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Abstract

This thesis deals with a design optimization problem of an electrical machine coming
from a real world application. The problem is motivated from an electrical drive used
in an X-Ray tube. Here, a synchronous reluctance machine is considered as drive for a
rotary anode X-Ray tube because of its beneficial properties. The performance of the
machine depends strongly on the electromagnetic fields in its interior which among
others depend on the geometry of the rotating part of the machine (rotor). The task
is to find a rotor design of the synchronous reluctance machine that maximizes the
torque for a given impressed current density and a fixed rotor position. We focus on
a two dimensional geometrical model of the electrical machine. The mathematical
formulation of this problem results in an optimization problem which is constrained
by a partial differential equation (PDE) and where the unknown is the design of the
rotor geometry. In general the PDE-constraint turns out to be the two dimensional
boundary value problem of nonlinear magnetostatics, however we will also consider a
simplification to a linear PDE and an extension to a stochastic nonlinear PDE. The
latter is used to model uncertainty in the material parameters due to e.g. measurement
errors and yields a so called stochastic optimization problem.

In a first step we consider a shape optimization method based on sensitivity in-
formation in order to solve all three PDE-constrained design optimization problems.
Here, the crucial ingredient is the computation of the so called shape derivative. We
derive the shape derivative not only for the deterministic optimization problems but
also for the stochastic problem at hand and employ it in suitable algorithms. Finally,
we compare our results to the results of a parametric shape optimization approach
which is commonly used for design optimization of electrical machines.

In the next step we concentrate on topology optimization methods based on topo-
logical sensitivities in order to solve the design optimization problems. In contrast to
shape optimization methods which can only vary the boundary or interface of a do-
main, this class allows for topological changes of the design domain, that is, introduce
holes or components. We derive the so called topological derivative of our optimiza-
tion problem with the help of a recently presented derivation technique based on a
Lagrangian framework. We use a well established level set algorithm which employs
the topological derivative to solve the deterministic problems. Finally, we present a
novel extension of the level set algorithm based on the stochastic gradient method to
solve the stochastic optimization problem.
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Introduction

Electrical machines are the principal components of many appliances, industrial equip-
ment and systems. They are the foundation of the power industry and the core of any
electrical drive. Electrical machines consume about 46% of the worldwide generated
electricity resulting in about 6040 Mega-tonnes of CO2 emission [30]. Therefore, con-
structing motors with high energy efficiency is indispensable for energy conservation
and environmental sustainability. Besides energy efficiency there are many other per-
formance criteria/requirements imposed on electrical machines such as high torque
and power density, high reliability or low noise. So, finding designs such that these
machines fulfill these criteria as well as possible has top priority and to achieve this
goal design optimization is necessary [30].

In general, a design optimization problem consists of a cost/shape function J(Ω, u(Ω))
which is a measure for the performance criterion. Here, the shape function depends on
Ω ⊂ Rd and on u(Ω), where the state u satisfies the constraint E(Ω, u(Ω)) = 0. In the
context of electrical machines the constraint E is often a partial differential equation
or a system of PDEs describing electromagnetic phenomena, thermal fields, vibration
noise or the coupling of these fields. Then, the objective is to minimize (or maximize)
the cost function J over some admissible set Ξ ⊂ {Ω : Ω ⊂ Rd}, that is,

minimize J(Ω, u) over Ω ∈ Ξ (0.1a)

subject to u ∈ X solves E(Ω, u) = 0, (0.1b)

where X is a function space. We also refer to this class as deterministic optimization
problems. On the contrary in stochastic design optimization problems the constraint
E is additionally subject to uncertainty due to e.g. uncertain coefficients, that is
E(Ω, u(Ω, ω), ξ(ω)) where ξ is a finite dimensional random vector and ω ∈ X an
element of the sample space X. The shape function then depends on the uncertainty
as well, i.e. J(Ω, u(Ω, ω), ξ(ω)). It is then desirable to determine optimal designs that
account for and in some sense are resilient to this uncertainty. A general problem
formulation reads

minimize R(J(Ω, u, ξ(ω)) over Ω ∈ Ξ (0.2a)

subject to u = uω ∈ X solves E(Ω, u, ξ(ω)) = 0 for P a.e. ω ∈ X, (0.2b)

where R is a functional that maps random variables into real numbers and where P
is a probability measure. For example R could be the expectation operator or any
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8 Introduction

risk measure. In the context of electrical machines we are faced with both types of
problems depending on the modeling and the objectives.

There are several approaches to look on design optimization problems and they
differ on the way on how the geometry is allowed to vary. We make the following
classification of methods:

1. Parametric optimization: In that case the design Ω is described by a finite number
of different parameters m such as lengths, thicknesses, distances, orientations etc.
Therefore, the design optimization problem becomes a parametric (shape) opti-
mization problem over the finite dimensional vector space Rm. These problems
can be solved by standard gradient based algorithms or by the class of evolu-
tionary algorithms. The latter are less prone to getting stuck in local minima as
they do not need any sensitivity information and are widely used in design opti-
mization of electrical machines not only for single-objective problems but also for
multi-objective ones. However, they are known to be computational expensive.

2. Shape optimization: In that point of view, we start with an initial design Ω0 and
want to find the optimal design Ω∗ by considering smooth perturbations of the
boundary of Ω0. However, we consider the topology of the design domain to be
fixed. In order to study the behavior of shape functions under these perturbations
shape sensitivity analysis was introduced. This allows to set up gradient based
algorithms to solve the optimization problem numerically.

3. Topology optimization: This is the most general class of design optimization
methods. Here, we consider not only smooth boundary variations but also topo-
logical changes of the design domain. The objective is to find the optimal distri-
bution of different materials within a given design domain.

In this thesis we focus on the latter two approaches. Therefore, we discuss in the
following some aspects about shape and topology optimization.

Shape Optimization

One principle of shape sensitivity analysis is to identify shapes with functions to handle
the lack of vector space structure of the set of admissible shapes. An important notion
is the so called shape derivative, which is for a shape function J and a smooth vector
field V defined by

dJ(Ω;V ) = lim
t↘0

J(Ωt)− J(Ω)

t
,

when the limit exists and V 7→ dJ(Ω;V ) is continuous and linear. Here, Ωt = Tt(Ω)
describes the perturbation of the domain Ω under the flow Tt which is generated by
V , see Definition 2.2. The idea of shape sensitivity was first used by Hadamard in his
study of elastic plates [20]. The structure theorem says that the shape derivative can
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be represented for domains with sufficiently smooth boundary as

dJ(Ω;V ) =

∫
∂Ω

gV · n ds,

where g ∈ L1(∂Ω) and V a sufficiently smooth vector field, see [41, 11]. Besides this
boundary form, the shape derivative can alternatively be written as volume integral,
i.e.

dJ(Ω;V ) =

∫
Ω

F (V ) dx,

where F is an operator acting on V and its derivatives. This formulation requires
less regularity of the domain and therefore is more general than the boundary form.
In [27] it was pointed out that the volume form has several advantages in terms of
numerical accuracy and numerical implementation as well. For this reason we use the
volume form in this thesis. Typically, the shape derivative is used to set up gradient
based algorithms to solve the shape optimization problems. Here, the basic procedure
consists of the following steps:

• Compute the shape derivative.

• Extract a descent direction.

• Move the boundary of the shape along this direction.

Additional challenges arise when considering stochastic (shape) optimization prob-
lems. A widely used technique to solve these problems is the stochastic approximation
approach which dates back to the paper of Robbins and Monro [36]. The crucial in-
gredient is the use of a so called stochastic gradient instead of a gradient to iteratively
minimize the expected value of a random objective function. Recently, this approach
has been combined with the gradient descent method based on the shape derivative
to solve stochastic shape optimization problems on shape spaces [17, 18].

Topology optimization

The literature of methods that allow for topological changes of the design domain
is very rich and we mention for example the homogenization method [1], On/Off-
type methods or density based methods [7]. Perhaps, the latter are the most used in
commercial software and a popular representative of them is the SIMP (Solid Isotropic
Material with Penalization) method. For an overview of these methods we refer the
reader to [39] and the references therein.

Besides the above mentioned approaches, topology optimization methods based on
the topological derivative have gained an increasing attention not only from a the-
oretical but also application point of view. The topological derivative measures the
sensitivity of a shape function with respect to a topological perturbation of the shape.
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More precisely, the topological derivative of a shape function J = J(Ω) in a spatial
point z is defined as

dJ(Ω)(z) = lim
ε↘0

J(Ωε)− J(Ω)

|ωε|
,

if the limit exists. Here, Ωε denotes the topologically perturbed domain resulting from
an insertion of a hole ωε. This concept was first introduced in [40] in a mathematically
rigorous way. Several papers deal with the derivation of the topological derivative for
optimization problems constrained by PDEs, see for example [2]. There are different
ways to use the topological derivative in a numerical procedure. One way is to combine
this derivative with shape optimization algorithms. Here, the typical procedure is to
perform repeatedly several iterations of shape optimization and then make a topologi-
cal perturbation where the topological derivative is most negative. Another approach
which solely employs this sensitivity information is the level set algorithm introduced
in [4].

In the stochastic case there are several articles which deal with stochastic topology
optimization methods, for example see [34, 10] and the references therein. However,
none of these methods employ the topological derivative to our knowledge.

Structure of this thesis

In this thesis we focus on solving a design optimization problem of an electrical ma-
chine by means of shape and topology optimization methods based on the shape and
topological derivative respectively. The thesis is organized as follows:
In Chapter 1 we formulate two deterministic design optimization problems, a nonlinear
and a linear one, which are motivated by the physical model of an electrical machine.
Further, we investigate its mathematical properties. Chapter 2 deals with shape opti-
mization. In the first part we derive the shape derivative for both deterministic prob-
lems and present numerical results. Subsequently, we extend the deterministic model
and concentrate on a stochastic design optimization problem. We apply the stochastic
shape gradient method [17] to solve the problem and present numerical results. In the
final part we compare our results to the results of a parametric optimization approach
applied to the nonlinear problem. In Chapter 3 we focus on topology optimization.
The first part is concerned with the derivation of the topological derivative for the
deterministic problem(s) and the numerical implementation. In particular, we discuss
the level set algorithm and a finite element method for unfitted interfaces. We present
numerical results for two different initial designs. In the final part a novel approach to
solve the stochastic design optimization problem is presented. More precisely, we pro-
pose an extension of the level set algorithm based on the stochastic gradient method.
We apply this algorithm to the stochastic problem at hand and show numerical results.



1 Problem formulation and
analysis

In this chapter we introduce the deterministic model problems used throughout this
thesis and investigate its mathematical properties. Therefore we briefly describe the
physical background of electrical machines and especially have a closer look on a
synchronous reluctance motor (SyRM) since it serves as our model problem. The
following sections are mainly based on [13].

1.1 A brief introduction to electrical machines and

the physical model

Electrical machines convert electrical and mechanical energy into each other. An
electric motor converts electric energy into mechanical energy while a generator does
the opposite. Electric motors can be classified into DC motors, which operate on
direct current and AC motors, where alternating current is induced. The latter can
be distinguished into induction motors and synchronous motors. In this thesis we will
focus on a special type of synchronous motors namely synchronous reluctance motors.
This motor consists of a fixed part called stator and a rotating part called the rotor.
Here, the stator contains coil areas where electric current is induced which generates
a magnetic field. Stator and rotor are separated by an air gap. The key component of
this motor is that the rotor has no permanent magnet or coil areas such that a torque
producing force will only be generated through magnetic reluctance. Compared to
other synchronous motors the advantage of these motors lie in the simple construction
and the robustness whereas the disadvantage lies in worse performance. For a thorough
introduction to electrical machines we refer the reader to [8].

As starting point to obtain a physical model for electric machines serve Maxwell’s
equations which read

curlH = J +
∂D

∂t
, (1.1a)

curlE = −∂B
∂t

, (1.1b)

divB = 0, (1.1c)

divD = ρ, (1.1d)

11



12 1 Problem formulation and analysis

where H denotes the magnetic field intensity, B the magnetic flux density, E the
electric field density, D the electric flux density, J the current density and finally ρ
the charge density. The boldface letters denote vector valued quantities which depend
in general on space and time. This set of equations is complemented by the constitutive
equations

B = µH + M , (1.2a)

D = εE + P , (1.2b)

J = J i + σE, (1.2c)

where M denotes the magnetization, P an electric polarization and J i an impressed
current density. Furthermore these equations involve the magnetic permeability µ,
the electric permittivity ε and the electric conductivity σ. In general these three
quantities are second order tensors depending on space, time and the electromagnetic
fields. However, in this thesis we assume isotropic material behavior such that these
quantities can be considered as scalar functions. Moreover we neglect possible effects
of hysteresis. For the mathematical problem we will use a quantity which is closely
related to µ, namely the magnetic reluctivity ν which is defined as the reciprocal of µ.
It can be seen from (1.2a) that the magnetic reluctivity satisfies the relation

H = ν(B −M ). (1.3)

In the context of electrical machines we have to deal with ferromagnetic materials. In
this case the magnetic reluctivity is described as a nonlinear function depending on
the magnitude of the magnetic flux density, ν = ν(|B|).

For the simulation of electrical machines it is not necessary to work with the full
set of equations in (1.1). A usual simplification is to neglect displacement currents ∂D

∂t

since for low frequency applications hold that (cf. [32, 25])∣∣∣∣∂D∂t
∣∣∣∣� |J | . (1.4)

Thus, we arrive at the so called magnetoquasistatic problem or eddy current problem
formulation which reads in vector potential formulation: (cf.[13, 26])

σ
∂A

∂t
+ curl(ν(|curlA|) curlA) = J i + curl(νM ), (1.5)

where A denotes a vector potential which fulfills

B = curlA. (1.6)

This model can be used to describe the behavior of an electric motor in its starting
phase, this means when the motor is accelerated from a resting position. We are
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interested in the phase where the rotor has reached a constant speed. Therefore
we can assume that all electromagnetic field quantities are independent of time and
conclude that the derivative with respect to the time variable vanishes. As a result
we obtain the magnetostatic model in 3D for determining the magnetic flux density
B = curlA,

curl(ν(|curlA|) curlA) = J i + curl(νM ). (1.7a)

Note that the above system of partial differential equations is not yet complete. In
order to be able to solve (1.7a) numerically we have to impose suitable boundary and
interface conditions. Therefore let us introduce a bounded domain D̂ and further split
the boundary of ∂D̂ into two parts ΓB and ΓH such that D̂ = ΓB∪ΓH and ΓB∩ΓH = ∅.
One possible choice is to consider the boundary conditions

B · n = 0 on ΓB, (1.7b)

H × n = 0 on ΓH , (1.7c)

where n denotes the outer unit normal vector to D̂. The condition (1.7b) is called
induction boundary condition and means that no magnetic flux can leave the compu-
tational domain. The Perfect Magnetic Conductor (PMC) boundary condition (1.7c)
models materials with very high permeability, cf.[44]. We now focus on suitable inter-
face conditions on an interface ΓI where the magnetic reluctivity ν jumps. We denote
by JvK the jump of a function v on the interface ΓI , i.e.

JvK = v+
∣∣
ΓI
− v−

∣∣
ΓI
,

where v+ and v− denote the restrictions of v to the corresponding subdomains. Then
the interface conditions read

JB · nK = 0 on ΓI , (1.7d)

JH × nK = 0 on ΓI . (1.7e)

Remark 1.1. Note that a solution to (1.5) as well as (1.7) is only unique up to a gradient
field ∇φ. This issue can be fixed by imposing additionally e.g. that divA = 0. This
choice is referred to as Coloumb gauge.

The model (1.7) can be reduced into a 2D setting if certain assumptions on the
geometry of the computational domain D̂ and the fields are satisfied. The assumptions
are that [13]

• one space dimension is much larger compared to the other, i.e.

D̂ = D × (−`, `) with `� diam(D),

• the fields J , H , M are of the form

J i =

 0
0

J3(x1, x2)

 ,H =

H1(x1, x2)
H2(x1, x2)

0

 ,M =

M1(x1, x2)
M2(x1, x2)

0





14 1 Problem formulation and analysis

for (x1, x2) ∈ D.

Together with the ansatz

A =

 0
0

u(x1, x2)

 , (x1, x2) ∈ D, (1.8)

we obtain the boundary value problem for two dimensional magnetostatics which reads
[13]

− div(ν∇u) = J3 − ν divM⊥, in D ⊂ R2, (1.9a)

u = 0, on ΓB, (1.9b)

ν(x, |∇u|)∇u · n = 0, on ΓH , (1.9c)

JuK = 0, on ΓI , (1.9d)

Jν(x, |∇u|)∇u · nK = 0, on ΓI (1.9e)

where M⊥ = (−M2,M1)T and ΓB and ΓH denote the part of the boundary of ∂D
where we impose B · n = 0 and H × n = 0 respectively. Note that with the ansatz
in (1.8) the Coloumb gauge condition divA = 0 is satisfied as well. More details
on the derivation for the reduction into a 2D model can be found in [32]. For the
simulation of the magnetic flux density in a synchronous reluctance motor we can
use the model (1.9) in the following regime: Firstly, since the rotor does not contain
any permanent magnets the magnetization term M⊥ can be omitted. Secondly, it is
common practice to assume homogenous Dirichlet boundary conditions on the entire
boundary ∂D. This implies B · n

∣∣
∂D

= 0 which means that no magnetic flux leaves
the domain. Summarizing we obtain the following model:

− div(ν∇u) = J3, in D ⊂ R2, (1.10a)

u = 0, on ∂D, (1.10b)

JuK = 0, on ΓI , (1.10c)

Jν(x, |∇u|)∇u · nK = 0, on ΓI (1.10d)

1.2 Model problem

In this section we describe the mathematical problem used throughout this thesis in
detail. We follow the lines in [13]. As already mentioned we consider a synchronous
reluctance motor as a model problem. We are interested in the magnetic flux density
at a fixed rotor position when the rotor has reached a constant rotational speed.
Furthermore the geometry of the motor fulfills the assumptions for the reduction into
the 2D setting very well so that we can work with the model in (1.10). In the following
we will mathematically formulate the problem of maximizing the torque of the motor
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Figure 1.1: Computational domain indicating different subdomains. Red: ferromag-
netic subdomain Ωref

f . Orange: coil area Ωc. Blue: air. Light blue: non-
ferromagnetic layers of the rotor.

with respect to the design of the rotor when the rotor reached a constant rotational
speed.

Let the hold all domain D ⊂ R2 denote the two dimensional computational domain
of the motor which is depicted in Figure 1.1. The domain contains all parts of the
motor including an axially-layered rotor, stator, coil areas and an air gap between rotor
and stator. We denote by Ωref

f the ferromagnetic reference subdomain of the motor

and by Ωref
air = D \ Ωref

f its complement, see Figure 1.1. The subdomain Ωref
air consists

of all areas which are not ferromagnetic. These include the air gap between rotor and
stator, some layers of the rotor, the coil areas which we denote by Ωc as well as a thin
layer of air outside the stator. Furthermore we denote by Ωd the design domain which
is the whole rotor. We want to find the optimal distribution of ferromagnetic material
and air regions inside Ωd such that the torque gets maximized. For this reason we
denote the subdomain of Ωd which is currently occupied with ferromagnetic material
with Ω [13]. Hence, the distribution of ferromagnetic material in the motor for any Ω
is given by

Ωf := (Ωref
f \ Ωd) ∪ Ω. (1.11)

As before we define Ωair = D\Ωf . The reluctivity function ν in (1.10) attains different
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values in the different subdomains of the motor. To be more specific, we have

ν(x, |∇u|) =

{
ν̂(|∇u|) x ∈ Ωf ,

ν0 x ∈ Ωair,
(1.12)

where ν̂ is a nonlinear function given by the B-H relation which will be discussed in
the next section. The constant

ν0 = 107/(4π) (1.13)

describes the magnetic reluctivity of vacuum which is practically the same as that of
air. Note that also the coil areas consisting of copper and the non ferromagnetic layers
of the rotor have the same magnetic reluctivity as of air. Since the reluctivity in the
electric motor depends on the current design Ω as well, we have ν = νΩ and write

νΩ(x, |∇u|) = ν̂(|∇u|)χΩf (x) + ν0χΩair(x) (1.14)

where χU denotes the characteristic function on the set U . In order to get a variational
formulation of (1.10) we define the nonlinear operator AΩ : H1

0 (D)→ H−1(D) as

〈AΩ(u), η〉 =

∫
D

νΩ(x, |∇u|)∇u · ∇η dx, (1.15)

for all u, η ∈ H1
0 (D). The weak formulation of the right hand side of (1.10a) reads

〈F, η〉 =

∫
D

J3η dx, (1.16)

for all η ∈ H1
0 (D), where 〈·, ·〉 denotes the duality product between H−1(D) and

H1
0 (D). Note that we consider a fixed rotor position and therefore the impressed

current density J3 is a piecewise constant function in the coil areas Ωc and vanishes
outside Ωc. Further note that the interface conditions (1.10c) and (1.10d) are already
included in the weak formulation of the problem. Finally, the variational formulation
of model (1.10) is stated as follows: Find u ∈ H1

0 (D) such that

〈AΩ(u), η〉 = 〈F, η〉 for all η ∈ H1
0 (D). (1.17)

In our optimization problem we want to maximize a domain dependent functional
representing the current torque for a fixed rotor position of the electric motor. There
are several methods used for the calculation of the torque in the literature, for instance
the eggshell method [23], the Maxwell stress tensor, Coenergy derivation or Arkkio’s
method. For an overview and a comparison between the latter three methods we refer
the reader to [37]. We focus on Arkkio’s method which is a variant of the Maxwell
stress tensor. Here, the expression for the torque reads

T =
L

µ0(rs − rr)

∫
Ωg

rBrBφdS (1.18)
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where Ωg denotes the whole volume in the air gap comprised between the layers of
radii rr and rs, Br and Bφ the radial and tangential component of the magnetic flux
density in the air gap, respectively, and L the length of the rotor. Introducing the unit
vectors pointing in radial and tangential direction, that is

ng(x) :=
1

|x|

x1

x2

0

 and τg(x) :=
1

|x|

−x2

x1

0

 for x ∈ Ωg, (1.19)

we can define Br and Bφ as

Br(x) := B(x) · ng(x) and Bφ(x) := B(x) · τg(x) for x ∈ Ωg. (1.20)

Noting that B = curl ((0, 0, u)T ) = (∂2u,−∂1u, 0)T and r = |x| the equation for the
torque (1.18) can be written as

T (u) =
L

µ0(rs − rr)

∫
Ωg

∇uTQ(x)∇u dx (1.21)

with the symmetric matrix

Q(x) :=
1√

x2
1 + x2

2

(
x1x2

x2
2−x2

1

2
x2

2−x2
1

2
−x1x2

)
. (1.22)

Observe that the functional in (1.21) only depends on the current shape Ω ⊂ Ωd via
the solution u of the state equation, i.e. T (u) = T (u(Ω)). Since we are interested in
a high torque, we minimize the objective function

J (u) := −T (u) (1.23)

with T defined by (1.21).
Summarizing we are faced with the PDE-constrained optimization problem

inf
Ω∈O
J (u) (1.24a)

subject to u ∈ H1
0 (D) : 〈AΩ(u), η〉 = 〈F, η〉 for all η ∈ H1

0 (D), (1.24b)

where J is given by (1.23), AΩ and F are defined by (1.15) and (1.16) respectively.
Here, O denotes the set of admissible shapes which we define as

O = {Ω ⊂ Ωd : Ω open, Lipschitz with uniform Lipschitz constant LO}. (1.24c)

In our simulations we will also investigate a linear version of problem (1.24), that is,
we want to minimize J (u) subject to a linear version of the magnetostatics boundary
value problem. In this case we assume only linear behavior of the materials. Therefore
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the magnetic reluctivity simplifies to a function which only depends on the spatial
variable, more precisely

νΩ(x) = ν1χΩf (x) + ν0χΩair(x),

where ν0 > ν1 > 0 denotes a constant magnetic reluctivity for the ferromagnetic
material. Introducing the bilinearform a : H1

0 (D)×H1
0 (D)→ R defined by

aΩ(u, η) =

∫
D

νΩ(x)∇u · ∇η dx (1.25)

we can state the following optimization problem:

inf
Ω∈O
J (u) (1.26a)

subject to u ∈ H1
0 (D) : aΩ(u, η) = 〈F, η〉 for all η ∈ H1

0 (D), (1.26b)

where the quantities J , F and O are given as in (1.24). Although the problem
above is less realistic than problem (1.24), a comparison in the context of design
optimization might be interesting. In Chapter 2 we will extend problem (1.24) and
tackle a stochastic PDE-constrained optimization problem.

1.3 Physical properties of B-H-curves

The material influence in our models appear in form of the magnetic reluctivity which is
determined through a B-H-curve obtained from physical measurements for a specific
material. In this section we will focus on the relation between the magnetic field
intensity H and the magnetic flux density B. As a result we obtain some regularity
for ν̂ which will be the key ingredient for the analysis. Recall that we only consider
isotropic materials such that these two fields are parallel and neglect possible effects
of hysteresis.

The magnitude B := |B| of the magnetic flux density B depends on the magnitude
H := |H| of the magnetic field intensity and on the properties of the material [33].
For materials like vacuum or air this relation is linear and as a result we have that
B = µH with a constant magnetic permeability µ. However, ferromagnetic materials
respond strongly to a magnetic field and the relation between B and H is a nonlinear
one described by the so called B-H curve

f : R+
0 → R

+
0 , H 7→ B := f(H),

where R+
0 represents the set of non-negative real numbers. Based on this notion

one defines the magnetic permeability µ and the magnetic reluctivity introduced in
(1.2a),(1.3) as

µ(s) := f(s)/s and ν(s) := f−1(s)/s (1.27)
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Figure 1.2: B-H-curve f and magnetic reluctivity ν of the ferromagnetic material used
in our simulations of the SyRM.

such that we obtain

B = µ(|H|)H and H = ν(|B|)B (1.28)

The B-H-curve used in our simulations for the model problem (1.24) is shown in
Figure 1.2. It shows a typical B-H-curve of a ferromagnetic material which is charac-
terized by a high amplification of B for small values of H and an amplification of B
close to that of vacuum, for high values of H. These natural physical properties lead
to the following Assumptions on a B-H-curve f (cf. [32]).

Assumption 1.1. Let f : R+
0 → R

+
0 be a B-H-curve. Then f fulfills the following

conditions :

1. f is continuously differentiable on R+
0 ,

2. f(0) = 0,

3. f ′(s) ≥ µ0 for all s ≥ 0,

4. lim
s→∞

f ′(s) = µ0, where µ0 is the permeability of vacuum.

Note that µ0 is the reciprocal of the magnetic reluctivity in vacuum introduced
in (1.13), i.e. µ0 = 1/ν0. The following Lemma is an immediate consequence of
Assumption 1.1.

Lemma 1.1 ([13]). Let Assumption 1.1 be satisfied. Then the following statements
hold:
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1. ν̂ is continuously differentiable on (0,∞)

2. There exists ν > 0 such that for all s ∈ R+
0 we have

ν ≤ ν̂(s) ≤ ν0 (1.29)

ν ≤ (ν̂(s)s)′ ≤ ν0 (1.30)

3. The mapping s 7→ ν̂(s)s is strongly monotone with monotonicity constant ν, i.e.,

(ν̂(s)s− ν̂(t)t)(s− t) ≥ ν(s− t)2, ∀s, t ∈ R+
0 , (1.31)

and Lipschitz continuous with Lipschitz constant ν0, i.e.,

|ν̂(s)s− ν̂(t)t| ≤ ν0 |s− t| ∀s, t ∈ R+
0 . (1.32)

Proof. A proof of statement 1. and 2. can be found in [32]. The last property easily
follows from (1.30) together with the mean value theorem.

The properties (1.31) and (1.32) play an important role for the well-posedness of
problem (1.17) as we will see in the next section.

Remark 1.2. Note that the derivative in (1.30) is strictly positive. This is an important
condition in order to be able to apply Newton’s method to solve the nonlinear state
equation (1.17) numerically. More precisely, it guarantees the well-posedness of an
boundary value problem that represents a linearization to the state equation, see
Section 2.4.1.

1.4 Analysis of the state equation

We are going to show that the problem stated in (1.17) has a unique solution. In order
to do so we will use the following theorem.

Theorem 1.2 (Zarantonello). Let X be a real Hilbert space and A : X → X? be a
nonlinear operator satisfying the following conditions:

1. A is strongly monotone, i.e there exists a constant c1 > 0 such that for all u, v ∈
X,

〈A(u)− A(v), u− v〉 ≥ c‖u− v‖2 (1.33)

2. A is Lipschitz continous, i.e there exists a constant c2 such that for all u, v ∈ X,

‖A(u)− A(v)‖ ≤ c2‖u− v‖. (1.34)

Then, for each b ∈ X? the operator equation A(u) = b, u ∈ X has a unique solution
which depends continuously on b.
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In order to get well-posedness of the boundary value problem (1.17), we have to show
that the operator AΩ defined in (1.15) is strongly monotone and Lipschitz continuous.
The following Lemma guarantees these two conditions under additional requirements.

Lemma 1.3 ([13, 32]). Let the mapping s 7→ νΩ(s)s be strongly monotone and Lips-
chitz continuous from R

+
0 → R

+
0 with monotonicity constant ν and Lipschitz constant

ν0. Then the nonlinear operator AΩ defined in (1.15) is strongly monotone with mono-
tonicity constant ν and Lipschitz continuous with Lipschitz constant 3ν0.

Now, we formulate the main result of this section.

Theorem 1.4. Let ν̂ be a magnetic reluctivity according to a B-H curve f satisfying
Assumption 1.1. Then the boundary value problem defined in (1.17), (1.15), (1.16)
has a unique solution u ∈ H1

0 (D) and there exists a constant c > 0 such that

‖u‖H1
0 (D) ≤ c‖F‖H−1(D) (1.35)

Proof. Thanks to the physical properties of a B-H curve, that is Assumption 1.1, we
have that the mapping s 7→ ν̂(s)s is strongly monotone and Lipschitz continuous on
the ferromagnetic subdomain Ωf according to Lemma 1.1. Clearly, these conditions
are satisfied when ν̂ is replaced by a constant reluctivity function, ν̃(s) = ν0, as well.
This means that the mapping s 7→ νΩ(x, s)s with the global magnetic reluctivity νΩ

defined in (1.14) is strongly monotone and Lipschitz continuous. Applying Lemma
1.3 we get the strong monotonicity and the Lipschitz continuity of AΩ. It remains to
check that F ∈ H−1(D) = H1

0 (D)?. Using Cauchy’s inequality we get

|〈F, η〉| ≤ ‖J3‖L2(D)‖η‖L2(D) ≤ ‖J3‖L2(D)‖η‖H1(D).

Applying Theorem 1.2 yields to the above statement.

Finally, we want to mention that also the linear boundary value problem in (1.26b)
has a unique solution u ∈ H1

0 (D) according to the Lemma of Lax-Milgram.
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In this chapter we apply shape optimization methods based on the shape derivative
to solve the design optimization problems stated in the previous chapter. The shape
derivative represents the sensitivity of a shape function J(Ω) with respect to a variation
of the domain. There are several methods to derive shape differentiability when the
cost function is constrained by a PDE, for instance the material derivative method
[41], the minimax formulation [11] or Céa’s Lagrange method [9]. We will make use
of an other approach, namely the so-called averaged adjoint method [42, 43] which is
advantageous when dealing with a nonlinear constraint. With the help of the shape
derivative we can compute deformation fields which we will use in a gradient based
optimization algorithm.
This chapter is organized as follows: In Section 2.1 we introduce some basic definitions
and results in shape optimization. We show existence of a solution to both model
problems in Section 2.2. Based on the results in [13], we derive in Section 2.3 the
shape derivative via the averaged adjoint method for our problem. Furthermore, we
use this derivative to implement a numerical optimization algorithm and present the
obtained results in Section 2.4. In the final section (Section 2.5) we extend model
problem (1.24) to account for uncertain material parameters. Therefore we assume
that the magnetic reluctivity is subject to uncertainty due to measurement errors.
The resulting stochastic model is solved via a novel stochastic shape gradient method
proposed in [17] and the optimization results are presented.

2.1 Basic definitions and results

In this section we recall some definitions together with an appropriate notion of dif-
ferentiability in shape optimization. Unless stated otherwise we consider an open
bounded and fixed subset D ⊂ Rd with Lipschitz boundary ∂D.

Definition 2.1 ([11]). Let D ⊂ Rd be a set and denote by P(D) = {Ω : Ω ⊂ D} the
set of subsets of D. A shape function is a map

J : Ξ→ R, Ω 7→ J(Ω)

for some family of admissible sets Ξ ⊂ P(D).

A typical shape optimization problem has the form

min J(Ω) over Ω ⊂ Ξ.

23
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Here, the shape function J might implicitly depend on the solution of a PDE. In that
case we call the shape optimization problem PDE-constrained.

Remark 2.1. The model problem (1.24) can be considered in this framework too.
Introducing the reduced functional J(Ω) := J (uΩ) where uΩ is the unique solution to
the underlying PDE yields to the above setting.

The shape derivative should give us information about the sensitivity of a shape
function with respect to a perturbation of the domain Ω. However it is a priori not
clear how a perturbation of the domain has to be understood since the set of shapes
Ξ does not have a vector space structure. Throughout this thesis we focus on the so
called velocity (or speed) method to describe domain perturbations. In the velocity
method a reference domain Ω ⊂ D is transformed under the action of a velocity field
V on D into a new domain. This transformation is defined in the following way:

Definition 2.2. Assume that the velocity field V : [0, τ ]×Rd → R
d satisfies

∀x ∈ Rd, V (·, x) ∈ C([0, τ ];Rd), (2.1)

∃c > 0,∀x, y ∈ Rd, ‖V (·, y)− V (·, x)‖C([0,τ ];Rd) ≤ c |y − x| . (2.2)

The transformation (also called flow) Tt : Rd → R
d associated to the velocity field V is

defined for each x0 ∈ Rd as Tt(x0) := x(t) where x : [0, τ ]→ R
d solves the differential

equation
ẋ(t) = V (t, x(t)), in (0, τ), x(0) = x0. (2.3)

The flow Tt transforms the domain Ω into Ωt := Tt(Ω) = {Tt(x0) : x0 ∈ Ω}. Note
that the conditions (2.1)-(2.2) guarantee that the ordinary differential equation (2.3)
has a unique solution. In the case that the velocity field V is autonomous, i.e V =
V (x) 6= V (t, x) the assumptions reduce to V ∈ C0,1(Rd,Rd). It is worth to mention
that the flow Tt generates a homeomorphism from D to itself if the vector field is
tangential to the boundary ∂D [43]. Moreover, we have that interior (boundary) points
of D are mapped onto interior (boundary) points. These facts are due to Nagumo’s
theorem and are summarized in the following Lemma for autonomous velocity fields
but they also hold in the time-dependent case (cf. [43]).

Lemma 2.1. Let D ⊂ Rd be a bounded Ck domain, k ≥ 1 and τ > 0. Suppose that
V ∈ C0,1(Rd,Rd) is a vector field satisfying

V (x) · n(x) = 0 ∀x ∈ ∂D.

Then for the flow Tt generated by V according to Definition 2.2 follows

Tt(Ω) = Ω, and Tt(∂Ω) = ∂Ω ∀t ≥ 0.

and
∀t ∈ [0, τ ] : x 7→ Tt(x) ∈ Hom(D).
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From now on we consider only autonomous vector fields. In the following let J :
Ξ(D)→ R be a shape function defined on an admissible set Ξ(D) ⊂ P(D).

Definition 2.3 (Eulerian semiderivative). Let V ∈ Ck
c (D,Rd) for k ≥ 1 and Ωt :=

Tt(Ω),Ω ∈ Ξ(D) according to Definition 2.2. The Eulerian semiderivative of the shape
function J at Ω in the direction V is defined as

dJ(Ω;V ) := lim
t↘0

J(Ωt)− J(Ω)

t
(2.4)

when the limit exist and is finite.

Note that here we suppose that V ∈ Ck
c (D,Rd) which ensures additionally to the

results in Lemma 2.1 that the flow Tt is a diffeomorphism. This guarantees that Ωt ∈ Ξ
is again an element of the admissible set as diffeomorphisms preserve the topology of
the underlying set. Also note that V is extended by zero to Rd to be in the setting of
Definition 2.2.

Definition 2.4. The shape function J is shape differentiable at Ω if the Eulerian
semiderivative at Ω exists for all V ∈ Ck

c (D,Rd), k ≥ 1 and the mapping

V 7→ dJ(Ω;V )

is linear and continuous from Ck
c (D,Rd) to R.

Finally we have a closer look on the structure of the shape derivative. The following
fundamental result of shape optimization states that when ∂Ω and V are smooth
enough the shape derivative can be represented as an integral over ∂Ω and only depends
on the normal component of V .

Theorem 2.2 (Structure Theorem of Hadamard-Zolésio). Let J be a shape functional.
Assume that J is shape differentiable at Ω ∈ Ξ(D) and that ∂Ω is compact and of
class Ck+1, k ≥ 0. Then there exists a unique outward unit normal vector field n ∈
Ck(∂Ω,Rd) and a scalar distribution g ∈ Ck(∂Ω)∗ such that for all V ∈ Ck

c (D,Rd)

dJ(Ω;V ) = 〈g, γ∂Ω(V ) · n〉Ck(∂Ω)∗×Ck(∂Ω) (2.5)

where γ∂Ω : Ck
c (D,Rd)→ Ck(∂Ω,Rd). When g ∈ L1(∂Ω) we may write

dJ(Ω;V ) =

∫
∂Ω

gV · n ds. (2.6)

Proof. A proof can be found in [11].
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2.2 Existence of optimal shapes

In this section we show that our model problems (1.24) and (1.26) have a solution
Ω? ∈ O. Existence to shape optimization problems can often be shown by the direct
method of calculus of variations. To apply this method it is necessary to have a suitable
topology on the set of admissible shapes which also provide a form of compactness.
So let us recall the notion of convergence in the sense of characteristic functions and
a compactness result.

Definition 2.5. Let D be an open and bounded set and denote by Ξ(D) the set of
measurable subsets of D. We say a sequence Ωn in Ξ(D) converges to Ω ∈ Ξ(D) in
the sense of characteristic functions if χΩn converges to χΩ in L1(D).

We make use of the following compactness result.

Theorem 2.3 ([22, Theorem 2.4.10]). Let Ωn be a sequence in O. Then there exists
Ω? ∈ O and a subsequence Ωnk that converges to Ω? in the sense of characteristic
functions.

2.2.1 The linear case

We use the direct method of calculus of variations to show existence of a solution to
problem (1.26). For this reason we need the following continuity result:

Theorem 2.4. Let Ωn be a sequence in O converging in the sense of characteristic
functions to Ω ∈ O. Denote by un and u the solution to (1.26b) with Ωn and Ω
respectively. Then the sequence un ∈ H1

0 (D) converges to u strongly in H1
0 (D)

Proof. Let χn → χ in L1(D) and denote by χf,n := χΩreff \Ωd + χn the ferromagnetic

subdomain for every n. From the Lax-Milgram theorem we have that

‖un‖H1
0 (D) ≤ c−1

1 ‖F‖H−1(D),

where c1 denotes the ellipticity constant. Thus, the sequence un is bounded in H1
0 (D)

and we can extract a subsequence unk which converges to some ũ ∈ H1
0 (D). Note

that ‖ν1χf,nk + ν0(1− χf,nk)‖L∞(D) ≤ max(ν1, ν0) and (ν1χf,nk + ν0(1 − χf,nk)) →
ν1χf + ν0(1 − χf ) in L2(D) since χf,nk → χf in L2(D). Furthermore ∇unk ⇀ ∇ũ in
L2(D). Applying [46, Lemma 4.21] we obtain for all η ∈ H1

0 (D)∫
D

(ν1χf,nk + ν0(1− χf,nk))∇unk · ∇ηdx→
∫
D

(ν1χf + ν0(1− χf )∇ũ · ∇ηdx.

Thus, ũ ∈ H1
0 (D) is the solution to∫

D

(ν1χf + ν0(1− χf ))∇ũ · ∇ηdx = 〈F, η〉, ∀η ∈ H1
0 (D).
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Since u is defined as the solution to that same problem and since this solution is unique
due to Lax-Milgram, it follows that ũ = u. By the above argument we have that every
weakly converging subsequence of un converges to the same limit u. Together with the
boundedness of un in H1

0 (D) we get that the whole sequence un converges weakly to
u. Now, we are in position to show strong convergence:

min(ν1, ν0)‖∇(un − u)‖2
L2(D) ≤

∫
D

(ν1χf,n + ν0(1− χf,n))∇(un − u) · ∇(un − u)dx

=

∫
D

(ν1χf,n + ν0(1− χf,n))∇un · ∇undx

− 2

∫
D

(ν1χf,n + ν0(1− χf,n))∇un · ∇udx

+

∫
D

(ν1χf,n + ν0(1− χf,n))∇u · ∇udx

= 〈F, un〉 − 2〈F, u〉+

∫
D

(ν1χf,n + ν0(1− χf,n))∇u · ∇udx

→ −〈F, u〉+

∫
D

(ν1χf + ν0(1− χf ))∇u · ∇udx = 0.

In the last step above we used the weak convergence of un in H1
0 (D). Hence, we have

shown that un → u in H1
0 (D).

Now, take a minimizing sequence Ωn ∈ O for problem (1.26), which exists since
m := infΩ J (uΩ) ≥ 0. According to Theorem 2.3 there exists a subsequence which
we still denote by Ωn which converges to some Ω? ∈ O in the sense of characteristic
functions. We denote by un and u? the solutions to (1.26b) with Ωn and Ω? respectively.
Then, we have

m = inf
Ω
J(Ω) = lim

n→∞
J(Ωn) = lim

n→∞
J (un) = J (u?) = J(Ω?),

where we used the continuity result of Theorem 2.4 and the continuity of J .

2.2.2 The nonlinear case

We show existence of a solution to problem (1.24). Set m := infΩ J (uΩ). Since J ≥ 0
we have that m ≥ 0. Now, let Ωn ∈ O be a minimizing sequence. Then, according
to Theorem 2.3 we can extract a subsequence which we still denote by Ωn, which
converges to some Ω? ∈ O in the sense of characteristic functions. Let us denote by
un and u? the solutions to (1.17) with Ωn and Ω? respectively. It can be shown that
un → u? in H1

0 (D).

Proposition 2.5 ([14]). Let Ωn ∈ O be a minimizing sequence for problem (1.24) and
Ω? be an accumulation point of this sequence as in Theorem 2.3. Assume there exists
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a ε > 0 such that the solution u of (1.17) satisfies

‖u‖H1+ε(D)∩H1
0 (D) ≤ c

where c depends on F and on D. Then the sequence un ∈ H1
0 (D) corresponding to Ωn

converges to u? strongly in H1
0 (D), where u? is the solution to (1.17) in Ω?.

Note that the mapping u 7→ J (u) is continuous from H1
0 (D) to R using the theorem

of Lebesgue. Summarizing, the existence of a minimizer can be seen as follows:

m = inf
Ω
J(Ω) = lim

n→∞
J(Ωn) = lim

n→∞
J (un) = J (u?) = J(Ω?),

where we used that Ωn is a minimizing sequence, the definition of the reduced func-
tional together with the notation uΩn = un, i.e. J(Ωn) := J (uΩn) = J (un) and the
continuity of J .

Remark 2.2. Note that the existence of a minimizer for the linear case is also covered
from the proof above. However, for completeness we treated the linear case separately.

2.3 Shape derivative via the averaged adjoint

method

In this section we derive the shape derivative of model problem (1.24) and (1.26)
using the averaged adjoint method. The averaged adjoint method is a quite novel
Lagrangian approach introduced in [42] and is particularly well-suited for problems
involving nonlinear PDE constraints. One of the main features of this method is
that it allows to compute the shape derivative without the knowledge of the material
derivative.

Let us briefly describe the procedure to calculate the shape derivative when using
the averaged adjoint method [27]. Denote by E = E(Ω), F = F (Ω) some vector spaces
and consider for ϕ ∈ E, ψ ∈ F the Lagrangian L(Ω, ϕ, ψ) of a PDE constrained shape
optimization problem. Then the shape function on a perturbed domain Ωt = Tt(Ω)
can be written as

J(Ωt) = L(Ωt, ut, ψ̂),

where ut ∈ E(Ωt) is the solution to the perturbed state equation and ψ̂ ∈ F (Ωt). Now,
the shape derivative can be obtained by differentiating the Lagrangian with respect
to t, however this step is crucial. In order to differentiate L(Ωt, ϕ̂, ψ̂) with respect to
t, the integrals in L(Ωt, ϕ̂, ψ̂) need to be brought back to the fixed domain Ω by the
transformation Tt. Unfortunately this leads to integrands including functions of the
form ϕ̂◦Tt and ψ̂◦Tt which might be non-differentiable [14]. To overcome this issue we
can reparameterize the spaces E(Ωt), F (Ωt) by composing the elements of E(Ω), F (Ω)
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with a suitable bijection. If E and F are H1-spaces an appropriate transformation is
given by T−1

t and we may introduce

G(t, ϕ, ψ) := L(Ωt, ϕ ◦ T−1
t , ψ ◦ T−1

t ).

The main result in the following section states that the shape derivative of J can be
obtained only by computing the partial derivative of G with respect to t and assigning
proper values for ϕ and ψ.

2.3.1 An abstract result

Let E and F be Banach spaces. Consider for τ > 0 a function

G : [0, τ ]× E × F → R, (t, ϕ, ψ) 7→ G(t, ϕ, ψ) (2.7)

such that ψ 7→ G(t, ϕ, ψ) is affine for all (t, ϕ) ∈ [0, τ ]×E. Define for t ∈ [0, τ ] the set

E(t) := {u ∈ E | dψG(t, u, 0; ψ̂) = 0 for all ψ̂ ∈ F},

called the set of solutions to the state equation. Let us introduce the following hy-
pothesis.

Assumption 2.1 (H0). For every (t, ψ) ∈ [0, τ ]× F we assume that

(i) the set E(t) is single-valued and we write E(t) = {ut},
(ii) the mapping [0, 1] 3 s 7→ G(t, sut + (1− s)u0, ψ) is absolutely continuous,

(iii) the mapping [0, 1] 3 s 7→ dϕG(t, sut + (1 − s)u0, ψ; η) belongs to L1(0, 1) for all
η ∈ E.

For t ∈ [0, τ ] and ut ∈ E(t) let us introduce the set

Y (t, ut, u0) :=

{
q ∈ F | ∀η ∈ E :

∫ 1

0

dϕG(t, sut + (1− s)u0, q; η)ds = 0

}
(2.8)

which is called solution set of the averaged adjoint equation with respect to t, ut and
u0. Setting t = 0 we obtain the solution set of the usual adjoint state equation:

Y (0, u0, u0) =
{
q ∈ F | dϕG(0, u0, q; η) = 0 for all η ∈ E

}
.

The following result proven in [42] allows us to calculate the shape derivative according
to Definition 2.3 without the need of the material derivative u̇. The key ingredient is
the introduction of the set (2.8).

Theorem 2.6. Let G be a function as in (2.7) satisfying Assumption (H0). Addition-
ally let the following conditions hold:
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(H1) For all t ∈ [0, τ ] and ψ ∈ F the derivative ∂tG(t, u0, ψ) exists,

(H2) For all t ∈ [0, τ ] the set Y (t, ut, u0) is single-valued and we write Y (t, ut, u0) =
{pt},

(H3) For any sequence of nonnegative real numbers (tn)n∈N converging to zero there
exists a subsequence (tnk)k∈N such that

lim
k→∞
s↘0

∂tG(s, u0, ptnk ) = ∂tG(0, u0, p0).

Then, for any ψ ∈ F we obtain

d

dt
(G(t, ut, ψ)) |t=0 = ∂tG(0, u0, p0).

Remark 2.3 ([42]). In concrete applications the conditions (H0)-(H3) have the following
meaning:

(i) The condition (H0) ensures that we can apply the fundamental theorem of calcu-
lus with respect to u. By (H1) we are allowed to apply the mean value theorem
with respect to t.

(ii) (H2) guarantees the unique solvability of some averaged adjoint equation.

(iii) The condition (H3) can be shown by showing that pt converges weakly to p0 in
F and that (t, ψ) 7→ G(t, ϕ, ψ) is weakly continuous for all ϕ ∈ E.

(iv) The set E(t) corresponds to the solution of the state equation on the perturbed
domain Ωt = Tt(Ω) brought back to the fixed domain Ω.

2.3.2 Preliminaries: Newton operator, adjoint equation,
properties of flows

This section serves as preparation for Section 2.3.3, where the derivation of the shape
derivative for the nonlinear shape optimization problem is performed in detail. Here,
we collect some necessary results for this computation which include an analysis of the
adjoint equation and properties of flows.

Frechét derivative of the state operator

Recall the definition of the operator AΩ defining the state equation (1.17)

〈AΩ(u), η〉 =

∫
D

νΩ(x, |∇u|)∇u · ∇η dx,

for all u, η ∈ H1
0 (D). We need to calculate the Frechét derivative of AΩ (also called the

Newton operator) because it will show up not only in the equation defining the adjoint
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state but also in Newton’s method when computing a solution to the nonlinear sate
equation. For a more compact notation let us introduce the operator T : R2 → R

2

defined by

T (W ) := ν̂(|W |)W. (2.9)

The Jacobian of T is given for W ∈ R2 by

DT (W ) =

{
ν̂(|W |)I + ν̂′(|W |)

|W | W ⊗W, W 6= (0, 0)T

ν̂(0)I, W = (0, 0)T
(2.10)

where I denotes the two dimensional identity matrix and ⊗ the outer product of two
column vectors, i.e.

a⊗ b := abT .

Note that DT is continuous also in W = (0, 0)T . In order to show the existence of a
directional derivative it is sufficient to show that for any u, ϕ, η ∈ H1

0 (D)

t 7→
∫
D

νΩ(x, |∇(u+ tϕ)|)∇(u+ tϕ) · ∇η dx,

is continuously differentiable on R. Moreover it is sufficient to show that the above
mapping is differentiable on the respective subdomains Ωf and Ωair = D \ Ωf . Here
the only difficult part is the nonlinear term, so we show that

t 7→
∫

Ωf

ν̂(|∇(u+ tϕ)|)∇(u+ tϕ) · ∇η dx =

∫
Ωf

T (∇(u+ tϕ)) · ∇η dx (2.11)

is differentiable on R. Since T is continuously differentiable we get that the function
t 7→ γt(x) := T (∇(u + tϕ)(x)) · ∇η(x) is differentiable for almost every x ∈ Ωf . The
derivative reads

d

dt
γt(x) = DT (∇(u+ tϕ)(x))∇ϕ(x) · ∇η(x).

Using property (1.29) and (1.30) we get the estimate |ν̂(s)|+ |ν̂ ′(s)s| ≤ 2ν0 which we
can use to conclude that∣∣∣∣ ddtγt(x)

∣∣∣∣ ≤ 2ν0 |∇ϕ(x)| |∇η(x)| , for almost every x ∈ Ωf , for all t ∈ R. (2.12)

Since t 7→ d
dt
γt(x) is also continuous on R we may apply the fundamental theorem of

calculus to get

γt+h(x)− γt(x)

h
=

1

h

∫ t+h

t

d

ds
γs(x) ds ≤ 2ν0 |∇ϕ(x)| |∇η(x)|



32 2 Shape optimization

for almost all x ∈ Ωf where we used (2.12). Thus we can apply the theorem of
Lebesgue to obtain

d

dt

∫
Ωf

γt(x) dx = lim
h→0

∫
Ωf

γt+h(x)− γt(x)

h
dx

=

∫
Ωf

lim
h→0

γt+h(x)− γt(x)

h
dx =

∫
Ωf

d

dt
γt(x) dx

which shows that (2.11) is indeed differentiable. The derivative reads

d

dt

∫
Ωf

ν̂(|∇(u+ tϕ)|)∇(u+ tϕ) · ∇η dx =

∫
Ωf

DT (∇(u+ tϕ))∇ϕ · ∇η dx

and is obviously continuous. Put t = 0 we conclude that the directional derivative
exists for all u, ϕ ∈ H1

0 (D). Introduce the function AΩ : D ×R2 → R
2,2 defined by

AΩ(x,W ) = DT (W )χΩf (x) + ν0IχD\Ωf (x). (2.13)

Then, the Gateaux derivative of AΩ : H1
0 (D)→ H−1(D) in u ∈ H1

0 (D) is given by the
linear and continuous mapping A′Ω(u) : H1

0 (D)→ H−1(D) defined by

〈A′Ω(u)ϕ, η〉 =

∫
D

AΩ(x,∇u)∇ϕ · ∇η for all ϕ, η ∈ H1
0 (D). (2.14)

Moreover we get with the help of the mean value theorem that

|〈AΩ(u+ ϕ)− AΩ(u)− A′Ω(u)ϕ, η〉|

=

∣∣∣∣∣
∫

Ωf

∫ 1

0

(DT (∇u+ s∇ϕ)−DT (∇u))ds∇ϕ · ∇η dx

∣∣∣∣∣
≤ sup

s∈[0,1]

‖DT (∇u+ s∇ϕ)−DT (∇u)‖‖ϕ‖H1(D)‖η‖H1(D)

which we can use to see that

‖AΩ(u+ ϕ)− AΩ(u)− A′Ω(u)ϕ‖H−1(D)

‖ϕ‖H1(D)

≤ sup
s∈[0,1]

‖DT (∇u+ s∇ϕ)−DT (∇u)‖

The right hand side of this goes to zero as ϕ → 0 in H1
0 (D) since DT is continuous.

Therefore we conclude that A′Ω(u) is the Fréchet derivative of AΩ in u.
Let us have a closer look on the matrix DT (W ) for W = (w1, w2)T ∈ R2. The
eigenvalues and corresponding eigenvectors are [13]

λ1 = ν̂(|W |), v1 = W⊥ = (−w2, w1)T ,
λ2 = ν̂(|W |) + ν̂ ′(|W |) |W | , v2 = W.

(2.15)

Note that DT (W ) is symmetric and due to (1.29) and (1.30) positive definite for all
W ∈ R2. Furthermore it holds that

λ |z|2 ≤ zTDT (W )z ≤ Λ |z|2 , ∀z,W ∈ R2 (2.16)

with λ = min{λ1, λ2} ≥ ν and Λ = max{λ1, λ2} ≤ ν0.
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Adjoint equation

Define the Lagrangian associated to model problem (1.24) for ϕ, ψ ∈ H1
0 (D) as

G(Ω, ϕ, ψ) = −CJ
∫

Ωg

∇ϕTQ(x)∇ϕ dx+

∫
D

νΩ(x, |∇ϕ|)∇ϕ · ∇ψ dx− 〈F, ψ〉

Here, CJ denotes the constant prefactor of the cost function, i.e. CJ = L/(µ0(rs−rr)).
The adjoint equation can be obtained by differentiating G with respect to ϕ at ϕ = u
and ψ = p satisfying

dϕG(Ω, u, p; η) = 0 for all η ∈ H1
0 (D).

A formal computation gives∫
D

νΩ(x, |∇u|)∇η · ∇p dx+

∫
Ωf

ν̂ ′(|∇u|)
|∇u|

(∇u · ∇η)(∇u · ∇p) dx

= 2CJ

∫
Ωg

Q(x)∇u · ∇η dx for all η ∈ H1
0 (D).

Using the identity

(a · b)(a · c) = (a⊗ a)c · b, for all a, b, c ∈ R2

the previous equation can be written in more compact form as∫
D

A(x,∇u)∇p · ∇ηdx = 2CJ

∫
Ωg

Q(x)∇u · ∇η dx for all η ∈ H1
0 (D)

where A : D ×R2 → R
2 is given by

A(x, y) = DT (y)χΩf (x) + ν0IχD\Ωf (x), (2.17)

with DT as in (2.10).

Lemma 2.7. Let ν̂ be a reluctivity function coming from a B-H-curve satisfying As-
sumption 1.1. For u ∈ H1

0 (D) the equation∫
D

A(x,∇u)∇p · ∇ηdx = 2CJ

∫
Ωg

Q(x)∇u · ∇η dx (2.18)

has a unique solution p ∈ H1
0 (D).

Proof. Consider for u ∈ H1
0 (D) the bilinear form

a′(u; ·, ·) : H1
0 (D)×H1

0 (D)→ R (2.19)

(v, η) 7→
∫
D

A(x,∇u)∇v · ∇η dx (2.20)
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We want to apply the lemma of Lax-Milgram, therefore we check that the bilinear
form a′(u; ·, ·) is elliptic

a′(u; v, v) =

∫
D

A(x,∇u)∇v · ∇v dx

=

∫
D

χΩf (x)DT (∇u)∇v · ∇v + χD\Ωf (x)ν0∇v · ∇v dx

≥ ν

∫
D

|∇u|2 dx ≥ Cν‖v‖H1(D),

Here we have used property (2.16) and the norm equivalence between the L2 norm
of the gradient and the H1 norm since v ∈ H1

0 (D). In order to show boundedness,
recall that for fixed ρ ∈ R2 the matrix DT (ρ) is symmetric (and positive definite)
and therefore the spectral norm of DT (ρ) coincides with its greatest eigenvalue, i.e
|DT (ρ)| := |DT (ρ)|2 = max{λ1(|ρ|), λ2(|ρ|)}. Following this argument we have

|a′(u; v, η)| ≤
∫
D

|A(x,∇u)∇v · ∇η| dx

≤
∫
D

χΩf (x) |DT (∇u)∇v · ∇η|+ χD\Ωf (x)ν0 |∇v · ∇η| dx

≤
∫
D

max{λ1(|∇u|), λ2(|∇u|), ν0} |∇v| |∇η| dx

≤ ν0‖∇v‖L2(D)‖∇η‖L2(D) ≤ Cν0‖v‖H1(D)‖η‖H1(D),

where in the last step we exploited again the norm equivalence for functions in H1
0 (D).

Next we have to check that the linear functional

〈Fu, η〉 := 2CJ

∫
Ωg

Q(x)∇u · ∇η dx

is bounded. This can be seen as follows

|〈Fu, η〉| ≤ 2CJ‖Q‖C(Ωg ,R2,2)‖∇u‖L2(D)‖η‖H1(D).

Thus, the lemma of Lax-Milgram yields a unique solution p ∈ H1
0 (D) to problem

(2.18).

Properties of flows and perturbed state equation

Let V ∈ C1
c (D,Rd) be a vector field and Tt its associated flow. The important ob-

servation of the following result is that the flow Tt creates an isomorphism between
H1(Ω) and H1(Ωt) where Ωt := Tt(Ω).



2.3 Shape derivative via the averaged adjoint method 35

Lemma 2.8. Let p ≥ 1 and suppose that T : Rd → R
d is a bi-Lipschitz mapping. Let

U be an open subset of Rd and set W := T−1(U). Then we have

u ∈ W 1,p(U)⇔ u ◦ T ∈ W 1,p(W )

Proof. A proof can be found in [45, p.52 Theorem 2.2.2]

In order to derive the shape derivative we have to consider the perturbed state
equation, that is ut is the weak solution to (1.17) on Ωt, more precisely ut ∈ H1

0 (D)
solves ∫

D

νΩt(|∇ut|)∇ut · ∇η̂ dx =

∫
D

J3η̂ dx for all η̂ ∈ H1
0 (D). (2.21)

Notice that an application of the chain rule yields (∇f) ◦ Tt = ∂T−Tt ∇(f ◦ Tt) for
f ∈ H1(D). Hence, using the change of variables y = Tt(x) and Lemma 2.8 in (2.21)
shows that ut := ut ◦ Tt satisfies∫

D

A(t)νΩ(x,
∣∣B(t)∇ut

∣∣)∇ut ·∇ψ dx =

∫
D

ξ(t)(J3◦Tt)ψ dx for all ψ ∈ H1
0 (D), (2.22)

where we used the abbreviations

ξ(t) := det(∂Tt), (2.23a)

B(t) := ∂T−Tt , (2.23b)

A(t) := det(∂Tt)∂T
−1
t ∂T−Tt . (2.23c)

Remark 2.4. Note that the function ξ(t) is positive for small values of t. Therefore we
omit the absolute value of ξ(t) in (2.22).

One can show that the functions ξ, A,B are differentiable.

Lemma 2.9 ([43]). Let V ∈ C1
c (D,Rd) and Tt the flow associated with V . The

mappings t 7→ ξ(t), t 7→ B(t) and t 7→ A(t) according to (2.23) are differentiable on
[0, τ ] and the derivatives read

d

dt
ξ(t) = tr(∂V tBT (t))ξ(t), (2.24)

d

dt
B(t) = −B(t)(∂V t)TB(t), (2.25)

d

dt
A(t) = tr(∂V tBT (t))A(t)−B(t)T∂V tA(t)− (B(t)∂V tA(t))T (2.26)

where V t(x) := V (Tt(x)).

Here, differentiable in t = 0 respectively in t = τ means the existence of the right
sided respectively left sided derivative.
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Corollary 2.10. In particular we get from Lemma 2.9 that

ξ′(0) = div V (2.27)

B′(0) = −∂V T (2.28)

A′(0) = div V − ∂V − ∂V T (2.29)

Furthermore it holds ξ(0) = 1 and A(0) = B(0) = I.

In addition to the previous result we will make use of another property of A and ξ.

Lemma 2.11 ([43]). Let A ∈ C([0, τ ];C(D,Rd,d)) and ξ ∈ C([0, τ ];C(D)) be given
and assume that A(0) = I and ξ(0) = 1. Then there exist constants α1, α2, β1, β2 > 0
and τ̃ > 0 such that for all ζ ∈ Rd and for all t ∈ [0, τ̃ ] it holds

α1 |ζ|2 ≤ A(t)ζ · ζ ≤ α2 |ζ|2 , (2.30)

β1 ≤ ξ(t) ≤ β2. (2.31)

2.3.3 Shape derivative of the cost function

In this section we derive the shape derivative of the cost function J of problem (1.24)
by applying Theorem 2.6. From this we can easily conclude the shape derivative of
the linear problem (1.26).
We assume that V ∈ C1

c (D,R2) and supp(V ) ∩ Ωg = ∅. Further let V = 0 on the
boundary of the design domain, that is ∂Ωd. Let Tt be the flow associated to V . The
conditions on V ensures that Ωt = Tt(Ω) ⊂ Ωd and that Tt(Ω

d) = Ωd for t small
enough. First, we address the nonlinear problem.

Theorem 2.12. Let ν̂ be a reluctivity function according to B-H-curve satisfying As-
sumption 1.1. Then the reduced functional J defined by (1.24) is shape differentiable
and its shape derivative in direction V reads

dJ(Ω;V ) =

∫
D

(div(V )I − ∂V − ∂V T )νΩ(x, |∇u|)∇u · ∇p dx

−
∫

Ωf

ν̂ ′(|∇u|)
|∇u|

(∂V T∇u · ∇u)(∇u · ∇p) dx
(2.32)

Proof. Consider the Lagrangian on the perturbed domain Ωt := Tt(Ω) for ϕ, ψ ∈
H1

0 (D), i.e.

L(Ωt, ϕ, ψ) = −CJ
∫

Ωg

Q(x)∇ϕ · ∇ϕ dx+

∫
D

νΩt(x, |∇ϕ|)∇ϕ · ∇ψ dx− 〈F, ψ〉

with F as in (1.16) and where CJ is given by CJ = L/(µ0(rs − rr)). Following the
methodology described at the beginning of Section 2.3 we introduce

G(t, ϕ, ψ) := L(Ωt, ϕ ◦ T−1
t , ψ ◦ T−1

t )
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which after the change of variables y = Tt(x) reads

G(t, ϕ, ψ) = −CJ
∫

Ωg

ξ(t)B(t)TQtB(t)∇ϕ · ∇ϕ dx

+

∫
D

A(t)νΩ(x, |B(t)∇ϕ|)∇ϕ · ∇ψ dx−
∫
D

ξ(t)(J3 ◦ Tt)ψ dx,

(2.33)

where Qt = Q ◦ Tt and ξ,A and B are defined as in Lemma 2.9. We apply Theorem
2.6 to this G with E = F = H1

0 (D). Note that J(Ωt) = G(t, ut, ψ), where ut ∈ H1
0 (D)

solves∫
D

A(t)νΩ(x,
∣∣B(t)∇ut

∣∣)∇ut ·∇ψ dx =

∫
D

ξ(t)(J3◦Tt)ψ dx for all ψ ∈ H1
0 (D). (2.34)

Let us now verify Hypotheses (H0)-(H3).
(H0) Condition (i) is satisfied due to the Theorem of Zarantonello 1.2 and the prop-
erties of t 7→ A(t) for all t ∈ [0, τ ]. Let uts := sut + (1− s)u0 and ψ ∈ H1

0 (D). In order
to show condition (ii) it is sufficient that the mapping s 7→ G(t, uts, ψ) is continuous
differentiable for all (t, ψ) ∈ [0, τ ]×H1

0 (D). Here the only difficult part is the nonlinear
term coming from the state equation. However, we have seen that the nonlinear oper-
ator AΩ is Fréchet-differentiable and the derivative is continuous. Therefore condition
(ii) is satisfied. Condition (iii) is satisfied by construction.
(H1)We have that the operator AΩ is differentiable and that the functions ξ(t), A(t)
and B(t) are differentiable according to Lemma 2.9. Therefore the mapping t 7→
G(t, ϕ, ψ) is differentiable for all t ∈ [0, τ ] and all ϕ, ψ ∈ H1

0 (D).
(H2) We have already proved that E(t) = {ut}, where ut is the solution to (2.34). We
show that Y (t, ut, u0) = {pt} where pt ∈ H1

0 (D) is the unique solution to∫ 1

0

∫
D

ξ(t)A(x,B(t)∇uts)B(t)∇pt ·B(t)∇η dxds

= 2CJ

∫ 1

0

∫
Ωg

ξ(t)QtB(t)∇uts ·B(t)∇η dxds for all ψ ∈ H1
0 (D),

(2.35)

where uts := sut + (1 − s)u0 and A(·, ·) is given by (2.17). Due to (H0) this equation
is well defined. The existence of a unique solution follows from the Lemma of Lax-
Milgram exploiting the properties of Lemma 2.11. In particular p0 = p ∈ Y (0, u0, u0)
is the unique solution of the adjoint equation (2.18).
(H3) We show that for any sequence (tn)n∈N ↘ 0 there exists a subsequence (tnk)k∈N
such that the sequence (ptnk )k∈N where ptnk ∈ Y (tk, u

tnk , u0) converges weakly in
H1

0 (D) to the solution of the adjoint equation and that (t, ψ) 7→ ∂tG(t, ϕ, ψ) is weakly
continuous. We will use the following two lemmas.

Lemma 2.13. The mapping t 7→ ut is continuous from the right in 0, i.e.

lim
t↘0

∥∥ut − u∥∥
H1(D)

= 0.
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Proof. A proof can be found in [14].

Lemma 2.14. There are constants c > 0 and τ > 0 such that∥∥ut∥∥
H1(D

≤ c for all t ∈ [0, τ ].

Proof. Inserting ψ = ut in (2.34) we get

c
∥∥ut∥∥2

H1(D)
≤ α1ν

∫
D

∣∣∇ut∣∣2 dx ≤ ν

∫
D

A(t)∇ut · ∇ut dx

≤
∫
D

A(t)νΩ(x,
∣∣B(t)∇ut

∣∣)∇ut · ∇ψ dx

=

∫
D

ξ(t)J3 ◦ Ttψ dx ≤ β2‖J3 ◦ Tt‖L2(D)

∥∥ut∥∥
H1(D)

where we used Poincaré’s inequality, Lemma 2.11 and the lower bound for the function
νΩ. Dividing by ‖ut‖H1(D) yields to the claimed result.

Now, we are able to show the following.

Lemma 2.15. For any sequence of (tn)n∈N of non negative real numbers converging
to zero there exists a subsequence (tnk)k∈N such that (ptnk )k∈N where ptnk solves (2.35)
for t = tnk converges weakly in H1

0 (D) to the solution p of the adjoint equation (2.18).

Proof. The existence of a solution to (2.35) follows from the Lemma of Lax-Milgram.
Inserting ψ = pt as test function in (2.35) we obtain with the help of Lemma 2.14 and
the estimate

νz · z ≤ A(x, ρ)z · z ≤ ν0z · z for all z, ρ ∈ R2,

that ‖pt‖ ≤ C̃ for all sufficiently small t, where C̃ > 0 is a constant. Now, let (tn)n∈N
be a sequence of non negative real numbers converging to zero. Since (ptn)n∈N is
bounded we may extract a subsequence (ptnk )k∈N which converges weakly in H1

0 (D)
to some q ∈ H1

0 (D). Consider (2.35) with t = tnk :∫ 1

0

∫
D

ξ(tnk)A(x,B(tnk)∇u
tnk
s )B(tnk)∇ptnk ·B(tnk)∇η dxds

= 2CJ

∫ 1

0

∫
Ωg

ξ(tnk)Q
tnkB(tnk)∇u

tnk
s ·B(tnk)∇η dxds for all ψ ∈ H1

0 (D),

(2.36)

Thanks to Lemma 2.13 we have that ut → u in H1
0 (D) and using the continuity of ξ

and B we can pass to the limit to see that q ∈ H1
0 (D) is the solution to the adjoint

equation (2.18). By uniqueness of a solution of the adjoint equation we conclude
q = p.
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Finally, note that the derivative of (2.33) for t > 0 is given by

∂tG(t, ϕ, ψ) =− CJ
∫

Ωg

ξ′(t)QtB(t)∇ϕ ·B(t)∇ϕ dx

− CJ
∫

Ωg

ξ(t)(∂Q� V )B(t)∇ϕ ·B(t)∇ϕ dx

− CJ
∫

Ωg

ξ(t)QtB′(t)∇ϕ ·B(t)∇ϕ dx

− CJ
∫

Ωg

ξ(t)QtB(t)∇ϕ ·B′(t)∇ϕ dx

+

∫
D

A′(t)νΩ(x, |B(t)∇ϕ|)∇ϕ · ∇ψ dx

+

∫
Ωf

A(t)
ν̂ ′(|B(t)∇ϕ|)
|B(t)∇ϕ|

(B(t)∇ϕ ·B′(t)∇ϕ)(∇ϕ · ∇ψ) dx

−
∫
D

ξ′(t)J3 ◦ Ttψdx

(2.37)

where ∂Q � V := (∇qij · V )i,j=1,2 and where qij are the components of the matrix
Q. We see that for fixed ϕ ∈ H1

0 (D) the mapping (t, ψ) 7→ ∂tG(t, ϕ, ψ) is weakly
continuous. This finishes the proof of (H3) and so we can apply Theorem 2.6 to obtain
dJ(Ω, V ) = ∂tG(0, u, p) where u ∈ H1

0 (D) is the solution to the state equation (1.17)
and p ∈ H1

0 (D) solves the adjoint equation (2.18). In order to calculate ∂tG(0, u, p)
note that the integrals on Ωg and the integrals involving J3 vanish because J3 is
supported only on Ωc and V = 0 on Ωg and on Ωc respectively. Taking into account
Corollary 2.10 we arrive at formula (2.32) which finishes the proof of Theorem 2.12.

�

Finally, we deduce the shape derivative of the linear model problem.

Corollary 2.16. The reduced functional J defined by (1.26) is shape differentiable
and its shape derivative in direction V is given by

dJ(Ω;V ) =

∫
D

(div(V )I2 − ∂V − ∂V T )νΩ(x)∇u · ∇p dx (2.38)

where u ∈ H1
0 (D) satisfies (1.26b) and p ∈ H1

0 (D) is the solution to the problem∫
D

νΩ(x)∇η · ∇p dx = 2CJ

∫
Ωg

Q(x)∇u · ∇η dx, for all η ∈ H1
0 (D). (2.39)

Proof. All the steps from the proof of Theorem 2.12 remain valid when considering a
piecewise constant reluctivity νΩ(x). Thus, the formula in (2.32) reduces to (2.38).
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2.4 Simulation of the deterministic model problems

In this section we have a closer look on the numerical procedure to solve the model
problems and present the obtained results. So far, we have calculated the shape
derivative for both model problems. We will use this sensitivity information in a
gradient-based optimization algorithm to compute in every iteration a deformation
field V which represents a descent direction for J , i.e. dJ(Ω;V ) < 0 and move the
interface between the ferromagnetic material and air a certain step into the direction of
V . In the following section we address the question how to compute a decent direction
and discuss the implemented algorithm in detail.

2.4.1 Numerical method

Descent direction

Recall the definition of a descent direction.

Definition 2.6 (descent direction [27]). The vector field V ∈ C0,1
c (D,Rd) is called a

descent direction for J at Ω if there exists τ > 0 such that

J(Ωt) < J(Ω) for all t ∈ (0, τ).

A descent direction leads to a decrease of the shape function J and can be used in
an iterative procedure to find a (local) minimizer of J . We are interested in finding a
vector field V such that

dJ(Ω;V ) < 0.

Note that this V is indeed a descent direction since by definition of the shape derivative
we can find τ > 0 such that

J(Ωt)− J(Ω)

t
< 0 for all t ∈ (0, τ),

and therefore J(Ωt) < J(Ω) for all t ∈ (0, τ). In order to be able to compute a descent
direction we make the following assumption:

Assumption 2.2. We assume that dJ(Ω; ·) is a linear and bounded functional on
H1

0 (Ω,Rd).

Note that this assumption is satisfied for the shape derivatives in (2.32) and (2.38)
by density of C∞c (D,R2) in H1

0 (D,R2). Now, we choose a symmetric and positive
definite bilinear form

b : H1
0 (Ωd,R2)×H1

0 (Ωd,R2)→ R

which is defined on the rotor subdomain Ωd of the hold all domain D and solve the
auxiliary boundary value problem: Find V ∈ Ph such that

b(V,W ) = −dJ(Ω,W ) for all W ∈ Ph. (2.40)
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Here, Ph ⊂ H1
0 (Ωd,R2) is a suitable finite dimensional space. Outside of Ωd we extend

V by zero. This ensures that V = 0 on Ωg which is assumed in Section 2.3.3. Note
that this V is a descent direction since

dJ(Ω;V ) = −b(V, V ) < 0.

Moreover V will be in W 1,∞ and thus the flow associated to this V will be well defined
[43]. The choice of the bilinear form is problem depending and we only mention
here that some forms may lead to better mesh quality than others [12, 24]. In our
experiments we choose the bilinear form associated to the linear elasticity problem,
i.e.

b(V,W ) =

∫
Ωd

(λ tr(ε(V ))I + 2µε(V )) : ε(W )dx, (2.41)

where ε(U) := 1/2(∂U + ∂UT ), A : B the Frobenius inner product between two
matrices A,B and λ,µ denote the Lamé parameters. For our computations we set
λ = 0 and µ = 10.

Remark 2.5. In the course of optimization we have to solve (2.40) on the transformed
domain Ωt = Tt(Ω0) where Ω0 denotes the initial domain. In order to solve this problem
efficiently we reformulate it to a problem on the fixed domain Ω0 using a change of
variables y = Tt(x), x ∈ Ω0 and a reparametrization of the space H1 according to
Lemma 2.8.

Optimization step and algorithm

Let Ω0 denote the initial domain. After having computed a descent direction V we
choose a stepsize τ > 0 according to a so called backtracking (line search) procedure,
that is: decrease τ until the value of the cost function on the updated geometry has
decreased. In particular choose τ = max{1, 1/2, 1/4, ...} such that J((id+ τV )(Ω0) <
J(Ω0). When the step size becomes too small, that means if no decrease could be
achieved the algorithm is stopped. Otherwise we set Ω1 := (id + τV )(Ω0). This
procedure is used to set up the following optimization algorithm.

Algorithm 2.1. Initialization: Set k = 0, choose initial design Ω0, compute J(Ω0),
set T0 = id, choose τ̄ > 0;

(1) compute descent direction Vk by solving (2.40);

(2) find τ̃k > 0 such that J((Tk + τkVk)(Ω0)) < J(Tk(Ω0)) via backtracking, where
τk = τ̃kτ̄ /‖Vk‖∞;

(3) if no decrease could be achieved: stop;

(4) set Tk+1 = Tk + τkVk and k ← k + 1 and go to (1);

Note that in order to evaluate the cost function J the state equation has to be
solved. Moreover for each computation of a descent direction Vk via (2.40) the state u
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and the adjoint state p on the current design Ωk are required. The parameter τ̄ allows
for an additional scaling of the step size and is chosen by the user. In our experiments
we set τ̄ to be the maximal mesh size. The calculation of Vk in step 1 has to be
understood as in Remark 2.5. Observe that in the previous algorithm we only choose
once the initial domain Ω0 on which all computations are performed. That means that
we do not move any nodes of the mesh but instead we work with the transformation
maps Tk to store deformations which avoids computational complexity. The deformed
shapes are given by Ωk = Tk(Ω0) = (id+ τ1V1) ◦ ... ◦ (id+ τk−1Vk−1)(Ω0).

Newtons’method

In order to solve the nonlinear state equation (1.17) of problem (1.24) we use Newton’s
method to the operator equation RΩ(u) := AΩ(u)− F in H−1(D). Therefore we start
with an initial guess u0 ∈ H1

0 (D) and compute for k = 0, 1, 2, ... the next iterate as
uk+1 = uk + wk, where the update wk ∈ H1

0 (D) is the solution to〈
A′Ω(uk)wk, η

〉
= −

〈
RΩ(uk), η

〉
for all η ∈ H1

0 (D).

Note that this problem is well defined due to Lemma 2.7. It can be shown that the
discretized operator to A′Ω is Lipschitz continuous and thus the method converges
locally quadratically [32]. Global convergence can be achieved by using the damped
version of Newton’s method, i.e. setting uk+1 = uk + τ kwk with τ k ∈ (0, 1] sufficiently
small [13],[25].

2.4.2 Numerical results

First, we apply Algorithm 2.1 to solve model problem (1.26) which is constrained by
the equation of linear magnetostatics. The shape derivative, the state and the adjoint
equation are given by (2.38),(1.26b) and (2.39) respectively. In all our computations,
which were done with the Finite Element software Netgen/NGSolve [38], we use piece-
wise linear finite elements on a triangular grid to solve the boundary value problems
numerically. The algorithm terminates after 30 iterations and the results are shown
in Figure 2.1. We observe a decrease of the cost function from −1.026442 Nm to
−1.317712 Nm. Moreover Figure 2.1 shows the final design together with the de-
formed mesh. Observe that nodes on the boundary of the rotor do not move which
is due to the homogenous Dirichlet boundary condition for the deformation field V .
Note that in this model we do not consider any saturation effects of the material which
may lead to a very thin distribution of ferromagnetic material in the rotor.

Now, we turn to the simulation of the more realistic model problem (1.24) which is
constrained by the nonlinear equation of magnetostatics. Here the shape derivative,
the state and the adjoint equation are given by (2.32),(1.17) and (2.18) respectively.
The final design of the rotor after 25 iterations of Algorithm 2.1 is depicted in Figure
2.2. The torque of the motor increases from 1.029028 Nm to 1.259251 Nm. Figure
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(a) (b)

(c)

Figure 2.1: Application of Algorithm 2.1 to linear problem (1.26). (a) Initial design:
T = 1.026442 Nm.(b) Final design: T = 1.317712 Nm. (c) Final design
including deformed mesh.

2.3 shows the magnetic flux density of the final design. Recalling the B-H curve of
the ferromagnetic material (Figure 1.2) one can see that some layers of the rotor are
close to saturation. Finally, since there is a significant difference in the final torque
between the linear and nonlinear problem we conclude that the linear problem is not
very realistic here.
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(a) (b)

(c)

Figure 2.2: Application of Algorithm 2.1 to nonlinear problem (1.24). (a) Initial de-
sign: T = 1.029028 Nm. (b) Final design: T = 1.259251 Nm. (c) Final
design including deformed mesh

2.5 Shape optimization of a synchronous

reluctance motor under uncertainties

So far we dealt with the nonlinear behavior of the ferromagnetic material. In practice
the magnetic reluctivity is obtained from measurements and is subject to measurement
errors. Therefore the reluctivity curve might not be known exactly but rather be
randomly distributed according to a probability distribution obtained empirically [17].
In this section we want to incorporate uncertainties in the ferromagnetic reluctivity
of the motor leading to a stochastic problem formulation. Further we apply a novel
stochastic shape optimization approach [17] to tackle this problem and hence to obtain
a more robust design of the rotor.
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Figure 2.3: Distribution of the magnitude of the magnetic flux density |B| for the final
design. Unit of the Color bar is Tesla.

2.5.1 A stochastic model problem

We consider the nonlinear model problem (1.24) and extend it to allow for stochastic
data in the material term. Let (X,F ,P) be a complete probability space, where
F ⊂ 2X is the σ-algebra of events and P : X → [0, 1] is a probability measure. We
assume that the uncertain magnetic reluctivity is of the form

νΩ(x, |∇u| , ω) =

{
ν̂(|∇u|)(1 + δξ(ω)) x ∈ Ωf , ω ∈ X
ν0 x ∈ Ωair,

(2.42)

where ω ∈ X and ξ is a uniformly distributed random variable in the interval [−1, 1].
The parameter δ > 0 describes the relative magnitude of the perturbation in the
ferromagnetic material. Unless stated otherwise we set δ = 0.1 which corresponds to a
perturbation of 10%. Then, the weak formulation of the nonlinear state equation (1.17)
in the stochastic setting for a fixed realization ω ∈ X reads: find u = u(·, ω) ∈ H1

0 (D)
such that

aω(u, η) = 〈F, η〉 for all η ∈ H1
0 (D) (2.43)

with

aω(u, η) =

∫
D

νΩ(x, |∇u| , ω)∇u(x, ω) · ∇η(x) dx and (2.44)

〈F, η〉 =

∫
D

J3(x)η(x) dx. (2.45)
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Now, the objective function depends on the random data as well and so for a single
realization ω ∈ X we define

Jω(u) := J (u(·, ω)) (2.46)

where J is defined as in (1.23). Since we are interested in a high torque over all
possible outcomes of ω we introduce the expectation as

E[Jω(u)] :=

∫
X

Jω(u)dP(ω)

and consider the following stochastic shape optimization problem:

inf
Ω∈O

E[Jω(u)] (2.47a)

subject to u ∈ H1
0 (D) : aω(u, η) = 〈F, η〉 for all η ∈ H1

0 (D), ω ∈ X (2.47b)

where the admissible set of shapes O is given as in (1.24c), aω and F are defined above
respectively. Note that the solution of the state equation depends on the current
shape, i.e. u = u(Ω). Hence, we also introduce the stochastic reduced functional
Jω(Ω) := Jω(uΩ). In order to solve the above model problem we need to calculate its
shape derivative. For fixed ω ∈ X this can be done as in the deterministic case and
so the shape derivative is given by

dJω(Ω;V ) =

∫
D

(div(V )I − ∂V − ∂V T )νΩ(x, |∇u| , ω)∇u · ∇pdx

−
∫

Ωf

ν̂ ′(|∇u|)(1 + δξ(w))

|∇u|
(∂V T∇u · ∇u)(∇u · ∇p)dx,

(2.48)

where p = p(·, ω) ∈ H1
0 (D) is the solution to the adjoint equation∫

D

Aω(x,∇u)∇p · ∇η dx = 2CJ

∫
Ωg

Q(x)∇u · ∇η dx, for all η ∈ H1
0 (D). (2.49)

Here, the function Aω : D ×R2 → R
2 represents the stochastic version of (2.17) and

is given by
Aω(x, y) = (1 + δξ(ω))DT (y)χΩf (x) + ν0IχD\Ωf (x). (2.50)

2.5.2 Numerical method

In this section we discuss the numerical procedure to solve problem (2.47). We use a
generalization of the so called stochastic gradient method which is proposed for shape
optimization in [17] to tackle our model problem. The stochastic gradient method is
an algorithm for computing solutions to problems of the form

min
x
E[Jω(x)].
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It uses iterates of the form xn+1 = xn − sn∇Jωn(xn) where ∇Jωn(xn) ≈ ∇E[Jω(xn)]
is called stochastic gradient at xn for a random sample ωn ∈ X and represents an
approximation to ∇E[Jω(xn)]. A challenging task is the choice of a proper step size
sn that leads to convergence of the method. One possible choice is the so called
Robbins-Monro step size given by

sn ≥ 0,
∞∑
n=0

sn =∞,
∞∑
n=0

(sn)2 <∞, (2.51)

which dates back to [36]. Note that the Armijo rule may not converge without ad-
ditional variance reduction techniques and therefore should be used with caution for
stochastic problems [17].
As seen above, the crucial ingredient of the stochastic gradient method is that we can
choose descent directions as the gradient of Jω for a randomly chosen ω ∈ X. There-
fore it is sufficient to compute the shape derivative for Jω instead for E[Jω(xn)]. For
our problem a descent direction can be computed in the same way as in (2.40), that
is for fixed ω ∈ X solve the auxiliary problem: find V ∈ H1

0 (Ωd,R2) such that

b(V,W ) = −dJω(Ω;W ) for all W ∈ H1
0 (Ωd,R2), (2.52)

where b(·, ·) is a symmetric and coercive bilinear form. Here, b(·, ·) is again chosen to
be the linear elasticity bilinear form (2.41).
The procedure to solve the stochastic problem (2.47) is summarized in the following
optimization algorithm:

Algorithm 2.2. Initialization: Set k = 0, choose initial design Ω0, set T0 = id;

(1) generate ωk ∈ X
(2) solve state equation (2.43) for ω = ωk

(3) solve adjoint equation (2.49) for ω = ωk

(4) compute descent direction Vk by solving (2.52) for ω = ωk;

(5) choose step size τk > 0;

(6) set Tk+1 = Tk + τkVk and k ← k + 1 and go to (1);

Note that in step (5) we choose a step size according to the Robbins-Monro rule
(2.51). The convergence of this method has been proven recently in [18].

2.5.3 Numerical results

The results of applying Algorithm 2.2 to problem (2.47) with δ = 0.3 are shown in
Figure 2.4. Note that we use a single sample to generate the stochastic shape gradient
at each iteration k. However, in order to calculate objective function values for the
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initial and final design we use additional sampling. To be more precise, we approximate
E[Jω(Ωk)] by the estimate

ĵk :=
1

m

m∑
`=1

Jωk,`(Ωk) ≈ E[Jω(Ωk)],

with m identically and independently distributed samples {ωk,1, ..., ωk,m} generated at
iteration k. Note that we choose m = 100 to calculate ĵk at the first and last iteration.
We let the algorithm iterate 50 times and we could achieve an decrease of the objective
function from ĵ0 = −1.02900047 to ĵ50 = −1.26053252. Having a closer look on the
final design in Figure 2.4 reveals that there are only minor changes in the final rotor
design compared to the deterministic case in Figure 2.2. It seems that the randomness
in the ferromagnetic material of the motor has only minimal influence on the final
rotor design. A deeper investigation shows that the expected torque E[Jω(Ωfinal)]
for the final design Ωfinal of the deterministic case is |E[Jω(Ωfinal)]| ≈ 1.25969783
Nm which is a little lower than |ĵ50|. This comparison confirms the suspicion that
the final design of the stochastic model is slightly more robust. Finally, we mention
that the expectation is a risk-neutral measure and other measures may lead to more
conservative designs.

2.6 Comparison to parametric shape optimization

methods

In this section we want to compare our results to the results of a parametric shape
optimization approach applied to model problem (1.24). Using parametric shape op-
timization one has to define the parameters and dependencies of the geometry which
are allowed to vary. In general, without any a priori knowledge of what could be a
good design, it is very difficult to decide which geometrical parameters should change.
However, thanks to our results of the previous section the parameter setting shown
in Figure 2.5 is defined. Here, the parameters d1, d2 and d3 describe the thickness of
the ferromagnetic layers whereas d4, d5 and d6 are used to describe the thickness of
the non-ferromagnetic layers. Further, the parameters l1 to l4 and s1 to s4 are used
to define the length of and the distance between the ferromagnetic layers respectively.
As additional design variable the angle β ∈ [35◦, 55◦] representing the position of the
rotor is chosen. The objectives are to maximize the torque and to minimize the area
of ferromagnetic material inside the design domain. Note that this is different to the
model problem (1.24) formulated in Chapter 1, where we considered only a fixed rotor
position, that is β = 45◦ and did not formulate any constraint to the ferromagnetic
area of the design domain. The simulation of the parametric shape optimization prob-
lem has been done with the software JMAG and the results have been kindly provided
by C. Mellak. In order to solve the parametric problem the Multi-objective Genetic
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Figure 2.4: Application of algorithm 2.2 to problem (2.47). (a) Initial design: |ĵ0| =
1.02900047 Nm. (b) Final design: |ĵ50| = 1.26053252 Nm. (c) Decrease of
the objective function.

Algorithm (MOGA) with a population size of 200 and a number of generations of
30 is used. In contrast to our approach this algorithm does not need any sensitivity
information but instead creates individuals and selects the fittest ones along every
generation. The results are shown in Figure 2.6. The algorithm tested thousands of
different designs with respect to the objectives and the final design obtained in case
5761 has a torque of 1.221 Nm where β = 49.15◦. The total computational time was
around 16 hours. Compared to the results of the sensitivity based approach in Section
2.4.2, where the total computational time of solving problem (1.24) was around 5 min-
utes and the final design has a torque of 1.259 Nm, the parametric approach solved
by the MOGA performed significantly worse. The difference in the results rely on
two aspects: Firstly, due to parametric formulation of the shape optimization problem
one reduces the design space from an infinite dimensional to a finite dimensional one
resulting in a loss of flexibility in the designs. Further, one has to a priori decide which
geometrical parameters should change. Secondly, solving the parametric problem with



50 2 Shape optimization

a genetic algorithm is responsible for the high computational effort.
Summarizing, even though the parametric problem is posed slightly different here,

we can see the large potential of a gradient based shape optimization approach com-
pared to a genetic algorithm.

(a) (b)

Figure 2.5: Parametric setting of the rotor. (a) Chosen geometrical parameters. (b)
Some possible rotor designs.
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(a) (b)

(c)

Figure 2.6: (a) Results (Cases) of the genetic algorithm . (b) Final design of the best
case. Torque: 1.221 Nm at β = 49.15◦. Computational time: ∼ 16h. (c)
Final design of the sensitivity based approach applied to (1.24). Torque:
1.259 Nm. Computational time: ∼ 5min





3 Topology optimization

The aim of this chapter is to apply a sensitivity based topology optimization method
to solve the model problems introduced in Chapter 1. The main ingredient of this
approach is the use of the so called topological derivative. The topological derivative
measures the sensitivity of a shape functional J = J(Ω),Ω ⊂ Rd with respect to topo-
logical perturbations of the shape Ω. That means it indicates whether an introduction
of a hole around a spatial point x0 would lead to an increase or decrease of the shape
functional. Further, this information is used in a level set algorithm which was in-
troduced in [4] to solve the design optimization problems numerically. The strength
of this method in comparison to the shape optimization method considered in the
previous chapter is that it allows for topological changes in the design domain which
may lead to more flexible designs. This chapter is organized as follows: In Section 3.1
we derive the topological derivative for a class of quasi-linear model problems using
the technique described in [16] and apply these results to the special case of problem
(1.24). Subsequently, in Section 3.2 we focus on the numerical implementation of the
design optimization problem. Here, we present the used level set algorithm and briefly
discuss the Nitsche-Extended Finite Element Method (Nitsche-XFEM) as discretiza-
tion method for boundary value problems with unfitted interface. The results for both
optimization problems (1.26) and (1.24) are shown in Section 3.3 for different initial
designs. Finally, in Section 3.4 we present an extended level set algorithm which is
used to solve the stochastic optimization problem (2.47).

3.1 Topological derivative using a Lagrangian

framework

In this section we derive the topological derivative for the objective function

J(Ω) = −CJ
∫

Ωg

Q(x)∇u · ∇u dx, (3.1a)

where CJ > 0, Q ∈ C(D,R2,2), which is subject to the constraint that u ∈ H1
0 (D)

solves ∫
D

AΩ(x,∇u) · ∇ϕ dx =

∫
Ωc

fϕ dx for all ϕ ∈ H1
0 (D). (3.1b)

53
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Here, Ωc is an open set, f ∈ L2(D) and AΩ : D ×R2 → R
2 is a piecewise nonlinear

function defined by

AΩ(x, y) :=

{
a1(y) for x ∈ Ω

a2(y) for x ∈ D \ Ω,
(3.2)

with functions a1, a2 : R2 → R
2 satisfying the following assumptions:

Assumption 3.1 (A). The functions ai : R2 → R
2, i = 1, 2 are differentiable and

there are constants c1, c2, c3 > 0 such that they satisfy:

(i) (ai(x)− ai(y)) · (x− y) ≥ c1‖x− y‖2, for all x, y ∈ R2.

(ii) ‖ai(x)− ai(y)‖ ≤ c2‖x− y‖ for all x, y ∈ R2.

(iii) ‖∂ai(x)− ∂ai(y)‖ ≤ c3‖x− y‖ for all x, y ∈ R2.

Note that the design optimization problem of the electric motor (1.24) fits in the
framework of quasi-linear problems above. We mention that the boundary value prob-
lem (3.1b) models a nonlinear potential equation defined on a domain consisting of
two different materials which may exhibit nonlinear behavior. In the special case that
a1(y) = ν̂(y)y and a2(y) = ν0y this equation coincides with the magnetostatic bound-
ary value problem in (1.17).
The rest of this section is organized as follows: We start by fixing notations and def-
initions for the topological setting. In the following part we present a Lagrangian
framework which is used to calculate the topological derivative of problem (3.1). Fi-
nally, we apply these results to the electric motor design optimization problem (1.24)
and derive the topological sensitivities in this special context.

3.1.1 Preliminaries

We fix the setting for the topological derivative. We use the following definition of the
topological derivative:

Definition 3.1 ([16]). [Topological derivative] Let D ⊂ R3 be an open set and Ω ⊂ D
an open subset. Let ω ⊂ R3 be open with 0 ∈ ω and define for z ∈ R3, ωε(z) := z+εω.
The topological derivative of a shape function J at Ω at the point z ∈ D\∂Ω is defined
by

dJ(Ω)(z) =

lim
ε↘0

J(Ω\ωε(z))−J(Ω)
|ωε(z)| if z ∈ Ω,

lim
ε↘0

J(Ω∪ωε(z))−J(Ω)
|ωε(z)| if z ∈ D \ Ω.

(3.3)

As it can be seen from the definition above the topological derivative for problem
(3.1) is in general different for introducing material a1 in regions where material a2 is
present (case z ∈ D\Ω) and vice versa (cf. Figure 3.1). We will focus on the derivation
for the case that z ∈ D \ Ω and mention that the derivation for the case z ∈ Ω is
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analogous. In the context of magnetostatics we will have to use both sensitivities,
i.e. that for introducing air into ferromagnetic material and that for introducing
ferromagnetic material into a domain of air to set up a bidirectional optimization
algorithm which is capable of both, introducing and removing material at the most
favorable positions [13].

a1

Ω

D \ Ω

a2

Ωc

Ωg

a2

a2

a1

z

ωε

Figure 3.1: Setting for the topological perturbation: Inclusion ωε of material a1 around
point z ∈ D \ Ω where material a2 is present.

We use the following setting for the topological perturbation for model problem
(3.1), see Figure 3.1: We fix

• an open and bounded set ω ⊂ R2 with 0 ∈ ω,

• an open set Ω b D and the inclusion point z := 0 ∈ D \ Ω,

• the perturbation ωε(z) := z + εω = εω and ε ∈ [0, τ ], where τ > 0 is such that
ωε(z) b D \ Ω for all ε ∈ [0, τ ],

• the perturbed shape Ωε(z) := Ω ∪ ωε(z),

• the transformation Tε(x) := εx, x ∈ R2, ε ≥ 0.

In order to simplify notation we will use the abbreviations ωε for ωε(z), Ωε for Ωε(z)
and xε for Tε(x).
For the subsequent sensitivity analysis we define for d ≥ 1 the set BL(Rd) := {u ∈
H1
loc(R

d) : ∇u ∈ L2(Rd)d} and introduce the Beppo-Levi space as the quotient space
ḂL(Rd) := BL(Rd)/R, where /R means that we factor out the constant functions.
We denote by [u] the equivalence classes of ḂL(Rd) and equipped with the norm

‖[u]‖ḂL(Rd) := ‖∇u‖L2(Rd)d , u ∈ [u], (3.4)

the Beppo-Levi space is a Hilbert space [31]. Moreover C∞c (Rd)/R is dense in ḂL(Rd).
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3.1.2 Lagrangian framework

In this section we present an abstract result which will be used to calculate the topo-
logical derivative of the previous model problem. This section is based on [16].

Definition 3.2 (parametrised Lagrangian). Let X and Y be vector spaces and τ > 0.
A parametrised Lagrangian (or short Lagrangian) is a function

(ε, u, p) 7→ G(ε, u, p) : [0, τ ]×X × Y → R,

such that p 7→ G(ε, u, p) is affine on Y .

Definition 3.3. Let ε ∈ [0, τ ]. The state equation is defined by: find uε ∈ X, such
that

∂pG(ε, uε, 0)(ϕ) = 0, for all ϕ ∈ Y. (3.5)

The set of states is denoted by E(ε). The adjoint state is defined by: find pε ∈ Y , such
that

∂uG(ε, uε, pε)(ϕ) = 0 for all ϕ ∈ X. (3.6)

The set of adjoint states associated with (ε, uε) is denoted by Y (ε, uε).

Definition 3.4 (`-differentiable Lagrangian). Let X and Y be vector spaces and
τ > 0. Let ` : [0, τ ] → R be a given function satisfying `(0) = 0 and `(ε) > 0 for
ε ∈ (0, τ ]. A `-differentiable parametrised Lagrangian is a parametrised Lagrangian
G : [0, τ ]×X × Y → R, satisfying,

(a) for all v, w ∈ X and p ∈ Y ,

s 7→ G(ε, v + sw, p) is continuously differentiable on [0, 1]. (3.7)

(b) for all u0 ∈ E(0) and p0 ∈ Y (0, u0) the limit

∂`G(0, u0, p0) := lim
ε↘0

G(ε, u0, p0)−G(0, u0, p0)

`(ε)
exists. (3.8)

We need the following assumptions.

Assumption 3.2 (A0). We assume that

(i) the set E(ε) = {uε} is a singleton for all ε ∈ [0, τ ],

(ii) the adjoint equation for ε = 0, ∂uG(0, u0, p0)(ϕ) = 0 for all ϕ ∈ X, admits a
unique solution.

Now, let us introduce the function

g : [0, τ ]→ R

ε 7→ g(ε) := G(ε, uε, 0)
(3.9)
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The following theorem gives sufficient conditions when the function g is one-sided
`-differentiable, that means when the limit

d`g(0) := lim
ε↘0

g(ε)− g(0)

`(ε)
(3.10)

exists, where ` : [0, τ ] → R is a given function satisfying `(0) = 0 and `(ε) > 0 for
ε ∈ (0, τ ] .

Theorem 3.1. Let G : [0, τ ] × X × Y → R be a `-differentiable parametrised La-
grangian satisfying Assumption (A0). Define for ε > 0,

Rε
1(u0, p0) :=

1

`(ε)

∫ 1

0

(∂uG(ε, suε + (1− s)u0, p0)− ∂uG(ε, u0, p0))(uε− u0) ds (3.11)

and

Rε
2(u0, p0) :=

1

`(ε)
(∂uG(ε, u0, p0)− ∂uG(0, u0, p0))(uε − u0). (3.12)

If the limits R1(u0, p0) := limε↘0R
ε
1(u0, p0) and R2(u0, p0) := limε↘0R

ε
2(u0, p0) exist,

then
d`g(0) = ∂`G(0, u0, p0) +R1(u0, p0) +R2(u0, p0).

Proof. By inserting a productive 0 and then using the fundamental theorem of calculus,
which is possible due to assumption (3.7), we obtain

g(ε)− g(0) = G(ε, uε, p0)−G(0, u0, p0)

= G(ε, uε, p0)−G(ε, u0, p0) +G(ε, u0, p0)−G(0, u0, p0)

=

∫ 1

0

∂uG(ε, suε + (1− s)u0, p0)(uε − u0) ds+G(ε, u0, p0)−G(0, u0, p0)

=

∫ 1

0

(∂uG(ε, suε + (1− s)u0, p0)− ∂uG(ε, u0, p0))(uε − u0) ds

+ (∂uG(ε, u0, p0)− ∂uG(0, u0, p0))(uε − u0)

+G(ε, u0, p0)−G(0, u0, p0).

In the last step we used that ∂uG(0, u0, p0)(ϕ) = 0 for the special choice ϕ = uε−u0 ∈
X due to (A0). Now, dividing by `(ε), using (3.8) and that R1(u0, p0) and R2(u0, p0)
exist, we can pass to the limit ε↘ 0 and arrive at the claimed result.

3.1.3 The topological derivative

In this section we apply Theorem 3.1 to the LagrangianG : [0, τ ]×H1
0 (D)×H1

0 (D)→ R

associated to model problem (3.1) which is defined as

G(ε, u, p) := −CJ
∫

Ωg

Q(x)∇u · ∇u dx+

∫
D

AΩε(x,∇u) · ∇p dx−
∫

Ωc

fp dx. (3.13)
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Here, the operator AΩε is defined according to (3.2) with Ωε = Ω ∪ ωε, that is
AΩε(x, y) := a1(y)χΩε(x) + a2(y)χD\Ωε(x). Note that the Lagrangian in (3.13) is
considered on the topologically perturbed domain. Moreover with this Lagrangian it
holds for the function g defined in (3.9) that g(ε) = J(Ωε) and when using `(ε) = |ωε|
we obtain that the derivative in (3.10) corresponds to the topological derivative defined
in (3.3). For this reason we always consider `(ε) = |ωε| from now on.

Analysis of the perturbed state equation

First, we are going to investigate the perturbed state equation, that is find uε ∈ H1
0 (D)

such that
∂pG(ε, uε, 0)(ϕ) = 0 for all ϕ ∈ H1

0 (D) (3.14)

or equivalently uε ∈ H1
0 (D) satisfies∫

D

Aε(x,∇uε) · ∇ϕ dx =

∫
Ωc

fϕ dx for all ϕ ∈ H1
0 (D). (3.15)

Here, we used the abbreviation Aε(x, y) := AΩε(x, y) for x, y ∈ Rd.

Lemma 3.2. Let Assumption A(i) and A(ii) be satisfied. Then, for all ε ∈ [0, τ ] there
exists a unique solution uε ∈ H1

0 (D) to the perturbed state equation (3.15).

Proof. Let ε ∈ [0, τ ] and introduce the operator Bε : H1
0 (D)→ (H1

0 (D))∗ defined by

〈Bεϕ, ψ〉 :=

∫
D

Aε(x,∇ϕ) · ψ dx.

Now, properties (i) and (ii) of Assumption A imply that the operator Bε is Lipschitz
continuous and strongly monotone for all measurable Ωε ⊂ D by Lemma 1.3. Hence,
the perturbed state equation (3.15) has a unique solution by Theorem 1.2.

In order to study the behavior of uε − u0 we make the following definition.

Definition 3.5 ([16]). We define the variation of the state by

Kε :=
(uε − u0) ◦ Tε

ε
∈ H1

0 (ε−1D), ε > 0. (3.16)

Note that by extending uε and u0 by zero outside of D we can view Kε as an element
of ḂL(Rd). We have the following estimate:

Lemma 3.3 ([16]). Let Assumption A(i), (ii) be satisfied. Then, there exists a con-
stant C > 0, such that for all small ε > 0,

‖uε − u0‖H1(D) ≤ Cε. (3.17)
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A direct consequence of Lemma 3.3 is the following estimate for ∇Kε.

Corollary 3.4. Let Assumption A(i), (ii) be satisfied. There exists a constant C > 0,
such that for all small ε > 0

‖∇Kε‖L2(R2)2 ≤ C. (3.18)

Proof. From Lemma 3.3 we have that∫
D

|∇(uε − u0)|2 dy +

∫
D

(uε − u0)2 dy ≤ C2ε2. (3.19)

Using the change of variables y = Tε(x) and then noting that (∇f)◦Tε = ε−1∇(f ◦Tε)
for f ∈ H1(D) we get∫

ε−1D

|(∇(uε − u0)) ◦ Tε|2 ε2 dx+

∫
ε−1D

((uε − u0) ◦ Tε)2 ε2 dx ≤ C2ε2

⇐⇒
∫
ε−1D

∣∣∣∣1ε∇ ((uε − u0) ◦ Tε)
∣∣∣∣2 ε2 dx+

∫
ε−1D

(
ε

(uε − u0) ◦ Tε
ε

)2

ε2 dx ≤ C2ε2

⇐⇒
∫
ε−1D

|∇Kε|2 dx+

∫
ε−1D

(εKε)
2 dx ≤ C2

Now, extending Kε by zero outside of ε−1D we may conclude

‖∇Kε‖L2(R2)2 ≤ C.

The crucial result in our analysis is the following theorem:

Theorem 3.5 ([16]). Let Assumption A(i) and A(ii) be satisfied. Then,

(a) there exists a unique solution K ∈ ḂL(Rd) to∫
Rd

(Aω(x,∇K + U0)−Aω(x, U0)) · ∇ϕ dx

= −
∫
ω

(a1(U0)− a2(U0)) · ∇ϕ dx for all ϕ ∈ BL(Rd),

(3.20)

where U0 := ∇u0(z) and Aω(x, y) := a1(y)χω(x) + a2(y)χRd\ω(x),

(b) we have ∇Kε → ∇K strongly in L2(Rd)d as ε↘ 0.
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Adjoint equation

The adjoint equation associated to the Lagrangian in (3.13) is given as the solution
p ∈ H1

0 (D) to∫
D

∂uAΩ(x,∇u)(∇ϕ) ·∇p dx = 2CJ

∫
Ωg

Q(x)∇u ·∇ϕ dx for all ϕ ∈ H1
0 (D). (3.21)

Lemma 3.6. Let Assumption A hold and let u ∈ H1
0 (D) be the solution to the un-

perturbed state equation (3.1b). Then there exists a unique solution p ∈ H1
0 (D) to the

adjoint equation (3.21).

Proof. The proof is similar to the proof of Lemma 2.7 so we only point out the main
differences. Introduce for fixed u ∈ H1

0 (D) the bilinear form

a′(u; ·, ·) : H1
0 (D)×H1

0 (D)→ R (3.22)

(ϕ, ψ) 7→
∫
D

∂uAΩ(x,∇u)(∇ϕ) · ∇ψ dx (3.23)

We show that a′ is bounded and coercive. Note that from Assumption A(ii) we get

‖∂ai(x)v‖ = lim
t↘0
‖(ai(x+ tv)− ai(x))‖/t ≤ c2‖v‖, (3.24)

for i = 1, 2 and all x, v ∈ Rd. Using this and Hölder’s inequality we get the bounded-
ness of a′:∣∣∣∣∫

D

∂uAΩ(x,∇u)(∇ϕ) · ∇ψ dx

∣∣∣∣ ≤ c2

∫
D

|∇ϕ| |∇ψ| dx ≤ c2‖ϕ‖H1(D)‖ψ‖H1(D).

In order to show that a′ is coercive we use the following estimate due to Assumption
A(i):

∂ai(x)v · v = lim
t↘0

1

t2
(ai(x+ tv)− ai(x)) · tv ≥ c1‖v‖2 (3.25)

for i = 1, 2 and all x, v ∈ Rd. Thus, the equation (3.21) has a unique solution according
to the lemma of Lax-Milgram.

Main result of section 3.1.3

Theorem 3.7 (Main result). Let Assumption A be statisfied. Let Ω ⊂ D open and u0

be the solution of the state equation (3.1b) and p0 the solution to the adjoint equation
(3.21). Let z ∈ D \ Ω such that z /∈ (Ωg ∪ Ωc) and suppose that u0 ∈ C1,α(Bδ(z)) and

p0 ∈ C1(Bδ(z)) for some δ > 0 and 0 < α < 1. Moreover assume that ∇p0 ∈ L∞(D)2.
Then the Lagrangian G given by (3.13) satisfies the assumptions of Theorem 3.1 and
hence the topological derivative at z ∈ D \ Ω is given by

dJ(Ω)(z) = ∂`G(0, u0, p0) +R1(u0, p0) +R2(u0, p0). (3.26)
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Furthermore, we have

∂`G(0, u0, p0) = (a1(U0)− a2(U0)) · P0 (3.27)

and

R1(u0, p0) =
1

|ω|

(∫
R2

[Aω(x,∇K + U0)−Aω(x, U0)− ∂uAω(x, U0)(∇K)] · P0

)
(3.28)

and

R2(u0, p0) =
1

|ω|

∫
ω

[∂ua1(U0)− ∂ua2(U0)](∇K) · P0 dx, (3.29)

where U0 := ∇u0(z), P0 := ∇p0(z) and Aω(x, y) := a1(y)χω(x)+a2(y)χRd\ω(x). Here,

K ∈ ḂL(Rd) is the unique solution to (3.20)

Proof. Without loss of generality we assume that z = 0. We apply Theorem 3.1
to the Lagrangian (3.13). In view of Lemma 3.2 and Lemma 3.6 we already have
that hypothesis (A0) is satisfied. It remains to check that the limits R1(u0, p0) and
R2(u0, p0) exist. First, a computation shows that

∂uG(ε, suε + (1− s)u0, p0)(ϕ) = −2CJ

∫
Ωg

Q(x)∇(suε + (1− s)u0) · ∇ϕ dx

+

∫
D

∂uAε(x,∇(suε + (1− s)u0))(∇ϕ) · ∇p0 dx

and

∂uG(ε, u0, p0) = −2CJ

∫
Ωg

Q(x)∇u0 · ∇ϕ dx+

∫
D

∂uAε(x,∇u0)(∇ϕ) · ∇p0 dx

Plugging this into the definition of R1, setting ϕ := uε−u0 and then using the change
of variables Tε(x) = εx and extending uε, u0, p0 by zero outside of ε−1D yields:

Rε
1(u0, p0)

=
1

`(ε)

∫ 1

0

∫
D

(∂uAε(x,∇(suε + (1− s)u0))− ∂uAε(x,∇u0))(∇(uε − u0)) · ∇p0dxds

− 1

`(ε)
CJ

∫
Ωg

Q(x)∇(uε − u0) · ∇(uε − u0) dx

=
1

|ω|

∫ 1

0

∫
R2

(∂uAω(x, s∇Kε +∇u0(xε))− ∂uAω(x,∇u0(xε)))(∇Kε) · ∇p0(xε) dxds︸ ︷︷ ︸
=:Iε

− 1

|ω|
CJ

∫
ε−1Ωg

Q(xε)∇Kε · ∇Kεdx︸ ︷︷ ︸
=:IIε

→ 1

|ω|

∫ 1

0

∫
R2

(∂uAω(x, s∇K + U0)− ∂uAω(x, U0))(∇K) · ∇P0 dxds (3.30)
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Thanks to Theorem 3.5 we have that ∇Kε → ∇K strongly in L2(R2)2 as ε ↘ 0 and
since ε−1Ωg goes to ’infinity’ because z /∈ Ωg it follows IIε → 0 as ε↘ 0. In order to
see convergence of the first term Iε, we may write

Iε =

∫ 1

0

∫
R2

(∂uAω(x, s∇Kε +∇u0(xε))− ∂uAω(x, s∇K +∇u0(xε)))(∇Kε) · ∇p0(xε) dxds

+

∫ 1

0

∫
R2

(∂uAω(x, s∇K +∇u0(xε))− ∂uAω(x,∇u0(xε)))(∇(Kε −K)) · ∇p0(xε) dxds

+

∫ 1

0

∫
R2

(∂uAω(x, s∇K +∇u0(xε))− ∂uAω(x,∇u0(xε)))(∇K) · ∇p0(xε) dxds.

Using Assumption A(iii) and that ∇p0 ∈ L∞(D)2 we see that the absolute value of
the first and second term can be bounded by

c3‖∇p0‖L∞(D)2‖∇(Kε −K)‖L2(R2)2‖∇Kε‖L2(R2)2

and
c3‖∇p0‖L∞(D)2‖∇(Kε −K)‖L2(R2)2‖∇K‖L2(R2)2

respectively. Hence, using the boundedness of ∇Kε due to Corollary 3.4 and that
∇Kε → ∇K in L2(R2)2 as ε↘ 0 both terms disappear in the limit. It remains to show
convergence of the third term. Note that using the continuity of ∂ua1, ∂ua2,∇u0,∇p0

we get pointwise convergence of the integrand of the third term. Further, using As-
sumption A(iii) the integrand is bounded by an L1 function, i.e.

|(∂uAω(x, s∇K(x) +∇u0(xε))− ∂uAω(x,∇u0(xε)))(∇K(x)) · ∇p0(xε)|
≤ s‖∇p0‖L∞(D)2‖∇K(x)‖2 for a.e. x ∈ R2.

Hence, we can apply the theorem of Lebesgue to see that Iε converges to the limit in
(3.30). Finally, using the fundamental theorem we obtain the expression in (3.28).
Now, we address the computation of R2(u0, p0). Using the definition `(ε) = |ωε| =
ε2 |ω| and the change of variables Tε we may write

Rε
2(u0, p0) =

1

|ωε|
(∂uG(ε, u0, p0)− ∂uG(0, u0, p0))(uε − u0)

=
1

|ωε|

∫
D

(∂uAε(x,∇u0)− ∂uAΩ(x,∇u0))(∇(uε − u0)) · ∇p0 dx

=
1

|ωε|

∫
ωε

(∂ua1(∇u0)− ∂ua2(∇u0))(∇(uε − u0)) · ∇p0 dx

=
1

|ω|

∫
ω

(∂ua1(∇u0(xε))− ∂ua2(∇u0(xε)))(∇Kε) · ∇p0(xε) dx

→ 1

|ω|

∫
ω

(∂ua1(U0)− ∂ua2(U0))(∇K) · P0 dx
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The convergence in the last step as ε ↘ 0 can be seen as follows: By the continuity
of ∇u0, ∇p0 in z, the continuity of ∂ua1, ∂ua2 and ∇Kε → ∇K in L2(R2)2 we get
pointwise convergence of the above integrand. Furthermore, using (3.24) and the
boundedness of ∇Kε due to Corollary 3.4, that is ‖∇Kε‖L2(R2) ≤ C for all ε > 0, the

integrand can be bounded by an L1 function, i.e.

|(∂ua1(∇u0(xε))− ∂ua2(∇u0(xε)))(∇Kε) · ∇p0(xε)|
≤ C̃‖∇p0‖L∞(D)2 for a.e. x ∈ R2.

Hence, we may apply again the theorem of Lebesgue and obtain the desired limit.

Remark 3.1 ([16, 15]). Let us make a few remarks.

• In the proof we assume without loss of generality that z = 0. In the general case
this situation can be achieved by a simple change of coordinate system.

• The topological derivative is computed for the case z ∈ D\Ω. However, the same
proof can be applied in the case that z ∈ Ω and z /∈ (Ωg ∪ Ωc). In this situation
the formula for the topological derivative is obtained by switching the roles of a1

and a2 in the theorem above and in particular in the definition of Aω.

• The case z ∈ Ωg can be dealt with in a similar manner. More precisely, the
derivation of [16] shows that if z ∈ Ωg then an additional term −CJ

∫
R2 Q∇K ·

∇K dx in the topological derivative dJ(Ω)(z) appears. The case z ∈ Ωc has to
be treated separately since in this case the right hand side of (3.1b) becomes
domain dependent.

Remark 3.2. As it was shown in [16] the formula of the topological derivative coincides
with the formula obtained in [5, Thm. 2 and Thm. 3] for the respective special cases.
More precisely, introducing the problem defining the variation of the adjoint state
Q ∈ ḂL(R2),∫

R2

∂uAω(x, U0)(∇ϕ) · ∇Q dx = −
∫
ω

(∂ua1(U0)− ∂ua2(U0))(∇ϕ) · P0dx (3.31)

for all ϕ ∈ BL(R2) the topological derivative can be written as

dJ(Ω)(z) =
1

|ω|

[
(a1(U0)− a2(U0)) ·

∫
ω

P0 +∇Q dx

+

∫
R2

(Aω(x,∇K + U0)−Aω(x, U0)− ∂uAω(x, U0)(∇K)) · (P0 +∇Q) dx

]
,

(3.32)

which is up to a scaling by 1/ |ω| the same formula as obtained in [5]. The different
scaling comes from a different definition of topological derivative used in this work.
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Remark 3.3 ([16]). Having a closer look on equation (3.31) it can be seen that ∇Q
depends linearly on P0. Thus, there exists a matrix M = M (ω, ∂a1(U0), ∂a2(U0))
which is related to the concept of polarization matrices such that∫

ω

∇Qdx = MP0.

In the next section we will exploit this fact to simplify the topological derivative for
the setting of 2D magnetostatics of our electric motor design problem.

3.1.4 Application to synchronous reluctance machine

In this section we want to show that the electric motor design optimization problem
in (1.24) applies to the setting considered in the previous section. Moreover we are
going to specify the respective topological sensitivities, i.e. that for introducing an
inclusion of ferromagnetic material inside an area that is occupied with air which we
denote by T air→f and the other way round which we denote by T f→air. Note that it is
important the have access to both sensitivities in order to employ suitable optimization
algorithms. Recall the geometric model of the electric motor which is depicted in
Figure 1.1. We are interested in the topological derivative on the design domain
Ωd ⊂ D, where D denotes the whole computational domain. The ferromagnetic part
of the design domain is denoted by Ωd

f and corresponds to the ferromagnetic part of

the motor restricted to the design domain, i.e. Ωd
f = Ωf ∩ Ωd. The area of the design

domain which is occupied with air is given by Ωd
air = (D \ Ωf ) ∩ Ωd. We consider the

cost function in (1.23), i.e.

J(Ω) = −CJ
∫

Ωg

Q(x)∇uΩ · ∇uΩ dx,

where CJ is an abbreviation for the constant prefactor, that is CJ = L/(µ0(rs − rr)).
In the notation of this section we define

a1(y) := ν̂(|y|)y
a2(y) := ν0y

f := J3

(3.33)

where y ∈ R2, such that boundary value problem (3.1b) becomes the 2D magnetostatic
problem (1.17). Note that the impressed current density J3 is supported only in the
coil areas Ωc and we have that Ωd ∩ Ωc = ∅. In order to be able to apply Theorem
3.7 we have to show that Assumption 3.1 is fulfilled for a1,a2 as chosen in (3.33).
Therefore, we require the magnetic reluctivity ν̂ to satisfy an additional smoothness
assumption.

Assumption 3.3. We assume that ν̂ ∈ C2(R+
0 ), ν̂ ′(0) = 0 and that there is a constant

c > 0 such that for all s ∈ R+
0 , ν̂ ′(s) ≤ c and ν̂ ′′(s) ≤ c.
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Note that in practice the magnetic reluctivity is obtained by interpolation from
measured data. For this reason the smoothness assumption above is justified [33, 15].
We are now in position to show the following:

Lemma 3.8. Let ν̂ be a reluctivity according to a B-H-curve satisfying Assumption
1.1 and Assumption 3.3. Define a1(y) := ν̂(|y|)y and a2(y) := ν0y for y ∈ R2. Then
Assumption 3.1 is satisfied.

Proof. All properties of Assumption 3.1 are fulfilled for the linear function a2. For
a1, items (i) and (ii) of Assumption 3.1 follow from Lemma 1.1. Furthermore in [13,
Lemma 4.7] is shown that the smoothness assumptions on ν̂ imply that a1 is twice
continuously differentiable which is sufficient for Assumption 3.1 (iii).

Hence, we can apply Theorem 3.7 with Ω = Ωf and the topological derivative in
the case z ∈ Ωd

air reads

T air→f (z) := dJ(Ω)(z) =
1

|ω|

[
(ν̂(|U0|)U0 − ν0U0) ·

∫
ω

(P0 +∇Q)dx

+

∫
R2

(T (∇K + U0)− T (U0)−DT (U0)∇K)χω · (P0 +∇Q)dx

]
,

(3.34)

where T is defined in (2.9) and DT is its Jacobian given in (2.10). In view of Remark
3.3, we have that the mapping

P0 7→ (ν̂(|U0|)− ν0)

∫
ω

(P0 +∇Q)dx

is linear from R
2 to R2. Thus, there exists a matrix M = M(ω,DT (U0), ν0I) such

that

(ν̂(|U0|)− ν0)

∫
ω

(P0 +∇Q)dx =MP0.

In [5, Theorem 6.9] an explicit formula for the polarization matrix M has been com-
puted for the case that ω = B(0, 1) is the unit disk in R2. The matrix reads

M = 2 |ω| ν0R

(λ1−ν0

λ2+ν0
0

0 λ1−ν0

λ1+ν0

)
RT , (3.35)

where λ1 = ν̂(|U0|), λ2 = ν̂(|U0|) + ν̂ ′(|U0|) |U0| and R denotes the rotation matrix
around the angle between U0 and the x-axis such that

U0 = R

(
|U0|

0

)
.
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Hence, the topological derivative in (3.34) simplifies to

T air→f (z) =
1

|ω|

[
UT

0 MP0

+

∫
R2

(T (∇K + U0)− T (U0)−DT (U0)∇K)χω · (P0 +∇Q)dx

]
.

(3.36)

The sensitivity for the case z ∈ Ωd
f (i.e. that for introducing an inclusion of air inside

an area of the design domain that is occupied with ferromagnetic material) can be
obtained by switching the roles of a1 and a2 in Theorem 3.7 (cf. Remark 3.1) and thus
reads

T f→air(z) =
1

|ω|

[
(ν0U0 − ν̂(|U0|)U0) ·

∫
ω

(P0 +∇Q(2))dx

+

∫
R2

(T (∇K + U0)− T (U0)−DT (U0)∇K)χR2\ω · (P0 +∇Q(2))dx

]
.

(3.37)

Here, T ,DT are given according to (2.9),(2.10) and Q(2) is the solution to (3.31) with
respect to switched roles of a1 and a2. Similar as before, the mapping

P0 7→ (ν0 − ν̂(|U0|))
∫
ω

(P0 +∇Q(2))dx

is linear from R
2 to R2 by virtue of Remark 3.3 and thus there exists a matrixM(2) =

M(2)(ω, ν0I,DT (U0)) such that

(ν0 − ν̂(|U0|))
∫
ω

(P0 +∇Q(2))dx =M(2)P0.

Assuming again that ω = B(0, 1) is the unit disk in R2 the topological derivative in
(3.37) can be written as

T f→air(z) =
1

|ω|

[
UT

0 M(2)P0

+

∫
R2

(T (∇K + U0)− T (U0)−DT (U0)∇K)χR2\ω · (P0 +∇Q(2))dx

]
,

(3.38)

where the polarization matrix M(2) is given by (see [5, Theorem 6.6]):

M(2) = (ν0 − λ1) |ω|R

(
λ2+
√
λ1λ2

ν0+
√
λ1λ2

0

0 λ1+
√
λ1λ2

ν0+
√
λ1λ2

)
RT . (3.39)

Here, λ1, λ2 and R are given as in (3.35).
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3.2 Computational aspects

In this section we are going to describe the level set method introduced in [4] which is
based on the topological derivative. Here, the design domain is represented implicitly
by means of a level set function which allows to deal with topological changes easily.
However, we have to think about appropriate discretization methods for the boundary
value problems involved in the computation of the topological derivative as we will be
concerned with unfitted interface problems. A suitable method to handle this issue
is the Extended Finite Element Method (XFEM) which we will briefly discuss in the
subsequent section.

3.2.1 A level set algorithm

Recall from the notations of the computational domain in Section 1.2 that Ω denotes
the part of the design domain Ωd which is currently occupied with ferromagnetic
material. The current design of the rotor is represented by means of a level set function
ψ : Ωd → R which is positive in the ferromagnetic subdomain and negative in the air
subdomain. The interface between these subdomains is represented by the zero level
set of ψ. So, we have

ψ(x) > 0 ⇐⇒ x ∈ Ω,

ψ(x) < 0 ⇐⇒ x ∈ Ωd \ Ω,

ψ(x) = 0 ⇐⇒ x ∈ ∂Ω.

(3.40)

The evolution of this level set function is guided by the generalized topological deriva-
tive, which, for a given level set function ψ, is defined as

Gψ(x) :=

{
T f→air(x), x ∈ Ω,

−T air→f (x), x ∈ Ωd \ Ω.
(3.41)

The algorithm is based on the observation, that a sufficient local optimality condition
for a given design represented by ψ reads ψ = cGψ for some c > 0. This is shown in
the following lemma:

Lemma 3.9 ([13]). Let ψ : Ωd → R be a level set function representing the domain Ω
via (3.40) and Gψ the generalized topological derivative according to (3.41). Assume
that ψ is such that for all x ∈ Ω ∪ (Ωd \ Ω)

ψ(x) = cGψ(x), (3.42)

for some constant c > 0. Then we are in presence of a local minimum.
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Proof. Let z ∈ Ω. Then, by (3.40),(3.42) and (3.41) we have

0 < ψ(z) = cGψ(z) = cT f→air(z),

and hence T f→air(z) > 0. Thus, by Definition 3.1 introducing a small inclusion of air
around z will always increase the objective function. An analogous argument holds
for the case z ∈ Ωd \ Ω.

Now, the idea of the algorithm is to approximate the topological optimality condition
(3.42) by a fixed point iteration on the unit sphere S of L2(D). Note that for ψ ∈ S
condition (3.42) is equivalent to

θ := arccos

(
ψ,

Gψ

‖Gψ‖

)
= 0, (3.43)

where θ is the angle between functions ψ and Gψ in L2 sense. This fact will be used
in the algorithm described below.

Algorithm 3.1. Initialization: Set k = 0, choose initial design ψ0 such that ‖ψ0‖ = 1,
compute J(ψ0), choose εθ > 0

(1) compute Gψk according to (3.41);

(2) set θk = arccos

(
ψk,

Gψk

‖Gψk‖

)
(3) if θk < εθ then stop, else set

ψk+1 =
1

sin θk

(
sin((1− κk)θk)ψk + sin(κkθk)

Gψk

‖Gψk‖

)
,

where κk = max{1, 1/2, 1/4, ...} such that J(ψk+1) < J(ψk);

(4) Set k ← k + 1 and go to (1);

Note that the evaluation of the generalized topological derivative involves comput-
ing the solution u to the state equation and the solution p to the adjoint equation.
Algorithm 3.1 aims to generate a sequence of level set functions {ψk} that minimizes
the angle between ψk and Gψk until for some n this angle becomes small enough, that
is, the optimality condition (3.43) is satisfied up to a small tolerance εθ. Note that in
step (3) the function ψk+1 is a combination between ψk and Gψk up to a positive multi-
plicative constant and that by construction of the iteration formula we have ψk+1 ∈ S
[6]. Here, we also choose a step size κ according to a line search procedure in order to
get a decrease of the objective function. The reason why the iteration is performed on
the unit sphere is that a level set function ψ represents the same design domain when
multiplied by a positive constant. Therefore, by choosing unitary functions we get rid
of this useless degree of freedom which may be beneficial for stability purposes of the
algorithm [4]. A more detailed description of the algorithm can be found in [4, 3].
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FE-discretization of level set function and generalized topological
derivative

Let us make a few comments about discretization of the continuous level set function
ψ and the generalized topological derivative. Let Th be a simplicial triangulation of
the hold all domain D which we assume to be shape regular. We approximate ψ by
a continuous and piecewise linear finite element function. However, to evaluate the
generalized topological derivative element wise it is beneficial to approximate it by
discontinuous finite elements. More precisely,

ψh ∈ Vh := {vh ∈ H1(Ωd) : vh
∣∣
T
∈ P1(T ), for all T ∈ Th}

Gψh ∈ Wh := {vh ∈ L2(Ωd) : vh
∣∣
T
∈ P0(T ), for all T ∈ Th}

(3.44)

In order to update the discrete level set function ψh according to step (iii) of Algo-
rithm 3.1 we need a nodal representation of Gψh . Therefore we introduce a suitable
interpolation between the discontinuous finite element space Wh and the continuous
finite element space Vh. This interpolation relies on a nodal representation of the finite
element space Vh and employs a simple averaging. Let K denote the set of all vertices
associated to the mesh Th. Then we define for any zi ∈ K the set of elements that
contain zi by

ω(zi) = {T ∈ Th : zi ∈ T}.
For any finite element node zi and wh ∈ Wh we define the local average as

Azi(wh) :=
1

|ω(zi)|
∑

T∈ω(zi)

wh
∣∣
T

(zi),

where |·| denotes the cardinality of the set ω(zi). Now, the interpolation operator
Iavh : Wh → Vh is defined as

Iavh (wh) :=
∑
zi∈K

Azi(wh)φi, (3.45)

where φi denotes the nodal basis function corresponding to zi. Applying this interpo-
lation to Gψh yields a function Ĝh ∈ Vh with nodal values Ĝh(zi) = Azi(Gψh), zi ∈ K.

Thus, Ĝh is continuous across the material interface which can be seen as smoothing
of the topological derivative. Moreover, this smoothing is necessary as otherwise the
level set function may be discontinuous after convergence.

3.2.2 Discretization of the state and adjoint equation via
Nitsche-XFEM

In the proposed algorithm the interface is represented by a level set function on a fixed
mesh and moves after every optimization step. This means that the interface is not
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aligned to the mesh elements and so we are faced with an unfitted interface problem
when solving the state and adjoint equation. Note that this is in contrast to Chapter
2 where the interface is aligned with the mesh and so standard finite element methods
could be used to take the discontinuity of the reluctivity along the interface into
account. However, applying standard finite elements to unfitted interface problems
leads to poor convergence behavior and to maintain optimal approximation orders the
standard finite element spaces need to be extended. In this section we present the
Nitsche-XFEM as discretization method for unfitted interface problems. We briefly
discuss the construction of a suitable approximation space allowing for discontinuities
along the interface. Subsequently, we use the Nitsche method to obtain a discrete
variational formulation of the state and adjoint equation.

FE-space for unfitted interface problems (XFEM/CutFEM)

Let us consider solutions u to unfitted interface problems which are domain-wise
smooth but discontinuous along the interface Γ. Further, consider the standard fi-
nite element space Vh of piecewise linear and globally continuous functions. It can
be shown that if we choose Vh as approximation space for u then there holds only an
approximation estimate of the form

inf
vh∈Vh

‖u− vh‖L2(D) ≤ c
√
h‖u‖Hk(Ω1∪Ω2), k ≥ 1,

see [19, Section 7.9.1]. When considering problems like (1.10), where the solution u
does not have a jump discontinuity but exhibits a kink along the interface, that is a
jump discontinuity in the derivative due to different material values, the approximation
is better but still sub-optimal [28]:

inf
vh∈Vh

‖u− vh‖L2(D) ≤ ch3/2‖u‖Hk(Ω1∪Ω2), k ≥ 1.

Both estimates are sharp and do not improve when higher order finite elements are
used. This motivates the construction of approximation spaces which provide a rem-
edy to this problem.

In order to achieve more accuracy when approximating jumps and kinks that are
not fitted to the mesh, the idea is to add more degrees of freedom in regions near the
interface. We need the restriction operator Ri : L2(D) → L2(Ωi) on domain Ωi, that
is Riv = v

∣∣
Ωi

. Then, we define the unfitted finite element space by

V Γ
h := R1Vh ⊕R2Vh. (3.46)

Note that in literature a finite element method based on (3.46) is referred to as Cut-
FEM. For the space V Γ

h we can expect optimal approximation orders again.
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Lemma 3.10 ([19, Theorem 7.9.3]). Let u ∈ H2(Ω1 ∪ Ω2). Then, we have

inf
vh∈V Γ

h

‖u− vh‖L2(D) ≤ ch2‖u‖H2(Ω1∪Ω2) (3.47)

A different characterization of this space which is better suited for implementation
purposes can be made by an enrichment of the standard space Vh. The construction
is as follows [19]:
Define the index set J = {1, 2, ..., n} where n = dimVh. Let (φi)i∈J be the nodal basis
of Vh. The index set of nodes associated to basis functions whose support intersects
with the interface is given by

JΓ = {j ∈ J : Γ ∩ supp(φj) 6= ∅}.

Let HΓ be the Heaviside function with HΓ(x) = 0 for x ∈ Ω1 and HΓ(x) = 1 for
x ∈ Ω2. Now, we introduce an enrichment function

Φj(x) = |HΓ(x)−HΓ(xj)| , j ∈ J .

The function Φj is used to define the new basis functions φΓ
j := φjΦj, j ∈ JΓ. Then,

the unfitted finite element space in (3.46) can be represented as

V Γ
h = Vh ⊕ V x

h , with V x
h := span{φΓ

j : j ∈ JΓ}. (3.48)

Note that a finite element discretization which uses the space V Γ
h in (3.48) is often

called extended finite element method (XFEM). By construction the new basis func-
tions φΓ

j vanish at all nodes, that is φΓ
j (xi) = 0 for all xi ∈ J and are supported only

on the cut elements, i.e., suppφΓ
j ⊂ ΩΓ.

Nitsche-XFEM formulation of the state and adjoint equation

We consider the interface problem associated to the linear model problem (1.26) which
reads

− div(ν∇u) = J3, in D ⊂ R2, (3.49a)

u = 0, on ∂D, (3.49b)

JuK = 0, on Γ, (3.49c)

Jν∇u · nK = 0, on Γ. (3.49d)

Recall that the computational domain D is decomposed into a ferromagnetic and a
non ferromagnetic part, i.e., D = Ωf ∪Ωair, separated by the interface Γ := Ωf ∩Ωair.
Also recall that the function ν takes the constant values ν0 on Ωair and ν1 on Ωf

respectively. We assume a simplicial triangulation of D which is not fitted to Γ and
that the interface is represented as the zero level of a given level set function ψ.
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The weak formulation of this problem is stated in (1.26b). Let V 0
h ⊂ H1

0 (D) be the
standard finite element space of continuous piecewise linear functions which vanish on
the boundary ∂D. In order to discretize (3.49) we choose the space

V Γ
h = V 0

h

∣∣
Ωair
⊕ V 0

h

∣∣
Ωf
.

Remark 3.4. Note that in our numerical simulations we only described the design
domain Ωd by means of a level set function. Outside Ωd we used a mesh that is fitted
to the interface. This choice allows for a sharp resolution of the interface outside
Ωd and avoids geometrical approximation which occur when discretizing a level set
function. However, to explain the idea of the Nitsche method we assume here for
simplicity that the whole domain D is characterized by a level set function exactly
even on a discrete level. In [29] is mentioned that the geometrical error due to a P1
approximation of the level set function does not deteriorate any error estimates.

To simplify notation we set from now on Ω0 := Ωair and Ω1 := Ωf . The Nitsche
method is a method to enforce boundary or interface conditions on unfitted meshes
in a weak sense by using an adapted discrete variational formulation. More precisely,
it uses a consistent penalization to enforce the interface conditions [28]. The Nitsche
approach for interface problems like (3.49) has been introduced in [21]. The discrete
formulation of problem (3.49) using the Nitsche technique reads: find uh ∈ V Γ

h such
that

Ah(uh, vh) := ah(uh, vh) +N c
h(uh, vh) +N c

h(vh, uh) +N s
h(uh, vh) = Fh(vh), ∀vh ∈ V Γ

h

(3.50)
with the bilinear forms

ah(u, v) =
∑
i=0,1

∫
Ωi

νi∇u · ∇v dx, (3.51a)

N c
h(u, v) = −

∫
Γ

{{ν∇u · n}}JvK ds, (3.51b)

N s
h(u, v) =

λ

h
ν̄

∫
Γ

JuKJvK ds (3.51c)

for u, v ∈ V Γ
h + Vreg with Vreg := H1

0 (D) ∩H2(Ω1 ∪ Ω2).
Here, n is the outer normal vector corresponding to Ω0, λ > 0 a (sufficiently large)
stabilization parameter and ν̄ = (ν0 + ν1)/2 is the mean reluctivity. Furthermore, {{·}}
denotes the averaging operator, which we define for κ0, κ1 > 0 with κ0 + κ1 = 1 as

{{w}} = κ0w0

∣∣
Γ

+ κ1w1

∣∣
Γ
,

where wi = w
∣∣
Ωi

is the restriction of the function w to Ωi. The linear form Fh : V Γ
h → R

on the right hand side reads

Fh(vh) =

∫
D

J3vh dx.
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Note that the bilinear form N c
h is not symmetric however Ah is. The bilinear form N s

h

accounts for the stability of the method and guarantees that Ah is coercive provided
that λ is chosen sufficiently large. Another crucial point for stability is the choice of
the weights κi, i = 0, 1. We use the typical choice in case of piecewise linear functions,
that is, define for every T ∈ Th

κi
∣∣
T

=
|Ti|
|T |

, i = 0, 1

where Ti = T ∩ Ωi denotes the part of T in Ωi. This particular choice has been
introduced in [21]. In order to summarize the properties of Ah(·, ·) we introduce the
norm

‖v‖2
h := |v|21 + ‖JvK‖2

1
2
,h,Γ + ‖{{ν∇v · n}}‖2

− 1
2
,h,Γ

with

‖v‖2
± 1

2
,h,Γ :=

∑
T∈T Γ

(ν̄/hT )±1‖v‖2
L2(ΓT ) and |v|21 :=

∑
i=0,1

νi‖∇v‖2
L2(Ωi)

.

Now, we can state the following result:

Lemma 3.11. Let Ah(·, ·) be the bilinear form according to (3.50)-(3.51). Then,

(i) Ah(·, ·) is continuous,

Ah(u, v) ≤ C‖u‖h‖v‖h ∀u, v ∈ Vreg + V Γ
h , (3.52)

(ii) Ah(·, ·) is coercive for λ > 0 sufficiently large,

Ah(vh, vh) ≥ C‖vh‖2
h ∀vh ∈ V

Γ
h . (3.53)

Proof. A proof can be found in [21, Lemma 5].

This implies that the discrete variational problem (3.50) has a unique solution uh ∈
V Γ
h . Moreover, we have the following a priori estimates with respect to the norm ‖·‖h:

Theorem 3.12. Let u ∈ Vreg be the solution to (3.49) and uh ∈ V Γ
h be the solution to

(3.50). Then, we have

(i) ‖u− uh‖h ≤ Ch‖u‖H2(Ω1∪Ω2),

(ii) ‖u− uh‖L2(D) ≤ Ch2‖u‖H2(Ω1∪Ω2).

Proof. A proof can be found in [21, Theorem 6].
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In order to discretize the adjoint problem (2.39) associated to the linear model
problem (1.26) using the Nitsche technique we proceed similar as before. The discrete
variational problem reads: Find ph ∈ V Γ

h such that

Ah(vh, ph) = 2CJ

∫
Ωg

Q(x)∇uh · ∇vh dx for all vh ∈ V Γ
h . (3.54)

Note that this problem has a unique solution ph ∈ V Γ
h due to Lemma 3.11. Further-

more, it can be shown that ph satisfies the same a priori error estimates as uh (cf.
[35]).

Remark 3.5 (Nonlinear model problem). In order to discretize the state and adjoint
equation associated to the nonlinear model problem (1.24) we decided for each element
of the triangulation whether it should belong to the ferromagnetic or non-ferromagnetic
domain. Using this approach yields to a jagged interface, however we can use a stan-
dard finite element method to solve the boundary value problems.

3.3 Numerical results

Here, we present the obtained numerical results. We mention that all computa-
tions were done with the finite element library NGSolve [38] using the add-on library
ngsxfem.

3.3.1 The linear model problem

In this section we apply Algorithm 3.1 in order to solve model problem (1.26) for
two different initial designs Ωd of the electric motor. The topological derivative for
the linear problem can be obtained as a special case from the derivation in Section
3.1.4. Note that in the linear case we have λ1 = λ2 = ν1 in (3.35) and therefore the
topological derivative in (3.36) simplifies to

T air→f (z) =
1

|ω|
UT

0 MP0, z ∈ Ωd
air (3.55)

with the matrix

M = 2 |ω| ν0
ν1 − ν0

ν1 + ν0

I. (3.56)

Similarly, the second sensitivity in (3.38) reduces to

T f→air(z) =
1

|ω|
UT

0 M(2)P0, z ∈ Ωd
f (3.57)

with the matrix

M(2) = 2 |ω| ν1
ν0 − ν1

ν0 + ν1

I. (3.58)
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As described in the previous section the state and the adjoint equation will be solved
numerically according to (3.50) and (3.54). Figures 3.2 and 3.3 show the results
obtained when applying Algorithm 3.1 to the linear model problem. In Figure 3.2 we
considered an axially layered rotor as initial design. Here, we could achieve an increase
of the torque from 0.531 Nm to 1.23941 Nm. Observe that the topology has changed
when comparing initial and final design. In Figure 3.3 we chose an initial design where
we assumed to have no a prior knowledge of what could be a good starting point.
Therefore we considered a massive rotor form. Note that from a physical point of view
choosing this design means that there will be no torque generated. We could achieve
an increase of the torque from 2.112 ∗ 10−5 Nm to 0.9661 Nm. This demonstrates the
powerfulness of the method.

(a) (b)

Figure 3.2: Application of Algorithm 3.1 to linear problem (1.26). (a) Initial design:
T = 0.531 Nm. (b) Final design: T = 1.23941 Nm.

(a) (b)

Figure 3.3: Application of Algorithm 3.1 to linear problem (1.26). (a) Initial design:
T = 2.112 ∗ 10−5 Nm. (b) Final design: T = 0.9661 Nm.

3.3.2 The nonlinear model problem

We apply Algortihm 3.1 to the nonlinear model problem (1.24) using the topological
sensitivities obtained in (3.36) and (3.38) respectively. However, we neglect the ex-
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pensive computation of the second term involving K in (3.36) and (3.38). In [5] is
pointed out that this second term is comparably small to the first one and so evalu-
ating only the first term might be a good approximation of the topological derivative.
For a discussion on the efficient numerical evaluation of this second term we refer to
[5]. The state and adjoint equation (1.17) and (2.18) will be solved numerically with
the approach mentioned in Remark 3.5. Figures 3.4 and 3.5 show the obtained results
of the level set algorithm with respect to two different initial designs. At first, we
considered an axially layered initial design of the rotor shown in Figure 3.4. Here, we
could achieve an increase of the objective value from 1.045806 Nm to 1.20176796 Nm.
Similarly as before, the second chosen initial design is a massive rotor design shown
in Figure 3.5. Here, we could achieve an increase of the torque from 2.106 ∗ 10−5 Nm
to 0.932723 Nm. Both examples show that there is a significant difference in the final
designs compared to the final designs associated to the linear model problem.

(a) (b)

Figure 3.4: Application of Algorithm 3.1 to nonlinear problem (1.24). (a) Initial de-
sign: T = 1.045806 Nm. (b) Final design: T = 1.20176796 Nm.

(a) (b)

Figure 3.5: Application of Algorithm 3.1 to nonlinear problem (1.24). (a) Initial de-
sign: T = 2.106 ∗ 10−5 Nm. (b) Final design: T = 0.932723 Nm.
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3.4 Topology optimization of a synchronous

reluctance motor under uncertainties

In this section we want to solve the stochastic model problem introduced in Section 2.5
via a level set method. Therefore we extend the algorithm in Section 3.2.1 to be capable
of solving stochastic design optimization problems. This new algorithm is motivated
by the stochastic gradient method which was also the basic idea of the stochastic
shape gradient method introduced in Section 2.5.2. We present the algorithm in detail
in Section 3.4.1. Subsequently, we apply this novel approach to solve the stochastic
model problem (2.47) and present the obtained results.

3.4.1 A level set method for stochastic problems

Recall (2.47) and in particular recall the objective function considered therein, that is,

Jω̂(Ω) = −CJ
∫

Ωg

Q(x)∇u(x, ω̂) · ∇u(x, ω̂)dx (3.59)

for a fixed ω̂ ∈ X. In order to solve model problem (2.47) we combine the level
set algorithm (Algorithm 3.1) with the idea of the stochastic gradient method. For
this reason we need to compute the topological derivative of the (deterministic) shape
function Jω̂ which can be done similiarly as in Section 3.1.4 by setting a1(y) = (1 +
δξ(ω̂))ν̂(|y|)y and a2(y) = ν0y, y ∈ R2 and applying Theorem 3.7 for fixed ω̂ ∈ X.
The derivatives for a fixed realization ω̂ ∈ X read

T air→fω̂ (z) := dJω̂(Ω)(z) =
1

|ω|
[
UT

0 MP0

+

∫
R2

(Tω̂(∇K + U0)− Tω̂(U0)−DTω̂(U0)∇K)χω · (P0 +∇Q)dx

] (3.60)

for z ∈ Ωd
air and

T f→airω̂ (z) := dJω̂(Ω)(z) =
1

|ω|
[
UT

0 M(2)P0

+

∫
R2

(Tω̂(∇K + U0)− Tω̂(U0)−DTω̂(U0)∇K)χR2\ω · (P0 +∇Q(2))dx

]
(3.61)

for z ∈ Ωd
f . Here, Tω̂ and DTω̂ represent the stochastic versions of (2.9) and (2.10),

that is,

Tω̂(y) := (1 + δξ(ω̂))T (y) and DTω̂(y) := (1 + δξ(ω̂))DT (y), y ∈ R2.
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Furthermore, M and M(2) are defined according to (3.35) and (3.39) respectively.
Note that the quantities U0, P0, K, Q and Q(2) depend on ω̂ as well. In the stochastic
level set method we use a generalized topological derivative which for a given level set
function ψ according to (3.40) and a fixed realization ω̂ ∈ X is defined as

Gω̂
ψ(x) :=

{
T f→airω̂ (x), x ∈ Ω,

−T air→fω̂ (x), x ∈ Ωd \ Ω.
(3.62)

Now, we propose the following algorithm:

Algorithm 3.2. Initialization: Set k = 0, choose initial design ψ0 such that ‖ψ0‖ = 1,
choose εθ > 0

(1) generate ω̂k

(2) compute Gω̂
ψk

according to (3.62) for ω̂ = ω̂k;

(3) set θk = arccos

(
ψk,

Gω̂ψk∥∥∥Gω̂ψk∥∥∥
)

for ω̂ = ω̂k;

(4) if θk < εθ then stop, else set

ψk+1 =
1

sin θk

(
sin((1− κk)θk)ψk + sin(κkθk)

Gω̂
ψk∥∥Gω̂
ψk

∥∥
)

for ω̂ = ω̂k,

where κk = max{1, 1/2, 1/4, ...} such that Jω̂k(ψk+1) < Jω̂k(ψk);

(5) Set k ← k + 1 and go to (1);

Note that in order to evaluate the generalized topological derivative in step (2) one
has to compute the solution u = u(·, ω̂) to the state equation (2.43) and the solution
p = p(·, ω̂) to the adjoint equation (2.49) for ω̂ = ω̂k respectively. In step (4) we
choose the step size κk according to a linesearch procedure, which showed a satisfying
convergence behavior in our experiments. However, from the shape gradient method is
known that this choice might be critical and other step size rules like Robbins-Monro
might be better suited.

3.4.2 Numerical results

We apply Algorithm 3.2 in order to solve model problem (2.47) numerically. To sim-
plify the computation of the topological sensitivities we proceed similarly as for the
nonlinear model problem and neglect the calculation of the second term involving K in
(3.60) and (3.61). The discretization of the state and adjoint equation has been done
as described in Remark 3.5 using piecewise linear finite elements. In our simulations
we use a single sample ω̂k at each iteration k to compute the generalized topological
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derivative. However, in order to calculate objective function values at the first and
last iteration we use additional sampling. More precisely, we approximate E[Jω̂(ψk)]
by the estimate

ĵk :=
1

m

m∑
`=1

Jω̂k,`(ψk) ≈ E[Jω(ψk)],

with m identically and independently distributed samples {ω̂k,1, ..., ω̂k,m} generated
at iteration k. Observe that −ĵk represents the torque. Note that we set m = 100
to compute ĵk for the first and last iteration. As before we consider two different
initial designs of the rotor, that are, an axially layered rotor design and a massive
rotor design. The results for an axially layered initial design are shown in Figure 3.6.
We could achieve an decrease of the objective function from ĵ0 = −1.04576424 to
ĵ6 = −1.20181864. Compared to the deterministic case in Figure 3.4 there are hardly
any changes in the design. A computation of E[Jω̂(ψfinal)] for the final design ψfinal
of the deterministic case gives |E[Jω̂(ψfinal)]| ≈ 1.20171399 Nm which is a little bit
lower than |ĵ6|. The results for a massive initial design are shown in Figure 3.7. Here,
the objective function decreases from ĵ0 = −2.10639442 ∗ 10−5 to ĵ19 = −0.93796927.
Compared to the results in Figure 3.5 we observe slight changes in the final design.
Again, a deeper investigation shows that |E[Jω̂(ψmfinal)]| ≈ 0.93272016 Nm where ψmfinal
denotes the final design of the massive rotor in the deterministic case is lower than
|ĵ19|. Thus, the final design in the stochastic case may be more robust.

(a) (b)

Figure 3.6: Application of Algorithm 3.2 to nonlinear stochastic problem (2.47).
(a) Initial design: |ĵ0| = 1.04576424 Nm. (b) Final design: |ĵ6| =
1.20181864 Nm.
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(a) (b)

Figure 3.7: Application of Algorithm 3.2 to nonlinear stochastic problem (2.47). (a)
Initial design: |ĵ0| = 2.10639442 ∗ 10−5 Nm. (b) Final design: |ĵ19| =
0.93796927 Nm.



Conclusion

In this thesis we solved a design optimization problem of an electrical machine mo-
tivated from an application in medical engineering by means of shape and topology
optimization methods based on sensitivity information. We considered two determin-
istic PDE-constrained optimization problems, i.e., (i) one with a quasi linear PDE-
constraint and (ii) one with a linear PDE-constraint as well as (iii) a stochastic model
formulation, where we assumed the reluctivity subject to uncertainty.

To begin with we solved the problems from a shape optimization point of view. In
the first part we paid attention to the two deterministic problems. Here, we derived the
shape derivative for problem (i) rigorously and described the used numerical procedure
in detail. The resulting rotor designs of both deterministic problems could achieve
a significant increase of the torque (22% for (i) and 28% for (ii)) compared to the
preexisting axially layered rotor design. A comparison between these results revealed
that for design optimization it is beneficial to consider the more realistic model (i).
Next, we extended problem (i) and considered a stochastic optimization problem. We
applied a stochastic gradient method for shape spaces to solve it. The results showed
that the final rotor design may be more robust than the rotor design of problem (i)
meaning that it accounts for the uncertainty in the material. However, the sensitivity
of the rotor design with respect to this uncertainty seems to be small. In the final part
we demonstrated the efficiency of the used shape optimization method compared to a
parametric optimization approach applied to problem (i).

As shape optimization methods do not allow for topological changes of the design
domain, we decided to solve the same problems from the perspective of topology
optimization. We derived the topological derivative for problem (i) in detail via a
Lagrangian framework. We used a level set algorithm which solely employs the topo-
logical derivative together with a finite element method for unfitted interfaces to solve
the deterministic problems. We showed numerical results for two different initial de-
signs which demonstrated the flexibility of the method. Finally, we presented a novel
algorithm which combines the level set method and the stochastic gradient method
to solve the stochastic problem (iii). Numerical results showed that the final rotor
designs may be more robust than the final rotor designs associated to problem (i).

Open questions and possible future work

The work presented in this thesis can be extended towards several directions:
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While we neglect the computation of the second term of the topological derivative
of (i) as mentioned in [5], it could be beneficial to use the full sensitivity information.
Further, using a Nitsche-XFEM formulation for the boundary value problems associ-
ated to (i) in Section 3.3.2 might lead to a better resolution of the interface in the final
designs.

Convergence analysis and the role of the step size for the stochastic level set algo-
rithm is an open question.

We considered a fixed rotor position when maximizing the torque. It would be in-
teresting to obtain optimal designs which account for several rotor positions and for a
varying impressed current density.

While we used a two dimensional geometrical model of the motor, it would be
interesting to investigate the effect of considering a three dimensional setting on the
rotor designs. Therefore, the shape derivative has to be computed for the curl-curl
setting which should be possible under mild modifications. The derivation of the
topological derivative for 3D quasi-linear magnetostatics was recently done in [15].
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