. However, the hu-
man motion data is returned without any relation to the real world. Our work extends the one
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of Wei by a new interaction technique to resolve the ambiguity of human poses by supporting
arbitrary motion, and by registering the resulting data to 3D objects within the user’s 3D environ-
ment. The system described in this thesis is an immersive learning environment in VR which is,
as concluded by He et al. [54] favorable to a traditional 2D experience.

2.3 Visualization and Interaction

Animation

Tutorials often make use of animated or video instructions that allow users to follow instructions
while working on a task. These animations are usually segmented into distinct steps so that users
can work along at their own pace [48, 50].

The benefits of using animated instructions can be explained by the cognitive load theory
(CLT) that considers the influence of instructional design and the cognitive architecture on infor-
mation processing [150]. CLT states that information processing depends on the intrinsic nature
of the material that must be comprehended (intrinsic cognitive load) and the presentation of the
material itself (extraneous cognitive load). Both intrinsic and extraneous cognitive load strain the
limited working memory [101] of observers, which can prevent the understanding of instructions.

Intrinsic cognitive load cannot be reduced. Therefore, one goal of instruction design is to
reduce extraneous cognitive load by providing appropriate presentation formats for the information
material. A meta-review of Höffler and Leutner [62] revealed that instructions using animations
and videos outperformed the use of static images. The effect was stronger for instructions related
to the acquisition of procedural-motor skills such as assembly tasks.

Findings of Ayers et al. [9] and Wong et al. [176] enforce this further. Their results indi-
cated that animations are especially suited for instructions that require observers to follow human
movement. While Höffler and Leutner [62] refer to the benefits of using continuous animations,
animations have been found to be more effective and reduce extraneous cognitive load when pre-
sented in logical segments [17, 147], and when the viewpoints of the instruction and the viewer
are aligned [42].

The design of effective assembly instructions has been investigated by Heiser et al. [55]. Their
results have been successfully applied to create algorithms to automatically create step-by-step
instructions [4]. Heiser et al. [55] identified action diagrams depicting step-by-step assembly in-
structions as preferred representation. An action diagram shows the attachment of a single major
part to an assembly, including the required smaller parts, such as fasteners. Furthermore, occlu-
sions should be avoided, which may require viewpoint changes in the instructional visualization.
Results of Heiser et al. [55] also indicated, that for the initial orientation of users, a realistic depic-
tion of the assembly instructions would be beneficial. This is in line with the findings of Höffler
and Leutner [62] that more realistic instructional animations were more effective than CAD-style
animations.
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Another problem with showing instructions in an immersive VR environment is the require-
ment of a hands-free control. This requires the instruction to be synchronized temporally and
spatially with the user. [6] Alexis et al. align the movements of a dancer temporally and spatially
in three dimensions using a quaternionic approach to identify resemblances by comparing the mo-
tion signal shape. This only works if the user is required to have the same pace as the instructor,
as it is in dancing.

Rendering and perspective

Salamin et al. [134] show in an augmented reality experiment that a third-person perspective is
preferable for displacement and interactions with moving objects to most users. The advantage
of the first-person perspective mainly lies within the faster adaption time and object manipulation
close to the user. User perspective rendering (UPR) approaches have been primarily investigated
for video see-through handheld Augmented Reality systems such as smartphones or tablets.

Baricevic et al. evaluated the effects of display size on UPR and found that, using a simulation,
a tablet-sized display allows for significantly faster performance of a selection task compared to
a handheld display and that UPR outperformed DPR for a selection task[Baričević et al.]. They
also prototyped a UPR system with geometric reconstruction using a Kinect for the reconstruction
of the physical surrounding and a Wiimote for head tracking. In follow up works, they proposed
to replace an active depth sensor by gradient-domain image-based rendering method combined
with semi-dense stereo matching [13, 14]. Other authors also employ depth-sensors for scene
reconstruction in UPR [163].

Tomioka et al. and Hill et al. proposed an UPR implementation through transforming the back-
facing camera image using homography [57, 161]. Samini et al. investigated UPR when using an
external outside-in tracking system for spatial registration and proposed a geometric correction
scheme for introduced registration errors [135].

Pucihar et al. investigated fixed point of view UPR (FUPR) versus DPR in a target acquisition
task with and without scene continuity across device boundaries [166]. Specifically, they assume
that the user’s face is in a fixed and predetermined position while interacting with the system They
found that most users who never experienced handheld AR before actually expected UPR as the
default mode of presentation. The study also indicated that UPR outperformed DPR in terms of
accuracy, task completion time, subjective workload and preference. They later extended their
investigations to specifically study the use of surrounding visual context in a map navigation task
[167] and to sketching applications [125]. Pucihar et al. also proposed a specific variation of UPR,
called contact-view, which allows pseudo transparent rendering of documents when a smartphone
lies directly on the document [123, 124], achieving similar effects compared to proprietary solu-
tions using transparent displays [59, 60].
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Figure 2.5: Light field capture guidance and rendering. (a) Active user guidance for light field capture
using smartphones [18]. The visualizations in the bottom illustration show the capturing path over time.
(b) Unstructured light fields [36]. The illustration shows the poses of all captured images for this single
light field using a common handheld camera. (c) The resulting rendering of the light field using the images
captured in (b). Figures adapted from [18, 36].

Grubert et al. employed UPR on mobile devices by combining head tracking using the built-in
front-facing RGB camera for head tracking and natural feature-based tracking of the AR device
using back-facing RGB camera [141]. Recently, Samini et al. compared UPR and DPR for a
find-and-select and a 3D object manipulation task [136]. While they found DPR to outperform
UPR in terms of task completion time for the find-and-select task, both approaches where on par
for an object manipulation task, and UPR was preferred by users.

The approach discussed in this thesis is specifically targeting mobile devices which offer lim-
ited computational resources. Therefore, we have positioned our system between fully dynamic,
but resource-intensive UPR approaches relying on constant face tracking and the fixed point of
view UPR approach (FUPR) of Pucihar et al. which is only applicable in constrained application
scenarios, such as looking straight onto a plane parallel to the device.

Light fields: rendering and interaction

One key idea of our work is to use an unstructured light field of the remote environment instead
of a textured surface model to overcome the constraints of existing approaches. A light field
is a collection of light rays passing through space [47, 87]. Rendering a light field does not
require any geometrical approximation of the remote environment and supports a large variety of
objects and material properties. Light fields directly capture photometric appearance, enabling the
reproduction of highly detailed geometry and complex materials.
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Light fields require densely spaced images. Therefore, light field capturing has traditionally
used special setups such as camera arrays [173], microlens arrays [109] or focal stacks [117]. Since
the required hardware is often not available, single-camera acquisition in combination with user
guidance for light field capturing has been proposed as an alternative [18, 36]. Recent approaches
determine sampling requirements in real-time and provide visual feedback to guide the user to
discrete positions required for capturing a dense light field [99]. Our approach is inspired by these
methods but does not aim to capture a complete light field. Instead, to best preserve bandwidth,
we collect just enough information to enable the remote user to annotate the representation in 3D.

One specific challenge of light fields is the lack of 3D surface information, which affects the
ability to interact with light fields using traditional editing tools. Therefore, Jarabo et al. [69]
investigated WIMP interfaces for editing light fields using multi-view techniques and manual ad-
justment of the focus plane of the light field. Both techniques allow overcoming the lack of geom-
etry. However, the former is time-consuming, while the latter introduces the need for continuous
adjustment of the focal plane, which distracts from the actual editing task. More importantly, their
work also integrates 3D that can be reconstructed from light fields although in a computationally
expensive approach. Instead, our work aims for mobile devices tracked in 3D instead of 2D WIMP
interfaces. In addition, we cannot rely on depth knowledge, because it would be too expensive and
time-consuming to recover, or, even worse, might not possible at all because of the challenging
material characteristics. Instead, our approach works in the wild and on mobile devices by using
2D image information together with automatic adjustment of the focus plane.

In summary, light fields have not been utilized in mixed reality and remote assistance as their
challenges (capture and interaction) have so far out-weight their advantages (visual quality). In
this work, we introduce a system and user interface showing how to overcome these challenges.

Interaction

Support for spontaneous object selection and manipulation are fundamental requirements for most
3D interactions. Grasping virtual objects with bare hands or instrumented gloves is arguably the
most natural selection technique [20]. Glove devices may include tracking of finger motion, while
a 6DOF wrist tracker provides the position and orientation of the wrist in the scene [63]. However,
simple gloves suffer from real-virtual interpenetration issues. The user can penetrate a virtual
object, thus, breaking the immersive experience. Haptic feedback devices [19] can increase the
realism and detail of virtual grasping techniques [68, 153]. Unfortunately, current mobile systems
cannot integrate such devices, as they are usually heavy, stationary and computationally inten-
sive. Recent commercial depth sensors provide an opportunity for inexpensive hand and finger
tracking [158]. In combination with mobile projection systems, they can even provide passive
haptic feedback while interacting with real surfaces [174]. Several systems turn real surfaces into
interactive displays for mobile interactions [75, 102] including human skin [51, 138]. However,
interacting with real surfaces requires appropriating such surfaces first. Consequently, the interac-
tion is not generally applicable for mobile users.
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Figure 2.6: Interaction with AR content. (a) Grasping virtual objects with instrumented gloves. Figure
adapted from [19]. (b) ManoMotion VR glove with multiple bend sensors for each finger. The rotation of
the wrist is tracked with a gyro / accelerometer combination.

The most widely used alternative to virtual hand input is raycasting. The user controls a ray,
and selection is determined by intersecting with the closest object in the scene [165]. Raycasting
offers two distinct advantages: It enables operation over longer distances and it is flexible in
how the ray origin and direction are specified. For example, raycasting can rely on full 6DOF
control of the origin and its direction. However, implementations of raycasting with orientation-
only sensors [58] based on inertial measurement units [128], suffer from drift and require frequent
re-calibration, which interrupts the interaction.

To provide 6DOF input, gaze-based techniques and handheld controllers have been considered,
which, until recently, required stationary tracking systems. With robust outside-in tracking of
mobile HMD types, gaze-based techniques can be applied to selection [71]. However, studies
indicate that gaze-based selection techniques are slower than traditional hand-based methods [34]
and seem to limit the user’s ability to recall the environment [157]. Also in particular for phone-
driven HMDs such as Google’s Daydream, the future integration of gaze tracking is unlikely.

Finally, Microsoft’s Mixed Reality headsets provide special controllers that can be tracked us-
ing the camera that is mounted on the HMD5. While these systems provide precise 6DOF tracking,
they require a tethered connection to an external desktop or notebook computer. An even more
severe restriction is that field of view of the cameras mounted on the HMD restricts the range in
which interaction can be performed.

5https://docs.microsoft.com/en-us/windows/mixed-reality
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Very recently, also magnetic tracking solutions have been applied to mobile systems as well6.
However, magnetic systems commonly require a calibration that is specific to a single environ-
ment [80] and needed to reduce electromagnetic interference to acceptable levels. This makes
magnetic systems difficult to use in mobile applications that are required to function in unknown
environments.

Vision-based tracking has been explored before to enhance the interaction capabilities of con-
trollers, e.g., the VideoMouse to extend the degrees of freedom of a standard mouse [61] or to
interact with public displays using a phone [130]. However, these approaches still relied on sta-
tionary hardware demonstrated in a constrained environment and were often constrained such as
to only measure tilt in certain ranges.

6https://www.magicleap.com



CHAPTER 3

Authoring Augmented Reality Documentation from Images

Our system generates interactive AR presentations from 2D documentation, given as a collection
of images, and a 3D CAD model of the target object. The CAD model must be structured such
that individually movable parts of the target object can be distinguished. If no CAD model exists,
we use an RGB-D sensor (Microsoft Kinect) to obtain a 3D scan which can only be used for
annotation transfer. However, oftentimes a 3D CAD model will already be available from the
manufacturer of the target object, and the RGB-D sensor is only required for registering the CAD
model with the real-world target object.

In this section, we introduce the major types of diagrams that appear in common documen-
tations, and we outline our approach to analyze each of them. After outlining our approach we
provide details in the remaining sections of this chapter. The result of our analysis is a 3D scene
description including 3D animations representing instructions. Our results can be presented on a
desktop PC using a Virtual Reality (VR) viewer or in the user’s real-world environment through
an Augmented Reality display.

Annotated diagrams. A typical illustration is an annotated diagram, which allows identifying
parts of an object by external labels, connected with leader lines to the referred parts (Figure 3.1a).
The labels are often cross-referenced with more extensive textual descriptions.

The first step for interpreting annotations (and any other diagram considered in this thesis) is
to determine camera parameters that were used to create the image, with respect to the coordinate
systems used in the corresponding CAD model. Rendering the CAD model with the obtained
parameters allows us to determine which part of the target object is covered by a given pixel in the
image. Around the target object, we detect leader lines, identify the part of the target object from
which the leader line originates and decode the text labels attached to the leader line.

29
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Figure 3.1: Diagrams used in traditional 2D documentation. (a) Explosion diagrams are commonly used to
present the structure of an object. In addition, annotations identify parts. (b) Sequences of images are often
used to represent an action. The images show the object in key poses. Occasionally, arrows are presented
to demonstrate the necessary transformations of parts to perform the action. Images adapted from [98].

Action diagrams. Action diagrams use auxiliary diagrammatic elements to present instruc-
tions within a single image. A common form uses arrows to encode the transformations which
have to be applied to a part to perform the presented action (Figure 3.1b).

Like annotations, arrows are complementary graphical elements that cannot be derived from
a CAD model. However, their special shape allows detecting them in the image and interpreting
the intended motion and direction. The intention of the arrow can be interpreted by comparing its
pointing direction to valid displacement directions of parts nearby.

Explosion diagrams. Another popular form of technical reference is the explosion diagram,
which reveals the internal structure of an object in a single image. Explosions reposition each
part of the object along one or more explosion axes. The position of parts is determined based
on the structure of the assembly, i. e., parts are arranged on each explosion axis according to the
order in which they can be removed (Figure 3.1a). The resulting diagram avoids occlusions and
simultaneously encodes blocking relationships between the individual parts.

Detecting which parts are shown in which displaced position is an essential problem consid-
ered in this thesis. To retarget explosion diagrams, we use disassembly planning [175] to determine
the order in which parts may be removed and generate valid displacements for candidate parts. The
candidate parts are then rendered with these displacements, and the resulting image is compared
to the input image using robust image matching techniques.
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Structural diagrams Complex instructions are most commonly represented by image se-
quences, where each image represents one step of the procedure [55]. The most basic form is the
structural diagram, where each consecutive image adds, removes or reconfigures one or multiple
parts. Since each image portrays the object at a single point in time only, the procedure has to
be interpreted by comparing one image to the next and identifying their differences. Note that
structural diagrams change the structure of the object from one image to next, while explosion
diagrams offset parts to present the structure of an object.

To retarget structural diagrams, we must thus determine which parts are added, removed, trans-
lated or rotated in each consecutive image. By using motion planning, we obtain a set of candidate
configurations of the CAD model, which we can use to search for the one depicted in the dia-
gram. To reduce the search space, we can use robust image differencing to determine the area of
change. For each image pair, we use the area of change to discard motions occurring outside of
these regions.

Combined Diagrams Documentation often combines multiple types of diagrams. For exam-
ple, labels may be used in an image sequence to name the relevant parts of the presented instruc-
tion (Figure 3.1a). Also, partially exploded objects or sequences of action diagrams (Figure 3.1b)
are commonly used in image sequences to present both an action and the object configuration after
applying it to the object. Our system is able to analyze and retarget all these combinations.

3.1 Retargeting Annotated diagrams

We transfer 2D image data to 3D space by projecting a 3D model of the object of interest to 2D
image space. If this rendering of the object fits its input image, we can relate image elements
to the 3D structure. We segment all labels and their corresponding leader lines in image space.
Subsequently, we generate 3D annotations relative to the 3D model by using the relations we found
between image elements and 3D structures. This process is illustrated in Figure 3.2.

3.1.1 Estimating camera parameters

For the subsequent analysis steps, the 3D model needs to be rendered using the same camera pa-
rameters which were used to create the original input image. Since the original camera parameters
are usually unknown, we need to approximate the intrinsic and extrinsic parameters. In princi-
ple, these parameters can be found automatically using the method described in [184], however,
in practice, the automatic extraction of reliable 2D-to-3D point correspondences from a single,
highly stylized 2D image is not robust in many cases. Thus, we opted for an interactive defini-
tion of point correspondences and field of view by providing a basic user interface (UI). The UI
features a side-by-side arrangement of a 2D image viewer and a 3D object viewer, wherein the
user can select four or more points both in the input image and on the freely rotatable 3D model
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Figure 3.2: Retargeting annotations. (a) To estimate the camera pose, the user interactively defines cor-
responding points between the 3D model and the input image. (b) With the estimated camera pose, the
rendering of the 3D model fits the 2D input image. This is illustrated by adding the rendering as semi-
transparent blue layer on top of the input image. (c) Searching for MSER with an eccentricity close to
1 allows identifying leader lines. The mask defined by the rendering enables to detect their starting and
ending points. (d) Running an OCR tool around the endpoint decodes text labels (e), which allows adding
3D annotations to the 3D model.

(Figure 3.2a). The camera pose is then determined automatically using the POSIT algorithm [37],
which solves the 2D-3D point correspondences. This procedure needs to be done only once for
a set of instruction images that use the same camera parameters, which covers the majority of
examples we have analyzed.

3.1.2 Annotation detection

By computing maximally stable extremal regions (MSER) [97], we search the 2D documentation
for leader lines and labels. MSER provides an efficient means for segmenting connected compo-
nents in an image. For every connected component, we calculate its eccentricity. If the eccentricity
value is close to 1, we assume that the region contains a leader line. We then determine the end-
points of the line by fitting an ellipse to the region. Rendering the CAD model using the camera
parameters estimated in the previous step yields a mask for looking up whether a pixel is occu-
pied by the model. The pixel coincident with the endpoint inside the mask is used to look up the
annotated part and defines the 3D anchor point, where the leader line is attached to the 3D object.
The region around the other endpoint is automatically scanned with a standard optical character
recognition (OCR) tool to decode a text label.
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Figure 3.3: Retargeting action diagrams. (a) The input image with a semi-transparent overlay of the 3D
CAD model. (b) We detect the arrow and its direction in 2D image space. (c) We analyze the 3D CAD
model to find all removable parts and their directions. (d) By comparing the assembly directions to the
direction of the arrow, we reduce the set of possible part motions. The part which is closest to the shaft of
the arrow is selected. (e) The animation is defined by the path which was derived during motion planning.

3.2 Retargeting Action diagrams

Action diagrams encode instructions within a single image, mostly by using arrows. Therefore, to
retarget action diagrams, we need to identify and interpret arrows and the parts of the target object
they are referring to. In most of the cases, the arrows are superimposed on a photograph of the
object using a regular 2D illustration software, thus we cannot estimate a 3D position for the arrow
similar to the approach described in Section 3.1.1. Our method combines 2D image processing
to find direction and 2D position of the arrows and 3D motion planning to find possible reference
objects as well as 3D trajectories.

We start by detecting and analyzing each arrow in 2D space (Figure 3.3b). Subsequently, we
use motion planning to identify the set of geometrically feasible motions of each part (Figure 3.3c).
We then identify a set of parts the arrow might refer to by selecting those which can be moved
similarly to the motion encoded in the arrow. To present the action in 3D, we animate the selected
part using the corresponding movement, as suggested by the motion planner (Figure 3.3e).

3.2.1 Motion planning

We assume that input images show only geometrically feasible configurations, which have been
generated by moving parts without penetrating other parts of the object. To find such valid motions
for each part in the CAD model, we need to test whether or not a motion causes collisions.
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Figure 3.4: Retargeting explosion diagrams. (a) The 2D input image and the object rendered semi-
transparently using the estimated camera parameters. The motion planner generates candidate places for
the lid (red part) first. (b) Our matching compares renderings of the lid within its bounding rectangle Ū at
geometrically possible locations V̄ . The orientation of the local gradient, as used during image matching,
has been color-coded from red (horizontal) to green (vertical). The chamfer distance between V̄i and Ūi
has been plotted in the line chart. The red star in the line chart highlights the minimal chamfer distance
Ū22→ V̄22. (c) The lid is placed corresponding to the analysis.

Using Minkowski differences of polyhedra [94], we detect for a given direction of motion
how far each part can be displaced. By default, we test for the principal axes in local and global
coordinates of the part.

3.2.2 Arrow interpretation

In order to identify an arrow, we begin by computing MSER regions outside the target object.
Among all candidates with connected components, we select the ones with exactly two concavities
along the boundary, and we determine the main axis by ellipse fitting (Figure 3.3b). The tip of the
arrow is the extremal point on this axis closer to the concavities. To identify candidate actions,
we search for parts that could be removed in the direction indicated by the arrow. Therefore,
we project the motion vectors that have been computed during motion planning to image space
using the camera parameters we have estimated before (Figure 3.3c). We compare the projected
directions to the direction of the arrow. We select part motions as candidates if the angle between
their projected motion vector and the arrow vector is below a given threshold. If there is more than
one candidate, the part which is overlapping with or which is closest to the shaft of the arrow is
chosen (Figure 3.3d).
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3.3 Retargeting Explosion diagrams

In order to retarget explosion diagrams, we need to find a sequence of unblocked motions of
parts such that the resulting 3D scene setup visually matches the input 2D explosion diagram. The
problem of detecting such sequences has been considered in assembly planning [4, 46, 175]. Thus,
we incorporate our motion planning system into a sequencing approach similar to Srinivasan et al.
[148]. This generates a set of feasible candidate explosions in 3D space. We find the candidate
that matches the input image best by comparing it with the rendered images of each candidate
setup (Figure 3.4).

By using only motions that we identified as geometrically feasible, we generate candidate
displacements of each part in discrete locations. The CAD model is rendered to a texture with
its parts displaced according to feasible motions. The resulting image U is compared to the input
image V using a variation of directional chamfer matching (DCM), as given in Equation 3.1 [92].
To emphasize the relevant edge features of the CAD model for DCM, we assign a random color
to each part and add contour lines to the scene before rendering. We then apply a Canny edge
detector [25] and store the normalized vector of the locally detected 2D gradient in Û(u) and
V̂ (v), respectively. Our notation employs the zero norm || · ||0 to count the non-zero pixel values in
an image. With a small constant ε , we obtain a continuous distance function dDCM for comparing
images U and V :

dDCM(U,V ) =
1
||Û ||0

∑
ui∈U

min
vj∈V

|vj−ui|
|(Û(ui) ·V̂ (vj))|+ ε

(3.1)

Once we find the correct sequence, we are able to generate animations by consecutively apply-
ing the motions that were identified by our candidate evaluation algorithm. The example shown in
Figure 3.5 shows output keyframes of a generated 2D animation for collapsing the input explosion
diagram. Since we use the rendered 3D model of the object, all occlusions are calculated correctly
without further user intervention.

3.3.1 Reducing the size of the test area

Calculating the DCM over the entire image for each candidate explosion is computationally de-
manding. However, if a part is visible in the explosion diagram, we search specifically for this part
at valid candidate locations. We generate a new image template Ū ⊂U for each candidate motion
by projecting the displaced 3D part into 2D image space and calculating its bounding rectangle.
The search space in V is restricted to the matching bounding coordinates V̄ ⊂ V . We refer to the
procedure of finding the place of the template Ū in V as local template fitting (see Figure 3.4(b)).
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Figure 3.5: Retargeting explosion diagrams. To replicate the entire 2D explosion diagram, we search for the
optimal placement of each part. We generate animations by consecutively applying the motions that were
identified by our candidate evaluation algorithm. This example shows output keyframes of a generated 2D
animation for collapsing the input explosion diagram. Note that occlusions are correctly resolved with the
3D model.

3.3.2 Reducing the number of tests

While restricting the image matching to the bounding rectangles of displaced parts helps to in-
crease system performance, the number of possible combinations of part displacement easily be-
comes very large. Even with the restriction to geometrically feasible motions, the search space
grows quickly with the number of parts and candidate displacements. Thus, we accelerate the sys-
tem with a greedy search approach. Instead of generating all possible configurations in advance,
we combine candidate generation and evaluation to progressively find the best fit for a given in-
put image. In each iteration, each movable part is offset according to its geometrically feasible
candidate motions without modifying the others.

The displacement that produced the smallest local distance value according to dDCM(Ū ,V̄ )

is applied to the corresponding part. The search continues as long as at least one tested part
displacement yields a distance that is significantly smaller than the currently stored minimum.
If multiple choices are available, the motion that introduces the largest improvement is chosen
and applied. If no such motion exists, the algorithm terminates. Note that exploding a part may
unblock others, which results in additional feasible motions of the formerly blocked parts. Thus,
the blocking information of the remaining parts needs to be continuously updated.



3.4. Retargeting Structural diagrams 37

3.4 Retargeting Structural diagrams

Structural diagrams appear in 2D documentations as sequences of at least two images. Every two
consecutive input images differ with regard to changes in the configuration that are applied to one
or multiple parts. Given a pair of input images, we can restrict candidate motions to those which
fall in the image region where visual changes are observed. This allows us to reject candidate
motion based on where parts have been moved, rather than on their matching score with the target
image. Early rejection of candidate motion based on the region of change is essential to increase
system performance. Therefore, we must ensure the reliable identification of these regions.

3.4.1 Difference images

In order to evaluate the relevance of a candidate motion with regard to the visible region of change,
we need to compute the difference image diff(U1,U2) of the rendering of the object before and
after applying the candidate motion, and the difference between the two consecutive input images,
diff(V1,V2). Computing the percentage of overlap of the two regions (Equation 3.2) allows us
to discard motions that are not related to the observed differences in the input images, i.e., where
the coverage falls below a given threshold.

coverage =
||diff(V1,V2)∩diff(U1,U2)||0

||diff(V1,V2)||0
(3.2)

We generate diff(U1,U2) by rendering all parts in the object except for the current candi-
date to the depth buffer in the first pass. In a second pass, we enable the color buffer and render
the part before and after applying candidate motion. The resulting pixels in the color buffer cor-
respond to the region of change diff(U1,U2) (Figure 3.6b). The method used for obtaining
diff(V1,V2) differs based on the type of input images. Difference images from input data with
clear, distinct colors, such as LEGO assembly manuals, can be directly computed by subtraction
and thresholding. However, a reasonable amount of assembly instructions are simple black-and-
white closed-line drawings, as known from do-it-yourself furniture 1. For such line drawings, we
apply a silhouette check to identify the background area in both images and reject motions that
exhibit low foreground coverage. A flood-fill from the four image corners (which are assumed
to be empty) creates enhanced versions of the input images, where background and foreground
pixels have a unique color. By conjoining the foreground regions of V1 and V2, we receive a gen-
erous enclosure for the area of visible change. Change detection in photographic material is most
challenging. Simple image differencing is defeated by lighting, reflection, shadows and surface
texture. For robust determination of the region of change, we employ SIFT flow [91], which
densely relates pixels from the source image to the most similar pixel in the destination image.

1www.ikea.com
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Figure 3.6: Retargeting structural diagrams. (a) Input images. (b) We generate a difference image, which
reveals changes between the images. Our system creates a set candidate configurations by moving and
rotating all parts of the machine which are identified by the difference image. (d) From all candidate
configurations, the one which fits the target image best is selected. The motion which had to be applied to
transform the object in the selected configuration is used to create the 3D animation. In this case, a rotation
is generated to open the service door, and the brewing unit is removed.

3.4.2 Global bi-directional chamfer distance matching

Local template fitting works well for detecting detached and isolated parts, as they appear in ex-
plosion diagrams. However, this approach performs poorly when trying to verify subtle structural
changes, which include reconfiguring, removing or attaching parts. The possibility to compare
between images in a sequence obviates the necessity to depict each action individually. Involved
parts may be partially obscured or simply disappear from one image to the next, thus making local
fitting inapplicable. Consequently, a more thorough analysis of the entire image domain is re-
quired. For a full analysis and comparison of two images U and V , we compute the DCM over the
entire image area in both directions U → V and V →U . We refer to this global image matching
of U and V as the bi-directional chamfer distance (BCM):

dBCM(U,V ) = dDCM(U,V )+dDCM(V,U) (3.3)
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Finding a candidate rendering U that minimizes dBCM(U,V ) ensures a strong visual similar-
ity between U and target image V . For a scene with n parts and up to c feasible configurations
per part, evaluating all possible setups requires O(cn) comparisons. Since this quickly becomes
infeasible even for moderately complex objects, we use the greedy algorithm mentioned before to
progressively select the best structural improvement based on individual part motions. However,
greedy global matching may at early stages favor part configurations that approximately resemble
multiple unmatched parts in the target image. To suppress this effect, we put an additional empha-
sis on local consistency to penalize discrepancies in the sub-image regions Ū and V̄ enclosing the
projection of the currently tested part. Thus, the distance function uses a weighted bidirectional
chamfer matching (WBC):

dWBC(U,V ) = dBCM(U,V )︸ ︷︷ ︸
global matching

+λ dDCM(Ū ,V̄ )︸ ︷︷ ︸
local fitting

(3.4)

The additional weighting of local consistency for Ū and V̄ is controlled by the parameter λ . In
practice, we found that choosing λ ≈ 0.25 yields satisfactory results for all examined sequences.

3.4.3 Candidate generation

Similar to explosion diagrams, we generate candidate configurations by iteratively moving and
testing parts based on geometrically feasible motions. In addition, we allow moving parts outside
the visible area in order to handle instructions which require to append or to remove parts. The
instructions shown in Figure 3.6 present multiple consecutive actions. To access the brewing
unit from the coffee machine, the hatch has to be opened before the unit can be removed. Since
we iteratively change candidate configurations, our system succeeds in correctly recreating the
depicted motions. This example demonstrates that our algorithm is robust to hidden or incomplete
input data. Although the brewing unit is completely obscured by the closed hatch, its removal was
successfully detected by our system (Figure 3.6).

Since structural diagrams may also encode actions requiring to rotate a part, we additionally
generate candidates that involve part rotations. Candidate rotation axes are generated by combin-
ing principal axes with the origin of either the local coordinate system or the center of gravity of
a part. The testing of rotations starts with the part in its default configuration, and proceeds by
increasing the angle of rotation in discreet steps. Testing rotations around an axis terminates after
reaching 360◦ or if a collision with another part occurs. For example, to analyze the input images
in Figure 3.6, our system generates and evaluates candidate configurations by rotating the service
door of the coffee machine around its hinge.
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Figure 3.7: Retargeting combined diagrams. (a) Two input images illustrate multiple assembly steps. (b)
We derive a difference image from the inputs, which indicates where changes occurred. (c) Our analysis
yields a set of motions and corresponding parts, in this example indicated by red arrows. The key frames
show the animation generated from the computed motions. c©2014 The LEGO Group, used with permis-
sion.

3.5 Retargeting combined diagrams

Traditional 2D documentation often consists of diagrams that combine aspects of annotated, struc-
tural, explosion and action diagrams. A typical example is to use annotations in any of the other
diagrams (Figure 3.1a). Another very common combination is to show one or multiple parts in
displaced positions (explosion diagram), before showing their final position on the object in the
next image of a sequence (structural diagram).

Displaced parts may further be highlighted with diagrammatic elements such as arrows or
leader lines. Consider the example in Figure 3.7a, which shows two images in a sequence of a
LEGO assembly manual. Instructions to add bricks are given by showing the brick and leader
line connecting the brick to the intended location on the object (as used in action diagrams). In
addition, some bricks just appear in the second image.
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Figure 3.8: Various examples. c©IKEA Chair Herman and Table Lack, used with permission. LEGO Boat,
c©2014 The LEGO Group, used with permission.

The system we present is able to handle all kinds of combinations. Interpreting the mixed
sequence displayed in Figure 3.7a can be achieved by employing the approach that is used for
analyzing structural diagrams. Since WBC considers both global and local features, it is applicable
to partial explosions as well. The additional visual information that is conveyed by arrows in
sequences can be processed by the established methods for arrow diagrams and may be used to
complement candidate selection.

However, we found that for all assessed sequences, our algorithm for retargeting structural dia-
grams was able to reproduce the portrayed instructions without interpreting the arrows. Moreover,
since we approximate any displayed object configurations by accumulating several part motions,
our system is able to retarget image pairs that convey multiple instructions at once. This includes
manipulations of multiple parts between two images as well as multiple consecutive actions. For
example, Figure 3.7a shows two images taken from a LEGO instruction which adds six bricks from
one image to the next. Since our system correctly identifies the configurations in both images it is
able to generate the correct motion to animation.

Our approach for generating 3D annotations is independent of other elements present in the
diagram. Therefore, we can handle annotations, which appear in any of the other diagrams. Only
the current configuration of the parts depicted in the image is required to render a mask that
matches the input image. Since DCM is robust against image noise and smaller artifacts, additional
graphical elements do not influence the candidate matching. Figure 1.1 shows an example of an
annotated explosion diagram, which we successfully analyzed before retargeting to AR.
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Testcase #Parts #Images Runtime

Valve (Fig. 1.1) 4 3 8s
Coffee Machine (Fig. 3.2) 6 4 9s
Mixer (Fig. 3.5) 6 ∗1 45s
LEGO Boat (Fig. 3.8) 18 8 1m 27s
LEGO Landspeeder (Fig. 3.7) 39 14 4m 10s
IKEA Chair Herman (Fig. 3.8) 10 8 5m 58s
IKEA Table Lack (Fig. 3.8) 42 5 16m 29s
LEGO Tower 42 7 2m 21s
LEGO House 88 13 10m 25s
∗ Explosion diagram, single image only

Table 3.1: Assessed test cases. We list the number of parts involved, as well as the length of the input
documentation material and runtimes for retargeting.

3.6 Performance Image Retargeting

To evaluate the performance of our system, we choose a set of objects, which have been illustrated
in different styles. The results are listed in Table 3.1. The table shows the number of parts the
object consist of (#Parts), the number of images in the sequence (#Images) and the time used to
retarget the input data to a 3D diagram (Runtime). The runtimes were recorded on a personal
computer with an i7-4771 CPU @ 3.50 Ghz, 16 GB RAM and an NVidia GeForce GTX 780 Ti
with 3 GB graphics memory. Input diagrams and resulting animations for test cases that are not
shown elsewhere are depicted in Figure 3.8 and in the supplementary video.

Although the LEGO Landspeeder and the IKEA Table Lack have a similar part count, the
manual of the latter takes significantly longer to retarget. This results from the different illustration
styles used and the number of parts involved in each step of the manuals. Photos and renderings
allow us to apply image differencing to obtain tight areas of change for early rejection of unrelated
candidate motions. However, this is not possible for line drawings. Furthermore, the manual of the
IKEA Table depicts a larger number of instructions in each individual diagram. This is possible
because many parts of the object have no sequential dependency (e.g., wheels and screws can be
added in parallel). Consequently, a high number of movable parts have to be considered at each
point in time. The performance of our approach thus depends strongly on the employed illustrating
style and the overall structure of the examined object.
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3.7 Limitations of Diagram Retargeting

Our current implementation has several limitations. The pose estimation is the basis for the data
extraction in our approach. Therefore, an erroneous estimation will propagate through the entire
pipeline. If the error exceeds a certain threshold, the system will fail to associate image regions
with 3D objects. In addition, invisible elements in an image cannot be extracted with our current
implementation. For example, if several screws have to be removed from an assembly within a
single step often only a few representatives are shown in an image, while others remain occluded.
Since our system can only detect visible elements it will fail to retarget such cases. A similar
problem occurs when parts are small and those barely visible in the image. We provide visual
examples for the described limitations in the accompanying video material.

3.8 Conclusion

We built and evaluated a system that is able to generate interactive 3D documentation from 2D
image data. The resulting 3D scene can be presented on a regular desktop or tablet computer
or can be displayed directly within the user’s real-world environment. Thus, our system enables
reuse of existing 2D documentation material to create 3D documentations. Therefore, we believe
that our approach will become a key enabling technology to move from traditional 2D to modern
interactive 3D documentation.

The central idea for the transfer of 2D documentation to 3D is to replicate the 2D image by
rendering a 3D model of the object of interest. This relates 2D image elements to 3D objects.
We have demonstrated how this relation can be used to interact in 2D image space in order to
control the corresponding 3D visualization. Thus, we believe that applications of our system will
not substitute 2D documentation entirely. Instead, they will combine 2D and 3D data to provide
the user with best of both presentation and interaction spaces.

While our system is able to handle images present in existing 2D documentation, it is not lim-
ited to documentation material. Our system can generate 3D animations from any image or photo
sequence which shows an object in different configurations. Therefore, our system furthermore
provides a new tool to control 3D animations by images.





CHAPTER 4

Authoring Augmented Reality Documentation from Videos

Videos provide a rich information source, why we have designed a system to let a user quickly
extract the relevant information from a source video, and compose an AR tutorial that operates
in the environment of the user. Note that the author of the video may not know in advance about
the exact objects in the end user’s environment and their configuration. For example, a tutorial
video may show one coffee pot, while the target scenario may have a differently shaped pot and
three cups. Our system is designed to flexibly deal with such ambiguities while requiring only the
minimal input from the author. Overall, we author AR application from videos in two successive
steps:
Motion extraction (Figure 4.1, left). The author loads the input videos, selects an object type and
provides enough geometric annotations to track the object in the input video.
Motion editing (Figure 4.1, right). The extracted motions are attached to any object or object type
in the AR environment. The motions are segmented, and multiple sources can be combined into
new tutorial sequences.

4.1 Motion extraction

Tracking the 3D motion of objects from a monocular video is a standard task in AR, assuming
that a tracking model of the object is available. For objects with enough surface texture, a popular
approach is to match SIFT features [93] extracted from the live video with a feature point cloud
representing the tracking model. The 3D positions associated with matched features are forwarded
to pose estimation using a variant of the Perspective-n-Points (PnP) algorithm, such as the one of
Lepetit et al. [86]. This pose estimation requires the internal camera parameters to be calibrated
in a preparation step. After successful initialization, pose estimation in subsequent frames can be
made faster and more robust by incremental tracking [96].

45
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Figure 4.1: (a) 3D object motion is extracted by tracking known model features in the video and relating
them to corresponding points on a 3D model. (b) The 3D model is created at runtime by deforming a similar
3D model. (c) The motion is retargeted in the AR scene by registering it to an object like the teapot. (d) The
motion is, instead, registered to the cup. Motion instructions are overlaid as soon as a real cup is detected.

Extracting the 3D motion from unknown videos is more difficult. Not only is no tracking
model available, but the internal camera parameters are unavailable, as well. We cannot assume
that the input video is suitable for recovering a tracking model using structure from motion [53],
since objects may lack texture features, visibility may be limited due to restricted camera motion,
and occlusions, such as from the tutor’s hands, may be significant. Instead of using structure
from motion, we provide interactive tools that make it easy to specify a tracking model with
simple annotations as part of the authoring process. By selecting among several model types, the
tutorial author specifies not only the tracking model but also the semantics of the motion, which is
beneficial in the following steps.

4.1.1 Extracting rigid object motion

Rigid objects, such as tools, workpieces, or furniture, are well suited for monocular tracking. The
simplest cases are (roughly) planar objects, such as table surfaces or electronic circuit boards.
We let the user specify the corners of a rectangular area with known dimensions in the first video
frame, and incrementally track distinctive features inside the rectangular area throughout the video
sequence. The location of the distinctive features in the plane can be estimated directly during the
extraction from the image. A minimum of four points is sufficient to estimate a pose from a
homography.
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Non-planar rigid objects require building a feature point cloud as a tracking model. Since
we cannot use structure from motion for most source videos, we must give the user an alternative
method to specify the feature geometry. Our method utilizes the fact that a user wishing to replicate
a tutorial in AR must have access to the same types of objects as used in the video. While actual
shape and appearance may differ between the object in the video and the one available to the user,
the overall topological and geometric characteristics will be similar.

We can use the object available to the user as a template for building the tracking model for the
object in the video. First, the user must create a 3D reconstruction of the object. This is relatively
straight forward using consumer depth sensors [108] or even mobile phone cameras [113]. Al-
ternatively, the user may search for a sufficiently similar 3D model in Internet databases, such as
Sketchup 3D Warehouse. The template model must be deformed to match the object in the source
video.

The user controls the deformation based on the silhouette of the target object in the video.
After selecting a video keyframe, the user roughly aligns the template model with the target object.
Vertices on the template’s silhouette are moved to corresponding points on the target object’s
silhouette. The target’s silhouette is selected using GrabCut [131], initialized by the footprint
of the template placed by the user. If necessary, the user can fill in missing silhouette edges by
drawing over the occluding elements.

The user’s task is to coarsely deform the template to make it similar to the target. If the
template has roughly the same shape as the target, it can be automatically deformed to precisely
match the target. For this purpose, we let the user specify simple free-form deformations using
skin-and-bone controllers. The user places bones in the template object and corresponding bones
in the keyframes showing the target object, and the template is transformed interactively using
linear skin blending. After the skin deformation, we search for the nearest target silhouette point
for each template vertex and let the vertex snap to this location. Finally, the local rigidity energy
of the mesh is minimized [146]. An example deformation is shown in Figure 4.2;

4.1.2 Extracting motion with surface contact

Video tutorials often show close-up views of tools during surface manipulation and use a variety
of different tools. Annotating such videos to extract the motion would be tedious. Fortunately, in
many situations, only the position of the tool-tip relative to the workpiece is required. We extract
such actions by tracking the tool-tip in image space by relying on appearance only. The workpiece
on which the tool is applied is tracked in 3D, and the 2D trajectory of the tool-tip is converted to
a 3D trajectory by perspective projection from the known camera position (see the illustration in
Figure 4.3).

Even for known surfaces, tracking only the tool-tip is difficult from monocular video without
exact knowledge of the tool’s appearance in the video. Consequently, conventional approaches
using feature detection do not yield robust results. We overcome this problem by applying a
tracking-learning-detection approach [107], which identifies robust features by updating a learned
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Figure 4.2: To extract object motion, we need to provide the system with a 3D model of the target object.
(a) We model the object by deforming a template mesh, which we rig in 3D. (b) The user interactively
specifies the 2D projections of bones. (c) This allows transforming the template to coarse resemble the
target and to subsequently relate vertices on the template’s silhouette to the target’s silhouette. (d) The
deformed template can be used for camera pose detection of the target.

classifier while tracking an initial user selection. In order to track a tool, the user identifies the tool-
tip by selecting a rectangular patch in the first video frame (marked red in Figure 4.3). This area
is used to initialize the classifier, which is improved in subsequent frames. As propose by Kalal et
al. [72], we use an ensemble classifier for detection and P-N learning to update the tracking model.

We project the position of the tool-tip to the workpiece’s surface by mapping the tool-tip’s
trajectory to a texture atlas generated by unwrapping the 3D mesh representing the workpiece.
The texture coordinates in the atlas can be looked up directly in image space from a G-buffer
which contains rendered texture coordinates. Given the size of each triangle in object space, we
calculate the affine transformation Ma between each model triangle Tv and the corresponding
triangle in texture space Tu, where [xv

i ,y
v
i ]

T = Ma · [xu
i ,y

u
i ,1]

T, i ∈ {0,1,2}.

In order to extract motion with surface contact, we first extract the 3D motion of the surface
by tracking the corresponding 3D object. Subsequently, we extract the motion of the tip of the tool
relative to the surface.
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Figure 4.3: Extracting motion with surface contact. We convert the 2D trajectory in the input video to a
3D trajectory by back-projecting the video data to a 3D model of the object of interest, in this case, a face.
From the 3D model, we furthermore create a texture atlas which we use to track and record the path of the
tool-tip.

Tracking the 3D motion of known objects from monocular videos is a standard task in AR,
assuming that a 3D model of the object and intrinsic camera parameters are available. For objects
with enough surface texture, a popular approach is to match SIFT features [93] extracted from
the live video with a 3D feature point cloud representing the object. The 3D positions associated
with matched features are forwarded to pose estimation using a variant of the Perspective-n-Points
(PnP) algorithm, such as the one of Lepetit et al. [86]. After successfully computing the pose of an
object in the first frame, pose estimation in subsequent frames can be made faster by incremental
tracking [96].

Extracting the 3D motion from arbitrary videos from, e.g., online sources is more difficult,
since the 3D model and the intrinsic camera parameters are unavailable. Therefore, we must
interactively create a 3D model and adjust internal camera parameters as part of the authoring
process.

Our system extracts 3D motion of three different types of 3D objects. In particular, we provide
tools to extract 3D motion of piecewise planar objects, rigid objects, and deformable objects with
a known shape model, such as human faces. For each of them, we provide an optimized set of
tools to create the necessary 3D model with minimal user input.
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Figure 4.4: Planar objects. (a) Example frames from the input video showing a hot air soldering tutorial.
(b) Tracking results. The green outline shows the user selection of the planar object. The selection is
automatically rectified and the contained image features are used to calculate a homography for each frame.
The red marking shows the selected tool-tip, which is tracked relative to the planar object throughout the
video, resulting in a tool path (shown in yellow).

4.1.3 Planar objects

Piecewise planar objects, such as planes or boxes, can be conveniently specified by interactively
drawing on top of the first video frame. We let the user specify the corners of a rectangular area
and its dimensions, as shown in Figure 4.4(b) Note that a minimum of four points is sufficient to
estimate a pose from a homography. However, to produce more stable results, we incrementally
track all distinctive features inside the rectangular area throughout the video sequence. The loca-
tions of the distinctive features in the plane are estimated directly during the extraction from the
image.

4.1.4 Non-planar objects

Non-planar 3D objects require a more complex 3D point cloud than a tracking model. Unfortu-
nately, for most online videos, we cannot expect to successfully perform structure from motion to
obtain 3D geometry: The internal camera parameters are unavailable and may even change when
optical zoom is used. The objects in the video may lack texture features. Visibility may be limited
due to restricted camera motion. Occlusions, such as from the author’s hands, may be significant.

Instead, our method utilizes the fact that a user wishing to replicate a tutorial in AR must
have access to the same class of objects as the ones used in the video. While actual shape and
appearance may differ between the object in the video and the one available to the user, the overall
topological and geometric characteristics will be similar. Therefore, we let the user provide a
physically available object as a template for the tracking model.
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Creating a 3D reconstruction of an existing physical object is relatively straight forward using
consumer depth sensors [108] or even mobile phone cameras [113]. If no physical template is
available, the user can instead search for a template model in an online database, such as Sketchup
3D Warehouse1. If the template model slightly differs from the tracking model, we incrementally
deform based on the approach of Kraevoy et al. [81].

4.1.5 Deformable objects

If the shape is known a priori, such as the human face, a deformable model can be tracked by
determining an update to the deformation parameters in each frame. This kind of tracking is
commonly based on specially trained models. Our system implements facial model deformation
based on a constrained local neural field [10]. Since the face tracker operates in image space, we
map the 2D facial landmarks to a 3D model of a human face (see Figure 4.3).

4.1.6 Motion Capture

To extract the path of a tool that alters the workpiece (i. e., the 3D surface), we extract the
trajectory of its tip. The user has to select the starting and ending frames of an action in order
to input information about surface contact. In-between the selected frames we assume the tool
has contact to the surface. To extract its motion, we track the position of the tool relative to
the workpiece, and we track the workpiece in 3D space as described before. This enables us to
extract 2D trajectory in image space which we subsequently convert to a 3D trajectory by using
perspective projection from the tracked camera’s point in space onto the 3D surface (Figure 4.3).
Note that we have derived the 3D pose of the object relative to the camera for every frame before.
This allows the derivation of the camera pose as the inverse of the 3D object pose transformation.

Since the tool’s tip is often very small and usually located in front of a changing background,
tracking the tip from monocular video can be difficult without the exact knowledge of the tool’s
appearance. Therefore, conventional feature detection approaches do not yield satisfying results.
We overcome this problem by applying a tracking-learning-detection approach [107], which iden-
tifies robust features by updating a learned classifier while tracking an initial user selection. In
order to track a tool, the user identifies its tip by selecting a rectangular patch in the first video
frame (marked red in Figure 4.3(right)). This area is used to initialize the classifier, which is im-
proved in subsequent frames. As proposed by Kalal et al. [72], we use an ensemble classifier for
detection and P-N learning to update the tracking model.

After extracting the path of the tool in image space, we project its position to the surface of
the workpiece. We have implemented this by recording the tool trajectory in a 2D texture atlas,
generated by unwrapping the 3D mesh of the workpiece. The texture coordinates allow us to
directly map the tool trajectory from image space to the surface.

1www.warehouse.sketchup.com
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unit:mm pencil felt-tip marker brush

tip-size (lxw) 2x0.5 4x2 7x5 24x6
stroke-width 0.5 1.2 2.2 10-14
error (avg) 0.17 0.23 0.37 4.47

Table 4.1: Tool tracking accuracy measurements.

4.1.7 Accuracy Analysis

The accuracy of the tool tracker depends on the stroke width, tip size and speed. While the tracker
follows the tip it might not follow the actual center of the stroke. The author can directly adjust
this offset during/after extraction. Table 4.1 shows tracking accuracy measurements of a variety
of drawing tools. The watercolor brush has the largest error due to its large and deformable tip,
while all other tools produced an average error of less than 0.5 mm.

4.1.8 Extracting articulated human motion

We retarget human motion by extracting skeletal poses from the source video using an incremental
skeleton tracker. In the first frame, the joints of a skeleton template are aligned with the human in
the video. In subsequent frames, joint positions are tracked using dense SIFT [90]. If the automatic
tracking fails due to occlusion or excessive motion blur, the user can interactively adjust erroneous
joints. Figure 4.5(a) shows an example of tracked joint positions. The green stars are placed by
the user in the first frame of the video and tracked incrementally.

Disambiguation After tracking the projection of joints in image space, we need to derive
the 3D skeletal pose. Even with incremental minimization of reprojection error, the skeleton has
sufficient degrees of freedom so that the problem may become under-determined using just the
image space constraints. For example, the illustration in Figure 4.5(b) shows two alternative upper
leg poses which result in the same 2D projection. Fully automatic approaches to this problem
exist for special motions, such as walking or running. However, our source videos show arbitrary
human motion, which makes it necessary to let the user disambiguate poses for certain keyframes,
followed by pose interpolation.

Wei and Chai [169] propose to let the user manipulate a stick figure for disambiguation. How-
ever, we found that this approach is too complicated for users not trained in computer animation.
Instead, we let the user select the correct pose of a keyframe from a set of renderings showing pos-
sible solutions to the ambiguity. If the solution set to choose from gets too large to be useful, we
let the user demonstrate the correct pose using a Microsoft Kinect sensor. We estimate the user’s
skeleton pose in real-time and use it to disambiguate the pose in the keyframe. Figure 4.5(c))
shows an example keyframe, the user demonstrating the 3D pose to the system and the resulting
pose applied to an avatar.
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Keyframe selection The entire sequence is searched for local maxima of the projected length
of each bone connecting two joints. Local maxima represent poses where the motion may change
its direction (see Figure 4.5(b) for an example illustration). Consequently, for each joint, only one
pose between two maxima may need disambiguation. In order to reduce the work for the user, we
greedily choose those frames as keyframes for which the largest possible number of ambiguities
is resolved simultaneously.

Figure 4.5: Generating 3D body poses from monocular 2D video. (a) We track interactively selected
joint positions in consecutive frames to compute an animated skeleton in 2D image space. (b) Since the
projection of a bone can result from two 3D poses, we interactively provide the system with the one seen
in the picture. However, we only need to provide the system with a single solution between two maxima
of the length of a bone in 2D. (c) We provide the system with the correct 3D poses by capturing the user’s
skeleton in 3D, while he is demonstrating 3D key poses. (d) Feedback is presented by posing an avatar with
the selected 3D skeleton.
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Figure 4.6: Combined motion types in a knife skills tutorial. (a) example frames from the input video. The
knife should be moved in a fluent elliptical motion. (b) Morphing of a stock knife template to the actual
knife used in the video. (c) Illustration of the combined tracking results for the knife and also the hand
skeleton.

4.1.9 Combined cases

In some tutorials, both rigid objects and articulated human motion appear simultaneously. For
example, knife skills tutorials, as shown in Figure 4.6, include 3D object motions and finger poses.
The knife was modeled using the deformation method described in section 4.1.1. The chopping
board was placed by the planar object fitting method. The hand pose was tracked after interactively
aligning a hand skeleton. Note that, in this example, the fingers are not moving. However, the 3D
position of the hand needs to be tracked. Since the knife has very few usable texture features,
we had to re-initialize feature correspondences during extraction. In total, it took approximately
4-5 minutes to retarget 15 seconds of source video material, including scene modeling and re-
initialization of the tracker when features were lost. Note that the knife provides only a few good
features to track, why most time was spent on re-initializing the tracker in this example. Both the
extracted 3D motion of the knife and the extracted 3D hand pose, are registered to the chopping
plate, where we later visualize the knife motion using a ghosting animation.

4.2 Motion editing

4.2.1 Temporal segmentation

Before composing a tutorial, we segment the extracted motions into smaller chunks to allow con-
venient navigation inspired by the work of Pongnumkul et al. [120]. A segmented tutorial with
semantic annotations (depicted actions and causal changes to objects in the environment) allows
to easily edit specific segments or compose multiple sources into one tutorial.

The initial segmentation is done automatically in a way that is similar to scene detection in
video production. Camera zoom is detected by matching features from the tracking model to
each video frame and applying a threshold on the change of the geometric relation between those
features. Cut detection relies on the simple heuristic that tracking failures correspond to cuts in
the video material. In addition, turning points, where the dominant direction of a trajectory is
inverted, are computed as candidates for segmentation (see Figure 6.5 for details).
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Figure 4.7: Temporal segmentation of motion with surface contact. (a) We segment the tutorial into a set
of actions (b) by analyzing the sum of absolute differences f (D)). We detect starting and ending frames
of segments where its derivative is 0. (c) This results in a set of actions, which we use to compute a set of
image layers in order to further edit the tutorial.

Furthermore, we segment tutorials which include motions with surface contact (see
section 4.1.2) based on the changes to the surface. We define a segment by an action in the input
video, e.g., a brushstroke painted on a canvas.



56 Chapter 4. Authoring Augmented Reality Documentation from Videos

To detect these actions, we compute the sum of absolute differences from the first frame to
each subsequent frame of those pixels in the source video that correspond to the contact surface.
A derivative of 0 over a short sequence of frames (2-4 frames at 30Hz) indicates that no changes
are applied to the surface, indicating a segment boundary.

In order to compose segments of surface manipulations, we use a video matte to add the
changes between two keyframes. Since image differencing is insufficient for semi-transparent
additions, we calculate the foreground color by intersecting vectors between foreground and back-
ground colors in RGB space [31]. The alpha value is calculated by α = |B1−F |/|B0−F |, where
B0 is the color in the start frame of the segment, B1 the color in the end frame, and F the esti-
mated foreground color. If insufficient color distribution in the background is detected, we resort
to chroma keying to estimate the foreground color instead. In the example in Figure 4.8, we derive
the watercolor added during an action.

With the segmentation and the estimated alpha masks, we can generate a layered representation
of the source video. A few selected layers are shown in Figure 4.7(c). The red line overlays
indicate the extracted movements of the tool-tip for each segment. The layered representation can
be manipulated like in any image editing program. We can re-arrange the layers (and their paths)
and also combine different video tutorials. Figure 4.8(d) shows an exemplary combination of two
painting videos.

Painting tutorials, as shown in Figure 4.8, include motion with surface contact on a canvas.
To retarget this kind of tutorial, we model the canvas as a planar object. Subsequently, we extract
actions and layers using the method described in section 4.2.1. We use Adobe Photoshop as an
interface for editing, where we load the extracted layers during extraction automatically. Adobe
Photoshop provides operations like translation, rotation or scale, allowing to modify the input
tutorials. We can add layers from multiple tutorials to combine several source tutorials into a
new one. Creating the mixture shown in Figure 4.8 took approximately 2-3 minutes. While layer
extraction was done in a few seconds, most of the time was spent on rearranging (translating and
scaling) layers into a new composition.

4.2.2 Registration

Motions are always registered relative to objects. Both the source and the destination of a motion
trajectory can be attached to separate objects. Attaching only the source of the motion trajectory
prompts the user to pick up a certain source object and use it. This behavior can be used to prompt
a response when a particular item (or item type) enters the field of view.

Attaching only the destination of the motion trajectory will draw the user’s attention towards
the destination object, for example, the location where a tool should be applied. This behavior
is desirable to guide the user, if only the destination object is likely to be visible, or if multiple
source objects could be used.
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Figure 4.8: For mixing several painting tutorials, we split the source videos (a, b) into a set of actions (c).
Each action represents a single layer in the painting. (d) For each layer, we compute an alpha mask, that
allows us to compose layers into a new tutorial.

Finally, attaching both source and destination of the motion trajectory results in an unam-
biguous instruction to move the source object towards the destination object. In this case, the
trajectory must be warped to fit the actual objects’ poses, since these may differ from configura-
tion extracted from the video. We simply scale positions along the trajectory linearly to the desired
interval, while orientations are scaled in quaternion representation. This only makes sense if the
configuration in the video and in AR are similar enough so that the characteristics of the motion
are preserved. Such situations most likely occur in highly restricted environments, such as the
assembly of electronic equipment.

In order to register the extracted motions to the AR environment, we must track the source
or destination object (or both). If the AR system uses a monocular video camera, we can use the
same tracking algorithms used previously for the motion extraction, re-using the tracking models.
However, while the motion extraction works offline and affords manual intervention, the final AR
display must work in real-time and be capable of automatic initialization. In an environment with
poor feature distribution, monocular tracking may give poor results. Therefore, we prefer using a
depth sensor, such as the Microsoft Kinect, for the AR tracking at runtime.

4.2.3 Evaluation

We have tested our authoring system on a number of different video tutorials in a preliminary user
study with the goal to gain insights on usability and timing. We also asked the expert users for
their opinion and possible improvements to the software.
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Figure 4.9: The video retargeting user interface. (a) Detail view showing the retargeting process of a
watercolor painting tutorial. (b) The system automatically detects faces in tutorial videos and uses the
deformable face model.

We collected feedback on the authoring step for samples from a facial make-up and a painting
scenario in an expert evaluation. Facial make-up tutorials include motions with surface contact
on a 3D human face model. Figure 4.9(b) illustrates the video tutorial retargeting process. The
retargeting system automatically finds the face of the tutor. The author has to initialize the tool
tracker in the first frame of every segment of the video and stop tracking in the last frame of a
segment. In a few cases, the tracker had to be re-initialized after tracking failures.

The painting tutorial includes motion with surface contact on a canvas. Figure 4.9(a) illustrates
the painting tutorial. We model the canvas as a planar object, and further extract actions and
layers. We use Adobe Photoshop as an interface for editing, where we load the extracted layers
automatically. Photoshop provides operations like translation, rotation or scale, allowing to modify
the input tutorials. We can add layers from multiple tutorials to combine several source tutorials
into a new one.

Four expert users, experienced in using image and video editing software, participated in the
evaluation. Before starting, the participants familiarized themselves with the content of the videos,
the task in the tutorial and the authoring tool. To collect feedback on the tool tracking, we asked
the experts to extract the motion in two ways: first, by redrawing the line manually on the surface
texture representation that shows the final result of an instruction; second, by using the tool tracker
to extract the path of the tools automatically.

To comfortably extract start and end frames of instructions we allowed the modification of the
input video frame rate by a scale factor. Based on our experience, we set the scale factor to 0.5,
resulting in a time-scaled video. While users appreciated scaling the speed of the video playback,
they also asked for interactive control of the scale factor.
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For the facial make-up sample, participants required approximately four minutes for 50 sec-
onds of time-scaled video. For the painting tutorial, participants required around eight minutes for
three minutes of time-scaled video.

The tool tracker was met with positive responses. Aside from occasional tracking failures,
participants were comfortable using this tool. When directly compared to redrawing the instruc-
tions manually, participants considered the tracking was faster for extracting the instruction. Two
participants even stated explicitly that it is more accurate. With respect to the tracking, one partic-
ipant remarked that our results are precise enough to rather rely on the extracted original drawing
than on a line she is redrawing manually.

Participants generally suggested more advanced tools, such as shortcuts to fill areas in paint-
ings. The current authoring software relies solely on extracting paths. However, future work will
investigate the use of collections of tools that allow the efficient extraction for actions in areas.
A fill instruction could be specified in one frame and automatically extended to instruction steps
over multiple frames.

4.3 Conclusion

This section of the thesis demonstrates how the vast resource of online video tutorials can be
retargeted into three-dimensional AR tutorials. Instead of presenting simple video overlay in AR,
we synthesize 3D motions from the video data and register the results to the 3D objects around
the user and to the user’s body, where appropriate. Moreover, our system dynamically generates
3D glyphs to represent the important information in a visually compact and easily comprehensible
way. Our resulting AR tutorials allow the user to freely change the viewpoint while watching the
instructions. This enables the user to examine elements of the tutorial from a more effective point
of view compared to the one used in the original video.

We have demonstrated several example applications for retargeting 2D video tutorials. How-
ever, not all videos can be successfully retargeted. For example, if the input video is very dark
or noisy, our silhouette segmentation requires excessive user input. Advanced video processing
methods, such as super-resolution techniques, may help in such cases.

Moreover, we have only scratched the surface of the potential of letting a user control the point
of view of a tutorial. Our initial results also indicate that the benefit depends on the type of motion.
Therefore, we plan more formal evaluations on how to guide a user to an optimal viewpoint for
different classes of 3D movements.





CHAPTER 5

Remote Authoring of Augmented Reality Documentation

One particularly powerful application of AR documentation is remote assistance, where an expert
(remote user) helps a worker (local user) in operating or repairing a physical object on location.
The author, i.e. the expert, uses a live representation of the remote user’s physical environment in
addition to tools for exploring and annotating the shared environment with visual instructions [44,
65, 111]. Subsequently, the remote user has an AR display to view the visual instructions, which
were generated by the expert user, within its physical environment.

Implementing such a remote assistance application faces two key challenges. First, the remote
user requires a virtual representation of the local user’s environment, which must be provided on
the fly and allows for identifying all details necessary to complete the task. Second, both the local
user and the remote user require intuitive interaction techniques for exploring and annotating the
shared environment. Therefore, exploration and annotation must be performed in 3D space to
register the information correctly in the local user’s environment.

In this work, we are particularly interested in mobile scenarios, as those are free of spatial
constraints that encumber spontaneous use on stationary hardware. However, existing approaches
relying on mobile devices for remote assistance are often restricted to 2D representations [180],
provide 3D representations of limited visual quality [44] or rely on additional stationary equip-
ment [114]. Moreover, we experienced that, in addition to the limited visual quality, existing
approaches struggle to create proper virtual representations of featureless, transparent or shiny
objects.

To address these challenges, we propose a new approach to remote assistance, which does
not require a geometric model, but, instead, purely relies on an image-based representation in the
form of an unstructured light field [36], i.e., a database of images registered in 3D space, which
represent a sampling of the light rays emitted from the local user’s workspace.

61
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As we will show, light fields offer many advantages over previous approaches. For example,
no depth sensor is required, and reconstruction is not adversely affected by texture-less, shiny
or transparent surfaces. This robustness is an essential advantage of light fields over traditional
reconstruction approaches, for instance, when considering industrial environments with lots of
metallic surfaces. This enables our approach to work in many more environments compared to
existing MR remote assistance systems. Figure 1.3 shows an example of this on a metallic engine,
which would be challenging for traditional reconstruction methods commonly used in MR [45].
While light fields offer high visual quality, they also face challenges complicating their use in
remote assistance applications. Creating light fields can be time-consuming, which is critical for
remote assistance applications. Furthermore, a naive light field implementation results in a large
number of images, which easily exceeds what can be transmitted, stored or rendered on mobile
devices.

Finally, light fields lack explicit 3D geometry, making them difficult to interact with or mod-
ify [69]. Common tasks, such as placing graphical annotations on object surfaces captured as light
fields, are not trivial without depth or surface information.

The Mixed Reality Light Fields presented in this thesis address these issues. In particular, we
provide a practical approach for utilizing unstructured light fields in MR on mobile devices. To
demonstrate capturing, processing and annotation of light fields, we chose a challenging applica-
tion, namely, remote assistance. In this application, we use light fields as a robust, high-fidelity
representation of challenging scenes containing transparent, thin and shiny objects. Using Mixed
Reality Light Fields, we do not only support a novel form of instant exploration of reconstructed
objects, but we also support collaboration in the shared space through a novel method for the
navigation and annotation of remote scenes.

5.1 Overview

We present a complete end-to-end system for remote assistance in MR using light fields. Our
system provides an Augmented Virtuality [100] environment for the remote user and an AR en-
vironment for the local user [100]. The system records and captures a scene, sends the recording
to the remote user, who annotates it with visual instructions and sends the annotations back for
visualization in AR (see Figure 5.1 for an illustration of the components of our system).

In contrast to existing approaches, which use geometric reconstruction, our system is based
entirely on images. While this trivially allows reproducing otherwise difficult to reconstruct real-
world objects, the surrender of a geometric representation makes a new approach for the collabo-
rative workflow necessary. We provide an overview of the workflow components in the remainder
of this section.

Scene Capture. We start by capturing an image database using the built-in camera of the user’s
mobile device and sending it over the network. To limit the captured images to a manageable
amount, we follow a strategy of overview+detail [144]. Initially, the user interface presents a
minimal set of registered images for the remote user to chose from. The choice is relayed to the
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Figure 5.1: Overview. (a) Scene capture: The local user shares the environment by capturing a local light
field. The sampling process is visually guided by a 3D sphere that surrounds the object of interest. The
sphere color encodes the current sampling density per subtended angle, allowing to identify those regions
of the light field that require more sampling. The target sampling density is automatically specified by the
system but may be adjusted by the remote user on demand. (b) Scene exploration: The remote user explores
the light field using image-based rendering techniques. (c, d) Scene annotation: Once a suitable viewpoint
has been reached, the remote user places a plane in 3D and starts annotating it with drawings sketched on
the touchscreen of the mobile device. (e) AR visualization: The visual instructions are sent to the local user
and presented within the 3D coordinate system that was used for capturing the light field. Therefore, the
visual instructions naturally appear as 3D-registered augmentation in the local user’s environment.

local user with the inquiry to scan selected locations with denser sampling (Figure 5.2(a)). The
result of this dialogue is a set of local light fields in a common reference system, captured where
deemed necessary by the remote user for supporting the subsequent placement of annotations.
Figure 5.1(a) illustrates our interface for capturing the dense local light field. Sampling is guided
by visualizing a sphere of directions, indicating by color-coding which directions have already
been sufficiently sampled.

Scene Exploration. Exploring the remote environment serves two purposes. First, it supports
optimizing the capturing process by providing the interface for guiding the local user to those
locations where more data capturing is needed. Second, based on a captured local light field,
it supports validating and refining the 3D placement of the AR annotations. Therefore, our ap-
proach for remote exploration supports camera control with six degrees of freedom based on light
field rendering in combination with an overview visualization of all available viewpoints (Fig-
ure 5.1(b)).

Scene Annotation. After exploring the shared environment, the remote user defines one or
more support planes within the 3D remote coordinate system. A support plane serves as a canvas
for drawing via the touchscreen of the mobile device. Placement of support planes is assisted
by an approximated depth and surface normal, computed dynamically via depth from focus. The
location where depth is estimated in the light field is interactively indicated by the remote user
with a single touch gesture. (Figure 5.1(c)).
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AR Visualization. Since local user and remote user share the local user’s local coordinate
system, the 3D annotations created by the remote user can be presented directly in the local user’s
AR display (see in Figure 5.1(d)).

Figure 5.2: Spatial user guidance: (a) The local user initiates the session by taking one or more pictures of
the scene. The pictures are spatially registered in AR and automatically labeled to simplify communication.
Note the label “View 0” in this example. (b) The 3D registered images are immediately sent to the remote
user to enable coarse scene exploration. The remote user can then guide the local user to different locations
by drawing hints on a world-registered, virtual ground plane. (c) The annotations are sent to the local user
and visualized as a registered AR overlay. Once a satisfactory location has been found, the remote user
can place a highlight on the correct picture frame. The local user then starts capturing a local light field as
outlined in Figure 5.1(a).

5.2 Interactive data capturing

Sharing a light field of the entire environment is expensive in terms of time, network and com-
putational resources. Therefore, we capture and send only local light fields. A local light field
represents a small section of the environment. In our application, it represents the structure that
the remote user is going to annotate. The remote user informs the local user of the locations where
local light fields should be acquired, so that the resulting image density is sufficient for maintain-
ing a high visual quality of the environment, thus, allowing a precise anchoring of annotations.
For this purpose, spatial guidance is provided to the local user.

5.2.1 Spatial user guidance

A remote assistance session starts by asking the local user to capture an overview of the environ-
ment. The local user is instructed to acquire a coarsely spaced collection of images by pointing
the tracked mobile camera at objects identified as potentially interesting. While capturing the im-
ages, our system records the tracked position and orientation of the user’s camera using ARCore.
Similarly to the work by Sukan et al. using snapshots [149], we use the camera poses to present
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the data as 3D registered annotations of the real and the shared virtual environment. In addition,
we automatically label the snapshots to allow referring to images by their name (View 0 in Fig-
ure 5.2(a, b)). Note that the image appears in both environments, on the remote user’s mobile
device (Figure 5.2(b)) as well as within the local user’s AR environment (Figure 5.2(a)).

5.2.2 Guided light field capture

After the remote user identifies the structure to be annotated, the local user captures local light
fields. Capturing is automatically triggered when the mobile device is close to the snapshots
marked by the remote users as interesting. The local user only has to move the camera towards
these snapshots, which are displayed as overlays in the AR view. We found that capturing a
spherical light field [67] is a good fit for our needs since we want to provide the highest detail in
the area of interest. The spherical setup ensures that captured rays are oriented towards a single
point of interest, the center of the sphere. This provides the highest sampling density for the
structure that the remote user is going to annotate.

To restrict the amount of data that must be transmitted over the network, we capture only a
small section of the spherical light field. The relevant section is defined by a rectangular window
cut-out on the sphere surface. Therefore, the local user first captures four images of the object of
interest from the four corner points of the window. We found that a subtended angle of approxi-
mately 30◦ gives enough variation to create high-quality light field renderings. Since the distance
of the user to the object of interest can vary, we do not prescribe a minimal subtended angle for a
local light field, but, instead, let the local user extend the subtended angle explicitly if deemed nec-
essary. This strategy avoids forcing the user to cover large distances with the camera for far-away
objects.

After the system derives the center and the bounds of the local light field, it visualizes the light
field coverage as a tessellated sphere. The resolution of the tessellation corresponds to the desired
sampling density. The user’s task is to move the device around while keeping the object of interest
close to the center of the screen. The portion of the sphere currently in the line of sight to the
center changes color when an image is captured. Thus, the capturing process becomes a coloring
task that supports the user to identify sufficiently sampled and under-sampled areas of the light
field. After a local light field is considered complete, its center is re-computed as the closest point
to the optical axes of all captured images.

5.3 Scene exploration

The remote user explores the scene using a mobile device with a touchscreen, i.e., a tablet or a
smartphone. The remote user may navigate by orbiting around the center of the spherical light field
and zooming towards it. For fast visual feedback, we blend the closest two views when the virtual
camera is in motion. During the exploration, we automatically transition the virtual camera to the
closest keyframe. This strategy presents the scene in the highest possible quality whenever the
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Figure 5.3: Auto-focus estimation via synthetic focal stack rendering and interpretation: (a) Camera image
for the current view position. The point we want to focus on is denoted as u. (b) The search window N
defines the reference image for our focus metric ε . (c) A synthetic focal stack is generated, proving test
images at regular intervals along Z−1. In this example, the aperture size a = 3 and window size N = 15 has
been used. (d) The minimum of our focus metric ε denotes the best match in the focal stack, from where
the depth of u can be determined.

virtual camera is not in motion. A similar strategy was used by Gauglitz et al. [45]. However, the
effect of our version produces significantly better results, as our scene representations consist of
densely sampled views instead of just a sparse set of keyframes. For a sufficiently dense sampled
light field, transitions between two captured frames are barely noticeable.

5.4 Scene annotation

Common tasks during a remote assistance session include the identification of objects (using a
circular outline around the object or a cross-hair at its center), the communication of object move-
ments (using an arrow), placement of objects (drawing the outline of the object at the target place),
handwriting, and any combination of identification, movement and placement.Our system is de-
signed to support these types of visual instructions by mapping arbitrary 2D drawings to registered
3D AR annotations. Via a support plane, the remote user can draw 2D strokes on the touchscreen.
The drawings are presented as an AR overlay to the local user. The remote user can create any
number of planes and can draw any number of instructions on each of them. When finished, the
remote user releases an annotation to the local user.

After receiving the light field, the remote user navigates the virtual camera to a suitable view-
point for drawing the annotations. Upon a single tap on the object of interest, the system automati-
cally determines the corresponding depth of the selected area, where it places the support plane as
a canvas for the remote user’s freehand drawing, e.g. outlining an object to guide the local user’s
attention. The drawing plane is initially oriented parallel to the camera’s image plane, but can
be adjusted subsequently, if necessary. We first describe our approach to automatically place the
drawing plane, before we outline the interface for refining the initial placement.
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5.4.1 Automatic canvas placement

To draw annotations in a light field, we automatically place a drawing plane at the depth of a user-
selected structure. We estimate this depth from evaluating a synthetic focal stack F , which we
generate by rendering the light field at different focal planes. Subsequently, we search the focal
stack F for the slice f that gives the sharpest image according to the metric ε ,

f ← min
I f∈F

ε(IKF, I f ), (5.1)

where IKF is the image in the light field at the current viewpoint, and ε defines how well the focal
slice I f matches IKF,

ε(IKF, I f ) = ∑
u∈N

(IKF(u)− I f (u))2, (5.2)

where N is a N×N window centered at u, which is the point of the user selection. Note that,
compared to conventional auto-focus photography, our approach benefits from the fact that an
all-in-focus image (IKF) is available as a ground truth. Therefore, we can directly compare the
sharpness, rather relying on statistical measures within an image patch [83, 116].

The accuracy of our depth estimation approach depends on the quality of each image in the
synthetic focal stack. A good focal stack for a subsequent auto-focus analysis provides a sharp
image only at the distance of the selected structure. We achieve this by following the approach for
unstructured light field rendering proposed by Davis et al. [36], which we modified with a novel
non-linear blending scheme.

In the unstructured light field approach, the geometric proxy of the triangulated viewpoints re-
sults in the piece-wise linear interpolation of the three closest viewpoints, which form overlapping
rings of triangles. Each ring consists of a shared vertex and surrounding vertices v0 and vi (2≤ i)
with the highest and the lowest weights, respectively. Within each triangle forming a ring, the
weights are linearly interpolated from the shared center to the outer vertices.

Note that Davis et al. [36] used cubic interpolation across two rings to ensure smoothness with
vertex-wise linear blending. We use faster piece-wise linear interpolation, but re-map the weights
wL to achieve pixel-wise non-linear weighting wNL,

wNL = sin(wL π/2). (5.3)

This pixel-wise non-linear interpolation achieves a natural Bokeh effect when combined with
synthetic aperture. Given a user-defined aperture size a (≥ 1), a synthetic aperture is simulated by
shifting the surrounding vertices vi in each ring from the shared center vertex v0 to a new position
v′i at the rim of the aperture on the focal plane at distance f ,

v′i = f (max(a,1) d+P(v0)) , (5.4)

where d = P(vi)−P(v0), and P([X ,Y,Z]T) projects a 3D point to a depth-normalized plane as
[X/Z,Y/Z,1]T.
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Figure 5.4: Interface of the remote expert user. (a) We provide a simple set of three buttons to initialize
canvas placement and drawing, to undo the last action and to send visual instructions. (b) The remote user
is able to refine an initial placement. The red circle indicates the user’s focus selection. By pressing and
sliding from one of the two buttons in the center of the screen, the user can rotate the canvas. (c) The
rotated canvas after refinement; note the yellow arrow. (d) After sending the instructions, the local user’s
application shows the instruction as AR annotation.

After projecting all rings and summing up all projected pixel colors, the resulting colors are
normalized with respect to the sum of the weights. The resulting quality of the depth of field de-
pends on the number of images that we blend for each triangle of the geometry proxy, determined
by the parameter a in Equation 5.4. The larger a, the smaller the depth of field becomes. How-
ever, using more images causes higher computational costs for pixel blending. Changing aperture
furthermore requires to adapt the window size N.

A minimum of three images must be blended on a single triangle proxy. This configuration
(a=1) results in the sharpest possible image. There is no upper bound on a, but blending across
a large portion of the proxy mesh slows down the light field rendering. We empirically found
that a = 3 in a 15×15 window represents a good trade-off between performance and quality on a
Samsung Galaxy S9. We used this setting in the user study.

5.4.2 Canvas refinement

We support adjusting the canvas interactively to align its rotation and translation when needed.
Therefore, we allow adjusting yaw and pitch rotations using the two modifiers shown in the center
of Figure 5.4(b). By pressing and dragging one of the modifier buttons, the user can rotate the
drawing plane. The modifiers act as clutches, making all modifications incremental. Larger dis-
placement can be aggregated by repeating smaller motions. In addition to the rotation modifiers,
the user can fine-tune the position of the annotation plane by dragging the slider on the far right
of the interface back and forth (see Figure 5.4(b) and (c)). Note that we do not support editing roll
rotations as we are only interested in adjusting the placement of the plane.
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We also support editing the strokes which the user draws on the canvas. Thus, we allow
redrawing instructions by providing a delete option. Unneeded or wrong annotations can be dis-
missed, either by the remote user before transmission or, later, by the local user. The option to
allow the local user to dismiss annotations enables to remove already performed instructions.

5.5 Evaluation

We performed a series of evaluations on the performance and usability of our system. The evalu-
ations focus on our approach for placing annotations in the light field data, on the effectiveness of
the resulting AR annotations, and on the interface for capturing the light field data.

5.5.1 Experiment 1: Light field annotation

We tested the capability of our interface for annotation placement in light field data by comparing
it to a multi-view approach [69, 119]. Our interface combines the light field renderer for exploring
the scene, the auto-focus-based canvas placement, and the manual refinement for further adjust-
ments. This interface is denoted as AF. We compared it to a multi-view approach Multi-View,
which is an alternative 3D interaction method requiring no depth information. Multi-View relies
on manual interactions to place a point in a 3D environment. In Multi-View, a ray is projected
along a vector from the center of projection of the camera to the screen point indicated by the
user in a single image. The user can observe the 3D line from a different angle by interactively
changing the viewpoint. To adjust the depth, the user slides the target point along the ray.

Task. We designed a task for placing annotations in 3D environments. We prepared four light
fields in different scenes (Figure 5.5). In each annotation method, participants were required to
place points at five given positions per light field.

Apparatus. We used a Samsung Galaxy S9 smartphone, both for recording light fields (using
ARCore for 3D tracking) and for touch interaction. We collected four light fields. The smallest
contains 110, and the largest, 186 images at a resolution of 800 × 400 pixels. In each light field,
we manually placed five target points to be annotated by participants.

Design. We designed a repeated-measures, within-subject study. We define an independent
variable “system“ with two conditions: AF and Multi-View. We measured task completion time
(TCT), i.e., the time between starting and finishing a 3D annotation placement, distance error, i.e.,
the point-to-plane distance between the prepared point and the placed drawing plane, subjective
workload, using the raw NASA TLX [52], usability, via the single ease question (SEQ) [139], and
overall performance.

Procedure. After filling out a consent form and demographics questionnaire, users were in-
troduced to the first condition. The starting order of conditions was counterbalanced using a Latin
Square. Participants were standing and used their dominant hand for interacting on the touch-
screen. Participants familiarized themselves with the system by performing as many test place-
ments as they liked, then they performed the task by placing the annotations in one scene per time.
Participants were instructed to be fast and accurate. Between the scenes, participants were forced
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Figure 5.5: Evaluation scenes. (a) The light field used for training, (b-e) four light fields for measuring user
performance. Each scene has been prepared with five different target points (marked with a green circle).

to rest for 10-20 seconds to recover from possible fatigue caused by holding and interacting on the
touchscreen of the mobile device. Upon completion of the condition, users filled in the SEQ and
NASA TLX questionnaires and continued with the remaining system. After completing the final
task, the user filled out the preference questionnaire.

Hypotheses. We expected that AF would outperform Multi-View in terms of (H1) speed (TCT)
and (H2) error rate, as AF provides depth automatically.

Pilot. We performed a pilot study with the described setup. Six participants (1 female, X̄ =

27.3 (SD = 2.2) years old) volunteered. Performance analysis revealed no significant differences
in time (AF: X̄ = 17.3, SD = 9.7; Multi-View: X̄ = 16.1, SD = 7.1; p = 0.79), error (AF: X̄ = 2.3,
SD = 2.7; Multi-View: X̄ = 2.7, SD = 4.1; p = 0.85), TLX (AF: X̄ = 31.9, SD = 15.8; Multi-View:
X̄ = 24.3, SD = 9.1; p = 0.43), and SEQ (AF: X̄ = 4, SD = 1.3; Multi-View: X̄ = 3.8, SD = 0.7;
p = 0.89). Four out of the six users preferred Multi-View.

Participants commented on missing visual feedback (“There is no visual feedback after placing
the canvas in the auto-focus mode, which made me wonder whether the system worked.”). Since
our module for exploring the remote scene aims at providing an all-in-focus image, no visual feed-
back about the selected focal stack is provided. Participants mentioned a lack of confidence when
no visual feedback was provided. Without the visual feedback, they had to use camera rotation
to rely on perspective cues for validation or the slider for changing the placement. This caused
similar additional interactions in the AF condition compared to the Multi-View condition, while
in the Multi-View condition, the ray visualization helped to follow the adjustment. Participants
commented that this was the main reason for preferring Multi-View.

Participants also commented on the slider precision for manual adjustment in the auto-focus
condition (“The sensitivity of the slider is too high. The focus is either too far or too close.”).

Revision. The interface was modified in the following way:
• We visualized the focal slice at the selected depth in the auto-focus interface, until canvas

placement was finalized and confirmed by pressing a button. This change added visual
feedback about the performance of the auto-focus.
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Figure 5.6: Results from experiment 1.

Figure 5.7: Following AR instructions. We tested the effectiveness of our system despite the added regis-
tration error in two step-by-step instruction tasks. (a) Two steps of a calibration procedure. (b) A participant
following the instructions. (c) A computer maintenance procedure used in the second task.

• We reduced the sensitivity of the slider for manually adjusting the depth of the canvas.

We recruited 20 participants (3 female, X̄ = 29.3 (SD = 4.1) years). The setup and the proce-
dure were identical to the pilot.

Results. Wilcoxon signed-rank tests revealed significant differences between AF and Multi-
View for time (AF: X̄ = 6.7, SD = 4.4; Multi-View: X̄ = 10.8, SD = 8.8; p < 0.001), error (AF:
X̄ = 2.4, SD = 3.9; Multi-View: X̄ = 4.1, SD = 4.7; p < 0.001), TLX (AF: X̄ = 18.7, SD = 8.1;
Multi-View: X̄ = 33.1, SD = 14.2; p = 0.003), and SEQ (AF: X̄ = 5.1, SD = 1.0; Multi-View:
X̄ = 3.9, SD = 1.4; p = 0.01) (Figure 5.6). Finally, sixteen out of the twenty users preferred AF.

Discussion. Overall, the results of the revised study greatly favor using AF over one relying
on Multi-View. Even some participants did not always press the confirmation button immediately,
AF was significantly faster. Also, AF was significantly easier to use (TLX and SEQ), which led to
a significantly reduced error and was overall preferred by the majority of the users. These results
are in general agreement with prior work on editing light fields using desktop interfaces, which
showed that focus-based approaches are faster than multi-view approaches [69].
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However, we should emphasize again that our interface is different in several ways from prior
work: Existing focus-based approaches were fully manual, while ours is automatic. Moreover,
participants used a 2D WIMP interface, while our participants conducted the task on a mobile
device tracked in 3D space. These differences may also explain the discrepancies in error rates. In
the study by Jarabo et al. [69], multi-view interfaces had the same error as focus-based interfaces,
while our automatic focus led to a significant reduction of the error.

5.5.2 Experiment 2: Following annotations

We tested the effectiveness of AR annotations generated with the AF interface. Since the auto-
focus approach possibly introduces a small registration error, causing an offset between the real
object and the visual annotations in AR, we were especially interested in the user’s performance
in case of such erroneous registration.

Task. We designed a task that requires following step-by-step instructions using the AR an-
notations. We prepared two real-world use cases with AR annotations. The annotations guide
the user through the calibration of an oscilloscope (Figure 5.7(a, b)) and the maintenance of a
computer (Figure 5.7(c)). Both tasks were unknown to all participants.

Apparatus. We used a Samsung Galaxy S9 smartphone running our AR interface. We used
ARCore for 3D tracking and for image-based pose initialization. The image-based pose initializa-
tion allows us to measure the ground truth positions of all AR annotations in 3D space. To include
a registration error, we added the mean error with a randomized offset relative to the standard de-
viation, which we both derived from experiment 1. Note that we could have used user-generated
annotations for this task. However, since we were interested in the user performance in the pres-
ence of erroneous registration data, we wanted to make sure that a plausible error exists in the
registration of the AR annotations.

Design. After completing both step-by-step instruction tasks, we asked participants to fill in
a system usability scale (SUS) questionnaire. In addition, we asked the users to provide verbal
feedback on the effectiveness of the visual instructions.

Procedure. After completing a consent form and demographics questionnaire, users were
introduced to AR guidance system in a small training session, which included two instructions.
Sixteen (16) participants (2 female, X̄ = 28.1 (SD = 3.1) years) volunteered.

Results. We measured an average SUS value of 91.56 with a standard deviation of SD = 7.28.
Verbal comments were very positive, including statements like ’It feels very responsive and useful.
I really want to use that application.’, ’It was fun to use. Especially in the oscilloscope task, I
learned something useful’. The only negative comment we received was addressing the lack of
user-perspective AR rendering on smartphones: One user noticed the mismatching perspective.

Discussion. The SUS score of the AR interface is higher than the average of 70 and, based
on the analysis of Bangor et al. [11], can be translated into the rating “excellent.” The verbal
comments demonstrate that users were able to focus on the actual task and were not distracted by
the erroneous registration. The problem of device perspective rendering in an instruction task can
be overcome by an implementation of user-perspective rendering [105].
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5.5.3 Experiment 3: Guided light field capturing

We tested the usability of our interfaces for spatial user guidance and for light field capture. We
were interested in the effectiveness of the overview visualization in the remote user’s interface and
on the usability of the interface for placing visual instructions on the local user’s ground plane.
Furthermore, we were interested in the effectiveness of the resulting AR guidance visualization
and on the usability of the interface for capturing the light field images using the tessellated sphere
visualization, as described before.

Task. We designed a data capturing task, in which a local and remote user capture arbitrary
local light fields. An experimenter, who was familiar with the system, acted as the local user, while
test subjects were asked to assume the role of the remote user. We showed them two images taken
from different points in the local user’s environment, and we asked the remote users to guide the
local user to the object in the picture.

Apparatus. We used a Samsung Galaxy S9 smartphone for both, the remote user and the
local user. The applications were connected through a Wifi hotspot. In addition, we used an extra
mobile phone and a Bluetooth headset for verbal communication.

Design. After capturing the target light fields, we asked the participants to switch roles. Be-
fore switching, we asked the participant to fill in a SUS questionnaire, and we collected verbal
feedback. The scenes showed random objects.

Procedure. After completing a consent form and demographics questionnaire, the participant
was introduced to the interface. We recruited ten (10) participants for the experiment (2 female,
X̄ = 29.2(SD = 3.7) years).

Results. We measured an average SUS value of 81.5 with a standard deviation SD = 10.5
for the expert’s spatial guidance interface, and we measured an average SUS value of 80.5 with a
standard deviation SD = 11.7 for the interface for guided light field capture.

Verbal recordings show a mixture of positive comments on certain features of the interface
and suggestions for improvement. User comments include “I liked the simplicity of the sphere
indicator and the painting task for capturing, this is easy to use,” “I’d like to see the video” [of the
local user], “the remote expert needs to get a notification that the instruction was received,” “it is
difficult to estimate the scale of the instruction” [in the expert’s interface], and “the annotations
are sometimes visible even when behind objects.”

Discussion. The SUS score of both interfaces is higher than the average of 70, why, based on
the analysis of Bangor et al. [11], both can be translated into the rating “excellent.” Although the
SUS scores are high, we noted several suggestions for improvement.

Live video stream. We noticed that users of the expert interface were asking for the live video
stream to get more information about the local environment. We will add low-resolution video
streaming. However, to get more information about the local user’s position, we will furthermore
provide the local user’s current position and orientation in the expert user’s interface. For better
history browsing we will also increase the density of the overview visualization by adding the
frames from the live video stream as 3D registered billboard annotations, similar to the current
keyframe visualization.
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Performance visualization. During the introduction of the capture interface, we noticed that
defining the extension of the light field required more explanation than we expected. Users were
uncertain to estimate the angular distance from the center. We explained that it is not important to
precisely find the corner points, and we gave verbal feedback whenever we thought it was neces-
sary, telling users that the corner points were good enough. Therefore, in the next release of our
interface, we will add visual feedback, showing a performance indicator based on the initialized
extents of the light field. In addition, sharing the sphere visualization with the expert will enable
remote adjustment of the light field size.

Scale visualization. Users that were using the expert interface commented on the challenge to
estimate the scale of the local user’s environment. This makes correctly bending arrows difficult.
The scale is visualized as a grid on the ground plane (see Figure 5.2(b)). However, we will add
additional scale indicators to simplify the spatial understanding of the local user’s environment.
For example, we will provide the local user with an interface for roughly framing the object of
interest with a box. The registered box will be sent to the expert user and visualized in addition to
the ground plane and the keyframes.

Occlusion management. Users were also commenting on wrong occlusions handling. As we
render the keyframes and the visual instructions on top of the AR user’s camera feed we cannot
resolve occlusions correctly. This problem is inherent to an AR rendering without explicit proxy
geometry. However, as real objects will occlude virtual drawings mainly after large viewpoint
changes, this problem will mostly occur during spatial user guidance. In the spatial guidance
interface, we provide keyframe billboard annotations in addition to drawings which are commonly
arrows to indicate a certain direction. To mitigate occlusion errors for these cases, we implemented
rendering of front-facing billboards only. This reduces the amount of occluding fragments caused
by billboards placed behind the object from the user’s current point of view.

5.6 Conclusion

In this chapter, we focused on the questions if mixed reality light fields are a good representation
for remote assistance scenario and if challenges associated with light fields (in particular, capture
and annotation) can be addressed with a carefully designed user interface. We believe both ques-
tions can be answered affirmatively. We were able to confirm our expectation that mixed reality
light fields support remote assistance well, even on objects that are otherwise difficult or impos-
sible to reconstruct. Adding annotations to light fields that lack explicit surface geometry can
be successfully facilitated using automatically computed support planes derived via depth-from-
focus. These findings and their embodiment in our telepresence system show that mobile devices
are sufficient for capturing light fields in practice.

A remaining technical limitation is that annotations are restricted to 2D support planes. An ex-
tension of our work to 3D annotations would require new visualization and interaction techniques
that lift the interaction beyond 2D planes. To handle occlusions, a coarse 3D approximation gen-
erated from the images could be generated in a background process.



5.6. Conclusion 75

There are many more avenues for future work. Our evaluations concentrate on the interaction
to capture and annotate light fields. A comparison to existing telecollaboration frameworks would
be inherently difficult, as they are highly diverse, and the outcome of such a comparison would
depend on the chosen tasks and application scenarios. Nonetheless, important insight could be
gained from such comparisons.

We would also like to evaluate the presence aspect of our telepresence system. While the
focus of the work presented in this thesis was primarily on usability and not on the feeling of
“being there” (spatial presence) or “being there together” (co-presence), a follow-up study could
deliver important insights on how the photorealism afforded by light fields can enhance presence.
However, it should be noted here again that the motivation for using light fields was not necessarily
only the visual quality they offer but the robustness to material properties that are otherwise hard
to capture.

We believe that our work has relevance beyond the current scope of remote assistance. Mixed
reality light fields are a versatile extension of the current scope of remote assistance technologies.
They lend themselves to use cases where complex geometry and appearance must be compre-
hended quickly using just a mobile device. For example, in medical education, anatomical models
can be explored and discussed, and a lecturer could assist by correcting label placements. As many
parts of our everyday world tend to be visually complex, we expect that many more compelling
use cases can be identified.





CHAPTER 6

Visualization

Augmented reality presentations of instructions can significantly reduce the cognitive load for the
user [56]. However, the visualization methods must be carefully chosen for each type of tutorial.
To name an example, users following a dance-tutorial must match the speed, velocity and 3D
position of their legs and arms to the instruction. This is quite difficult for the learning user, thus the
visualization must adapt to the performance of the user, otherwise, it would be overwhelming and
irritating. In this chapter, we discuss the challenges of visualizing different kinds of instructions
in an AR environment. We start with the most important rendering techniques such as video
phantoms, dynamic 3D motion path visualization, tool path visualization on surfaces. Another
important topic of this section is the optimal viewpoint selection and how to guide the user there.
The chapter is completed by two user studies, where we analyzed the behavior of users in a 3D
motion guidance system, as well as users following an AR tool path guidance system.

6.1 Rendering techniques

Our analysis of 2D documentations reveals any combination of an annotated 3D model and a set
of consecutive 3D motions. Our final goal is to easily relate the information to real-world objects
using an AR interface. Therefore, we register the 3D model to its real-world counterpart and track
the user’s display to make the augmentation visible. Since we present the documentation in a
dynamic and often visually complex environment, we also provide interactive visualization tools
as part of the AR interface.

77
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6.1.1 Registration and tracking

The registration of the 3D model to its physical counterpart uses an RGB-D sensor and PCL-Kinfu,
which is an implementation of KinectFusion [108] using the Point Cloud Library (PCL) [133].
Our system registers the 3D model automatically to the point cloud received from the RGB-D
sensor using an implementation of Sample Consensus Initial Alignment (SAC-IA) [132]. Camera
tracking is realized using PCL-Kinfu and initialized with SAC-IA.

6.1.2 Visualization methods for AR

The registered 3D model allows presenting the 2D documentation within the real-world environ-
ment of the user. However, in AR, we usually have to cope with a visually complex background
and dynamic camera motion. Therefore, AR documentations demand special techniques to pro-
vide effective visualizations. To reduce the visual complexity of our AR visualizations, we allow
animations to be presented as video phantoms [74]. This resembles a real-time photomontage (Fig-
ure 1.1, Figure 6.1(b)) and thus reduces the visual complexity by decreasing the number of virtual
objects in AR.

While ghosted views enable effective exploration of hidden objects, they fail to create effective
visualizations for visually complex structures. However, since our 2D input graphics provide
optimized visualization, we furthermore provide the user with a replicate of the 2D configuration
in 3D AR. We implement this by computing the object configuration shown in the optimized
2D image. To provide a smooth animation from the object configuration in reality to the one
depicted in 2D, we furthermore derive the configuration of the real-world object in front of the user.
Therefore, we run our diagram analysis using a screenshot of the live video and the optimized 2D
graphics. Figure 6.1(b) shows the resulting animation from using the images seen in Figure 6.1(a)
as input. The selected brewing unit is clearly shown after replicating the object configuration used
in the traditional documentation material.

6.2 Indicating optimal Viewpoints

Replicating the object configuration from an optimized 2D illustration works best from a point
of view which is close to the one used in 2D. During camera estimation, we derive this point in
space, and, thus, we can guide the user to these optimized points of view. As demonstrated in
Figure 6.1(c) we provide this information to the user by adding an avatar looking at the object to
the scene. The avatar indicates the point of view the image was taken from, and thus for which the
configuration of the object is optimized.
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Figure 6.1: Interaction. (a) The relation between 2D image elements and 3D structure allows us to manip-
ulate the 3D visualization with 2D interactions. The selection of the brewing unit triggers the highlighting
of the corresponding 3D object. If the selected object in the real-world is occluded, we provide the user
with a ghosted view x-ray visualization. (b) We allow to replicate an optimized object overview configu-
ration in a 2D image by computing the steps for transforming the real-world object into the one depicted
in the 2D documentation (e.g., opening the service door). (c) The optimized object configuration is most
effective from the point of view used in the 2D documentation. We extract the point of view from which
the 2D image was generated and present it to the user by showing an avatar. This example shows the user
navigating to the extracted point of view.
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6.3 Guidance for body motion

A key feature of our video retargeting system is the ability to visualize extracted 3D poses and
motion from an arbitrary and interactively controlled point of view. Our goal is to increase the
user’s understanding of the expected motion and its position in relation to himself. Therefore, we
generate graphical elements that effectively visualize key poses and motions. The visualization is
based on a 3D avatar that we derive from a rigged 3D reconstruction of a real person 1.4.

Pose Visualization We automatically segment long motion sequences into chunks of shorter
and easier to understand movements. This allows us to concentrate on smaller parts of a long
and complex motion without cluttering the user’s view. We guide the user to the next step in the
sequence by visualizing a 3D stick-figure (see Figure 1.4(a) which is registered to the user’s body
center. Bones are displayed as thin white tubes, and joints are marked using circular glyphs that
are oriented towards the image plane. To guide the user to the first pose, we furthermore connect
the tracked joint positions to the desired positions using rubber-bands. As soon as the user has
reached the desired pose, the circular glyphs are highlighted in green, and the path visualization
starts to animate.

3D Path Visualization The motion in-between two key poses is visualized using an array of
3D arrows along the path and pointing in the direction of the movement. The stick-figure depiction
will move with the velocity that has been extracted from the video. However, the stick-figure
depiction will only move a pre-defined amount of distance ahead in time to give the user time to
react and reorient himself, if the deviation is too far from the instruction. The arrows will vanish
after successfully following the path. Thus, only the remaining part of a 3D motion is presented
keeping clutter in more complex motion minimal. To control clutter, we allow controlling the
level of detail for leg and arm motion. This results in path visualizations for all joints (e.g. wrist,
elbow and shoulder) or only a subset of those (e.g. the wrist). Which subset of paths to visualize
can be selected by the user at run-time. As more path visualizations increase the complexity of
the instruction, a level of detail visualization allows adjusting the complexity based on the user’s
confidence.

6.3.1 Evaluation

While our motion instruction system can be configured for presenting the extracted 3D tutorial
from an arbitrary point of view, one particularly interesting configuration is to present the 3D
motion from the user’s head position. Therefore, we started exploring the effectiveness of our
system by presenting our user registered 3D body instructions from an ego-centric point of view.
We attach the camera which renders the 3D motion to the user’s head position, and we allow
the user to change the viewpoint onto the motion path by naturally looking around. We call this
type of presentation egocentric Augmented Reality (EAR) visualization as it directly augments 3D
instructions to the user. We compared this type of visualization to a more established presentation
on a large screen showing the video data by using the extracted avatar in combination with the
extracted instruction in front of the user (Figure 6.2(a)). Similar to Tang et al. [156], we use a split-
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Figure 6.2: User evaluation. (a) To compare ego-centric visualizations to an AR mirror setup, we present
3D body motions that are registered to the user’s skeleton. For egocentric visualization the 3D point of view
is attached to the user’s head position. By tracking head motion, the user can control the orientation of the
viewpoint by natural head movements. In our experiment, we asked the users to follow the 4 motion paths
which are illustrated in this figure. (a) We present motion instructions using the AR mirror visualization
technique. To provide the user with the same hardware setup in both conditions, we render a virtual AR
mirror in front of the user in a virtual environment. The user is wearing an Oculus Rift display in both
setups (see Figure 1). We use a split-screen setup on the AR mirror providing a top-down and front view.
(b) (top) (bottom) Mean values and standard deviations of (left) task completion time in seconds and (right)
euclidean distance to the target path (in mm).

screen setup to provide the user with two views, a top-down and a front view. This setup represents
a common Augmented Reality Mirror, which is why we refer to this condition as (ARM). Note, that
both viewing conditions can be set up using an Augmented Reality headset such as the Microsoft
Hololens. However, we choose to test our system in VR, as current VR headsets provide a much
larger view of view which we considered necessary for this application.

Setup We use the same setup for EAR and ARM. The head tracker which is integrated into
the head-mounted display maps the user’s head motion to camera motion in 3D space. We track
the user’s skeleton with a Microsoft Kinect, using the open-source skeleton tracking framework
NiTE. NiTE’s skeletal tracking is providing us 15 joints with positional and rotational data which
we applied to the rigged avatar. Our implementation runs in over 30 frames per second on a
standard desktop PC (Intel Core-i7 CPU, NVidia GTX 680 GPU, Windows 8.1).

Task Each participant was asked to follow four motions using EAR and ARM (Figure 6.2).
As 3D motion is mostly demonstrated in video tutorials, we are specifically interested in testing
the performance of our visualization for 3D movements. Therefore, we explicitly avoid motion
within a single plane, such as used in physiotherapy training [156].
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Procedure We recruited participants on the campus of the university. After filling out an
informed consent form and a demographic questionnaire, we explained the visualizations and
allowed them to get used to the immersive environment. After they were confident with the setup,
we asked them to perform the given task. We counterbalanced the tasks by randomizing the order
and the type of motions for each user.

Results A total of 12 subjects (9m, 3f) aged 22-32 participated in our experiment. Fig-
ure 6.2(bottom) presents the average time taken to complete each task and the average error while
following the motions. The measurements show that the 3D presentation (EAR) outperforms the
2D presentation using a split-screen mirror setup (ARM). The data also indicates that the differ-
ence between both forms of presentation varies depending on the 3D motion. As this evaluation
was meant to provide first feedback from user performance, we did not design an extensive study.
Due to the lack of a sufficient amount of data we did not perform any further statistical analysis.

However, next to collecting quantitative indicators we asked all users about comments and
personal preference for EAR or ARM. Eleven out of the twelve participants preferred EAR over
ARM, while the remaining participant was not in favor of either one. A common comment from
the participants was that EAR allows traveling along the path much more self-reliant, while ARM
requires looking at one’s own body and the mirror concurrently. A few subjects noticed some jitter
of the tracked skeleton but did not feel obstructed in solving the task.

6.3.2 Discussion

Our instruction visualization system enables the playback of 2D video tutorials with synchronized
3D animations in a Mixed Reality environment. This enables many different forms of presenta-
tion of the same scene. For example, instead of presenting simple augmented video in AR, we
synthesize 3D motions from the video data and register the resulting visualization to the user’s
body. Our system dynamically generates interactive 3D visualizations to guide a user to certain
key poses and to visualize the motion in-between the poses. The resulting 3D tutorials allow to ar-
bitrarily change the viewpoint while following the instructions. This enables to examine elements
of the tutorial from a more effective point of view compared to the one used in the video.

Our system can be applied to a wide variety of 2D video tutorials showing human motion.
However, as following the tutorials relies on online tracking of the user’s skeleton we are currently
limited to moderately fast motion. The availability of more powerful hardware will improve the
skeleton tracking at runtime, which will also reduce the jitter that some of the users were noticing.

The preliminary experiment indicates the potential of a user-controlled point of view in 3D
space. However, as our system enables many more configurations, including static and dynamic
3D viewpoints, it provides a powerful framework for further research on optimized and interactive
viewpoint control for Mixed Reality tutorials. Since our initial results indicate that the benefit
of our system depends on the type of motion, our future research on viewpoint optimization will
consider different classes of 3D movements.
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Figure 6.3: System overview. (a) We extract object and user motions by tracking known model features in
the 2D video. Here, tracked features are used to record the path of the brush and to align a face model in
each frame. (b) After validating and possibly editing the extracted motion, we retarget the motion data to
real-world 3D objects. This requires registering the same 3D model as used in the extraction stage, in this
case, a face model, to the live camera image. By tracking the model in 3D, we are able to relate video data
to the real world. In this example, we present the recorded path of the brush directly on the user’s face. (c)
Since we retarget the extracted motion data in 3D, we can choose an arbitrary point of view. To provide
effective visual instructions, we generate dynamic glyphs (here: timed arrows) and we indicate the position
of the brush over time using a red circle.

6.4 Guidance for tools

To visually communicate instructions we generate graphical elements based on the extracted 3D
motion. Following the work of Nienhaus et al. [110] the goal of our design was to introduce
minimal visual clutter by providing abstractions of the motion. Therefore, in our initial design, we
create dynamic glyphs based on arrows which we combine with an animation of the motion. We
present the animation using a red circle which marks the tip of the captured tool. However, we
iteratively optimized our design as users were not totally satisfied with its usability. We present
the design iterations in the evaluation sections.

In all our visualizations we reduce the complexity of motion paths, as raw motion trajectories
are often too cluttered and jittery to be suitable for path visualization (Figure 6.3, middle). Our
filter simplifies a path by first using the approach of Douglas et al. [38](Figure 6.5(b)), followed
by an additional segmentation of the paths into smaller segments. To segment the path, we search
for turning points by comparing the angle between two neighboring line segments to a threshold
(the example in Figure 6.5(c) uses a threshold of 90◦). Subsequently, we cluster turning points that
are placed close to each other by recursive merging based on distance. The resulting paths can be
used to abstract the motion using arrows. We create an arrowhead at each turning point and the
endpoint (Figure 6.5(c)).
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Figure 6.4: First revision of AR path visualization. (a) The combination of visualization techniques pro-
vides an overview first, before the user can follow the exact motion. (b) At runtime, we use the arrows to
provide a preview of the motions. To minimize occlusion, the arrow is replaced by the border of the tool’s
trajectory. The red dot shows the extracted tool position over time.

6.4.1 Evaluating Efficiency of AR Make-Up Tutorial

A second experiment was conducted with the goal to corroborate the precision of activities per-
formed when following the AR tutorials. The intention was to observe the reaction of non-
technical users in performing a common task aided by AR tutorials and to compare the results
with those obtained when following conventional video instructions.

Design. We introduced a structure for making comparisons. The study had two conditions:
video (V) and AR. The AR condition showed the instructions step by step. We chose a face-
painting task based on a video downloaded from Youtube (Figure 6.6(a)). The tutorial involved
two types of precision tasks, namely painting points and painting lines. It had the advantage that
it could be divided into two symmetrical parts: left and right side of the face.

The study was organized as a repeated measures design with two independent variables: in-
terface (V, AR) and task (left, right side of face). The task was treated as random variable for
counterbalancing the design so that each participant uses a different configuration. The possi-
ble configurations were (ARle f t ,Vright), (ARright ,Vle f t), (Vle f t ,ARright), (Vright ,ARle f t). Participants
were randomly assigned to configurations. A make-up AR-Mirror was built for the study, replac-
ing a table-stand make-up mirror with a display (Mimo Magic-Touch, 10.1”, 1024x600 pixels)
and camera, shown in Figure 6.6(b). We control the AR visualization using a standard PC mouse
and a next button, and we control the video using the interface of a common video player with
functionality to scroll back and forth.

Pilot. We performed a pilot study with the described setup. Three female participants (X =

33 years old) were asked to take part in the test. They signed a consent form, accepting that
their performance will be video-recorded. Answers to a pre-test questionnaire indicated that one
participant relies on make-up videos, whereas the other two had never followed video instructions
for make-up before. The session was closed with the participants rating the difficulty of reaching
for the controls and a semi-structured interview.
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Figure 6.5: (a) We generate path illustrations from motion capture data. (b) The extracted path data is
analyzed and simplified. In particular, we remove zig-zag overdraw along the trajectory by clustering and
detect turning points (marked in green). (c) We generate arrows in-between turning points, the start point
and endpoint.

Having to reach for controls was not seen as hindrance either in AR (M = 4.6 of 7, higher
means easier) or in V (M = 4). Participants commented on the lack of preview in AR ("There
is no preview. I have no idea what I am trying to achieve because I only see each individual
instruction.") and on occlusion issues ("Occlusion. I cannot see my skin. The instruction is getting
in the way, and I cannot see if I am painting it correctly or not.").

Revision and Experiment. After the pilot, the interface was modified as follows:

• Full preview was added for future steps of the tutorial.
• The visualization was modified to avoid occluding the user’s skin. It displays only the

outline of the motion trajectory and the motion is shown using an animated circle (Fig-
ure 6.4(b)). The arrow is still used to preview a segment’s path, but it fades out after the
preview phase (Figure 6.4(b)).

Six participants took part in the study (1 female, X = 34.3 years old sd=4.8). The setup
and the procedure were identical to the pilot. However, in contrast to the pilot study, we asked to
follow the instructions as accurately as possible. Note that, while other researchers have compared
monitor versus AR instructions [56], we were interested in the perceived quality of the instructions
generated with our method. However, we also measured error and task completion time to evaluate
the performance of our AR visualization system.

Results and Discussion. The task completion time was measured using a stopwatch from the
point in time where participants announced the start of the drawing. The drawing was considered
finished when the last stroke was placed. The error was measured by normalizing the texture
atlases containing the strokes of the tutorial make-up and the user-drawn make-up and comparing
them using the l2-distance between the image pixels. Wilcoxon signed-rank tests did not reveal
any significant differences in time (V: mean=82.2s, sd=29, median=72; AR: mean=102.4s,
sd=31.9, median=88) or error (V: mean=0.45, sd=0.04, median=0.47; AR: mean=0.42,
sd=0.02, median=0.42).
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Figure 6.6: Experiment setup for a retargeted make-up tutorial. (a) Input video tutorial. (b) We showed the
resulting AR tutorial using an AR mirror, which consisted of a camera and a USB display. (c) Participants
could use the AR mirror and the video which we placed next to the mirror.

We received overall positive feedback on the AR condition. Comments from the experiment
included "I was more confident of being accurate when using AR."; "I felt I was quicker using AR.
Being accurate with the video was difficult, because I didn’t know where exactly I have to place
the dots."; "The mirrored video was difficult to (mentally) invert."; "In AR I didn’t have to think,
I could concentrate on the drawing.".

All participants unanimously preferred AR over the video when the goal was being as accurate
as possible. In a comparative questionnaire, they unanimously expressed feeling more confident
and faster with the AR interface. In the video condition, two participants did not pick the correct
side of the face, when starting the task. They were instructed to continue on the correct side.
This was not an issue in AR, which showed instructions directly on the face of the participants.
However, while the participants felt that AR allowed them to follow the motion exactly where they
should appear, we noticed that lines drawn in the AR mode tend to include a bit more jitter. We
believe that this is because in V people drew continuously while in AR they used a stop and go
strategy which allowed them to repetitively validate the result. We see two possible reasons for this
behavior. First, our 3D face tracker is not perfectly modeling face deformations. Therefore, the
augmented lines were floating a bit over the skin of the user as soon as the face was deformed. This
may have distracted the user resulting in a stop and go strategy. Second, our visualization encodes
the speed of the motion using a moving dot. This may have distracted participants, because they
switched their focus from being accurate in space to being accurate in time and the other way
around, thereby causing them to continuously interrupt the motion.



6.4. Guidance for tools 87

Even though we received positive feedback on our AR interface, it did not outperform video-
based tutorials in task completion time or error rate. We believe we detected no differences due
to the imperfect real-world modeling of the user’s face in AR and the distracting animation which
was not necessary for the task.

6.4.2 Evaluating Efficiency of AR Kanji Tutorial

After the make-up study, animations were removed from the interface. Instead, the direction of
the motion is encoded in the border of the instruction glyph (Figure 6.7(c)). We performed a
third experiment to collect quantitative data on the performance of the second revision of our AR
visualization system. Since we speculate that the face tracking solution was not accurate enough
to allow objective comparison of the quantitative data, we switched to a drawing scenario, in
which accurate tracking and a rigid scene (without deformation) could be ensured. Therefore,
participants were asked to follow Kanji drawing tutorials on paper using our AR interface and a
common video interface.

In the AR condition, participants used an Optical See-Through Head-Mounted Display
(HMD), a Microsoft Hololens, to receive instructions augmented on a piece of white paper
(Figure 6.7(a) (top left)). The Hololens has no standard mouse interface, therefore we had to
change the AR interface so that switching to the next instruction was done using a handheld
controller (Figure 6.7(a) (top right)).

Design. We designed a repeated measures within-subjects study to compare the performance
and user experience of the AR interface to a common video interface. We introduced one inde-
pendent variable interface with two conditions: AR interface (AR2) and video interface (V2). The
task was to follow a tutorial with the goal to draw a single Kanji symbol in a target area as it was
shown in the respective interface. The task was repeated ten times for each interface using a dif-
ferent Kanji symbol for each repetition. Correctly following the tutorial involves drawing strokes
of the proper size, from the correct direction and in the right order.

We prepared a set of 20 symbols, which were of similar complexity (based on the number of
strokes) consisting of 6 to 8 strokes. The 20 symbols were divided into two pools of ten symbols,
each pool contained an equal total number of strokes. The tasks and the pools of symbols were
counterbalanced to avoid learning effects and bias by the choice of symbols for each pool.

As dependent variables, we measured task completion time and error of each task, subjective
workload measured by the NASA TLX [52], usability on the System Usability Scale (SUS) [23]
and overall preference.

Apparatus. Participants performed the task standing in front of a whiteboard and drawing
with an ordinary pen on a 10cm×10cm piece of paper attached to the board (Figure 6.7).
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Figure 6.7: Retargeted Kanji tutorial and final revision of AR visualization. (a) The AR visualization is
presented using an Optical See-Through HMD (Microsoft Hololens) and a handheld clicker that the user
is holding in one hand. (b) The video tutorial is shown on a tablet mounted right above the drawing area.
This reduced the influence of head motion. (c) Our final glyph design encodes the direction of the stroke
on its border using arrowheads. The system presents one glyph at a time next to a full preview of the final
drawing. This picture shows the six instructions presented to the user in AR.

In AR2, participants wore a Microsoft Hololens HMD and used the second revision of our
visualization (Figure 6.7). In V2, an Nvidia Shield tablet (17.2cm×10.8cm) showing the instruc-
tion video was mounted above the target area (Figure 6.7(b)). Participants were presented the
unmodified tutorial video and had to follow the instructions. The MX Player application1 was
used as the video player. The unmodified tutorial videos did not show an overview at the begin-
ning of the tutorial. Participants could browse through the video using common video controls
(Figure 6.7(b)).

Procedure. After an introduction and filling out a demographic questionnaire, participants
performed a training task for the first interface using a training symbol, different for AR2 and
V2, that was not part of the tested set of symbols. After participants were comfortable using the
interface, the measured tasks started and participants were instructed to be fast and accurate. The
symbols from the current pool were shown in random order. After finishing the 10 symbols for
one interface, participants filled out the NASA TLX and the SUS. The second condition started
thereafter, following the same procedure. After filling the second SUS questionnaire, participants
filled out a preference questionnaire and a semi-structured interview was conducted. A session
took approximately 45m.

Task completion time was measured using a stopwatch from the point in time where partic-
ipants announced the start of the drawing. The drawing was considered finished when the last
stroke was placed. The error was measured as in the previous study using the l2-distance between
the image pixels of the tutorial Kanji and user-drawn Kanji. Hypotheses. Due to the presentation
of the tutorial using AR and the preceding authoring step to process the tutorial instructions, we
expect that when working with AR2 users will be significantly faster and more accurate than when
using unmodified video instructions (H1). Furthermore, users will prefer AR2, due to its improved
usability and intuitive visualization (H2).

1goo.gl/xd5rb6, last accessed September 20th, 2016

goo.gl/xd5rb6
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Cond. Time (s) Error SUS Nasa TLX

AR2 20 (3.7), 19.9 0.41 (0.03), 0.4 89.6 (10.1), 92.5 22.4 (11.6), 21.3
V2 30.7 (6.6), 30.1 0.46 (0.02), 0.46 68.1 (20.8), 76.3 46.5 (16.1), 45.4

Table 6.1: Measurements of Kanji study (mean (sd), median).

Results. 12 participants (3 female, X =31.3 (sd=6.2) years old) volunteered for the study. On
a scale from one to five, five meaning best, the mean of self-rated AR experience was 2.7 (sd=1.2),
video tutorial experience was 3 (sd=0.6), Kanji experience was 1.3 (sd=0.65) and general drawing
ability rated as 2 (sd=1.3). With 12 participants, two interfaces and ten different symbols per
interface, there were a total of 12× 2× 10 = 240 trials. The data was evaluated using a level of
significance of 0.05 and Wilcoxon signed-rank tests.

Table 6.1 shows the mean, standard deviation and median of task completion time, error,
NASA TLX and SUS for AR2 and VR2. Figure 6.8 shows the boxplots of the measurements.
Wilcoxon signed-rank tests revealed a statistically significant difference in task completion time
((Z = −3.0594, p < 0.001,r = 0.62)), error (Z = −2.9025, p < 0.05,r = 0.59), NASA TLX
(Z = −3.0594, p < 0.001,r = 0.62) and SUS (Z = 2.3552, p < 0.05,r = 0.48). In all cases AR2
outperformed V2. These results support H1 and H2.

All 12 participants preferred AR2 over V2, when asked to choose one of the two interfaces in
the after-study questionnaire.

Discussion. Our results support H1 and H2. Our system clearly outperforms traditional video
tutorials and is also preferred by the participants. The median SUS value of 92.5 for the AR
interface is higher than the average of 70 and, based on the analysis of Bangor et al. [11], can be
translated into the adjective “excellent”. The traditional video interface has a median SUS value
of 76.25 and receives the adjective “good” [11].

Participants were very positive about the AR interface in the after-study interview and clearly
preferred this interface, similar to the results of the previous study.

Five participants mentioned the clear benefit of AR in the ability to control the speed in which
the instructions were shown. The lack of speed control in V2 was considered as stressful because
the video was either too slow or too fast. Two participants remarked that they appreciated the pre-
view of the finished Kanji at the beginning of the instructions, which underlines the usefulness of
our authoring system in reformatting video tutorials into a more sophisticated format for learning.

Four participants again noted problems with occlusions in the AR condition. The visualization
sometimes occluded the drawn line, especially when they drew out of the bounds. While closing
off the indicated drawing area could be regarded as desirable feature, it would be better, if a
visualization could identify user-relevant content to avoid occlusion. Seven participants noticed
that the focal plane of the Hololens did not match the surface they were working on. This is a
long-known problem with this kind of HMD technology. While unpleasant, participants could
still easily finish the task.
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Figure 6.8: Kanji study results. Stars indicate significant differences.

In condition V2, participants paused the video frequently to keep up with the instructions. This
indicates the value of step-by-step instructions as extracted by our system. While we compared our
system to a standard video interface V2, it would be interesting to compare the AR condition with
a more advanced video interface that also supports step-by-step instructions or even automatic
pause-and-play techniques such as the one presented by Pongnumkul et al. [120]. We speculate
that part of the performance difference between AR and V2 comes from the segmentation of the
tutorials into steps in the AR condition and that the performance of a more advanced video tutorial
will be closer to the AR condition.

Based on a visual comparison of the resulting drawings, we noticed no difference in jitter
between drawings generated with interface V2 compared to interface AR2 (see the complementary
material for scans of the drawings). Since we changed both, the glyph design and the application
(to one which does not require deformable object modeling and tracking), a future experiment
will have to investigate the actual impact of each of the two factors to jittery drawings in AR
instructions.



CHAPTER 7

Interacting with Augmented Reality Documentation
using Smartphones

Augmented reality applications on handheld devices commonly implement some variant of the so-
called magic lens rendering, which augments only a fraction of the user’s real environment while
the rest of the view remains unaffected. Since AR on handheld devices is commonly implemented
as video see-through, AR magic lens applications often suffer from spatial distortions. Since the
AR content is presented from the perspective of the camera of the mobile device, the user needs
to re-map his actions to the real environment, e.g. the user’s hand would appear at a different
position within the augmented screen and the real world (see Figure 1.5). Recent approaches
counteract this distortion based on estimations of the user’s head position, rendering the scene from
the user’s perspective. However, user perspective rendering (UPR) demands high computational
resources and therefore commonly affects the performance of the application beyond the already
high computational load of AR applications. In this section, we present a method to facilitate
AR interaction on handheld devices which also reduces the computational demands for UPR by
applying lightweight optical flow tracking.

7.1 Overview

A number of research prototypes successfully demonstrate the implementation of user perspective
rendering on high-end laboratory setups [Baričević et al.]. In contrast, our system is designed to
provide user perspective rendering specifically on computationally limited mobile devices. The
main insight used for the design of our system is that updates on the user’s head pose are only
necessary after a certain amount of motion and that small head motion can be ignored. Since
FUPR assumes no head motion at all, it cannot support scenarios that require a large interaction
space. Figure 7.1 shows an example application where a maintenance worker is receiving visual
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(a) (b) (c)

Figure 7.1: System overview. In a typical usage scenario, the user moves the handheld device from one
position (a) to another (c) to view different AR instructions. The resulting transition of the user’s head pose,
in relation to the device, is illustrated in the upper row of (b) showing single images from the front camera
of the mobile device. The diagram in (b) shows a symbolic graph of the CPU usage during our approach
(AAUPR) compared to UPR. During user motion, the head position is updated depending on the current
threshold value. Once the user has moved to the desired point of view, the head pose is refined for this
position (last peak in the graph).

instructions on a handheld AR device which include pressing buttons on a large electric cabinet.
In such a scenario, the user has to correctly perceive instructions both, in the right top corner as
well as in the corner on the bottom left of the cabinet. Such large distances between points in
space that need augmentations cannot be handled by FUPR systems because the calibration of the
user’s spatial relationship to the display cannot hold.

However, based on the user experiment provided by Pucihar et al. [166] we assume FUPR
provides effective UPR for small to no changes of the user’s head position relative to the device.
Therefore, we efficiently compute user perspective graphics by adding a low-cost tracker to esti-
mate user motion before we start expensive head tracking for motion larger than a certain threshold
distance. This approach can be seen as adaptive approximated user perspective rendering. In the
following, we explain the main components of our system: (1) user perspective rendering on mo-
bile devices, (2) efficient motion estimation, and (3) dual thresholding.

User Perspective Rendering on Mobile Devices. Traditional UPR requires estimating the
user’s 3D head position and the 6 degrees of freedom pose of the mobile device at every frame.
Implementations on modern mobile smartphones derive the head pose using a 3D face tracker. The
face tracker is usually applied to the video stream of the front camera while AR scene tracking is
performed on the video stream of the back camera [141].
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For device tracking, we use natural feature tracking. In our current prototype, we estimate the
pose of the device using PTC’s Vuforia SDK 1. For 3D head tracking, we use a combination of a
2D deformable FaceTracker [137] and a subsequent 3D model, similar to the approach of Grubert
et al [141], which provides real-time deformable face tracking and head pose estimation.

Motion Estimation. We derive an estimate of the user’s motion in order to handle updates of
the 3D head tracker. While 3D head tracking is expensive we aim at a low-cost motion estimation.
Therefore, we estimate motion in image space only. Our prototype uses KLT-tracking of few
very distinctive features. We use the face tracker which was applied during the last 3D head pose
estimation in order to find the points which describe the eyes of the user. Motion estimation is
subsequently performed on these two points only. Whenever KLT-tracking fails we start full 3D
head tracking to update UPR and to re-initialize the motion estimation.

Dual Thresholding. After estimating the user’s motion in image-space we apply simple
thresholding to decide if an update of the user’s 3D head pose is necessary. However, simple
thresholding introduces an error relative to the size of the current threshold value. Furthermore,
since we apply thresholding in image space the error increases for distant head poses.

In order to reduce the error during the interaction, we combine spatial with temporal thresh-
olding. We assume that the spatial relationship between the AR display and the 3D head pose of
the user mostly changes during scene exploration or while moving the display from one point of
interaction to the next point. However, during interaction with the scene, the 3D head pose usually
stays rather steady. Therefore, we reduce the threshold over time and re-initialize it to its maximal
value each time we estimate the 3D head pose using the head tracker. This approach allows us
to provide regular updates of the 3D head pose during scene exploration, while also ensuring a
precise 3D head pose during interaction (assuming stable head poses during interaction). This
approach is outlined in Algorithm 1 and illustrated in Figure 7.1.

Algorithm 1 Dual Thresholding
1: E← |PosEyeCalc−PosEyeFlow|
2: ∆E← |PosEyeFlowlast −PosEyeFlow|
3: if E > ε OR (∆E < ε ∗0.1 AND !isPrecise) then
4: recalculateFacePose
5: isPrecise← T RUE
6: else
7: isPrecise← FALSE

ε refers to the spatial threshold and E to the error in pixels between the current estimated eye
positions and the position calculated in the last precise detection step. ∆E is the difference of
E between the current and the last head tracking frame. The threshold ε determines the trade-
off between coarse but fast head pose estimation and precise but expensive tracking during user
motion. Our system uses an empirically estimated ε of 3% of the diagonal of the input image in
pixels.

1https://www.vuforia.com
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System Resolution Frame Time Tracking Time
UPR 320x240 29.379 14.080

AAUPR 320x240 23.890 4.602
FUPR 320x240 20.733 0.0
UPR 640x480 42.860 30.094

AAUPR 640x480 28.706 13.363
FUPR 640x480 20.733 0.0

Table 7.1: Performance of different UPR implementations measured in milliseconds.

7.2 Performance Analysis

We compared the rendering performance of our system (AAUPR) to full-featured UPR and FUPR
(which does not require any head tracking). The performance measures of have been recorded
on an HTC-M8 Android smartphone. The numbers in Table 7.1 indicate mean values over 1000
frames for all conditions. Resolution refers to the image resolution of the back camera, Frame
Time refers to the average time spent to render a single frame, and Tracking Time refers to the
time spent for head tracking in total over 1000 frames. The resolution of the back camera was set
to 640x480 pixels in all conditions, and visual tracking was performed in the same environment
during all system measurements to provide the same number of visual features in all conditions.
The front camera delivered new video frames at a maximum of 15 frames per second (which is the
hardware limit of the camera). Please note that the head tracker runs in a separate thread.

7.3 User Experiment

Design. We designed a repeated measures within-subjects study to compare the performance
and user experience of different implementations of user-perspective rendering. Therefore, we
introduced an independent variable rendering with four conditions: device-perspective rendering
(DPR), user-perspective rendering (UPR), approximated user-perspective rendering (FUPR), ada-
tive user-perspective rendering (AAUPR).

The task was a pointing task in which participants had to align the mobile device with a circular
target area and touch the target area while looking through the view of the mobile device. The
target area was only visible in the device view so that participants were forced to interact with the
target area by using the different rendering conditions. Like Pucihar et al. [166] we are interested
in the effect of the spatial distortion when looking through the device. Therefore, we do not show
the live video during our experiment so that participants do not see their hands during interaction.
The target area had a radius of 20mm based on the recommended size of ISO-9241 [1] for button
input. The viewpoints of the target areas were placed randomly. For each rendering condition
participants performed 40 repetitions. Rendering was counterbalanced using a balanced Latin
square.
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Figure 7.2: User Experiment.

As dependent variables, we measured task completion time (TCT) and error of each task,
subjective workload was measured by the raw NASA TLX [52], usability using the Single Ease
Question (SEQ) [139] and overall preference.

Sixteen participants (3 female, X =30.7 (sd=3.5) years old) volunteered for the study. On a
scale from one to five, five meaning best, the mean of self-rated AR experience was 3.3 (sd=1.4).

Apparatus. Initially, we planned to perform the experiment using our mobile implementation
on an Android-based smartphone (HTC-M8). However, due to the computational demands of the
head tracking, the phone overheated and throttled the CPU during the pilot test after approximately
5 minutes in full UPR mode. All other conditions did not show this behavior. However, since the
phone didn’t cool down fast enough, CPU throttling had an impact on all subsequent measure-
ments. Therefore, we did not use a mobile phone in the study setup but settled with a PC setup
and a wired connection to a mobile display (Figure 7.2).

The apparatus consists of an installed touch screen and a handheld screen. The installed screen
was a Dell S2340T multi-touch monitor of size 23" (506 x 287 mm) and was used for recording
the touch input of the user. The handheld touchscreen was a HTC M8 phone (5" screen, 109 x 61
mm) attached to a PC via USB and was used to achieve an AR view implementing the different
rendering conditions. The circular target areas of the task were shown as augmentation registered
on the installed screen. The augmentation was only visible when viewed through the handheld
AR device. The touch screen could be rotated to allow participants to comfortably work with the
screen while standing. The head tracking and the tracking of the handheld screen was performed
on the PC.

Procedure. After an introduction and filling out a demographic questionnaire, measurements
were taken to calibrate the systems of the rendering condition. We measured inter-pupillary dis-
tance and the distance between the handheld device and the participant’s head to set up the fixed
viewpoint for FUPR. To determine the distance participants were asked to hold the handheld de-
vice centered onto the touch screen at a distance of 15 cm. The distance was only calibrated once.
Afterward, participants familiarized themselves with the first rendering condition by performing
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DPR UPR FUPR AAUPR
Time (s) 1.5 (0.8) 2 (1.4) 1.7 (1.1) 1.8 (1.1)

Error (pxl) 26.8 (14.4) 17.3 (11.6) 20.9 (12.5) 15.9 (10.4)
TLX 52 (16.3) 38.6 (14.6) 44.6 (14) 30.9 (14.4)
SEQ 3.1 (1.6) 4.75 (1.3) 3.6 (1.5) 5.3 (1.7)

Preference 0 2 3 8

Table 7.2: Study results. Mean and standard deviation of time and error, and SEQ and TLX results. The
last row indicates the number of participants preferring the interface. Three participants did not state a clear
preference, except for not choosing DPR.

the task until they felt comfortable using the system. Then, the measured tasks started. Partic-
ipants were instructed to quickly point to the target area by performing one fluid natural hand
motion to the area, where the target was expected. Participants were instructed to not move out of
their initial position, but to turn their body to reach the target areas farther away from the center.
This should simulate the movement of narrow workspaces, where the head position is not always
ideal for FUPR.

For each task, participants first had to locate the target area by searching with the AR view.
After locating the target area, participants touched the handheld device screen and then, with
the same hand, the target area on the screen. The TCT was measured between the touch of the
handheld device and the touch screen. Hence, TCT does not include search time for the target but
focuses only on the coordination of the hand as expected to be seen through the AR device. The
error was recorded as the Euclidean distance between the detected touchpoint and the center of
the target area. Participants received a distinct visual and audio confirmation, for either hitting or
missing the target area.

Participants performed 40 repetitions per rendering condition. After a rendering condition,
participants filled out the NASA TLX and the SEQ. The next rendering condition started thereafter,
following the same procedure. After finishing the last rendering condition and filling out NASA
TLX and SEQ, participants filled out a preference questionnaire and a semi-structured interview
was conducted. A session took approximately 30 minutes.

With 16 participants, four rendering conditions and 40 repetitions per rendering condition,
there were a total of 16×4×40 = 2560 trials.

Hypotheses. Due to the nature of the pointing task, we did not expect significant differences
in task completion time. However, due to the spatial distortion of the view of the DPR condition,
we expected DPR to have a significantly higher error rate than any other condition (H1). Due to
the optimal compensation of the spatial distortion, UPR will have fewer errors than FUPR (H2).
We hypothesize that our novel approach taken with AAUPR produces significantly fewer errors
than FUPR (H3). We also expected that our AAUPR implementation will be non-inferior to UPR
(H4).
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Results The data was evaluated using a level of significance of 0.05. The data fulfilled spheric-
ity and normality requirements and, therefore, was analyzed using ANOVA and post-hoc pair-
wise t-tests with Bonferroni correction. Questionnaire data was analyzed using a non-parametric
Friedman test followed by pairwise Wilcoxon signed-rank tests with Bonferroni correction. The
reported p-values have been Bonferroni corrected to reflect a significance level of 0.05. The sta-
tistical analysis was performed using the software R.

The ANOVA revealed a significant difference in error for the rendering condition
(F(3,45)=12.26, p<0.001). Post-hoc tests revealed significant differences between DPR and UPR
(p<0.001), DPR and AAUPR (p<0.001) and a weak significant difference between FUPR and
AAUPR (p=0.06).

Friedman tests revealed significant differences in TLX (χ2(3) = 20.01, p < 0.001) and SEQ
(χ2(3) = 20.59, p < 0.001). Post-hoc tests revealed significant differences for TLX between DPR
and AAUPR (Z=3.11, p<0.005), FUPR and AAUPR (Z=2.64,p<0.05) and a near significant dif-
ference between DPR and UPR (Z=-2.53, p=0.053). Post-hoc tests revealed significant differences
for SEQ between DPR and UPR (Z=2.63, p<0.05), DPR and AAUPR (Z=3.09, p<0.005) and
FUPR and AAUPR (Z=3.04, p<0.01).

Discussion As hypothesized, the results of DPR were worst in all tested measurements. DPR
had a significantly higher error than UPR and AAUPR due to the optimal spatial distortion of
the rendered user-perspective view in these conditions. This is also reflected in the SEQ, which
was rated significantly lower compared to UPR and AAUPR. In terms of TLX, DPR also had a
significantly higher workload than AAUPR and a weak significant difference to UPR. However, we
could not find a significant difference between DPR and FUPR and, therefore, could not replicate
the findings of Pucihar et al. [166]. One possible explanation could be the nature of the task,
that required interactions over a large distance which eventually requires updating the user’s head
pose relative to the device. Overall, we partially accept H1. One possible explanation could be the
nature of the task of Pucihar, that encouraged participants to spend more time on pointing the target
area, while our task required participants to spontaneously point to the target area. Therefore, we
partially accept H1.

Interestingly, UPR did not perform significantly better than FUPR in any measurement. There-
fore, we reject H2. We believe that the lack of performance comes from the implementation of
the head tracking. During the experiments, we noticed jitter in the head tracking, that might in-
fluenced the pointing accuracy. This also could explain the better performance of AAUPR, which
did not suffer from the problem of continuous jitter, because the tracking rate was lower than the
one of UPR. Hence, AAUPR performed significantly better than FUPR in terms of error, TLX and
SEQ measurement. Thereby, we accept H3. Note that the head tracking could be implemented
more stable using head-mounted fiducials. However, we are aiming at a mobile and self contained
system, why we have implemented head tracking based on visual face tracking.
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In terms of user preference (Table 7.2) three participants did not clearly prefer any user per-
spective rendering. However, they were clear in indicating that they did not prefer DPR. For the
preference results of the other 13 participants, we performed an exact binomial test comparing to
chance (0.25) and found a significant difference in preference for the AAUPR interface (p<0.05).
This is in line with the results of the study, indicating an advantage of AAUPR over FUPR. The
significant preference over UPR also underlines the advantage of AAUPR in terms of more stable,
discrete tracking updates.

To be able to record user interactions we performed the experiment on a large touch screen.
However, the interaction space is often much larger which requires the user to move the AR dis-
play much more around (see Figure7.1 for a real-life example). Since our system is designed to
compensate user motion, we believe that interactions in spaces larger than the one used in our
experiment will lead to similar results or to a favorable bias towards AAUPR.

7.4 Conclusion

In this chapter, we have presented a system for user perspective rendering on handheld devices
which support large interaction spaces. Our system does not perform 3D head tracking in each
frame, instead, we measure motion over time to trigger updates. This reduces the overall computa-
tional demands of the system. During our experiment, we furthermore noticed that fewer updates
of the user’s head pose result in more stable renderings on mobile phones. We believe this is partly
the reason why users prefer our approach over continuous user perspective rendering. This being
said, one could also potentially improve the stability of monocular head tracking algorithms by
temporal or spatial filtering.

The described system for adaptive user perspective rendering is designed for the current gen-
eration of mobile devices. However, faster and more reliable head tracking approaches, in combi-
nation with more powerful devices will make our adaptive solution for user perspective rendering
less important. Therefore, future work needs to further investigate head tracking on mobile de-
vices.

While our system reduces the impact of tracking failure, erroneous head tracking still impacts
the performance of our system to some degree. Therefore, future work needs to further investigate
3D head tracking on mobile devices. In addition, the number of necessary updates of the user’s
head pose needs to be evaluated separately. Additional information available to the system at run-
time, such as the state of the application or the current task to perform or the estimated distance
between the current pose and an anticipated future pose of the device could also prove beneficial
for tracking stability and computational cost.
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Interacting with Augmented Reality Documentation
using Head Mounted Displays

We developed a system called TrackCap to provide mobile applications with a 6DOF, high fidelity
input and output device that allows for spontaneous use in unprepared environments. By sensing
the handheld input device relative to the HMD our system has only minimal requirements, which
consist of these two devices. Both of these are mobile and, in the case of the smartphone, also
widely available. This makes our solution ideal for entry-level consumer-oriented devices such
as Google’s cardboard or daydream but as we will show has also advantages for top-of-the line
HDMs such as the Hololens. With 6DOF tracking and an integrated touchscreen, TrackCap pro-
vides multiple input channels, so that established virtual cursor, virtual hand [121] and raycasting
techniques can be easily integrated into a single system.

8.1 System overview

TrackCap provides relative 6DOF tracking from the smartphone to the "cap" on the HMD using
inside-out-tracking. Contrary to existing solutions that use inside-out tracking to track a device
within the world [170], for world-scale localization, our system uses the high precision 6DOF
tracker of the HMD and does not need to perform any non-relative world positioning by itself. The
world-space pose of the smartphone is determined by concatenating the relative pose smartphone-
HMD and the HMD-to-world measurement. We use a carefully designed fiducial, which is placed
on the HMD. The fiducial’s size is optimized to be as small as possible, while still being well
observable from the handheld input device. Furthermore, we use a standard 6DOF pose estimation
based on point correspondences between the current camera frame and the fiducial [86].

99
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Figure 8.1: Interaction space. The HMD’s camera is usually forward-facing (indicated in red), limiting
the possible tracking space. By using the smartphone’s front camera (blue), the device can be operated
conveniently at e.g. hip level. The smartphone itself provides an additional high-resolution screen that can
be used for non-situated data. 6DOF tracking enables direct scene interaction next to a pick ray metaphor.

Our system is illustrated in Figure 5.1. It consists of a 6DOF pose estimator, which runs on the
smartphone, a network module to transmit the estimated pose to the HMD, and a pose combiner
which maps the pose of the smartphone into the world coordinate frame.

Pose estimation. We implement the pose estimation of the interaction device directly on the
smartphone. Our prototype uses planar marker tracking provided by the Vuforia SDK1 and a
fiducial target ("cap") mounted on the HMD. Figure 8.1 illustrates the interaction as seen from the
device camera of the HMD. Note that the HMD camera would generally not keep the smartphone
in sight.

Network communication. Our approach requires transmitting the estimated 6DOF pose as well
as user input on the touchscreen from the phone to the HMD. Keeping latency as low as possible
is crucial, especially when using an optical see-through HMD. Therefore, we sent the pose in a
single UDP packet over WiFi, using a payload of 28 bytes to represent the position and orientation
data and 1 byte to transmit the command header. Additional data from button or touch input is
sent only on demand. The UDP data payload for such data consists of a 1-byte command header
and 0-4 bytes for optional parameters.

Pose combination. After receiving the pose data of the smartphone, we concatenate it with the
current world pose matrix of the HMD. Since the pose of the smartphone is calculated relative to
the camera center, we add an offset to the center of the physical device. Additionally, we take the
offset between the origin of the HMD tracking system and the center of the fiducial marker into
account. Both are static transformations and need to be defined only once.

1www.vuforia.com
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Figure 8.2: Designs. We designed a set of 3D printable parts to mount TrackCap to a variety of HMDs
(STL files will be made publicly available). (a) Microsoft HoloLens. Note that the cap was designed not to
obstruct the view of the scene understanding sensors, so the marker was bent upwards. (b) HTC Vive and
(c) Google Daydream designs use a flat marker instead. Note that we use the HTC Vive only for measuring
precision of TrackCap, since the HTC Vive already comes with a precise hand tracking system. (d) We
provide additional illumination for the marker to compensate for strong back-lighting from the ceiling. (e)
The additional light source illuminates the marker (right).

8.1.1 Technical analysis

Our system benefits from see-through displays, like the Microsoft HoloLens, since one can see
one’s hands using the device. However, immersive VR works fine, even on entry-level systems
such as Google Cardboard. Figure 8.2(c) shows a Google Daydream headset using ASUS Zen-
foneAR smartphone. Since our system runs the computationally expensive tracking of the input
device on the smartphone itself, performance on the HMD only depends on the application. For
our lightweight test scenes, we were able to achieve high frame rates on all test devices – 90
frames per second (fps) on the HoloLens and 60 fps on the Daydream. Tracking performance on
the smartphone was 30 fps, limited only by the camera frame rate.
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In addition to framerate, we compared the precision and latency of our tracking solution to the
outside-in tracking provided by the HTC Lighthouse system. Therefore, we added a setup using
TrackCap with the HTC Vive (Figure 8.2(c)). To compare the Lighthouse tracking performance
to TrackCap, we mounted an additional Lighthouse tracker on the smartphone. This rig was cali-
brated so that the HTC tracker’s virtual center point coincided with the center of the smartphone.

To sample the interaction space around the user, we placed a 3D grid of 4× 4× 3 reference
points within the world coordinate system. The position and orientation data of both tracking sys-
tems were collected for a duration of three seconds at each reference point. During the procedure,
we also recorded the network latency. The results are shown in Table 8.1. TrackCap delivered a
positional error below 10mm, an orientation error of less than 2◦, and an average latency of 10 ms.

In theory, the smartphone’s front camera FOV could be a limiting factor, since it determines
the possible tracking range. In practice, a typical horizontal FOV of a recent phone range from
56.3◦(HTC One M8) to 71.4◦(ZenPhone AR), and newer hardware tends to have an even larger
FOV. In our studies, we did not notice any differences across our test devices in terms of coverage.
The tracking range of our solution, as tested using a Samsung Galaxy S8 phone (68.0◦FOV),
covers a 1× 1× 0.6m volume in front of the HMD. Since the phone will necessarily be held no
further than arm’s length, the tracking volume proved to be sufficient.

During our tests, we noticed that pointing the smartphone camera point upwards introduces
occasional tracking failures caused by strong backlighting, e.g., from overhead lights or the sun,
as the dynamic range of the camera is limited and automatic exposure correction makes the marker
appear very dim. Figure 8.2(e-left) illustrates the problem. To mitigate the effect of strong back-
lighting, we installed a USB-powered LED array to illuminate the maker, as shown in Figure
8.2(d). The effect on the camera image can be seen in Figure 8.2(e-right).

Position Error Orientation Error Latency
Mean 9.812 mm 1.849◦ 10 ms
Std. Dev. 3.903 mm 0.291◦ 14 ms

Table 8.1: Tracking precision and latency of the TrackCap system

8.2 Evaluation

We performed a series of evaluations on the performance of TrackCap versus other mobile, unteth-
ered input options. The evaluations focus on object selection and manipulation tasks as fundamen-
tal elements of 3D interactions. TrackCap is compared to standard methods for 3D interaction, as
available for commercially available untethered systems, such as the Google Daydream.
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Since we are interested in how well TrackCap can support natural interactions, we disabled any
supporting visualizations, such as a crosshair or a thin ray, during our experiments. Note that future
applications of TrackCap would most likely make use of such supportive visualizations. However,
supportive visualizations may require additional calibration effort and may be a confounding factor
in experiments. In the interest of brevity, we also decided to steer clear from comparing TrackCap
to gaze-based interaction techniques, since previous research indicates that gaze-based techniques
are slower than hand-based methods and restrict the user’s ability to recall the environment [157].

For all evaluations, the data was evaluated using a significance level of 0.05. The analysis was
performed using the statistics software R.

8.2.1 Experiment 1: Selecting distant objects

We tested the capability of TrackCap for selecting distant objects. To this end, we compared the
interaction supported by TrackCap to a hand-held IMU [58] on a picking-by-raycasting task. We
expected TrackCap to perform better than IMU due to the inherent drift of the latter.

In a pilot study, we compared both approaches using a standard Fitts’s law test environment of
shapes arranged in a circle, as defined in ISO-9241 [1]. The shapes were arranged in front of the
user, requiring to use only a small part of the interaction space. Consequently, users performed
only small motions and held the input device close to their body (Figure 8.3(a)). Thus, the ability
of TrackCap to extend the interaction space for larger arm motions was not fully taken advantage
of. Based on the pilot study, we modified our task to maximize the usage of motor and interaction
space. We changed the task to force the user to move in 3D, which we achieved by distributing
the targets in the 3D space around the user (see Figure 8.3(d)).

Task. Inspired by the Fitts’s law test from the pilot study, we designed another pointing task.
A set of 21 blue spheres was arranged at a distance of 2m around the participant. The task started
by pointing the mobile device at the first highlighted sphere and performing a click. The next
highlighted sphere was always be located on the opposite side and required the user to turn. A hit
was confirmed visually.

We varied the task difficulty by presenting spheres of different sizes and at different heights
around the participants. We presented sizes of 5, 10 and 15 cm. The height of the center of circles
was set to the height of the users’ head with a random offset in the range ±0.175 m added.

To measure the effectiveness of TrackCap for intuitive 3D pointing at distant objects and its
ability for drift compensation, we did not present the ray visually during the interaction. How-
ever, spheres hit by the invisible ray were highlighted by changing the color to gray to provide
visual feedback. To compensate for the small FOV of the used HMD, the application guided the
participant to the targets by showing green arrows at the border of the view area pointing into the
direction of the target.

Design. We designed a repeated-measures within-subject study to compare the performance
and user experience of drift-compensated TrackCap and interaction using only the device’s IMU.
We defined an independent variable “system” with two conditions: TrackCap and mobile device
only (MBO). In MBO, the orientation of the ray relied only on the internal 3DOF sensor. As
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Figure 8.3: Study setup to measure performance during the selection of distant objects. (a) Fitts’s law test
on a virtual plane in front of the user. (b) Variation of the Fitts’s law test in 3D. The targets are located in
a circle around the user, with varying heights. (c) User with HMD during the task. The user sees a virtual
picking ray and a virtual target sphere. The virtual picking ray is shown for demonstration.

dependent variables, we measured task completion time (TCT) determined as the time of clicks
between successive sphere targets, and error rate of the task, as the percentage of spheres missed.
In addition, we measured subjective workload with the raw NASA TLX [52], usability with the
Single Ease Question (SEQ) [139], and overall preference.

Eight participants (1 female, X =30.3 (sd=4.2) years old) volunteered for the study. On a
scale from one to five, five meaning best, the mean of self-rated AR experience was 3.3 (sd=1.2).

Apparatus. The apparatus consisted of an optical see-through HMD (Microsoft HoloLens)
and a mobile phone with a touchscreen (Samsung Galaxy S7). The spheres were visible in the
HMD view only. The mobile device was used to control the orientation of the ray. Input was
confirmed by touch on the mobile phone.

6DOF head tracking was achieved via the HoloLens. In the TrackCap condition, the smart-
phone was registered in the same coordinate system as the HoloLens, and drift was compensated
using TrackCap. In the MBO condition, the orientation of the ray depended only on the hardware
sensors of the mobile phone.
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Procedure. After filling out a consent form and demographics questionnaire, users were
introduced to the first condition. The starting order of systems was counterbalanced using a Latin
Square setup. The systems were tested by using multiple trial blocks, each block consisting of
21 trials. Each system was used for all three sphere sizes. Sizes were varied between trial blocks
and presented in random order. The height of the spheres was randomized within a trial block.
Participants were standing throughout the task and used their dominant hand for pointing.

After the participants familiarized themselves with the system by performing two test blocks,
the task was performed by repeating one block for the system for each size condition. The partici-
pants were instructed to be fast and accurate. Between blocks, participants were forced to rest for
10-20 seconds to recover from fatigue due to the mid-air interaction [181]. Upon completion of
the condition, users filled in the SEQ and NASA TLX questionnaire. The procedure was repeated
for the remaining system. After completing the task with the last system, the user filled out the
preference questionnaire. In total, we collected 2 systems × 3 sizes × 21 trials = 126 samples per
task and participant, and, 126 × 8 participants = 1008 samples over all participants.

Hypotheses. We expected that TrackCap would successfully enable mobile interaction and
compensate for IMU drift. Therefore, TrackCap will perform better than MBO with respect to
TCT (H1) and error rate (H2) in the distant pointing task.

Results. The data did not fulfill the normality requirements and, therefore, was analyzed
using Wilcoxon signed-rank tests. Wilcoxon signed-rank tests revealed significant differences
between TrackCap and MBO for error rate (Z=2.20, p<0.05), TLX (Z=-2.52, p<0.01) and SEQ
(Z=2.58, p<0.01) (see Table 8.2 mean and standard deviation values).

Discussion. We investigated the ability of TrackCap to provide intuitive and precise 3D
pointing interactions, when compared to a standard technique using only an IMU. Our results
provide evidence that TrackCap enables more precise interactions with lower perceived task load.
Therefore, we accept H2. We believe that the significantly higher error for MBO is caused by a
large amount of drift introduced during interaction using the orientation sensors on the smartphone.
TrackCap is able to reliably and automatically compensate for this drift and make pointing natural
and intuitive.

The data did not reveal any significant difference in TCT. Therefore, we reject H1. To ensure
natural and intuitive pointing, we asked the user’s to not only be accurate but also fast. We believe
this instruction may have influenced their behavior, as they did not take much time to manually
compensate for the drift in MBO. This behavior was intended since we are aiming at a system
for intuitive pointing in 3D. Participants stated that the drift and the many failures in MBO were
frustrating, which influenced the time users spent on trying to hit the targets as the task progressed.
These observations are reflected in the significantly higher task load and lower perceived ease of
use of MBO. In addition, when asked for preferences, all participants (100%) preferred TrackCap
over MBO.
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8.2.2 Experiment 2: Selecting close proximity objects

The support of TrackCap for 6DOF input allows implementing direct 3D object selection tech-
niques [95]. We show the capability of our approach by comparing direct 6DOF selection (imple-
mented via TrackCap) to 3DOF raycasting that would otherwise be used in such a scenario. We
use the approach of Hincapié-Ramos et al. [58] for raycasting.

Task. While the first experiment investigated a distant pointing task, this experiment investi-
gated direct selection of targets within a user’s reach. The task uses the same setup as in the first
experiment, only with the spheres placed closer to the user. Participants again had to alternate se-
lection between opposing spheres in their surroundings. However, in this experiment, the distance
of spheres was set to be within arm’s length so that participants could reach them comfortably (see
Figure 8.4(a)).

Design. We designed a repeated-measures within-subject study to measure the performance
and user experience of drift-compensated 6DOF TrackCap in close proximity object selection
tasks. The 6DOF tracking of TrackCap was used to let the users interact with the smartphone as
an extension of their own hand.

Again, we defined an independent variable “system” with two conditions: TrackCap and mo-
bile device only (MBO). As dependent variables, we measured task completion time (TCT) and
error rate of the task, i.e., the percentage of spheres missed. In addition, we measured subjective
workload measured by the raw NASA TLX [52], usability using the Single Ease Question (SEQ)
[139], and overall preference.

Eight participants (all male, X =31.1 (sd=3.4) years old) volunteered for the study. On a scale
from one to five, five meaning best, the mean of self-rated AR experience was 3.5 (sd=1.2).

Apparatus. The same apparatus was used as in the first experiment.

Procedure. After filling out a consent form and demographics questionnaire, the height and
distance of the circles were set up for each participant so that it could be reached comfortably. The
rest of the procedure was the same as in the first experiment.

Hypotheses. We expected that direct selection using TrackCap will be more successful than
MBO, due to the lack of sensor drift in TrackCap and its ability to track the position of the input
device in 3D space. Therefore, TrackCap will perform better than MBO with respect to TCT (H3)
and error rate (H4) in the direct selection task.

Results. The data did not fulfill the normality requirements and, therefore, was analyzed
using Wilcoxon signed-rank tests. Wilcoxon signed-rank tests revealed significant differences
between TrackCap and MBO for error rate (Z=2.203, p<0.05), TLX (Z=-2.52, p<0.01) and SEQ
(Z=2.584, p<0.01) (see Table 8.2 for mean and standard deviation values).

Discussion. While we did not find significant performance differences regarding TCT, the
error rate was again significantly lower for TrackCap than for MBO. Therefore, we accept H4,
but reject H3. The lack of difference in TCT may again be explained with the instructions we
gave to participants. By asking participants to be precise and fast, we were aiming to measure the
performance of both interfaces during intuitive and natural pointing.
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Figure 8.4: Direct selection. Using the 6DOF pose generated by TrackCap, the user can select virtual
objects by simply touching them with the physical device.

Similar to the first experiment, the users mostly commented on the high frustration with the
MBO interface. This is also reflected in the significantly higher task load and lower perceived ease
of use of MBO. Both, lower task load and higher perceived ease of use, can also be explained with
the instructions we gave to intuitively select objects, which seems better supported with TrackCap.

When asked for preferences, seven participants (87.5%) preferred TrackCap over MBO. For
one user, MBO worked very well, since he was able to estimate the current and future drift of the
3DOF device. Since this user was a self-rated expert on mobile devices, we believe his ability to
cognitively compensate for drift is the result of his long experience with mobile sensors.

In general, the error rate was lower over all conditions than in the first experiment. This can
be explained by the shorter distance between the user and the spheres, which have the same 3D
size as in the first experiment. Hence, spheres appeared to be larger in the view of the participants,
thereby improving the general accuracy. The larger spheres and, thus, the larger interaction area
also seem to have implicitly compensated part of the drift that occurred in MBO.
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8.2.3 Experiment 3: Object manipulation

While the second experiment investigated the direct selection of objects in the vicinity of the
user, the third experiment investigates direct manipulation of such objects. We show the practical
value of our approach by comparing direct 6DOF manipulation via TrackCap to an established
3DOF manipulation technique utilizing raycasting for selection and hand-centered manipulation
in combination a fishing-reel technique, as proposed by Bowman et al. [21].

Task. The task uses a similar setup as in the second experiment. However, instead of spheres,
this task uses cubes with colored sides. Participants had to alternate selection between opposing
cubes in their surroundings. However, in this experiment, participants had to drag and drop the
selected cube to the opposing side and align it with a corresponding platform in the target location.
The orientation of the cube was defined uniquely by the differently colored sides (Figure 8.4(c)).

For this experiment, the rotation of the target was limited, so that the smartphone camera was
able to observe the cap during the entire task. In a follow-up experiment (reported below), we
extended the task to include full 360◦rotational changes.

Design. We designed a repeated-measures within-subject study to compare the performance
and user experience of drift-compensated 6DOF TrackCap for direct manipulation and common
3DOF mobile device interaction. Holding a button on the touch screen allowed participants to
grab objects; releasing the button also released the object. We compared TrackCap to a raycasting
manipulation with a fishing reel: After selecting objects by raycasting, objects stick to the ray.
Thus, the 3DOF of the interaction device manipulated the orientation of the object. The distance
of the object along the ray could be manipulated using a sliding motion on the touch screen of the
mobile phone.

As before, we defined an independent variable “system” with two conditions: TrackCap and
mobile device only (MBO). As dependent variables, we measured task completion time (TCT) and
error, i.e., the precision of the alignment. In addition, we measured subjective workload measured
by the raw NASA TLX [52], usability using the Single Ease Question (SEQ) [139], and overall
preference.

The participants of the second experiment took part in this experiment.
Apparatus. The same apparatus was used as in the first experiment.
Procedure. After filling out a consent form and demographics questionnaire, the height and

distance of the cubes were set up for each participant, so that it could be reached comfortably. The
orientation required to align the cubes was randomized. The rest of the procedure was the same as
the one in the first experiment.

Hypotheses. We expected that direct manipulation using TrackCap will be more successful
than MBO due to the more natural interaction. Therefore, TrackCap will perform better than MBO
with respect to TCT (H5) and error rate (H6) in the direct manipulation task.

Results. The data did not fulfill the normality requirements and, therefore, was analyzed
using Wilcoxon signed-rank tests. Wilcoxon signed-rank tests revealed significant differences
between TrackCap and MBO for TCT (Z=2.2, p<0.05) and TLX (Z=-2.52, p<0.01), but not for
alignment error or SEQ (see Table 8.2 mean and standard deviation values).
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Exp. 1 Exp. 2 Exp. 3
TrackCap MBO TrackCap MBO TrackCap MBO

TCT (ms) 9.3 (3.4) 10.1 (3.5) 4.9 (1.3) 6.8 (2.9) 13.9 (4.5) 20.1 (7.1)
Error (%) 35.1 (24.4) 75.6 (16.2) 10.1 (8.6) 27.4 (24.1) 0.05 (0.01) 0.06 (0.01)

TLX 45.3 (20.9) 79.7 (12.5) 27.1 (13.7) 55.1 (20.4) 33 (9.2) 63.8 (16.9)
SEQ 4.8 (1.3) 1.5 (0.5) 6.4 (0.7) 4.0 (1.4) 5.5 (1.6) 3.9 (1.6)

Preference 8 0 7 1 8 0

Table 8.2: Results of Experiments 1-3. Mean and standard deviation of time and error, SEQ results, and
TLX results. Last row indicates the number of participants preferring the interface.

Discussion. Participants could interact significantly faster when using direct manipulation
supported by TrackCap than when using the fishing reel metaphor of MBO. Therefore, we accept
H5. However, we did not find a significant difference in error rate, why we reject H6. There
was also no significant difference in perceived ease between TrackCap and MBO. However, the
significantly lower TLX for TrackCap indicates that directly interacting with virtual objects us-
ing TrackCap is less demanding. Consequently, all participants (100%) preferred TrackCap over
MBO.

In contrast to the previous experiments, there was no significant difference in error rate be-
tween TrackCap and MBO. We believe that participants could efficiently align the virtual cubes
despite the drift of MBO due to the visual feedback provided by the cube itself. Hence, participants
could compensate for the drift using the virtual cube as a visual reference.

Apart from the more natural manipulation using TrackCap, a part of the difference in TCT
could also be explained by the need to successfully select the virtual object before being able to
continue the alignment task. During the selection phase of the task, participants had to select the
virtual cube using the invisible raycasting. Participants could not skip this selection step as easily
as in the previous experiment but had to take their time to align the drifting raycasting with the vir-
tual object before continuing. Only after the virtual cube was stuck to the invisible ray, participants
could visually compensate for the drift. The focus of these experiments was to evaluate the ability
of TrackCap to automatically compensate for drift. Future work will additionally investigate the
ability of users to be able to compensate for drift by providing visual cues. Visual aids have been
shown to have an impact on pointing tasks such as these ones [159].
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Figure 8.5: Complex object manipulation - AR wire game. (a) Illustration of the AR game used to measure
the performance of TrackCap in complex object manipulation. (b) Screenshot through the HoloLens as seen
by a user. Upper row: training tasks. Lower row: Tasks used during the experiment.

8.2.4 Experiment 4: 6DOF interactions using camera switching

Our previous experiment revealed that TrackCap is able to outperform manipulation which con-
sists of 3D positional changes and moderate rotational changes. Since we designed TrackCap to
support full 6DOF interactions for mobile devices, we are interested in its performance in tasks
that use full 360◦rotations, as well as continuous translational movements in 3D space. In order to
support such interactions, we have extended our approach using the smartphone’s IMU, allowing
us to switch between the front and back camera of the mobile device depending on its current
orientation.

Task. To test the capability of our approach, we have set up a "don’t touch the wire" game,
which requires full 6DOF interactions (Figure 8.5) involving a large number of rotations paired
with continuous translational motion. The user must move a virtual wire loop along a winding
pipe in 3D without colliding. Whenever the user hits the pipe, an acoustic signal is played and a
particle spray marks the collision location. This game forces the user to move slowly and carefully
in 3D.
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Design. We designed a repeated-measures within-subject study to compare the performance
and user experience of our dual-camera TrackCap with a system using the Google Tango API
to read additional mobile sensors for 6DOF API. This tracking system was implemented on the
ASUS ZenfoneAR smartphone, which is packed with additional hardware, including a fisheye
camera, a time-of-flight camera and a custom DSP processor. The hardware of the ZenfoneAR can
be compared to the HoloLens and does not compare to current-generation smartphones. However,
we were interested in how TrackCap could compare to a powerful alternative.

We define an independent variable “system” with two conditions: the modified TrackCap
(CamSwitch) and Project Tango (Tango). As dependent variables we measured task completion
time (TCT) and error rate of the task, i.e., the number of hits between the wire loop and the pipe.
In addition, we measured subjective workload by the raw NASA TLX [52], usability using the
Single Ease Question (SEQ) [139], and overall preference.

Eight participants (1 female, X =32.5 (sd=3.9) years old) volunteered for the study. On a
scale from one to five, five meaning best, the mean of self-rated AR experience was 3.9 (sd=1.1).

Apparatus. The apparatus consisted of an optical see-through HMD (Microsoft HoloLens)
and a mobile phone with Project Tango support (Asus ZenfoneAR). We use the same phone in
both conditions. The wire and the pipe were visible in the HMD view only. The mobile device
was used to control the wire.

Procedure. After filling out a consent form and demographics questionnaire, the height
of the pipe was roughly set to the height of the participant. Then, users were introduced to the
first condition. The starting order of systems was counterbalanced using a Latin Square setup.
Participants were standing throughout the task and used their dominant hand for holding the virtual
wire loop.

After the participants familiarized themselves with the interaction method by performing two
test games, the task was performed. The participants were instructed to be fast and accurate. Upon
completion of the condition, users filled in the SEQ and NASA TLX questionnaire. The procedure
was repeated for the remaining system. After completing the task with the last system, the user
filled out the preference questionnaire.

Hypotheses. We expected that CamSwitch will successfully support the entire task. Due to
stable 6DOF tracking of the device, we expected to see equivalent results in TCT (H7) and Error
(H8), when compared to Tango.

Results. To verify H7 and H8, we planned to perform equivalence tests, which require a
larger sample size. However, we aborted the experiment after only eight participants, because
the feedback and our observations indicated that CamSwitch suffered from the time-consuming
switching between cameras that influenced the interaction performance. Due to the small sample
size, we did not perform equivalence tests, but checked for significant differences to explore the
differences between CamSwitch and Tango.
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Figure 8.6: AR Squash. We implemented a squash game for evaluating the performance of TrackCap in
the complementary operation with a model-free tracking solution. (a) Illustration of the interaction. Blue
and red balls are thrown towards the user, who has to hit them with the matching side of the virtual paddle
(indicated by blue and red colors). (b) Screenshots captured through the HoloLens while playing the game.
Balls explode when they are hit.

The data did not fulfill the normality requirements and, therefore, was analyzed using
Wilcoxon signed-rank tests. Wilcoxon signed-rank tests revealed no significant differences
between CamSwitch and Tango for TCT (CamSwitch 28.4, sd=14.9; Tango 16.3, sd=4.4),
error rate (CamSwitch 1.5, sd=2.1; Tango 1.5, sd=1.7 and TLX (CamSwitch 34.5, sd=17.9;
Tango 29.1, sd=16.6). However, the test revealed a significant difference for SEQ (CamSwitch
2.1, sd=0.8; Tango 6.3, sd=0.7; Z=2.56,p<0.01). The TCT of CamSwitch was close to being
significantly worse than Tango (Z=0.14, p=0.055).

Discussion. We could not establish the equivalence of CamSwitch and Tango and, therefore,
reject H7 and H8. After only eight participants, we determined, based on user feedback and
observations, that CamSwitch suffered from technical issues. Common smartphones require too
much time to switch between back and front cameras. This makes an uninterrupted motion in
CamSwitch unfeasible. Participants were forced to wait for the completion of the camera switch,
which led to frustration during interaction. This is reflected by the 100% preference and the higher
perceived ease of use of the Tango device. The waiting time is also reflected in the higher TCT of
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CamSwitch, when compared to Tango. However, the small error rate of CamSwitch indicates that
TrackCap is suitable for precise 6DOF motion in 3D space. Therefore, TrackCap would likely
benefit from better support for dual-camera solutions on smartphones, which can quickly search
for the "cap" in both camera streams simultaneously.

8.2.5 Experiment 5: 6DOF interaction by complementary operation of TrackCap
and model-free tracking

As demonstrated in the previous experiment, a self-contained model-free 6DOF tracking system
such as Tango makes a smartphone even more valuable as an input device companion to an HMD.
Even though Tango hardware will likely not become available to a mass audience, self-contained
6DOF tracking with somewhat lower performance is becoming available as part of Google’s AR-
Core or Apple’s ARKit. Even though these solutions rely on an opportunistic mapping of the
environment and can easily become confused under fast motion, they can support an enhanced
version of interaction in the style of TrackCap style.

We were interested in a longer-term technical trajectory, where technologies such as ARCore
are widely available, and users would like to use them for fast motion, rather than the slow interac-
tion of our previous experiments. Therefore, we designed a final experiment to assess the benefit
of TrackCap to a self-contained model-free 6DOF tracking as well.

Task. The task was inspired by tennis ball serving machines. Virtual balls with a diameter
of 10 cm were thrown at a constant speed of 1 meter per second at the participant, who had to hit
the ball using the mobile device as a tennis racket to make the ball disappear. Once per second,
red or blue balls originated from the same location, moving in a random direction within a cone
of 30 degrees. Red balls had to be hit with the front of the racket, blue balls with the back (see
Figure 8.6).

Design. We designed a repeated-measures within-subject study to compare the performance
and user experience of the combination of TrackCap and Project Tango, and a system using the
6DOF tracking of Project Tango only. Therefore, we define an independent variable “system” with
two conditions: Project Tango and TrackCap (TangoCap) and Tango Only (Tango).

As dependent variables, we measured task completion time (TCT) and success rate of the task,
i.e., the number of spheres hit. In addition, we measured subjective workload measured by the raw
NASA TLX [52], usability using the Single Ease Question (SEQ) [139] and overall preference.

Eight participants (1 female, X =30.5 (sd=3.3) years old) volunteered. On a scale from one
to five, five meaning best, the mean of self-rated AR experience was 3.5 (sd=1.4).

Apparatus. The apparatus consisted of an optical see-through HMD (Microsoft HoloLens)
and a mobile phone with Project Tango support (ASUS Zenfone AR). The spheres were visible in
the HMD view only. The mobile device was used to control the tennis racket.
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Procedure. After filling out a consent form and demographics questionnaire, the height of
the ball’s origin was set to the height of the participants. Then users were introduced to the first
condition. The starting order of systems was counterbalanced using a Latin Square. Participants
performed runs of 100 task repetitions, i.e., they had to hit 100 balls in a row. Participants were
standing throughout the task and used their dominant hand for holding the virtual racket.

After the participants familiarized themselves with the interaction method by performing two
test runs, the task was performed by repeating one run for the system for each size condition. The
participants were instructed to be fast and accurate. Upon completion of the condition, users filled
in the SEQ and NASA TLX questionnaire. The procedure was repeated for the remaining system.
After completing the task with the last system, the user filled out the preference questionnaire.

Hypotheses. We expected that TrackCap could successfully support the relocalization of
Tango, if tracking was lost. Due to the speed and appearance of balls at fixed time intervals,
we did not expect to see differences in TCT (H8). However, we expected that TrackCap would
supplement the capabilities of Tango and lead to better error rates in this task than when only using
Tango tracking only (H9).

Results. The data was evaluated using a level of significance of 0.05. The data did not ful-
fill the normality requirements and, therefore, was analyzed using Wilcoxon signed-rank tests.
Wilcoxon signed-rank tests revealed significant differences between TangoCap and Tango for
success rate (TangoCap 81.4, sd=12.5; Tango 65.4, sd=20.9; Z=2.52, p<0.01) TLX (TangoCap
31.6, sd=14.5; Tango 45, sd=16.4; Z=2.52, p<0.01) and SEQ (TangoCap 5.4, sd=1.1; Tango 3.1,
sd=0.8; Z=2.4, p<0.05).

Discussion. As expected, relocalization failed after the device lost tracking due to fast mo-
tion. This required the user to scan the room for a position known to the Tango device, thereby
slowing down the user interaction. However, TrackCap ensured fast and accurate relocalization
after tracking failure due to fast motion. This is reflected in the significantly higher rate of balls
that users hit successfully. Note that measuring timing difference was not possible due to the balls
spawning at constant time intervals. Due to the nature of TrackCap, this method works reliably
also in unknown environments. Participants preferred TangoCap (87.5%) and found it more intu-
itive and easier to use, which is reflected in the lower workload and higher perceived ease of use.
Overall TrackCap could successfully expand the usability of the existing 6DOF Tango tracking.

8.3 Discussion and conclusion

We have presented TrackCap, a novel system aimed for mobile VR and AR that allows for sponta-
neous, precise, and natural interactions with 6DOF using consumer-grade smartphones. We have
presented evaluation results that indicate that TrackCap improves over current HMD input devices
in standard 3D selection and manipulation tasks.

Evaluation summary. Our results show that TrackCap allows for precise interaction at a
distance and in close proximity. In these scenarios, TrackCap outperforms traditional techniques
that rely only on the IMU of the smartphone or input device.
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Our fourth experiment showed a limitation of our system. When designing a task that required
rotating the phone’s camera out of view of the "cap", the 6DOF tracking was lost. To compensate
for this issue, we expanded the capability of TrackCap to switch between front and back camera
of the smartphone, depending on its orientation to the user. However, we found that most current
smartphones cannot switch between front and back camera sufficiently fast. Despite the system-
atic interruption, TrackCap also allowed for precise 6DOF interaction in this situation. It is also
worth mentioning that only a few phones model (e.g., HTC M8) support simultaneous usage of
several cameras and do not require a camera switch. However, this is not a fundamental technical
limitation; adding simultaneous support for both cameras should be cheaper than adding addition
sensors or other hardware components, as in Project Tango.

During fast motion, where the tracking of Project Tango was thrown off, TrackCap success-
fully supported the Tango’s relocalization and enabled more fluid interaction than when using
Tango alone. This demonstrates that TrackCap is not only able to make use of older smartphones
for interaction, but also extended the usability of current solutions, such as those based on ARCore
and ARKit.

Limitations. There are several limitations that are worth mentioning. First, we intentionally
decided to not include supportive visualizations in the user evaluation. Our system, like most prac-
tical applications, supports visual aids such as cross-hairs or virtual laser pointers that might affect
the performance in the studies. However, we focused on showing the ability of our system to pro-
vide reliable and intuitive interaction using only natural hand-eye coordination and proprioceptive
cues.

Similarly, we did not focus on utilizing the screen for complex interaction apart from con-
firming selection. However, as outlined later there are opportunities there to further improve the
results but we intentionally focused on the spatial interaction with the controller (smartphone) for
the studies.

Another point for discussion is the limited number of participants for our studies. This limita-
tion is owed to the explorative nature of our experiments. We studied several aspects of our system
using five different experiments that took two hours per participant and included a large number
of trials and measured samples.

Implications We argue that the work has relevance beyond the scope of this thesis. Foremost,
we show the lack of input devices that specifically aim for spontaneous and natural interaction
with a mobile HMD. This is particularly important for commercial AR/VR solutions that leave the
boundaries of scientific environments and find applications in classrooms, workplaces, but also for
personal entertainment and recreation.

Our work shows that inside-out tracking can be a feasible option for hand controllers, but
has been largely ignored. We believe this finding is significant, as smartphones are ubiquitous
and the alternatives require additional hardware or put additional constraints on the user or the
environment.
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Figure 8.7: Application scope. TrackCap can not only be used to select objects, as it also provides a device
with high input and output fidelity, it can also be used to display detail of the selected objects and as an
interface for manipulating part of that details.

We also argue that adopting phones as controllers is not a compromise, but an opportunity to
exploit capabilities so far not offered by most available controllers. While we show the perfor-
mance of TrackCap in a variety of experiments, we did not yet utilize the full potential offered by
the touchscreen or haptic feedback [179]. Figure 8.7 shows an illustration of this concept where
TrackCap is used to interact with the digital environment shown in a HMD while offering ad-
ditional controls and providing haptic feedback. We also did not further explore how personal
phones can fuel personalization of the experience or support collaborative activities.

Finally, future commercial solutions could replace the tracker with a 3D model-based tracker
or a silhouette-based tracker. The idea here is not to track the features on the TrackCap, but to
track the shape or appearance of the HMD itself. One advantage of our existing approach though
is that it can be retrofitted to existing HMD designs, but a streamlined version would include the
"cap" into the HMD design itself.



CHAPTER 9

Conclusion

This thesis aimed to identify effective methods for authoring, visualization and interaction of aug-
mented reality tutorials. Augmented Reality reduces the cognitive load by presenting instructions
directly registered to objects in the user’s real environment. In our work we have discussed and
addressed major problems of AR documentation and answered the main research questions:

Since the creation of AR content is costly, can we utilize existing sources to speed up the
authoring process? We developed several methods to retarget printed media, videos and also
arbitrary live scenes to AR tutorials, as described in chapters 3, 4 and 5. Based on our findings we
can conclude that we can re-use large portions of existing sources with the appropriate methods
to extract said data. In some cases, these workflows are not fully automated but require a certain
amount of user interaction and supervision.

Which visualization methods are best suited for AR tutorial systems? We provide insights into
this research question in chapter 6. We iteratively developed multiple visualization methods, which
are suited for different situations. We conducted several user studies and based on the findings as
well as various user comments we could improve our methods. We can conclude that the most
important factors when it comes to the design of visualizations are simplicity and adaptivity. Too
much clutter or information quickly overwhelmed the users, so reducing the visuals to a minimum
is often the best option. Especially when it comes to animations, it is important that the users are
able to follow the instructions, otherwise, the experience quickly turns into a stressful situation.

How can we improve the interaction possibilities for AR tutorial systems? This thesis pre-
sented novel interaction techniques for two different AR presentation devices. First, we analyzed
interaction improvements for handheld AR, which uses smartphones or tablets as output devices.
We showed in a user study that user perspective rendering (UPR) can greatly improve the expe-
rience for AR instructions by correcting the view through the handheld display. Using UPR, the
user’s hand appears at the expected position behind the AR display, which is especially important
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for following AR tutorials. Second, we studied interaction using an optical see-through head-
mounted display, such as the Microsoft HoloLens. Unlike most VR systems, it comes without
tracked controllers and is completely untethered. Inputs to the system are usually done via hand
gestures in mid-air in front of the HMD, a method which lacks haptic feedback and is very tiring
for the user. We showed that a smartphone can be used as an inexpensive, fully tracked control
device, which also provides a high-resolution display and passive haptic feedback. We conducted
a user study, showing that a fully tracked controller aids in many object selection and manipulation
tasks. Furthermore, our method does not add computational load on the HMD, because tracking
is handled on the smartphone.

The research work done during this thesis is not only theoretical but resulted in a set of work-
ing systems, which support authoring tasks, the discussed visualization and interaction methods.
Several user studies were conducted using these systems to gather more insights and were used to
iteratively improve said systems.

Besides our design recommendations, several directions for future work exist. For example,
the authoring components could be extended to support more types of tutorials, such as docu-
mentations which depict interactions with soft tissue or deformable objects. Generating candidate
configurations of 3D deformable objects presents additional challenges such as a large number of
candidate configurations and complex models describing the deformations. Additional research
in the area of deep learning could increase the number of object classes our systems can support.
In the area of human body motion tracking improvements for tracking other body parts, such as
hands, will be another challenge. Furthermore, the investigation of tools to effectively extract and
visualize 3D tutorials that require precise motion in time is an interesting topic. This will require
the design of visualizations that encode speed, velocity and the direction of tools in 3D. An impor-
tant part of this work will be the evaluation of these visualizations, which need to convey different
attributes without distracting the user. Regarding online authoring, as described in our remote light
field approach, it could be extended to support dynamic scenes, which would require different data
structures. Our UPR system is designed for the current generation of mobile devices. However,
faster and more reliable head tracking approaches, in combination with more powerful devices
will make our adaptive solution for user perspective rendering less important. Therefore, future
work needs to further investigate head tracking on mobile devices.

In the course of this thesis, we presented novel methods for authoring and visualization of
AR documentation as well as novel interaction approaches for AR instruction systems. We have
provided important design considerations for AR instruction visualization based on multiple user
studies.
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List of Publications

My work at the Institute of Computer Graphics and Vision led to the following peer-reviewed
publications. For the sake of completeness of this Thesis, they are listed in chronological order
along with the respective abstracts.

2015

Retargeting Technical Documentation to Augmented Reality

Peter Mohr, Bernhard Kerbl, Michael Donoser, Dieter Schmalstieg, and Denis Kalkofen.
In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems (CHI ’15). Association for Computing Machinery, New York, NY, USA, 3337-3346.
DOI:https://doi.org/10.1145/2702123.2702490

Abstract: We present a system which automatically transfers printed technical documentation,
such as handbooks, to three-dimensional Augmented Reality. Our system identifies the most fre-
quent forms of instructions found in printed documentation, such as image sequences, explosion
diagrams, textual annotations and arrows indicating motion. The analysis of the printed documen-
tation works automatically, with minimal user input. The system only requires the documentation
itself and a CAD model or 3D scan of the object described in the documentation. The output
is a fully interactive Augmented Reality application, presenting the information from the printed
documentation in 3D, registered to the real object.
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2017

Retargeting Video Tutorials Showing Tools With Surface Contact to Augmented Re-
ality

Peter Mohr, David Mandl, Markus Tatzgern, Eduardo Veas, Dieter Schmalstieg, and Denis
Kalkofen.
In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems
(CHI ’17). Association for Computing Machinery, New York, NY, USA, 6547-6558.
DOI:https://doi.org/10.1145/3025453.3025688

Abstract: A video tutorial effectively conveys complex motions, but may be hard to follow pre-
cisely because of its restriction to a predetermined viewpoint. Augmented reality (AR) tutorials
have been demonstrated to be more effective. We bring the advantages of both together by in-
teractively retargeting conventional, two-dimensional videos into three-dimensional AR tutorials.
Unlike previous work, we do not simply overlay video, but synthesize 3D-registered motion from
the video. Since the information in the resulting AR tutorial is registered to 3D objects, the user
can freely change the viewpoint without degrading the experience. This approach applies to many
styles of video tutorials. In this work, we concentrate on a class of tutorials which alter the surface
of an object.

Adaptive User-Perspective Rendering for Handheld Augmented Reality

Peter Mohr, Markus Tatzgern, Jens Grubert, Dieter Schmalstieg and Denis Kalkofen.
In Proceedings of the 2017 IEEE Symposium on 3D User Interfaces (3DUI), Los Angeles, CA,
2017, 176-181. DOI:https://doi.org/10.1109/3DUI.2017.7893336

Abstract: Handheld Augmented Reality commonly implements some variant of magic lens ren-
dering, which turns only a fraction of the user’s real environment into AR while the rest of the
environment remains unaffected. Since handheld AR devices are commonly equipped with video
see-through capabilities, AR magic lens applications often suffer from spatial distortions, because
the AR environment is presented from the perspective of the camera of the mobile device. Recent
approaches counteract this distortion based on estimations of the user’s head position, rendering
the scene from the user’s perspective. To this end, approaches usually apply face-tracking al-
gorithms on the front camera of the mobile device. However, this demands high computational
resources and therefore commonly affects the performance of the application beyond the already
high computational load of AR applications. In this paper, we present a method to reduce the com-
putational demands for user perspective rendering by applying lightweight optical flow tracking
and an estimation of the user’s motion before head tracking is started. We demonstrate the suit-
ability of our approach for computationally limited mobile devices and we compare it to device
perspective rendering, to head tracked user perspective rendering, as well as to fixed point of view
user perspective rendering.
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2019

TrackCap: Enabling Smartphones for 3D Interaction on Mobile Head-Mounted Dis-
plays

Peter Mohr, Markus Tatzgern, Tobias Langlotz, Andreas Lang, Dieter Schmalstieg, and Denis
Kalkofen.
In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems
(CHI ’19). Association for Computing Machinery, New York, NY, USA, Paper 585, 1-11.
DOI:https://doi.org/10.1145/3290605.3300815

Abstract: The latest generation of consumer market Head-mounted displays (HMD) now in-
clude self-contained inside-out tracking of head motions, which makes them suitable for mobile
applications. However, 3D tracking of input devices is either not included at all or requires to keep
the device in sight, so that it can be observed from a sensor mounted on the HMD. Both approaches
make natural interactions cumbersome in mobile applications. TrackCap, a novel approach for 3D
tracking of input devices, turns a conventional smartphone into a precise 6DOF input device for
an HMD user. The device can be conveniently operated both inside and outside the HMD’s field
of view, while it provides additional 2D input and output capabilities.

2020

Mixed Reality Light Fields for Interactive Remote Assistance

Peter Mohr, Shohei Mori, Tobias Langlotz, Bruce Thomas, Dieter Schmalstieg, and Denis
Kalkofen.
In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems
(CHI ’20), Association for Computing Machinery, New York, NY, USA, to appear.
http://dx.doi.org/10.1145/3313831.3376289

Abstract: Remote assistance represents an important use case for mixed reality. With the rise
of handheld and wearable devices, remote assistance has become practical in the wild. How-
ever, spontaneous provisioning of remote assistance requires an easy, fast and robust approach for
capturing and sharing of unprepared environments. In this work, we make a case for utilizing in-
teractive light fields for remote assistance. We demonstrate the advantages of object representation
using light fields over conventional geometric reconstruction. Moreover, we introduce an interac-
tion method for quickly annotating light fields in 3D space without requiring surface geometry to
anchor annotations. We present results from a user study demonstrating the effectiveness of our
interaction techniques, and we provide feedback on the usability of our overall system.
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