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Abstract

With quantum annealing it is possible to solve optimization problems. Current
research is focused on improving the originally proposed method. One modifi-
cation is reverse annealing. In this thesis we will implement reverse annealing
in the LHZ-model. The LHZ-model is a quantum annealing architecture that
implements all-to-all connectivity as local fields. The classical starting state is
chosen to be the ground state of the local field term of the LHZ-Hamiltonian.
With an analytically derived expression for the magnetization we can show that
reverse annealing can avoid/weaken the effect of a first-order phase transition.
Numerical work shows that a new problem arises with close energy gaps due to
the chosen initial Hamiltonian. With a rescaling of the coefficients of the initial
Hamiltonian, reverse annealing can outperform conventional quantum annealing.
Furthermore, we can show that the constraint term of the LHZ-model has a
significant influence on the annealing performance. With a quadratic drive of the
constraint Hamiltonian the energy gap occurs later than with the linear drive. A
quadratic drive also increases the size of the gap. In addition to the ground state
fidelity, we also use the energy variance as a measure of the performance of the
annealing runs.
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Kurzfassung

Mit ’Quantum Annealing‘ ist es möglich Optimierungsprobleme zu lösen. Die
Methode befindet sich weiter in Entwicklung. Eine mögliche Modifikation ist

’Reverse Annealing‘. In dieser Arbeit wird diese Methode im sogenannten LHZ-
Modell implementiert. Im LHZ-Modell entsprechen die Wechselwirkungen, die
im Ising Modell auftreten, lokalen Feldern. In der Arbeit wird zuerst analytisch
eine Gleichung für die Magnetisierung hergeleitet, die beweist, dass ’Reverse
Annealing‘ einen Phasenübergang erster Ordnung schwächen oder umgehen
kann. Nimmt man den Grundzustand des lokalen Termes des LHZ-Hamiltonians
als Startzustand, so bekommt man in den Simulationen dichte Eigenenergien am
Anfang der Annealingprozedur, die die Performance deutlich verringern. Um
das zu umgehen, wird der Koeffizient des lokalen Terms modifiziert. Dadurch
kann ’Reverse Annealing‘ ’Quantum Annealing‘ an Performance übertreffen. Des
Weiteren wird gezeigt, dass der ’Constraint‘ Term des LHZ-Hamiltonians einen
starken Einfluss auf das Ergebnis hat. Startet man den Term langsamer, so kann
man ’Reverse Annealing‘ weiter verbessern. Das liegt daran, dass durch das
langsame Starten des ’Constraint‘ Terms die minimale Energielücke zwischen
Grundzustand und erstem angeregten Zustand später auftritt und sich auch
vergrößert. Als Maß für die Performance verwenden wir die ’Fidelity‘. Am Ende
analysieren wir die Ergebnisse auch mit der Varianz der Energie.
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1 Introduction

The aim of quantum annealing is to solve classical combinatorial optimization
problems via quantum fluctuations [1, 2]. These kind of problems appear in a
large area of fields like computer science [3, 4], quantum chemistry [5], finance [6],
machine learning [7, 8] and protein folding [9, 10]. To solve those problems one
needs to find the minimum of a cost function, but very often they have a lot of
local minima, which makes them hard to solve for classical algorithms. Quantum
annealers are quantum devices designed to solve this challenging task.[2, 11]. The
description of how quantum annealers work can be found in section 2.3.
A lot of research has been done in this field nevertheless, there are still big
challenges that need to be overcome to gain a definite quantum speedup. [12–17].
A major problem, the minimal energy gap, can be found in more detail in section
2.3.2.
Different modifications of quantum annealing (QA) have been proposed to im-
prove the performance of the original method, one of them is reverse annealing
(RA) [18, 19]. RA is explained in section 2.3.3.
Not just the method, also the architecture of a quantum computer is open to
innovations. While in common models, like the spin-glass model, difficulties
like the all-to-all connectivity arise, another model, the LHZ-model, has been
developed to avoid this problem. Further information about this can be found in
section 2.4.
This thesis aims to implement RA on the LHZ-model and compare the perfor-
mance to the conventional QA method.
To avoid confusion we also want to mention that this thesis deals with ’adiabatic
quantum computing’, which is strictly based on adiabatic processes. ’Quantum
annealing’ also includes noisy environments (e.g. from thermal sources) and
diabatic transitions. The term ’quantum annealing’ covers a broader field but, we
will use this term in this thesis.
In the next section we want to introduce the chapters of this thesis.

1.1 Thesis outline

We will start with the theoretical background in chapter 2. The first section,
section 2.2, provides basic knowledge of quantum mechanics and optimization
problems. This is followed by an overview of quantum annealing, 2.3, with an
explanation of the challenge of the minimal energy gap, 2.3.2, and a possible
solution ’reverse annealing’, 2.3.3. In the last section of this chapter, section 2.4, we
introduce the LHZ-model, which helps to overcome other difficulties in quantum
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1 Introduction

annealing.
Chapter 3 is the analytical part of this thesis. There we can find the derivation of
the free energy and magnetization of our system. The obtained equation is used
later, in section 5.1, to gain useful information about the magnetization landscape.
The next chapter, 4, forms the foundation for the numerical part. Section 4.1
introduces the Hamiltonian for reverse annealing in the LHZ-model. It is followed
by some information about the units, section 4.2. Finally, the whole set-up for
the simulations is given in section 4.3. Here we give an overview of the several
investigated cases.
Chapter 5 contains the outcome of analytical and the numerical investigations of
reverse annealing in LHZ. Section 5.1 is based on the equation derived in chapter
3. We can see the magnetization landscape and when a jump in magnetization
occurs. The next sections deal with the numerical results: the ground state fidelity,
5.2, the minimal energy gap, 5.3, and the variance of energy, 5.4. In the last chapter
6 we discuss the obtained results and give suggestions for future work.
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2 Theoretical background

This chapter provides the theoretical background for this thesis. As reverse
annealing aims to solve optimization problems we first want to give a brief
overview of such problems. Then we summarize the most important parts of
quantum mechanics before we give information about quantum annealing and
its challenges. The LHZ-model is described in the last section.

2.1 Optimization problems

In optimization problems one seeks to find the best solution to a problem. Ex-
amples are timetables or transportation models where one needs to minimize
shipping costs but also demands, capacities and supplies. Such problems are de-
fined by N parameters. These N parameters can take different values. One set of
parameters is called a configuration or state. To every configuration we can assign
a cost via a cost-function. All configurations span up the configuration or state
space. They also define the corresponding ’cost-landscape’ of the optimization
problem. An example is shown in figure 2.1. The configuration with the lowest
costs is the solution to the problem.
There are classical algorithms that aim to solve such problems. They do well in

smooth regions, like in the left of our landscape, figure 2.1. In rough regions, the
right side, it can be problematic. This is the region where quantum tunneling is
of advantage. This quantum phenomenon is described in the next section (2.2).

Figure 2.1: Example of a cost-function over different configurations.

3



2 Theoretical background

Figure 2.2: Example of a state |ψ〉 and a potential barrier.

2.2 Basic quantum mechanics

In quantum mechanics, states are described by a wave function |ψ〉 in Dirac
notation. |ψ〉 is the ’ket’ and 〈ψ| is the ’bra’ vector, which is the complex conjugate
of the ’ket’ vector.
Energies in a quantum mechanical system are quantized, which means that
there are discrete energy levels, called eigenenergies. To every eigenenergy Ei
corresponds a eigenstate |Φi〉. The letter i labels the levels from 0 to the highest
one. The ground state E0 returns the lowest energy and higher energies are called
excited states (E1, E2, E3,...).
States can be expressed in a linear combination of the eigenstates like |ψ〉 =
a |Φ0〉 + b |Φ2〉 + c |Φ3〉. The state |ψ〉 is in superposition of the ground state
and the second and third excited state as long as a, b and c are not 0. After a
measurement the state |ψ〉 collapses into one of the 3 eigenstates, with respective
probabilities |a|2, |b|2 and |c|2.
As mentioned before a state |ψ〉 is described as a wave function. An example is
shown in figure 2.2. Let |ψ〉 be the wavefunction of a photon. The photon has
different probabilities of existence over the space. In the potential barrier, which
we can relate to a thin peak in figure 2.1, the photon has 0 probability of existence.
This also holds for classical particles. Nevertheless, it has a small probability to
be on the other side of the barrier. This means that quantum particles can tunnel
through the barrier, a classical algorithm would have to ’climb’ the potential
first. The tunneling rate is related to the thickness of the barrier. This is of major
advantage in rough regions as seen in figure 2.1 [20].
An interesting article about a hybrid algorithm of a classical and quantum
algorithm is [21], which uses reverse annealing (section 2.3.3) as a local search.

2.2.1 Fidelity

The fidelity gives information to which degree two states overlap with each other.
A fidelity of 1 means that the two states are identical.
In this thesis we are dealing with a so-called ’evolving state’ |ψ〉 and we are
interested in the ground state |Φ0〉 of a system. The ground state fidelity gives
a measure of how much |ψ〉 overlaps with |Φ0〉 and is defined in this thesis as
follows:

4



2 Theoretical background

F := |〈ψ|Φ0〉 |2 (2.1)

We can also relate to other states, e.g. to the excited states (|Φ1〉, |Φ2〉, |Φ2〉,...) of
the system.

2.3 Quantum annealing (QA)

QA exploits quantum mechanics (quantum tunneling) to achieve a speedup over
classical algorithms. This means that the optimization problems need to get lifted
into the quantum regime. This is done by encoding it in a Hamiltonian, not a cost
function. A function with a lot of local minima is shown to translate to a spin
glass Ising-Hamiltonian [22]. Some examples of how to map a problem onto such
a model are shown in [23]. Now we can write down the Problem-Hamiltonian
as

ĤP = −
N

∑
i=1

∑
j<i

Jijσ̂
z
i σ̂z

j −
N

∑
i=1

biσ̂
z
i . (2.2)

The optimization problem is encoded in the interactions Jij and in the external
field bi. The z-Pauli matrix σ̂z refers to the N qubits in the quantum annealer. [2]
One important foundation of quantum annealing is the adiabatic theorem. It
states that a system stays in its instantaneous eigenstate (e.g. ground state) if the
system evolves slow enough [24, 25]. This leads to the idea to initialize a system
in the ground state of an ’easy-to-prepare’ Hamiltonian Ĥ1 and then change it
slowly to the ’difficult’ Problem-Hamiltonian Ĥp (Equation 2.2). The measurement
of the qubits will provide the desired solution. This sweep is described by the
Hamiltonian

Ĥ(t) = (1− s(t))V̂TF + s(t)ĤP (2.3)

where s(t) rises from 0 to 1 over time. It is common to use a transverse field
−∑N

i=1 σ̂x
i with σ̂x as the x-Pauli matrix for V̂TF [11].

The starting state of the annealing procedure is the ground state of the trans-
verse field V̂TF which is a superposition of all possible states. Furthermore the
transverse field regulates the fluctuations which allows the state to explore the
configuration space via quantum tunneling. This means that the transverse field
can be understood as the analogon to the temperature in the classical counterpart
of QA: simulated annealing.

5



2 Theoretical background

2.3.1 Adiabatic theorem

The adiabatic theorem was first stated by Born M. and Fock V. in 1928 in the
’Zeitschrift für Physik’ and is, as mentioned in the previous chapter, one of the
important theoretical foundations of quantum annealing [24, 25]. It states that
preparing a state at time t = 0 in the ground state |Φ0(0)〉 of the Hamiltonian Ĥ(0)
and then evolving it according to the Schrödinger equation ih̄ d

dt |ψ(t)〉 = Ĥ(t) |ψ(t)〉
the actual state |ψ(t)〉 at time t will correspond to |Φ0(t)〉. This holds for the
assumptions that Ĥ(t) changes ’gradually’ and there are no level crossings. [24]
The change in Ĥ(t) is slow enough if

max
0≤t≤τ

∣∣∣∣ 〈Φi(t)| dĤ(t)
dt |Φ0(t)〉

∣∣∣∣
∆Ei,0(t)2 � 1 (i ≥ 1) (2.4)

is satisfied. ∆Ei,0 is the energy gap between the ground and the i-th excited state.
One can rewrite this equation 2.4 in terms of s(t) = t/τ (equation 2.3). τ is the
total computation time. Then equation 2.4 will transform to

max
0≤s≤1

∣∣∣∣ 〈Φ̃1(s)
∣∣ dH̃(s)

ds

∣∣Φ̃0(s)
〉 ∣∣∣∣

∆E1,0(s)2 � τ (2.5)

which is an estimation of the computation time τ. It depends on the energy gap of
the ground and the first excited state ∆E1,0. The first excited state i = 1 is used as
it returns the lowest gap to the ground state. This is one of the most challenging
problems in adiabatic quantum computing and will be described in more detail
in the next section 2.3.2. [2, 24]
At this point it is necessary to note that equation 2.4 is an approximation, where
some counterexamples are known e.g. [26]. More accurate approximations have
been developed in recent years, one example can be found in [27].

2.3.2 Energy gap and quantum phase transitions

The energy gap between the ground and the first excited state ∆E1,0 has an
influence on the computation time τ, hence on the performance of the annealing
procedure. According to equation 2.5 the computation time τ becomes larger the
smaller the gap is. Using a shorter computation time will result in a system that
does not stay in its instantaneous eigenstate. This is one of the major problems in
quantum annealing. [28]
To get a better understanding of the energy gap and its connection to the com-
plexity of the problem one needs to look at quantum phase transitions. During
the time evolution the system is expected to undergo such a phase transition as
the annealing procedure starts in a trivial state and then transforms into a highly
non-trivial one at the end of the process. Such quantum phase transitions are

6



2 Theoretical background

known to have a vanishing energy gap in the thermodynamic limit (N → ∞). [28]
There are two types of quantum phase transitions. For first order phase transitions
the minimum gap min∆E1,0(s) closes exponentially with system size N, namely
min∆E1,0(s) ∝ e−cN , with c > 0. Second order phase transitions scale polynomially
min∆E1,0(s) ∝ N−l, with l > 0. Comparing this to equation 2.5 results in τ ∝ e2cN

for first order and τ ∝ N2l+1 for second order phase transitions (Nominator of
O(N) can be ignored) [29]. Even though quantum phase transitions occur in the
thermodynamic limit, it gives a lot of information about the complexity of the
system. Optimization problems that undergo a first-order phase transition are
hard to solve as the computation time τ scales exponentially with the system
size N. Problems with a polynomially closing gap, hence a polynomially scaling
computation time τ, are considered easy to solve. [29]
Avoiding a first-order phase transition, e.g. by an inhomogeneous transverse field,
like in [30], would mean an exponential speed up. It is part of current research to
weaken or avoid first-order phase transitions. Another example of this is reverse
annealing, which we will discuss in the next section.

2.3.3 Reverse annealing (RA)

RA is an enhanced method of quantum annealing and was first introduced by
Perdomo-Ortiz et al as ’sombrero adiabatic quantum computation’ [18]. While
QA starts in a uniform superposition of all possible states (ground state of the
transverse field), RA starts in a classical state. This classical state, very often called
candidate state, may be chosen by a classical method like parallel tempering.
During the anneal the transverse field will get turned on and then off again. The
Hamiltonian for such a schedule is described by

Ĥ(t) = stĤP + (1− st)(1− λt)Ĥinit + (1− st)λtV̂TF (2.6)

The subscript t indicates time dependence and is used for clarity. st and λt
rise from 0 to 1 over the annealing process. The ground state of the Problem-
Hamiltonian ĤP is the desired solution. Ĥinit is the initial Hamiltonian of the
classical starting state e.g. −∑N

i εiσ̂
z
i and VTF is the transverse field −∑N

i σ̂x
i , N

is the number of qubits. Note that λ = 1 for all t leads to the conventional QA
method. [18, 19]
It is shown that a smart choice of the candidate state will yield an improved per-
formance [18]. In a paper of Ohkuwa et al. the performance of reverse annealing
got investigated by a mean-field theory [19].
The paper shows that if a candidate state is sufficiently close to the solution
then there would be a possible way from the start to the end of the annealing
procedure that is avoiding a first-order phase transition. With ’way’ we mean the
tuning of the parameters s and λ over time. Besides they show that if it is not
possible to go around a first-order phase transition RA will weaken the effect of
it. More details can be found in [19].
In a later paper it got proven that their results match with dynamical investiga-
tions. [31]

7
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There exist several other papers for different usage of the RA method. E.g.
Nicholas Chancellor describes in [21] classical state-of-the-art algorithms (Popula-
tion annealing and parallel tempering) which are using RA as a local search. RA
is also implemented in the D-Wave machine [32].

2.4 LHZ-model

The minimum energy gap is not the only challenge in QA. Another one in
realizing quantum annealers are the interactions between qubits according to the
Jij matrix. As mentioned above, the optimization problems are mapped onto an
Ising-model, see equation 2.2. Physical qubits interact fundamentally quasi-local
by nature, therefore the control over the interactions Jij is very restricted. Looking
at figure 2.3 A, we see an Ising chain with interactions J. Nearest neighbor
interactions like J12, J23 and J34 (blue lines) are easy to implement on a quantum
device. With long-range interactions like J24 (orange line) difficulties arise, as
qubits 1 and 4 need to interact without interfering with the other qubits 2 and
3. Not being able to implement these interactions leads to a large overhead in
auxiliary variables. [33]
An architecture to avoid this problem got introduced in 2015 by W. Lechner, P.
Hauke and P. Zoller, therefore it is often referred to as the LHZ-model. [33]
In the LHZ-model one transforms the qubits from the Ising-model, now called
logical qubits, to physical qubits. These physical qubits give information about
the parity of the logical qubits. Parallel (aligned) spins represent a qubit with
value 0 (1). The parity of qubit 1 to qubit 2 gives the first physical qubit and
the element J12 is the corresponding local field. This means that the system gets
enlarged to Np = Nl(Nl − 1)/2 physical qubits. Nl is the number of logical qubits.
This means that Nl = 4 logical qubits will result in Np = 6 physical qubits. With
the increased system size in the LHZ-model, configurations are possible which
do not correspond to a state in the Ising-model. These ’unphysical’ states will
get an energy penalty via NC = Np − Nl + 1 constraints. This would be NC = 3
constraints for Nl = 4. [33]
One convenient way to construct these constraints is via closed loops of logical
qubits (eg. σ̂z

13 - σ̂z
23 - σ̂z

24 - σ̂z
14) which have to fullfill specific conditions. The

conditions are that either none, two or all four of the physical qubits are 1. Not
meeting this condition will result in a shift to higher energies. A visualization
of this description can be seen in figure 2.3. Here auxillary qubits has been
implemented in the bottom line to be able to treat every constraint as a 4-body
plaquette. One can avoid this additional qubits by treating the bottom line as
3-body plaquettes with adjusted constraint condition. Every 3-body plaquette
needs 1 or 3 qubits to be 1. [33]
Given the information above one can write down the LHZ-Hamiltonian:

ĤLHZ = Ĥ1 + ĤC = −
Np

∑
k=1

Jkσ̂z
k −

NC

∑
l=1

Cl σ̂
z
l,nσ̂z

l,eσ̂
z
l,sσ̂

z
l,w (2.7)

8



2 Theoretical background

Figure 2.3: A: Ising chain of Nl = 4 spins. B shows the translation from logical to physical qubits.
C specifies the constraint condition and D shows how the LHZ-model builds up. The
constraint plaquettes consist of 4 qubits, therefore auxiliary spins get added to the
bottom line. Their value is fixed to 1.

Jk is the local field for the interaction strength (J1 = J12 etc.) and Cl as the
constraint strength. Cl is a constant which needs to be high enough to lift the
unphysical states (at least) above the first excited state. NC are the number of
constraint plaquettes. The indices n, e, s and w of the constraint qubits labels the
northern, southern, eastern and western qubit on plaquette l. One can distinguish
two parts in the LHZ-Hamiltonian ĤLHZ: the local field Hamiltonian Ĥ1 and the
constraint Hamiltonian ĤC. [33]
A quantum annealer based on the LHZ-model will need local fields while the
constraints get mediated by nearest-neighbor interactions.
This master thesis is about how RA has been implemented in the LHZ-model.

9



3 Free energy and magnetization

In this chapter we will derive an equation for the magnetization. With this formula
we can analyze the magnetization and any occurring phase transitions. This is
done in the next chapter, section 5.1. We will follow the procedure stated in [34].
See also [35].
We set up the Hamiltonian proposed in [35] (equation 2.6) but will use the time-
dependent letters A, B and C for the coefficients for simplicity. The Hamiltonian
is

Ĥ = AĤinit + BĤp + CV̂TF, (3.1)

with ĤP as the LHZ-Hamiltonian ĤLHZ = Ĥ1 + ĤC given in equation 2.7. The
terms are

Ĥ1 = −
Np

∑
k=1

Jkσ̂z
k , (3.2)

and

ĤC = −
NC

∑
l=1

Cl σ̂
z
l,nσ̂z

l,eσ̂
z
l,sσ̂

z
l,w. (3.3)

Np is the number of physical qubits, Jk is the local field and corresponds to the
interaction constants Jij from the Ising-model. The sum in equation 3.3 goes over
all NC constraint plaquettes. A plaquette consists of 4 qubits, northern, eastern,
southern and western qubit. Cl denotes the constraint strength.
The transverse field V̂TF is given as

V̂TF = −
Np

∑
k=1

hkσ̂x
k . (3.4)

For the initial Hamiltonian we choose the local field term Ĥ1 of the LHZ-
Hamiltonian. It is given in equation 3.2.
Now we can calculate the partition function Z = Tr(exp(−βĤ)) with β as the
inverse temperature. Applying the Trotter-Suzuki decomposition to separate the
σ̂z and σ̂x terms results in

10



3 Free energy and magnetization

Z = lim
M→∞

ZM

= lim
M→∞

Tr

({
exp

[
− β

M
(AĤinit + BĤp)

]
exp

[−βC
M

V̂TF

]}M
)

,
(3.5)

where M is the Trotter number. Further we rewrite the trace via an orthonormal
basis |{σz}〉 that diagonalizes the z component of the Pauli matrices. Here ∑{σz}
is the sum over all 2Np possible spin configurations and
{σz} =

⊗Np
k=1

∣∣σz
k
〉
. This leads to the equation

ZM = ∑
{σz}
〈{σz}|

{
exp

[
− β

M
(AĤinit + BĤp)

]
exp

[−βC
M

V̂TF

]}M

|{σz}〉 . (3.6)

Now we create M replicas of the Identity matrix

1 =
M

∏
α=1

1(α) =
M

∏
α=1

∑
{σz(α)}

|{σz(α)}〉 〈{σz(α)}| ∑
{σx(α)}

|{σx(α)}〉 〈{σx(α)}| , (3.7)

which we insert between the σ̂z and the σ̂x part of the equation 3.6. This gives

ZM = ∑
{σz}
〈{σz}|

{
exp

[
− β

M
(AĤinit + BĤp)

] M

∏
α=1

1(α) exp
[−βC

M
V̂TF

]}M

|{σz}〉

= ∑
{σz}
〈{σz}|

{ M

∏
α=1

∑
{σz(α)}

∑
{σx(α)}

exp
[
− β

M
(AĤinit(α) + BĤp(α))

]
|{σz(α)}〉 〈{σz(α)}| |{σx(α)}〉 〈{σx(α)}| exp

[−βC
M

V̂TF(α)
]}
|{σz}〉 .

(3.8)

Ĥinit and Ĥp depend on σ̂z. Acting their eigenvector |{σz(α)}〉 on them will return
the eigenvalues σz(α) with the corresponding eigenvectors (σ̂z |σz〉 = σz |σz〉). The
same thing happens with using σ̂x to the left. As there are no operators anymore
one can pull |{σz(α)}〉 to the left and |{σx(α)}〉 to the right. Now the equation
transforms to
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3 Free energy and magnetization

ZM = ∑
{σz}
〈{σz}|

{ M

∏
α=1

∑
{σz(α)}

∑
{σx(α)}

|{σz(α)}〉

exp
[ β

M

(
A

Np

∑
k=1

Jkσz
k (α) + B(

Np

∑
k=1

Jkσz
k (α) +

NC

∑
l=1

Clσ
z
l,n(α)σz

l,e(α)σz
l,s(α)σz

l,w(α))
)]

exp
[βC

M

Np

∑
k=1

hkσx
k (α)

]
〈{σz(α)}| |{σx(α)}〉 〈{σx(α)}|

}
|{σz}〉 .

(3.9)

In addition we write out the product over α and use
Tz(α) = β

M

(
A ∑ Jkσz

k (α) + B(∑ Jkσz
k (α) + ∑ Clσ

z
l,n(α)σz

l,e(α)σz
l,s(α)σz

l,w(α))
)

and Tx(α) =
βC
M ∑ hkσx

k (α). We receive

ZM = ∑
{σz}
〈{σz}|

{
∑
{σz(1)}

∑
{σx(1)}

|{σz(1)}〉 exp
[

Tz(1)
]

exp
[

Tx(1)
]

〈{σz(1)}| |{σx(1)}〉 〈{σx(1)}| ∑
{σz(2)}

∑
{σx(2)}

|{σz(2)}〉

exp
[

Tz(2)
]

exp
[

Tx(2)
]
〈{σz(2)}| |{σx(2)}〉 〈{σx(2)}| ...

∑
{σz(M)}

∑
{σx(M)}

|{σz(M)}〉 exp
[

Tz(M)
]

exp
[

Tx(M)
]

〈{σz(M)}| |{σx(M)}〉 〈{σx(M)}|
}
|{σz}〉 .

(3.10)

Terms cancel if 〈{σz}| and |{σz(1)}〉 are not equal (δij = 〈i|j〉). The equation
reduces to

ZM = ∑
{σz(1)}

∑
{σx(1)}

exp
[

Tz(1)
]

exp
[

Tx(1)
]

〈{σz(1)}| |{σx(1)}〉 〈{σx(1)}| ∑
{σz(2)}

∑
{σx(2)}

|{σz(2)}〉

exp
[

Tz(2)
]

exp
[

Tx(2)
]
〈{σz(2)}| |{σx(2)}〉 〈{σx(2)}| ...

∑
{σz(M)}

∑
{σx(M)}

|{σz(M)}〉 exp
[

Tz(M)
]
exp
[

Tx(M)
]

〈{σz(M)}| |{σx(M)}〉 〈{σx(M)}| |{σz(1)}〉 .

(3.11)

The formula can further be simplified by using ∏α again and by introducing
periodic boundary conditions so that M + 1 = 1. This leads to

12



3 Free energy and magnetization

ZM = ∑
{σz(α)}

∑
{σx(α)}

M

∏
α=1

exp
[ β

M

(
A

Np

∑
k=1

Jkσz
k (α)+

B(
Np

∑
k=1

Jkσz
k (α) +

NC

∑
l=1

Clσ
z
l,n(α)σz

l,e(α)σz
l,s(α)σz

l,w(α))
)]

exp
[βC

M

Np

∑
k=1

hkσx
k (α)

]
〈{σz(α)}| |{σx(α)}〉 〈{σx(α)}| |{σz(α + 1)}〉 .

(3.12)

Further following [35] we use the delta distribution f (∑ σz
i ) =

∫
dm δ(Nm −

∑ σz
i ) f (m) to rewrite the equation. The equation transforms to

ZM = ∑
{σz(α)}

∑
{σx(α)}

M

∏
α=1

∫
dm(α) δ

(
Npm(α)−

Np

∑
k=1

σz
k (α)

)

exp
[ β

M

(
A

Np

∑
k=1

Jkσz
k (α) + B (

Np

∑
k=1

Jkσz
k (α) +

NC

∑
l=1

Clσ
z
l,n(α)σz

l,e(α)σz
l,s(α)σz

l,w(α))
)]

exp
[β C

M

Np

∑
k=1

hkσx
k

]
〈{σz(α)}| |{σx(α)}〉 〈{σx(α)}| |{σz(α + 1)}〉 .

(3.13)

Then we can use

δ

(
Npm−

Np

∑
k=1

σz
k

)
=
∫

dm̃ exp
(
− m̃

(
Npm−

Np

∑
k=1

σz
k

))
(3.14)

to insert in 3.13. m is the magnetization and m̃ is the conjugate variable. We now
receive

ZM = ∑
{σz(α)}

∑
{σx(α)}

M

∏
α=1

∫∫
dm(α) dm̃(α) exp

[
− m̃(α)

(
Npm(α)−

Np

∑
k=1

σz
k (α)

)]

exp
[

β

M

(
(A + B)

Np

∑
k=1

Jkσz
k (α) + B

NC

∑
l=1

Clσ
z
l,n(α)σz

l,e(α)σz
l,s(α)σz

l,w(α)
)]

exp
[

βC
M

Np

∑
k=1

hkσx
k (α)

]
〈{σz(α)}| |{σx(α)}〉 〈{σx(α)}| |{σz(α + 1)}〉 .

(3.15)

We can rewrite the constraint term ∑NC
l=1 Clσ

z
l,nσz

l,eσ
z
l,sσ

z
l,w following [36]. In this

paper they derive an expression for the energy expressed as a function of the
number of qubits in the 4- (n4) and 3-body (n3) plaquettes, which is
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3 Free energy and magnetization

ENp(m) = −Cl(n4m4 + n3m3)

= −Cl

(
Np −

√
1 + 8Np + 2

)
m4 − Cl

(√
0.25 + 2Np − 1.5

)
m3.

(3.16)

Here Cl is the constraint strength.
Inserting 3.16 in 3.15 and using 〈{σz}| |{σx}〉 = ∏

Np
k=1

〈
σz

k

∣∣σx
k
〉

gives

ZM = ∑
{σz(α)}

∑
{σx(α)}

M

∏
α=1

∫∫
dm(α) dm̃(α) exp

[
− Npm̃(α)m(α)+

βBCl
M

(n4m4(α) + n3m3(α))
]

exp

[ Np

∑
k=1

((
(A + B)

β

M
Jk + m̃

)
σz

k (α)+

βC
M

hkσx
k (α)

)] Np

∏
k=1
〈σz

k (α)| |σx
k (α)〉 〈σx

k (α)|σz
k (α + 1)〉 .

(3.17)

Now we rewrite the sums ∑{σz(α)} ∑{σx(α)} = ∏
Np
k=1 ∑σz

k (α) ∑σx
k (α) and pull out the

sum out of the second exponential to obtain

ZM =
Np

∏
k=1

∑
σz

k (α)
∑

σx
k (α)

∫∫ M

∏
α=1

dm(α) dm̃(α) exp
[ M

∑
α=1

(
− Npm̃(α)m(α)+

βBCl
M

(n4m4(α) + n3m3(α))
)] M

∏
α=1

Np

∏
k=1

exp

[(
(A + B)

β

M
Jk + m̃

)
σz

k (α)+

βC
M

hkσx
k (α)

] Np

∏
k=1
〈σz

k (α)| |σx
k (α)〉 〈σx

k (α)|σz
k (α + 1)〉 .

(3.18)

We can cancel the other products over k before the steps get reversed. Letting the
vectors act to the exponential again will transform them back to operators. With
Zk = (A + B) β

M Jk + m̃, Xk = βC
M hk and

Km̃ = exp [∑α (− Npm̃(α)m(α) + βBCl
M (n4m4(α) + n3m3(α)))] we receive

ZM =
Np

∏
k=1

∑
σz

k (α)
∑

σx
k (α)

∫∫ M

∏
α=1

dm(α) dm̃(α)Km̃

M

∏
α=1
〈σz

k (α)| exp
[

Zkσ̂z
k (α)

]
|σx

k (α)〉 〈σx
k (α)| exp

[
Xk(k)σ̂x

k (α)
]
|σz

k (α + 1)〉 .

(3.19)

After executing the product over α the partition function writes as
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3 Free energy and magnetization

ZM =
Np

∏
k=1

∑
σz

k (1)
∑

σx
k (1)

∑
σz

k (2)
∑

σx
k (2)

... ∑
σz

k (M)
∑

σx
k (M)

∫∫ M

∏
α=1

(
dm(α) dm̃(α)

)
Km̃

〈σz
k (1)| exp

[
Zkσ̂z

k (1)
]
|σx

k (1)〉 〈σx
k (1)| exp

[
Xkσ̂x

k (1)
]
|σz

k (2)〉

〈σz
k (2)| exp

[
Zkσ̂z

k (2)
]
|σx

k (2)〉 〈σx
k (2)| exp

[
Xkσ̂x

k (2)
]
|σz

k (3)〉 ...

〈σz
k (M)| exp

[
Zkσ̂z

k (M)
]
|σx

k (M)〉 〈σx
k (M)| exp

[
Xkσ̂x

k (M)
]
|σz

k (1)〉 .

(3.20)

With ∑σx
k (1)
∣∣σx

k (1)
〉 〈

σx
k (1)

∣∣ = 1 we can see that all the bras and kets cancel except
the outer ones. Thus we have

ZM =
∫∫ M

∏
α=1

(
dm(α) dm̃(α)

)
exp

[ M

∑
α=1

(
− Npm̃(α)m(α) +

βBCl
M

(n4m4(α)+

n3m3(α))
)] Np

∏
k=1

tr
( M

∏
α=1

exp
[(

(A + B)
β

M
Jk + m̃

)
σ̂z(α)

]
exp

[βC
M

hkσ̂x(α)
])

.

(3.21)

Further, we rewrite the equation to derive a term for the free energy f

ZM =
∫∫ M

∏
α=1

(
dm(α) dm̃(α)

)
exp

[ M

∑
α=1

(
− Npm̃(α)m(α) +

βBCl
M

(n4m4(α)+

n3m3(α))
)]

exp

[ Np

∑
k=1

ln tr
( M

∏
α=1

exp
[(

(A + B)
β

M
Jk + m̃

)
σ̂z(α)

]
exp

[βC
M

hkσ̂x(α)
])]

=
∫∫ M

∏
α=1

dm(α) dm̃(α) exp
[
− Npβ fNp ,M

]
.

(3.22)

Thus the free energy fNp ,M is

fNp ,M =
M

∑
α=1

(
1
β

m̃(α)m(α)− BCl
NpM

(n4m4(α) + n3m3(α)))−

1
Npβ

Np

∑
k=1

ln tr
( M

∏
α=1

exp
[(

(A + B)
β

M
Jk + m̃

)
σ̂z(α)

]
exp

[βC
M

hkσ̂x(α)
])

.

(3.23)

With the solution to ∂ fNp ,M/∂m = 0 (saddle point condition) we can derive an
expression for m̃ that minimizes the free energy fNp ,M with respect to m. We
receive
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3 Free energy and magnetization

∂ f
∂m

=
1
β

m̃− B
NpM

(4n4m3 + 3n3m2) = 0, (3.24)

which leads to

m̃ =
βB

NpM
(4n4m3 + 3n3m2). (3.25)

Inserting this expression for m̃ in equation 3.23 gives

fNp ,M =
M

∑
α=1

BCl
NpM

(3n4m4(α) + 2n3m3(α))−

1
Npβ

Np

∑
k=1

ln tr
( M

∏
α=1

exp
[(

(A + B)
β

M
Jk+

βBCl
NpM

(4n4m3(α) + 3n3m2(α))
)

σ̂z(α)
]

exp
[βC

M
hkσ̂x(α)

])
.

(3.26)

Applying the static approximation m(α) = m for all α to equation 3.26 results in

fNp ,M =
BCl
Np

(3n4m4 + 2n3m3)− 1
Npβ

Np

∑
k=1

ln tr
(

exp
[ β

M

(
AJk + BJk+

BCl
Np

(4n4m3 + 3n3m2)
)

σ̂z
]

exp
[βC

M
hkσ̂x

])M
.

(3.27)

Taking the reverse Suzuki-Trotter decomposition operation will delete the rest of
the M′s. This transforms the equation to

fNp =
BCl
Np

(3n4m4 + 2n3m3)−

1
Npβ

Np

∑
k=1

ln tr
(

exp
[

β
(

AJk + BJk +
BCl
Np

(4n4m3 + 3n3m2)
)

σ̂z + βChkσ̂x
])

.

(3.28)

With the Laurent series it is possible to solve the matrix exponential of a 2x2

matrix. The free energy fNp can now be expressed as
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3 Free energy and magnetization

fNp =
BCl
Np

(3n4m4 + 2n3m3)−

1
Npβ

Np

∑
k=1

ln
[

2 cosh
(

β

√(
AJk + BJk +

BCl
Np

(4n4m3 + 3n3m2)
)2

+
(

Chk

)2)]
.

(3.29)

Now we insert the expressions of the number of three n3 =
√

0.25 + 2Np − 1.5
and four body plaquettes n4 = Np −

√
1 + 8Np + 2, which gives us

fNp = BCl

((
3−

√
9 + 72Np + 6

Np

)
m4 +

(√
1 + 8Np − 3

Np

)
m3
)
−

1
Npβ

Np

∑
k=1

ln
[

2 cosh
(

β

{(
AJk + BJk + BCl(4−

√
16 + 128Np + 8

Np
)m3

+ BCl

√
2.25 + 18Np − 4.5

Np
m2
)2

+
(

Chk

)2)} 1
2
]

.

(3.30)

Looking at the term 1
β ln(2 cosh(βx)) and letting β→ ∞ returns

limβ→∞
1
β ln(exp(βx) + exp(−βx)) = x. Using this for 3.30 leads to

fNp = BCl

((
3−

√
9 + 72Np + 6

Np

)
m4 +

(√
1 + 8Np − 3

Np

)
m3
)
−

1
Np

Np

∑
k=1

{(
AJk + BJk + BCl(4−

√
16 + 128Np + 8

Np
)m3

+ BCl

√
2.25 + 18Np − 4.5

Np
m2
)2

+
(

Chk

)2
} 1

2

.

(3.31)

In the thermodynamic limit Np → ∞ the 3-body terms m3 vanish (you can find
more details in [36]). We also assume Jk = J and hk = h. We receive

f = 3BClm4 −
{(

AJ + BJ + 4BClm3
)2

+
(

Ch
)2
} 1

2

. (3.32)

To derive the self consistency equation for the magnetization we need to perform
∂ f
∂m = 0. We get
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3 Free energy and magnetization

m =
AJ + BJ + 4BClm3√

(AJ + BJ + 4BClm3)2 + (Ch)2
. (3.33)

Furthermore we can modify it with a given constant c denoting the fraction of
positive J values. With c = 1 (all J are positive) we receive the previous equation.
The new equation is

m = c
AJ + BJ + 4BClm3√

(AJ + BJ + 4BClm3)2 + (Ch)2

+ (1− c)
−AJ − BJ + 4BClm3√

(−AJ − BJ + 4BClm3)2 + (Ch)2
.

(3.34)
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4 RA in the LHZ-model

In this chapter we want to set up the Hamiltonian for the RA-procedure in the
LHZ-model and explain the set-up for the simulation. Furthermore we go into
more detail about the simulated cases to better understand the outcome.

4.1 Hamiltonian

The general RA Hamiltonian is stated in equation 2.6 and the implementation on
the LHZ-model is already given in chapter 3, equation 3.1. Ĥp will be the the LHZ-
Hamiltonian from equation 2.7 with ĤLHZ = Ĥ1 + ĤC. The initial Hamiltonian
Ĥinit will be the local field term Ĥ1. The starting state is the ground state of this
Hamiltonian.
Now we write down the full Hamiltonian with specified coefficients for reverse
annealing (RA) ĤRA and conventional quantum annealing (QA) ĤQA:

ĤRA = (1− st)(1− λt)Ĥ1 + st(Ĥ1 + ĤC) + (1− st)λtΓV̂TF (4.1)

ĤQA = (1− st)V̂TF + st(Ĥ1 + ĤC) (4.2)

with the Hamiltonian Ĥ1 and ĤC given in equation 3.2 and 3.3. For the transverse
field V̂TF in equation 3.4 we set hk = 1. Np is the number of physical qubits. Γ
in equation 4.1 is an additional parameter to tune the strength of the transverse
field, st and λt are time-dependent and raise linearly from 0 to 1. The dependence
of the coefficients of the Hamiltonian terms Ĥ1, ĤC, and V̂TF can be seen in
figure 4.1. The QA schedule, seen in 4.1a, consists of 2 Hamiltonians. In the start
the transverse field V̂TF is on and then decreases linearly till it is off at time
t = τ. τ is the total computation time, so τ = max(t). The problem Hamiltonian
ĤP = Ĥ1 + ĤC is 0 at t = 0 and raises linearly over the annealing process. The
schedule for ĤP does not change for RA. The difference lays in the transverse field
V̂TF and the additional initial Hamiltonian Ĥinit = Ĥ1. As the coefficient for Ĥ1 is
(1− st)(1− λt) the initial Hamiltonian decreases quadratically. The coefficient for
V̂TF is (1− st)λtΓ which is a parabola with (0 at t = 0 and t = τ) a maximum at
τ/2.
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4 RA in the LHZ-model

(a) QA schedule (b) RA schedule with Γ = 1 (left) and Γ = 3 (right)

Figure 4.1: Time dependency of the coefficients of the Hamiltonian terms. The conventional QA
method, seen in (a), starts at time t = 0 with the transverse field VTF, which gets turned
off linearly over time. At the end of the anneal t = τ, it is 0. The problem Hamiltonian
HLHZ = H1 + HC starts at 0 and grows linearly till it is fully turned on. In RA s and λ
will also raise linearly from 0 to 1. This means RA, (b), starts with Ĥ1. The transverse
field VTF is 0 in the beginning and at the end of the anneal. The maximum strength at
τ
2 depends on Γ. The coefficients of the two Ĥ1 Hamiltonians in the equation sum up
to the blue line.

4.2 Units

In QA it is common to use reduced units with h̄ = 1. This means that the Energy
E = h̄ω is given in [Hz]. This further implies that the J matrix values are in [Hz]
as well. We will now introduce [Jij] as the new unit. This means that the time
is given in terms of 1

[Jij]
. If 1[Jij] = 1 [GHz] the time scales respectively to 1τ = 1

[ns].

4.3 Set-Up for simulation

For the simulation we set-up the Hamiltonians and the starting state and let it
evolve according to the Schrödinger-equation. This is done in Phyton using the
library QuTiP [37, 38].
Simulations with different computations times τ will be made for both QA and
RA. This means we run the annealing schedules shown in figure 4.1 for different
time lengths. The number of logical qubits Nl will be 4, this means we have
Np = 6 physical qubits in our systems. Furthermore we assume problems with
zero magnetic field bi = 0 in the Ising-Hamiltonian (equation 2.2). The constraint
strength Cl is set to 5. Starting with 4 simple cases we will also run 120 samples
of random J matrices with values between −1 and 1. They are discussed in the
following subsections. Keep in mind that the ground state of Ĥ1 is the starting
state for the RA procedure in LHZ. We also like to keep the Ising notation Jij for
the J matrix values.
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4 RA in the LHZ-model

(a) Case 1: J = 1. Starting state vs solution (b) Case 3: J12 = −1. Starting state
vs solution

(c) Case 3: J13 = −1. Starting state
vs solution

(d) Case 3: J14 = −1. Starting state
vs. solution

Figure 4.2: Starting and solution states for the cases 1 and 3 on the LHZ-model with Np = 6. The
left figure in each subplot shows the starting state (ground state of Ĥ1) and the right
figure the desired solution of the problem (groundstate of Ĥ1 + ĤC). A black (white)
square is a qubit with value 1 (0). Case 1 (J = 1) is visualized in (a) Case 3: In (b), (c)
and (d) we see 3 of the 6 possible configurations with one inverted Jij element. One
qubit needs to flip in each process to reach the desired state.

4.3.1 Case 1

In the first case we set all interactions to 1, so Jij = J = 1. Looking at the Ising-
model 2.2 we can see that a configuration of all spins down or up will lead to the
lowest energy states. In the LHZ-model 2.7 the first part of the equation, Ĥ1, is
minimized if all values are 1. This configuration does not violate any constraints.
No qubits need to flip during the annealing process! This is visualized in figure
4.2a.
We have two degenerate ground states in the Ising-model 2.2 and one ground
state for the LHZ-model 2.7.

4.3.2 Case 2

Here we have Jij = J = −1. To minimize the equation for the Ising-model 2.2 there
has to be an equal amount of up and down spins. For Ĥ1 in the LHZ-model 2.7
a configuration of all values 0 will return the lowest energy. This is our starting
state.
The ground state of the constraint term ĤC is any state which does not violate
the constraint condition. This means that the ground state of Ĥ1 + ĤC is a state,
closest to the ground state of Ĥ1 which fulfills the constraint condition. This
means we need to flip as few qubits as possible to obtain the lowest energy state.
For Np = 6 this means 2 qubits need to adjust during the annealing procedure
This is visualized in figure 4.3a and 4.3b.
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4 RA in the LHZ-model

(a) Case 2: Starting
state

(b) Case 2: Solution

(c) Case 4: J12 = −1. Starting
state vs solution

(d) Case 4: J13 = 1. Starting
state vs solution

(e) Case 4: J14 = 1. Starting
state vs solution

Figure 4.3: Starting and solution states for the cases 1 and 3 on the LHZ-model with Np = 6.
A black (white) square is a qubit with value 1 (0). The starting state of Case 2

(groundstate of Ĥ1 with J = −1) is shown in (a). The corresponding solution in (b) is
3-fold degenerated. Start- and solution state of 3 of the 6 possible configurations of
case 3 can be found in (b), (c) and (d). The left (right) figure in each subplot is the
starting (solution) state. One qubit needs to flip in each process to reach the desired
state.

In the Ising-model 2.2 we have now ( Nl
Nl/2) = 6 degenerated ground states and

half of it in the LHZ-model 2.7.

4.3.3 Case 3

In case 3 all J values in the matrix are set to 1 except one which has the value −1.
As we have 6 physical qubits there are 6 possible positions to set the inverted J.
Imagine an example in the Ising-model: J12 = −1 and the rest of the interactions
is 1. While J12 prefers opposite spin direction for qubit 1 and 2 there are J13,J14
and J23,J24 which prefer aligned qubits. We can conclude that the ground state in
LHZ is again all qubits 1 although the ground state energy is higher than in case
1. We note that 1 qubit has to flip to reach the solution. 3 examples are given in
figure 4.2b, 4.2c and 4.2d.

4.3.4 Case 4

Here we set one element in the Jij matrix to 1 and the rest to -1. In Case 2 we
have 3 degenerated ground states. One of those states is the ground state in this
case, depending on which element of the Jij matrix is set to 1. The ground state
for Ĥ1 will have a value 1 on the site where we set J = 1. This is shown in the left
picture of the subfigures 4.3c, 4.3d and 4.3e. The right pictures of these subfigures
show the solution state. Depending on which Jij has been inverted, the solution
state matches with one of the degenerated groundstates of case 2, figure 4.3b.
Similar to Case 3, 1 qubit has to flip to reach the desired solution.
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This chapter lists the results from simulation and analytics. In the first section
we use the performed analysis from chapter 3 to obtain the magnetization for
QA and RA in LHZ. In the second section we show the resulting fidelities of
our simulations of the 4 previously discussed cases and 120 runs of random
J-matrices. The third and last section is about the variance of energy and how it
can help to better understand the obtained results.

5.1 Magnetization

In chapter 3 we received an expression for the magnetization, see equation 3.34.
In section 4.1 we specified the coefficients A, B and C in equation 4.1. We also
keep h = 1 and Γ = 1. The coefficients are

A = (1− st)(1− λt), (5.1)

B = st, (5.2)

C = (1− st)λtΓ. (5.3)

In figure 5.1 we see the magnetization plotted for every value of s and λ for
different cases of c. c = 0 (c = 1) corresponds to J = −1 (J = 1) for all places ij.
These cases are seen in figures 5.1a and 5.1d. 5.1a, J = −1, is the inverted picture
of 5.1d, J = 1.
The way for QA over this magnetization landscape goes over a fixed λ = 1 from
s = 0 to s = 1. RA starts at s = λ = 0 and end at s = λ = 1. There is no fixed way
RA has to go between the starting and the end point.
For J = −1 and J = 1, RA does not change magnetization, independent of the
way it takes to the endpoint, whereas QA can not avoid a jump in magnetization.
This is different if c = 0.6. c = 0.6 means that 60% are J = 1 and 40% are J = −1.
In figure 5.1b we do not observe a sudden change of magnetization for QA. RA
shows the behaviour as before.
In figure 5.1c we see the magnetization landscape for c = 0.7. Here QA and RA
experience a jump in magnetization and there is no way for RA to avoid it. The
jump for RA looks smaller than the one for QA, but for better comparison we
need to look at the actual values. They are plotted in figure 5.2.
For c = 0 and c = 1 in figure 5.2a and 5.2d we see the behaviour already exam-

ined in the figures in 5.1a and 5.1d. The way for RA is chosen to be s = λ as
in the schedule in figure 4.1b. There is a jump in magnetization for QA which
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corresponds to a first-order phase transition. This is related to an exponential
gap closing, described in section 2.3.2, which is a major challenge in QA. In this
difficult region it is necessary to go slow to stay in the instantaneous ground
state.
For c = 0.6 in figure 5.2b we see a smooth change of magnetization for QA

which corresponds to figure 5.1b. Figure 5.2c with c = 0.7 proofs that the jump in
magnetization for RA is smaller than the one for QA.
The jump in magnetization can be related to an instant change of the configura-
tion. The magnetization and therefore the state before the jump is significantly
different from the one after the jump. We can see the jump as a proxy for the
distance between the two states. The tunneling rate depends on the distance
between two local minima, therefore a smaller jump means a higher tunneling
rate. This would lead to a better performance of RA for c = 0.7.
To understand why we do not see any change in magnetization for RA in c = 0

(a) c=0 (b) c=0.6

(c) c=0.7 (d) c=1

Figure 5.1: Magnetization over all values of s and λ for different fractions c of J = 1. QA starts at
s = 0 and ends at s = 1, λ fixed to 1. RA starts at s = λ = 0 and ends at s = λ = 1. c = 0
in (a) shows the magnetization landscape for J = −1 for all qubits. QA will experience
a sudden change in magnetization at s 0.2. There is no way to avoid it. RA can reach
the end point of the annealing procedure without a change in magnetization. The
same hold for c = 1 in (d) (all J = 1). (b) and (c) are intermediate cases with 60% and
70% of J = 1, the rest is J = −1. For (b) there is again no change for RA, but also a very
weak transition for QA. In (c) there is a unavoidable jump in magnetization for both
QA and RA.
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(case 2, J = −1) we refer to the previous chapter, section 4.3.1 for case 1 (c = 1)
and 4.3.2 for case 2 (c = 0). In case 1 (c = 1) the starting state is already the
solution. The state does not need to change, therefore the magnetization does not
change either. Case 2 (c = 0) is different. The starting state violates the constraint
condition. This means that as few qubits as possible need to flip to satisfy it. For
Np = 6 2 qubits need to flip. The investigated situation in figure 5.2a is based on
N → ∞. The system size is so big that the constraint adjusting qubit flips do not
change the magnetization and therefore the state significantly. In summary, we
would expect better performance for RA in both cases.
For c = 0.6 (figure 5.2b) we have no information about the starting and the
solution state. RA starts closer to the solution state than QA, but the change in
QA happens smoothly and not in a jump as in c = 0. Based on this statements we
assume that QA for c = 0.6 shows better performance than QA for c = 0.
The jump in magnetization in c = 0.7 is smaller for RA than for QA, therefore we
also expect better performance for RA.
The good result for RA is based on the fact that we already but information
about the problem in our system, as we start with the ground state of the local
field term Ĥ1. The constraint term ĤC gives the remaining information in the

(a) c=0 (b) c=0.6

(c) c=0.7 (d) c=1

Figure 5.2: Magnetization for QA and RA over different values of s. For QA λ is fixed to 1. For
RA we choose the way s = λ. This schedule is also plotted in figure 4.1b. Here the
strength of the transverse field is set to Γ = 1. The same c values as in figure 5.1 are
used.
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(a) c=1 (b) c=1

(c) c=0.7 (d) c=0.7

Figure 5.3: Magnetization for a quadratically driven constraint term ĤC for c = 1 in (a) and (b)
and for c = 0.7 in (c) and (d). In the figures (a) and (c) we see the landscape for the
magnetization for all values of s and λ. In (b) and (d) the actual magnetization for the
way of QA and RA (s = λ) is shown.

annealing process which leads to the final ground state. QA will always start with
a magnetization of 0, a superposition of all states, independent of the problem. We
further keep in mind that these results are based on mean-field theory, does not
include dynamics, N → ∞ and β→ ∞, nevertheless it can give an approximation.
In the next section 5.2 we will perform several simulations and measure the fi-
delity outcome. There the idea will arise to drive the constraint term ĤC quadrat-
ically. Further information can be found in section 5.2, but here we want to
investigate the resulting change in magnetization. This is shown in figure 5.3.
Comparing figure 5.1d with figure 5.3a we see a smoother transition from mag-

netization 0 (blue) to 1 (yellow). This is confirmed in figure 5.3b. We also see a
changed behaviour in figure 5.3c (compared to 5.2c). The change in magnetization
happens for higher s (and λ) values for QA (and RA). The jump remains but is
here (in 5.3d) smaller for QA than in the previous one in 5.2c.
We conclude that the quadratic driven constraint term ĤC does not change RA
but can enhance QA for c = 1. The delay of the jump for RA with c = 0.7 can
be useful in that sense, that the jump appears now when the transverse field is
at its maximum (see the schedule in figure 4.1b). This means that in this region
the fluctuations are at its maximum as well. This is an advantage over the linear
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driven case when the jump appears with lower s values as the state has a smaller
configurations space to explore and tunneling to far away local minima is less
likely.
That a quadratic (or higher-order) driven constraint term ĤC can enhance the
performance of QA has also been shown in [39].
In the next section we will investigate if the results in this section can be con-
firmed.

5.2 Fidelity

In this section we perform simulation with the parameters mentioned in section
4.3. First we will discuss the results for the cases 1-4.

5.2.1 Case 1 and 2

The results for the ground state fidelity as a function of the computation time τ
for J = 1 (case 1) and J = −1 (case 2) can be seen in figure 5.4. In 5.4(a) and 5.4(c)
the constraint condition has been applied via 4-qubit-plaquettes. That means that
auxiliary qubits are needed in the bottom lines which are fixed with Jaux = 10 to 1
(See chapter 2.4 and figure 2.3). With this modification a plaquette can be treated
as the other but with the drawback of additional qubits. In the case of Nl = 4 this
leads to 2 additional physical qubits, so Np = 6 + 2 = 8 physical qubits. Without
these auxiliary qubits one needs to modify the constraint condition in the bottom
line. To satisfy the new condition 1 or all 3 qubits of a 3-qubits-plaquettes have to
be 1. The results for this model are plotted in 5.4(b) and 5.4(d).
In the RA procedure we start with the ground state of Ĥ1. As we know from
chapter 4.3.1, this is also the ground state of the final Hamiltonian for J = 1! This
leads to good results for the ground state fidelity in figure 5.4 (a) and 5.4 (b).
The starting state for J = −1 can be seen in figure 4.3a as well as the final ground
state in 4.3b. To reach the final ground state from the initial state 2 qubits need to
get flipped during the anneal. The final state is 3-fold degenerated (see chapter
4.3.2). The results can be seen in figure 5.4 (c) and 5.4 (d).
The fidelity for J = 1 and J = −1 are significantly different for RA while the
results for QA are similar. Furthermore, we can see a change of the fidelity for
QA depending on which constraint condition has been used ((a) vs (b) and (c) vs
(d)). The results for RA show no such dependence!
The reason for this could be the high local field Jaux = 10 and the 2 additional
qubits as we already have a small system. With bigger system sizes this effect will
probably vanish. Future work could investigate this behaviour in more detail.
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(a) Case1, J = 1, with auxiliary
qubits

(b) Case 1, J = 1, without auxiliary qubits.

(c) Case 2, J = −1, with auxiliary
qubits

(d) Case 2, J = −1, without auxiliary qubits.

Figure 5.4: Final ground state fidelities F for case1, J = 1, (figure (a) and (b)) and case 2, J = −1,
(figure (c) and (d)) as a function of the total computation time for different values of Γ.
The legend is valid for all subfigures. In figure (a) and (c) we have Np = 6 physical
qubits plus 2 auxiliary qubits in the bottom. With plaquettes consisting of 3 qubits in
the bottom line of the LHZ-model the auxiliary qubits can be avoided. The results are
plotted in figure (b) and (d).

5.2.2 Case 3 and 4

The other cases, case 3 and 4, of chapter 4.3 differ from the above mentioned
cases by one element in the Jij matrix. With Np = 6 there are 6 elements in the
interaction matrix, hence there are 6 different possible positions to set the inverted
J (J12, J23, J34, J13, J24 or J14).
First we examine the results for setting all J to 1 except one to −1 (case 3), seen in
figure 5.5. As we can see from these plots, it does not matter if we set J12, J34 or
J14 (figures 5.5a, 5.5c and 5.5f) to −1, we get the same results! The same holds
for setting J13 and J24 (figures 5.5d and 5.5e) to −1. There is no other matching
results for J23 = −1 (figure 5.5b).
The triplet J12, J34 and J14 shows the best improvement over QA within all 6

cases. For Γ = 5 or Γ = 6 they return the maximum results for the fidelity, higher
and lower Γ will return lower fidelity (figures 5.5a, 5.5c and 5.5f).
For the duo J13 and J24 we need to go up to Γ = 7, 8 to get the best results (figures
5.5d and 5.5e) and even then the fidelity is lower than in the previous case.
The unique case of J23 shows the worst results for RA of the different cases but
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(a) J12 = −1 (b) J23 = −1

(c) J34 = −1 (d) J13 = −1

(e) J24 = −1 (f) J14 = −1

Figure 5.5: Final ground state fidelities F for case 3. All elements of the matrix Jij are set to 1
except one is −1. There are 6 possible Jij to switch for Np = 6. The subplots are labeled
with the inverted element Jij.

for long computation times τ > 30 it is still better than QA for Γ > 7.
If we invert the interaction matrix (all J to -1, except one J to 1, case 4) we receive
the same results per Jij as in figure 5.5 with two exceptions. The fidelity for
putting J14 to 1 does not match with figure 5.5f ( J14=-1) but with figure 5.5b
(J23 = −1) and J23 = 1 returns the same results as in figure 5.5f (J14 = −1).
With these 2 cases we ran 12 different simulation and get a total outcome of 3
different results. In table 5.1 this is summarized. ’Result 1’ are the runs with
the highest fidelity outcome and ’Result 3’ with the one with the lowest. The
Jij marks which element of the interaction matrix is inverted. The results match
for both cases only J14 and J23 are interchanged. To understand this outcome we
need to look at the starting state and how to reach the final state. In both cases
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Results Case 3 Case 4

1 J12, J14, J34 J12, J23, J34
2 J13, J24 J13, J24
3 J23 J14

Table 5.1: Overview of matching results of case 3 and 4

one qubit needs to flip during the annealing process. We will see that for the
best run (Result 1) the qubits at the corners (12, 34 and 14) are flipping. For the
second-best (Result 2) the qubits at the places 13 and 24 need to change. The
lowest fidelity returns the flip of the qubit at place 23 (Result 3). A more detailed
explanation of the start and final states can be found in chapter 4.3.3 and 4.3.4.
In other words we can say that flipping qubits at the corners of the LHZ, here
qubit 12, 34 and 14, are the easiest for the annealing procedure. These qubits
belong to 1 constraint plaquette. Then the qubits 13 and 24 follow, they are part
of 2 constraint plaquettes. The hardest to flip is qubit 23 as it contributes to all 3

constraint plaquettes for Np = 6.
The energy spectra of the RA process (τ = 10, Γ = 3) of the just discussed cases
can be seen in figure 5.6. ∆E = Eground − Ei is the difference between the ground
state energy Eground = E0 and the different eigenenergies i ≥ 0 of the system at
each time step. The thickness of the line is related to the fidelities |〈Φi|ψ〉 |2 of
the evolving state |ψ〉 regarding the eigenstates |Φi〉.
We can see from figure 5.6 that the energy gap between ground and first excited
state gets smaller the more constraint-planquettes (left to right) are involved in
flipping a qubit. Figure 5.6a (flipping of 1-constraint-qubit) shows the best result
(F = 0.57, see title of each figures) and figure 5.6c (flipping of 3-constraint-qubit)
shows the worst result (F = 0.06) for the ground-state fidelity. Following the
thickness of the line, we can see that the evolving state ’leaves’ the instantaneous
ground state via the early smallest energy gap. QA starts in a superposition of
states but in figure 5.7 we see that the dependence on the constraint qubit flip is

(a) RA, 1-constraint-qubit
flip

(b) RA, 2-constraint-qubit flip (c) RA, 3-constraint-qubit flip

Figure 5.6: Energy spectra of RA of flipping one qubit in the whole annealing process for Np = 6,
Γ = 3 and a total computation time τ of 10. The thickness of the lines is related to the
fidelity of the evolving state to the eigenstates of the different eigenenergies at time
t/τ. The fidelity relating to the actual final ground state in the end of the sweep can
be read out in the title of each figure. ∆E = Eground − Ei with i ≥ 0
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(a) QA analogon to RA 1-
constraint-spin-flip

(b) QA analogon to RA 2-
constraint-spin-flip

(c) QA analogon to RA 3-
constraint-spin-flip

Figure 5.7: Energy spectra of QA for the same problems as in figure 5.6. Computation time τ is
10. The thickness of the lines is related to the fidelity of the evolving state |ψ〉 to the
eigenstates |Φi〉 of the different eigenenergies Ei at time t/τ. The fidelity relating to
the actual final ground state in the end of the sweep can be read out in the title of
each figure. ∆E = Eground − Ei with i ≥ 0

also present there. The QA analogon for a RA 1-constraint flip returns a better
fidelity than the 2-, and 3-constraint flip but the effect is not as strong as in RA.
We can note from this chapter that the constraints have a major influence in RA.

5.2.3 Random Jk

In this section the elements of the matrix Jij can take random numbers between
−1 and 1. The average of 120 runs can be seen in figure 5.8.
18 runs are trivial, the starting state is already the final ground state. These cases

get separated from the non-trivial ones and can be seen in the right plot. For
short τ < 0.005 these runs return a fidelity of 1. The time is not long enough
for the evolving state to explore the state space around it. It stays in the starting
state which is the ground state. For higher τ and Γ > 1 the increased fluctuations
allow the state to go around the phase space through quantum tunneling. The
time τ however is not long enough. The evolving state gets trapped in a local
minimum and returns a fidelity lower than 1. For computation times τ around

Figure 5.8: Average fidelity F over 120 random runs (102 non-trivial and 18 trivial). The interac-
tions J are random values between −1 and 1.
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(a) QA (b) RA, Γ = 6

Figure 5.9: Histograms for 102 non-trivial runs of QA in (a) and RA for Γ = 6 in (b), τ = 100. The
mean and the standard deviation Std are stated in the title of each figure.

1 the fidelity reaches its minimum. This effect is stronger for higher Γ. Longer
times increase the fidelity again, the evolving state has time to optimize, but it
wont go back to a fidelity of around 1 for Γ > 3.
Looking at the left plot we see that the non-trivial case for RA is significantly
worse in terms of fidelity than QA. Especially RA with Γ = 1 does not come
over 0.1 while QA reaches 0.9 at computation time τ = 100. RA improves for
higher Γ but it starts to stagnate at Γ = 6. The exponential increase of fidelity over
computation time τ is the expected behaviour as seen in other papers eg. [36].
We also note that the error bars are big, so we need to look at the actual distribu-
tion of the runs. Figure 5.9a shows us the histogram for QA at time τ = 100 (last
point in the fidelity plot 5.8). The mean and the error (standard deviation Std) can
be read out at the title. While the majority of the runs return a fidelity of over 0.8
there are a few exceptions. The histogram for RA in figure 5.9b show a different
behaviour. The runs for Γ = 6 are evenly distributed over all fidelity values. This
leads to a mean fidelity of 0.52 but a high standard deviation std of 0.28. One
cannot give a correct estimation for RA, the outcome for Γ = 6 is random.

(a) QA (b) RA, Γ = 6

Figure 5.10: Energy spectra of random run #2 for QA and RA with Γ = 6. Computation time
τ = 100. The thickness of the line is the overlap of the evolving state to the eigenstates
of the different eigenenergies at times t/τ. Due to this thickness we can see when
the evolving states ’leaves’ the ground state. While QA shows a good behaviour, the
evolving state for RA escapes immediately in the start to higher eigenstates. The
fidelity F can be read out at the title of each figure.

32



5 Results

This is a bad result and we need to clarify the cause. We look again at the energy
spectrum. Random run #2 returns a low fidelity and the energy spectrum of QA
and RA for τ = 100 are plotted in figure 5.10. We label the individual runs from
the 120 runs by #1 to #120 to be able to distinguish them. Random run #1 is a
trivial run and has been neglected. The number has no further meaning.
Back to the plot, the thickness of the line represents again the fidelity |〈Φi|ψ〉 |2 of
the evolving state |ψ〉 with the eigenstates Φi. QA can keep (most of) the evolving
state in the ground state and ends with a fidelity of 0.88. RA returns a fidelity of
0.08 as the evolving state leaves the groundstate abrupt at the start of the anneal.
This is due to the close eigenenergies at t = 0 and there is no way to avoid this
with a smart choice of the annealing schedule. This problem never arises in QA
as it starts in a superposition of all states and is always the same for fixed Np.
The close eigenenergies arise from small values in the J matrix. To avoid this we
need to modify the starting Hamiltonian Ĥinit = Ĥ1 to improve RA. This can be
done in various ways. First let us divide the J matrix by the smallest element
|Jmin| and let |Jmin| always be bigger than a certain threshold (here 0.017) to avoid
computational problems. Note that just the J matrix in the initial Hamiltonian
get modified. The J matrix in ĤLHZ stay as it is.

Modification of the initial Hamiltonian

Running the same random runs, but with the modification of the initial Hamilto-
nian Ĥmod

1 as mention above, we receive the results plotted in figure 5.11. Focusing
on the left figure (the non-trivial runs) there is a significant improvement over the
previous runs (figure 5.8). RA for Γ = 3 comes now over 0.8 for τ = 100, whereas
without the modification it was lower than 0.4. Higher Γ reach a fidelity higher
than QA. We see the same behaviour as before: The improvement stagnates for
stronger transverse fields Γ > 5. The best fidelities are reached by Γ = 6 and Γ = 7.
The fidelity decreases for higher Γ.
The fidelity for the trivial runs in the right plot changed too. Higher Γ return
a lower minimum for computation times τ around 1 than in the previous case.
In addition all runs with different Γ′s are able to return to a fidelity of 1 for
computation times τ > 30.

Figure 5.11: Average fidelity F over 120 random runs (102 non-trivial and 18 trivial) with modified
initial Hamiltonian Ĥmod

1 .
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(a) Histogram, Γ = 6, modified Ĥinital (b) Energy spectrum, Γ = 6

Figure 5.12: The histogram in (a) shows the distribution of the runs for the modified RA with
Γ = 6. Mean and standard deviation Std are stated in the title. The energy spectrum
for run #2 is shown in (b). Computation time τ = 100 for both plots.

As in the previous runs we will investigate the results with histograms. The
histogram for RA with the modified initial Hamiltonian in figure 5.12a shows
a significant improvement over the original RA in figure 5.9b but is also more
peaked at a fidelity of 1 than the distribution for QA in figure 5.9a.
Furthermore, we can compare the energy spectrum in figure 5.12b with the
spectrum in figure 5.10b. Due to the modification of the initial Hamiltonian the
energy bands are more spread out in the start. The evolving state can not ’escape’
the instantaneous ground state in the beginning of the anneal. It returns a fidelity
of 0.99 instead of 0.08.

Quadratic drive of the constraint term

In section 5.2.1 we figured out that the performance of RA strongly depends on
which qubits flip during the annealing process. This is due to the constraints. In
figure 5.6 the flip of a 3-constraint qubit returns the earliest and sharpest energy
gap.
This knowledge leads us to the thought of what will happen if we turn on the
constraint Hamiltonian ĤC slower. To achieve this, we modify the RA-Hamiltonian
of equation 4.1 to

ĤRA = (1− st)(1− λt)Ĥmod
1 + stĤ1 + s2

t ĤC + (1− st)λtΓV̂TF (5.4)

Instead of driving ĤC linearly we turn it on quadratically. We also keep the
modified initial Hamiltonian denoted as Ĥmod

1 from the previous section. Running
the simulations from section 5.2.1 again we obtain new energy spectra for the 1-,
2- and 3-constraint qubit flip. We can see them in figure 5.13 and can compare
it to figure 5.6. We see the same connection for 1-, 2- and 3-constraint qubit flip
to the minimal energy gap but it happens later than in the previous runs. We
also notice that the fidelity improves significantly. The resulting fidelities are
summarized in table 5.2.
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(a) RA, 1-constraint-qubit
flip

(b) RA, 2-constraint-qubit flip(c) RA, 3-constraint-qubit flip

Figure 5.13: Energy spectra of RA with a quadratic driven ĤC for case 3 and 4 (flipping one qubit
in the whole annealing process) for Np = 6, Γ = 3 and a total computation time τ of
10. The spectra for a linear driven ĤC are plotted in figure 5.6. The fidelity relating to
the final ground state can be read out in the title of each plot.

Flinear Fquadratic

1-constraint qubit flip 0.57 0.92

2-constraint qubit flip 0.17 0.91

3-constraint qubit flip 0.06 0.85

Table 5.2: Fidelities F for case 3 and 4 for linear and quadratic driven constraint Hamiltonian ĤC

The fidelity Fquadratic for a 3-constraint qubit flip is 14 times bigger than Flinear just
by turning on the constraint Hamiltonian ĤC slower. The effect is not as strong in
the 1- and 2-constraint qubit flip but still significant.
In that sense, we run the 120-random J simulations for the new RA Hamiltonian
5.4 again. The results for the fidelity are shown in figure 5.14.
Compared to the previous results in figure 5.11 we notice that the slower start
of the constraint term ĤC impacts low Γ′s the most. For the non-trivial runs (left
plot) the blue line for Γ = 1 now reaches almost 0.6 at τ = 100, before it was at
about 0.3. Also the green line for Γ = 3 improves and is now higher than the
black line for QA. Γ = 5 and Γ = 6 return the best results for the fidelity. Higher Γ
decrease the performance of RA again. The maximum reached in the linear and
quadratic schedule are similar.
The trivial runs (right plot) return lower minima for the fidelity but are otherwise
similar to the linear driven case.
In figure 5.15 we see the direct comparison of the maximal fidelities reached

in the quadratic and linear schedule. Both cases can compete with each other
at τ > 40, but the quadratic outperforms the linear one in the middle regime
2 < τ < 40.
For further investigation we will compare the histogram and the energy spectrum
of run #2 in figure 5.16 with the linear driven case in figure 5.12. The 102 random
runs for RA with Γ = 6 and τ = 100 returns a similar plot for the quadratic
and linear driven constraint term: Flinear = 0.98± 0.09 and Fquadratic = 0.97± 0.10.
While the fidelity is by 0.01 lower the spectrum for run #2 (figure 5.16b returns
a slightly better fidelity for the quadratic case. The minimum energy gap in the
beginning of the anneal is much more present in the linear driven spectrum
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Figure 5.14: Average fidelity F over 120 random runs (102 non-trivial and 18 trivial) with modified
initial Hamiltonian and a quadratic driven constant term ĤC.

(figure 5.12b).
To see how a quadratic driven ĤC affects the individual runs we will look at the

difference in fidelites. Fquadratic − Flinear for each run are plotted in figure 5.17. A
positive value means that the quadratic run provides the better fidelity. This is
done for low, middle and high Γ-values for 2 different computation times, namely
τ = 14, shown in 5.17a, and τ = 100, shown in 5.17b.
In both cases we see that for low Γ (Γ = 1− 3) the quadratic drive of ĤC results
in a better fidelity (with a few exceptions). This effect is still present for Γ = 4− 6
with τ = 14 but the amount of cases where Flinear is higher than Fquadratic increases.
For Γ = 7, 8, 9 there are almost as many cases with a higher Flinear than with
Fquadratic. This looks different for higher computation times, seen in figure 5.17b.
While Γ = 1, 2, 3 shows a clear improvement of the fidelity for the quadratic
schedule the results for Γ = 4, 5, 6 and Γ = 7, 8, 9 show less dependence on ĤC.
For Γ = 7, 8, 9 we see more runs with a higher Flinear.
Summarizing the results, we see an improvement of the fidelity for a quadratic
driven constraint term ĤC for Γ = 1, 2, 3 for all computation times τ. For Γ = 4, 5, 6
and times 2 < τ < 40 it can outperform the linear driven schedule as well.
However, the maximum reached does not differ compared to the linear driven
schedule for τ > 40. This is related to the result in figure 5.17b. Long computation
times like τ = 100 for Γ = 4, ..., 9 show almost no dependence on the annealing
schedule used.
Furthermore we can compare these results now with the outcome of the previous

Figure 5.15: Direct comparison of the maximal fidelities reached for RA with linear and quadratic
driven constraint term ĤC.
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(a) Histogram, Γ = 6, modified Ĥinital
and quadratic driven ĤC

(b) Energy spectrum, Γ = 6

Figure 5.16: The histogram in (a) shows the distribution of the runs for the modified RA with
Γ = 6. The energy spectrum for run #2 is shown in (b). Computation time τ = 100 for
both plots.

(a) τ = 14

(b) τ = 100

Figure 5.17: Comparison of the fidelities of RA with linearly driven (Flinear) and quadratically
driven (Fquadratic) constraint term for all non-trivial runs. On the y-axis the difference
between Fquadratic and Flinear are plotted. A positive value means that Fquadratic is
higher than Flinear. The x-axis is labeled with the individual runs #1 to #120 except
for the trivial ones. This is shown for computation time τ = 14 (b) and τ = 100 (b).
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section 5.1. The analytic for the magnetization showed as an advantage for a
quadratic driven constraint term ĤC. This matches with the outcome of this
results. Nevertheless, the formula for the magnetization 3.34 with N → ∞ does
not distinguish between the places of the qubits. Also the results for case 2 c = 0
(J = −1) wont match. The analytics showed the same results for case 1 and 2 but
the actual fidelities differ significantly. The reason lies in the finite amount of
qubits. With Np = 6 we do net get a final ground state with a magnetization of
−1 for case 2 as the solution consists of 4 1-valued qubits and 2 0-valued qubits.
The 0-valued qubits are due to the constraints and have less influence the bigger
the system size N.
How the results of this chapter are related to the minimal energy gap ∆E1,0 will
be investigated in the next section.

5.3 Minimal energy gap

Looking at the energy spectrum in figure 5.13 we noticed that the minimal energy
gap ∆E1,0 appears later and not as small as in the linear case in figure 5.6. To see
if this is true for the random runs we average ∆E1,0 over all 120 runs. The result is
shown in figure 5.18. The results are valid for all computation times τ. Again the
non-trivial (right) and trivial (left) runs are separated. The error bars are plotted
in horizontal direction for a better overview. For rising Γ in the non-trivial runs
the gap ∆E1,0 but also the standard deviation increases. While QA non-trivial
(trivial) returns ∆E1,0 = 0.26± 0.14 (0.47± 0.12), RA Γ = 9 gives for ĤC quadratic
∆E1,0 = 0.73± 0.49 (1.51± 0.46). This is a high standard deviation for RA and
shows how different the energy spectrum for different problems can be.

Focusing on the non-trivial runs we see great improvement of the gap ∆E1,0
for ĤC quadratic Γ = 1, 2, 3 over ĤC linear. This is in agreement with the good
improvement of Γ = 1, 2, 3 seen in 5.17. However, the minimal gap ∆E1,0 stops
getting bigger with the transverse field for Γ > 4 for quadratic and for Γ = 6 for
linear ĤC. In fact Γ = 7 (9) shows the biggest minimal energy gap ∆E1,0 for the
quadratic (linear) schedule. This does not relate to the best fidelity outcome in
figures 5.14/5.11.
We also see interesting behaviour in the trivial runs. The gap for RA is double the
size of the maximum in the non-trivial runs. There is no Γ dependence and no
significant difference to ĤC quadratic and linear. Also the gap for QA is bigger

Figure 5.18: Comparison of the minimum energy gap for the linear and quadratic RA schedule.
In the left plot we see the non-trivial and in the left the trivial runs.
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Figure 5.19: Comparison of the time t/τ when the minimum energy gap arises. In the left plot
we see the non-trivial and in the left the trivial runs.

than the non-trivial one. According to this result the trivial runs for RA are also
easier to solve for QA.
To understand this we remind ourselves that the trivial runs for RA where those
where the starting state does not violate any constraints. QA can anneal from a
superposition into the solution state without dealing with complicated constraints
optimizations.
The size of the energy gap ∆E1,0 gives a good indication for the ’difficulty’ of the
problem but also when it arises is important. If the gap arises early in our energy
spectrum the state has no time to change as the strength of the transverse field is
too low (and therefore the fluctuations are too weak).
The average of the time of ∆E1,0 is shown in figure 5.19. Again the standard
deviation for RA is big. While the gap for QA arises at t/τ = (0.37± 0.08) (0.30±
0.04) non-trivial (trivial), for RA Γ = 2 it happens at t/τ = (0.57± 0.26) (0.56±
0.42) non-trivial (trivial) for ĤC quadratic. This shows again how unpredictable
the spectrum of an RA sweep is. For every problem it has different starting values.
QA has always the same.
In general the gap arises later for non trivial runs with a quadratically driven ĤC.
The increase of the transverse field ’delays’ the gap nevertheless the behaviour is
different than the one seen with the gap ∆E1,0. In all cases the latest gap ∆E1,0
arises with Γ = 9. This does not match with the best fidelity outcome.
To summarize the results we can say that a quadratic drive of the constraint
Hamiltonian ĤC delays and increases the energy gap ∆E1,0 especially for Γ = 1, 2, 3
compared to the linear drive. The gap and time are rising with higher Γ but the
biggest and latest gap ∆E1,0 does not result in the best fidelity outcome.
Furthermore the gap ∆E1,0 does not depend on the computation time τ. The
behaviour seen in figure 5.17b, that the performance of the anneal for τ = 100 and
Γ > 4 does not show the influence of the schedule used as shorter computation
times τ, can not be explained by the size and time of the minimal energy gap
∆E1,0.

5.4 Variance of energy

In the histograms of the previous section we see the same exceptions with F < 0.5
for RA 5.12a, 5.16a and QA 5.9a. This means that there are runs which are hard
to solve for both RA and QA.
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Figure 5.20: Fidelities F of run #32 over different computation times τ with a quadratic driven
ĤC.

The fidelities for run #32 are shown in 5.20. Within this run we receive the lowest
fidelity outcome in both RA and QA with τ = 100, namely F = 0.29 for RA Γ = 6
and F = 0.35 for QA. In addition the simulations with RA Γ > 4 show a not
known ’zig-zag’ behaviour.
To be able to explain this behaviour we look again at the energy spectrum,

it is shown in figure 5.21. We see the spectra for RA Γ = 6 with computation
time τ = 1, τ = 10 and τ = 100. In all cases it looks like we are dealing with a
degenerate groundstate but this is not true. The groundstate and the first- and
second-excited state energy are so close to each other that we can not distinguish
it by eye.

E0 E1 E2 E3 E4

-16.11 -16.09 -16.03 -15.59 -15.45

Table 5.3: Groundstate energy E0 and the 4 lowest excited state energies for run #32

In table 5.3 we can find the lowest eigenenergies of run #32. The groundstate
energy E0 and the first (second) excited state energy E1 (E2) are separated by
∆E = 0.02 (0.08). The difference to the third excited state energy E3 is ∆E = 0.52.
We also need to note here that the spectrum of the figures in 5.21 would return
a minimal energy gap ∆E1,0 at time t/τ > 0.75 but this gap is due to the close
eigenstates and can not be related to a phase transition.
In figure 5.21 we see due to the thickness of the line, when the evolving state
leaves the ground state. For τ = 1 this happens early and we see a respective
amount in energies higher than E8. This is not true for computation time τ = 10.
We ’lose’ the evolving state for t/τ > 0.75 to energy states of E1− E5. For τ = 100
the evolving state energy is a combination of E0, E1 and E2 which are separated
by ∆E = 0.08. The ground state fidelity is F = 0.29 and the fidelities for the first
and second excited states are F1 = 0.65 and F2 = 0.06. Adding the fidelities up
returns a fidelity of F0−2 = 1.00 for τ = 100.
The solution state may wont give the best result but the energy is still low and
close to the best solution. The low ground state fidelity of F = 0.29 does not give
us this information.
In figure 5.22 we can see the severity of this problem. We see the energy spectra of
RA, Γ = 9, random run #28 for computation times τ = 1 and τ = 10. The fidelity
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(a) τ = 1 (b) τ = 10 (c) τ = 100

Figure 5.21: Energy spectra for RA Γ = 6 run #32 with computation times τ = 1 in (a), τ = 10 in
(b) and τ = 100 in (c).

for τ = 1 is F = 0.28 and for τ = 10 it is F = 0.19. While we gain a higher fidelity
for the first case we see in the spectrum that the evolving state escapes to higher
energy states. τ = 10 returns a lower fidelity but the state in the end of the sweep
is a combination of lower energy states. Therefore, the annealing run for τ = 10
returns states, beside the groundstate, of lower energy than the one in τ = 1 even
tough it returns the higher fidelity. This also explains the ’zig-zag’ behaviour seen
in figure 5.20.
One way to deal with this problem (besides higher computation times τ) is to

avoid the transitions to higher energies. This can be done by artificially spreading
the eigenenergies in the end of the sweep in the same way as we did with the
initial Hamiltonian Ĥ1. Another way is to change the schedule of the transverse
field. The eigenenergies are close but that does not mean that the corresponding
eigenstates are close in the configuration space. It could make sense to keep the
transverse higher towards the end but maybe also decreasing it will lead to a
better result. Future work needs to investigate this problem.
It also make sense to discuss at his point if the measurement of the fidelity is
enough to give information of the success of the annealing run as it concerns
both RA and QA. The fidelity gives us information how much of the solution
state overlaps with the ground state but there is no information about the other
parts of the state. There is no indication on how close the remaining part is to the
lowest energy with F < 1.

(a) τ = 1 (b) τ = 10

Figure 5.22: Energy spectra for RA Γ = 9 run #28 with computation times τ = 1 in (a), τ = 10 in
(b).
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(a) Spectrum of QA, τ = 10 (b) Variance of energy

Figure 5.23: The energy spectrum for #28 of QA τ = 10 is shown in (a). In (b) the energy variance
of run #28 for QA and RA Γ = 9 with τ = 1 and τ = 10 are plotted. The corresponding
energy spectra for RA can be found in figure 5.22.

The variance can be an interesting measure for this. In figure 5.23b we see the
variance of the energy for the QA and RA run #28 over the annealing time t/τ
for τ = 1 and τ = 10. The simulations with a computation time of τ = 1 raise
to higher values than the one with τ = 10 even though RA τ = 1 returns a
higher fidelity than RA τ = 10. The corresponding energy spectra for the RA runs
are shown in 5.22. The increase of the energy variance over time also shows us
when the evolving state is leaving to higher energies. In figure 5.23a we see the
spectrum of QA for run #28. The corresponding RA spectrum is shown in 5.22b.
QA reaches a fidelity of F = 0.22 and RA F = 0.19. However the variance of the
energy is 0.55 (0.23) in the end of the sweep for QA (RA). This means QA gains
a better fidelity but also a higher energy variance. Adding up the fidelities for
the 3 lowest eigenstates gives F0−2 = 0.68 for QA while it was F0−2 = 1.00 for RA.
This matches with the outcome of the energy variance.
Nevertheless the variance should also be treated with caution. It characterizes the
distribution around the mean value. If the evolving states escapes completely to
higher energies it would provide us with the wrong information.
In figure 5.24 we see the mean values for the energy variance at t/τ = 1 for the

linear and quadratic driven process. The plots start from computation time τ = 5
as this is the time where the mean fidelity is about F = 0.5. With this we can
avoid the just mentioned problem.
Figure 5.24a shows the variance for the linear schedule. In the left plot we see the
results for the non-trivial runs. The line for RA Γ = 1 can not bee seen as it returns
a energy variance higher than 8. The variance decreases for higher Γ. Γ = 4− 9
reach lower values than QA for higher computation times τ but for times τ < 10
QA shows the best results. Within RA, Γ = 9 returns the best values. Nevertheless
the fidelities in figure 5.11 are the best for Γ = 6, 7. The biggest energy gap in
figure 5.18 is found for Γ = 9 which matches with the outcome of the energy
variance.
The variance of the trivial runs show the same behaviour as the fidelities in 5.11.
Looking at the quadratic case in figure 5.24b we see the best results in RA for
Γ = 7− 9. For some computation times τ Γ = 7, 8 are better than Γ = 9. The
difference is small, but this behaviour can also be seen in the plot for the size of
the energy gap, figure 5.18, where the highest gap occurs for Γ = 7. However, the
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(a) linear ĤC

(b) quadratic ĤC

Figure 5.24: Mean energy variance Var(E) at t/τ = 1 over computation time τ for the linear (a)
and quadratic (b) driven schedule.

best fidelities are achieved for Γ = 5, 6 (figure 5.14). In general the variances for
the non-trivial runs improved over the linear driven case in figure 5.24a. This is
not true for the non-trivial runs, they are better in 5.24a.
To summarize the results in this section we can say that we need to treat the
fidelity with caution. While the fidelity for RA Γ = 6 is higher than the one for
Γ = 9 the resulting state has a higher energy for Γ = 6 than Γ = 9. This is due to
the close lowest eigenenergies in the end of the sweep. The results for the energy
variance, figure 5.24, agree with the outcome of the minimal energy gap ∆E1,0,
figure 5.18.
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In chapter 5 we showed the results of analytical and numerical investigations.
In this chapter we want to summarize and discuss the outcome which will be
followed by a conclusion.
Section 5.1 is showing the analytical results. They show that RA has an advantage
over QA by avoiding and weakening a jump in magnetization. This is because
the system already has information about the problem. Nevertheless, the results
are based on several approximations, there will be other effects that influence
the outcome. For example it won’t be possible to achieve zero temperature in a
quantum annealer. This concerns both RA and QA. However, here we want to
focus on the differences in the numerical results in section 5.2. First of all the
formula for the magnetization 3.34 does not distinguish between the individual
qubits. In section 5.2 we found out that the results for the fidelity depend strongly
on which qubit is flipped during the annealing process. Flips of qubits that are
part of fewer constraint plaquettes return better results. This is the outcome for
Np = 6 qubits, but the analytical results are for Np → ∞. A qubit can be part
of a maximum of 4 constraint plaquettes, even for Np → ∞. The number of
1-constraint qubits stays the same for different system sizes N: they are the 3
qubits in the corners of the LHZ. In addition to this, also the 2- and 3-constraint
qubits can be neglected compared to the amount 4-constraint qubits for large
system sizes N. This is in agreement with the analytical results.
Another difference due to finite size is the result for J = −1 (case 2, c = 0). In the
analytical results, figure 5.2a the magnetization does not change throughout the
annealing process. With Np = 6 we start with a configuration of 0-values (spin
down) qubits due to J = −1. This is a relative magnetization of m = −1. The
solution configuration consists of 4 0-values (spin down) qubits and 2 1-values
(spin up) qubits and therefore the magnetization is m = −0.33. This means that
the magnetization will change over the annealing process. In the simulation we
received better fidelities for QA with J = −1 (figure 5.4d) which is the opposite
of what we expected based on the analytics. We can assume that RA will gain
an advantage for bigger system sizes in this specific case. However, future work
should investigate the behavior of the fidelity over the system size N as well as
the magnetization for smaller systems.
In section 5.2.1 we detected differences in fidelity for QA with and without
auxiliary qubits. There is no difference for RA. It may depend on the strength of
the local field Jaux acting on these qubits. This effect may vanish for Np → ∞. It
is possible to build an LHZ without these additional qubits but future work can
investigate this behavior.
The best fidelity achieved in section 5.2.3, figure 5.14 for random fields J does not
match with the biggest and latest minimal energy gap ∆E1,0 in section 5.3, figure

44



6 Discussion and conclusion

5.18, but the smallest energy variance in section 5.4, figure 5.24b, does! This is
due to the fact, that the fidelity does not provide sufficient information about the
success of the annealing run. This is more explained in section 5.4. The variance
(not just the energy variance) can also give information about when the evolving
state is leaving the instantaneous ground state providing that it does not escape
completely to higher states. How this can be used in actual physical devices still
needs to get discussed.
Furthermore we increased the performance of RA significantly with a modified
initial Hamiltonian. There are also other ways to modify it, like setting all ele-
ments to 1 and use the signs of the actual J matrix. Another performance gain is
possible by solving the problem of the close energy bands of the ground and the
first excited state at the end of the annealing process. Changing the annealing
schedule by different driving of the transverse field VTF or modification of the J-
matrix can be tools to achieve this. Nevertheless, the J-values are strongly related
to the actual time used in the lab (see section 4.2).
With the modified initial Hamiltonian, RA achieves a better result, but we can
make a further improvement with a quadratic driving of the constraint Hamilto-
nian ĤC, see figure 5.24b and 5.24a. In both cases high Γ = 7, 8, 9 achieve the best
results and the difference between them can be seen in the middle regime τ < 40.
For smaller Γ the quadratic case achieves a significantly better performance than
the linear one. However, it is not discussed yet if a high transverse field is prob-
lematic for the actual physical implementation of a quantum annealer.
It is also not proven that a quadratic drive of the constraint Hamiltonian ĤC gives
the best results. The original idea was to start the constraint term slower as it
influences the performance, shown in figure 5.6. In the paper [39] it is shown
that one can avoid first-order phase transitions already with a non-linear drive
of s1.56ĤC for QA. In this work the RA Hamiltonian has been modified, not the
QA Hamiltonian. Further work can be done to find the critical point and the best
schedule for RA.
We used 2 parameters s and λ for our annealing process. It is possible to introduce
a third one which could, with a smart choice, improve the performance.
Overall, we outperform QA with RA, a quadratic drive (equation 5.4) achieves
better results than the linear drive 4.1. Due to the high and late energy gaps
seen in figures 5.18 and 5.19 we can say that quantum phase transitions are
not the major problems in RA in the LHZ-model. The main problems are the
close eigenenergies in the beginning and the end of the annealing procedure.
To avoid the closes energy bands in the beginning one can modify the initial
Hamiltonian as states in this thesis or by using a new Hamiltonian with 1 and −1
depending on the signs in the J-matrix. The later may be more useful in practical
implications. How to deal with the close energy band at the end of the anneal is
an interesting topic for future work.
In the end we want to summarize the results. Using a modified local field as the
initial Hamiltonian, reverse annealing can outperform quantum annealing. We
can improve the method further by a quadratic drive of the constraint Hamilto-
nian. With the changed schedule the energy gap occurs later than in the linear
drive. It also increases the size of the gap. The simulations where we reached the
biggest energy gap are the same where we reached the lowest energy variance.
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